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ABSTRACT OF DISSERTATION 
 
 
 
 

ROLE OF THE REACTIVE OXYGEN SPECIES PEROXYNITRITE IN 
TRAUMATIC BRAIN INJURY 

 
 Reactive oxygen species (ROS) is cytotoxic to the cell and is known to 
contribute to secondary cell death following primary traumatic brain injury (TBI). 
We described in our study that PN is the main mediator for both lipid peroxidation 
and protein nitration, and occurred almost immediately after injury. As a 
downstream factor to oxidative damage, the peak of Ca2+-dependent, calpain-
mediated cytoskeletal proteolysis preceded that of neurodegeneration, 
suggesting that calpain-mediated proteolysis is the common pathway leading to 
neuronal cell death. The time course study clearly elucidated the interrelationship 
of these cellular changes following TBI, provided window of opportunity for 
pharmacological intervention.   
 Furthermore, we conducted a pharmacological study to solidify our 
hypothesis. First of all, we tested the potency of a membrane permeable, 
catalytic scavenger of PN-derived free radicals, tempol for its ability to 
antagonize PN-induced oxidative damage. Tempol successfully inhibited PN-
induced protein nitration at dosages of 30, 100 and 300mg/kg. Moreover, early 
single dose of 300mg/kg was administered and isolated mitochondria were 
examined for respiratory function and oxidative damage level. Our data showed 
that tempol reduced mitochondrial oxidative damage, and maintained 
mitochondrial function within normal limits, which suggested that tempol is 
efficiently permeable to mitochondrial membrane and mitochondrial oxidative 
damage is essential to mitochondrial dysfunction. Next, we found that calpain-
mediated proteolysis is reduced at early treatment with a single dose of tempol. 
However, the effect of tempol on calpain is short-lived possibly due to systematic 
elimination. In our multiple dose study, tempol showed a significant inhibitory 
effect on SBDPs. Consequently, we measured neuordegeneration with the de 
Olmos aminocupric silver staining method at 7 days post-injury and detected a 
significant decrease of neuronal cell death.  
 Together, the time course study and pharmacological study strongly 
support the hypothesis that PN is the upstream mediator in secondary cell death 
in the CCI TBI mouse model. Moreover, inhibition of PN-mediated oxidative 
damage with the antioxidant, tempol, is able to attenuate multiple downstream 



injury mechanisms. However, targeting PN alone may be clinically impractical 
due to its limited therapeutic window. This limitation may be overcome in future 
studies by a combination of multiple therapeutic strategies.  
 
 
KEYWORDS:  Traumatic brain injury, Peroxynitrite, Tempol, Mitochondrial 

dysfunction, Calpain-Mediated Proteolysis   
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Chapter One 

Post-Traumatic Secondary Injury in Experimental Traumatic Brain Injury 

 

Free Radicals Production and Oxidative Damage in Traumatic Brain Injury 

 

Introduction 

Oxygen is necessary for life. However, only about 85-90% of the O2 taken 

up by mammalian cells is effectively utilized by their mitochondria for energy 

production. The remainder is converted to highly toxic reactive oxygen species 

(ROS) and their derived oxygen radicals which are damaging to cells. Following 

acute traumatic brain injury (TBI), oxidative stress leading to the formation of 

ROS and free radicals and oxidative alteration of brain tissue has been 

implicated as a common pathway following excitotoxicity. Excitotoxicity begins  

immediately after TBI, in which excessive excitatory amino acid, such as 

glutamate, is released into extracellular spaces and over-activates glutamate 

receptors, thereby inducing abnormal calcium influx (Faden, Demediuk et al. 

1989). Moreover, other investigators showed that there is a prompt increase in 

free radicals that is essentially coincident with the release of glutamate proximate 

to the injury site, and there is a close correlation between the magnitudes of both 

events, suggesting that these two processes are part of a common pathways 

(Globus, Alonso et al. 1995). Furthermore, in vitro cortical cell culture studies 

showed that application of free radical scavengers or antioxidant compounds 

reduces glutamate-mediated excitotoxicity providing additional support for the 
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role of oxidative stress and damage mechanisms in excitotoxicity (Monyer, 

Hartley et al. 1990). However, oxidative stress is not the only component of post-

traumatic cell death. Growing evidence has indicated that post-traumatic free 

radical production is linked to disruption of intracellular calcium (Ca2+) 

homeostasis, induction of mitochondrial dysfunction and loss of Ca2+ buffering 

capacity and downstream activation of the Ca2+-dependent protease, calpain, 

which can proteolytically dismantle cellular structure.   

Brain tissue is particularly vulnerable to oxidative damage due to its high 

metabolic requirement for oxygen; its prevalent concentration of oxidizable 

polyunsaturated fatty acids (PUFAs) in membranes; its enrichment in redox 

active metals, most notably iron and the presence of potentially phagocytic 

microglia which can become a major source of ROS and free radicals when 

activated by injury. The high content of free radical-sensitive PUFAs in the 

membrane lipids of neurons and myelin provides the target for free radical-

induced lipid peroxidation (LP), in which a single free radical can trigger a chain 

reaction in the lipid bilayer that is potentiated by transition metal ions (Hall and 

Braughler 1993; Watson 1993).  

Experimental TBI models have provided compelling evidence supporting 

the important role of ROS and LP in the pathophysiology of acute TBI. The first 

work showing this was provided by Kontos and his colleagues who demonstrated 

an almost immediate post-injury increase in brain microvascular superoxide 

radical production in fluid percussion injury (FPI) TBI model (Kontos and 

Povlishock 1986; Kontos and Wei 1986). Moreover, hydroxyl radical was shown 
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to increase during the first minutes after injury (Hall, Andrus et al. 1993), followed 

in close succession by increased LP, blood-brain barrier (BBB) disruption and 

edema (Smith, Andrus et al. 1994; Nishio, Yunoki et al. 1997; Kasprzak, Wozniak 

et al. 2001). In addition to that, evidences from addition of exogenous 

antioxidants and transgenic studies further suggest oxidative damage as a 

potential therapeutic target (Hall and Smith 1991; Smith, Andrus et al. 1994; 

Chan, Epstein et al. 1995; Mikawa, Kinouchi et al. 1996; Hall, Kupina et al. 

1999). 

 

Definition of Free Radical and ROS 

As defined by Halliwell and Gutteridge, a free radical is any species 

capable of independent existence (hence the “free”) that contains one or more 

unpaired electrons. Free radicals may be mono- or poly-atomic. It is important to 

know that not all free radicals are highly reactive. Reactive oxygen species 

(ROS) is a collective term often used by scientists to include not only the oxygen 

radicals (O2
• ⎯ and •OH), but also some non-radical derivatives of O2

 such as 

hydrogen peroxide (H2O2). Therefore, some ROS are not necessarily a free 

radical themselves, but are molecules that can generate free radicals (Halliwell 

and Gutteridge et al, 1985). Moreover, some oxides of nitrogen are alternatively 

termed reactive nitrogen species (RNS), such as nitric oxide (NO•) and 

peroxynitrite anion (ONOO⎯).  
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Oxygen as a Source of ROS 

After brain injury, ROS and/or free radicals may be generated through 

several different cellular pathways, such as the free radical leak from 

mitochondria respiratory chain; nitric oxide synthases (NOSs); conversion of 

xanthine dehydrogenase (XDH) to xanthine oxidase (XO); phospholipase A2-

cyclooxygenase pathway; Fenton and Haber-Weiss reactions by inflammatory 

cells (Gutteridge and Halliwell 1989; Kehrer 2000). Moreover, a number of 

enzymes, such as cytochromes P450, various oxidases, peroxidases, 

lipoxygenases and dehydrogenases can be sources of ROS.  

Oxygen is the most abundant molecule in a biological system. It exists as 

a di-radical and therefore is very reactive with radicals. Although oxygen can act 

as an oxidizing agent, its two unpaired electrons remain at most stable state. 

Thus O2 normally accepts one electron at a time, reacts sluggishly with non-

radicals. As it is partially reduced through normal metabolic processes, oxygen is 

often the source of free radicals. The escape of the free radicals normally is 

counteracted by endogenous antioxidant system. However, under pathological 

conditions, over-production of oxygen-derived ROS and free radicals overwhelms 

the endogenous antioxidants, inducing “oxidative stress”. If the imbalance of the 

pro- and anti-oxidant system occurs, this leads to degradation or modification of 

macromolecules (e.g. lipids, proteins, nucleic acids) and irreversible impairment 

of their function, it is termed as “oxidative damage”. 
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Superoxide Radical  

One of the most important sources of superoxide radical (O2
• ⎯) in vivo is 

the mitochondrial electron transport chain (ETC). Estimated up to 1% of total 

mitochondrial oxygen consumption goes toward the production of superoxide or 

hydrogen peroxide at intermediate steps of the mitochondrial ETC (Ischiropoulos 

and Beckman 2003). It is believed that mono electron reduction of oxygen into 

superoxide primarily occurs at ETC complex I (NADH dehydrogenase) level and 

coenzyme Q level (ubiquinone-cytochrome b)  (Kowaltowski and Vercesi 1999). 

(Figure 1.1) 

 

 

Succinate     Fumarate 

 

 

Figure 1.1 Simplified schematic of superoxide production from ETC. 

 

 

Complex I 

Matrix Complex II 

Complex Complex III IV 
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NADH NAD 
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Theoretically, superoxide radical can be generated from oxygen through 

mono electron reduction at all components of the respiratory chain. However, the 

NADH dehydrogenase and ubiquinone-cytochrome b appear to be the two 

primary O2
• ⎯ generation sites (Turrens and Boveris 1980). Although complex IV 

catalyses four sequential 1e⎯ additions to molecular oxygen, the intermediates 

are tightly retained, and there is no leakage of superoxide occurs (Nicholls and 

Ferguson et al. 2002). Physiologically, electrons are transferred from NADH to 

the oxidized form of ubiquinone (UQ) to yield the reduced form of ubiquinone and 

ubiquinol (UQH2). During the course when UQH2 transferring the electron to 

cytochrome c oxdiase, it is converted to firstly intermediate free radical 

semiquinone anion species (UQ• ⎯), and then back to UQ. This process initially 

occurs on cytoplasmic face of the inner mitochondrial membrane (IMM), and is 

then repeated on the matrix face of the IMM. Myxothiazol inhibits UQH2 at the 

cytoplasmic face of the IMM, therefore blocks the formation of UQ• ⎯, and 

stimulates O2
• ⎯ formation only at the level of NADH dehydrogenase; whereas 

antimycin A inhibits UQ• ⎯ formation at cytoplasmic face, thereby accumulates 

UQ• ⎯ at matrix face of the IMM, resulting in stimulating O2
• ⎯ formation at both the 

level of NADH dehydrogenase and coenzyme Q. Therefore, some hypothesize 

that mitochondrial generated O2
• ⎯ preferably occurs at the lever of coenzyme Q 

(Kowaltowski, Castilho et al. 1995). In contrast to that, complex I level of O2
• ⎯ 

generation is more ∆Ψm dependent. However, the precise nature of the O2
• ⎯ 

production site in complex I remain arguable. Complex I inhibitor rotenone 

generates O2
• ⎯ during electron transport through the complex from NAD+-linked 
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substrates. Even with the absence of endogenous complex I substrates and with 

succinate (complex II substrate), complex I can still generate O2
• ⎯ as a result of 

reversed electron transfer (Turrens and Boveris 1980). Therefore, NADH 

dehydrogenase remains a notable site of O2
• ⎯ generation.  

Some O2
• ⎯ is also produced by activated phagocytic cells. Activated 

phagocytic cells are capable of reducing O2 into O2
• ⎯ through the activity of 

NADPH oxidase (Bianca, Dusi et al. 1999; Gao, Jiang et al. 2002). Another 

source is the largely endothelial cell-contained xanthine oxidase (McCord 1987). 

Most of the xanthine/hypoxanthine oxidation in vivo is catalysed by xanthine 

dehydrogenase, which transfers electrons from the substrates onto NAD+ rather 

than to O2.  

Xanthine/hypoxanthine Uric acid 
Xanthine dehydrogenase + + 

NAD+ NADH 

However, under ischemic and post-ischemic reoxygenation conditions, xanthine 

dehydrogenase can be converted into xanthine oxidase by oxidation and 

therefore produce O2
• ⎯ and H2O2 while oxidizing xanthine or hypoxanthine. In 

addition to that, depletion of adenosine triphosphate (ATP) in hypoxic tissues 

results in accumulation of hypoxanthine. Hypoxanthine can be oxidized by 

xanthine oxidase when tissue are reoxygenated, causing rapid generation of O2
• ⎯ 

and H2O2.  

Superoxide radical can also be produced by heme proteins. Normally, the 

iron in the heme rings of the hemoglobin or myoglobin remains in the ferrous 

state (Fe2+) for O2 binding. However, some delocalization of the electron takes 
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place and results in an intermediate structure, producing ferric iron (Fe3+) in the 

heme ring. Ferric iron present in the heme ring is inactive and unable to bind O2, 

thereby releases a molecule of superoxide radical:  

Heme–Fe2+–O2 ↔ heme–Fe3+–O2
• ⎯ → O2

• ⎯ + heme–Fe3+  

Moreover, superoxide can be produced from arachidonic acid cascade 

through prostaglandin hydroperoxidase (PGH) and 5-lipoxygenase activity as a 

side-chain reaction depending on the presence of NADH or NADPH (Kukreja, 

Kontos et al. 1986).  

There are several important biological oxidations in the presence of O2  

that result in O2
• ⎯, such as glyceraldehyde, FMNH2, FADH2, the hormones 

adrenalin and noradrenalin, L-DOPA (dihydroxyphenylalanine), the 

neurotransmitter dopamine, tetrahydropteridines and thiol compounds (eg. 

cysteine) (Davis, Kaufman et al. 1988). Most of these reactions are accelerated 

by transition metals since O2 is poorly reactive. 

More interestingly, Ca2+ influx was suggested to be a source of 

mitochondrial O2
• ⎯ as well, in which Ca2+ leads to IMM alteration and 

disorganization of the ETC (Kowaltowski, Castilho et al. 1995). Grijalba et al 

proposed that Ca2+ alters the lipid organization of IMM by interacting with the 

anionic head of cardiolipin, which is an abundant component of IMM. As a result, 

the function of the ETC was affected, such as coenzyme Q mobility, leading to 

mono-electronic oxygen reduction at intermediate steps of respiration, which 

promote the production of O2
• ⎯ (Grijalba, Vercesi et al. 1999). 
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To this end, superoxide can reduce the endogenous antioxidant enzyme 

reservoir by direct reaction, such as with catalase and glutathione peroxidase, as 

well as enzymes involved in energy metabolism (Zhang, Marcillat et al. 1990). 

Nevertheless, neither O2
• ⎯ nor H2O2 is sufficiently reactive to account for much of 

the post-traumatic oxidative damage found in vivo. It is known that superoxide-

derived species are much more cytotoxic than superoxide itself.  

 

Superoxide-Derived Species  

Hydroperoxyl radical: While O2
• ⎯ may act as an oxidant or reductant, and 

is reactive with radicals, for example, reduce Fe3+ to Fe2+, it is relatively inert in 

reaction with non-radicals in aqueous environments. In solution, superoxide 

exists in equilibrium with its protonated form, hydroperoxyl radical (HO2
•). Under 

conditions of tissue acidosis occur within severely injured nervous system, O2
• ⎯ 

exists mostly as HO2
•, which is more reactive and capable of initiating LP 

(Halliwell, Gutteridge et al, 1985). In contrast to the exceedingly slow rate of 

dismutation of O2
• ⎯ to H2O2, HO2

• is much more readily able to generate H2O2
 

(Hall and Braughler 1993).  

O2
• ⎯ + H+ → HO2

• 

Hydrogen peroxide: Dismutation of O2
• ⎯ by superoxide dismutase (SOD) 

generates hydrogen peroxide (H2O2). SOD is an important antioxidant enzyme 

and specific for O2
• ⎯ as a substrate. However, H2O2 is poorly reactive at 

physiological level. H2O2 is usually removed by two types of enzymes: catalases 

and peroxidases. The catalases directly catalyse decomposition of H2O2 to O2:   
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2 H2O2 → 2 H2O + O2. Peroxidase enzymes remove H2O2 by using it to oxidize 

another substrate: SH2 + H2O2 → S + 2H2O. In the case of glutathione 

peroxidase (GPX), it removes H2O2 by coupling its reduction to H2O with 

oxidation of reduced glutathione (GSH): H2O2 + 2GSH → GSSG + 2H2O. Both 

catalases and GPX enzymes are widely distributed in animal tissues readily to 

produce H2O2.  

Hydroxyl radical: Hydroxyl radical (•OH) is an extremely reactive form of 

free radicals produced from H2O2 by the metal-catalyzed Fenton reaction; or in 

the presence of  O2
• ⎯ and catalytic amounts of transition medals, from the metal-

catalyzed Haber-Weiss reaction (Gutteridge and Halliwell 1989).  

Mitochondria 

O2
• ⎯               H2O2 + Fe2+               Fe3+ + OH⎯ + •OH          Oxidative damage 

SOD 

Phagocytes Action of O2           O2
• ⎯ Other enzymes 

 

Hydroxyl radical can also be produced from peroxynitrite (PN), a ROS generated 

by reaction between nitric oxide (NO•) and superoxide radical (O2
• ⎯) (Radi, 

Beckman et al. 1991). Hydroxyl radical was detected within half an hour after 

trauma through the use of trapping agents such as salicylate (Hall, Andrus et al. 

1993) or nitrone spin traps (Sen and Phillis 1993; Sen, Goldman et al. 1994). The 

formation of highly reactive •OH became widely accepted as the primary 

mechanism of free radical toxicity. Although •OH is capable of destroying various 

bio-molecules, the reaction with organic molecules is diffusion rate-limited, 

ranging from 109 to 1010 M-1•s-1. Therefore, it will react as fast as it is formed and 

cannot explain any form of oxidative damage that occurs remote from its site of 

 10



formation. Thus, Its “non-discriminative” nature makes •OH attack uncritical 

targets and quickly be removed from the system (Hall and Braughler 1993; 

Beckman 1994; Crow and Beckman 1996).  

 Peroxynitrite: To better understand the toxicity of oxidative damage, an 

oxidant that is able to out-compete endogenous antioxidant defenses is proposed 

to be peroxynitrite (Blou 1985; Beckman 1994). Peroxynitrite (PN) refers to 

peroxynitrite anion (ONOO⎯) as well as its conjugate acid, peroxynitrous acid 

(ONOOH). PN is produced by the very fast reaction of O2
• ⎯ with NO•. 

Interestingly, O2
• ⎯ is one of the few molecules that reacts with NO• quickly. PN 

can generate a wide range of noxious free radical species  under physiological 

conditions. Superoxide radical and nitric oxide react readily at rate of 6.7 × 109 M-

1•s-1, which is at least three times faster than SOD reacts with O2
• ⎯, and at least 

ten times faster than heme compounds react with NO•. Therefore, NO• and O2
• ⎯  

can antagonize each other’s biological actions (Cudd and Fridovich 1982; Huie 

and Padmaja 1993). 

  NO• + O •
2  ⎯           ONOO⎯       k  ≈  7 × 109 M-1•s-1

In humans, NO• is formed from arginine, O2 and NADPH by nitric oxide 

synthases (NOSs) and functions as a diffusible messenger to modulate neuronal 

signaling following excitotoxicity (Garthwaite, Charles et al. 1988), regulate 

vascular tone, and kill pathogens (Bredt and Snyder 1990; Bredt and Snyder 

1994).  
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Arginine                    hydroxy-arginine                      citrulline + NO• 
NADPH ½ NADPH 

  O2       
     H2O                          O2          H2O 

There are three identified isoforms of NOS, which are endothelial NOS (eNOS), 

neuronal (nNOS) and inducible (iNOS), all of which appear to be involved in TBI 

pathology. For instance, it was shown in a lateral FPI model, that there was a 

pronounced eNOS increase in microvessels surrounding the cortical contusion at 

24 hrs after injury which was associated with BBB breakdown and hyperemia 

(Cobbs, Fenoy et al. 1997). Moreover, studies using NOS inhibitors showed 

reduced neurological deficit, which suggested a possible important pathological 

role of NO• and PN in neurodegeneration following TBI. However, the drug 

effects appeared to be time dependent and showed a limited therapeutic time 

window after injury (Mesenge, Verrecchia et al. 1996; Wada, Chatzipanteli et al. 

1998). In comparison to that, iNOS activity was also shown to be significantly 

increased, and improved histopathological outcome has been reported following 

inhibition of iNOS in a FPI model (Wada, Chatzipanteli et al. 1998). Nevertheless, 

the levels of all three NOS appeared to have different temporal and spatial 

profiles, indicating the compartmentalization of nitric oxide can be beneficial or 

detrimental (Gahm, Holmin et al. 2000; Orihara, Ikematsu et al. 2001). In recent 

years, a novel isoform of NOS was described located within mitochondria, named 

mitochondrial NOS (mtNOS) (Bates, Loesch et al. 1995; Lopez-Figueroa, 

Caamano et al. 2000). It was suggested to play a role in calcium release by 

formation of intramitochondrial PN through thiol cross-linking and NAD+ 
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hydrolysis to prevent calcium overload (Bringold, Ghafourifar et al. 2000). 

However, overproduction of intramitochondrial NO•-derived PN was indicated to 

induce irreversible damage to neuron-mitochondrial complex (Stewart, Sharpe et 

al. 2000). 

PN has relative long half-life compared to other ROS (~1sec), and it can 

diffuse across membrane, which enable PN to induce oxidative damage remote 

from its site of formation. The protonated form of PN (around neutral pH), 

peroxynitrous acid (ONOOH), is a strong oxidizing species. ONOOH is unstable 

and quickly releases nitrogen dioxide (•NO2) and hydroxyl radical (•OH). 

Moreover, PN can also react with carbon dioxide (CO2) to form nitrosoperoxo 

carbonate (ONOOCO2), then breaks down into nitrogen dioxide (•NO2) and 

carbonate radical (CO3
• ⎯). PN-derived radicals are extremely potent and react 

rapidly with bio-molecules (Murphy, Packer et al. 1998; Radi 1998; Hall, Detloff et 

al. 2004). (Figure 1.2)  

One of the most studied reactions involved in PN biochemistry concerns 

the conversion of 3 position tyrosine to 3-nitrotyrosine (3NT), in which PN-derived 

•NO2 nitrates aromatic compounds, which is widely used as a bioassay to detect 

ONOO⎯ in vivo (Beckman 1996). In addition to that, PN-derived radicals can 

induce LP which produces various aliphatic aldehydic products which bind to 

cellular proteins and be measured by immunohistochemistry (Hall, Oostveen et 

al. 1997; Hall, Detloff et al. 2004). Moreover, 4-hydroxynonenal (4HNE) is the 

most cytotoxic LP-derived aldehydes (Keller, Mark et al. 1997). 
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Figure 1.2 Biochemistry of ROS formation. 
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Neuronal Tissue Oxidative Damage   

Oxidative damage to lipids: As noted earlier, due to its high content in 

PUFAs, brain tissues are very susceptible to LP. A species that can sufficiently 

react to abstract a hydrogen atom from a methylene (–CH2–) group can initiate 

LP. In the case of fatty acids with no or one double carbon-carbon bonds, they 

are more resistant to such attack. However, in the case of PUFAs, the adjacent 

double bonds weaken the energy of the attachment of the hydrogen atoms 

present on the next carbon atom (termed allylic hydrogen), particularly when 

there is a double bond on both sides of the methylene, giving bis-allylic 

hydrogen. As a consequence, the commitment of this carbon to bind with the 

hydrogen atom on it becomes very ambivalent. Therefore, if a free radical comes 

along, it can easily remove the hydrogen atom and the electron associated with 

it. As a result, the free radical is quenched, while the PUFA is turned into a free 

radical, termed alkyl radical (L•). However, LP is a geometrically progressing 

process. The allylic radical can then react with molecular oxygen (O2) and form 

lipid peroxyl radical (LOO•). If this process is not ceased by endogenous 

antioxidant compounds or enzymes, the lipid peroxyl radical will react with other 

PUFAs to form a second allylic radical, while becoming a lipid hydroperoxide 

(LOOH). If there is transition metal ion (Fe2+/Fe3+) comes along, the LOOH 

undergoes decomposition to create an alkoxyl radical (LO•) or a peroxyl racial 

(LOO•). Either lipid radical can attack neighboring fatty acids and thus the 

process of peroxidation propagates throughout the membrane (Figure 1.3). 
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Figure 1.3 Chemistry of initiation and propagation phases of cell membrane LP. 
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As a result, LP decreases membrane fluidity, increases permeability of the 

membrane bilayer to various substances that are normally impermeable and 

inactivates certain membrane-bound enzymes. The continuation of oxidation of 

fatty acid side chains and their fragmentations to produce aldehydic breakdown 

products eventually leads to the loss of membrane integrity. Moreover, the 

products of LP, such as peroxyl radicals, alkoxyl radicals and aldehydes 

(especially 4-hydroxylnonenal) can induce severe damage to proteins. For 

example, 4HNE, an end-product of LP, can conjugate onto proteins causing toxic 

protein aggregates within membranes(Keller, Mark et al. 1997; Kruman, Bruce-

Keller et al. 1997).  

Varieties of superoxide-derived radicals are capable of inducing LP. Acidic 

pH conditions, which is known to occur within severely injured neuronal tissues, 

accelerates superoxide radical to conjugate with H+ to form hydroperoxyl radical 

(HO2
•), which is more soluble and much more reactive. As a defense antioxidant 

mechanism, the rate of O2
• ⎯ endogenous dismutation into H2O2 is also increased. 

Normally in brain tissues, low molecular weight forms of redox active iron are 

retained, as in other tissues, at extremely low or none levels. Although iron 

storage proteins at neutral pH, such as ferritin and transferrin, have high affinity 

for iron, they are readily to give up iron under acidic conditions. The irons 

released from iron-binding proteins participate in catalyzing LP, in which the most 

studied iron-catalyzed redox reaction is Fenton reaction: 

Fe2+ + H2O2            Fe3+ + •OH + OH⎯ 

   Fe2+ + H2O2            Fe3+OH + OH⎯ 
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Both •OH and Fe3+ are extraordinary potent oxidants and capable of initiate 

damage to lipids, proteins and DNAs. On the other hand, Haber-Weiss reaction 

may also occur in the presence of transition metals to generate oxidizing 

radicals, though it has a second-order rate constant in aqueous solution of nearly 

zero.  

H2O2 + O2
•
 ⎯              O2 + OH⎯ + •OH  

Fe3+ + O2
• ⎯                Fe2+ + O2

   
Fe2+ + H2O2                      Fe3+ + •OH + OH⎯

In addition to iron-dependent radical production, PN-derived •NO2, CO3
• ⎯ and 

•OH (Figure 1.2) are potent oxidants that capable of inducing intensive tissue 

damages.  

 Since LP is a complex process with multiple stages, there are many LP 

measurement techniques are available for measuring the rate of peroxidation of 

membrane lipids, lipoproteins or fatty acids. One of the most preferred methods 

is to measure the aldehyde “end-products” of peroxidation, among which 4HNE 

is one of the most cytotoxic aldehydes. Reactive aldehyde, such as 4HNE, binds 

rapidly to proteins, therefore antibody-based immuno-detection of such adducts 

within cells and tissues is considerable. Moreover, immuno-histochemical 

procedure can locate the distribution of such adducts in tissue slices subjected to 

oxidative damage.                                                                                                                         

Oxidative damage to proteins: Damages to proteins can be induced 

directly by ROS, as well as indirectly by end product of LP, such as 

malondialdehyde (MDA) and 4HNE through rapid reaction with thiol (–SH–) 
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groups at physiological pH. Attach of RNS, such as ONOO⎯, •NO2 and NO2Cl, 

leads to 3NT formation. Moreover, •OH or singlet O2 can generate multi end-

products upon proteins. By contrast, H2O2 and O2
• ⎯ at physiological level have 

little or no direct effect on proteins. Protein oxidation can lead to specific damage 

to certain amino acid residues. As a result, not only enzymes, but also receptor 

proteins and transport proteins can become a target of oxidative damage.  

The “general” assay of oxidative protein damage is carbonyl assay. The 

rationale is based on the fact that several ROS attack amino acid residues to 

generate products with carbonyl groups, which can be measured after reaction 

with 2,4-dinitrophenylhydrazine (DNPH). The immuno-detection is designed to 

recognize the protein with carbonyl group that is conjugated to DNPH.  

Oxidative damage to DNAs: Oxidative damage to DNAs can lead to strand 

breakage, damage to the deoxyribose sugar and modification of the purine and 

pyrimidine bases. However, nuclease activity occurs during DNA repair can also 

induce strand breakage, but cannot be equated to oxidative DNA damage. The 

most common assay is to measure 8-hydroxydeoxyguanosine (8-OHdG), 8-

hydroxyguanine (8-OH-G) attached to deoxyribose, which is formed by •OH 

attacking upon DNA followed by mono-electron oxidation of the resulting radical. 

  Guanine in DNA                [8-OHdG] 8-OHdG
•OH 

•                         
 – 1e⎯ 

However, the intermediate [8-OHdG]• radical may have alternative fates. 

Therefore, the measurement of a single product of the amount of hydroxylated 

guanine in DNA does not sufficiently indicate the amount of initial radical attack. 
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Moreover, DNA is more susceptible to oxidative damage if it is exposed to H2O2 

(Schraufstatter, Hinshaw et al. 1986).  

  

Mitochondrial Dysfunction in Traumatic Brain Injury 

 

As noted previously, excitotoxicity is a pathological process results in 

neuronal cell death through which the over-activation of receptors for the 

excitatory neurotransmitter, glutamate. N-Methyl-D-aspartate (NMDA) receptors 

are a subclass of glutamate receptors that play an essential role in Na+ and Ca2+ 

influx into the cell (Faden, Demediuk et al. 1989). Na+ gradient cross the plasma 

membrane is required for glutamate uptake. NMDA over-activation will 

exacerbate glutamate accumulation extracellularly and hence Ca2+ influx by 

inducing Ca2+ channels. The unique features of mitochondria allow them to 

accumulate calcium when the intracellular [Ca2+]i reaches a “set-point” of 500nm 

in order to modulate Ca2+ homeostasis in the cytosol (Schinder, Olson et al. 

1996; Nicholls and Ferguson et al. 2002). Mitochondrial dysfunction in regards to 

its Ca2+ buffering capability is an essential mediator of excitotoxicity. Specifically, 

excessive mitochondrial Ca2+
 accumulation uncouples electron transfer from ATP 

synthesis leading to mitochondrial dysfunction (Beatrice, Palmer et al. 1980; 

Gunter and Pfeiffer 1990; Bernardi, Broekemeier et al. 1994).  

The disturbance of energy metabolism during Ca2+ overload can result in 

an increase in the mitochondrial leak of oxygen radicals, which can overwhelm 

the antioxidant defense mechanisms and contribute to cell death (Halliwell and 
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Gutteridge et al. 1989; Coyle and Puttfarcken 1993; Lang-Rollin, Rideout et al. 

2003). Oxidants are constantly generated even during normal metabolism as the 

intrinsic rate of proton leakage across the IMM increases, such as O2
•⎯, H2O2, 

•OH (Shigenaga, Hagen et al. 1994). There are array of cellular anti-oxidant 

defenses that antagonize the production of oxidants. However, in a variety of 

pathological conditions, such as TBI, the rate of ROS production within 

mitochondria is exacerbated. The main sites for superoxide production are 

suggested to be complex I and complex III of the ETC (Turrens and Boveris 

1980; Sugioka, Nakano et al. 1988). However, the precise nature of the ROS 

production sites in complex I remain obscure. It was also indicated that Ca2+ 

influx induces IMM lipid re-organization by interacting with the anionic head of 

cardiolipin, which is an abundant component in IMM. As a result, mono-electron 

was delivered to oxygen at intermediate steps of respiration, which result in the 

production of O2
• ⎯ through ETC (Grijalba, Vercesi et al. 1999). In addition to that, 

NO• production is also detected intramitochondrially through the activation of an 

isoform of NOS located within the mitochondria. It was suggested that this 

isoform of NOS is activated upon Ca2+ uptake (Giulivi 1998; Tatoyan and Giulivi 

1998). Like the three main isoforms of NOS, diversity in its function and location 

gives it a unique role in mitochondria, such as a feedback signal to prevent 

overloading of Ca2+ and decreasing mitochondrial membrane potential (∆Ψm) 

(Ghafourifar and Richter 1997). Although NO• is believed to have potential toxic 

effect, many of them are more likely mediated by PN and its oxidation products 

rather than NO• by itself, such as PN (Bringold, Ghafourifar et al. 2000; Stewart, 
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Sharpe et al. 2000). Evidence showed that the NO•-dependent inactivation of 

iron-sulfur centers was in fact mediated by PN (Castro, Rodriguez et al. 1994; 

Hausladen and Fridovich 1994). Together, mitochondria provide a favorable 

environment for PN-induced oxidative damage in response to Ca2+ uptake.  

Moreover, post-traumatic excessive mitochondrial uptake of Ca2+ can lead 

to a sudden increase in inner membrane permeability to compounds with a 

molecular mass less than 1.5kD, defined as the formation of mitochondrial 

permeability transition pore (mPTP). The mPTP formation is believed to be the 

basis of mitochondrial swelling and metabolic failure and ultimately cell death 

(Zamzami, Hirsch et al. 1997). Although it is considered to be a non-specific 

membrane opening, evidence showed that the onset of the mPTP can be 

prevented by the immunosuppressant cyclosporine A (CsA) suggesting that it is 

more than a non-specific membrane rupture (Bernardi, Broekemeier et al. 1994; 

Bernardi 1996; Nicolli, Basso et al. 1996; Sullivan, Thompson et al. 1999). 

Multiple studies have indicated that the oxidation of mPTP components occurs 

and may play a major role in promoting mPTP formation. It was shown that 

mitochondrial Ca2+ release could be simulated in response to the oxidation of 

mitochondrial pyridine nucleotides, and be inhibited (or reversed) by NAD(P)+ 

reduction (Lehninger, Vercesi et al. 1978). Pro-antioxidants that deplete 

glutathione and promote pyridine nucleotides oxidation also resulted in mPTP 

formation and cell death; whereas diminishing pyridine nucleotide oxidation and 

oxidative stress delayed the onset of mPTP and cell death (Nieminen, Byrne et 

al. 1997). Some evidence has indicated that mPTP occurs when thiol groups of 
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inner membrane proteins are oxidized, which leads to conformational changes. In 

studies on PN-induced protein thiol oxidation, mPTP is paralleled by membrane 

lipid oxidation (Packer and Murphy 1995; Gadelha, Thomson et al. 1997). In 

addition, thiol-specific antioxidants protect against mPTP (Kowaltowski, Netto et 

al. 1998). Other research indicated that the oxidation of adenine nucleotide 

translocator (ANT), an important component of mPTP, through thiol groups 

cross-linking, can facilitate mPTP formation, probably by enhancing cyclophilin 

(CypD) binding, and preventing adenosine diphosphate (ADP) binding (McStay, 

Clarke et al. 2002; Sullivan, Rabchevsky et al. 2004). Skulachev et al 

hypothesized a reason for mPTP would be to ameliorate or eliminate high ROS 

producing cells as a defense system in order to prevent further oxidative damage 

(Skulachev 1996). In this hypothesis, mPTP formation assists maximal O2 

consumption and decreases mitochondrial O2 concentration through dissipating 

membrane potential (∆Ψm) and proton force (∆pH) across the membrane upon 

Ca2+ influx. In other words, it was suggested that elevated mitochondrial ROS 

production plays a regulatory role of oxidative stress to induce “mild” uncoupling 

of mitochondrial respiration and phosphorylation by means of increase in proton 

leak of IMM to promote respiration and ameliorate further ROS production. 

Nevertheless, complete uncoupling of mitochondrial respiration and ADP 

phosphorylation or prolonged uncoupling through mPTP will exhaust ADP in the 

matrix, which increases O2 concentration because of the inhibition of respiration. 

Highly oxidized mPTP will not be able to recover and result in disruption of 

mitochondrial membrane, eventually lead to calcium disturbance as well as 
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release of pro-apoptotic proteins, such as cytochrome c (Cyt c), Smac/DIABLO 

and apoptosis inducing factor (AIF), due to rupture of outer mitochondrial 

membrane (Sullivan, Keller et al. 2002; Halestrap and Brennerb 2003; Green and 

Kroemer 2004; Sullivan, Springer et al. 2004). 

 

Calpain-Mediated Cytoskeletal Proteolysis in Traumatic Brain Injury 

 

Calpain Isoforms: 

 Following TBI, excitotoxicity inducing excessive calcium influx was shown 

to be associated with cell damage. Non-physiological [Ca2+]i rise can exert 

adverse effects by over-activating cellular proteases and lipases (Wrogemann 

and Pena 1976). One of those has been indicated under multiple pathological 

conditions and contributing to cell damage is calpain. Calpains are family of 

calcium-activated cysteinyl/thiol (neutral) proteases, in which cysteine residues 

are present in its active site. The calpain family consists of several tissue-specific 

isoforms (n-calpains) and two ubiquitous isoforms (µ-calpain and m-calpain). 

Calpains are expressed in all vertebrates in which they are highly conserved 

across species. They are also found in various cell types and tissues (Sorimachi, 

Ishiura et al. 1997). The two ubiquitous calpain isoforms are categorized mainly 

on the basis of their sensitivity to [Ca2+] upon activation in their purified state in 

vitro. First of all, µ-calpain (aka. calpain I) has micro-molar sensitivity to calcium 

and is located primarily in the neuronal soma and dendrites. m-Calpain (aka. 

calpain II) has a millimolar sensitivity to calcium activation and is primarily located 
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in axons and glia. Moreover, because of the distinct subcellular localization of the 

calpain subtypes, they may serve specific physiological roles (Hamakubo, 

Kannagi et al. 1986). More interestingly, µ-calpain, which has higher affinity for 

calcium binding, has been shown to located in mitochondria (Garcia, Bondada et 

al. 2005).  

 

Evidence for a Role of Calpain in TBI: 

 Growing interests in calpain due to, in many neurodegenerative diseases, 

etiologic factors such as excitotoxicity, free radical injury and mitochondrial 

homeostasis all lead to disturbance of intracellular Ca2+ level. As one expected 

effect of disruption of Ca2+ homeostasis is the activation of Ca2+-dependent 

lipases and proteases. Among which, calpain family is believed to be very 

important since they proteolysis important enzymes, including protein kinases, 

phosphatases, and modify structure proteins of membrane skeleton (Nixon 

1989). In order to detect calpain activity, protease inhibitors that block calpains 

have been used in experimental TBI models to investigate their activation. These 

inhibitors have been shown to be neuroprotective in vivo as well as in vitro in 

cerebral ischemia (Bartus, Hayward et al. 1994) and TBI models (Saatman, 

Murai et al. 1996; Posmantur, Kampfl et al. 1997; Kupina, Nath et al. 2001; 

Kupina, Detloff et al. 2002). However, due to the uncertain selectivity of these 

inhibitors for calpain proteases, these data have only provided indirect evidence 

for calpain activity after acute CNS injury. Moreover, subunit autolysis seems to 

be an early event in the intramolecular activation of µ-calpain (Saido, Nagao et 
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al. 1992). The ratio of the activated, autolyzed 76kD isoform to the 80kD 

precursor form has been used as an index for µ-calpain activation. Nevertheless, 

others reported that µ-calpain activation does not require autolysis (Edmunds, 

Nagainis et al. 1991). Kampfl et al showed that µ-calpain autolysis was only 

temporally correlated with calpain-mediated α-spectrin breakdown products 

(Kampfl, Posmantur et al. 1996)  

A more commonly used method of measuring calpain activity is to detect 

the presence of breakdown products (BDPs). Preferred substrates for calpain 

include cytoskeletal proteins spectrin, microtubule-associated proteins (MAP2) 

and neurofilament proteins (NF), which are major components of neuronal 

cytoskeleton and membrane (Saatman, Graham et al. 1998). Posmantur et al 

indicated that the occurrence of the loss of neurofilament 68 and low molecular 

weight BDPs associates with TBI (Posmantur, Hayes et al. 1994). Moreover, 

unlike other proteases, such as cathepsins and trypsin, calpain produces 

distinctive breakdown fragments that resemble the patterns observed after TBI. 

More direct evidence of calpain activity is measured by antibody-based immuno-

detection of calpain-mediated α-spectrin breakdown and it is widely used in 

models of TBI (Saatman, Bozyczko-Coyne et al. 1996; Kupina, Detloff et al. 

2002; Hall, Detloff et al. 2004). The α-spectrin breakdown products (SBDPs) are 

produced by both calpain and another cysteine protease, caspase 3. Given that 

the activation of calpain as well as apoptotic enzymes is implicated in different 

neuronal cell death cascades, SBDPs became a useful tool to study both 

proteases in the same model. Calpains are shown to be involved in both necrosis 
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and apoptosis, while caspases are largely involved in apoptosis (Wang 2000). 

Spectrin, as a major constituent of the skeletal network, is a common substrate of 

both calpain and caspase 3, the downstream factor of apoptotic cascade. The 

breakdown of the 280kD protein α-spectrin by either calpain (145kD product) or 

calpain and/or caspase 3 (150kD product) can be detected using antibody-based 

immuno-detection (Wang 2000; Kupina, Detloff et al. 2003; Deng, Thompson et 

al. 2007). The neuronal cytoskeleton is an important component maintaining cell 

architecture, as well as axonal transport, and possibly neuronal plasticity (Ludin 

and Matus 1993). Following experimental acute TBI, evidence has shown 

significant proteolysis of dendritic MAP2 (Taft, Yang et al. 1992). Immuno-

histochemical studies revealed that SBDPs indication of calpain activity occur in 

apical dendrites following TBI (Saatman, Bozyczko-Coyne et al. 1996). 

Moreover, it is shown that NF compaction is associated with proteolysis of NF 

sidearms following traumatic axonal injury (TAI) (Okonkwo, Pettus et al. 1998). 

However, calpain-mediated proteolysis seemed to be involved more with the 

axons that are located in areas with the most severe injury sustained from an 

impact, whereas areas that are with less severity show no calpain-mediated 

change (Saatman, Bozyczko-Coyne et al. 1996). Above all, increasing evidences 

point to the important role of calpain in cytoskeletal de-arrangement and 

degradation, therefore, its possible occurrence in sublethally injured cells. 
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The Relationship of Oxidative Damage, Mitochondrial Dysfunction, Calpain 

Activation and Neurodegeneration in Traumatic Brain Injury 

 

 TBI is one of the leading causes of serious disability and death in children 

and adults. Different severities of TBI from mild, moderate to severe cases can 

all lead to neurological, economical and social burden to not only the patients but 

also the families and the society as a whole (Thurman, Alverson et al. 1999). The 

number of treated cases keeps increasing over the years. To this day, there are 

no clinically proven and FDA approved pharmacological treatments for acute TBI 

patients. Although improved specialized paramedics and emergency treatments 

saved lives on scene that otherwise may die, many patients survived the injury 

continuously suffered from physical, cognitive, emotional and behavioral deficit 

that severely impair their quality of life. It is now understood that most of the 

neurological damage is not the immediate result from the acute mechanical 

impact, but rather an outcome of an evolving pathochemical and 

pathophysiological process following the initial injury over minutes, hours and 

days. However, growing evidences from scientific experiments suggests that 

pharmacological treatments targeting these post-traumatic neurochemical 

changing may lead to a better neurological and behavioral outcome. This 

provides hope in the attempt to not only save lives, but also ensure a better 

quality of life after injury.  

 In order to examine mechanistic hypothesis and to test preclinical 

therapeutics, experimental animal models are essential in scientific investigations 
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(Lighthall, Dixon et al. 1989). In our study, we applied a mouse uni-lateral 

controlled cortical impact (CCI) model of TBI, which is widely used in scientific 

studies. This CCI model yields consistent neurochemical, histological and 

behavioral deficits (Huh, Laurer et al. 2002; Hall, Gibson et al. 2005; Hall, 

Sullivan et al. 2005; Deng, Thompson et al. 2007; Onyszchuk, Al-Hafez et al. 

2007). In this model, a fully anesthetized mouse was placed underneath a 

computer-controlled pneumatic piston. We firstly produced a craniotomy 

positioned between bregma and lambda lateral to sagittal suture. Secondly, the 

pneumatic piston produced a cortical contusion with pre-set parameters. Finally, 

the skin was sutured and the animals were physiologically monitored until regain 

consciousness. The mice recovered well with minimal mortality. Furthermore, this 

model has reproducible gross histological lesions and allows multiple outcome 

measurements. Also, this model can produce different severity of injury that is 

easy to use, affordable and sensitive to intervention.  

 The post-injury secondary cell death cascade is a multi-factorial process. 

Based on the current state of knowledge, three of the most critically important 

pathological elements are ROS formation, mitochondrial dysfunction and 

cytoskeletal degradation. As indicated previously, these injury processes are 

potentially interwoven: primary injury triggered excitotoxicity inevitably induces 

abnormal intracellular Ca2+ increase; consequently, mitochondria as the cellular 

Ca2+ buffer become the primary effecter; meanwhile, mitochondrial NOS and 

Ca2+-dependent proteases are also closely linked to this cellular response, 

leading to possible mitochondrial ROS production and cytoskeletal degradation. 
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Overall, these processes play significant contributory role in the delayed cell 

death. However, the interwoven relationship of these processes makes it difficult 

for therapeutic intervention, and pharmacological interpretation flawed without 

timely assessments.  

The central hypothesis underlying the present study is that an initial 

trauma-induced Ca2+ overload, caused by glutamate and depolarization 

evoked Ca2+ entry, elicits the mitochondrial generation of the ROS species 

PN. PN-derived radical species result in oxidative damage to the 

mitochondria and other cellular elements leading to an exacerbation of 

intracellular Ca2+ accumulation. This in turn exacerbates calpain activity 

which mediates cytoskeletal degradation and neurodegeneration. If this 

scenario is correct, compounds that can penetrate cellular mitochondria 

and antagonize PN-induced oxidative damage (e.g. PN-derived free radicals 

scavenger, tempol) should be neuroprotective in that the resulting 

antioxidant effect will lessen calcium overload, calpain activity and 

associated cytoskeletal degradation and neurodegeneration as shown in 

Figure 1.4. This dissertation study began with a thorough assessment of the time 

course of PN-induced lipid peroxidation and protein nitration, calpain-mediated α-

spectrin breakdown and neurodegeneration with the de Olmos aminocupric silver 

staining method as reported in Chapter 2. Secondly, a detailed pharmacological 

study was conducted using antioxidant, tempol, to determine its ability to inhibit 

post-traumatic oxidative damage. Thereafter, the effect of tempol on 

mitochondrial ROS production and mitochondrial function, as well as calpain 
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activity was tested. These experiments are described in Chapter 3. Finally, the 

ability of tempol to improve neurological outcome and lessen post-traumatic 

neurodegeneration is discussed in Chapter 4. Taken together, these studies 

provide evidence for a post-traumatic pathological scenario that involves a critical 

early role of PN and suggests that interruption of PN-mediated oxidative damage 

is a valid therapeutic strategy. Copyright © Ying Deng 2007.  

 

 

 

Figure 1.4 Hypothetical interrelationship between mitochondrial PN-induced 

oxidative damage in neuronal mitochondria and the rest of the neuron, 

compromise of Ca2+ homeostasis, calpain-mediated proteolysis and 

neurodegeneration.  
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Chapter Two 

Temporal Relationship of Peroxynitrite-Induced Oxidative Damage, 

Calpain-Mediated Cytoskeletal Degradation and Neurodegeneration after 

Traumatic Brain Injury 

 

Introduction 

  

There is compelling evidence supporting the role of oxidative damage in 

the delayed secondary neuronal cell death which is initiated by the primary 

traumatic brain injury (TBI). The first work in this regard, conducted by Kontos 

and his colleagues, demonstrated the formation of  superoxide radicals in 

cerebral microvasculature in a cat fluid percussion TBI models (Kontos and 

Povlishock 1986; Kontos and Wei 1986). Using the salicylate trapping method, 

Hall and coworkers detected a rapid, but transient rise in brain hydroxyl radical 

(•OH) in experimental head injury models (Hall, Andrus et al. 1993; Hall, Andrus 

et al. 1994; Smith, Andrus et al. 1994). This was elegantly confirmed by others 

using brain microdialysis techniques to monitor salicylate-trapped •OH over time 

in the same animals (Globus, Alonso et al. 1995). The increase of •OH is 

followed by an increase in lipid peroxidation products (Smith, Andrus et al. 1994). 

The strongest support for a role of oxidative damage in the acute 

pathophysiology of TBI is derived from the fact that several antioxidant 

compounds have been shown to be neuroprotective in TBI models (Hall, Andrus 
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et al. 1994; Awasthi, Church et al. 1997; Mori, Kawamata et al. 1998; Marklund, 

Lewander et al. 2001).  

The reactive oxygen species (ROS) peroxynitrite (PN), which can produce 

highly reactive and cytotoxic free radicals, has been suggested to be a key player 

in post-traumatic secondary brain oxidative damage (Hall, Kupina et al. 1999; 

Hall, Detloff et al. 2004).  Peroxynitrite is formed by the chemical reaction of nitric 

oxide (NO•), produced by nitric oxide synthase (NOS), with superoxide radical 

(O2
• ⎯) whenever the two are produced in close proximity (Saran, Michel et al. 

1990). All three NOS isoforms (eNOS, iNOS, and nNOS), as a key element in 

production of PN, have been shown to be up-regulated in brain tissue following 

TBI (Cobbs, Fenoy et al. 1997; Wada, Chatzipanteli et al. 1998; Gahm, Holmin et 

al. 2000; Orihara, Ikematsu et al. 2001). In addition, a novel isoform of Ca2+-

sensitive NOS (mtNOS), discovered within mitochondria (Bates, Loesch et al. 

1995; Lopez-Figueroa, Caamano et al. 2000; Giulivi 2003), has been shown to 

contribute to mitochondrial production of NO• and PN (Radi, Cassina et al. 2002). 

The PN-derived free radicals (•NO2, •OH, •CO3⎯) can induce extensive oxidative 

damage to cellular membranes, proteins and DNA (Beckman 1996; Murphy, 

Packer et al. 1998; Radi 1998). Each of the PN-derived free radicals can initiate 

lipid peroxidation (LP), or cause protein carbonylation by reaction with 

susceptible amino acids (e.g. lysine, cysteine, arginine). Moreover, aldehydic LP 

products (e.g. 4-hydroxynonenal) can bind to cellular proteins compromising their 

structural and functional integrity (Neely, Sidell et al. 1999). Additionally, •NO2 

can nitrate 3 position of tyrosine residues in proteins. As a result, 3-nitrotyrosine 
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(3NT) is used as a specific footprint of PN-induced cellular damage (Hall, 

Oostveen et al. 1997).  

In recent work we investigated the role of PN in a mouse model of diffuse 

closed head injury which demonstrated the spatial and temporal coincidence of 

PN-induced protein nitration and lipid peroxidation and that this oxidative damage 

precedes, and therefore may have a causal role in post-traumatic 

neurodegeneration (Hall, Detloff et al. 2004). However, TBI is a complex disorder 

that is impossible to fully reproduce in a single model. For example, we have 

found significant differences between the time courses of neurodegeneration in 

mouse models of diffuse (Kupina, Detloff et al. 2003) and focal (Hall, Gibson et 

al. 2005; Hall, Sullivan et al. 2005) TBI. Hence, the magnitude and timing of post-

traumatic secondary injury mechanisms probably varies across head injury 

models. Most importantly, if we are to accurately test the efficacy of novel 

neuroprotective pharmacological treatments, it is important to first understand the 

time course of the relevant secondary injury mechanisms in models of focal as 

well as diffuse TBI.   

Thus, the present study was conducted to examine the temporal and 

spatial characteristics of PN-induced cortical oxidative damage in a model of 

severe controlled cortical impact (CCI) focal TBI, and its relationship to calpain-

mediated cytoskeletal degradation and neurodegeneration. Markers for PN-

induced protein nitration (3-nitrotyrosine, 3NT), and lipid peroxidation (4-

hydroxynonenal, 4HNE) were measured using immuno-slotblotting and immuno-

histochemistry.  Secondly, we employed western-blotting methods to look at the 
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time course of calpain-mediated cytoskeletal degradation in order to assess the 

temporal relationship of oxidative damage to Ca2+-mediated proteolytic 

degradation.  Finally, we used de Olmos silver staining to measure the evolution 

of post-traumatic neurodegeneration. The results demonstrate that the PN-

mediated oxidative damage is an early event that probably contributes to an 

exacerbation of neuronal intracellular Ca2+ overload, massive calpain activation 

and cytoskeletal degradation and neurodegeneration. 
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Materials and Methods 

 

 All the surgical, injury and animal care protocols described below have 

been approved by the University of Kentucky Institutional Animal Care and Use 

Committee, and are consistent with the animal care procedures set forth in the 

guidelines of the U.S. Public Health Service Policy on Humane Care and Use of 

Laboratory Animals. 

 

Mouse Model of Controlled Cortical Impact (Focal) Traumatic Brain Injury 

 Young adult male CF-1 mice (Charles River, Portage, MI) weighing 29-

31g were used in this study. The mice were anesthetized with isoflurane (3.0%), 

shaved, and then placed in a stereotaxic frame (David Kopf Instruments, 

Tujunga, CA). Throughout the surgery, the mice were provided with constant 

isoflurane (SurgiVet, 100 Series) and oxygen (SurgiVet, O2 flowmeter, 0-4Lpm).  

The head was positioned in the horizontal plane of a stereotaxic frame with the 

nose bar set at zero. We firstly produced a 4mm craniotomy lateral to the sagittal 

suture, and centered between lambda and bregma.  A cortical contusion was 

produced on the exposed cortex (the anterior-posterior coordinate for the 

epicenter of the injury was  Bregma -2.0mm) using a pneumatically-controlled 

impactor device (Precision System Instruments TBI-0200 Impactor, Lexington, 

KY) similar to that previously described (Sullivan, Bruce-Keller et al. 1999; 

Sullivan, Thompson et al. 1999; Hall, Sullivan et al. 2005) except that the current 

device utilizes a unique contact sensor mechanism that ensures accurate and 
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reliable determination of cortical surface prior to initiating the injury sequence. 

This results in increased accuracy and reproducibility in regards to the CCI injury 

compared to that produced by earlier CCI impactors.  In the present studies, the 

impactor containing a 3mm diameter rod tip compressed the cortex at 3.5m/sec 

to a depth of 1mm with a dwell time of 50msec to produce a severe injury. After 

surgery and injury, a 4mm disk made from dental cement (Dentsply Trubyte) was 

placed over the craniotomy site and adhered to the skull using cyanoacrylate. In 

order to prevent immediate post-traumatic hypothermia, following the suturing of 

the skin, mice were placed in a Hova-Bator incubator (37˚C, model 1583, Randall 

Burkey Co) until them regained consciousness (determined by the regain of the 

righting reflex and increased mobility). The injured mice were allowed to survive 

from 30 min to 7 days depending on their experimental group. For the 

neurochemical studies (measurement of oxidative damage markers and 

cytoskeletal degradation, see below), the N for each time point group was 8 

animals based upon our experience with the variability seen with these 

measurements in previous studies (Kupina, Detloff et al. 2003; Hall, Detloff et al. 

2004; Hall, Sullivan et al. 2005).  For each time point, two sham animals were 

included which were mice that received craniotomy but not cortical contusion. 

The two sham animals in each group were killed at each of the post-traumatic 

times along with their brain-injured counterparts. Eight sham mice were randomly 

selected for comparison with the injured groups. 
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Tissue Extraction and Protein Assay 

 At the selected times for the time course analysis (30 min, 1 hr, 3 hrs, 6 

hrs, 12 hrs, 24 hrs, 48 hrs, 72 hrs and 7 days), the sham or CCI-injured mice 

were deeply overdosed with sodium pentobarbital (200mg/kg i.p.). Following 

decapitation, the ipsilateral cortex were rapidly dissected on an ice-chilled stage 

and immediately transferred into pre-cooled Triton lysis buffer (1% triton, 20mM 

tris HCL, 150mM NaCl, 5mM EGTA, 10mM EDTA, 10% glycerol) with protease 

inhibitors (Complete MiniTM Protease Inhibitor Cocktail tablet). Samples were 

then briefly sonicated and vortexed at 14,000rpm for 30 min at 4°C, and the 

supernatants were collected for protein assay. Protein concentration was 

determined by Bio-Rad DC Protein Assay, with sample solutions diluted to 

contain 1mg/ml of protein for immunoblotting. 

 

Slot-Immunoblotting Analysis of Oxidative Damage (3NT and 4HNE) 

 To measure 3-nitrotyrosine (3NT) or 4-hydroxynonenal (4HNE), an aliquot 

of each ipsilateral cortical sample (2µg) was diluted with 200µl of tris-buffered 

saline (TBS), and transferred to a Protran (0.2µm) nitrocellulose membrane 

(Schleicher & Schuell, Dassel, Germany) by a Minifold II vacuum slot blot 

apparatus (Schleicher & Schuell). After the samples were loaded into the slots, 

they were allowed to filter through the membrane by gravity (no vacuum). Each 

slot was then washed with 200µl TBS which was allowed to filter through the 

membrane again. The membranes were then disassembled from the apparatus, 

and incubated in a TBS blocking solution with 5% milk for 1 hr at room 
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temperature. For the detection of 3NT, a rabbit polyclonal anti-nitrotyrosine 

antibody (Upstate Biotechnology, MA, USA) was used at a dilution of 1:2000 in 

TBST blocking solution with 5% milk for overnight at 4°C. For the detection of 

HNE, a rabbit polyclonal anti-HNE antibody (Alpha Diagnostics International) was 

used at a dilution of 1:5000 in TBST blocking solution with 5% milk for overnight 

at 4°C. A goat anti-rabbit secondary antibody conjugated to an infrared dye 

(1:5000, IRDye800CW, Rockland) was applied to the membrane for 1 hr at room 

temperature. Dry membranes were then imaged and quantified using the Li-Cor 

Odyssey Infrared Imaging System (Li-Cor® Biosciences). Preliminary 

experiments established protein concentration curves in order to ensure that 

quantified blots were in the linear range. From the results of these, we selected 

the 2µg for use based upon that amount giving blots that were well within the 

linear range. A standardized protein loading control was included on each blot to 

normalize the band densities so that comparisons could be made across multiple 

blots. All the samples were run in duplicate which were then averaged. For both 

the 4HNE and 3NT analyses, no primary antibody controls were run to verify that 

the oxidative damage staining was specific. In addition, we ran positive controls 

using both bovine serum albumin and normal brain tissue which were exposed to 

PN and negative controls in which we pre-absorbed the primary antibodies with 

either 4HNE or 3NT which resulted in inhibition of the 4HNE and 3NT staining.   
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Immunohistochemical Analysis of Oxidative Damage (3NT and 4HNE) 

A second set of animals was employed for immunohistochemical analysis 

of 3NT and 4HNE. At the appointed times for the post-traumatic time course 

analysis (30 min, 1 hr, 3 hrs, 6 hrs, 12 hrs), groups of 5 mice each were 

overdosed with sodium pentobarbital (200mg/kg i.p.). Two sham, non-injured 

mice that had craniotomies, but no injury, were included for each time point. The 

mice were then perfused transcardially with 0.9% sodium chloride (pH7.4) until 

the venous effluent (sectioned superior vena cava) was cleared of blood,  

followed by a fixative solution made with 4% paraformaldehyde in 0.2M PBS 

(pH7.4). The heads were decapitated after fixation and stored in the same 

fixative solution overnight at 4°C. The brains were removed and equilibrated in 

the same fixative solution with 15% sucrose overnight at 4°C. The equilibrated 

brains were sectioned at a thickness of 35µm into the same fixative solution with 

15% sucrose at -20°C using a microtome with a freezing stage.  

For the 4HNE detection, the free-floating sections were pre-treated with 

0.1M NaBH4 in 0.1M MOPS (pH8.0) for 10 min and rinsed off with 0.2M PBS for 

three times. The sections were then incubated in 0.3% H2O2 for 30 min and 

rinsed three times with 0.2M phosphate-buffered saline (PBS). Following that, the 

sections were blocked with a blocking solution (5% goat serum, 0.25% Triton X-

100, 1% dry milk, 0.2M PBS) for 2 hrs at room temperature, and then incubated 

in the primary anti-HNE antibody (rabbit anti-HNE Michael Adducts, Calbiochem) 

diluted 1:5500 in the same blocking solution overnight at room temperature. The 

sections were then rinsed with 0.2M PBS six times, and then incubated in 
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secondary goat anti-rabbit antibody (Vectastain ABC-AP kit) for 2 hrs at room 

temperature. The sections were then rinsed with 0.1M Tris-HCl (pH8.2) and 

incubated in Vector blue (Vector blue alkaline phosphatase substrate kit III). They 

were then rinsed with tap water four times, and mounted onto gelatinized slides. 

For the 3NT detection, the sections were not pre-treated with 0.1M NaBH4 in 

0.1M MOPS (pH8.0), but were treated the same for the rest of the procedure, 

except that they were incubated in the primary anti-3NT antibody (rabbit anti-

nitrotyrosine, Upstate) diluted 1:1200 in the blocking solution. For both the 4HNE 

and 3NT analyses, control slides were run without the primary antibodies to verify 

that the oxidative damage staining was specific. In addition, we ran additional 

controls in which we pre-absorbed the primary antibodies with either 4HNE or 

3NT which resulted in inhibition of the 4HNE and 3NT immunostaining.  After the 

immunohistochemical procedure, all slides mounted with brain sections were 

counterstained with nuclear fast red (Vector Lot# Q1214), and then cover 

slipped. The brain sections were photographed on an Olympus Provis A70 

microscope at 1.25x, 20× and 40× magnification using an Olympus Magnafire 

digital camera. 

 

Western-blotting Analysis of Calpain-mediated Cytoskeletal Degradation 

 To measure calpain-mediated α-spectrin proteolysis, aliquots of each 

cortical sample (5µg) were run on a SDS/PAGE Precast gel (3-8% Tris-Acetate 

CriterionTM XT Precast gel, Bio-Rad) and then transferred to a nitrocellulose 

membrane using a semi-dry electro-transferring unit set at 15V for 15 min. 
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Preliminary experiments established protein concentration curves in order to 

ensure that quantified bands were in the linear range as measured with the Li-

Cor Odyssey Infrared Imaging System.  The membranes were incubated in a 

TBS blocking solution with 5% milk for 1 hr at room temperature. For the 

detection of α-spectrin and its breakdown products, a mouse monoclonal anti-α-

spectrin antibody (Affiniti FG6090) was used at a dilution of 1:5000 in TBST 

blocking solution with 5% milk for overnight at 4°C. A goat anti-mouse secondary 

conjugated to an infrared dye (1:5000, IRDye800CW, Rockland) was then 

applied for 1 hr at room temperature. After drying, the membranes were then 

imaged and quantified using the Li-Cor Odyssey Infrared Imaging System. A 

standardized protein loading control was included on each blot to normalize the 

band densities so that comparisons could be made across multiple blots (Hall, 

Sullivan et al. 2005). This was made up of pooled brain tissue protein collected 

from previously run TBI mice which gave strong bands corresponding to the 

280kD parent α-spectrin, the 150kD and the 145kD breakdown products.  The 

amount of protein in the loading control had been previously determined and 

shown to be within the linear range as measured with the Li-Cor Odyssey 

Infrared Imaging System.  Following the transfer, the gels were stained with 

Coomassie Blue to verify even transfer. All the samples were run in duplicate and 

averaged. 
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De Olmos Silver Staining Analysis of Neurodegeneration 

 Neurodegeneration was examined using the de Olmos aminocupric silver 

histochemical technique in a third set of 27 mice as previously described (de 

Olmos, Beltramino et al. 1994; Switzer 2000; Hall, Gibson et al. 2005; Hall, 

Sullivan et al. 2005).  At either 6, 12, 24, 48, or 72 hrs or 7 days the injured mice 

(N=3-4 per time point) were overdosed with sodium pentobarbital (200mg/kg i.p) 

and transcardially perfused with 0.9% sodium chloride, followed by a fixative 

solution containing 4% paraformaldehyde; a sham group of 4 mice that received 

craniotomy only were sacrificed 24 hrs following surgery.  Following decapitation, 

the heads were stored in a fixative solution containing 15% sucrose for 24 hrs 

after which the brains were removed, placed in fresh fixative and shipped for 

histological processing to Neuroscience Associates Inc (Knoxville TN).  The 27 

brains used for this study were embedded into one gelatin block (Multiblock® 

Technology, Neuroscience Associates). The block was then frozen and thirteen 

35µm coronal sections were taken 420µm apart between 1.1mm anterior and 

4.4mm posterior to bregma, were de Olmos silver-stained to reveal degenerating 

neurons and neuronal processes, and then counterstained with Nuclear Fast 

Red. The brain sections were photographed on an Olympus Provis A70 

microscope at 1.25× magnification using an Olympus Magnafire digital camera 

and the image was analyzed by Image-Pro Plus (4.0). The percentage area of 

silver staining for each brain section was calculated by dividing the area of silver 

staining in each section by the area of the total hemispheric section and 

multiplying by 100. The volume of silver staining in the hemisphere as a 
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percentage of the overall hemispheric volume was estimated by the equation % 

V = t × Σ % a(s), where % V is percent silver stain volume, t = the distance 

between sections analyzed (420µm) and Σ % a (s) is the sum of percent area of 

silver staining in all sections examined (13 for each brain) (Hall, Sullivan et al. 

2005). 

 

Statistical Analysis 

 For all of the time course analyses, we used Statview 5.0 to perform a 

one-way analysis of variance (ANOVA), followed by Fisher’s PLSD post-hoc 

analysis to determine the significance of differences between individual time 

points and the non-injured sham group. For the ANOVA, a p<0.05 was required 

to establish a statistically significant difference across the groups. However, for 

the post-hoc Fisher’s analysis, the program determined significance based upon 

a correction for multiple comparisons comparing sham to each of the 9 post-

injury time points. Differences between pairs of post-injury time points (e.g. 30 

min. vs. 1 hr) were also analyzed. 
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Results 

 

Quantitative Post-Traumatic Time Course of Protein Nitration and Lipid 

Peroxidation 

Figure 2.1 displays the complete quantitative time course study for 3NT 

and 4HNE in the ipsilateral cortical samples taken from sham or CCI-injured 

mice. Figure 2.1A indicates schematically the dorsal and coronal view of 

contusion site and peri-contusional cortical tissue that was collectively sampled 

for the current study. Figure 2.1B shows the time course of changes in 3NT, a 

selective marker of PN-mediated damage. As noted in the MATERIALS AND 

METHODS, two non-injured sham animals corresponding to each post-traumatic 

time point were run. For the nine time points, this resulted in a total of 18 shams.  

A comparison of the bands obtained from different pairs of shams, showed little 

evidence that those animals killed at the later time points had any more 3NT or 

4HNE than those sampled at the earlier time points.  Therefore, we randomly 

selected 8 of the 18 shams to use as the sham group for comparison with the 

different injured groups. The ANOVA showed that there was a highly significant 

overall difference across the collective sham and post-traumatic groups in 

regards to 3NT levels [F(9,70)=2.744; p<0.0001]. Post-hoc analysis revealed a 

significant increase in 3NT at 30 min after injury compared to the sham group. At 

1 hr after injury, the 3NT level reached its peak and was approximately twice as 

much as that seen in sham, non-injured mice. The 3NT level maintained 

significantly high until 12 hrs after injury, and at 24 hrs, it returned to baseline 
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(sham level).  However, a small, but statistically significant secondary increase in 

3NT was also observed at 48, but not at 72 hrs.   

Figure 2.1C displays the time course of post-traumatic changes in 4HNE, 

a marker for lipid peroxidation, at different time points after injury. As with the 

3NT analysis, there was a highly significant overall difference across the 

collective sham and post-traumatic groups in regards to 4HNE content 

[F(9,70)=15.211; p<0.0001]. Post-hoc analysis of between group differences 

showed that there was a significant increase in 4HNE at 30 min after injury, the 

4HNE level reached its peak at 1 hr after injury and it stayed significantly higher 

than the sham level until 12hr before returning to the baseline levels seen in the 

sham animals.  
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Figure 2.1 Slot-blotting studies in ipsilateral cortical traumatic brain injury tissues 

showing the temporal changes in protein nitration (3-nitrotyrosine; 3NT) and lipid 

peroxidation. A. Schematic showing peri-contusional cortical tissue samples; B. 

time course of changes in 3-NT; C. Time course of LP end product 4HNE. N = 8 

animals per timepoint; values = mean + standard error; one-way ANOVA and 

Fisher’s PLSD post hoc test: *P < 0.0001 vs. sham. 
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Spatial and Temporal Distribution of Peroxynitrite-Induced Protein Nitration and 

Lipid Peroxidation 

Figure 2.2 demonstrates the temporal and spatial characteristics of the 

immunohistochemical staining related to post-traumatic oxidative damage in the 

ipsilateral hemisphere of mice after CCI injury. Two adjacent brain sections in the 

epicenter (Bregma-2.0mm) of the contusion were selected for 3NT staining and 

4HNE staining.  In Figure 2.2, the staining for 3NT and 4HNE markers were 

concentrated within and around the contusion area in the ipsilateral cortex, and 

the 3NT and 4HNE staining was largely overlapping. Staining for both markers 

was observed as early as 30 min.  Staining remained intense up to 6 hrs after 

injury. At 12 hrs, the staining showed signs of decrease no doubt due to 

proteolytic degradation of the oxidatively modified proteins. This time course is in 

good agreement with the quantitative time course for 3NT and 4HNE shown in 

Figure 2.1.   

Figure 2.3 shows high power photomicrographs of 3NT and 4HNE 

immunostaining within the cortical contusion site in a sham, non-injured brain 

compared to staining at the contusion site at 1 hr after injury.  At 20x and 40x 

magnification, intense staining for both oxidative damage markers is seen 

throughout the neuropil. In addition, microvascular staining for both 3NT and 

4HNE is seen to clearly outline the microvessels deep within the injured cortex.  

Although the sham brain shows some light staining in the neuropil, there is no 

evidence of staining of non-injured microvessels.  The pattern of staining in both 
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the parenchyma and vasculature has also been seen previously after a diffuse 

brain injury (Hall, Detloff et al. 2004). 

 

 

Figure 2.2 Immunohistochemical (IHC) staining studies showing the time course 

and spatial extent of PN-induced 3NT and 4HNE at the epicenter (Bregma-

2.0mm) of the injury site during the first 12 hrs compared to sham. The IHC 

staining indicated prominent increase of both markers after injury and similar 

distribution between the two. 
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Figure 2.3 High power photomicrographs of 3NT and 4HNE immunostaining in 

the contusion site in a sham, non-injured brain compared to staining at the 

contusion site at 1 hr after injury.  At 20x and 40x magnification, intense staining 

for both oxidative damage markers is seen throughout the neuropil.  In addition, 

microvascular staining for both 3NT and 4HNE is seen to clearly outline the 

microvessels (arrows) deep within the injured cortex.  Although the sham brain 

shows some light staining in the neuropil, there is no evidence of staining of non-

injured microvessels.  Please note that the 20x and 40x focus was adjusted to 

emphasize the microvascular staining, and as a result the background tissue 

appears slightly out of focus.  The calibration bar for the 1.25x photomicrographs 

is 2.0mm; for 20x the calibration bar is 100µm; for 40x the calibration bar is 

50µm. 
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Quantitative Post-traumatic Time Course of Calpain-Mediated Cytoskeletal 

Degradation  

Figure 2.4 displays the quantitative post-traumatic time course analysis of 

calpain-mediated cytoskeletal degradation in the ipsilateral cortical tissue in 

terms of the levels of α-spectrin breakdown products SBDP145 and 150 

measured by western-blotting. The spectrin breakdown product 145 (kD) and 150 

(kD) in each time group were compared to the sham SBDP145 and the sham 

SBDP150 respectively. The SBDP150 band can be produced by either calpain or 

caspase 3, whereas the SBDP145 band is calpain specific. ANOVA showed that 

there was a significant overall post-traumatic increase in SBDP145 

[F(9,70)=9.444; p<0.0001] and SBDP150 [F(9,70)=8.857; p<0.0001]. 

Accordingly, post-hoc analysis of the significance of increases seen at individual 

post-traumatic time points was compared to sham, non-injured animals. At 30 

min after injury, the mean SBDP150 level was significantly increased. The levels 

of this mixed calpain/caspase 3 marker remained significantly higher than sham 

levels at all subsequent time points out to, and including, 48 hrs post-injury. The 

maximum increase in SBDP150 was observed at 24 hrs post-injury. The calpain-

specific SBDP145 showed a significant increase vs. sham beginning at 1 hr post-

injury, and increased slightly more at 3, 6 and 12 hrs.   

Between 12 and 24hrs, there was a statistically significant (12 hr vs. 24 hr; 

p<0.0004) 75% jump in SBDP145 levels with the 24 hrs time point manifesting 

the maximum post-traumatic increase. In parallel, there was an equally 

significant (12 vs. 24 hr; p<0.0001) increase in the SBDP150 levels SBDP150.  
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The magnitude of the increase in SBDP145 was greater (compared to the sham 

group) (18-fold) in comparison to the SBDP150 increase (6-fold).  The level of 

SBDP145 remained significantly elevated at 48 hrs before returning to levels at 

72 hrs after TBI that were no longer significantly higher than those seen in sham 

animals. The overall time course patterns were similar for both SBDP150 and 

SBDP145.   

It should be noted that the current post-traumatic time course of α-spectrin 

degradation, although similar in several respects to a time course study we 

published earlier (Hall, Sullivan et al. 2005) using the CCI model, shows some 

differences that are worthy of explanation.  In the previous study, the earliest 

post-traumatic time point examined was 6 hrs at which time we observed a 

statistically significant increase in SBDP145 and 150 compared to sham, just as 

in the present study.  However, the elevation in SBDPs did not increase further at 

24 or 48 hrs, but rather appeared to plateau before returning to the sham 

baseline level at 1 week.  This is in contrast to the significantly higher peak in 

SBDP 145 and 150 observed in the current study.  There are two likely reasons 

for the discrepancy between the current and the previously published time course 

(Hall, Sullivan et al. 2005).  First of all, in the current study we employed a more 

sensitive infrared imaging method for performing the densitometric analysis of 

the blots which has a broader linear range compared to the less sensitive 

enhanced chemiluminescence (ECL) method that we previously employed which 

is only semi-quantitative. Consequently, the previous plateau between 6 and 72 

hrs post-injury (Hall, Sullivan et al. 2005), in contrast to the current results is 
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probably due to the less accurate nature of ECL vs. infrared imaging.  Secondly, 

the current study was performed with a newer CCI device than the one used in 

the previous study.  The newer device (PSI TBI 0200 Impactor) utilizes a unique 

contact sensor mechanism that insures accurate and reliable determination of 

cortical surface prior to initiating the injury sequence. This results in increased 

accuracy and reproducibility in regards to the CCI injury.  Thus, for these two 

reasons, we have more confidence in the accuracy of the current results in 

regards to the time course of post-traumatic cytoskeletal degradation. 

Furthermore, the current time course of α-spectrin degradation in the CCI-injured 

cortex is similar in pattern to the time course of α-spectrin degradation we have 

seen in the injured hippocampus using the same injury device, injury severity and 

infrared imaging of the blots (Thompson, Gibson et al. 2006)  
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Figure 2.4 Time course of the post-traumatic increase in calpain-mediated α-

spectrin breakdown products in CCI cortical tissues. Spectrin breakdown product 

(SBDP) 145 is specific to calpain activity, whereas SBDP 150 is produced by 

both calpain and caspase 3. Both SBDPs showed similar patterns, except that 

calpain-mediated SBDP 145 showed a more prominent increase. Both SBDPs 

have an immediate increase following injury, and did not reach their peak until 24 

hrs. N = 8 animals per timepoint; values = mean + standard error; one-way 

ANOVA and Fisher’s PLSD post hoc test: *P < 0.0001 vs. sham SBDP150; one-

way ANOVA and Fisher’s PLSD post hoc test: #P < 0.0001 vs. sham SBDP145. 
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Quantitative Post-Traumatic Time Course of Neurodegeneration 

Figure 2.5 shows the quantitative de Olmos aminocupric silver staining 

analysis of neurodegeneration in the ipsilateral hemisphere of mice subjected to 

CCI along with histological examples of the spatial and temporal characteristics 

of silver staining between 6 hrs and 7 days after injury. At 6 hrs after injury, there 

was a significant increase of silver staining volume compared to minimal level 

seen in sham, non-injured mouse brains. The silver staining spread over time 

and peaked at 48 hrs after injury. After 48 hrs, the volume of silver staining slowly 

waned, but remained significantly higher than the sham level even at 7 days. As 

shown in the selected brain sections, at 6 hrs, the silver staining was mainly 

concentrated in all layers in the ipsilateral cortical contusion. A cavitation lesion 

began to develop at 12 hrs and became evident at 24 hrs. At 24 hrs, the silver 

staining had spread into and throughout the ipsilateral hippocampus and 

dorsolateral aspect of the thalamus. At 48 hrs, the silver staining volume reached 

its greatest extent. Silver staining also extended to the contralateral 

hippocampus, indicative of the degeneration of CA3 commissural fiber 

projections to the contralateral dentate gyrus and CA1 region as previously 

shown (Hall, Sullivan et al. 2005).  
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Figure 2.5 Time course of post-traumatic neurodegeneration in CCI model as 

revealed by the de Olmos silver staining technique. The bar chart provides the 

quantification of the lesion volume abut measurement of the silver staining. An 

increase in silver staining volume determined by image analysis (see Materials 

and Methods) occurred as early as 6 hrs and reached its peak at 48 hrs post-

injury. N = 3-4 animals per time point; values = mean + standard error; one-way 

ANOVA and Fisher’s PLSD post hoc test: *P < 0.0001 vs. sham. 
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Discussion 

 

The present study in the context of the focal controlled cortical impact 

(CCI) mouse model has uniquely defined in a parallel fashion the time courses of 

oxidative damage, calpain-mediated cytoskeletal degradation and 

neurodegeneration. A careful analysis of these three secondary injury 

parameters has revealed clues concerning their mechanistic inter-relationships. 

The following discussion lays out the hypothesis that 1) the potent ROS PN is a 

key mediator of post-traumatic oxidative damage; 2) a major source of PN is 

Ca2+-overloaded mitochondria; 3) a major consequence of PN-mediated oxidative 

damage is exacerbation of intracellular Ca2+ overload by impairment of Ca2+ 

homeostatic mechanisms and 4) this leads to an enhancement of calpain-

mediated cytoskeletal degradation which is the immediate precursor of post-

traumatic neuronal degeneration.  

 

Temporal and Spatial Characteristics of Oxidative Damage and the Role of 

Peroxynitrite:  

The two oxidative markers: tyrosine nitration (3NT) and LP-derived 4HNE 

modified proteins (see Halliwell and Gutteridge, 1999), increased in unison. Their 

increase occurred as early as 30 min after injury and peaked at 1hr. The 

coincidence of the early time course of 3NT and 4HNE suggests that they share 

a common ROS as their initiating source. The most likely candidate ROS in this 

regard is PN.  The nitration of the 3 position of tyrosine residues in proteins is a 
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result of PN activity and is used as a selective marker for PN-induced oxidative 

damage. Therefore, it is generally accepted as evidence of a role of PN in tissue 

injury models where 3NT elevations are seen (Beckman 1996). Moreover, the 

indictment of PN as a source of LP (4HNE) is strongly implied by the fact that 

3NT and 4HNE share the same early post-traumatic onset (30 min), time to peak 

(1 hr) and duration (12 hrs). Furthermore, spatial overlap of 3NT and 4HNE seen 

in the immunohistochemical examples also indicates that nitration and LP are 

both initiated by PN. Previous work from our laboratory using a mouse model of 

diffuse TBI, has also shown the spatial and temporal coincidence of 3NT and 

4HNE immunostaining leading to a similar conclusion that PN was  key player in 

the post-traumatic oxidative damage (Hall, Detloff et al. 2004).  However, in the 

case of the previously studied diffuse TBI model, the duration of the increase in 

3NT and 4HNE was much longer (at least 96 hrs) in contrast to the much shorter 

expression of oxidative damage in the presently employed focal paradigm.  

Particularly important is the fact that PN-mediated oxidative damage was 

observed in both the cortical microvessels and in the neural parenchyma 

consistent with our earlier studies in the mouse diffuse TBI model (Hall, Kupina et 

al. 1999; Hall, Detloff et al. 2004) 

 

Sources of Peroxynitrite: 

Regarding the sources of PN in the injured brain, NO• is produced by 

multiple NOS isoforms, and is a mediator of physiological (Garthwaite and 

Boulton 1995; Bicker 2001) and neuroprotective (Mohanakumar, Hanbauer et al. 
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1998; Chiueh 1999) actions as well as being an effecter of PN formation and 

oxidative damage (Dawson and Dawson 1996; Vicente, Perez-Rodriguez et al. 

2006). An earlier immunocytochemical study revealed the induction of endothelial 

NOS (eNOS) isoform in microvessels surrounding the cortical contusion post-

injury, which may contribute to blood-brain barrier (BBB) breakdown and 

hyperemia followed by TBI (Cobbs, Fenoy et al. 1997).  Other isoforms of NOS, 

neuronal NOS (nNOS) and inducible NOS (iNOS), have also been shown to be 

upregulated in TBI models. In a focal brain contusion model, all three isoforms of 

NOS (nNOS, eNOS, iNOS) have been found to be increased. However, each is 

expressed in different compartments and cells, and is differentially regulated 

(Gahm, Holmin et al. 2000). In addition, a possibly novel isoform of NOS 

(mtNOS) is constitutively present in mitochondria, is Ca2+-dependent (Giulivi 

2003) and appears to be involved in mitochondrial respiratory regulation 

(Elfering, Sarkela et al. 2002).  Under hypoxic conditions, mtNOS activity is 

induced in comparison to that seen in non-stressed mitochondria (Lacza, Puskar 

et al. 2001).  In rat liver mitochondria, mtNOS has been shown to stimulated by 

Ca2+ influx (Ghafourifar and Richter 1997) and leads to intramitochondrial PN 

formation (Ghafourifar, Schenk et al. 1999). Furthermore, there is evidence that 

mitochondria may be the primary target for oxidative damage by PN under a 

variety of pathological conditions (Radi, Rodriguez et al. 1994). Consistent with 

this view, recent experiments from our laboratory, using the same mouse CCI 

model as in the present study, have shown that the early post-traumatic 

impairment of mitochondrial ultrastructure and bioenergetics are associated with 
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PN-mediated protein nitration and 4HNE conjugation together with a severe 

attenuation of Ca2+ buffering capacity (Singh, Sullivan et al. 2006a). Furthermore, 

our in vitro studies with isolated brain mitochondria have demonstrated that 

application of compounds such as penicillamine, which scavenges PN anion 

(ONOO•) and peroxynitrous acid (ONOOH) (Hall, Kupina et al. 1999), or tempol, 

which catalytically scavenge PN-derived oxygen radicals (e.g. •NO2, •CO3) 

(Carroll, Galatsis et al. 2000), can protect against PN-mediated mitochondrial 

respiratory dysfunction and oxidative damage (Singh et al, 2006b). Both 

penicillamine (Hall, Kupina et al. 1999) and tempol (Beit-Yannai, Zhang et al. 

1996) have been reported to improve neurological recovery in rodent TBI 

models. Moreover, administration of the NOS inhibitors nitro-arginine methyl 

ester and 7-nitroindazole have been shown to improve neurological recovery in 

head-injured mice (Mesenge, Verrecchia et al. 1996) together with a reduction in 

brain 3NT levels (Mesenge, Charriaut-Marlangue et al. 1998).  

 

Temporal Characteristics of Calpain-Mediated Cytoskeletal Damage:  

Several experimental TBI studies from different laboratories have 

documented the significant contribution of calpain activity to the post-traumatic 

damage and neurodegeneration (Arrigoni and Cohadon 1991; Posmantur, 

Kampfl et al. 1996; Saatman, Murai et al. 1996). Pathological calpain activation is 

known to be triggered by excessive intracellular Ca2+ accumulation (Bartus, Elliott 

et al. 1995; Kampfl, Posmantur et al. 1997), which is associated with the 

glutamate release and sustained NMDA activation, as well as depolarization-

 60



induced opening of voltage-dependent Ca2+ channels immediately after CNS 

trauma. Preferred substrates for calpain include cytoskeletal proteins, 

membrane-associated proteins, signaling transduction proteins and transcription 

factors (Carafoli and Molinari 1998; Wang 2000). As noted earlier, calpain-

mediated proteolysis of the major membrane cytoskeletal protein, α-spectrin, 

results in the appearance of two highly stable breakdown products, calpain-

specific SBDP145 and the non-specific calpain/caspase 3-generated SBDP150. 

Our results showed that there is a rapid accumulation of both SBDPs by 1 hr 

after injury which further increases at 3 hrs before reaching a plateau at 6 and 12 

hrs. Nevertheless, at 24 hrs, both SBDPs showed a significant increase above 

the level seen at 12 hrs spiked to their peak with a particularly prominent 

SBDP145 increase.  Although a role of caspase 3 cannot be ruled out in regards 

to the increase in SBDP150, the predominant elevation in the calpain-specific 

SBDP145 at 24 hrs indicates that the major contribution of calpain to cytoskeletal 

damage. In addition, the caspase 3 specific SBDP120 (Wang 2000) showed no 

increase over time which suggests only a very minor role of caspase 3 in post-

traumatic spectrin proteolysis. After 24 hrs, the SBDP 145 and 150 levels 

progressively subsided, and both returned to the baseline level (sham) by 72 hrs 

after injury. 
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Interaction of Peroxynitrite-Induced Oxidative and Calpain-Mediated Proteolytic 

Damage Mechanisms:  

Multiple lines of evidence have linked ROS-initiated oxidative damage to 

the loss of intracellular Ca2+ homeostasis and calpain activation. It has been 

commonly indicated that ROS cause a rapid increase in cytoplasmic Ca2+ 

concentration in diverse cell types (Roveri, Coassin et al. 1992; Chakraborti, Das 

et al. 1999; Okabe, Tsujimoto et al. 2000), which can contribute to the early 

transient calpain activation. However, the current study indicated that the full 

activity of calpain did not occur until a later time point that follows the early wave 

of oxidative damage and the peak of   mitochondrial dysfunction (Singh, Sullivan 

et al. 2006a). At the point at which mitochondrial functional failure occurs, this 

results in a loss of mitochondrial Ca2+ buffering and release of accumulated Ca2+ 

into the cytoplasm which would be expected to exacerbate calpain activation and 

spectrin breakdown. It has been shown that mitochondria-derived PN plays a role 

in mitochondrial Ca2+ overload, and can actually promote Ca2+ release from intact 

mitochondria (Bringold, Ghafourifar et al. 2000). Moreover, we have previously 

demonstrated that the mitochondrial failure is coincident with oxidative damage 

to mitochondrial proteins and loss of mitochondrial Ca2+ buffering capacity 

(Singh, Sullivan et al. 2006a). In an in vitro study, nitric oxide-elicited neuronal 

apoptosis through excitotoxicity and receptor-mediated intracellular Ca2+ 

overload mechanisms was blocked by calpain inhibitors (Volbracht, Chua et al. 

2005). Another in vitro study has also indicated that PN-initiated cell death in 
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human articular chondrocytes is mediated by mitochondrial dysfunction and 

calpain activity (Whiteman, Armstrong et al. 2004).  

In addition to the apparent role of ROS in the post-traumatic impairment of 

Ca2+ homeostasis, ROS also are involved in directly regulating calpain proteolytic 

activity. As indicated in Figure 2.4, following an immediate and rapid increase of 

SBDPs at 1 hr after injury, there is essentially a plateau in regards to the SBDP 

levels between 3 hrs and 12 hrs.  Then, between 12 hrs and 24 hrs, both SBDPs 

exhibited a greater than 75% increase which was highly significant (p<0.0004 for 

SBDP145 and p<0.0001 for SBDP150). A similar biphasic pattern of calpain-

mediated α-spectrin degradation has also been observed by our laboratory in the 

context of a rat spinal cord injury model (Xiong, Rabchevsky et al. 2007) and by 

others in a transient ischemic brain injury model (Neumar, Meng et al. 2001). In a 

recent hippocampal organotypic slice study, stretch-induced injury also showed a 

biphasic activation of calpain (DeRidder, Simon et al. 2006). This repeatedly 

demonstrated biphasic time course of calpain-mediated proteolysis can 

potentially be explained by an initial partial ROS-mediated inhibition of calpain 

activity in the early post-traumatic hrs during which PN generation and evidence 

of oxidative damage are at their highest level. Consistent with this hypothesis, it 

has been shown that ROS can inhibit calpain activity via oxidation of the 

sulfhydryl groups of cysteine residues at the active site of the enzyme (Benuck, 

Banay-Schwartz et al. 1992; Guttmann, Elce et al. 1997; Guttmann and Johnson 

1998). Recent work by another group has shown that another cysteine protease 

caspase 3 in the traumatized brain is similarly inhibited by PN specifically, and 
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that this is prevented by application of the sulfhydryl reducing agent dithiothreitol 

(Lau, Arundine et al. 2006).  The latter is also relevant since the SBDP150 

fragment which also showed a biphasic time course is partially generated by 

caspase 3 as well as calpain (Wang 2000). Therefore, it is reasonable to 

speculate that even though intracellular Ca2+ overload is triggered immediately 

after injury (Zhou, Xiang et al. 2001), the peak of calpain- and caspase-mediated 

cytoskeletal degradation may not be achieved until as much as 24 hrs post-injury 

after which an initial ROS-mediated calpain and caspase inhibition has subsided. 

In other words, as the intensity of the PN generation decreases, the oxidative 

damage-mediated impairment of various Ca2+ homeostatic mechanisms and the 

neurodegenerative consequences of post-traumatic intracellular Ca2+ overload 

and peak calpain activity would have the opportunity to be fully seen. This peak 

in calpain-mediated damage at 24 hrs closely precedes the progressive increase 

in post-traumatic neurodegeneration (silver staining) which peaks at 48 hrs.   

We have observed the same close association between calpain-mediated 

cytoskeletal degradation and neurodegeneration in the mouse diffuse TBI model 

except that the peak of the former is seen at 72 hrs and that of the latter is seen 

between 72 and 96 hrs (Hall, Detloff et al. 2004).  The different time course of 

PN-mediated oxidative damage and calpain-mediated cytoskeletal degradation 

seen in focal and diffuse (Kupina, Detloff et al. 2003) TBI models suggests that 

the therapeutic window and optimum treatment durations for either PN-directed 

antioxidant agents or calpain inhibitor treatment may differ between the two types 

of TBI.   
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Summary: 

Our working hypothesis, based upon the findings in this study, is 

illustrated in Figure 2.6. Initial mechanical trauma to the brain causes membrane 

depolarization, resulting in the opening the voltage-dependent Na+, K+ and Ca2+ 

channels, and the release of glutamate into the extracellular spaces, which will 

lead to the activation of NMDA receptors. Both mechanisms directly or indirectly 

elevate intracellular Ca2+ and rapidly initiate the activation of intracellular 

calpains. However, mitochondria take up the excessive Ca2+ in the cell, which 

subsequently activates mitochondrial NOS and results in overproduction of NO• 

radical. Elevated NO• out-competes superoxide dismutase (SOD) for superoxide 

radical (O2
•
 ⎯) leading to the formation of PN. Then, PN-derived free radicals 

could be expected to initially produce a partial inhibition of calpain and caspase 3 

activity. Mitochondria, however, as a major intracellular ROS source not only 

become a primary location for PN production, but also are susceptible to PN-

induced oxidative damage due to their enriched thiol and iron-rich structures 

within the electron transport chain (ETC). In addition, the biochemical properties 

of PN enable it to diffuse out of the mitochondria to induce further oxidative 

damage to the cell membrane and cellular proteins. This increase in oxidative 

stress during the first 12 hrs, induces cellular oxidative damage by LP, protein 

oxidation and protein nitration. The calpain-mediated proteolysis displays a 

biphasic activity probably as a result of an initial partial PN-mediated inhibition of 

calpain. However, as this subsides, the extensive compromise of Ca2 

homeostasis in the mitochondrion and the rest of the cell becomes manifest and 
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calpain activity is free to reach its peak. In the end, calpain-mediated cytoskeletal 

degradation becomes a final common pathway leading to neuronal cell death. 

The findings of this study strongly support the concept of an important 

pathophysiological role of PN-mediated oxidative damage following TBI. 

Peroxynitrite-induced oxidative damage and calpain activation interact and are 

probably responsible for much of the secondary injury and neurodegeneration 

that occurs. If so, then PN-targeted antioxidants should be neuroprotective. 

However, the combination of a PN-targeted antioxidant and a calpain inhibitor 

might have a better neuroprotective action than either approach alone. Future 

studies will explore these possibilities. Copyright © Ying Deng 2007.  
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Figure 2.6 Hypothetical interrelationship between PN-induced oxidative damage 

in neuronal mitochondria and the rest of the neuron, compromise of Ca2+ 

homeostasis, calpain-mediated proteolysis and neurodegeneration. Our results 

suggest that PN-induced oxidative damage plays a key role in the post-traumatic 

secondary injury, which leads to exacerbation of Ca2+ overload, calpain 

proteolysis of cytoskeleton and other cellular proteins and neurodegeneration. 

See Discussion for a further description. 
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Chapter Three 

Tempol in Its Ability to Scavenge Free Radicals, Ameliorate Mitochondrial 

Dysfunction and Inhibit Calpain Activity 

 

Introduction 

 Nitroxide antioxidants, such as tempol (4-hydroxy-2,2,6,6-

tetramethylpiperidine-1-oxyl, see Figure 3.1), are generally described in the 

literature as potent metal-independent superoxide dismutase (SOD) mimics with 

better membrane permeability and potency (Samuni, Krishna et al. 1989; 

Krishna, Russo et al. 1996). Nitroxides have been shown to quench superoxide 

radical (O2
• ⎯) to eventually produce hydrogen peroxide and oxygen just like 

SOD. Moreover, nitroxides prevent oxidative damage by removing superoxide 

radical (O2
• ⎯) catalytically rather than stoichiometrically. Moreover, six-membered 

cyclic nitroxides such as tempol react faster as an antioxidant than corresponding 

five-membered ring nitroxides (Samuni, Krishna et al. 1990). As often studied in 

biological systems, nitroxides also have the ability to react with lipid peroxidation 

(LP)-derived intermediates such as alkoxyl radical and peroxyl radical.  

Furthermore, they can act as  mild oxidizing agents to prevent the cycling of 

transition medal irons (Fe2+ Fe3+) and thereby inhibit the production of hydroxyl 

radicals (•OH) via in Fenton-type reaction (Zeltcer, Berenshtein et al. 1997).  

More recently, it has been shown that tempol can catalytically decompose 

the peroxynitrite (PN) free radicals nitrogen dioxide (•NO2) and carbonate (•CO3).  

High-performance liquid chromatography (HPLC) analysis measuring the 

 68



intermediates of the reactions between tempol and PN-induced phenolic nitration 

suggested that oxidized forms of tempol can exchange among themselves 

without depletion in the reaction with PN-derived free radicals, which makes 

tempol a potent catalytic antioxidant (Carroll, Galatsis et al. 2000).  

 Thus, because of its multiple antioxidant properties, and its membrane 

permeability, tempol or similar compounds may have considerable therapeutic 

values in protection against cytotoxicity that involves oxidative damage. In vivo 

studies have indicated that tempol provides protection against X-ray-induced 

DNA damage, or other radiation oncology (DeGraff, Krishna et al. 1992; Hahn, 

Krishna et al. 1994). Tempol was also suggested to reduce PN-generated 

nitration, decrease poly ADP-ribose synthetase (PARS) activation, as well as 

reduce infarct volume and hyperactivity in ischemic experimental models 

(Cuzzocrea, McDonald et al. 2000; Rak, Chao et al. 2000; Kato, Yanaka et al. 

2003). Moreover, tempol was shown to reduce the pathophysiology of acute 

subdural hematoma (ASDH) (Kwon, Chao et al. 2003). In a Parkinson’s disease 

model, tempol was indicated to attenuate malonate and 1-methyl-4-phenyl-

1,2,5,6 tetrahydropyridine (MPTP)-induced neurotoxicity (Matthews, Klivenyi et 

al. 1999). Furthermore, it has been shown that tempol can improve tissue sparing 

and locomotor outcome after spinal cord injury (SCI) (Hillard, Peng et al. 2004).  

Finally, tempol has been shown to limit edema formation, blood-brain barrier 

(BBB) disruption and to improve functional recovery (Beit-Yannai, Zhang et al. 

1996; Zhang, Shohami et al. 1998).  In the latter studies, the mechanism of the 
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neuroprotective antioxidant action was completely attributed by the authors to 

superoxide scavenging.  

 The present study was undertaken in the controlled cortical impact (CCI) 

mouse traumatic brain injury (TBI) model to examine the possibility that tempol’s 

neuroprotective efficacy in acute TBI also involves inhibition of PN-mediated 

oxidative damage in brain tissue, mitochondria and downstream amelioration of 

calpain-mediated cytoskeletal breakdown. As demonstrated in our previous 

study, the early increase of oxidative damage in mitochondrial proteins paralleled 

to that in the cortical homogenate ipsilateral to the injury, which also coincided 

with the time course of mitochondrial dysfunction following the injury (Chapter 2; 

Singh, Sullivan et al. 2006a, see Appendix I and II). This strongly suggests the 

idea that mitochondria are the primary source and target of PN upon 

mitochondrial calcium uptake in the CCI model (Singh, Sullivan et al. 2006a). 

Moreover, as also indicated in our time course study on cellular changes 

triggered by TBI in the CCI model, the peak of oxidative damage at 1 hr after 

injury preceded both the peak of calpain activity at 24 hrs and 

neurodegeneration, measured by silver staining, at 48 hrs (Deng, Thompson et 

al. 2007). Therefore, the current experiments were conducted to investigate 

tempol’s ability to reduce post-traumatic PN-induced oxidative damage, 

mitochondrial dysfunction and calpain-mediated cytoskeletal degradation in order 

to establish a mechanistic linkage between these successive pathophysiological 

events.   
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Figure 3.1 Chemical structure of tempol. 
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Materials and Methods 

 

 All the surgical, injury and animal care protocols described below have 

been approved by the University of Kentucky Institutional Animal Care and Use 

Committee, and are consistent with the animal care procedures set forth in the 

guidelines of the U.S. Public Health Service Policy on Humane Care and Use of 

Laboratory Animals. 

 

Mouse Model of Controlled Cortical Impact (Focal) Traumatic Brain Injury 

 Young adult male CF-1 mice (Charles River, Portage, MI) weighing 29-

31g were used in this study. The mice were anesthetized with isoflurane (3.0%), 

shaved, and then placed in a stereotaxic frame (David Kopf Instruments, 

Tujunga, CA). Throughout the surgery, the mice were provided with constant 

isoflurane (SurgiVet, 100 Series) and oxygen (SurgiVet, O2 flowmeter, 0-4Lpm).  

The head was positioned in the horizontal plane of a stereotaxic frame with the 

nose bar set at zero. We firstly produced a 4mm craniotomy lateral to the sagittal 

suture, and centered between lambda and bregma.  A cortical contusion was 

produced on the exposed cortex (the anterior-posterior coordinate for the 

epicenter of the injury was  Bregma -2.0mm) using a pneumatically-controlled 

impactor device (Precision System Instruments TBI-0200 Impactor, Lexington, 

KY) similar to that previously described (Sullivan, Bruce-Keller et al. 1999; 

Sullivan, Thompson et al. 1999; Hall, Sullivan et al. 2005) except that the current 

device utilizes a unique contact sensor mechanism that ensures accurate and 
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reliable determination of cortical surface prior to initiating the injury sequence. 

This results in increased accuracy and reproducibility in regards to the CCI injury 

compared to that produced by earlier CCI impactors.  In the present studies, the 

impactor containing a 3mm diameter rod tip compressed the cortex at 3.5m/sec 

to a depth of 1mm with a dwell time of 50msec to produce a severe injury. After 

surgery and injury, a 4mm disk made from dental cement (Dentsply Trubyte) was 

placed over the craniotomy site and adhered to the skull using cyanoacrylate. In 

order to prevent immediate post-traumatic hypothermia, following the suturing of 

the skin, mice were placed in a Hova-Bator incubator (37°C, model 1583, Randall 

Burkey Co) until them regained consciousness (determined by the regain of the 

righting reflex and increased mobility). The injured mice were allowed to survive 

from 1 hr to 48 hrs depending on their experimental group. For the 

immunoblotting studies (measurements of oxidative damage marker and 

cytoskeletal degradation, see below), the N for each treatment group was 8 

animals; whereas for the mitochondrial studies, the N for each treatment group 

was 6 (3 mice were pooled together to create 1 N), based upon our experience 

with the variability seen with these measurements in previous studies (Kupina, 

Detloff et al. 2003; Hall, Detloff et al. 2004; Hall, Sullivan et al. 2005).   

 

Tempol Preparation 

 Tempol was purchased from Sigma-Aldrich (Milwaukee, WI, U.S.A) and 

freshly prepared in 0.9% saline before abdominal intraperitoneal (i.p.) injection. In 

our dose-response study we experimented with different dosages at 3mg/kg, 
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10mg/kg, 30mg/kg, 100mg/kg and 300mg/kg (n=8), which well covered the 

dosage range that have been explored in related neuropathological studies and 

pilot studies (Beit-Yannai, Zhang et al. 1996; Mota-Filipe, McDonald et al. 1999; 

Behringer, Safar et al. 2002). Used as control for the tempol treatment group 

(injured-tempol), 9% saline was given as vehicle to animals (injured-vehicle). 

Another control group was composed of sham animal who were subjected to 

craniotomy but no contusion injury and treated with vehicle (sham-vehicle). Sham 

animals treated with tempol (n=8) in an initial dose-response study were also 

tested, and indicated no difference from sham-vehicle group (data not shown). 

There was zero mortality in the current study. 

 

Tissue Extraction and Protein Assay 

 At the selected time points for the respective analysis (1 hr, 6 hrs, 12 hrs 

or 24 hrs), the sham or injured-vehicle, injured-tempol mice were deeply 

overdosed with sodium pentobarbital (200mg/kg i.p.). Following decapitation, the 

ipsilateral cortical area of interest as was rapidly dissected on an ice-chilled stage 

as previously described (Deng, Thompson et al. 2007). Immediately following 

dissection, samples were transferred into pre-cooled Triton lysis buffer (1% triton, 

20mM tris HCL, 150mM NaCl, 5mM EGTA, 10mM EDTA, 10% glycerol) with 

protease inhibitors (Complete MiniTM Protease Inhibitor Cocktail tablet). Samples 

were then briefly sonicated and vortexed at 14,000rpm for 30 minutes at 4°C, 

and the supernatants were collected for protein assay. Protein concentration was 
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determined by Bio-Rad DC Protein Assay, with sample solutions diluted to 

contain 1mg/ml of protein for immunoblotting. 

 

Slot-Blotting Analysis of Oxidative Damage (3NT) 

 To measure 3-nitrotyrosine (3NT), an aliquot of each ipsilateral cortical 

protein (2µg) or isolated mitochondrial protein was diluted with 200µl of tris-

buffered saline (TBS), and transferred to a Protran (0.2µm) nitrocellulose 

membrane (Schleicher & Schuell, Dassel, Germany) by a Minifold II vacuum slot 

blot apparatus (Schleicher & Schuell). After the samples were loaded into the 

slots, they were allowed to filter through the membrane by gravity (no vacuum). 

Each slot was then washed with 200µl TBS which was allowed to filter through 

the membrane again. The membranes were then disassembled from the 

apparatus, and incubated in a TBS blocking solution with 5% milk for 1 hr at 

room temperature. For the detection of 3NT, a rabbit polyclonal anti-nitrotyrosine 

antibody (Upstate Biotechnology, MA, USA) was used at a dilution of 1:2000 in 

TBST blocking solution with 5% milk for overnight at 4°C. Preliminary 

experiments established protein concentration curves in order to ensure that 

quantified blots were in the linear range. From the results of these, we selected 

the 2µg for use based upon that amount giving blots that were well within the 

linear range. A standardized protein loading control was included on each blot to 

normalize the band densities so that comparisons could be made across multiple 

blots. All the samples were run in duplicate which were then averaged. For 3NT 

analyses, no primary antibody controls were run to verify that the oxidative 
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damage staining was specific. In addition, we ran positive controls using both 

bovine serum albumin and normal brain tissue which were exposed to PN and 

negative controls in which we pre-absorbed the primary antibodies with 3NT 

which resulted in inhibition of the 3NT staining.   

 

Mitochondrial Percoll Gradient Purification and BCA Protein Assay 

Brain cortical mitochondria were extracted as previously described with 

some modifications (Sullivan, Geiger et al. 2000; Sullivan, Dube et al. 2003). 

Following decapitation, ipsilateral cortex was quickly removed and pooled from 3 

mice. The cortices were placed in a Potter-Elvejhem homogenizer containing five 

times the volume of ice-cold isolation buffer (5 fold buffer to tissue) with 1 mM 

EGTA (215mM mannitol, 75mM sucrose, 0.1% BSA, 20mM HEPES, 1mM 

EGTA; pH adjusted to 7.2 with KOH) and the homogenates were subjected to 

differential centrifugation at 4°C. First, the homogenate was centrifuged twice at 

1300 X g for 3 min in an Eppendorf microcentrifuge at 4°C to remove cellular 

debris and nuclei. The pellet was discarded and the supernatant further 

centrifuged at 13,000 X g for 10 min. The crude mitochondrial pellet obtained 

after differential centrifugation were then subjected to nitrogen decompression to 

release synaptic mitochondria, using a nitrogen cell disruption bomb, cooled to 

4°C under a pressure of 1200 psi for 10 min (Sullivan, Dube et al. 2003; Brown, 

Sullivan et al. 2004; Kristian, Hopkins et al. 2006). Following nitrogen disruption 

the mitochondria were suspended in 3.5ml of 15% percoll and further laid on a 

two preformed layers consisting of 3.5ml of 24% percoll and 3.5ml of 40% Percoll 
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in 13ml ultra-clear tubes. The gradient was centrifuged in fixed angle rotor at 

30,400 X g for 10 min at 4°C. The fraction accumulated at the interphase of 40% 

and 24% percoll was carefully removed and diluted with isolation buffer without 

EGTA, then centrifuged at 12,300 X g for 10 min at 4°C. The supernatants were 

carefully removed, the pellet resuspended in isolation buffer without EGTA and 

centrifuged at 13,000 X g for 10 min at 4°C. The mitochondrial pellets at the 

bottom were then transferred to microcentrifuge tubes and topped off with 

isolation buffer without EGTA and centrifuged at 10,000 X g for 5 min at 4°C to 

yield a tighter pellet. The final mitochondrial pellet was resuspended in isolation 

buffer without EGTA to yield a concentration of ~10mg/ml. The protein 

concentration was determined using the BCA protein assay kit measuring 

absorbance at 562 nm with a BioTek Synergy HT plate reader (Winooski, 

Vermont). 

 

Mitochondrial Respiration Measurement 

Mitochondrial respiratory rates were measured using a Clark-type 

electrode in a continuously stirred, sealed thermostatically-controlled chamber 

(Oxytherm System, Hansatech Instruments Ltd) maintained at 37°C as 

previously described (Sullivan, Geiger et al. 2000; Jiang, Sullivan et al. 2001; 

Sensi, Ton-That et al. 2003; Sullivan, Dube et al. 2003). Twenty five to 40µg of 

isolated mitochondrial protein  was placed in the chamber containing 250µl of 

KCl-based respiration buffer (125mM KCl, 2mM MgCl2, 2.5mM KH2PO4, 0.1% 

BSA, 20mM HEPES at pH 7.2) and allowed to equilibrate for 1 min. This was 
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followed by the addition of complex-I substrates, 5mM pyruvate and 2.5mM 

malate, to monitor state II respiratory rate. Two boluses of 150µM ADP were 

added to the mitochondria to initiate state III respiratory rate for 2 min followed by 

the addition of 2µM oligomycin to monitor state IV respiration rate for an 

additional 2 min. For the measurement of uncoupled respiratory rate, 2µM p-

trifluoromethoxy carbonyl cyanide phenyl hydrazone (FCCP) was added to the 

mitochondria in the chamber and oxygen consumption was monitored for another 

2 min. This was followed by the addition of 10mM succinate to monitor complex 

II-driven respiration. The respiratory control ratio (RCR) was calculated by 

dividing state III oxygen consumption (defined as the rate of respiration in the 

presence of ADP, second bolus addition) by the state IV oxygen consumption 

(rate obtained in the presence of oligomycin). Fresh mitochondria were prepared 

for each experiment and used within 4 hr. 

 

Western-Blotting Analysis of Calpain-Mediated Cytoskeletal Degradation 

 To measure calpain-mediated α-spectrin proteolysis, aliquots of each 

cortical sample (5µg) were run on a SDS/PAGE Precast gel (3-8% Tris-Acetate 

CriterionTM XT Precast gel, Bio-Rad) and then transferred to a nitrocellulose 

membrane using a semi-dry electro-transferring unit set at 15V for 15min. 

Preliminary experiments established protein concentration curves in order to 

ensure that quantified bands were in the linear range as measured with the Li-

Cor Odyssey Infrared Imaging System.  The membranes were incubated in a 

TBS blocking solution with 5% milk for 1 hr at room temperature. For the 
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detection of α-spectrin and its breakdown products, a mouse monoclonal anti-α-

spectrin antibody (Affiniti FG6090) was used at a dilution of 1:5000 in TBST 

blocking solution with 5% milk for overnight at 4°C. A goat anti-mouse secondary 

conjugated to an infrared dye (1:5000, IRDye800CW, Rockland) was then 

applied for 1 hr at room temperature. After drying, the membranes were then 

imaged and quantified using the Li-Cor Odyssey Infrared Imaging System. A 

standardized protein loading control was included on each blot to normalize the 

band densities so that comparisons could be made across multiple blots (Hall, 

Sullivan et al. 2005). This was made up of pooled brain tissue protein collected 

from previously run TBI mice which gave strong bands corresponding to the 

280kD parent α-spectrin, the 150kD and the 145kD breakdown products.  The 

amount of protein in the loading control had been previously determined and 

shown to be within the linear range as measured with the Li-Cor Odyssey 

Infrared Imaging System.  Following the transfer, the gels were stained with 

Coomassie Blue to verify even transfer. All the samples were run in duplicate and 

averaged. 

 

Statistical Analysis 

 For all of the time course analyses, we used Statview 5.0 to perform a 

one-way analysis of variance (ANOVA), followed by Student-Newman-Keuls 

(SNK) post-hoc analysis to determine the significance of differences between the 

non-injured sham group and injured vehicle treated vs. injured tempol treated 

groups. For the ANOVA, a p<0.05 was required to establish a statistically 
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significant difference across the groups. However, for the post-hoc SNK analysis, 

the program determined significance based upon a correction for multiple 

comparisons.  
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Results 

 

Dose-Response Study of the Effect of Tempol on Protein Nitration 

 The level of protein nitration in cortical tissue homogenate was assessed 

by quantitative antibody-based immuno-slotblotting. Figure 3.2 shows the results 

of a dose-response analysis examining ipsilateral cortical protein nitration level 

following TBI (n=8). Five different single i.p. dosages were administrated 

abdominally to the mice 15 min after cortical contusion. All mice were euthanized 

1 hr after when PN-induced oxidative is at its peak (Deng, Thompson et al. 

2007). The ANOVA showed a significant difference across the experimental 

groups [F(6,49)=3.397; p<0.01]. Post-hoc analysis revealed that the injured mice 

treated with vehicle (0.9% saline) showed about 90% of increase in 3NT (a 

specific marker for PN) level (p=0.007). In comparison to that, three highest 

dosages of tempol (30mg/kg, 100mg/kg and 300mg/kg) significantly reduced the 

3NT level comparing to injured mice treated with vehicle mice. However, there 

was no significant difference among different dosage groups. The highest dose 

of tempol treatment in the current study (300mg/kg) was able to completely 

prevent any post-traumamtic increase in 3NT level over the sham baseline level. 

Therefore, this dosage was chosen in the following studies. Another control 

group, in which sham was treated with tempol (n=8) showed no difference from 

sham vehicle-treated group (data not shown).  
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Figure 3.2 Tempol treatment studies using quantitative slotblotting in ipsilateral 

cortical traumatic brain injury tissues showing dose-response changes in protein 

nitration (3-nitrotyrosin, 3NT). Single dose of tempol was administrated i.p. to 

animals 15 min followed by sacrifice at 1 hr after TBI. The three highest doses at 

30mg/kg, 100mg/kg and 300mg/kg significantly reduced 3NT level, a specific 

marker for PN-induced oxidative damage, in ipsilateral cortical tissues. N = 8 

animals per treatment group; values = mean + standard error; one-way ANOVA 

and Student-Newman-Keuls post hoc test: A p < 0.01 vs. sham; one-way ANOVA 

and Student-Newman-Keuls post hoc test: B p < 0.01 vs. vehicle.  
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Effect of Tempol on Mitochondrial Respiration 

 Isolated cortical mitochondrial protein measured by BCA protein assay 

was divided to run for mitochondrial respiratory assay and quantitative immuno-

slotblotting respectively (see Materials and Methods). Mitochondrial oxygen 

consumption was measured by a Clarke-type electrode. In this study, mice (n=6) 

were treated with a single i.p. dose either vehicle or tempol (300mg/kg) 15 min 

after injury, followed by euthanasia 12 hrs after TBI. This time point was selected 

since it we had previously shown that it represents the peak of mitochondrial 

dysfunction in the CCI model (Singh, Sullivan et al. 2006a, see Appendix I). 

Cortical mitochondria were isolated and purified followed by incubation in the 

constantly-stirred sealed chamber. The oxygen consumption rate of each step 

was recorded by the slope of the oxygen respiration trace upon substrates 

addition. Figure 3.3A indicates the respiratory rates comparison among sham 

vehicle-treated, injured vehicle-treated and injured tempol-treated groups. Two 

doses of ADP after pyruvate and malate initiated the respiration of mitochondria. 

There was a significant difference across the sham, injured vehicle and injured 

tempol-treated groups [F(2,15)=4.339; p<0.05]. Post-hoc analysis showed that 

injured vehicle-treated mitochondria displayed significantly decreased complex I-

driven state III respiration compared to sham, indicating impaired mitochondrial 

respiratory function. In contrast, the mitochondria isolated from the tempol-

treated mice showed a complete maintenance of normal state III respiration 

which was significantly higher than the vehicle-treated mice. There was no 

significant difference detected in state IV respiration among groups upon 
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oligomycin addition. The inhibition of ATP synthase generally eliminated most of 

the respiratory activity.  

A mitochondrial uncoupler, FCCP, was added to initiate maximal 

mitochondrial respiration state V by inducing mild proton leak into mitochondria. 

This analysis also showed a significant difference across the treatment groups 

[F(2,15)=6.894; p<0.001]. Post-hoc testing showed that the injured vehicle-

treated group displayed significantly reduced respiration rate comparing to the 

sham group, suggesting impairment of the electron transport chain (ETC). 

However, mitochondria isolated from tempol-treated mice were able to show 

significantly improved state V respiration compared to the vehicle-treated group. 

Complex II-driven state VI respiration was tested by adding the complex II 

substrate succinate. There was no significantly difference observed among three 

treatment groups, suggesting that complex II and the downstream complexes 

were relatively healthy, in contrast to complex I which was impaired.   

 Figure 3.3B displays the respiratory controlled ratio (RCR) of isolated 

mitochondria from the three different treatment groups which the ANOVA showed 

was significantly different [F(2,15)=11.910; p<0.001]. The RCR indicates how 

well oxygen consumption is coupled to ATP generation and is often used as the 

index of mitochondrial function (healthy: RCR>5). In Figure 3.3B, mitochondria 

from injured mice without drug treatment shows a mean RCR=3.7, which was 

significantly lower than the sham group, RCR=7.3. The tempol-treated group 

demonstrated a mean RCR=5.6, suggesting that the mitochondria remain on 

average within the healthy range (i.e. >5.0). The tempol treated mean was 

 84



significantly higher than vehicle-treated group. However, although tempol 

treatment was able to improve mitochondrial function to healthy level, the RCR in 

the injured tempol-treated group was significantly lower than that in the sham 

group, suggesting that mitochondrial function was not fully recovered. 
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Figure 3.3 Effect of optimal single dose tempol treatment on mitochondrial 

respiration in ipsilateral cortical traumatic brain injury tissues measured by 

Clarke-type electrode. A. Single i.p. abdominal dose of tempol (300mg/kg) 

significantly improved state III (ADP) and state V (FCCP) respiration comparing 

to vehicle-treated group. B. Tempol treated group showed significant recovery of 

respiratory controlled ration (RCR) comparing to vehicle-treated group. N = 6 

animals per treatment group; values = mean + standard error; one-way ANOVA 

and Student-Newman-Keuls post hoc test: A p < 0.05 vs. sham; one-way ANOVA 

and Student-Newman-Keuls post hoc test: B p < 0.05 vs. vehicle. 
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Effect of Tempol on Mitochondrial Oxidative Damage 

 Isolated cortical mitochondrial protein was measured by BCA protein 

assay and 2µg of each sample was run on quantitative antibody-based immuno-

slotblots. Figure 3.4 demonstrates mitochondrial 3NT level at 12 hrs after injury 

subjected to different treatments (n=4). The ANOVA revealed a significant 

difference across the treatment groups [F(2,9)=4.843; p<0.05]. Post-hoc analysis 

showed that even though the 3NT level in the injured vehicle-treated group was 

increased comparing to sham group, this increase was not significant.  

Consistent with this observation, we had previously found that while a significant 

increase in 3NT level in mitochondrial proteins is seen as early as 30 min after 

injury, and out to at least 3 hrs, the persistent mean increase in 3NT at 12 hrs 

after TBI loses significance in comparison to sham (Singh, Sullivan et al. 2006a). 

Nevertheless, in the injured tempol-treated group, 3NT level was significantly 

lower than the injured vehicle-treated group by 55%.  Moreover, the mean 3NT 

level in the injured tempol-treated group was also lower than that seen in the 

sham group, but this difference was not significant.   
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Figure 3.4 Effect of optimal single dose tempol treatment on mitochondrial 

oxidative damage in ipsilateral cortical traumatic brain injury tissues measured by 

quantitative slotblotting. Single i.p. abdominal injection of tempol (300mg/kg) 

significantly decreased 3NT level in comparison to vehicle-treated group in 

cortical mitochondrial proteins. N = 4 animals per treatment group; values = 

mean + standard error; one-way ANOVA and Student-Newman-Keuls post hoc 

test: A p < 0.05 vs. sham; one-way ANOVA and Student-Newman-Keuls post hoc 

test: B p < 0.05 vs. vehicle. 
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Effect of Single Dose of Tempol on Calpain-Mediated α-Spectrin Breakdown 

 Post-traumatic cytoskeletal degradation was measured by antibody-based 

immuno-westernblotting detecting α-spectrin breakdown products in cortical 

tissues ipsilateral to the injury. Mice were treated with a single dose of vehicle or 

tempol (300mg/kg) 15 min after TBI, and were killed at 1 hr or 6 hrs post-injury 

(n=8/group). Figure 3.5A shows that there was statistically significant difference 

across the three groups for the calpain-specific SBDP145 analysis 

[F(2,21)=5.590; p<0.05], but not in the case of the SBDP150 which is generated 

by both calpain and caspase 3 (Wang 2000). Post-hoc testing revealed that there 

was a significant increase in SBDP145 at 1 hr post-injury in the injured vehicle-

treated group compared to the sham vehicle-treated group. However, tempol 

treatment significantly reduced SBDP145 compared to vehicle treatment by 45%.  

Figure 3.5B displays the level of SBDPs at 6 hrs after TBI with or without 

tempol treatment. Both SBDPs showed significant increase compared to the 

sham group. Although there was a slight decline of both SBDPs in the injured 

tempol-treated group compared to vehicle-treated group, the decrease was not 

significant (p<0.01). The magnitude of both SBDPs in injury groups at 6 hrs post-

injury was higher than that at 1 hr post-injury, which indicated there is 

progressive increase of calpain activity over time following TBI until it reaches its 

peak at 24 hrs in the CCI model (Deng, Thompson et al. 2007). The short term 

effect of tempol in reducing SBDP145 at 1 hr but not 6 hrs post-injury 

encouraged us to explore a tempol treatment regimen involving repeated doses 

administered over the course of the oxidative damage.  
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Figure 3.5 Effect of optimal single dose tempol treatment on calpain-mediated α-

spectrin breakdown in ipsilateral cortical traumatic brain injury tissues measured 

by quantitative westernblotting. A. Tempol treatment significantly reduced 

SBDP145 comparing to vehicle treatment, but here was no change in SBDP150 

at 1 hr post-injury. B. Tempol treatment was not able to decrease SBDPs at 6 hrs 

after TBI. N = 8 animals per treatment group; values = mean + standard error; 

one-way ANOVA and Student-Newman-Keuls post hoc test: A p < 0.05 vs. sham; 

one-way ANOVA and Student-Newman-Keuls post hoc test: B p < 0.05 vs. 

vehicle. 
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Effect of Multiple Dose of Tempol on Calpain-Mediated α-Spectrin Breakdown 

 In this study, multiple doses of vehicle or tempol (300mg/kg) were 

administrated i.p. to mice at 15 min, 3 hrs, 6hrs, 9 hrs and 12 hrs post-injury 

followed by euthanasia at 24 hrs when calpain-mediated SBDPs reach their peak 

in the CCI model (Deng, Thompson et al. 2007). As indicated in Deng et al, at 24 

hrs post-injury, the magnitude of calpain-specific SBDP145 is more than twice  

as much as that of calpain/caspase 3-produced SBDP150, suggesting a the 

dominant role of calpain in post-traumatic proteolysis. However, at 24 hrs post-

injury the difference across groups for both SBDPs is significant; for SBDP145 

[F(2,20)=16.513; p<0.0001] and for SBDP150 [F(2,20)=5.241; p<0.05]  In Figure 

3.6, tempol treatment decreased both SBDPs significantly compared to vehicle 

treatment. The effect on SBDP150 was essentially complete since the magnitude 

of non-specific SBDP150 is much lower than that of calpain-specific SBDP145. 

However, although tempol treatment also reduced SBDP145 by 45% compared 

to the injured vehicle-treated group, the SBDP145 level in the injured tempol-

treated group remained significantly elevated compared to the sham level, 

suggesting that proteolytic damage induced by calpain was not fully inhibited 

even with this repeated dose treatment regimen.  
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Figure 3.6 Effect of multiple dose tempol treatment on calpain-mediated α-

spectrin breakdown in ipsilateral cortical traumatic brain injury tissues measured 

by quantitative westernblotting. Multiple doses of tempol were administrated at 

15 min, 3 hrs, 6 hrs, 9 hrs and 12 hrs before sacrifice of the animals. In injured 

vehicle-treated group, both SBDPs were significantly increased than sham group 

with higher magnitude of SBDP145 elevation. Multiple i.p. injection of tempol 

(300mg/kg) significantly reduced both SBDPs in comparison to vehicle-treated 

group.  N = 8 animals per treatment group; values = mean + standard error; one-

way ANOVA and Student-Newman-Keuls post hoc test: A p < 0.05 vs. sham; 

one-way ANOVA and Student-Newman-Keuls post hoc test: B p < 0.05 vs. 

vehicle. 
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Therapeutic Window of Multiple Dose of Tempol Treatment Measured by 

Calpain-Mediated α-Spectrin Breakdown 

  

A therapeutic window study next conducted in which the onset of tempol 

multiple dose treatment was delayed from the 15 min post-injury tested earlier 

(Figure 3.6 above) to either by 1 hr or 2 hrs. We administered multiple i.p. doses 

treatment starting at 1 hr or 2 hrs post-injury, with four additional bolus i.p. 

injections every 3 hrs. Animals were then studied at 24 hrs after the first injection. 

In Figure 3.7A, a 1 hr delay in treatment with tempol showed no effect in both 

SBDP145 and SBDP150. Both SBDPs remained at similar level as the injured 

vehicle-treated group. Figure 3.7B displayed 2 hrs delay treatment of tempol, 

which showed similar outcome. Although postponing the tempol treatment did not 

show any protection, it did not exacerbate the post-traumatic cytoskeletal 

proteolysis measured by calpain-mediated SBDPs.  
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Figure 3.7 Therapeutic window study using multiple doses of tempol measured 

by quantitative westernblotting. A. The multiple i.p. tempol treatment regimen 

was postponed by 1 hr after injury, and animals were sacrificed at 25 hrs. B. The 

multiple i.p. tempol treatment regimen was postponed by 2 hrs after injury, and 

animals were sacrificed at 26 hrs. N = 8 animals per treatment group; values = 

mean + standard error; one-way ANOVA and Student-Newman-Keuls post hoc 

test: A p < 0.05 vs. sham; one-way ANOVA and Student-Newman-Keuls post hoc 

test: B p < 0.05 vs. vehicle 
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Discussion 

 

 The current study applied a pharmacological approach in elucidation of 

the pathophysiological relationship of PN-induced oxidative damage, 

mitochondrial dysfunction and calcium-activated, calpain-mediated cytoskeletal 

degradation by testing the ability of the multi-mechanistic nitroxide antioxidant 

tempol, to inhibit these secondary injury events in the CCI TBI mouse model.  

Our previous time course study defined the dynamic changes of PN production, 

oxidative mitochondrial damage, calpain-mediated proteolysis and 

neurodegeneration, and their temporal inter-relationship (Singh, Sullivan et al. 

2006a, see Appendix I; Deng, Thompson et al. 2007). The time course study 

strongly indicates that PN has a pivotal role in the secondary injury following TBI, 

and suggests that scavenging of PN or its derived free radicals is a plausible 

neuroprotective therapeutic target. A thorough analysis was conducted to 

evaluate the therapeutic effect of tempol in regard to its ability to ameliorate 

mitochondrial dysfunction and to preserve cytosolic Ca2+ homeostasis and as a 

result to reduce calpain-mediated proteolysis. 

 

Tempol Effect on PN-Mediated Oxidative Damage in the CCI-TBI Mouse Model 

 The neuroprotective effect of tempol was previously explored in a closed 

head rat TBI model. Tempol showed cerebroprotective effects by limiting edema 

formation, ameliorating blood-brain barrier (BBB) disruption and improving 

functional recovery (Beit-Yannai, Zhang et al. 1996; Zhang, Shohami et al. 1998). 
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In these studies, it was suggested that the neuroprotective effects of tempol was 

due to its catalytic scavenging of superoxide radicals. However, oxidative 

damage markers were not examined, and more recent experiments have 

suggested that an important antioxidant property that may contribute significantly 

to the inhibition of post-traumatic oxidative damage in brain tissue involves a 

catalytic scavenging of the PN-derived radicals •NO2 and •CO3.   

A stable biomarker of PN oxidative damage to proteins involves the 

nitration of protein tyrosine residues which produces the product 3-nitrotyrosine 

(3NT). Although it was previously suggested that nitric oxide (NO•) could give 

rise to tyrosine nitration, subsequent analyses have shown that this is probably 

caused by PN-derived •NO2. Alternatively, PN is able to react with SOD to form 

nitronium ion (NO2
+)-like intermediate which may also cause tyrosine residue 

nitration (Ischiropoulos, Zhu et al. 1992). In the current study, we used antibody-

based quantitative immuno-slotblotting detection of the PN-specific marker 3-

nitrotyrosine (3NT) to investigate the effect of tempol on PN-induced oxidative 

damage. Animals were administered with single dose of tempol i.p. at 15 min and 

sacrificed at 1 hr after injury when PN-induced oxidative damage is at its peak 

(Deng, Thompson et al. 2007). A significant increase in cortical 3NT level in 

vehicle treated group compared to sham was observed. Comparing to vehicle 

treated group, tempol treatment 30mg/kg, 100mg/kg and 300mg/kg significantly 

decreased 3NT level in the cortical tissue ipsilateral to the injury showing that 

tempol has a wide range of antioxidant potency, and that scavenging of PN-

derived •NO2 may be key aspect of tempol’s antioxidant mechanism in vivo. 
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Tempol Effect on Mitochondrial Respiration and Oxidative Damage in the CCI-

TBI Mouse Model 

 Mitochondria have long been suggested to be a main resource for ROS. 

The mono-electron transport through the mitochondrial ETC spins off oxidants 

(mainly O2
• ⎯ ) as by-products during metabolism (Shigenaga, Hagen et al. 1994; 

Herrero and Barja 1997). Unknown components of ETC complex I and 

ubiquinone of complex III are indicated to be the major sites of ROS generation. 

It has been proposed that the complex I flavin mononucleotide (FMN) group was 

the major ROS generating site (Liu, Fiskum et al. 2002), whereas others 

hypothesize that mitochondrial generated O2
• ⎯ preferably occurs at the lever of 

coenzyme Q (Kowaltowski, Castilho et al. 1995). More recently, a novel Ca2+-

dependent isoform of nitric oxide synthase (NOS) was identified within 

mitochondria which is activated upon mitochondrial Ca2+ uptake (Giulivi 1998; 

Tatoyan and Giulivi 1998). Although NO• has been suggested to itself be toxic, 

most investigators now believe that the damaging effects of NO• are mediated by 

PN, which is formed by the diffusion rate-limited reaction of NO• with O2
• ⎯ 

(Beckman and Koppenol 1996). Evidence has been obtained that the NO•-

dependent inactivation of iron-sulfur centers was in fact mediated by PN (Castro, 

Rodriguez et al. 1994; Hausladen and Fridovich 1994). PN-derived radicals are 

extremely reactive with bio-molecules, including lipids, proteins and DNAs 

(Murphy, Packer et al. 1998; Radi 1998; Hall, Detloff et al. 2004). The discovery 

of the mitochondrial isoform of NOS exposes mitochondria as the major source 
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and therefore a target for PN-mediated oxidative damage (Packer and Murphy 

1994).  

Mitochondrial membrane integrity and compartmentalization is important 

in maintaining normal respiratory function. However, high in content in 

polyunsaturated fatty acids (PUFAs) makes brain mitochondria a vulnerable 

target for free radicals attack and lipid peroxidation (LP). PN was reported to 

increase mitochondrial proton leak but was irreversible by mPTP blocker, 

cyclosporine A (CsA) (Brookes, Land et al. 1998). Echtay et al proposed that 

4HNE, the end product of LP, acts as secondary messenger to induce proton 

leak through uncoupling proteins (UCPs) and adenine nucleotide translocator 

(ANT) (Echtay, Esteves et al. 2003). In additional to lipid damage, mitochondrial 

proteins were indicated to be inactivated by oxidative damage in various 

neurodegenerative diseases (Butterfield and Lauderback 2002; Gibson and 

Huang 2004; Martin, Rosenthal et al. 2005). In a study in which mitochondria 

were exposed to PN toxicity as well as Ca2+, the investigators observed the PN-

induced membrane protein thiol cross-linking correlated to mitochondrial swelling 

(Gadelha, Thomson et al. 1997). Moreover, proteomic identification of specific rat 

mitochondrial fraction proteins demonstrated highly oxidized key components of 

electron transport chain (ETC) 3 hrs after CCI (Opii, Nukala et al. 2007). In our 

previous study, quantitative slotblotting measurement of post-injury mitochondrial 

LP and protein nitration levels showed immediate increase of PN-induced 

oxidative damage which persists for hours after injury (Singh, Sullivan et al. 

2006a, see Appendix II). Although the level of 3NT in injured brain mitochondria 
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is still elevated, it has lost significance by 12 hrs after injury due perhaps to its 

decreased production and its possibly increased proteolytic removal (Grune, 

Reinheckel et al. 1997). In the current study, we demonstrated that the early (15 

min post-injury) tempol treatment largely reduced the 12 hrs post-injury cortical 

mitochondrial 3NT level to below baseline, and significantly lower than the 

vehicle-treated injured mitochondria. In correlation to reduced mitochondrial 

oxidative damage, mitochondrial respiration was almost completely preserved 

(Figure 3.3). Specifically, state III respiration in tempol-treated group shows full 

preservation compared to the sham group, and the RCR (state III/state IV) 

showed maintenance to within normal limits  

The complex II-driven succinate respiration showed no significant 

decrease after injury. Therefore, complex I-driven respiration possibly accounted 

for most of the impaired respiratory function observed. Complex I is a very large 

complex member with FMN redox center and many iron-sulfur centers. Hence it 

is vulnerable to oxidative inactivation. Moreover, complexes I contains seven 

mtDNA-encoded subunits out of the thirteen peptides encoded by mtDNA. 

mtDNA is also a susceptible target for oxidative damage due to its proximity to 

PN production and lack of histone protection. A recent study on CNS 

mitochondria showed a correlation between the level of oxidized mtDNA bases 

and post-traumatic impairment of respiration (Sullivan, Rabchevsky et al. 2004). 

In any event, uncontrolled oxidative damage to mitochondrial membranes, 

proteins and DNA can be detrimental to their function. Our studies showed that 
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administration of the membrane permeable tempol protects mitochondria against 

oxidative damage and improves mitochondrial function at 12 hrs post-injury.  

  

Tempol Effect on Calpain-Mediated α-Spectrin Breakdown in the CCI-TBI Mouse 

Model 

Calpain-mediated proteolysis has been implicated in many pathological 

conditions. Evidences for mitochondrial damage and cytoskeletal proteolysis 

coincide with calpain activity have been demonstrated in TBI models (Chan and 

Mattson 1999; Wang 2000). Calpain, a cysteine protease, is activated in 

response to cytosolic Ca2+ elevation. It was suggested that calpain plays a role in 

dendritic remodeling, membrane repair and resealing and after injury (Faddis, 

Hasbani et al. 1997). However, the disruption of neuronal Ca2+ homeostasis may 

result in excessive activation of calpain (Saito, Elce et al. 1993; Bartus, Elliott et 

al. 1995). In addition to that, a rat CCI model RT-PCR study revealed increased 

mRNA expression of calpain and cysteine proteases within minutes after injury 

that persisted for days post-injury (Ringger, Tolentino et al. 2004). Moreover, 

calpain has a similar temporal profile as caspases, and responses to different 

injury severities even though calpain responds to a greater degree (Thompson, 

Gibson et al. 2006; Deng, Thompson et al. 2007). Because of its extensive 

involvement in ischemia and traumatic neuronal injuries, calpain-mediate 

proteolysis is proposed as a final common pathway of neuronal cell death 

following various insults (Bartus, Elliott et al. 1995; Bartus, Dean et al. 1998).  
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Dramatic upregulation of calpain activity progresses for hours after injury, 

which provides a broad temporal opportunity for neuroprotection (Saatman, 

Graham et al. 1998; Deng, Thompson et al. 2007). Our previous work (Chapter 2 

and Deng, Thompson et al. 2007) showed that post-traumatic calpain activation 

and cytoskeletal proteolysis is preceded by PN-mediated oxidative damage, 

mitochondrial dysfunction, impairment of Ca2+ homeostasis and presumably 

intracellular Ca2+ overload and is then followed by neurodegeneration. If these 

processes are indeed linked as a series of events, then tempol treatment, which 

is known to interfere with the initiating PN-induced oxidative damage and 

mitochondrial dysfunction, should also attenuate the downstream calpain-

mediated proteolytic damage to cellular elements. We first tested this hypothesis 

through single i.p. dose tempol treatment administered immediately after CCI 

which showed an inhibitory effect on calpain activity at 1 hr post-injury. We 

accordingly conclude that the membrane permeable tempol is rapidly taken up by 

mitochondria where it prevents their oxidative damage and loss of Ca2+ buffering 

capacity leading to an attenuation of intracellular Ca2+ overload and prevention of 

calpain over-activation. However, when we waited until 6 hrs after injury, this 

protective effect observed at 1 hr was no longer apparent in the case of early 

single dose tempol treatment. This is probably due to the fact that tempol has a 

very short half-life in mice (<30 min) (Kamatari, Yasui et al. 2002). Furthermore, 

the high blood flow in cortical tissue will hasten its elimination from the injured 

brain tissue following a single dose.   
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Subsequently, we administered multiple dosages of tempol at 3 hrs 

intervals up to 12 hrs and measured its effect at 24 hrs after injury. This 

experiment showed that this more aggressive multiple dose tempol treatment 

had a partial inhibitory effect on calpain-mediated proteolysis. However, the 

therapeutic window for the achievement of this effect is disappointingly short 

since delayed initiation of tempol treatment until 1 or 2 hrs post-injury failed to 

attenuate the 24 hrs peak of calpain-mediated α-spectrin degradation. This result 

may indicate that even though PN-induced oxidative damage is a critical early 

event in post-TBI injury, the potential therapeutic practicality of its inhibition is 

limited by a short therapeutic time window.   

Alternatively, it is now well known that that oxidative stress has inhibitory 

effects on both calpain (Benuck, Banay-Schwartz et al. 1992; Guttmann, Elce et 

al. 1997; Guttmann and Johnson 1998) and caspase 3 (Lau, Arundine et al. 

2006) via oxidation of cysteine residues at the active site. Accordingly, total 

inhibition of ROS may remove the protective aspect of free radicals which may 

serve to reduce post-traumatic calpain activation together with the attenuation in 

oxidative damage to the mitochondria. This dual effect of ROS in this case, may 

be seen in the biphasic increase time course of α-spectrin degradation we 

observed which is similar to that seen in different experimental models in vitro 

and in vivo neural injury (Neumar, Meng et al. 2001; DeRidder, Simon et al. 

2006; Xiong, Rabchevsky et al. 2007). As shown by our previous study, there 

was a biphasic increase of SBDPs connected by a plateau phase between 3 hrs 

and 12 hrs. Between 12 hrs and 24 hrs, both SBDPs exhibited a greater than 
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75% elevation (Deng, Thompson et al. 2007). The sudden and significant 

increase in SBDPs began at 12 hrs which represented the outer limit of the 

measurable increase in PN-mediated 3NT (Figure 2.4). Thus, the wave of 

oxidative damage occurring between 30 min and 12 hrs post-injury while 

detrimental to the injured tissue overall may at the same time serve to limit the 

full expression of calpain activation. This two-edged sword in regards to the 

influence of PN on calcium-induced activation of calpain may explain why at best 

tempol is only partially effective at attenuating cytoskeletal degradation even 

when given soon after TBI. It may also help explain why tempol has an 

apparently very short therapeutic window in relation to inhibiting downstream 

proteolytic damage. In other words, if tempol is delayed until calpain activation is 

more established, the removal of the oxidative attenuation of calpain activity may 

lead to an exacerbation of calpain activity that may offset the benefits of the 

tempol reduction in mitochondrial oxidative damage. Further experiments are 

needed to investigate this notion. In any event, it seems clear that antioxidant 

treatment may need to be combined with other agents that more directly target 

calpain activation in order to achieve a more pronounced and practical 

neuroprotective approach. Copyright © Ying Deng 2007.  
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Chapter Four 

Effect of Tempol on Behavioral Recovery and Neurodegeneration after 

Traumatic Brain Injury 

 

Introduction 

  

Every year in the United States an estimated 1.5 to 2 million people 

sustain traumatic brain injury (TBI). Despite the progress in diagnostics and 

surgical treatments and rehabilitation care, most patients suffer from persistent 

physical and psychological impairments. An efficacious neuroprotective 

compound is yet to be developed in TBI clinical trails to prevent secondary 

neurodegeneration and chronic neurological functional impairment. The primary 

mechanical TBI leads to secondary neural cell damage and cell death which is 

proportional to the degree of cognitive or sensory and motor dysfunction. 

Immediate post-traumatic neurochemical changes begin immediately after injury. 

(Katayama, Becker et al. 1990) which include widespread cellular depolarization 

and massive release of the excitatory neurotransmitter, glutamate, resulting in 

calcium (Ca2+) influx through ion channels associated with glutamate receptors. 

Moreover, the disruption in cellular Ca2+ homeostasis leading to intracellular 

overload is to multiple cytotoxic events including ROS production, mitochondrial 

dysfunction, and Ca2+-dependent protease activation as indicated in 

experimental TBI models (Young 1992; Azbill, Mu et al. 1997). As indicated in 

our previous experiments study using the CCI mouse model, the production of 
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the reactive oxygen species (ROS) peroxynitrite (PN), is an early immediate 

post-traumatic event that appears to lead to mitochondrial damage and functional 

failure and calpain over-activation (Chapter2; Deng et al, 2007). Moreover, we 

have shown that early administration of the multi-mechanistic nitroxide 

antioxidant tempol within the first 15 min post-injury can reduce post-traumatic 

PN-mediated oxidative damage, maintain mitochondrial function and lessen 

calpain-mediated cytoskeletal degradation. In the current study, we investigated 

the effect of early tempol to improve neurological recovery and reduce 

neurodegeneration during the first 7 days in the mouse severe controlled cortical 

impact (CCI) TBI model.  
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Materials and Methods 

 

 All the surgical, injury and animal care protocols described below have 

been approved by the University of Kentucky Institutional Animal Care and Use 

Committee, and are consistent with the animal care procedures set forth in the 

guidelines of the U.S. Public Health Service Policy on Humane Care and Use of 

Laboratory Animals. 

 

Mouse Model of Controlled Cortical Impact (Focal) Traumatic Brain Injury 

 Young adult male CF-1 mice (Charles River, Portage, MI) weighing 29-

31g were used in this study. The mice were anesthetized with isoflurane (3.0%), 

shaved, and then placed in a stereotaxic frame (David Kopf Instruments, 

Tujunga, CA). Throughout the surgery, the mice were provided with constant 

isoflurane (SurgiVet, 100 Series) and oxygen (SurgiVet, O2 flowmeter, 0-4Lpm).  

The head was positioned in the horizontal plane of a stereotaxic frame with the 

nose bar set at zero. We firstly produced a 4mm craniotomy lateral to the sagittal 

suture, and centered between lambda and bregma. A cortical contusion was 

produced on the exposed cortex (the anterior-posterior coordinate for the 

epicenter of the injury was  Bregma -2.0mm) using a pneumatically-controlled 

impactor device (Precision System Instruments TBI-0200 Impactor, Lexington, 

KY) similar to that previously described (Sullivan, Bruce-Keller et al. 1999; 

Sullivan, Thompson et al. 1999; Hall, Sullivan et al. 2005) except that the current 

device utilizes a unique contact sensor mechanism that ensures accurate and 
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reliable determination of cortical surface prior to initiating the injury sequence. 

This results in increased accuracy and reproducibility in regards to the CCI injury 

compared to that produced by earlier CCI impactors. In the present studies, the 

impactor containing a 3mm diameter rod tip compressed the cortex at 3.5m/sec 

to a depth of 1mm with a dwell time of 50msec to produce a severe injury. After 

surgery and injury, a 4mm disk made from dental cement (Dentsply Trubyte) was 

placed over the craniotomy site and adhered to the skull using cyanoacrylate. In 

order to prevent immediate post-traumatic hypothermia, following the suturing of 

the skin, mice were placed in a Hova-Bator incubator (37˚C, model 1583, Randall 

Burkey Co) until them regained consciousness (determined by the regain of the 

righting reflex and increased mobility). The injured mice were allowed to survive 

from 7 days. The N for each time point group was 12 animals based upon our 

experience with the variability seen with these measurements in previous studies 

(Kupina, Detloff et al. 2002; Hall, Sullivan et al. 2005). 

 

Tempol Preparation 

 Tempol was purchased from Sigma-Aldrich (Milwaukee, WI, U.S.A) and 

freshly prepared in 0.9% saline before abdominal intraperitoneal (i.p.) injection. 

Animals were administered five i.p. dosages of tempol at 300mg/kg according to 

our dose-response study at 15 min, 3 hrs, 6 hrs, 9 hrs and 12 hrs. Used as 

control to tempol treatment group (injured-tempol), 9% saline was given as 

vehicle to animals (injured-vehicle). Another control group involved sham animal 

with craniotomy but no contusion injury, which was as well treated with vehicle 
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(sham-vehicle). Sham animals treated with tempol (n=12) in the dose-response 

study was tested, and indicated no difference from sham-vehicle group (data not 

shown). There was zero mortality in the current study.  

 

Neuroscore Behavioral Test 

The neuroscore test was used to assess the neurological status of the 

sham and TBI mice at 48 hrs and 7 days post-injury. This test is modified from 

previously described series of tests used for assessing the effects of TBI in the 

rat (McIntosh, Vink et al. 1989), and adapted for mouse (Murai, Pierce et al. 

1998; Raghupathi, Fernandez et al. 1998). In the present study, we employed the 

neuroscore with three components: grid walk (front limb and hind limb), cagetop 

(front limb and hind limb) and lateral pulsion. In preliminary experiments we 

documented that the neuroscore test was able to detect motor deficit induced by 

injury after either moderate (0.5 mm) or severe (1.0 mm) CCI TBI.  In each 

component, the animal can receive a total of 4 points for a maximum high of 12 

points. Gridwalk: In this component, the mice are forced to walk on a metal 

gridwalk and timed for 1 min. An observer, who is unaware of the mouse 

treatment groups, observes the left vs. the right limb 1) for a greater number of 

slips on the right side than the left; 2) for more profound slips on the right side as 

apposed to the left.  The animal can lose a maximum of 1 point for the front and 

1 point for the hind limb for this portion of the motor assessment. Cagetop: In the 

second neuroscore component, there are total of 3 points that the mice can lose 

for visible deficits in hind limb and front limb function each. For hind limb 
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functional assessment, the animal is held by the head and the tail above the grid 

and and then slowly moved down toward the grid as the observer assesses the 

hind limbs for toe splay as well as hind limb extension. For front limb functional 

impairment measurement, the animal is suspended by the tail and lowered 

toward the cage top until he can grab the rungs of the cage top during which he 

is determined how well he extends his arms. Lateral pulsion: For the third 

component of the neuroscore test, the animal is placed on a rubber mat, making 

sure its body is parallel to the corrugations on the mat.  He is then slowly pushed 

back and forth the entire width of the mat.  This is done twice slowly to prime the 

animal. After these two practice trials, the first trial is started with a slow push 

(same speed as for the practice trials) and then accelerated for each subsequent 

trial up to 4 trials. Four points are deducted if the animal rolls at the 1st trial, 3 

points at the 2nd trial, 2 points at the 3rd trial and 1 point at the 4th trial. The animal 

gains all points if he does not roll after 4 trials.  

 

De Olmos Silver Staining Analysis of Neurodegeneration 

 Following the completion of the 7 days post-injury neuroscore test, 

neurodegeneration was examined using the de Olmos aminocupric silver 

histochemical technique as previously described (de Olmos, Beltramino et al. 

1994; Switzer 2000; Hall, Gibson et al. 2005; Hall, Sullivan et al. 2005).  At 7 

days the mice (N=12) were overdosed with sodium pentobarbital (200mg/kg i.p) 

and transcardially perfused with 0.9% sodium chloride, followed by a fixative 

solution containing 4% paraformaldehyde.  Following decapitation, the heads 
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were stored in a fixative solution containing 15% sucrose for 24 hrs after which 

the brains were removed, placed in fresh fixative and shipped for histological 

processing to Neuroscience Associates Inc (Knoxville TN). The brains used for 

this study were embedded into one gelatin block (Multiblock® Technology, 

Neuroscience Associates). The block was then frozen and thirteen 35µm coronal 

sections were taken 420µm apart between 1.1mm anterior and 4.4mm posterior 

to bregma, were de Olmos silver-stained to reveal degenerating neurons and 

neuronal processes, and then counterstained with Nuclear Fast Red. The brain 

sections were photographed on an Olympus Provis A70 microscope at 1.25× 

magnification using an Olympus Magnafire digital camera and the image was 

analyzed by Image-Pro Plus (4.0). The percentage area of silver staining for 

each brain section was calculated by dividing the area of ipsilateral hemispheric 

silver staining in each section by the area of the contralateral hemispheric area 

and multiplying by 100. The volume of silver staining in the ipsilateral hemisphere 

as a percentage of the contralateral hemispheric volume was estimated by the 

equation % V = t × Σ % a(s), where % V is percent silver stain volume, t = the 

distance between sections analyzed (420µm) and Σ % a (s) is the sum of percent 

area of silver staining in all sections examined (13 for each brain) (Hall, Sullivan 

et al. 2005). 

 

Lesion Volume Measurement 

 In addition to measuring the volume of neurodegeneration with the 

DeOlmos silver staining method, the brain sections were photographed on an 
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Olympus Provis A70 microscope at 1.25× magnification using an Olympus 

Magnafire digital camera and the lesion volume was analyzed by ImageJ 1.37v 

(NIH) (Michel and Cruz-Orive 1988; Sullivan, Thompson et al. 2000; Pandya, 

Pauly et al. 2007). The percentage area of ipsilateral cortical tissue spared for 

each brain section was calculated by dividing the area in each section by the 

area of the contralateral cortex and multiplying by 100. The volume of the 

ipsilateral cortical spared tissue as a percentage of the contralateral cortical 

volume was estimated by the sum of percent area of spared tissue of all sections 

multiplied by the distance between sections analyzed.  

 

Statistical Analysis 

 For treatment group analyses, we used Statview 5.0 to perform a one-way 

analysis of variance (ANOVA), followed by Student-Newman-Keuls (SNK) post-

hoc analysis to determine the significance of differences between individual the 

non-injured sham group and injured vehicle treated vs. injured tempol treated 

groups. For multiple section analyses, we used Statview 5.0 to perform an 

ANOVA repeated measurement, followed by Student-Newman-Keuls (SNK) 

post-hoc analysis to determine the significance of differences between individual 

sections in the non-injured sham group and injured vehicle treated vs. injured 

tempol treated groups. For the ANOVA, a p<0.05 was required to establish a 

statistically significant difference across the groups. However, for the post-hoc 

SNK analysis, the program determined significance based upon a correction for 

multiple comparisons comparing among groups.  
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Results 

 

Behavioral Outcome Measured by Neuroscore Motor Test after Tempol 

Treatment  

 Five i.p. dosages of tempol (300mg/kg each; last dose at 12 hrs after 

injury) were administered to the animals at a three hours intervals beginning at 

15 min following the CCI injury. Behavioral outcome was assessed at 48 hrs and 

7 days after TBI respectively measured by neuroscore. We divided the scores 

into fore limb and hind limb two categories. At 48 hrs after injury (Figure 4.1), the 

ANOVA revealed a significant difference across the treatment groups in both fore 

limb [F(2,33)=3.610; p<0.05] and hind limb [F(2,33)=3.927; p<0.05] motor 

function. Post-hoc analysis showed that the motor function in injured vehicle-

treated group was significantly impaired compared to the scores of the sham 

group. Although the 48 hrs fore limb and hind limb scores for the injured tempol-

treated group were not significantly different from the injured vehicle-treated 

group, the scores of the tempol-treated group were also not significantly lower 

than the sham group implying some improvement in the 48 hrs neurological 

status as a result of tempol treatment started at 15 min post-injury. At 7 days 

after injury, both fore limb [F(2,33)=2.668; p=0.0843] and hind limb 

[F(2,33)=2.797; p=0.0755] motor function showed no significant difference 

among treatment groups. Although injured vehicle-treated animals showed 

decreased scores comparing to sham group, this slight deficit was not statistically 

significant.  
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Figure 4.1 Behavioral outcome of multiple dose tempol treatment measured by 

neuroscore motor test after TBI. Neuroscore was accessed at 48 hrs and 7 days 

after injury. N = 12 animals per treatment group; values = mean + standard error; 

one-way ANOVA and Student-Newman-Keuls post hoc test: A p < 0.05 vs. sham; 

one-way ANOVA and Student-Newman-Keuls post hoc test:  
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Histological Evaluation of Neurodegeneration Measured by de Olmos 

Aminocupric Silver Staining after Tempol Treatment 

Following the 7 day neuroscore test, the brains were harvested for 

histopathological analysis of neurodegeneration.  Figure 4.2 displays the degrees 

of cortical tissue sparing (4.2A) and hemispheric neurodegeneration (4.2B) in 

injured, vehicle-treated and injured tempol-treated animals. Figure 4.2A 

measured the spared tissue in vehicle-treated vs. tempol-treated animals. The 

area of spared tissue in ipsilateral cortex was outlined and calculated as 

percentage of the area of contralateral cortex. In Figure 4.2A, tempol-treated 

group showed 5% improvement in spared cortical tissue volume compared to 

vehicle-treated group, however, the increase was not quite significant. Using the 

de Olmos aminocupric silver staining method, we are able to measure 

degenerating tissue in the entire ipsilateral hemisphere plus the ipsilateral lesion 

volume. In Figure 4.2B, both injured groups displayed a significant increase in 

neurodegeneration silver staining volume compared to sham group. However, 

the injured tempol-treated group showed significantly reduced neurodegeneration 

compared to injured vehicle-treated group [F(2,33)=125.864; p<0.05]. In Figure 

4.2C, selected coronal brain section in the epicenter displayed the improvement 

in tissue sparing as well as the reduction in the volume of neurodegeneration-

related silver staining with tempol treatment vs. vehicle treatment.  

Figure 4.3 shows the percentage of silver staining in coronal brain 

sections from the anterior hemispheric boundary of the post-traumatic 

neurodegeneration to the posterior boundary. Injured groups at all sections 

 114



showed a significant increase of silver staining compared to the sham group. The 

injured, tempol-treated group displayed significantly less silver staining than 

injured vehicle-treated group at section 28, which is in the epicenter of the injury.  
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Figure 4.2 Histological evaluation of multiple dose tempol treatment on tissue 

sparing and silver staining in ipsilateral hemisphere after TBI. A. Tissue sparing 

at 7 days after injury showed slight increase in tempol treatment group, however, 

not significant. B. Silver staining at 7 days after injury indicated significant 

reduction of silver staining in tempol treatment group. C. Selected coronal brain 

sections in the epicenter from different treatment groups. N = 12 animals per 

treatment group; values = mean + standard error; one-way ANOVA and Student-

Newman-Keuls post hoc test: A p < 0.05 vs. sham; one-way ANOVA and 

Student-Newman-Keuls post hoc test: B p < 0.05 vs. vehicle. 
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Figure 4.3 Histological evaluation of multiple dose tempol treatment on coronal 

brain section silver staining in ipsilateral hemisphere after TBI. Silver staining at 7 

days after injury indicated significant reduction of silver staining in tempol 

treatment group at coronal section 28. N = 12 animals per treatment group; 

values = mean + standard error; repeated measures ANOVA and Student-

Newman-Keuls post hoc test: A p < 0.05 vs. sham; repeated measuers ANOVA 

and Student-Newman-Keuls post hoc test: B p < 0.05 vs. vehicle. 
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Discussion 

 

 In the current study, we tested the hypothesis that tempol, by scavenging 

ROS, preserving mitochondrial function and reducing calpain-mediated 

proteolysis (Chapter 3) could reduce post-traumatic neurological impairment and 

neurodegeneration. There is compelling evidence for the key role of ROS-

induced oxidative damage in the secondary injury in TBI models (Kontos and 

Povlishock 1986; Kontos and Wei 1986; Hall, Andrus et al. 1993; Hall, Andrus et 

al. 1994; Smith, Andrus et al. 1994; Globus, Alonso et al. 1995). Most convincing 

is the fact that several antioxidant compounds have been shown to be 

neuroprotective in TBI models (Hall and Smith 1991; Marshall, Maas et al. 1998; 

Mori, Kawamata et al. 1998; Marklund, Lewander et al. 2001). However, most 

antioxidants are targeting one specific free radical and react stoichiometrically.  

As indicated in our first study (Chapter 2), PN is probably the key mediator 

in post-traumatic oxidative damage, which is the main source for both lipid 

peroxidation and protein nitration (Deng, Thompson et al. 2007). Tempol, a PN-

derived free radical scavenger, is a membrane permeable, catalylic antioxidant, 

which was shown to react promptly with hydroxyl radical, nitrogen dioxide and 

carbonate radical (Carroll, Galatsis et al. 2000; Bonini, Mason et al. 2002). 

Moreover, PN as an upstream factor in the secondary injury cascade, we proved 

that tempol was able to inhibit oxidative damage, ameliorate mitochondrial 

dysfunction and decrease calpain-mediated cytoskeletal degradation at least 

when administered during the first 15 min post-injury. Therefore, in the present 
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study, we further examined the ability of tempol to exert a definitive 

neuroprotective effect in terms of a reduction in neurological impairment and 

neurodgeneration.  

We applied de Olmos aminocupric silver staining in this study to measure 

neurodegeneration. Comparing to conventional histological staining used in 

many pathohistological studies, the silver staining method is much more sensitive 

in detection of injured neurons and axons in response to TBI (de Olmos, 

Beltramino et al. 1994; Switzer 2000). At 7 days after injury, severe cavitation 

has developed at the epicenter of the contusion. However, silver staining 

revealed subcortical tissue damage widespread to ipsilateral hippocampus and 

dorsolateral thalamus. Moreover, silver staining disclosed commissural fiber 

damage extended to the contralateral site to the injury. Therefore, silver staining 

is able to detect cellular damage that is not measured by conventional 

histological staining. Spared tissue volume showed no significant difference 

between vehicle and tempol treatment. However, measurement of silver staining 

revealed a significant, but rather modest reduction in neurodegeneration after 

tempol treatment.  

Despite the improvement in overall neurodegeneration, there was no 

significant functional recovery after the tempol treatment measured by 

neuroscore at 7 days after injury. The current neuroscore motor test was 

examined in a pilot study. At 48 hrs and 72 hrs after severe (1.0mm) and 

moderate (0.5mm) CCI in mouse, animals showed significant deficit comparing to 

sham animals (data not shown). At 48 hrs, severe TBI mice displayed further 
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impairment than moderate TBI mice. However, at 72 hrs, both severe and 

moderate TBI mice scored similarly. In the current study, we accessed the 

neuroscore of the mice at 48 hrs and 7 days respectively. The deficit was 

detectable in both fore limb and hind limb motor function at 48 hrs after injured 

with vehicle treatment, but not at 7 days. Nevertheless, the tempol treatment did 

appear to exert some improvement in neurological recovery at the 48 hrs time 

point. Although the tempol group did not manifest a significant difference 

compared to the neuroscore of the vehicle treatment group, neither the fore limb 

nor the hind limb functional scores were significantly differently from sham group 

in contrast to the significantly lower scores in the injured, vehicle-treated mice 

compared to the sham group. This suggested that motor function was somewhat 

improved with the tempol treatment. At 7 days after injury, we accessed the 

neuroscore again. However, scores in all groups were similar and there was no 

significant difference among groups. We suspect that the current neuroscore test 

may not be suitable for long-term behavioral evaluation. In any event, the 

beneficial effects of tempol also demonstrated previously in a rat TBI model (Beit-

Yannai, Zhang et al. 1996; Zhang, Shohami et al. 1998) and in cerebral ischemia 

models (Rak, Chao et al. 2000; Leker, Teichner et al. 2002) are consistent with 

the view that the compound possesses demonstrable neuroprotective properties 

in CNS injury models, in general.    

There may be multiple reasons for the modest effect of tempol. First of all, 

the testing of tempol for its ability to reduce calpain-mediated cytoskeletal 

degradation which was assessed at 24 hrs after injury (Chapter 3), showed a 
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statistically significant 45% reduction in calpain-mediated cytoskeletal 

degradation. We suspect that the partial inhibition of calpain-mediated proteolysis 

is part of the reason why tempol did not have more pronounced effect in 

preserving neuronal tissue. Secondly, in the present experiments, 

neurodegeneration was not examined until 7 days after injury rather than at its 

peak which is 48 hrs post-injury (Chapter 2; Deng, Thompson et al. 2007). This 

was done so that we could assess neurological status out to 7 days before 

performing histopathology. However, the 7 day time point where less silver 

staining is seen compared to the 48 hrs peak may make it more difficult to 

observe a more robust neuroprotective effect. Thirdly, as noted in Chapter 3, the 

half life of tempol in mice is fairly short (i.e. <30 min) (Kamatari, Yasui et al. 2002) 

and therefore even repeated dosing with the compound is unable to maintain 

therapeutic levels adequately during the first 12 hrs post-injury. Other longer-

acting PN-directed antioxidants may be more effective due to the ability to 

maintain a steady, non-fluctuating radical scavenging effect. Lastly, even though 

PN-mediated oxidative damage is an important player in the secondary injury 

process, a more complete neuroprotective effect may require simultaneously 

blocking the secondary injury cascade at multiple points downstream from the 

early oxidative damage with a mitochondrial protective agent and/or a direct 

inhibitor of calpain.   

 Concerning the latter option, the principle pathological role of calpain-

mediated proteolysis is demonstrated in secondary neuronal cell death (Buki, 

Siman et al. 1999; Povlishock, Buki et al. 1999; Kupina, Detloff et al. 2003; Hall, 
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Sullivan et al. 2005). Calpain is a calcium-dependent protease and is triggered in 

response to massive calcium influx following TBI (Saatman, Graham et al. 1998; 

Kupina, Detloff et al. 2003; Serbest, Burkhardt et al. 2007). Immuno-detection of 

structural protein spectrin, which is a substrate for calpain, showed calpian-

mediated proteolysis in damaged axons (Roberts-Lewis, Savage et al. 1994). In 

addition to spectrin, other structural proteins, such as microtubule associated 

proteins (MAPs) and neurofilaments (NFs) are also substrates for calpain, and 

are associated with axonal damage (Maxwell, Povlishock et al. 1997; Okonkwo, 

Pettus et al. 1998). Therefore, calpain is a logical therapeutic target for 

pharmacological inhibition in combination with an antioxidant in order to more 

completely prevent post-traumatic neurodegeneration. Indeed, several calpain 

inhibitors administered either prior to or after CNS injury (Saatman, Murai et al. 

1996; Kupina, Nath et al. 2001; Kupina, Detloff et al. 2002; Buki, Farkas et al. 

2003) have been shown to improve post-traumatic neurological recovery and 

tissue sparing.  

In conclusion, despite the possibly limited therapeutic potential of tempol 

by itself, the protective efficacy of the compound is at least adequate to support 

our original hypothesis that PN-mediated oxidative damage is an upstream post-

traumatic event that contributes to mitochondrial dysfunction, intracellular Ca2+ 

overload, calpain-mediated cytoskeletal degradation and neurodegeneration as 

illustrated in Figure 4.4. Copyright © Ying Deng 2007.  
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Figure 4.4 Hypothetical interrelationship between PN-induced oxidative damage 

in neuronal mitochondria and the compromise of Ca2+ homeostasis, calpain-

mediated proteolysis and neurodegeneration. Our results suggest that the potent 

antioxidant, tempol, by targeting the upstream PN-derived free radicals, produces 

cascades of effects on the downstream cellular elements, such as preserve 

mitochondrial function, ameliorate Ca2+ overload, reduce calpain-mediated 

proteolysis and neurodegeneration. 
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Chapter Five 

Summary and Conclusions 

 

 Traumatic brain injury (TBI) is comprised of the primary injury and 

secondary injury. The initial mechanical assault to the head induces instant 

tissue damage, which is termed the primary injury. However, the primary injury 

induces cascades of neurochemical changes, which lead to further neuronal cell 

loss, microvascular damage and dysfunction and impairment in behavioral 

function. Secondary injury begins immediately after injury, and this post-injury 

phase may last for days and weeks depending on the severity of the initial injury. 

Although little can be done to reduce the primary injury apart from decreasing the 

risk of TBI, it is feasible to ameliorate post-TBI secondary injury by timely 

pharmacological intervention. Thus, understanding pathological mechanisms 

responsible for post-traumatic neuronal damage will shed light on 

neuroprotective pharmaceutical approaches.  

Successful pharmacological interventions for TBI patients are not 

available to this day due in large part to the complexity of the neurological 

changes initiated by the primary injury. In this series of studies, we employed a 

widely used focal TBI model, controlled cortical impact (CCI) mouse model. The 

current project has identified peroxynitrite (PN) as an important therapeutic target 

for pharmacological intervention. Moreover, we explored the effect of PN-derived 

radical scavenger, tempol, on PN-induced oxidative damage, mitochondrial 
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dysfunction, calpain-mediated proteolysis, neurodegeneration and neurological 

outcome. 

 The first study is a thorough comparative time course assessment of PN-

induced oxidative damage, calpain-mediated α-spectrin breakdown and 

neurodegeneration measured by de Olmos aminocupric silver staining in 

ipsilateral cortex in the CCI mouse model. Both quantitative slotblotting and 

immunohistochemical studies indicate that PN is the main source of lipid 

peroxidation and protein nitration, suggesting that PN is an important mediator of 

post-traumatic oxidative damage. The onset of PN-mediated oxidative damage 

measured in cerebral cortical tissue begins immediately after injury and peaks at 

1 hr after injury. This is coincident with an increase of oxidative damage in 

cortical mitochondria, suggesting that mitochondria are perhaps the main source 

and target of post-traumatic production of PN. Furthermore, quantitative 

westernblotting measured calpain-mediated cytoskeletal degradation which is 

also increased within the first hours after injury. The increased appearance of 

calpain-mediated spectrin breakdown (SBDPs) progresses over time and 

reaches its peak at 24 hrs. Calpain-specific SBDP145 showes a much higher 

magnitude than non-specific calpain/caspase 3-generated SBDP150, indicating 

that calpain is the main mediator in post-traumatic proteolysis. Moreover, the 

peak of calpain-mediated cytoskeletal breakdown precedes the peak of 

neurodegeneration, which is at 48 hrs after injury.  

 The time course study elegantly illustrated the interrelationship of several 

key mediators following TBI. The early increase of PN production correlates with 
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mitochondrial dysfunction. As a key calcium buffer in the cell, the loss of 

mitochondrial function exacerbates Ca2+-dependent calpain activity, and 

eventually neuronal cell loss. The quantitative measurement of the end products 

of oxidative damage and calpain-mediated proteolysis also provides measurable 

index for therapeutic studies. More importantly, the complete temporal profile of 

oxidative damage, calpain activity and neurodegeneration defines the probable 

time windows for pharmacological intervention. These results reveal that PN is 

an upstream event that precedes mitochondrial dysfunction, calpain over-

activation and neurodegeneration. Therefore, targeting PN-induced oxidative 

damage may have multiple beneficial effects through inhibition of several key 

mediators in the secondary injury process. However, the extremely early peak of 

oxidative damage also makes it a difficult target. Timely treatment is critical in 

therapeutic interventions. Based on the time course study, we chose the optimal 

time point of each end point for neuroprotective effect evaluation.   

 To test the hypothesis that blockade of upstream PN-induced oxidative 

damage will produce a neuroprotective effect, we pharmacologically targeted PN 

using a potent antioxidant, tempol, in the CCI model. Tempol is a membrane 

permeable, catalytic scavenger of PN-derived free radicals. In an initial study, we 

examined the dose-response of tempol in regards to an inhibitory effect on PN-

induced oxidative damage across a three log range of dosages (3, 10, 30, 100 

and 300mg/kg i.p.). We chose the PN-specific marker, 3-nitrotyrosine (3NT), as 

an index to examine the effect of tempol on PN-induced oxidative damage. In 

order to achieve maximal effect, tempol was administered i.p. at 15 min and 
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tissue was harvested at 1 hr post-injury when oxidative damage is at its peak. 

Our results show that tempol inhibited PN-mediated oxidative damage in a dose-

related manner with the highest dose levels of 30, 100 and 300mg/kg each 

producing a statistically significant effect. Moreover, quantitative slotblotting 

measurement of 3NT indicated that at 300mg/kg, tempol reduces 3NT to sham 

level. This study demonstrated that tempol is an effective inhibitor of PN-

mediated oxidative damage in the injured brain.  

 Following the success of tempol in inhibition of PN-induced oxidative 

damage, we chose the optimal dose (300mg/kg) of tempol in the subsequent 

studies to confirm our hypothesis that oxidative damage is the upstream element 

in the secondary injury cascade. We hypothesizes that mitochondria are the main 

source of PN production based upon previous studies in our laboratory showing 

that PN-mediated damage occurs in mitochondria from the injured brain which 

parallels the loss of respiratory function and Ca2+-buffering capacity. Indeed, in 

response to glutamate-induced excitotoxic calcium influx, mitochondrial Ca2+ 

uptake induces superoxide and nitric oxide radical production, which can 

combine with a diffusion rate-limited rate constant to produce PN. To test the 

association between mitochondrial PN oxidative damage and respiratory 

dysfunction, we administered tempol 15 min after injury and isolated the 

mitochondria from the injured cerebral cortex at 12 hrs post-injury. Using Clarke-

type electrode measurement of mitochondrial respiration, tempol-treated 

mitochondria show improved maintenance of respiratory function together with 

reduced oxidative protein damage. The protective effect of tempol on 
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mitochondrial function reveals that: 1) tempol is membrane permeable and 

effective in penetrating into mitochondrial matrix; 2) mitochondria are a main 

source for PN production as well as the primary target of PN-mediated oxidative 

damage. Moreover, the success of using tempol in vivo to preserve mitochondrial 

function, strongly suggests that PN plays a significant role in mediating 

mitochondria calcium influx-induced functional impairment. 

 Moving downstream in the hypothesized secondary injury cascade, we 

examined the effect of tempol on calcium-dependent calpain activity. Calpain is 

activated upon calcium influx and is shown to play an important role in 

cytoskeletal degradation, which is considered as a final common pathway to cell 

death. Because of the close relationship of calpain and cytosolic calcium level, 

we hypothesize that tempol, by preserving mitochondrial function and 

maintaining calcium homeostasis, will indirectly attenuate calpain activity. To test 

this hypothesis, we administered single i.p. dose of tempol 15 min after injury and 

evaluated calpain-mediated SBDPs at 1 hr and 6 hrs post-injury measured by 

quantitative slotblotting. The results demonstrate that tempol significantly 

reduces calpain-specific SBPD145 at 1 hr but not at 6 hrs after injury. The 

inhibitory effect of antioxidant tempol on calpain-mediated cytoskeletal 

proteolysis strongly confirms that PN-induced oxidative damage is upstream to 

calpain over-activation. However, the effect of tempol on calpain activity is short-

lived possibly due to the high elimination rate of tempol in the mouse brain. 

Therefore, we explored the effect of a multiple dose regimen with tempol on 

calpain-mediated cytoskeletal degradation. In the tempol multiple dose 
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experiment, we administered tempol 300 mg/kg i.p. to animals at 15 min, 3 hrs, 6 

hrs, 9 hrs and 12 hrs post-injury and harvested the tissue at 24 hrs, when 

calpain-mediated SBDPs are at their peak. This dosing regimen was designed to 

maintain an inhibition of PN-mediated oxidative damage over its full time course 

of 12 hrs based upon our original time course studies. Our results show tempol 

significantly reduces SBDPs by 45% at 24 hrs post-injury. Although the 

prolonged treatment with tempol may have successfully inhibited most of the 

oxidative damage, the inhibition of calpain activity was only partial. A possible 

explanation is that PN itself has inhibitory effect on both calpain and caspase 3 

by oxidizing cysteine residues on their active site. Therefore, the complete 

inhibition of PN may partially antagonize the full expression of its protective 

benefits via a removal of an oxidative break on calpain activity.   

 We then did a tempol therapeutic window study by measuring calpain-

mediated SBDPs. We used the same multiple dosing regimen, but delayed 

treatment by 1 hr and 2 hrs. In this study, we are not able to observe any 

beneficial effect of tempol on calpain inhibition. It is possible that the first hour 

window is crucial for PN-induced oxidative damage and tempol alone may not be 

able to induce maximal inhibition on calpain activity.  

 We have successfully proven that by preventing upstream PN-induced 

oxidative damage, we can ameliorate mitochondrial dysfunction and attenuate 

calpain-mediated cytoskeletal degradation, which is linked to cell injury and 

death. Therefore, we applied the multiple dosing regimen and examined the 

neurodegeneration at 7 days after injury. In this study, we measured ipsilateral 
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cortical tissue spared volume and ipsilateral hemispherical silver staining volume. 

Tempol treatment increases cortical tissue sparing. However, this effect is not 

significant compared to vehicle-treated group. In contrast, silver staining detected 

a significant decrease in neurodegeneration in tempol-treated group. In the 

tempol-treated group, the extent of the silver staining is reduced. We believe that 

silver staining is a much more sensitive technique that more accurately reveals 

the degree of post-traumatic tissue damage and more sensitively shows the 

efficacy of neuroprotective agents.  

 In this last study, we examined the behavioral outcome in parallel with the 

neurohistological study. Specifically, we measured motor function of the TBI mice 

at 48 hrs and 7 days post-injury. At 48hrs, we observed a deficit in motor function 

in the injured vehicle-treated animals. However, the mean score of the tempol-

treated animals is not significantly different from either the non-injured sham 

group or vehicle-treated group. At 7 days, the neuroscore is not able to detect 

any difference among the groups suggesting that future studies should focus on 

the earlier 48 hrs time point. Moreover, a more sensitive functional test, or a 

combination of different behavioral assessment, such as cognitive as well as 

motorsensory testing, should be considered in the future. 

 In summary, the complete time course study and the pharmacological 

study compliments each other, and provide strong evidence for PN-induced 

oxidative damage being an important upstream mediator in the secondary cell 

death cascade. In our study, scavenging PN-derived free radicals with the 

nitroxide antioxidant tempol produces beneficial effects on mitochondrial function 
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and probably calcium buffering capacity which in turn reduces downstream 

calpain-mediated proteolysis and neurodegeneration. However, the complexity of 

the secondary injury process after TBI challenges the idea that single therapy 

can achieve optimal neuroprotection and improvement in functional outcome. In 

the future, it will make sense to investigate combination therapies that 

simultaneously target PN-induced oxidative damage along with either inhibition of 

mitochondrial permeability transition or calpain activation or both. Copyright © 

Ying Deng 2007.  
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Appendix I 

 

 

 

Figure A.1 Time course of mitochondrial states III & IV respiratory rates in 

mouse ipsilateral cortex after severe (1.0mm) TBI. Mitochondrial oxygen 

consumption was measured using a Clark-type electrode in a continuously 

stirred, sealed chamber (Oxygraph System; Hansatech Instruments Ltd). Purified 

mitochondrial protein (25 to 35 µg) was suspended in respiration buffer 

(125mmol/L KCl, 2mmol/L MgCl2, 2.5mmol/L KH2PO4, 0.1% BSA, 20mmol/L 

HEPES, pH7.2) in a final volume of 250µl. Data are presented as mean ± s.e.m. 

Statistical differences (one-way ANOVA and Student-Neuman-Keuls post hoc 

test): * P<0.0001 versus sham; # P<0.001 versus sham. 
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Appendix II 

 

 

 

Figure A.2 Time course of lipid (HNE) and protein (protein carbonyl) oxidative 

damage in percoll-purified mitochondria from the ipsilateral cortex after a severe 

(1.0mm) TBI. Distribution of HNE, protein carbonyls, and 3NT in cortical 

mitochondria from mice at 30 min, 3 and 12 hrs after injury and were compared 

with sham (3 hrs) animals. Approximately 2.5µg of percoll-purified mitochondrial 

protein isolated from cortical region was applied onto Protran nitrocellulose 

membrane (Schleicher & Schuell, Dassel, Germany), as described in Materials 

and Methods, and oxidative markers were quantitated using a Minifold II 

vacuum slot blot apparatus. Data are presented as mean ± s.e.m. Statistical 

differences (one-way ANOVA and SNK post hoc test): * P<0.05 versus sham; ** 

P<0.001 versus sham; *** P<0.0001 versus sham; @ P<0.005 versus sham. 
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Appendix III 
 

Glossary of important terms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∆Ψm mitochondrial membrane 
potential  

∆pH  proton force  
3NT  3-nitrotyrosin 
4HNE  4-hydroxynonenal 
8-OH-G 8-hydroxyguanine  
8-OHdG 8-

hydroxydeoxyguanosine 
ADP  adenosine diphosphate  
AIF  apoptosis inducing factor 
ANT adenine nucleotide 

translocator 
ASDH  subdural hematoma  
ATP  adenosine triphosphate  
BBB  blood-brain barrier 
BDPs  breakdown products  
Ca2+  calcium 
CCI  controlled cortical impact  
CNS  central nervous system 
CsA  cyclosporine A 
CypD  cyclophilin D 
Cyt c  cytochrome c 
DNPH 2,4-

dinitrophenylhydrazine  
eNOS epithelial nitric oxide 

synthase 
ETC  electron transport chain 
FADH2 reduced flavin adenine 

dinucleotide  
FCCP p-trifluoromethoxy 

carbonyl cyanide phenyl 
hydrazone 

FMNH2 reduced flavin 
mononucleotide  

FPI  fluid percussion injury  
GPX  glutathione peroxidase 
GSH  glutathione  
HPLC high-performance liquid 

chromatography 
IMM inner mitochondrial 

membrane  
 

iNOS inducible nitric oxide 
synthase 

L-DOPA dihydroxyphenylalanine  
LP lipid peroxidation 
NADPH nicotinamide adenine 

dinucleotide phosphate, 
reduced form  

nNOS neuronal nitric oxide 
synthase 

MAP2 microtubule-associated 
proteins 

MDA  malondialdehyde  
mPTP mitochondrial 

permeability transition 
pore  

MPTP 1-methyl-4-phenyl-1,2,5,6 
tetrahydropyridine  

mtNOS mitochondrial nitric oxide 
synthase 

NADH nicotinamide adenine 
dinucleotide, reduced 
form  

NADPH nicotinamide adenine 
dinucleotide phosphate, 
reduced form 

NF  neurofilament 
NMDA  N-Methyl-D-aspartate  
NO  nitric oxide 
NOS  nitric oxide synthas  
ONOO• peroxynitrite anion 
ONOO⎯ peroxynitrite anion 
ONOOH peroxynitrite acid 
ONOOCO2 nitrosoperoxo carbonate 
PARS ADP-ribose synthetase  
PBS phosphate-buffered 

saline 
PGH prostaglandin 

hydroperoxidase 
PN  peroxynitrite  
PUFAs polyunsaturated fatty 

acids 
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RCR  respiratory control ratio  
ROS  reactive oxygen species 
RNS  reactive nitrogen species 
SBDPs α-spectrin breakdown 

products 
SCI  spinal cord injury  
SOD  superoxide dismutase 
XO xanthine oxidase 
TAI  traumatic axonal injury 
TBI  traumatic brain injury  
TBS  tris-buffered saline  
UCPs  uncoupling proteins 
UQ  ubiquinone 
UQ• ⎯ semiquinone anion 

species 
UQH2  ubiquinol 
XDH  xanthine dehydrogenase 
XO  xanthine oxidase 

 135



References 
 
Arrigoni, E. and F. Cohadon (1991). "Calcium-activated neutral protease 

activities in brain trauma." Neurochem Res 16(4): 483-7. 
Awasthi, D., D. F. Church, et al. (1997). "Oxidative stress following traumatic 

brain injury in rats." Surg Neurol 47(6): 575-81; discussion 581-2. 
Azbill, R. D., X. Mu, et al. (1997). "Impaired mitochondrial function, oxidative 

stress and altered antioxidant enzyme activities following traumatic spinal 
cord injury." Brain Res 765(2): 283-90. 

Bartus, R. T., R. L. Dean, et al. (1998). "Temporal ordering of pathogenic events 
following transient global ischemia." Brain Res 790(1-2): 1-13. 

Bartus, R. T., P. J. Elliott, et al. (1995). "Calpain as a novel target for treating 
acute neurodegenerative disorders." Neurol Res 17(4): 249-58. 

Bartus, R. T., N. J. Hayward, et al. (1994). "Calpain inhibitor AK295 protects 
neurons from focal brain ischemia. Effects of postocclusion intra-arterial 
administration." Stroke 25(11): 2265-70. 

Bates, T. E., A. Loesch, et al. (1995). "Immunocytochemical evidence for a 
mitochondrially located nitric oxide synthase in brain and liver." Biochem 
Biophys Res Commun 213(3): 896-900. 

Beatrice, M. C., J. W. Palmer, et al. (1980). "The relationship between 
mitochondrial membrane permeability, membrane potential, and the 
retention of Ca2+ by mitochondria." J Biol Chem 255(18): 8663-71. 

Beckman, J. S. (1994). "Peroxynitrite versus hydroxyl radical: the role of nitric 
oxide in superoxide-dependent cerebral injury." Ann N Y Acad Sci 738: 
69-75. 

Beckman, J. S. (1996). "Oxidative damage and tyrosine nitration from 
peroxynitrite." Chem Res Toxicol 9(5): 836-44. 

Beckman, J. S. and W. H. Koppenol (1996). "Nitric oxide, superoxide, and 
peroxynitrite: the good, the bad, and ugly." Am J Physiol 271(5 Pt 1): 
C1424-37. 

Behringer, W., P. Safar, et al. (2002). "Antioxidant Tempol enhances hypothermic 
cerebral preservation during prolonged cardiac arrest in dogs." J Cereb 
Blood Flow Metab 22(1): 105-17. 

Beit-Yannai, E., R. Zhang, et al. (1996). "Cerebroprotective effect of stable 
nitroxide radicals in closed head injury in the rat." Brain Res 717(1-2): 22-
8. 

Benuck, M., M. Banay-Schwartz, et al. (1992). "Peroxidative stress effects on 
calpain activity in brain of young and adult rats." Brain Res 596(1-2): 296-
8. 

Bernardi, P. (1996). "The permeability transition pore. Control points of a 
cyclosporin A-sensitive mitochondrial channel involved in cell death." 
Biochim Biophys Acta 1275(1-2): 5-9. 

Bernardi, P., K. M. Broekemeier, et al. (1994). "Recent progress on regulation of 
the mitochondrial permeability transition pore; a cyclosporin-sensitive pore 
in the inner mitochondrial membrane." J Bioenerg Biomembr 26(5): 509-
17. 

 136



Bianca, V. D., S. Dusi, et al. (1999). "beta-amyloid activates the O-2 forming 
NADPH oxidase in microglia, monocytes, and neutrophils. A possible 
inflammatory mechanism of neuronal damage in Alzheimer's disease." J 
Biol Chem 274(22): 15493-9. 

Bicker, G. (2001). "Nitric oxide: an unconventional messenger in the nervous 
system of an orthopteroid insect." Arch Insect Biochem Physiol 48(2): 100-
10. 

Blou, N. V. and O. C. Zafiriou (1985) Reaction of superoxide with nitric oxide to 
form peroxonitrite in alkaline aqueous solution. Inorg. Chem. 24, 3504-
3505.  

Bonini, M. G., R. P. Mason, et al. (2002). "The Mechanism by which 4-hydroxy-
2,2,6,6-tetramethylpiperidene-1-oxyl (tempol) diverts peroxynitrite 
decomposition from nitrating to nitrosating species." Chem Res Toxicol 
15(4): 506-11. 

Bredt, D. S. and S. H. Snyder (1990). "Isolation of nitric oxide synthetase, a 
calmodulin-requiring enzyme." Proc Natl Acad Sci U S A 87(2): 682-5. 

Bredt, D. S. and S. H. Snyder (1994). "Nitric oxide: a physiologic messenger 
molecule." Annu Rev Biochem 63: 175-95. 

Bringold, U., P. Ghafourifar, et al. (2000). "Peroxynitrite formed by mitochondrial 
NO synthase promotes mitochondrial Ca2+ release." Free Radic Biol Med 
29(3-4): 343-8. 

Brookes, P. S., J. M. Land, et al. (1998). "Peroxynitrite and brain mitochondria: 
evidence for increased proton leak." J Neurochem 70(5): 2195-202. 

Brown, M. R., P. G. Sullivan, et al. (2004). "Nitrogen disruption of 
synaptoneurosomes: an alternative method to isolate brain mitochondria." 
J Neurosci Methods 137(2): 299-303. 

Buki, A., O. Farkas, et al. (2003). "Preinjury administration of the calpain inhibitor 
MDL-28170 attenuates traumatically induced axonal injury." J 
Neurotrauma 20(3): 261-8. 

Buki, A., R. Siman, et al. (1999). "The role of calpain-mediated spectrin 
proteolysis in traumatically induced axonal injury." J Neuropathol Exp 
Neurol 58(4): 365-75. 

Butterfield, D. A. and C. M. Lauderback (2002). "Lipid peroxidation and protein 
oxidation in Alzheimer's disease brain: potential causes and 
consequences involving amyloid beta-peptide-associated free radical 
oxidative stress." Free Radic Biol Med 32(11): 1050-60. 

Carafoli, E. and M. Molinari (1998). "Calpain: a protease in search of a function?" 
Biochem Biophys Res Commun 247(2): 193-203. 

Carroll, R. T., P. Galatsis, et al. (2000). "4-Hydroxy-2,2,6,6-tetramethylpiperidine-
1-oxyl (Tempol) inhibits peroxynitrite-mediated phenol nitration." Chem 
Res Toxicol 13(4): 294-300. 

Castro, L., M. Rodriguez, et al. (1994). "Aconitase is readily inactivated by 
peroxynitrite, but not by its precursor, nitric oxide." J Biol Chem 269(47): 
29409-15. 

Chakraborti, T., S. Das, et al. (1999). "Oxidant, mitochondria and calcium: an 
overview." Cell Signal 11(2): 77-85. 

 137



Chan, P. H., C. J. Epstein, et al. (1995). "Transgenic mice and knockout mutants 
in the study of oxidative stress in brain injury." J Neurotrauma 12(5): 815-
24. 

Chan, S. L. and M. P. Mattson (1999). "Caspase and calpain substrates: roles in 
synaptic plasticity and cell death." J Neurosci Res 58(1): 167-90. 

Chiueh, C. C. (1999). "Neuroprotective properties of nitric oxide." Ann N Y Acad 
Sci 890: 301-11. 

Cobbs, C. S., A. Fenoy, et al. (1997). "Expression of nitric oxide synthase in the 
cerebral microvasculature after traumatic brain injury in the rat." Brain Res 
751(2): 336-8. 

Coyle, J. T. and P. Puttfarcken (1993). "Oxidative stress, glutamate, and 
neurodegenerative disorders." Science 262(5134): 689-95. 

Crow, J. P. and J. S. Beckman (1996). "The importance of superoxide in nitric 
oxide-dependent toxicity: evidence for peroxynitrite-mediated injury." Adv 
Exp Med Biol 387: 147-61. 

Cudd, A. and I. Fridovich (1982). "Electrostatic interactions in the reaction 
mechanism of bovine erythrocyte superoxide dismutase." J Biol Chem 
257(19): 11443-7. 

Cuzzocrea, S., M. C. McDonald, et al. (2000). "Effects of tempol, a membrane-
permeable radical scavenger, in a gerbil model of brain injury." Brain Res 
875(1-2): 96-106. 

Davis, M. D., S. Kaufman, et al. (1988). "The auto-oxidation of 
tetrahydrobiopterin." Eur J Biochem 173(2): 345-51. 

Dawson, V. L. and T. M. Dawson (1996). "Nitric oxide in neuronal degeneration." 
Proc Soc Exp Biol Med 211(1): 33-40. 

de Olmos, J. S., C. A. Beltramino, et al. (1994). "Use of an amino-cupric-silver 
technique for the detection of early and semiacute neuronal degeneration 
caused by neurotoxicants, hypoxia, and physical trauma." Neurotoxicol 
Teratol 16(6): 545-61. 

DeGraff, W. G., M. C. Krishna, et al. (1992). "Nitroxide-mediated protection 
against X-ray- and neocarzinostatin-induced DNA damage." Free Radic 
Biol Med 13(5): 479-87. 

Deng, Y., B. M. Thompson, et al. (2007). "Temporal relationship of peroxynitrite-
induced oxidative damage, calpain-mediated cytoskeletal degradation and 
neurodegeneration after traumatic brain injury." Exp Neurol 205(1): 154-
65. 

DeRidder, M. N., M. J. Simon, et al. (2006). "Traumatic mechanical injury to the 
hippocampus in vitro causes regional caspase-3 and calpain activation 
that is influenced by NMDA receptor subunit composition." Neurobiol Dis 
22(1): 165-76. 

Echtay, K. S., T. C. Esteves, et al. (2003). "A signalling role for 4-hydroxy-2-
nonenal in regulation of mitochondrial uncoupling." Embo J 22(16): 4103-
10. 

Edmunds, T., P. A. Nagainis, et al. (1991). "Comparison of the autolyzed and 
unautolyzed forms of mu- and m-calpain from bovine skeletal muscle." 
Biochim Biophys Acta 1077(2): 197-208. 

 138



Elfering, S. L., T. M. Sarkela, et al. (2002). "Biochemistry of mitochondrial nitric-
oxide synthase." J Biol Chem 277(41): 38079-86. 

Faddis, B. T., M. J. Hasbani, et al. (1997). "Calpain activation contributes to 
dendritic remodeling after brief excitotoxic injury in vitro." J Neurosci 17(3): 
951-9. 

Faden, A. I., P. Demediuk, et al. (1989). "The role of excitatory amino acids and 
NMDA receptors in traumatic brain injury." Science 244(4906): 798-800. 

Gadelha, F. R., L. Thomson, et al. (1997). "Ca2+-independent permeabilization 
of the inner mitochondrial membrane by peroxynitrite is mediated by 
membrane protein thiol cross-linking and lipid peroxidation." Arch Biochem 
Biophys 345(2): 243-50. 

Gahm, C., S. Holmin, et al. (2000). "Temporal profiles and cellular sources of 
three nitric oxide synthase isoforms in the brain after experimental 
contusion." Neurosurgery 46(1): 169-77. 

Gao, H. M., J. Jiang, et al. (2002). "Microglial activation-mediated delayed and 
progressive degeneration of rat nigral dopaminergic neurons: relevance to 
Parkinson's disease." J Neurochem 81(6): 1285-97. 

Garcia, M., V. Bondada, et al. (2005). "Mitochondrial localization of mu-calpain." 
Biochem Biophys Res Commun 338(2): 1241-7. 

Garthwaite, J. and C. L. Boulton (1995). "Nitric oxide signaling in the central 
nervous system." Annu Rev Physiol 57: 683-706. 

Garthwaite, J., S. L. Charles, et al. (1988). "Endothelium-derived relaxing factor 
release on activation of NMDA receptors suggests role as intercellular 
messenger in the brain." Nature 336(6197): 385-8. 

Ghafourifar, P. and C. Richter (1997). "Nitric oxide synthase activity in 
mitochondria." FEBS Lett 418(3): 291-6. 

Ghafourifar, P., U. Schenk, et al. (1999). "Mitochondrial nitric-oxide synthase 
stimulation causes cytochrome c release from isolated mitochondria. 
Evidence for intramitochondrial peroxynitrite formation." J Biol Chem 
274(44): 31185-8. 

Gibson, G. E. and H. M. Huang (2004). "Mitochondrial enzymes and endoplasmic 
reticulum calcium stores as targets of oxidative stress in 
neurodegenerative diseases." J Bioenerg Biomembr 36(4): 335-40. 

Giulivi, C. (1998). "Functional implications of nitric oxide produced by 
mitochondria in mitochondrial metabolism." Biochem J 332 ( Pt 3): 673-9. 

Giulivi, C. (2003). "Characterization and function of mitochondrial nitric-oxide 
synthase." Free Radic Biol Med 34(4): 397-408. 

Globus, M. Y., O. Alonso, et al. (1995). "Glutamate release and free radical 
production following brain injury: effects of posttraumatic hypothermia." J 
Neurochem 65(4): 1704-11. 

Green, D. R. and G. Kroemer (2004). "The pathophysiology of mitochondrial cell 
death." Science 305(5684): 626-9. 

Grijalba, M. T., A. E. Vercesi, et al. (1999). "Ca2+-induced increased lipid 
packing and domain formation in submitochondrial particles. A possible 
early step in the mechanism of Ca2+-stimulated generation of reactive 
oxygen species by the respiratory chain." Biochemistry 38(40): 13279-87. 

 139



Grune, T., T. Reinheckel, et al. (1997). "Degradation of oxidized proteins in 
mammalian cells." Faseb J 11(7): 526-34. 

Gunter, T. E. and D. R. Pfeiffer (1990). "Mechanisms by which mitochondria 
transport calcium." Am J Physiol 258(5 Pt 1): C755-86. 

Gutteridge, J. M. and B. Halliwell (1989). "Iron toxicity and oxygen radicals." 
Baillieres Clin Haematol 2(2): 195-256. 

Guttmann, R. P., J. S. Elce, et al. (1997). "Oxidation inhibits substrate proteolysis 
by calpain I but not autolysis." J Biol Chem 272(3): 2005-12. 

Guttmann, R. P. and G. V. Johnson (1998). "Oxidative stress inhibits calpain 
activity in situ." J Biol Chem 273(21): 13331-8. 

Hahn, S. M., C. M. Krishna, et al. (1994). "Potential use of nitroxides in radiation 
oncology." Cancer Res 54(7 Suppl): 2006s-2010s. 

Halestrap, A. P. and C. Brennerb (2003). "The adenine nucleotide translocase: a 
central component of the mitochondrial permeability transition pore and 
key player in cell death." Curr Med Chem 10(16): 1507-25. 

Hall, E. D., P. K. Andrus, et al. (1993). "Brain hydroxyl radical generation in acute 
experimental head injury." J Neurochem 60(2): 588-94. 

Hall, E. D., P. K. Andrus, et al. (1994). "Generation and detection of hydroxyl 
radical following experimental head injury." Ann N Y Acad Sci 738: 15-24. 

Hall, E. D. and J. M. Braughler (1993). "Free radicals in CNS injury." Res Publ 
Assoc Res Nerv Ment Dis 71: 81-105. 

Hall, E. D., M. R. Detloff, et al. (2004). "Peroxynitrite-mediated protein nitration 
and lipid peroxidation in a mouse model of traumatic brain injury." J 
Neurotrauma 21(1): 9-20. 

Hall, E. D., T. R. Gibson, et al. (2005). "Lack of a gender difference in post-
traumatic neurodegeneration in the mouse controlled cortical impact injury 
model." J Neurotrauma 22(6): 669-79. 

Hall, E. D., N. C. Kupina, et al. (1999). "Peroxynitrite scavengers for the acute 
treatment of traumatic brain injury." Ann N Y Acad Sci 890: 462-8. 

Hall, E. D., J. A. Oostveen, et al. (1997). "Immunocytochemical method for 
investigating in vivo neuronal oxygen radical-induced lipid peroxidation." J 
Neurosci Methods 76(2): 115-22. 

Hall, E. D. and S. L. Smith (1991). "The 21-aminosteroid antioxidant tirilazad 
mesylate, U-74006F, blocks cortical hypoperfusion following spreading 
depression." Brain Res 553(2): 243-8. 

Hall, E. D., P. G. Sullivan, et al. (2005). "Spatial and temporal characteristics of 
neurodegeneration after controlled cortical impact in mice: more than a 
focal brain injury." J Neurotrauma 22(2): 252-65. 

Halliwell, B. and J. M. C. Gutteridge (1999) “Free radicals in biology and 
medicine (3rd).” Oxford Science Publications 

Hamakubo, T., R. Kannagi, et al. (1986). "Distribution of calpains I and II in rat 
brain." J Neurosci 6(11): 3103-11. 

Hausladen, A. and I. Fridovich (1994). "Superoxide and peroxynitrite inactivate 
aconitases, but nitric oxide does not." J Biol Chem 269(47): 29405-8. 

 140



Herrero, A. and G. Barja (1997). "Sites and mechanisms responsible for the low 
rate of free radical production of heart mitochondria in the long-lived 
pigeon." Mech Ageing Dev 98(2): 95-111. 

Hillard, V. H., H. Peng, et al. (2004). "Tempol, a nitroxide antioxidant, improves 
locomotor and histological outcomes after spinal cord contusion in rats." J 
Neurotrauma 21(10): 1405-14. 

Huh, J. W., H. L. Laurer, et al. (2002). "Rapid loss and partial recovery of 
neurofilament immunostaining following focal brain injury in mice." Exp 
Neurol 175(1): 198-208. 

Huie, R. E. and S. Padmaja (1993). "The reaction of no with superoxide." Free 
Radic Res Commun 18(4): 195-9. 

Ischiropoulos, H. and J. S. Beckman (2003). "Oxidative stress and nitration in 
neurodegeneration: cause, effect, or association?" J Clin Invest 111(2): 
163-9. 

Ischiropoulos, H., L. Zhu, et al. (1992). "Peroxynitrite-mediated tyrosine nitration 
catalyzed by superoxide dismutase." Arch Biochem Biophys 298(2): 431-
7. 

Jiang, D., P. G. Sullivan, et al. (2001). "Zn(2+) induces permeability transition 
pore opening and release of pro-apoptotic peptides from neuronal 
mitochondria." J Biol Chem 276(50): 47524-9. 

Kamatari, M., H. Yasui, et al. (2002). “Local pharmacokinetic analysis of a stable 
spin probe in mice by in vivo L-band ESR with surface-coil-type 
resonators.” Free Radical Research 36(10): 1115-1125. 

Kampfl, A., R. Posmantur, et al. (1996). "mu-calpain activation and calpain-
mediated cytoskeletal proteolysis following traumatic brain injury." J 
Neurochem 67(4): 1575-83. 

Kampfl, A., R. M. Posmantur, et al. (1997). "Mechanisms of calpain proteolysis 
following traumatic brain injury: implications for pathology and therapy: 
implications for pathology and therapy: a review and update." J 
Neurotrauma 14(3): 121-34. 

Kasprzak, H. A., A. Wozniak, et al. (2001). "Enhanced lipid peroxidation 
processes in patients after brain contusion." J Neurotrauma 18(8): 793-7. 

Katayama, Y., D. P. Becker, et al. (1990). "Massive increases in extracellular 
potassium and the indiscriminate release of glutamate following 
concussive brain injury." J Neurosurg 73(6): 889-900. 

Kato, N., K. Yanaka, et al. (2003). "Stable nitroxide Tempol ameliorates brain 
injury by inhibiting lipid peroxidation in a rat model of transient focal 
cerebral ischemia." Brain Res 979(1-2): 188-93. 

Kehrer, J. P. (2000). "The Haber-Weiss reaction and mechanisms of toxicity." 
Toxicology 149(1): 43-50. 

Keller, J. N., R. J. Mark, et al. (1997). "4-Hydroxynonenal, an aldehydic product 
of membrane lipid peroxidation, impairs glutamate transport and 
mitochondrial function in synaptosomes." Neuroscience 80(3): 685-96. 

Kontos, H. A. and J. T. Povlishock (1986). "Oxygen radicals in brain injury." Cent 
Nerv Syst Trauma 3(4): 257-63. 

 141



Kontos, H. A. and E. P. Wei (1986). "Superoxide production in experimental brain 
injury." J Neurosurg 64(5): 803-7. 

Kowaltowski, A. J., R. F. Castilho, et al. (1995). "Ca(2+)-induced mitochondrial 
membrane permeabilization: role of coenzyme Q redox state." Am J 
Physiol 269(1 Pt 1): C141-7. 

Kowaltowski, A. J., L. E. Netto, et al. (1998). "The thiol-specific antioxidant 
enzyme prevents mitochondrial permeability transition. Evidence for the 
participation of reactive oxygen species in this mechanism." J Biol Chem 
273(21): 12766-9. 

Kowaltowski, A. J. and A. E. Vercesi (1999). "Mitochondrial damage induced by 
conditions of oxidative stress." Free Radic Biol Med 26(3-4): 463-71. 

Krishna, M. C., A. Russo, et al. (1996). "Do nitroxide antioxidants act as 
scavengers of O2-. or as SOD mimics?" J Biol Chem 271(42): 26026-31. 

Kristian, T., I. B. Hopkins, et al. (2006). "Isolation of mitochondria with high 
respiratory control from primary cultures of neurons and astrocytes using 
nitrogen cavitation." J Neurosci Methods 152(1-2): 136-43. 

Kruman, I., A. J. Bruce-Keller, et al. (1997). "Evidence that 4-hydroxynonenal 
mediates oxidative stress-induced neuronal apoptosis." J Neurosci 17(13): 
5089-100. 

Kukreja, R. C., H. A. Kontos, et al. (1986). "PGH synthase and lipoxygenase 
generate superoxide in the presence of NADH or NADPH." Circ Res 
59(6): 612-9. 

Kupina, N. C., M. R. Detloff, et al. (2003). "Cytoskeletal protein degradation and 
neurodegeneration evolves differently in males and females following 
experimental head injury." Exp Neurol 180(1): 55-73. 

Kupina, N. C., M. R. Detloff, et al. (2002). "Neuroimmunophilin ligand V-10,367 is 
neuroprotective after 24-hour delayed administration in a mouse model of 
diffuse traumatic brain injury." J Cereb Blood Flow Metab 22(10): 1212-21. 

Kupina, N. C., R. Nath, et al. (2001). "The novel calpain inhibitor SJA6017 
improves functional outcome after delayed administration in a mouse 
model of diffuse brain injury." J Neurotrauma 18(11): 1229-40. 

Kwon, T. H., D. L. Chao, et al. (2003). "Tempol, a novel stable nitroxide, reduces 
brain damage and free radical production, after acute subdural hematoma 
in the rat." J Neurotrauma 20(4): 337-45. 

Lacza, Z., M. Puskar, et al. (2001). "Mitochondrial nitric oxide synthase is 
constitutively active and is functionally upregulated in hypoxia." Free Radic 
Biol Med 31(12): 1609-15. 

Lang-Rollin, I. C., H. J. Rideout, et al. (2003). "Mechanisms of caspase-
independent neuronal death: energy depletion and free radical 
generation." J Neurosci 23(35): 11015-25. 

Lau, A., M. Arundine, et al. (2006). "Inhibition of caspase-mediated apoptosis by 
peroxynitrite in traumatic brain injury." J Neurosci 26(45): 11540-53. 

Lehninger, A. L., A. Vercesi, et al. (1978). "Regulation of Ca2+ release from 
mitochondria by the oxidation-reduction state of pyridine nucleotides." 
Proc Natl Acad Sci U S A 75(4): 1690-4. 

 142



Leker, R. R., A. Teichner, et al. (2002). "The nitroxide antioxidant tempol is 
cerebroprotective against focal cerebral ischemia in spontaneously 
hypertensive rats." Exp Neurol 176(2): 355-63. 

Lighthall, J. W., C. E. Dixon, et al. (1989). "Experimental models of brain injury." 
J Neurotrauma 6(2): 83-97. 

Liu, Y., G. Fiskum, et al. (2002). "Generation of reactive oxygen species by the 
mitochondrial electron transport chain." J Neurochem 80(5): 780-7. 

Lopez-Figueroa, M. O., C. Caamano, et al. (2000). "Direct evidence of nitric 
oxide presence within mitochondria." Biochem Biophys Res Commun 
272(1): 129-33. 

Ludin, B. and A. Matus (1993). "The neuronal cytoskeleton and its role in axonal 
and dendritic plasticity." Hippocampus 3 Spec No: 61-71. 

Marklund, N., T. Lewander, et al. (2001). "Effects of the nitrone radical 
scavengers PBN and S-PBN on in vivo trapping of reactive oxygen 
species after traumatic brain injury in rats." J Cereb Blood Flow Metab 
21(11): 1259-67. 

Marshall, L. F., A. I. Maas, et al. (1998). "A multicenter trial on the efficacy of 
using tirilazad mesylate in cases of head injury." J Neurosurg 89(4): 519-
25. 

Martin, E., R. E. Rosenthal, et al. (2005). "Pyruvate dehydrogenase complex: 
metabolic link to ischemic brain injury and target of oxidative stress." J 
Neurosci Res 79(1-2): 240-7. 

Matthews, R. T., P. Klivenyi, et al. (1999). "Novel free radical spin traps protect 
against malonate and MPTP neurotoxicity." Exp Neurol 157(1): 120-6. 

Maxwell, W. L., J. T. Povlishock, et al. (1997). "A mechanistic analysis of 
nondisruptive axonal injury: a review." J Neurotrauma 14(7): 419-40. 

McCord, J. M. (1987). "Oxygen-derived radicals: a link between reperfusion injury 
and inflammation." Fed Proc 46(7): 2402-6. 

McIntosh, T. K., R. Vink, et al. (1989). "Traumatic brain injury in the rat: 
characterization of a lateral fluid-percussion model." Neuroscience 28(1): 
233-44. 

McStay, G. P., S. J. Clarke, et al. (2002). "Role of critical thiol groups on the 
matrix surface of the adenine nucleotide translocase in the mechanism of 
the mitochondrial permeability transition pore." Biochem J 367(Pt 2): 541-
8. 

Mesenge, C., C. Charriaut-Marlangue, et al. (1998). "Reduction of tyrosine 
nitration after N(omega)-nitro-L-arginine-methylester treatment of mice 
with traumatic brain injury." Eur J Pharmacol 353(1): 53-7. 

Mesenge, C., C. Verrecchia, et al. (1996). "Reduction of the neurological deficit in 
mice with traumatic brain injury by nitric oxide synthase inhibitors." J 
Neurotrauma 13(4): 209-14. 

Michel, R. P. and L. M. Cruz-Orive (1988). "Application of the Cavalieri principle 
and vertical sections method to lung: estimation of volume and pleural 
surface area." J Microsc 150(Pt 2): 117-36. 

 143



Mikawa, S., H. Kinouchi, et al. (1996). "Attenuation of acute and chronic damage 
following traumatic brain injury in copper, zinc-superoxide dismutase 
transgenic mice." J Neurosurg 85(5): 885-91. 

Mohanakumar, K. P., I. Hanbauer, et al. (1998). "Neuroprotection by nitric oxide 
against hydroxyl radical-induced nigral neurotoxicity." J Chem Neuroanat 
14(3-4): 195-205. 

Monyer, H., D. M. Hartley, et al. (1990). "21-Aminosteroids attenuate excitotoxic 
neuronal injury in cortical cell cultures." Neuron 5(2): 121-6. 

Mori, T., T. Kawamata, et al. (1998). "Antioxidant, OPC-14117, attenuates edema 
formation, and subsequent tissue damage following cortical contusion in 
rats." Acta Neurochir Suppl 71: 120-2. 

Mota-Filipe, H., M. C. McDonald, et al. (1999). "A membrane-permeable radical 
scavenger reduces the organ injury in hemorrhagic shock." Shock 12(4): 
255-61. 

Murai, H., J. E. Pierce, et al. (1998). "Twofold overexpression of human beta-
amyloid precursor proteins in transgenic mice does not affect the 
neuromotor, cognitive, or neurodegenerative sequelae following 
experimental brain injury." J Comp Neurol 392(4): 428-38. 

Murphy, M. P., M. A. Packer, et al. (1998). "Peroxynitrite: a biologically significant 
oxidant." Gen Pharmacol 31(2): 179-86. 

Neely, M. D., K. R. Sidell, et al. (1999). "The lipid peroxidation product 4-
hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, 
and modifies cellular tubulin." J Neurochem 72(6): 2323-33. 

Neumar, R. W., F. H. Meng, et al. (2001). "Calpain activity in the rat brain after 
transient forebrain ischemia." Exp Neurol 170(1): 27-35. 

Nicolli, A., E. Basso, et al. (1996). "Interactions of cyclophilin with the 
mitochondrial inner membrane and regulation of the permeability transition 
pore, and cyclosporin A-sensitive channel." J Biol Chem 271(4): 2185-92. 

Nicholls, D. G. and S. J. Ferguson (2001) “Bioenergetics 3 (2nd).” Academic 
Press. 

Nieminen, A. L., A. M. Byrne, et al. (1997). "Mitochondrial permeability transition 
in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen 
species." Am J Physiol 272(4 Pt 1): C1286-94. 

Nishio, S., M. Yunoki, et al. (1997). "Detection of lipid peroxidation and hydroxyl 
radicals in brain contusion of rats." Acta Neurochir Suppl 70: 84-6. 

Nixon, R. A. (1989). "Calcium-activated neutral proteinases as regulators of 
cellular function. Implications for Alzheimer's disease pathogenesis." Ann 
N Y Acad Sci 568: 198-208. 

Okabe, E., Y. Tsujimoto, et al. (2000). "Calmodulin and cyclic ADP-ribose 
interaction in Ca2+ signaling related to cardiac sarcoplasmic reticulum: 
superoxide anion radical-triggered Ca2+ release." Antioxid Redox Signal 
2(1): 47-54. 

Okonkwo, D. O., E. H. Pettus, et al. (1998). "Alteration of the neurofilament 
sidearm and its relation to neurofilament compaction occurring with 
traumatic axonal injury." Brain Res 784(1-2): 1-6. 

 144



Onyszchuk, G., B. Al-Hafez, et al. (2007). "A mouse model of sensorimotor 
controlled cortical impact: characterization using longitudinal magnetic 
resonance imaging, behavioral assessments and histology." J Neurosci 
Methods 160(2): 187-96. 

Opii, W. O., V. N. Nukala, et al. (2007). "Proteomic identification of oxidized 
mitochondrial proteins following experimental traumatic brain injury." J 
Neurotrauma 24(5): 772-89. 

Orihara, Y., K. Ikematsu, et al. (2001). "Induction of nitric oxide synthase by 
traumatic brain injury." Forensic Sci Int 123(2-3): 142-9. 

Packer, M. A. and M. P. Murphy (1994). "Peroxynitrite causes calcium efflux from 
mitochondria which is prevented by Cyclosporin A." FEBS Lett 345(2-3): 
237-40. 

Packer, M. A. and M. P. Murphy (1995). "Peroxynitrite formed by simultaneous 
nitric oxide and superoxide generation causes cyclosporin-A-sensitive 
mitochondrial calcium efflux and depolarisation." Eur J Biochem 234(1): 
231-9. 

Pandya, J. D., J. R. Pauly, et al. (2007). "Post-Injury Administration of 
Mitochondrial Uncouplers Increases Tissue Sparing and Improves 
Behavioral Outcome following Traumatic Brain Injury in Rodents." J 
Neurotrauma 24(5): 798-811. 

Posmantur, R., R. L. Hayes, et al. (1994). "Neurofilament 68 and neurofilament 
200 protein levels decrease after traumatic brain injury." J Neurotrauma 
11(5): 533-45. 

Posmantur, R., A. Kampfl, et al. (1997). "A calpain inhibitor attenuates cortical 
cytoskeletal protein loss after experimental traumatic brain injury in the 
rat." Neuroscience 77(3): 875-88. 

Posmantur, R. M., A. Kampfl, et al. (1996). "Cytoskeletal derangements of 
cortical neuronal processes three hours after traumatic brain injury in rats: 
an immunofluorescence study." J Neuropathol Exp Neurol 55(1): 68-80. 

Povlishock, J. T., A. Buki, et al. (1999). "Initiating mechanisms involved in the 
pathobiology of traumatically induced axonal injury and interventions 
targeted at blunting their progression." Acta Neurochir Suppl 73: 15-20. 

Radi, R. (1998). "Peroxynitrite reactions and diffusion in biology." Chem Res 
Toxicol 11(7): 720-1. 

Radi, R., J. S. Beckman, et al. (1991). "Peroxynitrite-induced membrane lipid 
peroxidation: the cytotoxic potential of superoxide and nitric oxide." Arch 
Biochem Biophys 288(2): 481-7. 

Radi, R., A. Cassina, et al. (2002). "Peroxynitrite reactions and formation in 
mitochondria." Free Radic Biol Med 33(11): 1451-64. 

Radi, R., M. Rodriguez, et al. (1994). "Inhibition of mitochondrial electron 
transport by peroxynitrite." Arch Biochem Biophys 308(1): 89-95. 

Raghupathi, R., S. C. Fernandez, et al. (1998). "BCL-2 overexpression 
attenuates cortical cell loss after traumatic brain injury in transgenic mice." 
J Cereb Blood Flow Metab 18(11): 1259-69. 

 145



Rak, R., D. L. Chao, et al. (2000). "Neuroprotection by the stable nitroxide 
Tempol during reperfusion in a rat model of transient focal ischemia." J 
Neurosurg 92(4): 646-51. 

Ringger, N. C., P. J. Tolentino, et al. (2004). "Effects of injury severity on regional 
and temporal mRNA expression levels of calpains and caspases after 
traumatic brain injury in rats." J Neurotrauma 21(7): 829-41. 

Roberts-Lewis, J. M., M. J. Savage, et al. (1994). "Immunolocalization of calpain 
I-mediated spectrin degradation to vulnerable neurons in the ischemic 
gerbil brain." J Neurosci 14(6): 3934-44. 

Roveri, A., M. Coassin, et al. (1992). "Effect of hydrogen peroxide on calcium 
homeostasis in smooth muscle cells." Arch Biochem Biophys 297(2): 265-
70. 

Saatman, K. E., D. Bozyczko-Coyne, et al. (1996). "Prolonged calpain-mediated 
spectrin breakdown occurs regionally following experimental brain injury in 
the rat." J Neuropathol Exp Neurol 55(7): 850-60. 

Saatman, K. E., D. I. Graham, et al. (1998). "The neuronal cytoskeleton is at risk 
after mild and moderate brain injury." J Neurotrauma 15(12): 1047-58. 

Saatman, K. E., H. Murai, et al. (1996). "Calpain inhibitor AK295 attenuates 
motor and cognitive deficits following experimental brain injury in the rat." 
Proc Natl Acad Sci U S A 93(8): 3428-33. 

Saido, T. C., S. Nagao, et al. (1992). "Autolytic transition of mu-calpain upon 
activation as resolved by antibodies distinguishing between the pre- and 
post-autolysis forms." J Biochem (Tokyo) 111(1): 81-6. 

Saito, K., J. S. Elce, et al. (1993). "Widespread activation of calcium-activated 
neutral proteinase (calpain) in the brain in Alzheimer disease: a potential 
molecular basis for neuronal degeneration." Proc Natl Acad Sci U S A 
90(7): 2628-32. 

Samuni, A., C. M. Krishna, et al. (1990). "Superoxide reaction with nitroxides." 
Free Radic Res Commun 9(3-6): 241-9. 

Samuni, A., C. M. Krishna, et al. (1989). "Superoxide reaction with nitroxide spin-
adducts." Free Radic Biol Med 6(2): 141-8. 

Saran, M., C. Michel, et al. (1990). "Reaction of NO with O2-. implications for the 
action of endothelium-derived relaxing factor (EDRF)." Free Radic Res 
Commun 10(4-5): 221-6. 

Schinder, A. F., E. C. Olson, et al. (1996). "Mitochondrial dysfunction is a primary 
event in glutamate neurotoxicity." J Neurosci 16(19): 6125-33. 

Schraufstatter, I. U., D. B. Hinshaw, et al. (1986). "Oxidant injury of cells. DNA 
strand-breaks activate polyadenosine diphosphate-ribose polymerase and 
lead to depletion of nicotinamide adenine dinucleotide." J Clin Invest 
77(4): 1312-20. 

Sen, S., H. Goldman, et al. (1994). "alpha-Phenyl-tert-butyl-nitrone inhibits free 
radical release in brain concussion." Free Radic Biol Med 16(6): 685-91. 

Sen, S. and J. W. Phillis (1993). "alpha-Phenyl-tert-butyl-nitrone (PBN) 
attenuates hydroxyl radical production during ischemia-reperfusion injury 
of rat brain: an EPR study." Free Radic Res Commun 19(4): 255-65. 

 146



Sensi, S. L., D. Ton-That, et al. (2003). "Modulation of mitochondrial function by 
endogenous Zn2+ pools." Proc Natl Acad Sci U S A 100(10): 6157-62. 

Serbest, G., M. F. Burkhardt, et al. (2007). "Temporal Profiles of Cytoskeletal 
Protein Loss following Traumatic Axonal Injury in Mice." Neurochem Res. 

Shigenaga, M. K., T. M. Hagen, et al. (1994). "Oxidative damage and 
mitochondrial decay in aging." Proc Natl Acad Sci U S A 91(23): 10771-8. 

Singh, I. N. and P. G. Sullivan, et al. (2006a) “Time course of post-traumatic 
mitochondrial oxidative damage and dysfunction in a mouse model of 
focal traumatic brain injury: implications for neuroprotective therapy.” J 
Cereb Blood Flow Metab Mar 15. 

Singh, I. N. K. M. Carrico, et al. (2006b) “Protective effects of neuroprotective 
antioxidants penicillamine and tempol against peroxynitrite-induced 
dysfunction in isolated brain mitochondria.” J Neurotrauma 23:991. 

Skulachev, V. P. (1996). "Why are mitochondria involved in apoptosis? 
Permeability transition pores and apoptosis as selective mechanisms to 
eliminate superoxide-producing mitochondria and cell." FEBS Lett 397(1): 
7-10. 

Smith, S. L., P. K. Andrus, et al. (1994). "Direct measurement of hydroxyl 
radicals, lipid peroxidation, and blood-brain barrier disruption following 
unilateral cortical impact head injury in the rat." J Neurotrauma 11(4): 393-
404. 

Sorimachi, H., S. Ishiura, et al. (1997). "Structure and physiological function of 
calpains." Biochem J 328 ( Pt 3): 721-32. 

Stewart, V. C., M. A. Sharpe, et al. (2000). "Astrocyte-derived nitric oxide causes 
both reversible and irreversible damage to the neuronal mitochondrial 
respiratory chain." J Neurochem 75(2): 694-700. 

Sugioka, K., M. Nakano, et al. (1988). "Mechanism of O2- generation in reduction 
and oxidation cycle of ubiquinones in a model of mitochondrial electron 
transport systems." Biochim Biophys Acta 936(3): 377-85. 

Sullivan, P. G., A. J. Bruce-Keller, et al. (1999). "Exacerbation of damage and 
altered NF-kappaB activation in mice lacking tumor necrosis factor 
receptors after traumatic brain injury." J Neurosci 19(15): 6248-56. 

Sullivan, P. G., C. Dube, et al. (2003). "Mitochondrial uncoupling protein-2 
protects the immature brain from excitotoxic neuronal death." Ann Neurol 
53(6): 711-7. 

Sullivan, P. G., J. D. Geiger, et al. (2000). "Dietary supplement creatine protects 
against traumatic brain injury." Ann Neurol 48(5): 723-9. 

Sullivan, P. G., J. N. Keller, et al. (2002). "Cytochrome c release and caspase 
activation after traumatic brain injury." Brain Res 949(1-2): 88-96. 

Sullivan, P. G., A. G. Rabchevsky, et al. (2004). "Intrinsic differences in brain and 
spinal cord mitochondria: Implication for therapeutic interventions." J 
Comp Neurol 474(4): 524-34. 

Sullivan, P. G., J. E. Springer, et al. (2004). "Mitochondrial uncoupling as a 
therapeutic target following neuronal injury." J Bioenerg Biomembr 36(4): 
353-6. 

 147



Sullivan, P. G., M. Thompson, et al. (2000). "Continuous infusion of cyclosporin A 
postinjury significantly ameliorates cortical damage following traumatic 
brain injury." Exp Neurol 161(2): 631-7. 

Sullivan, P. G., M. B. Thompson, et al. (1999). "Cyclosporin A attenuates acute 
mitochondrial dysfunction following traumatic brain injury." Exp Neurol 
160(1): 226-34. 

Switzer, R. C., 3rd (2000). "Application of silver degeneration stains for 
neurotoxicity testing." Toxicol Pathol 28(1): 70-83. 

Taft, W. C., K. Yang, et al. (1992). "Microtubule-associated protein 2 levels 
decrease in hippocampus following traumatic brain injury." J Neurotrauma 
9(3): 281-90. 

Tatoyan, A. and C. Giulivi (1998). "Purification and characterization of a nitric-
oxide synthase from rat liver mitochondria." J Biol Chem 273(18): 11044-
8. 

Thompson, S. N., T. R. Gibson, et al. (2006). "Relationship of calpain-mediated 
proteolysis to the expression of axonal and synaptic plasticity markers 
following traumatic brain injury in mice." Exp Neurol 201(1): 253-65. 

Thurman, D. J., C. Alverson, et al. (1999). "Traumatic brain injury in the United 
States: A public health perspective." J Head Trauma Rehabil 14(6): 602-
15. 

Turrens, J. F. and A. Boveris (1980). "Generation of superoxide anion by the 
NADH dehydrogenase of bovine heart mitochondria." Biochem J 191(2): 
421-7. 

Vicente, S., R. Perez-Rodriguez, et al. (2006). "Nitric oxide and peroxynitrite 
induce cellular death in bovine chromaffin cells: Evidence for a mixed 
necrotic and apoptotic mechanism with caspases activation." J Neurosci 
Res 84(1): 78-96. 

Volbracht, C., B. T. Chua, et al. (2005). "The critical role of calpain versus 
caspase activation in excitotoxic injury induced by nitric oxide." J 
Neurochem 93(5): 1280-92. 

Wada, K., K. Chatzipanteli, et al. (1998). "Role of nitric oxide in traumatic brain 
injury in the rat." J Neurosurg 89(5): 807-18. 

Wada, K., K. Chatzipanteli, et al. (1998). "Inducible nitric oxide synthase 
expression after traumatic brain injury and neuroprotection with 
aminoguanidine treatment in rats." Neurosurgery 43(6): 1427-36. 

Wang, K. K. (2000). "Calpain and caspase: can you tell the difference?" Trends 
Neurosci 23(1): 20-6. 

Wang, K. K. (2000). "Calpain and caspase: can you tell the difference?, by kevin 
K.W. WangVol. 23, pp. 20-26." Trends Neurosci 23(2): 59. 

Watson, B. D. (1993). "Evaluation of the concomitance of lipid peroxidation in 
experimental models of cerebral ischemia and stroke." Prog Brain Res 96: 
69-95. 

Whiteman, M., J. S. Armstrong, et al. (2004). "Peroxynitrite mediates calcium-
dependent mitochondrial dysfunction and cell death via activation of 
calpains." Faseb J 18(12): 1395-7. 

 148



Wrogemann, K. and S. D. Pena (1976). "Mitochondrial calcium overload: A 
general mechanism for cell-necrosis in muscle diseases." Lancet 1(7961): 
672-4. 

Xiong, Y., A. G. Rabchevsky, et al. (2007). "Role of peroxynitrite in secondary 
oxidative damage after spinal cord injury." J Neurochem 100(3): 639-49. 

Young, W. (1992). "Role of calcium in central nervous system injuries." J 
Neurotrauma 9 Suppl 1: S9-25. 

Zamzami, N., T. Hirsch, et al. (1997). "Mitochondrial implication in accidental and 
programmed cell death: apoptosis and necrosis." J Bioenerg Biomembr 
29(2): 185-93. 

Zeltcer, G., E. Berenshtein, et al. (1997). "Nitroxide radicals prevent metal-
aggravated reperfusion injury in isolated rat heart." Free Radic Res 27(6): 
627-35. 

Zhang, R., E. Shohami, et al. (1998). "Mechanism of brain protection by nitroxide 
radicals in experimental model of closed-head injury." Free Radic Biol Med 
24(2): 332-40. 

Zhang, Y., O. Marcillat, et al. (1990). "The oxidative inactivation of mitochondrial 
electron transport chain components and ATPase." J Biol Chem 265(27): 
16330-6. 

Zhou, F., Z. Xiang, et al. (2001). "Neuronal free Ca(2+)and BBB permeability and 
ultrastructure in head injury with secondary insult." J Clin Neurosci 8(6): 
561-3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 149



Vita 

Ying Deng-Bryant 

 

Date of Birth:  August 23, 1978 

Place of Birth:  Guangzhou/Canton, P.R. China 

Education:   Bachelor of Science (2001) 

   Department of Biochemistry  

   Zhongshan/Sun Yat-Sen University, P.R. China 

 

Research and Professional Experience; 

2002 – present Doctoral Degree Candidate 

   Department of Anatomy and Neurobiology, 

   The Graduate School at the University of Kentucky  

2003 – present Research Assistant 

Department of Anatomy and Neurobiology, 

   University of Kentucky, with Dr. Edward D Hall 

2005 – 2005  Teaching Assistant (Anatomy and Physiology, ANA110) 

   Department of Anatomy and Neurobiology, 

   University of Kentucky, with Dr. Pamela A Stein  

 

Awards and Professional Honors: 

2006 Dissertation Year Fellowship Recipient; University of 

Kentucky 

 150



2007 Finalist, Student Top Poster; 25th Annual National 

Neurotrauma Society Sympocium, Kansas city, MO 

2007 Travel Grant Recipient; 25th Annual National Neurotrauma 

Society Sympocium, Kansas city, MO 

2007 Invited Speaker, Open Communication Session; 25th Annual 

National Neurotrauma Society Sympocium, Kansas city, MO 

2007 Invited Young Investigator Speaker; 8th Annual University of 

California Symposium, Santa Barbara, CA   

 

Publications: 

S.N. Thompson, T.G. Hurst, B.M. Thompson, Y. Deng, and E.D. Hall 

Changes in Synaptic and Axonal Plasticity following Controlled Cortical 

Impact Traumatic Brain Injury in Mice, Exp. Neurol; 201(1):253-65, 

September 2006  

I.N. Singh*, P.G. Sullivan*, Y. Deng, L.H. Mbye and E.D. Hall 

Time Course of Post-Traumatic Mitochondrial Oxidative Damage 

Dysfunction in a Mouse Model of Focal Traumatic Brain Injury, J. Cereb, 

Blood Flow & Metab; 26(11):1407-18, November 2006 

Y. Deng, B.M. Thompson, X. Gao and E.D. Hall

Temporal Relationship of Peroxynitrite-Induced Oxidative Damage, 

Calpain-Mediated Cytoskeletal Degradatio.n and Neurodegeneration after 

Traumatic Brain Injury, Exp. Neurol; 205(1):154-65, May 2007     

 

 151



E.D. Hall, Y. Deng, W. Cho and P. G. Sullivan 

Evolution of Post-Traumatic Neurodegeneration after Controlled Cortical 

Impact Traumatic Brain Injury in Mice and Rats, submitted for publication 

W. Cho, Y. Deng, X. Gao, K.M. Carrico, E.D. Hall* and J. Chen* 

Regional and Cell-Type Specific Hippocampal Cell Death Following 

Experimental Traumatic Brain Injury, submitted for publication 

 

Manuscript in Preparation: 

Y. Deng-Bryant, I.N. Singh and E.D. Hall

Neuroprotective Effects of Tempol, a Catalytic Scavenger of Peroxynitrite-

Derived Free Radicals, in the Mouse Controlled Cortical Impact Injury 

Model, in preparation 

 

Abstracts: 

Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Relationship of Calpain-Mediated Cytoskeletal Degradation and 

Neurodegeneration in the Mouse Controlled Cortical Impact Traumatic 

Brain Injury Model 

Journal of Neurotrauma; 22:1255, 2005 

 

 

 

 

 152



I.N. Singh, P.G. Sullivan, K.M. Day, T.G. Hurst, Y. Deng, L.H. Mbye, E.D. Hall 

Relationship of Oxidative Damage, Mitochondrial Dysfunction and 

Neurodegeneration in the Mouse Controlled Cortical Impact Traumatic 

Brain Injury Model 

Journal of Neurotrauma; 22:1187, 2005 

Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Peroxynitrite-Induced Oxidative Damage Precedes Cytoskeletal 

Degradation and Neurodegeneration after Traumatic Brain Injury  

Journal of Neurotrauma; 23:1031, 2006 

Y. Deng-Bryant, K.M. Carrico, I.N. Singh and E.D. Hall 

Neuroprotective Effects of Tempol, a Catalytic Scavenger of Peroxynitrite-

Derived Free Radicals, in the Mouse Controlled Cortical Impact Injury 

Model  

Journal of Neurotrauma; 24:1232, 2007 

 

Poster Presentations: 

Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Relationship of Calpain-Mediated Cytoskeletal Degradation and 

Neurodegeneration in the Mouse Controlled Cortical Impact Traumatic 

Brain Injury Model, 11th Annual Kentucky Spinal Cord & Head Injury 

Symposium (KSCHIRT), Louisville, KY; June, 2005 

 

 

 153



Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Relationship of Calpain-Mediated Cytoskeletal Degradation and 

Neurodegeneration in the Mouse Controlled Cortical Impact Traumatic 

Brain Injury Model, 17th Annual Physical Medicine & Rehabilitation 

Research Day, Cardinal Hill Rehabilitation Center, Lexington, KY; June, 

2005 

Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Relationship of Calpain-Mediated Cytoskeletal Degradation and 

Neurodegeneration in the Mouse Controlled Cortical Impact Traumatic 

Brain Injury Model, 2005 Frontiers in Spinal Cord Regeneration 

Symposium, Seelbach Hilton Hotel Medallion Room, Lexington, KY; June, 

2005 

Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Relationship of Calpain-Mediated Cytoskeletal Degradation and 

Neurodegeneration in the Mouse Controlled Cortical Impact Traumatic 

Brain Injury Model, 23rd Annual National Neurotrauma Society 

Sympocium, Washington D.C.; November, 2005 

Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Relationship of Calpain-Mediated Cytoskeletal Degradation and 

Neurodegeneration in the Mouse Controlled Cortical Impact Traumatic 

Brain Injury Model, Mitochondrial Symposium, Life & Death: the 

Mitochondrial Perspective, University of Kentucky, Lexington, KY; 

November, 2005 

 154



Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Peroxynitrite-Induced Oxidative Damage Precedes Cytoskeletal 

Degradation and Neurodegeneration after Traumatic Brain Injury, 12th 

Annual Kentucky Spinal Cord & Head Injury Symposium (KSCHIRT), 

Lexington, KY; June, 2006 

Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Peroxynitrite-Induced Oxidative Damage Precedes Cytoskeletal 

Degradation and Neurodegeneration after Traumatic Brain Injury, 24th 

Annual National Neurotrauma Society Symposium, St. Louis, MO; July, 

2006 

Y. Deng, B.M. Thompson, T.G. Hurst and E.D. Hall 

Peroxynitrite-Induced Oxidative Damage Precedes Cytoskeletal 

Degradation and Neurodegeneration after Traumatic Brain Injury, 

Bluegrass Chapter Society for Neuroscience – Neuroscience Day, 

Lexington Conventional Center, Lexington, KY; March, 2007 

Y. Deng-Bryant, K.M. Carrico, I.N. Singh and E.D. Hall 

Neuroprotective Effects of Tempol, a Catalytic Scavenger of Peroxynitrite-

Derived Free Radicals, in the Mouse Controlled Cortical Impact Injury 

Model, 19th Annual Physical Medicine & Rehabilitation Research Day, 

Cardinal Hill Rehabilitation Center, Lexington, KY; June, 2007 

 

 

 

 155



Y. Deng-Bryant, K.M. Carrico, I.N. Singh and E.D. Hall 

Neuroprotective Effects of Tempol, a Catalytic Scavenger of Peroxynitrite-

Derived Free Radicals, in the Mouse Controlled Cortical Impact Injury 

Model, 13th Annual Kentucky Spinal Cord & Head Injury Symposium 

(KSCHIRT), Louisville, KY; June, 2007 

Y. Deng-Bryant, K.M. Carrico, I.N. Singh and E.D. Hall 

Neuroprotective Effects of Tempol, a Catalytic Scavenger of Peroxynitrite-

Derived Free Radicals, in the Mouse Controlled Cortical Impact Injury 

Model, Clinical & Translational Science Spring Conference, Civic Center, 

Lexington, KY; June, 2007 

Y. Deng-Bryant, K.M. Carrico, I.N. Singh and E.D. Hall 

Neuroprotective Effects of Tempol, a Catalytic Scavenger of Peroxynitrite-

Derived Free Radicals, in the Mouse Controlled Cortical Impact Injury 

Model, 25th Annual National Neurotrauma Society Symposium, Kansas 

city, MO; July, 2007 

 

 

                               

 

 
 

 156


	ROLE OF THE REACTIVE OXYGEN SPECIES PEROXYNITRITE IN TRAUMATIC BRAIN INJURY
	Recommended Citation

	Title of Abstract

	Abstract

	Title of Dissertation

	Dedication

	Acknowledgements

	Table of Contents

	List of Figures

	Chapter One - Post-Traumatic Secondary Injury in Experimental Traumatic Brain Injury

	Free Radicals Production and Oxidative Damage in Traumatic Brain Injury

	Mitochondrial Dysfunction in Traumatic Brain Injury

	Calpain-Mediated Cytoskeletal Proteolysis in Traumatic Brain Injury

	The Relationship of Oxidative Damage, Mitochondrial Dysfunction, Calpain Activation and Neurodegeneration in Traumatic Brain Injury


	Chapter Two - Temporal Relationship of Peroxynitrite-Induced Oxidative Damage, Calpain-Mediated Cytoskeletal Degradation and Neurodegeneration after Traumatic Brain Injury

	Introduction

	Materials and Methods

	Results

	Discussion


	Chapter Three - Tempol in Its Ability to Scavenge Free Radicals, Ameliorate Mitochondrial Dysfunction and Inhibit Calpain Activity

	Introduction

	Materials and Methods

	Results

	Discussion


	Chapter Four - Effect of Tempol on Behavioral Recovery and Neurodegeneration after Traumatic Brain Injury

	Introduction

	Materials and Methods

	Results

	Discussion


	Chapter Five - Summary and Conclusions

	Appendices

	References

	Vita


