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ABSTRACT OF DISSERTATION 

 

 
EFFECT OF THE SMARTSTEP™ STABILIZATION 
SYSTEM ON BALANCE IN OLDER ADULTS IN AN 

INDEPENDENT LIVING RESIDENCE 
 

An increase in postural sway is one of the risk factors that have been 
linked to an increased incidence of falls in the older adult population. 
Researchers have shown that peripheral sensation is crucial in maintaining a 
static posture for adults of all ages. It has been reported that older adults have 
decreased tactile sensation of the plantar surface of their feet. and when the 
sensory feedback was increased older adults had improved postural control. It 
was hypothesized that facilitation of the sole of the foot with the use of a semi-
rigid foot orthotic would result in improved postural stability in older adults. 

Twenty-seven volunteers (19 females, 8 males, mean age: 87 ± 5 yrs) 
were recruited as subjects from a retirement community. All subjects were 
supplied with the SmartStep™ Stabilization System. There were a total of 5 Test 
Days for each subject. The first 2 Test Days were performed while the subjects 
wore their own shoes, while the last 3 Test Days were performed while the 
subjects wore the SmartStep™. Test Days 1 and 2 were performed 48 hours 
apart. Test Day 3 occurred 2 to 4 weeks after Test 2. Test Days 4 and 5 occurred 
4-weeks after the prior Test Day. During the 8-weeks between Test Days 3 and 
5, subjects were asked to wear the SmartStep™ as their daily shoe.  

Clinical measures of balance, force plate measurements, sensation 
testing, and confidence and activity scales were collected on all subjects 
throughout the eight week test period. Statistical significance was found for 3 of 
the clinical measures. The Timed “Up & Go” improved from 17.25 to 15.47 sec. 
The Functional Reach and Lateral Reach Tests demonstrated a decline in scores 
during the eight weeks. There was only 1 statistically significant finding for the 
force plate measures. The center of pressure displacement in the anterior-
posterior direction was increased from 4.6 to 5.3 cm. No significant differences 
where reported for any other dependent variable. The results did not indicate 
statistically that the in-shoe orthotic enhanced postural stability in this group of 
subjects. However, there were indications that there was a subset of the current



   

 

population that benefited from the intervention and this needs to be investigated 
further. 

KEYWORDS:  postural control, postural stability, in-shoe orthotic, elderly,  
   plantar sensation 
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Chapter One 
Introduction 

Background 

Falling is the third leading cause of injury-related deaths among all ages 

and first among adults aged 65 and older.1 Approximately 30% of older adults 

and 40% of adults over 80 years old fall once a year and 20% to 30% of these 

victims will suffer from injuries that are moderate to severe.1-4 Injuries received 

from falling accounted for approximately 25% of all nonfatal injuries that were 

seen in American Emergency Departments for the year 2000.1 Studies performed 

in 19894 and 19941reported that 5.3% of all hospitalization charges for adults 

over the age of 65 were due to falls and the total direct cost of fall injuries was 

$20.2 billion. 

The incidence of falls has been found to increase with age,4, 5 as well as 

the severity of injuries caused by these falls.4 As America prepares for the 76 

million American “Baby Boomers” to become active older adults in the next 

decades, it is imperative that interventions are improved to decrease the falling 

incidence as well as injury severity. The majority of the serious falling injuries in 

older adults occurred while individuals were performing outdoor activities6 and 

37% of injuries occurred during activities of daily living.7 These results indicate 

that healthy, active, community-dwelling individuals are being affected by falling 

injuries. An injury not only causes a physical affliction, but financial and emotional 

consequences can ensue as well. The active, independent lifestyle of many older 

adults is severely affected by an injurious fall.  It has been reported that 42% of 
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older adults who had been injured in a fall, and had been admitted to the hospital 

from self care, were discharged to a nursing facility.4 The number of patients 

discharged to nursing care after a fall injury is almost two times greater than the 

rate of persons who were hospitalized for non-fall related trauma and three times 

greater for non-trauma hospitalizations.4 

Many risk factors have been suggested to contribute to an increased 

incidence of falling in older adults. Some of the commonly cited factors are 

prescription medications, muscle weaknesses, decreased joint range of motion, 

decreased visual acuity, and increased postural sway indicating balance 

impairments.2, 8-12 Previous studies have revealed that older adults have 

increased postural sway when compared to young adults, especially when 

assessed with the eyes closed.13-18 This increase in postural sway has been 

linked to an increase in the incidence of falls in the older adult population.19, 20 

Postural stability begins to decline for women when they are in their 40s, and 

continues to decline significantly with each subsequent decade.17 

Postural control is dependent on the integration of vestibular, visual, and 

somatosensory information.21 The afferent information from the vestibular system 

is utilized to measure the accelerations (gravitational, linear, and angular) of the 

head.21, 22 Vision is utilized in integrating the relationship of the body to 

surrounding objects.22 The somatosensory system provides input about the 

orientation of body parts to each other and to the support surface.21-23 The 

afferent information from all three of these systems is processed in the central 

nervous system (CNS) to determine the timing, direction, and magnitude of the 
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corrective adjustments needed to sustain a vertical position. Although there are 

multiple sensory inputs available, in most cases, the CNS relies on one sense at 

a time. This allows the CNS to be more flexible during those times when one of 

the inputs may be unavailable.24 When one sense is unavailable, the remaining 

two systems are usually able to compensate for the lack of sensory information 

contributing to the postural control system.21 Lack of sensory input could be due 

to an injury, temporary impairment, or a permanent decrease in function of the 

one or more of the systems due to normal aging.22, 25, 26 

Somatosensory input is critical to postural control and includes both joint 

proprioception and tactile sensory information.21, 22 Both proprioceptive and 

tactile sensory receptors deliver information to the CNS about postural sway. 

Research has confirmed the critical role of proprioceptive and tactile sensory 

receptors in maintaining postural stability.21 Most studies indicate that the 

somatosensory system is the dominant sensory input in maintaining balance for 

both older and young adults.27, 28 Additionally, cutaneous receptors have been 

demonstrated to result in an increased response to the stretch reflex when 

stimulated, suggesting that direct communication is occurring between this 

system and the muscle spindle gamma system in influencing alpha motoneuron 

activity.21 It is thought that both proprioceptive and tactile sensory receptors 

converge on the alpha motoneuron and on facilitory and inhibitory spinal cord 

interneurons influencing the gamma motoneuron, resulting in reflexive influences 

on muscle activation during functions such as walking.29, 30 
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Researchers have shown that peripheral sensation is crucial in 

maintaining a static posture for adults of all ages.26, 31 It has been reported that 

older adults have decreased tactile sensation of the plantar surface of their 

feet,32, 33 and have decreased proprioceptor activity. Maki et al.32 reported that 

when the sensory feedback was increased to the plantar surface of the foot, 

older adults had improved reactions to postural perturbations. 

Because there is an increased incidence of falls in older adults and the 

financial burden that can be caused by the falling injuries is great, intervention 

programs which reduce the risks associated with falling (such as balance deficits) 

are needed. To date, the literature contains interventions that rely on everything 

from strength training to nutritional changes, and many combinations of these 

different interventions.11, 34-36 Another area of intervention that has been 

researched is augmentation of the foot’s plantar surface sensations.32, 37, 38 

One type of intervention that would address the plantar tactile sensory 

deficits in the older adult population is the use of an in-shoe orthotic device. Foot 

orthotics are typically prescribed for the biomechanical affects of stabilizing the 

foot. In the clinical setting, orthotics are commonly prescribed for many reasons: 

altering the rearfoot motion in the gait cycle, assistance in shock attenuation, and 

proprioceptive inputs. Orthotics are constructed to adapt the foot to the external 

environment and to place the foot into a position so joint articulations are 

congruent.39 
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Although traditional research has focused on the use of orthotics to alter 

the gait cycle,40 recent literature has begun to focus on the use of orthotics as an 

aid for proprioception and postural stability.41-50 Several studies have been 

performed to evaluate the utilization of orthotics in subjects who have a foot or 

ankle injury41, 44-46 and in healthy subjects.47 All of these studies reported an 

improvement in postural stability with the aid of an orthotic. Hornyik41 reported a 

positive somatosensory effect of foot orthotics on the postural stability system as 

demonstrated with improvement in dynamic directional control and modified 

static control after short and long-term use. The efficacy for this orthotic 

intervention to increase somatosensory inputs has been limited to the subjects’ 

immediate reaction to tactile stimulation at the foot. Nigg et al.39 have suggested 

that orthotics act as a filter to the forces acting on the sole of the foot. These 

“filtered’ forces are then transmitted to the CNS to initiate an appropriate dynamic 

response. It is hypothesized that facilitation of the sole of the foot with the use of 

a semi-rigid foot orthotic will result in improved postural stability in older adults. 

Maintenance of balance is dependent, in part, on the tactile sensory 

information provided by the feet. Postural control has been shown to be 

decreased with cooling, anesthesia or ischemic induced sensory loss to the 

plantar surface of the foot.27, 28, 51-53 There are various mechanoreceptors of the 

foot, and their distribution and density vary throughout the plantar surface.54 

Mechanical pressure is transferred to the CNS and is continually processed 

during stance. Kavounoudias et al.54 investigated the role of plantar cutaneous 
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information in controlling human balance and demonstrated that cutaneous 

afferents contribute to human balance control. 

Researchers have supported the hypothesis that there are decreases in 

the number of plantar mechanoreceptors55 and sensation detection due to 

aging.56-61 The processing of cutaneous messages from the plantar surface of 

the foot along with the other sensory messages allows the CNS to continually 

monitor body position and make adjustments based on the stimulation from the 

ground. Therefore, the effect of orthotics to act as a filter to provide constant and 

improved sensory feedback may be an important component of rehabilitation to 

improve balance. 

Statement of the Problem 

It has been demonstrated that older adults have balance deficits that lead 

to falls and subsequent injury. Decreased somatosensory input may be one of 

the causes of these balance deficits. Utilizing an intervention that increases 

somatosensory input would be beneficial in this population. It is not known if 

increasing the plantar cutaneous sensory input with an in-shoe orthotic would 

decrease balance deficits seen in older adults. 

Purpose 

The purpose of this study was to investigate both the initial and time 

dependent effects of an in-shoe orthotic system on postural responses while 

performing both clinical and force plate measurements of postural stability in an 

older adult population. The effects of the in-shoe orthotic were investigated at 
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day 1 and then 4 weeks and 8 weeks after initial usage. This assessment was 

based on clinical measures that included the Berg Balance Scale, Timed “Up and 

Go”, Four Square Step Test, Functional Reach Test, and Lateral Reach Test. 

The force plate measurements that were utilized were Quiet Standing with Eyes 

Open, Eyes Closed, and Feet Together. One of the subpurposes of this study 

was to investigate the effects of the in-shoe orthotic system on activity levels and 

balance confidence. This was assessed with survey measurements that included 

the Activities-specific Balance Confidence Scale and the Activity Questionnaire. 

Another subpurpose was to investigate whether peripheral sensation was 

changed over the 8 week period and this was assessed utilizing a Semmes-

Weinstein Monofilament test and Quantitative Vibration Perception Threshold 

testing. 

Research Hypotheses 

To evaluate the effect of the in-shoe orthotic system on postural 

responses in an older adult population, several research hypotheses have been 

formulated. If the in-shoe system is able to enhance postural stability through 

increased filtering of sensation information to the sole of the foot, the following 

research hypotheses will be supported: 

1. There will be significant improvements at the initial in-shoe orthotic 

system data collection when compared to the non-orthotic results for 

all Clinical Measurements and Force Plate Measurements. 

2. There will be significant improvements in Clinical Measurements and 

Force Plate Measurements at the 4 week collection compared to the 

initial and non-orthotic data collection data. 



   

 8 

3. There will be no significant subsequent improvements in the Clinical 

Measurements and Force Plate Measurements at the 8 week 

collection compared to the 4 week data collection period. 

4. There will be a significant increase in the Activities-specific Balance 

Confidence scale and the Activity Questionnaire at both the 4 and 8 

week data collection period compared to the first data collection. 

5. There will be no significant difference in the Semmes-Weinstein 

Monofilament and Quantitative Vibration Perception Threshold when 

comparing week 8 data to the initial data. 

Significance of the Study 

There is a need for research that investigates strategies to decrease falls, 

and thus fall injuries, in older adults. By studying interventions that can improve 

postural control in this population, older adults may benefit from these strategies. 

If there is a simple, adjunct intervention, like the in-shoe orthotic system, older 

adults will be more likely to comply. It is generally agreed that interventions to 

prevent falls need to be approached with a multidisciplinary solution. If this study 

supports the hypothesis that in-shoe orthotics improve postural control in the 

older adult population, then their usage as part of an integrated intervention 

program for fall prevention may be warranted. 

Limitations 

1. The number of days between Test Days 2 and 3 were not the same for 

each subject due to delays in the delivery of the shoes. 

2. Due to the space available for data collection, the force plate had to be 

placed on a low-pile carpet. All efforts were taken to make sure that it 

was level at all times and did not move during use. 
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Delimitations 

1. Subjects wore their own shoes for the first 2 days of data collection 

and the type of shoe was not controlled. Subjects were told to wear the 

shoes that they would wear to “walk around” the most. 

2. Due to the number of available subjects, there was not a control group. 

3.  All subjects had intact somatosensory systems so that the in-shoe 

orthotic did not cause disturbances to the skin on the plantar surface of 

the foot. 

4. Vision correction was utilized when necessary, and participants with 

known vestibular problems were excluded. 

Definitions 

Community-dwelling: Individuals who are living independently in the community 

as opposed to in an institutional setting. 

Postural Control: The ability to adjust the body’s position in space for the two 

purposes of orientation and stability.22 

Postural Orientation: Being able to sustain the correct relationship between body 

segments and between the body and the environment to perform a certain 

task.22 

Postural Stability: Also referred to as balance, it is the ability to maintain 

equilibrium for the whole body.  This can be at rest, static equilibrium, or 

during steady-state motion, dynamic equilibrium. Postural stability can also be 

defined as maintaining the Center of Gravity (COG) line of projection within 

the base of support(BOS).22 

Older Adult: Individuals who are aged 65 years and older.62 

Young-old Adult: Individuals who are aged over 65 years and less than 7963 or 84 

years.64, 65  
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Oldest-old Adults: Individuals who are aged 8063 or 85 years and older.64, 65 
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Chapter Two 
Review of the Literature 

Introduction 

The purpose of this study was to evaluate the utilization of an in-shoe 

orthotic system on the postural stability of older adults over an eight week period. 

This chapter examines the scientific literature referenced in Chapter One in 

greater detail. The topic of postural control and balance is a complex topic that 

includes multiple peripheral sensory systems, the Central Nervous System, and 

motor control systems. For the purposes of this review, the main focus will 

include the peripheral sensory systems and the somatosensory system in 

particular. This chapter is comprised of three major sections: 

1. Normal Adult Postural Control 

2. Aging and Postural Control 

3. Interventions for Enhancing Postural Control of Older Adults 

Normal Adult Postural Control 

To independently perform most, if not all, of the activities of daily living, a 

person needs to be able to recover from instability as well as be able to 

anticipate and react to avoid instability. Controlling posture and balance to 

perform these tasks requires a complex system that encompasses several 

control mechanisms in the body.26, 66 Postural control is defined as controlling the 

body’s position in space for both stability and orientation.22 To be balanced, or 

stable, is defined as the ability to maintain the body’s center of gravity (COG) 
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vertically above the base of support (BOS).22, 67 Most of the tasks that humans 

perform require a vertical orientation to be maintained.22, 68 In order to maintain 

this vertical position, postural control is dependent on the integration of 

vestibular, visual, and somatosensory information. Postural control also requires 

the generation and coordination of forces that produce the movements that 

control the body’s position in space. 21, 22, 68, 69 

Sensory Systems Related to Postural Control 
The afferent information from the vestibular system is utilized to measure 

the accelerations (gravitational, linear, and angular) of the head.21, 22 There are 

two types of receptors within the vestibular system, the semicircular canals and 

the otoliths.22, 70  The semicircular canals are utilized to sense the angular 

accelerations of the head70 and are particularly sensitive to fast head 

movements.22 Otoliths sense head position relative to gravity and linear 

acceleration and are sensitive to slow head movements.22, 70  However, the 

vestibular system is not able to provide the Central Nervous System (CNS) the 

complete representation of how the body is moving because it can not provide 

orientation information.22, 23 The CNS needs input from the visual and 

somatosensory systems to enhance the information that it receives from the 

vestibular system. 

The afferent information from the visual system is utilized in integrating the 

relationship of the body to surrounding objects.22, 71, 72 The visual inputs assist in 

providing a reference that allows the CNS to know what is vertical. The visual 

system also provides information about the motion of the head by how 
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surrounding objects move.22 Even though the information gathered by the visual 

system is important to postural control, it is not absolutely necessary in the 

healthy adult. It is well known that healthy adults are able to maintain stability in 

the absence of vision, e.g., eyes closed or in a dark room. However, 

experimental evidence also indicates that the visual sensory system provides 

important information about low frequency body motions as in static posture.73 

Although stability can still be maintained with the loss of visual information, many 

researchers have reported that postural sway is significantly increased when the 

eyes are closed when compared to eyes open conditions in healthy adults.17, 71, 74 

In addition, Berensci et al.75 performed a series of experiments that indicated that 

peripheral vision, compared to central vision, is more important in maintaining 

stability. Thus, altering visual input may increase postural sway, but the absence 

of visual feedback does not result in complete loss of stability, indicating the 

importance of other input mechanisms at work. 

The afferent somatosensory input provides information related to the 

orientation of the body parts to one another and to the support surface.21-23 

Somatosensory receptors are numerous and can be classified into three general 

types: 1) mechanoreceptors; 2) thermoreceptors (that measure temperature 

change); and 3) nociceptors (that measure painful stimuli).76 The 

mechanoreceptors are the category that relates to postural control. The 

mechanoreceptors can be further divided into two categories: 1) cutaneous and 

2) musculoskeletal (Table 2.1).21, 22, 76, 77 The cutaneous mechanoreceptors 

include Pacinian corpuscles, Meissner’s corpuscles, Merkel’s discs, and Ruffini 
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endings.21, 22, 76 These receptors detect the sensations of vibration, pressure, and 

skin tension.76, 77 The musculoskeletal mechanoreceptors include muscle 

spindles, Golgi tendon organs, and joint receptors. 21, 22, 76 These receptors are 

associated with proprioception by detecting the position, velocity, and tension 

that determines the relative position and movement rates of the body parts.76, 77 

Together, the cutaneous and musculoskeletal mechanoreceptors contribute 

significant information for postural control. 

Table 2.1: Summary of Somatosensory Mechanoreceptors 
Receptor Name Stimulus Type Sensation Detected 

Cutaneous   
     Pacinian corpuscles Vibration High-frequency 

vibration 
     Meissner’s corpuscles Vibration Flutter, contact 
     Merkel’s discs Skin distortion Local pressure 
     Ruffini endings Skin distortion Skin stretch 
Musculoskeletal   
     Muscle spindles Muscle elongation Proprioception 
     Golgi tendon organs Tendon tension Proprioception 
     Joint receptors Joint movement and 

tension 
Proprioception 

Adapted from Fredericks, 199676 

There is redundancy in the three sensory systems (vestibular, vision, and 

somatosensory) involved in postural control. This allows for more flexibility during 

those times when one of the inputs may not be available.24 However, although 

there are three inputs, researchers have concluded that the proprioceptive and 

cutaneous inputs are relied on primarily to maintain quiet stance in normal 

circumstances.27, 28, 78-80 Several researchers have manipulated the sensation of 
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the foot and ankle to elicit the association between reduced foot sensation and 

balance difficulties.27, 51, 81-88 A few of these researchers have investigated the 

impact that reduction in plantar sensitivity has on postural control by isolating the 

plantar cutaneous receptors specifically.87-89 This body of research has 

supported the association that a decrease in sensation of the plantar aspect of 

the foot increases postural sway. 

Role of the somatosensory system of the foot and ankle  
Nashner et al.81 and Bloem et al.82 investigated the somatosensory system 

of the lower extremity by reducing the stimulation of the ankle joint 

proprioceptors. Nashner et al.81 utilized ‘sway referencing’, i.e., rotation of the 

support surface concurrent with body orientation, to achieve this stimulus 

reduction. By systematically manipulating the vestibular, visual, and 

somatosensory systems the researchers elicited the most dramatic performance 

deficits when subjects had inappropriate responses to proprioceptive inputs.81 

The other method to investigate the ankle joint proprioceptors was termed ‘nulled 

ankle input’ and was achieved by simultaneously translating and rotating the 

support surface.82 Using this method, Bloem et al.82 were able to determine that 

the joint proprioceptors of the ankle have an important role in postural control. 

Even though both of these studies where able to reduce the somatosensory input 

of the ankle joint, these methods allow the plantar sensitivity to remain intact and 

provide information regarding the orientation of the support. 

There have been several methods employed to reduce the plantar 

sensation to try to isolate the influence of these receptors. Utilization of 
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hypothermia as an anesthetic has produced increased body sway in both the 

anterior-posterior90 and medial-lateral planes.51, 83 Hypoxic anesthesia  is another 

method that has been utilized to reduce foot somatosensory input.27, 88 Results 

from Horak et al.27 supported the hypothesis that cutaneous and joint 

somatosensory information from the feet and ankles may play an important role 

in guaranteeing that the postural movements are appropriate for the current 

biomechanical constraints of the surface and/or foot. The method of ischemia 

utilized by Wang et al.88 differs from others by attempting to differentiate between 

plantar sensation loss and total somatosensory loss. Greater postural sway was 

observed when the plantar cutaneous sensitivity was reduced and the only 

differences between partial loss and total loss occurred when vision was altered 

as well.88  

One more method of reducing the somatosensory input that can be found 

in the literature is the usage of pharmaceutical anesthesia.84, 87, 89 Konradsen et 

al.84 did not find a change in postural sway during static balance with a lidocaine 

block of the ankle and foot, but did conclude that the ankle ligaments had an 

important role in foot placement while walking. Meyer et al.87, 89 utilized a different 

lidocaine blocking protocol that tried to isolate specific plantar cutaneous 

receptors located on different sites of the foot. These studies reported that the 

loss of plantar sensation had a deleterious impact on the postural control system 

and even more so when other sensory deficits are present.87, 89  

One last method of manipulating the plantar sensation is the usage of high 

and low frequency vibration.86, 91-93 Maurer et al.93 utilized low frequency vibration 
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and concluded that stimulation of the plantar cutaneous mechanoreceptors led to 

postural responses, but it did not significantly change reactions for normal 

subjects. In several studies, Kavounoudias and colleagues stimulated the plantar 

surface of the foot and the ankle dorsiflexor muscles with high frequency 

vibration and concluded that the plantar surface of the foot contributes to the 

spatial representation of the body’s tilt and that the tactile and proprioceptive 

information may utilize vector addition in maintaining upright stance.86, 91, 92  

In summary, the postural control of normal, healthy adults is controlled by 

the three sensory systems: vestibular, vision, and somatosensory. Even though 

the afferent information from all three of these systems is utilized by the CNS to 

achieve appropriate responses, the somatosensory system has been found to 

have the greatest input. The complexity of the somatosensory system and the 

high number of receptors in this system make it difficult to isolate individual 

mechanisms. By systematically reducing input from different receptors in the foot 

and ankle, researchers have attempted to discern whether the plantar cutaneous 

receptors are responsible for a large degree of input to the postural control 

system. Current literature seems to support this hypothesis. 

Aging and Postural Control 

Older adults have increased postural sway compared to young adults. 

Researchers have tried to correlate this increased sway with deterioration in the 

nervous system.13, 94, 95 It has been reported that deficits in sensation, muscle 

strength, reaction time, vestibular function, and vision occur with aging and can 

contribute to increased balance difficulties in older adults.22, 25, 26, 31, 96-99 In this 



   

 18 

section of the review, the effects that aging has on the vestibular, visual, and 

somatosensory systems will be explored individually and then how the integration 

of these three systems is effected will be discussed at the end. 

Effect of age on vestibular system 
Research published about the vestibular system has reported 

degeneration of the sensory cells found within the inner ear. 99, 100 Rosenhall99 

reported a 40% reduction in hair cells in the semicircular canals in subjects over 

the age of 70 years old. Deficits in vestibular function in older adults may have a 

greater effect on stability than just being a loss of redundancy of the sensory 

input. Diminished capacity of higher integrative processes within the CNS 

present an additional challange.81 Woollacott et al.95 reported that 50% of their 

older adult subjects displayed vestibular function impairment when both vision 

and useful somatosensory inputs where removed. The authors concluded that 

this response may be indicative of impaired vestibular function or central 

integrative processes in the older adult population that was tested. Teasdale et 

al.101 had similar findings with a group of healthy older adults who had significant 

increases in sway compared to young adults while using vestibular inputs alone 

during a static stance task. 

Effect of aging on visual system 
There are several age related changes that occur to the visual system. 

These changes include a decrease in the amount of light allowed to reach the 

retina, an increase in glare, a decrease in visual acuity, a reduction in depth 

perception, and a decrease of 30 degrees in field of view.102-106 Sekuler and 
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colleagues reported that older adults have a significant reduction in spatial visual 

sensitivity compared to young adults.105, 106 The acuity insensitivity was found 

most frequently to low spatial frequencies and slow moving targets and may 

adversely affect postural control which relies on low frequency visual 

information.106, 107 It has been reported that there are age related increases in 

sway during quiet stance when input from vision is removed.13, 108 Therefore, it 

can be surmised that deficits in the visual system would have a greater affect on 

postural control in older adults than if young adults had the same decreases in 

vision. The decrease in visual acuity for close objects has a detrimental effect on 

postural control as well, however this can usually be corrected through the use of 

eyeglasses.102 Peripheral vision was also found to be most beneficial in postural 

control for young adults as opposed to central vision.75 So it stands to reason that 

the loss of peripheral vision due to aging will have a detrimental effect on 

postural control in this population.98, 104 Researchers must be aware of these 

changes and corrections when studying an aging population. 

Effect of aging on somatosensory system 
Age related changes have been found in both the musculoskeletal and 

cutaneous components of the somatosensory system.26, 31-33, 64 As these 

components become compromised, the postural control system receives less 

input from these receptors. Since it has been shown that this feedback is 

important in maintaining postural stability, deficits in the receptors will ultimately 

lead to deficits in posture as well. The following section summarizes the literature 

related to deterioration of the somatosensory system due to aging. 
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Musculoskeletal receptors 
Age related changes in the receptors that are in the musculoskeletal 

category have been investigated in both humans and animals.109-112 Researchers 

have investigated changes in the receptors109-112 as well as clinical measures of 

proprioception113-117 in determining the effects of age on the system.  

It has been reported that aging results in morphologic changes in muscle 

spindles.109, 110, 112 Changes that were observed included increased thickness in 

the spindle capsule and a loss in intrafusal fibers and were attributed to 

denervation of the receptor.112 A 2005 study by Liu et al.110 found similar 

decrease in the number of intrafusal fibers for older adults. Both of these studies 

identified these age related changes in upper extremity muscles only. Neither of 

these research groups investigated muscles in the lower extremity. An animal 

study published in 1995 examined the afferent response of muscle spindles to 

differing levels of stretch that were applied to the medial gastrocnemius of rats.111 

Results from this animal model found that the older adult rats had a decline in 

spindle sensitivity when compared to middle-aged rats.111 Along with muscle 

spindles, joint receptors have been investigated to see if there are changes with 

aging in humans118 and animals.119 Again, the human study involved an upper 

extremity joint, the coracoacromial, and found a decrease in the articular joint 

receptors in the older subjects compared to young adults.118 The animal study 

investigated the anterior cruciate ligament in rabbits and results indicated 

deterioration of the articular mechanoreceptors in the older rabbits compared to 

young and adult rabbits.119  
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Along with histological studies, researchers have assessed proprioception 

using the clinical tests of joint position sense (JPS) and joint kinesthesia. 

Verschueren et al.113 examined JPS while passively moving the ankle into 

plantarflexion at various velocities. Results from this study revealed that the men 

who where aged 70 years and older had a significantly greater deviation from the 

target positions when compared with the young adults. The older men who were 

aged 60-70 years old had an increase in variance with the task, but were not 

found to be significantly different compared with the young adults. The 

researchers went on to have a subset of the subjects perform the task again with 

vibration being applied to the anterior tibialis muscle. This added vibration 

resulted in a decrease in JPS ability for the older adults only. The authors 

reported that these results indicated that the age related deterioration in JPS was 

due to both a reduction in cutaneous and muscle spindle functions.113  

Madhavan and Shields evaluated ankle JPS in older adults and included 

measures of balance and muscle function during a single leg standing activity.114 

Results from this study agreed with Verschueren et al.113 that the older adults 

had a decrease in ankle JPS, but the addition of the balance component allowed 

them to demonstrate that there was a strong association with this decline and the 

ability to stand on one leg with eyes closed. The results of muscle activity 

revealed an increase in EMG activity in the older adults that was not seen in the 

young adult group. The finding of co-contraction of the plantarflexors and 

dorsiflexors allowed the authors to hypothesize that the older adult’s inability to 

relax could have been a technique to accommodate to a decrease in muscle 
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spindle sensitivity.114 Other researchers have reported similar findings of 

cocontraction of the ankle musculature in older adults performing tests of 

postural control.120 The investigators concluded that the older adults coped with 

the deterioration in their sensory input and processing ability by  developing a 

strategy of stiffening their lower legs during upright standing.120 

Cutaneous receptors 
It is known that the plantar cutaneous receptors relay information about 

the location and magnitude of forces during weight-bearing activities.121 There 

has been evidence for over 50 years that humans have a decrease in the 

number of plantar Pacinian corpuscles with increased age.122 In 1966, Bolten et 

al.55 reported a decrease in the number of Meissner corpuscles on the plantar 

aspect of the hallucis due to aging. Quantification of the decrease in Meissner’s 

corpuscles was accomplished by analyzing punch skin biopsies from 91 subjects 

ranging in age from 11-89 years old.55 Along with these anatomical results of a 

reduction in the plantar cutaneous receptors, several studies have revealed that 

there is a decrease with clinical cutaneous testing when performed on older 

adults.56-59, 61, 123-125  

There have been three methods of clinical cutaneous testing published in 

the literature; 1) vibration perception threshold,61, 123, 125 2) monofilament 

testing,61 and 3) 2-point discrimination testing.56-60 Perry61 utilized both vibration 

perception threshold and monofilament techniques on four sites on the plantar 

aspect of the foot in an investigation that studied young adults compared to older 

adults. Results from this study revealed that the older adults had less sensitivity 
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to both the vibration and monofilament stimuli at all sites when compared to the 

young adults. When the results of just the older adults were analyzed, it was 

revealed that early in the seventh decade (72-73 years old) participants started to 

show a doubling of their vibration detection threshold as compared to their 

younger counterparts (65-71 years old). A difference between the two groups of 

older adults was not seen with the monofilament data. The stratification between 

the two groups of older adults allowed Perry to conclude that the vibration 

perception threshold method of testing could be more sensitive at detecting the 

beginning of age related plantar insensitivity.61 The results from Perry are similar 

to the findings of Verrillo et al.124 who reported a decrease in vibration detection 

among older adults when compared to young adults when vibration was applied 

to the hand. Combined, these two studies describe a loss of vibration sensitivity 

in older adults. 

Two-point discrimination testing is the third method of clinical cutaneous 

testing that has been researched in an older adult population.56-60 Utilizing 2-point 

discrimination measurements on 13 body sites, Stevens and Choo57 constructed 

a spatial acuity map that depicted how tactile spatial acuity changes over the 

lifespan. Their data indicated that older adults had deficits compared with young 

adults at all 13 locations that were tested, with the hallucis and plantar aspect of 

the foot having the largest deficits. Compared to the young adults, the older 

adults averaged a 400% and 250% deficit at the hallucis and plantar aspect, 

respectively.57 These findings were more recently reproduced when Stevens et 

al.60 reported an averaged 91% decline at the forefoot of older adults compared 
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to young adults. In this recent study the 2-point discrimination was performed on 

both the dorsal and plantar surfaces of the foot, with no significant differences 

elicited between the two surfaces. The authors concluded that the lack of 

difference between the surfaces of the foot provided evidence that refutes the 

hypothesis that sensory differences are due to wear and tear on the contact 

surfaces.60 

Effect of aging on sensory integration 
There is a redundancy of sensory inputs that ensures that stability can still 

be maintained when one or more of the inputs is absent. When redundancy is not 

available, mechanisms of integration should cause a reweighting of dependency 

on the remaining inputs.126 The previous sections have depicted how older adults 

may have decreases in the sensitivity of the peripheral sensory systems and with 

these decreases there is a reduction in redundancy of sensory information 

available. Therefore, older adults are less effective at shifting the relative 

weighting of the inputs as the need arises because of environmental changes. 

There have been several research groups who have reported that older adults 

have more difficulty when compared to young adults in maintaining postural 

control when sensory information is drastically reduced.25, 26, 71, 95, 101, 127-129 

 To discern the sensory integration of the vestibular, visual, and 

somatosensory systems, researchers systematically remove or disrupt one or 

two of the inputs and measure the postural changes that ensue.25, 71, 95, 98, 101, 128, 

129 Discrepancies have been found in the literature regarding the role of vision on 

postural control. Several researchers have reported that there are age related 
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increases in sway during quiet stance when input from vision is removed.13, 108 

While other investigations have revealed that healthy older adults only slightly 

increase their postural sway in eyes closed trials and that this increase is not 

enough to differentiate the older and young adults.71, 95, 101, 128 The same has 

been found with investigations that reported disrupting the somatosensory 

system and comparing older and young adults.95, 101, 127, 128 There seems to be a 

continuum of deficits in the older adult populations that may not be as widely 

dispersed in younger populations. 

Researchers have reported that if eyes are open, there is only a mild 

increase in postural instability when somatosensory input is distorted by either 

the use of foam or computerized posturagraphy.95, 101, 127, 128 While Judge et al.129 

used computerized posturography on 110 older adults and found greater deficits 

when proprioception was reduced as compared to when vision was reduced. 

This study did not have a comparison to young adult subjects like the previous 

studies, however they did make a distinction between the older and oldest 

participants, and reported that the deficits where greater in the oldest subjects.  

Similarly, Camicioli et al.63 compared oldest-old and older adults and reported 

that the former had decreased postural scores when proprioceptive input was the 

sense that was inaccurate. This discrepancy between the studies that reported 

proprioception alone did or did not affect postural control significantly may be 

explained by the age of the subjects. The largest changes were found in the 

group of subjects that were classified as oldest-old adult. 
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Despite the discrepancies in the literature as to the outcome when either 

visual or proprioceptive inputs were reduced, there seems to be no discrepancy 

among researchers when both of these inputs are removed or distorted. 

Teasdale et al.101 utilized a foam surface to distort the somatosensory input in 

both older and young adults while vision was either available or removed. The 

results revealed that when healthy older adults were relying on their vestibular 

inputs alone they had significant increases in postural sway compared to young 

adults. Researchers have also found similar results when using computerized 

dynamic posturography to discriminate among the sensory inputs of postural 

control.25, 95, 98, 128, 129 This body of literature is in agreement that when both the 

visual and somatosensory inputs for postural control were removed or distorted 

there was a significant decrease in the ability to maintain stability in older adults.  

Woollacott et al.95 reported that half of their older adult subjects had a 

complete loss of balance on the first trial for these trials that manipulated both 

sensory inputs. The investigators did report that all but one of the subjects who 

had lost their balance were able to perform trials two and three without exceeding 

their limits of stability. The authors concluded that this improvement was a sign 

that the older adults were able to adapt the senses for postural control, but only 

after practice with the manipulated conditions.95 Similarly, Judge et al.129 reported 

that the older adults were able to substantially adapt to the combination of vision 

and somatosensory reductions with repeated trials. As stated previously, the 

current literature reports that healthy older adults do not have significant deficits 

in postural control compared to young adults when there is manipulation of one 
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peripheral sense. However, they are all in agreement that there are significant 

decreases in postural control of older adults when two of the senses are not 

available. There seems to be some evidence to show that the older adults have 

the ability to adapt to these manipulations of the sensory input with sufficient 

practice. It is not known how long these adaptations last or the amount of 

practice needed. 

In summary, there are noted age related deficits in the peripheral sensory 

systems of postural control. Even with these negative changes in the anatomical 

structures of the sensory receptors related to aging, healthy older adults are able 

to perform unperturbed balance activities similar to young adults. When the 

integration of the three sensory systems is challenged there appears to be 

subsequent deficits in postural control and this is seen more plainly in older 

adults. When two of the systems, namely visual and proprioceptive inputs, are 

removed or distorted older adults are often unable to compensate immediately. It 

has been recommended that since there is strong evidence that there are 

decreases in the sensitivity of the somatosensory system that there needs to be 

compensatory strategies for older adults. Such strategies include increasing the 

sensory input as well as cutaneous and proprioceptive feedback. Orthoses and 

assistive devices are two of the suggested ways that sensory input could be 

enhanced during functional activities.64 

Interventions for Enhancing Postural Control of Older Adults 

The scientific and medical communities are interested in interventions that 

enhance the postural control of older adults because of the link between 
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decreased balance and the increased risk of falling.130, 131 Many different fall 

interventions have been reported in the literature including home hazard 

assessments, changes in medicines, cardiac pacing, muscle strengthening, 

balance training, functional exercise, augmentation of the plantar cutaneous 

receptors, and multifactorial programs.32, 37, 130-136 This review will mainly focus on 

interventions that attempt to facilitate the somatosensory system. 

Interventional studies have implemented varying single intervention 

strategies as well as multifaceted interventions with older adults in the hopes of 

reducing falls. Outcome measures utilized in these studies include direct 

measures of balance (e.g., force platforms), indirect measures of balance (e.g., 

Functional Reach Test, timed up & go, Berg Balance Scale), fear of falling 

measures, and reported falls over a period of time after the intervention. Brouwer 

et al.137 evaluated an exercise program that included light resistance training and 

weight shifting, compared to an education program over eight weeks. The 

researchers reported that even though fear of falling confidence was increased in 

both groups of older adult women, the group of women who had participated in 

the exercise had significant improvements in the direct balance measure and 

therefore it was concluded the postural control system had been enhanced. 

Similarly, a study using low-impact aerobic dance as the intervention reported 

that there was an improvement in indirect measures of balance with older women 

after 12 weeks.138 When used in conjunction, direct and indirect measures of 

balance reveal the spectrum of dynamic balance. 
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Several research groups have utilized Tai Chi as a fall reducing 

intervention in older adults.139-144 Tai Chi is a exercise technique that stresses 

postural control by continuously invoking slow body rotation movements while the 

base of support is progressively reduced.139 Wolf et al.139 reported in 1996 that a 

15 week intervention of Tai Chi significantly reduced the fall occurrence in older 

adults when compared to a group that had undergone balance training and 

another that had received education only. These researchers did not report any 

direct or indirect measurements of balance but did report that fear of falling was 

reduced in the Tai Chi and education groups. Li et al.142 also reported a reduction 

of falls in older adults after a six month Tai Chi intervention compared to a group 

of older adults who had just performed stretching exercises. Compared to Wolf et 

al.,139 Li et al.142 did report significant improvements in multiple indirect measures 

of balance in the Tai Chi group compared to the stretching control. The 

researchers reported that the improvements in balance and fall prevention were 

maintained for at least six months after the intervention period.142 

Tsang and colleagues reported in two cross sectional studies that older 

adults who were Tai Chi practitioners141, 144 and older adults who were golfers141 

performed direct balance measures better than a control group of older adults as 

well as performing at the same level as young adults. The results revealed that 

postural sway during single leg stance was significantly better for the older adults 

who participated in Tai Chi compared to the control group of older adults.144 

When somatosensory measures were investigated by joint reposition sense of 

the knee joint, it was revealed that the older adult Tai Chi practitioners and the 
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older adult golfers had significant better sensitivity when compared to a control 

group of older adults.141  Tsang et al.143 also reported that after just four weeks of 

participation in Tai Chi, older adults where able to improve their balance as 

measured with computerized dynamic posturography. Furthermore, the improved 

balance performance that was seen at the four week testing was comparable to 

that of experienced Tai Chi practitioners. This finding allowed the researchers to 

conclude that four weeks of Tai Chi training were sufficient to improve postural 

control in older adults.141 

These studies support the theory that exercise interventions improve 

postural control in older adults. This adds credence to the hypothesis discussed 

by Woollacott et al.,95 that older adults have the ability to adapt their sensory 

integration if there is adequate practice. Another type of postural control 

intervention that has been reported in the literature is the augmentation of the 

somatosensory system of the foot and ankle.32, 37, 50, 133-136, 145 

A recently published article presented a unique intervention to enhance 

somatosensory inputs in older adults, therapeutic manipulation.136 The 

researchers utilized massage of the feet, and joint mobilization of both the feet 

and ankles, to target the somatosensory receptors of these sites. The results 

revealed that the manipulation technique was able to compensate for sensory 

deficits when the older adult subjects closed their eyes while performing static 

standing trials. The researchers concluded that the subjects were able to adapt 

to the reduction in sensory input immediately after the intervention was 

performed.136 It is unknown how long these effects last. Bernard-Demanze and 
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colleagues have reported that 10 minutes of massage to the plantar aspect of the 

foot results in decreased COP sway particularly in the medial-lateral direction for 

healthy young adults.146, 147 Improvement in balance control occurred after three 

bouts of massage and lasted for at least 20 minutes.147 Therefore, manual 

sensitization of the feet and ankles was reported to give a minimum of short term 

benefit in postural control. 

Vibration and mechanical noise are types of intervention that attempt to 

facilitate the somatosensory system. It has been reported that noise can enhance 

sensory and motor functions of the extremities of older adults by way of a 

mechanism known as stochastic resonance.37, 38, 148, 149 Priplata and colleagues 

hypothesized that the postural sway of both young and older adults would be 

improved during quiet stance when there was an application of vibration or 

mechanical noise to the feet.37, 38 Subsensory “white” noise was applied to the 

plantar aspects of the feet in both of these studies. In the first study, the subjects 

stood on a platform and the noise was supplied by nylon indentors that touched 

the sole of the foot.38 The second of the studies had the subjects standing on two 

gel insoles that had three vibrating elements embedded in each insole.37 The 

results of both of these studies revealed that the postural sway was decreased 

with the addition of the noise, which lead the investigators to conclude that the 

application of noise increased the postural control in these older adults. 

According to similar findings, the insertion of a  textured insole into the 

shoes of young adults results in a reduction in ankle plantarflexor and dorsiflexor 

muscle activity during gait.145 Nurse et al.145 reported changes in gait patterns 
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which supported the hypothesis that textured insoles facilitated sensory feedback 

from the plantar aspect of the feet during gait. Palluel et al.133 attempted to add to 

the findings of this previous study by investigating the immediate and temporal 

effects of textured insoles on postural control of young and older adults. The 

investigators hypothesized that the spiked sandals would increase the cutaneous 

sensation similar to the massage affect found by Bernard-Demanze et al.,146 and 

thus increase the postural stability in the older adults. The results did not show 

an immediate effect with the sandals, but after either standing or walking in the 

sandals for five minutes the results did confirm the hypothesis. The authors 

concluded that both young and older adults, without discernible sensation 

deficits, have enhanced postural control when wearing the spiked sandals.133 

This finding differs from Wilson et al.134 who had middle-aged females wear one 

of three textured insoles for a four week period. The results of this study found no 

significant differences in the static balance measurements. The discrepancy 

between these two studies could be explained by the age of the subjects, middle-

aged versus older adults, and the time of insole usage, five minutes versus four 

weeks.  

Another method found in the literature of facilitating sensation of the 

plantar aspect of the foot is the usage of a raised edge around the border of the 

feet.32 The hypothesis was that by increasing the sensation from the boundaries 

of the base of support there would be a reduction in COP excursions toward the 

boundary. Subjects were healthy older adults who had measurable loss of 

sensation as measured by vibration detection threshold. The results revealed 
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that the mechanical facilitation of the foot boundary was able to improve the 

postural reactions and reduced the COP movement when continuous 

anterior/posterior perturbations were applied. The authors concluded that the 

raised border provided the CNS with more information about the base of support 

as well as the limits of stability in the older adult subjects.32  

Recently, researchers have reported that in-shoe orthotics can be used as 

an aid for postural stability. A search of the literature reveals that in-shoe 

orthotics have been found to be beneficial in improving postural control in a wide 

range of subjects, from those with foot or ankle injuries41, 44-46 to those that are 

considered healthy.47 All of these studies have been performed on young adult 

subjects. Stude and Brink50 reported an increase in proprioceptive symmetry of 

the lower extremities after experienced golfers wore custom, flexible orthotics for 

six weeks. However, they did not report the age of their subjects so it is not 

known if these findings are with an older population. Foot orthotics are usually 

designed to correct biomechanical and structural abnormalities of the foot and 

ankle and it is highly likely that there is a resulting effect on the somatosensory 

system by way of increased receptor stimulation. Since this hypothesis has been 

upheld in young adults it stands to reason that the older adult population, who is 

known to have somatosensory deficits, would benefit from orthotics as well. To 

date, a search of the literature does not elicit research that attempts to add to this 

body of evidence. 
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Summary 

This chapter reviewed the literature involved in postural control. The first 

section focused on postural control in normal, healthy adults and the peripheral 

sensory systems (vestibular, visual, and somatosensory) that contribute to the 

postural control system. Section two reviewed the current literature regarding the 

effect of aging on the postural control system. The most deleterious effects of 

aging have been found to be in the somatosensory system. The final section of 

this chapter reviewed the interventions that researchers have utilized to improve 

postural control deficits found in the older adult population, specifically in the 

somatosensory system. Although there is extensive research on these topics, 

there are several areas that need to be investigated further. The effectiveness of 

orthotics on the postural control of the older adult population has not been 

conclusively determined. 

 

 

 

 

 

 

 

Copyright © Ann L. Livengood 2008 



   

 35 

Chapter Three 
Methods 

Introduction 

The purpose of this study was to evaluate the utilization of an in-shoe 

orthotic system on the postural stability of older adults over an 8 week period. 

This chapter describes the methodologies that were utilized during the study. The 

subjects are described first and data collection procedures are discussed 

second. Data analysis procedures are described third and statistical analyses are 

discussed last. 

Subjects 

Twenty-seven volunteers (19 females, 8 males, mean age: 86.93 ± 5.1 

years, range: 73-97 years, mean height: 1.66 ± 0.11 m, mean mass: 71.06 ± 

15.57 kg) were recruited as subjects from Richmond Place Retirement 

Community (Lexington, KY). Subjects were excluded for the following: 1) 

uncontrolled blood glucose levels, 2) any lower extremity or head injury in the 

past 6 months, 3) any uncontrolled medical conditions, 4) uncorrected visual or 

vestibular problems, 5) history of foot wounds 6) significant pain that limits daily 

function, 7) an ear infection within 2 weeks prior to testing, 8) a quantitative 

vibration perception threshold ≥40 V and detection of ≤2 Semmes Weinstein 

Monofilament contacts, 9) a score of less than 20 on the Mini Mental State exam. 

Exclusion criteria 1-7 was obtained with a Health History Questionnaire 

(Appendix A) and 8-9 were directly collected by the examiner. Prior to testing, all 

subjects were informed of possible risks and signed an informed consent 

approved by the University of Kentucky Institutional Review Board (Appendix B). 
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Instrumentation 

Force Plate 
Force data were collected at 100 Hz using a Bertec strain gage force plate 

(Bertec Corporation, Columbus, OH). The force data were collected using Motion 

Monitor software (Innovative Sports Training Inc., Chicago, IL). The force plate 

was placed on a low pile, industrial carpet. The force plate was leveled using a 

standard bubble level and sheets of paper for shims. This was done at the 

beginning of each day of data collection and was checked periodically during the 

collection period to make sure the plate was still level. All force data were filtered 

with a 4th order, zero phase shift Butterworth filter with a cutoff frequency of 10 

Hz. A residual analysis was utilized to calculate the 10 Hz cutoff frequency.150 

The force plate output was exported to Excel and utilized to calculate center of 

pressure (COP) displacement, distance, and the root mean square of velocity 

(RMSvel)46 for both the anterior-posterior (AP) and medial-lateral (ML) directions 

(Appendix C). 

Sensation Testing 
Sensation, both cutaneous and proprioceptive, declines as people age. In 

addition, sensory deficits in the feet have been identified as an independent risk 

factor for falls. Semmes-Weinstein Monofilament (SWM) and quantitative 

vibration perception threshold (QVPT) testing are non-painful, inexpensive, valid, 

and reliable tests to assess foot sensation.151-153 The SWM method that was 

utilized in the current study has been found to have a sensitivity of 72%, a 

specificity of 71% and an accuracy of 72% when assessing peripheral 

neuropathy.152 The QVPT methodology that was utilized has been found to have 
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a sensitivity of 86%, a specificity of 56%, and a positive predictive value of 32% 

when predicting patients who are at risk for developing diabetic ulcers 153. 

The SWM examination was conducted using a 5.07/10-g monofilament. 

These monofilaments are as thin as a human hair and bend at 10 grams of 

pressure. A non-callused area on the dorsum of the hallux just proximal to the 

nail bed served as the test site. The monofilament was applied perpendicular to 

the test site and held for one second. The subjects had their eyes closed and 

were instructed to respond “now” when they perceived the monofilament.151, 152 

This was completed four times in an asynchronous manner on the test site. The 

number of correct responses, out of a maximum of 4, was recorded. 

The QVPT testing was performed using a Bio-Thesiometer (Bio-Medical 

Instrument Company, Newbury, OH) (Figure 3.1). This is a handheld device that 

has a rubber tip that vibrates at 100 Hz. The handheld unit is connected to a 

base unit. The base unit has a linear scale that displays the applied voltage that 

can range from 0 to 50 V. The rubber tip of the instrument was placed on the 

pulp of the subject’s hallux. The handheld unit was placed so the force was 

perpendicular to the floor. The voltage was increased slowly until the subject was 

able to perceive the vibration.153 
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Figure 3.1 Bio-Thesiometer 

 

SmartStep™ Stabilization System 
All subjects were supplied with the SmartStep™ Stabilization System 

(SmartStep, Inc., Kansas City, KS). SmartStep™ consists of the following: 1) a 

pair of extra depth, diabetic shoes (Aetrex Worldwide, Inc., Teaneck, NJ) 2) a 

patented in-shoe semi-rigid orthotic (SmartStep, Inc.), 3) a pair of patented 

SmartKnit Seamless Socks, 4) a pair of Comfort System Lite Socks, 5) a pair of 

Sleep Socks with non-skid treads. (Figure 3.2) 

Figure 3.2: SmartStep™ System 
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Procedures 

Each subject was tested on five days. The first 2 Test Days were 

performed while the subjects wore their own shoes, while the last 3 Test Days 

were performed while the subjects wore the SmartStep™. Test Days 1 and 2 

occurred at least 48 hours apart. Test Day 3 occurred when the SmartStep™ 

was initiated and the average time between Test Days 2 and 3 was 22 ± 11 days. 

Test Days 4 and 5 occurred 4-weeks after the prior Test Day (Table 3.1). During 

the 8-weeks between Test Days 3 and 5, subjects were asked to wear the 

SmartStep™. Weekly visits were made to each subject to ensure compliance 

with wearing the shoes and to check for discomfort or injuries. 

The sensation testing was performed on Test Days 1 and 5 and included 

the SWM and QVPT tests. All 5 Test Days included the same clinical and force 

plate collection procedures. The clinical measures included the Berg Balance 

Scale, Timed “Up and Go”, Four Square Step Test, Functional Reach Test, and 

Lateral Reach Test. The force plate measurements were Quiet Standing with 

Eyes Open, Eyes Closed, and Feet Together. The survey measurements were 

collected on Test sessions 1, 4 and 5 and included the Activities-specific Balance 

Confidence Scale and the Activity Questionnaire. 

Table 3.1: Data collection schedule 

Test Day 1 Test Day 2 
(48 hours 

after Test 1) 

Test Day 3  
(Initiation of 

SmartStep™) 

Test Day 4 
(4 weeks 
after Test 

Day 3) 

Test Day 5 
(4 weeks 
after Test 

Day 4) 
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Clinical Measures 

Berg Balance Scale 
The Berg Balance Scale (BBS) was developed as a tool to assess 

performance of functional activities while challenging balance by progressively 

narrowing the base of support.154 The BBS consists of 14 movements that are 

common in activities of daily living. It has been found to be a valid test for 

predicting falls and to have both inter and intra-rater reliability, 0.98 and 0.99 

respectively.154, 155 The BBS has also be found to have high test-retest reliability 

in 22 people with hemiparesis (ICC = 0.98).156 The 14 mobility tests are 

performed as follows: 

1. Change of position: sitting to standing 

2. Standing unsupported, eyes-open 

3. Sitting unsupported 

4. Change of position: standing to sitting 

5. Transfers 

6. Standing with eyes-closed 

7. Standing with feet together 

8. Forward Reach 

9. Retrieving an object from the floor 

10. Turning trunk (feet fixed) 

11. Turning 360 degrees 

12. Stool Stepping 

13. Tandem standing 

14. Standing on 1 leg 
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The scoring for the Balance Scale is out of 56 points (Appendix D). All 

static balance tests, except Tandem standing, were performed with the subject 

standing on the force plate so that force data could be collected simultaneously. 

The BBS was performed once and the score out of 56 points was used as the 

criterion value. The force data utilized for data analysis included center of 

pressure (COP) distance, displacement and the root mean square of velocity 

(RMSvel)46 in both the anterior-posterior (AP) and medial-lateral (ML) directions. 

Timed “Up & Go” 
The Timed “Up & Go” (TUG) test measures the functional mobility of the 

subjects. The TUG was found to have inter- and intra-rater reliability of 0.99 and 

to correlate with log-transformed BBS scores and Gait Speed, -0.81 and -0.61 

respectively.157 The subject started while sitting, with their back against the back 

of a standard arm chair with a seat height of 46 cm. The subject was asked to 

stand, walk a distance of 3 meters, turn, walk back to the chair, and sit down 

again. A standard stopwatch was used to time the subject in seconds and timing 

began after the word “go” was spoken. Three tests were measured and the 

average of the 3 was used for data analysis. A rest period of 2 minutes was 

provided between tests. 

Four Square Step Test 
The Four Square Step Test (FSST) is a dynamic test of postural stability. 

This test requires subjects to change directions and step over a one inch 

obstacle. The FSST has been found to have interrater reliability of 0.98, a 

specificity of 88% to 100%, a sensitivity of 85% and a positive predictive value of 
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86% when identifying older, community-dwelling adults with a history of falling.158 

Subjects are required to step over a one inch pipe laying flat on the ground for 

each of the following directions: 1) forward, 2) sidestep to the right, 3) backwards, 

and 4) sideways to the left. This is repeated in the opposite direction (sidestep to 

the right, forward, sidestep left, backwards) and the time is recorded.158 The 

FSST was performed 2 times and the best time was utilized as the criterion 

value. 

Functional and Lateral Reach Tests 
The Functional Reach Test (FRT) and Lateral Reach Test (LRT) are 

measures of maximal anterior and lateral distances reached beyond arms length 

while standing. These tests have been found to have high inter- and intra-rater 

reliability, 0.91 and 0.92 respectively.159, 160 Validity has also been demonstrated 

by correlating these tests to center of pressure excursions.159, 160 A tape measure 

and strip of paper were taped to the wall for both of these tests. For the FRT, 

subjects stood on the force plate so that the tape measure was on the wall to 

their left. Subjects were placed in a standardized position with their feet 10 cm 

apart as measured between the medial aspects of the heels. Subjects were 

instructed to flex both shoulders to 90 degrees and the beginning position was 

marked on the strip of paper. Subjects were then instructed to lean forward as far 

as possible without losing their balance or lifting their feet and maintain this 

position for 3 seconds. The ending position was then marked on the paper. A trial 

was not accepted if the subject flexed their knees or lifted a foot. Both the 

beginning and ending positions were marked as the location of the distal end of 
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the third digit. The difference between the beginning and ending position was 

calculated159 in centimeters and the average of three trials was used as the 

criterion value. 

A similar procedure was performed for the LRT; however the subjects 

stood on the force plate with their backs toward the wall. With one arm at the 

side, and the other arm abducted to 90 degrees, the beginning position was 

marked on the paper. Subjects were instructed to reach directly sideways as far 

as possible without lifting either foot, flexing a knee, and rotating or forward 

flexing the trunk. The maximal reach was maintained for 3 seconds and the 

ending position was marked by the investigator.160 The lateral reach was 

performed in both the right and left directions. The difference between the 

beginning and ending position was calculated in centimeters and the average of 

three trials for each direction was used as the criterion value. 

Force Plate Measurements 

Quiet Standing Eyes Open, Eyes Closed and Feet Together 
As part of the BBS, three of the scored items require the subject to stand 

with their eyes open (EO), with eyes closed (EC) and with their feet together 

(TOG). The EO and EC conditions were performed with the heels 10 cm apart 

and the TOG condition was performed with the eyes open. To receive the highest 

score for these items on the BBS, the subject must be able to stand with EO for 2 

minutes, EC for 10 seconds and TOG for 1 minute. All three of these BBS items 

were collected while the subject was standing on the force plate. The first 50 

seconds of the force data collected during the EO and TOG trials were analyzed. 
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For comparison purposes, the subjects were asked to stand with EC for 50 

seconds with the first 10 seconds used to score the BBS and the entire 50 

seconds used to analyze the force data. Subjects were instructed to stand quietly 

with arms hanging down by their sides while looking at a target placed 1 meter in 

front of them at eye level in the EO trials.161 The force data utilized for data 

analysis included center of pressure (COP) distance, displacement and the root 

mean square of velocity (RMSvel)46 in both the anterior-posterior (AP) and medio-

lateral (ML) directions (Appendix C). 

Survey Measurements 

Activities-specific Balance Confidence Scale 
The Activities-specific Balance Confidence (ABC) Scale contains 16 items 

that allows for objective comparison of subjects’ mobility confidence. The ABC 

Scale has been found to have a test-retest reliability of 0.92 and was reported to 

be useful in distinguishing higher functioning older adults from lower 

functioning.162 The 16 items were scored from 0 to 100 (Appendix E). Subjects 

marked their answers on a 10 cm line. The ABC Scale was administered prior to 

the Test Days 1, 4 and 5 data collection sessions only. 

Activity Questionnaire (AQ) 
An activity questionnaire (Appendix F) was administered on the Test Days 

1, 4 and 5. This questionnaire was used to determine if there had been a change 

in activity level and ability over the 8 week period. The AQ consisted of 10 

questions and were scored on a 0 to 4 ordinal scale so the scoring was out of a 

maximum of 40. 
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Sensation Measures 

Semmes-Weinstein Monofilament (SWM)  
The SWM sensation testing was performed on all subjects on Test Day 1 

and on Test Day 5. This was used to determine inclusion criteria as well as to 

determine if there was a change in peripheral sensation in the 8 week period. 

Quantitative Vibration Perception Threshold (QVPT) 
The QVPT testing was performed on all subjects on Test Day 1 and on 

Test Day 5. These results were utilized to determine inclusion eligibility as well as 

to determine if there was a change over the 8 week period. Table 3.2 shows the 

quintile itemization for all subjects’ feet. 

Statistical Analysis 

Statistical analyses were performed with SPSS 13.0 for Windows (SPSS 

Inc., Chicago, Illinois). One-way, repeated measures analysis of variance 

(ANOVA) was performed for each dependent variable. All 6 of the clinical 

measures, BBS, TUG, FSST, FRT, and LRT Right and Left, were analyzed with 

a 1x5 repeated measures ANOVA with the 5 Test Days being the within-subjects 

factor. All 18 of the force plate measures, AP and ML displacement, distance and 

RMSvel for EO, EC and TOG, were analyzed with a 1x5 repeated measures 

ANOVA with 5 Test Days being the within-subjects factor. The 2 survey 

measures, ABC and AQ, were each analyzed with a 1x3 repeated measures 

ANOVA with Test Days 1, 4 and 5 being the within-subjects factor. The 4 

sensation tests, SWM and QVPT on each foot, were analyzed with a 1x2 

repeated measures ANOVA with Test Days 1 and 5 being the within-subjects 
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factor. An alpha level of p < 0.05 was set a priori. If significant main effects were 

found, a Fisher’s LSD post hoc analysis was performed to determine where the 

differences were located. 

Table 3.2: Tally of Quantitative Vibration Perception Threshold (QVPT) Scores 
for the Right and Left Feet of all 27 subjects for Test Days 1 and 5. 

 Test 1 Test 5 

QVPT Score 
(0-50 V) Right Left Right Left 

<10 1 1 1 1 

10-19 11 8 12 11 

20-29 8 9 7 5 

30-39 4 7 3 6 

>40* 3 2 4 4 

* scores in this category are considered pathological sensation loss 

 

Copyright © Ann L. Livengood 2008 
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Chapter Four 
Results 

Introduction 

The purpose of this study was to evaluate the utilization of an in-shoe 

orthotic system on the postural stability of older adults over an 8 week period. 

This chapter reports the results of the postural control assessments. The chapter 

contains four sections: 1) Clinical Measures, 2) Force Plate Measures, 3) Survey 

Measures, and 4) Sensation Measures. Within each section are subsections for 

each dependent variable that was analyzed. A summary of the important results 

is presented at the end of the chapter. 

Clinical Measures 

Table 4.1 presents the averaged scores and standard deviations of all 27 

subjects for the Berg Balance Scale (BBS), Timed “Up and Go” (TUG), and the 

Four Square Step Test (FSST) for the 5 Test Days. It should be noted that the 

FSST average scores are from 26 subjects as one subject was unable to 

complete this task safely and independently. 
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Table 4.1: Average score and standard deviation for the 27 subjects for the Berg 
Balance Scale, Timed “Up & Go”, and Four Square Step Test. 

Test Day 
Berg Balance 

Scale 
(out of 56 points) 

Timed “Up & Go” 
(sec) 

 
Four Square Step 

Test* 
(sec) 

 
 

1 42.63 ± 8.83 17.25 ± 8.12** 25.03 ± 24.42 
 

2 43.00 ± 8.85 16.81 ± 9.73 25.95 ± 23.27 
 

3 44.52 ± 9.67 17.28 ± 9.43** 25.09 ± 22.49 
 

4 44.59 ± 10.23 17.23 ± 10.46 23.86 ± 22.10 
 

5 43.89 ± 10.62 15.47 ± 7.68 22.09 ± 18.49 
    

* Mean and Standard Deviation based on 26 subjects only 
** values significantly different from Test Day 5 p≤.05 

Berg Balance Scale (BBS) 
Results for the BBS are presented in Table 4.1. Means for the BBS 

ranged from 42.62 to 44.59 points out of a maximum of 56. There were no 

significant differences or trends for the 5 different Test Days. 

Timed “Up & Go” (TUG) 
Results for the TUG are presented in Table 4.1. Means for the TUG 

ranged from 17.28 to 15.47 seconds. A main effect for time was found, F(4,23) = 

3.4, p = 0.025. Pairwise comparisons revealed that Test Days 1 and 3 were 

significantly slower compared to Test Day 5 (p = 0.012 and 0.009, respectively). 

No other significant comparisons were found. 
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Four Square Step Test (FSST) 
FSST results are presented in Table 4.1. Means for the FSST ranged from 

25.95 to 22.09 seconds. There were no significant differences between the five 

days of testing. 

Data for the Functional Reach Test (FRT) and Lateral Reach Tests (LRT) 

are presented in Table 4.2 as the average distance and standard deviation, in 

centimeters, of the 27 subjects for the 5 Test Days. 

Table 4.2: Average score in cm for the 27 subjects for the Functional Reach Test 
(FRT) and Lateral Reach Tests (LRT to the right and left fro all days of testing. 

Test Day FRT  
(mean ± SD) 

LRT Right  
(mean ± SD) 

LRT Left  
(mean ± SD) 

 
1 14.78 ± 5.66* 11.76 ± 4.61 11.73 ± 4.05 
 
2 17.05 ± 5.92 13.00 ± 3.70** 11.50 ± 4.52 
 
3 16.00 ± 6.55 12.71 ± 3.93** 12.48 ± 4.02 
 
4 15.31 ± 6.94* 12.52 ± 5.00** 11.49 ± 4.09 
 
5 15.25 ± 7.01 11.23 ± 3.92 11.49 ± 5.24 
    

* values significantly different from Test Day 2, p≤.05 
** values significantly different from Test Day 5, p≤.05 

Functional Reach Test (FRT) 
FRT results are presented in Table 4.2. Means for the FRT ranged from 

14.78 to 17.05 cm. A main effect for time was found, F(4,23) = 2.93, p = 0.043. 

Pairwise comparisons revealed that Test Days 1 and 4 were significantly less 

when compared to Test Day 2 (p = 0.008 and 0.043, respectively). There were 

no other significant differences. 
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Lateral Reach Test (LRT) Right and Left 
LRT results are presented in Table 4.2 for both the right and left reach 

directions. Means for the LRT to the right ranged from 11.23 to 13.00 cm and to 

the left from 11.49 to 12.48 cm. A main effect for time was found for LRT while 

reaching to the right, (F(4,23) = 3.06, p = 0.037). Pairwise comparisons 

demonstrated that right direction reaching was statistically different for Test Days 

2, 3, and 4 when compared to Test Day 5 (p = 0.018, 0.041, and 0.017). There 

was no significant main effect for time for the left direction of the LRT. 

Force Plate Measures 

Center of Pressure (COP) Displacement 

Eyes Open (EO) 
The results for EO anterior-posterior (AP) and medio-lateral (ML) 

displacement are presented in Table 4.3. Means ranged from 3.4 to 3.6 cm in the 

AP direction and from 2.2 to 2.9 cm in the ML direction. There was no significant 

main effect for time for displacement in either direction with EO. 
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Table 4.3: Average Displacement in cm for the 27 subjects for the Eyes Open 
condition during static standing for 50 sec. 

Test Day 
Anterior-Posterior 

Displacement 
(mean ± SD) 

Medial-Lateral 
Displacement 
(mean ± SD) 

 
1 3.4 ± 1.1 2.4 ± 1.0 
 
2 3.6 ± 1.0 2.5 ± 1.3 
 
3 3.5 ± 0.8 2.2 ± 1.0 
 
4 3.5 ± 1.1 2.3 ± 1.0 
 
5 3.6 ± 1.1 2.9 ± 2.0 
   

Eyes Closed (EC) 
The results for EC AP and ML displacement are presented in Table 4.4. 

Means ranged from 4.6 to 5.3 cm in the AP direction and from 2.8 to 3.9 cm in 

the ML direction. A main effect in the AP direction for time was found, F(4,23) = 

2.93),p = 0.024. Pairwise comparisons revealed that AP displacement for Test 

Days 3 and 5 were significantly larger compared to Test Day 1 (p = 0.045 and 

0.035) and Test Day 2 (p = 0.030 and 0.022). No other significant main effects 

were demonstrated. 
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Table 4.4: Average Displacement in centimeters for the 27 subjects for the Eyes 
Closed condition during static standing for 50 sec. 

Test Day 
Anterior-Posterior 

Displacement 
(mean ± SD) 

Medial-Lateral 
Displacement 
(mean ± SD) 

 
1 4.7 ± 2.2 2.9 ± 1.8 
 
2 4.6 ± 2.1 2.8 ± 1.6 
 
3 5.3 ± 2.1* 3.1 ± 1.7 
 
4 5.1 ± 2.5 3.2 ± 1.5 
 
5 5.3 ± 2.2* 3.9 ± 2.7 
   

* values significantly different from Test Days 1 & 2, p≤.05 

Feet Together (TOG) 
The results for TOG AP and ML displacement are presented in Table 4.5. 

Means ranged from 3.9 to 4.3 cm in the AP direction and from 3.8 to 4.1 in the 

ML direction. There were no significant main effects for displacement in either 

direction with TOG. 
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Table 4.5: Average Displacement in centimeters for the 27 subjects for the Feet 
Together condition during static standing for 50 sec. 

Test Day 
Anterior-Posterior 

Displacement 
(mean ± SD) 

Medial-Lateral 
Displacement 
(mean ± SD) 

 
1 3.9 ± 1.2 4.0 ± 1.3 
 
2 4.2 ± 1.4 4.1 ± 2.4 
 
3 4.3 ± 1.7 4.1 ± 2.0 
 
4 3.9 ± 1.3 3.8 ± 1.2 
 
5 3.9 ± 1.3 4.0 ± 1.2 
   

COP Distance 

EO 
The results for COP distance in the EO condition are presented in Table 

4.6. Means ranged from 90.0 to 100.3 cm in the AP direction and from 57.1 to 

60.4 cm in the ML direction. There were no statistically significant differences in 

either the AP or ML directions for this condition. 
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Table 4.6: Average total Distance in centimeters for the 27 subjects for Eyes 
Open condition during static standing for 50 sec. 

Test Day 
Anterior-Posterior 

Distance 
(mean ± SD) 

Medial-Lateral 
Distance 

(mean ± SD) 
 
1 90.0 ± 53.5 57.9 ± 19.9 
 
2 93.0 ± 68.0 57.1 ± 22.7 
 
3 96.3 ± 68.8 57.7 ± 23.4 
 
4 96.7 ± 76.9 57.3 ± 30.2 
 
5 

 
100.3 ± 88.7 

 
60.4 ± 27.7 

   

EC 
The results for EC condition COP distance are located in Table 4.7. 

Means ranged from 152.2 to 187.7 cm in the AP direction and from 79.5 to 90.1 

cm in the ML direction. No statistically significant main effects were found for 

either the AP or ML directions for EC. 

Table 4.7: Average total Distance in centimeters for the 27 subjects for Eyes 
Closed condition during static standing for 50 sec. 

Test Day 
Anterior-Posterior 

Distance 
(mean ± SD) 

Medial-Lateral 
Distance 

(mean ± SD) 
 
1 152.2 ± 140.0 79.5 ± 46.1 
 
2 152.8 ± 141.3 83.9 ± 66.9 
 
3 162.3 ± 138.7 82.8 ± 61.9 
 
4 161.5 ± 126.7 80.9 ± 49.3 
 
5 187.7 ± 184.0 90.1 ± 56.8 
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TOG 
The COP distance results for the TOG condition are presented in Table 

4.8. Means ranged from 111.0 to 121.4 cm in the AP direction and from 96.2 to 

104.9 cm in the ML direction. There were no main effects for this condition in 

either the AP or ML directions. 

Table 4.8: Average total Distance in centimeters for the 27 subjects for Feet 
Together condition during static standing for 50 sec. 

Test Day 
Anterior-Posterior 

Distance 
(mean ± SD) 

Medial-Lateral 
Distance 

(mean ± SD) 
 
1 113.2 ± 75.0 104.2 ± 61.2 
 
2 111.0 ± 59.4 96.6 ± 48.7 
 
3 121.4 ± 84.7 104.9 ± 64.0 
 
4 119.5 ± 80.4 100.3 ± 54.5 
 
5 117.9 ± 85.6 96.2 ± 53.7 
   

COP Root Mean Square of Velocity (RMSvel)  

EO 
The average COP RMSvel for the EO condition is located in Table 4.9. 

Means ranged from 2.4 to 2.6 cm/s in the AP direction and from 1.5 to 1.8 cm/s 

in the ML direction. No significant statistical differences were found in either AP 

or ML directions. 
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Table 4.9: Average Root Mean Square of Velocity in cm/s for the 27 subjects for 
Eyes Open condition during static standing for 50 sec. 

Test Day 
Anterior-Posterior 

RMSvel 
(mean ± SD) 

Medial-Lateral 
RMSvel 

(mean ± SD) 
 
1 2.4 ± 1.4 1.5 ± 0.5 
 
2 2.4 ± 1.8 1.5 ± 0.6 
 
3 2.5 ± 1.8 1.5 ± 0.6 
 
4 2.5 ± 2.0 1.5 ± 0.7 
 
5 2.6 ± 2.2 1.8 ± 1.0 
   

EC 
The average COP RMSvel for the EC condition is located in Table 4.10. 

Means ranged from 4.0 to 4.9 cm/s in the AP direction and from 2.1 to 2.5 cm/s 

in the ML direction. No significant statistical differences were found in either AP 

or ML directions. 

Table 4.10: Average Root Mean Square of Velocity in cm/s for the 27 subjects 
for Eyes Closed condition during static standing for 50 sec. 

Test Day 
Anterior-Posterior 

RMSvel 
(mean ± SD) 

Medial-Lateral 
RMSvel 

(mean ± SD) 
 
1 4.0 ± 3.6 2.1 ± 1.2 
 
2 4.1 ± 3.9 2.2 ± 1.7 
 
3 4.3 ± 3.8 2.2 ± 1.6 
 
4 4.2 ± 3.4 2.1 ± 1.2 
 
5 4.9 ± 4.8 2.5 ± 1.6 
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TOG 
The average COP RMSvel for the TOG condition is located in Table 4.11. 

Means ranged from 2.9 to 3.2 cm/s in the AP direction and from 2.5 to 2.8 cm/s 

in the ML direction. No significant statistical differences were found in either AP 

or ML directions. 

Table 4.11: Average Root Mean Square of Velocity in cm/s for the 27 subjects 
for Feet Together condition during static standing for 50 sec. 

Test Day 
Anterior-Posterior 

RMSvel 
(mean ± SD) 

Medial-Lateral 
RMSvel 

(mean ± SD) 
 
1 3.0 ± 1.9 2.7 ± 1.6 
 
2 2.9 ± 1.6 2.6 ± 1.3 
 
3 3.2 ± 2.2 2.8 ± 1.8 
 
4 3.1 ± 2.1 2.6 ± 1.4 
 
5 3.1 ± 2.3 2.5 ± 1.5 
   

Survey Measures 

The average scores and standard deviations for the Activities-specific 

Balance Confidence Scale (ABC) and Activity Questionnaire (AQ) for all 27 

subjects are presented in Table 4.12. These scores were collected on Test Days 

1, 4, and 5 only. 
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Table 4.12: Average score and standard deviation for the 27 subjects for the 
Activities-specific Balance Confidence (ABC) Scale and the Activity 
Questionnaire (AQ) on Test Days 1, 4, & 5. 

 
Test Day 

 
ABC 

(out of 100) 

 
AQ 

(out of 40) 
 
1 

 
73.6 ± 17.8 

 
26.81 ± 8.04 

 
4 

 
70.7 ± 21.3 

 
26.67 ± 9.57 

 
5 

 
68.5 ± 19.3 

 
25.44 ± 9.02 

   

Activities-specific Balance Confidence Scale (ABC) 
The results for the ABC are presented in Table 4.12. Mean scores ranged 

from 68.5 to 73.6 points out of 100 possible. There was no significant difference 

found among the three days that this measure was taken. 

Activity Questionnaire (AQ) 
The AQ results presented in Table 4.12. Mean scores ranged from 25.44 

to 26.81 out of a possible 40. There was no statistical difference in score among 

these three testing days. 

Sensation Measures 

The 2 sensation measurements, Semmes-Weinstein Monofilament (SWM) 

and Quantitative Vibration Perception Threshold (QVPT), results are presented in 

Table 4.13. Both of these sets of data were collected on both right and left feet 

on Test Days 1 and 5. 
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Table 4.13: Average score for the 27 subjects for the Semmes-Weinstein 
Monofilament (SWM) and the Quantitative Vibration Perception Threshold 
(QVPT) for both feet on Test Days 1 & 5. 

 
SWM (# out of 4) 

 
QVPT (V) 

 

 
Test Day 

 
Right 
Foot 

 

 
Left 
Foot 

 
Right 
Foot 

 
Left 
Foot 

 
1 

 
3.37 ± 
1.12 

 
3.26 ± 
1.29 

 
24.28 ± 
11.64 

 
25.62 ± 
11.23 

 
5 

 
3.44 ± 
1.12 

 
3.44 ± 
1.19 

 
23.89 ± 
12.42 

 
25.05 ± 
12.94 

   

Semmes-Weinstein Monofilament (SWM) 
The SWM results are presented in Table 4.13. Mean scores out of a 

possible 4 ranged from 3.26 to 3.44. There were no significant differences in 

SWM from the first day of testing when compared to the last day of testing. 

Quantitative Vibration Perception Threshold (QVPT) 
The QVPT results are presented in Table 4.13. Mean scores ranged from 

23.89 to 25.62 V out of a maximum of 50 V. There were no significant differences 

in QVPT from the first day of testing when compared to the last day of testing. 

Summary 

For the Clinical Measures, statistical significance was found for the TUG, 

FRT, and LRT to the right. It was found that the Test Day 5 average was 

significantly faster for the TUG compared to Test Days 1 and 3. The average 

FRT was less for Test Days 1 and 4 when they were compared to Test Day 2. 
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The LRT only elicited significant differences in the reach to the right direction. On 

average, Test Days 2, 3, and 4 had significantly greater LRT than Test Day 5. 

The only statistically significant finding for the Force Plate Measures was 

the AP COP displacement in the EC condition. Test Days 3 and 5 were found to 

have significantly greater COP displacements compared to both Test Day 1 and 

2. No significant differences where reported for the Survey or Sensation 

Measures. 
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Chapter Five 
Discussion 

Introduction 

The purpose of this study was to evaluate the utilization of an in-shoe 

orthotic system on the postural stability of older adults over an 8 week period. 

This chapter begins by briefly summarizing the purpose and research 

hypotheses of the present study. The implications of the results are then 

discussed, and the relationship between our results and the existing body of 

knowledge is examined. Finally, the strengths and limitations of the present study 

are reviewed and a general summary is presented. 

Purpose and Research Hypotheses 

Decreased somatosensory input may be one cause of balance deficits in 

older adults. Utilizing an intervention that increases somatosensory input would 

be beneficial in older adults who have decreased balance and are at risk for falls. 

Presently, no study has been reported that has attempted to utilize an in-shoe 

semi-rigid orthotic to enhance somatosensory input and improve balance in older 

adults. The purpose of the present study was to test the hypotheses that were 

formulated to evaluate the efficacy of semi-rigid orthotics improving the balance 

of a group of older adults over an 8 week period. 

The research hypotheses involved four types of dependent variables: 1) 

Clinical Measures, 2) Force Plate Measures, 3) Survey Measures, and 4) 

Sensation Measures. In general, the research hypotheses were organized such  

that if balance was improved with the in-shoe, semi-rigid orthotic, then 1) all 
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improvements in test scores would occur in the first 4 weeks of orthotic usage, 

and 2) there would be no subsequent improvements from week 4 to week 8 of 

orthotic usage. 

Clinical Measures 

Berg Balance Scale (BBS) 
The BBS is a test that has been utilized in many studies to monitor the 

status of patient’s balance and to predict which older adults are at risk for falls. 

161, 163-171 In the present study, there were no significant changes elicited in the 8 

week period of in-shoe orthotic usage. The mean scores ranged from 42.6 to 

44.6 points out of a maximum of 56 for the 5 Test Days. It has been suggested 

that a cutoff score of 45 can be used to separate older adults with good balance 

(least likely to fall) and those with poor balance (more likely to fall).164, 172, 173 

When the individual data were investigated, it was found that 13 of the 27 

subjects started the study with a score of 45 or greater and all of these subjects 

remained above this cutoff level for the duration of the study. It has been 

suggested that the BBS has a ceiling effect163 and it seems as though the 13 

subjects who performed well on the BBS at the beginning of the study were 

affected by this phenomena. Of the 14 subjects who where below the cutoff at 

the start of the study, 5 (36%) increased their score to above 45 points by Test 

Day 5. There was one subject who improved her score from a 35 to a 44 in the 

first 4 weeks of orthotic usage. Even though this was not above the 45 point 

cutoff, the investigators thought it may be a clinically relevant improvement. 
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Shumway-Cook and Woollacott171 reported BBS average scores of 56, 

55.5, and 32.7 for groups of young adults, older adults with no falls, and older 

adults with a fall history, respectively. The current results were on average higher 

than Shumway-Cook and Woollacott’s faller group, but not as high as their non-

faller older adult group. The current study did not group subjects as to fall status, 

but one difference in our findings when compared to Shumway-Cook and 

Woollacott could be explained by the age of the subjects. The average age of 

their older adult, non-faller group was 74.6 years with a range of 65-85 years, 

while our average was 86.93 years with a range of 73-97 years. This age 

difference of more than a decade could explain why our average BBS scores 

were lower. When we compare our subjects’ age to their older adult faller group 

(mean: 85.3 years, range: 76-95) the results are more similar, however our 

subjects performed better on all 5 Test Days. 

In a 1991 study, Podsiadlo and Richardson157 reported BBS scores for 60 

community dwelling older adults with an age range of 60-90 years (mean: 79.5). 

They did not report the average score for the group, just a range of 6-56. The 

current subjects ranged from 15-56 over the 5 Test Days. Again, this conveys 

that the current study population was not as frail at the onset of the study as 

other populations. The fact that the subjects were not as low functioning may 

have contributed to the nonsignificant results that were reported. It has been 

suggested that the BBS may be better for older adults who have greater 

impairments versus active, healthy older adults.170 The addition of the in-shoe 



   

 64 

orthotic may not have made improvements that were great enough to be 

measured by the BBS. 

Timed “Up & Go” (TUG) 
The TUG is a test that has been utilized to assess physical mobility in 

older adults by having both balance and gait components to the test.157, 158, 168-170, 

174-178 The current results demonstrated a significant improvement in average 

TUG scores for Test Day 5 compared to Test Days 1 and 3. Even though it was 

not significant, there was a trend that showed that Test Day 5 had a faster time 

than Test Day 4 (p = 0.053) as well. These data suggest that the 8 week usage 

of the in-shoe orthotic elicited an improvement in mobility in the current 

population. Podsiadlo and Richardson157 concluded that “medically stable” 

patients vary little in TUG scores over time. The fact that the current study 

utilized medically stable subjects and is still reporting a significant finding after an 

8 week period gives us confidence that this is a true improvement. 

Even though there is no consensus in the literature in terms of the effect of 

aging on TUG scores,169, 179-181 researchers have suggested using a cutoff of 10-

12 sec182, 13.5 sec168, or 20 sec157 when comparing independent older adults to 

those who are dependent on assistance. Podsiadlo and Richardson157 reported 

that subjects who were able to perform the TUG in less than 20 sec were 

independently mobile and most were able to climb stairs and go outside alone. 

The subjects who took 30 sec or more were much more dependent and needed 

help with chair/toilet transfers, help in and out of the tub or shower, most could 

not climb stairs without assistance, and could not go outside alone. Using these 
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20 and 30 second categories to analyze the current data, it can be seen that on 

average the subjects performed faster than 20 sec on all 5 Test Days. On Test 

Day 1 there were only 2 subjects who where in the over 30 sec category and on 

Test Day 5 there was only 1 subject still in this category. When the more 

stringent cutoff of 13.5 sec is utilized to analyze the current data, individual 

improvements can be inferred. There were 10 subjects who were faster than 13.5 

sec on Test Day 1 and all 10 of these subjects stayed below the cutoff for all Test 

Days. Of the 17 subjects who were slower than 13.5 sec on Test Day 1, 5 

subjects (29%) improved to below the 13.5 sec cutoff by Test Day 5. One other 

subject improved to below the cutoff after wearing the orthotics for 4 weeks (Test 

Day 4), however their Test Day 5 was slightly above the cutoff (13.8 sec). 

In past studies, and in the present study, subjects were allowed to utilize 

the assistive device (cane or front-wheeled walker) that they normally used 

during activities of daily living.157, 168 Of the 27 subjects, 23 used no assistive 

device for all 5 Test Days, 1 used no device for Test Days 1-4 and a walker on 

Test Day 5, 1 used a cane for Test Days 1-3 and a walker for Test Days 4 and 5, 

and 2 subjects used a walker for all 5 Test Days. Shumway-Cook and 

Woollacott168 reported that the times to complete the TUG were 9.0, 18.1, and 

33.8 sec for subjects using no assistive devices, a cane, and a walker, 

respectively. Our results differed from Shumway-Cook and Woollacott’s in that 

the average for the no device subjects was 15.3 sec, the 1 cane user had a time 

of 40.4 sec, and the walker average was 28.9 sec for Test Day 1.(Figure 5.1) 

This discrepancy of assistive device breakdown could be due to the fact that the 
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majority of the subjects did not use any assistance and there were so few in the 

cane and walker categories. The fact that 2 subjects had to use a walker on Test 

Day 5 who had not done so previously, points to deterioration that occurred over 

the 8 weeks of data collection. Having a significant finding of improved TUG 

average even after this deterioration suggests that this is a true change that was 

brought about by the utilization of the SmartStep™. 

Figure 5.1 TUG times for all 27 subjects on Test Day 1, using No Device, a 
Cane, or a Walker 

Figure 5.1: TUG Times for all 27 subjects on Test Day 
1, using No Device, a Cane, or a Walker

0 10 20 30 40 50
TUG TIMES (SEC)

Individual Subject Data

No Device

Cane

Walker

 

Four Square Step Test (FSST) 
The FSST is a relatively new test of dynamic balance that includes rapid 

stepping and obstacle avoidance.158 Our results did not show any statistically 

significant improvement in FSST times following the 8 week usage of the 

SmartStep™. Dite et al.158 identified an optimal cutoff score of 15 sec to 

characterize multiple fallers and nonmultiple fallers. The averaged FSST scores 

in the current studied ranged from 25.95 sec (Test Day 1) to 22.09 sec (Test Day 
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5). There seems to be a trend of faster times as the subjects wore the 

SmartStep™, however there were no statistically significant results. Comparing 

individual subject scores to the 15 sec cutoff that was proposed by Dite et al.,158 

revealed that 11 out of the 27 subjects were always below this cutoff for all 5 Test 

Days. Of the 16 subjects who had slower times on Test Day 1, 4 (25%) of them 

had improved their times to below the cutoff by Test Day 4 and this improvement 

remained for Test Day 5. Three subjects did not improve to the point of 

performing faster than 15 sec, however their improvements were substantial. 

Two of these subjects started with a time of 53 sec on Test Day 1 and by Test 

Day 5 their times were down to 20 sec. The third subject had a time of 114 sec 

on Test Day 1 and improved to 71 sec on Test Day 5. We feel that these 

improvements are clinically meaningful and it seems that the SmartStep™ had 

an affect on a subgroup of the subjects. 

Functional Reach Test(FRT) 
The FRT tests the subject’s ability to move their center of gravity to the 

forward limits of the base of support and still maintain their balance.159 Duncan et 

al. studied the predictive validity of the FRT in an older adult male population and 

found that if they were able to reach more than 10 cm that the likelihood that they 

were at risk for a fall was low.183 Others have suggested a cutoff of 25 cm to 

differ between high functioning older adults and lower functioning.158 If the 

present data are evaluated with the 25 cm cutoff, there was only 1 subject who 

reached this mark for all 5 Test Days, and only 1 subject who improved to over 

25 cm on Test Days 4 and 5. When the present data are evaluated with the 10 
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cm cutoff, there are 18 subjects who have 5 Test Days above that level. Further 

investigation of the 11 subjects who started out below the 10 cm cutoff, revealed 

that 7 subjects were found to have at least a 5 cm improvement by Test Day 5 

and 2 of these subjects improved over 10 cm. Even with these apparent 

improvements, the statistical testing showed that as a group, there was a 

significant reduction (worsening) in FRT scores on Test Day 5 compared to Test 

Days 2-4. 

Lateral Reach Test (LRT) 
The LRT is similar to the FRT, however it focuses on medial-lateral 

balance control instead of just anterior.160 Brauer et al.160 first described the LRT 

in 1999 and found no significant difference between performing the test to the 

right and left sides. They also reported that the LRT was negatively correlated 

with age, even though their subjects’ mean age was 72.5 years with a standard 

deviation of 5. The reported LRT distances from this initial study were 20.04 cm 

for the right side and 21.01 cm for the left, the scores were not reported in age 

groups. In 2000, Brauer et al.161 published a study that compared non-fallers to 

fallers, who were then partitioned into frequent fallers and recurrent fallers. The 

2000 study did not report a significant difference between non-fallers and fallers 

in LRT reach distances that ranged from 18.6 to 20.4 cm. Compared to both of 

these studies, the present LRT results are noticeably lower. The group means 

ranged from 11.23 to 12.71 cm for the 5 Test Days. The present findings seem to 

follow the digression in scores as adults age that was reported by Isles et al.174 

This 2004 study reported that LRT scores averaged 18.37, 17.11, and 15.71 cm 



   

 69 

for adults in their 5th, 6th, and 7th decade of life. With our subjects being older than 

70 years on average, it would make sense that their average LRT distance was 

less than those scores found by Isles et al. The current results add to the body of 

literature that reports that LRT performance declines due to aging161, 174, 184 and 

especially after the age of 30 in women174. 

The current results revealed a statistically significant decline in reach 

distance on Test Day 5 when compared to Test Days 2,3, and 4. This difference 

was found for the right reaching direction only. There were no statistically 

significant differences found in the left direction comparisons. The fact that a 

difference was only found in the right direction was not expected since 

researchers have reported no difference in right and left side reaching.160, 161, 184 

It has also been suggested, that since there have not been side to side 

differences, that only testing to one side is sufficient. Our results revealed a 

response difference between the right and left reach directions that has not been 

reported in the literature to date. It is not known why there was a difference on 

the right side only, especially when it has been suggested that people tend to 

reach further to their dominant side, which is more likely the right.174 We did not 

collect information about hand dominance so it is unknown which subjects were 

right or left handed. 

There is no current literature that describes a cutoff score for defining high 

and low functioning older adults with the LRT like there is for some of the other 

tests. For this reason, we are unable to describe whether people improved to a 

predetermined level. Investigating the individual subject data, it was revealed that 
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6 out of the 27 subjects (22.2%) increased their LRT right reaching distance on 

either Test Day 4 or 5 by more than 5 cm. Evaluation of the left direction in the 

same way revealed 3 subjects who had 5 cm or more improvement for either 

Test Day 4 or 5. Even though statistically there was a decline in Test Day 5’s 

scores, there were improvements by several of the subjects. The lower score 

after the 8 week period could be attributed to overall balance deterioration for the 

group as whole; however there seems to be a subgroup of subjects that had mild 

improvements. 

Force Plate Measures 

The 3 different force plate measurements (center of pressure 

displacement, distance, and RMSvel) were analyzed for the 3 different conditions 

(eyes open, eyes closed, and feet together) in both the anterior-posterior (AP) 

and medial-lateral (ML) directions. Of all of these combinations, there was only 

one condition that demonstrated a significant difference. The center of pressure 

(COP) displacement in the AP direction with eyes closed was found to be greater 

on Test Days 3 and 5 when compared to Test Days 1 and 2. The increase in 

COP displacement on these Test Days was an unexpected result. The average 

difference between the scores was 0.65 cm, and this small distance may not be 

clinically meaningful even though it was statistically different. 

When the current results are compared to other literature, our results are 

found to be slightly higher. For the eyes open condition the current results 

revealed COP displacements in the AP direction of approximately 3.5 cm 

compared to Laughton et al.185 who reported scores of 2.06 cm for non-fallers 
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and 2.4 cm for fallers. Comparing the results for COP displacement in the ML 

direction reveals that the present study has greater average scores of 

approximately 2.5 cm while Laughton et al. reported 1.41 cm for non-fallers and 

1.53 cm for fallers. There were several differences between the 2 studies that 

may explain the higher scores in the present study. The first being the data 

collection duration of 30 sec for Laughton et al. compared to 50 sec in the current 

study. The second difference in these studies is the age of the subjects. Both the 

33 fallers and 37 non-fallers in the study had a mean age of 75 years, and 

ranged from 65-92 years.185 The 11 year difference in mean age may account for 

the difference in scores since it has been reported that postural sway increases 

due to aging.13, 17 The increased age of the subjects combined with the longer 

data collection time period may explain the increase in COP displacement. 

As there were no significant or meaningful changes in the data for most of 

the COP measurements, this could be explained two ways. The first explanation 

could be that the data analysis method that was utilized was not sensitive 

enough to detect changes in this population. While a second explanation could 

be that there truly was no change in the static postural control of this population 

over the 8 week period of utilizing the SmartStep™.  

Survey Measures 

The Activities-specific Balance Confidence Scale (ABC) is a measure of 

balance that rates an individual’s perceived balance confidence while performing 

activities of daily living.162 The ABC has been utilized frequently in the literature 

as a subject descriptor or as an outcome measure.161, 162, 166, 168, 171, 186-195 It has 
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been suggested that a score less than 50 is indicative of fear of falling.161 Several 

studies have investigated ABC scores in fallers and non-fallers.161, 162, 168, 194 

Some of these researchers have reported that the non-fallers have significantly 

higher scores than fallers.162, 168, 194 All three of these studies reported a scoring 

difference of approximately 40 that separated the fallers and non-fallers. Brauer 

et al.161 reported no difference in ABC scores between fallers and non-fallers. 

Their results for both groups were in the high 80 point range. The results from the 

present study revealed average scores of 68.5 to 73.6 for the 27 subjects. These 

scores are less than the studies who reported a low of 80.9162 and a high of 

93.2168 for non-faller subjects. However, the present results are not as low as the 

reported scores of 38.3162 and 53.0168 for fallers. There were 8 out of the 27 

subjects (29.6%) who had an improvement of 9 or more points on the ABC by 

either Test Day 4 or 5. Of these 8 subjects who improved, 3 of them had scores 

improve by more than 20 points. Even though there were no statistical 

differences over the 8 week period, these improvements could be clinically 

meaningful. 

The Activity Questionnaire (AQ) that was utilized in this study was a 

modification of other activity scales found in the literature so that it pertained 

more to the current study population.196 There were no significant differences at 

either the 4 week Test Day or the 8 week Test Day. This questionnaire allowed 

the subjects to rate how difficult it was for them to perform differing activities of 

daily living and did not directly measure their daily activities. It has been reported 

in the literature that activity scores were lower in subjects who had a fear of 
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falling.189 Even though we expected an increase in AQ scores after wearing the 

SmartStep™ for 8 weeks, the lack of a decrease in scores indicates that the 

subjects’ self-perceptions of their ability had not deteriorated in that time period. 

Sensation Measures 

The 2 sensation tests that were collected on Test Days 1 and 5 were the 

Quantitative Vibration Perception Threshold (QVPT) and a single location 

Semmes-Weinstein monofilament test (SWM). The collection of these 2 

measurements on Test Day 1 was to screen the subjects for exclusion. To be 

excluded from the study the subject had to have a QVPT score 40 Hz or over 

and to not feel 2 or more of the 4 SW touches on the hallux. The collection of 

these data on Test Day 5 was to determine if any of the subjects had a sensory 

decline during the 8 weeks of the study. We did not expect there to be 

differences in these 2 measurements and the results confirmed that there were 

no changes. 

Summary 

Of all of the Clinical, Force Plate, and Survey Measures, the TUG appears 

to be the one test that elicited the expected response. Not only were the scores 

on Test Day 5 faster than Test Day 1, but there was a trend of improvement for 

Test Days 3 and 4 as well. The TUG is a functional test that contains tasks that 

are needed to be able to function independently and is considered more 

complex. Utilizing tasks that investigate greater dynamic balance situations may 

be more beneficial than static tasks. Tasks like the TUG and FSST force the 

subject to move their feet, which functions more like a real world scenario rather 
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than just having the subject stand in a static position. The other Clinical and 

Force Plate Measures may not have been sensitive enough to detect balance 

changes in the current population. It has been noted that the BBS has a ceiling 

effect161, and maybe this could be said of the other measures with reference to 

the subject population that was utilized in the current study. Unfortunately there 

are no other studies that have utilized an in-shoe orthotic with an older adult 

population that we can compare our results to so it is difficult to know if the 

responses that were elicited are normal. 

We did not include a control group to compare to the 8 week SmartStep™ 

intervention for the Measures. Frederic et al.176 had an activity intervention with 

older adults and reported that a control group of adults aged 63.5±3.7 years had 

a slight, though non-statistically significant, deterioration in balance capability 

after not participating in the intervention activity for 3 months. These researchers 

suggested that this finding further supported the theory that physical inactivity 

causes functional deterioration that has been shown by other researchers.138, 176, 

197 Since deterioration over a 3 month period was reported for subjects who are 

over 2 decades younger than our subjects, it can be assumed that our subjects 

would have experienced a deterioration during the 8 weeks that the current study 

was conducted. This was not the case; our results did not find statistically 

significant balance deterioration in this population after 8 weeks of wearing the 

SmartStep™. It is unknown whether this lack of deterioration was due to the 

utilization of the in-shoe orthotic or to other factors. 
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The age of the current study’s subjects seems to be novel. The generally 

accepted age range for studying older adults is 55 to 99 years old. However, the 

age of the subjects in most of the studies average in the middle to high 70s or 

low 80s. Our average age was 86 years and appears to be uncommon. As older 

adults in America are becoming more active and having increased years of good 

health, it is difficult to compare individuals in their 60’s to octogenarians. The 

terminology of “young old” and “oldest old” has been used by some, however 

most studies still define older adult as anyone 65 or over. Refining the definition 

and the normative data for “older adults” seems to be something that will be 

changing as the activity and abilities of people in this age range improve as a 

whole. 

Although the results did not yield significant improvements in the subject 

population, several subjects commented that they thought the SmartStep was 

improving their balance (Appendix G). The hypotheses of this study were based 

on the assumption that the subjects were to be more active to be able to receive 

the beneficial effects of the orthotics. Several of the subjects expressed that they 

felt more “in balance” with the SmartStep. Because of this, perhaps they were 

more active than prior to the study. The exact amount of time that subjects were 

on their feet and doing activities prior to and during the study was not monitored, 

so it is unknown if there were any activity level changes. Also, there was no way 

of monitoring the effect that the researcher had on the subjects. The fact that 

there was an individual giving each subject attention over the study time period 
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could have had facilitatory influence through extrinsic motivation. There was no 

way of quantifying this impact on the subject population. 

The dynamical systems model is a motor control theory that suggests that 

movement that causes human actions is a result of the interaction of physical 

dynamics and neural components.22 As explained by the dynamical systems 

theory, there is a large amount of redundancy within the degrees of freedom of 

the multi-joint segments of the lower extremity while performing movement and 

balance tasks. This redundancy allows the sensorimotor system multiple options 

when performing tasks.198-200 Because of the complexity of the system, there is a 

need to address all aspects when trying to compensate for deficits. Not only is 

the physical control system complex, but while performing activities of daily living, 

an individual must be able to perform a multitude of tasks that are both discrete 

and continuous and that range in complexity.22 While learning a new task, an 

individual first becomes rigid by decreasing the degrees of freedom, and then 

there is more flexibility introduced to the system as tasks become familiar. The 

dynamical systems theory states that the musculoskeletal system has many 

degrees of freedom that allows for variability while performing tasks. This 

variability is limited by constraints that are placed on the system.199 

There are three constraints placed on the maintenance of the postural 

control system: the task, the environment, and the organism.199, 201 Through the 

utilization of the SmartStep, the current study attempted to manipulate the 

somatosensory system of the organism but did not control for other organism 

constraints (i.e. illness, strength). The tasks that were performed for the study 
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were comprised of activities that are considered activities of daily living, and 

therefore would not be considered to be unfamiliar tasks for the subjects. The 

environment during the testing sessions was relatively constant, however we did 

not control for what was happening in the subject’s environment between testing 

sessions. This included the amount and types of activities each subject was 

exposed to during the eight weeks of the study. To be able to have a positive 

effect on the postural control system, the interventions need to account for these 

three constraints on the system. For this reason, there is a need for research that 

accounts for the variability in individuals and that utilizes multidisciplinary 

methods of intervention to enhance the postural control system of older adults.  
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Chapter Six 
Summary, Conclusions, and Recommendations 

Summary 

The development of interventions to prevent falls and injuries of older 

adults is important. One of the many documented risk factors for falling is a 

decrease in postural control due to normal aging.19, 20 The somatosensory 

system is important for postural control and a decrease in somatosensory input 

due to declines in cutaneous receptor response has been shown to contribute to 

the decrease is postural control that is observed in older adults. 

It has been demonstrated that in-shoe orthotics increase postural stability 

and have a positive effect on the somatosensory system in young adults.41, 44-47 

However, the application of an in-shoe orthotic to improve postural stability in 

older adults has not been reported. Our purpose of this study was to test 

hypotheses that were formulated to evaluate whether enhancement of the 

somatosensory system with in-shoe orthotics would improve the postural control 

of older adults. Additional knowledge concerning effective interventions that 

improve postural control will increase the ability of researchers and clinicians to 

develop comprehensive fall reduction programs. 

The research hypotheses involved four types of dependent variables: 1) 

Clinical Measures, 2) Force Plate Measures, 3) Survey Measures, and 4) 

Sensation Measures. It was hypothesized that if the somatosensory system was 

enhanced with the usage of in-shoe orthotics then: 1) all improvements in test 
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scores would occur in the first 4 weeks of orthotic usage, and 2) there would be 

no subsequent improvements from week 4 to week 8 of orthotic usage. 

Postural assessments were performed on 27 healthy older adults on 5 

Test Days spanning 8 weeks of orthotic usage. Two baseline measurements 

were collected followed by 3 Test Days while the subjects wore the in-shoe 

orthotic. The dependent variables included 6 Clinical Measures, 18 Force Plate 

Measures, 2 Survey Measures, and 2 Sensation Measures. A repeated 

measures ANOVA was performed to assess if there were differences among the 

5 Test Days for all dependent variables (p = 0.05) 

For the Clinical Measures, statistical significance was found for 3 of the 

dependent variables, however only the Timed “Up & Go” (TUG) supported the 

hypothesis that was expected. There was only 1 statistically significant finding for 

the Force Plate Measures, and it did not support the hypothesis that was 

expected. No significant differences where reported for the Survey or Sensation 

Measures. The results did not indicate statistically that the in-shoe orthotic 

enhanced postural stability in this group of subjects. However, there were 

indications that there was a subset of the current population that had benefitted 

from the intervention and this needs to be investigated further. 

Conclusions 

The present findings warrant the following conclusions for the formulated 

research hypotheses. 
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1. There will be significant improvements at the initial in-shoe orthotic 

system data collection when compared to the non-orthotic results for 

all Clinical Measurements and Force Plate Measurements. This 

hypothesis was not confirmed, as no significant improvements were 

reported for Test Day 3. 

2. There will be significant improvements in Clinical Measurements and 

Force Plate Measurements at the 4 week collection compared to the 

initial and non-orthotic data collection data. This hypothesis was not 

confirmed, as no significant improvements were reported for Test Day 

4. 

3. There will be no significant subsequent improvements in the Clinical 

Measurements and Force Plate Measurements at the 8 week 

collection compared to the 4 week data collection period. This 

hypothesis was not confirmed, as no significant improvements were 

reported for Test Day 4 and Test Day 5 had 1 significant improvement 

(TUG). 

4. There will be a significant increase in the Activities-specific Balance 

Confidence scale and the Activity Questionnaire at both the 4 and 8 

week data collection period compared to the first data collection. This 

hypothesis was not confirmed, as no significant increase was reported 

for either Test Day 4 or 5. 

5. There will be no significant difference in the Semmes-Weinstein 

Monofilament and Quantitative Vibration Perception Threshold when 

comparing week 8 data to the initial data. This hypothesis was 

confirmed, as no significant improvements were reported for Test Day 

5. 

Recommendations 

The present results indicated that the in-shoe orthotic, in the form of the 

SmartStep™ Stabilization System, was not beneficial in improving postural 



   

 81 

stability in older adults. As this was the first study to document the effectiveness 

of this type of in-shoe orthotic, additional research in this area may provide 

greater insight. One recommendation would be to utilize a group of control 

subjects to ascertain whether an orthotic prevents regression of postural stability. 

Even though there were no improvements in balance with the present 

intervention, it is not known whether there was a decrease in the rate of natural 

decay. 

The current intervention was an “off the shelf” orthotic system that 

included shoes also. It is unknown what the effects of custom molded orthotics 

would have been in this group of subjects. The utilization of molded orthotics 

would have accommodated to the individual subject footwear needs. Future 

research into the usage of custom in-shoe orthotics may be beneficial. Many of 

the subjective comments that were received from the subjects referred to feeling 

more “stable”. This could have been a result of the shoes only and not the 

orthotic insert. The shoes that were provided were wider and more supportive of 

the foot than what most of the subjects wore prior to the study. The more stable 

shoe construction alone may have influenced the subjects. A future study that 

included a group of subjects who wore the shoes only would allow the 

researchers to know whether any changes in performance were due to the 

orthotic or to the shoe.  

The subjects were chosen due to their age and because they did not have 

major health problems. They were also screened for sensation deficits so that the 

orthotic would not induce skin breakdown due to decreased sensation. The 
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utilization of this “healthy” population of older adults may have contributed to the 

lack of significant improvements. The current group of subjects may have been 

performing at their highest ability level and may not have had the capacity to 

improve. Utilizing a differing subject population may elicit different results if the 

subjects are lower functioning and have more improvements to be made. 

The dependent variables that were chosen for this study may not have 

been robust enough to elicit improvements. It has been suggested that dual task 

conditions are more sensitive in assessing postural stability in an older adult 

population.171, 202, 203 Future research that utilizes testing conditions that include 

dual tasks may be able to detect significant changes that the current study was 

unable to detect. 

Along with the need to have differing types of tasks as dependent 

variables, there is a need to evaluate combinations of interventions. The postural 

control system is complex and consists of many sensory and motor components. 

Interventions that affect multiple components would be better able to influence 

this multidimensional system. The complexity is challenged even more by the 

wide variations in the older adult population as a whole. Research that is able to 

identify those older adults who are most likely to be positively influenced by the 

interventions would be beneficial. Postural instability should not be an inevitable 

consequence of getting older. Multi component interventions that allow older 

adults to remain active and not fearful of falling are needed and may include a 

component that positively influences the somatosensory system of the plantar 

surface of the foot.  
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Appendix A: Health History Questionnaire 

Health History Questionnaire 
 

Subject #_____  Date/Time_______ 
 

1.  Have you had head injury within the last six months? 
Yes          No 

      _____________________________________ 
 
2.  Have you had an injury to your hip, knee, or foot in the last six months? 

Yes         No 
      _____________________________________ 
 
3.  Are you a diabetic? 

Yes        No 
If yes, is it being controlled either lifestyle changes or medication? 

 Yes         No 
      _____________________________________ 
 
4.  Do you have a history of foot wounds? 

Yes        No 
      _____________________________________ 
 
5.  Have you had your eyes checked recently? 

Yes        No 
      _____________________________________ 
 
6.  Do you wear glasses? 

Yes        No 
      _____________________________________ 
 
7.  Do you have a history of unexplained falls? 

Yes        No 
    _____________________________________ 
 
8.  Do you have extreme pain that prevents you from performing normal activities 
of daily life? 

Yes        No 
      _____________________________________ 
9.  Do you have any other medical conditions that you think will impair your ability 
to participate as a subject?
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Appendix B: Consent to Participate in a Research Study 

Consent to Participate in a Research Study  
Effect of the SmartStep™ Stabilization System on Balance in Older 

Adults Living in an Independent and Assisted Living Residence 

WHY ARE YOU BEING INVITED TO TAKE PART IN THIS RESEARCH? 

You are being invited to take part in a research study about balance and a 
special shoe with an insert (SmartStep™ Stabilization System). You are being 
invited to take part in this research study because you are a resident of 
Richmond Place Retirement Community.  If you volunteer to take part in this 
study, you will be one of about 60 people to do so. 
 

WHO IS DOING THE STUDY? 

The person in charge of this study is Ann Livengood of the University of 
Kentucky.  She is being guided in this research by Carl Mattacola PhD, ATC.  
There may be other people on the research team assisting at different times 
during the study.  
 

WHAT IS THE PURPOSE OF THIS STUDY? 

By doing this study, we hope to determine the effect of the SmartStep™ 
Stabilization System (SmartStep™) on balance in older adults during an 8 week 
period.  We also want to determine if there is a difference in balance between 
residents in the Independent Living and Assisted Living facilities of Richmond 
Place prior to being given the SmartStep™ and after they have been wearing it 
for 8 weeks. 

WHERE IS THE STUDY GOING TO TAKE PLACE AND HOW LONG WILL IT 
LAST?  

The research procedures will be conducted at Richmond Place Retirement 
Community.  You will need to come to the conference room 5-7 times during the 
study.  Each of those visits will take about 45 minutes.  The total amount of time 
you will be asked to volunteer for this study is 3 ¾ - 5 ¼ hours over the next 8 
weeks.  With your permission, we would also like to contact you by telephone at 
6, 12, and 18 months, to determine if you have had any difficulty with balance 
and falls. 

WHAT WILL YOU BE ASKED TO DO? 

Health History and Sensation Testing: 
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Every volunteer will be asked for a brief medical history to determine if 
they will be included.  To be able to participate is this study you must be able to 
follow the directions given to you by the investigator and be able to answer all 
questions.  To determine if you are able to follow directions and understand what 
is being asked of you, a short questionnaire called the Mini-mental State Exam 
will be given to you.      

As part of the inclusion criteria to be a subject you must have a minimum 
level of sensation on the bottom of your foot.  This will be tested with a machine 
called a Bio-Thesiometer.  This machine has a small rubber tip that will be held 
onto the bottom of your big toe while you are lying down.  The rubber tip vibrates, 
and the intensity of the vibration is increased slowly.  You will have to tell the 
investigator when you are able to feel the vibration and this determines your 
sensation threshold.  If your threshold is too high, you will not be able to be in the 
study.  A second sensation test will performed on each foot.  A small 
monofilament that is as fine as a human hair will be placed on the top of your 
foot, just next to the nail of your big toe.  This filament will be placed several 
times on your foot and you inform the investigator when you feel it. 

SmartStep™ Stabilization System Fitting: 

If you meet the inclusion criteria, we will then fit you for the SmartStep™. 
The fitting will be performed by a certified pedorthist from the SmartStep 
Company.  Your SmartStep™ will be ordered for you. The SmartStep™ consists 
of the following: 1) a pair of extra depth, diabetic shoes (Apex Foot Health 
Industries, Inc., St.Louis, MO) 2) a patented in-shoe orthotic (SmartStep, Inc.), 3) 
a pair of patented SmartKnit Seamless Socks, 4) a pair of Comfort System Lite 
Socks, 5) a pair of Sleep Socks with non-skid treads.  

At this time, we will schedule your Test 1 and Test 2 appointments which 
will be performed in your regular shoes and will be 48 hours apart from each 
other.  If your scores on the tests are significantly different between Test 1 and 2 
because you are learning the tests, we will have to repeat Test 2 until the scores 
don’t change significantly.  Test 2 could be repeated up to 2 times.  We will not 
test you more than 4 times before beginning the SmartStep™ testing days.  
When your SmartStep™ is delivered, we will schedule your Test 3 appointment 
which will be performed with your new shoe and in-shoe insert.  After Test 3 you 
will be asked to start wearing the SmartStep™ on a daily basis.  The first day 
with the SmartStep™ you should only wear it for 2 hours, and then add 1 hour a 
day until you are wearing it 8 hours, or whenever you are walking around.  Four 
weeks after you receive your SmartStep™ you will come back for Test 4.  Four 
weeks after Test 4 you will return for the final test, Test 5. 

On all days of testing you will perform the same balance tests (described 
below).  On the 1st day of testing and the last day of testing you will also fill out 
two questionnaires that ask questions about your daily activities and your 
confidence in performing daily activities.  
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The following is a timeline of events: 

Initial Visit Test 1 Test 2: 

48 hours later 

Test 2 
Repeated 

Health Questionnaire 
Fit for SmartStep™ 
Schedule Test 1 and 
Test 2 

Activity 
Questionnaires 
Balance Tests 

 
Wear your own 
shoes 

Balance Tests 

Wear your own shoes 

If your Test 2 is 
significantly 
different from Test 
1, Test 2 will be 
repeated up to 2 
times.  

 

Test 3: 

48 hours 
later 

Test 4: 

4 weeks after 

Test 5: 

4 weeks later 

Balance Tests 
 

Wear SmartStep™ 

Balance Tests 
 

Wear SmartStep™ 

Activity Questionnaires 
Balance Tests 

 
Wear SmartStep™ 

 
Balance Tests 
Each of the following balance tests will be performed 1 time each test day, unless 
otherwise noted.  As noted below, some of the tests will be performed while you 
are standing on a force plate.  A force plate is an instrument that measures the 
amount of force that you press against the ground.  It is like a large bathroom 
scale that collects data very fast.  The force plate dimensions are approximately:  

Length = 24 inches, 
Width = 16 inches  
Height = 4 inches 
 
Berg Balance Scale 

The Berg Balance Scale (BBS) consists of 14 movements that are common in 
activities of daily living.  The 14 mobility tests are performed as follows: 

 
1. Sitting unsupported in a standard chair 
2. Change of position: sitting to standing 
3. Change of position: standing to sitting 
4. Transfer: move from one chair to another, and back again 
5. Standing unsupported, eyes-open: stand on the force plate 
6. Standing unsupported, with eyes-closed: stand on the force plate 
7. Standing with feet together: stand on the force plate 
8. Tandem standing: one foot in front of another: stand on the force plate 
9. Standing on one leg: stand on the force plate 
10. Looking over your shoulder (feet fixed) 
11. Retrieving an object from the floor 
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12. Turning 360 degrees 
13. Stool Stepping: tap one foot at a time on a stool 
14. Forward reach with feet stationary: stand on the force plate 
 
Timed “Up & Go” 

The timed “Up & Go” (TUG) test measures your functional mobility.  You will 
starts while sitting, with your back against the back of a standard arm chair.  You 
will be asked to stand, walk a distance of 3 meters, turn, walk back to the chair, 
and sit down again.  Three tests will be measured each day.  A rest period of 2 
minutes will be given between tests. 
 

Functional and Lateral Reach Tests 
The Functional Reach Test (FRT) and Lateral Reach Test (LRT) are measures of 
maximal forward and side distances reached beyond arms length while standing.  
A tape measure and strip of paper will be taped to the wall for both of these tests.  
For the FRT, you will stand on the force plate so that the tape measure is on the 
wall to your left.  You will be placed in a standardized position with your feet 10 
cm apart as measured between the inside edge of the heels.  You will raise both 
arms up in front of you with your elbows straight.  You will then be instructed to 
lean forward as far as possible without losing your balance or lifting your feet and 
then hold this position for 3 sec.  You will perform this three times with a 30 
second rest between trials. 

A similar procedure will be performed for the LRT; however you stand on the 
force plate with your back toward the wall.  With 1 arm at your side, and the other 
arm raised out to side, you will be asked to reach directly sideways as far as 
possible without lifting either foot, bending a knee, rotating or bending the trunk.  
The maximal reach will be maintained for 3 seconds.  The lateral reach will be 
performed three times in both directions with 30 seconds between trials. 

 Four Square Step Test 

The Four Square Step Test (FSST), is a dynamic test of postural stability.  This 
test requires you to change directions and step over a one (1) inch obstacle.  You 
will be asked to step over a one inch cane laying flat on the ground for each of 
the following directions: 1) forward, 2) sidestep to the right, 3) backwards, and 4) 
sideways to the left (Figure 1). This is repeated in the opposite direction (sidestep 
to the right, forward, sidestep left, backwards) and the time is recorded.   The 
FSST will take approximately 2 minutes to complete. 
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 Questionnaires 

You will be asked to fill out 2 short questionnaires on the first day of 
testing and on the last day of testing.  These questionnaires will ask you 
questions about your confidence in performing daily activities. 

ARE THERE REASONS WHY YOU SHOULD NOT TAKE PART IN THIS 
STUDY? 

If you have had an injury to your head, hip, leg, or foot in the past 6 
months you should not take part in this study.  Also, if you have had an ear 
infection in the past 2 weeks you should wait until at least 2 weeks have passed 
before you participate in this study.  If you have a history of foot wounds or have 
medical condition that is not being controlled by a physician you should not 
participate in this study. 

WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS? 

• There is a risk of falling from the force plate or while performing any of 
the testing.  We will try to minimize this risk by having two investigators by 
your side at all times and there will be a safety strap around your waist in 
case you lose your balance. 
• You may have foot soreness while accommodating to the 
SmartStep™.  The investigator will have you gradually “break in” the insert 
over a week to minimize this discomfort. 
• There is a risk that you might develop a blister or a wound from the 
SmartStep™ shoe insert.  You will be contacted weekly in person or on 
the phone to determine if you have any signs or symptoms that are 
associated with foot wounds from shoe inserts. 
There is always a chance that any medical treatment can harm you, and 

the treatment in this study is no different.  We will do everything we can to keep 

This is then repeated in 
the reverse direction

1

2 3 

4

Figure 1: Four Square Step Test 
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you from being harmed.  In addition to the risks listed above, you may experience 
a previously unknown risk or side effect. 

WILL YOU BENEFIT FROM TAKING PART IN THIS STUDY? 

There is no guarantee that you will get any benefit from taking part in this 
study.  All participants will receive a free SmartStep™ Stabilization System. 

DO YOU HAVE TO TAKE PART IN THE STUDY? 

If you decide to take part in the study, it should be because you really 
want to volunteer.  You will not lose any benefits or rights you would normally 
have if you choose not to volunteer.  You can stop at any time during the study 
and still keep the benefits and rights you had before volunteering. 

IF YOU DON’T WANT TO TAKE PART IN THE STUDY, ARE THERE OTHER 
CHOICES? 
 

If you do not want to be in the study, there are no other choices except not 
to take part in the study. 

WHAT WILL IT COST YOU TO PARTICIPATE? 

You and/or your insurance company, Medicare or Medicaid will be 
responsible for the costs of all care and treatment you receive during this study 
that you would normally receive for your condition.  These are costs that are 
considered medically reasonable and necessary and will be part of the care you 
receive if you do not take part in this study. 

The University of Kentucky may not be allowed to bill your insurance 
company, Medicare, or Medicaid for the medical costs of procedures done strictly 
for research.  Therefore, these costs will be your responsibility. 

WHO WILL SEE THE INFORMATION THAT YOU GIVE? 

We will keep private all research records that identify you to the extent 
allowed by law. 

Your information will be combined with information from other people 
taking part in the study. When we write about the study to share it with other 
researchers, we will write about the combined information we have gathered. 
You will not be identified in these written materials. We may publish the results of 
this study; however, we will keep your name and other identifying information 
private. 

We will make every effort to prevent anyone who is not on the research 
team from knowing that you gave us information, or what that information is.  For 
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example, your name will be kept separate from the information you give, and 
these two things will be stored in different places under lock and key. You should 
know, however, that there are some circumstances in which we may have to 
show your information to other people.  For example, the law may require us to 
show your information to a court. 

Someone from the University of Kentucky may look at or copy pertinent 
portions of records that identify you.   

CAN YOUR TAKING PART IN THE STUDY END EARLY? 

If you decide to take part in the study you still have the right to decide at 
any time that you no longer want to continue.  You will not be treated differently if 
you decide to stop taking part in the study. 

The individuals conducting the study may need to withdraw you from the 
study.  This may occur if you are not able to follow the directions they give you, if 
they find that your being in the study is more risk than benefit to you, or if the 
agency funding the study decides to stop the study early for a variety of scientific 
reasons. 

WHAT HAPPENS IF YOU GET HURT OR SICK DURING THE STUDY? 

If you believe you are hurt or if you get sick because of something that is 
done during the study, you should call Ann Livengood at 859-323-1100 ext 
80840 immediately.  It is important for you to understand that the University of 
Kentucky will not pay for the cost of any care or treatment that might be 
necessary because you get hurt or sick while taking part in this study.  That 
cost will be your responsibility.  Also, the University of Kentucky will not pay for 
any wages you may lose if you are harmed by this study. 

Medical costs that result from research-related harm can not be included 
as regular medical costs.  The University of Kentucky may not be allowed to bill 
your insurance company for such costs.  You should ask your insurer if you have 
any questions about your insurer’s willingness to pay under these circumstances.  
Therefore, the costs related to your care and treatment because of something 
that is done during the study will be your responsibility. 

WILL YOU RECEIVE ANY REWARDS FOR TAKING PART IN THIS STUDY? 

You will receive SmartStep™ Stabilization System for taking part in this 
study.  You will be able to keep everything given to you even if you withdraw from 
the study early. 

WHAT IF YOU HAVE QUESTIONS? 
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Before you decide whether to accept this invitation to take part in the 
study, please ask any questions that might come to mind now.  Later, if you have 
questions about the study, you can contact the investigator, Ann Livengood at 
859-323-1100 ext 80840.  If you have any questions about your rights as a 
volunteer in this research, contact the staff in the Office of Research Integrity at 
the University of Kentucky at 859-257-9428 or toll free at 1-866-400-9428.  We 
will give you a signed copy of this consent form to take with you.  

WHAT ELSE DO YOU NEED TO KNOW? 

SmartStep, Inc. is providing the SmartStep™ Stabilization System for this 
study. 

You will be told if any new information is learned which may affect your 
condition or influence your willingness to continue taking part in this study. 

_________________________________________  ________ 

Signature of person agreeing to take part in the study  Date 

  

_________________________________________ 

Printed name of person agreeing to take part in the study 

  

_________________________________________ ____________ 

Name of [authorized] person obtaining informed consent Date 

  

_________________________________________ 

Signature of Investigator  
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Appendix C: Center of Pressure Equations 

Center of Pressure Equations 
 

Both anterior-posterior (AP) and medial-lateral (ML) Center of Pressure 

(COP) data were exported from Motion Monitor software and the dependent 

variables of distance, displacement and root mean square of the velocity were 

then calculated using Excel® 2002. 

COP Distance (DIST) was calculated as the length of the COP path for the 

entire 50 seconds of data collection. The equation to calculate DIST for each 

plane of motion was: 

( )∑
=

−−=
n
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COP Displacement (DISP) was calculated as the range for both the AP 

and ML planes. The equation to calculate DISP was: 

minmax COPCOPDISP −=  

The root mean square of the COP Velocity (RMSvel)46 was calculated for 

the 50 seconds of data collection for both the AP and ML planes. The equation 

that was utilized was: 
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Appendix D: Berg Balance Scale 

BERG BALANCE SCALE 
 
 
Subject #                                       Date/Time                                              
 
Test # __________ 
 
ITEM DESCRIPTION    SCORE (0-4)  
 
1. Sitting to standing    _____ 
2. Standing unsupported    _____ 
3. Sitting unsupported    _____ 
4. Standing to sitting    _____ 
5. Transfers     _____ 
6. Standing with eyes closed   _____ 
7. Standing with feet together   _____ 
8. Reaching forward with outstretched arm _____ 
9. Retrieving object from floor     _____ 
10. Turning to look behind   _____ 
11. Turning 360 degrees      _____ 
12. Placing alternate foot on stool   _____ 
13. Standing with one foot in front  _____ 
14. Standing on one foot      _____ 
 
     TOTAL _____ 
 
GENERAL INSTRUCTIONS 
Please demonstrate each task and/or give instructions as written.  When scoring, please 
record the lowest response category that applies for each item. 
 
In most items, the subject is asked to maintain a given position for a specific time.   
Progressively more points are deducted if the time or distance requirements are not met, 
if the subject's performance warrants supervision,  or if  the subject touches an external 
support or receives assistance from the examiner.   Subjects should understand that they 
must maintain their balance while attempting the tasks.  The choices of which leg to stand 
on or how far to reach are left to the subject.  Poor judgment will adversely influence the 
performance and the scoring. 
 
Equipment required for testing are a stopwatch or watch with a second hand, and a ruler 
or other indicator of 2, 5 and 10 inches (5, 12.5 and 25 cm).   Chairs used during testing 
should be of reasonable height.  Either a step or a stool (of average step height) may be 
used for item #12.  
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1. SITTING TO STANDING 
 INSTRUCTIONS: Please stand up.  Try not to use your hands for support. 
  
 (   ) 4   able to stand without using hands and stabilize independently 
 (   ) 3   able to stand independently using hands 
 (   ) 2   able to stand using hands after several tries 
 (   ) 1   needs minimal aid to stand or to stabilize 
 (   ) 0   needs moderate or maximal assist to stand 
  
2. STANDING UNSUPPORTED 
 INSTRUCTIONS: Please stand for two minutes without holding. 
 
 (   ) 4   able to stand safely 2 minutes 
 (   ) 3   able to stand 2 minutes with supervision 
 (   ) 2   able to stand 30 seconds unsupported 
 (   ) 1   needs several tries to stand 30 seconds unsupported 
 (   ) 0   unable to stand 30 seconds unassisted  
  
If a subject is able to stand 2 minutes unsupported, score full points for sitting 
unsupported.  Proceed to item #4. 
 
3. SITTING WITH BACK UNSUPPORTED BUT FEET SUPPORTED ON 

FLOOR OR ON A STOOL  
 INSTRUCTIONS: Please sit with arms folded for 2 minutes. 
 
 (   ) 4   able to sit safely and securely 2 minutes 
 (   ) 3   able to sit 2 minutes under supervision 
 (   ) 2   able to sit 30 seconds 
 (   ) 1   able to sit 10 seconds 
 (   ) 0   unable to sit without support 10 seconds 
  
4. STANDING TO SITTING 
 INSTRUCTIONS: Please sit down. 
  
 (   ) 4   sits safely with minimal use of hands 
 (   ) 3   controls descent by using hands 
 (   ) 2   uses back of legs against chair to control descent 
 (   ) 1   sits independently but has uncontrolled descent 
 (   ) 0  needs assistance to sit 



   

 95 

5. TRANSFERS 
 INSTRUCTIONS: Arrange chairs(s) for a pivot transfer.  Ask subject to transfer 
one way toward a seat with armrests and one way toward a seat without armrests. You 
may use two chairs (one with and one without armrests) or a bed and a chair. 
 
 (   ) 4   able to transfer safely with minor use of hands 
 (   ) 3   able to transfer safely definite need of hands 
 (   ) 2   able to transfer with verbal cueing and/or supervision 
 (   ) 1   needs one person to assist 
 (   ) 0   needs two people to assist or supervise to be safe 
 
6. STANDING UNSUPPORTED WITH EYES CLOSED 
 INSTRUCTIONS:  Please close your eyes and stand still for 10 seconds. 
 
 (   ) 4   able to stand 10 seconds safely 
 (   ) 3   able to stand 10 seconds with supervision 
 (   ) 2   able to stand 3 seconds 
 (   ) 1   unable to keep eyes closed 3 seconds but stays steady 
 (   ) 0   needs help to keep from falling 
 
7. STANDING UNSUPPORTED WITH FEET TOGETHER 
 INSTRUCTIONS:  Place your feet together and stand without holding. 
 
 (   ) 4   able to place feet together independently and stand 1 minute safely 
 (   ) 3   able to place feet together independently and stand for 1 minute with 

 supervision 
 (   ) 2   able to place feet together independently and to hold for 30 seconds 
 (   ) 1   needs help to attain position but able to stand 15 seconds feet together 
 (   ) 0   needs help to attain position and unable to hold for 15 seconds 
 
8. REACHING FORWARD WITH OUTSTRETCHED ARM WHILE 
STANDING 
 INSTRUCTIONS:  Lift arm to 90 degrees.  Stretch out your fingers and reach 
forward as far as you  can.  (Examiner places a ruler at end of fingertips when arm is at 
90 degrees.  Fingers should not touch the ruler while reaching forward.  The recorded 
measure is the distance forward that the finger reach while the subject is in the most 
forward lean position.  When possible, ask subject to use both arms when reaching to 
avoid rotation of the trunk.) 
 
 (   ) 4   can reach forward confidently >25 cm (10 inches) 
 (   ) 3   can reach forward >12.5 cm safely (5 inches) 
 (   ) 2   can reach forward >5 cm safely (2 inches) 
 (   ) 1  reaches forward but needs supervision  
 (   ) 0  loses balance while trying/ requires external support  
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9. PICK UP OBJECT FROM THE FLOOR FROM A STANDING POSITION 
 INSTRUCTIONS:  Pick up the shoe/slipper which is placed in front of your feet. 
 
 (   ) 4   able to pick up slipper safely and easily 
 (   ) 3   able to pick up slipper but needs supervision 
 (   ) 2   unable to pick up but reaches 2-5cm (1-2 inches) from slipper and keeps 

balance independently 
 (   ) 1   unable to pick up and needs supervision while trying 
 (   ) 0   unable to try/needs assist to keep from losing balance or falling 
 
10. TURNING TO LOOK BEHIND OVER LEFT AND RIGHT SHOULDERS 
WHILE STANDING 
 INSTRUCTIONS:  Turn to look directly behind you over toward left shoulder. 

Repeat to the right. 
Examiner may pick an object to look at directly behind the subject to encourage a 
better twist turn. 

 
 (   ) 4   looks behind from both sides and weight shifts well 
 (   ) 3   looks behind one side only other side shows less weight shift 
 (   ) 2   turns sideways only but maintains balance 
 (   ) 1   needs supervision when turning 
 (   ) 0   needs assist to keep from losing balance or falling 
 
11. TURN 360 DEGREES 

INSTRUCTIONS:  Turn completely around in a full circle.  Pause.  Then turn a 
full circle in the other  direction. 

 (   ) 4   able to turn 360 degrees safely in 4 seconds or less 
 (   ) 3   able to turn 360 degrees safely one side only in 4 seconds or less 

(   ) 2   able to turn 360 degrees safely but slowly 
 (   ) 1   needs close supervision or verbal cueing 
 (   ) 0   needs assistance while turning 
 
12. PLACING ALTERNATE FOOT ON STEP OR STOOL WHILE 
STANDING UNSUPPORTED 
 INSTRUCTIONS:  Place each foot alternately on the step/stool.  Continue until 
each foot has touched  the step/stool four times. 
 (   ) 4   able to stand independently and safely and complete 8 steps in 20 seconds 
 (   ) 3   able to stand independently and complete 8 steps >20 seconds 
 (   ) 2   able to complete 4 steps without aid with supervision 
 (   ) 1   able to complete >2 steps needs minimal assist 
 (   ) 0   needs assistance to keep from falling/unable to try 
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13. STANDING UNSUPPORTED ONE FOOT IN FRONT 
 INSTRUCTIONS:  (DEMONSTRATE TO SUBJECT) 
 Place one foot directly in front of the other.  If you feel that you cannot place your 
foot directly in front, try to step far enough ahead that the heel of your forward foot is 
ahead of the toes of the other foot.  (To score 3 points, the length of the step should 
exceed the length of the other foot and the width of the stance should approximate the 
subject's normal stride width)  
 (   ) 4   able to place foot tandem independently and hold 30 seconds 
 (   ) 3   able to place foot ahead of other independently and hold 30 seconds 
 (   ) 2   able to take small step independently and hold 30 seconds 
 (   ) 1   needs help to step but can hold 15 seconds 
 (   ) 0   loses balance while stepping or standing 
  
14. STANDING ON ONE LEG 
 INSTRUCTIONS:  Stand on one leg as long as you can without holding. 
 (   ) 4   able to lift leg independently and hold >10 seconds 
 (   ) 3   able to lift leg independently and hold 5-10 seconds 
 (   ) 2   able to lift leg independently and hold = or >3 seconds 

(   ) 1   tries to lift leg unable to hold 3 seconds but remains standing 
independently 

 (   ) 0   unable to try or needs assist to prevent fall 
 
 (     )  TOTAL SCORE  (Maximum = 56) 
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Appendix E: Activities-specific Balance Confidence (ABC) Scale 
 
Subject #_________  Test #____  Date/Time________ 
 

Activities-Specific Balance Confidence (ABC) Scale 
 
For each of the following, please indicate your level of confidence in 

doing the activity without losing your balance or becoming unsteady 

by marking on the line that is scaled 0-100%.  If you do not currently 

do the activity in question, try to imagine how confident you would be 

if you had to do the activity.  If you normally use a walking aid to do 

the activity or you hold on to someone, rate your confidence as if you 

were using these supports.  If you have any questions about 

answering any of these items, please ask the researcher. 

 

“How confident are you that you will not lose your balance or become 

unsteady when you…. 

 

1.  …walk around the house? 

 
2.  …walk up or down stairs? 

 
3.  …bend over and pick up a slipper from the front of the closet? 

 
20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%
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4.  …reach for a small can off a shelf at eye level? 

 
5.  …stand on tip toes and reach for something above your head? 

 
6.  …stand on a chair and reach for something? 

 
7.  …sweep the floor? 

 
8.  …walk outside the house to a car parked in the driveway? 

 
9.  …get into or out of a car? 

 
10.  …walk across a parking lot to a mall? 

 
11.  …walk up or down a ramp? 

 
20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%
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12.  …walk in a crowded mall where people rapidly walk past you? 

  
13.  …are bumped by people as you walk through the mall? 

 
14.  …step onto or off of an escalator while you are holding onto the 

railing? 

 
15.  …step onto or off of an escalator while holding onto parcels such 

that you cannot hold onto the railing? 

  
16.  …walk outside on icy sidewalks? 

 
20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%

20% 80%0% 10% 100% 90% 70%60%40% 50%30%
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Appendix F: Activity Questionnaire 
 

Subject # _____ Test #_____  Date/Time____________ 

Investigator_______ 

1) Have you fallen in the past week?_____ month?_____ year____? 

 If yes, how many times?______ what were you doing at the time? 

2) Today, do you or would you have any difficulty at all with….. 

Activities 

Extreme 
difficulty 
or unable 
to perform 
activity 

Quite a 
bit of 
difficulty 

Moderate 
difficulty 

A little 
bit of 
difficulty 

No 
difficulty 

Any of your usual 
housework. 
 

0 1 2 3 4 

Your usual 
hobbies, 
recreational 
activities 
 

0 1 2 3 4 

Getting into or out 
of the bath 
 

0 1 2 3 4 

Walking between 
rooms 
 

0 1 2 3 4 

Putting on your 
shoes or socks 
 

0 1 2 3 4 

Getting into or out 
of a car 
 

0 1 2 3 4 

Walking 2 blocks 
 

0 1 2 3 4 

Walking a mile 
 

0 1 2 3 4 

Going up or down 
10 stairs (about 1 
flight or stairs) 
 

0 1 2 3 4 

Standing for 1 
hour 
 

0 1 2 3 4 
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Appendix G: Subject Comments 
 

Subject 
number 

Test Day that the 
comment was 

made 

Comments 
 
 

1 4 “I think the shoes help me balance.” 

3 4 “I feel like I am balancing better” 

3 5 “I stand better with the shoes. I do better with 
single leg standing in exercise class.” 

4 4 “I love the shoes and I don’t want to wear 
another pair of shoes.” 

4 5 “I love the shoes still and I don’t want to wear 
any other shoe.” 

6 After 1 week with 
the shoes 

“The shoes are too heavy and hurt my calf.” 

 

9 4 “I wear them every day, even Sunday. My 
feet are tired by the end of the day, the 
shoes are stiff and heavy. My right arch hurts 
at the end of the day.” 

9 5 “I don’t think my balance is any better.” 

14 5 “These shoes are great!” 

23 4 “I love the shoes, they are very comfortable. 
They are wide and help with my balance. I 
want another pair.” 

28 4 “Shoes are heavy, but I like them. I feel 
steadier on my feet. I think that the shoes 
really help with balance.” 

28 5 “I think the study is great. These shoes would 
be good for people around here.” 

29 5 “Shoes are very comfortable.” 

35 3 “Shoes feel good.” 
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