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ABSTRACT OF DISSERTATION

MATRIX DECOMPOSITION FOR DATA DISCLOSURE CONTROL
AND DATA MINING APPLICATIONS

Access to huge amounts of various data with private infoiondirings out a dual demand
for preservation of data privacy and correctness of knogéediscovery, which are two
apparently contradictory tasks. Low-rank approximatigeserated by matrix decomposi-
tions are a fundamental element in this dissertation fopthecy preserving data mining
(PPDM) applications. Two categories of PPDM are studieda gtalue hiding (DVH) and
data pattern hiding (DPH). A matrix-decomposition-baseanework is designed to in-
corporate matrix decomposition techniques into data peg®sing to distort original data
sets. With respect to the challenge in the DVH, how to prasecisitive/confidential at-
tribute values without jeopardizing underlying data paise we propose singular value
decomposition (SVD)-based and nonnegative matrix fazation (NMF)-based models.
Some discussion on data distortion and data utility metsiggesented. Our experimen-
tal results on benchmark data sets demonstrate that ouoggdpmodels have potential
for outperforming standard data perturbation models diggrthe balance between data
privacy and data utility.

Based on an equivalence between the NMF Ahoheans clustering, a simultaneous
data value and pattern hiding strategy is developed for ohténg activities usingC-
means clustering. Three schemes are designed to make tadtggation on submatrices
such that user-specified cluster properties of data sw@eethidden. Performance evalu-
ation demonstrates the efficacy of the proposed strategg siome optimal solutions can
be computed with zero side effects on nonconfidential mestiges. Accordingly, the pro-
tection of privacy is simplified by one modified data set witinenced performance by this
dual privacy protection.

In addition, an improved incremental SVD-updating alduritis applied to speed up
the real-time performance of the SVD-based model for fragdata updates. The perfor-
mance and effectiveness of the improved algorithm have bramined on synthetic and
real data sets. Experimental results indicate that theduttion of the incremental matrix
decomposition produces a significant speedup. It also gesvpotential support for the
use of the SVD technique in the On-Line Analytical Proceg$or business data analysis.
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Chapter 1

Introduction

A classification of data use can be made on the basis of fivectsspéata distribution,
data modification, data mining algorithm, data or rule higdiand privacy preservation
[[76]. Data miningis the principle of sorting through large amounts of datagickling out
relevant useful information. It is usually used by businesslligence organizations, and
financial analysts, but it is increasingly used in sciencesxtract information from the
enormous data sets generated by modern experimental aad/atienal methods. It has
been described as “the nontrivial extraction of impliciteygously unknown, and poten-
tially useful information from data’{[31] and “the scienckextracting useful information
from large data sets or databasés’ [35].

The last aspecprivacy preservationis becoming increasingly critical for future de-
velopment of data mining techniques with greater potegitaless to datasets containing
personal, sensitive, or confidential information. Extiragtvalid data mining results while
preserving privacy of certain data sets is a major challéogexisting data mining algo-
rithms.

Traditionally, data mining techniques have been consttlasea useful tool in com-
mercial, industrial and government business for varioup@ses, ranging from increasing
profitability to enhancing national security. For exampiggr-organizational collaboration
significantly improves supply chains and enables more rapdliless costly transactions

among partners. Data mining techniques can be utilizedsimogler valuable knowledge in



private or shared public data. Given the large collectidngenson-specific information,
service providers can mine data to learn patterns, modeldrands that can be used to
provide more effective personalized services. It can bd tselo purchase recommenda-
tions on what product to buy, do text or document searchisgjstin diagnosis of diseases
and so on.

The potential benefits of data mining are certainly subgthriiut the collection and
analysis of sensitive personal data or secure data leadsnttems about individual pri-
vacy, data security and intellectual property rights. B@meple, National Security Agency
(NSA) has a huge amount of databases on Americans’ phorse gsihg the data provided
by ATT, Verizon and Bellsouth. The spying agency is usingdh& to analyze the call
patterns in order to detect terrorist activities. In 20@haerns over government collection
of data led to street protests in Japan [75]. In 2003, coscever the US Total Informa-
tion Awareness program (TIA) even led to the introductioradtill in the US Senate that
would have stopped any US Department of Defense data mimagggm [75]. Such public
reactions show a lack of understanding of data mining froergtineral public.

This misunderstanding creates several obstacles on thetksrmdevelopment of data
mining techniques and their applications. Among them i¢$ tha applicability of data
mining techniques is problematic without an acceptablellef/privacy of sensitive infor-
mation [86]49]. Furthermore, the quality of collected dai@y be questionable under the
public concerns on privacy. I0[23], it was shown tfia% of the respondents in a survey
were not willing to provide their personal data without thietpction of privacy.

Therefore, in recent years, data mining has been viewedhagat to privacy by some
people. There seem to be a pair of contradictory concepige &mphasize the data privacy,
it may reduce the benefits of data mining; if we focus on kndgéediscovery, there may be
no guarantee on the data privacy. Privacy aspects of daiagriave an important impact
on many data analysis applications. In particular, due eéagtiowth of electronic services,

privacy protection has attracted a lot of attention regenth these electronic services,



privacy issues arise because many users have concernsa@oand where their personal
data and information will be used. Even though many naticase ldeveloped privacy
protection laws and regulations to guard against improperadf personal information, the
existing laws and their conceptual foundations have beamnaated because of the rapid

changes in data collection and data analysis technologies.

1.1 Privacy-Preserving Data Mining

Let us take a look at the sources of the possible threats enpiistacy. It was reported
in Wall Street Journal in February 2006 that companies warbrfg that insiders pose as
great a risk to computer security as outside attackers [F2}. the attacks from outside
the companies, access control mechanism can be used ta dg&gent levels of rights
to different users in order to control data disclosure. Rerpublic access, only the non-
confidential part of the date is published to the partnerdi@mpublic. However, when the
threat comes from inside the companies, the problem becormaescomplicated. In order
to use data analysis tools including data mining methodsesaccess rights have to be
given to some employees for conducting analysis of the dé«tthis stage, the data privacy
would be out of control without any data preprocessing. Thuthe absence of adequate
safeguards, the use of data mining can jeopardize the gravad autonomy of individu-
als. Obtaining the potential benefits of data mining wittvacy-aware technologies can
enable a wider social acceptance of a multitude of new ses\aad applications based on
knowledge discovery.

A practical requirement from the above described privaayceons is a trade-off be-
tween sharing confidential information for analysis andplkeg individual, corporate and
national privacy. For this requirement, organizations antrprises must fulfill two seem-
ingly contradictory missions. One is to share data or inftran within the companies, or
with other partners or the public. The other is to protectficemtial data and privacy of

the data subjects.



This challenge, between data sharing and privacy preggrvas captured the attention
of many researchers and administrators from many diffesentmunities, and motivated
a great amount of research aimed to answer the questionsasudtow can data be ex-
changed securely for cooperative analysis or outsouraiadysis? How can important
structure and underlying patterns be found within a large dat without jeopardizing pri-
vacy? How and when can hidden structure be extracted frorsimgislata or transformed
data that is imprecise or partially incorrect?

By incorporating privacy protection mechanism, algorithcan be developed to hide
sensitive data before executing data mining algorithmbeaidata mining activities will not
breach privacy. As a result, the increasing concerns omagyiand related research brings
out a new branch in data mining, known svacy preserving data mining (PPDM).
Since the primary task in data mining is the development aflefor decision making,
developing accurate models without access to precisenmaion in the original data is a
natural objective for PPDM.

With the consideration on a number of different methods dMRrom different com-
munities, PPDM can be categorized from different view pginFor example, they can
be divided by different data set types (numerical-valuetd da. categorical-valued data
or mixed-type data), or data location (centralized datadistributed data), or data min-
ing methods (classification, clustering, association mieing and so on). In our work
in the dissertation, data disclosure control is emphasiaed “data” here is understood
as an abstract word for a combination of “attribute” valugha “data” and “knowledge
underlying data”. In the dissertation, the following twdegories are used to describe the

characteristics of our privacy-preserving methods:

e Data Value Hiding (DVH): Data value hiding is to protect sensitive data values but
maintain data patterns in order to prevent improper use t@af. d& graphical repre-
sentation is shown in Figufe®.6. Our goal is to maximize fffer@nce between an

original data setd and its modified data set and minimize the different between

4



the data mining results oA and A. The classical purpose of PPDM belongs to the
category of DVH, where attribute values are typically maatifso that disclosure risk
of sensitive’ confidential attributes is minimized and the associatectiagimpact

of data modification on data mining results is minimized [9420,77]. Consider a
datasefl” of customer profile having attributes ofiame, sex, birth date,
city, purchased itens, purchase val ues, salary}. {nane}isa
direct identifier of the individual andlsal ary, purchased itens} are sen-
sitive variables containing sensitive information of timelividual. The subset of
{sex, birth date, city} canprovideinference on individual identification.
If assuming that the release of the enfites required for some purpose; no access
to sensitive variables is allowed; no inference on ideraiian is allowed; and users
are allowed to perform various data mining tools over a sedalata versiof, such

as frequent items mining, regression, classification ansteting, then data modi-
fication (perturbation) is a commonly recommended practtiora)mputef 21]. A
large amount of existing PPDM methods, roughly over 90%.,itfigd this category.

A crucial problem in data value hiding is a trade-off betwelata privacy anddata
utility/information loss. Data utility is that data patterns are maintained so that th
mining accuracy is kept at a satisfied level on the modified dat. Since modifi-
cation on data values is supposed to degrade data miningeagchow to achieve a

balance between these two contradictory ends is a primatyfgathis research line.

Data Pattern Hiding (DPH): In many cases, the results of data mining activities
can compromise the privacy too. The second category of PRI2it#4 pattern hid-
ing, is another security concern growing out of the contéxtaslaboration where
sharing data is required among partners. It draws attetdidisguise of confidential
knowledge hidden in databases. For individual members illaborative project,

preventing other partners from discovering some busisessitive knowledge is vi-

5



i - . : s Final
General difference of attribute values is maximized

o | released data
max| A4 — A

Original
Data Pattern

|______ S U R T T,

'é} p_PF_;J

— — — —min

The influence of data modification on the mining results is minimized.

Figure 1.1: Data value hiding

tal when competitors or partners can use data mining algostto extract valuable
(but potentially damaging to the data owners) knowledgenftbe shared data. It
was indicated as another threat to database security bya@/lie [62] and later by
Clifton and Marks in[[2D]. A well designed scenario is praadtdin [20] and Verykios
et al. analyzed it to indicate the need not only to hide data ateilalues, but also

to prevent data mining techniques from discovering semsknowledgel[78].

To make an analysis of the assertion that the data miningntdaty has potential to
jeopardize the profit of data owners, an example is illustran Figurd_TR. Assume
that Alice and Bob are two manufacturers of the same produslise builds her

customer profile database with the same structuré' aescribed above. Due to
some negotiation between Alice and Bob, Alice grants Bobritjiet of access to

T. Bob carries out some data clustering technique to grougtisting customers
of Alice into two clusters: high potential valued customansl low potential valued

customers; or a ranking algorithm is performed and a rankingustomer value is



generated. In either case, Bob can take advantage of themetof data mining
and design a marketing strategy to win over the customeiiadpéngh possibility of
future purchasing behavior. Probably, Alice will lose hestomers and her business
as well. In that case, it is highly recommended that Alice ifyothe original T’

before its release so that Bob has little chance of discogehie valuable customers.

ALICE BoB
L Negotiation

|§| attribute @

Name Sue Marketing

HMH@E ltem 1 A | <]— Access | strategy
' __}

L o

Rank List
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Figure 1.2: An example of data pattern hiding.

However, there are quite few published research works glihe, the existing re-
search works are mainly limited to protect sensitive asgmri rules in connection

with some association rule mining algorithrasl[L0, (25,79, 84

1.2 General Survey of Privacy-Preserving Data Mining

In this section, we will provide a general survey of PPDM meded methods, which
are grouped into two categories as defined previously: ddteevhiding and data pattern

hiding.



1.2.1 Current Status of Data Value Hiding Techniques

Before we start explaining the techniques that we have dpeel, let us take a look at
what has been done in the field of PPDM, and what techniquesvar@ble. A number of
techniques such as randomization @anonymity have been proposed in recent years in
order to perform privacy-preserving data mining. Furthemen the problem has been dis-
cussed in multiple communities such as the database conyntlna statistical disclosure
control community and the cryptography community. In somses, some different meth-
ods from different communities are quite similar, and thdwes not seem to be sufficient
information exchange between these communities.

Bertino et al. [L4] defined privacy in the context of data mining as the righan
entity to be secure from unauthorized disclosure of semsitiformation about oneself that
is contained in an electronic repository or that can be ddras aggregate and complex
information from data stored in an electronic repository.

Intuitively there are three approaches to hiding sensitata values. One is to transform
the original data into protected, publishable data by udetg perturbation. An alternative
to data perturbation is to generate a new dataset (syntifetiiset), not from the original
data, but from random values that are adjusted in order te tie/same feature patterns as
the original data. A third possibility is to build a hybridtdaet as a mixture of a distorted
one and a synthetic one]39]. Most methods in literature idinky sensitive data are based
on element-wise random perturbation.

Most privacy control methods are developed specificallyatget one of the follow-
ing data types: statistical data/microdata, biologicahbhaicroarray, quantitative data, or-
dinal data, nominal data and categorical data. Statisticsalosure control (SDC) may
be one of the earliest fields in data privacy preservationve@d reconstruction-based or
randomization-based methods adding some noise to thenakigata have been widely
used for privacy protectiori [30, 58]. Random projectionrapghes, most of which are

multiplicative perturbations in the context of computimgeér product matrix, have also
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been studied. The more recent approach in data distortibased on the data matrix
decomposition strategies [88].

In addition to these methods based on distorting the ofligiata values, Cliftoret al.
proposed another class of approaches to modify data mihgegitams so that they allow
data mining operations on distributed datasets withoubkmgthe exact values of the data
or without directly accessing the original dafal[19].

A condensation approach aiming at general cases was pibpofy to preserve data
correlation that is the basis of many data mining algoritikesdecision trees. However,
data reduction or multiparty computations are not considlett is more concerned with

hiding the identities of objects.

Statistical Disclosure Control (SDC)

Statistical database (SDB) system is a database systeentitales its users to retrieve only
aggregate statistics for a subset of the entities repredentthe database. The topic of
PPDM has often been studied extensively by the data minimgaanity without sufficient
attention to the conventional work done by the statistigatldsure control community.
Some work has been presented in parallel with similar workeda the area of database
and data mining, such d@sanonymity, swapping, randomization, micro-aggregatod
synthetic data generation.

The problem of protecting sensitive information in a dassbahile allowing statistical
queries has been studied extensively since the late 1%,B8]. Early in 1989, Adam and
Wortmann [5] conducted a comprehensive survey on seccoityrol methods for statisti-
cal disclosure control. The methods are classified undergeneral approaches: concep-
tual, query restriction, data perturbation, and outputysbation. The survey introduced
probability-distribution perturbation and fixed-datatpebation approaches.

Within the probability-distribution approach, Reissl[68] suggested approximate data
swapping to deal with multicategorical attributes. Theymral database is replaced with a

randomly generated database having approximately the sander statistics as the origi-
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nal database. Liewt al. [50] proposed data distortion by probability distribution1985.
Its operating principle is to obtain a protected datasetamglomly drawing from the un-
derlying distribution of the original dataset. For fixedkaperturbation approach, Traab
al. [[74] developed an additive-perturbation method for nuoerattributes by adding or
multiplying a random variable to a true value. It might be fingt randomization scheme
in privacy protection. The randomization for PPDM propobgdigrawal and Srikan{]9]
in 2000 is the same as that by Traebal. [[/4] and Abul-Elaet al. [3]; these proposals
reduced multiple-value categorical attributes to two galuwhich results in a considerable

information loss.

Data Perturbation

Data perturbation techniques are one of the most populaelsmodefore data owners pub-
lish their data, they modify the data in a statistical wayiggdise confidential information
by adding random noise to numerical attributes.

A large fraction of them use randomized data distortion négpies to mask the data
by randomly modifying the data values. The simplest verssomoise-additive approach
[45,[4,[1630].

Noise-Additive Model: The modification is element-wise. The owner of a data set
returns a value,; + v, whereaq; is the original data and is a random value drawn from
a certain distribution. The most commonly used distribngiare the uniform distribution
over an interval—«, o] and Gaussian distribution with the mean= 0 and standard
deviationo. Then original data values,, as, . . ., a,, are realizations of independent and
identically distributedi.i.d) random variablesn independent noises;, vy, . . ., v,, are

drawn from a distribution. Using the matrix format,this pess can be written as
A=A+, (1.1)

where A is the original data matrixA is the perturbed data matrix and is the noise
matrix. The approach is intuitive and easy to understandwveyer, this model does not
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preserve Euclidean distances between the subjects. Taayasuitable for widely used
distance-based data mining algorithms such as:theeans clustering and thenearest
neighbor classification. Furthermore, the element-wisa parturbation techniques do not
reduce the data rank.

Given an assumption that an attacker has prior knowledgdé®zéro meany, and
the variance of the added noise, it has been recently claimed that this model has pri-
vacy breaches, and some privacy intrusion techniques carsdx to reconstruct private
data from the randomized dafa[44] 45| 89]. The spectraleptigs of randomized matrix
could help the attacker separate noigefrom the perturbed datal. In particular, a spec-
tral filtering-based method is proposed based on randomnthagory to reconstruct the
original data from the randomized dafal[44] 45]. Two othdadaconstruction methods,
Principal Component Analysis-based and Bayes Estimateehare proposed in[36] to
restore the original data from the perturbed data. It is eatggl that the amount of original
information that can be revealed is related to data coroelaiind the more the correlation
of noises resembles that of the original data, the betteagyipreservation can be achieved
[36].

Random Projection / Matrix Multiplication Model: It directly uses the concept of
random mapping, a dimensionality reduction method, tocediie data dimensionality and
preserve enough structure of the original data set. It iglgnosiltiplicative perturbation in
the context of computing inner product matiix[43} 57]. Timedel is based on the Johnson
Lindenstrauss Lemma41], which places bounds on Euclidiéstance distortion due to
any dimensionality reduction transform. The lemma stdtas & small set of points in a
high-dimensional space can be embedded into a space of rowel dimension in such
a way that distances between the points are nearly preseitvisdproved in the Johnson
Lindenstrauss Lemma that, for a set of points of size a p-dimensional Euclidean space,

there exists a linear transformation of the data intedamensional space,

log(n))

¢=0(—3
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that preserves distances up to a fagto#- €), e € (0, 1) [41]].
Let R € R™** be a matrix generated with entries randomly chosen fromengiNstri-

bution V (0, o,.) with zero meany = 0 and variance?, across columns, we have
A=AR (1.2)
for right multiplication. For left multiplication, it becoes
A = RA. (1.3)

In the random projection-based method det m, since the dimension size should be
maintained.

If R is nonorthogonal, according to the Johnson Lindenstraessnha [41], the Eu-
clidean distance is approximated on expectations up to staonfactor, and the random
projection methods may suffer from the loss of Euclideatatdises due to the nonorthog-
onal matrixR. We denote this method a&p andrpA. The computational complexity is
due to a matrix multiplication and is of the ord@(nmm), and if A is sparse with about
nonzero entries per row, the complexity is of the or@&enm).

If R is orthogonal, then the projection exactly preserves theriproduct of4, which

is the squared Euclidean distance,

AAT = ARRT AT = AAT. (1.4)

We denote this bylrpo andrpoA. The complexity will be increased with the cost incurred
by orthogonalizingR, which is in the order 0®(n?). Arpo is of the ordetO(nm? + n?)
and is always computationally expensive.

It is claimed that because this model preserves Euclidestardie with either small or
no error, it allows many important data mining algorithmsapplied to the perturbed
data and produce results very similar to, or exactly the sasthose produced by the

original data,e.g, k-means clusterings-nearest neighbor classification, and hierarchical
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clustering [43].

However, the issue of how wel is hidden is not clear and deserves more study. It
might not be able to provide enough privacy protection. €fae, a balance between data
privacy and data utility is not guaranteed with this modetofher issue is that orthogonal-
izing R is unfortunately computationally expensive.

As with the noise-additive model, several researchers mwestigated the vulnerabil-
ities of the random projection model using various forms wbmpknowledge [[17]. The
assumptions on prior knowledge include tliais orthogonal, or some samples are known.

The covariance matrix may also be used to estimate the afidistribution.

Secure Multi-party Computation (SMC)

The Secure Multi-party Computation (SMC) approach consitlee problem of evaluating
a function of two or more parties’ secret inputs, such thahgaarty finally gets the de-
signed function output and nothing else is revealed, exa®pt is implied by the party’s
own inputs and outputs. Det al. gave a comprehensive review on SMCI[28]. SMC and
cryptography techniques can be combined for distributéa ehéning. Without generality,
numerous distributed algorithms are task-specific. Theslestinclude privacy preserving
information retrieval, geometric computation, statigtianalysis and scientific computa-

tions.

1.2.2 Current Status of Data Pattern Hiding

For association rule hiding, two approaches based on tieurisdification have been pro-
posed to prevent association rules from being generaidd (2% is to hide the frequent
sets from which rules are derived. The second is to redudeitiygortance by setting their

confidence below a user-specified threshold. Verykica. [[/8] presented five algorithms
to hide sensitive association rules by insertion or remof/edécords. Three of them belong
to the first approach that decreases either the confidenbe support of a set of sensitive

rules until the rules are hidden. The other two use the seeppdoach to decrease the
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support of a set of large itemsets until they are below a sgecified threshold so that no
rule can be derived from the selected itemsets. Howevermppeoaches make a strong
assumption of no overlapping, i.e., all the items in a semsiule do not appear in any
other sensitive rule. Some undesirable side effects mapaaioided, such as lost rules
(nonsensitive rules falsely hidden) and ghost rules (spsrrules falsely generated). In
order to limit side effects, Wit al. [84] proposed heuristic methods for increasing the
number of hidden sensitive rules and reducing the numberaafified entries. Atallatet

al. [10] used an itemset graph to hide sensitive itemsets efda as data sanitization.

For classification rule hiding, a reconstruction-basech&waork for categorical datasets
is proposed by Natwichadt al. [89,[60]. After extracting sensitive rules, a new decision
tree is built on nonsensitive subset of rules. A new datasgénerated from the decision
tree. It is claimed that even though the difference in regm&stion between the new and

original datasets can be found, the approach can maintgimléwvel data usability.

1.3 Applications of Privacy-Preserving Data Mining

The problem of privacy-preserving data mining has numespmications in homeland

security, medical database mining, bio-terrorism andaust transaction analysid [8].

e Homeland Security Applications: A number of applications for homeland security
are inherently intrusive because of the very nature of silemee. In [71], a broad
overview is provided on how privacy-preserving technigonay be used in order to
deploy these applications effectively without violatingeu privacy. Some examples

of such applications are as follows:

1. Credential Validation Problem: This is to make a match between the subject
of credential and the person presenting the credential.ekample, the theft
of social security number presents a serious threat to lemdedecurity. The

credential validation approach tries to exploit the semsarassociated with the
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social security number to determine whether the persoreptieg the social

security number credential truly owns it.

2. Web Camera Surveillance: Web camera is widely used for surveillance to
detect unusual activities. It has been hypothesized intfét]unusual activities
can be detected only in terms of facial count rather thangusiore specific

information about particular individuals.

¢ Video Surveillance. There has been a tremendous proliferation of video surveil-

lance cameras in public locations such as stores, ATMs,adshsubway stations,
and airports. When sharing video-surveillance data, fae@ognition software can
match the facial images in videos to the facial images in @edilicense database.
If each face is blacked out, then all facial information vii# wiped out. In[[61],

selective downgrading is used on facial information in orgelimit the ability of

facial recognition software to reliably identify faces, Wémaintaining facial details
in images. k-Same algorithm is designed for this purpdse [61]. The idea cre-

ate new synthesized data by identifying faces which are straesimilar, and then
to construct new faces which generate combinations of featinom these similar
faces. Thus, the identity of the underlying individualsiistpcted to a certain extent,

but the video continues to be useful.

e Genomic Privacy. DNA data is considered extremely sensitive since it costain
almost uniquely identifying information about an indivaluAs in the case of multi-
dimensional data, simple removal of directly identifyiratal such as social security
number is not sufficient to prevent re-identification. A s@fte CleanGenecan de-
termine the identifiability of DNA entries independent ofyasther demographic or
identifiable information[[55]. The software relies on pebliavailable medical data
and knowledge of particular diseases in order to assigrtifations to DNA en-

tries. In [55], it was shown that’8 — 100% of the individuals are identifiable using
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the approach. The identification is done by taking the DNAisege of an individual
and then constructing a genetic profile corresponding teekegenetic diseases, the
location where the DNA was collected. One way to protect tiengmity of the se-
guence is with the use generalization latticesvhich are constructed in such a way
that an entry in the modified database cannot be distingdisben at leastk — 1)

other entries.

1.4 Data Privacy and Data Perturbation
1.4.1 High-Accuracy Data Hiding

As seen from the previous section, most privacy-presemiethods apply a transforma-
tion which reduces the effectiveness of the underlying ddtten the data mining methods
or algorithms are applied to the transformed data. The grooEprivacy-preservation may
lead to loss of input information for data mining purposesisTloss of input informa-
tion can also be considered as loss of utility for the datamgipurposes. Considering
the numerical data sets, we found that noise-additive misdshsy to implement by two
steps, random matrix generation and matrix addition omerafThe complexity is of or-
derO(nm). Its disadvantage is that the addition of external noisddéa the information
loss and it might significantly degrade the data mining tssior the random projection
model, it is claimed that it can perform quite well for Eudah distance-based data min-
ing algorithms. But for other kinds of data mining algorithnthere is no work to show its
accuracy-maintenance. Also its complexity is much highantthe noise-additive model.
The problem of utility-based privacy-preserving data mgwas first studied formally
in [46] for the method of-anonymous on categorical data sets. In fact, there is aalatu
tradeoff between privacy and data mining accuracy, thobghttadeoff is affected by
the particular algorithm which is used for privacy-presgion. A key issue in PPDM
is to maintain maximum utility of the data without compromggthe underlying privacy

constraints.
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Therefore, we intend to design a new privacy preservatiodahfor numerical data
sets, which can achieve a better balance between data vatexion and data pattern
maintenance (i.e., data mining accuracy). Here we chlbih-accuracy data hiding

The real-world data sets are unavoidably perturbed by trseadrom different sources.
It is generally acknowledged that most of the informatiothgeang devices or methods at
present have only finite bandwidth. One thus cannot avoidattethat the data collected
often are not exact. For example, signals received by aatamays often are contami-
nated by instrumental noises; astronomical images aatjbyréelescopes often are blurred
by atmospheric turbulence; database prepared by documsting often are biased by
subjective judgment; and even empirical data obtained borktories often do not sat-
isfy intrinsic physical constraints. Furthermore, in maityations the data observed from
complex phenomena represent the integrated result ofalenterrelated variables acting
together. When these variables are less precisely definedctual information contained
in the original data matrix might be overlapping, fuzzy amdlonger clear cut. Assume
that the original data se#, is the result from an unknown functighof the inherent data,
A, and the inherent nois@], as

A= f(A, N). (1.5)

An implementation of the PPDM model, a modification stratégys applied onA
A= L(A); (1.6)
so that our idea can be roughly described in terms of theviiig three characteristics:

1. £ should be able to modify the original data value so that tiferdince,||A — A

is significant, and the original data values are protectedsaifficient level.

2. At the same timef should remove the inherent noise datdrom the original data
A so that the data utility is improved, sometimes, and it evexlpces a better data

mining accuracy because of the removal of the inherent noise
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3. L should have a reasonable computational complexity for-digiensional data sets.

Thus, a low-rank approximation is one of the candidatestfar order to realize the above
characteristics of the model. Matrix decomposition ordazation techniques can reduce
the data ranki.e., extract the significant variances from the data; and igtteeenonsignif-

icant variances so that the inherent noise can be removezkeTimique characteristics of
the matrix decomposition forms a basis for the models wedeficribe in the chapters of

83, §4 andg5.
1.4.2 Dual Privacy Protection

Moreover, many research works are focused on either oneséttwvo categories of PPDM.
Since the mechanism of most PPDM algorithms is distortiomasrsformation of original
datasets by different algorithms, itis common that the fieasion of the distorted datasets
may not satisfy both data value hiding and data pattern gidihhis suggests that two
different modified versions of the original dataset may bedeel for these two disparate
subtasks. To the best of our knowledge, there has been nt ei#ale on achieving both
data value hiding and data pattern hiding by using the santified dataset.

We design a method which tends to preserve the privacy of semgtive end results
of the applications (here we calldual privacy protectioh In the§5 of the dissertation,
a matrix decomposition-based method is designed to thecapiph wherek-means clus-
tering is conducted on centralized numerical data setst, Mesimple introduction of two
matrix decompositions is given since they construct the afrour proposed model and

methods.

1.4.3 Two Matrix Decomposition Techniques

Conventionally, matrix decomposition in numerical linalgebra is used as a computation-
ally convenient means to obtain the solution to the origimaar system or to understand

certain properties of the matrix. Within the field of data m@ its major purpose is to
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obtain some form of simplified low-rank or low-dimensionglpaoximations to original
dataset for understanding the structure of data, partigulae relationship within the ob-
jects and within the attributes and how the objects relatbéeaattributes[[37]. Low-rank
factorization techniques not only enable users to work vatlhuced-rank models, they also
often facilitate more efficient statistical classificati@ustering and organization of data,
and lead to faster searches and queries for patterns ostrend

Many of the existing data distortion methods inevitably fialo the context of matrix
computation. For instance, having the longest history ivagy protection area and adding
random noise to the data, additive noise method can be viewadandom matrix method
and therefore its properties may be understood by studiimgtoperties of random matri-
ces [54[4].

Matrix decomposition renders a compact representation seiluced-rank while pre-
serving dominant data patterns. These characteristicva®ius to utilize it to achieve
the seemingly contradictory tasks: high data value primtecnd high data mining accu-
racy. The goals of this Ph.D. dissertation study are to ugexmecomposition techniques
to achieve high-accuracy data disclosure control, and puehcy protection. Singular
value decomposition and nonnegative matrix factorizaéiatwo techniques used in the

dissertation.

Singular Value Decomposition (SVD)

Based on eigenvalue and eigenvector analysis, singulae\dg@composition of a matrix
is probably the most well-known member of the family of mattecomposition methods.
Given a matrix,A € R™*™, with rankr, the singular value decomposition, the SVDAf
is defined as

A=UxVT, (1.7)

whereU € R™"*", ¥ is a diagonal matrix of size x m, having onlyr nonzero entries (the

singular values ofd) as its diagonal entries in the descending order, \and R™*™. U
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andV consists of orthonormal eigenvectors associated with thenzero eigenvalues of
AAT and AT A. Hence, the columns ofU corresponding to the nonzero singular values
span thecolumn spaceand ther columns ofV span theow spaceof the matrixA. U and

V' contain thdeft and theright singular vectors, respectively.

The popularity of the SVD covers a wide range of areas. In gténg, SVD inspires
web search techniques such as the latent semantic index@igtéchnique for text min-
ing to find similarities among documents or clustering doeota [32]. In [32], Gao and
Zhang proposed a sparsified SVD (SSVD) to reduce storagéreegents in SVD based
text mining applications.

Despite the large number of attributes, most datasetsgrisi practical application
result in a representation having a good low-dimensionat@pmation. SVD is a popular
method of dimension reduction in data mining and informatietrieval [66], since it has
a mathematical feature to find a rahkapproximation of a matrix with minimal change
on its pattern to that matrix for a given value bfl29]. It is mainly used to reduce the
dimensionality of the original dataset.

Its promise on the minimal change on data patterns makestitylarly interesting
for our application. In§3, an SVD-based data hiding model is designed for numerical
data sets. It is experimentally demonstrated that SVD isr@&tgworth in constructing a
decision model insensitive to distorted data values, thezdiigh accuracy data hiding can

be achieved.

Nonnegative Matrix Factorization (NMF)

Another matrix decomposition we use in the dissertatiomésNonnegative Matrix Fac-
torization (NMF). Given a nonnegative valued matrig, € R’*™, there exists some
K < min{n,m}, s.t.

A~ HW, (1.8)
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that minimizes the objective functiof{ 1, W) = L||A — HW |3 whereH € R’*¥ and
W e RE*™ ||A — HW|% is the Frobenius norm afA — HW).

The idea of positive matrix factorization is developed bgteeo, and later become pop-
ular in the computational science communityl[42]. Interegiositive matrix factorization
increased when a fast algorithm for nonnegative matrixoféation, based on iterative
updates, was developed by Lee and Seling [48] (refed.t21). They were able to show
that it produced intuitively reasonable factorizationsddace recognition problem. They
showed that NMF facilitates the analysis and classificatiadata from image or sensor ar-
ticulation databases made up of images showing a compdgéeton many articulations,
poses, or observation views. They also found NMF to be a usaflin text data mining
[64]. In the past few years, several papers have discussdé tddhniques and successful
applications to various databases where the data valuemanegative [27].

NMF has recently been shown to be a very useful techniqueproapnating high di-
mensional data where the data are comprised of nonnegatnpanents[[38, 34, 65, b3,
183,[85]. Xuet al. [85] demonstrated that NMF-based indexing outperforntiticmnal vec-
tor space approaches in information retrieval such astlamantic indexing for document

clustering on a few benchmark test collections.

1.4.4 Real-time Performance

Besides the efficiency and accuracy, a good data modificatethod should be practically
robust for different data sources. Usually, it should bdadia to large size data and com-
putationally applicable to high-dimensional data. Sedpnit should be adaptive to the
external perturbations, including the addition of new datanoval of old data and so on.
Considering that the data streaming is more and more poputae network and online

environment, it is desirable that a good PPDM method can Ipdeimented in real time.

How to improve the real-time performance of our proposed @lodith respect to these

properties, is one of the topics in this dissertation.
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Computational cost has not traditionally been emphasizgdavious work on PPDM.
The data source may change or new data elements may be atk#enh $ituations of
financial transaction streams and network activity streaknsther scenario is that the data
source is in an online setting where data must be incorpiiate the data value hiding
model as it arrives. The data value hiding model is requiogaetupdated in real-time. We
know that matrix operations are the core of implementatidhé random projection model
and the matrix-decomposition-based model. Eventuakyctimputational performance of
these two models are subjected to the size of the data s#te. dfata is frequently updated
with increasing size, the computation of new models at eswh would incur a sizable
delay. It is important to figure out how to adjust the modelaaiyically for a real-time
response when dealing with changes to the data matrix.

Our proposed models consist of matrix computations pripn&om the matrix com-
putation community. For the SVD-based models, there areyrB8&D computation soft-
ware packages available, suchLasczos SVIn MATLAB . First we want to mention that
the algorithm is extremely stable. However, fundamentaibmputing a full SVD is an
O(nmm) time problem. The SVD is usually computed by a bat®mm? + n?m + m?)
time algorithm, meaning that all the data must be processedae, and computing the
SVD of very large data sets is essentially infeasible. Tioeegin order to make our model
scalable, for large sized data sets, we consider the SVDeotdmplete data as a SVD
updating problem. An initial SVD of a selected basis fromahginal data is computed by
the usual stable algorithm, then this original SVD is updaie adding new data subjects
by an incremental SVD algorithm.

Therefore, we will explore the computational needs of PPIM@hms so as to handle
growth and change in data sources. The work6nfocuses upon improving the real-
time performance of the SVD-based data value hiding model nequently-updated data

source.
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1.5 The Contributions of the Dissertation

Our research work in this dissertation is focused on stuglttie privacy aspects of data
mining and designing methods to protect privacy in the pgead# data mining. Our main
attention is the use of matrix decomposition techniquesaita dlistortion for data value
hiding and data pattern hiding in databases. In terms ofghgibutions of the dissertation,

our research work can be broadly divided ifdar parts.

1. For the first part§2), the objective is to make an attempt on designing sometguan
tative metrics to measure the distortion level of PPDM medelp to now, there is
no commonly accepted and uniformly applied metric in thedfedl PPDM. It is not
an easy task since the privacy or distortion is an abstraxtequ. For a clear descrip-
tion of our research work in this dissertation, we divide RPIDto two classes: data
value hiding and data pattern hiding. With respect to tha dalue modification and
the data pattern modification, two classes of metrics arigded with their efficacy
experimentally examined in our work. We call this part of auark data distortion

measurement

2. For the second par§g ands4), our goal is to develop techniques to hide to the out-
side world sensitive data, and simultaneously preservetiderlying data patterns
and semantics of a data set, so that a decision model on toeteédsdata can be con-
structed. This decision model should be equivalent to on &atter than the model
using the original data from the viewpoint of decision aecyr[79]. A desirable
solution must consider not only privacy safeguards, bui alscurate data mining

results. We call this part of our wotkigh-accuracy data hiding

3. For the third part§5), our goal is to simultaneously hide data values and user-
specified confidential patterns without undesirable sidecef on nonconfidential
patterns. The difficulty of data security increases comaialg if we aim to achieve

the goal of sensitive attribute value hiding and confidépidtern hiding at the same
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time in data mining applications. With carefully designedaddistortion techniques,
we can make sure that, with the distorted datasets, whery ggiriain data min-
ing tools, confidential patterns will be incorrectly extieat while nonconfidential
patterns will be correctly extracted. We call this part of mark dual privacy pro-

tection.

4. For the fourth part§6), we focus on solving computation cost problem of the SVD-
based model in a dynamic environment. The computation sostry expensive if
the SVD of the data set is repeatedly computed on the fullfitee data set. In order
to improve performance of the SVD-based model in a situatith dynamical and
frequent addition of new records, an SVD updating algorithrdesigned based on
an incremental algorithm i [817,173]. We call this part of ework model dynamics

enhancement
Specifically, we have done the following studies in the cewfsthis research work.

1. We defined two classes of evaluation measures for evatudtta distortion level.
The class of data value distortion evaluation measuressteref five metrics, and

the class of data pattern distortion measures includes ftgcs.

2. We have designed matrix decomposition-based methodddfar hiding in high-
accuracy data disclosure control. Even though the apmitaf matrix computation
in data mining field is not a new concept, the use of such tectas in privacy-

preserving data mining has just recently started.

3. We studied basic procedures for matrix decompositisethd®PDM methods. The
basic idea is to generate a distorted low-rank version ofreginal dataset by con-
ducting NMF or SVD or their variants. Truncation and spatatiion strategies are
designed to adjust the level of data distortion. Selectpagsfied SVD can be used

for distributed datasets or for reducing computation coisténtralized datase{s [79].
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4. We designed matrix decomposition-based PPDM methodtatardistortion in high-

accuracy data hiding.

e Singular value decomposition-based data hiding model.

— thin SVD-based data hiding method.
— sparsified SVD-based data hiding method.

— selective sparsified SVD-based data hiding method.

e Nonnegative matrix factorization-based data hiding model

5. We proposed a novel approach to achieving the goal of divaqy protection with
one single perturbed dataset. We demonstrated the equiealzetween nonneg-
ative matrix factorization and@-means clustering technique. On the basis of this
equivalence theorem, factor swapping schemes are dedigngidhultaneously hid-
ing data values and data patterns in datasets. In addittorgx@erimental results
demonstrate that, by imposing certain restrictions on tmaputation of the NMF
iterations, it is possible to compute an optimal solutiondgarticular dataset with
particular security requirements, in which the user-dpgticonfidential member-
ships or relationships are hidden without undesirableatitens on nonconfidential

membership<]80].

6. We examined the efficiency of all the proposed data hidiathods on synthetic and
real-world data sets. This was achieved by comparing olmigoes with similar
techniques developed by other researchers, noise-agldigthods and random pro-
jection methods. By the extensive experiments, some plieparf noise-additive

methods and random projection methods were found.

7. We improved the dynamics of the matrix-based data hidiodets by introducing an
SVD updating algorithm. This performance improvement nsake proposed data

hiding model adaptable to the real time or online environtma&nthe same time, the
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algorithm is able to reduce the computation cost of the S\@Bell data hiding model

for the large scale dynamically-updated data sets.
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Chapter 2

Preliminaries

Our study will be focused on data distortion as a means toigeqgorivacy protection for
datasets. Our target dataset is defined as a centralizdshdatthat contains records with
several numerical attributes from some continuous realailorand a single categorical
attribute (class label).

We consider a datasét consisting ofn subjects or data points, each of which has
m features/attributes. For supervised learning, clasddadre assigned to subjects prior
to data processing. For unsupervised learning, classslawel unknown. Unsupervised
learning methods can be used to find the cluster propertyeafadka with a prior assumption
of the number of clusters. T is partitioned intd: subsets which are referred to as clusters
or classes. Each subject is a member of a particular clusteulzset. We can define a
binary relationR over the membership of the subjects;ib.

This chapter describes basic concepts that will be usedemigsertation, including
definitions, basic data preprocessing steps, distortiohaaauracy metrics and four real

data sets for our experiments.

2.1 Definitions

In order to make a clear and consistent representation, weeagiew definitions related to
our study.

Data Model T
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Given a datasel’ consisting ofn independent subjects in an-dimensional feature
space, with each subject havingnumerical features. If we denote tfta subject ofl" as

T;, then
1. T ={T}i,
2. ﬂ:{tll,tlg,,tlj,,tlm},lglgn,lgjgm

Vector Space Data ModelA

Given a data modél’, which can be represented by a matixA € R™*™, with the
rows corresponding to the subjects and the columns to thefeatures. If theth row is
denoted byA;, then A; representq;. The jth feature is represented by th column of
A, denoted byA ;.

Ay
Ay
A= : ,OIA:[A_lA_Q...A_m].
A,
Data Cluster C
Given a dataset of size from anm-dimensional feature spac€l’, 1s,...,T,}, de-

noted by7", the number of cluster& and a learning algorithni, C;, Cs,...,Ck are K

subsets, created by ¢y, ¢s,. . .,cx are K cluster centroids, such that,

1. 7=~ ¢,

2. |C;| = the number of data subjectsdr),
3. & = &(Xrec, T,

4. Vp,qe{1,2,....K},C,NC, =, p+#q,

)

Vi, 1 <i<n,3p,1<p< KT, eC,.

Data Modification
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Given two datasetd and7 with the matrix models of4 and A, and a modification
schemel/, a sequence of maodifications is a functidrnto transformA into A, whereF

indicates the subjects to be modified.
U (A F,M)— A,

Data Value Hiding (DVH)

Given a data modeli, the subjects to be modifiell and a learning algorithni, a
data distortion schemg/ is selected to execute data modification and computel :
(A,F, M) — A. Two sets of learning resuli® and O are created by performing on
A and A, respectively.F’ is considered to be hidden ifh if the following conditions are

satisfied:
1. In ﬁ, disclosure off" is controlled without unauthorized access.
2. The difference 0® andO is limited to a user-defined threshold level.

Data Pattern Hiding (DPH)

Given a data moded, user-defined confidential knowledégeand a learning algorithm
I, a data distortion method is selected to execute data matidicand computé{: U
(A, F, M) — A. Two sets of learning results andO are created by performingon A
and A, respectively.P will be considered to be hidden i if the following conditions are

satisfied:

Pairwise AssociationR?

Given a data s€f, let 72 denotel” x T, the set of all possible ordered pairs of elements
of T', an associatiorR is a binary function¥ : (72 I,C) — {true, false}. V(z,y) €
7%, 3p,q,1 < p,q < K, suchthat, T, € C,, T, € C,
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1. p=q— xRy = true,

2. p#q— xRy = false.

Lemma 2.1.1.R is an equivalence relation.

Proof. First, R is reflexive asvT; € T,T;RT;. Second, it is symmetric, ag,j,1 < i <
n,1 < j < n,T;RT; means thafl; andT; are in the same cluster which implig$RT;.
Third, it is transitive, as whenevéi is in the same cluster &5 and7} is the same cluster

asTy, thenT; is in the same cluster &5, thereforel; RT,. [

Confidential Association Hiding
Let T be the dataset after applying a sequence of modificatiofisand a paifz,y) €

T?. xRy will be hidden if the following conditions are satisfied:

1.l=zRyinT,
2.g:nyinf,
3.9g=-1.

2.2 Data Preprocessing

2.2.1 Normalization

In the context of data mining, normalization refers to stgathe data to fall within a small,
specified range, thus allowing underlying characteristicthe data sets to be compared.
There are several different normalization techniques aedchoice is problem-specific.
Assuming that the data modélhas the mean vectqi and the standard deviation vector

7, we have

1
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And 7 is the square root of an unbiased estimator of the varianteedadistribution from

which A is drawn, as long ad consists of independent, identically distributed sulsject

(2.2)

o (diag [(A—=1Z,,07(A-17, .4 ) :
n—1
wherediag is to form the diagonal elements of a matrix as a row vectat,/afs a vector
or a matrix with all the elements being 1.
Centering. It is usual to center the datiee., shifting the data and making its column
means zero.

C—A-tz A (2.3)

n

Z-score normalization. Itis also known aslata standardizationThe standardization

of A is conducted on each attribute as

— .
A.<_A-a?@7ﬂ(]) (2.4)

g (] Y

~—

wherec is an element-wise operation.
Range adjustment. Itis common that the attributes have different value ranifés

can normalize their value ranges to a unit range. Each atitrils normalized by its value

range as
1
A A inA 2.
AN ( 4 & min ']) . <maXA_j —minA_j) (2.5)
Unit-length normalization. Each attribute column vector can be normalized to unit
length as
A
A — —I (2.6)
’ 1Al

where||A4 ;|| is the length of4 ;, i.e., the2-norm of A ;.
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2.2.2 Whitening

Whitening is to remove correlation between attributes angonents, which transforms

into D with mutually uncorrelated components,
D=CW (2.7)

where(' is defined in[[ZB) andll is the whitening matrix ofA. Usually 1 can be taken
as (E(CTC))~z, where E(CTC) is the expected value af”C. After whitening, the
covariance matrixov(D) = I. I is an identity matrix. Each column d has the zero

mean and unit variance. The covariance for any pair of cotuimaero.

Proof.

E(D) = E(CW) = E(C(E(CTC))"2) = E(C)(E(CTC)) ™% = Opm.
cov(D) = E(D'D)— E(D)E(D")
—= E(D'D)
B (((E(CTC))—%)TCTC(E(CTC))—%)
(E(CTC))=)TE(CTC)(B(CTC)) ™
E(CTC)) 2 E(CTC)(E(CTC)) 2

mxm:

2.3 Data Value Distortion Metrics

We need to define some metrics to evaluate our proposed datatdin methods. The
evaluation will be on two aspects: data distortion and dali&yuOur data value distortion

measurement will be used to evaluate dissimilarity betwberoriginal and the distorted
datasets. It should indicate how closely the original vali@an item can be estimated
from the distorted data. We will use a few data distortionrostto assess the level of
data distortion which only depends on the original mattimand its distorted counterpart

A. Two kinds of metrics are designed for data value distoréiod data pattern distortion,
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respectively.
This section will discuss data value distortion metrics.53n the usefulness of these

metrics will be examined.

2.3.1 Relative Error (RE)

After a data matrix is distorted, the values of its elemeihtznge. The value difference
of the datasets is represented by the relative value difteren the Frobenius norm. Thus
RE is the ratio of the Frobenius norm of the differencedofrom A to the Frobenius norm

of A: N
| A—Alp

RE =
A e

(2.8)

For example, for the following datasdit,, its distorted data matri¥, is obtained by
applying the SVD method witkh = 2. Then theRE value computed for this distortion is

0.1884. The level of distortion should be greater if the valudR&fis increased.

1 25 5 0.3 1.8093 2.2060 4.7910 0.6064

A — 2 39 2 11 A — 1.2923 1.5757 3.4219 0.4331
14 1.8 8 05 | ¢ | 28661 3.4947 7.5896 0.9606
1 33 6 1.2 2.2176 2.7040 5.8724 0.7433

2.3.2 Rank Position RP)

After a data distortion process, the ranks of the magnitadi¢éise data elements changes,
too. We use several metrics to measure the rank differentteeafata elements.

We useRP to denote the average change of rank for all the elementgwtithir respec-
tive attributes. After the elements of an attribute areadist, the rank of the magnitude
of each element changes. Assume that the datasetsn data objects and: attributes.
Rank:j. denotes the rank in the ascending order of jitieelement in the attributg and
Rank!" denotes the rank in ascending order of the distorted elerigntf two elements

have the same value, we define the element with the smalleindex to have the higher
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rank. ThenRP is defined as:

1 & " |Rank: — Rank:"
RP=— Z (Zﬂ—1| 2 ] |> . (2.9)

m < n
=1

In the dataset!., the rank vector for thést attribute can be represented Bsnk!' =
234 1]T. After the distortion,Rank’™ = [2 1 4 3]. The total change of rank for this
attribute is4. The average change of rank of the attribute isl. We can calculate the

total change of rank for the other attributes andRfet= 0.8760.

2.3.3 Rank Maintenance RK)

RK represents the percentage of elements that keep theiredmiegnitude in each column
after the distortion. It is computed as:
1N (0, RE
K=— == ) 2.10
RK = — ; ( — (2.10)

whereRk! indicates whether an element keeps its rank during the dtzriion process:

Rk; _ { 1, if Rcmk:;- = Rank;»*,

0, otherwise. (2.11)

For example, the rank vector ofid attribute inA. is [2 4 1 3]7. After the distortion, it is
21437 in A.. Thus all the elements in thd attribute keep their original raniRK for

this example i$).5625.

2.3.4 Attribute Rank Change (CP)

One may infer the content of an attribute from its relativeigalifference compared with
the other attributes. Thus it is desirable that the rank efaverage value of each attribute
varies after the data distortion. Here we use the mé&i¢o define the change of rank of

the average value of the attributes:

S |RAV; — RAV 7|
m )

CP = (2.12)
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where RAV; is the rank in the ascending order of the average value oftthattribute,
while RAV;* denotes its rank in the ascending order after the distarfoninstance, the
rank vector of all attributes in matri¥. is: [4 1 2 3]7. The rank vector for the distorted

matrix A, is: [4 1 2 3]7. Then the total change of rank(issoCP is equal ta.

2.3.5 Attribute Rank Maintenance (CK)

Similarly to RK, we defineCK to measure the percentage of the attributes that keep their

ranks of average value after the distortion. So it is catedlas:

oK = 2zt K (2.13)

m

whereCk" is computed as:

(2.14)

. | 1, if RAV, = RAV;",
Ck _{ 0, otherwise.

In the previous exampl&K= 1.

2.3.6 Summary

For any data modification method, the higher the valu&®fand CP, and the lower the
value ofRK andCK, the more the original data matrikis distorted, which implies that the
data distortion method is better in preserving privacy.

For instance, we apply the SVD-based method with a differexhiced ranki = 1 on
A, in the previous example, a modified data maf@(is obtained as:

1.8093 2.2060 4.7910 0.6064

1 — 1.2923 1.5757 3.4219 0.4331
e | 2.8661 3.4947 7.5896 0.9606

2.2176 2.7040 5.8724 0.7433

The comparison of data value distortion metrics betw?gand?lv; is shown in Tabl&Z]1.
félv; distorts the element values more thap since it has a greatd®E value. It changes
the magnitude rank of data elements more tl;f@rtoo, because of great&P value and

smallerRK value. The fact thaEP= 0 andCK= 1 indicates that both of these two modified
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datasets do not change the attribute rank.

Table 2.1: Data value distortion metrics

Modified Dataset RE RP RK CP CK

Ae 0.1540 0.5000 0.5625 O 1
A 0.2891 1.0000 04375 O 1

2.4 Data Pattern Distortion Metrics

Data quality is an old problem that was largely a scienticies with roots in measurement
error and survey uncertainty. But for today’s world of masslectronic data sets and dif-
ficult policy decisions, data quality problems can creag@ificant economic and political
inefficiencies. They should always be embedded in a decitieoretic context]6]. We

begin with a definition

Data quality is the capability of data to be used effectivetyonomically
and rapidly to inform and evaluate decisions. Necessaialig quality is multi-
dimensional, going beyond record-level accuracy to ineladch factors as
accessibility, relevance, timelines, metadata, docuatiemt, user capabilities

and expectations, cost and context-specific domain knael&l.

In our study, data pattern distortion metrics indicate tt®ieacy of data mining algorithms
possibly achieved on distorted data. Therefore, datatgualithe dissertation, is measured
by the following defined data pattern metrics. §8, the usefulness of these metrics is

examined.

2.4.1 Subject Distance Distortion Metrics

In subject spaces, the similarity of subjects is measuretddbyween-pair distances. For
distance-based data mining algorithms, each object thraggped to the same class may
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be thought of as more similar or closer to the objects in tletscthan to the objects in other
classes. Distance measure is mostly used to identify tlileetadss” of different objects in
the data setsK -nearest neighbors (KNN) classification akemeans clustering are two
popular data mining algorithms based on distances. Therdfeeir mining accuracy on the
distorted datasets depends on the level of maintenandssifnilarity or distancebefore
and after the data distortion.

The Dissimilarity Matrix P. We define a symmetric matri® € R’.*" as a dissimilarity
matrix that stores a collection of pair-wise distances leetwevery pair of subjects in a

data set,
0
(2,

2
3,

p2,1) 0
p—| 31

) p(3,2) 0 (2.15)

p(n,1) p(n,2) ... ... 0 |
where the diagonal elements are self-distances and theggaed to zero. Each element

p(i,j) corresponds to the distance or dissimilarity between stbjeand j. In general,
p(i, 7) is a nonnegative value that is close to zero when the subjecis; are very similar
to each other, and becomes larger the more they differ. Wheseost popular distance

measure, the Euclidean distance, to calculate

Py =1Ai — Ajllr

= (r((A; — A)"(A — A7)
0 s ifi=j, (2.16)
(Z(Aw — Ajs)2) if i £ j.

where A; and A; arem-dimensional data subjects. Euclidean distance;) satisfies the

following constraints:
o p(i,j) 2 0;
e p(i,1) = 0: the distance of an object to itself is zero;
e p(i,7) = p(y,1): distance is a symmetric function;
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e p(i,j) < p(i,k) + p(k, j): distance satisfies the triangular inequality.

An interesting observation oA is that it demonstrates block patterns if we arrange the
subjects from the same cluster togethel [11]. The heat mdp affthe IRIS data set, in
Figurel21, shows 9 blocks since IRIS is partitioned intoe®sks. The darkness in the heat
map shows the smaller within-class dissimilarity. The datlpart forms a straight line on

the diagonal since the distance of one subject to itselfris. ze

subject number

20 40 60 80 100 120 140
subject number

Figure 2.1: The dissimilarity matrix of the IRIS data set.

Pair-wise Distance Distortion Qi st Val )

We defineDi st Val as the relative error of the difference between dissintylamiatrices of

A andA, in Frobenius norm as

| P—Plr

Di st Val =
| Pllr

(2.17)

In our experiments, the redundant information/is removed and only the lower tri-
angular part ofP is written column by column into a row vector of siZ&%=, pdist.

Therefore,[Z17) becomes

|| pdist — pdist ||

Di stVval = (2.18)

| pdist || p
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Pair-wise Distance Maintenance Ratelfi st Mai nt ai n).

We defineDi st Mai nt ai n as the percentage of distances that maintain their ranki in a

the pair-wise distances after the distortion. It is comgats:

nx(n—1)

>im1i-  Rpdist,
nx(n-—1)/2

DistMaintain = x 100%, (2.19)

where Rpdist; indicates whether a distance keeps its rank in all the paie-\distances

during the data distortion process:

Rpdist; = { L, if PRank; = PRank;. (2.20)

0, otherwise.

nx(n—1)

PRank; is the rank ofp(i) in the pdist € R =2, andP/REEki denotes the rank of

nx(n—1)

p(i) in theﬁoﬁgt € R~z . The larger the value dfi st Mai nt ai n is, the better the

pair-wise distance is kept in the distortion strategy. Tistodtion strategies with better
maintenance of pair-wise distances are supposed to achigler accuracy in distance-

based mining.

2.4.2 Attribute Correlation Distortion Metrics

Attribute correlations affect the data mining results. Miite zero mean, let be the cor-
relation of an attribute paitz, v), s is defined as a standard inner prodsict< z,y >=
Ty =3, (zyi). s can be used as the measure of how much two attributes vargherge
If two attributes(x, y) tend to vary together, thenis positive. The zero value means an
orthogonal relationi,e., uncorrelated. Otherwise,is negative ifr andy vary oppositely.
The Correlation Matrix S.  We define a linear matri§ € R’"*™ where the correlation
of an attribute paifA;, A ), is defined as a standard inner prodfigt=< A,, A; >=

ATA; =5, (ArAx;). All the pair-wise correlations are representedsbgs
S = (Sip)ictim, jepm = AT A (2.21)
By the above definition of, S is a positive semidefinite symmetric matrix. Similarip.S
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also shows some pattern among attributes. Figule 2.2 sknawsorrelation matrices of the
WDBC data set (refer tg24). In Figurd Z.2(®), the correlation matrix is computéera
each attribute is normalized to unit length by using uniigih normalization irg2.2.1.
Therefore, the diagonal exhibits the darkest color whialmesponds to the value af In
Figure[Z2.2(d), the correlation matrix is computed aftethegitribute is normalized by the
range adjustment i§2.2.1. Even though two different normalizations are useth bf the
figures display a similar pattern of a cross in the area covieyethe middlel0 attributes

(11th to 20th). It implies these 0 attributes have relatively lower correlations.

WDBC attribute number
WDBC attribute number

5 10 15 20 25 30 5 10 15 20 25 30
WDBC attribute number WDBC attribute number

(@) normal(A)T x normal(A). (b) normalc(A)T x normale(A).

Figure 2.2: Correlation matrices of the WDBC data set.

Two metrics are designed to measure the difference of pag-attribute correlations

after the data modification.
Correlation Distortion Metric ( Cor r Val )

We defineCor r Val as the relative error of the value difference betwéeand §, the

correlation matrices oft and A4, in Frobenius norm as

_Is=Slr

CorrVal = (2.22)
1S 1r
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Pair-wise Correlation Maintenance Rate Cor r Mai nt ai n).

We defineCor r Mai nt ai n as the percentage of pair-wise correlations that mainkegin t

ranks in all the pair-wise correlations after the distartiti is computed as:

>oisy 2jey Rank;

CorrMai ntain =
rrMaintain mx (m—1)/2

x 100%, (2.23)

whereRank;; indicates whether a correlation keeps its rank in all the-wée correlations

during the data distortion process:

1, if SRank;; = SRank;;
Rank;; = g ij ij> 2.24
- { 0, otherwise. ( )

SRank;; is the rank ofS;; in S, andsmij denotes the rank c@fj in S. The larger
the value ofCor r Mai nt ai n is, the better the pair-wise correlation is kept in the disto
strategy. The distortion strategies with better maintenant correlation are able to achieve

higher mining accuracy.
2.4.3 Variance Preserving RateVar P)

For the SVD-based data modification methods, the amountfofnration preserved is
guantified by the percentage of variance preserved in therthd data. The metric of the
variance preserving rate, denoted\tay P, is defined as a ratio of the sum of the preserved

singular values to the sum of the total singular values irotiginal data set, formulated as

k
Varp — 2iz1%i (2.25)
D el O

whereo;(A) = /Ai(AT A), if both of singular values and eigenvaluea are sorted by

magnitude in the same order, usually, the descending order.

2.4.4 Summary

According to the definitions of these five pattern distortioatrics, the intuition on their
relationship with data pattern distortion is that the higtiee value ofDi st Mai nt ai n,

Cor r Mai nt ai n andVar P, and the lower those dbi st Val andCor r Val , the more the
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original data pattern i is maintained or the underlying information is less distdrt
It should lead to better mining accuracy an Next, the efficacy of the five metrics is
examined on a small real data set, IRIS wifiy instances and real attributes. (For a
description of the IRIS data set, referdd.4).

From the experimental data in Talblel2.2, an obvious trerfabiswith the increment of
the rankk in the SVD, the relative error of data valueE), dissimilarity matrix Oi st Val )
and correlation matrixdor r Val ) are decreasing; two maintenance percentadest (Vai nt ai nand
Cor r Mai nt ai n) are increasing. The variance maintained becomes lardbrtiag incre-
ment ofk. Therefore, It experimentally turns out that these pattistortion measures can

practically evaluate the distortion level.

Table 2.2: Pattern distortion metrics of the rank-k SVD o liRIS data sé€i50 x 4).

ThinSVD Data Pattern Distortion
rank RE Var P | Di st Val Di st | Corr Val Corr
Mai nt ai n Mai nt ai n
1 0.18593| 0.80616 0.23399 0.02685 0.23318 0
2 0.04040| 0.95507 0.10320 0.13423 0.02131 16.66667
3 0.01924| 0.98421 0.05320 0.18792 0.02179 66.66667
4 0.00000 1 0.00000 72.49217 0 100

The singular values of IRIS ar85.95,17.72, 3.47,1.88]. Figure[ZB shows a cumula-

tive percentage line and singular value bars.

2.5 Experiments on Metrics

We conduct some experiments by using two data modificatrategfies, the thin SVD and
noise-additive on one real data set YEAST (refeflfo/.4) to examine the usefulness of
the data value and data pattern metrics designeff.® and§2.4. By observing Figure
2.4, when using the SVD to modify the YEAST data, for data galistortion metrics, it is
found thatRE, RK andRP show some nicely monotonically decreasing or increasitag re

tionship with the decreasing of the ranks of approximatwhije CP andCK do not show
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Figure 2.3: Cumulative percentage bar plot of singularesiof IRIS.
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12 —6— Corrval*10
—4#— CorrMaintain/100
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N
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SVD data distortion measure (YEAST)

-

2

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
rank of approximation rank of approximation

Figure 2.4: Distortion metrics of the rank-k SVD-based dhsdortion on YEAST.

clear trends. For data pattern distortion metrisst VVal andCor r Val monotonically in-
crease with the decrement of the ranks in the SE&r;r Mai nt ai n almost monotonically
decreases, whilBi st Mai nt ai nis almost zero for a rank range fromo 1.

Figure[Zb shows the results of data value distortion metric adding two kinds of
noise to the YEAST data, wheRE andRK seem to be two suitable metrics for evaluating
the value distortion by noise-additive methodRE is almost linearly related to the mag-
nitudes of the added noise, aRK is roughly negatively related to the magnitudes with

frequent oscillations.
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Figure 2.5: Distortion metrics of noise-additive data aiison on YEAST.

2.6 Mining Accuracy Metrics

By using data pattern distortion metrics, a relationshighhbe developed between the
distortion level on characteristics of subjects or attiésy and the relatively accurate es-
timation on the final mining. This relationship provides gibfe recommendations on
choosing data value distortion level in an attempt at adchgea balance between value
protection and mining accuracy. Another way to assess ttzepddatern maintenance level
is to compare the mining accuracy change after data modificah our experiments, two
popular mining techniques are uséd:means clustering and the support vector machine
(SVM) classification. It should be noted that the purpose here ¢e®tapare the accuracy
difference after the data distortion, rather than to imprthe mining accuracy.

For data clusteringsilhouette Value is a measure of how similar a subject is to subjects
in its own cluster compared to subjects in other clustersariges from—1 to +1. It is

defined byMATLAB code as
s(i) = (min(b(i,:),2) — a(i))./max(a(i),min(b(1,:),2)), (2.26)

wherea(i) is the average distance from thié subject to the other subjects in its cluster,

andb(i, k) is the average distance from tité subject to subjects in another cluster
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For data classificatior\-fold Cross-validation is used to calculate the classification

accuracy. It can be achieved by the steps described in Algofl in TableLZB. For

Table 2.3: Algorithm 1: N-fold cross-validation.

Algorithm 1 N-fold cross-validation.

Input: a data set S, class truth C, a positive integer N, a
classification algorithm L.

Output: classification accuracy ACC.

begin
define an N-dinensional colum vector, sum = zeros(N,1);
partition the dataset into N subsets, 51,5,...,5n;

for 1 —1to N do
| eave out one part of the data set, S;, as the test data;

train a prediction rule or nodel on the remaining (N — 1)
subset s;
sum(i) < the classification accuracy on S;;

end

take the average of the N accuracy values as the final mining
accuracy. ACC <« mean(sum);

end

small datasets, thieave-one-ouvalidation procedure is often used andis the number
of subjects.SVM classification is chosen as the classification accuracyieri®trouilding
a classifier on distorted dataset and applyidold cross-validation method to compute

classification accuracy.

2.7 Four Real Data Sets

Four real data sets from UCI machine learning repositoryuaeal in our experimentsi[1].

Their names and dimension sizes are listed in Table 2.4.

45



Table 2.4: Four real data sets.

Name | Number of subjects Number of attributes Class number

IRIS 150 4 3
WDBC 569 30 2
YEAST 1484 8 10
WBC 699 9 2

2.7.1 lIris Plant Database (IRIS)

IRIS is a very simple data set wittb0 instances in a@-dimensional attribute space. The
four attributes are sepal length, sepal width, petal legtth petal width. The data set
contains 3 classes of 50 instances each, where each clessteef type of iris plant: Iris
Setosa, Iris Versicolour and Iris Virginica. Iris Setosdingarly separable from the other
two; the latter two are not linearly separable from eachmofhlee misclassification rate for
the Iris Setosa i8%. The boxplots of four attributes grouped by three classesigurd 2.5,
clearly demonstrate the-d or 4th attributes are highly related to the class labels; either
one can accurately filter the Iris Setosa out. The reasoraistiiere is no overlap of the

value range of th8rd and4th attributes between the Iris Setosa and the other two classes

2.7.2 Wisconsin Diagnostic Breast Cancer Database (WDBC)

WDBC is used for the purpose of diagnosis. Each@sf instances ha30 real attributes.
Two classes refer to two type of cancer: benign and malignésit instances are in the
group of benign an@12 are in the malignant group. It does not have missing values.
The boxplot of the30 attributes is shown in Figude—2.7. In the profile at UCI maehin
learning repository, the best known estimated accura®y is% using repeated 10-fold

cross validations.

46



25} T

|
75 -

|

|

| 5t T T |
§est | § 351 § g !
£ c - £ c 15T 1]
£ £ ! £, £
=) ] =2 S
& 6} = ! k5 | E
E - g st S g
s = fi 1 =
& ' L3 g g a1t 1 |

1 3t +

o
3]
T

- - = =

45f !

-%—m—l'
- »—[j—|4+

1 2 3 1 3 2 3 1 2 3

N
[any

Figure 2.6: Boxplots of attributes of the IRIS data set groupeddglasses.

2.7.3 Wisconsin Breast Cancer Database (WBC)

The original version is used here, which consist$@f instances|0 integer-valued at-
tributes and one class attribufé [1]. There #&#emissing attribute values for Bare Nuclei.
Table[Z5 is a description of WBC original version. Some rfiodiions on the original
WBC dataset are performed. The missing values of Bare Nagidilled using the follow-

ing rule:

1, if class label is benign

The missing value of Bare Nuclei = { 8 if class label is malignant

The target WBC dataset is a matrix of siz®9 x 10) with the 10th column representing

the class label.

2.7.4 YEAST Database

The YEAST is a real-valued data set having4 instances and attributes. It is used to

predict the localization site of protein, which hespredications in Table21.6. The boxplot
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of each attribute grouped hy) classes is in Figuile3.8.
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Table 2.5: Attribute description of the WBC data set.

Number | Attribute Domain

1 Sample Code Number Id Number

2 Clump Thickness 1-10

3 Uniformity of Cell Size 1-10

4 Uniformity of Cell Shape | 1-10

5 Marginal Adhesion 1-10

6 Single Epithelial Cell Size 1-10

7 Bare Nuclei 1-10

8 Bland Chromatin 1-10

9 Bare Nucleoli 1-10

10 Mitoses 1-10

11 Class 2 for benign, 4 for malignant

Class distribution: Benign: 458 (65.5%), Malignant: 241 (34.5%)
Table 2.6: Class distribution of the YEAST data set.
Number 1 2 3 4 5 6 7 8 9 10

Class Name| CYT | NUC | MIT | ME3 | ME2 | ME1 | EXC | VAC | POX | ERL

Class Size

463 | 429| 244 | 163 51 44 35 30 20 5
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Chapter 3
SVD-based Data Hiding Strategy

In abstract linear algebra terms, a matrix represents arlinensformation from one vector
space, the domain, to another, the range. The singular dalt@mmposition (SVD) implies
that for any linear transformation, it is possible to choaseorthonormal basis for the
domain and a possibly different orthonormal basis for timgea

The rank of a matrix is the number of linearly independentsowhich is the same as
the number of linearly independent columns. The rank of gathal matrix is clearly the
number of nonzero diagonal elements. Since orthogonatftvemations preserve linear
independence, the rank of any matrix is the number of norsagular values.

The Complete SVD. Referring to Definition 2. ir§ 2.1, them columns of the data
matrix A correspond to the attributes, and theows correspond to the subjects. Here, we
assume the singular values are simpke; they are not repeated; and the rank4ois K,
K < min {n,m}. Thecompletesingular value decomposition of a matrix of rafikcan

be written as

Eme O
A:U{ S OLvaT (3.1)
or
T _ mem 0
UTAV = [ S OLW. (3.2)

whereA € R™™ (n > m); U € R™™, V € R™™, U andV are orthonormal.y =

diag(o1,09,...,0n)Withoy > 09 > -+ > 0, > 0.
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By 33), theith singular value
o, =UTAV,. (3.3)
By discarding zero entries ifi{3.1), we have
A=UgmZmxmnV’ = i o U VT, (3.4)
i=1

where the matriXU (;.,,,) is produced by removing the lagt — m) columns fromU.

The Compact SVD. The further simplification can be done. Setting

Yk = diag(oy,09,...,0K),
Yok = diag(0gi1,0k42, -, 0m),
then
sk 0
5 — { ; Zm_K] . (3.5)

Obviously,>,,_k is 0,,_x. Thus, [3}) can be reduced te@mpactrepresentation as
K
A= U~(1:K)ZKV.6:K) = Z o U V], (3.6)
=1

The SVD of A produces two orthonormal bases, one defined by the rightilsingec-
tors inV and the other by the left singular vectorslin The right singular vectors, con-
tained inV/, span the row space of and the left singular vectors, containedlin span
the column space of. These three matrice&, >, andV/, reflect a transform of original
relationship into linearly independent vectors.

Equivalently, the SVD decomposdsnto a sum of rank-1 matrices generated by singu-
lar valuetriplets: " | o;U;VE. The rankk thin/ truncatedSVD is generated if restricting
this sum to the triplets having the largest-magnitude singular valuesatThthe basis of
our proposed SVD-based model.

The SVD equation for théh subject inA can be represented as

k
A= UpSV,, i=1,2,...,n,(3.7)

r=1
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which is a linear combination of the right singular vectgysTheith row of U, U;, contains

the coordinates of théh subjectA; in the coordinate system (basis) of the scaled right
singular vectorsy, V,. If & < m, the subjects may be reasonably well represented with
fewer attributes usingy; rather thanA,. This property of the SVD is sometimes referred to

asdimensionality reduction

3.1 Theoretical Analysis of the SVD-Based Model

Due to the arrangement of the singular values in the matrin a descending order),
the SVD transformation has the property that the maximahtian among the objects is
captured in the first singular value, @s > o;, for i > 2. Similarly much of the remaining
variations is captured in the second dimension, and so ams, Ehtransformed matrix with
a much lower dimension can be constructed to representigiearmatrix faithfully. This
property makes the SVD particularly interesting for our laggtion of high accuracy data
hiding.

It is possible, forXx in @8), to retain only the firsk, & <« K, singular values by
discarding othef K — k) singular values. We term this reduced maftix Setting:;, =

diag(oy,09,...,0k), Xk —k = diag(Ogs1, Oksa, - .., 0K ), We have

Sy = [Eok zg_k} . (3.8)

Then [36) can be written as

by 0

= U(1 k) EkV Lk T U (k+1:K) EK BV s 1) (3.9)

= ZJZU VT4 Z o U VT

i=k+1
Truncating the sum after firgttriplets in [3.9), called th&runcated / thinSVD in [33],
the result is a rank-approximation to the original matrix.

The Thin / Truncated SVD. Let A®) be the rankk approximation tad, and E;, be
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the error of this approximation, bl (3.9), we know that

k
AR = U oSV =Y oUVE
(1:k) (1:K) ; _ (3.10)
K

Ep = Ugsr)Sk—kV kirm) = Z UV

i=k+1
Here,U 1.y andV .y represent the first columns ofU andV'. A graphical depiction of
the truncated SVD is shown in Figure3.1.

m k n

X

 —
—

n n——— n

Figure 3.1: Graphical depiction of the singular value deposition of a matrixA.

Then taking the Frobenius norm @,

1Bz = llA - A®
- Y (3.12)
k+1

= i1+ 0t 0k
Therefore, the erroi, in this approximation depends upon the magnitude of thesoée
singular values. By the Schmidt (later Eckart-Young-Mynstheorem, the thin SVD is
the optimal rankk approximation ofA under any unitarily invariant norm, including the
Frobenius norm]56]. The proof is shown below.
let A=A+ Ebea perturbation ofi,

mﬁ:@. (3.12)

We uses; andog; to denote the singular values dfand E.

The basic perturbation bounds for the SVD of a matrix are duiaé following two
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theoremsl[[70]. It is proven in thé/eyltheorem that the singular values of a matrix are per-

fectly conditioned, and no singular value can move more thamorm of the perturbation,

|5-2 - O-i‘ < HEH2 = OEmax- (313)

whereo g, IS the greatest singular value 6t In the Mirsky theorem, it is proven that

for any matrixB, produced by adding any perturbatidn,on A, there is a lower bound on

> (@) <|Blr = [> ok (3.14)

By using the above two theorems, it has been proven that gtandie betweer and a

the Frobenius norm aF,

rank4 approximation is minimized by the approximatidff) in the sense of the Frobenius
norm [29]. LetB be any matrix of rank not greater th&nand let the singular values &f

be denoted byy > ... ¢ > Ypi1 = Ypi2 = - -+ = Y, = 0. By the Mirsky’s theorem,
IB=Al3 = ) |vi— ol
i=1

k m

= Z|¢i—0i|2+2|—0i|2
i=1 k+1

> Op +Opt Ok,

(3.15)

By @11),
is nearest tod in the Frobenius normi [29].

B — Alj%Z > ||A— AW |2, Therefore, the matrix(*) is a matrix of rankk that

Thin SVD for Data Hiding: The best rank: approximation gives the additional in-
terpretation of the thin SVD as a form abise suppressigrwhere A is presumed to be
a low-rank data matrix containing attributes contaminatgtth additive Gaussian noise.
Therefore, we may considdf;, in (3.11) as the additive noise in the original matrix
Given the descending order of the singular values in in A®), the firstk most signifi-
cant patterns are kept, and ti€ — k) less significant patterns are removed. Therefore, for
extracting useful knowledge from data, it is pointed out tha low-rank approximation of

the original space may be better than the original spack dise to the filtering out of the
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small singular values that represent noisé [13].

Hence, usingd® instead ofA may yield better data mining accuracy. Simultaneously
due to the value difference betwedrand A*), the distorted data*) can preserve privacy,
as itis difficult to figure out the exact values.éffrom those ofA*) without the knowledge
of E,. Hence,A®) can be seen as both a distorted copylaind a faithful representation
of the original data. The significance of the truncated SVDHRBDM is reflected by the

following three facts:

1. Value Difference: The data values are modifieddi and they are different from

those inA.
2. Pattern Maintenance: The dominant data patterh impreserved im (%),

3. Noise Removal: The noise represented by the small-matmingular values is

filtered out inA®),

The value difference can be utilized to protect data valseldsure. The pattern main-
tenance can be used to ensure the data mining accuracy ssetvarelata utility of the

modified dataset. The noise removal may improve data mirgogracy.

3.2 Thin SVD-based Data Modification Method

If a certain value of: is determined by some privacy and accuracy metd€s, =svds( A,
k) , can be directly used as the final modified dataset. We ch# ibasic or thin SVD-based

data modification method as described in Algorifim 2 in T&ale

3.3 Performance Comparison of Thin SVD, Noise-Additive
and Random Projection

In this section, three series of experiments are conductédeWWDBC data set to examine
three data distortion methods, tkeEmeans clustering accuracy and the classification ac-

curacy of the support vector machine. The thin SVD, two naidditive and four random
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Table 3.1: Algorithm 2: Basic/thin SVD-based data modifmamethod.

Algorithm 2 Basic/thin SVD-based data modification method.

Input: a data set S with its vector-space nodel A, a |earning
al gorithm L.

Output: a nodified data set A.

begin

gdo SVD deconposition on A to conpute U, X and V.

r «— the nunber of nonzero diagonal el enents of X.

for k<~ 1tor—1 do
conpute a nodified data matrix: A% =U .5,V (1
cal cul ate data nodification metrics on A®);
exam ne the mning accuracy of A®):

end
choose one A®) as the final nodified dataset A.

end

projection methods are used to distort the original daspeetively. C-means clustering
and the support vector machine classification are used bexeaimine the utilities of the
distorted data. For the same database, in order to makeafaparison, the same param-
eter configuration of data mining algorithms are used fothadl generated distorted data
versions from the original data set.

For a simple introduction of WDBC, please referffa7.2. The normal noise matrix is
generated fot00 times, where each entry is generated from a distribui6ft), %), where
o is some value from a linear space[0f2, 15, 100]. The100 upper limits of the uniformly
noise matrix is drawn from a linear space[6f5, 20, 100]. The four random projection
matrices are generated fod0 times from an unknown distributio\'(0, 02), whereo, is
some value from a linear space[06f01, 10, 100].

For theKC-means clustering, the initial starting cluster centeediaed on the firs? data
points. For the SVMIight[[40], the smallest value of eachilatite is normalized to zero.

Radial basis function is chosen as the kernel functionard 1. The original accuracies
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are92.7944% for the KC-means clustering aneb.4912% for the SVMIlight. The mean of
accuracies is the average over all #9edistorted data sets for the thin SVD-based method,
the average ove30 samples for two noise-additive methods, an average tvsamples

for each of the four random projection methods.

3.3.1 Experimental Analysis of Thin SVD-based Data Modificaon

The29 distorted data versions are generated ogs ( WDBC, k) , wherek is the rank of
approximation froml to 29, which is the column size of the WDBC. On these ranéis-
torted data sets, we examine data distortion and pattetortios level. The experimental
data is in Appendix A. The performance is shown in Fiduré 3.2.

(1). Relationship of RE vs. approximation rank k.  Figure[3:2(a) shows the relative
errorRE as a function of the rank of approximation.

Whenk is 4, the order ig0~2. Whenk is 7, the error is in the order af)—*. The lowest
error is6 x 10~7 when the approximation rank 9. The shape-preserving data fitting by
the black line in Figur€33l3 displays thiak;,,(RE) has a roughly linear relationship with

the approximation rank of the thin SVD.
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Figure 3.2: Performance evaluation of the thin SVD-baséd distortion on WDBC.

( 2 ). Relationship of mining accuracies vs. approximation ank k.

The mining

accuracies as a function of approximation rank are plotteBigure[3:P(b), where the

black line with green squares denotes the SVM classificattmuracy and the gray line
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with non-faced circles is th€-means clustering accuracy. The individual plots of mining
accuracy for the two methods are shown in Fidure 3.4(a) agdr€j3.4(0). A general
common pattern is displayed that the accuracy deteriovatbghe decreasing rank in the
thin SVD, and the distorted data versions mostly have loweunacy but very comparable

to the original accuracies.
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Figure 3.4: The mining accuracy vs. approximation rank in BZD

Some distorted data versions perform quite well and achiilevysame or better accura-
cies: 11 in SVMlight and10 in -means. That mear#s percent of all the distorted data
sets perform better on classification aidpercent of them perform better on clustering.
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A simple statistic analysis can be found in Tabld 3.2. It shtvat the average accuracy of
classification i95.61 percent, which i99.09 percent as good as the results over the origi-
nal WDBC; the average accuracy of clusteringi29 percent, which i98.38 percent as
good as the results over the original WDBC.

Table 3.2: Basic statistic analysis of the mining accusackthe thin SVD-based data
modification on WDBC.

Mining algorithms RE Accuracy (%)

Name Mean | Original Max. Min. Mean Std Max.rel.err
K-means clustering 0.0052 92.79 93.32 83.83 91.29 2.36 9.65
SVMilight classification 96.49 96.84 91.04 95.61 1.29 5.65

(3). Relationship of mining accuracies vSRE and Di st Val . The mining accuracies
as a function ofog(RE) andlog(Di st Val ) are plotted in FigurE=312(c) and Figurel3.2(e),
where the black line with green squares denotestheeans clustering and the gray line
with non-faced squares is the SVM classification accuratwe [Eftmost point represents
the original accuracy. Compared to Figlrel 3.2(b), it is fbtimat the plots in these three
figures demonstrate similar changing patterns. Generéiléy,accuracies are negatively
related toRE andDi st Val .
( 4 ). Relationship of mining accuracies vs. Di st Mai nt ai n and Cor r Mai nt ai n.
The mining accuracies as a function@fst Mai nt ai n and Cor r Mai nt ai n are plotted
in Figure[32(d) and Figure—3.2(e), where the black line wvgteen squares denotes the
KC-means clustering and the gray line with non-faced squard®iSVM classification ac-
curacy. The leftmost point represents the original acqur@ompared to Figule3.2(b), itis
found that the plots in these three figures demonstrateaichianging patterns. Generally,
the accuracies are negatively relatedREbandDi st Val .

Figure[3.5(d) and Figufe 3.5]b) show the SVMIlight classificaaccuracy as a function

of Di st Mai nt ai nandCor r Mai nt ai n, respectively.
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Figure 3.5: SVM classification accuracy M3.st Mai nt ai n andCor r Mai nt ai n for the
thin SVD-based data modification in WDBC.

3.3.2 Experimental Analysis of Noise-additive Data Modifiation

Two kinds of noise are added to the WDBC data. One is genefiateduniform distri-
bution with a range starting frotto some real-valued upper limit. The other is from some
normal distribution with zero mean and some variance. Tipegment is repeated fd00
times with the value of standard deviatienaken from a linear space linspace(0.2,15,100),
and the value of upper limit taken from a linear space linef@&,20,100).

(1). Relationship of RE vs. noise magnitudesd and upper limit).  Figure[3.6 shows

the relative erroRE as a function of the noise magnitudes.
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Figure 3.6:RE as a function of noise magnitude in noise-additive datadisin on WDBC.

The blue solid line represents the uniformly distributegsa@nd the green dash line is

for the normal distributed noise. Obviously, both of thespdiay a linear positive relation-
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ship between th&E and the standard deviatienor the upper limit. ThdRE of the normal
noise has a steeper rise than that of the uniformly noise thélsame increment of and
the upper limit.

(2). Relationship ofDi st Mai nt ai n and Cor r Mai nt ai n with the noise magnitudes.
The effects of the noise magnitudes on Diest Mai nt ai n andCor r Mai nt ai n are ex-
amined here and the results are shown in Figugde 3.7. As iné¢l§d (b) and Figurie-3.7(e),
the relationships betweebi st Mai nt ai n and the noise magnitudes are monotonically
decreasing functions. For tl@r r Mai nt ai n vs. the noise magnitudes, the plots demon-
strate very rough and approximately decreasing functisnis &igure[3.J7(c) and Figure
BA(f). Therefore, in general, both bf st Mai nt ai n andCor r Mai nt ai n are negatively
related to the magnitude of the added noise, Binst Mai nt ai n has a much smoother

variation thanCor r Mai nt ai n.
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Figure 3.7: Performance evaluation of noise-additive degeortion on WDBC.

(3). Relationship ofC-means clustering accuracy andRE.  Referring to Figuré&317(a)
and Figurd_317(d), a reasonable result is shown that foerailslitive methods, the accu-
racy also decreases with the increasindRf However, the addition of noise degrades the
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clustering accuracy and it is found that all the distorteth d@rsions have lower accuracies
than the original one. A basic statistic analysis is showhahle[3.B. The average accu-
racy of the uniform noise-additive methodi$.31%, which is90.86 percent as good as the
original accuracy. The average accuracy of the normal remdsitive method i7.05%,
which is93.61 percent as good as the original accuracy. Furthermore citheacy of the
uniform noise-additive method is not as stable as that ohtrenal noise-additive method
and it has a larger = 11.21.

Table 3.3: Basic statistic analysis Kfmeans accuracy of the noise-additive data modifi-
cation on WDBC.

Noise Mean KC-means Accuracy (%)

Name (upper limit/std) RE | Original Max. Min. Mean Std  Max.rel.err
Uniformly | 10.25 0.0250 92.79 90.51 33.74 8431 11.21 63.63
Normal 7.6 0.0321] 92.79 89.98 84.71 87.05 0.94 9.65

3.3.3 Experimental Analysis of Random Projection Data Modication

The projection matrixR, is created by randomly sampling from some distributiorhwit
zero mean and some variance Computationally, it is a matrix multiplication. Two cases
exist hereleft multiplicationandright multiplication The size ofR is m x m for the right
multiplication andn x n for the left multiplication, since in our study, the dimemss of
the original and the perturbed matrices are kept to be the s&wor each case, there are
two different R, nonorthonormal and orthonormal. Four short names asidlesan Table
B4 are used heredrp, Arpo, rpA andrpoA.

The 100 distorted data versions are generated by choosing theasthadeviationo,
from a linear space ranging fron01 to 10.
(1). Relationship of RE and o,. Referring to Figurd—3]8, we can find the non-
orthonormal projections bring out the larg&. The left multiplication method;pA, dis-

torts the data values more than the right multiplicationtradt Arp. Orthonormal projec-
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Table 3.4: The notation of four random projection methods.

Method Name | Method

Arp A= AR, R € R™xm,

Arpo A= AR, R e R™m RRT = J.
rpA A= RA, R € R"™™,

rpoA A=RA, Re R, RTR =1.

tions have a stablBE with an increasingr,, since the orthonormalization makes columns
or rows unit length. Figurg_3.8{b) shows thabb A has a smaller magnitude & than

Arpo. A basic statistic analysis is in TadleB.5.
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Figure 3.8:RE as a function o#, in random projection data modification on WDBC.

(2). Di st Mai ntai nand Corr Mai nt ai nin four methods.  Arpo maintains the dis-
similarity matrix andDi st Mai nt ai n is always100%. rpoA maintains the correlation
matrix andCor r Mai nt ai n is always100%. The left multiplication methods have very
low Di st Mai nt ai n which is in the order ofl 03, that might be the reason for their poor
performance on th&€-means clustering.

(3). K-means accuracies of four methods. All the four methods perform worse than
the original data irfC-means clustering. It seems no obvious effect,0bn the accuracy,
shown in Figuré_319. Due to the fact that the left multiplicatmethodsypA andrpoA,
change the dissimilarity matrix almost as large188%, the experimental results show

that their accuracies ik-means clustering are very low with the average accura@egb
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50.01% and50.31%. The right multiplication methodsdrp and Arpo, have much better

accuracies whose mean values&t®7% ands85.06%. More detailed results can be found

in Table[35.
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Figure 3.9:X-means accuracy vs,. in WDBC.

Table 3.5: Basic statistic analysis of random projectioia eaodification on WDBC.

Methods oy [0.01,10]
RE Mean Std Max. Min.
Arp 27.4554| 17.0362| 73.6637| 0.9721
Arpo 1.3896| 0.1386 1.6994| 1.0927
rpA 119.7492| 70.5045| 254.9169| 1.0255
rpoA 1.4157| 0.0306 1.4801| 1.3417
K-means Mean Std Max. Min. | Max.rel.err.
Arp original 84.9717| 0.4866| 85.5888| 83.6555 9.84
Arpo 92.79% 85.0615| 0.4391| 85.4130| 83.8313 9.65
rpA 50.0141| 2.2544| 55.0088| 42.7065 53.98
rpoA 50.3146| 2.2066| 55.7118| 44.6397 51.89
SVMIight Mean Std Max. Min. | Max.rel.err.
Arp original 94.2296| 0.4847| 95.0791| 93.4974 3.45
Arpo 96.49% 94.1711| 0.4423| 94.9033| 93.4974 3.45
rpA 52.7387| 1.8256| 56.0633| 50.7909 47.55
rpoA 53.8079| 2.0887| 56.7663| 49.7364 48.64
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3.3.4 Summary

Based on the foregoing experimental results on the WDBC @egdy, the average values
of several metrics are combined in Tabl€el 3.7 so that a cleapeadson can be observed.
Secondly, one distorted data version is selected from eatheoseven methods. The

selection rule is to make tHeE value of them as close as possible. The combination of the

metrics of these seven data versions can be found in Tahle 3.6

Table 3.6: Accuracy comparison of seven methods on WDBC.

Methods Metrics
Parameter RE RP RK
thinSVD rank= 4 0.0054| 171.5687 0.0800
uniformNoise 2.1850 0.0054| 175.4101 0.0664
normalNoise || o = 1.2700 0.0054| 181.5627 0.0456
Arp or = 0.1109 0.9721| 187.8826 0.0076
Arpo or = 5.8627 1.0727| 188.3002 0.0060
rpA o = 0.0100 1.0255| 188.9100 0.0019
rpoA or = 1.4227 1.3417| 189.3051 0.0015
(-%-%) Di stVal | DistMaintain | CorrVal | CorrMaintain
thinSVD 0.0007 12.8134 0.0000 53.3333
uniformNoise 0.0009 1.1597 0.0059 0.9195
normalNoise 0.0019 0.6355 0.0003 5.7471
Arp 0.4036 0.1714 1.0186 0.0000
Arpo 0.0000 100.0000 1.2769 0.2299
rpA 0.8226 0.0012 0.9442 67.3563
rpoA 1.5605 0.0012 0.0000 100.0000
(%) K-means SVMIlight
thinSVD 91.7399 96.1300
uniformNoise 87.1705 92.8516
normalNoise 87.6977 90.1200
Arp 85.2373 95.0791
Arpo 84.3585 93.6731
rpA 50.9666 51.1424
rpoA 52.5483 53.9543

At this moment, some conclusions can be drawn from theseiexpets as follows:

1. Thethin SVD-based method has the highest average acesibath in SVMlight and
IC-means. It is even possible for some distorted data to aelaidetter performance
on data mining than the original data. On the other handatiz dalue distortion level

is relatively lower than the other methods since there isxtereal noise introduced
67



into the original data.

. The two left-multiplication-based methods have veryma&rformance on mining.
On the other hand, the non-orthonomal left multiplicatioathod can realize the
greatest data value distortion among the seven methodsefohe, if the mainte-
nance of mining accuracy is considered valuable in real dvagplications, then

these two methods can be removed from the candidate list.

. For the maintenance of subject-pair-wise Euclidearadcss, the orthonormal right-

multiplicative random projection can keep the distancegoasl asl00%.

. For the maintenance of attribute-pair-wise dot prodtetprthonormal left-multiplicative

random projection maintains the original dot product nxatri

. For noise-additive methods, the normal-noise-basetioddtas a more stable per-

formance than the uniform-noise-based method.

. Orthonormalization of projection matrices is capableaftrolling the magnitude
of the data value distortion level and making it independéibhe magnitude of the

external noise added into the original data.

. Refer to the seven data versions of each of seven methdddbla 3.6, the random
projection methods have the better data value distortigalwdity than the other
three methods; the thin SVD-based method has the betteramies than the other

six methods.

. A possible advantage of the thin SVD-based method over attethods, is that its
accuracies are traceable from the approximation rank dstfe, unlike the othe6

methods whose accuracies are unpredictable with the dbésdic of randomization.
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Table 3.7: A comparison of thin SVD, noise-additive and @ndrojection data modifi-

cation strategies on WDBC.

Methods

RE Mean Std Max. Min.

thin SVD 0.0052| 0.0173| 0.0872| 0.0000

normalNoise 0.0321| 0.0183| 0.0635| 0.0008

uniformNoise| 0.0250| 0.0140| 0.0492| 0.0012

Arp 27.4554| 17.0362| 73.6637| 0.9721

Arpo 1.3896| 0.1386 1.6994| 1.0727

rpA 119.7492| 70.5045| 254.9169| 1.0255

rpoA 1.4157| 0.0306 1.4801| 1.3417

Di st Mai ntai n | (%) Mean Std Max. Min.

thin SVD 80.9701| 34.8996| 100.0000| 0.0978

normalNoise 0.2573| 0.4310 3.3850| 0.0545

uniformNoise 0.5158| 0.6251 4.1461| 0.1355

Arp 0.1223| 0.0787| 0.4437| 0.0316

Arpo 100 0 100 100

rpA 0.0005| 0.0006| 0.0025 0

rpoA 0.0005| 0.0006| 0.0019 0

Corr Mai ntain | (%) Mean Std Max. Min.

thin SVD 79.8652| 24.6604| 100.000| 17.4713

normalNoise 2.3103| 2.3057| 13.5632 0

uniformNoise 1.1061| 0.6210 2.9885 0

Arp 0.2161| 0.2441 1.1494 0

Arpo 0.1885| 0.2050| 0.9195 0

rpA 55.9747| 9.0325| 74.2529| 29.8851

rpoA 100 0 100 100
K-means (%) Mean Std Max. Min. | Max.rel.err.
thin SVD 91.2914| 2.3605| 93.3216| 83.8313 9.65
normalNoise | 87.0492| 0.9419| 89.9824| 84.7100 8.71
uniformNoise| 84.3058| 11.2116| 90.5097| 33.7434 63.63
original Arp 84.9719| 0.4866| 85.5888| 83.6555 90.84
92.79% Arpo 85.0615| 0.4391| 85.4130| 83.8313 9.65
rpA 50.0141| 2.2544| 55.0088| 42.7065 53.98
rpoA 50.3146| 2.2066| 55.7118| 44.6397 51.89
SVMlight (%) Mean Std Max. Min. | Max.rel.err.
10-fold thin SVD 95.61 1.29 96.84 91.04 5.65
rbf kernel normalNoise 89.49 92.95 86.01 10.86
v=1 uniformNoise 91.27 94.29 88.16 8.63
original Arp 94.23 0.48 95.07 93.49 3.1
96.49% Arpo 94.17 0.44 94.90 93.49 3.1
rpA 52.74 1.83 56.06 50.79 47.36
rpoA 53.81 2.09 56.76 49.73 48.46
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3.4 Sparsified Strategies

On the basis of the thin SVD-based data modification modedrder to do further distor-
tion on the data values, sparsification is introduced to naakaeiant of the thin SVD. Three
SVD sparsification strategies, which aiagle threshold strategy (ST.$plumn threshold
strategy (CTSandexponential threshold strategy (ET®ave been proposed by Gao and
Zhang for reducing the storage cost and enhancing the peaifare of the SVD in the area
of information retrieval[[3R2]. All these three strategias aised in our study to perform
sparsification o/ 1.y and V(.4 to further distort data values after the rank reduction by

the thin SVD.

3.4.1 Three Sparsified methods

Let U .. and V. denote the new matrices created after performing spatsifican

U 1.1y andV 1.4 respectively, and the new version of the distorted matfi is
—(k —_— T
y UamnZeVw - (3.16)

Obviously the degree of perturbation 4f* is larger than that oft*) and the protection
on data privacy is improved.

e Single Threshold Strategy (STS)

The basic idea of STS-based sparsification is that, giventaieeahreshold value
e > 0, foranyu,; in Uy, if |u;;| < e, we setu;; = 0. The same operation is conducted
onV,I'. We uses-SVDto denote an SVD-based data modification method using STS

sparsification strategy.

e Column Threshold Strategy (CTS)

Given a scaling parameter> 0, the threshold value for each columnigf andV;
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is the product of the mean value of each columnand

n

€ .
Tj:EZl|uij|,j:1,2,...,m, (3.17)
We usec-SVDto denote an SVD-based data modification method using CTiSispa

fication strategy.

e Exponential Threshold Strategy (ETS)

The threshold value is determined by an exponential functio

n
€

Ty =~ ; ug; @) j=1,2,....m (3.18)
wherea > 0 is a parameter, which should be on the ordet 6f. It can be seen that
a column with a larger index has a larger threshold value aokrantries will be
removed for this columr[32]. We useSVDto denote an SVD-based data modifi-

cation method using ETS sparsification strategy.
3.4.2 Experimental Evaluation

1. Magnifying data value distortion on WDBC. Several threshold values are examined
and it turns out that it is appropriate that two differenteirold values¢, ande,, are
applied to sparsify/ .,y andV..x), respectively. Heres, = 0.02 ande, changes from
0.02 t0 0.06 with a step size 06.002. Nine different approximation ranks of the thin SVD
are testedl, 3, 4, 7, 20, 22, 23, 25, 27. The experimental data can be found in Appendices
H1-H9. Obviously, all the data value distortion metrics mng@roved by the introduction
of the sparsification.

In Figure[3ID, the lower nine plots are functionsRE with ¢,, and the upper nine
plots are functions of-means accuracy with,. We first note that the lower nine plots are
almost completely overlapped, except that the plot for #rkrof 1 has a little bit higher

RE. That leads tawo possible implicationgor some data:

1. s-SVD may be able to makeE and the approximation rank independent of each
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other. It might provide an answer for the choice of the apjnation rank when

doing thin SVD.

2. REis dependent on the sparsification threshold values, whglies that adjustment

on the sparsification level could control the data valueoditn level in s-SVD.

The second point to note in Figuie_3.10, is that the accuwsamiéC-means clustering,
although using different ranks in s-SVD, are approximaggiyal wherx, is larger than
0.028. Further, the plots suggest a possible appropriate value,foand it is the peak
point associated with, = 0.036, the best accuracy &0.8612% andRE= 0.4886. Then
the distorted data under different ranks are tested for YHdlight classification accuracy.
The lowest i91.2127% at the rank ofl. The best i92.4429% at the rank o2.

If comparing this peak point to the average results for the$vVD, theRE is increased
by 9257.69%, the K-means clustering accuracy is decreased.hy% and the SVMlight

accuracy is decreased By1%.
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Figure 3.10:X-means accuracy ariE as functions of threshold valug by s-SVD on
WDBC.

2. Comparison of sparsified SVD with thin SVD and noise-addite methods on WBC.

A comparison is conducted on the WBC data set. In order to ibenfacomparing the
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privacy metrics, parameters are set to mBkevalues as close as possible. The rank of thin
SVD is7. The results of performance evaluation on six methods aréged in Tabld=318.

Under the premise on the same level of value dissimilaritg, fact thatCP value of
uniform noise method and normal noise method is 0 @idalue is 1 indicates that both
methods do not change any rank of the attributes. Experathdata in Tabl&-3]18 supports
the previous conclusions that SVD-based strategies achigher-level privacy protection
than noise-additive methods. And sparsified-SVD-basedhodstare better than the thin
SVD-based method on data distortion level without any $icgmt degradation on classifi-
cation accuracy.

Table 3.8: Comparison of three sparsified-SVD-based mestiwath other methods on
WBC.

Methods Data Value Distortion Accuracy%
RE RP RK cP CK SVMlight
WBC 96.4
uniformNoise || 0.1085 219.6993 0.0130 O 1 96.4
normalNoise || 0.1098 224.8148 0.0084 O 1 96.3
thinSVD 0.1222 228.8972 0.0114 0.2222 0.77]8 96.4
s-SVD 1.2662 228.1370 0.0013 3.3333 O 96.6
c-SVD 1.2702 230.1561 0.0021 3.3333 O 96.4
e-SVD 1.2704 228.0744 0.0014 3.3333 O 96.4

Among the three sparsification strategies, no significafergince exists on distortion
level and data utility. Especially it shows that they have sihme effect on changing rank
of attributes with the sam@P andCK values. Itis obvious that sparsification increases data
privacy level by making all the attributes change their ramlaverage value because the
CKvalue is 0. As to the SVMlight classification accuracy, fivetihoels achieve a level not
worse than that attained with the original dataset, norromlaradditive method is slightly

worse.
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3.5 Sparsified SVD-based Structural Partition Schemes

Instead of conducting the thin SVD and the proposed spaasdit strategies on the whole
data matrix, structural matrix partition is used here tad#vhe original matrix into sev-
eral submatrices, and we perform the sparsified SVD on ometeel submatrix. Three
kinds of matrix partition schemes are proposed here, whiglidanoted by P1, P2, and P3,

respectively.

3.5.1 Three partition schemes

1. Subject-based Partition Scheme (P1). We denote the subject-based partition
scheme by P1. Let us partitiohas
_ | A
A= [ A(2) } (3.19)
The whole dataset is divided into two groupK,1) and A(2). We perform the spar-
sified SVD onA(1) to getB(1) =s-SVD(A(1)). Then, the partially distorted dataset
is
i | B
A= { A(2) ] (3.20)

Here, all attribute values of the first group are distorted.

2. Attribute-based Partition Scheme (P2). We use P2 to denote the attribute-based

partition scheme.

Let

A=[AQ1) AQ2)] (3.21)
A(1) contains the first part of the attribute items aA@2) the second part. We
perform the sparsified SVD oA(1) to get B(1) =s-SVD(A(1)). Then the new
distorted matrix is

A=[B@1) AQ)] (3.22)

In this case, only one part of the attribute values is distblty SSVD.
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3. Two-dimensional Partition Scheme (P3). The two-dimensional partition scheme

is denoted by P3.

Let the partition be
A= { Afl)AQ2) } (3.23)

We perform sparsified SVD oA(1) to getB(1) =s-SVD(A(1)). Then, the selec-

tively distorted matrix is

~ B(1) A(2
i- [ Aggg AE4H (3.24)

Here, a part of the attribute values for one part of the subjeselected for distortion

operation.

The levels of the data value and pattern distortion are digrgron the partition scheme
in use. Depending on specific goals of the various applioatione of the above three
schemes can be chosen. The analysis of the proposed stsatdgtiibe performed in the
next sections.

SVD computation incurs a significant computational cosidoge scale data matrices.
The cost of computing the SVD of a sparse mattixising a Lanczos-type procedure can

be expressed:
Total cost =1 x cost (AT Ax) + k x cost (Ax),

wherel! is the number of iterations required by a Lanczos-type moeto approximate
the eigensystem aofi” A, z is a vector and: is the number of computed singular values
and their corresponding number of nonzero entries in thesspaatrixA. The dominant
computational cost of the Lanczos method is related to timeten and complexity of the
matrix multiplications byA and A7

Computing SVD only on one part of the original matrix wouladeto a reduction on
the computational cost and an improvement on the efficiehdgata mining algorithms by

removing unnecessary data distortion. This is becausét@abatrix multiplication is now
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performed with respect to the submatrix1), not to the full matrixA.

3.5.2 Experimental Evaluation

A synthetic dataset, called ORG|2000 x 100] matrix is generated to represent a dataset
with 2000 subjects and 100 attributes. Its entries are nahgdand independently generated
from a uniform distribution on the interval, 10]. We classify all the subjects into two
classes using the following rule:

1 if |sin(ORG(3, 1)) - ORG(7, 88)| * | cos(ORG(7, 45))|
class labek= *ORG(i, 78) > 15;
—1 otherwise.

The class labels are1 and—1. SVM classification is used to learn from the synthetic
dataset and build a classifier model. The classificationlteeswe obtained by a 5-fold

cross validation.

1. Sensitivity of classification accuracy to threshold value in s-SVD. Here we
examine the influence of the threshold valegin the STS of s-SVD. Figure3111
illustrates the classification accuracy undén the interval from0) to 0.1. In the ex-
periment, the approximation rank of the thin SVDi& With the increment ot in
s-SVD, it exhibits no observable trend in data utility fortaree distortion schemes.
This implies that the sparsification paramet&loes not affect the classification ac-

curacy sensitively in this study.
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Figure 3.11: The effect of the threshold vaki@ s-SVD on SVMlight accuracy

2. Comparison of the five modification methods. The five data modification meth-
ods, uniformly distributed noise (UD), normally distriledt noise (ND), SVD, s-
SVD, s-SVD with matrix partition, are implemented on ORG tonpare the perfor-
mances. Table_3.9 shows the comparison among these five ddification meth-
ods. The rank: in the SVD is 20. SVM classification is used to learn from ORG

dataset and build a classifier model. The classificatioritseare obtained by a 5-fold

cross validation.

Table 3.9: Comparison of five modification methods on ORG.

Methods Level of Distortion Accuracy%
RE RP RK CP K

ORG 76.15

ub 0.0760 664.0489 0.0062 0 1 76.20

ND 0.0758 665.1643 0.0043 0 1 75.80

SVD 0.3665 666.9214 0.0007 21.28 0.39 76.60

s-SVD 0.7464 664.0129 0.0005 36.42 0 76.50

s-SVD[P1] 0.5059 667.5759 0.0011 34.02 0.02 66.75

s-SVD[P2] 0.4866 332.7783 0.5002 35.48 0 77.35

s-SVD[P3] 0.3655 333.8874 0.5007 34.44 0 76.70

Based on the comparison results in Teblg 3.9, a conclusiomeanade that, com-
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pared to the randomization-based data distortion methadsas UD and ND, thin
SVD-based strategies achieve a higher level of distortimhcan provide better pro-
tection on privacy. Sparsified SVD is better than thin SVD lueé of the five met-
rics. TheCK value for the s-SVD-based methods is near or equ@) tehich means
all the attributes change their ranks in average value aftefiorming certain data

transformations.

Among the three proposed matrix partition strategies,¥®[P1] and s-SVD[P2],
the selected submatrices for sparsified SVD have the same si8VD[P2] and s-
SVDI[P3] are comparable on the distortion level with the émtdRK value and the

lowestRP value. All these three methods greatly affect attributésan

As to mining accuracy, the accuracies of the three new schaneé6.75%, 77.35%
and76.7%. Naturally s-SVD[P1] is worst on data mining accuracy, doiéts best
preservation of privacy. s-SVD[P2] supplies the best dat@yuwith a higher accu-
racy than the original dataset. From the above analysis,anarake a reasonable
conclusion that, considering a trade-off between privaeggrvation and data utility,
the performance of s-SVD[P2] is the best among these thréexnpartition strate-

gies.

Sensitivity of data value distortion to the choice of approxmation rank of SVD.
To examine the change of data quality of the three partitthiesies with the increas-
ing rank of SVD, we conduct more experiments on ORG. Figut8 Blustrates the
influence of rank of SVD on classification accuracy. P2 andi®8vssimilar graphs
of accuracy. The accuracy tends to decrease wiil % is larger than a half of the
number of attributes0 in our experiment. For any > 50, the accuracy of P1 and
P2 is equal to that of the original dataset. The highest acgus obtained with the

rank of 1/10 of the number of attributes.

78



Sensibility of Accuracy on SVD Rank ( SSVD: e=1E-3, SVM: g=0.001, 5-fold crossvalid)
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Figure 3.12: Accuracy by using s-SVD ( s-SVb= 1F — 3, SVM: g = 0.001, 5-fold
cross validation).

P1 shows worse performance on data utility than P2 and P3sadduracy is lower
than that of the original dataset. It also demonstratederdiit trend of change. The

accuracy of P1 increases withwhenk < 60 and decreases withfor £ > 60.

How to choose the rank of SVD is still unsolved and empirieats are required. Our
experiment implies one possible good choice of the rank dD $f our distortion
strategies if only considering data utility. If P1 schemassd, 3/5 of the number of
attributes is a good choice fér For P2 and P3, we can chook&l 0 of the number

of attributes as the rank of SVD.

4. Attribute size sensitivity in attribute-based partition. The previous experi-
ments on the synthetic dataset demonstrate that attriiaged partition scheme can
provide a high mining accuracy with an acceptable level ¢é disstortion. The fur-
ther test on this partition scheme is implemented from tlesvpoint of both data
distortion and data utility. It shows an intuitive resulathhe level of distortion in-
creases with the number of attributesAnl). Figure[3IB exhibits a critical point

with the highest accuracy when the number of column4(n) is 70, which means
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A(1) contains 70 percent of the attributes.
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Figure 3.13: The effect of the number of attributes on aayucd attribute-based partition.

5. Computation Time. The CPU time used to compute the SVD and partial SVD of
the data set on a SunBlade 150 workstation is 46.12 seconds3wD, 13.27 sec-
onds for s-SVD[P1], 22.95 seconds for s-SVD[P2], and 5.@dds for s-SVD[P3].

6. Comparison of three partition schemes on WBC. We choose three target sub-
matrices asl67 by 9 in P1, 699 by 6 in P2, and600 by 7 in P3. Therefore, the
number of entries in each submatrix is almost the sami@@sin order to make our
evaluation fair on three schemes. The rantf SVD is 3. Table[3.ID summarizes a

performance evaluation on three sparsified SVD methods.

For data value distortion, P1 has the higheistandRP with the smallesRK, which
means that P1 supplies the best protection on elements.sRBékest protection on
average values of attributes with the high€Btand lowestCK. For the WBC data

set, P2 does not perform very well on privacy protection.

For data mining accuracy, all three schemes are better lieaartginal dataset. P3

achieves the highest accuracy u@ts. P2 is better than P1.
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Table 3.10: Comparison of three partition schemes on WBC

Methods

Level of Distortion Accuracy%
RE RP RK cP CK

WBC - - - - - 96.4
SVD 0.2846 238.1218 0.0052 1.5556 0.5556 96.6
s-SVD 1.2556 230.8523 0.0021 0.3283 O 96.7
Ps-SVD 1.1443 214.4181 0.0296 96.4
P1 Pc-SVD 1.1468 212.7525 0.0299 1.7778 0.2222 96.6
Pe-SVD 1.1470 213.7399 0.0297 96.6
Ps-SVD 0.9632 152.7821 0.3351 96.9
P2 Pc-SVD 0.9738 150.6559 0.3357 2.8889 0.2222 96.7
Pe-SVD 0.9632 152.6759 0.3352 96.9
Ps-SVD 1.0492 180.2636 0.2287 97.0
P3 Pc-SVD 1.0574 181.4964 0.2291 3.1111 O 97.0
Pe-SVD 1.0492 180.1682 0.2287 97.0

Parametersk = 3; Submatrix size: PJ467 x 9] P2]699 * 6] P3]600 * 7]

7. Sensitivity of mining accuracy to the approximation rank of SVD. As stated
earlier, the optimal value of rank of SVD is dependent on geapplications and
chosen mostly by empirical tests. But a general impact terydef rank on data qual-

ity would provide good recommendations on rank determamatiFigure§ 3. T4(H), 3.14{b)

and [3.14(qd) indicate the existence of such a general teydmmt a critical point,

which is consistent with the result from Experiment 3 on thatlsetic dataset.

Data quality level in the descending order is P3, P2 and Pl.arfeRP3 behave
similarly on accuracy and the highest level accuracy canbb@imed at somé less

than or equal tal /3 of the number of attributes. After this peak point, accuracy

decreases with.

P1 shows worse performance on data utility than P2 and P3waed k. = 2, its
accuracy is lower than the original. It also demonstrateiffareint trend of change.
Its accuracy increases withwhenk is greater than a turning point which is close

to a half of the number of attributes,or 5 in WBC. No observable impact of dif-
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ferent sparsification strategies on accuracy is exhibiteithis experiment. Taking

computational cost into consideration, STS is a bettercghfair P3.

Sensitivity of Accuracy on Rank of STS-based SSVD Sensitivity of Accuracy on Rank of CTS-based SSVD
0.972 T T T T T T T T : .
- WBC[699*9] - WBC[699*9]
< P1 - [469°9] 0.97f x Pl -[469*9]
* P2 -[699%6] + P2 -[699*6]
0.97f P3 - [600+7] B P3 - [600*7]

0.9681
0.968

0.966(- 0.966-

0.964

Classification Accuracy
Classification Accuracy

0.964

0.9621
0.962

0.96,

1 2 4 5
Rank of SVD Rank of SVD

(a) Sensitivity of accuracy to approxim@s) Sensitivity of accuracy to approxima-
tion rank of thin SVD by selective s-SVDtion rank of thin SVD by selective c-SVD

Sensitivity of Accuracy on Rank of ETS-based SSVD
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Classification Accuracy

Rank in SVD k

(c) Sensitivity of accuracy to approxima-
tion rank of thin SVD by selective e-SVD

Figure 3.14: Sensitivity of mining accuracy to the approaiion rank of thin SVD for
selective sparsified SVD-based Methods.

3.6 Summary

The foregoing experimental evaluation reveals that the@sed hybrid approach provides
better performance both on data distortion and data utiBgme important conclusions

can be drawn from these experiments:

1. The overall performance of the SVD-based distortion e@ghes is better than the

data perturbation approaches.

2. Most of the SVD-based approaches can achieve a higheraagcon classification
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than the original data.

3. Sparsified SVD-based approaches are better than SVD-bass on data distortion
level without any loss of data utility, along with a furthenprovement on reducing

computational cost due to the SVD manipulation.

4. Three sparsification strategies have nearly identidatef on data distortion and
utility level in our experiments. Compared to all the othesthods in the study, all
of the three exhibit much better privacy protection on ageraalues of attributes.

With respect to the computational cost, STS is a desiraldeeh

5. For attribute-based partition and two-dimensionalipant distortion strategies, the
classification accuracy decreases with the increment afitieof SVD after reach-
ing a peak value at certain rank less than or equal to 1/3 afdhaber of attributes.
This inherent property lends itself well for achieving ath@ccuracy with a signifi-

cant reduction on computational cost due to the use of a sendlvalue.

6. The overall performance of the three structural partistrategies is as follows:

Object-based patrtition has the highest distortion levetlements of datasets.

Two-dimensional partition provides the most satisfacfmgtection on average

values of attributes.

All three schemes provide a satisfactory level of datatwtili

Attribute-based and two-dimensional based schemes gigpitée comparable
classification accuracy. Object-based scheme has the tlolatss utility level

among the three.

Of course, which partition strategy to use in a particulgli@ation is dependent on
the circumstances of that application such as the natureeoflatabase. With respect to

the specific requirements of data administrators and ctearsiics of target datasets, we
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believe that the above conclusions from our experimentddvorovide data miners with
a good recommendation on finding a desirable solution witteaaonable compromise on

privacy protection, utility of data and computational cost
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Chapter 4
NMF-based Data Hiding Strategy

The previous section shows that SVD is a good solution foa gaivacy protection with
competitive data mining accuracy. However, a drawbackss@ated with the extraction
of singular vectors of orthogonal decompositions. If thelentying data only consists
of nonoverlappingj.e., orthogonal patterns, SVD performs very well. If patternghw
similar strengths overlap, attributes contained in sonmbepreviously discovered patterns
are extracted from each pattern. In orthogonalizing thers¢wector with respect to the
first vector, SVD introduces negative values into the seaautior. Since most real-world
databases have nonnegative attribute values, there ispangarpretation of these negative
values in the context of most data mining activities, andatigg components contradict
physical realities.

Considering the nonnegative-valued characteristic oftrdatasets, a nonorthogonal
decomposition that does not introduce negative valuesi@wector components may be
desirable. In this section, nonnegative matrix factorma{NMF) will be used to distort
the original dataset.

NMF is a matrix decomposition method to obtain a represemtaif data using non-
negative constraints. These constraints can lead to dpaed representation because they
allow only additive, not subtractive, combinations of thegmal data. This is in contrast
to techniques for finding a reduced rank representationdb@s&VD. As an unsupervised

learning method for uncovering latent features in highehsional data, NMF can be used
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to preserve natural data nonnegativity and avoid subwabtasis vector and encoding in-
teractions. The overall performance of NMF on distortioreleand data mining accuracy
will be compared to our previously proposed SVD-based datiady strategies and other

existing popular data perturbation methods.

4.1 Nonnegative Matrix Factorization (NMF)

Given a nonnegative matriA € R7*™ with A;; > 0 and a pre-specified positive integer
K < min{n,m}, NMF finds two nonnegative matricd¢ € R"** with H;, > 0 and

W e REX™ with W,,; > 0 so thatA ~ HW minimizes the objective function
1
fUH,W) = 2 || A= HW|. (4.1)

The usual way to find7 andW is by the following least-squares optimization, which

minimizes the difference betweehand HW:

n m

min f(A, H,W) = ;ZZ i — (HW);;)? (4.2)

i=1 j=1

subject to H;, > 0,
ij Z 07 \V/Z, a, b7 ]

In optimization, upper- and lower-bounding variables femned to as imposing bound
constraints. Hence[{4.2) is a standard bound-constraipgchiaation problem. There
are several methods to sohfe{4.2) in the literature. Atbars designed to approximate
A generally begin with initial estimates of the matridésand 1V, followed by alternating
iterations to improve these estimates.

In our NMF-based data hiding methods, let the original d#t@asbe encoded by a
vector space data moddl Using some NMF algorithm4 can be decomposed into two
nonnegative factor matrices. It can be stated as a tranafmmfrom A to A defined
as follows: Given a nonnegative data modéln x m), find two nonnegative matrices
H € RP® andW € RE*™ with K being the number of clusters if, that minimize<,

where @ is an objective function defining the nearness between thigoesA and HV .
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The modified version of is denoted ast = HW.
The choice of the objective functiog affects the solution ofl. Here, the Euclidean
distance or the Frobenius norm is chosen as they are poputsetrix computations,

min Q=||A—-HW|3. (4.3)

XK KX
HeRY™ ™ WeRy ™™

Now we do reduction o

Q = [[A-HW|E

tr((A— HW)T(A— HW))

tr(ATA — ATHW — WTHTA + WTHTHW) °
tr(ATA) — 2tr(ATHW) + tr(WTHTHW)

(4.4)

4.2 Algorithms of Nonnegative Matrix Factorization

NMF can be viewed as a minimization problem with bound caasts. There are several
algorithms to compute submatricésand V. In our study, since we use the transposed
form of the general NMF, these algorithms are modified adogrdo our definition of
matrix model of the data set in which the rowsfrepresent the data points. Therefore,
H here is equal tdZ” in general NMFs andV here is equal td¥’? as well. We also
modify the formal description of the following algorithntgwever, the basic idea of these
algorithms is maintained.

In @.34), the objective function is
Q =tr(ATA) — 2tr(ATHW) + tr(WTHTHW).

Taking the gradients af consists of two parts which are the partial derivatives nedpect

to H andW, respectively:

0
otr(ATHW)  otr(WTHTHW) (4.5)
= -2 +
oH OH
— 2AWT L 2HWWT,
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VwQ = —
oW
B _28tr(ATHW)+0tr(WTHTHW) (4.6)
N oW oW
— —2HTA+2HTHW.

The optimal solutiofH, W) makes0Q/0H = 0 andoQ/0W = 0. Hence,
AWT o HWWT =, (4.7)
H'A © H'THW =1, (4.8)
whereo denotes element-wise divisiohdenotes an identity matrix.
4.2.1 Multiplicative Update Algorithm

The most popular approach is multiplicative updates pregdsy Lee and Seung [4/7148].
At each iteration of this method, the elementdbéndlV are multiplied by certain factors

which are from[[4]7) and{4.8). The update rules are

[AWT];
H;; Hj———_ 4.

1] — 1] [HWWT],U Y ( 9)

[HTA];
Wi, Wi ) 4.10
7 NUETEW, (4.10)

In the matrix notation, the above updates become:

H «— HoOAWT o HWWT, (4.11)
W — WoH'Ao HTHW, (4.12)

where® denotes element-wise multiplication. The nonnegativityfoand IV is main-
tained in the updates. Lee and Seung proved that under tlve alpdate rules the Frobe-

nius norm of(A — HW) is monotonically non-increasing [48].
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Table 4.1: Algorithm 3: Multiplicative update algorithmghsposed versioA: = HW).

Algorithm 3 Multiplicative Update (Transposed Versigh:= HW)

Input: A eRY™, 0< K < min(n,m), and maxlter.

Output: H e RP*E, W e RE*™,

Randomy create the initial estimates for H and W:
HZ(JO) < nonnegative value, 1<i<n,1<j<K.

Wi(;)) < nonnegative value, 1<i<K,1<j<m.
Scale rows of W to unit |ength.
for p = 1to maxlter do
for k=1to K do

AW T, ,
H;, — H; , 1<i<n;
B R HW W] + 1079 r=n
HT Ay
Wi e Wiy Al 1<j<m;

[HTHW]; + 1079’
Scale rows of W to unit length
nd
converge then
Qut put H® and w®;
br eak

= @

end
end

After updating a column off, we update the corresponding rowléf. A small positive
value is added into the denominators of the updates to prawdimision by zero, for which
we usel0~Y. At each iteration, the rows d# are normalized to sum to one. It is simple
to implement. The nonnegativity & and H is guaranteed in the iterations, since at each
iteration, the entries of the two matrices are multipliechbynegative factors. For the zero
entries in the initial estimates, there is no update and téain zero. That brings out one
drawback of the multiplicative algorithm, which is that en&n entry inl/ or H becomes
0, it must remaird. This locking of0 entries is restrictive, meaning that once the algorithm
starts heading down a path towards a fixed point, even if itpsa@ fixed point, it must
continue in that directiori[12].

As far as the computational cost, each iteration require®$hm k) matrix-matrix
multiplications and six0(n?) element-wise operations. Due to the fact that the mulgplic

tive update is the first well-known NMF algorithm, it has beeoa baseline against which
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the newer algorithms are compared. This algorithm is notstly slow to convergé[12]. It

requires many more iterations than alternatives methosisritbed below.

4.2.2 Alternating Nonnegative Least-squares Using Projeed Gradi-
ents

One class of NMF algorithms is tladternating least-square@LS) methods. We refer to
this class of algorithms simply by ALS. A least-squares stepllowed by another least-
squares step in an alternating way. ALS algorithms wereufgst by Paatero i [63]. ALS
algorithms exploit the fact that, while the optimizatioroptem of [43B) is not convex in
both!V or H, itis convex in eitheiV andH. Thus, given one matrix, another matrix can be
found with the simple least-squares computations. An ehtang ALS algorithm follows
in Algorithm[4 of TabldZ.R. The least-squares computatigaghirigenerate negative entries
in W and H. A simple strategy is used to set all negative entrieg, tor set all entries,
which are less than a predefined positive nuniy¢o ¢. This strategy adds sparsity and
additional flexibility not available in the multiplicatiugpdate method.

Depending on the implementation as in Algorithim 4, ALS alon can be very fast. It
requires slightly less work than an SVD implementation. lowements to the basic ALS
algorithm include incorporation of sparsity and nonneggticonstraints such as those

described later.
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Table 4.2: Algorithm 4: Basic ALS algorithm for NMF (transgmversionA = HW).

Algorithm 4 Basic ALS algorithm for NMF (Transpose Versighi= HW)

Input: A € RP*™, 0 < K <« min(n,m), maxlter, and a very snall
positive nunber e.
Output: H e RP*F, W e RE*™,
begin
randomy create an initial estimate for H:
HZ(]O) < nonnegative value, 1<i<n,1<j<K.
for p = 0to maxiter do
# solve W®tD in matrix equation HTHW = H'A with H®
weH) — arg min (HTHW — HT A).
WeRy*™
scale rows of W to unit |ength.
# set all entries Wy; in W to max(e, Wy ).
for each entry inW, W},; do
| Wi «— max(e, W;)
end
# solve H®D in matrix equation HWW? = AWT with wr+
HPY  grg min (HWWT — AW7T).
HeR?* K
# set all entries Hy in H to max(e, Hy).
for each entry inH, H;, do
| Hx < max(e, H)
end
if convergethen
out put H®t) and wr+h:

br eak
end

end
end

Lin [61] proposed a method for NMF by applying a projecteddigat method to solve
the nonnegative least-squares problem. Consider thenioldpstandard form of bound-

constrained optimization problems:

min f(z)
subjectto [; < x; < w;i=1,...,n,

where f(z) : R" — R is a continuously differentiable function, ahdandw; are lower

and upper bounds, respectively. Assuinis the index of iterations. Projected gradient
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methods update the current solutidf to z(**+1) by the following rule:

g® ) = Pl — 0,V f(2®)],

where _
r, il <x <y,
Plz;) = S u;  if 2y > wy,
li if x; S li7

maps a point back to the bounded feasible region. Variangsapécted gradient methods
differ on selecting the step size. The most used condition in projected gradient methods
is

Fa®) = f(2®) < oV f(@®)(@H) — W), (4.13)
which ensures the sufficient decrease of the function vaéretpration. An improved
projected gradient method as Algoritiiin 5 is described in€elldd. The common choice
of 015 0.01, and we considef = 0.1 here.

Searchingn;, = (' is the most time consuming operation in Algoritiiin 5, so one
should check as few step sizes as possible. Since) anda, may be similaro ;) is
used as the initial guess and then either increases or desrégan order to find the largest
B satisfying the conditior{4.13).

This method leads to faster convergence than the populaiphedtive update method,

and the overall computational cost is
iter x (O(nmk) + sublterx O(tmk? + tnk?)),

where sublter is the number of sub-problem iteratiéns,the rank of NMF.
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Table 4.3: Algorithm 5: An improved projected gradient nueth

Algorithm 5 An improved projected gradient method.
Input: 0<fg<1l,0<o<1, f, Vf.

begin

initialize any feasible z(!) and set ag=1
for k=1,2,..., do

assi gn oy «— ap—1

2D = Plz®) — 0,V f(®)]

it f(z® D)) — f(z®)) <oV f(2®) (D — z(+)) then

while f(z*D) — f(a®) <oV f (W) (@t — 20)||2(%) # 2(ar) do
| v
end
end
else
while f(z*+D) — f(z®)) > oV f(2®)(2*+D) — z(-)) do
| o — apf
end
end

Set z*+1) = Plz(k) — o, W f ().
end

end

4.2.3 Incorporating Additional Constraints

The objective functior@ in (@3) is sometimes extended to include auxiliary comstsa
on H and/orWW. This is often done to compensate for uncertainties in tha,da en-
force desired characteristics in the computed solutiotg onpose prior knowledge about
the application at handPenalty termsare usually used to enforce auxiliary constraints,

extending the objective functio@ as follows:

min Q=|A—HW|? + ai(H) + 8J(W). (4.14)

HeRP K WeRf*™
Herea and are small positive regularization parameters that baldinedrade-off be-
tween the approximation error and the constraints. Thetiome ./, (H) and J,(W) are
nonnegative penalty terms to enforce certain constraints.
The regularization termg, (H) and.J,(1W') can be defined in many ways. The usual
constraints areparsityand smoothnessLet us assume the following definition fdr,-
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norm of a given matrixC € R"*™: [A8]
1
n m P
o) - (L3l
i=1 j=1
1. Sparse solution. The notion of sparsity refers sometimes to a representeatiane

only a few attributes are effectively used to represent.ddMaasures for sparsity

include, theL, norms for0 < p < 1, and Hoyer’'s measure.

If L; norm is used, then penalty terms can be defined as follows [18]

Ji(H) = iiflz—k, (4.15)
Ve i(H) = L (4.16)
J(W) = iiwkj, (4.17)
Vwh(W) = fﬂ - (4.18)

By Hoyer's measure, sparsengss= % wheren is the number of ele-

ments. The penalty term could be
Ji(H) = (w|lved H)||> — [[ved H)][)*, (4.19)

wherew = vVnK — (vVnK — 1)y and vec(.) is the vec operator that transforms a
matrix into a vector by stacking its columns. The desiredsgaess irf{ is specified

by settingy to a value fronD to 1 [A2].

2. Smooth solution. Smoothness constraints are often enforced to regulazsotim-

puted solutions in the presence of noise in the data./Ehsrm penalizes the solu-
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tions of large Frobenius norm 18], thus

J(H) = iink:tr(HHT), (4.20)
Vui(H) = ;}.k:l (4.21)
Jo(W) = iing:tr(wwﬁ, (4.22)
Vo (W) = lzfafl.j:1 (4.23)

4.3 NMF-based Data Modification Method

In this section, we describe a basic data factorizationreehthat performs nonnegative
matrix factorization (NMF) on the original data set, whichthe essential part for our

NMF-based data modification.

4.3.1 Basic Data Factorization Scheme

Alternating nonnegative least squares using projectedigmes for NMF is used in our
implementation. It generally begins with initial estimaiaf the matriced? and W, fol-
lowed by alternating iterations to improve these estimat&fer performing basic data

factorization on4, the modified data set i4 = HW , where

H1 Wl

H2 W2
H=| |, w=/|"

H, Wi

Hi:(hilhiQ---his---hiK)7 i:1,2,...,n.
V[/j:(wjlwﬂ...wjt...wjm), ]:1,2,,K
4.3.2 Data Hiding Scheme

Based on the basic data factorization scheme, data hidmbeaasily fulfilled with some
simple preprocessing procedure on the original data matriXhe nonnegative property

of A needs to be validated by checking the nonnegativity of dlien Most real-world
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data sets have nonnegative entries.Alhas negative entries, its values can be shifted
column-wise and then normalized. After this procegs;an be generated with the basic

data factorization scheme. The algorithm is illustratedlgerithm[@ in TabldZ}.

Table 4.4: Algorithm 6: Data hiding scheme.

Algorithm 6 Data hiding scheme.

Input: a data set A € R"™™, the nunber of classes K, 0 < K <
min (n, m). N

Output: a nodified version A, two factor matrices: H € RTK and
W e RE*m,

begin
NonNeg = 1;
foreach A;; do
if A;; <0 then
| NonNeg = O.
end
nd
NonNeg == 0 then
do nonnegativity normalization on A,
Compute H gnd w:;
Cal culate A=HW.

= @

end
end
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Figure 4.1: A 2D synthetic dataset with 3 classes and its fimobiversion from NMF are
in the upper two subfigures. The bottom two subfigures showifreddiata using the two
noise-additive methods.
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The performance of this scheme is illustrated in Figlresadd4.2. Figur&Zl1 shows
the data distributions of a dataset and its modified versimra NMF and two noise-
additive methods. The dataset is synthetically creatad tioee bivariate Gaussian distri-
butions and normalized to a nonnegative matrix. It has 1@¢ests, each of which has 2
features. Three classes are depicted with three diffeyanbsls. The modified version in
the upper right subfigure is calculated from an NMF operatigth K = 3. The lower two
subfigures show modified datasets generated from addingatigrdistributed noise and
uniformly distributed noise, respectively. It is clearlgservable that the data distributions
from NMF and the addition of uniformly distributed noiseWler right) are distorted more

than the one from the addition of normally distributed ndlsever left).

1z

+ 0 (training)
o 0 (classified)
osH * 1(training)
x 1 (classified) o B
o Support Vectors | , T °% i@fuﬁﬂ DD o correct rate = 98%
0 | | | 10d * 5 | | I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
‘ correct rate = 54% ‘ >< + = "
I I

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.2: Binary SVM classification on the original datap(t, the modified data by NMF
(middle) and the modified data by adding uniformly distréaihoise (bottom).

Minimizing the impact of data distortion on mining resulssanother requirement for
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good data hiding schemes. Our basic data modification schieing NMF can maintain
data patterns better than some classical noise-additiveoni® The synthetic dataset in
Figure[41 is used as an example to demonstrate this claiRigimel4.2, three scatter plots
are used to illustrate the execution of a binary Supportdfddachine (SVM) classification
on the synthetic data, the modified version using NMF and tbdified version using the
addition of uniformly distributed noise. A binary SVM cléfsr is trained to separate class
1 from class 2 and class 3. Using the same training set andgest, the modified version
from NMF has the same correct classification rate as thaeabtiginal data which is 98%.
The addition of uniformly distributed noise deterioratle tlassification accuracy and its

correct classification rate is reduced to only 54%.

4.3.3 NMF-based Data Modification

Our proposed NMF method for data distortion consists ofalparts:initialization, data
factorizationandfurther distortion Each part includes several steps detailed in Algorithm

[[in Table[4b.
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Table 4.5: Algorithm 7: NMF-based data modification.

Algorithm 7 NMF-based data modification.

Input: a data set A € R™™  a learning algorithm L, an NW
al gorithm NMFAl gorithm error and stopping condition tol,
0<K< min{n,m}.

Output: the final distorted dataset A.

begin

Initialization:

1. preprocess the original data set A

2. examne its nonnegative property and do nornmalization if
necessary

3. set up the objective function for NWF

Factorization:

for K =2tom do
4. randomy generate initial estimtes of two nonnegative

matrices: (HfLOX)K,W}{(])Xm)
5. conpute (Hyux, Wim) = NMFAIgorithm (H\)) . Wi )
6. approxi mation AK) = H,  Wim

7. save AK)
end

Further Distortion & Comparison:

for K =2tom do
8. eval uate data distortion | evel of AX)
9. comput e m ni ng accuraci es
10. or do further distortion:
for r=Kto2 do
11. A" = Hy (o, Wesem
12. evaluate data distortion |evel of A"
13. compute m ning accuracies

end

end
Publication:
14. choose one AX) or AM — B with satisfactory data

distortion | evel and accuraci es
15. Publish the final nodified data set, B

end
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4.4 Experiments and Results

4.4.1 Comparison of Two Iterative NMF Algorithms

Two NMF algorithms are implemented on the WBC dataset to @mheir performances.
One ismultiplicative updaten Algorithm 3, denoted by]NMFM . The other isalternating
projected gradientfor each sub-problem, denoted BF . The problem sizén, K, m) =
(699,7,9). All tests share the same initial estimate( &£ ., W.%,). The tolerance is set

to be1073, 1074, 10~ and10~° in order to examine convergence speed. We also impose
a time limit of 4000 seconds and a maximal number of 5000@ti@ns on each method.
Table[46 shows that when the tolerancéls®, NMFM often exceeds the iteration limit of
50000. Obviously NMF is superior to NMFM. The data in the daling experiments are

collected by using NMF algorithm only. Some notes for Tdbhl& NMF: alternating pro-

Table 4.6: Performance comparison of two NMF algorithms

Tolerance # of Iter. Time (seconds) Final Gradient Norm| Objective Values

- NMF NMFM | NMF  NMFM | NMF NMFM NMF  NMFM

le-3 17 3060 | 0.8 2.6 1.04 7.11 41.4 41.5
le-4 94 20000 | 3.6 23.1 | 0.09 1.54 41.3 41.4
le-5 386 50000| 9.8 49.7 | 0.01 0.84 41.4 41.5
le-6 2382 - 63.3 - 0.001 - 41.4 -

jected gradients method. NMFM: multiplicative updatingthmal. initial objective value:
276.2; initial gradient norm: 7609.7; dimension:7. Wheletance is more stringent than

10~°, the number of iterations of NMFM exceeds the prescribedt.lim

4.4.2 Performance of NMF Algorithm Using Projected Gradieris

An initial random guess ol and H is the first step in the beginning of iteration. Different
starting values lead to different initial gradient normshefiefore, the result and iteration
time are dependent on the initial guess. The computati@sas@re roughly examined on

dimension value from to 2 under the toleranece 10~*. The result is shown in Table3.7.
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Table 4.7: Performance of NMF algorithm using projectedigmats
dimension Initial Gradient Norm # of Iteration Run Time (seds)

9 16525 83 12.41
8 11584 94 7.44
7 10648 80 7.38
6 7499 109 8.84
5 4816 117 7.85
4 5196 128 9.20
3 3265 76 4.65
2 4312 20 0.52

4.4.3 Sparseness Level 6 and H

NMF factorization yields two submatrices with higher sgarsss than those obtained by

the SVD. In the following experiment, the sparseness of @emnvector: of lengthn is

defined as

v = ||zl /ll=]
\/5—11 2 (4.24)

To measure the sparseness of a matrix, we stack columnsroftini to form a vector. The

sparseness) =

maximal sparseness ofis 1 if z containsn — 1 zeros, and it reaches zero if the absolute

values of all coefficients of coincide.

Sparseness of Object Vectors : W Sparseness of Factor Vectors: H

- 

\ﬁ/

w

N

Element Value
Element Value

N

o

>

400

600 2
Row of W 1 Column of W row of H

(a) Sparseness of basis vectdrs= 0.34. (b) Sparseness of factor vectdis= 0.64.

column of H

Figure 4.3: Sparseness levels of basis and factor vecteasect by NMF algorithm on the
WBC data withK = 7 and tolerance 10~
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Figures 4.3(a) and 4.3(b) illustrate the bar plots of W andéated by NMF algorithm
on the WBC data with{' = 7 and tolerance 10~*. The sparseness &f andH are(.34
and0.64 respectively. More thab0% of entries inH are zeros.

The algorithms to comput& and ¥ used in our method make factor vectors sparser
in preference to basis vectors. When the basis vectors tebé sparse, implicitly this
suggests that the basis will involve only some of the origataibutes. While that basis
vectors are denser than the factor vectors implies the stisbgge combinations of all of

bases.

4.4.4 Comparison of NMF-based Data Hiding Strategies with 8D,
UD and ND on WBC

The ten distortion methods, SVD-based, NMF-based, unifpodistributed noise (UD),

normally distributed noise (ND), sparsified SVD-based, syparsified NMF-based are im-

plemented on the WBC data to compare their performances.

In order to be fair in comparing the data distortion metrgaameters are set to such
values as to makBE values of UD, ND, SVD and NMF as close as possible. The rank of
SVD is 7. The dimension size in NMF i and final dimension is alst. The results of
performance evaluation on the ten methods are providedate[fa3.

Under the premise on the same level of value difference,atethatCP value of UD
and ND is0 andCK value isl indicate that additive noise methods are worse than matrix-

decomposition-based methods.
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Table 4.8: Comparison of different modification strategiedVBC

Methods Level of Distortion Accuracy
RE RP RK CcpP CK (SVM)%
WBC - - - - - 96.4
ub 0.1085 219.6993 0.0130 0 1 96.4
ND 0.1098 224.8148 0.0084 0 1 96.3
SVD 0.1222 228.8972 0.0114 0.2222 0.7778 96.4
NMF 0.1228 228.4295 0.0100 0.2222 0.7778 96.7
s-SVD 1.2662 228.1370 0.0013 3.3333 0 96.6
c-SVvD 1.2702 230.1561 0.0021 3.3333 0 96.4
e-SVD 1.2704 228.0744 0.0014 3.3333 0 96.4
s-NMF 0.1228 228.4362 0.0076 0.2222 0.7778 96.4
c-NMF 0.1297 226.5042 0.0081 0.2222 0.7778 96.5
e-NMF 0.1234 228.2035 0.0089 1.1111 0.5556 96.5

Experimental data in Table'4.8 supports the following cosidns

1. NMF-based distortion strategy achieves a comparabferpeance with SVD-based

strategy. In particular, NMF achieves the highest clasgifio accuracy.

2. No improvement on performance of NMF is obtained by apgysparsification
strategies. It is reasonable under the condition that NM& sparse factorization
and the two factord)” and H, have a deep level of sparseness. Thus, further sparsi-

fication does not provide any improvement.

3. Sparsified SVD performs best on privacy level without aegrddation on data min-
ing accuracy. Itis obvious that sparsification has a strdi@gton data privacy level
of SVD by making all the attributes change their rank in ageraalue becausé K’

value is 0.

4. Asto the mining accuracy, all the ten methods achieveed tmmparable to or better

than the original dataset.
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4.4.5 Sensitivity of Performance on Dimension of NMF

To examine the effect of dimension size on data distortigelland data utility level in the
NMF approximation, we conduct an the experiment on the WBta dad Figur¢ 4.4(h)
illustrates the influence of dimension size on distortioreleand classification accuracy.
HereWW and H are solved under dimension af = 7. Then the final compressed approxi-
mation of the WBC data is computed by settingrujpom 6 to 1.

Dimension size is a key element both for dimension reducsiod distortion level.
The smaller the dimension size is, the higher the privacgllef/the method is. However,
clearly, dimension size is negatively related to datatytiéivel. Figurd 4.4(4), Figufe 4.4{b)
and Figur¢ 4.4(¢) illustrate the above relationship.

How to choose a dimension size in the proposed method is airieatproblem. For
the WBC data, our experiments imply one possible good choiceur distortion method
both considering data utility and data privacy. When thgahdimension size i, we can

choosel as a reasonable size.
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Sensitivity of Accuracy on NMF Dimension Sensitivity of Distortion Level on NMF Dimension
T T T T T T T T
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(a) Sensitivity of accuracy on NMF dimension (b) Sensitivity of distortion level on NMF dimension

Sensitivity of Distortion Level on NMF Dimension
0.8 T T T T

T
- RK*10
x  CK
0.7r

Distortion Level ( CK, RK)
o
»

Dimension of NMF

(c) Sensitivity of distortion level on NMF dimension

Figure 4.4: Sensitivity of performance of NMF-based metbndNMF dimension.

4.5 Summary

Experimental results indicate that by a careful choice exfaitive parameter settings, two
sparse nonnegative factors can be computed by some effiteeative algorithms. Al-
ternating least-squares using projected gradients in aangpNMF converges faster than
multiplicative update methods. The two matrices are najumbecause they are dependent
on initial estimates at the beginning of the iterative pchae. This dependency provides
our method both with uncertainty and flexibility. For nonagge-valued datasets, our

proposed method provides a possibility of simultaneoushjeving satisfactory privacy,
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accuracy and efficiency. In our experiments, with the sawe l&f data distortion as other
data distortion methods, the NMF method demonstrates gieeht classification accuracy.
In particular, we foresee that using iterative factorizatof the original data set can fulfill
all three goals can reach an above-average point.

For the first time, we have considered high accuracy privaeggrving of nonnegative-
valued datasets using NMF. The important properties of tM&Nhonnegativity and sparse-
ness, make it not only a good dimension reduction techniga@lso an efficient privacy
preserving tool. The promising performance of the propasethod with respect to data
privacy and data utility further inspires our future work@masizing matrix decomposition

techniques.
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Chapter 5

Simultaneous Pattern and Data Hiding

We have discussed the data value hiding (DVH) in the prevahapters. Two matrix-

decomposition-based models have been proposed to achlelarace between data pri-
vacy and data utility or information loss, where the atttéoualues are modified so that
disclosure risk on sensitive attributes is reduced andrtfi@eince of data distortion on the
mining results is small. In this chapter, the second categbPPDM, data pattern hiding
(DPH), is considered too.

Clifton et al. [20,[19] propose some possible approaches to pattern hitliclgding
limiting access to the data, fuzzyfying data, eliminatinmecessary groupings and aug-
menting the data. Compared to a rich literature on attrivatae hiding, the published
work on pattern hiding is mainly limited to association ruieing and classification rule
hiding [10,[25[ 7B 84].

To our knowledge, no effort has been made on realizing batibate-value hiding and
data pattern hiding by using one transformed version of tlggnal data. The challenge is
that data transformation might lead to some undesirabkeedigct on the outcome of the
data mining process. It follows that two different modifieatal versions may be required
to fulfill these two disparate ends.

Experimental results of our previous work §4 show that NMF can be used to dis-
tort sensitive data sets and it outperforms some traditiooiae-additive methods in data

hiding [82]. It provides a feasible platform to achieve bdtta hiding and pattern hiding.
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NMF decomposes a nonnegative matixnto two nonnegative matricesl ~ HW. It
was shown in[[26] that when the Frobenius norm is used as agdimee metric, NMF is
equivalent to a relaxed form df’-means clustering. Basis matri¥X containsK cluster
centroids and factor matrik/ is a cluster membership indicator. Based on this relation-
ship, we make an attempt on construction of one modified @ersi the original data set
for attribute-value distortion and data pattern protectidccordingly, the protection of pri-
vacy is simplified with enhanced performance. Four schemeesmfoduced foC-means
clustering with some assumptions on numerical attributeegand that the data patterns
are limited to the pre-specified memberships or assocmbmata subjects. Under the
constraint of zero side effects on pattern protection, am@ solution can be produced
for some data sets in our experiments to hide membershigsociations of data subjects.

In this Chapter, we make attempt on developing a simultasmidata and pattern hiding
strategy for data mining activities usiigmeans clustering. We consider an unclassified or
unlabeled datasét consisting ofz subjects or data points, each of which haattributes.
Data clustering methods can be used to find the cluster greperf the data under a prior
assumption of the number of clustets 7' is partitioned intakK” subsets which are referred
to as clusters or classes. Each data subject is a member dfi@ulsa cluster or subset.
Vector space data model is used to repregeby a matrixA (defined ing5.2).

In order to realize the dual privacy protection in one modifiata set, a novel strategy
composed of four schemes is proposed. The strategy is badéMb. One scheme is pro-
posed to achieve general attribute value hiding by way obtsec NMF. The other three
schemes are designed for hiding specified cluster propesfielata subjects. The basic
idea is an underlying correlation of factor vectors, which @mputed by the NMF, with
cluster properties, which are producedfymeans clustering [26]. In the three schemes,
slight alterations are made through three kinds of fact@pging. A detailed performance
evaluation is also carried out in order to demonstrate tfieaely of the proposed strat-

egy on the DVH and DPH. Under the constraint of zero side &ffen pattern protection,
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our implementations can compute some optimal solutiortscéna protect attribute values
and user-specified confidential cluster properties, wholgconfidential patterns are main-

tained. Accordingly, the protection of privacy is simpldieith enhanced performance.

5.1 Problem Description

Our approach targets the simultaneous realization of thel Q¥d the DPH in a central-
ized database with a numerical attribute set from some wootis real domain. A modi-
fied/distorted data set is computed to reduce a disclosskeofidata values and limit the
influence of data distortion on data cluster propertie€imeans clustering. In the same
modified data set is reflected the realization of the DPH onahiations of selected cluster
properties. The influence of data distortion on nonconfidétuster properties should
be limited. This may be the first work to formally introducestual data hiding. It is

imperative therefore to define terms and common expressgatsin the paper.

Definition 5.1.1. Data ModelT'. Given a data sef’ consisting ofn independent subjects

in anm-dimensional feature space. If we denotetfesubject ofl” asT}, then
1.7 ={T},

2. ﬂ:{tll,tlg,,tm,,tlm},lglgn,lgjgm

Definition 5.1.2. Vector Space Data Model. Given a data modél’, 7' can be repre-
sented by a matrixl, A € R™™, with the rows corresponding to thesubjects and the
columns to then attributes. If theth row is denoted byl;, thenA; representsi,. The ;"
attribute is represented by thi#& column of A, denoted byA ;. In the paper, we usd to
denote a data set.
Ay
Ay
.| A=A Ay . Ay ]
A,
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Definition 5.1.3. Data ClusterC. Given a data setl, the number of cluster& and a
learning algorithn?, C4, Cs,...,Ck are K subsets of4, created byf; ¢, ¢s,...,cx are K

cluster centroids, such that:
2.Vp,qe{l1,2,...,K},p#4q,C,NC, =9,

3. |C;| = the number of data subjectsd,

4, C; =

1
|Cil

(XA ec, 4i)-
Definition 5.1.4. Data Modification. Given two data setst and A with the matrix
models4 and A, and a modification schem¥, a sequence of modifications is a function

¥ to transformA into A, whereF indicates the attributes or data patterns to be modified.
U (A F,M)— A

Definition 5.1.5. Data Value Hiding (DVH). Given a data modef, the attributes to be
modified F' and a learning algorithm, a data distortion schem¥ is selected to execute
data modification and computé ) : (A, F, M) — A. The values oft” is considered to

be hidden inA if the following conditions are satisfied:
1. In 4, the original values of is controlled without unauthorized access.

2. The mutual information between confidential attributes #heir counterparts iA is

limited to a user-defined threshold level.

Definition 5.1.6. Data Pattern Hiding (DPH). Given a data moded, user-defined con-
fidential pattern” and a learning algorithmi, a data distortion methodl/ is selected to
execute data modification and computel : (A, F, M) — A. Two sets of learning results
PO and PO are created by performingon A and A, respectively.P will be considered
to be hidden ind if P C PO, andP ¢ PO.
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Definition 5.1.7. Pairwise Association?. Given a data seti, let A2 denoteA x A, the
set of all possible unordered pairs of subjectsApfan associatior? is a binary relation
over a function¥ : (A2, I,C) — {true, false}. For all unordered paifz, y) € A?, there

existp,q,1 <p,q < K, A, € Cy, A, € C,.

1. If p = ¢, thatis, A, and A, are in the same cluster, thetRy = true: p = ¢ —

xRy = true;

2. if p # ¢, thatis,A, and A, are not in the same cluster, theRy = false: p # g —

xRy = false.

Lemma 5.1.1.R is an equivalence relation.

Proof. First, R is reflexive asvA;, € A, A;RA;. Second, it is symmetric, as for all
i,7,1 <i<mn1<j<n ARA; means thatd; and A; are in the same cluster which
implies A; RA;. Third, it is transitive, as wheneve; is in the same cluster a$; and A;

is the same cluster a%;, thenA; is in the same cluster a&,, thereforeA,; RA,. [

Definition 5.1.8. Confidential Association Hiding. Let A be the data set after applying
a sequence of modifications ehand an unordered pairi;, A;) € A% A;RA; is hidden

if the following conditions are satisfied:
2. g= ZRE in A,

3.9g# 1

Our purpose here is to do general value hiding as Definffid@5and user-defined
confidential association hiding as Definitibn 511.8. Paitidy, we need to approximate
A with A in which the original values of sensitive attributes areegally distorted, and
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prespecified confidential cluster properties are proteftted being extracted bjC-means
clustering. Either memberships of subjects are shiftemamew cluster different than their
original ones, or pairwise associations of subject paiesnegated. In the meantime, the

negative side effects of data modification on nonconfidenteanmberships are limited.

5.2 NMF and K-means Clustering

Clustering algorithms group a set of subjects into clusteFbey are divided into two
groups: hard clustering and soft clustering. Hard clustgassigns one subject to ex-
actly one cluster. Soft clustering computes a distributiba subject over all clusters, and
a subject has fractional membership in several clusteils KL5neans clustering is a hard
clustering algorithm. Subject; is assigned to clustet), if it is closest to the centroid,
¢k, by some distance measure. Variation on its distances t&’tbentroids might incur a
shift of A; from its old cluster to a new cluster. In]26], it shows thessdme connection
between/C-means clustering and NMF. Based on their relationship, & Ryproach is
proposed.

All the pairwise distances between the rows/htan create a symmetric matrix
R?*" that stores a collection of pairwise distances between paictof subjects i,
0

pai O e
P=|pa px2 0 ... ... (5.1)

Put Dz o . O |
where the diagonal elements are self-distances and theggaed to zero. Each element
pi; corresponds to the distance or dissimilarity between stdbjeand;. In generalp;; is

a nonnegative value that is close to zero when the subjeetdj are very similar to each

other, and becomes larger the more they differ. We use thépogpsilar distance measure,
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the Euclidean distance, to calculdte

Py = |4 — Ajllr »
— (tr((A; — A4)7(A; — A;))Y
0 if i =7, (5.2)

_ m 1/2
<Z(AZ-S - Ajs)2> if i £ j.

s=1

whereA; andA; arem-dimensional data subjects.

Inner product of each row can produce the inner product aiijlmatrix S = AAT.
An interesting observation oA andS is that they demonstrate block patterns if we arrange
the subjects from the same cluster together [11]. The heps wid andS of IRIS data set
[2] in Fig.BA(b) andR]1(c) show 9 blocks each since IRISadiponed inta3 clusters. The
darkness in dissimilarity matrix of IRIS in Fig.5.1(b) shethe smaller within-cluster dis-
similarity. The solution of the clustering should eitherximaize within-cluster similarity

or minimize within-cluster dissimilarity.

IRIS Dissimilarity Matrix

oo
%
2 x C2

s & o c3

4 5 6 7 8

Inner Product Similarity Matrix

EIHL

150

100

50

50 100 150

Figure 5.1: Cluster Distribution and Property Matrices RfS. (a) data distribution. (b)
dissimilarity matrix of IRIS:P. (c) similarity matrix: S. (d) DDT, D: cluster indicator
matrix.

The clustering solution can be represented by a nonnegatigéer indicator matrix

D € R’}FXK asin[26],D = (D1Ds... D). |Cyl is the size of the&™ cluster. For the
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hard membership,

¢|1(;—| if A, € (. (5.3)

EachD  is normalized to unit length so that’ D = 1.

0 if A; & C,,
Dikz{ # O

One can easily see that the elementsoare betweerd and1 and the sum of the
elements in each row ab is equal tol. The significance ofD;, is that it denotes the
membership of4; or for the soft clustering, it reflects the degree to whithassociates

with clusterCy,. Especially, the centroids:, cs, . . ., cx } can be represented as

<Cl\/|01|,02\/|Cg|,...,CK |CK|> :DTA (54)

We useC' to denoteDT A,
For thek'" cluster, the sum of all the members(@h can be represented in terms of the
k™ row of DT A as
> A= VIC(DT A)y = V/Cl(C)sc - (5.5)
A;€Cy
Now if we useD as a representation of the clustering solution, then thectilbg func-
tion for seeking & given A can be encoded withgymmetric convex codi@CC) model

J that is built onS' [L1].

min J=|S—DBD"|? (5.6)

DeR X BeRY ¥ DTD=1,BT=B
Here,S is defined as

S = (Sij)icnn]jelin = AAT.

In [L1], it is shown that the minimization of the objectivenfttion J in (&) is equivalent
to

max tr(BB). (5.7)

BT=B,BeRf*<
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The proof process in[11] is as follows:

J = |S— DBDT|?

= tr[(S— DBD")"(S — DBD")]

tr(STS — STDBDT — DBTDTS + DBTDTDBDT) (5.8)
— tr(STS) — 2tr(DBDTS) + tr(DBT BDT)

tr(STS) — 2tr(DTSDB) + tr(BB)

The above deduction uses the property of tra¢&'Y") = ¢tr(Y X ), ST = S, B = Band
DTD = I. Then taking).J/0B in (&8)

OB 0B 0B (5.9)
= —2DTSD+2B =0,

0J _28t7’(DTSDB) N otr(BT B)

and setting it to zero, we obtain
B=D"SD =D"AA™D = CC". (5.10)

Now (5:8) becomesr(STS) — tr(BB). Sincetr(STS) is a constant, the minimization of
J is reduced to the maximization af(BB). The proof is completed.

Hence, theK by K symmetric matrixB can be viewed as a cluster-similarity ma-
trix such that its diagonal elememt; denotes within-cluster similarity af’; and its off-
diagonal elemenB;; denotes the similarity between ttié clusterC; and thej* cluster

C;.
5.2.1 K-means Clustering

Next, we examine th&-means clustering. In thi€-means clustering, the objective func-

tion £, using Euclidean distance, is used to minimize within4gudissimilarities.

min £ =37 3 [|(A — )5 (5.11)

Flk=1 k=1 A;€Cy
In [26], it shows that the minimizatiofi.{5111) is equivalémthe maximization
max  L(D) = tr(D'SD). (5.12)

DT D=I,DeR* K
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In order to understand this equivalence, the proofin [2@fesented here:

L= >3 |-,

k 1 A;€Cy,
= Z Z — Ck — Ck)T} (513)
k=1 A;€Cy
K K K
= Z Z A,-A;F—2Z Z Aic}f—l—z Z ckc;‘f
k=1 A;€C,, k=1 A;€Cy k=1 A;€C)

We simplify the three terms ifi{5.13) as follows:

K
AAT = ||A)% = tr(AAT). (5.14)
>
k=1 A;€C},
K K 1
X A = X o (Ai > AT)
k=1 A;eCy I:( C AEC’V Ai€C (515)
= Z( oAy A{)
= \ICkl AE€C,  AEC
K
Z Z ckcf = Z|Ck|ckck
k=1 A;€C}, = (5.16)

i( k|ZA ZAT>

A;eCy A;eC

By substituting [&b) into[[515) and{5]16), the second #mdl terms of £ in (B13)

become p
—;(DTAM(DTA)% = —tr((DTA)(DTA)T) (5.17)
- = —tr(DTAATD).
Now £ in (513) becomes

tr(S) — tr(DTSD).
Sincetr(S) is a constantmin £ becomesnax £(D) = tr(D?SD). The proof is com-
pleted.

Considering[(5d0)nax tr(DTSD) is equivalent tanax tr( B) that is to maximize the

sum of the diagonal elements Bfwhich represent the within-cluster similarities.

116



5.2.2 Nonnegative Matrix Factorization (NMF)

Choosing one NMF algorithm, a data setan be decomposed into two nonnegative factor
matrices. The transformation frorhto A can be defined as followiven a nonnegative
data modeld € R, find two nonnegative matricd$ ¢ R"** and W ¢ RE*™ with
K being the number of clusters i), that minimizeQ, whereQ is an objective function
defining the nearness between the matrideand H1/. The modified version ofl is
denoted asl = HIWV.

The choice of the objective functio@ affects the solution ofl. Here, the Euclidean

distance or the Frobenius norm is chosen as they are poputzeitrix computations,

min Q=|A-HW|3. (5.19)

HeR X WeRx™
In [26], a proof on the equivalence betwe€rmeans clustering and NMF is presented,
which starts from doing some manipulations@n

Q = [A-HW]|E

tr((A— HW)T'(A— HW))

tr(ATA — ATHW — WTHTA + WTHTHW)
tr(ATA) — 2tr(ATHW) + tr(WTHTHW)

(5.20)

Let 0Q/0W =0,
09 _28tr(ATHW)+0tr(WTHTHW)
ow oW oW
= —2HTA+2HTHW
= 0.

We obtainH” A = HTHW . If we apply the orthogonality restriction into NMF such tha
HTH = I,thenW = HT A. SubstitutingV with H” A in (&20), we have

Q tr(ATA) — tr(WITW)

tr(ATA) —tr(ATHHTA).

(5.21)

Comparing[[®21) with(5.18), iff = D, thenQ = L, i.e., under the restriction of orthog-
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onality onH, the NMF is identical to thé&C-means clustering,

min |A— HW|%

HeR* X HT H=I,WeR ™

= min XK: Z H(Al-—ck)THi,.

K
Crk=1 421 A,eCy

(5.22)

Therefore H is cluster indicator matrix oft andZ” A is cluster centroid matrix, which
is W. Without the orthogonal restriction dif, the standard NMF is a kind of soft clustering
where one subject might belong to several clusters witledfit weights. The membership

of thei'" subject can therefore be assigned according to the larggghtin ;.

5.2.3 NMF-based Clustering

The equivalence between NMF afidmeans clustering is the basis of NMF-based cluster-

ing [2€]. Given the number of clustefs, H and!V can be computed.

H, Wi

H2 W2
H=| |, w=|"

H, Wi

Hi = (hig hig .. his .. hig), i=1,2,...n.
Wj:(wjleg...wjt...wjm), j=12,.... K.

H represents the cluster indicator mati andi¥ represents the cluster center matrix
Each row oflV is a basis vector to represent one of theclusters. Each row off is a
factor vector of one ofi subjects. Each of the subjects can be approximately repesse

by an additive combination of th& basis vectors.
K
7j=1

Each element;; indicates to which degree the subjeédielongs to the clustet’;, while
each element;; represents the weight of contribution of attribyit® the cluste;.
If the subjecti belongs to the cluster’,, thenh,, will take on a larger value than the

rest of the elements iff;. NMF can be viewed as a kind of unsupervised learning that the
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[Max—Min Factor Swapping Scheme ]
2 Factor Vectors 3( N\ 4
H LFactor Index Swapping Scheme ] — H
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Nonconfidential subject memberships

A

Figure 5.2: The process of dual privacy protection.

membership of the subjects can be determined/{5]. The NMF-based clustering rule
is described as: the subjedt is placed in the cluster, if 1, is the largest element in its
factor vectorH,, i.e.,

A, € C,,if p=argmax{hy,;}.
j

This rule implies that any modification on factor vectors nchgnge the memberships of
the corresponding subjects. Based on this insight, we ddisige factor swapping schemes
(described irt5) based on modifyindgZ, and H, to change the membership of a single

subjectzr or a pairwise relationshipRy.

5.3 Proposed Approach

In this section, we describe the proposed dual privacy prasgapproach consisting of
one data hiding scheme and three pattern hiding schemeschmes are based on a basic
factorization scheme via an NMF on the original data set.

Fig.[52 is a process diagram of the dual privacy protectibis created of” after data

collection. The steps are:
1. K-means clustering is run afiand its result of subject memberships is usetlas.
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2. NMF of A generates two submatricésandV .

3. Factor swapping schemes are used to transform the faattoreH to H.
4. H is combined withiV’ to form a modified data set.

5. K-means clustering is run on the modified d4ta

6. Confidential subject memberships are examined. Step 3 earé repeated until

confidential memberships and relationships are hidden.
7. OneA is outputted for release.

Four schemes in the diagram will be elaborated in the folgwgart of this section, as well

as how they are adopted to hide values and memberships.

5.3.1 Basic Factorization Scheme

Given a prespecified’, the original data setl is decomposed inté/ andlV. A standard
way to find H and WV is by the following least-squares optimization, which mizes the

difference betweer and HW:

n

min Q=> " (Ay— (HW)y)> (5.23)

HeRP K werfxm P
NMF algorithms generally begin by initial estimates of thatnicesH and W, followed
by alternating iterations to improve these estimates. détefl gradient method proposed
by Lin [51] is used in our implementation to directly minireifa.23).

The full factorization ofA amounts to the two nonnegative matridésand1V" as well
as a residual/, such that: A = HW + U. The elements of the residual matrix can
either be negative or positive? is taken asH W, an approximate ofi. Therefore, value

difference caused by removirtg can hide original values. The non-uniquenesg/oand

W is advantageous to prevention of privacy breach.
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The transformation ofl to A leads to value distortion and the relative information loss
To be more precise in talking about the amount of privacyamiidn, we need some scalar
measures. In information theory, the mutual informatiotwaen an attribut&” of A and
its distorted counterpart’ in A, denoted byl (X: X), measures how much information
tell us aboutX, that is, how much information went through the transfoiorafrom A

into A. 7(X; X) is the reduction in uncertainty aboiit due to the knowledge of

[(X;X) = D(p(x,7)|[pi(2)ps(7))
_ Zzp T (5.24)
p1(z)p2 ()

— H.(X) — HL(X|X).
wherep(x, ) is the joint probability distribution of finding values and z, and p; (z)
andp,(Z) are the marginal probability distribution functions &fand X. H.(X) is the
Shannon entropy or self-information &f, which is defined as

Ho(X) ==Y pla:)log, p(x;), (5.25)
i=1

where entropy is measured in bits whds 2. WhenX andX are independent, X; )N():O,
which impliesX’ can provide no inference ok [22]. Therefore, both the privacy risk and
data utility loss can be measured as the mutual informati@ittobutes. In the intuitive
sense, a smallei{ X; X) may lessen the disclosure risk of the original attribkiteand on
the other hand, it causes more information loss and more geandata utility.

We define amutual information row vector M/ € R'*™. Each element represents

mutual information between one attribute and its distocahterpart:
M = (I(Aj; Aj));- (5.26)

The relative privacy risks among the attributes can be somejuantified in)/.
Another measuregntropy distortion or self-information distortion, £ D is defined as

a nonnegative number:
|E— Ellr

ED = :
I1E||F

(5.27)
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whereFE is a row vector whose elements are attribute entropies aefim@&23). || || is
the Frobenius normE D shows how much the total distortion on the self-informatidn

all the attributes.

5.3.2 Pattern Hiding Strategies

Given a data sefl with K clusters,H andWW are computed. Thenax-min factor swap-
ping schemethe factor index swapping schenaad thehybrid modification schemare

described as follows.

Scheme 1: Max-Min Factor Swapping Scheme.Let = be the index of the selected
subject inA. The factor vector oA, is H, = (hy1 hya ... hy; ... hyk). The largest factor
is swapped with the smallest factor ify,.

Let
Id e, = argmax{h,;}, max = hy(raym..),
J

Id,yi, = argmin{hxj}, min = hx(ldem)-
J
then

Pa(Tdmas) < M, hyrd,,,,) < ma.

Scheme 2: Factor Index Swapping SchemeSiven(z,y) € A?, z andy are the indices
of one selected subject pair ih The factor vectors ofl, and A, are

Hy =(hg1 hag . hgj. . hek),

Hy =(hyy hys.. hyj. . hyg).

Let
IdX e = argmax{hxj}v
J

Ideax - argmax{hyj}v
J

maxy = hy(ldymaz)'
e If A, and A, do not have the same index of the maximum factoes, /d.X,,., #
1dY,,.., we swap the maximum factor of, with the factor in the same index as the

maximum factor of4,,,
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Ry(1dYmaz) < Py(1dX maz)
hy(1aX mas) — MAT,
o If A, andA, have the same index of the maximum factoses, /d.X,,., = IdY a0z,
we swap the maximum factor of, with any factor not in the same index as the

maximum factor ofd,.. There exists, 1 <t < k,t # 1dX 4z,

Ry(1a¥mes) < 1(y, 1)
hyt < max,
Scheme 3: Hybrid Swapping SchemeGiven (z,y) € A%, assume that the factor vectors

of A, andA, are
Hm - (hxl hmg e h:vj e hmk);

Hy - (hyl hyg . -hyj . hyk)

Let
Id X pen = argmax{h,;}, maz, = h(z, 1dX ..),
3

1dX,,in = argm]ax{hxj}, ming = h(x, [dX ).
The factor vector ofl,, is modified based oA, by substituting its maximum and minimum
factors for those in the same indicesAf, then swapping theme,,
Py(1dX mas) < VN,

hy(Idein) — Maly

5.3.3 Single Membership Hiding

To hide the membership of one subject, we can make a shifedaubject from its source
cluster to any other cluster. Since the hiding process i baithe basic data factoriza-
tion, the non-uniquesness of the NMF solution may lead toedfiptable results. Different
factor matrices? andW may cause a different shift of the subject even though theesam
hiding scheme is adopted. In order to improve the predilitplon results and take advan-

tage of the flexibility of NMF, we make use of the iterationsNMF to find an optimal
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Algorithm 8 Single membership hiding.

Input: a data set T'with its vector space nodel A, cluster
truth ¢, the index =z of the confidential subject, the old
nenber ship of A,, the new nenbership of A,.

Output: A, H, W, H (one distorted version of H)

begin

Label —— the ol d nenbership of A,;

while Label #the new membership df, or sideEffect~# 0 do
conduct basic factorization schene to generate H and W;

conduct Schene 1 on factor vector H, to produce ﬁ;
conpute A« HxW; N

run clustering procedure on A to get new cluster | abels;
Label +— the new cluster | abel of A,

check other subjects’ nmenbership shifts;

updat e sideEf fect.

end
output H, W and A.

end

Figure 5.3: Algorithm 1: Single membership hiding.

factorization that fulfills the requirement on value hidigagd membership hiding simulta-
neously. AlgorithnB in Fig[Bl3 is a single membership hidgtheme. The algorithm
repeatedly executes basic factorizationdohnd max-min factor swapping scheroa the
factor vector of confidential subject until the while comalit meets, and a solution is found
with zero side effects on the nonconfidential memberships.

Measuring theundesirable side effects associated with the pattern hiding schemes is
a necessary part of the evaluation. An optimal hiding sotushould be the one where
only the user-specified pattern is hidden and all the rediepatterns are kept intack.,
there are no extra changes or nonzero side effects. Beaaose experiments, the initial
centroids are fixed for all the executions of #ianeans algorithm, we can quantify the side
effects as a rate of the number of shifting subjects amongptineber of nonconfidential
subjects. Here, only the shift of memberships is taken intesileration.

For example, when hiding the membership of one subject i§,|RE other subjects are

shifted to clusters different from their original ones, Hiee effect rate can be calculated as
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Algorithm 9 Single-pair relationship changing.

Input: a data set T with its vector space nodel A, cluster truth
C, a pair (z,y) with a confidential relationship: (zRy)a.

Output: A, H and W, H (one distorted version of H)

begin
pairTruth «— (xRY)od;
pairNOT «— (2RY)o4;

while pair NOT == pairTruth or sideEffect/0 do
conduct basic factorization schene to generate H and W,

nodi fy the factor vectors:
H, or H, by Scheme 2 or Schene 3 to
pr oduce H;
conpute A« HxW; N
run clustering procedure on A to get new cluster |abels;
pair NOT «— (zRY)new;
check other subjects’ nmenbership shifts;
updat e sideEf fect.

end
output H, W and A.

end

Figure 5.4: Algorithm 2: Single-pair relationship changin

5/149, that is3.36%. Obviously, the lower the side effect rate, the better tha daability

following a hiding scheme.

5.3.4 Single-pair Relationship Changing

By Definition 3.7, the relationshipRy represents whether subjecand subjecty belong
to the same group. This relationship changer@y is binary: from true to false or from
false to true. IfzRy is negated in the learning result from then we consider it as a
successful hiding. The membership shiftscadndy are not limited and either one or both
can be shifted. However, changes on other subjects’ meimpsrare not expected. The
side effects should be avoided or limited.

Given a user-specified subject péir,y) in A, with the confidential relationship, the

problem can be formulated as

U (A, (z,y), Scheme) — A
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Figure 5.5: IRIS dataset and cluster distribution.
Fig.[54 is the proposed procedure to change a single-patraeship. Considering multi-

ple pair-wise relationship hiding, we can rewrite the itena condition in the algorithm to

change the pair relationships one by one.

5.4 Performance Evaluation

We conduct experiments on the IRIS data set to evaluate tifierpeance of the proposed
four schemes. IRIS contaildsclusters of50 subjects each, where each cluster refers to a
type of iris plant and each subject hiattributes. As Fig. 5.5(k) shows, one cluster in cross
marks is linearly separable from the other two in circle aqdase marks; the latter two
clusters are not linearly separable from each other. Exaugtinthe experiments are mainly
designed for an evaluation of three DPH schemes, the DVH byb#sic factorization
scheme is also examineki-means clustering is used as a learning tool. For the nuniber o
clustersk’, we simply use the known number of the clusters. Note thattaooshoose the
optimal number of clusters is a nontrivial model selectionbtem and beyond the scope
of this study [11].

To achieve a fair comparison of results, during fieneans clustering in all the ex-
periments, the initial cluster centroids are fixed as thé timee data subjects in the IRIS.
First, the/C-means algorithm is run on IRIS to produgelusters denoted by, Cs, Cs, 3
centroids denoted by, o, c5 and the corresponding cluster labels. The cluster digtabu

created from thé&-means algorithm is shown in Figyre 5.5(b), marked in circle contains
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50 subjects.C; marked in square and; in cross contair®1 and39 subjects, respectively.
17 subjects are incorrectly grouped and the correct classditeate is38.7%. This cluster
distribution defined ag’;, Cy, C5 in Fig. [5.5(D) is considered as theuth for estimating
clustering accuracy in the subsequent experiments. Th®awiolg is a description of the
truth. To make it clear, the indices are used.

Cy = {101 — 150} — {102,107, 114,115, 120, 122, 124,

127,128,134, 139,143,147, 150} + {51, 53, 78}.

Cy = {51 — 100} — {51, 53,78} + {102,107, 114, 115,

120,122, 124,127,128, 134,139, 143,147, 150}.

C3 ={1—-50}.

The three cluster centroids are
cp = [ 6.8538 3.0769 5.7154 2.0538 ],

cy =] 5.8836 2.7410 4.3885 1.4344 |,
¢y =] 5.0060 3.4180 1.4640 0.2440 |.

Then a series of experiments are conducted to evaluate tpoged methods. The
experiments abide by a common procedure, shown ag_Flg. &2 tfie basic data mod-
ification to a modified version. The released version is aimggitsolution for both data
hiding and pattern hiding. As far as learning accuracy aedviiidation of pattern hiding
are concerned, a comparison is made between the clustarthgand the clustering result
from a modified data set.

The computation off andW by NMF is implemented by an algorithm in’[51]. In our
experiments, the tolerance for a relative stopping comwli 10~*. The time limit is6000

seconds and the number of iterations is limited@o0.
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Table 5.1: The notations of seven methods.

Method Nameg Method Citation
NMF A=HW,H e R™E W e RExm_| [8]]
Arp A= AR, R € R™*m,

Arpo A=AR, ReR™m RRT = 1. | [43]
rpA A= RA, R € R,
rpoA A=RA ReRv™ RTR=1.
uD A=A+U,U e R, [16,[30]
ND A=A+ N,N e Rvm, [45, 7]

5.4.1 Effectiveness of Basic factorization Scheme

As can be seen in many fields, there are many different mefbotise same objective. We
begin with a comparison of our proposed basic factorizagidreme with six external per-
turbation methods shown in Talfleb.1. NMF is used here totédhe basic factorization
scheme. One noise-additive method denoted by ND is to addallyr distributed noise
that is generated with a mean= 0 and a standard deviatiean= 2, to the original IRIS
data set. Another noise-additive method is denoted by UDattdds uniformly distributed
noise generated from the interval [0, 3] to IRIS. Four mliltggive perturbation methods
use a projection matrixk, is created by randomly sampling from some distributiorhwit
p = 0 and some variance’ = le — 4. R is of sizem x m for the right multiplication and
n x n for the left multiplication, since in our study, the dimemss of the original and the
distorted matrices are supposed to be the same. For eachiozmebe either nonorthonor-
mal or orthonormal. The shorthands atep, Arpo, rpA andrpoA as described in Table
B1.

Experiments Seven modified data sets are computed on the IRIS data. Mofag
mation vectorM/ and self-information distortiol D, as defined in[{5.26) and{5]27), are
calculated and listed in Tadled.2-means clustering accuracies are estimated on the truth
created in the beginning of this section. We list all the aaciges in Tabl&€h]2. All external

perturbation methods here have the property of randommégs: solution is not unique
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Figure 5.6: Comparison of seven data value hiding methods.
with random initial values. Therefore, the result here issidered as a demonstration of

effectiveness on IRIS data set of different methods on pyiyaotection and information
maintenance. The following analysis is made on the restltsi® particular experiment
with previously specified parameters, even though someredtsens can be extended to
some general senses.

DiscussionsE D, M andX-means accuracy of seven methods are shown iff Fig.p.6(a),

[£.6(b) and 5.6(¢), respectively. In F[g. 5.§(b), the foulucans of M/ are grouped into four

groups, each of which has eight bars. The first seven barsharentitual information

between the original attribute and its distorted value resalata sets. From left to right in
each group, the seven methods are placed in the same ordefasd5.]l. The rightmost
bar in each group represents the mutual information betaee@miginal attribute and itself,
which we know is the maximum value of the group. We can compaerivacy risk of

each attribute under seven methods by following the comreases the shorter bar with
smaller mutual information means the distorted attributedisclose less information on

its original value than the taller bar with larger mutualamhation. Our proposed NMF-
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based scheme demonstrates a better protection on atibatk4. We also see this scheme
performs well in the clustering. It seems that in this expemtal environmentdrp and
rpA cause lest information disclosure due to mutual infornma@ball four attributes are
zero. However, theilC-means clustering accuracies is relatively lower. Theyeapp not
to be a good candidate for privacy preserving applicatiomgtesizing the data utility.
Similarly, entropy distortiorZ D in Fig.[5.6(a)) and at the sixth column of Tablel5.2, can
be viewed as a measure of how much information are not caniedhe distorted data. By
an unit-valued® D, Arp andrpA preserve no entropy of original values. Correspondingly,
their -means clustering accuracies here are lower than somesotReughly speaking,
ED is aone-dimensional measure of information loss, compartge mutual information.

Next we will turn to the evaluation of the proposed DPH scheme
5.4.2 Membership Hiding Using Scheme 1

In this experiment, Scheme 1 is evaluated in hiding the meshije of the50'" subject. In
the truth as defined earlier, the membership offbié subject isCs. A shift to C, or C,
will hide its original membership. An optimal solution withinimal side effects can be
obtained through the NMF iterations. First, the subjeceisigned to be shifted 1G,. One
optimal W for this case is computed as:

2.4284 1.5910 0.5626 0
W* =1 20386 0.1599 2.1913 0.5940 | .
0.6671 1.6579 0.2504 0.5813

The factor vector of th60'" subject is
Hso=[1.8918 0.1394 0.1679 |.

After swapping its maximum and minimum factor elements bypgiScheme 1, the new
factor vector is

Hso=10.1394 1.8918 0.1679 |.
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Leaving all the other factor vectors unchangedfln an optimal modified versiod is
constructed as the product &f andW*. When thek-means clustering is run oA, the
result is a clean shift of th&0'" subject fromC; to C, without any additional membership
changes in the rest of subjects. That means the side effe¢s1@%. Therefore, an optimal
release data set can be takemas= HIW*.

Next, we will make anther shift df, to C;. An optimal¥ generated from the NMF
iterations and the corresponding factor vecto¥ gfare as follows:

1.4285 1.1208 0.2422 0.0210
W™ =1 1.6549 0 1.3761 0.1504 |,
1.6739 1.2329 1.6303 0.8675

Hso = 2.9082 0.4674 0.0392 ].

By executing Scheme 1, we have
Hso=10.0392 0.4674 2.9082 |.

Accordingly, A* = HW* is an optimal solution for a shift of th&)*® subject fromC; to
C:. This solution does not bring any other shifts so that theakthe subjects remain in
their original groups. The side effect is 0%.

We also conduct experiments on shifting subjects ftomo C or C5 and fromC, to
C, or Cs. For the80'™ subject, one optimdll” and the distorte80*® factor vector for the

shift from C;, to C, are

27044 0 1.7202 0
1.1411 0.9137 0.1900 0.0175 |

wW* = [ 1.3825 0.6344 1.4931 0.6260

Hgo = [ 1.8403 1.4754 0.5700 ] .

For the shift ofAg, from C5 to C3, one optimal solution is

1.6979 0.9374 0.4465 0

0.0284  3.2999 0 0.9529
W = ,
1.0185 0 1.9840 0.8098

Hg = 2.6486 0.0360 1.1725 .
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For the130™ subject, one optimal solution for the shift frai to C, is

0.8570 1.0289 0 0.0619

2.0319 0.7374 0.8519 0
W = ,
0.1169 0 34679 2.1375

Hiz = 0.4487 3.3424 0.8188].

For the shift ofA,3, from ', to C3, we have

0.9032 0 3.1744 1.4457

0.1830 5.2784 0 0.8378
wW* = ,
2.6576 1.1713 0.7117 0

Hyzo = [ 2.2949 1.2681 0.0492 ].

These experimental results show that by using the itergtionedure described in Algo-
rithm[8 in Fig.[5.B, an optimal solution without any side effecan be computed for mem-
bership hiding in IRIS. The experimental result demoneg#ihat Scheme 1 is an effective

way to hide confidential memberships. We note that an optswolaltion is not unique.

5.4.3 Relationship Change Using Scheme 2

Given a user-specified pair with the confidential relatigpskiz, y) in the IRIS, using
Scheme 2 to changeRy, the problem isb : (IRIS, (z,y), Scheme 2) — A*, whereA* is

an optimal solution without any side effects on other sufzjegemberships.

Test 1: U : (IRIS, (50,80), Scheme 2) — A*. 50R80 is false in the clustering truth of
IRIS. We need to find ard* to change the relationship toue. Scheme 2 is carried out to
produce an optimal factorization where the basis matrix is
0.1261 3.3805 0 0.8557
W* =1 1.7367 0.9309 0.4587 0
1.4324 0 2.8763 1.1859

The corresponding factor vectors are

Hso =1 0.1948 2.8354 0.0336 |,

Hgy =1 0.0496 2.6134 0.8012 .
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We may notice that the second elements of both vectors havaiest values, and they
should be in the same cluster as the NMF-based clusterieguggests. The truth here is
that they are in the different clusters. Since our aim is @ngfe their relationship, it does
not matter what the NMF-based clustering rule suggestpras &s we can negate their
existing relationship. Then according i, and Hg,, we modify Hg, by Scheme 2 to get
a new factor vector

Hgo = 2.6134 0.0496 0.8012 ].

Running the/C-means clustering od* = HW*, 50R80 is changed ta@rue as the mem-

bership of thes0*™" subject is shifted front;, to Cs.

Test 2: ¥ : (IRIS, (50, 30), Scheme 2) — A*. 50R30 is true in the clustering truth of
IRIS. We need to find anl* to change the relationship ttulse. The basis matrix in an
optimal factorization is

0 1.2589 0.9849 1.2493
W* = 0.5481 0 0.7449 0.2294 | .
1.1574 0.8411 0.1990 0

The corresponding factor vectors are

Hso=[0 0.8505 3.9160 |,

Hszy =1 0.0650 1.0059 3.6315 |].
We then modifyH3, by Scheme 2 to get a new factor vector
Hyy = [ 3.6315 1.0059 0.0650 ].

Running thelC-means clustering oAd* = HW*, 50R30 is changed t¢false as the mem-
bership of the30'" subject is shifted frond; to Cs.

Test 3: ¥ : (IRIS, (50, 30), (80, 130), Scheme 2) — A*. In this experiment, two confi-
dential relationships are specified @s?230 and80R130. 50R30 is true and80R130 is

false in the truth clustering of IRIS. Am* is required to negate these two relationships.

133



Compared to the previous two experiments, the number ddtiters increases. After 16
iterations, an optimal factorization is found as

0.2297 1.1217 1.7552 1.5272
W* =1 13011 0.9201 0.2528 0
2.5082 0.7222 2.0846 0.5569

Hs, and H, 5, are modified based on Scheme 2. The modified factor vectors are

Hyo = [ 3.0946 0.0978 0.2770 |,

Hyso = [ 0.2837 2.3770 0.9609 ].

Then the/C-means clustering is run oA* = HW*, 50R30 is changed tofalse as the
membership of th&0™ subject is shifted fronC; to C,. 80R130 is changed tdrue as
the membership of th&30*" subject is shifted frond; to C,. The solution is not unique,
however, the following solution is generated after 77 tierss:

1.2481 1.5489 1.6029 1.1703
W* = 21535 0.2067 2.1337 0.5170 | .
1.6640 1.1971 0.3128 0

The above three experiments indicate the viability of Sahé@mn changing subject
relationships. Similar to the membership hiding, in ourexxmpents, an optimal solution

has always been obtainable with zero side effects on meimpesrs

5.4.4 Relationship Change Using Scheme 3

In this section, the experiments are to examine the effectgs of Scheme 3 on solving
the problem defined a& : (IRIS, (, 1), Scheme 3) — A*, where A* is an optimal so-
lution without any side effect. In order to make a comparigoth Scheme 2, the three

experiments are executed under the same conditions aspneghieus section.

Test 1: ¥ : (IRIS, (50, 80), Scheme 3) — A*. Scheme 3 is carried out to distort the factor
vector of Hgy. An optimal solution is generated after 6 iterations, whees0'™" subject

is moved fromCs to C5 and50R80 becomesrue in the clustering result on the distorted
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dataset.
2.9125 2.3836 0.3245 0

W* =1 09380 0.1511 0.7462 0.1220 | .
0 3.5909 1.5772 2.7915

The two corresponding factor vectors are
Hso=[1.2916 1.3134 0.0083 ],

Hgo = [ 0.6076 4.1582 0.1534 ].
The distortedHy, by Scheme 3 is
Hgo = [ 0.6076 0.0083 1.3134 ].

Test 2: ¥ : (IRIS, (50,30), Scheme 3) — A*. One A* is found. By running thek-
means clustering oA* = HW*, the membership of th&0'" subject is shifted front’; to
C1. 50R30 is changed tg‘alse. The basis matrix in the solution is
1.3317 0.6553 0.3877 0
W* =1 0.5512 1.4534 0 0.2278 |.
1.0108 0.0979 1.9947 0.8511

The two factor vectors are

Hso = 3.4230 0.7278 0.0373 |,

Hsp = 3.1115 0.7687 0.1648 |.
We distortH3, by Scheme 3 as
Hiy = 0.0373 0.7687 3.4230 |.

Test 3: ¥ : (IRIS, (50, 30), (80, 130), Scheme 3) — A*. After just 2 iterations, an optimal
factorization is produced as

1.0557 0 2.0637 0.8439
W* =1 0.0048 2.5042 0 0.7697 | .
1.5353 0.8594 0.4032 0
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The related factor vectors are

Hso = [ 0.1599 0.2412 2.9743 ],
Hso = [ 0.0480 0.2108 3.2206 ],
Hgo = [ 1.1291 0.0318 2.9315 ],

Hiy3o = [ 2.1085 0.0393 3.2880 .
Hs, and Hy3¢ are modified based on Scheme 3. The modified factor vectors are

Hso = [ 3.2206 0.2412 0.0480 ],

Hiz = 21085 29315 0.0318 ].

The K-means clustering is run aA* = HW*, 50R30 is changed tofalse as the mem-
bership of the30™" subject is shifted fronCs to ;. 80R130 is changed tdrue as the
membership of th@30'" subject is shifted frond’; to Cs.

Through these three experiments, we show that Scheme 3 eagelspecified rela-
tionships as Scheme 2 does. By setting a stopping conditithwhich the side effects
are zero, an optimal solution can be computed and it is nofuei\We note that multiple

relationship hiding does not necessarily take more time tha single relationship hiding.

5.5 Conclusion

Inspired by the equivalence between NMF dGdneans clustering, we present a novel
technique to achieve simultaneous realization of dateevaiding and pattern hiding. One
scheme is proposed to achieve basic data distortion by wjM¥#. Three schemes are
designed to slightly modify the related factors based on difieal data set generated from
NMPF. Only through a single sequence of modifications on thgiral data set can these
two contradictory goals be achieved simultaneously.

The attractive advantage of the proposed technique is teatghe modified version

satisfies both of the two contradictory goals. On one handtixifactorization provides
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a good approximation of the original data sets. That sugpmrt technique for distortion
on the data values and achieving comparable mining accu@waythe other hand, taking
advantage of an underlying relationship of the factor vesctath cluster properties ift-
means clustering, our technique is capable of hiding confidlepatterns while keeping
intact nonconfidential patterns. Practically, the meribof technique is derived from the
fact that one released data version can provide dual protech general data and spec-
ified patterns. The strength and efficiency of privacy priddecare enhanced. Empirical
evaluation on the IRIS data set indicates that our technigja® attractive solution to a
combined hiding of data values and data patterns. In péatican optimal solution with-
out any undesirable side effects on memberships can bg easilputed as long as some
particular constraints are imposed on the NMF iterations. @eliminary results show the
promising significance of NMF on privacy preserving dataingn More experiments are
needed to test the robustness and scalability of this tgakron other data sets of larger
sizes. In addition, extension of pattern hiding concepiftbe data mining outcomes to

more underlying mechanism is worth more study.
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Table 5.2: Mutual information vectav/, entropy distortion” D and/C-means accuracy.

Method M: 1 (A7; A7) ED | Accuracy
No. Attr.1 | Attr.2 | Attr.3 Attr.4 (%)
NMF | 1.0152| 0.1194| 1.14176| 0.1467| 0.2332 77.3
Arp |0 0 0 0 1 58.0
Arpo | 0.9475| 0.3554| 0.05613| 1.2699|| 0.5353 12.0
rpA |0 0 0 0 1 35.3

rpAo | 0.4131| 0.1597| 0.4227 | 0.1376|| 1.1118 34.7
ub 0.4874| 0.1797| 1.17839| 0.4318|| 0.3593 63.6
ND 0.3386| 0.0887| 0.78578| 0.1452|| 0.7619 19.3
IRIS | 1.8352| 0.9933| 2.4904 | 1.6686 0 88.7
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Chapter 6

An Improvement on Real-time
Performance of SVD-based Model

Besides effectiveness, a good PPDM model should be conqnady economical and
practically robust for constant and dynamical data sourdésst, it should be scalable
and computationally applicable to high-dimensional d&acondly, it should be adaptive
to external perturbations, including the addition of neviagdéhe removal of old data and
so on. Considering that data streaming is becoming more aré popular in online
environments, it is desirable that a good PPDM model makeack gasponse to external
perturbations and produce a new solution in real time.

The structural partition schemes§8.5 can be used to speed up the SVD-based model.
By using the idea of divide-and-conquer, an original dataiseartitioned into several
parts, then the distortion by the SVD is conducted on eadhg@énal result is generated by
combining all the distorted parts. In this chapter, we widlatiss an improved incremental
SVD updating algorithm in the context of frequent data updat

Before discussing the solutions for these two problems, litelpful to have a look at
Table[61, a simple comparison on the computation timeswf data hiding methods on
a 3000 x 3000 matrix: thin SVD-based, NMF-based,p, Arpo. The experiments were
conducted irMATLAB 7.1. The absolute time do not have much meaning (it is maehine
dependent), however, the relative differences in runnimg tvould imply an ordering of

the speeds of these four methods.
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6.1 Performance Improvement Analysis on thin SVD-based
Model

Basically, a reduction of computation time for the modelvyides an increase in speed
on the model response time with data updates. Before westigmssible solutions, it is
helpful to look at Tablé&l1: a simple comparison of the cotapon times of four data
hiding methods on 8000 x 3000 matrix: thin SVD-based, NMF-based;p, Arpo. The
experiment was conductediMmATLAB 7.1. The absolute time does not have much meaning
(as it is machine-dependent), however, the relative diffees on the running time would
imply an ordering of the speeds of these four methods.

In Table[®&1, it is observable that the NMF-based model isiBa@antly faster than the
other three methods, with a running time of only ab@wgeconds. Arp places second.
However, Arpo is very expensive, computationally, due to its orthoga@adion operation,
while the thin SVD-based model runs much faster tHapo partly because partial subma-
trices were used instead of the complete submatrices as oothplete SVD. By using the
thin SVD instead of the complete SVD, the running time is Bigantly decreased. Refer
to Tabld®.1l to see that the CPU time for the complete SVI33s3256 seconds, while the
thin SVD only takesl 24.3388 seconds. However, compared to the NMF-based model and

the Arp model, some improvement is still required for the thin SVaséd method.

Table 6.1: A comparison of computation times.

the source matrix3000 x 3000
Methods NMF-based| thinSVD-based  Arp Arpo complete SVD
CPU time (s) 7.0501 124.3388 33.2897| 325.9687 553.3256
Parameter K =100 K =100 N(0,1) | N(0,1) K = 3000
Computation Cost
ALS NMF iterx O(nmK )+subltex O(tmK? + tnkK?)
complete SVD| O(n?m + nm? + m?)
thin SVD O(n’K +nK? + K3)
Arp O(nm?)
Arpo O(nm? + n3)
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If the data setA is subjected to frequent element additions, and at each anmew
distorted data setl must be computed, then the thin SVD-based method Aand are
not scalable. In this chapter, we attempt to speed up theS¥ii-based model since the
thin SVD-based method experimentally demonstrates a ctitiwpadata mining accuracy
compared to the random projection model as shown in Tablevéhich compares the
two models by conductingg-means clustering and classification by SVMIidhtl[40] on the
Wisconsin Diagnostic Breast Cancer Database (WDBC) [2].BEZontains 569 subjects
and 30 real attributes. 357 subjects are in the group of beaigd 212 are in the malignant
group. Its best known classification accuracyiss% using 10-fold cross validation][2].

RE is the relative error betwees and A

|A— Allr

|
RE = (6.1)
|Al|F

Table 6.2: Accuracy comparison of five methods on WDBC.

Methods RE Parameter K-means % SVMlight %
thinSVD | 0.0054 K=4 91.7399 96.1300
Arp 0.9721 ,=0.1109 85.2373 95.0791
Arpo 1.0727 0,=5.8627 84.3585 93.6731
rpA 1.0255 ,=0.0100 50.9666 51.1424
rpoA 1.3417 0,=1.4227 52.5483 53.9543

The thin SVD-based model consists of matrix decompositorimsarily from the SVD
computation. Even though the algorithm is extremely statdenputing a full SVD is a
problem of the order o® (nm? +n?*m+m?) for a matrix of sizen by m. All the data must
be processed at one time, and the computation time incrgasésatically or cubicly with
the addition of new subjects into the database.

The intuitive choice is to only modify the old SVD model to esft the addition of
the new data records, not to re-compute the SVD of the newd&ifh matrix. In the next

section, we will introduce an improved incremental SVD updgaalgorithm to enhance
141



the performance of the thin SVD-based data hiding method.
6.2 Improved Incremental SVD Updating Algorithm

The improved incremental SVD algorithm is based on the upgahethods introduced in
[87,[73]. This method requires one QR decomposition and i 8r update. However,
these potentially expensive computations are performednoall intermediate matrices,
where the computational complexity depends on the sizeeofifitlate and/or the reduced
dimensionk’, but not on the size of the original data matrix. Dependingunject/attribute
addition, there are two updating algorithms: subject-tipdeand attribute-updating. Es-

sentially, our improved incremental SVD algorithm is basadhe algorithms in[43].
6.2.1 Updating Subjects

Let A € R™™ be the data matrix, and = [A0; 7|7, where A0 € R™™ andT € R?*™

with ¢ the number of new subjects to be appended,rardt + q.

A0
T

} — A (6.2)
Assuming the ranks” SVD of A0 is known in advance,
A0 = U 1.0 2k V)

For simplicity, we usé/k for U 1.y, andVy for V .k in the following. The purpose
of the algorithm is to modify the SVD ofl0 based on the new dat&,
LetT € R™*¢ and

T = (I, — Ve VEYTT. (6.3)

Perform the QR decomposition of QrRr = T, whereQr € R™*? is orthonormal, and

Ry € R?7*7 s upper triangular. Then

()
A = 1;170} ~ A%
Us 01 [k 0O (6.4)

|0 Iq] [TVK Rﬂ Vi Qi
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Now let A € R(E+0x(K+a) he the matrix defined by

- [k 0O
i3 8] o9

In [I73], a complete SVD ofA is computed. Here, a small improvement is made and a
rank-K approximation ofd is computed instead.

whereUy € RE+DXE 1, c RE+DXK gndy), € RE*K Then the thin SVD ofd in K

dimensions is

A — ([UOK g] UK) S (Vie QrlVi) (6.7)
This procedure has a computational complexity)fs® + (m +t) K2 + (m +t)Kq+ ¢3)
[73].
6.2.2 Updating Attributes

Let A € R™™ be the data matrix, and = [A0, F'], whereA0 € R™** andF € R™*? with

p the number of new attributes to be appended,rand ¢ + p.
[A0 F] — A. (6.8)

Let £ € R™*? and

F=(I, - UgULF. (6.9)

Perform the QR decomposition of QrRr = F, wherer € R™*? is orthonormal, and

Rr € RP*P s upper triangular. Then

A = [A0 F
~ (A0
KWFl o Rp || 0 L)
Now let A € RE+p)x(K+p) he the matrix defined by
A— |Zx UkF (6.11)
O Rp |’ '
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Table 6.3: Run time anBE of two SVD algorithms.

Rows | Incremental thin SVD|| Lanczos thin SVD
Run time(s) RE || Run time(s) RE

3000 218.7799 0.2729  242.9899 0.2720
4000 233.3299 0.2747 321.7100 0.2732
5000 228.0000 0.2758§ 396.6999 0.2740
6000 231.5399 0.2762) 475.7899 0.2742
7000 242.0900 0.2764] 568.7299 0.2743
8000 245.0100 0.2764 735.2900 0.2745
9000 2445699 0.2772) 736.9499 0.2749
10000 257.4699 0.2772) 825.7900 0.2748

we do the same improvement as updating subjecfsih (6.6),
AxUgSVE (6.12)

whereUy € RE+PXE 7 ¢ REPXK gndy . € REXK . Then the thin SVD ofd in K

dimensions is
A = (U Qp UK)TEK<[‘8< }H VK) (6.13)

This procedure has a computational complexitof >+ (m+t) K2+ (m+t) Kp+p?)[73.

6.3 Experiments and Results

Several experiments were conductedMATLAB 7.1 on synthetic data sets and real data
sets to compare the run time, relative error and data miniegracy between Lanczos

SVD and the improved incremental thin SVD.

6.3.1 Subject/Row Updating by Incremental Thin SVD

In this experiment, the incremental thin SVD is examineddiyiag new subjects. The data
set is a synthetic real-value matrix of sizel6f00 x 1000 with the rank ofLl00. The rank of
approximation in the thin SVD is set up 60. The starting matrix consists of the fiext00

subjects. The rest of th&)00 subjects are repetitively added to the starting matrixgfor
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times. At each sted,000 new subjects are added and a new réfkhin SVD is computed
by two algorithms: Lanczos SVD and incremental SVD. The expental results are listed

in Table[6.B and are plotted in Figurelo.1.
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T T
=——— |Incremental SVD

800} ++omo Lanczos SVD
)
.é oF
= 0 e

400 e

"""""""
200 — ¥ t Y T ki ki
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0.28 T T
=——— Incremental SVD
0.278} ++mo Lanczos SVD

01}
Y 0276

0.274

0 .272 1 1 1 1 1 1
3000 4000 5000 6000 7000 8000 9000 10000

row size

Figure 6.1: Run time an&E of incremental SVD updating (solid line) versus Lanczos
SVD (dashed line), as a function of a repetitive additiori@d0 rows for 8 times, on a
10000 x 1000 random matrix and its rank i8)0. The upper figure shows the run time of
each addition. The lower figure showg.

The relative/approximation error here is definedlnl(6.1)R&s If at each step, the
augmentation size iK)00, then the run time of the incremental SVD based on the old SVD
approximation is much less than that of the Lanczos SVD. Atdlime time, there is not
much effect on the approximation error. For example, if glattng the full matrix by the
Lanczos SVD, it take825.79 seconds; if updating the SVD from the sized0f0 x 1000,
the run time i257.47 seconds and is onB.18% of the run time for the Lanczos thin SVD.
Meanwhile, the relative error 2772, which is very similar t®.2748 by the Lanczos thin

SVD.
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6.3.2 Attribute/Column Updating by Incremental Thin SVD

A synthetic matrix of the size 03000 x 3000 with the rank of100 is randomly gener-
ated in order to examine the performance of attribute updatiThe addition of the at-
tributes/columns to the starting matrix of si2@00 x 80 is repeated 00 times with 22
columns each time. The rank of approximation is set(to The comparison is shown in
Figure[6.2. For this data set, the advantages of increm8ialare attractive, considering
the cumulative CPU time for thed€0 additions is only29.1719 seconds, and at the same
time, the Lanczos SVD requiré®4.7306 seconds. Moreover, the approximation errors are

very close for the two methods.
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py et o
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Figure 6.2: Run time an&E of incremental SVD updating (solid line) versus Lanczos
SVD (dashed line), as a function of a repetitive addition dft@lumns for 100 times, on
a 3000 x 3000 random matrix of rank 100. The top figure shows the run timeaahe
addition. The middle figure showRE. The bottom figure is the amplified plot of the run
time of the incremental SVD.
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6.3.3 Performance Evaluation of the Incremental Thin SVD onWBC

In this experiment, the data mining accuracies are cornsider the comparison and the

real WBC [2] database is used. WBC consist$@# subjects and 0 integer-valued at-

tributes. The experiment is designed as follows: the siguntnatrix is set up to the first

199 subjects/rows and the approximation rank in SVD,ithen the rest of the00 subjects

are appended repeatedly by rows each time foi 0 times. At each time, for both meth-

ods, a new rank-approximation is computed and its data mining accuraciegaaluated

both on SVMlight classification ankl-means clustering. Figuke®.3 shows the comparison

of run times and approximation errors of the two methods. fiihe of each step in the

incremental SVD is less than the time of the Lanczos SVD orfulelata matrix. The

difference between the two approximation errors is on tldeoof0.001.

=+ |ncremental SVD
~®mo Lanczos SVD .

300 400 500 600

=+ |ncremental SVD
+ om0l anczos SVD

300 400 500 600
row size (249 ~ 699)

700

Figure 6.3: Run time an&E of incremental SVD updating (solid line) versus Lanczos
SVD (dashed line), as a function of a repetitive additioh®fows for10 times, on WBC.
The upper figure shows the run time of each addition. The Idigare shows th&E.

Secondly, by the two methods, the twenty data matrices withimumbers o249 to

699 are tested in SVMlight classification. Figulrel6.4 shows thataccuracies of this data
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are the same as their counterparts by other methods. These#ts imply that incremental

SVD does not introduce any observable effect on the claasdit accuracy.
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Figure 6.4: SVM classification accuracy of two rankepproximations as a function of a
repetitive addition o060 rows. Two methods: incremental SVD updating (solid lingpus
Lanczos SVD (dashed line).

Thirdly, -means clustering is executed on the two r&@rdpproximations. One is the
rank-7 approximation by the Lanczos SVD of the original WBC and &arois the rankz
approximation by the incremental SVD, which is updated frigi rows to699 rows. We
examine whether the incremental SVD will affect the clustgquality. Figurd 65 shows
the cluster distributions and Silhouette values for the &gproximations of WBC.

In MATLAB 7.1, the Silhouette valug(i), is used as a measure of how similar itte
subject is to subjects in its own cluster compared to subjiecother clusters. It ranges

from —1 to +1. Itis defined inMATLAB 7.1 code as
s(i) = (min(b(i, ), 2) — a(i))./maz(a(i), min(b(i, :), 2))

wherea(i) is the average distance from tfté point to the other points in its cluster, and

b(i, k) is the average distance from tftl point to the points in another cluster./ is an
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K-means clustering on thin svd(WBC,7) K-means clustering on thin Isvd(WBC,7,199,699)
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Figure 6.5: Cluster distribution and Silhouette Valuekbimeans clustering on a rank-
approximation of WBC, by Lanczos SVD and Incremental SVBpeztively. The two fig-
ures on the left are Cluster distribution and Silhouettei®alsing thin Lanczos SVD. The
two figures on the right are cluster distribution and Silltteigalue using thin Incremental
SVD, updated from 99 rows to699 rows, and at each step increasedbyows.

element-wise division. In this experiment, the row updatim calculating the thin SVD

does not negatively affect clustering.
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6.4 Summary

This chapter has presented an improved SVD-based datahiding method. The decom-
position is derived from updating the previous decomposigolution in an incremental
way, instead of starting a new decomposition on the full dadrix. In our experiments,
the increase in speed associated with this improved metheddouraging. More impor-
tantly, no real differences compared to the traditional Shéd3ed method are found in the
data mining results. This will allow us to address the reaktperformance concern with
the SVD-based method when a quick response is required fiatep of large size. In
the meantime, this approach also provides possible sufgrdtie application of SVD in
On-Line Analytical Processing, which is essential in basgdata analysis featuring large

amounts and frequent growth of data.
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Chapter 7

Future Works

Let A be an input data matrix, we can compute two low-rank matrifResndC' so that the

distance or distortion function betweenand BC is minimized,i.e.,
min J = A(A, BC)

Many matrix decompositions and fundamental tasks in datengican be represented by
this formulation. This generalization provides greatesight into the data patterns and
affords an opportunity to develop new algorithms to disconbkerent data patterns if we
can impose suitable constraints dnB andC, or select different distance functions.

Defining A as the Frobenius norm 6fi— BC') in the matrix decomposition problem, if
B andC' are unconstrained, the solution is a ran&ingular Value Decomposition (SVD).
If A, B andC are nonnegative, the decomposition can be formulated asnadgative
Matrix Factorization (NMF) problem.

In this dissertation, we have shown that matrix decompmsitchniques can be very
useful in data hiding or data disclosure control, in the eapilon of privacy preserving
data mining. The flexibility of NMF allows us to tailor the tacization process to serve
our specific purposes in perturbing datasets.

| plan to continue my efforts on data mining related data esstng and knowledge
discovery and extend my interests to other new applicatieasa

Currently, | am continuing my work osimultaneous data pattern and data value
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hiding. In particular, | will attempt to address the instability MMF-based methods and
improve their scalability by formulating the data patteidihg requirements as penalty
terms embedded into the objective function of NMF. Othebprms that | am going to
work on include the initialization of NMF, minimization oifde effects, and generalization
of our methods. Extension of the concepts of dual privacygutomn to classification or
association rule mining would be another great challengayrfuture research agenda.
In the meantime, | am interested in developing an inclusiaduation of our proposed
methods. My idea is to use spectral filtering techniques tdyae the reconstruction of
the original data from the distorted data from the viewpoih&n attacker. This analysis
will provide an important reference on selecting the finaladeersion, considering the
non-uniqueness of the solution of NMF. Furthermore, ingasion on how to utilize our
methods on privacy protection of distributed datasetsss alvery interesting topic in my
research plan.

In the meantime, | will conduct further study on a multi-lsasavelet-based data hiding
strategy which has been proposed for fast data value piamtaot[52].

Another work in my plan is to study the situation of collabkore analysis, when the
data components are from different partners, and diffgrariners have used different data
distortion methods to preprocess their datasets for pripaeserving purposes. It is not
clear if a data mining algorithm can be run efficiently on aadat that has been processed
using several different data distortion techniques. Thislys will be done by analyzing
several popular data hiding techniques, to understand pheperties, and to see if they
have some properties that would make the collaborativeysisadifficult. This is actually
a very realistic situation, as one cannot in general ask #éte alwners to prepare the data
according to specific requirements. The best way for a dataepwo protect the data
privacy is probably for the data owner not even to disclogeniethods used to distort the
datasets, if satisfactory data mining results can be aetlieithout that information.

In the long term, | will explorenew applications of data matrix decomposition tech-
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niques in the area of management science and economied theprivacy and trust
issues from electronic collaboration and information shamg. Powerful matrix compu-
tation techniques can be used to process the data and peofedsible solution only if the
collected data can be represented by a matrix. Collaberatiediction can be formalized
as a learning problem where the training set is a matrix whoseero elements represent
known preferences of one user on one item. By adding a lommpanalty to the distance
function A in the matrix decomposition problem, a solution of the nxatiecomposition
problem can be used to predict user preferences on unoblseswes.

The third direction ighe application of higher-order matrix decomposition tech
niques to multidimensional data Images, video and medical data such as CT and MRI
are multidimensional data. Information loss is inherentraditional methods since they
reduce multidimensional data to 2-dimensional data in rotdeapply the classical vec-
tor processing methods. Tensor decomposition can be usadddical image analysis
by treating the training images as a 3-dimensional cube. Iraenested in studying the
extension of 2-dimensional SVD and NMF to a higher order &ed tapplication to multi-

dimensional data analysis.
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Ap

nendix A:the Thin SVD-based data modification on WDBE9 x 30).

ThinSVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
rank RE RP RK cP CK || Di st Val Di st | CorrVal Corr || K-means| SVMlight
Mai nt ai n Mai nt ai n
1 0.0872| 187.4091| 0.0116| 0.6000| 0.7000 0.0324 0.0978 0.0066 17.4713|| 85.0615| 91.0400
2 0.0341| 181.2036| 0.0374| 0.2667| 0.8667 0.0051 0.5204 0.0009 23.2184| 83.8313| 93.1500
3 0.0188| 177.9243| 0.0504| 0.0000| 1.0000 0.0022 1.1386 0.0003 31.9540| 86.8190| 94.3800
4 0.0054| 171.5687| 0.0800| 0.0000| 1.0000 0.0007 12.8134 0.0000 53.3333| 91.7399| 96.1300
5 0.0022| 167.4872| 0.1005| 0.0000| 1.0000 0.0001 34.5962 0.0000 55.1724| 90.6854| 96.8400
6 0.0012| 163.1298| 0.1299| 0.0000| 1.0000 0.0000 53.2860 0.0000 59.3103| 91.5641| 95.6100
7 0.0006| 155.0328| 0.1721| 0.0000| 1.0000 0.0000 75.9419 0.0000 59.7701| 91.7399| 95.9600
8 0.0004 | 151.3756| 0.1882| 0.0000| 1.0000 0.0000 85.1809 0.0000 62.7586| 91.0369| 94.7300
9 0.0003| 149.2294| 0.2028| 0.0000| 1.0000 0.0000 91.0004 0.0000 71.2644| 89.2794| 94.9000
10 0.0002| 143.5117| 0.2343| 0.0000| 1.0000 0.0000 96.5080 0.0000 73.5632| 89.4552| 94.5500
11 0.0001| 136.0350| 0.2827| 0.0000| 1.0000 0.0000 98.7277 0.0000 83.2184| 91.0369| 94.5500
12 0.0001| 127.5364| 0.3125| 0.0000| 1.0000 0.0000 99.3960 0.0000 85.7471| 92.0914| 94.5500
13 0.0001| 127.1222| 0.3190| 0.0000| 1.0000 0.0000 99.5916 0.0000 85.5172| 91.9156| 94.5500
14 0.0000| 125.4364| 0.3264| 0.0000| 1.0000 0.0000 99.7661 0.0000 88.7356| 92.2671| 95.7800
15 0.0000| 121.2958| 0.3454| 0.0000| 1.0000 0.0000 99.8564 0.0000 89.1954| 91.7399| 95.7800
16 0.0000| 120.8856| 0.3524| 0.0000| 1.0000 0.0000 99.8997 0.0000 91.0345| 91.2127| 96.6600
17 0.0000| 120.4683| 0.3560| 0.0000| 1.0000 0.0000 99.9196 0.0000 93.7931| 91.3884| 96.6600
18 0.0000| 116.4028| 0.3729| 0.0000| 1.0000 0.0000 99.9641 0.0000 97.0115| 92.4429| 96.4900
19 0.0000| 116.1466| 0.3856| 0.0000| 1.0000 0.0000 99.9814 0.0000 97.7011| 92.9701| 96.4900
20 0.0000| 113.2773| 0.4057| 0.0000| 1.0000 0.0000 99.9839 0.0000 99.0805| 93.1459| 96.8300
21 0.0000| 106.1074| 0.4314| 0.0000| 1.0000 0.0000 99.9889 0.0000 98.6207| 93.1459| 96.4900
22 0.0000| 103.2286| 0.4482| 0.0000| 1.0000 0.0000 99.9913 0.0000 99.0805| 93.3216| 96.3100
23 0.0000| 100.6765| 0.4623| 0.0000| 1.0000 0.0000 99.9913 0.0000 99.5402| 92.7944| 96.6600
24 0.0000| 96.4647| 0.4804| 0.0000| 1.0000 0.0000 99.9963 0.0000 100.0000| 92.7944| 96.8300
25 0.0000| 88.4306| 0.5241| 0.0000| 1.0000 0.0000 99.9975 0.0000 100.0000| 92.7944| 96.4900
26 0.0000| 76.4833| 0.5901| 0.0000| 1.0000 0.0000 99.9988 0.0000 100.0000| 92.7944| 96.4900
27 0.0000| 65.0266| 0.6511| 0.0000| 1.0000 0.0000 100.0000 0.0000 100.0000| 92.7944| 96.1300
28 0.0000| 58.1180| 0.6918| 0.0000| 1.0000 0.0000 100.0000 0.0000 100.0000| 92.7944| 95.7800
29 0.0000| 36.5220| 0.8096| 0.0000| 1.0000 0.0000 100.0000 0.0000 100.0000| 92.7944| 95.9600
30 0.0000| 16.5925| 0.9078| 0.0000| 1.0000 0.0000 100.0000 0.0000 100.0000| 92.7944| 96.4900
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Appendix B: the Uniformly-Noise-Additive data modification on WDBGG9 x 30).

Uniformly Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
Noise RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
UpperLimit Mai nt ai n Mai nt ai n
0.5000 0.0012| 166.2086| 0.1150| 0.3333| 0.8667 0.0002 4.1461 0.0013 2.9885( 89.9824 0.0000
0.6970 0.0017| 170.2118| 0.1011| 1.0000| 0.6667 0.0003 3.2451 0.0019 1.8391|| 89.8067 0.0000
0.8939 0.0022| 171.7759| 0.0943| 1.9333| 0.6667 0.0004 2.4190 0.0024 2.7586| 89.4552] 94.2900
1.0909 0.0027| 170.6878| 0.0853| 1.8667| 0.6667 0.0005 2.1294 0.0029 2.5287| 90.5097 0.0000
1.2879 0.0032| 171.8076| 0.0822| 3.8667| 0.5333 0.0006 1.8218 0.0035 1.3793]|| 89.8067 0.0000
1.4848 0.0036| 174.3714| 0.0752| 3.6000| 0.6333 0.0006 1.6566 0.0040 1.8391|| 88.5764| 94.1300
1.6818 0.0041| 174.5074| 0.0705| 2.8000| 0.5667 0.0007 1.4468 0.0046 1.1494|| 88.5764 0.0000
1.8788 0.0046| 175.1059| 0.0690| 4.1333| 0.5667 0.0008 1.3565 0.0050 1.3793]|| 89.6309 0.0000
2.0758 0.0051| 177.6034| 0.0661| 4.0000| 0.5333 0.0009 1.1987 0.0056 0.6897| 88.0492| 93.1200
2.2727 0.0056| 176.4928| 0.0651| 2.7333| 0.5667 0.0010 1.1362 0.0062 0.6897| 89.1037 0.0000
2.4697 0.0060| 177.9808| 0.0606| 4.2000| 0.4667 0.0011 1.0025 0.0066 2.0690(|| 87.8735 0.0000
2.6667 0.0065| 178.2206| 0.0610| 2.2000| 0.6333 0.0012 0.9344 0.0072 0.9195|] 89.2794| 91.1100
2.8636 0.0070| 178.0285| 0.0582| 2.4667| 0.6000 0.0012 0.9357 0.0078 0.9195| 88.0492 0.0000
3.0606 0.0075| 178.1506| 0.0551| 3.8000| 0.5000 0.0013 0.8472 0.0083 2.7586| 89.1037 0.0000
3.2576 0.0079| 178.0599| 0.0545| 3.8667| 0.5667 0.0014 0.8459 0.0088 1.8391|| 89.8067| 91.9500
3.4545 0.0084| 178.8164| 0.0505| 2.8667| 0.5333 0.0016 0.7655 0.0093 1.1494]|| 89.2794 0.0000
3.6515 0.0089| 178.0778| 0.0534| 4.6667| 0.4667 0.0016 0.7890 0.0098 0.6897| 88.5764 0.0000
3.8485 0.0094| 178.7267| 0.0506| 4.4000| 0.4667 0.0017 0.6770 0.0104 0.4598| 88.2250| 91.7800
4.0455 0.0099| 178.8651| 0.0474| 5.1333| 0.5000 0.0018 0.6374 0.0109 0.9195|] 88.2250 0.0000
4.2424 0.0103| 180.2698| 0.0452| 5.0000| 0.4333 0.0019 0.6126 0.0114 1.1494]| 50.0879 0.0000
4.4394 0.0108| 180.1731| 0.0441| 3.1333| 0.4667 0.0019 0.6281 0.0120 1.1494|| 88.9279] 92.6200
4.6364 0.0113] 180.8956| 0.0444| 2.9333| 0.5667 0.0020 0.6015 0.0125 0.2299| 88.0492 0.0000
4.8333 0.0118| 180.3772| 0.0454| 4.2667| 0.5000 0.0021 0.5477 0.0131 2.2989| 87.1705 0.0000
5.0303 0.0123] 181.7323| 0.0404| 3.8000| 0.5000 0.0022 0.5675 0.0137 2.5287| 88.0492| 92.7900
5.2273 0.0127| 181.8731| 0.0407| 5.4667| 0.4000 0.0023 0.5353 0.0140 1.3793|| 89.4552 0.0000
5.4242 0.0133] 179.6799| 0.0428] 2.4667| 0.5000 0.0023 0.5347 0.0148 0.2299| 88.4007 0.0000
5.6212 0.0138| 181.9506| 0.0374| 5.4000| 0.4333 0.0025 0.5508 0.0153 0.6897| 88.0492| 93.6200
5.8182 0.0142] 181.2608| 0.0400| 4.8667| 0.5000 0.0026 0.5081 0.0157 0.9195|] 87.6977 0.0000
6.0152 0.0146| 181.8029| 0.0386| 4.0000| 0.5000 0.0027 0.4852 0.0162 1.1494|| 88.5764 0.0000
6.2121 0.0152| 183.4636| 0.0377| 4.2000| 0.4667 0.0029 0.4437 0.0167 0.6897| 88.5764| 90.6000
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Uniformly Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
Noise RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
UpperLimit Mai nt ai n Mai nt ai n
6.4091 0.0155| 182.9377| 0.0378]| 4.4667| 0.4000 0.0029 0.4635 0.0172 0.2299| 86.6432 0.0000
6.6061 0.0160| 183.0972| 0.0352| 5.5333| 0.4667 0.0030 0.4208 0.0177 0.4598| 88.9279 0.0000
6.8030 0.0167| 182.6395| 0.0366| 5.2667| 0.4333 0.0030 0.4128 0.0186 0.6897| 86.6432] 91.4400
7.0000 0.0170| 182.9768| 0.0366| 2.3333| 0.5333 0.0032 0.4084 0.0189 0.4598| 87.6977 0.0000
7.1970 0.0174| 182.7706| 0.0325| 4.1333]| 0.4667 0.0033 0.3960 0.0193 0.9195|] 87.5220 0.0000
7.3939 0.0181| 181.9934| 0.0332| 2.6667| 0.5333 0.0034 0.3942 0.0201 1.3793|| 87.6977] 91.1000
7.5909 0.0185| 183.3904| 0.0323| 4.5333]| 0.4333 0.0035 0.3583 0.0206 1.6092|| 88.0492 0.0000
7.7879 0.0190| 182.9133| 0.0307| 6.8000| 0.3667 0.0037 0.3676 0.0210 0.9195|] 88.4007 0.0000
7.9848 0.0195| 184.5680| 0.0322| 4.0000| 0.4333 0.0037 0.3447 0.0216 0.2299| 88.9279| 91.4400
8.1818 0.0199| 183.3023| 0.0306| 5.2000| 0.4333 0.0038 0.3923 0.0221 1.3793]|| 88.2250 0.0000
8.3788 0.0205| 183.1279| 0.0293]| 5.6667| 0.4667 0.0038 0.3546 0.0227 0.9195|] 86.8190 0.0000
8.5758 0.0208| 183.0692| 0.0299| 5.3333| 0.4333 0.0039 0.3404 0.0233 1.1494|| 86.9947| 90.1000
8.7727 0.0214| 183.1933| 0.0298]| 6.5333| 0.4000 0.0039 0.3515 0.0238 1.3793]|| 88.4007 0.0000
8.9697 0.0218| 182.7477| 0.0272| 5.8667| 0.5000 0.0041 0.3441 0.0242 0.2299| 89.8067 0.0000
9.1667 0.0223| 184.0634| 0.0293]| 5.3333| 0.5000 0.0041 0.3366 0.0249 0.6897| 86.6432] 91.2700
9.3636 0.0228| 185.6992| 0.0279| 4.8667| 0.4667 0.0043 0.3434 0.0254 1.1494|| 86.6432 0.0000
9.5606 0.0232] 183.4057| 0.0287]| 4.6667| 0.5000 0.0044 0.3218 0.0256 1.1494]|| 87.3462 0.0000
9.7576 0.0238| 183.9930| 0.0280| 4.1333| 0.4333 0.0045 0.3181 0.0265 0.4598| 87.3462| 88.7500
9.9545 0.0244| 183.9216| 0.0274| 4.2667| 0.4667 0.0047 0.3366 0.0271 0.4598| 87.5220 0.0000
10.1515 || 0.0249]| 184.4128| 0.0261| 5.2667| 0.5333 0.0049 0.2803 0.0276 0.4598| 88.0492 0.0000
10.3485 || 0.0251| 183.8514| 0.0281| 5.5333| 0.3667 0.0049 0.2618 0.0280 1.3793|| 88.2250] 90.1000
10.5455 || 0.0259]| 181.5979| 0.0281| 6.8000| 0.4000 0.0051 0.2673 0.0290 0.9195| 86.4675 0.0000
10.7424 || 0.0262| 184.8122| 0.0262| 7.0000| 0.4667 0.0050 0.2871 0.0292 1.6092|| 87.5220 0.0000
10.9394 || 0.0267| 183.5497| 0.0279| 6.6000| 0.4000 0.0052 0.2618 0.0298 0.4598| 87.1705| 90.4400
11.1364 || 0.0273]| 183.4668| 0.0258| 6.1333| 0.4667 0.0054 0.2581 0.0304 1.8391|| 86.6432 0.0000
11.3333 || 0.0276| 183.3606| 0.0241| 3.8000| 0.5000 0.0055 0.2649 0.0305 0.9195|] 88.9279 0.0000
11.5303 || 0.0282| 184.0281| 0.0273| 4.4667| 0.4333 0.0055 0.2655 0.0313 1.1494|| 88.4007] 89.6000
11.7273 || 0.0285| 184.8355| 0.0247| 4.0000| 0.4667 0.0057 0.2420 0.0318 0.4598( 33.7434 0.0000
11.9242 || 0.0291| 185.2414| 0.0230| 5.6000| 0.4000 0.0060 0.2302 0.0324 0.4598| 87.1705 0.0000
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Uniformly Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
Noise RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
UpperLimit Mai nt ai n Mai nt ai n
12.1212 || 0.0296]| 183.2047| 0.0239| 6.4667| 0.4000 0.0059 0.2562 0.0331 0.9195|] 88.5764| 90.6000
12.3182 || 0.0302| 183.4226| 0.0255| 5.6667| 0.4000 0.0061 0.2011 0.0337 1.6092|| 72.5835 0.0000
12.5152 || 0.0305| 184.2375| 0.0242| 5.9333| 0.4000 0.0062 0.2302 0.0340 1.3793|| 54.3058 0.0000
12.7121 || 0.0309| 183.8168| 0.0253| 7.2000| 0.3667 0.0063 0.2475 0.0344 0.6897| 86.9947| 90.4400
12.9091 || 0.0315] 185.4111| 0.0215| 6.4000| 0.4333 0.0064 0.2246 0.0352 0.4598( 89.6309 0.0000
13.1061 || 0.0318]| 185.0987| 0.0226| 7.0667| 0.4333 0.0066 0.2370 0.0354 1.8391|| 89.1037 0.0000
13.3030 || 0.0327| 187.1018| 0.0228| 6.3333| 0.4333 0.0064 0.2358 0.0365 0.0000|] 86.2917| 92.9500
13.5000 || 0.0331| 184.4030| 0.0229| 3.9333| 0.4667 0.0065 0.2296 0.0371 1.3793]|| 85.9402 0.0000
13.6970 || 0.0332| 184.7971| 0.0227| 5.4667| 0.4667 0.0069 0.2147 0.0372 0.9195| 85.5888 0.0000
13.8939 || 0.0339| 184.5234| 0.0219| 5.6667| 0.4000 0.0069 0.2222 0.0377 0.4598| 87.6977| 91.7800
14.0909 || 0.0343]| 184.4776| 0.0209| 6.2000| 0.3667 0.0072 0.2005 0.0381 0.2299| 87.1705 0.0000
14.2879 || 0.0347| 185.6205| 0.0205| 6.6000| 0.4000 0.0071 0.2147 0.0387 0.6897| 87.5220 0.0000
14.4848 || 0.0354| 185.1784| 0.0203| 4.5333| 0.4333 0.0072 0.2129 0.0395 1.3793|| 52.5483] 90.9400
14.6818 || 0.0357| 186.5571| 0.0203| 4.1333| 0.5333 0.0073 0.2110 0.0400 0.6897| 87.1705 0.0000
14.8788 || 0.0362| 185.4887| 0.0217| 5.2000| 0.4000 0.0075 0.2017 0.0402 0.4598| 87.8735 0.0000
15.0758 || 0.0366| 184.4733| 0.0206| 5.2000| 0.4333 0.0076 0.2129 0.0408 0.9195| 86.9947| 91.9500
15.2727 || 0.0374| 185.3475| 0.0196| 6.4000| 0.4333 0.0077 0.2172 0.0419 0.4598| 87.3462 0.0000
15.4697 || 0.0377| 185.2288| 0.0220| 5.7333| 0.5000 0.0077 0.2030 0.0418 0.6897| 88.5764 0.0000
15.6667 || 0.0382| 186.5018| 0.0218| 5.7333| 0.3333 0.0080 0.2085 0.0426 0.9195| 86.9947| 89.4300
15.8636 | 0.0387| 186.0360| 0.0192| 4.3333| 0.4667 0.0083 0.1677 0.0433 0.4598| 86.1160 0.0000
16.0606 | 0.0391| 186.2168| 0.0213| 5.5333| 0.4667 0.0081 0.1993 0.0435 0.4598( 71.3533 0.0000
16.2576 | 0.0399| 185.6729| 0.0195| 5.8667| 0.4000 0.0085 0.1968 0.0446 0.9195| 88.2250| 90.1000
16.4545 || 0.0403]| 185.7472| 0.0195| 5.2000| 0.4333 0.0083 0.1739 0.0451 1.3793]|| 87.1705 0.0000
16.6515 || 0.0406| 185.9144| 0.0186| 5.8667| 0.3667 0.0088 0.1813 0.0453 0.2299| 86.6432 0.0000
16.8485 || 0.0410]| 184.7092| 0.0219| 4.8667| 0.4000 0.0087 0.1955 0.0458 0.6897| 85.4130] 90.9300
17.0455 || 0.0415| 185.9636| 0.0184| 4.8667| 0.5000 0.0088 0.2160 0.0463 0.4598| 86.4675 0.0000
17.2424 || 0.0422| 184.6250| 0.0204| 5.4667| 0.4333 0.0091 0.1621 0.0471 1.1494]| 84.3585 0.0000
17.4394 || 0.0425| 185.0998| 0.0194| 4.9333| 0.4667 0.0090 0.1671 0.0475 0.4598| 86.9947| 89.9200
17.6364 || 0.0430| 185.9390| 0.0190| 5.5333| 0.4333 0.0093 0.1782 0.0480 1.3793]|| 85.7645 0.0000
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Uniformly Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
Noise RE RP RK cP CK || Di st Val Di st | Corr Val Corr | K-means| SVMlight
UpperLimit Mai nt ai n Mai nt ai n
17.8333 || 0.0436]| 185.7247| 0.0187| 5.0000| 0.4333 0.0093 0.1559 0.0489 1.8391|| 88.2250 0.0000
18.0303 || 0.0441| 185.4866| 0.0182| 4.3333| 0.4000 0.0099 0.1429 0.0494 0.9195| 86.2917| 89.0900
18.2273 || 0.0448]| 184.9370| 0.0185| 5.8667| 0.4333 0.0098 0.1906 0.0505 1.1494]| 86.8190 0.0000
18.4242 || 0.0449]| 185.7288| 0.0185| 5.0000| 0.4000 0.0099 0.1671 0.0500 0.0000(| 49.3849 0.0000
18.6212 || 0.0456]| 187.6492| 0.0159| 6.5333| 0.4333 0.0100 0.1696 0.0513 0.4598| 85.9402 0.0000
18.8182 || 0.0460| 187.2018| 0.0180| 4.2667| 0.4667 0.0100 0.1516 0.0514 0.4598| 40.9490 0.0000
19.0152 || 0.0464| 185.3885| 0.0184| 6.9333| 0.3667 0.0101 0.1485 0.0520 0.6897| 88.9279 0.0000
19.2121 || 0.0467| 186.4606| 0.0170| 5.8667| 0.4333 0.0102 0.1708 0.0521 1.3793]|| 85.9402 0.0000
19.4091 || 0.0475| 186.7459| 0.0170| 6.0000| 0.4000 0.0106 0.1603 0.0531 1.1494]|| 52.3726 0.0000
19.6061 || 0.0478| 184.1549| 0.0180| 5.8000| 0.3667 0.0107 0.1733 0.0536 1.1494]|| 50.4394 0.0000
19.8030 || 0.0483]| 185.1120| 0.0167| 4.6000| 0.4333 0.0109 0.1628 0.0543 0.9195| 85.7645 0.0000
20.0000 || 0.0492| 185.9548| 0.0175| 6.0667| 0.3667 0.0110 0.1355 0.0552 0.9195| 88.5764 0.0000




[AS))

Appendix C: the Normal-Noise-Additive data modification on WDB®9 x 30).

Normal Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
Noise RE RP RK cP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
o Mai nt ai n Mai nt ai n

0.2000 0.0008| 168.1572| 0.1062| 0.0667| 0.9333 0.0003 3.3850 0.0000 13.5632|| 89.9824 0.0000
0.3495 0.0015| 171.4744] 0.0859]| 2.1333| 0.6000 0.0005 2.0211 0.0001 10.8046|| 87.8735 0.0000
0.4990 0.0021| 173.9250] 0.0756| 3.5333| 0.6000 0.0008 1.4481 0.0001 10.3448|| 88.0492] 92.1100
0.6485 0.0027| 176.5659] 0.0667| 4.5333| 0.5000 0.0010 1.1040 0.0002 6.4368|| 88.9279 0.0000
0.7980 0.0034| 177.3175| 0.0613]| 2.6667| 0.5667 0.0012 0.9542 0.0002 7.3563|| 86.9947 0.0000
0.9475 0.0040| 178.6974| 0.0556| 1.2667| 0.5333 0.0014 0.7822 0.0003 6.2069|| 87.1705] 92.9500
1.0970 0.0047| 176.8637| 0.0524| 2.6667| 0.5667 0.0016 0.8026 0.0003 4.3678| 88.5764 0.0000
1.2465 0.0053| 180.3332] 0.0485]| 3.4000| 0.6000 0.0019 0.6597 0.0004 45977 87.6977 0.0000
1.3960 0.0059| 180.1728| 0.0450| 6.2000| 0.4667 0.0022 0.5854 0.0004 6.4368|| 86.6432] 90.1000
1.5455 0.0066| 180.9166| 0.0430| 6.1333| 0.4333 0.0024 0.5192 0.0003 3.9080|| 87.6977 0.0000
1.6949 0.0072| 181.4540| 0.0426| 4.2000| 0.4333 0.0026 0.5013 0.0005 45977| 87.5220 0.0000
1.8444 0.0078| 182.2663] 0.0401| 3.5333]| 0.5667 0.0028 0.4982 0.0004 5.2874|| 88.2250] 91.1000
1.9939 0.0084| 181.3025| 0.0384| 6.2000| 0.4333 0.0031 0.4121 0.0005 45977| 86.6432 0.0000
2.1434 0.0090| 183.9817| 0.0383]| 4.4667| 0.5000 0.0034 0.4041 0.0005 6.4368|| 88.5764 0.0000
2.2929 0.0096| 181.5830| 0.0357| 4.4000| 0.5000 0.0035 0.4035 0.0005 4.1379| 88.0492| 92.9500
2.4424 0.0103| 183.3939| 0.0320]| 4.4667| 0.4333 0.0039 0.3571 0.0006 3.4483|| 86.6432 0.0000
2.5919 0.0109| 182.2834| 0.0327| 3.5333]| 0.4667 0.0042 0.3162 0.0006 6.2069|| 85.5888 0.0000
2.7414 0.0117] 183.5636] 0.0303| 6.7333]| 0.4333 0.0046 0.2816 0.0005 2.5287|| 87.1705] 90.6000
2.8909 0.0122| 183.7992| 0.0309| 5.5333| 0.5000 0.0048 0.2927 0.0008 3.6782|| 86.6432 0.0000
3.0404 0.0127] 183.4800| 0.0315]| 6.2667| 0.4333 0.0048 0.2983 0.0007 2.7586|| 88.0492 0.0000
3.1899 0.0135| 183.6313| 0.0298]| 5.1333| 0.4333 0.0053 0.3088 0.0008 3.4483|| 87.6977| 89.4200
3.3394 0.0142] 184.9861] 0.0266| 5.0000| 0.5000 0.0059 0.2797 0.0007 2.9885|| 87.8735 0.0000
3.4889 0.0146| 184.8262| 0.0264| 4.5333| 0.4667 0.0059 0.2754 0.0008 3.2184| 87.1705 0.0000
3.6384 0.0154| 184.1595] 0.0263]| 8.2667| 0.3667 0.0062 0.2599 0.0009 3.6782|| 86.1160] 89.5900
3.7879 0.0160| 182.9250| 0.0248]| 6.6667| 0.4333 0.0065 0.2469 0.0010 3.2184| 88.2250 0.0000
3.9374 0.0165| 185.0284| 0.0258]| 4.9333| 0.5000 0.0067 0.2389 0.0011 2.5287|| 87.5220 0.0000
4.0869 0.0173| 186.5916| 0.0241| 5.4000| 0.4000 0.0071 0.2246 0.0011 1.3793| 86.6432] 92.4400
4.2364 0.0177] 184.8716] 0.0237| 4.3333]| 0.4667 0.0072 0.2234 0.0011 0.9195|| 87.6977 0.0000
4.3859 0.0184| 184.5377| 0.0232| 5.8667| 0.4333 0.0078 0.2123 0.0010 3.9080|| 86.9947 0.0000
45354 0.0192| 184.3152| 0.0224| 5.8667| 0.4000 0.0080 0.1894 0.0010 1.6092| 87.6977] 88.5900
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Appendix C- continued from previous page

Uniformly Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
Noise RE RP RK cP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
o Mai nt ai n Mai nt ai n
4.6848 0.0198| 186.4554| 0.0223| 5.2000| 0.4333 0.0088 0.1714 0.0011 2.2989| 85.9402 0.0000
4.8343 0.0206| 185.5057| 0.0219]| 5.1333]| 0.4333 0.0085 0.2048 0.0016 1.8391| 87.5220 0.0000
4.9838 0.0209| 184.9203] 0.0213] 6.1333] 0.4667 0.0093 0.2055 0.0012 2.2989|| 87.3462| 90.6000
5.1333 0.0218| 185.1511] 0.0200| 6.8000| 0.3667 0.0096 0.1714 0.0017 2.0690(| 89.2794 0.0000
5.2828 0.0224| 185.7903] 0.0182]| 5.8000| 0.4000 0.0101 0.1529 0.0016 0.9195|| 85.5888 0.0000
5.4323 0.0230| 184.4771] 0.0193]| 7.0000| 0.3667 0.0099 0.1739 0.0012 1.8391| 86.4675| 90.7700
5.5818 0.0236| 184.5754] 0.0188]| 6.9333| 0.4000 0.0105 0.1566 0.0011 1.6092| 86.8190 0.0000
5.7313 0.0243| 186.0750| 0.0189| 3.4667| 0.4667 0.0109 0.1646 0.0015 2.2989| 87.5220 0.0000
5.8808 0.0249| 186.3475] 0.0203| 5.9333]| 0.4333 0.0112 0.1504 0.0015 1.3793| 87.3462] 90.2700
6.0303 0.0256| 184.8309| 0.0190| 6.2667| 0.4000 0.0117 0.1708 0.0016 1.8391| 86.9947 0.0000
6.1798 0.0258| 187.0081] 0.0183]| 4.9333]| 0.4333 0.0118 0.1590 0.0016 1.1494] 88.0492 0.0000
6.3293 0.0270| 184.8475| 0.0181| 5.9333| 0.4000 0.0119 0.1671 0.0019 1.1494| 86.9947| 89.9300
6.4788 0.0274| 187.1366] 0.0157| 4.4000| 0.4000 0.0129 0.1473 0.0021 0.9195|| 86.8190 0.0000
6.6283 0.0281| 187.6190| 0.0162]| 5.4667| 0.4000 0.0132 0.1287 0.0016 1.6092| 87.6977 0.0000
6.7778 0.0288| 185.4647| 0.0170| 4.6667| 0.4333 0.0136 0.1225 0.0014 1.3793| 87.6977] 88.5900
6.9273 0.0292| 186.1434| 0.0163| 5.2000| 0.4333 0.0139 0.1102 0.0019 2.0690|| 86.9947 0.0000
7.0768 0.0301| 186.2676] 0.0178| 6.6000| 0.4000 0.0147 0.1250 0.0019 0.9195|| 86.8190 0.0000
7.2263 0.0301| 185.3254| 0.0170| 6.0667| 0.4000 0.0146 0.1275 0.0018 1.6092| 85.7645| 90.4300
7.3758 0.0311| 185.6057| 0.0159| 5.0000| 0.4000 0.0149 0.1337 0.0019 1.1494] 86.4675 0.0000
7.5253 0.0315| 186.8350| 0.0152| 5.6667| 0.4000 0.0153 0.1163 0.0022 2.2989| 87.3462 0.0000
7.6747 0.0323| 185.7571] 0.0160| 6.2000| 0.4000 0.0158 0.1225 0.0018 1.3793| 86.1160] 87.0800
7.8242 0.0328| 187.0280| 0.0136| 6.8000| 0.3667 0.0167 0.1021 0.0020 0.9195|| 88.5764 0.0000
7.9737 0.0339| 188.4867| 0.0131| 4.6000| 0.5000 0.0164 0.1250 0.0020 2.0690|| 88.5764 0.0000
8.1232 0.0342| 185.7402| 0.0145]| 6.6667| 0.4000 0.0168 0.0972 0.0018 1.6092|| 84.7100] 89.2600
8.2727 0.0349| 186.9442] 0.0141| 4.2000]| 0.4333 0.0175 0.1170 0.0019 0.6897|| 87.3462 0.0000
8.4222 0.0354| 186.0205| 0.0142]| 6.4667| 0.3333 0.0176 0.1083 0.0018 1.8391| 86.1160 0.0000
8.5717 0.0364| 186.4393] 0.0136| 6.3333| 0.4000 0.0184 0.0990 0.0025 2.9885|| 87.3462| 89.0900
8.7212 0.0366| 186.4989| 0.0129| 7.5333]| 0.4333 0.0188 0.0941 0.0026 0.4598| 87.6977 0.0000
8.8707 0.0374| 186.0353] 0.0134| 5.9333]| 0.4667 0.0194 0.1015 0.0019 1.6092| 87.3462 0.0000
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Appendix C- continued from previous page

Uniformly Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
Noise RE RP RK cP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight

o Mai nt ai n Mai nt ai n

9.0202 0.0384| 186.3361] 0.0120]| 6.4667| 0.4667 0.0195 0.0953 0.0025 1.3793| 88.0492] 88.4200
9.1697 0.0389| 186.2984| 0.0141| 4.7333]| 0.4000 0.0204 0.0978 0.0020 1.3793| 85.5888 0.0000
9.3192 0.0393| 186.6776] 0.0145| 4.3333]| 0.4333 0.0204 0.0978 0.0024 0.9195|| 87.3462 0.0000
9.4687 0.0400| 185.8134| 0.0143]| 6.3333]| 0.3667 0.0205 0.0885 0.0029 1.6092| 88.0492] 89.7600
9.6182 0.0407| 186.6748] 0.0123| 3.5333]| 0.4333 0.0213 0.0959 0.0024 0.2299|| 86.6432 0.0000
9.7677 0.0418| 187.0428| 0.0127| 5.4000| 0.3667 0.0223 0.0990 0.0028 1.3793| 86.8190 0.0000
9.9172 0.0422] 187.7291] 0.0127] 6.3333]| 0.4333 0.0225 0.0866 0.0029 1.1494| 86.8190] 88.0900
10.0667 || 0.0428] 187.5377| 0.0126| 6.6000| 0.3667 0.0230 0.1052 0.0022 1.3793| 85.5888 0.0000
10.2162 || 0.0433] 188.5325| 0.0129]| 8.4000]| 0.3667 0.0227 0.0972 0.0024 1.3793| 87.8735 0.0000
10.3657 || 0.0433] 187.1402| 0.0128]| 7.4667| 0.3333 0.0236 0.0885 0.0029 0.6897|| 86.2917| 88.2600
10.5152 || 0.0447] 187.9971| 0.0135]| 5.1333]| 0.4000 0.0242 0.0934 0.0027 1.1494] 86.9947 0.0000
10.6646 || 0.0451| 187.9530| 0.0125| 5.6000| 0.4000 0.0241 0.0829 0.0028 1.6092| 86.9947 0.0000
10.8141 || 0.0459]| 187.5963| 0.0123]| 6.4667| 0.3667 0.0248 0.0681 0.0028 1.6092| 86.2917] 87.5800
10.9636 || 0.0463| 185.3135| 0.0115| 6.2667| 0.3667 0.0256 0.0823 0.0026 1.1494| 85.5888 0.0000
11.1131 || 0.0469]| 187.5773| 0.0128] 8.2667| 0.4000 0.0253 0.0650 0.0032 0.9195|| 88.5764 0.0000
11.2626 || 0.0477] 188.2094| 0.0114| 5.6000| 0.4667 0.0260 0.0842 0.0029 0.9195|| 86.4675| 89.0900
11.4121 || 0.0483] 187.9866| 0.0109| 5.6000| 0.3333 0.0269 0.0743 0.0033 0.9195|| 87.6977 0.0000
11.5616 || 0.0490| 187.2088| 0.0112| 4.0667| 0.4333 0.0276 0.0792 0.0027 0.4598|| 87.5220 0.0000
11.7111 || 0.0495]| 188.3050| 0.0101| 5.7333]| 0.3667 0.0272 0.0668 0.0035 0.4598|| 85.7645| 87.0800
11.8606 || 0.0501| 186.1424| 0.0112| 5.0667| 0.4000 0.0282 0.0835 0.0026 0.6897|| 86.1160 0.0000
12.0101 || 0.0507]| 185.4858| 0.0115]| 7.1333]| 0.3667 0.0284 0.0860 0.0034 0.6897|| 86.8190 0.0000
12.1596 || 0.0516| 186.1804| 0.0104| 6.6667| 0.3667 0.0303 0.0804 0.0034 0.2299| 86.9947| 87.0800
12.3091 || 0.0518] 187.6045| 0.0105]| 6.2667| 0.3667 0.0299 0.0829 0.0036 0.6897|| 87.3462 0.0000
12.4586 || 0.0527| 188.5442| 0.0100| 5.2000| 0.3667 0.0305 0.0873 0.0028 1.3793| 85.7645 0.0000
12.6081 || 0.0531] 186.8039| 0.0112| 4.5333]| 0.4667 0.0312 0.0699 0.0022 0.4598|| 86.4675] 88.9200
12.7576 || 0.0538]| 186.6969| 0.0113| 6.6667| 0.3667 0.0306 0.0774 0.0028 1.6092| 87.6977 0.0000
12.9071 || 0.0544] 187.1977| 0.0096| 5.3333]| 0.4333 0.0315 0.0767 0.0029 1.3793| 86.4675 0.0000
13.0566 || 0.0550| 189.4117| 0.0100]| 6.4667| 0.3333 0.0321 0.0786 0.0032 0.6897|| 86.4675| 86.7500
13.2061 || 0.0555] 188.1351] 0.0112] 5.2000]| 0.3333 0.0318 0.0774 0.0041 0.4598|| 86.4675 0.0000
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Appendix C- continued from previous page

Uniformly Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
Noise RE RP RK cP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
o Mai nt ai n Mai nt ai n
13.3556 || 0.0560| 187.3316] 0.0110| 6.0667| 0.3667 0.0336 0.0650 0.0031 0.2299|| 86.8190 0.0000
13.5051 || 0.0567| 187.8482| 0.0107| 6.4000| 0.3667 0.0336 0.0761 0.0036 0.9195|| 85.0615| 87.9200
13.6545 || 0.0582] 188.4478| 0.0101| 6.7333] 0.4000 0.0352 0.0619 0.0038 0.0000|| 86.6432 0.0000
13.8040 || 0.0588]| 188.1045| 0.0107| 7.0000| 0.4000 0.0352 0.0699 0.0037 0.4598| 86.6432 0.0000
13.9535 || 0.0588]| 188.6048| 0.0089| 5.9333]| 0.4667 0.0355 0.0576 0.0028 0.9195|| 86.1160 0.0000
14.1030 || 0.0599]| 188.7670| 0.0098| 6.7333| 0.3667 0.0362 0.0699 0.0036 0.9195|| 87.5220 0.0000
14.2525 || 0.0601| 189.5707| 0.0103]| 4.8667| 0.3667 0.0364 0.0644 0.0043 1.8391| 85.9402 0.0000
14.4020 || 0.0610]| 188.0274| 0.0098]| 5.1333| 0.4333 0.0373 0.0699 0.0032 1.1494] 86.8190 0.0000
145515 || 0.0620] 188.3113] 0.0095]| 5.3333]| 0.3667 0.0382 0.0606 0.0034 1.1494] 86.1160 0.0000
14.7010 || 0.0619]| 187.1814| 0.0097| 6.7333| 0.4000 0.0380 0.0545 0.0039 0.6897|| 85.7645 0.0000
14.8505 || 0.0620| 187.8274| 0.0102| 4.4667]| 0.4333 0.0373 0.0644 0.0041 2.2989|| 85.5888 0.0000
15.0000 || 0.0635| 186.8685| 0.0098| 5.7333| 0.3667 0.0390 0.0606 0.0045 0.6897|| 86.6432 0.0000
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Appendix D: the Random Projection data modificatiofi:p on WDBC (569 x 30).

Arp Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
o Mai nt ai n Mai nt ai n

0.0100 0.9963| 187.6294| 0.0036| 8.8667| 0.0000 0.9458 0.1176 1.0000 0.2299] 85.4130] 94.2003
0.1109 0.9721] 187.8826] 0.0076| 10.2000| 0.0000 0.4036 0.1714 1.0186 0.0000| 85.2373] 95.0791
0.2118 1.5624] 189.5604| 0.0023| 10.7333] 0.0333 0.0796 0.0910 1.5318 0.2299] 85.0615 0.0000
0.3127 2.0098] 189.7584| 0.0039| 9.8667| 0.0000 0.6252 0.1225 2.7850 0.2299] 85.4130 0.0000
0.4136 2.9599| 190.6371| 0.0032| 10.6667| 0.0000 1.5249 0.0606 6.7040 0.2299| 84.3585| 94.2003
0.5145 3.4469| 190.5158] 0.0031| 9.8000| 0.0000 2.0339 0.0798 9.2151 0.2299] 85.4130 0.0000
0.6155 4.1797| 190.2887| 0.0029| 9.6000| 0.0333 2.9394 0.0681| 15.1901 0.4598| 85.0615 0.0000
0.7164 4.4662| 188.4155] 0.0050| 11.2000| 0.0000 3.3307 0.1473] 19.3068 0.4598| 84.5343 0.0000
0.8173 4.7312| 187.8888| 0.0062| 9.0000| 0.0333 3.8021 0.0495| 21.8154 0.4598| 84.3585 0.0000
0.9182 4.4479] 188.9959| 0.0029]| 10.4667| 0.0667 3.5071 0.0396] 18.5340 0.4598| 85.2373| 94.0246
1.0191 4.4349| 191.2043| 0.0032| 9.8000| 0.0000 3.2958 0.0464| 17.4507 0.0000|| 85.2373 0.0000
1.1200 5.6153| 188.4621| 0.0067| 10.1333| 0.0333 4.6682 0.0662] 30.9928 0.2299] 84.0070 0.0000
1.2209 6.3646| 188.4514| 0.0050| 11.8667| 0.0000 4.9376 0.1510| 36.7378 0.2299| 84.3585 0.0000
1.3218 7.7595] 189.3078| 0.0028| 9.2000| 0.0667 6.6529 0.1838] 57.7161 0.0000]| 85.0615 0.0000
1.4227 5.5762| 189.5121| 0.0036| 9.8000| 0.0000 4.5186 0.0489| 30.7221 0.2299| 83.8313| 93.6731
1.5236 9.1943] 189.0623| 0.0053| 9.5333| 0.0667 7.8590 0.1628] 80.2890 0.2299] 85.0615 0.0000
1.6245 || 10.2188| 190.3129| 0.0029| 11.4667| 0.0000 8.9104 0.2444] 99.5053 0.0000|| 85.2373 0.0000
1.7255 7.3354] 188.3338| 0.0043| 9.1333] 0.0333 6.2098 0.0446] 50.1463 0.9195] 85.4130 0.0000
1.8264 8.5112| 190.4949| 0.0073| 10.8667| 0.0667 7.7929 0.1033| 74.1914 0.0000| 84.7100 0.0000
1.9273 || 12.5101| 189.6566| 0.0056| 10.6000| 0.0333 11.2453 0.1157] 153.1007 0.0000| 85.4130] 94.0246
2.0282 | 10.3391| 190.3475| 0.0050| 10.3333| 0.0000 8.7943 0.0891| 100.5912 0.4598| 84.5343 0.0000
2.1291 | 11.6758| 190.5493] 0.0030| 9.4000| 0.0000 10.7592 0.2438] 136.1119 0.0000]| 85.4130 0.0000
2.2300 || 12.3841| 189.4865| 0.0055| 7.4000| 0.0000 11.1830 0.0811| 152.1637 0.2299| 85.2373 0.0000
2.3309 || 13.0726| 189.1013] 0.0038| 11.4667| 0.0333 12.0904 0.1040] 171.7942 0.0000]| 85.2373 0.0000
2.4318 | 11.2142| 189.2438| 0.0044| 8.2667| 0.0667 10.6504 0.0557| 128.7451 0.2299| 84.3585| 94.0246
2.5327 || 12.4314] 190.3950] 0.0032| 10.5333| 0.0000 11.2975 0.1126] 150.4965 0.2299] 85.4130 0.0000
2.6336 | 13.3946| 188.1910| 0.0043| 9.4667| 0.0000 12.6341 0.2389| 181.2714 0.0000| 85.4130 0.0000
2.7345 | 15.7944| 188.7656] 0.0056| 9.8667| 0.0667 14.6447 0.2382] 245.7511 0.6897| 84.3585 0.0000
2.8355 || 14.7120| 188.4964| 0.0073| 7.4000| 0.1333 13.6134 0.1541| 213.4117 0.0000|| 85.2373 0.0000
2.9364 || 10.7754| 189.4892] 0.0026| 9.6667| 0.0000 9.5638 0.0402] 107.6143 0.0000| 85.0615] 94.5518
Continued on next pag
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Appendix D - continued from previous page

Arp Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight

oy Mai nt ai n Mai nt ai n

3.0373 || 21.2164] 189.7763] 0.0032] 9.9333] 0.0333 19.5816 0.1015] 434.7173 0.2299]| 85.0615 0.0000
3.1382 || 18.4825| 190.8956| 0.0043| 9.0000| 0.0667 17.3734 0.2426| 333.8700 0.6897| 85.2373 0.0000
3.2391 || 21.6700] 189.7332] 0.0049| 8.9333] 0.0000 20.0263 0.0675| 468.0279 0.0000] 85.2373 0.0000
3.3400 || 19.2596| 188.0771] 0.0076| 9.8667| 0.0667 18.5881 0.0613| 378.2357 0.2299|| 84.3585 0.0000
3.4409 || 17.4231] 187.8976] 0.0040| 11.5333] 0.0000 16.2602 0.0947| 301.5109 0.6897] 84.8858| 94.0246
3.5418 || 15.0411] 188.7477| 0.0094| 11.4000| 0.0000 14.1689 0.1262| 234.8956 0.0000| 84.3585 0.0000
3.6427 || 23.7100] 189.3564| 0.0045| 9.2667| 0.0000 21.9010 0.0576| 555.6873 0.4598] 83.8313 0.0000
3.7436 || 19.0109| 190.1172] 0.0046| 9.8000| 0.0000 17.3713 0.0767| 364.3127 0.4598| 83.8313 0.0000
3.8445 || 21.4570] 188.1557] 0.0037| 12.1333] 0.0000 20.2747 0.1330| 455.5118 0.2299] 85.2373 0.0000
3.9455 || 20.7650| 190.4068| 0.0063| 10.2667| 0.0667 19.4324 0.0681| 429.0740 0.0000|| 85.5888| 94.3761
4.0464 || 19.9458] 188.7645| 0.0037| 10.6000| 0.0000 18.6196 0.0501| 401.8321 0.2299] 85.2373 0.0000
4.1473 || 20.3621] 189.5183| 0.0046| 8.6667| 0.0000 19.2450 0.0823| 417.2109 0.6897| 85.4130 0.0000
4.2482 || 20.6949] 189.7076] 0.0035| 9.4000| 0.1000 20.0106 0.1009| 420.8518 0.0000] 85.2373 0.0000
4.3491 || 25.8885| 188.0791| 0.0066| 10.9333| 0.0333 25.2236 0.0984| 678.0326 0.0000|| 85.2373 0.0000
4.4500 || 21.9717] 187.8601] 0.0089| 9.4667| 0.0333 21.2482 0.1423| 486.3347 0.0000]| 85.2373] 95.0791
4.5509 || 28.0028| 188.1049| 0.0057| 8.6667| 0.1000 27.3464 0.2797| 784.4789 0.2299|| 84.5343 0.0000
4.6518 || 26.8259] 189.0767| 0.0019| 10.1333| 0.0333 25.5281 0.1869| 712.3529 0.0000] 85.0615 0.0000
4.7527 || 24.5680| 190.2910| 0.0032| 10.7333| 0.0333 23.1878 0.0483| 600.7528 0.4598|| 85.2373 0.0000
4.8536 || 30.7305] 187.1511] 0.0070| 8.2000| 0.0667 30.0304 0.0879| 943.0497 0.0000] 85.4130 0.0000
4.9545 || 29.4734| 188.5535| 0.0067| 10.6667| 0.0333 28.6310 0.2438| 872.5026 0.0000|| 85.2373| 93.4974
5.0555 || 29.4711] 188.1716] 0.0070| 10.5333] 0.0667 28.1340 0.1139] 866.0572 0.0000]] 85.2373] 94.2003
5.1564 | 30.4940| 188.6204| 0.0089| 9.2667| 0.0333 28.7153 0.0668| 930.7394 0.0000|| 84.3585| 95.0791
5.2573 || 26.0683| 188.8682| 0.0044| 8.6667| 0.0333 25.1123 0.2184| 684.5486 0.9195] 85.2373 0.0000
5.3582 || 20.4977| 189.0175| 0.0021| 9.8667| 0.0333 19.7759 0.1139| 402.7490 0.0000|| 85.4130 0.0000
5.4591 | 32.1581] 189.0941] 0.0030] 9.5333] 0.1000 31.3871 0.3886]| 1031.5563 0.4598] 84.8858| 94.2003
5.5600 || 39.4263| 188.7360| 0.0046| 9.2667| 0.0667 38.1024 0.2710| 1546.6324 0.4598|| 85.0615 0.0000
5.6609 | 33.4269| 187.4998] 0.0050| 8.4667| 0.0333 33.5779 0.0842] 1119.9676 0.0000] 85.4130 0.0000
5.7618 || 27.2938| 188.7818| 0.0023| 10.6667| 0.0333 26.1584 0.3744| 730.3795 0.2299|| 85.4130 0.0000
5.8627 || 30.9421] 188.5900] 0.0036| 10.0000| 0.0333 28.9990 0.0767| 942.3693 0.0000] 84.8858 0.0000
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Appendix D - continued from previous page

Arp Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight

oy Mai nt ai n Mai nt ai n

5.9636 || 32.4484| 190.2076] 0.0035] 11.2000] 0.0000 31.7051 0.2556| 1043.5807 0.0000]] 85.2373] 94.0246
6.0645 || 26.2262| 188.5666| 0.0056| 8.4000| 0.1667 24.5119 0.0563| 692.5932 0.0000|| 85.0615 0.0000
6.1655 || 26.3337| 189.2738] 0.0040] 9.6000| 0.0667 25.3399 0.0563| 669.0307 0.0000] 85.0615 0.0000
6.2664 || 32.8161| 189.7609| 0.0049| 8.2000| 0.1000 32.0890 0.1250| 1074.5619 0.2299|| 85.0615 0.0000
6.3673 || 30.1044] 190.6450] 0.0021] 8.7333] 0.1000 27.6784 0.0377] 899.0772 0.0000] 85.2373 0.0000
6.4682 | 28.7324| 189.7671] 0.0034| 8.4667| 0.0000 27.3559 0.1194| 818.6893 0.2299|| 84.0070| 93.6731
6.5691 || 37.2357]| 188.0473] 0.0041] 11.0000] 0.1000 35.7933 0.4437| 1373.4500 0.0000] 85.4130 0.0000
6.6700 || 41.1491] 186.8243| 0.0093| 10.4000| 0.0000 39.9816 0.1479| 1708.0442 0.2299|| 85.2373 0.0000
6.7709 | 45.5862| 189.7545| 0.0056| 10.8667| 0.0667 45.1261 0.0897| 2050.4625 0.4598] 84.1828 0.0000
6.8718 || 29.5778| 188.3932| 0.0067| 10.2667| 0.0333 28.8099 0.0749| 875.6351 1.1494| 83.8313 0.0000
6.9727 | 39.0711] 190.7528] 0.0077]| 11.4667| 0.0000 39.0443 0.1108| 1544.1632 0.0000]] 85.4130] 94.0246
7.0736 || 35.3240| 187.9869| 0.0041| 11.4667| 0.0000 35.1073 0.0576| 1261.5395 0.0000|| 85.4130 0.0000
7.1745 || 40.1428] 187.6029| 0.0059]| 11.0667| 0.0333 38.4880 0.0798] 1618.9498 0.0000] 85.2373 0.0000
7.2755 || 34.7268| 188.6095| 0.0060| 10.6667| 0.0000 33.9700 0.1262| 1219.0095 0.2299|| 83.6555 0.0000
7.3764 || 47.7348] 187.9282] 0.0095| 9.2667| 0.0000 46.3591 0.0792] 2291.3266 0.2299] 85.4130 0.0000
7.4773 || 36.9803| 187.6903| 0.0042| 8.7333] 0.0000 36.1928 0.2358| 1352.7409 0.2299|| 85.2373| 94.0246
7.5782 || 42.9095| 188.8626| 0.0057| 9.8667| 0.0000 43.9501 0.0501| 1842.3831 0.4598] 85.4130 0.0000
7.6791 || 39.1150| 186.0756| 0.0046| 11.1333| 0.0667 36.2830 0.0520| 1511.4261 0.2299|| 84.1828 0.0000
7.7800 || 44.1079] 186.1893] 0.0142] 9.8000] 0.0333 42.9924 0.1102]| 1968.5909 0.2299] 85.2373 0.0000
7.8809 | 49.4144| 191.1466| 0.0037| 7.0000| 0.0667 48.1778 0.0804| 2423.8709 0.4598| 83.8313 0.0000
7.9818 || 47.6441] 188.7147] 0.0045] 11.1333] 0.0000 47.1122 0.0384| 2273.1778 0.2299] 85.2373] 94.5518
8.0827 || 51.4000| 187.1501] 0.0086| 9.6000| 0.0333 50.3521 0.1238| 2656.1747 0.2299|| 85.0615 0.0000
8.1836 | 43.5667| 190.4537| 0.0028| 7.8000| 0.0667 42.5235 0.1015| 1888.8443 0.4598] 85.0615 0.0000
8.2845 || 40.6959| 188.9680| 0.0091| 11.2000| 0.0667 40.8026 0.0761| 1688.2990 0.0000|| 85.2373 0.0000
8.3855 || 49.1742] 188.1029| 0.0051| 9.4000] 0.0333 47.9858 0.0730]| 2404.7391 0.2299] 85.4130 0.0000
8.4864 | 41.3593| 188.8484| 0.0028| 8.8000| 0.0667 39.6494 0.1572| 1679.5623 0.0000|| 85.4130| 94.0246
8.5873 || 45.8874| 188.9856| 0.0067| 10.2667| 0.0333 44.5039 0.1479] 2145.7804 0.0000] 84.3585 0.0000
8.6882 | 47.1059| 191.1631] 0.0017| 9.7333] 0.0000 45,9880 0.1553| 2202.0194 0.0000| 84.5343 0.0000
8.7891 | 34.9771] 192.0012] 0.0024]| 10.4667| 0.0000 35.1872 0.0316]| 1202.2527 0.0000] 85.2373 0.0000
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Appendix D - continued from previous page

Arp Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight

oy Mai nt ai n Mai nt ai n

8.8900 | 48.8253] 190.5514] 0.0045]| 10.7333] 0.0667 46.8669 0.0947| 2361.2249 0.2299] 84.0070 0.0000
8.9909 || 57.2145] 188.0180| 0.0040| 11.8667| 0.0000 55.8795 0.1003| 3286.7968 0.2299|| 85.2373] 94.3761
9.0918 | 54.4009| 188.3023] 0.0045] 9.0000] 0.0000 52.5650 0.2036| 2954.3199 0.0000] 85.2373 0.0000
9.1927 || 57.1497| 189.7723| 0.0040| 9.8667| 0.0000 54.3799 0.0458| 3259.7256 0.0000|| 85.2373 0.0000
9.2936 || 67.9944| 189.3924| 0.0049] 8.6000] 0.0000 67.6101 0.1355| 4622.5949 0.2299]| 85.0615 0.0000
9.3945 || 51.0415] 189.4368| 0.0077| 8.7333] 0.0333 49.1700 0.0724| 2643.1388 0.4598| 84.7100 0.0000
9.4955 | 36.5536| 188.4826] 0.0054| 8.2000] 0.1000 34.8937 0.0675]| 1331.9581 0.0000]| 85.4130] 95.0791
9.5964 | 46.3489| 190.4333| 0.0046| 10.4667| 0.0000 45.3427 0.1566| 2152.0290 0.2299|| 85.2373 0.0000
9.6973 || 50.9302| 188.8786] 0.0036| 10.9333] 0.0000 50.0183 0.1559] 2607.2154 0.4598] 85.2373 0.0000
9.7982 || 73.6637| 190.0790| 0.0067| 10.0667| 0.0333 72.5247 0.1374| 5432.0859 0.0000|| 85.0615 0.0000
9.8991 | 56.9086| 189.9880| 0.0067| 9.9333] 0.0000 54.9873 0.0619] 3228.4743 0.2299] 84.8858 0.0000
10.0000 || 53.5993| 188.5561| 0.0037| 10.7333| 0.0000 51.8061 0.1776| 2853.9325 0.6897| 84.8858| 93.4974
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Appendix E: the Random Projection data modificatidnpo on WDBC (569 x 30).

Arpo Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | CorrVal Corr || K-means| SVMlight
o, Mai nt ai n Mai nt ai n

0.0100 || 1.1818| 189.2079| 0.0042| 9.3333| 0.0000 0.0000] 100.0000 1.3460 0.4598]| 85.2373] 93.8489
0.1109 || 1.5003| 188.3823| 0.0040| 10.0667| 0.0333 0.0000| 100.0000 1.4024 0.0000]| 85.0615] 94.2003
0.2118 || 1.3894| 190.5769| 0.0022| 11.0667| 0.0000 0.0000] 100.0000 1.4133 0.4598]| 85.0615 0.0000
0.3127 || 1.5206| 189.7984| 0.0060| 11.1333| 0.0000 0.0000] 100.0000 1.3965 0.0000]] 84.0070 0.0000
0.4136 || 1.3868| 189.6685| 0.0051| 9.5333| 0.0000 0.0000| 100.0000 1.4129 0.0000|| 85.4130| 94.0246
0.5145 || 1.5006| 188.3087| 0.0030| 9.2000| 0.1333 0.0000] 100.0000 1.4027 0.2299]| 85.2373 0.0000
0.6155 || 1.4242| 188.1309| 0.0074| 8.2000| 0.0667 0.0000| 100.0000 1.4130 0.2299|| 85.2373 0.0000
0.7164 || 1.5909| 188.2052| 0.0043| 8.9333| 0.0333 0.0000] 100.0000 1.3624 0.4598]| 85.4130 0.0000
0.8173 || 1.4457| 187.7379| 0.0066| 10.0667| 0.0333 0.0000| 100.0000 1.4123 0.0000|| 85.4130 0.0000
0.9182 || 1.4447| 189.3024| 0.0057| 10.1333| 0.0000 0.0000] 100.0000 1.4126 0.2299]| 85.0615| 93.4974
1.0191 || 1.3318| 188.1203| 0.0046| 9.0000| 0.0000 0.0000| 100.0000 1.4049 0.4598]|| 85.2373 0.0000
1.1200 || 1.3964| 189.0394| 0.0058]| 10.2667| 0.0000 0.0000] 100.0000 1.4131 0.0000]] 84.3585 0.0000
1.2209 || 1.5695| 189.4259| 0.0026| 9.3333| 0.0333 0.0000| 100.0000 1.3751 0.0000|| 84.8858 0.0000
1.3218 || 1.5041| 190.0422| 0.0031| 10.0000| 0.0000 0.0000] 100.0000 1.4012 0.0000]] 85.2373 0.0000
1.4227 || 1.5703| 189.9870| 0.0028| 12.2000| 0.0000 0.0000| 100.0000 1.3742 0.0000|| 85.0615| 94.2003
1.5236 || 1.2625| 185.6964| 0.0076| 8.2000| 0.0333 0.0000] 100.0000 1.3835 0.0000]] 84.3585 0.0000
1.6245 || 1.5030| 188.6909| 0.0057| 8.6000| 0.0000 0.0000| 100.0000 1.4020 0.2299|| 85.2373 0.0000
1.7255 || 1.4413| 188.3242| 0.0062| 9.4667| 0.0000 0.0000] 100.0000 1.4127 0.4598]| 85.4130 0.0000
1.8264 || 1.3490| 187.6520| 0.0073| 9.2667| 0.0000 0.0000| 100.0000 1.4083 0.0000|| 85.4130 0.0000
1.9273 || 1.2824| 189.5782| 0.0040| 11.0000| 0.0000 0.0000] 100.0000 1.3912 0.0000]| 85.4130| 94.0246
2.0282 || 1.4145| 189.6340| 0.0053| 8.4000| 0.0333 0.0000| 100.0000 1.4141 0.0000|| 85.2373 0.0000
2.1291 || 1.6278| 189.8409] 0.0035| 9.3333] 0.0333 0.0000] 100.0000 1.3363 0.2299]| 85.4130 0.0000
2.2300 || 1.4818| 189.1290| 0.0045| 11.4000| 0.0000 0.0000| 100.0000 1.4059 0.4598]|| 85.2373 0.0000
2.3309 || 1.4348] 190.2799] 0.0030| 9.0000| 0.0333 0.0000] 100.0000 1.4127 0.0000]] 85.0615 0.0000
2.4318 || 1.5279| 189.7745| 0.0032| 9.8667| 0.0667 0.0000| 100.0000 1.3937 0.0000|| 85.2373| 94.3761
2.5327 || 1.2710| 188.4975] 0.0060| 9.8000| 0.0333 0.0000] 100.0000 1.3864 0.2299]| 85.2373 0.0000
2.6336 | 1.1509| 187.8751| 0.0080| 8.0667| 0.0667 0.0000| 100.0000 1.3290 0.0000|| 85.0615 0.0000
2.7345 || 1.4121] 188.3470] 0.0040| 8.6667| 0.1333 0.0000] 100.0000 1.4139 0.2299]| 84.8858 0.0000
2.8355 || 1.1991| 188.1834| 0.0096| 10.6667| 0.1000 0.0000| 100.0000 1.3558 0.6897| 84.5343 0.0000
2.9364 || 1.4802| 188.1802] 0.0028| 8.7333] 0.0000 0.0000] 100.0000 1.4065 0.2299]| 85.4130] 94.9033
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Appendix E— continued from previous page

Arpo Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | CorrVal Corr || K-means| SVMlight
o, Mai nt ai n Mai nt ai n
3.0373 || 1.2976] 189.5162| 0.0029| 10.1333| 0.0000 0.0000] 100.0000 1.3956 0.0000|| 83.8313 0.0000
3.1382 || 1.3235| 189.6490| 0.0056| 11.5333| 0.0667 0.0000| 100.0000 1.4019 0.2299|| 85.4130 0.0000
3.2391 || 1.2555]| 189.7250] 0.0093| 11.8000| 0.0333 0.0000] 100.0000 1.3815 0.0000|| 83.8313 0.0000
3.3400 || 1.4331] 188.5671| 0.0071| 10.3333| 0.0000 0.0000| 100.0000 1.4129 0.2299|| 85.2373 0.0000
3.4409 || 1.5858]| 188.5052| 0.0056| 8.9333| 0.0000 0.0000] 100.0000 1.3660 0.2299]|| 85.4130] 94.7276
3.5418 || 1.3883| 188.2498| 0.0054| 10.0000| 0.0667 0.0000| 100.0000 1.4132 0.4598|| 85.0615 0.0000
3.6427 || 1.3707| 190.5195] 0.0033| 11.0000| 0.0667 0.0000] 100.0000 1.4113 0.4598|| 84.5343 0.0000
3.7436 || 1.3457| 190.4528| 0.0029| 9.6667| 0.0667 0.0000| 100.0000 1.4071 0.2299|| 85.4130 0.0000
3.8445 || 1.6994| 189.9640] 0.0052| 8.7333] 0.0000 0.0000] 100.0000 1.2640 0.2299|| 84.3585 0.0000
3.9455 || 1.4658| 190.0320| 0.0029| 9.0000| 0.0333 0.0000| 100.0000 1.4097 0.2299| 85.2373| 93.6731
4.0464 || 1.3482] 187.9381] 0.0049] 10.7333| 0.0000 0.0000] 100.0000 1.4084 0.2299|| 84.5343 0.0000
4.1473 || 1.3803| 189.5066] 0.0050| 9.8000| 0.0333 0.0000| 100.0000 1.4117 0.2299|| 84.3585 0.0000
4.2482 || 1.3109] 188.0351] 0.0063| 9.3333| 0.0667 0.0000] 100.0000 1.4002 0.2299|| 85.2373 0.0000
4.3491 || 1.2437| 191.4764| 0.0057| 10.1333| 0.0000 0.0000| 100.0000 1.3765 0.0000|| 85.4130 0.0000
4.4500 || 1.4280] 189.3373] 0.0050] 11.6000| 0.0000 0.0000] 100.0000 1.4138 0.0000|| 84.0070] 93.8489
4.5509 || 1.3423| 187.7980| 0.0062| 10.2000| 0.0333 0.0000| 100.0000 1.4071 0.0000|| 85.4130 0.0000
4.6518 || 1.3265] 189.5126] 0.0057] 10.8667| 0.0333 0.0000] 100.0000 1.4032 0.4598|| 85.2373 0.0000
4.7527 || 1.6202| 189.3827| 0.0029| 10.6000| 0.1000 0.0000| 100.0000 1.3410 0.4598|| 85.2373 0.0000
4.8536 || 1.0845] 187.6170] 0.0063| 10.9333| 0.0000 0.0000] 100.0000 1.2863 0.2299|| 85.2373 0.0000
4.9545 || 1.3953] 189.6287| 0.0033| 9.4000| 0.0667 0.0000| 100.0000 1.4134 0.9195| 85.0615| 94.7276
5.0555 || 1.5863| 188.1352| 0.0035| 10.2667| 0.0333 0.0000] 100.0000 1.3647 0.2299|| 85.4130 0.0000
5.1564 || 1.6047| 190.7523| 0.0025| 8.6667| 0.0667 0.0000| 100.0000 1.3546 0.2299|| 84.3585 0.0000
5.2573 || 1.3585| 188.1660] 0.0069| 8.3333| 0.0333 0.0000] 100.0000 1.4099 0.0000|| 85.4130 0.0000
5.3582 || 1.4425| 190.1701| 0.0040| 8.4000| 0.0000 0.0000| 100.0000 1.4125 0.2299| 83.8313 0.0000
5.4591 || 1.4764| 188.8550] 0.0042| 9.2667| 0.1000 0.0000] 100.0000 1.4083 0.0000|| 85.2373 0.0000
5.5600 || 1.1957| 188.0411| 0.0057| 9.1333| 0.0667 0.0000| 100.0000 1.3542 0.0000|| 85.2373 0.0000
5.6609 || 1.4697| 189.5347| 0.0044| 11.0000| 0.0333 0.0000] 100.0000 1.4092 0.4598|| 84.5343 0.0000
5.7618 || 1.2695| 187.5794| 0.0070| 8.6667| 0.0667 0.0000| 100.0000 1.3863 0.2299|| 84.3585 0.0000
5.8627 || 1.0727| 188.3002| 0.0060| 9.6667| 0.0667 0.0000] 100.0000 1.2769 0.2299|| 84.3585 0.0000
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Appendix E— continued from previous page

Arpo Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | CorrVal Corr || K-means| SVMlight
o, Mai nt ai n Mai nt ai n
5.9636 || 1.4734| 189.4912| 0.0036| 10.1333| 0.0333 0.0000] 100.0000 1.4086 0.0000|| 84.7100 0.0000
6.0645 || 1.3161| 188.6011] 0.0079| 7.9333| 0.0000 0.0000| 100.0000 1.4009 0.0000|| 85.2373 0.0000
6.1655 || 1.6031| 189.1077] 0.0042] 9.4000| 0.1000 0.0000] 100.0000 1.3550 0.2299|| 85.4130 0.0000
6.2664 || 1.6149| 190.2901| 0.0040| 10.5333| 0.0333 0.0000| 100.0000 1.3458 0.2299|| 85.2373 0.0000
6.3673 || 1.4018]| 186.8280] 0.0076] 7.6000| 0.1333 0.0000] 100.0000 1.4138 0.2299|] 85.4130 0.0000
6.4682 || 1.4019| 189.0532| 0.0037| 10.4667| 0.0333 0.0000| 100.0000 1.4138 0.0000|| 85.2373 0.0000
6.5691 || 1.4501] 186.8395] 0.0066| 11.1333| 0.0000 0.0000] 100.0000 1.4119 0.0000|| 85.0615 0.0000
6.6700 || 1.6494| 190.5707| 0.0046| 9.0667| 0.0333 0.0000| 100.0000 1.3164 0.2299|| 85.4130 0.0000
6.7709 || 1.4227| 189.7311] 0.0024| 10.0667| 0.0333 0.0000] 100.0000 1.4134 0.0000|| 85.4130 0.0000
6.8718 || 1.5332| 189.6586| 0.0033| 12.3333| 0.0333 0.0000| 100.0000 1.3916 0.2299|| 85.4130 0.0000
6.9727 || 1.1127]| 189.4738] 0.0080| 8.8000| 0.1000 0.0000] 100.0000 1.3045 0.0000|| 85.2373 0.0000
7.0736 || 1.3027| 187.9888| 0.0096| 11.5333| 0.0333 0.0000| 100.0000 1.3979 0.2299|| 85.2373 0.0000
7.1745 || 1.5690] 189.0069] 0.0030] 9.2667| 0.0333 0.0000] 100.0000 1.3753 0.2299|| 85.4130 0.0000
7.2755 || 1.2007| 188.4531] 0.0043| 7.6667| 0.0667 0.0000| 100.0000 1.3568 0.0000|| 85.0615 0.0000
7.3764 || 1.2603]| 189.3822] 0.0063]| 10.5333| 0.0333 0.0000] 100.0000 1.3833 0.4598|| 83.8313 0.0000
7.4773 || 1.2069| 188.3995| 0.0067| 8.5333| 0.0333 0.0000| 100.0000 1.3589 0.0000|| 85.2373 0.0000
7.5782 || 1.3821] 188.8814] 0.0055| 8.5333| 0.0333 0.0000] 100.0000 1.4122 0.4598|| 85.4130 0.0000
7.6791 || 1.3838| 189.7021| 0.0038| 9.3333| 0.0667 0.0000| 100.0000 1.4128 0.4598|| 85.2373 0.0000
7.7800 || 1.3955]| 187.9931] 0.0080| 11.4000| 0.0333 0.0000] 100.0000 1.4134 0.4598|| 85.4130 0.0000
7.8809 || 1.2299| 188.5427| 0.0069| 12.6667| 0.0000 0.0000| 100.0000 1.3708 0.2299|| 85.2373 0.0000
7.9818 || 1.0878] 189.2455] 0.0062| 8.8667| 0.0333 0.0000] 100.0000 1.2872 0.2299|| 85.4130 0.0000
8.0827 || 1.4321| 187.4443| 0.0065| 10.4000| 0.0333 0.0000| 100.0000 1.4131 0.2299|| 85.2373 0.0000
8.1836 || 1.4061| 190.1072| 0.0049| 9.7333] 0.0667 0.0000] 100.0000 1.4140 0.0000|| 85.2373 0.0000
8.2845 || 1.2145] 189.0075| 0.0046| 9.2667| 0.0000 0.0000| 100.0000 1.3629 0.0000|| 85.2373 0.0000
8.3855 || 1.4467| 190.1575] 0.0032| 10.7333] 0.0000 0.0000] 100.0000 1.4121 0.9195|| 85.2373 0.0000
8.4864 || 1.2286| 189.6404| 0.0061| 10.0000| 0.0333 0.0000| 100.0000 1.3700 0.2299|| 85.4130 0.0000
8.5873 || 1.3415] 189.2221| 0.0034| 9.8667| 0.0000 0.0000] 100.0000 1.4069 0.0000|| 85.4130 0.0000
8.6882 || 1.4510| 188.1392| 0.0064| 9.8000| 0.0333 0.0000| 100.0000 1.4117 0.0000|| 85.0615 0.0000
8.7891 || 1.2051| 188.2831] 0.0060| 10.4667| 0.0667 0.0000] 100.0000 1.3592 0.4598]|| 83.8313 0.0000
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Appendix E— continued from previous page

Arpo Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | CorrVal Corr || K-means| SVMlight
o, Mai nt ai n Mai nt ai n
8.8900 || 1.5234| 189.6075] 0.0040| 9.8000| 0.0333 0.0000] 100.0000 1.3956 0.0000|| 85.2373 0.0000
8.9909 || 1.4847| 188.8963| 0.0048| 10.0667| 0.1000 0.0000| 100.0000 1.4059 0.0000|| 85.2373 0.0000
9.0918 || 1.2900| 190.1018] 0.0036| 11.4667| 0.0000 0.0000] 100.0000 1.3935 0.2299|| 85.2373 0.0000
9.1927 || 1.1593| 188.6469| 0.0086| 10.3333| 0.0333 0.0000| 100.0000 1.3347 0.0000|| 85.2373 0.0000
9.2936 || 1.6666| 190.0232| 0.0056| 8.6667| 0.0000 0.0000] 100.0000 1.3006 0.0000|| 85.2373 0.0000
9.3945 || 1.2674| 189.4292| 0.0070| 9.8667| 0.0333 0.0000| 100.0000 1.3864 0.0000|| 85.0615 0.0000
9.4955 || 1.4381| 187.9024| 0.0042| 11.5333] 0.0000 0.0000] 100.0000 1.4128 0.0000|| 85.4130 0.0000
9.5964 || 1.3661| 188.6621| 0.0026| 9.6667| 0.0333 0.0000| 100.0000 1.4108 0.2299|| 85.2373 0.0000
9.6973 || 1.3007| 186.9893| 0.0088| 10.9333| 0.0333 0.0000] 100.0000 1.3970 0.0000|| 84.8858 0.0000
9.7982 || 1.3293| 190.1673| 0.0040| 10.0667| 0.0000 0.0000| 100.0000 1.4038 0.4598|| 85.0615 0.0000
9.8991 || 1.3774| 189.7847| 0.0032| 10.8667| 0.0000 0.0000] 100.0000 1.4124 0.2299|| 85.2373 0.0000
10.0000 || 1.3125| 188.7087| 0.0059| 8.6000| 0.0000 0.0000| 100.0000 1.4003 0.0000|| 85.2373 0.0000
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Appendix F: the Random Projection data modificatiop:A on WDBC (569 x 30).

rpA Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st Cor r Val Corr || K-means| SVMlight
oy Mai nt ai n Mai nt ai n

0.0100 1.0255] 188.9100] 0.0019| 10.0000| 0.0000 0.8226 0.0012 0.9442 67.3563| 50.9666| 51.1424
0.1109 2.9476] 190.1832| 0.0018| 2.0000| 0.6333 4.8264 0.0000 6.7497 42.5287|| 52.8998| 56.0633
0.2118 5.0594| 190.8349| 0.0018| 7.6667| 0.0000 8.8939 0.0006 23.0469 53.1034|] 49.3849 0.0000
0.3127 7.3963] 190.4995| 0.0017| 10.1333] 0.0000 13.5138 0.0006 52.1890 67.5862|] 50.4394 0.0000
0.4136 10.0277| 189.5033| 0.0016| 6.9333| 0.4667 18.6969 0.0000 99.0988 70.3448| 51.4938| 51.4938
0.5145 12.8864| 188.6976] 0.0019| 9.1333] 0.1667 24.3457 0.0000] 166.0336 58.6207| 51.6696 0.0000
0.6155 14.7647| 189.9690| 0.0021| 8.6000| 0.1667 27.8577 0.0000| 216.5006 51.7241|] 50.6151 0.0000
0.7164 17.7747| 190.6508] 0.0019| 9.6000| 0.1000 33.6931 0.0006] 314.6888 45.0575|] 46.7487 0.0000
0.8173 19.9307| 190.3659| 0.0021| 7.6667| 0.3333 37.8446 0.0006| 395.6322 72.6437| 50.4394 0.0000
0.9182 21.0201] 189.5238| 0.0011| 6.4000] 0.2333 39.9285 0.0006] 439.9028 62.2989| 49.5606| 53.7786
1.0191 25.1639| 191.2163| 0.0012| 9.8667| 0.0000 47.8453 0.0000| 629.7400 49.1954|| 51.6696 0.0000
1.1200 27.4374] 190.1958| 0.0022| 9.2667]| 0.0667 52.3975 0.0000] 753.4051 54.9425]] 46.5729 0.0000
1.2209 29.6143] 190.7394| 0.0014| 10.5333| 0.0333 56.4877 0.0019| 875.3902 50.5747|| 51.1424 0.0000
1.3218 31.9740] 188.9631| 0.0011| 9.8667] 0.0333 61.1519 0.0006]| 1024.4111 57.2414]] 50.0879 0.0000
1.4227 34.3562| 189.0739| 0.0015| 9.4667| 0.0333 65.5806 0.0006| 1176.0270 66.8966| 49.5606 0.0000
1.5236 34.6933] 190.5951| 0.0018| 9.0000] 0.0000 66.3695 0.0012] 1202.8601 59.3103]] 50.7909 0.0000
1.6245 37.4507| 188.6876| 0.0014| 8.2667| 0.1000 71.6809 0.0012| 1403.1668 31.0345|] 49.3849 0.0000
1.7255 43.1507| 190.6088] 0.0020| 3.6667| 0.4000 82.5415 0.0012] 1861.1719 62.0690|] 50.0879 0.0000
1.8264 41.8727| 190.9632| 0.0016| 1.7333| 0.7000 79.9037 0.0006| 1757.7448 52.4138]| 49.0334 0.0000
1.9273 46.9986| 190.1433] 0.0015| 11.4000| 0.0000 89.7725 0.0000| 2202.0068 71.7241| 49.0334| 52.3726
2.0282 47.7109| 189.3139| 0.0023| 8.4000| 0.0667 91.4657 0.0006| 2275.7783 52.4138]| 52.5483 0.0000
2.1291 52.8871| 189.5644| 0.0021| 1.6667| 0.7000(|| 100.7123 0.0000| 2807.9961 457471 52.5483 0.0000
2.2300 54.1867| 189.8517| 0.0026| 10.2667| 0.0000|| 103.8695 0.0000| 2935.0204 55.8621| 46.7487 0.0000
2.3309 53.0153] 190.5104| 0.0021| 10.2000| 0.0333|| 101.6023 0.0006]| 2800.5273 53.1034|| 47.6274 0.0000
2.4318 57.3772| 188.9261| 0.0019| 8.2000| 0.0667| 110.1020 0.0000| 3289.6072 48.9655|| 42.7065| 50.7909
2.56327 59.4014| 189.7954| 0.0015| 10.4667| 0.0000(|] 113.3297 0.0006]| 3516.5401 60.4598|] 48.6819 0.0000
2.6336 62.0352| 190.2550| 0.0022| 9.2667| 0.1333|| 119.0595 0.0012| 3848.4286 67.1264| 47.8032 0.0000
2.7345 64.4819| 187.8635| 0.0018| 4.4000| 0.6333| 123.7581 0.0012]| 4155.7857 57.0115|] 49.9121 0.0000
2.8355 67.5673| 191.5809| 0.0018| 10.8000| 0.0333|| 129.6485 0.0019| 4554.8165 74.2529|| 47.8032 0.0000
2.9364 68.6021] 189.9011| 0.0023| 4.6667| 0.5333| 131.7064 0.0006| 4706.6288 40.0000|| 53.0756] 51.3181
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Appendix -_ continued from previous page

rpA Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st Cor r Val Corr || K-means| SVMlight
o—r Mai nt ai n Mai nt ai n

3.0373 70.3643| 188.6351] 0.0019]| 9.7333] 0.0000| 135.2067 0.0012| 4952.8565 48.9655]] 50.7909 0.0000
3.1382 75.0239| 189.8200] 0.0016| 5.0667| 0.6000| 144.0096 0.0012| 5631.7270 49.6552|| 52.3726 0.0000
3.2391 75.7172| 188.1319] 0.0020| 6.3333] 0.2333| 145.3184 0.0006] 5736.2570 47.8161]] 50.2636 0.0000
3.3400 79.6232| 190.8837| 0.0013| 10.0000| 0.0000| 152.9175 0.0012| 6335.5615 48.9655| 51.3181 0.0000
3.4409 88.0715| 191.2837] 0.0022] 11.0667| 0.0000| 168.7328 0.0006| 7752.9582 61.3793| 47.4517] 52.0211
3.5418 85.6351| 188.9647| 0.0015| 8.6000| 0.0667| 164.4314 0.0000| 7319.4022 62.9885| 46.0457 0.0000
3.6427 88.9226| 189.4787| 0.0012] 10.9333] 0.0333| 170.9348 0.0000| 7907.4661 61.6092|] 52.7241 0.0000
3.7436 88.7213| 188.0699| 0.0013| 11.0000| 0.0333| 170.4516 0.0006| 7868.7021 53.7931|| 51.8453 0.0000
3.8445 91.8989| 189.0302] 0.0019]| 9.8667| 0.0000| 176.1837 0.0006| 8426.7432 46.2069]] 50.2636 0.0000
3.9455 91.2852| 188.0197| 0.0020| 10.6000| 0.0333| 175.3778 0.0006| 8318.4743 47.3563|] 54.6573| 51.6696
4.0464 93.0691| 190.4704] 0.0016| 7.3333] 0.0333| 178.8824 0.0006| 8645.8261 69.1954|] 52.0211 0.0000
4.1473 || 102.3242| 188.7726| 0.0016| 9.4667| 0.1000|| 196.8310 0.0012| 10483.1366 58.8506|| 51.1424 0.0000
4.2482 93.5961| 190.6418] 0.0012] 11.0667| 0.0000| 179.9015 0.0006| 8742.9594 48.2759]] 52.1968 0.0000
4.3491 96.9375| 190.5093| 0.0018| 4.4000| 0.7333| 186.1355 0.0000| 9392.0031 47.8161| 48.1547 0.0000
4.4500 || 102.9173] 189.2175| 0.0016| 10.2667| 0.0000| 197.7163 0.0006| 10577.5293 52.6437| 47.4517| 56.0633
4.5509 || 105.3957| 189.7434| 0.0018| 10.1333| 0.0333| 202.6841 0.0006| 11096.9765 56.5517|| 51.3181 0.0000
4.6518 || 113.6588| 189.5269| 0.0016| 9.5333| 0.0000| 217.8457 0.0012]| 12902.1323 59.5402|| 49.3849 0.0000
4.7527 || 110.5891| 188.1852| 0.0018| 5.4000| 0.3667| 212.6757 0.0000| 12245.2930 52.6437|| 49.5606 0.0000
4.8536 || 112.8578] 189.1156] 0.0015| 6.9333] 0.3667| 217.1102 0.0000| 12739.9064 63.4483| 47.9789 0.0000
4.9545 || 121.9331] 190.4586| 0.0012| 4.7333| 0.4667| 234.6220 0.0000| 14869.1685 54.7126|| 47.8032] 52.1968
5.0555 || 117.6319] 191.8598| 0.0019| 11.3333] 0.0333]|| 226.2366 0.0000| 13823.9364 58.3908|| 49.9121 0.0000
5.1564 || 121.9034| 189.9640| 0.0015| 8.7333| 0.0000| 233.5913 0.0019| 14841.6768 69.4253| 53.4271 0.0000
5.2573 || 131.9531] 190.0191] 0.0016| 4.8667| 0.4000| 253.3441 0.0000| 17432.3982 44.1379]] 51.8453 0.0000
5.3582 || 123.3097| 189.6437| 0.0021| 9.5333| 0.0000| 237.0571 0.0006| 15182.0862 64.3678| 47.8032 0.0000
5.4591 | 134.4226] 191.5946] 0.0018| 8.0667| 0.0000| 258.4806 0.0000| 18071.5966 70.5747]|] 47.1002 0.0000
5.5600 || 132.2477| 190.1896| 0.0014| 8.5333| 0.0000| 254.0178 0.0012| 17474.9184 70.3448|| 51.3181 0.0000
5.6609 | 139.1211] 190.6916] 0.0012| 8.8000| 0.0000| 266.5252 0.0000| 19340.4033 62.5287| 50.4394 0.0000
5.7618 | 139.8503| 192.2979| 0.0012| 9.2000| 0.0000|| 268.5420 0.0000| 19528.6404 43.9080| 49.2091 0.0000
5.8627 || 145.7410] 189.4123] 0.0025| 2.9333] 0.7667| 280.0223 0.0006| 21274.1978 60.0000]] 44.4640 0.0000
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Appendix -_ continued from previous page

rpA Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st Cor r Val Corr || K-means| SVMlight
o—r Mai nt ai n Mai nt ai n

5.9636 || 149.0896| 190.4005| 0.0019| 1.1333] 0.6667| 286.7357 0.0000| 22255.4794 64.5977|] 50.6151 0.0000
6.0645 || 149.2367| 190.1544] 0.0013| 9.6000| 0.0000|| 286.9920 0.0000| 22273.6541 47.3563|] 50.2636 0.0000
6.1655 || 148.6122] 188.0326] 0.0018| 10.6000| 0.0333]|| 285.9571 0.0006| 22066.1868 45.9770]] 52.8998 0.0000
6.2664 || 145.4679| 187.8161| 0.0016| 11.6667| 0.0000| 279.8479 0.0006| 21132.3027 29.8851|| 50.4394 0.0000
6.3673 || 149.5499] 191.3322| 0.0011| 6.2000| 0.4667]| 287.6098 0.0019] 22365.8579 62.9885] 49.0334 0.0000
6.4682 || 157.6656| 189.9699| 0.0015| 3.5333| 0.6000| 303.3885 0.0000| 24885.4048 60.9195|] 48.5062 0.0000
6.5691 || 158.8172] 190.9383] 0.0018| 10.9333] 0.1000| 305.7483 0.0000| 25238.2724 57.0115|] 50.6151 0.0000
6.6700 || 157.8186| 190.3276| 0.0016| 3.4667| 0.4667| 303.3422 0.0000| 24928.7716 49.6552|| 46.3972 0.0000
6.7709 || 160.6925| 188.6915| 0.0015| 10.0000| 0.0333]|| 309.4056 0.0012| 25824.5130 62.0690|] 52.0211 0.0000
6.8718 || 155.8792| 190.4274| 0.0017| 4.9333| 0.4667| 300.1033 0.0000| 24262.0413 47.8161|] 45.5185 0.0000
6.9727 || 174.8567| 188.0346] 0.0021| 9.1333] 0.0000| 336.2836 0.0000| 30586.0076 36.5517|| 52.3726 0.0000
7.0736 || 164.1636| 190.4277| 0.0013| 5.8667| 0.2333|| 315.8853 0.0006| 26944.9059 51.9540|| 53.6028 0.0000
7.1745 || 174.1024] 189.5293| 0.0015| 7.7333] 0.0000| 335.0017 0.0006| 30304.1957 56.7816|| 49.0334 0.0000
7.2755 || 176.1722] 190.6369| 0.0018| 6.1333] 0.5667| 339.0822 0.0012| 31050.3987 59.7701|| 51.1424 0.0000
7.3764 || 174.7405] 190.3087] 0.0019| 4.6000| 0.3000| 336.4436 0.0025| 30537.8857 60.4598]| 51.1424 0.0000
7.4773 || 181.1392| 188.5117| 0.0019| 5.4667| 0.2667| 348.6711 0.0012| 32823.7395 46.6667| 50.4394 0.0000
7.5782 || 184.2834| 188.8057| 0.0023| 6.4667| 0.1667| 354.9192 0.0000| 33983.8962 51.9540|| 53.6028 0.0000
7.6791 | 183.2310| 187.9768| 0.0017| 4.8667| 0.4333|| 352.4129 0.0000| 33583.4306 56.3218|| 49.2091 0.0000
7.7800 || 181.9794] 189.7129] 0.0025| 11.4000] 0.0667| 350.4624 0.0000| 33101.3545 48.0460] 49.9121 0.0000
7.8809 || 191.5518| 189.1237| 0.0016| 7.8667| 0.0000| 368.7233 0.0006| 36678.7361 65.7471]| 51.6696 0.0000
7.9818 || 187.5067| 189.0153] 0.0016| 4.4667| 0.7000| 359.9022 0.0000| 35185.7400 57.4713|| 49.7364 0.0000
8.0827 || 190.4633| 189.3725| 0.0018| 3.0000| 0.7000| 365.2285 0.0000| 36317.1065 51.7241|| 49.7364 0.0000
8.1836 || 199.3905| 189.6983| 0.0017| 2.0667| 0.7333]| 382.8672 0.0000| 39804.7219 61.3793]|] 49.9121 0.0000
8.2845 || 194.7559| 189.2206| 0.0015| 2.1333]| 0.6667| 374.0243 0.0000| 37948.6437 54.7126|| 53.2513 0.0000
8.3855 || 202.9098| 188.8839| 0.0013| 10.3333] 0.0000| 390.6239 0.0000| 41173.0841 54.9425|| 46.3972 0.0000
8.4864 | 202.8055| 190.2224| 0.0021| 1.8667| 0.7000| 389.3564 0.0012| 41171.2176 67.8161|| 49.0334 0.0000
8.5873 || 197.0407| 188.6185| 0.0018| 11.0667| 0.0333]|| 379.5046 0.0000| 38812.1101 53.3333|| 53.9543 0.0000
8.6882 | 212.6210| 189.6026| 0.0024| 7.4000| 0.2333|| 409.3531 0.0000| 45225.4534 68.7356| 52.1968 0.0000
8.7891 | 209.4096] 192.7673] 0.0015| 9.5333] 0.0000| 403.1187 0.0006| 43846.7225 70.5747]| 48.8576 0.0000
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Appendix -_ continued from previous page

rpA Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st Cor r Val Corr || K-means| SVMlight
o—r Mai nt ai n Mai nt ai n

8.8900 || 216.0106] 190.7873] 0.0020| 9.6667] 0.0000] 414.9974 0.0006| 46608.8865 41.8391]] 49.3849 0.0000
8.9909 | 217.4669| 189.8458| 0.0021| 3.2000| 0.6000| 418.2498 0.0012| 47304.1880 50.5747|| 51.1424 0.0000
9.0918 | 222.5247| 189.3220] 0.0022| 9.8000| 0.0000| 427.3837 0.0006| 49515.6117 65.7471]] 49.3849 0.0000
9.1927 || 213.9600| 189.0841| 0.0019| 9.9333| 0.0000| 411.9759 0.0025| 45771.5931 62.2989| 49.7364 0.0000
9.2936 || 223.1847| 187.1333] 0.0016| 8.8000| 0.0000| 429.5726 0.0006| 49817.3844 50.1149|| 49.9121 0.0000
0.3945 || 228.9925| 189.7481| 0.0013| 5.8667| 0.5667| 441.0160 0.0012| 52445.5506 59.7701|| 49.0334 0.0000
9.4955 || 228.3972| 188.8244] 0.0023| 9.1333] 0.0000| 439.4519 0.0012| 52124.3442 60.9195|] 47.8032 0.0000
9.5964 || 224.3466| 188.4394| 0.0017| 11.2667| 0.0667| 431.9813 0.0006| 50361.3566 57.4713|| 49.0334 0.0000
9.6973 || 229.1669| 189.8374| 0.0016| 9.0000| 0.0000| 440.6262 0.0000| 52472.0316 56.7816|| 55.0088 0.0000
9.7982 | 224.1132| 188.7336| 0.0022| 8.8000| 0.0000| 431.3731 0.0012| 50168.5773 44.3678|| 53.7786 0.0000
9.8991 || 254.9169| 190.3637] 0.0022| 6.9333] 0.3333]] 490.9384 0.0012| 65010.2893 54.4828|| 46.9244 0.0000
10.0000 || 248.3585| 190.2059| 0.0018| 3.3333| 0.7000| 477.2748 0.0000| 61737.2010 52.1839|| 47.4517 0.0000




8.1

Appendix G: the Random Projection data modificatiopoA on WDBC (569 x 30).

rpoA Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | CorrVal Corr || K-means| SVMlight
o, Mai nt ai n Mai nt ai n

0.0100 || 1.4342]| 190.0144] 0.0015| 9.0000| 0.0000 1.5873 0.0012 0.0000] 100.0000| 49.7364| 52.5483
0.1109 || 1.4273| 190.8490| 0.0015| 8.6000| 0.0667 1.5901 0.0000 0.0000] 100.0000| 52.5483| 56.0633
0.2118 || 1.3887| 190.3886| 0.0022| 8.1333| 0.1333 1.5488 0.0000 0.0000] 100.0000| 49.0334 0.0000
0.3127 || 1.3772| 189.2055| 0.0013| 1.5333] 0.9333 1.5488 0.0012 0.0000] 100.0000| 50.4394 0.0000
0.4136 || 1.4586| 189.8460| 0.0015| 8.6667| 0.0000 1.5590 0.0000 0.0000| 100.0000| 49.0334| 56.7663
0.5145 || 1.4249| 190.2913| 0.0021| 11.1333| 0.0000 1.5843 0.0006 0.0000] 100.0000| 54.1301 0.0000
0.6155 || 1.3968| 188.1011| 0.0022| 4.0667| 0.4667 1.5730 0.0012 0.0000| 100.0000| 49.5606 0.0000
0.7164 || 1.4410| 189.8856| 0.0017| 12.1333| 0.0667 1.5797 0.0012 0.0000] 100.0000| 49.0334 0.0000
0.8173 || 1.4307| 188.6425| 0.0025| 8.2667| 0.0333 1.5632 0.0006 0.0000| 100.0000| 51.3181 0.0000
0.9182 || 1.4654| 187.7311| 0.0016| 9.6000| 0.0000 1.5644 0.0006 0.0000] 100.0000| 46.5729| 51.4938
1.0191 || 1.4088| 191.6266| 0.0013| 4.7333| 0.4333 1.5683 0.0000 0.0000| 100.0000| 49.0334 0.0000
1.1200 || 1.4128| 190.3219| 0.0016| 9.0667| 0.0667 1.5734 0.0000 0.0000] 100.0000| 48.8576 0.0000
1.2209 || 1.4484| 189.1163| 0.0015| 8.7333| 0.0000 1.5878 0.0019 0.0000| 100.0000| 50.6151 0.0000
1.3218 || 1.4441] 189.3459| 0.0020| 11.1333| 0.0000 1.5780 0.0019 0.0000] 100.0000| 50.2636 0.0000
1.4227 || 1.3417| 189.3051| 0.0015| 3.0667| 0.7000 1.5605 0.0012 0.0000| 100.0000| 52.5483| 53.9543
1.5236 || 1.3828| 190.1667| 0.0022| 7.6667| 0.0667 1.5976 0.0012 0.0000] 100.0000| 49.5606 0.0000
1.6245 || 1.4123| 191.0161| 0.0015| 9.4667| 0.0333 1.5883 0.0000 0.0000| 100.0000| 52.1968 0.0000
1.7255 [ 1.4168| 189.6301| 0.0016| 10.3333| 0.0000 1.5738 0.0000 0.0000] 100.0000| 47.6274 0.0000
1.8264 || 1.4283| 190.6296| 0.0013| 10.4667| 0.0000 1.5626 0.0006 0.0000| 100.0000| 48.6819 0.0000
1.9273 || 1.4527| 188.8448| 0.0015| 9.7333] 0.0000 1.5814 0.0000 0.0000] 100.0000|f 52.0211| 52.0211
2.0282 || 1.4375| 190.2916] 0.0017| 8.7333| 0.0000 1.5851 0.0012 0.0000| 100.0000| 47.8032 0.0000
2.1291 || 1.4413] 190.1441] 0.0023| 9.2000| 0.0000 1.5569 0.0019 0.0000] 100.0000| 50.4394 0.0000
2.2300 || 1.4364| 191.8605| 0.0015| 7.6000| 0.0000 1.5863 0.0000 0.0000| 100.0000| 50.2636 0.0000
2.3309 || 1.3763| 190.8077] 0.0018| 2.9333] 0.4333 1.5653 0.0006 0.0000] 100.0000| 55.7118 0.0000
2.4318 || 1.3820| 189.5135| 0.0016| 8.7333| 0.2667 1.5593 0.0006 0.0000| 100.0000| 46.9244| 53.9543
2.5327 || 1.3924| 188.7565| 0.0012| 3.1333] 0.5667 1.5727 0.0000 0.0000] 100.0000| 52.0211 0.0000
2.6336 || 1.4524| 190.5376] 0.0015| 9.0000| 0.1000 1.5699 0.0000 0.0000| 100.0000| 47.8032 0.0000
2.7345 | 1.3893| 188.8344| 0.0022| 8.2000| 0.1000 1.5692 0.0006 0.0000] 100.0000| 47.8032 0.0000
2.8355 || 1.4057| 191.1570| 0.0018| 11.6667| 0.0333 1.5755 0.0000 0.0000| 100.0000| 49.9121 0.0000
2.9364 || 1.4226| 189.6773] 0.0016| 9.6000| 0.0000 1.5604 0.0000 0.0000] 100.0000| 49.0334| 55.7118
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Appendix (G- continued from previous page

rpoA Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | CorrVal Corr || K-means| SVMlight
o, Mai nt ai n Mai nt ai n
3.0373 || 1.4220| 189.8400] 0.0015| 7.8000| 0.0333 1.5564 0.0012 0.0000] 100.0000]] 51.3181 0.0000
3.1382 || 1.4133] 189.4395| 0.0017| 11.4667| 0.0000 1.5730 0.0000 0.0000] 100.0000]|] 50.4394 0.0000
3.2391 || 1.3969| 191.5469| 0.0013| 11.4667| 0.0000 1.5639 0.0012 0.0000] 100.0000]] 52.1968 0.0000
3.3400 || 1.4543| 188.4251| 0.0023| 8.6667| 0.0000 1.5739 0.0012 0.0000| 100.0000]|] 47.6274 0.0000
3.4409 || 1.4020| 189.0166] 0.0019| 0.4000| 0.7667 1.5649 0.0000 0.0000] 100.0000|] 48.1547| 49.7364
3.5418 || 1.4729| 189.9322| 0.0021| 9.2667| 0.0000 1.5351 0.0012 0.0000] 100.0000]] 50.7909 0.0000
3.6427 || 1.4392| 189.6257| 0.0016| 8.4000| 0.0667 1.5672 0.0006 0.0000] 100.0000]] 48.8576 0.0000
3.7436 || 1.4116| 189.9481| 0.0014| 6.5333| 0.5000 1.5890 0.0012 0.0000] 100.0000]] 44.6397 0.0000
3.8445 || 1.4286| 189.2043| 0.0019| 7.4667| 0.1333 1.5701 0.0000 0.0000] 100.0000]] 51.3181 0.0000
3.9455 || 1.4249| 188.2894| 0.0017| 9.2000| 0.0000 1.5725 0.0000 0.0000| 100.0000]] 50.0879| 54.1301
4.0464 || 1.4026] 189.0557] 0.0019]| 3.3333| 0.7667 1.5600 0.0006 0.0000] 100.0000]] 47.9789 0.0000
4.1473 || 1.4336| 188.4402| 0.0019| 7.8000| 0.0000 1.5890 0.0012 0.0000] 100.0000]] 49.0334 0.0000
4.2482 || 1.4285] 188.8888] 0.0013] 12.4667| 0.0333 1.5800 0.0000 0.0000] 100.0000]] 51.4938 0.0000
4.3491 || 1.3926| 189.1338| 0.0019| 9.3333| 0.1333 1.5790 0.0000 0.0000] 100.0000]] 49.5606 0.0000
4.4500 || 1.3841] 190.6913] 0.0014| 4.2667| 0.5667 1.5600 0.0019 0.0000] 100.0000]] 48.6819] 53.6028
4.5509 || 1.4732] 188.6205| 0.0015| 10.8667| 0.0000 1.5791 0.0006 0.0000] 100.0000]] 50.7909 0.0000
4.6518 || 1.4534] 190.6310] 0.0016] 9.5333| 0.0000 1.5718 0.0000 0.0000] 100.0000]] 46.5729 0.0000
4.7527 || 1.4357] 189.9379| 0.0018| 11.8667| 0.0000 1.5898 0.0019 0.0000] 100.0000|] 48.1547 0.0000
4.8536 || 1.3856] 188.5508] 0.0019] 9.9333| 0.1000 1.5781 0.0000 0.0000] 100.0000]] 50.7909 0.0000
4.9545 || 1.4608| 191.0050] 0.0012| 9.6000| 0.0000 1.5548 0.0000 0.0000| 100.0000]] 49.7364| 55.7118
5.0555 || 1.4132] 189.4011] 0.0012| 10.4667| 0.1000 1.5721 0.0000 0.0000] 100.0000]] 47.6274 0.0000
5.1564 || 1.3892| 189.0158| 0.0022| 10.0000| 0.0667 1.5681 0.0000 0.0000] 100.0000]] 50.6151 0.0000
5.2573 || 1.4477] 191.6609] 0.0018| 9.9333| 0.0000 1.5766 0.0006 0.0000] 100.0000]] 51.1424 0.0000
5.3582 || 1.3883| 190.4867| 0.0018| 13.0000| 0.0333 1.5682 0.0006 0.0000] 100.0000]] 52.0211 0.0000
5.4591 || 1.4397| 189.0674| 0.0022| 10.1333] 0.0000 1.5630 0.0006 0.0000] 100.0000]] 49.0334 0.0000
5.5600 || 1.4401| 189.9445| 0.0020| 9.7333| 0.0333 1.5827 0.0000 0.0000| 100.0000|] 48.1547 0.0000
5.6609 || 1.3869| 189.6544| 0.0018| 10.9333| 0.0000 1.5862 0.0012 0.0000] 100.0000]] 54.4815 0.0000
5.7618 || 1.4057| 189.6184| 0.0025| 6.4667| 0.3667 1.5973 0.0000 0.0000] 100.0000]] 48.6819 0.0000
5.8627 || 1.4060| 189.0533| 0.0016| 10.0667| 0.0667 1.5600 0.0000 0.0000] 100.0000]] 52.3726 0.0000

Continued on next pag
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Appendix (G- continued from previous page

rpoA Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | CorrVal Corr || K-means| SVMlight
o, Mai nt ai n Mai nt ai n
5.9636 || 1.3829| 189.6882| 0.0017| 3.8000| 0.3667 1.5697 0.0019 0.0000] 100.0000]] 49.7364 0.0000
6.0645 || 1.4738| 189.5910| 0.0017| 8.0000| 0.0000 1.5828 0.0000 0.0000] 100.0000]] 52.5483 0.0000
6.1655 || 1.3921| 187.9263] 0.0025| 4.2667| 0.5667 1.5342 0.0006 0.0000] 100.0000]] 48.5062 0.0000
6.2664 || 1.3480| 187.4630| 0.0021| 2.8667| 0.7333 1.5744 0.0000 0.0000] 100.0000]] 47.9789 0.0000
6.3673 || 1.3664| 189.4232] 0.0025| 8.6000| 0.2333 1.5533 0.0006 0.0000] 100.0000]] 52.5483 0.0000
6.4682 || 1.4738| 190.2511] 0.0017| 9.9333| 0.0000 1.5741 0.0000 0.0000] 100.0000]] 52.0211 0.0000
6.5691 || 1.4040]| 189.8649| 0.0019] 5.6000| 0.5667 1.5799 0.0006 0.0000] 100.0000]] 46.0457 0.0000
6.6700 || 1.4231| 188.2178| 0.0019| 8.0000| 0.1333 1.5857 0.0006 0.0000] 100.0000]] 48.6819 0.0000
6.7709 || 1.4276]| 188.4535] 0.0016] 11.4667| 0.0333 1.5725 0.0006 0.0000] 100.0000][] 50.6151 0.0000
6.8718 || 1.4005| 191.3417| 0.0018| 7.0000| 0.1333 1.5813 0.0000 0.0000] 100.0000]] 52.7241 0.0000
6.9727 || 1.3836]| 192.2837] 0.0017] 9.1333| 0.1000 1.5691 0.0000 0.0000] 100.0000]] 52.1968 0.0000
7.0736 || 1.4113| 189.2682| 0.0021| 9.7333| 0.0000 1.5598 0.0012 0.0000] 100.0000]] 50.0879 0.0000
7.1745 || 1.3697| 190.0231] 0.0020] 7.3333]| 0.1667 1.5591 0.0006 0.0000] 100.0000]] 55.1845 0.0000
7.2755 || 1.4210| 189.3227| 0.0019| 9.8000| 0.0333 1.5704 0.0000 0.0000| 100.0000]] 52.1968 0.0000
7.3764 || 1.4310] 188.7584] 0.0016] 12.5333| 0.0000 1.5534 0.0006 0.0000] 100.0000]] 50.2636 0.0000
7.4773 || 1.3847| 188.6186| 0.0022| 10.6000| 0.1000 1.5831 0.0000 0.0000] 100.0000]] 48.5062 0.0000
7.5782 || 1.3809| 189.3773] 0.0020] 6.7333| 0.4333 1.5874 0.0000 0.0000] 100.0000]] 50.4394 0.0000
7.6791 || 1.4400| 190.2364| 0.0019| 10.2667| 0.0000 1.5625 0.0000 0.0000] 100.0000]] 55.7118 0.0000
7.7800 || 1.3975]| 191.6344] 0.0009| 9.4000| 0.1667 1.5600 0.0000 0.0000] 100.0000]] 53.2513 0.0000
7.8809 || 1.3609| 189.9432| 0.0021| 3.6667| 0.7000 1.5728 0.0000 0.0000] 100.0000]] 50.6151 0.0000
7.9818 || 1.4565| 187.6137] 0.0019] 9.0000| 0.0333 1.5548 0.0000 0.0000] 100.0000]] 50.7909 0.0000
8.0827 || 1.4561| 188.6336| 0.0015| 8.6000| 0.0333 1.5439 0.0006 0.0000] 100.0000]] 49.2091 0.0000
8.1836 || 1.4527| 189.2145] 0.0021| 9.8000| 0.0000 1.5746 0.0012 0.0000] 100.0000]] 51.1424 0.0000
8.2845 || 1.4019| 191.4660| 0.0010| 9.2000| 0.1000 1.5722 0.0006 0.0000] 100.0000]] 52.0211 0.0000
8.3855 || 1.4801| 189.6978| 0.0025| 8.4000| 0.0000 1.5595 0.0012 0.0000] 100.0000]] 52.3726 0.0000
8.4864 || 1.3772| 189.4616| 0.0023| 6.7333| 0.1333 1.5587 0.0006 0.0000] 100.0000]] 53.4271 0.0000
8.5873 || 1.4687| 189.0088| 0.0016| 9.7333] 0.0000 1.5944 0.0000 0.0000] 100.0000]] 50.0879 0.0000
8.6882 || 1.3654| 187.9579| 0.0027| 5.5333| 0.4667 1.5806 0.0000 0.0000] 100.0000]] 52.1968 0.0000
8.7891 || 1.4158]| 189.4528| 0.0018| 10.5333| 0.0667 1.6029 0.0006 0.0000] 100.0000]] 52.1968 0.0000
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Appendix (G- continued from previous page

rpoA Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)
N(0,02) RE RP RK CcP CK || Di st Val Di st | CorrVal Corr || K-means| SVMlight
o, Mai nt ai n Mai nt ai n
8.8900 || 1.4162| 189.1413| 0.0020| 8.8000| 0.0000 1.5844 0.0006 0.0000] 100.0000]] 55.1845 0.0000
8.9909 || 1.4080| 189.2320| 0.0015| 10.8667| 0.0000 1.5734 0.0000 0.0000] 100.0000]] 48.5062 0.0000
9.0918 || 1.3981| 189.7351| 0.0018| 4.8000| 0.4667 1.5756 0.0012 0.0000] 100.0000]] 54.6573 0.0000
9.1927 || 1.4054| 191.0460| 0.0015| 9.0667| 0.1333 1.5696 0.0006 0.0000] 100.0000]] 46.3972 0.0000
9.2936 || 1.3945| 189.3845| 0.0018| 2.3333] 0.7333 1.5687 0.0006 0.0000] 100.0000]] 48.5062 0.0000
9.3945 || 1.4527| 189.7793| 0.0021| 8.8667| 0.0000 1.5652 0.0000 0.0000] 100.0000|] 48.6819 0.0000
9.4955 || 1.3971] 188.4598| 0.0015| 9.2000| 0.1667 1.5595 0.0019 0.0000] 100.0000]] 50.0879 0.0000
9.5964 || 1.3783| 190.9483| 0.0022| 1.6000| 0.4667 1.5948 0.0006 0.0000] 100.0000]] 50.9666 0.0000
9.6973 || 1.4114] 190.6226] 0.0020| 11.3333] 0.0000 1.5964 0.0012 0.0000] 100.0000]] 48.6819 0.0000
9.7982 || 1.3990| 189.3769| 0.0019| 5.4667| 0.4667 1.5696 0.0019 0.0000] 100.0000]] 51.8453 0.0000
9.8991 || 1.3907| 189.5692| 0.0015| 3.4000| 0.6000 1.5788 0.0012 0.0000] 100.0000]] 49.0334 0.0000
10.0000 || 1.4139| 190.2545| 0.0016| 7.4667| 0.0667 1.5627 0.0019 0.0000| 100.0000]] 52.7241 0.0000




¢8T

Appendix H1: the Sparsified SVD-based data modification: s-SVD on WDBC

(569 x 30). rank = 3, ¢, = 0.02

s-SVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)

€u RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
Mai nt ai n Mai nt ai n

0.0200 || 0.1676| 196.6213| 0.0119| 7.8000| 0.2333 0.2847 0.0606 0.0497 0.2299| 86.4675

0.0220 | 0.2178| 197.4333] 0.0107| 7.8000| 0.2333 0.3559 0.0452 0.0632 0.2299]| 87.5220

0.0240 || 0.2739| 198.2269| 0.0093| 7.8000| 0.2333 0.4223 0.0303 0.0862 0.2299| 89.2794

0.0260 || 0.3144| 197.0480] 0.0079| 7.8000| 0.2333 0.4613 0.0285 0.1081 0.0000| 77.1529

0.0280 || 0.3480| 197.3468| 0.0077| 7.8000| 0.2333 0.4881 0.0167 0.1289 0.4598| 82.2496

0.0300 || 0.3938| 198.1094| 0.0076| 6.4667| 0.3000 0.5183 0.0105 0.1616 0.4598]| 86.8190

0.0320 || 0.4197| 198.7196| 0.0071| 6.4667| 0.3000 0.5317 0.0056 0.1821 0.4598| 88.9279

0.0340| 0.4594| 199.2827| 0.0064| 6.4667| 0.3000 0.5487 0.0037 0.2162 0.4598] 88.9279

0.0360 || 0.4889| 198.8714| 0.0061| 6.4667| 0.3000 0.5585 0.0043 0.2436 0.4598| 90.8612| 91.3884

0.0380 || 0.5041| 199.4095| 0.0067| 8.6000| 0.1667 0.5636 0.0074 0.2583 0.4598]| 90.6854| 91.7399

0.0400 || 0.5231| 199.4928| 0.0060| 8.6000| 0.1667 0.5705 0.0056 0.2775 0.4598| 89.1037

0.0420 || 0.5404| 200.1094| 0.0059]| 8.6000| 0.1667 0.5769 0.0031 0.2956 0.4598| 87.8735

0.0440 || 0.5554| 200.6228| 0.0052| 8.6000| 0.1667 0.5832 0.0043 0.3118 0.4598| 86.6432

0.0460 || 0.5664| 200.5406] 0.0050| 8.6000| 0.1667 0.5892 0.0025 0.3239 0.4598] 85.9402

0.0480 || 0.5760| 201.7858] 0.0047| 8.6000| 0.1667 0.5949 0.0056 0.3348 0.4598]| 85.0615

0.0500 || 0.5943| 201.4410] 0.0054| 8.6000| 0.1667 0.6068 0.0031 0.3560 0.4598]| 83.4798

0.0520 || 0.6134| 201.4789] 0.0050| 8.6000| 0.1667 0.6177 0.0050 0.3788 0.4598| 82.2496

0.0540 || 0.6335| 201.9500] 0.0046| 8.6000| 0.1667 0.6294 0.0025 0.4039 0.4598| 80.6678

0.0560 || 0.6453| 201.6102| 0.0044| 8.6000| 0.1667 0.6375 0.0012 0.4188 0.4598] 79.7891

0.0580 || 0.6649| 202.0446] 0.0044| 8.6000| 0.1667 0.6489 0.0025 0.4444 0.4598] 78.3831

0.0600 || 0.6752| 202.1166] 0.0043| 8.6000| 0.1667 0.6562 0.0019 0.4583 0.4598] 77.6801

Original accuraciesC-means=2.79%, SVMlight = 96.49%.

Parameters in SVMIlight: 10-fold crossvalidation, rbf kelrfunction,y = 1.




€8T

Appendix H2: the Sparsified SVD-based data modification: s-SVD on WDBC

(569 x 30). rank = 4, ¢, = 0.02

s-SVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)

€u RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
Mai nt ai n Mai nt ai n

0.0200 || 0.1667| 196.0153] 0.0133| 7.3333| 0.3333 0.2849 0.0606 0.0500 0.2299| 85.4130

0.0220 || 0.2171| 196.4950] 0.0117| 6.0000| 0.4000 0.3560 0.0452 0.0635 0.2299]| 86.4675

0.0240|| 0.2733| 195.8716| 0.0106| 6.0000| 0.4000 0.4223 0.0353 0.0865 0.0000| 87.8735

0.0260 || 0.3140| 197.4021] 0.0098]| 6.0000| 0.4000 0.4612 0.0303 0.1083 0.9195] 90.3339

0.0280 || 0.3476| 196.2722| 0.0092| 6.0000| 0.4000 0.4879 0.0167 0.1291 0.9195| 82.2496

0.0300 || 0.3935| 197.4905| 0.0084| 6.0000| 0.4000 0.5179 0.0099 0.1618 0.9195| 86.8190

0.0320 || 0.4194| 196.6559| 0.0082| 6.0000| 0.4000 0.5312 0.0074 0.1822 0.9195| 88.9279

0.03401| 0.4591| 197.2141] 0.0081| 6.0000| 0.4000 0.5481 0.0050 0.2163 0.9195| 88.9279

0.0360 || 0.4886| 197.6087| 0.0070| 6.0000| 0.4000 0.5576 0.0062 0.2437 0.9195| 90.8612| 91.2127

0.0380 || 0.5039| 197.7193] 0.0074| 7.6667| 0.2333 0.5625 0.0056 0.2584 0.9195] 90.6854| 90.8612

0.0400 || 0.5229| 198.1725| 0.0070| 8.8000| 0.1667 0.5692 0.0037 0.2776 0.9195| 89.1037

0.0420 || 0.5402| 199.0519] 0.0067| 8.8000| 0.1667 0.5757 0.0068 0.2956 0.2299]| 87.8735

0.0440 || 0.5552| 199.6280| 0.0059| 8.8000| 0.1667 0.5820 0.0043 0.3119 0.2299| 86.6432

0.0460 || 0.5662| 200.2668] 0.0056| 8.8000| 0.1667 0.5879 0.0012 0.3239 0.0000| 85.9402

0.0480 || 0.5759| 200.9586] 0.0057| 8.8000| 0.1667 0.5934 0.0062 0.3348 0.0000| 85.0615

0.0500 || 0.5942| 201.0861| 0.0057| 8.8000| 0.1667 0.6054 0.0025 0.3560 0.0000| 83.4798

0.0520 || 0.6132]| 201.1830] 0.0054| 8.8000| 0.1667 0.6163 0.0050 0.3788 0.0000| 82.2496

0.0540 || 0.6333| 201.8586] 0.0050| 8.8000| 0.1667 0.6281 0.0019 0.4039 0.0000| 80.6678

0.0560 || 0.6451| 201.7866] 0.0047| 8.8000| 0.1667 0.6362 0.0056 0.4188 0.0000] 79.7891

0.0580 || 0.6647| 202.1588] 0.0050| 8.8000| 0.1667 0.6474 0.0000 0.4444 0.0000| 78.3831

0.0600 || 0.6751| 202.1618] 0.0050| 8.8000| 0.1667 0.6549 0.0025 0.4583 0.0000] 77.6801
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Appendix H3: the Sparsified SVD-based data modification: s-SVD on WDBC

(569 x 30). rank = 7,¢, = 0.02

s-SVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)

€u RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
Mai nt ai n Mai nt ai n

0.0200 || 0.1667| 194.9809| 0.0145| 6.6667| 0.3667 0.2850 0.0606 0.0500 0.0000| 86.6432

0.0220 ]| 0.2171| 195.6281] 0.0122| 6.6667| 0.3667 0.3561 0.0421 0.0635 0.0000| 87.1705

0.0240 || 0.2733| 195.5047| 0.0105| 5.3333| 0.4333 0.4223 0.0303 0.0865 0.2299| 87.3462

0.0260 || 0.3139| 195.9868] 0.0097| 5.3333| 0.4333 0.4612 0.0248 0.1083 0.4598] 77.1529

0.0280 || 0.3476| 195.7181| 0.0092| 5.6667| 0.4000 0.4879 0.0149 0.1291 0.4598| 82.2496

0.0300 || 0.3934| 195.5414| 0.0084| 5.6667| 0.4000 0.5178 0.0099 0.1618 0.2299] 86.8190

0.0320 || 0.4194| 196.2844| 0.0077| 5.6667| 0.4000 0.5310 0.0087 0.1822 0.2299]| 88.9279

0.0340| 0.4591| 196.2247| 0.0080| 5.6667| 0.4000 0.5478 0.0068 0.2163 0.0000| 88.9279

0.0360 || 0.4886| 196.0144| 0.0071| 5.6667| 0.4000 0.5571 0.0043 0.2436 0.0000| 90.8612| 91.5641

0.0380 || 0.5038| 196.7210] 0.0080| 7.0667| 0.2333 0.5619 0.0050 0.2584 0.0000| 90.6854| 91.5641

0.0400 || 0.5229| 196.7913| 0.0076| 8.3333| 0.1667 0.5684 0.0056 0.2775 0.0000| 89.1037

0.0420 || 0.5402| 197.0479] 0.0068]| 8.5333| 0.1667 0.5747 0.0019 0.2956 0.0000| 87.8735

0.0440 || 0.5552| 196.8544| 0.0060| 8.2000| 0.1667 0.5808 0.0062 0.3119 0.0000| 86.6432

0.0460 || 0.5662| 197.5049] 0.0062| 8.2000| 0.1667 0.5866 0.0037 0.3239 0.0000| 85.9402

0.0480 | 0.5758| 197.4678] 0.0060| 8.2000| 0.1667 0.5921 0.0050 0.3348 0.0000| 85.0615

0.0500 || 0.5941| 198.3399| 0.0062| 8.2000| 0.1667 0.6040 0.0031 0.3560 0.0000| 83.4798

0.0520 || 0.6132] 198.8381| 0.0054| 8.5333| 0.1667 0.6149 0.0012 0.3788 0.2299]| 82.2496

0.0540 || 0.6333| 198.9206] 0.0053| 8.2000| 0.1667 0.6265 0.0031 0.4039 0.2299| 80.6678

0.0560 || 0.6451| 199.8449] 0.0047| 8.2000| 0.1667 0.6346 0.0043 0.4188 0.2299] 79.7891

0.0580 || 0.6647| 200.2224| 0.0050| 8.2000| 0.1667 0.6458 0.0050 0.4444 0.4598] 78.3831

0.0600 || 0.6751| 200.2861| 0.0052| 8.2000| 0.1667 0.6533 0.0012 0.4583 0.0000] 77.6801
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Appendix H4: the Sparsified SVD-based data modification: s-SVD on WDBC

(569 x 30). rank = 20, ¢, = 0.02

s-SVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)

€u RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight
Mai nt ai n Mai nt ai n

0.0200 || 0.1667| 184.5486| 0.0185| 7.9333| 0.3667 0.2850 0.0600 0.0500 0.0000| 87.8735

0.0220 ]| 0.2171| 185.3241] 0.0166| 6.9333| 0.4000 0.3561 0.0427 0.0636 0.4598] 89.4552

0.0240 || 0.2733| 186.0995| 0.0147| 4.0000| 0.5667 0.4223 0.0303 0.0865 0.2299| 70.8260

0.0260 || 0.3139| 186.4344| 0.0126| 5.2000| 0.4667 0.4612 0.0254 0.1083 0.0000| 77.1529

0.0280 || 0.3476| 184.9814| 0.0114| 4.0000| 0.4333 0.4879 0.0173 0.1291 0.0000| 82.2496

0.0300 || 0.3934| 184.3631| 0.0125| 5.8000]| 0.4333 0.5178 0.0099 0.1618 0.0000| 86.8190

0.0320 || 0.4194| 187.0567| 0.0114| 6.5333| 0.4333 0.5310 0.0074 0.1822 0.0000| 88.9279

0.03401| 0.4591| 185.6988] 0.0107| 6.0667| 0.4000 0.5478 0.0080 0.2163 0.0000| 88.9279

0.0360 || 0.4886| 185.9220| 0.0108| 4.6000| 0.4667 0.5571 0.0068 0.2436 0.0000| 90.8612| 92.4429

0.0380 || 0.5038| 185.5426] 0.0115| 7.4667| 0.3000 0.5619 0.0031 0.2584 0.2299] 90.6854| 91.9156

0.0400 || 0.5229| 188.0767| 0.0108| 8.0667| 0.1667 0.5684 0.0043 0.2775 0.2299| 89.1037

0.0420 || 0.5402| 188.1541] 0.0100]| 8.1333]| 0.2000 0.5747 0.0025 0.2956 0.0000| 87.8735

0.0440 || 0.5552| 186.5085| 0.0087| 7.8000| 0.2000 0.5808 0.0043 0.3119 0.0000| 86.6432

0.0460 || 0.5662| 186.5142| 0.0088]| 7.9333| 0.1667 0.5866 0.0043 0.3239 0.0000| 85.9402

0.0480 || 0.5758| 188.0746] 0.0086| 7.4000| 0.1667 0.5920 0.0031 0.3348 0.2299| 85.0615

0.0500 || 0.5941| 188.4041] 0.0088]| 7.2667| 0.1667 0.6040 0.0031 0.3560 0.2299]| 83.4798

0.0520 || 0.6132| 188.7114| 0.0081| 6.4000| 0.2000 0.6148 0.0025 0.3788 0.0000| 82.2496

0.0540 || 0.6333| 189.1973] 0.0064| 6.6000| 0.2000 0.6265 0.0031 0.4039 0.2299| 80.6678

0.0560 || 0.6451| 190.9414| 0.0075| 6.6667| 0.1667 0.6345 0.0037 0.4188 0.0000] 79.7891

0.0580 || 0.6647| 190.3899| 0.0071| 6.6667| 0.1667 0.6457 0.0050 0.4444 0.2299] 78.3831

0.0600 || 0.6751| 190.8435] 0.0071| 5.6667| 0.2000 0.6532 0.0025 0.4583 0.2299] 77.6801
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Appendix H5: the Sparsified SVD-based data modification: s-SVD on WDBC

(569 x 30). rank = 22, ¢, = 0.02

s-SVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)

€u RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight

Mai nt ai n Mai nt ai n

0.0200 || 0.1667| 183.8841| 0.0187| 8.1333]| 0.3333 0.2850 0.0600 0.0500 0.0000| 87.8735 0.0000
0.0220 ]| 0.2171| 185.5681| 0.0158]| 6.8667| 0.4000 0.3561 0.0427 0.0636 0.2299]| 89.4552 0.0000
0.0240 || 0.2733| 184.5250| 0.0144| 3.9333]| 0.5667 0.4223 0.0303 0.0865 0.0000| 70.8260 0.0000
0.0260 || 0.3139| 185.5365| 0.0130| 5.2000| 0.5000 0.4612 0.0254 0.1083 0.0000| 77.1529 0.0000
0.0280 || 0.3476| 185.9583| 0.0126| 3.7333| 0.4333 0.4879 0.0173 0.1291 0.0000| 82.2496 0.0000
0.0300 || 0.3934| 183.7070] 0.0132]| 5.8667| 0.4333 0.5178 0.0099 0.1618 0.2299] 86.8190 0.0000
0.0320 || 0.4194| 187.6572| 0.0109| 5.2000| 0.4333 0.5310 0.0074 0.1822 0.2299]| 88.9279 0.0000
0.0340| 0.4591| 184.9988| 0.0108]| 4.6000| 0.4333 0.5478 0.0080 0.2163 0.0000| 88.9279 0.0000
0.0360 || 0.4886| 185.4096| 0.0110| 4.6000| 0.4667 0.5571 0.0043 0.2436 0.9195| 90.8612| 92.0914
0.0380 || 0.5038| 186.0745] 0.0115| 7.4000| 0.2667 0.5619 0.0031 0.2584 0.2299] 90.6854| 92.9701
0.0400 || 0.5229| 187.9649| 0.0100| 6.9333]| 0.1667 0.5684 0.0043 0.2775 0.4598| 89.1037 0.0000
0.0420 || 0.5402| 186.4956] 0.0096| 8.2000| 0.1667 0.5747 0.0019 0.2956 0.0000| 87.8735 0.0000
0.0440 || 0.5552| 187.1188| 0.0088| 6.8000| 0.1667 0.5808 0.0062 0.3119 0.0000| 86.6432 0.0000
0.0460 || 0.5662| 186.0724| 0.0084| 7.9333| 0.1667 0.5866 0.0031 0.3239 0.0000| 85.9402 0.0000
0.0480 | 0.5758| 187.5862| 0.0080| 7.8667| 0.1667 0.5920 0.0037 0.3348 0.0000| 85.0615 0.0000
0.0500 || 0.5941| 188.1748] 0.0086| 7.4000| 0.1667 0.6040 0.0031 0.3560 0.0000| 83.4798 0.0000
0.0520 | 0.6132| 187.2811] 0.0078| 7.8000| 0.1667 0.6148 0.0037 0.3788 0.2299]| 82.2496 0.0000
0.0540| 0.6333| 187.3752] 0.0071| 6.8000| 0.2000 0.6265 0.0025 0.4039 0.2299| 80.6678 0.0000
0.0560 || 0.6451| 189.9262| 0.0074| 6.6667| 0.1667 0.6345 0.0025 0.4188 0.0000] 79.7891 0.0000
0.0580 || 0.6647| 189.9475| 0.0077| 6.6667| 0.1667 0.6457 0.0056 0.4444 0.0000| 78.3831 0.0000
0.0600 || 0.6751| 189.7095] 0.0074| 5.6667| 0.2000 0.6532 0.0012 0.4583 0.2299] 77.6801 0.0000

Original accuraciesC-means=2.79%, SVMlight = 96.49%.

Parameters in SVMIlight: 10-fold crossvalidation, rbf kelrfunction,y = 1.
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Appendix H6: the Sparsified SVD-based data modification: s-SVD on WDBC

(569 x 30). rank = 23, ¢, = 0.02

s-SVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)

€u RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight

Mai nt ai n Mai nt ai n

0.0200 || 0.1667| 184.8777| 0.0188| 7.9333| 0.3333 0.2850 0.0600 0.0500 0.0000| 87.8735 0.0000
0.0220 ]| 0.2171| 185.7134| 0.0165]| 6.2667| 0.4000 0.3561 0.0427 0.0636 0.2299]| 89.4552 0.0000
0.0240|| 0.2733| 185.2272| 0.0141| 3.9333]| 0.5333 0.4223 0.0303 0.0865 0.0000| 70.8260 0.0000
0.0260 || 0.3139| 185.0583] 0.0128]| 5.6667| 0.4333 0.4612 0.0254 0.1083 0.0000| 77.1529 0.0000
0.0280 || 0.3476| 186.1620| 0.0118]| 3.7333]| 0.4333 0.4879 0.0173 0.1291 0.2299| 82.2496 0.0000
0.0300 || 0.3934| 184.8374| 0.0131]| 6.4000| 0.4333 0.5178 0.0099 0.1618 0.0000| 86.8190 0.0000
0.0320 || 0.4194| 186.6097| 0.0114| 5.1333]| 0.4667 0.5310 0.0074 0.1822 0.2299]| 88.9279 0.0000
0.03401| 0.4591| 185.7107| 0.0112]| 5.0667| 0.4333 0.5478 0.0080 0.2163 0.0000| 88.9279 0.0000
0.0360 || 0.4886| 186.7781| 0.0100| 4.6000| 0.4333 0.5571 0.0043 0.2436 0.0000| 90.8612| 91.7399
0.0380 || 0.5038| 186.8480] 0.0113| 5.8000| 0.3000 0.5619 0.0031 0.2584 0.0000| 90.6854| 92.6186
0.0400 || 0.5229| 187.9749| 0.0104| 6.9333]| 0.1667 0.5684 0.0037 0.2775 0.2299| 89.1037 0.0000
0.0420 || 0.5402| 186.6457| 0.0097| 7.1333]| 0.1667 0.5747 0.0019 0.2956 0.0000| 87.8735 0.0000
0.0440 || 0.5552| 187.4869| 0.0091| 6.8000| 0.1667 0.5808 0.0062 0.3119 0.2299| 86.6432 0.0000
0.0460 || 0.5662| 186.3084| 0.0088]| 7.9333| 0.1667 0.5866 0.0031 0.3239 0.6897| 85.9402 0.0000
0.0480 || 0.5758| 186.8261| 0.0086| 7.9333| 0.1667 0.5920 0.0031 0.3348 0.2299| 85.0615 0.0000
0.0500 || 0.5941| 188.1479] 0.0093]| 7.2000| 0.1667 0.6040 0.0031 0.3560 0.0000| 83.4798 0.0000
0.0520 || 0.6132| 187.6658] 0.0085| 7.6000| 0.1667 0.6148 0.0037 0.3788 0.4598| 82.2496 0.0000
0.0540| 0.6333| 187.0770] 0.0073| 6.6000| 0.2000 0.6265 0.0025 0.4039 0.0000| 80.6678 0.0000
0.0560 || 0.6451| 189.1809] 0.0079| 5.6000| 0.2000 0.6345 0.0037 0.4188 0.0000] 79.7891 0.0000
0.0580 || 0.6647| 189.5367| 0.0079| 6.6667| 0.1667 0.6457 0.0037 0.4444 0.0000| 78.3831 0.0000
0.0600 || 0.6751| 189.7965] 0.0077| 6.4667| 0.2000 0.6532 0.0031 0.4583 0.2299] 77.6801 0.0000

Original accuraciesC-means=2.79%, SVMlight = 96.49%.

Parameters in SVMIlight: 10-fold crossvalidation, rbf kelrfunction,y = 1.
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Appendix H7: the Sparsified SVD-based data modification: s-SVD on WDBC

(569 x 30). rank = 25, ¢, = 0.02

s-SVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)

€u RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight

Mai nt ai n Mai nt ai n

0.0200 || 0.1667| 183.6507| 0.0186| 8.0667| 0.3333 0.2850 0.0600 0.0500 0.0000| 87.8735 0.0000
0.0220 ]| 0.2171| 185.7795] 0.0165]| 6.8667| 0.4000 0.3561 0.0427 0.0636 0.2299]| 89.4552 0.0000
0.0240|| 0.2733| 184.5114| 0.0141]| 3.8667| 0.5333 0.4223 0.0303 0.0865 0.0000| 70.8260 0.0000
0.0260 || 0.3139| 184.9035] 0.0129]| 5.6667| 0.4333 0.4612 0.0254 0.1083 0.0000| 77.1529 0.0000
0.0280 || 0.3476| 185.5289| 0.0120| 4.2667| 0.4000 0.4879 0.0173 0.1291 0.2299| 82.2496 0.0000
0.0300 || 0.3934| 184.5729| 0.0131]| 5.8667| 0.4333 0.5178 0.0099 0.1618 0.2299] 86.8190 0.0000
0.0320 || 0.4194| 186.6777| 0.0107| 5.0667| 0.5000 0.5310 0.0074 0.1822 0.2299]| 88.9279 0.0000
0.03401| 0.4591| 186.1159] 0.0114| 4.5333]| 0.4667 0.5478 0.0080 0.2163 0.0000| 88.9279 0.0000
0.0360 || 0.4886| 187.1899| 0.0103| 4.5333]| 0.4667 0.5571 0.0043 0.2436 0.0000| 90.8612| 91.9156
0.0380 || 0.5038| 186.3745| 0.0105| 5.8667| 0.3333 0.5619 0.0043 0.2584 0.4598]| 90.6854| 92.6168
0.0400 || 0.5229| 187.9503| 0.0108| 6.8667| 0.1667 0.5684 0.0043 0.2775 0.0000| 89.1037 0.0000
0.0420 || 0.5402| 186.3731] 0.0100| 7.0667| 0.1667 0.5747 0.0012 0.2956 0.2299]| 87.8735 0.0000
0.0440 || 0.5552| 185.6280| 0.0092| 6.8000| 0.1667 0.5808 0.0087 0.3119 0.0000| 86.6432 0.0000
0.0460 || 0.5662| 187.3252| 0.0088]| 7.9333| 0.1667 0.5866 0.0043 0.3239 0.0000| 85.9402 0.0000
0.0480 || 0.5758| 187.3245] 0.0089]| 7.8667| 0.1667 0.5920 0.0031 0.3348 0.0000| 85.0615 0.0000
0.0500 || 0.5941| 187.5421] 0.0089| 7.4000| 0.1667 0.6040 0.0019 0.3560 0.0000| 83.4798 0.0000
0.0520 || 0.6132] 186.4991| 0.0088| 7.8000| 0.1667 0.6148 0.0037 0.3788 0.2299]| 82.2496 0.0000
0.0540 || 0.6333| 187.2439] 0.0076| 6.6000| 0.2000 0.6265 0.0050 0.4039 0.0000| 80.6678 0.0000
0.0560 || 0.6451| 189.7227] 0.0078| 5.6000| 0.2000 0.6345 0.0043 0.4188 0.0000] 79.7891 0.0000
0.0580 || 0.6647| 189.4450] 0.0076| 5.6000| 0.2000 0.6457 0.0043 0.4444 0.2299] 78.3831 0.0000
0.0600 || 0.6751| 189.8929] 0.0079]| 6.4667| 0.1667 0.6532 0.0012 0.4583 0.4598] 77.6801 0.0000

Original accuraciesC-means=2.79%, SVMlight = 96.49%.

Parameters in SVMIlight: 10-fold crossvalidation, rbf kelrfunction,y = 1.
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Appendix H8: the Sparsified SVD-based data modification: s-SVD on WDBC

(569 x 30). rank = 27, ¢, = 0.02

s-SVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)

€u RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight

Mai nt ai n Mai nt ai n

0.0200 || 0.1667| 184.4560| 0.0186| 8.0667| 0.3333 0.2850 0.0600 0.0500 0.2299| 87.8735 0.0000
0.0220 ]| 0.2171| 185.1629] 0.0165]| 6.8667| 0.4000 0.3561 0.0427 0.0636 0.2299| 89.9824 0.0000
0.0240|| 0.2733| 186.5994| 0.0152| 3.7333]| 0.5333 0.4223 0.0303 0.0865 0.4598| 70.8260 0.0000
0.0260 || 0.3139| 186.0260] 0.0136| 5.6667| 0.4333 0.4612 0.0254 0.1083 0.0000| 77.1529 0.0000
0.0280 || 0.3476| 185.3991| 0.0125| 4.2667| 0.4000 0.4879 0.0173 0.1291 0.4598| 82.2496 0.0000
0.0300 || 0.3934| 185.4814| 0.0128] 6.4000| 0.4333 0.5178 0.0099 0.1618 0.0000| 86.8190 0.0000
0.0320 || 0.4194| 187.5504| 0.0112| 5.0667| 0.5000 0.5310 0.0074 0.1822 0.0000| 88.9279 0.0000
0.03401| 0.4591| 185.6567| 0.0111| 4.6000]| 0.4333 0.5478 0.0080 0.2163 0.0000| 88.9279 0.0000
0.0360 || 0.4886| 186.0928| 0.0108| 4.6000| 0.4333 0.5571 0.0043 0.2436 0.2299| 90.8612| 92.2671
0.0380 || 0.5038| 186.0368] 0.0116| 5.8667| 0.3333 0.5619 0.0043 0.2584 0.2299] 90.6854| 91.9156
0.0400 || 0.5229| 187.0673| 0.0113]| 6.8667| 0.1667 0.5684 0.0043 0.2775 0.2299| 89.1037 0.0000
0.0420 || 0.5402| 185.9545] 0.0106| 7.0667| 0.1667 0.5747 0.0012 0.2956 0.2299]| 87.8735 0.0000
0.0440 || 0.5552| 186.2619| 0.0091| 6.8000| 0.1667 0.5808 0.0080 0.3119 0.0000| 86.6432 0.0000
0.0460 || 0.5662| 185.9756] 0.0091| 7.9333]| 0.1667 0.5866 0.0043 0.3239 0.0000| 85.9402 0.0000
0.0480 || 0.5758| 186.6963] 0.0094| 7.8667| 0.1667 0.5920 0.0050 0.3348 0.0000| 85.0615 0.0000
0.0500 || 0.5941| 187.8497| 0.0095| 7.4000| 0.1667 0.6040 0.0025 0.3560 0.0000| 83.4798 0.0000
0.0520 || 0.6132| 187.5231] 0.0095| 7.6000| 0.1667 0.6148 0.0043 0.3788 0.4598| 82.2496 0.0000
0.0540 || 0.6333| 187.9401| 0.0076| 6.6000| 0.2000 0.6265 0.0050 0.4039 0.0000| 80.6678 0.0000
0.0560 || 0.6451| 190.2349] 0.0084| 5.6000| 0.2000 0.6345 0.0056 0.4188 0.0000] 79.7891 0.0000
0.0580 || 0.6647| 189.0025] 0.0081| 5.6000| 0.2000 0.6457 0.0019 0.4444 0.0000| 78.3831 0.0000
0.0600 || 0.6751| 189.5523] 0.0082]| 6.4667| 0.2000 0.6532 0.0043 0.4583 0.2299] 77.6801 0.0000

Original accuraciesC-means=2.79%, SVMlight = 96.49%.

Parameters in SVMIlight: 10-fold crossvalidation, rbf kelrfunction,y = 1.
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Appendix H9: the Sparsified SVD-based data modification: s-SVD on WDBC

(569 x 30). rank =1, ¢, = 0.02

s-SVD Data Value Distortion Data Pattern Distortion (- % - %) Mining Accuracy (%)

€u RE RP RK CP CK || Di st Val Di st | Corr Val Corr || K-means| SVMlight

Mai nt ai n Mai nt ai n

0.0200 || 0.1872| 199.7647| 0.0049| 9.1333| 0.2000 0.2847 0.0340 0.0483 0.2299| 86.8190 0.0000
0.0220 || 0.2329| 199.6620] 0.0043| 9.1333]| 0.2000 0.3554 0.0278 0.0612 0.2299] 86.6432 0.0000
0.0240 || 0.2858| 199.5709| 0.0049| 9.1333| 0.2000 0.4217 0.0198 0.0841 0.2299]| 88.9279 0.0000
0.0260 || 0.3246| 199.6294| 0.0046| 9.1333| 0.2000 0.4612 0.0167 0.1057 0.2299] 90.8612 0.0000
0.0280 || 0.3570| 199.5579| 0.0041| 9.1333| 0.2000 0.4886 0.0118 0.1266 0.2299| 82.2496 0.0000
0.0300 || 0.4014| 199.9155] 0.0040| 9.1333]| 0.2000 0.5198 0.0093 0.1592 0.2299] 86.8190 0.0000
0.0320 || 0.4265| 199.7323| 0.0042| 9.1333| 0.2000 0.5338 0.0037 0.1796 0.2299]| 88.9279 0.0000
0.0340| 0.4654| 200.0318] 0.0037| 9.1333| 0.2000 0.5524 0.0068 0.2138 0.2299] 88.9279 0.0000
0.0360 || 0.4943| 199.8766| 0.0037| 9.1333| 0.2000 0.5622 0.0025 0.2414 0.2299| 90.8612 0.0000
0.0380 || 0.5092| 200.0475] 0.0037| 9.1333| 0.2000 0.5674 0.0074 0.2562 0.2299] 90.6854 0.0000
0.0400 || 0.5279| 200.2960| 0.0033| 9.1333| 0.2000 0.5737 0.0043 0.2756 0.2299| 89.1037 0.0000
0.0420 || 0.5449| 200.5802| 0.0034| 9.1333]| 0.2000 0.5800 0.0050 0.2937 0.2299]| 87.8735 0.0000
0.0440 || 0.5597| 200.8043] 0.0033| 9.1333]| 0.2000 0.5864 0.0043 0.3101 0.2299| 86.6432 0.0000
0.0460 || 0.5704| 200.9503] 0.0033]| 9.1333]| 0.2000 0.5915 0.0037 0.3222 0.2299] 85.9402 0.0000
0.0480 || 0.5800| 200.9996] 0.0032| 9.1333]| 0.2000 0.5969 0.0037 0.3332 0.2299| 85.0615 0.0000
0.0500 || 0.5980| 201.2574| 0.0032| 9.1333]| 0.2000 0.6074 0.0037 0.3545 0.2299]| 83.4798 0.0000
0.0520 || 0.6169| 201.6301| 0.0032| 9.1333]| 0.2000 0.6185 0.0025 0.3774 0.2299]| 82.2496 0.0000
0.0540 || 0.6369| 201.8900] 0.0029| 9.1333]| 0.2000 0.6306 0.0074 0.4026 0.2299| 80.6678 0.0000
0.0560 || 0.6485| 202.0480] 0.0029| 9.1333]| 0.2000 0.6380 0.0019 0.4176 0.2299] 79.7891 0.0000
0.0580 || 0.6680| 202.0944| 0.0028| 9.1333]| 0.2000 0.6509 0.0050 0.4433 0.2299] 78.3831 0.0000
0.0600 || 0.6783| 202.1714| 0.0029| 9.1333]| 0.2000 0.6581 0.0025 0.4572 0.2299] 77.6801 0.0000

Original accuraciesC-means=2.79%, SVMlight = 96.49%.

Parameters in SVMIlight: 10-fold crossvalidation, rbf kelrfunction,y = 1.
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