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ABSTRACT OF DISSERTATION 
 
 
 
 
 

A SYSTEMATIC STUDY OF THERMODYNAMIC AND TRANSPORT 
PROPERTIES OF LAYERED Can+1(Ru1-xCrx)nO3n+1 

 
Orbital degrees of freedom play vital role in prompting novel phenomena in 

ruthenium based Ruddlesden-Popper compounds through coupling of orbits to spin and 
lattice. Physical properties are then particularly susceptible to small perturbations by 
external magnetic fields and/or slight structural changes. Current study pertains to the 
impact when a more-extended 4d Ruthenium ion is replaced by a less-extended 3d 
Chromium ion.  

Perovskite CaRuO3 (n=∞) is characterized by borderline magnetism and non-
Fermi liquid behavior – common occurrences in quantum critical compounds. 
Remarkably, Cr substitution as low as x=0.05 abruptly drives CaRu1−xCrxO3 from a 
paramagnetic state to an itinerant ferromagnetic state (MS~0.4μB/f.u.), where TC=123K 
for x=0.22. The Cr-driven magnetism is highly anisotropic suggesting an important role 
of spin-orbit coupling. Unlike other chemical substitutions in the compound, Cr does not 
induce any Metal-Insulator transition that is expected to accompany the magnetic 
transition. The results indicate a coupling of Ru-4d and Cr-3d electrons that is 
unexpectedly favorable for itinerant ferromagnetism, which often exists delicately in the 
ruthenates.  

Bilayered Ca3Ru2O7 (n=2), an abode of huge anisotropy, exhibits a wide range of 
physical properties – Colossal Magnetoresistance occurring only when the spin polarized 
state is avoided, Antiferromagnetic-Metallic (AFM-M) state, Quantum Oscillations 
(periodic in 1/B and in B) that are highly angular dependent, to mention a few. 
Experimental results obtained so far provide a coherent picture illustrating that orbital 
order and its coupling to lattice and spin degrees of freedom drive the exotic electronic 
and magnetic properties in this Mott-like system. Transport and thermodynamic studies 
on Ca3(Ru1-xCrx)2O7 (0 ≤ x ≤ 0.20) reveal that AFM-M region is broadened with x that 
ultimately reaches 70K for x=0.20 (~8K for x=0). In this region, electron transport is 
enhanced and inhibited when B is applied along crystal’s respective axes, confirming an 
intrinsic half-metallic behavior. Moreover, the difference in coercivities of Ru and Cr 
magnetic ions pave way for the first-ever observation of a strong spin-valve effect in bulk 
material, a quantum phenomenon so far realized only in multilayer thin films or 



heterostructures. This discovery opens new avenues to understand the underlying physics 
of spin-valves and fully realize its potential in practical devices. 

 
Keywords: borderline magnetism and enhanced ferromagnetism, orbital ordering, CMR, 
half-metallic behavior, spin-valve effect 
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Chapter One 

A quick glance at the layered ruthenates 

1.1 Introduction: 

Focus in studying complex materials, transition metal oxides1 (TMOs) in 

particular, is stimulated by their wealth of inherent novel properties, the complexities in 

the underlying physics and their promising technological applications. It should not be 

surprising that TMOs have been in the forefront of materials research, in the last few 

decades. For instance, studies on High Temperature Superconductors (HTSC)2 

spearheaded materials research during the late 80’s and the years that followed; colossal 

magnetoresistance (CMR) in manganites3,4 unveiled fascinating physics that had been 

challenging our fundamental understanding of materials. The orbital occupation and its 

fluctuations strongly influence the magnetic and other properties of these systems. On the 

other hand, the 4d-electron based ruthenates possessing more extended 4d orbitals than 

the 3d-counterparts are only more complex as one has to include the more pronounced 

orbital degrees of freedom in the energy scale. Indeed, these TMOs comprise beguiling 

properties and present us profound intellectual challenges that will last well into next 

decade. 

Privileged to have a broad range of interesting and intriguing physical properties, 

the TMOs can be tailored for a wide variety of applications including low-loss power 

delivery, quantum computing using Cooper pairs, ultra high-density magnetic data 

storage and more recently spintronic5 applications. Giant magnetoresistance (GMR)6, a 

spintronic effect that utilize a weak magnetic field to align the spins of electrons, is the 

technology used in modern computer hard drives for dense data storage that could be read 

quickly. Computers with spintronic memory will be able to store more data in a smaller 

area, access that data faster and consume less power than the traditional semiconductor 

RAM chips. Some of the materials of our interest exhibit the CMR3 effect, where the 

magnetic resistance changes several orders of magnitude larger than in GMR. These 

magnetic materials have broad applications in magnetic sensor technology (GMR read-

write head, magneto-optic storage) and in device structures (MRAM, spin-injection 

transistors) that are being developed for microelectronics and communication technology. 
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Indeed, the colossal magnetoresistive materials have potential to serve as new generation 

magnetic storage devices.  

The descriptions on the materials’ potential applications are beyond the scope of 

this thesis. However, a material’s contribution to technological advancements should only 

motivate and drive us more in the direction of investigating the exciting physics behind 

its fascinating physical behavior.  

1.2 Strongly correlated electron systems: 

Coupling of the mobile electrons with the atomic or molecular network in a 

material determines whether they would behave as free electrons or nearly free electrons 

or strongly correlated ones. Physical systems that we understand well correspond to 

ensembles of free particles. This simple approach is valid because the Coulomb energy of 

electrons is much smaller than their kinetic energy in most cases. But in materials 

comprised of transition metals, the electrons experience strong Coulombic repulsion 

because of their spatial confinement in the d orbitals. As a result of the prevailing 

competition between the correlation and the kinetic energies, the local density of states 

(DOS) depends on the ratio of the correlation strength and the bandwidth. The variations 

of DOS with the ratio of interaction energy (U) and the kinetic energy of electrons (W) 

are shown in Fig. 1.17. 

When electrons are completely independent (U=0), the DOS takes up a shape of a 

half ellipse with Fermi energy (EF) being located in the middle of the band as shown in 

Fig. 1.1 (a), which represents the characteristics of a pure metal. On the other hand, when 

U is larger than W, the condition depicts the picture of a localized electron system and 

the DOS peaks at the ionization energy and the electron affinity of the atom (Fig. 1.1 

(d)). But the evolution of DOS between these well-established limits could not be 

explained using either the density functional theory (DFT)8 or the atomic theory. It 

demands a much more advanced dynamical mean field theory (DMFT)7 approach that 

treats both the quasiparticle features and the Hubbard bands on the same footing, since a 

three peak feature appears in the intermediate correlation region. In the nearly 

independent electrons picture (U<W), however, the electrons are described as 

quasiparticles (weakly correlated) and the Fermi liquid model accounts for the 

distinguished peak at EF (see Fig. 1.1 (b)). But in the strongly correlated regime (U~W) 
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(Fig 1.1 (c)), the central quasiparticle peak at EF is complimented by two broadened 

peaks close to the ionization energy and electron affinity of the atom. The additional 

peaks originated from local atomic excitations (Hubbard bands) are broadened as a result 

of electrons hopping away from the atom. 

 
Fig. 1.1 Density of states vs. band energy for electrons that are (a) independent (b) nearly 

independent (weakly correlated) (c) strongly correlated and (d) localized7 (Courtesy of G 

Kotliar and D Vollhart, Physics Today 57 53 (2004)). 
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The d and f series in the modern periodic table of chemical elements was 

rearranged by James Smith et. al.,9 based on the magnetic and transport properties as 

shown in Fig. 1.2. The elements highlighted by the diagonal whitish stripe form a rough 

dividing line between the localized (magnetism) and itinerant (superconductivity) long 

range collective behavior. Therefore, the d and f electrons in those elements that lie in the 

enhanced region, Ru and Cr for instance, are poised between localization and itinerancy. 

They form the strongly correlated regime displayed and discussed in Fig. 1.1 and have 

unpredictable ground states describing them. 

 
Fig. 1.2 A revised periodic table9 of the d and f series of chemical elements based on the 

magnetic and transport properties. 

Obviously many-particle systems in which the strong local repulsion between 

electrons plays a crucial role are in the center of present physical interest. The subtle 

coupling and competition between electron, lattice, orbital and spin degrees of freedom 

are the essence of those Strongly Correlated Electron Systems (SCES)10. The electronic 

correlations can cause striking many-body effects like electronic localization, magnetism 

and charge ordering which cannot be described in the generally very successful 

independent particle picture. These interactions lead to the emergence of exciting novel 

ground states and phase transitions where a new picture for quasiparticles needs to be 

defined. Examples of such systems are cuprates2, manganites3,4, ruthenates11 and other 

transition-metal oxides. The interplay of the d orbital electrons’ internal degrees of 
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freedom – spin, charge and orbital moment, makes these systems extremely sensitive to 

small external perturbations such as temperature, pressure or doping. The drastic effects 

can range from huge changes in resistivity inducing a metal insulator transition to 

influencing exceptionally high transition temperatures. A few such compounds are 

discussed in this thesis. 

1.3 Ruddlesden-Popper series: 

Ruddlesden-Popper (RP) series12 are layered compounds with general formula 

An+1BnO3n+1, where A (=Ca, Sr, La etc.), B (=Ru, Cu, Mn, Cr etc.) represent cations and 

O represents oxygen (an anion). Here n denotes the number of transition metal layers 

(BO) in a unit cell. The compounds are structured in such a way that the metallic BO 

layers are separated by the insulating AO layers along the c axis as shown in Fig. 1.3. 

Hence a progression in ‘n’ from 1 to infinity corresponds to a change in the 

dimensionality of the compounds as shown in the figure. A tetravalent transition metal, 

Ru for example, in the structure is surrounded by six O ions and an octahedron is formed 

with B as the central ion. The BO6 octahedra are corner sharing and hence the B–B 

interaction is mediated through oxygen. The interactions of magnetic B ions through non-

magnetic O ligands dictate the physical properties of the compound. 

Even though a fleet of materials of our interest extends throughout the spectrum 

of transition metal oxide series that includes Ru, Rh, and Ir, the main focus of the thesis 

remains on the calcium and strontium ruthenium oxides, (Ca, Sr)n+1RunO3n+1. The central 

characteristic of these 4d-shell based transition metal oxides is the more extended nature 

of d-orbitals of the Ru-ion compared to those of the 3d-shell ions. This leads to 

comparable and thus competing energies, as discussed in chapter 2, mainly due to the 

more pronounced orbital degree of freedom. The energies due to crystalline field effect13, 

Hund’s rule interactions14, spin-orbit coupling15, p-d electron hybridization16 and 

electron-lattice coupling17 are comparable making the system highly susceptible to 

external perturbations. For instance, the Crystalline Electric Field (CEF) in a Ru4+ (4d4) 

ion is so large that the Hund’s rules partially break down, yielding a low spin state with 

S=1 (3T1g) rather than an expected high spin state with S=2 for free ions (see Fig. 1.4). 

The significance of crystal field splitting and the role of these competing energies will be 

realized soon once the physical properties of these compounds are discussed. 
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Fig. 1.3 Ruddlesden-Popper series of compounds, An+1BnO3n+1, for n=1, 2, 3 and ∞ with 

n increasing from left to right. 

eg 

Δ

t2g 
(a) (b) 

Degenerate 4d orbital 

 
Fig. 1.4 A schematic representation of spin configuration for Ru4+ ion (a) in an isolated 

ion, where the energy levels are degenerate and (b) in an octahedral field environment, 

where the degeneracy between eg and t2g levels is lifted due to CEF. 
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RP series form the class of SCES, showing a broad spectrum of physical 

properties and hence serving as a useful tool in exploring the unconquered territories in 

physics. Particularly, many extraordinary properties are intimately linked to the 

complexity of these nature-designed layered structures. The rich phase diagram of the Ca 

and Sr ruthenates18 as reproduced in Fig. 1.5 reveals the fact that the ground states of 

these compounds are critically linked to the structural distortions. The simplified phase 

diagram clearly indicates that moving from one end to the other in the (Ca1-

xSrx)n+1RunO3n+1 series, one witnesses a trend from antiferromagnetic insulating ground 

state (Ca ruthenates) to ferromagnetic metallic ones (Sr ruthenates). The bands in Ca 

ruthentes are very narrow that tend to localize the electrons. When n is increased i.e. 

when the compounds become more three dimensional, they tend to give an itinerant 

flavor to the electrons and hence they show better metallic behaviors. On the other hand, 

the Sr compounds have bands wider enough to exhibit ferromagnetism and itinerancy. 

 
Fig. 1.5 A Simplified phase diagram of the RP Series of (Ca,Sr)n+1RunO3n+1 

Another striking behavior of these compounds is the strong structural 

dimensionality dependence of the physical properties. The observed physical properties 

of any member depend sensitively on its structural dimension and a change in dimension 

through an increase/decrease in RuO octahedral layers is promptly reflected in its ground 

state. To add to the unlimited credentials of the series, the calcium and strontium 
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compounds behave uniquely differently when done so. As the number of Ru-O layers is 

increased from 1 through ∞, the magnetic interactions are suppressed in the Ca 

compounds unlike the Sr compounds, where the ferromagnetic coupling between spins is 

enhanced as ‘n’ is increased. Along with all the salient characteristics, the system’s 

sensitivity to the external perturbations is also exposed in this thesis. 

1.4 Chromium substitution: 

Once the ground states of the Ca and Sr ruthenates are probed through the 

thermodynamic and transport measurements, the compounds’ sensitivity to chemical 

perturbations are exploited. For my study, I considered a 3d transition metal, Chromium 

(Cr), as the main dopant for Ru. The primary idea is to study the coupling between 4d 

and 3d electrons by substituting some of the Ru ions in (Ca, Sr)n+1RunO3n+1 by Cr ions 

and to study the impact of this coupling on the compounds’ physical behavior.  

Cr ions substitute either as trivalent (Cr3+, 3d3) or tetravalent (Cr4+, 3d2) species.  

In an octahedral crystal symmetry, for  Cr3+, each of the three t2g  orbitals is half-filled, 

yielding S = 3/2, while for Cr4+, only two of the three t2g orbitals are singly occupied with 

the third orbital empty, yielding S = 1. The ionic radius of Cr3+ (0.615 Å) is nearly 

identical to that of the Ru4+ ion (0.620 Å) and should be favored with regard to local 

strain effects. However, the occurrence of Cr4+ (0.550 Å) would be more consistent with 

local electrostatic neutrality. 

Cr4+ ion based compounds have two 3d-electrons (as shown in Fig. 1.6) in rather 

contracted t2g orbitals, which could provide both fairly narrow band and strong exchange 

interactions. This is certainly true for Chromium (IV) oxide (CrO2), a well known half-

metal. CrO2 is an itinerant ferromagnet with TC=450 K, where the exchange splitting 

between spin-up and spin-down electrons is comparable to the t2g bandwidth and makes 

100% spin polarization possible, at least for T<<TC. The substitution of Ru4+ by Cr4+ 

replaces the 4d-electron with a more localized 3d-electron and the hybridization between 

the Cr 3d and Ru 4d electrons would narrow the bandwidth (W). The narrowing may be 

significant enough to enhance the DOS (W~1/N(EF)), which motivates the occurrence of 

ferromagnetism according to the Stoner model. It is also possible for ferromagnetism to 

readily occur if the Fermi surface (EF) lies close to a sharp peak of N(EF). Based on the 

Stoner criterion for the ferromagnetic instability Uc=1/N(EF), where Uc is the critical 

 8



value of the exchange interaction between parallel-spin electrons. This could facilitate a 

U even smaller than W to satisfy the Stoner criterion. 

Cr3+ Cr4+

eg eg 

Δ Δ

t2g t2g 

S=3/2 S=1
(a) (b)  

Fig. 1.6 Spin configuration in (a) Cr3+ (S=3/2) and (b) Cr4+ (S=1) ions in an octahedral 

field environment. 

Hence for ruthenium compounds that lie on the borderline magnetism, Cr might 

induce ferromagnetism as evidenced in CaRuO3. For compounds that show weak 

ferromagnetic coupling along any of the directions as found in Ca3Ru2O7, the difference 

in the coercivities of Cr and Ru lead to intriguing physical properties. 

1.5 Outline of this dissertation: 

In this thesis, I will discuss the physical properties of ruthenium based layered 

compounds that fall into this category of materials. As a result of strong correlations 

between the conduction electrons, these layered systems display both conventional and 

unconventional magnetic and transport properties. In a motive to exploit the sensitivity of 

these compounds to external perturbations, I used the chemical doping tool for my study. 

The central theme of the dissertation revolves around the discussion of the impact of Cr 

substitution on Ru. 

This thesis has been divided into five chapters. An introduction to SCES and RP 

series is given in this chapter (Chapter one). The introduction gave an overview of the 

layered ruthenates, the physical properties of which will be described later in the 
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following chapters. That was followed by the motivation of Cr substitution in the 

compounds, which is the primary objective of this thesis. 

In Chapter two, I have included a theoretical discussion that covers the basics of 

magnetism, metal-insulator transition and orbital ordering. This would be helpful later on 

when we discuss the complexities in the compounds’ physical behavior. 

Chapter three concisely describes the experimental techniques that are being 

used by our group for our material synthesis and characterization. The chapter explains 

the need for single crystals in materials research and elaborates two elegant techniques to 

grow single crystals and explains few established techniques for material characterization 

viz. DC magnetic susceptibility measurement, four point probe resistivity measurement, 

and thermal calorimetry specific heat measurements. 

Once well equipped with the theory and experimental details, the observed results 

of our experiments are discussed. Chapter four, under the topic ‘Thermodynamics and 

transport properties of Can+1(Ru1-xCrx)nO3n+1’, covers the results and discussion part of 

the thesis. This chapter describes the conventional and unconventional physical 

phenomena in layered ruthenates, particularly the perovskite and the double layered ones 

in detail. 

The inferences from the experimental observations are given in Chapter five that 

lead to some important conclusions drawn from the results. The chapter also presents 

some recommendations for the follow-up research, which, hopefully, might lend a 

helping hand to open a door to novel physics. 
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Chapter Two 

Theoretical Background 

2.1 Introduction: 

The phenomenon of magnetism is an extremely complex one since magnetic 

effects are due to a number of causes. In a crystalline solid we may separate, to some 

extent, the effects due to current carriers and those due to ions at the lattice points of the 

crystal. For the latter, magnetic effects arise from two main causes: (1) uncompensated 

electron spins giving the ions a magnetic moment, which leads normally to 

paramagnetism. But when there is a strong coupling between the spins of neighboring 

ions we have cooperative phenomena giving ferromagnetism or antiferromagnetism; (2) 

the diamagnetic effect of the ions. A particularly interesting thermodynamic property of 

solids is the contribution of the conducting electrons to the magnetic susceptibility of the 

material. The contribution to the magnetic moment of the crystal when placed in a 

magnetic field from the free carriers also arises from paramagnetism due to their spin and 

diamagnetism due to their motion. In the absence of interactions, all magnetism due to 

electrons are described by Dirac equation, which governs the relativistic quantum 

dynamics of an electron in a static field viz. electric field, EሬሬԦ ൌ െ׏ሬሬԦΦ

Bሬ

 and magnetic field, 

ሬԦ ൌ ሬ׏  x AሬሬԦ. Now, the Hamiltonian18 for such a system could be written as, ሬԦ

ܪ   ൌ ଴ܪ (2-1)       ൅ ௌܪ ൅ ௌைܪ ൅ ܸሺݎሻ

଴ ൌ ௣మ

ଶ௠

neglecting the non-magnetic relativistic terms. Here, without going into details, H0 is the 

Hamiltonian of a free spinless particle in a magnetic field, HS is the spin Hamiltonian, 

HSO describes the spin-orbit interaction and V(r) is the electrostatic potential. The 

Hamiltonian for a spinless particle, in turn, depends upon two terms: 

ܪ   ൅  ஽       (2-2)ܪ

where HD is a diamagnetic orbital contribution. Whereas a much detailed derivation for 

these various contributions to the Hamiltonian is described in standard text books, the 

important results are discussed in this chapter. 
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2.2 Orbital contribution to magnetism: 

Since the orbital motion of an electron in a magnetic field is quantized, the 

electron energy eigenvalues and hence the total energy depend on the magnetic field. The 

diamagnetic orbital contribution, HD in equation 2-2 is expressed as 

஽ܪ ൌ ௘మ஻మ

଼௠
 ሺݔଶ ൅ ଶሻݕ

െ డ
డ஻

       (2-3) 

And the magnetization in the ground state |0> is 

ܯ   ൌ ሺ൏ ஽|0ܪ|0 ൐ሻ

௡,௞೥,௞೤ܧ ൌ ԰߱௖ ቀ݊ ൅ ଵ
ଶ

      (2-4) 

Since the energy increases quadratically with B, the magnetization in the ground state is 

negative and in the opposite direction to B. This quantum mechanical contribution to the 

susceptibility19 is remarkable that the contribution we expect on the basis of classical 

theory is identically zero. The modified Hamiltonian20 for the system that satisfies the 

Schroedinger wave equation yields the energies of the electron states in the magnetic 

field as 

 ቁ ൅ ԰మ௞೥
మ

ଶ௠
      (2-5) 

when the magnetic field, B, is applied perpendicular to the plane of the motion of the 

electron. Here ωc=eB/m is the cyclotron frequency, kz is the component of momentum in 

the z direction and m is the mass of the electron. If we use this energy to evaluate the 

susceptibility of the system, we get21 

  ߯஽ ൌ െ ௘మ௞ಷ
ଵଶగమ௠௖మ        (2-6) 

where kF is the magnitude of the Fermi wave vector and is derived from the electron 

density of states. The susceptibility is independent of temperature as this is an average 

effect and does not require the spacing of the levels be greater than kT. The parameter ‘n’ 

is equation 2-5 is an integer indicating the Landau levels that ranges from 0 to N and the 

factor ħωc is the periodic spacing between those levels. Now as the applied field B is 

raised, the separation ħωc increases, and the quantum states are collected together. As a 

result of this bunching, the density of states should change periodically since the Landau 

levels are spaced equally. A detailed theoretical description of this periodic behavior will 

be presented later in the chapter. 
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2.3 Contribution of charge carriers to magnetism: 

According to the Langevin model22 for materials with non interacting localized 

electrons, the magnetic moments are randomly oriented as a result of thermal agitation. In 

the presence of a magnetic field however, the moments tend to line up preferentially in 

the field direction and produce a net magnetization. Since the moments line up in the 

direction of the field and enhance the external field, the susceptibility χ is greater than 

zero for a paramagnet. As the temperature increases, then the thermal agitation will 

increase and it will become harder to align the atomic magnetic moments and hence the 

susceptibility will decrease. The magnetic susceptibility through various steps of 

calculations23 would be deduced as 

߯ୀ
ேఓೡఓ೘

మ

ଷ௞்
        (2-7)  

where N is the Avogadro number, µv is the permeability of vacuum, µm is the magnetic 

moment, k is the Boltzmann constant and T is the absolute temperature. This statement 

that the magnetic susceptibility of a paramagnetic arrangement of dipoles should vary as 

1/T is known as Curie law. The material constant defined as C=Nµvµm
2/3k is the Curie 

constant. In fact the Curie law is a special case of the more general Curie-Weiss law 

  ߯ ൌ ஼
்ିఏ಴ೈ

        (2-8) 

which incorporates a temperature constant (θCW). This law derives from Weiss theory24, 

proposed for ferromagnetic materials, that incorporates the interaction between magnetic 

moments. 

In equation (2-8) θCW could either be positive, negative or zero. Clearly when θCW 

= 0 then the Curie-Weiss law equates to the Curie law (Fig. 2.1). When θCW is non-zero 

then there is an interaction between neighboring magnetic moments and the material is 

only paramagnetic above a certain transition temperature. If θCW > 0, then the material is 

ferromagnetic below the transition temperature and the value of θCW corresponds to the 

transition temperature (Curie temperature, TC). If θCW < 0, then the ground state is 

antiferromagnetic below the transition temperature (Néel temperature, TN) with θCW 

corresponding to TN. Curie's law only works for samples in which only a relatively small 

fraction of the atoms are aligned, on the average, with the magnetic field. When the 

aligned fraction becomes larger, Curie's law no longer holds because it predicts that the 
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magnetization just goes up forever with increasing applied magnetic field. It is also not 

valid for many metals as the electrons contributing to the magnetic moment are not 

localized. However, the law does apply to some metals, e.g. the rare-earths, where the 4f 

electrons, that create the magnetic moment, are closely bound. 

 
Fig. 2.1 1/χ vs. T plot for a paramagnet (PM), ferromagnet (FM) and antiferromagnet 

(AFM) following Curie–Weiss law. 

For materials where the electrons are free and interact to form a conduction band, 

the Pauli model25 for paramagnetism is valid. When no magnetic fields are present each 

band state is double degenerate, one having spin-up and the other spin-down. Under an 

applied field, an imbalance between electrons with opposite spin is set up leading to a 

low magnetization in the same direction as the applied field. However, the Fermi energy 

of the system is a constant and hence the electrons are transferred from spin down to spin 

up band. By knowing the density of states of a given spin per unit energy at the Fermi 

energy, we could evaluate the susceptibility as 

߯௉ ൌ ௘మ௞ಷ
ସగమ௠௖మ        (2-9)  
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The susceptibility is independent of temperature, although the electronic band structure 

may be affected, which will then have an effect on the susceptibility. This positive 

magnetic susceptibility is hence a direct measure of the density of states at the Fermi 

level. Note that the magnitude of Pauli susceptibility is exactly three times that of the 

Landau term (2-6). 

To make a proper computation of the susceptibility even in weak fields, it is 

necessary to know the energy of the stationary states, or alternatively the partition 

function, to the second order in the field B. In certain materials, the orbital angular 

momentum of the ground state has zero expectation as a consequence of invariance under 

time reversal. It might be thought that magnetism then be purely due to spin in the ground 

state. In fact certain excited states have orbital angular momentum and these contribute to 

the ground state magnetism in second order perturbation theory. Therefore a magnetic 

Hamiltonian acting on spin states in the ground state to the second order should be 

considered. Such an effective Hamiltonian18 is described as 

ܵ. ܤ െ ∑ |ழ௡|௚ಽ|௘|௅.஻
ଶ௠ൗ ାఒ௅.ௌ|଴வ|మ

ா೙ିாబ
௘௙௙ܪ ൌ ௚ೞ|௘|

ଶ௠ ௡    (2-10) 

where the sum is taken over all excited states n of the system and λ is the spin orbit 

interaction coefficient. The eigenvalues for this effective Hamiltonian is evaluated by 

expanding the square of the matrix in equation 2-10. Now the magnetic susceptibility 

elucidated from this evaluation carries two distinct terms: the temperature dependent 

Langevin susceptibility as given in equation 2-7 and the Van Vleck susceptibility18,26, 

which is temperature independent. The anisotropic Van Vleck contribution can be 

significant when the ground state is singlet, where the curie susceptibility is zero. It is 

particularly important in molecular structures which form preferentially in S=0 states i.e. 

antiferromagnetism, because of superexchange. Also at high temperatures where the curie 

term is small, the Van Vleck term proves to be dominant. 

2.4 Magnetic interactions: 

The strong coupling of the localized electron spins in the neighboring ions 

contributes to the collective ferromagnetic or antiferromagnetic behavior in a system. For 

a lattice of localized moments interacting through Heisenberg exchange, the spin 

Hamiltonian mentioned in equation 2-1 intuitively takes the form 
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ௌܪ ൌ െ ∑ ௜௝ܬ పܵሬሬሬԦ. ఫܵሬሬሬԦ ௜௝ െ ሬܪߚ . ∑ ሬܵ పሬሬԦሬԦ ௜      (2-11) 

where Jij (=Esinglet – Etriplet) is the exchange integral for the interaction between spins పܵሬሬሬԦ 

and ሬܵ ఫሬሬԦ and β is the Bohr magneton. The ground state of the system is determined between 

singlet (antiferromagnet) and triplet (ferromagnet) states by the sign of the exchange 

constant and is governed by Hund’s rule. For instance, if the exchange integrals are 

positive, the Hamiltonian favors the alignment of spins since a parallel alignment of spins 

is an eigenstate of the Heisenberg exchange for a two-electron state. According to the 

Weiss model24 for ferromagnetism, an internal field is produced due to exchange 

interaction between the neighboring spins and the corresponding internal field constant is 

defined as λ Jij. Without going into the details of the calculations, the internal field helps 

align the spins parallel below certain temperature and the magnetic ordering temperature, 

TC, could then be expressed in terms of the internal field constant as 

  ஼ܶ ൌ
௡ఒஜ೐೑೑

మ

ଷ௄ಳ
        (2-12) 

where the effective moment, μ ൅௘௙௙ ൌ ݃௃ඥܬሺܬ 1ሻμ஻ . Hence, from equation 2-12 it is 

clear that no long range ordering is possible if λ=0. 

If the exchange interactions were negative and coupled only by neighboring spins 

an antiferromagnetic nature of spin alignment is favored. However, such a state is not an 

eigen state of Heisenberg exchange and operation on such a state with the exchange 

operator would lead to states with neighboring spins flipped with respect to the postulated 

state. The true antiferromagnetic ground state is quite complicated then and is 

approximated by Heisenberg exchange. However, in oxides of the transition metals, 

where antiferromagnetism is a common occurrence, the origin of the exchange interaction 

between moments on the transition metal ions is described by superexchange14 (SE): a 

transition metal ions’ interaction through intermediary oxides. The spin on one transition-

metal ion (Bn+) polarizes neighboring oxygen (O2-) which in turn interacts with the other 

neighboring transition-metal ion as shown in Fig. 2.2. The actual calculation of this effect 

is somewhat subtle, but it explains, in principle, the observed phenomena. The 

antiferromagnets are in general visualized as two sublattices of spontaneous 

ferromagnetism and from the point of view of a single spin ferromagnetism and 

antiferromagnetism seem similar. The expression for the ordering temperature, TN, is 
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hence derived using an analogous treatment as that for a ferromagnet with a |λ| instead of 

λ, as the antiferromagnets have a negative λ. 

 
Fig.2.2 A schematic representation of super-exchange interactions in TMOs. 

The localized spin model has its own limitations and requires serious 

reconsideration from the first principles to explain, for instance, ferromagnetism in 

transition elements. In transition metals, the complication lies in the itinerant nature of d-

electrons that are not strictly localized on particular ions but lie in states that overlap from 

atom to atom to form a narrow band. This band, in turn, hybridizes with the ordinary s-

band where electrons conduct very freely. In a normal metal, we would assume equal 

population of electrons with spin-up and spin-down and the exchange potential would be 

the same for electrons of either spins. The energy bands would then be identical to each 

other and each will have a self-consistent solution. On the other hand if we were to 

populate the spin up states to a greater extent than the spin down states we would find a 

larger exchange potential for the electrons of spin up. Since this potential is attractive, 

these bands would be lowered in energy in comparison to the spin down bands. The 

calculations done in this spin set up ordinarily would not lead to Fermi levels of same 

energy for the two spins. There could be some choice of net non-zero spin that leads to a 

self consistent solution as is the case in a transition metal that has an irregular density of 

states. In such a non-zero total spin, the difference in energy has the contributions from 
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the kinetic energy of the shift in spin-up and spin-down bands and the interaction energy 

between the electrons. Hence the total energy change is given by 

ܧ߂ ൌ ܰሺܧிሻܧߜଶሺ1 െ ௄భభ
ேೌ

 ܰሺܧிሻሻ

ሺܧிሻ ൐ 1

     (2-13) 

where δE is the shift between the spin-up and spin-down bands, K11 denotes the single 

site Coulomb integral and Na is the number of atoms. The paramagnetic state is unstable 

when this change of total energy is negative and hence leads to the Stoner criterium for 

ferromagnetic instability 

ܰܫ           (2-14) 

where I is the Stoner parameter, which describes the effective exchange interactions 

between electrons. When systems meet this criterion electron correlation i.e. the 

interaction energy dominates the kinetic energy and hence leads to magnetic ordering in 

metals as illustrated in Fig. 2.3 (b). Band ferromagnetism had been discussed in a more 

phenomenological way by Stoner27. The itinerant magnetism is caused by the exchange 

interaction between valence electrons. This interaction originates from the Pauli 

Exclusion Principle and favors spin polarization. On the other hand, hybridization, which 

causes band formation, favors a paramagnetic ground state. Therefore it is the 

competition between the exchange interaction and hybridization which will decide 

whether a particular system will exhibit itinerant magnetism or not. 

 
Fig. 2.3 A schematic illustration of Stoner criterion for the stability of (a) paramagnetic 

and (b) ferromagnetic phases. 

To understand antiferromagnetism in pure metals similar itinerant electron picture 

could be considered. To visualize the situation quantitatively, any conduction electron 
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with a prevalent spin, either up or down, when travelling through an established 

antiferromagnetic spin configuration of localized electrons will experience the exchange 

interaction. This effective field experienced by the electron would have the periodicity of 

the magnetic superlattice and hence give rise to an energy discontinuity at a subzone 

boundary inside the usual Brillouin zone. This feature in the band structure would be 

reflected as a superlattice of electron density for the up or down spin electrons. The 

condition for magnetic ordering is given by Overhauser28 in terms of q-dependent 

magnetic response function ߯  as ଴ሺݍሻ

ሻݍμିଶ߯଴ሺܫ ൐ 1

ݏߚ

        (2-15) 

where μ ൌ ݃  is the magnetic moment due to the spin of the electron. The condition for 

ferromagnetism (equation 2-14) is a special case where q=0. 

There are subtle differences between magnetic behavior of itinerant and localized 

states. When localized moments couple, they create a macroscopic total magnetic 

moment. As the temperature increases, the ordering weakens and above the ordering 

temperature, TC, the total magnetic moments are completely disordered, but they retain 

their original magnitude. On the contrary, the itinerant moments disappears completely as 

the temperature rises above TC. Because itinerant magnetization is influenced by the 

exchange interaction, the moment is strongly volume dependent. Unlike itinerant 

moment, localized moments show a very weak dependence on volume, perfect examples 

being the rare earth systems. 

2.5 Effects of extended d-electron orbitals: 

The theoretical aspects discussed in the above sections leave out many important 

effects. For instance, the hybridization between the compact d electrons and the more 

diffused sp electrons is ignored. Likewise, the correlation effects are not explicitly 

included, although these effects are known to be important. Correlations are particularly 

significant when involving the systems like Ru based compounds, whose central feature 

is the extended 4d-electron orbitals. As a result of the extended orbitals, the inter-atomic 

interactions are so huge that they might be comparable to the intra-atomic interactions. 

The spatial extension of the orbitals will also lead to a scenario where there is a strong 

coupling between charge, spin, orbit and lattice. Moreover, the central Ru ion along with 

the surrounding O ions in these compounds forms an octahedral as described in chapter 1. 
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The deformations and relative orientations of these corner-shared octahedra crucially 

determine the crystalline-field splitting, the band structure, and hence the magnetic and 

transport properties, which will be explained in the chapters 4 and 5. The large crystal 

structural distortions in the compounds i.e. rotations, tilting or flattening of RuO6 narrows 

the d-band and hence a small kinetic energy, W. On the other hand the coulomb 

interaction, U is smaller when compared to that of the 3d systems. Thus there is a subtle 

balance between W and U (W/U ~ 1) that dictates the system to be in an unstable ground 

state that is sensitive to any external perturbations. Depending upon which interaction 

factor dominates, the ground state will be determined. Let us look at these competing and 

comparable set of energies one at a time in the following paragraphs. 

2.5.1 Crystal electric field: 

 For magnetic ions in certain crystals one cannot usually ignore the interactions 

between an atom and its immediate surroundings and for many materials they are large 

and significant. The size and nature of these crystal electric field (CEF) effects29 depend 

crucially on the symmetry of the local environment. The local environments are often not 

spherically symmetric so that different orbitals will behave in different ways. As a result 

of the crystal fields, a split in the otherwise-degenerate d orbitals occurs. The crystal field 

splitting depends upon a string of factors viz. the nature of the metal ion and its oxidation 

state, the nature and arrangement of ligands around it29. A common case to consider is the 

octahedral environment because in many transition metal compounds, such as the one in 

my study, a transition metal ion sits at the center of an octahedron with an anion such as 

oxygen on each corner. The CEF in this case arises mainly from the electrostatic 

repulsion from the negatively charged electrons in the oxygen orbitals. In the compounds 

of our interest i.e. Can+1RunO3n+1, which are fine examples of octahedral complexes, each 

Ru4+ ion is surrounded by six O2- ions arranged toward the corners of an octahedron, as 

shown in the Fig. 1.3. 

 20



 
Fig. 2.4 A diagrammatic representation of the origin of crystal field splitting in 

octahedral complexes. 

Fig 2.4 explains the origin of crystal field splitting in octahedral complexes such 

as ruthenates. For non-distorted crystal structures, the O p orbitals always lie along the 

three principal axes whereas the Ru d orbitals orient in the corresponding planes too (dxy 

for example, as shown in the figure). This preference in the spatial arrangement of 

electrons in the ions leaves way to a difference in interactions between the d-p orbitals 

and hence an energy difference. In this crystal symmetry, the d-orbitals split into two sets 

with the energy difference, Δo, where the dxy, dxz and dyz orbitals will be lower in energy 

than the dz
2 and dx

2
-y

2. The former set of orbitals (forming t2g) will have lower energy 

because the orbitals are farther away from the ligand orbitals than the latter set of orbitals 

(forming eg) and therefore experience less repulsion14 (Fig. 2.4). Tetrahedral complexes 

are the second most common type, where four ligands form a tetrahedron around the 

metal ion. In a tetrahedral crystal field splitting, the d-orbitals again split into two groups, 

with an energy difference of Δt where the lower energy orbitals will be dz
2 and dx

2
-y

2, and 

the higher energy orbitals will be dxy, dxz and dyz - the opposite way round to the 

octahedral case. Furthermore, since the ligand electrons in tetrahedral symmetry are not 

oriented directly towards the d-orbitals, the energy splitting will be lower than in the 

octahedral case (Δ0=9/4 Δt). 
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Fig. 2.5 Crystal field splitting diagram for a crystal in a spherical and an octahedral field. 

Crystal Field Stabilization Energy (CFSE)29, which denotes the stability that 

results from placing a transition metal ion in the crystal field generated by a set of ligands, 

is shown in Fig. 2.5. It arises due to the fact that when the d orbitals are split in a ligand 

field, as described above, some of them become lower in energy than before with respect 

to a spherical field known as the barycenter in which all five d orbitals are degenerate29. 

For example, in an octahedral case, the t2g set becomes lower in energy than the orbitals 

in the barycenter. As a result of this, if there are any electrons occupying these orbitals, 

the metal ion is more stable in the ligand field relative to the barycenter by an amount of 

the CFSE. Conversely, since the eg orbitals are higher in energy than in the barycenter, 

putting electrons in these reduces the amount of CFSE. If the splitting of the d orbitals in 

an octahedral field is Δo, the three t2g orbitals are stabilized relative to the barycenter by 
2/5 Δo, and the eg orbitals are destabilized by 3/5 Δo. As examples, let us consider the Ru4+ 

ions, which have d4 configuration. Since the ion has 4 electrons in the d orbital, the two 

spin configurations viz., low and high are possible. In the low spin state, the ion has all 

the four electrons in the t2g orbitals, so the total CFSE is 4 x 2/5 Δo = 8/5 Δo. In the 

hypothetical high-spin state, where there are 3 t2g and 1 eg electrons, the CFSE is (3 x 2/5 

Δo) - (1 x 3/5 Δo) = 3/5 Δo. Here, the higher the value of CFSE, the more stable the 

complex would be. Crystal Field stabilization is applicable to transition-metal complexes 

of all geometries. Indeed, the reason that many d8 complexes are square-planar is the very 

large amount of crystal field stabilization that this geometry produces with this number of 
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electrons. The preference of electron occupation and hence the complex stability in 

ruthenates are discussed in the later part of the chapter. 

2.5.2 Hund’s rule interactions: 

Once we know the relative energies of the d orbitals in a transition-metal complex, 

we have to worry about how these orbitals are being filled. Simple, empirical rules tell us 

how atomic shells are filled. These are the three Hund's rules. The first and the second 

rule determine the spin and orbital moments of an atomic shell. The third rule specifies 

the way in which spin and orbital moments are coupled to each other. Degenerate orbitals, 

in general, are filled according to Hund's rules30. 

• One electron is added to each of the degenerate orbitals in a subshell before a 

second electron is added to any orbital in the subshell. 

• Electrons are added to a subshell with the same value of the spin quantum number 

until each orbital in the subshell has at least one electron. 

Octahedral transition-metal ions with d1, d2 or d3 configurations can therefore be easily 

described by the rule. When we try to add a fourth electron to the orbital, which is the 

case with Ru4+ ion (4d4), we are faced with a problem. This electron could be used to pair 

one of the electrons in the lower energy (t2g) set of orbitals, to make it a low spin state 

configuration (Fig. 2.6 (a)), or it could be placed in one of the higher energy (eg) set of 

orbitals, to exhibit a high spin state (Fig. 2.6 (b)). The same problem occurs with 

octahedral d5, d6 and d7 complexes. But for octahedral d8, d9 and d10 complexes, there is 

only one way to write satisfactory configurations as was the case for d1, d2 and d3 

complexes. As a result, we have to worry about high-spin versus low-spin octahedral 

complexes only when there are four, five, six or seven electrons in the d orbitals. The 

choice between high-spin and low-spin configurations for octahedral d4, d5, d6 or d7 

complexes is made plausible through the CSFE calculations29 explained in the previous 

section. In a nutshell, it is done by comparing the energy it takes to pair electrons with the 

energy it takes to excite an electron to the higher energy (eg) orbitals. If it takes less 

energy to pair the electrons, the complex exhibits low-spin whereas if it takes less energy 

to excite the electron, the complex has high-spin. The amount of energy required to pair 

electrons in the t2g orbitals of an octahedral complex is more or less constant. The amount 

of energy needed to excite an electron into the higher energy (eg) orbitals, however, 
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depends on the value of Δ0 for the complex. As a result, we expect to find low-spin 

complexes among metal ions and ligands that lie toward the high-field end of the 

spectrochemical series. High-spin complexes are expected among metal ions and ligands 

that lie toward the low-field end of these series. 

 
Fig. 2.6 Spin configurations in Ru4+ ion describing the situations of a (a) low spin state 

and (b) high spin state. 

In the ruthenates, with Ru4+ (4d4) ions, the Hund’s rule energy maximizing the 

total spin at each Ru site is not large enough to overcome the eg-t2g crystalline field 

splitting, so that the eg levels are not populated. Hence, one t2g orbital is doubly occupied, 

while the other two host a single electron each as in Fig. 2.6 (a). Since the compounds in 

which all of the electrons are paired show a diamagnetic behavior, they are repelled by 

both poles of a magnet. On the other hand, the compounds that contain one or more 

unpaired electrons are paramagnetic and they are attracted to the poles of a magnet. The 

force of attraction between paramagnetic complexes and a magnetic field is proportional 

to the number of unpaired electrons in the complex. We can therefore determine whether 

a complex is high-spin or low-spin by measuring the strength of the interaction between 

the complex and a magnetic field. 
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2.5.3 Spin-Orbit coupling: 

 The Spin-Orbit (SO) coupling mechanism might be essential in the insulating 

compounds of late 3d-ions and also in 4d-ruthenates. The basis of the SO coupling lies in 

the fact that the effective current from the motion of an electron in a circular orbit 

generates an effective magnetic field. The interaction of this magnetic field with the spin 

magnetic moment is given by: 

ௌைܪ   ൌ െμሬ . ሬԦ        (2-16) Ԧܤ

where μሬԦ is the magnetic moment of the electron and ܤሬԦ is the effective magnetic field it 

experiences. Semiclassical electrodynamics and non-relativistic quantum mechanics 

could be used to obtain an expression for B in terms of the total orbital angular 

momentum, L, of the electrons. 

ሬԦܤ   ሬԦൌܮ ଵ
௠௘௖మ

ଵ
௥

డ௎ሺ௥ሻ
డ௥

       (2-17) 

where U = Ve is the potential energy of the electron in the central field and L is obtained 

by the coupling of individual orbital angular momenta li. It is worth mentioning that the 

magnetic field is parallel to the orbital angular momentum of the electron. The magnetic 

moment of the electron is 

  μሬԦ ൌ ି௚ೄஜಳௌ
ħ

Ԧ
        (2-18) 

where ܵ is the magnitude of the total spin angular momentum obtained by the interactions 

of individual spins, si, within themselves, μB is the Bohr Magneton and gS~2 is the 

electron spin g-factor. Here the magnetic moment is antiparallel to the spin angular 

momentum. Substituting the derived expressions and considering the Thomas precession 

effect31, the interaction energy, HSO, is 

Ԧ

ௌை ൌ ஜಳ
ħ௠௘௖మ . ԦܵሻሺܮሬԦ  ܪ డ௎ሺ௥ሻ

డ௥
ଵ
௥

      (2-19) 

The energy shift could now be evaluated exactly and hence a basis that diagonalizes both 

the unperturbed Hamiltonian and the first order perturbation, HSO by defining a total 

angular momentum ܬԦ=ܮሬԦ+ܵ, the Russel-Saunders or LS coupling32. Taking the dot product 

of this with itself and rearranging the terms, we get 

Ԧ

. Ԧܵ ൌ ଵ
ଶ

ሬԦܮ   ሺܬԦଶ െ ሬԦଶܮ െ Ԧܵଶሻ      (2-20) 

Now the energies could be evaluated from 
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  ൏ .ܮ Ԧܵ ൐ൌ ħమ

ଶ
ሬԦ ሺ݆ሺ݆ ൅ 1ሻ െ ݈ሺ݈ ൅ 1ሻ െ ݏሺݏ ൅ 1ሻሻ

∑ ݆௜௜ ൌ ∑ ሺ݈௜ ൅ ௜ሻ௜ݏ

௘௙௙ ൌ μ஻݃௃ඥܬሺܬ ൅ 1ሻ

   (2-21) 

where j, l and s are the total angular momentum, orbital angular momentum and spin 

quantum numbers respectively. The approximation of L and S coupling to give J is good 

only for weak magnetic fields. However, in larger magnetic fields, these two momenta 

decouple, giving rise to a different splitting pattern in the energy levels giving rise to the 

Paschen-Back effect30 and the size of LS coupling term becomes small. In heavier atoms, 

SO interactions are frequently as large as spin-spin interactions or orbit-orbit interactions. 

In that situation, each orbital angular momentum (li) tends to combine with each 

individual spin angular momentum (si) to give individual total angular momenta (ji). 

These jis then add up to form the total angular momentum J (jj coupling) given as 

ܬ   ൌ       (2-22) 

In solids, the spin-orbit coupling effect leads to a spin-splitting of electrons moving in the 

solid even in the absence of any magnetic field suggesting the vital role of the 

symmetries of the crystal lattice. The effective magnetic moment could be estimated for a 

magnetic system as given by 

  μ       (2-23) 

where gJ is the Land´e g factor, given by 

  ݃௃ ൌ ଷ
ଶ

൅ ሺௌሺௌାଵሻି௅ሺ௅ାଵሻ
ଶ௃ሺ௃ାଵሻ

ሻ      (2-24) 

But the experimental results for magnetic moments are often closer to the values if L=0. 

Hence the value of gJ, as evaluated from equation 2-24 would be 2 always and J=S. The 

modified effective magnetic moment could be then written as 

  μ௘௙௙ሺܮ ൌ 0ሻ ൌ 2μ஻ඥܵሺܵ ൅ 1ሻ     (2-25) 

The explanation for this discrepancy lies in knowing the impact of crystal field effect on 

the system’s magnetism. And in a number of cases the crystal field splitting is more 

important than the spin-orbit coupling. As mentioned in the previous section, when the 

crystal field effects are large enough, Hund’s third rule will not be able to define the total 

angular momentum J in terms of L and S. Instead, J=S simply as the orbital contribution 

is quenched (L=0). This orbital quenching effect just means that the orbital moments are 

strongly coupled to the crystal lattice and are therefore unable to change direction when a 
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magnetic field is applied. Hence the crystal symmetry influences the behavior of the spins 

through this strong coupling. 

2.5.4 p-d electron hybridization: 

Valence-bond theory33 considers the overlap of the atomic orbitals of the 

participation atoms to form a chemical bond. However, the atomic orbitals for bonding 

may not be "pure" atomic orbitals directly from the solution of the Schrodinger Equation. 

Often, the bonding atomic orbitals have a character of several possible types of orbitals 

and hence are called hybridized orbitals. Though hybridization theory succeeded in 

explaining the mechanism behind the s-p hybridization, it has failed in a few aspects, 

notably in explaining the energy considerations when d-orbitals are involved in chemical 

bonding. In general, the d-orbitals are large and comparatively distant from the nucleus. 

Radial distances of orbitals from the nucleus seem to reveal that d-orbitals are far too 

high in energy to 'mix' with s- and p- orbitals. Thus, at first sight, it seems improbable for 

any sp-d hybridization to occur. However, in transition elements the inner d states are not 

all filled, but lie close to s or p valence states which themselves form an ordinary 

covalent bond. The narrow d band with a density of states capable of holding upto 10 

electrons per atom, lies within the s-p band and hybridizes it where they cross21. Such a 

molecular wavefunction construction is perceived by a quantum mechanical approach by 

combining the atomic wavefunctions to give new hybrid wavefunctions. Now a d-band is 

represented by the matrix of an Linear Combination of Atomic Orbitals (LCAO)21 such 

as 

  ߰       (2-26) ௞ ൌ ∑ ݁௜ߚࡾ.࢑௝߶௔
ሺ௝ሻሺ࢘ െ ሻ௜௝ࡾ

௔
ሺ௝ሻሺ࢘ െ ߶ ሻwhereࡾ  is one of the set of different atomic orbitals at R. Once a model 

Hamiltonian is set with suitable pseudo-potential components, the atomic orbitals 

themselves are destroyed by the overlap of potentials. The hybridization matrix is then 

defined by linking the matrix of LCAOs and the pseudo-potentials.  

The electrons in d orbitals do not generally occur in the outermost shell of an 

atom and therefore do not normally take part in ‘pure’ covalent binding. The 

incompletely filled d orbitals of the penultimate shell in transition series differ little in 

energy from the s and p orbitals of the outermost shell34. If one or more of the d electrons 

is promoted to the outermost shell, hybridization of the (n-1)d, ns and np electrons may 
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occur. Such a hybrid is termed a dxsypz hybrid, where the superscripts indicate the 

number of electrons of each type involved and the sequence of orbitals in the symbol 

implies that the energy of the d orbital is lower than that of s. Alternatively s and p 

orbitals may be promoted to vacant d orbitals in the same shell. In this case hybridization 

would involve the ns, np and nd electrons and would give rise to sxpydz hybrids. 

Configurations of particularly common occurrence in crystals are the d2sp3 and sp3d2 

hybrids giving rise to bonds directed to the corners of a regular octahedron. In ruthenates, 

Ru4dxy, yz, xz – O2p hybridization is favorable as reported in the superconductor 

Sr2RuO4
35, because of the proximity of 4d orbitals to the 2p orbitals. LSDA band 

structure calculations done on the compound shows that the eg – pσ bonding states lie at 

the bottom of the valence band with their corresponding antibonding states lying above 

the EF. However, the notable feature in the study is the three hybridized 4d t2g derived 

bands around the EF corresponding to the dxy, dyz and dxz orbitals. 

Once achieved, the hybridization phenomenon is very important in a solid’s 

magnetic and electron transport properties point of view. A decrease in the distance 

between the atoms enhances the hybridization energies as such. Hence we expect the 

hybridization energies to increase as the mechanical pressure on a solid increase. In the 

compounds of our interest, a similar effect of pressure is provided by the distortion and 

deformation in the B-O6 octahedral caused by the ionic size mismatches of the 

constituent ions. An increase in the p-d hybridization will lead to a stronger SE between 

the transition metal ions and hence to a higher TN of the compound. Due to the 

wavefunction overlapping, the electrons are expected to be localized in the bond region. 

The strength of p-d hybridization is connected with the activation energy of the ionic 

conduction. It is shown that the ionic conductivity of the silver halide, AgX36, where X is 

any halide, is high because of the combination of the deformability of d shell and the 

weakness of p-d hybridization. 

2.5.5 Electron-Phonon interaction: 

The crystal field effect in an octahedral crystal geometry is effectively stronger 

than the Hund’s rule interactions and hence lifts the degeneracy between the eg and t2g 

sublevels of the d orbital. But the sublevels are still degenerate within themselves i.e. eg is 

doubly degenerate ሺ and t2g is threefold degenerate൫݀ . ݀௫మି௬మ ൌ ݀௭మሻ ௫௬ ൌ ݀௬௭ ൌ ݀௫௭൯
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This degeneracy could further be removed by the coupling of lattice distortion to the eg or 

t2g electrons that might lead to an orbitally ordered state. In the case of Ru4+ ion based 

compound, which has the above mentioned orbital configuration when the crystal is 

undistorted, a splitting will occur when the crystal is distorted. According to the Jahn-

Teller (JT) theorem37, any molecule or complex ion in an electronically degenerate state 

will be unstable relative to a configuration of lower symmetry in which the degeneracy is 

absent. A rough illustration of the orbital degeneracy removal through a JT distortion is 

shown in Fig. 2.7. 

In compounds like ruthenates the B-O6 octahedra, where B is a metal ion, are 

severely deformed because of the cationic size mismatches. The deformations of 

octahedra can be visualized either as an elongation or a compression along the z axis as 

shown in the figure. When the octahedral is compressed along the z axis, the central Ru4+ 

and O2- ions have moved closer along z axis increasing the interaction between their 

electrons along this direction. This is hence a situation where the dxy orbitals lie lower in 

the energy scale when compared to the dxz and dyz orbitals. Using similar argument one 

can explain the energy level split in the eg orbitals too where d  has lower energy 

than d . Exact opposite of this happens when the octahedral is distorted by an elongation 

along the z axis. In this case the dxy level of the t2g and d  level of the eg orbitals are 

higher in the energy scale than the z counterparts. 

୶మି୷మ

୸మ

୶మି୷మ
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Fig. 2.7 Illustration of Jahn-Teller distortions and the eventual degeneracy removal in a 

tri-fold degenerate t2g and bi-fold degenerate eg orbitals. 

Now the electrons filling these levels have preferences among these otherwise-

degenerate orbitals. For instance, the fourth 4d electron, in Ru4+ ion, will be restricted to 

occupy one or two of the t2g orbitals depending on the type of distortion the Ru-O6 

octahedral undergoes: dxy for compressed z and dxz/dyz for elongated z. Note that the 

energy split in eg is higher than that in t2g levels. The effect of t2g electrons is much 

weaker, showing that eg electrons are normally much more important from the point of 

view of bonding with neighbors. Since the electrons have their preferences now in the 

otherwise degenerate orbitals, the nature of the neighboring orbitals determines the 

strength of the electron hopping. The origin of orbital ordering is explained perturbatively 

in the electron hopping by considering a hopping matrix only connecting the same 
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orbitals with a non-zero hopping parameter t. The hopping process thus introduces certain 

level of ordering in the arrangement of orbitals, if it were to favor electronic conduction. 

Therefore, in our compounds, orbital-ordering is coupled with JT distortion. As a result 

of an ordered nature of orbitals, the electron-transfer interaction tends to be anisotropic. 

This means that it favors or disfavors the double-exchange interaction or super-exchange 

interaction in an orbital direction-dependent manner and hence gives a complex spin-

orbital coupled state for the compound. 

JT effect essentially depends on the magnitude of the electron phonon coupling 

constant ( ௘௟ି௣௛ߣ ן ඥܧ௃்ሻ . For metals with broad bands and almost completely 

delocalized electron states, the electron phonon coupling constant is small and hence the 

JT effect is weak. This convinces one to believe that the narrower the conduction band 

the stronger is the electron lattice coupling, leading to a stronger JT effect. Now this 

argument will lead to a situation where we would assume the strongest JT effect to exist 

for the narrowest possible band. But a more subtle effect of the electron-phonon 

interaction is the apparent increase in electron mass that occurs because the electron 

drags the heavy ion cores with it. Hence, if the band is too narrow it is less likely for JT 

effect to be prominent as the carrier mobility is then limited. 

According to Goodenough38, the basic physical mechanisms that quench the 

orbital degrees of freedom in a solid are (1) the electron-lattice JT distortions (2) 

relativistic SO coupling and (3) electron-electron SE interactions. Usually in a particular 

material of interest, it is not easy to single out any mechanism in terms of dominance. As 

a rule, one would expect strong JT interactions for the orbitals of eg-symmetry as they 

were directed towards the ligands. On the other hand the ions with t2g degeneracy viz. Ti, 

V, Ru etc. are regarded as “weak JT” ions and the other interactions will be equally or 

more important in compounds based on these ions39. The crystal field effects have a 

strong impact on the effectiveness of a compound’s SO interactions as discussed in 

section 2.5.3. The SE mechanism becomes increasingly effective near the Mott metal-

insulator transitions (This subject will be covered in detail in the next section) because 

the intensity of virtual charge fluctuations, which are ultimately responsible for the 

exchange interactions, is large in small charge-gap systems. An increased virtual kinetic 

energy of electrons near the Mott transition – in other words, the proximity to metallic 
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state – can make the electronic exchange more efficient in lifting the degeneracy than the 

electron-lattice coupling40. 

2.6 Metal-Insulator transition: 

Now that we learnt the origin and the range of interactions between the different 

degrees of freedom, we are ready to look at one or more of the impacts of their presence 

on a material’s ground state; a direct consequence being a metal to insulator transition 

(MIT). The insulating phase associated with MITs can be described as either a band 

insulator (such as silicon) or a Mott insulator41 (such as nickel oxide). A band insulator 

has an even number of electrons per unit cell that can be described adequately by an 

independent electron theory, where all of the bands are either filled or empty at 0 K. 

Although band theory is capable of explaining all the observed properties of metals and is 

the basis of most of the semiconductor properties, the biggest failure of it, however, lies 

in its prediction of metallicity always when the number of electrons in the unit cell is odd. 

But we have real-world examples that are insulators with odd number of electrons in their 

unit cell. For instance, a material having an onsite Coulomb interaction (U – intra-atomic) 

comparable to the bandwidth (W – inter-atomic) can become a Mott insulator irrespective 

of the electron count. And the transition from strongly correlated (U > W) to weakly 

correlated (U < W) electrons as a result of a change of bandwidth W is thus termed a 

Mott transition42. 

Over the past two decades, the Mott-insulating phase transition has received a 

great deal of attention as a prototypical example of a quantum phase transition in a 

strongly-correlated system for which quantum fluctuations drive the phase transition at 

zero temperature. Metal-insulator transitions of this type are, for example, found in 

transition metal oxides with partially filled bands near the Fermi level, which were 

predicted to be metals by band theory. According to the band theory, when a large 

number of atoms are brought closer, bands will be formed to make the solid a conductor 

as a result of an intensified wavefunction overlap. But with the strong interaction between 

the electrons being a definite possibility in the TMOs, a set of localized states may be a 

better trial wavefunction for the system than the set of delocalized band states. The most 

famous example is V2O3 doped with Cr43. A proper understanding of this phenomenon is 

made difficult by the fact that one is here dealing with an intermediate coupling p.roblem 
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whose investigation requires non-perturbative techniques. As is well-known, LDA does 

not treat the effects of strong local Coulomb correlations adequately. To overcome this 

drawback, recently there have been some very interesting new developments in this field 

due to the application of the dynamical mean-field theory (DMFT) for the infinite-

dimensional Hubbard model44. The Hubbard Hamiltonian basically appends a correlation 

term to the Tight Binding (TB) approximation and hence has the form, 

ܪ   ൌ    (2-27) െݐ ∑ ܿ௜,ఙ
ற

ழ௜,௝வ,ఙ ௝ܿ,ఙ ൅ ܷ ∑ ݊௜՛݊௜՝
ே
௜ୀଵ

where ‘t’ is the hopping integral as defined in the TB model. This Hamiltonian sets up a 

competition between the hopping integral and the onsite repulsion and the model can 

therefore explain the transition from conductor to insulator in certain TMOs. The 

advantage of LDA+DMFT method of calculation is that it combines the strength of the 

LDA in describing weakly correlated electrons in the s- and p-orbitals, with the DMFT 

treatment of the dynamics due to local Coulomb interactions. 

Normally, the MIT for a band insulator is accompanied by a structural phase 

transition that changes or breaks the symmetry. In contrast, an inherent Mott transition 

should be purely electronic in origin and not assisted by a structural transition. In 

practice, almost all of the highly correlated materials with a large enough ratio of U/W to 

be Mott insulators exhibit close coupling between charge, spin, and lattice, so that the 

Mott transition is nearly always accompanied by a structure transition. This situation 

complicates the understanding of the basic mechanism of a Mott MIT as a transition 

driven by the electron-electron (e-e) correlations as observed in the layered perovskite 

Ca1.9Sr0.1RuO4
45.  

The inter- and intra-atomic interactions could be altered by changes in inter-

atomic distances, brought about through temperature or pressure variations or by 

introducing an alloying element. Since the competition between U and W determines the 

ground state of a system, a transition from the Mott insulating phase to the metallic phase 

can be induced by temperature, pressure, magnetic field, or doping. 

2.7 Metals in strong applied fields: 

The Fermi surface (FS) of metals is a constant energy surface in reciprocal space 

corresponding to the FE. Since the Fermi energy is inversely proportional to the effective 

mass, m*, and directly proportional to the concentration of electrons, n, the larger the 
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electron concentration the bigger is the FS as in good electrical conductors. The 

momentum of the conduction electrons in this constant energy surface is sensitive to the 

applied electric and magnetic fields, strongly so under extreme field conditions as 

depicted in Lorentz force equation, 

ൌ െ݁ሺܧሬԦ  ħ ௗ௞ሬԦ

ௗ௧
൅ ଵ

௖
ሬ࢜ xܪሬሬԦሬԦ ሻ

where ሬ݇

     (2-28) 

Ԧ is the momentum of the mobile electrons. This response of electrons to high 

fields, when the applied field is strong enough to dictate a cyclotron frequency greater 

than the collision rate, is in the form of periodic oscillations. The Quantum Oscillations 

(QO) will hence be an indirect way to measure Fermi surface but still more intrinsic than 

many other measurement probes. Observation and analysis of these oscillations is widely 

agreed to be the best way of obtaining detailed, microscopic knowledge of the electronic 

structure and the low energy excitations that define the metallic state. But observation of 

QO is not straight forward as it requires having ideal conditions to realize the response of 

electrons. 

In the absence of applied magnetic field, the time and electric field dependent 

electron momentum could be obtained by solving equation (2-28) with B=0. Now 

 and the electrons decelerate and reverse its direction at the Brilloiun zone 

boundary in a DC electric field. Hence a DC bias produces an AC current (i.e.) Bloch 

oscillations. But the electrons have a large collision time that hinders this effect 

significantly. For electrons to complete a cycle, it should follow the relation, ௘ா்

ħ݇ሺݐሻ ൌ െ݁ݐܧ

ħ
ൌ ଶగ

௔
 

that gives a definition for the period of an oscillation as ܶ ൌ ௛
௘ா௔

. This condition hence 

enables one to estimate the range of T for a field as high as 104 V/cm and for a=1Å as 10-

10 s. But the electron collision time is 10-14 s in normal metals, which establishes a 

scenario where the electron can never reach the boundary and hence no oscillations 

discerned for fields upto as high as 104 V/cm. There are few manipulations that could be 

suggested in order to push the electrons to revolve in an orbit and to produce the 

oscillations. Increasing the field much more than 104 V/cm is obviously a choice, 

whereas increasing the lattice constant ‘a’ will bear fruitful results too. Using high quality 

single crystals definitely will enhance the possibility of an electron completing a cycle as 

the collision time will be reduced for the electrons in this case. Though these are 
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theoretically possible manipulations, we have to accept that experimentally they still 

remain open challenges. 

Now let us look at the second effect in Lorentz equation. The magnetic field 

contribution to the Lorentz force equation (equation 2-28) suggests that the change in the 

vector ሬ݇Ԧ is normal to the direction of ܪሬሬԦ, normal to ݒ, which itself is normal to the energy 

surface. This means that ሬ݇

Ԧ

Ԧ  must be confined to the orbit, which is defined by the 

intersection of the FS with a plane normal to ܪሬሬԦ. Thus ܪሬሬԦ simply drives the representative 

electron along this orbit (round the FS) without any change of energy21. This orbit in k 

space could either trace out a closed curve or in the periodically extended zone scheme, 

the trajectory is an open orbit. In the open orbit case, the representative electron passes 

from one zone to the adjacent one and never returns to its starting point. Since the 

velocity of an electron is perpendicular to the constant-energy surface, the average 

velocity of an electron in perpendicular to both H and the average direction of the orbit in 

k space. Thus for H in the z direction there exists an open orbit directed along kx, the 

electron in this orbit will carry a current in the y direction. These open orbits are not 

responsible for oscillation as the magnetic field does not bring the representative point 

back to where it started. In the closed orbit case, the average velocity vanishes and the 

closed orbits hence will give rise to the oscillations. Open orbits are present because of 

many factors like scattering that spoils the periodic nature of the electron orbits, strong B 

etc. 

Landau quantization theory suggests that the electrons in a metal exist only as a 

series of orbitally quantized states in the presence of a magnetic field. In a 3-dimensional 

model these levels will take the form of cylindrical tubes as shown in Fig. 2.8. For a 

magnetic field applied along z axis, the Landau level energy is given by equation 2-5, 

where the energy E is continuous in the bulk limit. Now, states with E>EF are empty and 

E<EF are occupied from kz=-kz max to +kz max, where ݇௭ ௠௔௫ ൌ ሺଶ௠
ħమ ሻ

భ
మሺܧி െ ħ߱஼ ቀ݊ ൅

 could be deduced as 12ሻ12. The total number of electrons

ܰ ൌ ሺ௏ħఠ೎
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Fig. 2.8 Quantized Landau tubes in the presence of a magnetic field. 

In the Landau cylinder, the energy is constant in the base but not necessarily 

along the length (kz). So for different kz we have different energy. Furthermore, from 

equation 2-5, we can deduce that ݇ᇼ
ଶ ൌ ଶ௠

ħ
߱௖ ቀ݊ ൅ ଵ

ଶ
ቁ

ܵ ൌ ᇼ݇ߨ
ଶ

௡ ൌ ଶగ௠
ħ

 and the area in k orbit is given by 

. Therefore, 
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ଶ
ሻ

ൌ గ௠ఠ
ħ

      (2-30) 

Now the change in area between two adjacent levels is hence, ܵ߂ ೎ where ߱௖ ൌ ௘஻
௠

. 

The radius of the cylinders is proportional to B1/2 and so they expand as B increases. 

Thus, when 

ൌ ଶగ௘
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ቀ݊ ൅ ଵ
ଶ

   ଵ
஻

ቁ

ଵ
஻

      (2-31) 

the nth cylinder just touches the FS and will pass beyond it if B is increased ever so 

lightly. This just means that the cylinders of constant n are pushed out of FS one by one 

as B is increased. Whenever, a landau tube crosses the Fermi level we get a peak and so 

on to give periodic oscillations. Another way of looking at this classic behavior is that 

initially EF is at n and then there is a decrease in 1/B as B increases and by then the EF 

will go below n (an equivalent situation of Landau level n being pushed up). So the 

lowest n-1 level is at EF with ߂ ൌ ଶగ௘
ħௌ

. In the foregoing discussions, S is considered to 

be constant for these Landau cylinders. But in reality we might have a variable S where 
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we get oscillations with linear combination of two or more frequencies. In such a case the 

Landau levels are no more just cylinders, as evidenced in Ca3Ru2O7. 

There are basically two appropriate experimental conditions for the observation of 

oscillatory effects, similar to the conditions required for observing Bloch oscillations. 

First, the thermal spread of the distribution function must be small compared to the 

spacing between orbitally quantized levels so that the effect of quantization is not washed 

out. Thus we require that ħ  and when ħ߱ , since N needs to be 

constant, when ħ  increases EF decreases. The second effect is that ħ߱  in the square 

root part of equation (2-29) increases making EF to increase. These are the two competing 

effects as a result of an applied B. Now, when EF is oscillating in B we see oscillations in 

properties related to EF. Common examples include oscillatory behaviors observed in the 

susceptibility (deHaas Van Alphen (dHVA) Effect), the conductivity (Shubnikov deHaas 

(SdH) Effect), the magnetostriction etc. 

߱௖ ب ݇஻ܶ ௖ ب ݇஻ܶ

߱௖ ௖

ൌ ఘሺ஻ሻିఘሺ଴ሻ
ఘሺ଴ሻ

The second favorable condition to realize an oscillation is that the sample must be 

extremely pure and the temperature should be sufficiently low so that the relaxation time 

for the charge carriers is long. The uncertainty broadening of the levels will prevent the 

appearance of well defined oscillations otherwise. To meet these two conditions we must 

work with materials in which the electron density is high enough, when B has attained the 

necessary magnitude. If this vital requirement on the FE is not fulfilled all electrons will 

have condensed into the lowest orbital state before any oscillations can be observed. 

2.8 Magnetoresistance: 

 The physics of the phenomenon where the resistance of certain materials changes 

dramatically as a magnetic field is applied, magnetoresistance (MR), has generated 

enormous interest in the recent years. In the simplest terms, an MR is defined as 

ܴܯ          (2-32) 

where ρ(B) and ρ(0) are the resistances at applied and zero magnetic fields respectively. 

It is typical that Δρ (=ρ(B) – ρ(0)) is proportional to B2 for small fields but it tends to 

saturate at high fields. But the situation could be modified as in the case of the transverse 

MR, where the magnetic field is perpendicular to the direction of the current. In the 

direction of the open orbit, transverse MR increases as B2 without saturation. This 

striking phenomenon is of importance in the study of the FS. An inspection of the MR of 
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single crystals as a function of orientation relative to the magnetic and electric fields 

provides evidence of the topology of the surface. For instance, if the directions of non-

saturation are observed then the FS must be connected from zone to zone in the repeated 

zone scheme. It cannot consist of closed regions of electrons and holes unless these are of 

exactly equal volume. 

 
Fig. 2.9 Scattering of electrons possessing representative spins in (a) a ferromagnet and 

(b) an antiferromagnet. 

The effect is most usually seen in magnetic multilayered structures, where two 

magnetic layers are closely separated by a thin spacer layer a few nm thick. It is 

analogous to a polarization experiment, where an aligned set of polarizers allows light to 

pass through, but the crossed ones do not. The first magnetic layer allows electrons in 

only one spin state to pass through easily. Now, if the second magnetic layer is aligned 

then that spin channel can easily pass through the structure, and the resistance is low. If 

the second magnetic layer is misaligned then neither of the spins can get through the 

structure easily and the electrical resistance is high. This is illustrated in Fig. 2.9 that 

explains the electron conduction processes in a ferromagnet (Fig. 2.9 (a)) and an 

antiferromagnet (Fig. 2.9 (b)). Obviously, the electrical resistance is much lower when 

the spins are coupled ferromagnetically than that when they are antiferromagnetically 

coupled together. 
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In a more technical sense, the band structure in a ferromagnet is exchange split 

such that the DOS is not the same for spin-up and spin-down electrons at the Fermi level. 

Fermi's golden rule states that scattering rates are proportional to the DOS at the state 

being scattered into, the Fermi level in this case. The scattering rates are thus different for 

electrons of different spin, which explains the vast difference in the resistances. These 

ideas were used as early as 1936 by Sir Neville Mott42 to explain the sudden decrease in 

resistivity of ferromagnetic metals as they are cooled through the Curie point. Thus MR 

effectively measures the difference in angle between the two magnetizations in the 

magnetic layers, where small angles (parallel alignment) give a low resistance and large 

angles (antiparallel alignment) give a higher resistance. The strength of the MR depends 

on the mean free path of the electrons which carry the current. It is possible for electrons 

of appropriate spin to pass through many aligned magnetic layers and have a very long 

mean free path. This means that the distance between scatters is increased the most when 

the layers become magnetically parallel and hence contributing to a small resistance. 

There is an interesting scenario when two materials with different switching fields 

are engineered to form junctions. Then as we apply the reverse field one layer will switch 

before the other and we have a ‘pseudo spin valve’. There are also structures called spin-

valves. These are structures where one layer moves in a field, whilst the other does not, 

and is used as a reference magnetic moment. This will give a bipolar output with a very 

high sensitivity in an optimized device. Though there are a number of different schemes 

in which it is possible to do this, a general reliable method is the exchange-biasing. It is 

possible to exchange couple one of a pair of magnetic layers to another back layer of 

antiferromagnetic material. These types of structures are very sensitive to magnetic fields 

and were not observed in any bulk material before we reported in our Cr doped Ca3Ru2O7 

single crystals. 

While the quantum mechanical phenomenon of MR is in general associated with 

the spin scattering process of conduction electrons, the origins of various kinds of it are 

vastly different. The Giant MR (GMR) observed in magnetic metallic multilayer 

structures can be qualitatively explained using the two-current model, corresponding to 

up-spin and down-spin electrons. Tunneling MR (TMR), often seen in magnetic tunnel 

junctions separated by an insulating spacer layer, is a consequence of spin-polarization. 
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On the other hand, Colossal MR (CMR), seen only in the mixed valence manganites and 

layered ruthentes so far, originates from a metal-insulator transition in the vicinity of the 

transition temperature driven primarily by double exchange due to the hopping of eg 

electrons of Mn3+ ions in manganites and the JT effect in ruthenates. As the name 

indicates, the CMR compounds exhibit resistance drops of upto a few orders of 

magnitude, whereas the other two types of magnetoresistance yield a difference in 

resistance by only few percent at the maximum. The CMR compounds exhibit various 

types of ordering including charge, spin and orbital ordering. In the multilayered 

ruthenates orbital ordering plays a vital role in dictating the physical properties of a 

compound as explained in chapter 4. 
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Chapter Three 

Experimental Techniques 

3.1 Introduction: 

Our motivation in materials research is two-fold: (1) To develop and synthesize 

high quality novel and exotic electronic materials and (2) To carry out an intense 

investigation on the physical phenomena that those materials behold.  

There is a famous saying about performing research in materials physics that 

states, “If you want to do good physics, you have to have either novel techniques or novel 

materials”. In our lab, we have decided to go for novel materials. The way we pursue 

physics is to design, grow or discover samples of new or exotic materials in single-crystal 

form and then do relatively simple measurements on them. In the recent years, we have 

been focusing our attention to growing single crystals of transition metal oxides (TMOs), 

which are strongly correlated electron systems. The second manifestation of our research 

lays in the experimental studies of the synthesized crystals, giving emphasis to the 

structure, thermodynamics and transport properties of the systems. The compounds of my 

interest have in themselves a wide range of complex phenomena that are extremely rich 

in physics. This alarms us to do a careful investigation on the samples under 

consideration. 

In this chapter, I will hence focus on the experimental techniques that we apply in 

our lab – to grow single crystals and to study the physical properties of the grown single 

crystals. 

3.2 Material synthesis: 

The driving force for crystallization comes from the lowering of the potential 

energy of the atoms or molecules when they form bonds to each other. The growth of a 

real crystal is governed on one hand by molecular kinetic processes at interfaces and on 

the other by heat and mass transfer at such faces46. Hence, given ‘all’ thermochemical 

and thermophysical information on a specific material, one should be able to devise or 

select the optimum crystal growth method (preparation of starting material, growth and 

after-treatment of crystal) for it. The ideal system47 for any crystal growth, based on the 

above facts, should consist of a pure element or congruently melting compound with 

• Low vapor pressure 
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• Low melting point 

• High thermal conductivity 

• Low heat of solidification, having no solid state phase transitions between its 

melting point and room temperature 

However, if we ask ourselves a question whether growing a single crystal is easy, 

the answer would not be a simple ‘yes’ most of the times. First, only in few cases will 

one be fortunate as to deduce “all” the relevant information. Secondly, one has to realize 

that non-scientific parameters will influence and most times determine the selection of a 

method. Taking these various factors into consideration, we found two elegant techniques 

to be extremely useful in growing our crystals of TMOs that are explained in section 

3.2.2 and 3.2.3. 

3.2.1 The importance of single crystals: 

Fundamental understanding of advanced electronic materials requires the critical 

capability to synthesis single crystals of new materials. But the art of growing good 

quality single crystals is one of the most underrated activities in science. As fittingly 

mentioned by Tony Feder48, the condensed matter physics community in the country 

could not help but lag in the discovery of new materials and their applications, if this 

perilous condition persists. This indispensable fact induces our motivation in materials 

research to have an important role for material synthesis as mentioned in the introduction 

part of this chapter. 

We strongly believe that single crystals are instrumental in carrying out an 

extensive research in materials physics. Access to single crystals is vital for our research 

for two, if not more, reasons. The primary reason that we rely on single crystals for our 

measurements is that it is much easier to study the anisotropic or directionally dependent 

properties of a material. This factor is particularly relevant for the exotic compound 

Ca3Ru2O7 that exhibits strongly anisotropic physical properties. Looking at a 

polycrystalline sample of such a material would hide these anisotropies, because of the 

variable orientation of the crystallites that the sample is composed of. The second reason 

access to single crystals is important is that they do not exhibit artificial effects due to 

strain or impurities. Crystals, in general, can belong to one of several crystal systems, 

each of which is characterized by certain symmetries. A polycrystalline sample of a 
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compound that belongs to one of the non-cubic crystal systems can have significant built-

in strain. In a nutshell, for looking at the intrinsic properties of a crystalline material, one 

should do measurements on a single crystal. Since we understand the importance of high 

quality single crystals in materials research, we synthesis our own crystals for the studies. 

The expertise of our novel materials lab is to synthesize large, quality single 

crystals. The state-of-the-art bulk crystal growth facility in our novel materials lab 

permits growth of single crystals of a wide range of materials from the melt at 

temperatures even greater than 2000oC. 

3.2.2 Floating-Zone technique: 

One of the two techniques we use to grow single crystals is the Floating-Zone 

(FZ) method. Currently our lab is operating an image furnace from NEC®49. Our image 

furnace is a focus heating one, well equipped with a double rotary elliptic surface mirror. 

 
Fig. 3.1 A diagrammatic representation of Floating Zone Furnace technique that uses a 

double elliptic mirror. 

Fig. 3.1 explains the principle of operation of a double elliptic type image furnace. 

As a heat source, two halogen lamps of 1.5 KW power are installed in the mirrors’ outer 

focus. Au plating is applied to the inside surface of the mirror to increase the reflectance. 

Refer to the instruction manual49 from NEC for further technical details on the furnace. 
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In order to grow single crystals with optical floating zone furnace the following 

conditions are necessary50. 

1. Achieving high temperature with high efficiency, 

2. Deep temperature distribution along the vertical direction and  

3. Homogeneous temperature distribution around the horizontal plane.  

Using a double elliptic mirror enables us to achieve a high temperature at the inner focus. 

For instance, the image furnace having two halogen lamps with the above mentioned 

power is capable of reaching 2050oC at the molten zone. The infra red rays emitted from 

the lamps are converged into the inner focus of both mirrors to melt the material and the 

seed crystal (Preparation of polycrystalline material rod and seed are discussed in the 

following paragraphs). The melt is held by surface tension between the polycrystalline 

material (feed) rod (upper shaft) and the seed crystal (lower shaft). For a proper growth 

this molten zone should be monitored closely and carefully for any deflections from the 

vertical axis like the ones shown in Fig. 3.2. The deflections might happen as a result of 

excessive power as in Fig. 3.2 (b) or because of insufficient power as in Fig. 3.2 (c). In 

either case, the power has to be gradually tuned to the optimal level so that the melt is 

smooth. A steady growth is possible only if the molten zone appears like the one in Fig. 

3.2 (a). 

 
Fig. 3.2 A molten zone (a) in normal state, (b) when power is excessive and (c) when 

power is insufficient. 

(c)(b)(a) 

 The temperature profile in a traditional double elliptic mirror furnace is shown in 

Fig. 3.3 (a). The temperature distribution around the horizontal plane in the furnace is not 
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homogeneous (see Fig. 3.3 (c)) and this is disadvantageous for the growth of high quality 

single crystals. As a result of the temperature inhomogeneity, only the sides of the feed 

rod that are close to the lamps are melted as displayed in Fig. 3.3 (b). Maintaining a 

homogeneous temperature distribution is critical for the growth and rotation along the 

vertical axis diminishes the temperature inhomogeneity in the horizontal plane. So the 

feed rod and the seed crystal are directed to spin in opposite directions, with the same 

speed, to guarantee a homogenous melt. If the rods are not rotated, the inhomogeneity 

will have strong and unexpected influences on the growth of high quality single crystals. 

Moreover, the solid liquid interface is convex under normal circumstances and its shape 

depends on the rotation rates of the charge rod and the growing crystal. The convexity of 

the interface is decreased with increasing rotation rate51. The convex shape of the solid 

liquid interface is an important factor in decreasing the number of grains as the crystal 

growth proceeds. So a nominal rotation rate should be maintained for a good growth. The 

shape of the growing interface also depends on other growth parameters such as the 

travelling rate, the diameter of the growing crystal, the thermal gradient, etc51. These 

crystal parameters cannot be chosen arbitrarily as we will see in the following sections. 

Once the molten zone is thus stabilized, the crystal growth is initiated by a slow 

downward translation of the upper and lower shafts simultaneously. This effectively 

corresponds to the melt traveling along the feed rod. As floating melt zone comes down 

and a temperature gradient is maintained, crystals start growing. The optimum/maximum 

growth speed depends on the material and varies between a few tenth of a millimeter and 

several centimeters per hour. The diameter of the crystal is controlled by the ratio of the 

translation velocity for the feed rod and the lower shaft. Feed rod, melt and crystal are 

protected within a sealed quartz tube, which allows us to grow crystals in different gas 

atmospheres. The external gas supply could be maintained at a required pressure too 

using the gas inlet and outlet shown in the Fig. 3.1. Care should be taken in applying an 

optimal pressure as any excess pressure developed might cause serious accidents during 

the growth. However, the set up is capable of handling a maximum pressure of 0.97 MPa. 

The entire growth process could be video captured by a CCD camera attached to the 

mirror. The infrared window between the camera and the melting zone helps us to view 
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the growth clearly above certain temperatures. Hence the whole process is monitored and 

the growth factors are controlled using a computer. 

 
Fig. 3.3 (a) Illustration of temperature profile in the double mirror furnace. (b) The 

sample rod at high temperatures. Red spots represent the melted area. (c) Illustrated 

temperature (in oC) around the horizontal plane (in angle o) in the furnace. 

In the growth of single crystals by FZ method, the molten zone is sustained by the 

feed rod through surface tension and therefore the qualities of the feed rod are very 

important and have strong influence on the stability and successful formation of the 

molten zone. Thus a great deal of effort has to be spent on creating a straight and uniform 

diameter rod. To prepare the feed and seed rods, the material to be grown is mixed in 

proper proportion as in the prescription. The stoichiometric ratio of the required 

chemicals is then ground to a fine powder using a mortar before being fired in high 
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temperatures in any furnace. The sintering is performed in air or other required 

environment viz. Nitrogen, Oxygen, Argon etc. usually up to 1000°C for 15 hours. The 

temperature cycle, ABCD, used for firing the powder is displayed in Fig. 3.4. The 

sintered powder is then molded into the form of a rod (of diameter around 6 mm) using 

commercially available balloons and pressed under high pressures (~ 30 MPa). A hand-

operated hydraulic pump (Pmax ~ 100 MPa) is used to press the powdered material into 

the feed and seed rods. The obtained rod is removed from the balloon and fired again 

using the temperature cycle in Fig. 3.4 but let to stay at the highest temperature (1000°C 

in this case) for 20 hours before cooling down to the room temperature. Now this regular 

polycrystalline rod is ready for the crystal growth. 

 
Fig 3.4 Temperature cycle used for sintering the powdered material and the feed rod for 

the crystal growth. 

For compounds with components that do not have a homogenous melting, it 

becomes increasingly difficult to grow them using this technique. Compounds based on 

chromium and ruthenium oxides that we tried so far faced difficulties due to this problem. 

I tried many times without success, to grow the Cr substituted strontium and calcium 

ruthenates for my study. For every trial, the thermophysical and thermochemical variable 

parameters including, but not limited to, temperature cycle, chemical concentration, rod 

pressure, shaft feed i.e. speed of the motion of the rod, gas environment and/or external 

pressure were altered or modified to optimize the conditions for a successful growth, 

which did not help. The degree of inhomogeneity in material melting was so high that 

some amount of material start to evaporate while the others were still solid. Just a trace of 
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Cr included in the material was sufficient to form bubbles that affected the melt 

connection process and hence the overall growth significantly. The trend was similar 

when I tried to grow Nd3Ru1-xCrxO7 too. As a result of inhomogeneous melting, the 

material was in a rough colloidal state right through the growth process making it 

impossible to form any single crystal in the end. 

 
Fig. 3.5 (a) The Au plated double elliptic mirror of the FZ furnace in action during a 

crystal growth. (b), (c), (d) & (e) Different stages in a MnTiO3 crystal growth in the order 

of increasing time. The bright spots indicate the melting zone, where the temperature 

could be as high as 2000oC. 

Although most of the crystals for my study were grown using flux technique that I 

will discuss in the next subsection, I have used this technique to successfully grow 
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transition metal oxide compounds including MnTiO3, Nd3RuO7+δ, Nd2WO6 and iron 

doped strontium and calcium ruthenate compounds. Fig. 3.5 exhibits the Floating zone 

furnace during the growth process and the different stages in a MnTiO3 crystal growth as 

Table 3.1 Growth parameters for some of the su  tried in our lab. 

No. 

Compounds 

Voltage 

(V) 

Travelling rate 

(mm/
Environment 

monitored in the console. 

ccessful systems

S. 
Melting hr) 

Final 

product 
Starting ratio 

feed 
Type 

Pressure 

(MPa) 

Shaft 
Gap 

adjust- 

-ment 

1 BaTiO3 Ba:Ti (1:1) 54.40 5 0.30 100% O2 0.25 

2 Ca Fe O  Ca:Fe (3:2) 43.10 20 0.20 0.30 2 2 5 100% O2 

3 Ca Ru O7* Ca:Ru (3:2) 73.00 35 0.15 
3

70% N2 
0.20 3 2

0% O2 – 

4 
(2:0.95:0.05) 

64.00 11 0.15 100% O2 0.30 

Ca2(Ru1-

xTix)O4; 

x=0.05 

Ca:Ru:Ti 

5 MnTiO3 Mn:Ti (1:1) 39.7 15 0.15 0.30 100% O2 

7 Nd3RuO7+δ 
(2:1.2) 

60.50 20 0.20 
3

0.25 
Nd:Ru 0% O2 – 

70% N2 

8 Nd WO6 Nd:W (2:1) 55.30 5 0.15 
1

90% N  
0.15 2

0% O2 – 

2

9 
(1:0.90:0.10) 

56.40 10 0.18 
3

70% N  
0.25 

Sr(Ru1-

xFex)O3 
Sr:Ru:Fe 0% O2 – 

x=0.10 
2

Note: The rotation rates are not included in the table as they were fixed at 25 rpm for all 

the growths. However, for Ca3Ru2O7 the rate was 18 rpm. 

Table 3.1 lists the growth parameters for some of the crystals grown using this 

technique. All the parameters are equally important in a crystal growth point of view. But 

for an individual compound, there might be, and are, preferences to consider. Though all 

the mixtures are almost treated similarly in terms of the temperature cycles, there were 
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few exceptions in terms of the applied pressure to form the polycrystalline rod. 

Nd3RuO7+δ rod for instance, has to be pressed at 40 MPa whereas for other systems it is 

sufficient to be done at 30 MPa. For growing Ca3Ru2O7 single crystals, the material 

mixture was cooked at 400oC for 10 hours to remove any moisture from the powder 

before being sintered at 900oC for 15 hours (twice). The thermally treated material then 

was pressed into a rod and then the prepared rod was treated at 1000oC for 20 hours to be 

used for the growth with the parameters mentioned in Table 3.1. A detailed description 

of the optimized growth conditions for Ca3Ru2O7 is discussed in the reference52. Some of 

the grown crystals are displayed in Fig. 3.6 that encloses black MnTiO3 (Fig. 3.6 (a) & 

(b)) and bluish Nd2WO6 (Fig. 3.6 (c) & (d)) single crystals grown using FZ technique. 

ish Nd2WO6 crystals magnified (c) 10 and (d) 
3). 

Advant

 
Fig. 3.6 (Top panel) MnTiO3 crystal (a) actual size and (b) magnified 60 times (actual 

size ~ 1 x 1 x 1 mm3). (Bottom panel) Blu

60 times (actual size ~ 2 x 1.5 x 1 mm

ages of using FZ technique: 

The major advantage in using this technique is that crystals can be grown without 

getting into contact with other materials, such as crucibles, hence eliminating a major 
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source for contaminations. Also crystals could be grown in different environments viz., 

gas like O2, N2 or a mixture of both and a positive pressure, to manipulate the oxygen or 

other chemical content in the final product and so on. The nature of the technique allows 

one to manually control the parameters viz. speed of the growth, melting temperature etc. 

and hence to improvise the growth process. Another advantage is the size of the crystals 

this technique is capable of producing. With our latest model floating zone furnace, 

crystals with high melting point (2050°C) as well as a large length (150 mm) can be 

grown. Fig. 3.6 that displays MnTiO3 and Nd2WO6 crystals gives an idea of the size of 

typical single crystals grown using the FZ furnace. Long growth is particularly important 

in the case of incongruent melting systems, where large deviations between the nominal 

composition and that of the grown crystal are observed in the beginning of the growth 

experiment. Also it becomes a requirement for us to grow larger crystals to perform 

neutron scattering experiments, an elegant tool to probe the magnetic ground state of a 

ingle crystals with dimensions of the order of a millimeter. 

3.2.3 F

. In my case, Calcium Chloride (CaCl2) is used as a flux, when growing 

Ca3Ru2

material, which needs s

lux technique: 

The second technique that we use to grow our single crystals is the flux technique, 

which is relatively simple when the growing conditions are specified. However, to devise 

the optimal conditions for a particular growth requires a lot of efforts and trials. Since the 

growth could not be monitored and controlled as in the FZ technique, one has to be 100% 

certain about the various growth factors for a particular compound beforehand to have a 

successful yield. The technique is useful particularly for Cr doping studies as Cr and Ru 

have inhomogeneous melting to maintain a melting zone, which makes it nearly 

impossible to grow these single crystals using FZ technique. The crystals are grown out 

of a solvent that reduces the melting point of the starting materials – the flux. The 

definition of a good flux denotes that it should not react with the materials to give other 

byproducts53

O7. 

To describe the process in a nutshell, the starting materials are mixed in non-

stoichiometric proportion and treated in heat with the appropriate temperature cycles as 

shown in Fig. 3.4 with severe modifications in the cooling cycle. When allowed to cool 

sequentially after reaching the highest required temperature, the crystals are formed in the 
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provided platinum crucibles. Ca3Ru2O7 single crystals were grown in Pt crucibles using 

this technique54 from off-stoichiometric quantities of RuO2, CaCO3, and CaCl2. The 

mixture was heated to 1480oC in partially capped Pt crucibles and fired continuously for 

25 hours in a box furnace. The material is then subjected to a slow cooling process where 

the mixture is allowed to cool at 2–3oC/hr to reach 1350oC as shown in Fig. 3.7. This 

slow cooling is followed by a rapid cooling to room temperature at a rate of around 

100oC/hr. 

Temperature cycle used for growing single crystals of Ca3Ru2O7 by the flux 

method

ion of its sister compounds CaRuO3 and Ca2RuO4 is also energetically 

favorable. 

 
Fig. 3.7 

. 

The resulting shape of Ca3Ru2O7 tend to be plate-like with an average size of the 

single crystals being around 1 x 1 x 0.4 mm3 as shown in Fig. 3.8 with the c axis along 

the shortest dimension. The starting ratio of Ca:Ru and the thermal treatments are critical 

to the growth and have a large influence not only on the form of crystals but also on the 

ratio of Ca:Ru in the final product. The balance in the starting ratio in particular is vital as 

the nucleat
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(b)  

(a) 

(c) 

Fig. 3.8 Flux grown Ca3Ru2O7 crystals that are magnified (a) 10, (b) 60 and (c) 200 times 

(actual size of a single crystal ~ 0.5 x 0.4 x 0.4 mm3). 
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Advantages of using Flux technique: 

 Flux technique, as one of the widely used technique to grow single crystals, has 

the following merits. 

1. A variety of crystals can be grown simultaneously using this procedure 

2. The crystals can be grown relatively quickly when compared to the other 

techniques 

3. It doesn't require elaborate apparatus to grow a crystal in this method 

It is the preferred approach for any program that is interested in single crystals of new 

materials simply because of its ability to make so many materials rapidly and 

simultaneously. It allows one to explore so much phase space simultaneously that the 

probability of growing entirely new crystals is quite high. 

3.3 Structure determination: 

 Once materials are grown, the next step is to determine the structure of the 

crystals before we could study their physical properties. As our main motivation is to 

research on novel materials, the structure determination forms an integral part of it. The 

grown single crystals are duly characterized by X-ray Diffraction (XRD)55 and Scanning 

Electron Microscopy (SEM)56 techniques. 

XRD is a high-tech, non-destructive technique for analyzing a wide range of 

materials including fluids, metals, minerals, polymers, catalysts, plastics, 

pharmaceuticals, thin-film coatings, ceramics and semiconductors. To determine the 

structure of a crystal, the grown crystal is mounted on a goniometer and bombarded with 

X-rays, producing a diffraction pattern of regularly spaced spots known as reflections. 

The crystal is gradually rotated and a diffraction pattern is collected for each distinct 

orientation of the crystal. These two-dimensional images are converted into a three-

dimensional model of the density of electrons within the crystal using the mathematical 

method of Fourier transforms and chemical data on the sample. The positions of the 

atomic nuclei are deduced from this electron density and chemical data, producing a 

model of the atoms within the crystal. The working principle of the XRD technique is 

based on the Bragg’s law57 defined by, 

ߠ݊݅ݏ2݀            (3-1) ൌ ߣ݊

 54



where d is the inter-plane spacing in the atomic lattice, θ is the angle between the incident 

beam and the scattering planes, n is an integer and λ is the wavelength of the incident X-

rays as shown in Fig. 3.9. 

 
Fig. 3.9 A diagrammatic explanation of Bragg’s law. 

In XRD, we normally distinguish between single crystal and polycrystalline or 

powder applications. The single crystal diffractometer and associated computer package 

is used mainly to elucidate the molecular structure of novel compounds. The Scintag 

powder X-ray diffractometer housed in our lab is mainly used for “finger print 

identification” of various solid materials. In powder or polycrystalline diffraction it is 

important to have a sample with a smooth plane surface. We normally grind the sample 

down to particles of about 0.002 mm to 0.005 mm cross section. The ideal sample is 

homogeneous and the crystallites are randomly distributed. The sample is pressed into a 

sample holder so that we have a smooth flat surface. Ideally we now have a random 

distribution of all possible h, k, l planes. Only crystallites having reflecting planes (h, k, l) 

parallel to the specimen surface will contribute to the reflected intensities. If we have a 

truly random sample, each possible reflection from a given set of h, k, l planes will have 

an equal number of crystallites contributing to it. We only have to rock the sample 

through the glancing angle θ in order to produce all possible reflections. The distance 

from the X-ray focal spot to the sample is the same as from the sample to the detector. If 

we drive the sample holder and the detector in a 1:2 relationship, the diffracted beam will 

stay focused on the circle of constant radius. The detector moves on this circle58. For the 

θ: 2-θ goniometer, such as the one in our lab, the X-ray tube is stationary, the sample 
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moves by the angle θ and the detector simultaneously moves by the angle 2-θ as shown in 

Fig. 3.10. 

 
Fig. 3.10 Working principle of an x-ray powder diffractometer. 

In powder diffraction we normally utilize the line focus or line source of the tube. 

The line source emits radiation in all directions, but in order to enhance the focusing it is 

necessary to limit the divergence in the direction along the line focus. This is realized by 

passing the incident beam through a slit, which contains a set of closely spaced thin metal 

plates. Moreover, in order to maintain a constant focusing distance it is necessary to keep 

the sample at an angle θ and the detector at an angle of 2-θ with respect to the incident 

beam. 

A typical diffraction spectrum consists of a plot of reflected intensities versus the 

detector angle 2-θ as displayed in Fig. 3.11. The 2-θ values for the peak depend on the 

wavelength of the anode material of the X-ray tube. It is therefore customary to reduce a 

peak position to the inter-planar spacing d that corresponds to the h, k, l planes that 

caused the reflection. The values of the d-spacing depend only on the shape of the unit 

cell. We get the d-spacing as a function of 2-θ from Bragg’s law as given in 3-1. Each 

reflection is fully defined when we know the d-spacing, the intensity (area under the peak) 
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and the indices h, k, l. If we know the d-spacing and the corresponding indices h, k, l we 

can calculate the dimension of the unit cell. 

 
Fig. 3.11 Intensity vs. 2θ graph for the powdered single crystals of Ca3Ru2O7 at room 

temperature. 

 For resolving the structure of novel materials we use the single crystal XRD 

technique. The X-Ray laboratory at the department of chemistry in our university has a 

Nonius kappaCCD machine with a sealed-tube molybdenum X-ray source and a new 

specially configured machine based on the Bruker-Nonius X8 Proteum. A detailed 

description pertaining to the single crystal diffraction technique can be learned from the 

department’s webpage59. The XRD spectrum in general posses the following features in 

chemical crystallography 

• The overall symmetry of the diffraction pattern is given by symmetry of the 

lattice. 

• Intensities of spots are determined by the basis of atoms at each lattice point.  

• Sharpness and shape of spots are determined by the perfection of a crystal and 

liquids, glasses, and other disordered materials hence produce broad fuzzy 

rings instead of sharp spots.  

• Any defect and/or disorder in crystals also result in diffuse scattering. 

A Scanning Electron Microscope in the user facility60 also is useful in 

determining the atomic composition of a crystal. It is particularly useful to know the 
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exact concentrations of individual elements in the chemically substituted compounds. 

Surface study optical microscopes use lenses to bend light and thus magnify an object. 

The SEM instead uses a beam of electrons controlled by electromagnets to bombard its 

target. When the beam strikes the object, electrons are emitted and are read by a detector 

which converts them to a signal. Using the same principle that creates television images, 

the signal is converted to an image for viewing56. Because the SEM provides very high 

magnification, it is especially useful for failure analysis and materials characterization. 

We use this facility for the latter application where the technique helps us in determining 

the phase and atomic composition of the chemically substituted compounds. 

 
Fig. 3.12 A schematic representation of the working of an SEM61. 

The schematic representation of an SEM is reproduced in Fig. 3.12 (Courtesy: 

Museum of Science, Boston). An electron gun [at the top] emits a beam of high energy 

electrons. This beam travels downward through a series of magnetic lenses designed to 

focus the electrons to a very fine spot. Near the bottom, a set of scanning coils moves the 

focused beam back and forth across the specimen, row by row. As the electron beam hits 
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each spot on the sample, secondary electrons are knocked loose from its surface. The 

vacated positions are filled by higher energy electrons i.e. the electrons from the outer 

orbit, which emit x-rays in the process. The generated X-rays are characteristics of a 

particular element and by analyzing the emitted x-rays by energy dispersive X-ray 

analysis (EDS)62, the elemental composition of the sample can be determined. The 

energy-dispersive analysis separates and detects X-rays of specific energy and displays in 

the form of histograms. Fig. 3.13 shows an EDS spectrum of CaRu0.82Cr0.18O3 that is 

achieved by constructing an index of X-rays collected from a particular spot on the 

specimen surface. The spectrum is viewed as X-ray intensity vs. X-ray energy and shows 

different peaks corresponding to and labeled as Ca, Ru, Cr and O. 

 
Fig. 3.13 An EDS spectrum of CaRu0.82Cr0.18O3 showing Ca, Ru, Cr and O peaks. 

3.4 Magnetic property measurement: 

We use DC magnetic susceptibility measurement technique to study the magnetic 

property of our systems. A Superconducting Quantum Interference Device (SQUID) is 

the most sensitive available device for measuring magnetic fields. Based on this sensitive 

device the so called ‘SQUID magnetometers’ have been developed. SQUID 

magnetometers are used to characterize materials when the highest detection sensitivity 

over a broad temperature range and using applied magnetic fields up to several Tesla is 
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needed. The system is designed to measure the magnetic moment of a sample, from 

which the magnetization and magnetic susceptibility can be obtained. The commercially 

available SQUID magnetometer from Quantum Design, MPMS® XL, in our lab has the 

capability of measuring samples in the temperature range 1.7 < T < 400 K and in the field 

range -7 < B < 7 T. 

 
Fig. 3.14 A schematic representation of the working principle of a SQUID 

magnetometer63. 

SQUID magnetometers are classified within the flux methods of measuring 

magnetization of a sample. A SQUID uses the properties of electron-pair wave coherence 

and Josephson junctions to detect very small magnetic fields. It consists of two 

superconductors separated by thin insulating layers to form two parallel Josephson 

junctions. The critical current across the junctions is much less than that of the whole 

ring. This produces a very low current density making the momentum of the electron-
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pairs small. The wavelength of the electron-pairs is thus very long leading to little 

difference in phase between any parts of the ring. Now if a magnetic field is applied 

perpendicular to the plane of the ring, a phase difference is produced in the electron-pair 

wave along the opposite paths across the junctions. A small current is also induced to 

flow around the ring, producing a phase difference across the junctions. Normally the 

induced current would be of sufficient magnitude to cancel the flux in the hole of the ring 

but the critical current of the junctions prevents this. The circulating current has a 

periodic dependence on the magnitude of the applied magnetic field with a period of 

variation of Φ0, a very small amount of magnetic flux given in terms of quantized units as 

଴ߔ    ൌ ଶగħ
ሺଶ௘ሻ

~2.0678 x 10ିଵହ ܶ. ݉ଶ     (3-2) 

If a constant biasing current is maintained in the SQUID device, the measured voltage 

oscillates with the changes in phase at the two junctions, which depends upon the change 

in the magnetic flux. Counting the oscillations allows one to evaluate the flux change 

which has occurred. Fig. 3.14 illustrates schematically its principle; the measurement of 

the flux change through a pick-up coil system with a SQUID. This signal is proportional 

to the magnetic moment of a sample which is magnetized by the magnetic field produced 

by a superconducting magnet64.  

The main components of a SQUID magnetometer are: (a) a superconducting 

magnet, which is a solenoid made of superconducting wire that must be kept at liquid 

helium temperature in a liquid-helium dewar. The uniform magnetic field is produced 

along the axial cylindrical bore of the coil. (b) Superconducting detection coil which is 

coupled inductively to the sample. The coil is a single piece of superconducting wire 

configured as a second-order gradiometer (see Fig. 3.15). This pick-up coil system is 

placed in the uniform magnetic field region of the solenoidal superconducting magnet64. 

(c) A SQUID, connected to the detection coil, which is usually a thin film that functions 

as an extremely sensitive current-to-voltage-converter. High sensitivity is possible 

because this device responds to a fraction of the flux quantum. As shown in Fig. 3.15, a 

measurement is done in this equipment by moving the sample through the second-order 

gradiometer. Hence, the magnetic moment of the sample induces an electric current in the 

pick-up coil system. A change in the magnetic flux in these coils changes the persistent 

current in the detection circuit. So, the change in the current in the detection coils 
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produce variation in the SQUID output voltage proportional to the magnetic moment of 

sample64. (d) Superconducting magnetic shield is used to shield the SQUID sensor from 

the fluctuations of the ambient magnetic field of the place where the magnetometer is 

located and from the large magnetic field produced by the superconducting magnet. A 

detailed description each of the components could be viewed from reference65. 

 
Fig. 3.15 (a) Voltage measurement vs. position (b) A polycrystalline sample 

measurement using a SQUID magnetometer65. 

3.5 Transport property measurement: 

Electron transport properties of the grown crystals are determined by performing 

simple resistance measurements. 
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Fig. 3.16 Circuit diagrams representing (a) Two probe and (b) Four probe techniques of 

resistivity measurements. 

In a two-probe measurement such as the one shown in Fig. 3.16 (a), the contact 

resistances (Rcont) add to the unknown resistance of connecting wires (R) and contribute 

to the measured voltage (V). Hence, 

   ܸ ൌ ሺܴܫ (3-3)     ൅ 2ܴ௖௢௡௧ሻ~ܴܫ for ܴ௖௢௡௧ ا ܴ

Typically the resistance of the point of contact is far smaller than the resistance of the 

sample, and can thus be ignored. However, when one is measuring a very small sample 

resistance, especially under variable temperature conditions, the contact resistance can 

dominate and completely obscure changes in the resistance of the sample itself. This is 

the situation that exists for superconductors. The measurement then becomes erroneous 

and unreliable. To overcome this error in resistivity measurement a four probe technique 

is used where separate contacts are used for current and voltage leads as shown in Fig. 

3.16 (b) to eliminate the effects of contact resistance. In this diagram, four wires have 

been attached to the test sample denoted by a resistance R. A constant current is made to 

flow the length of the sample through probes labeled 1 and 4 in the figure that are usually 

called “current probes”. If the sample has any resistance to the flow of electrical current, 

then there will be a drop of potential (or voltage) as the current flows along the sample, 

for example between the two wires (or probes) labeled 2 and 3 in the figure (“voltage 

probes”). The resistance of the sample between probes 2 and 3 is the ratio of the voltage 

registering on a voltmeter connected to the leads to the value of the output current of the 

power supply. Since the high impedance of the voltmeter minimizes the current flow 

through the portion of the circuit comprising the voltmeter, there is no potential drop 

across the contact resistance associated with probes 2 and 3. Hence only the resistance 
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associated with the sample between probes 2 and 3 is measured. In our lab we use a 

Keithley SourceMeter (Model 2400)66 as power supply and a Nanovoltmeter (Model 

2182)67 to measure the resistivity of samples.  

For high precision results, we also use a LR 700 ac bridge that employs a four 

lead AC technique to measure the sensor. Two leads are used to apply a fixed amplitude 

ac current to the sensor resistor. Two additional leads send the resultant sensor voltage 

back to the bridge to be balanced against an equal and opposite ac voltage. Knowing the 

equal and opposite value of the AC voltage gives the value of the sensor resistance. 

 
Fig. 3.17 A representative balanced bridge showing a “null” on the indicator. 

The bridge circuit works as a pair of two-component voltage dividers connected 

across the same source voltage, with a null-detector meter movement connected between 

them as shown in Fig. 3.17 to indicate a condition of “balance” at zero volts. Any one of 

the four resistors in the above bridge can be the resistor of unknown value, and its value 

can be determined by a ratio of the other three, which are “calibrated,” or whose 

resistances are known to a precise degree. When the bridge is in a balanced condition 

(zero voltage as indicated by the null detector), the ratio works out to be 

ൌ ோయ
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ோ

భ

మ
        (3-4) 

One of the advantages of using a bridge circuit to measure resistance is that the voltage of 

the power source is irrelevant. Practically speaking, the higher the supply voltage, the 
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easier it is to detect a condition of imbalance between the four resistors with the null 

detector, and thus the more sensitive it will be. A greater supply voltage leads to the 

possibility of increased measurement precision. However, there will be no fundamental 

error introduced as a result of a lesser or greater power supply voltage unlike other types 

of resistance measurement schemes. Also the AC technique allows for voltage resolution 

down to the sub-nanovolt region. 

While measuring the resistivity of samples, a broad temperature range could be 

covered in our lab, say 1.7 < T < 900 K, involving different cryostats. The Displex closed 

cycle cryostat (Advanced Research Systems DE202) is mainly used for high temperature 

measurements (9-900 K) whereas the added transport function to our MPMS® XL takes 

care of the low temperature (1.7-400 K) and infield (±7 T) measurements. The electrical 

contacts in the crystals were made using 0.001’ gold wires attached through less resistive 

silver epoxies (EPOXY E3084 + EPOXY T6081). And the samples were fixed to the 

sample holder in the probe using thermally conducting and electrically insulating glue 

(AREMCO Ceramabond 865) for high temperature measurements. 

3.6 Specific heat capacity measurement: 

 The heat capacity of our crystals at constant pressure is measured by the heat 

capacity function added to the Quantum Design PPMS®. Using this function, the 

measurement could be performed in the temperature range 1.8 < T < 400 K and in an 

applied field of ±9 T. The heat capacity function uses the thermal relaxation technique68 

that controls the heat added to and removed from a sample while monitoring the resulting 

change in temperature. A known amount of heat is applied at constant power for a fixed 

time and then this heating period is followed by a cooling period of the same duration. 

 The heat capacity puck utilizes the standard PPMS 12-pin format for electrical 

connections, and it provides a small microcalorimeter platform for mounting the 

sample69. Samples are mounted to this platform by a standard cryogenic grease or 

adhesive such as Apiezon N or H Grease. The sample platform is suspended by eight thin 

wires that serve as the electrical leads for an embedded heater and a thermometer 

connected to the bottom of the platform. These small wires not only form a well-defined 

thermal connection between the sample platform and the puck but also provide a 

structural support for the platform. An additional thermometer embedded in the puck 
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provides a highly accurate determination of the puck temperature, and a thermal shield 

aids in maintaining stable sample temperature and uniformity. 

A single heat capacity measurement consists of several distinct stages. First, the 

sample platform and puck temperatures are stabilized at some initial temperature. Power 

is then applied to the sample platform heater for a predetermined length of time, causing 

the sample platform temperature to rise. When the power is terminated, the temperature 

of the sample platform relaxes towards the puck temperature. The sample platform 

temperature is monitored throughout both heating and cooling, providing the raw data of 

the heat capacity calculation. Two separate algorithms fully automate the analysis of the 

raw data. The most general analysis method invokes the two-tau model70 which assumes 

that the sample is not in good thermal contact with the sample platform. The values of the 

heat capacity and other physical parameters are determined by optimizing the agreement 

between the measured data and the two-tau model. In the two-tau model, the first time-

constant (τ1) represents the relaxation time between the sample platform and the puck, 

and the second time constant (τ2) represents the relaxation time between the sample 

platform and the sample itself. A second analysis is also performed using a simpler model 

that assumes perfect thermal coupling between the sample and the sample platform. The 

heat capacity software determines which model best fits the measured data and 

automatically saves the values of the sample heat capacity, addenda heat capacity, 

thermal coupling between the sample and the platform, thermal time-constants, and other 

information to the data file. 

These are few of the experimental techniques available to-date in our lab. The 

exciting results from the experiments done using these techniques will be discussed in 

detail in Chapter 4. 
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Chapter Four 

Thermodynamics and transport properties of Can+1(Ru1-xCrx)nO3n+1 

4.1 Introduction: 

The extended nature of the 4d orbitals in ruthenates gives way to competing 

energies in CEF, Hund’s rule interaction, p-d hybridization, SO interaction and Electron-

Phonon coupling. These competing interactions enhance strong correlation between 

electrons and hence a remarkable range of complex physical behaviors in the compounds 

is inevitable. The observed physical properties of the series are very sensitive to structure 

dimensionality as we will see in the next section. The diversity of the observed electronic 

and magnetic properties in these compounds is amazing, as the compounds are all based 

on the Ru4+ ion in octahedral environments with corner sharing topologies as discussed in 

chapter 1. In numerous strongly correlated electron systems, such as the RP series, 

different degrees of freedom, such as the spin, orbitals and lattice deformations are 

inextricably coupled. These degrees of freedom are coupled usually by Coulomb 

interactions and the specifics of the crystal structure. The coupling could also be due to 

alloying. Such systems are often characterized by competing ground states that are 

susceptible to external perturbations viz. magnetic field, pressure or chemical doping. 

Tuning the external parameters in these compounds may lead to a quantum critical point 

and stabilize different ground states with exotic properties as illustrated in the cuprate 

superconductors71. 

In this chapter, I will give an overview of the physical properties of the layered 

ruthenates in the initial paragraphs before discussing in detail the properties of selected 

members of the series viz. robust itinerant ferromagnetic SrRuO3, paramagnetic “bad” 

metal CaRuO3 and Mott-like bi-layered Ca3Ru2O7, towards the later part of the chapter. 

For all these compounds, I will discuss the intrinsic physical properties before disclosing 

their sensitivity to chemical substitution, through some of our doping studies – giving 

more emphasis to Cr substitution. 

4.2 Evolution of physical properties: 

The layered ruthenates, i.e., the RP series (Sr, Ca)n+1RunO3n+1 (n=number of Ru-O 

layers/ unit cell), are a class of correlated electron materials showing a rich variety of 

properties. The physical properties of the ruthenates are critically linked to n and to the 
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cation (Ca or Sr), which lead to different ground states and inter- and intra- layer 

magnetic couplings. The Ru ions are surrounded by O ions forming octahedral such that 

two Ru ions interact only through O as explained in chapter 1. The deformations and 

relative orientations of these corner-shared octahedra crucially determine the crystalline-

field splitting, the band structure, and hence the magnetic and transport properties in 

these compounds. 

As a result, Srn+1RunO3n+1 compounds are metallic and tend to be ferromagnetic 

with the single layered Sr2RuO4 (n=1)72-75 being an exception, which is a p wave 

superconductor (TC=1.8 K). The double layered Sr3Ru2O7 (n=2)76,77 is a paramagnet 

showing an enhancement in magnetic susceptibility at T=20 K (Fig. 4.1(a)). The triple 

layered compound Sr4Ru3O10 (n=3)78 shows a ferromagnetic behavior with TC=105 K 

when magnetic field is applied parallel to the c axis. On the other hand, for magnetic field 

applied perpendicular to the c axis it shows a metamagnetic transition at BC=3 T (not 

shown here), suggesting a borderline magnetism79 existing in the compound. The 

perovskite SrRuO3 (n=∞)80, 81 is a robust itinerant ferromagnet with TC=165 K. All these 

compounds in the series show metallic behavior for a broad range of temperatures, 1.7 < 

T < 800 K as shown in Fig. 4.1(b). For temperatures above TC, they all show a linear 

dependence on temperature as a consequence of the scattering off short-range spin 

fluctuations at the proximity to TC, which is expected according to Fisher-Langer theory. 

In general, all the Sr related compounds tend to be metallic ferromagnets and the strength 

of the ferromagnetic coupling increases as we increase the number of Ru-O octahedral 

layers as seen in Fig. 4.1(a). 

But the Calcium based compounds behave in a completely different manner under 

the same physical conditions. The n=1 compound, Ca2RuO4
82 is a Mott insulator 

(TMI=357 K) with antiferromagnetic ordering at TN=110 K (see Figs. 4.2 (a) and (b)). 

The bi-layered Ca3Ru2O7 (n=2)83 shows a metal insulator transition at T=48 K and an 

antiferromagnetic ordering at TN=56 K. On the other hand, the perovskite CaRuO3 

(n=∞)84 compound is a paramagnetic metal up to the lowest possible temperatures 

suggesting the critical temperature, TC~0 K, if any present. In general, the calcium related 

compounds are all antiferromagnetic and are on the verge of metal insulator transitions 

unlike their sister compounds with Sr cations. Also in contrast to the increasing 
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ferromagnetic coupling strength in Sr related compounds, the antiferromagentic coupling 

gets weaker as we progress through the number of Ru-O octahedral layers in the Ca 

compounds as shown in Fig. 4.2(a). 

 
Fig. 4.1 (a) Magnetization, M, and (b) Electrical resistivity in the basal plane, ρab, as a 

function of temperature for Srn+1RunO3n+1
11. 

B=0.01T) 
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Fig. 4.2 Temperature dependence of (a) Magnetic Susceptibility (χ) and (b) basal plane 

electrical resistivity (ρab) for Can+1RunO3n+1
82, 83, 84. 

The difference in the ground state of the iso-electronic compounds (Sr, 

Ca)n+1RunO3n+1 is attributed to the coupling of physical properties to the structural 

distortion in the Ca related compounds as a result of the difference in the ionic sizes. Ca2+ 

ion is smaller (rCa
2+ ~ 1 Å) when compared to that of the Sr2+ ion (rSr

2+ ~ 1.18 Å). The 
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smaller ionic size of Ca2+ forces a tilting and rotation of the Ru-O octahedral by an angle 

that helps in narrowing the band width that is not favorable for a ferromagnetic ground 

state whereas the less distorted Ru-O octahedral in Sr compounds favors a ferromagnetic 

ground state. Hence, controlling the orientation of the octahedra by changing the 

chemical composition therefore opens a unique opportunity to systematically tune 

physical properties in these materials. No such behavior has been observed in other 

transition-metal RP systems, which makes these compounds special. It is also worth 

mentioning that as a result of the more distorted structure, the calcium ruthenates are very 

sensitive to oxygenation (Sensitivity of Ca3Ru2O7 to oxygen will be discussed in section 

4.4.12), whereas the Strontium counterparts, the less distorted structures of the two, are 

less sensitive to oxygen treatment. 

4.3 Perovskite ruthenates (n=∞): 

 
Fig. 4.3 Crystal structure of (a) SrRuO3 and (b) CaRuO3

85. Note that the structure of 

SrRuO3 is more ideal and less distorted than that of CaRuO3. 

The most extensively studied ruthenates to-date in the RP series are the perovskite 

compounds viz. CaRuO3 and SrRuO3. The three dimensional SrRuO3 and CaRuO3 are 

members of the (Ca, Sr)n+1RunO3n+1 series with n=∞, the number of Ru-O layers. Both the 

compounds crystallize in GdFeO3 type orthorhombic perovskite structure with different 

structural distortions. A schematic representation of the crystal structure of SrRuO3 and 

CaRuO3 is displayed in Fig. 4.3. The crystal structure of SrRuO3 (Fig. 4.3 (a)) is less 

distorted and is close to an ideal perovskite structure. On the other hand, in the CaRuO3 

structure (Fig. 4.3 (b)), the RuO6 octahedra are severely distorted because of the smaller 
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ionic size of the Ca2+ ion in the structure. This dissimilarity in the structure is reflected 

promptly in the observed physical properties and will be discussed in the following 

paragraphs. 

 
Fig. 4.4 Magnetic susceptibility, χ, of both SrRuO3 and CaRuO3 as a function of 

temperature, T, for 1.7 ≤ T ≤ 350 K. Note that the susceptibility for CaRuO3 is multiplied 

by 100 for convenience. 

Electronic band structure calculations indicate that the perovskite ruthenates are 

poised between nearly energetically equivalent antiferromagnetic and ferromagnetic 

ground states86. The experimental results on magnetic measurements are shown in Fig. 

4.4, where the magnetic susceptibilities of the perovskite ruthenate compounds are 

exhibited. SrRuO3 is characterized by a robust ferromagnetic transition80, 81 at the Curie 

temperature, TC=165 K. It is one of only a few known ferromagnetic systems among the 

4d-related transition metal oxides87. On the other hand, CaRuO3 exhibits a paramagnetic 

ground state up to the lowest possible temperatures. But the high temperature Curie-

Weiss analysis suggests an otherwise antiferomagnetic ground state for the compound. 
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Hence irrespective of the fact that they both share the same crystal symmetry, their 

magnetic ground state displays extreme diversity: one of them shows a ferromagnetic 

instability whereas the other lies proximal to antiferromagnetic interactions between their 

spins. 

The closed shell s-like character of Sr and Ca do not contribute to the density of 

states at the Fermi surface and therefore could not be the origin for the different magnetic 

ground states of these two compounds. Since the magnetic contribution could then come 

solely from the magnetically active Ru4+ ion in ruthenates, one would expect a similar 

magnetic ground state for both the compounds as they differ only by a non-magnetic, iso-

electronic ion. But their distinctness in the physical properties is as obvious as it is shown 

in Fig. 4.4. This difference in the ground state is then attributed to the basic dissimilarity 

in the crystal structure as a result of the disparate ionic sizes of Sr2+ and Ca2+ ions. The 

less distorted crystal structure in SrRuO3 favors ferromagnetism whereas the Ru-O 

octahedral distortions in CaRuO3 structure make it less favorable for possessing a long 

range order. 

4.3.1 Itinerant ferromagnet SrRuO3: 

The perovskite SrRuO3 is by far the most studied compound in the Srn+1RunO3n+1 

series (see, for example, Refs. 11, 80, 81, 84, 86-91), so I will not spend much time and 

space explaining in detail all the physical phenomena observed in the system. However, I 

would not refrain myself from mentioning a few features of the compound that would 

help us later on to appreciate the effect of chemical substitution on them. 

State-of-the-art band structure calculations carried out for SrRuO3 in the ideal 

perovskite structure predicted an itinerant ferromagnetic ground state and yielded a spin 

moment of 1.17 µB per formula unit86. Experimental results witness that SrRuO3 is indeed 

an itinerant ferromagnet with TC=165 K (see Fig. 4.5 (a)) and a saturation moment of 

1.10 μB/Ru aligned within the basal plane84. The temperature dependence of 

magnetization exhibits a huge hysteresis (not shown in the figure) between field cooled 

(FC) and zero field cooled (ZFC) sequences that converge at TC=165 K, which is a salient 

feature of a ferromagnet. The high temperature (T > TC) paramagnetic phase follows a 

modified Curie-Weiss law, 
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as shown in Fig. 4.5 (b), where χ0 is the temperature independent susceptibility, C is the 

Curie constant and θCW is the Curie-Weiss temperature. The estimated positive value for 

θCW (=163 K) confirms the ferromagnetic interactions between the Ru4+ spins that 

resulted in the spin polarization at TC=165 K. The effective moment obtained from the 

Curie-Weiss fit ( Ceff 82.2=μ ) is comparable to the theoretical value (

)1( += SSgeffμ ) that is expected for an S=1 spin system. The estimated experimental 

value is 2.57 µB against 2.83 µB, the calculated value. The third quantity from the fit, the 

temperature independent susceptibility (χ0), is a measure of DOS near the Fermi energy, 

EF. The estimated χ0 (=1.45 x 10-4 emu/mole) hence suggests an enhanced DOS. 
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Fig. 4.5 (a) Temperature dependence of Magnetization, M(T), of SrRuO3 at B=0.01 T, 

showing the Curie Temperature, TC (b) 1/Δχ vs. T that shows a positive Curie-Weiss 

temperature, θCW confirming the ferromagnetic interactions between Ru4+ spins. 
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The transport properties of SrRuO3 shown in Fig. 4.6 reflect the itinerant nature 

of electrons. The temperature dependence of the basal plane resistivity, ρab, is shown in 

Fig. 4.6 (a), which depicts a robust Fermi-liquid behavior11, 84, 90 for T < TC = 165 K as 

shown in Fig. 4.6 (b). According to the s-d model, one would expect a T3 resistivity 

response for transition metal compounds. But the T2 temperature dependence observed in 

SrRuO3 might suggest a very strong electron-electron interaction. The Fermi liquid fit, 
2

0 AT+= ρρ ,      (4-2) 

in the range 1.7 < T < 20 K yields ρ0=2.07 μΩ cm and A=9.7x10-3 μΩ cm/K2. The value 

of A persuades an enhanced value for the electron’s effective mass84 (A~m*2) affirming 

the strong correlation between the itinerant electrons. The quantum oscillations reported 

at low temperatures confirms the well defined FS in the system. The transport behavior at 

high temperatures is anomalous as evidenced by a linear temperature dependence of the 

resistivity up to 900 K (not shown here). This linear increase in resistivity violates the 

Mott-Ioffe-Regel limit11 and suggests an inapplicability of Boltzmann approach to 

transport, as a saturation in ρ(T) is expected when 1~lKF , where KF is the Fermi wave 

vector and l is the mean free path of the quasiparticle. The behavior is similar to that of 

other “bad” metals and might suggest that a local picture for transport is required for 

SrRuO3 against the band description91 for the same. 

The appearance of a ferromagnetic metallic state at low T in SrRuO3 could be 

associated with self-doping by the O 2p-electrons. In SrRuO3, the large CEF breaks the 

first Hund’s rule, and the four 4d electrons from Ru4+ ion then partially fill the t2g states, 

giving rise to a local spin S=1 at each site (see Fig. 1.7 (b)). Even though the degeneracy 

between the t2g and eg levels are lifted by the CEF, the degeneracy among the t2g levels 

still exists. The t4
2g configuration hence implies a threefold orbital degeneracy since the 

fourth electron can go into any of the three t2g orbitals. This scenario would expect 

SrRuO3 to be an S=1 antiferromagnetic Mott insulator. Band structure calculations92, 

however, point to an important role of self-doping in this system. A small concentration 

of holes is introduced into the O-2p band via charge transfer processes, which puts a 

small concentration of additional electrons into the t2g orbitals. An enhanced density of 

states near EF
86 leads to stoner instability, which in turn helps in inducing magnetism in 

SrRuO3. 
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Fig. 4.6 (a) Basal plane resistivity, ρab, as a function of T at B=0 T for 1.7 ≤ T ≤ 350 K. 

(b) Fermi liquid behavior of ρab at B=0 T for 1.7 ≤ T ≤ 20 K. 
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4.3.2 Effect of chemical perturbation in SrRuO3: 

SrRuO3 exhibits a ferromagnetic metallic state as a result of the itinerant 4d t2g 

orbitals due to self-doping by the O 2p-electrons. The transport and magnetic properties 

strongly depend on the relative orientation of the corner-shared Ru-O octahedra. Any 

alteration done to the octahedra would trigger a change in the system’s ground state. The 

Ca doping on the Sr site of SrRuO3 does exactly that. The Ca ion inclusion in the 

structure triggered a metal insulator transition and killed the ferromagnetic ground state 

of the pure SrRuO3. Studies84 on single crystal Sr1-xCaxRuO3 indicates that the magnetic 

coupling is highly sensitive to perturbations in the Ru-O-Ru bond length and angle 

caused by substituting Sr2+ with the iso-electronic smaller Ca2+ ion. This gives rise to a 

rotation of the RuO6 octahedron and thus a subtle change in the electron hopping between 

octahedra, yielding a state that is less favorable for ferromagnetism. Consequently, TC 

decreases monotonically with Ca concentration and vanishes for x=0.884  

A similar interplay between lattice and electronic properties that leads to an 

antiferromagnetic insulating ground state with TN=26 K in the double perovskite 

Sr2YRuO6 was observed by G Cao et. al.93. The results from the studies suggest that 

Sr2YRuO6 has essentially the same crystal structure as SrRuO3, but with every second Ru 

substituted by Y. Although the critical temperature (TN) is reduced to 26 K, the estimates 

of the saturation magnetization are even higher than the parent compound (M~3 μB). The 

antiferromagnetism in insulating Sr2YRuO6 is, however, due to super-exchange via two 

oxygen ions. 

On the other hand, Mn doping on SrRuO3
94 drives the system from a 

ferromagnetic state to an antiferromagnetic state abruptly at a critical Mn concentration 

(xC~0.39). This magnetic transition is accompanied by a Mott insulator transition, where 

the electron conduction in the insulating state is governed by a variable range hopping 

mechanism. The critical concentration, xC=0.39, hence sharply divides the two regimes, 

namely the ferromagnetic metal from the antiferromagnetic insulator as explained in the 

x-T phase diagram (see Fig. 4.7). These abrupt changes in the physical properties are 

believed to be driven by the localized Mn t2g electrons substituted for the itinerant Ru t2g 

electrons. Since the Mn t2g levels are all occupied with one electron, the only possibility 

of hopping would be to temporarily fill one of the eg levels. This process is, however, 



 79

energetically unfavorable. Hence, as a consequence of the large crystalline-field splitting 

in the MnO6 octahedra, the Mn sites interrupt the dynamics of the 4d t2g electrons, and the 

metallic and ferromagnetic character of the Ru end compound gradually disappears with 

increasing x. 

 
Fig. 4.7 Magnetic and electronic phase diagram as a function of Mn content in SrRu1-

xMnxO3. 

4.3.3 Enhanced ferromagnetism in SrRu1-xCrxO3: 

Even though different cation substitution in SrRuO3 showed a range of physical 

behaviors, they had one thing in common: they resulted in the suppression of the 

ferromagnetic ground state of the parent compound. But recent studies on Cr doped 

SrRuO3 polycrystalline samples reveal a completely opposite picture as an increase in the 

Curie temperature, TC, to 188 K for x=0.11 is observed95, 96. Thermodynamic and 

transport properties measurements done on our single crystals of SrRu1-xCrxO3 affirm the 

enhanced ferromagnetic behavior as shown in Fig. 4.8. Fig. 4.8 (a) shows the field 
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cooled sequence of the temperature dependence of magnetization for x=0, 0.04 and 0.20 

at B=0.01 T. It is evident that the Cr doping enhances the Curie temperature of the system 

from TC=165 K for x=0 to TC=192 K for x=0.20. This trend, i.e. an increasing Curie 

temperature with x, is not curtailed by any critical concentration. In fact, with a further 

increase in the Cr concentration, there is a prompt increase in TC to higher temperatures. 

It is new and striking that TC becomes as large as 290 K for x=0.30 though TC is largely 

broadened (not shown here). According to the Nuclear Magnetic Resonance (NMR) 

studies96, the increase in TC is as a result of the presence of mixed valences for Ru ion 

and hence the double exchange interaction involving Cr3+ ion. The magnetization, 

however, shows a trend by becoming weaker as x is increased as shown in Fig. 4.8 (a). 

Fig. 4.8 (b) displays the temperature dependence of the basal plane resistivity in 

the temperature range 1.7 < T < 350 K for the representative Cr concentrations in zero 

applied magnetic field. Up to x=0.20, the system retains the metallic behavior but with a 

decrease in Residual Resistance Ratio (RRR=ρ(300 K)/ρ(2 K)) as x is increased. For x=0, 

RRR ~ 75 whereas for x=0.20 the ratio is estimated to be ~ 2, suggesting more elastic 

scattering (and hence an enhanced ρ0) for higher Cr concentration. Like in the pure 

compound, the observed Fermi liquid behavior gives way to the Fisher-Langer behavior 

at TC as an indication of the domination of short range spin fluctuations near the critical 

temperature. 
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Fig. 4.8 Temperature dependence of (a) magnetization, M, at B=0.01 T and (b) basal 

plane resistivity, ρab, at B=0 T for SrRu1-xCrxO3 (0 ≤ x ≤ 0.20) in the temperature range 

1.8 ≤ T ≤ 300 K. 

Displayed in Fig. 4.9 is the isothermal magnetization for the SrRu1-xCrxO3 

crystals at T=2 K with the magnetic field applied along the basal plane. The spins are 

readily polarized at low magnetic fields resembling the spins in the pure compound. The 

B=0 T 

x=0.04
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field dependence of the magnetization for all x stays essentially unchanged but the 

saturation moment, MS, decreases with increasing x. MS is reduced from 1.1 µB/f.u. for 

x=0 to 0.40 µB/f.u. for x=0.20 (see Fig. 4.9). For x=0.30, which recorded a Curie 

temperature of 290 K, the MS is observed to be 0.1 µB/f.u. (not shown in the figure). The 

decrease in MS with increasing x is consistent with the low temperature magnetization 

shown in the Fig. 4.8 (a). 

 
Fig. 4.9 Magnetic isotherms, M (B), at T=2 K for SrRu1-xCrxO3 (0 ≤ x ≤ 0.20), when 

magnetic field is applied along the basal plane in the range 0 ≤ B ≤ 7 T. 

This enhanced ferromagnetic behavior induced by Cr substitution in SrRuO3 

provided a strong motivation for an intensive study of Cr doping on its counterparts, 

Can+1(Ru1-xCrx)nO3n+1. 

4.3.4 Paramagnetic “bad” metal CaRuO3: 

As displayed in Fig. 4.3 (b), the crystal structure of CaRuO3 is more distorted as a 

result of the tilting and rotation of Ru-O octahedra. These structural distortions in 

CaRuO3 are antagonistic to magnetism and the compound is on the verge of magnetic 

ordering and readily evolves into a magnetically ordered phase84, 89, 95, 97. This belief has 
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been justified by the experimental results such as the one shown in Fig. 4.10. The 

magnetization shows paramagnetic temperature dependence as displayed in Fig. 4.10 (a) 

for low magnetic fields (B=0.05 T). The system shows no long range order even up to a 

temperature as low as 30 mK98. 

A Curie-Weiss fit, as given in equation 4-1, to the high temperature (50 < T < 350 

K) susceptibility reveals a negative θCW (see Fig. 4.10 (b)) suggesting an 

antiferromagnetic interaction between spins. The estimated θCW (=-175 K) is comparable 

to the reported value (θCW =-162 K) in reference99. However, substantial works100-103 have 

been done on CaRuO3 where it is considered to be a nearly ferromagnetic metal rather 

than a classical Curie-Weiss antiferromagnet. Hence CaRuO3 is not a classical 

paramagnet but is verging on collective magnetism. The effective moment estimated 

from the fit (=2.1µB) is smaller than but close to the proposed Hund’s rule value for an 

S=1 system (=2.8 µB). The temperature independent susceptibility, χ0, is estimated to be 

2.86 x 10-4 emu/mole is close to the value (=4.9 x 10-4 emu/mole) reported earlier89. 
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Fig. 4.10 (a) Magnetic susceptibility as a function of temperature at B=0.05 T for 1.7 ≤ T 

≤ 350 K. (b) 1/Δχ as a function of temperature at B=0.05 T for 1.7 ≤ T ≤ 350 K. χ (T) 

follows the modified Curie-Weiss law with θCW=-175 K. 
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The electrons in the compound are itinerant, as evident from the metallic behavior 

shown for the full range of available temperatures. The temperature dependence of the 

basal plane resistivity, ρab, for 1.7 < T < 350 K in zero magnetic field is shown in Fig 

4.11 (a). For T > 20 K, the resistivity follows a linear dependence in T suggesting a 

domination of short range spin fluctuations in the electron conduction mechanism at 

higher temperatures. However, at lower temperatures, for T < 20 K, CaRuO3 does not 

follow a Fermi liquid behavior expected for metals (equation 4-2). On the contrary, it 

follows a T3/2 behavior i.e. 

2
3

0 AT+= ρρ       (4-3) 

as shown in Fig 4.11 (b) (left scale). In the presence of a magnetic field as high as B=7 T, 

the overall temperature dependence of ρ remains the same. In particular, the unusual T3/2 

behavior at lower temperatures persist for fields up to B=7 T (see Fig 4.11 (b) (right 

scale)). This non Fermi liquid behavior in resistivity may be linked to the magnetic 

instability that arises at T=0 as observed in the nearly ferromagnetic SrIrO3
104. The 

system’s Quantum Critical Point (QCP), if any present, could be tuned by control 

parameters such as chemical composition as explained in the next few paragraphs. 
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Fig. 4.11 (a) Resistivity, ρ, as a function of temperature at B=0 T for 1.7 ≤ T ≤ 350 K. (b) 

Non-Fermi liquid behavior of ρ at B=0 T (left scale) and B=7 T (right scale) for 1.7 ≤ T ≤ 

20 K. 
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4.3.5 CaRuO3’s response to chemical substitution: 

As discussed in the previous section, CaRuO3 is not paramagnetic but rather 

shows the characteristics of short-range magnetic interactions. It is also true that CaRuO3, 

though a good conductor, is on the verge of localization due to the narrow nature of the 

4d band. The nature of the magnetism and transport properties in this compound, and 

other ruthenates with narrow 4d-bands, strongly depend on the degree of band filling and 

bandwidth. The ground state’s closeness to quantum fluctuations creates a fair amount of 

chance to tilt the scale in favor of one of the ground states by external perturbation. 

Hence chemical substitution on each Ca and/or Ru sites will constitute a powerful tool to 

study the physical properties of this system. Indeed, 5% of Sr or Na substitution for Ca 

induces anti-ferromagnetic or spin glass ordering at T=10 and 55 K respectively84, 105.  

Sn doping89 on CaRuO3 also show distinct changes in the magnetic properties. A 

well defined peak in χ(T) indicative of a magnetic ordering occurs for lower 

concentration of Sn i.e. for small x. The hysteresis effect is seen throughout the doping 

range where this magnetic ordering is observed. The magnetic ordering gets weaker as x 

increases before vanishing eventually for x > 0.10. This instability of the ordered phase 

coupled with the hysteresis in χ(T) implies a spin frustration or spin-glass behavior. This 

can be attributed to spin depletion from Ru sites introduced by nonmagnetic Sn, resulting 

in frustrated neighboring spins. 

Polycrystalline Rh doping study on CaRuO3
106 reveals a magnetic behavior 

reminiscent of a ferromagnet. However, the negative Curie–Weiss temperature 

extrapolated from fitting χ(T) to the Curie–Weiss law seems to suggest that at high 

temperatures the correlations are dominated by antiferromagnetic coupling. It may be 

inferred that magnetic spins in the doped samples are primarily antiferromagnetically 

coupled but somehow canted, resulting in a hidden ferromagnetic component 

characterized by the ferromagnetic-like behavior. This occurrence of the enhanced spin 

correlation is accompanied by an itinerant-to-localized electron transition. These 

observations are attributed to the band narrowing resulted by Rh substitution on the Ru 

site. Slight Rh doping, while retaining the crystal structure, effectively narrows the 4d-

band. The band narrowing leads to an abrupt departure from the itinerant electron 

extreme and also to an enhanced local moment coupling. 
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Magnetic studies of polycrystalline CaRu1-xTixO3 (0<x<0.1) reveal a 

ferromagnetic transition at TC=34 K, regardless of the nonmagnetic Ti concentration107. 

Substitution of nonmagnetic Ti4+ and Sn4+ for Ru4+ represents only lattice frustration and 

magnetic dilution of the Ru sublattice, whereas Rh4+ (S=1/2) or Rh3+(S=0) ions act as 

magnetic impurities (different S), or as charge frustration producers. He and Cava99 have 

recently shown that, for M = Mn, Fe, and Ni, “inhomogeneous” ferromagnetic materials 

are formed. In these CaRu1-xMxO3 systems, TC depends also only on the dopant ion, and 

not on its concentration. It is thus assumed, that small ferromagnetic clusters with an 

intrinsic TC (depending on M) are formed, and they increase in size and volume fraction 

with increasing dopant concentration. 

4.3.6 Induced ferromagnetism in CaRu1-xCrxO3: 

Sensitivity of the ground state of CaRuO3 to different chemical substitutions was 

discussed in section 4.3.5. It appears to be a common occurrence that with only a slight 

impurity doping the paramagnetic CaRuO3 inevitably evolves to a magnetically ordered 

state followed by a metal to insulator transition. But the Cr substitution on the perovskite 

calcium ruthenate reveals a different story altogether. In this section, I will discuss the 

effects of Cr substitution on the physical properties of CaRuO3 i.e. the thermodynamics 

and transport properties of CaRu1-xCrxO3
108 in detail. 

Similarity in the geometries of the calcium perovskite ruthenate and chromate 

makes the Cr substitution study viable. CaCrO3 has the same crystal structure and 

symmetry as CaRuO3 with a space group of pbnm and lattice parameters a=5.287 Å, 

b=5.316 Å and c=7.486 Å109. This structural compatibility provides an advantage for a 

thorough study of CaRu1-xCrxO3 by controlling electron correlation strength without 

significantly altering the on-site and inter-site Coulomb interaction. Shown in Fig. 4.12 

(a) are the lattice parameters for a-, b- (left scale) and c-axis (right scale) as a function of 

Cr concentration, x, ranging from 0 to 0.36 for CaRu1-xCrxO3. For x=0 (CaRuO3), the 

lattice parameters are in good agreement with those reported earlier80, 84. The 

orthorhombic symmetry is retained as a function of x. Within the error of the 

measurement, the lattice parameters generally decrease with x, consistent with the fact 

that the ionic radius of Cr4+ (0.550 Å) is smaller than that of Ru4+ (0.620 Å). 
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Fig. 4.12 (a) Lattice parameters for a-, b- (left scale) and c-axis (right scale) and (b) the 

volume of the unit, V, as a function of Cr concentration, x, for CaRu1-xCrxO3. The x 

dependence of lattice parameters suggests no presence of Cr3+ and/or Ru5+ ions in the 

compounds. 

 

(Å
) 

(Å
3 ) 

(Å
) 



 90

The changes in the lattice parameters result in a shrinkage of the unit-cell volume 

by about 1.2% (x=0.36) as shown in Fig. 4.12 (b)108. The results do not seem to suggest a 

presence of the Cr3+ ion (0.615 Å) and/or Ru5+ (0.565 Å), which would lead to x-

dependence of the lattice parameters opposite to that shown in Fig. 4.12. Even though no 

drastic changes in the crystal structure are observed, the magnetic ground state of the 

system involves surprise changes. An abrupt transition from paramagnetism to itinerant 

ferromagnetism108 is induced when Cr is substituted for Ru in CaRuO3. Shown in Fig. 

4.13 is the temperature dependence of the magnetization, M, for representative 

compositions taken in a field cooled sequence for 1.7 < T < 200 K. The major feature is 

the instantaneous presence of the ferromagnetic behavior upon Cr doping. There is a 

strong hysteresis effect between the field cooled and zero field cooled sequences (not 

shown). The Curie temperature TC increases from 67 K for x=0.05 to 115 K for x=0.15, 

peaks at 123 K for 0.18 < x < 0.22 and decreases to 100 K for x=0.36 (see Fig. 4.15). (TC 

is determined as the maximum of the derivative dM/dT). The high temperature Curie-

Weiss analysis discussed in the following paragraphs affirms the ferromagnetic coupling 

between the spins.  

Another interesting feature of the Cr substitution is the induced anisotropy in the 

magnetic behavior. As shown in Fig. 4.13 (b), the c-axis magnetization, Mc, is much 

weaker than Ma. Since the crystals are cubic, the difference in the value of M (around a 

factor of 5) could not be attributed to the difference in demagnetization factor, N, along 

the different crystallographic axes. N for all the three crystallographic axes in a cube is 

the same and hence this anisotropy in magnetization is unexpected in the perovskite 

compounds such as these. No observable anisotropy is reported in the pure CaRuO3 and 

SrRuO3 confirming that it is not common to have anisotropy in cubic crystals. Moreover, 

Cr substitution in the more idealistic perovskite SrRuO3 does not induce any anisotropic 

properties. The anisotropy in Cr doped CaRuO3 might hence suggest a role of spin-orbit 

coupling in the system’s physical properties108. 
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Fig. 4.13 (a) Temperature dependence of a-axis magnetization, Ma, for a few 

representative concentrations in CaRu1-xCrxO3 (b) Temperature dependence of the c-axis 

magnetization, Mc, for a few representative x. 
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The data for 150 < T < 350 K in Fig. 4.13 were fitted to the modified Curie-Weiss 

law for 0 < x < 0.36. The susceptibilities in the paramagnetic phases are essentially 

isotropic giving the same fit parameters along each direction. Shown in Fig. 4.14 are the 

1/Δχ vs. T curves for a few representative concentrations i.e. x=0, 0.05, 0.18 and 0.36 of 

Cr doping, where Δχ (=χ-χ0) is estimated from the Curie-Weiss law of the form,

)(0
CWT

C
θ

χχ
−

+= , as in equation 4-1. The θCW is then determined from the x intercepts 

of these straight lines, whereas their slopes yield the Curie constant. Hence, from the 

figure it is clear that the Curie-Weiss temperature, θCW, changes from a negative value for 

x=0 to positive values for x > 0. The estimated θCW for the crystals maintain their trend 

by increasing up to x=0.18 and decreasing for x > 0.18, which reflects the nature of the 

interaction between the spins. 

 
Fig. 4.14 1/Δχ vs. T curves for a few representative x viz. 0, 0.05, 0.18 and 0.36. Note 

that the x intercept (θCW) is negative only for x=0 and are positive for all x > 0. Solid 

lines are guide to the eyes. 
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The set of physical parameters obtained from the Curie-Weiss fit done on the data 

displayed in Fig 4.13 are listed down in Table 4.1. Remarkably, the Curie-Weiss 

temperature, θCW, shows x-dependence with the same general trend of that of TC, 

changing from -175 K for x=0 through zero eventually to +120 K for x=0.18 (see Fig. 

4.15 (a)). The change in sign is associated with the change in tendency from 

antiferromagnetic to ferromagnetic exchange coupling, consistent with the onset of 

ferromagnetism with increasing Cr content108. Also illustrated in the Fig. 4.15 is the 

temperature-independent susceptibility χ0 (right scale in Fig. 4.15 (b)), which stays 

essentially unchanged for x < 0.18, but rises rapidly near x=0.18 and peaks at x=0.22 

where TC reaches the maximum. χ0 is usually associated with a Pauli susceptibility and a 

measure of the density of states at the Fermi level, N(EF), i.e., χ0~N(EF). The rapid 

increase of χ0 may then be attributed to an increase in the density of the states. Another 

quantity estimated from the Curie-Weiss fit is the effective moment, µeff, which is 

displayed in Fig. 4.15 (b) (left scale). A monotonic decrease in µeff with an increase in x 

is observed for the entire doping range as shown in the figure. 

Table 4.1 Curie temperature (TC) and the modified Curie-Weiss fit parameters (θCW, χ0 

and µeff) tabulated for different x. 

S. No. 

Cr 

concentration 

x 

Curie 

temperature 

TC (K) 

Curie-Weiss 

temperature 

θCW (K) 

Temperature 

independent 

susceptibility 

χ0 (x10-3 emu/mole) 

Effective 

moment 

µeff 

(µB/f.u.) 

1 0 0 -175 0.2860 2.7600 

2 0.05 67 68 1.3647 2.3160 

3 0.08 76 73 4.3270 2.1300 

4 0.15 115 - 1.4230 1.9730 

5 0.18 123 117 1.3919 1.8630 

6 0.22 121 119 63.083 1.7540 

7 0.30 118 108 29.832 1.7200 

8 0.36 94 64 17.234 1.6900 

 



 94

 
Fig. 4.15 (a) The Curie temperature, TC, (left scale) and the Curie-Weiss temperature, 

θCW, (right scale) as a function of x. (b) The x dependence of effective moment, µeff, (left 

scale) and temperature-independent susceptibility, χ0, (right scale) estimated from the 

Curie-Weiss fit in the temperature range 150 ≤ T ≤ 350 K. 
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The effective moment estimated from the Curie constant, C, decreases 

monotonically from 2.76 µB/f.u. for x=0 to 1.7 µB/f.u. for x=0.36 (see Fig. 4.15). These 

values are smaller but close to those for both Ru4+ (4d4, low spin state) and Cr4+ (3d2), 

which have S=1. On the other hand, the effective magnetic moments for Ru5+ (4d3) and 

Cr3+ (3d3) are considerably larger as is the total spin, S=3/2. Hence the Curie constant is 

consistent only with the anticipated tetravalent Ru and Cr ions for all compositions108. 

These results are in good agreement with the structural data shown in Fig. 4.12. 

Even though both Ru4+ and Cr4+ ion based compounds have a total spin-one 

configuration, the substitution of Ru4+ by Cr4+ replaces four 4d electrons with two 3d 

electrons. The two 3d electrons of Cr are located in more contracted t2g orbitals and as a 

result a narrower band and stronger exchange interactions between the electrons are 

possible. The mismatch between the energy levels and the symmetries of the wave 

functions reduces the effective hybridization and narrows the effective bandwidth W. 

Since the bandwidth, W, and the density of states, N(EF), are inversely related, a 

significant local reduction in W may enhance N(EF). This enhancement in density of 

states favors ferromagnetism according to the Stoner model. 

The induced ferromagnetism in the compounds is complemented by unexpected 

magnetization isotherms at low temperatures. Fig. 4.16 shows isothermal magnetization, 

M(B), for the a-axis at T=2 K. For x=0, the magnetization is linear in applied field up to 

B=7 T along both directions, corresponding to the paramagnetic ground state. However, 

for x > 0, Ma(B) does not follow a linear behavior throughout the range of applied field 

anymore108. The linear response in B survives up to a critical field, BC, at which a 

metamagnetic-like transition occurs starting at x=0.05 (Fig. 4.16). The jump in 

magnetization reaches a saturation value around 0.3 µB/f.u. at B=7 T. A strong hysteresis 

in M is also observed when the field is swept down to zero where the system never 

reaches the initial zero field cooled value. The transition then develops into a two-step 

transition as x is increased to 0.15. The temperature dependence of this two-step 

transition is shown in Fig. 4.17. When x=0.18, the jump in M is so abrupt that it 

resembles a magnetic switching effect. The field dependence might suggest that x=0.18 

compound is a nearly single domain ferromagnet. 
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Fig. 4.16 Isothermal magnetization, M (B), at T=2 K for CaRu1-xCrxO3 along a axis 

For x=0.15, the transition shows a step like behavior at low temperatures with 

distinct critical fields (BC1 and BC2) creating a meta-stable state between these two fields. 

The behavior might be a reminiscent of the difference in the coercivity between Ru4+ and 

Cr4+ ions, which is more obvious in Ca3(Ru1-xCrx)2O7 as explained in the later part of this 

chapter. This two-step transition depends sensitively on temperature as shown in Fig. 

4.17 (a). As the temperature is increased from T=2 K, the meta-stable region (BC1 < B < 

BC2) becomes smaller before it vanishes for T > 40 K (see Fig. 4.17 (b)). The two critical 

fields viz. BC1 and BC2 show strong temperature dependence. Both the critical fields 

follow an exponential law given as,  

BC=BC0e(-aT)       (4-4) 

However, the magnitude of MS shows only weak dependence on temperature. It 

decreases from 0.33 µB/f.u. for T=2 K to 0.26 µB/f.u. for T=50 K. 
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Fig. 4.17 (a) Isothermal magnetization, M (B), along a axis for x=0.15 for various 

temperatures (b) Temperature dependence of BC1 and BC2 (left scale) and of saturation 

moment, MS (right scale). The shaded region in green displays the meta-stable region. 

Another unusual behavior in these compounds is their anisotropy in magnetic 

properties. From the discussions in section 4.3.3, it is clear that the magnetic responses 

are isotropic along different crystal directions for SrRu1-xCrxO3, as expected for these 

perovskite systems. But in the case of CaRu1-xCrxO3 compounds, despite the fact that the 

structure symmetry is not very different from that of the Sr counterparts, the properties 
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tend to be more anisotropic. As seen in the temperature dependence of the magnetization, 

the field dependence along a axis and c axis are different too. Fig 4.18 (a) shows the 

isothermal magnetization along a axis and c axis for x=0.15 at T=2 K. The saturation 

moment along a axis is around 3.5 µB/f.u. whereas MS along c axis is less than half of that 

(0.14 µB/f.u.)108. Also, the distinct two-step behavior, a unique characteristic of this 

concentration at low temperatures, is not well defined when magnetic field is applied 

along the c axis for all temperatures. 

The anisotropy in magnetization is not restricted to x=0.15 alone and is realized 

for all the Cr concentration up to x=0.36. The ordered moment, MS, for both a axis and c 

axis of the crystals of CaRu1-xCrxO3 at T=2 K is displayed in Fig. 4.18 (b). MS for a-axis 

increases initially with x from 0 for x=0 to 0.4 µB/f.u. for x=0.18 and then decreases for 

x > 0.18. In contrast, MS for the c-axis is much smaller. However, MS along c axis also 

shows a peak at x=0.18 similar to a axis ordered moments (see Fig. 4.18 (b)). The 

anisotropy in the magnetic properties along different crystal directions suggests an 

important role of the spin-orbit coupling. 

The variations of both χ0 and MS with Cr concentration show a peak 

simultaneously in the vicinity of x=0.18. As χ0 is proportional to the density of states, this 

implies an intimate correlation between the density of states and the ordered moment. It 

is this concentration at which TC and θCW shows a maximum too. This concentration is 

much less than expected from nearest neighbor site percolation of bonds (xc ~ 0.307), but 

larger than for nearest and next-to-nearest neighbor site percolation of bonds (xc ~ 0.137). 

This could be an indication that bonds are not just “on or off,” but that there is a 

distribution of bond strengths108. 
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Fig. 4.18 (a) Isothermal magnetization, M, for a axis and c axis at T=2 K for x=0.15. (b) 

The saturation moment, MS, for a- and c- axis directions at T=2 K. 
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Similar to SrRu1-xCrxO3, in spite of showing exaggerated changes in magnetic 

properties, the Cr substitution in CaRuO3 does not result in any severe change in 

transport properties. The temperature dependence of the basal plane resistivity, ρab(T), of 

CaRu1-xCrxO3 for 1.7 < T < 350 K at zero magnetic field is shown in Fig. 4.19 (a) 

(logarithmic scale). At 1.7 K, the resistivity for x=0.36 compound is increased by 3 

orders of magnitude from that of the x=0 sample. Although the low temperature 

resistivity undergoes significant changes with x, the metallic behavior essentially remains 

for all x except for x=0.36. However, as seen in Fig. 4.19 (a), ρab for T < 100 K rises and 

becomes less temperature-dependent with increasing x. 

For x=0.36, ρab shows a slight nonmetallic behavior below 20 K and a sharp break 

in the slope at TC =100 K (see Fig. 4.19 (b)), which according to the Fisher-Langer 

theory is the consequence of scattering off short-range spin fluctuations in the 

neighborhood of TC. We note that the Fisher-Langer behavior for other concentrations is 

not as strong as that for x=0.36108. Finally, the negative magnetoresistance ratio at 7 T 

and 2 K varies from 15% to 20% for x=0.15, 0.18, 0.22 and 0.36. 

The absence of metal insulator transition, an uncharacteristic result of impurity 

doping in perovskite ruthenates, may be associated with the fact that only two of the three 

Cr t2g levels are occupied and electron hopping between the Cr4+ and Ru4+ t2g orbitals is 

energetically favorable, so the dynamic itinerant character of the d-electrons is retained. 

The impurity doping, however, introduces defects and disorder raising the electrical 

resistivity at low temperatures. This less metallic behavior for large x could be also 

associated with a site percolation of nearest neighbor Ru-Ru bonds110. The disruption of 

Ru connectivity affects the orientation of the RuO6 octahedra (tilting angle), which to a 

great extent determines the properties of the ruthenates. 
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Fig. 4.19 (a) Basal plane resistivity, ρab, on a logarithmic scale vs. temperature for x=0, 

0.05, 0.08, 0.15, 0.18 and 0.36. (b) ρab, (left scale) and magnetization, M, (right scale) as 

a function of temperature for x=0.36. 

From the foregoing discussions on the physical properties of CaRu1-xCrxO3, a T-x 

phase diagram for 0 < x < 0.36 could be sketched. As shown in the Fig. 4.20, the system 

evolves from a paramagnetic ground state to a ferromagnetic state abruptly at x=0.05. 
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The Curie temperature, TC, (as well as the Curie-Weiss temperature, θCW) increases with 

x until it reaches a plateau around x=0.18 before decreasing down to lower values for 

higher x. The increase in TC and θCW reflects stronger ferromagnetic interactions between 

spins as x increases. Similar trend in χ0 with x persuades an enhanced DOS induced by 

less extended Cr 3d orbital. The metallic behavior is retained throughout the range of Cr 

substitution with the Fisher-Langer behavior observed at TC. Although no metal insulator 

phase transition is discerned up to x=0.36, a non-metallic character of electrons is 

evolved at low temperatures and becomes stronger with x, which might be a result of 

percolation effect as explained earlier. 

 
Fig. 4.20 A simplified x-T phase diagram of CaRu1-xCrxO3 for 0 ≤ x ≤ 0.36. 

Unlike other 3d impurity doping in SrRuO3, which reduce TC and show a metal to 

insulator transition, the Ru 4d electrons and the Cr 3d electrons are strikingly synergistic, 

leading to a highly enhanced exchange interaction and/or narrowed bandwidth favorable 

for ferromagnetism. This is particularly unusual for the perovskite ruthenates as 
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ferromagnetism exists only in a structure that allows no significant distortions of Ru-O-

Ru bond angle86. 

4.4 Mott-like bi-layered calcium ruthenate (n=2): 

Ca3Ru2O7 is a double layered member (n=2) of the multilayered RP series and has 

two layers of Ru-O octahedral per unit cell. The bi-layered compounds in the series are of 

particular interest due to their borderline properties. Sr3Ru2O7 bridges the metallic 

ferromagnet SrRuO3 (n=∞) and the paramagnetic Fermi liquid Sr2RuO4 (n=1) and has a 

metamagnetic quantum critical point76 associated with borderline metallic 

ferromagnetism. Ca3Ru2O7 is an intermediate between the bad metal CaRuO3 (n=∞) and 

the Mott insulator Ca2RuO4 (n=1). Because of the borderline nature of properties bi-

layered calcium ruthenate will be a useful window to probe the physics of materials near 

a metal insulator transition. 

Ca3Ru2O7 is characterized by a non-metallic conductivity for T < 48 K, 

antiferromagnetic ordering up to TN=56 K and “bad metal” conductivity, linear in 

temperature for T > TN
83. The compound features different in-plane anisotropies of the 

magnetization and magnetoresistance demonstrating a strong coupling between spin, 

charge and lattice. Band structure calculations111 and experimental observations112 show 

that the basic magnetic structure is ferromagnetic (FM) bi-layers with antiferromagentic 

(AFM) coupling. The FM density of states in Local Spin Density Approximation 

(LSDA)111 band structure calculations suggests that the bi-layers are almost half metallic. 

4.4.1 A few intriguing problems in Ca3Ru2O7:  

The virtue of the bi-layered calcium ruthenate lies in the variety of novel physical 

phenomena that are inherited in the system. The list below highlights the set of properties 

of the compound that have drawn our attention in the past few years. 

• Huge anisotropy – Magnetic field applied along the crystal’s principal axes 

show case an anisotropic response to their magnetic and transport properties along 

different directions112 

• Antiferromagnetism – The system shows an antiferromagnetic transition at 

TN=56 K, for low applied magnetic fields83 

• Ferromagnetism – A field induced ferromagnetic behavior appears at BC=6 T, 

when field applied parallel to a axis, the magnetic easy axis113. 



 104

• Metamagnetism – Along the magnetic easy axis, the magnetization of the 

compound shows an abrupt jump to reach a fully polarized state at BC=6 T114. 

• Mott-like transition – There is a sudden increase in resistivity by about a factor 

of 20 that signifies a transition of the system from metal to insulator, at TMI=48 K83. 

• Antiferromagnetic metallic state – For a narrow range of temperatures, 48 < T < 

56 K, the system stays in antiferromagnetic state where the electrons tend to be itinerant 

too83. 

• Tunneling Magnetoresistance – The spin polarization along the magnetic easy 

axis leads to a drop in the interlayer resistivity by an order of magnitude115. 

• Colossal Magnetoresistance – Along the magnetic hard axis, an unconventional 

colossal magnetoresistance occurs at higher magnetic fields, where the ferromagnetic 

state becomes surprisingly unfavorable for electron conduction116. 

• Quantum Oscillations – Oscillations in magnetoresistance are observed that are 

periodic in 1/B and B along different magnetic field directions117. 

• Non-linear conduction – A non-Ohmic current-voltage characteristic has been 

observed and bounded to the Antiferromagnetic Mott state (0 < T < 48 K)118. 

Every one of the physical phenomena listed above has a wealth of scientific 

information in its own dimensions. Hence it is impulsive that the coexistence of those 

interesting physical properties in the compound would kindle the fire for a vigorous and 

systematic study on the compound. Even though it is vital to study the whole spectrum of 

the compound’s behavior, my investigations on the subject revolve only around a few 

intriguing problems that had been challenging us for quite some time now. 

4.4.2 Crystal structure: 

Single crystals of Ca3Ru2O7 were grown using both flux and floating zone 

techniques and characterized by single crystal X-ray diffraction, Laue X-ray diffraction, 

Scanning Electron Microscopy, electron diffraction and Transmission Electron 

Microscopy (TEM) techniques. Ca3Ru2O7 crystallizes in orthorhombic structure with 

lattice parameters of a=5.3720(6) Å, b =5.5305(6) Å, and c=19.572(2) Å with space 

group A21ma. A schematic of the crystal structure is presented in Fig. 4.21 (a), where the 

RuO6 layers are indicated as red octahedra. The TEM image that explains the double 
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layered nature of the compound is depicted in Fig. 4.21 (b). The dark grey spots in the 

image represent the Ru-O layers and the lighter ones the Ca-O. 

     
Fig. 4.21 (a) Crystal structure of Ca3Ru2O7, projected along the c axis (top figure) and the 

ab plane (bottom figure). (b) The TEM image depicts the double layered nature of the 

compound and (c) the electron diffraction image reveals the anisotropic nature within the 

basal plane of Ca3Ru2O7
113. 

The crystal structure is severely distorted by a tilt of the RuO6 octahedra as seen 

in Fig. 4.21 (a). The tilt projects primarily onto the ac plane (153.22o), while it only 

slightly affects the bc plane (172.0o)113. These bonding angles are crucial in defining 
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anisotropic spin-orbital-lattice coupling within the basal plane. These crucial bond angles 

directly impact the band structure and are the origin of the anisotropic properties in the 

compound. The structural anisotropy in the basal plane is clear from the electron 

diffraction spectrum and the difference between a axis and b axis is quite obvious in Fig. 

4.21 (c). 

4.4.3 Magnetic ground state and thermodynamics: 

 
Fig. 4.22 Temperature dependence of Magnetization, M (T), for magnetic fields applied 

parallel to the three principal crystal axes with B=0.5 T. 

Ca3Ru2O7 shows an AFM ordering at TN=56 K and transition from a metal to a 

low temperature poorly conductive or insulating phase at TMI=48 K83 (The transport 

properties will be discussed in the following sections). Fig 4.22 shows the low field M 

(T) for the different crystallographic axes. For field applied along a axis, the magnetic 

easy axis, M (T) features two phase transition temperatures, TN=56 K and TMI=48 K. In 

contrast, M (T) for the b axis exhibits no anomaly corresponding to TMI but a sharp peak 

at TN as shown in the Fig. 4.22. When B is applied along c axis, the magnetization is 

similar to that of a axis but the magnitude is very weak when compared to the other axes. 
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The highly anisotropic magnetic properties of Ca3Ru2O7 are used to determine the 

magnetic easy a axis and to identify twinned crystals that often show a small kink at 48 K 

in the b-axis susceptibility. 

The magnetic anisotropy is further emphasized when magnetic field is scanned at 

constant temperatures. Fig 4.23 displays the isothermal magnetization at T=2 K with 

magnetic fields applied along all the three crystal axes. For B||a, the magnetization shows 

a linear response to the applied magnetic field up to 6 T, corresponding to the 

antiferromagnetic ground state. At B=6 T, a first-order metamagnetic transition occurs, 

which leads to a spin-polarized or ferromagnetic state with a saturation moment 

Ms=1.73μB /Ru114, as shown in Fig 4.23. The observed saturation moment equals more 

than 85% of a hypothetical saturation magnetization 2μB /Ru expected for an S=1 system. 

The transition is sensitive to temperature as it slightly decreases for increasing T and 

disappears completely for T > TMI. 

 
Fig. 4.23 Magnetic isotherms, M (B), for magnetic field applied along different 

crystallographic axes at T=2 K. 
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For B applied along the other crystal directions, the system remains in the 

antiferromagnetic ground state up to an applied field of 7 T as is clear from the 

magnetization’s linear response to the magnetic field. The evolution of the difference in 

magnetic states at relatively high magnetic fields along different axes in the crystal is 

displayed in Fig. 3 of reference113. As B||a increases, TMI shifts slightly, whereas TN 

remains essentially unchanged initially and becomes rounded eventually. On the other 

hand, when B is parallel to the b axis, TN decreases with increasing B at approximately a 

rate of 2 K/T as explained in the reference113. Markedly, the magnetic ground state for 

B||b axis and B||c axis remain antiferromagnetic, entirely different from that for B||a axis. 

The magnetization measurements imply that the RuO6 layers themselves are 

ferromagnetically ordered, with an AF stacking112. The three possible AF stackings111 

along c axis are 

(1) Ferromagnetic bi-layers stacked antiferromagnetically i.e. _UU _ DD _ UU _  

(2) Bi-layers that are internally antiferromagnetically aligned, stacked in a FM 

fashion i.e. _UD _ UD _ UD _ or  

(3) Bi-layers that are internally antiferromagnetically aligned, stacked in an AF 

fashion, i.e. _UD _ DU _ UD_. 

 
Fig. 4.24 Spin configuration in Ca3Ru2O7 for (a) B < BC and (b) B > BC. 

Neutron scattering experiments, done on these crystals, favor the ordering that 

involves the ferromagnetic bi-layers stacked antiferromagnetically along the c axis119 as 

shown in Fig. 4.24. The FM interaction within a bi-layer is much stronger when 
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compared to the AFM coupling between the layers as suggested by the LSDA 

calculations111. 

The high temperature paramagnetic phase (150 < T < 350 K) follows the modified 

Curie-Weiss law,
)(0

CWT
C
θ

χχ
−

+=  (equation 4-1). The temperature independent 

susceptibility, χ0, a measure of density of states at the Fermi level, is unusually larger in 

this compound than in most metals. This might have resulted from the localized electrons 

at the Fermi energy or from the partial gapping of the Fermi surface. The effective 

moment, μeff, calculated from the Curie constant, C, (μeff=2.82 √C) is 2.86 μB
112, which is 

comparable to the expected value (=2.83 μB) for a spin 1 system. The Curie-Weiss 

temperatures along the three crystal directions are different and their values are +72, and 

+59 K respectively for a and b axes. The estimated Curie-Weiss temperatures are all 

positive, which are unusual for antiferromagnets as the antiferromagnetic interactions at 

higher temperatures are represented by negative θCW. These positive values for θCW 

indeed indicate dominating ferromagnetic interactions between Ru ions within the bi-

layers at high temperatures. However, the ferromagnetic layers are coupled 

antiferromagnetically hence confirming the spin arrangement given in Fig. 4.24 for 

Ca3Ru2O7
112. Furthermore, this anisotropy in χ (T) in the paramagnetic metallic state 

suggests an anisotropic exchange and/or strong but anisotropic electron correlations in 

Ca3Ru2O7. 

In addition, low temperature specific heat measurements for 1.7 < T < 20 K of 

Ca3Ru2O7 reveal an unusually large density of states near the Fermi surface: Even in the 

“insulating” phase the electronic specific heat coefficient (γ = 37 mJ/mol-K2)83 is much 

larger than most “good” metals. Even though it is comparable to that of SrRuO3, which is 

a well-known itinerant ferromagnet (γ = 30 mJ/mol-K2)88, 120, 121 and to superconducting 

Sr2RuO4 (γ = 45 mJ/mol-K2)122, it is far larger than that expected for a “classic” insulator. 

The speculation is that nearly localized (heavy) carriers near the Fermi surface may 

contribute to the electrical conductivity and angular resolved photoemission studies 

support this123. 
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4.4.4 Antiferromagnetic metallic state: 

Even though there are several interesting behaviors feature in the inter-plane (ρc) 

and intra-plane (ρa) resistivity curves for 1.7 < T < 350 K (fig 4.25), I would like to point 

out a few of them here. 

 
Fig. 4.25 Temperature dependence of resistivity for Ca3Ru2O7 at B=0 T for 1.7 ≤ T ≤ 350 

K. 

The resistivity shows metallic behavior83 (dρ/dT > 0) for T > 56 K along the two 

current directions and follows a linear dependence in T for 150 < T < 350 K (see the 

inset). The resistivity values are relatively large with 15.9 mΩ cm and 2.25 mΩ cm along 

ρc and ρa respectively at room temperature, indicating a narrow 4d band. The differences 

in the temperature dependences of inter and intra plane resistivities at high temperatures 

support the magnetic susceptibility measurements and also suggest an anisotropic 

electron correlation. At T=48 K, there is a rapid increase in ρ (T) signaling a transition to 

a less conducting or an insulating state. This abrupt jump in resistivity varies from 6 to 18 

times, depending on samples. For instance, the sample that was measured to show the 

characteristic as shown in Fig. 4.25, registered an increase of about 21 and 8 for ρc and ρa 
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respectively at TMI. The resistivity ρ (T) exhibits a small thermal hysteresis in the vicinity 

of TMI. This hysteresis, together with the abrupt χ (T) and ρ (T) changes at TMI 

demonstrates that the transition is first order. Unlike the metal to insulator transition in 

other systems, e.g. V2O3, where the resistivity increases by several orders of magnitude 

just below TMI
124, 125, ρ (T) of Ca3Ru2O7, approaches a saturation value at low 

temperature (see Fig. 4.26). The observed larger inter-plane ρ (T) when compared to the 

intra-plane ρ (T) is expected for a staggered layered system. However, the exciting 

feature is the antiferromagnetic metallic (AFM-M) state that lies in between the Neel 

temperature, TN, and the metal-insulator transition, TMI, (48 < T < 56 K). 

Fig. 4.26 (a) shows the temperature dependence of the electrical resistivity, ρ (T), 

of Ca3Ru207 for 1.7 < T < 80 K for inter-layer (ρc) and intra-layer (ρa) directions (left 

scale) and the response of the c axis lattice parameter to the changes in temperature (right 

scale) for the same temperature range. For 48 < T < 56 K there is a relatively weak but 

well-defined metallic characteristic in ρ (T) (see Fig. 4.26 (b)). The ρ in this regime 

shows a linear dependence in temperature corresponding to a Fisher-Langer like 

behavior. The metallic conductivity in the AFM phase behaves differently for magnetic 

fields applied along different directions. The response to the applied field reminds us of a 

half-metallic characteristic and will be discussed in the next section. There is a huge 

anisotropy in ρ (T) below TMI where ρc (T)/ρa (T) ~ 18 at T=1.7 K. Likewise, a slight 

(001)/(100) anisotropy is observed also for T > TMI in the metallic phases. Nevertheless 

the AFM-M region (ΔT=8 K) is not broad enough to conclude any physical aspects. 

X-ray diffraction studies in the temperature range 12 < T < 100 K exhibit a rapid 

decrease in the c-axis lattice parameter at TMI
83 as shown in Fig. 4.26 (a) (right scale). 

However, no systematic changes in the ab plane are observed in the temperature regime. 

A collapse of the c-axis lattice parameter would be expected to enhance the overlap of 

orbitals and hence the metallic state. But here the collapse conversely leads to a gapped, 

nonmetallic ground state, as evidenced by an abrupt metal-nonmetal transition at TMI=48 

K83. This unconventional behavior develops as a result of Jahn-Teller distortions of the 

RuO6 octahedra induced by the c axis shortening. The octahedral distortion lowers the dxy 

orbitals relative to dzx and dyz orbitals with a possible orbital distribution of (nxy/nzx nyz, 

2/2)126. Consequently, an AFM and OO phase can occur, explaining the poor metallic 
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behavior for T < TMI and B < BC. This is consistent with Raman-scattering studies126 of 

Ca3Ru2O7, which reveals the opening of a charge gap, Δc ~ 0.1 eV at TMI and the 

concomitant softening and broadening of an out-of-phase O phonon mode. 

 
Fig. 4.26 Temperature dependence of (a) inter-plane (ρc(T)) and intra-plane (ρa(T)) 

resistivities in the left scale and lattice parameter c in the right scale. (b) Zoomed portion 

of the ρc(T) curve for 45 K ≤ T ≤ 60 K to show the region of antiferromagnetic metallic 

state (48 K ≤ T ≤ 56 K)115. 

Furthermore, Hall Effect measurements performed on the cubic crystals of bi-

layered calcium ruthenate revealed that there is a change in the charge carriers right at the 

TMI. The Hall resistance is estimated by measuring the voltage along the b axis with 

electric current and magnetic field applied along a and c axes respectively. Fig. 4.27 

shows the Hall resistance (RH) of Ca3Ru2O7 as a function of temperature for the 

temperature range 1.7 < T < 300 K. The RH at lower temperatures (T < 48 K) is negative 

suggesting that the electrons are the charge carriers for conduction. The notable 

characteristic of the curve is that it shows a sharp jump close to the TMI where there is 

depreciation in the negative value of RH. The Hall resistance value ultimately reaches a 

positive value at T=48 K and holds its sign for higher temperatures up to T=300 K. The 

change in sign for RH persuades that the charge carriers change from one type to the other 

for Ca3Ru2O7 at temperatures close to the TMI. This behavior is consistent with the work 

done by Y Yoshida et.al.127. 
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Fig. 4.27 RH vs. T in Ca3Ru2O7 for 1.7 ≤ T ≤ 300 K when B||c axis=7 T. 

4.4.5 Nearly half-metallic characteristic:  

The LSDA band structure calculations done by DJ Singh et.al.111 suggest a nearly 

half-metallic behavior for Ca3Ru2O7. The resistivity response to the magnetic field 

applied along different crystal directions supports the band structure calculations as well. 

Shown in Fig. 4.28 is the temperature dependence of the c-axis resistivity, ρc, at a few 

representative B, which is applied along a axis (Fig. 4.28 (a)) and the b axis (Fig. 4.28 

(b)), respectively. As evident from the figure, the metal-insulator transition is pushed to 

lower temperatures when magnetic field is applied along the b axis. On the other hand, 

TMI increases with the transition getting rounded off and ultimately showing a 

semiconducting behavior for B||a axis128. This behavior is typical of a half-metal where 

one spin channel behaves metallic while the other insulating simultaneously. 
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Fig. 4.28 Temperature dependence of the c-axis resistivity, ρc, at a few representative B 

up to 28 T applied along (a) a axis and (b) b axis for 1.7 ≤ T ≤ 80 K128. 
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Furthermore, for B||a axis, ρc at low temperatures decreases abruptly by about an 

order of magnitude when B > 6 T, the field at which the first order metamagnetic 

transition leads to the spin-polarized state. This reduction in ρc is attributed to the 

tunneling effect115 and will be explained later in this chapter (section 4.4.6). Further 

increase in B (up to 28 T) only results in slightly higher resistivity at low temperatures. 

However, what is unexpected is the behavior of ρc when B is applied along b axis. For 

B||b axis, the magnetic hard axis, the Mott state collapses approximately at a rate of 2 

K/T and disappears for B > 20 T128 as shown in Fig. 4.28 (b). The drop in resistivity at 

lower temperatures for B||b axis is around three orders of magnitude against the one order 

of magnitude drop at the spin polarization along the easy axis. 

Even though ρc drops by three orders of magnitude and shows a fully metallic 

state when B||b, the temperature dependence of ρc at B||b=30 T does not at all obey the T2 

dependence expected for a Fermi liquid. Instead, ρc exhibits an unusual T1.2 

dependence115 in the supposedly fully spin-polarized state where the spin degree of 

freedom should be eliminated. The low power-law temperature dependence of ρ normally 

implies strong scattering. While magnon scattering might partially account for this 

behavior, the anomalous temperature dependence of ρc once again suggests an unusual 

scattering mechanism(s) that governs not only the ground state but also persists well into 

the high temperature regime. A detailed discussion will be presented in the following 

sections. 

4.4.6 Tunneling Magnetoresistance: 

The 85% spin polarization along the magnetic easy axis is reflected in the 

electrical conductivity of the compound. An inverse relation between the magnetization 

and the magnetoresistance exists where the resistivity drops by an order of magnitude at 

the metamagnetic transition critical field, BC. The inter-plane resistivity, ρc, as a function 

of applied magnetic field parallel to a axis at T=5 K is shown in Fig. 4.29 (left scale) and 

the isothermal magnetization, M, at T=5 K for a axis also is shown in Fig. 4.29 (right 

scale). ρc shows a first order transition in the vicinity of 6 T, apparently driven by the first 

order metamagnetic transition which leads to the spin-polarized state with a saturation 

moment, MS=1.73 µB/Ru. 
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Fig. 4.29 Field dependence of the inter- layer resistivity, ρc(B), (left scale) and that of the 

magnetization, M (B), (right scale) at T=5 K showing the coupling of spin polarization 

with the electron transport115. 

 
Fig. 4.30 Electron conduction processes in Ru-O/Ca-O/Ru-O layer junction when the 

magnetic layers are (a) antiferromagnetic (B ≤ 6 T) and (b) ferromagnetic (B > 6 T). 

The reduction of ρc at BC (=6 T) is attributed to a tunneling effect facilitated by a 

field-induced coherent motion of spin-polarized electrons. Because of the layered nature, 
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the spin-polarized Ru-O planes sandwiched between insulating (I) Ca-O planes form an 

array of FM/I/FM junctions (see Fig. 3 (a) of reference115) that enhances the probability 

of tunneling and thus electronic conductivity. However, what is entirely unexpected is the 

drop in ρc for B parallel to the hard axis i.e. b axis, where we did not see any evidence for 

spin polarization. To make the scene more interesting, the resistivity drop when field is 

applied parallel to b axis is two orders of magnitude larger than that for B parallel to the 

easy axis (a axis), i.e., ρc(30 T)/ρc(0) =10-1 for B||a but 10-3 for B||b at T=0.6 K115. This is 

completely contrary to the anisotropy in the magnetization explained in section 4.4.4.  

The negative magnetoresistance is in general driven by the reduction of spin 

scattering129 and as a result one would expect a metallic state in the spin polarized 

regime. But it is astonishing that despite having a spin-polarized state along the easy axis 

no fully metallic state is achieved in Ca3Ru2O7. In fact, a further increase in B to 30 T 

only results in a linear increase of the resistivity with B, which is explained in detail in 

the next section (section 4.4.7). 

4.4.7 Colossal Magnetoresistance by avoiding a FM State: 

In addition to the tunneling magnetoresistance along the magnetic easy axis as a 

result of the spin-polarized sate, an entirely unexpected behavior is resulted when 

magnetic field is applied parallel to the magnetic hard axis. We observed evidence for an 

unusual Colossal Magnetoresistance realized only when B is perpendicular to the easy 

axis of magnetization. This CMR phenomenon is fundamentally different from those of 

all other magnetoresistive systems, which are primarily driven by spin polarization. 

Shown in Fig. 4.31 is the field dependence of the resistivity for ρc (right scale) for 

T = 0.4 K and 0 < B < 45 T with B applied along a, b and c axes. As shown in the figure, 

ρc is extraordinarily sensitive to the orientation of B. An abrupt drop of ρc by an order of 

magnitude at B=6 T is observed along the easy axis that corresponds to the first order 

metamagnetic transition (shown in the Fig. 4.31 (left scale)). The physics behind this 

tunneling magnetoresistance has been explained in section 4.4.6. However, the field 

dependence of ρc at higher fields contradicts our conventional wisdom on metals and 

deserves a deeper insight. As B is increased further from 6 to 45 T, ρc increases linearly 

with B by more than 30%. This linear behavior is interesting in its own right since a 

quadratic dependence in field is expected for regular metals130. As spin scattering is 
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already reduced to its minimum at B = 6 T, the linear increase can arise only from orbital 

degrees of freedom that hinders the electrons from hopping through spin-orbit coupling. 

 
Fig. 4.31 Magnetic field dependence of Magnetization, M (B), (left scale) and that of the 

inter-plane resistivity (ρc(B)) (right scale) at T=0.4 K for all the crystallographic axes. 

The drop in resistivity for B||b axis is much more than that for B||a axis, suggesting the 

dominance of orbitals on the electronic conductivity. Note that the resistivity 

measurements were performed in an applied field up to B=45 T. 

For B||b axis (i.e. along magnetic hard axis), there is no spin-flop transition and 

the system remains AFM. In sharp contrast with ρc for B||a axis, where the resistivity 

drops by one order of magnitude at B=6 T, ρc for B||b axis rapidly decreases by as much 

as 3 orders of magnitude at BC=15 T. When the 85% spin polarization could manage only 

one order of magnitude drop in resistivity, the magnetic field applied perpendicular to the 

easy axis triggered a resistivity drop that is 2 orders of magnitude more than that for B||a 

axis. Since the fully polarized state for B||a > 6 T can reduce ρc by only 1 order of 

magnitude, even a fully polarized state along b axis at high fields, if it happens at all, still 

cannot account for the 3 orders of magnitude decrease in ρc when B||b > 15 T. This fact 
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indicates that the spin degree of freedom alone is not at all enough to explain the unusual 

behavior observed in Fig. 4.31. 

 
Fig. 4.32 Magnetic field dependence of the intra-plane resistivity (ρa(B)) at T=0.4 K for 0 

≤ B ≤ 33 T along the three crystallographic axes. 

Furthermore, for B||c-axis, ρc displays slow Shubnikov-de Haas oscillations, 

signaling the existence of very small Fermi surface cross sections. They must be 

associated with the motion of the electrons in the ab-plane or dxy orbitals. The analyses of 

the oscillations for ρc will be provided in the following section (section 4.4.8). But the 

feature I would like to discuss here is the higher field resistivity behavior for B||c against 

that along a axis. For B||a, ρc increases linearly with B, as discussed earlier, whereas for 

B||c the inter-plane resistivity decreases as B is increased. Remarkably, for B||c > 39 T, ρc 

is much smaller than that for B||a116. If we quantify the change in resistivity from 0 to 45 

T, ρc decreases by a factor of 7 for B||a and 40 for B||c. Hence, it is clear that at higher 

magnetic fields the fully polarized or the ferromagnetic state i.e. when B applied along a 

axis, is least preferred by electrons for conduction. It is striking that a fully spin-polarized 

T=0.4 K 
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state, which is essential for magnetoresistance in all other magnetoresistive materials130, 

131, is the least favorable for conduction in Ca3Ru2O7. 

It is worth mentioning that the intra-plane resistivity (ρa) and inter-plane 

resistivity (ρc) behave very similarly when sweeping the magnetic field along the crystal 

axes. Fig. 4.32 shows the field dependence of ρa at T=0.4 K for 0 < B < 33 T applied 

along a, b and c axes. For B||a, the decrease in ρa is also 1 order of magnitude, the same 

as that of ρc, suggesting that the reduction in both ρa and ρc at BC is driven by the same 

in-plane spin polarization. For B||b, however, ρa decreases by 2 orders of magnitude 

when B > BC, confirming our reasoning that the spin-polarized state is indeed not 

favorable for electron conduction. 

A direct comparison between the field dependence of inter-plane and intra-plane 

resistivities at T=0.4 K for field applied along b axis is displayed in Fig. 4.33. The critical 

field BC separates two distinct behaviors. For lower applied magnetic fields before a drop 

in resistivity occurs i.e. B < BC, ρa (~10-2 Ω cm) is smaller than ρc (~10-1 Ω cm). 

However, the opposite is true for higher applied fields i.e. B > BC, with ρa~10-3 Ω cm and 

ρc~10-4 Ω cm. This striking behavior may reflect a change in effective dimensionality 

driven by B and hence an incoherent-coherent crossover132. In general, the electron 

transport along c axis in an anisotropic layered system could be either incoherent or 

coherent. In an incoherent transport, the electrons are scattered many times before each 

tunneling event as the intra-layer scattering rate (1/τ) is much higher than the effective 

inter-layer hopping integral (tc) and hence the motion from one layer to the other is rather 

diffusive. The band states and a Fermi velocity perpendicular to the layers cannot be 

defined and hence the Fermi surface is not three dimensional. In the opposite limit i.e. in 

a coherent state, the system behaves more 3-D like and the inter-layer transport could 

also be very well described by Boltzmann transport theory. Hence if the layers are 

coherently coupled, the electrons will change layers without significant loss in its phase 

due to a less scattering rate. In our case, the B driven increase in effective dimensionality, 

which could be analogous to that driven by temperature as detected in reference133 and 

discussed in reference134, reduces the electron correlation effects and results in the 

incoherent-coherent crossover. This increase of coherency is expected to enhance 
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itinerancy of the conduction electrons and thus a smaller inter-plane resistivity, ρc, when 

B > BC. The crossover, if any, has a lesser impact on the intra-plane resistivity ρa. 

 
Fig. 4.33 Magnetic field dependence of the inter-plane (ρc) and intra-plane (ρa) 

resistivities at T=0.4 K for 0 ≤ B ≤ 33 T applied along b axis 

While the abrupt, simultaneous transitions in both M and ρ shown in Fig. 4.29 

suggest a strong spin-charge coupling when B||a axis, it is also clear that the spin-

polarized state can, at the most, lower the resistivity by one order of magnitude. Then, 

what could be the explanation for a reduction of resistivity by three orders of magnitude 

when B||b axis, where the spin-polarized state is destabilized? It is this issue that reflects 

the physics fundamentally different from that driving other magnetoresistive materials 

including the manganites where a spin-polarized state is essential for CMR. The results 

from the temperature dependence of resistivity for B||a and b axes in a wide range of 

magnetic field (0 < B < 28 T)115 coupled with its field dependence for B||a, b and c 

axes116 provide coherent and comprehensive evidence of the role of the orbital ordering. 

The electron kinetic energy hinges on the spin-orbital-lattice coupling in such a way that 
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applying magnetic field, B, along the magnetic easy axis (a axis) precipitates a spin-

polarized state via a first-order metamagnetic transition. But this does not lead to a full 

suppression of the Mott state, whereas applying B along the magnetic hard axis (b axis) 

does, giving rise to a resistivity reduction of three orders of magnitude. 

4.4.8 The orbital physics: 

It becomes increasingly clear that the unconventional behavior observed in the bi-

layered ruthenate is predominantly associated with the role of the orbital degree of 

freedom and its coupling to the spin and lattice degrees of freedom. As shown in Fig. 

4.26, the abrupt decrease in the c-axis lattice parameter at TMI suggests a Jahn-Teller 

distortion that lifts the degeneracy of the occupied t2g orbitals by lowering the energy of 

the dxy orbital relative to that of the dyz and dxz orbitals and facilitates the orbital ordering. 

 
Fig. 4.34 A schematic representation of spin configuration in Ru4+ ion (a) in an isolated 

ion (b) in an octahedral field (c) in Ca3Ru2O7 after Jahn-Teller distortions. (d) The range 

of energy distribution in the d orbitals after the degeneracy is being lifted by Jahn-Teller 

distortion. 
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To probe the role of orbital degrees of freedom in the observed unconventional 

CMR along the magnetic hard axis, a direct comparison of ρ and M would do a great 

favor, if done for corresponding temperatures. At low temperatures, say T=0.4 K, where 

we have the anomalous CMR along B||b axis, the magnetization measurements were not 

possible as the critical field (BC= 15 T for T=0.4 K) does not fall within the limitations of 

a SQUID magnetometer. For achieving this comparison, we performed magnetic and 

electron transport measurements in the selected temperature range 40 < T < 56 K, for 

which BC along both a and b axes falls within the range of using a SQUID magnetometer. 

Shown in Fig. 4.35 are M (top panel) and ρc (bottom panel) as a function of B for B||a 

(left panel) and B||b (right panel) within the chosen temperature range, 40 < T < 52 K. 

Fig. 4.35 (a) displays M as a function of B for B||a axis. At 40 K, M(B) is still very 

similar to the one at low temperatures (see Fig. 4.23) but with slightly lower saturation 

moment, MS (= 1.6μB/Ru) and critical field, BC (= 5.8 T). For 41 < T < 45 K, a second 

transition develops at B* > BC, suggesting an intermediate FM state for BC < B < B*, 

which is not fully polarized along a axis. One possible interpretation could be that the 

spins are rotating away from a axis due to a strong magnetoelastic coupling as a result of 

the change in c axis lattice parameter near TMI (see Fig. 4.26). Hence a stronger field is 

required to realign these spins along a axis116. Since the spin rotation tends to become 

stronger as T approaches TMI, B* increases with T. At BC, M is about 1 μB/Ru and 

increases by 0.6 μB/Ru at B*. Only half of the ordered spins are thus aligned with a axis in 

the spin reorientation (SR) region for BC < B < B*. BC decreases with T and vanishes near 

TN=56 K.  

Unlike for B||a axis, M for B||b axis is unsaturated at B > BC and rounded at BC 

without hysteresis, suggesting a second-order transition (see Fig. 4.35 (b)). Noticeably, 

the b axis M at 7 T always converges to 1 μB/Ru, which is corresponding to 50% spin 

polarization and is independent of T. Clearly, MS for B||b axis is always smaller than that 

for B||a axis in spite of the spin reorientation that partially enhances M for B||b axis. 
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Fig. 4.35 Isothermal magnetization, M (B), for field applied parallel to (a) a axis and (b) 

b axis for temperature range 40 ≤ T ≤ 52 K. Magnetic field dependence of inter-plane 

resistivity (ρc(B)) when field applied along (c) a axis and (d) b axis in the same 

temperature range. 

The corresponding ρc as a function of B for B||a and b axes are displayed in Figs. 

4.35 (c) and (d) respectively. For B||a axis, ρc at 40 K shows an abrupt drop at BC similar 

to that at low temperatures with a magnetoresistance ratio Δρ/ρ(0) = 58%, where 

Δρ=ρ(7T) – ρ(0). In the range 41 < T < 45 K, ρc for B||a decreases initially at BC, and 

then further at B* with a total Δρ/ρ(0) similar to that at 40 K. Clearly, for T < 45 K, ρc 

perfectly mirrors the behavior of M for B||a axis, suggesting a strong spin-charge 

coupling in this region116. However, for T > 46 K, a valley develops in ρc; the beginning 

and the end of this valley define two fields, BC1 (BC1 = BC for T < 46 K) and BC2. The 

valley broadens with increasing T (BC1 decreases with T, while BC2 increases). The 

critical fields BC1 and BC2 for different temperatures are tabulated in Table 4.2. 
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Table 4.2 BC1 and BC2 in Ca3Ru2O7 for various temperatures when B||a axis. 

S. No. T (K) BC1 (T) BC2 (T) 

1 45.0 4.42 4.42 

2 46.0 3.96 4.53 

3 47.0 3.28 4.80 

4 47.4 2.93 5.02 

5 47.8 2.31 5.20 

6 47.9 2.04 5.31 

7 48.0 1.82 5.36 

8 48.1 1.53 5.42 

9 48.2 0.80 5.47 

10 48.4 0 5.68 

 

The valley changes its shape for T > 48.2 K, where the slope at BC1 is now 

positive and BC1 increases with T. An important point is that the field dependence of ρc 

for 46 < T < 52 K does not track the field dependence of M (compare Figs. 4.35 (a) and 

(c)). This lack of parallel behavior of M and ρc is precisely a manifestation of the crucial 

role of the orbital degrees of freedom that dictates the electron hopping mechanism for 

B||a116. 

Furthermore, MS for B||b axis (Fig. 4.35 (b)) is always smaller than MS for B||a 

axis (Fig. 4.35 (a)) and yet the reduction in ρc for B||b axis (Fig. 4.35 (d)) is always much 

larger than that for B||a axis (Fig. 4.35 (c)). For example, at 42 K and 7 T, Δρ/ρ(0) = 50% 

with MS = 1.52 μB/Ru for B||a, and Δρ/ρ(0) = 80% with MS = 1.03 μB/Ru for B||b. Note 

that the difference in both MS and Δρ/ρ(0) between B||a and b axes is 35%116. 

The temperature dependence of M (left scale) and Δρ/ρ(0) at 7 T (right scale) for 

B||a and b axes is summarized in Fig. 4.36 (a). Such an inverse correlation between M 

and Δρ/ρ(0) suggests that the spin-polarized state is indeed detrimental to the CMR. For 

T > TMI, the metallic state is recovered for B < BC1. However, for B > BC2, applying B 

along a axis leads to a rapid increase in ρc with positive Δρ/ρ(0) reaching as high as 

112%, whereas applying B along b axis results in essentially no changes in ρc. 
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Fig. 4.36 (a) Temperature dependence of M (triangles) and Δρ/ρ(0) (solid circles, right 

scale) at 7 T for B||a and b axes. (b), (c) Phase diagrams plotted as B vs T summarizing 

various phases for B||a and b axes, respectively. 
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As is known, for B<6 T, the Mott-like state is due to the OO facilitated by the c-

axis shortening at TMI
126, 128. When B||a >6 T, the magnetic state becomes FM with the 

OO remained and stabilized by the FM state. The orbital order is either a ferro-orbital 

(FO) or an antiferro-orbital (AFO) configuration. Hence the system is in either a FM-FO 

or a FM-AFO state. The former inhibits the hopping of the 4d electrons because of Pauli 

Exclusion Principle, while the latter permits inter-site transitions but at the expense of 

Coulomb energy. Therefore, despite showing one order of magnitude drop in ρc due to 

the spin polarization when B > 6 T, a fully metallic state can never be reached for B||a 

axis. In fact, the linear increase in ρc with increasing B for B||a > 6 T, as shown in Fig. 

4.31, may manifest a strengthened OO via the enhanced FM state. Conversely, applying 

B along b axis steadily suppresses the AFM state128, removing the orbital order through 

spin-orbit interaction when B > BC. Such an orbitally disordered (OD) state drastically 

increases the electron mobility, therefore leading to CMR. On the other hand, applying B 

along the c axis has a noticeable impact on spin and orbital configurations for B > 35 T 

where ρc drops rapidly and becomes much smaller than ρc for B||a axis116. This suggests 

that the electronic state for B||a axis is the most resistive one. 

The magnetic and transport behavior shown in Fig. 4.35 is remarkably consistent 

with rapid changes of the Ru-O phonon frequency with B seen in Raman studies (Fig. 2 

(b) in reference126), providing complementary evidence for the evolution of the field-

induced magnetic and orbital phases. While applying B along b axis clearly favors CMR, 

applying B||a axis generates a rich phase diagram (see Figs. 4.36 (b) and (c)). As shown 

in Fig. 4.36 (b) (note that BC1(ρ) and BC2(ρ) indicate the curves generated based on ρ, and 

BC(M) based on M), below 40 K, B drives the system from an AFM-OO to a FM-OO 

state, and for 40 < T < 48 K the system enters a region of SR characterized by BC and B. 

For 46 < T < 48.2 K, the valley seen only in ρc signals an onset of an OD state at BC1 and 

then a reoccurring OO state at BC characterized by a sharp increase in ρc. For 48.2 < T < 

56 K, the system changes from an AFM-OD to an AFM-OO phase when B > BC1. The 

evolution of the magnetic orbital configuration is associated with the Jahn-Teller 

coupling, which appears in the vicinity of TMI. 
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4.4.9 Shubnikov-de Haas oscillations: 

Oscillatory magnetoresistance periodic in 1/B or Shubnikov-de Haas effect is a 

manifestation of oscillations of the density of states at the Fermi surface due to the 

Landau level quantization. Hence observations of the SdH effect are possible in metals 

where the carrier mean-free path is sufficiently long and resistivity is sufficiently low.  

For most of the oxides, the resistivity is much higher and the mean-free paths may be 

comparable to the lattice spacing, hence observations of the SdH effect are not common. 

Given such a nonmetallic state at lower temperatures in Ca3Ru2O7 (see Fig. 4.23), the 

quantum oscillations in ρc is unexpectedly observed when B is applied parallel to c and 

rotated within the ac plane. However, the anisotropic nature of the Fermi surface dictates 

a diverse nature in the oscillations along these directions. 

Orbital ordering can be effectively manipulated, and therefore probed via altering 

the spin-orbit coupling. It is this understanding that has motivated our further 

investigations on this system by measuring magnetoresistance oscillations with B applied 

along different orientations. In the preceding sections, I discussed the results on the inter-

plane resistivity for magnetic field applied parallel to a and b axes. In this section, I 

present inter-plane resistivity, ρc, with B rotating within the ac-plane for temperatures 

ranging from 0.4 K to 1.5 K and magnetic field B up to 45 T. The results reveal slow yet 

strong SdH oscillations in the ac-plane with frequencies ranging from 30 to 117 T. These 

oscillations are highly angular dependent and intimately correlated with a fully spin-

polarized ferromagnetic state. 

Fig. 4.37 shows the magnetic field response of the ρc at T=0.6 K when B is swept 

from a to c axis, 0 < θ < 90o in the field range, 0 < B < 32 T, where θ is the angle 

between the magnetic field and a axis. For θ=90o i.e. when B||c axis, oscillations in 

resistivity are observed as reported by G Cao et.al.115 in the absence of metamagnetism, 

signaling the existence of very small Fermi surface cross sections. Local density 

approximation calculations135 for Sr3Ru2O7, which shares common aspects with 

Ca3Ru2O7, find the Fermi surface very sensitive to small structural changes. In particular, 

the dxy orbitals give rise to small lens shaped Fermi surface pockets. The observed 

oscillations must then be associated with the motion of the electrons in the ab plane, i.e., 

with the dxy orbitals. The oscillations in ρc correspond to extremely low frequencies f1=28 
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T and f2=10 T. Based on crystallographic data136 and the Onsager relation F0=A(h/4π2e) 

(e is the electron charge, h is Planck constant), these frequencies correspond to a cross-

sectional area of only 0.2% of the first Brillouin zone. From the T dependence of the 

amplitude, the cyclotron effective mass is estimated to be μc = (0.85±0.05) me. This is 

markedly smaller than the enhanced thermodynamic effective mass (~3) estimated from 

the electronic contribution γ to the specific heat83, 112. There are two possible sources for 

this discrepancy: (1) The cyclotron effective mass is measured in a large magnetic field 

that quenches correlations, while the specific heat is a zero-field measurement and (2) μc 

only refers to one closed orbit, while the thermodynamic effective mass measures an 

average over the entire Fermi surface. In addition, the Dingle temperature TD=h/4π2kBτ, a 

measure of scattering, is estimated to be 3 K117, comparable to those of good organic 

metals. 

 
Fig.4.37 ρc as a function of B for field applied along different angles in the ac plane at 

T=0.6 K115. 

When the magnetic field is rotated away from c axis, there is a precipitous drop in 

ρc which gets up to one order of magnitude at B=BC when B||a axis (refer to section 4.4.6 
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for explanations on the first order transition for B||a). However, my focus in this section 

will remain on the region away from both a and c axes for B > BC, where SdH 

oscillations reappear for 11 < θ < 49o in the ac plane. These oscillations inherit a vastly 

different behavior than that observed along the c axis as explained in the following 

paragraphs. 

The field dependence of ρc (on a logarithmic scale) for B rotating in the ac plane 

(B||a axis θ=0° and B||c axis θ=90°) at T=0.4 K is shown in Fig. 4.38 (a) for B ranging 

from 11 to 45 T. BC occurs at 6 T for B||a axis, and increases with increasing θ, i.e., as B 

rotates towards c axis. The striking finding is that strong SdH oscillations are 

qualitatively different for 11° < θ < 56° and 56° < θ < 90°. It is then likely that the 

vicinity of θ=56° marks the onset of the melting of the OO state as B rotates further away 

from the easy axis of magnetization (a axis)117. This destabilizes the FM state, and thus 

the OO state via direct coupling to the field or the spin-orbit interaction. However, this is 

only possible perturbatively, because the spin-orbit interaction is quenched by crystalline 

fields. Consequently, the electron mobility increases drastically, explaining the largely 

enhanced conductivity for 56° < θ < 90°. 

For θ < 56° the strong oscillations occur only for B > BC and with frequencies 

significantly larger than the ones previously observed for B||c axis. For clarity, the data 

has been reproduced in Fig. 4.38 (b) that exhibits ρc on a linear and enlarged scale for B 

> BC. For 0° < θ < 56° and B > BC, ρc increases with both B and θ, and displays 

oscillatory behavior only for 11° < θ < 56°. While the extremal orbits responsible for the 

oscillations are facilitated by the FM state, it is remarkable that no oscillations are seen 

when θ=0o (B||a axis), where the FM state is fully established at BC=6 T. In contrast, no 

oscillations were discerned for B rotating within the bc plane at B up to 45 T117. The bc 

plane is perpendicular to the easy axis of magnetization and has no FM component115, 137, 

suggesting a critical link of the SdH oscillations to the fully polarized FM state. The FM 

and the different projections of the tilt angles of the RuO6 octahedra onto the ac and bc 

planes136 are expected to affect the Fermi surface. 
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Fig. 4.38 (a) ρc for B rotating in the ac-plane with θ=0 and 90° corresponding to B||a and 

B||c, respectively; (b) Enlarged ρc for clarity. Note that ρc is in logarithmic scale in (a) 

and B changes from 11 to 45 T in both (a) and (b). 
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On the other hand, for 56° < θ = 90°, the oscillations disappear for B > BC but are 

present for B < BC, accompanying the much more conducting phase at high fields, as 

shown in Figs. 4.38 (a) and (b). The frequency of the oscillations seen for B < BC 

remains essentially unchanged with theta for 65° < θ < 90°. Since the dxy orbitals are 

believed to be responsible for the oscillations along B||c axis, the nearly constant 

frequency upon tilting of B suggests that the oscillations in the absence of the 

metamagnetism originate from a nearly spherical pocket of the same dxy orbitals. 

Conversely, the oscillations for 11° < θ < 56° and B > BC could be associated with a 

configuration of the FM state and ordered dzx and/or dyz orbitals. These orbitals offer only 

limited electron hopping (as confirmed by a larger ρc), and thus lower density of charge 

carriers and longer mean free path which in turn facilitates electrons to execute circular 

orbits117. 

Fig. 4.39 shows the amplitude of the SdH oscillations as a function of 1/B for 

several representative θ at T=0.4 K (Fig. 4.39 (a)) and 1.5 K (Fig. 4.39 (b)). The SdH 

signal is defined as Δρ/ρbg, where Δρ=(ρc- ρbg) and ρbg is the background resistivity. ρbg is 

obtained by fitting the actual ρc to a polynomial. The Fast Fourier Transformation (FFT) 

yields the same frequencies as those determined from Figs. 4.39 (a) and (b). 
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Fig. 4.39 The amplitude of the quantum oscillations as a function of inverse field, B-1 for 

various θ and for (a) T=0.4 and (b) 1.5 K. 
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The result from the FFT is shown as Fig. 4.40 for a representative ρc at T=1.5 K 

and θ=26°. Clearly, the oscillations are strong and slow, and their phase and frequency 

shift systematically with changing θ. The oscillations vanish for θ > 56°, suggesting that 

the extremal cross section responsible for the oscillations is highly susceptible to the 

orientation of B. SdH oscillations are usually rather weak in metals130; the remarkably 

strong oscillatory behavior for 11° < θ < 56° may arise from an extremal orbit with a flat 

dispersion perpendicular to the cross section, so that a large constructive interference can 

occur. It is also noted that the 1/cosθ-like behavior seen in Figs. 4.39 (a) and (b) may 

imply the cylindrical Fermi surface elongated along the c axis, which favors the two-

dimensional conductivity. With further increasing θ (=56°), the impact of B on the Fermi 

surface becomes even more dramatic and the closed orbit is no longer observed. The 

closed orbit is possibly replaced by open ones that do not contribute to oscillations. 

 
Fig. 4.40 Estimation of frequency of oscillations using FFT for a particular temperature 

and angle (1.5 K and 26o away from a axis) 

Fig. 4.41 illustrates the angular dependence of the SdH frequency for T=0.4 and 

1.5 K (left scale) and BC (right scale). The unusual feature is that the frequency is 

temperature dependent, increasing about 15% when T is raised from 0.4 to 1.5 K. The 

frequency for B > BC rapidly decreases with increasing θ and reaches about 45 T in the 

vicinity of θ=56°, whereas the frequency for B < BC stays essentially constant for θ > 56°. 

The oscillations become difficult to measure in the vicinity of BC. This is expected if BC 

is associated with the melting of OO. The frequencies for B > BC are significantly larger 
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than those for B < BC, suggesting the former oscillations either originate from different 

electron orbits or a restructured Fermi surface117. The angular dependence of BC, on the 

other hand, is rather weak for θ < 56° but becomes much stronger for θ > 56°. Note that 

ρc displays a weak plateau at high magnetic fields and θ approaching 90°, which 

disappears for the B||c axis because the FM state is no longer energetically favorable. 

Such an inverse correlation between the frequency and BC reinforces the point that the 

FM state reconstructs the Fermi surface and facilitates the oscillatory effect. It is evident 

that the vicinity of θ=56° or 52 < θ < 65° marks a crossover region between the FM-OO 

state and the orbital degenerate (OD) state as shown in Fig. 4.41. 

 
Fig. 4.41 The angular dependence of the frequency (solid circles for B > BC, and empty 

circle for B < BC) for T=0.4 K and 1.5 K and the metamagnetic transition BC (solid 

squares) (right scale). 

4.4.10 Oscillatory magnetoresistance periodic in B 

For B||(110), ρc also shows oscillations in the magnetoresistance as displayed in 

Fig. 4.42. The striking behavior is that these oscillations are periodic in B, instead of 1/B, 

with a period of ΔB=11 T and persistent up to 15 K. This highly unusual observation is 

corroborated by plotting the data both as a function of 1/B (Figs. 4.42 (a) and (b)) and B 
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(Figs. 4.42 (c) and (d)). The oscillations die off rapidly, if B slightly departs from the 

(110) direction (within ±5°). 

 
Fig. 4.42 (a) The amplitude of the quantum oscillations as a function of B for B||[110] 

and T=0.5 K and (b) for various temperatures up to 15 K. (c) The amplitude of the 

quantum oscillations as a function of inverse field B-1 for B||[110] and T=0.5 K and (d) 

for various temperatures up to 15 K. 
Oscillations in the magnetoresistivity periodic in 1/B (SdH effect) are a 

manifestation of the constructive interference of quantized extremal orbits of Fermi 

surface cross sections perpendicular to the field. Due to the Pauli principle the electrons 

are bound to follow the Fermi surface. The projection of the real space trajectory of a free 

electron onto a plane perpendicular to B reproduces the k-space trajectory rotated by π/2 

and scaled by a factor cħ/|e|B. Hence, trajectories with constructive interference in real 

space are expected to be periodic in B rather than 1/B. Oscillations in the 

magnetoresistivity periodic in B are realized in some mesoscopic systems and always 
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related to finite size effects. Examples are (i) the Aharanov-Bohm (AB) effect130, 138, 139, 

(ii) the Sondheimer effect130, 140 and (iii) the edge states in quantum dot141. Each of the 

cases shares a common feature in them: a geometrical confinement. The AB interference 

occurs when a magnetic flux threading a metallic loop changes the phase of the electrons 

generating oscillations in the magnetoresistance and is observed only in mesoscopic 

conductors, but not in bulk materials. The Sondheimer effect requires a thin metallic film 

with the wave function vanishing at the two surfaces. The thickness of the film has to be 

comparable with the mean free path. This gives rise to boundary scattering of the carriers 

that alters the free electron trajectories and the possibility of interference. Finally, the 

edge states require a quantum Hall environment with real space confinement141.  

Since the bulk material has no real space confinement for the orbits of the 

carriers, the most likely explanation for the periodicity as a function of B is a Fermi 

surface cross section that changes with field. The t2g orbitals have off-diagonal matrix 

elements with the orbital Zeeman Effect, and hence couple directly to the magnetic field. 

Consequently, the magnetic field could lead to a dramatic change of the Fermi surface if 

it points into a certain direction. Note that the pockets involved are very small and 

susceptible to external influences. If there is more than one conducting portion of the 

Fermi surface, occupied states can be transferred from one pocket to another with 

relatively small changes in the external parameters. This is also consistent with the 15% 

of change in the frequency when T is raised from 0.4 to 1.5 K117 shown in Fig. 4.41. 

Indeed, the amplitude of the oscillations follows the Lifshitz- Kosevich behavior 

expected for SdH oscillations (see Fig. 4.43). It is noted that the AB effect at finite T 

would show the same amplitude dependence142. What is still perplexing is that the cross 

section of the observed pocket is only 0.2% of the Brillouin zone, so the position of the 

Fermi energy is fixed at the non-quantized level of other Fermi surface branches. In such 

a situation, the density of states oscillates only against 1/B. In addition, if the origin of the 

oscillations periodic in B is ascribed to the Landau quantization, it is then perplexing as 

to why there are no SdH oscillations in the (110) direction, together with the oscillations 

periodic in B. 
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Fig. 4.43 The amplitude of the quantum oscillations for various temperatures up to 15 K. 

The observations of the magnetoresistance oscillations in Ca3Ru2O7 periodic both 

in B and 1/B reflect the crucial dependence of the quantized orbits on the orientation of 

B. The novel phenomena highlight the critical role of the orbital degrees of freedom 

embodied via the coupling of the t2g orbitals to the magnetic field. Not long ago, a 

theoretical study using the Hubbard model with Coulombic and phononic interactions 

predicts the existence of a ferromagnetic orbital ordered state and colossal 

magnetoresistance in the ruthenates143. The phase diagram generated in this study shows 

that the ferromagnetic orbital ordered state is stabilized when both the inter-orbital 

Coulomb interaction and the phonon self-trapping energy are sufficiently strong. The 

study also suggests a possible colossal magnetoresistive behavior due to a strong 

competition between ferromagnetic and antiferromagnetic states. The general agreement 

between the theoretical and experimental results further validates the crucial role of the 

orbital ordering in driving the complex phenomena. 

4.4.11 Non-linear conduction: 

The orbital ordered state might also be manifested by a possible density wave 

below TMI. A resistivity measurement performed by G Cao et.al.128 revealed a non-ohmic 

behavior above the threshold field, ET, which suggests sliding density wave transport144. 

The onset of the nonlinear conduction is also evidenced by the current-voltage (I-V) 

characteristic discussed in the reference128. An S-shaped nonlinear behavior is observed 

at B=0, but the rapidly increasing resistivity with decreasing temperature below TMI 

creates ambiguity due to possible self-heating. However, convincing discussions are 
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provided in the reference128 that the non-linear conduction is intrinsic and not due to self 

heating. Nevertheless, the formation of the density wave below TMI, although subject to a 

thorough investigation, would provide additional evidence for the existence of the orbital-

ordered state brought about by the highly anisotropic spin-lattice-orbital coupling. 

RP Guertin et.al.,118 have also reported a non-Ohmic d.c. current-voltage 

characteristics in Ca3Ru2O7, including negative differential resistivity (NDR) for all T < 

TMI = 48 K. A more common form of NDR is seen in “N” shaped characteristics, e.g. the 

Gunn Effect145 or the Esaki (Tunnel) diode146. A current induced promotion of the 

carriers from a high to low mobility band facilitates the NDR in such cases. The “S”-

NDR in Ca3Ru2O7 might be a result of polarons that gets localized for T < TMI. Given the 

low dimensionality of the bi-layered structure, a polaronic charge density wave (CDW) 

may begin to propagate above a critical current bias144 causing the S-NDR. The non-

Ohmic behavior shown in Fig. 2 of reference118 is a property associated exclusively with 

the AFM-I phase of Ca3Ru2O7, not the AFM-M phase. Not only is the effect quenched at 

zero field for T > TMI = 48 K (Fig. 2), but it is also quenched when a magnetic field of 

sufficient magnitude and orientation is applied above that needed to switch the system 

from the AFM-I phase to the field induced ferromagnetic metallic phase. 

4.4.12 Sensitivity of Ca3Ru2O7 to chemical doping: 

One of the critical characteristics of the bi-layered calcium ruthenate is its 

sensitivity to the oxygen content. Its ground state is very sensitive to the oxygen 

treatment as is evident from the temperature dependence of electrical resistivity for as 

grown and oxygenated samples in Fig. 4.44. The temperature dependence of the 

resistivity for the oxygen-rich Ca3Ru2O7 i.e. Ca3Ru2O7+δ shows a similar metallic nature 

as that of the as grown compound for temperatures higher than TN. But what is 

distinguished is the response of the resistivity at lower temperatures. The electrons 

pretend to follow the same trend as that of the Ca3Ru2O7 immediately after the AFM 

ordering (TN) to falter soon by choosing to show the opposite behavior for further lower 

temperatures. At T=30 K, the resistivity curve displays a down turn and indicates a brief 

metallic behavior in the temperature range 1.7 < T < 30 K. The metallic behavior can be 

readily induced by other impurity doping, such as La136, also confirming that the 

observed metallic behavior is an impurity induced one. Hence it will not be fair to claim 
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the observed metallic state at lower temperatures to be an intrinsic property of the 

stoichiometric Ca3Ru2O7 as reported in reference147. 

 
Fig. 4.44 Temperature dependence of a axis resistivity, ρa(T), for as grown (Ca3Ru2O7) 

and oxygenated (Ca3Ru2O7+δ) samples. 

Substituting iso-electronic Sr for Ca in Ca3Ru2O7 broadens the TN whereas the 

magnitude decreases slowly with Sr concentration. As x is increased in (Ca1-xSrx)3Ru2O7, 

the magnetization becomes almost isotropic in the ab plane suggesting that the RuO6 

octahedra are untilted as in pure Sr3Ru2O7. Moreover, the temperature dependence of 

resistivity shows a transition from metallic to non-metallic state in the temperature range 

48 < T < 56 K and washes out the AFM-M region, a unique feature of Ca3Ru2O7. The 

heat capacity measurements done on the single crystals of Sr substituted Ca3Ru2O7 shows 

the magnetic transition at TN, which is roughly mean field in shape148. However, the 

difference in specific heat at the transition is too large for an itinerant electron spin-wave 

picture and too small for associating the transition with the ordering of localized spins. 
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Very dilute doping of trivalent La136 (≤ 5%) for divalent Ca in Ca3Ru2O7 prompts 

rapid and simultaneous changes in both the magnetic and transport properties. The AFM-

M phase persists in (Ca1-xLax)3Ru2O7 up to x=0.04, which is followed by a fully metallic 

ground state. A large sudden drop in the magnetoresistivity up to 20 T defines a transition 

that is highly hysteretic and becomes irreversible at low temperatures and with La 

doping. Unlike Ca2RuO4, where ferromagnetism is instantly induced in the 

antiferromagnetic host by La doping149, Ca3Ru2O7 shows no ferromagnetic ordering 

when La doped, but readily becomes a ferromagnet in modest magnetic fields. The 

impact of La doping on Ca3Ru2O7 is much more drastic than that of Sr doping, implying 

the importance of the added electron from the La3+ ion. 

4.4.13 Impact of Cr substitution on Ca3Ru2O7: 

The doping studies on the Ca site of Ca3Ru2O7 revealed interesting results with 

band filling through La substitution showing more drastic impact than that of band width 

control by Sr doping. In this section, I will focus on the transport and thermodynamic 

studies of Ca3Ru2O7 with Cr substituted on the Ru site. The single-crystal x-ray 

diffraction data show that Ca3(Ru1-xCrx)2O7 (0 ≤ x ≤ 0.20) compositions are iso-structural 

with a modest variation of lattice parameters as given in Table 4.3. 

Table 4.3 Lattice parameters and unit cell volume tabulated for different x in Ca3(Ru1-

xCrx)2O7. 

S. 

No. 

Cr concentration 

x 

Lattice parameter 
Volume 

V (Å3) a (Å) b (Å) c (Å) 

1 0 5.3721 5.5302 19.572 581.46 

2 0.05 5.3617 5.5123 19.521 576.96 

3 0.17 5.3756 5.5090 19.5414 578.70 

4 0.20 5.3731 5.4834 19.510 574.81 
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The orthorhombic crystal symmetry is retained throughout the extent of the 

doping i.e. for Cr concentration upto x=0.20. The unit cell volume, V, decreases by 

around 1.2 % from x=0 to x=0.20, which is similar to the difference in V observed for 

(Ca, Sr)Ru1-xCrxO3 (0 < x < 0.36). The systematic decrease in the lattice parameters 

might suggest a presence of Cr4+ ions in the compound. 

The compounds’ response to applied magnetic field is displayed in Fig. 4.44, 

which shows the magnetization, M, of Ca3(Ru1-xCrx)2O7 as a function of temperature T. 

The system’s magnetic anisotropy, one of the highlighting characteristics of the pure 

compound, is retained up to x=0.20 as demonstrated in the magnetization along a axis 

(Ma) (Fig. 4.45 (a)) and in that along b axis (Mb) (Fig. 4.45 (b)) at B = 0.5 T for all x. 

The noticeable feature in the figure is the lowering of TMI and the rapidly raising TN with 

Cr substitution while keeping the temperature dependence M (T) similar to that for x = 0. 

This is particularly true for Ma where TMI and TN are separated by the AFM-M state that 

extends over an interval of 70 K (TMI = 23 K and TN = 93 K for x = 0.20) (Fig. 4.45 (a)). 

It is very significant that the AFM-M region is broadened from 8 K for x=0 to 70 K for 

x=0.20150. The temperature dependence of Mb deviates from the classical 

antiferromagnetic behavior of Ca3Ru2O7 and shows an upturn at TMI for x > 0 (Fig. 4.45 

(b)). But the trend of increasing TN with x observed in Ma is exhibited in Mb too. In the 

M (T), Ma > Mb between TMI and TN, and hence the magnetic easy axis is along a-axis for 

T < TMI, same as the pure sample83, 116, which realigns along the b-axis in the AFM-M 

state. 
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Fig. 4.45 Magnetization, M, as a function of temperature, T, for (a) a axis, Ma, and (b) b 

axis, Mb, at B = 0.5 T for all x. 
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Fig. 4.46 The magnetic isotherms for (a) a (Ma) and (b) b (Mb) axes at T=2 K for all x. 
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Shown in Fig. 4.46 are the magnetic isotherms along different directions viz. Ma 

(Fig. 4.46 (a)) and Mb (Fig. 4.46 (b)) at T=2 K for different x in Ca3(Ru1-xCrx)2O7. Ma(B) 

shows a metamagnetic transition for x=0 at BC=6 T, as explained earlier, with a saturated 

moment 1.73 μB/Ru reflecting an 85% spin polarization of the S=1 system. For x > 0, the 

jump in magnetization survives but with a reduction in the ordered moment. As x is 

increased from 0 to 0.20, the spin polarization at B=7 T is reduced from 85% to 30% 

correspondingly. The change in saturation moment, MS, for an increase in x is listed in 

Table 4.5 for different x. Fig. 4.46 (b) shows the b axis isothermal magnetization, Mb(B) 

at T=2 K for different x. The magnetization for x=0 is linear in B confirming the 

antiferromagnetic ground state of the pure compound. But when x is increased, the 

system deviates from the linear field dependence and shows signs of spin polarization at 

substantial magnetic fields. The magnetic moment increases from less than 0.03 μB/ion 

(~0.05 μB/f.u.) to 0.55 μB/ion (~1.1 μB/f.u.) for 0 ≤ x ≤ 0.20 at B=7 T which is around 

30% spin polarization of a spin 1 system. Note that the moment at B||b=7 T for x=0.20 is 

close to that at B||a=7 T, which might suggest that the magnetic easy axis is rotated away 

from a axis with an increase in x. 

Table 4.4 Ordering temperatures (TMI and TN), Curie-Weiss fit parameters (θCW, χ0 and 

μeff) and saturation moment (MS) along a axis for Ca3(Ru1-xCrx)2O7 (0 < x < 0.20). 

S. No. 

Cr 

concentration 

x 

Ordering 

temperature 

(K) 

Curie-Weiss 

temperature 

θCW (K) 

Temperature 

independent 

susceptibility 

χ0 (x10-3 

emu/mole) 

Magnetic 

moment 

(µB/ion) 

TMI TN µeff MS 

1 0 48 56 +72 1.313 2.86 1.73 

2 0.05 46 72 +79 1.941 2.74 1.59 

3 0.17 42 86 +101 1.682 2.45 0.98 

4 0.20 23 93 +99 2.057 2.68 0.58 

Note that TMI decreases whereas TN increases with x hence broadening the AFM region 

that lies between them. 
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The anisotropy in magnetic properties is extended to the high temperature 

paramagnetic phase too as in the pure Ca3Ru2O7. However, the paramagnetic state for all 

the orientations follow the Curie-Weiss law,
)(0

CWT
C
θ

χχ
−

+=  (equation 4-1), 

throughout the doping range. The magnetic data, when B||a axis, in the temperature range 

200 < T < 350 K is fitted to the Curie-Weiss law and the different fit parameters are 

tabulated in Table 4.4. Temperature independent susceptibilities for all x, including x=0, 

fall in the range of m emu/mole and hence an enhanced density of states near the Fermi 

level is expected. As x increases, χ0 shows a small increase in the value and the 

increasing χ0 suggests a further enhancement in N(EF). The estimated Curie-Weiss 

temperatures are all positive as in the pure compound and increase further with x. The 

positive θCW and the antiferromagnetic ordering affirm an antiferromagnetic stacking of 

ferromagnetic layers along the c axis112 in these compounds. The effective moment, μeff, 

estimated for Ca3(Ru1-xCrx)2O7 decreases from 2.86 μB/magnetic ion for x=0 to 2.45 

μB/magnetic ion for x=0.17150. Even though μeff show a decrease with x, the values are 

comparable to that of an S=1 spin expected for a system containing Ru4+ and Cr4+ ions. 

The fit parameters along other directions also follow similar trend and hence not shown 

here. The change in TN and TMI with Cr concentration when b is applied parallel to a axis 

(observed in Fig. 4.45) is also tabulated in Table 4.4. The TMI decreases with x whereas 

TN shows the opposite trend and hence the region between those transition temperatures 

(i.e. the AFM-M region) is significantly broadened as a result of Cr doping on Ca3Ru2O7. 

For instance, the AFM-M regime for x=0.20 exhibits a window as broad as 70 K. 
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Fig. 4.47 (a) Temperature dependence of specific heat, C, expressed as C/T vs. T at B=0 

T for x=0, 0.17 and 0.20. (b) Zoomed portion of C/T vs. T for x=0.17 and 0.20 to show 

the broadened AFM-M state. 
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Fig. 4.47 (a) shows the temperature dependence of specific heat (C/T vs. T) of 

Ca3(Ru1-xCrx)2O7 (x=0, 0.17 and 0.20) at B=0 T for 1.8 < T < 110 K. For x=0, the 

ordering temperatures are 48 K and 56 K corresponding to the metal insulator transition 

(TMI) and the antiferromagnetic transition (TN) respectively. As x increases, the AFM-M 

state lying between TMI and TN broadens as shown in Fig. 4.47 (b) and as explained in 

the last paragraph. Low temperature specific heat data was fitted to the relation,  

C=γT + βT3       (4-5) 

to estimate the electronic contribution, γ, and the phononic contribution, β, to the specific 

heat. The y intercept in C/T vs. T2 graph (not shown here) reveals 37 mJ/mol. K2 as the γ 

for x=083. The estimated γ for x > 0 are 30.9 and 38.4 mJ/mol. K2 for x=0.17 and 0.20 

respectively, which are comparable to that of the pure compound suggesting a similar 

strength of electron correlation in the Cr substituted compounds. The slope of the C/T vs. 

T2 graph (also not shown here) gives an estimated value for β. The estimated values 

suggest that the lattice contribution to the specific heat increases with the Cr 

concentration. The fit parameters are listed in Table 4.5. 

Table 4.5 Electron and phonon contributions to the specific heat of Ca3(Ru1-xCrx)2O7 at 

B=0. 

S. No. 
Cr concentration 

x 

Electronic 

contribution 

γ (mJ/mol. K2) 

Phonon contribution 

β (x10-4 mJ/mol. K3) TD (K) 

1 0 37.0 1.27 450 

2 0.17 30.9 3.00 338 

3 0.20 38.4 3.06 336 

 

Fig. 4.48 documents the change of TN and TMI with Cr concentration (tabulated in 

Table 4.4) and three magnetic/orbital phases separated by estimated transition lines. The 

decrease in TMI signals a delocalization effect due to Cr doping, implying that the Cr 

valence is more likely to be Cr4+ (3d2) rather than Cr3+ (3d3), in which the three half-filled 

t2g orbitals are relatively stable against delocalization. The increase in TN marks an 
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enhanced exchange coupling between the nearest neighboring spins. This is also 

manifested in SrRu1-xCrxO3 and CaRu1-xCrxO3 where the FM state is strongly enhanced95, 

96, 151 or generated108 respectively. 

 
Fig. 4.48 The x dependence of TN and TMI for Ca3(Ru1-xCrx)2O7 (0 < x < 0.20). 

The “S”-NDR observed in pure Ca3Ru2O7 is restricted solely to the insulating 

antiferromagnetic region and is absent in the metallic antiferromagnetic region, 48 < T < 

56 K, or the paramagnetic metallic phase, T > 56 K. This suggests that the unusual 

secondary conduction mechanism responsible for the non-Ohmic behavior is associated 

more closely with the electron transport than with the magnetic order in Ca3Ru2O7. This 

is true as magnetic ordering is a necessary but not sufficient condition for the appearance 

of S-NDR in the heavy transition metal oxides83. This non-linear I-V characteristic is 

retained in Ca3(Ru1-xCrx)2O7 (0 < x < 0.20) for the AFM-I state. Fig. 4.48 shows the I-V 

characteristics of Ca3(Ru1-xCrx)2O7 with x=0.05, 0.17 and 0.20. For x=0.05, the non-

Ohmic behavior exists up to T=45 K that marks an onset of antiferromagnetic metallic 

state (TMI=46 K). For T > 45 K, the non Ohmic behavior disappears to give an Ohmic 

response thereafter (see Fig. 4.49 (a)). Fig. 4.49 (b) shows the I-V characteristics of 17% 

Cr substituted Ca3Ru2O7. As seen from the figure, the non-linear conduction for x=0.17 
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too is restricted to the AFM-I state as for the lower concentrations of Cr and the linearity 

in I-V shows up for T > 40 K i.e. in the proximity of the TMI. However, the steepness of 

the S-NDR changes significantly with x as the curve exhibits a more rounded structure 

for higher x. For temperatures above TMI the compound shows the normal linear 

characteristics (not shown here) expected for a metal. The wiggling seen right after the 

NDR is repeatable and might be a sign of system’s response to the critical current. For 

x=0.20, the curve shows less nonlinear behavior. The non linearity could have been 

spotted easily if the data were taken at much lower temperatures than 10 K, where the 

AFM-I state is prominent. But the thermal fluctuations that arise as a result of self heating 

are so high for these crystals that controlling T at temperatures lower than 10 K is 

extremely challenging. It is clear that the non-linear I-V characteristic is restricted to the 

AFM-I or the AFM-OO state in Ca3(Ru1-xCrx)2O7 too. 

 
Fig. 4.49 I-V characteristics at B=0 T for (a) x=0.05, (b) x=0.17 and (c) x=0.20 for 

different temperatures. 
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Fig. 4.50 x dependence of (a) critical current (IC) and (b) threshold voltage (VT) for 

different temperatures viz. T= 20, 30, 40 and 60 K at B=0. 

The Figs. 4.50 (a) and (b) shows the Cr concentration dependence of critical 

current, IC and threshold voltage, VT for different temperatures at B=0 respectively. As 

seen from Fig. 4.49, the critical current is the maximum for the lowest possible 

temperature and keeps dropping as the temperature is raised further. For sufficiently 

higher temperatures i.e. T > TMI, it is pushed to zero and the S bend is not a characteristic 

of the I-V curve anymore. The critical current also decreases with x for a selected 

temperature and both the trends are depicted clearly in Fig. 4.50. The IC at T=20 K, for 

instance, is 70 mA for x=0 and decreases to 0 for x=0.20 through 35 mA and 15 mA for 
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x=0.05 and 0.17 respectively. This might suggest a drop in the critical carrier drift 

velocity (vd) or carrier concentration (n) or a combination of both as temperature and/or 

Cr content is increased. Similarly the threshold voltage also decreases with the Cr 

concentration and temperature. 

This nonlinear response hardly has any magnetic field dependence. Even for B=7 

T, where the system shows a strong spin polarization along the easy axis, there is no 

alterations observed to the non-ohmic behavior (hence the data is not shown here). This 

confirms the statement that the conduction mechanism responsible for this nonlinear 

behavior is more electron transport driven than it is magnetic state dependent. 

Let us focus our attention to the thermodynamics of a representative composition, 

x = 0.17, that shows significant changes in the physical behavior yet preserving the basic 

characteristics of the pure compound concurrently. Shown in Fig. 4.51 is Ma and Mb at B 

= 0.5 T as a function of T for x = 0.17, for which TMI = 42 K and TN = 86 K. As seen in 

the pure compound, the transitions enclose the AFM-M region with the only change 

being a further extension induced as a result of Cr inclusion. The AFM-M window is now 

enhanced to 44 K in size for 17% Cr substituted compound150. Also illustrated in the 

figure (right scale) is the temperature dependence of specific heat C divided by T, C/T, at 

B = 0. Two anomalies in C/T that are mean-field like confirm the 2nd order phase 

transitions at TMI and TN.  The transition anomaly at TMI is sharper with an approximate 

jump ΔC ~ 0.31 R (the gas constant R = 8.314 J/mole K); and the other near T = 83 K 

(slightly lower than TN = 86 K) is broader with a smaller ΔC ~ 0.28 R150.  

A fit of the low-T data to C = γT + βT3   for 1.7 < T < 30 K yields γ ~ 31 mJ/mol 

K and β ~ 3.0×10-4 mJ/mol K3 that are the coefficients of the electronic and phonon 

contributions to C, respectively. The measured transition entropy (ΔS) is approximately 

0.037 R, clearly much smaller than 2Rln3 (or 2Rln4), which is expected for complete 

ordering of localized S = 1 (or S=3/2) spins. On the other hand, AFM ordering among 

itinerant spins, e.g., as in a spin-density wave (SDW), should produce ΔS ~ ΔγTN. 

Formation of a SDW is also consistent with the mean-field-like step in C, for which ΔC ~ 

(1.43) ΔγΤΝ, which yields Δγ /R ~ 0.0024 K-1. This value, much larger than expected, 

suggests that the anomaly at TN is inconsistent with both conventional itinerant and 

localized pictures of AFM ordering as also observed in (Ca1-xSrx)3Ru2O7
148 and thus 
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indicates a more complex spin ordering. Correspondingly, if the transition at TMI is due to 

formation of a charge density wave, then the expected entropy change ΔS ~ ΔγTMI yields 

Δγ/R ~ 8.8×10-4 K-1. 

 
Fig. 4.51 The temperature dependence of magnetization M for x = 0.17 for both a axis 

(Ma) and b axis (Mb) at B = 0.5 T (left scale). Right scale: C/T for x = 0.17 as a function 

of T. 
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Fig. 4.52 The temperature dependence of magnetization M for x = 0.17 (a) for a-axis 

(Ma) and (b) b-axis (Mb) for various magnetic inductions B up to 7 T. 
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The magnetization behaves extraordinarily with temperature, as shown in Figs. 

4.52 (a) and (b), where Ma and Mb vs. T are plotted at various fields for x = 0.17. For 

B||a-axis, the anomalies for both TMI and TN shift only slightly downward with increasing 

B and eventually become rounded off at higher fields. For instance, TN decreases at a rate 

of ΔTN/ΔB = -1.4 K/T, which is a nominal rate at which TN would decrease for a classical 

antiferromagnet. For B > 6 T, the magnetic state is driven into a FM state similar to the 

behavior of un-doped samples (x = 0). However, for B||b-axis, TN is readily suppressed at 

an astonishing rate of ΔTN/ΔB = -7.5 K/T150. Furthermore, there is an upturn in Mb 

observed below TMI that appears to result from a slight spin canting in the AFM state. 

The fact that TMI initially increases with B and the transition becomes indistinct for B > 

3.5 T suggests that some type of spin canting develops with increasing B. 

The observed significant difference in the decrease of the compound’s Neel 

temperature with field applied along different axes is recorded in Table 4.6. For instance, 

with an applied field of 0.5 T, the TN stays at 86 K for both the directions. To drop the TN 

to 76 K a field upto 7 T has to be applied along a axis, whereas this drop in TN is 

achieved with a much smaller field, say, 2 T along b axis. This suggests that the magnetic 

lattice is softened along b axis than along a axis. The soft nature of the Cr included Ru 

magnetic lattice along this direction might indicate a subtle difference in the coercivities 

of Cr and Ru sub-lattices in this direction. This unique spin set up in the compound opens 

up a door or two for the existence of a spin-valve behavior that is explained later. 

Table 4.6 ΔTN/ΔB for x=0.17 when B||a axis and B||b axis. 

S. No. Applied field B (T) 
Neel Temperature TN (K) 

When B||a axis When B||b axis

1 0.5 86 86 

2 2.0 85 78 

3 3.0 - 66 

4 3.5 - 52 

5 3.7 - 48 

6 4.0 83 46 

7 7.0 76 36 



 156

 
Fig. 4.53 C/T vs. T for x=0.17 (a) when B=0 and 9 T along ab plane and c axis (b) when 

B=0, 3, 3.5, 4 and 9 T along ab plane. 
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The unusual magnetic properties observed in the compound are supplemented by 

the specific heat measurements done on it. The temperature dependence of C/T for B=0 

and 9 T applied along c axis and ab plane is shown in Fig. 4.53 (a). For B||c = 9 T, TN 

changes from 83 K to 78 K, which is less than but close to the drop in TN observed in the 

magnetization along a axis. A similar drop in TMI is observed too, which preserves the 

extent of the AFM-M state as seen in the magnetic and transport properties measured in 

lower fields. However, the drop in the antiferromagnetic ordering temperature for B||ab is 

of more significance. TN drops to as low as 47 K at B=9 T reflecting the soft nature of the 

magnetic lattice involving a selected concentration of Cr ions. But this drop is less than 

that would have been observed in the magnetization along b axis for this applied field: 

the reason being the oblique B that is not exactly parallel to b axis here. The field 

dependence of TMI is opposite to that of TN as seen from Fig. 4.53 (b) that shows the 

temperature dependence of the specific heat for various magnitude of B applied along ab 

plane. As B is incremented along this direction, TN continues to decrease whereas TMI 

chooses to increase upto B=4 T. This leads to a scenario where the AFM-M state shrinks 

as field increases upto B=4 T as observed in the magnetization measurements where a 

canting of spins characterizes the crystal’s b direction. Also it is noted that the magnetic 

ordering becomes sharper as field increases whereas the TMI becomes rounded under 

similar field changes. 

Another unusual behavior of the compound, although a characteristic of few 

species of the ruthenate and iridate families, is the anomalous low temperature behavior 

of C with applied field. Fig. 4.54 shows the low temperature part i.e. 1.7 < T < 9 K, of the 

temperature dependence shown in Fig. 4.53 (a). What is unusual about the graph is that 

the specific heat increases with B at lower temperatures where a drop in entropy is 

expected (conventional wisdom). However, the gamma is comparable. This merits further 

investigation. 
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Fig. 4.54 C/T vs. T2 for x=0.17 when B=0 and 9 T along ab plane and c axis in the 

temperature range 1.8 ≤ T ≤ 9 K. 

The resistivity measurements on the compound in the presence of magnetic fields 

applied along different directions mimics the characteristics of a half metal. Fig. 4.55 

presents the temperature dependence of the resistivity ρ of x = 0.17 for B||a-axis and B||b-

axis. The data covers the temperature range 1.7 ≤ T ≤ 120 K for c axis resistivity (ρc) with 

B=0 and 7 T (Fig. 4.55 (a)) and for ab plane resistivity (ρab) with B=0 and 12 T (Fig. 4.55 

(b)). An intriguing feature here is that both ρc and ρab at B = 0 sharply drop at and below 

TN = 86 K despite the largely reduced Fermi surface at TN indicated by the reduction of γ. 



 159

 
Fig. 4.55 Temperature dependence of (a) ρc for B||a-axis, ||b-axis and ||c-axis for B = 0 

and 7 T. (b) ρab for B||a-axis and B||b-axis at B = 0 and 12 T, for x=0.17. 

This behavior is surprisingly different from that of other AFM-M systems such as 

Cr152, where the onset of TN accompanies a rise in resistivity, implying a critical role of 
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the spin degree of freedom in the AFM-M state. In fact, the conductivity of the AFM-M 

state is so strongly spin-dependent that it is extremely anisotropic: For B||a-axis, the AFM 

state becomes semiconducting with increasing B; and both ρc and ρab increase 

significantly when B > 5 T, where a field-induced FM state emerges150. Itinerant 

electrons are evidently not favored in the field-induced FM state, similar to the behavior 

at x = 0116. Conversely, for B||b-axis, both ρc and ρab decrease as B rises but do not 

exhibit a quadratic (Fermi liquid) temperature dependence in the AFM-M state. Clearly, 

the system in the range of TMI < T < TN stays AFM metallic for B||b-axis, but at the same 

time becomes FM and semiconducting for B||a-axis. All these phenomena bear a striking 

resemblance to the behavior predicated for half-metallic systems153. 

The coupling between the electrons’ conduction and spin is clearly depicted in 

Fig. 4.56. The figure shows the temperature dependence of ρc with a range of magnetic 

field applied along a and b axis. For B||a axis (Fig. 4.56 (a)) the TMI increases linearly 

with B ultimately destroying the AFM-M state to become more semiconducting when the 

system shows a sizeable spin polarization. It is intriguing to know that for B||b axis, with 

the applied magnetic field the TMI increases upto a critical field of B=3.5 T and then 

decreases to lower temperatures to show a more metallic behavior at higher fields. As one 

would recall, the magnetic lattice tends to be softer along the crystal’s b axis than that 

along a axis and there is a tendency for the spins to show canting along b axis. As we 

look closer, the valley like feature in the temperature dependence of magnetization that 

develops along this direction disappears at this critical field suggesting a close coupling 

between the conduction mechanism and the electron spin. More detailed investigation on 

this behavior with magnetic field scanned at different temperatures will be presented in 

the following sections. 
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Fig. 4.56 Temperature dependence of the c-axis resistivity, ρc, for x = 0.17 for (a) B||a-

axis and (b) B||b-axis for various magnetic inductions up to 7 T. 
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Fig. 4.57 Electronic contribution to the specific heat, γ, vs. B when B||ab (left scale) and 

metal-insulator transition temperature, TMI vs. B when B||b (right scale) for x=0.17. Note: 

TMI for B=9 T is obtained from specific heat measurements done with B||ab. 

The critical nature of the magnetic field is persuaded further in Fig 4.57 which 

shows the field dependence of TMI when B||b (right scale) and gamma, the electronic 

contribution to the specific heat when B||ab (left scale). γ, the coefficient of T2 in the 

relation C=γT2 + βT3, decreases with the magnetic field along this direction as shown in 

the figure. For zero magnetic field, the value sits at 31 mJ/mol.K2, which is comparable 

to the electronic contribution for the pure compound as reported in reference95, 148 and as 

described earlier in this thesis suggesting a similar electronic distribution in the Cr doped 

crystals lattice too. As the magnetic field is increased, a small decrease in gamma with 

magnetic field happens until B reaches 3.5 T corresponding to an inhibited electron 

correlation or a less metallic behavior. For B > 3.5 T, there is an enhancement in the 

electron’s contribution to specific heat where gamma increases from 29 to 37 mJ/mol.K2 

at B=9 T clearly mirroring the enhanced electron mobility with applied field in the 

system. A portrait of the electrons’ dramatic behavior was demonstrated by the field 

dependence of TMI too. For increasing B upto 3.5 T, the less metallic nature of the 
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compound is shown by the increasing TMI. Once B reaches the critical value of 3.5 T, the 

TMI decreases and the system reaches a more metallic state as complimented by the 

increased gamma for higher B upto 9 T in this direction. 

 
Fig. 4.58 Field dependence of M for (a) Ma and (b) Mb and field dependence of the 

magnetoresistivity ratio defined as [ρc(B)-ρc(0)]/ρc(0) for (c) B||a-axis and (d) B||b-axis 

for 2 ≤ T ≤ 85 K. 

From the above paragraphs it is clear that the material behaves anomalously in a 

selected range of B and T and a deeper investigation is required to disclose the 

complexity. To gain adequate knowledge on the prevailing issue, a series of isothermal 

measurements was performed on the magnetic and transport properties of 

Ca3(Ru0.83Cr0.17)2O7. Fig. 4.58 shows the field dependence of M and the 

magnetoresistivity ratio defined as [ρc(B)-ρc(0)]/ρc(0) for B||a-axis and B||b-axis and 2 ≤ 

T ≤ 85 K. For B||a-axis and T ≤ 30 K, a metamagneitc transition is observed with 

hysteresis similar to that for x = 0 but with a smaller ordered moment Ms and at a lower 
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critical field BC (= 5 T) (Fig. 4.58 (a)). The metamagnetic transition weakens as T rises 

and disappears for T > 30 K150. For B||b-axis, M has linear field dependence with no 

metamagnetic transition until T > 30 K, and maximizes in the range of 35 < T < 45 K via 

two transitions, converging to Ms ~3 μB/f.u at 7 T, which is slightly smaller than that for 

B||a-axis (Figs. 4.58 (a) and (b)). This process is reversed for B||b-axis, implying the 

magnetic easy axis rotates from the a-axis to the b-axis. Although at T ≤ 30 the 

extrapolated Ms for B||b-axis is notably smaller than that for B||a-axis, [ρc(7T)-

ρc(0)]/ρc(0) for B||b-axis is greater in magnitude than that for B||a-axis.  Such an inverse 

relation between magnetization and transport anisotropy confirms the existence of a new 

magnetoresistance mechanism governed by orbital ordering116, compared to all other 

magnetoresistive materials that are driven primarily by spin polarization. 

For T > 30 K, ρc(B) for B||a-axis generally rises as B increases, with [ρc(7T)-

ρc(0)]/ρc(0) reaching more than 20%. Moreover, ρc(B) for B||b-axis peaks at a critical 

field BC2 before declining. This phenomenon is particularly fascinating as BC2 represents 

an onset of spin polarization, thus a reduction of spin scattering should be anticipated, as 

observed (and discussed earlier) for composition x = 0 (when B||b-axis) and other related 

materials. This behavior occurs in the range of 35 < T < 65 K but becomes most 

pronounced in the range of 35 < T < 50 K150.  Fig. 4.59 elaborates the field dependence 

of both [ρc(B)-ρc(0)]/ρc(0) and M(B) for a few representative temperatures in this range 

viz. 40 K, 43 K and 47 K. At T=40 K, the magnetization shows a little bent at BC2 before 

partially saturating above BC1. The window enclosing BC2 and BC1 is approximately 1.5 T 

in width and it decreases to less than 1 T for T=43 K before becoming negligible at 

higher temperatures viz. 47 K. The magnetoresistivity for these temperatures modify 

accordingly showing a broader to steeper transition as T is increased upto 47 K as shown 

in the figure. 
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Fig. 4.59 The field dependence of [ρc(B)-ρc(0)]/ρc(0) and M (right scale) for B||b-axis at 

(a) T = 40 K, (b) 43 K and (c) 47 K. 
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Another intriguing feature of these graphs is that for B > BC1, at T=47 K for 

instance, the resistivity is higher than that for B < BC1
150. Our conventional wisdom 

would direct us to believe a less resistive character of electrons in the state where the 

spins are polarized than the ground state when the spin scattering is evidently more 

pronounced. 

These anomalous magnetic and transport properties are unique to the optimal Cr 

doped bi-layered calcium ruthenate compound. The behavior of the Cr-doped layered 

structure can be associated with a spin-valve scenario, as sketched in Fig. 4.60. To 

understand the spin configuration of the compound it is useful to recall the spin structure 

in the pure compound here. The magnetic state for x=0 consists of ferromagnetic bi-

layers stacked antiferromagnetically with the inter-bilayer coupling far weaker than the 

magnetic interaction within a bi-layer. Cr substitution results in a Ru-O layer being 

replaced by a Cr-O layer in some bi-layers; for x=0.17, the replacement is likely to occur 

on average in every 2 or 3 bi-layers. Although it is difficult to observe the extremely 

weak super-lattice peaks expected in single crystal x-ray diffraction, the strong anomalies 

seen in C suggest that the Cr substation is not entirely random.  The presence of the Cr-O 

layer causes a spin canting at low fields and temperatures, which gives rise to the upturn 

in Mb at TMI (Fig. 4.52 (b)). The magnetization of each Ru-O layer in a un-substituted bi-

layer, or hard magnetic bi-layer, is pinned due to the strong exchange coupling within the 

bi-layer, whereas the magnetization of a Cr-O layer in a substituted bi-layer, or soft 

magnetic bi-layer, is freer to rotate with B because of the interrupted or weakened 

exchange coupling and/or different coercivities of the Cr-O and Ru-O layers150. Anti-

parallel alignment in the soft magnetic bi-layer is achieved when the spin in the Cr-O 

layer switches at B=BC2.  
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Fig. 4.60 Spin configuration in Ca3(Ru1-xCrx)2O7, x=0.17 for (a) B < BC2, (b) BC2 < B < 

BC1 and (c) B > BC1. Note that the double-line arrow indicates spin in the Cr-O layer. 

This spin switching enhances the overall magnetization observed at BC2 but, at the 

same time, changes the density of states for the up-spin and down-spin electrons at Fermi 

surface, significantly increasing probability of scattering of both the up-spin and down 

spin electrons within each Cr-O and Ru-O layer in the soft magnetic bi-layer having the 

anti-parallel alignment; thus a sharply increased resistivity manifested by the pronounced 

peak in [ρc(B)-ρc(0)]/ρc(0) (Figs. 4.58 and 4.59)150. As B further rises, the remaining anti-

parallel spins of Ru-O layers in both the soft and hard bi-layers also switch, finally 

completing the spin alignment at B=BC1. Since conduction occurs in parallel for the two 

spin channels and scattering is now zero for the up-spin electrons and finite for down-

spin electrons. Consequently, total spin scattering is drastically reduced, leading to a 

rapid drop in ρc by as much as 40%, which is much larger than that seen in thin film 

multi-layers131. While BC1 decreases with T, BC2 increases slightly with T and disappears 

at T > 45 K (Fig. 4.59 (c)). This may be due to a reduction in the difference in soft and 

hard layer coercivities that become insignificant compared to the applied field at higher 

temperatures; as a result, switching may occur almost simultaneously for both the Cr-O 

and Ru-O layer, resulting in one sharp transition at BC1, which persists up to 70 K. 
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Fig. 4.61 T-B diagram that represents different spin configurations in 

Ca3(Ru0.83Cr0.17)2O7. 

Fig. 4.61 shows a conclusive B-T phase diagram based on the discussions 

presented in the above paragraphs for B||b-axis. It is revealing that all transitions, TN, 

TMI, BC1 and BC2, meet at a tetra-critical point at B=3.8 T and T=45 K. It is in the vicinity 

of this point that the prominent spin-valve behavior exists. 
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Chapter Five 

Conclusions and Recommendations 

5.1 Conclusions: 

In the RP series of ruthenium oxides, both the magnetic and the transport 

properties strongly depend on the relative orientation of the corner-shared RuO6 

octahedral, which is the building block of every compound. This structure dependence of 

physical properties persuades a strong coupling of lattice, charge, orbital and spin degrees 

of freedom in these compounds in general. In the present study, I have concentrated on 

the thermodynamics and transport properties of the calcium members of the RP 

ruthenates i.e. Ca3nRunO3n+1, where n is the number of RuO6 layers in a unit cell. Earlier 

investigations11, 82, 83, 84 on the series reveal an evolution of physical properties as the 

number of RuO6 layers or the dimension of the compounds is altered. However, my 

attention in the present work was focused more on the perovskite (n=∞) and the bi-

layered (n=2) calcium ruthenates, which provide a wealth of information on both 

conventional and unconventional physics. Being part of the Ca compounds of the RP 

series, these compounds are prone to more crystal distortions, courtesy, relatively smaller 

Ca2+ ionic size. Both the ruthenates showed a variety of physical phenomena including 

intriguing borderline properties in one way or the other, with the crystal structure 

distortions playing a significant role. It is clear that the systems’ ground state is unstable 

and is very sensitive to external perturbations viz. applied magnetic field, chemical 

doping etc. Hence a perturbative approach, chemical doping in particular, in these 

strongly correlated electron compounds prospered high yields and formed the keynote of 

this thesis. 

5.1.1 Perovskite ruthenates: 

Despite being the most extensively studied members of the RP series, the 

perovskite ruthenates still have a large territory to be conquered. SrRuO3, possessing a 

crystal symmetry close to an ideal perovskite, lives up to the expectations of the band 

structure calculations by being an itinerant ferromagnet with TC=165 K84. The reduced 

saturation moment (MS=1.1 µB/Ru) witnesses the itinerancy nature of the ordered spins. 

The itinerant electrons follow Fermi liquid theory at low temperatures as explained in 

section 4.3.1. However, the anomalous temperature dependence of resistivity at higher 
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temperatures pushes this system more towards the ‘bad’ metal category. The 

experimental results along with the theoretical predictions, point to a strong self doping 

by O 2p electrons to be behind the occurrence of an itinerant ferromagnetism in the 

compound. External perturbations like magnetic field and chemical doping are very 

effective in a more detailed understanding of the ground state, as the physical properties 

depend on the relative orientation of the corner shared RuO6 octahedra. The chemical 

substitution studies in the compound so far had suppressed the ferromagnetic component 

and followed it up with a metal insulator transition. For instance, a thermodynamic and 

transport study on SrRu1-xMnxO3
94 crystals revealed that a ferromagnetic to 

antiferromagnetic state evolves, which is accompanied with a Mott transition leading up 

to a possible QCP at a critical Mn concentration. Whereas the Cr substitution study on 

SrRuO3
108, which is the main theme of the current study portraits a completely different 

picture. The ferromagnetism in the parent compound is unusually enhanced in SrRu1-

xCrxO3 by raising the TC from 165 K to 290 K for 0 < x < 0.30. Unlike other 3d impurity 

doping, which reduce the TC, the Ru 4d electrons and the Cr 3d electrons are strikingly 

synergistic, leading to a highly enhanced exchange interaction and/or narrowed 

bandwidth favorable for ferromagnetism. NMR studies96 indicate that Cr is in Cr3+ state 

and Ru is in a mixed valence state (Ru4+ and Ru5+). A broadened Ru t2g band and a 

possible Ru4+(d4)–O2-–Ru5+(d3) as well as Ru4+(d4)–O2-–Cr3+(d3) double-exchange 

interaction are hence viable. This exchange interaction involves the Cr3+ in the 

ferromagnetic ordering and enhances the ordering temperature. 

On the other hand, CaRuO3 has a more distorted structure compared to that of 

SrRuO3. The RuO6 octahedra are rotated and tilted by an angle, making the interaction 

between electrons in the two Ru ions to be different than it were in its Sr counterpart. As 

a result, the band is narrow and induces a paramagnetic ground state with no long range 

ordering observed down to 30 mK98. In the meanwhile, the band is not narrow enough to 

localize the electrons and therefore the compound behaves as an itinerant electron 

system, but still not itinerant up to the level of Fermi liquid. This break down of Fermi 

liquid theory may suggest a magnetic instability that might occur at T=0 K. The 

intermediate bandwidth range in CaRuO3 hence makes it more vulnerable to external 

perturbations viz. chemical substitution. It appears to be a common occurrence that with 
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only a slight impurity doping, the paramagnetic CaRuO3 inevitably evolves into a 

magnetically ordered state. For instance, nonmagnetic ion substitutions in CaRuO3 bring 

out the spin frustration in the compound and show enhanced moment below respective 

critical temperatures. However He and Cava99 have shown that for M=Mn, Fe and Ni in 

CaRu1-xMxO3, the system forms ‘inhomogeneous’ ferromagnetic materials. While almost 

every substitution (viz. Na105, Sr84, Sn89 etc.) brought out a spin glass type ordering (with 

Rh106 being an exception), Cr substitution abruptly induced ferromagnetism in CaRuO3
108 

with a saturation moment in the vicinity of 0.4 μB/f.u. at Cr concentration, x=0.18. More 

contracted Cr 3d electrons replacing Ru 4d electrons favor a fairly narrower bandwidth 

and in turn a enhanced N(EF) results in ferromagnetism that was observed even for a 

small level of Cr doping. In contrast to He’s99 observation of critical temperature’s 

inertness to substitution ion concentrations, TC in CaRu1-xCrxO3 shows a strong x 

dependence. Also largely unexpected is the presence of itinerant metamagnetism with Cr 

doping that evolves into a two step transition when x reaches 0.15. Indeed, the 

metamagnetism may occur in a nearly ferromagnetic metal that is characterized by a 

maximum in magnetic susceptibility154. However, the robust ferromagnetic behavior and 

the two-step metamagnetic transition in CaRu1-xCrxO3 suggest a complex, unique band 

structure resulted from the 3d-4d electron coupling. Another unexpected feature is the 

anisotropy in the magnetic properties as a result of Cr doping, which is not present 

otherwise. Cr ion develops a strong spin-orbit coupling in the system, in spite of the cubic 

nature of the crystals. It is worth mentioning that Cr doping could neither induce 

metamagnetic transitions nor influence any anisotropy in the physical properties of 

SrRu1-xCrxO3. 

The drastic changes in the magnetic behavior of CaRu1-xCrxO3 and SrRu1-xCrxO3 

with Cr doping conspicuously accompany no metal-insulator transition which is often 

observed for other impurity doping89, 94, 97, 106. This may be associated with the fact that in 

Cr4+ ion, only two of the three Cr t2g levels are occupied and electron hopping between 

the Cr4+ and Ru4+ t2g orbitals is energetically favorable. Hence the dynamic itinerant 

character of the d-electrons is retained. The impurity doping, of course, introduces 

defects and disorder raising the electrical resistivity at low temperatures and this less 

metallic behavior for large x could be also associated with a site percolation of the 
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nearest neighbor Ru-Ru bonds110. The disruption of Ru connectivity affects the 

orientation of the RuO6 octahedra (tilting angle), which to a great extent determines the 

properties of the ruthenates. Unlike all other impurity doping for the Ru site, slight Cr-

doping facilitates the presence of the ferromagnetism that is extremely delicate in the 

perovskite ruthenates. Apparently, the Ru 4d-electrons and Cr 3d-electrons are unusually 

synergistic to promote ferromagnetism in these materials. 

5.1.2 Bi-layered calcium ruthenate: 

 The n=2 members of the RP series (viz. Ca3Ru2O7 and Sr3Ru2O7) are very special 

as their position in the series demand them to display borderline properties. Their extreme 

sensitivity to external perturbations makes them one of the best hunting grounds to look 

for intriguing physical phenomena. For instance, the bi-layered calcium ruthenate inherits 

a huge variety of novel physical phenomena in it. The compound’s novelty is revealed by 

its response to the applied magnetic field along different orientations and to the chemical 

substitution that followed. Even though the magnetization along b axis shows a sole 

transition at 56 K as a result of AFM spin ordering, the magnetization along a axis 

exhibits an additional transition at 48 K corresponding to a metal insulator transition83. At 

BC=6 T, the system becomes a ferromagnet along a axis via a first order metamagnetic 

transition that polarizes 85% of the spins, but stays an antiferromagnet along the other 

directions. The extensive magnetic measurements persuade the magnetic ground state of 

the compound to be an A type antiferromagnet with AFM stacking of FM layers along c 

axis112. 

As mentioned at the start of this chapter, structure distortions play a vital role in 

determining the compound’s physical behavior. The crystal structure of Ca3Ru2O7 is 

severely distorted by a tilt of the RuO6 octahedra, which projects primarily onto the ac 

plane, while it only slightly affects the bc plane113. These crucial bond angles have direct 

impact on the band structure and are the origin of the anisotropic properties of the 

compound. The transport and magnetic studies of Ca3Ru2O7 for temperatures ranging 

from 0.4 to 350 K and magnetic fields B up to 45 T lead to strikingly different behavior 

when the field is applied along the different crystal axes. A ferromagnetic state with full 

spin polarization is achieved for B||a axis (BC=6 T), magnetic easy axis, that drives the 

resistivity to drop by an order of magnitude. This drop in resistivity is a reflection of the 
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coherent motion of the charge carriers resulted by the FM/I/FM arrangement of RuO-

CaO-RuO layers (similar to spin filters) once the spins are polarized115. 

But a colossal magnetoresistance116, up to three orders of magnitude drop, was 

realized only for B||b axis (BC=15 T), magnetic hard axis. Since 85% spin polarization 

along a axis attributes to only one order of magnitude drop, even a 100% spin 

polarization along b axis at higher fields, if that happens at all, could not account for the 

three order of drop in resistivity. This tells that the driving force for this CMR is not spin 

polarization as we would expect for a conventional CMR. For B||c axis, SdH oscillations 

are observed with frequencies 28 T and 10 T that is followed by a less resistive state than 

that for B||a, where the compound reaches a fully polarized state. Hence, in contrast with 

standard colossal magnetoresistive materials, which are primarily driven by spin 

polarization, the FM phase is the least favorable for electron hopping. Moreover, the field 

dependence of the ρc measured with B along a axis in the temperature range 40 < T < 56 

K (see Fig. 4.34) shows a valley that could not be correlated with the magnetic field 

dependence of M. This behavior represents the crucial role of orbital degree of freedom 

in the conduction mechanism. To be specific, the experimental results persuade that the 

compound’s Mott state at low temperatures and low fields is due to the orbital ordering 

that happens as a consequence of the c axis collapse (Jahn-Teller effect) at TMI (see Figs. 

4.26 and 4.33). For B||a > 6 T, the field induced FM state stabilizes the OO state and 

hence a fully metallic state is never achieved. Whereas for B||b > BC, the OO is removed 

by spin-orbit coupling and hence the electron mobility is increased leading to the CMR. 

All these results discussed in chapter 4 are complimented by the Raman spectroscopy 

studies126 to provide a coherent picture illustrating that orbital order and its unusually 

strong coupling to lattice and spin degrees of freedom drive the exotic electronic and 

magnetic properties of Ca3Ru2O7. 

Furthermore, SdH oscillations that are vastly different from those along c axis 

reappear when magnetic field is swept through the ac plane. For B rotating within the ac-

plane, slow and strong SdH oscillations periodic in 1/B are observed for low temperatures 

(T ≤ 1.5 K)117. These oscillations are angular dependent and intimately correlated with 

the FM state. Moreover, the 1/cosθ-like behavior of the oscillations when B is swept in 

the ac plane (see Fig. 4.38) may imply a cylindrical Fermi surface elongated along the c 
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axis, which favors the two-dimensional conductivity. However, for magnetic field 

applied along the ab-plane, oscillations are also observed but periodic in B117. The 

magnetoresistance oscillations periodic in B are common only in some mesoscopic 

systems and persist up to T=15 K in Ca3Ru2O7. While the SdH effect suggests the 

presence of small FS pockets in the Mott-like state, the B-periodic oscillations, an exotic 

quantum phenomenon, may be a result of anomalous coupling of B to the t2g orbitals that 

makes the FS field dependent. 

  Recent density functional calculations have suggested that Ca3Ru2O7 is a nearly 

half-metallic system111.  When magnetic field is applied along a and b axes, the AFM-M 

region between the two transitions (viz. TMI and TN) responded in exact opposite sense 

i.e. semiconducting behavior for B||a and enhanced metallicity for B||b, a characteristic of 

a half metal. However, the AFM-M state exists only over an 8 K interval between the two 

transitions83, which is too narrow for the essential physics to be fully revealed and 

investigated. Therefore, we pursued transport and thermodynamic studies of Ca3(Ru1-

xCrx)2O7 with 0 ≤ x ≤ 0.20 as Cr substitution greatly widens the stability range of the 

AFM-M regime to 70 K150 by depressing TMI and drastically raising TN. The studies 

revealed a few striking phenomena as a result of the 4d – 3d electron coupling in this Ru-

Cr system. One set of data persuaded a half-metallic behavior where the AFM-M state 

evolved to exhibit a semiconducting characteristic along one direction (for B||a axis) and 

an enhanced metallic property along the other (for B||b axis). This anisotropic transport 

behavior also affirms the dominance of electron’s spin in its transport in the compound.  

The second important observation pertains to the spin valve behavior observed for 

the first time in a bulk material; a single crystal in our case. A string of systematic 

magnetic and electrical resistivity measurements performed on the 17% Cr substituted bi-

layered calcium ruthenate150 i.e. Ca3(Ru0.83Cr0.17)2O7, suggested that the magnetic lattice 

involving Ru-Cr ions are instrumental in inducing a spin-valve behavior. Along a 

preferred crystal direction (b axis) the compound shows a canting of AFM spins that 

develops as B is increased. The magnetic lattice tends to be soft in this direction which 

was obvious from the unusually large ΔTN/ΔB (~7.5 K/T). But the layers involving the 

un-substituted Ru still stay hard magnetically. Cr substitution hence creates a layered 

structure with alternating soft and hard magnetic bi-layers. This special Cr induced spin 
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configuration facilitates subtle intermediate anitparallel spin alignments within a layer, in 

a certain field range (BC2 < B < BC1), as seen in Fig. 4.60 to induce a spin-valve behavior 

for B||b-axis. 

Previous to our work, the spin-valve phenomenon was realized solely in 

heterostuctural multilayer films and never observed in a bulk material131. This work 

presents strong evidence that for the first time spin-valve behavior occurs in a bulk 

material whose properties also resemble a half metallic system. 

5.2 Recommendations: 

The electron correlation effects and phase transitions can be better understood 

when specific heat measurements are conducted on a material. CaRuO3, although an 

itinerant system, is not a Fermi liquid yet. The breakdown of Fermi liquid theory is 

realized through the T3/2 dependence of low temperature (T < 20 K) resistivity of the 

compound. This might be a prelude to a quantum critical behavior as it is quite often than 

is not. Specific heat measurements on CaRuO3 would provide more insight into the 

system particularly on the potential QCP in the compound. The measurements done on 

the pure sample could then be extended to the chemically substituted compounds too to 

explore the underlying interesting physics. Specific heat measurements, without any 

second thought, are one of the powerful tools available for doing the job. For instance, 

specific heat studies done at zero and non-zero magnetic fields on a similar compound 

SrIrO3
104 revealed the system’s possible proximity to QCP. 

A more detailed isothermal magnetization studies on the 18% Cr substituted 

CaRuO3 indicated a behavior very close to a switching effect. Although the magnetic 

field dependence of M has little to no effect on the orientation of the single crystal, the 

resistivity of the compound strongly depends on the relative orientation of the 

magnetization and the electric current. The magnetoresistance experiments done on the 

compound reflects the spin polarization but in a rather complicated way as shown in Fig. 

5.1. There are few features that are worth mentioning here. First, when B and I are 

directed parallel to each other there is a sharp resistivity drop of 20% corresponding to 

the observed spin polarization. But the MR does not show any symmetric effect when the 

magnetic field is reversed as one would have expected, since electron conduction should 

be the same when the spins are aligned parallel irrespective of the up or down nature of 
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them. Rather it chose to behave antisymmetrically as shown in Fig. 5.1 (a). Second, when 

B and I are aligned perpendicular, the effect is reversed where for the positive field it 

shows a positive MR, increasing the resistivity by a few percent. Similar to the effect of 

B||I scenario, the MR shows an opposite effect for the field reversal as shown in Fig. 5.1 

(b). The possible explanation for this peculiar effect would involve a detailed 

interpretation of the domain wall dynamics of the material. However, in simpler terms, 

the charge carriers are deflected in the opposite directions in the two domains of M, 

which induces a circulating current in the vicinity of the domain wall. Now when this 

induced current (Iind) is parallel to the applied current (Iapp), it yields a negative MR as in 

the positive B side of the Fig. 5.1 (a). On M reversal, the induced circulating current 

changes direction giving a situation where the applied and the induced currents are 

antiparallel that induces a positive MR. Hence it will pave way for an antisymmetric MR 

such as the one observed in this system. Similar explanation holds true when Iapp and Iind 

(i.e. I and B) are perpendicular to each other, where too the relative direction of the 

circulating current determines the nature of the MR whether positive or negative. The 

third observation from the experiment is that the drop/jump in MR is not uniform if we 

compare it on both sides of the zero line of the field. This could be explained by the fact 

that the circulating current is non-uniform due to Hall Effect that drives the non-

uniformity in the MR as M is reversed. These preliminary results help us have a bird’s-

eye view of the underlying physics and it could only trigger a more vigorous 

investigation to understand the dynamics of the spins in the microscopic level of the 

compound and not much more than that. This complicated behavior deserves a more 

careful study that leads to a deeper insight into this intriguing problem. 

 176



 
Fig 5.1 Isothermal magnetic field dependence of magnetization, M, (left scale) and 

magnetoresistance, MR, (right scale) when (a) B||I and (b) B┴I, at T=1.7 K for 

CaRu0.82Cr0.18O3 in the applied field range -7 ≤ B ≤ 7 T. 

Even though, the Cr substituted CaRuO3 that we studied so far unveiled a wealth 

of information, we believe that characterizing a whole spectrum of compounds involving 
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Ru and Cr ions will have much in store. However, the synthesis difficulty of higher Cr 

concentrations in SrRu1-xCrxO3 and CaRu1-xCrxO3 hinder us from doing it. For instance, 

the compounds with large x in CaRu1-xCrxO3 would reveal a FM semiconductor (refer to 

Fig. 4.20), which might find potential applications. Whereas, a higher Cr concentration in 

SrRu1-xCrxO3 would represent a compound that displays itinerant spin polarization at 

temperatures above room temperature. On the other hand, a lower Cr concentration might 

very well help us tune the DOS and to understand the basic physics behind the abrupt FM 

observed in Cr doped CaRuO3, as the transition is very abrupt for x as small as 0.05. 

The rich orbital and magnetic phase diagram in Ca3Ru2O7 is precipitated by the 

interplay between the applied magnetic field, magnetic exchange and spin orbit coupling. 

Although the origin is likely to be orbital ordering, the intense physics behind these 

interesting phenomena in Ca3Ru2O7 still needs an extensive investigation. As I have been 

emphasizing throughout this thesis, chemical substitution is one of the few potential ways 

to understand this highly correlated compound. So far only the Ca site has been targeted 

for chemical substitution and both Sr and La doping yielded fruitful results. The 

transition metal ion was substituted for the first time with Cr and it responded with a rare 

spin-valve behavior in a bulk system. Similar surprises could be expected of the system 

when Ru is substituted with other 3d, 4d or 5d transition metal ions. Other substitutions 

like Mn, Ti, Ir, Rh etc. for Ru might alter the DOS and/or the spin configuration of the 

system in a different/similar way as Cr does. Thus they will help explore new phenomena 

and at the same time would help to dig deep into the AFM-M and the half metallicity 

frontiers. 

Another possible path that could be taken from here is the Cr substitution studies 

on other compounds of the RP series too, as every member of the series reacts to doping 

and significantly so to Cr. The Cr-Ru electron coupling favors electron interactions in 

these compounds and it would only be better if Ru is substituted in a compound like 

Sr4Ru3O10, for instance. It is a triple layered member of the RP series that lies between a 

robust ferromagnet (SrRuO3, n=∞) in one side and a metamagnet (Sr3Ru2O7, n=2) on the 

other. Aptly so, it shows a borderline magnetism11 with ferromagnetic behavior (TC=102 

K) along c axis (perpendicular to the layers) and a metamagnetism along the basal plane 

(BC=3 T). Moreover, the specific heat capacity measurements, done on this compound 
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show its proximity to a quantum critical point155. The substitution for Sr ion in the form 

of La and Ca on this system have already provided promising results79, which are 

examples to show that the band filling is more effective than the structure distortion in 

this system. These substantial works illustrate that the rare borderline magnetism in 

Sr4Ru3O10 is highly sensitive to g(EF) that is critically linked to band filling and structural 

distortions, which should motivate one to dope on the Ru site too. 

To facilitate a better understanding of the physics behind these exotic compounds, 

along with the above mentioned works done in-house, we also get an extended help from 

elastic and non-elastic neutron scattering techniques to reveal their magnetic structure 

and the magnetic interactions in them. Only this quest to explore new phenomena could 

drive us further in the direction of developing novel materials. 
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