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ABSTRACT OF DISSERTATION 
 

 

 

ROLE OF REACTIVE OXYGEN SPECIES 

PEROXYNITRITE IN TRAUMATIC SPINAL CORD INJURY 

 
Peroxynitrite (PN, ONOO-), formed by nitric oxide radical (•NO) and superoxide 

radical (O2
•-), plays an important role in post-traumatic oxidative damage. In the early 

work, we determined the temporal characteristics of PN-derived oxidative damage in a 
rat spinal cord injury (SCI) model. Our results showed 3-nitrotyrosine (3-NT), a specific 
marker for PN, rapidly accumulated at early time points (1 hr, 3 hrs), after when it 
plateaued and the high level was sustained to 1 week post injury. The co-localization of 
3-NT and lipid peroxidation derived-4-HNE observed in immunohistochemistry indicates 
PN is involved in lipid peroxidative as well as protein nitrative damage. PN-oxidative 
damage exacerbates intracellular Ca2+ overload, which activates Ca2+-dependent 
calpain-mediated cytoskeletal protein (α-spectrin) degradation. The 145 kD fragments of 
α-spectrin (SBDP 145), which are specifically generated by calpain, increased 
dramatically as early as 1 hr after injury although the peak increase did not occur until 72 
hrs post injury. The high level waned back toward sham level at one week post injury. 

 
We then carried out experiments to evaluate the beneficial effects of tempol, a 

scavenger of PN-derived radicals, following SCI. Three pathological events including 
PN-induced oxidative damage, mitochondrial dysfunction and cytoskeletal degradation 
were investigated. Immunoblotting and immunohistochemical studies indicated 
PN-mediated oxidative damage including protein nitration, protein oxidation and lipid 
peroxidation, were all reduced by a single dose of tempol (300mg/kg, i.p) after SCI. 
Spinal cord (SC) mitochondrial dysfunction in terms of the respiratory control ratio 
(RCR) significantly improved by both 150 mg/kg and 300 mg/kg tempol treatments. 
Moreover, calpain-mediated proteolysis was significantly decreased by tempol, with 
greater effects on calpain-specific SBDP 145 observed.  

 
Direct PN-scavenging effect of tempol was confirmed in vitro. Exposure of healthy 

SC mitochondria to SIN-1, a PN donor in vitro, impaired mitochondrial respiration in a 
dose-dependent manner. Tempol was able to protect mitochondria against SIN-1-induced 
damage by improving mitochondrial function and decreasing mitochondrial 3-NT 



formation. These findings strongly support the concept that PN is a crucial player in the 
secondary damage following SCI. And tempol, by scavenging PN-induced free radicals, 
provides a promising pharmocotherapeutic strategy for treating acute SCI. 
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CHAPTER ONE 

 

INTRODUCTION OF SPINAL CORD INJURY 

 

I. Statistics of Spinal Cord Injury 

Spinal cord injury (SCI) is a devastating neurological disorder that not only creates 

enormous physical and emotional cost to individuals but also is a significant financial 

burden to society at large. Presently, there are approximately 253,000 Americans, with a 

range of 225,000 to 296,000 persons, living with SCI. Additionally, the annual incidence 

of spinal cord injury, not including those who die at the scene of the accident, is 

approximately 12,000 new cases each year (Nobunaga et al., 1999). In other words, every 

44 minutes another person sustains an SCI. Although SCI can victimize active 

individuals at any age, it primarily affects young male adults. 2006 Annual report from 

National Spinal Cord Injury Statistical Center (NSCISC) shows the average age at injury 

is 33 years, and 81% of total patients are male. 

The most common cause of SCI is motor vehicle crashes, which accounts for 43.4% 

of reported cases, followed by falls (19.9%), acts of violence (18%), sports (10.7%) and 

other reasons (8%). Although those who survive their initial injuries can expect to live 

long lives nowadays, the 

majority of the patients end up 

with differing extents of 

neurological deficits that 

diminish their quality of life. As 

shown in Figure1.1, paraplegia, 

which means losses of movement 

and sensation in the lower body, affects 42.6% of the SCI population and 56.4% are 

affected by quadriplegia, which involves losses of movement and sensation in both the 

arms and legs. (www.spinalcord.uab.edu). 
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While the emotional and physical costs are overwhelming to a SCI individual, the 

financial costs to the patient, his/her family and society are enormous. The estimated 

lifetime costs for health care and living expenses for those individual with SCI varies 

from a half million dollars to well over two million dollars as shown in Table 1.1 

(adapted from www.spinalcord.uab.edu). More so, these cost estimates do not include the 

indirect costs from the loss of employment, wages, fringe benefits and productivity, 

which averages $52,900 annually per SCI-individual but can vary widely depending on a 

patient’s education, injury severity and pre-injury employment.  

 
Given the high financial costs as well as the severe physical and emotional 

consequences of SCI, research aimed at exploring effective ways of lessening injury 

severity, maintaining or recovering function, which would markedly improve the 

independence and productivity of the individuals with traumatic SCI is greatly desired by 

society. 
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II. Pathophysiology of Traumatic Spinal Cord Injury 
 

Primary Damage 

 

As outlined in Figure 1.2, upon initial insults, there is immediate mechanical 

contusive, compressive, shearing or stretch injury to the spinal cord elements including 

the neuronal cell body and axons, glial cells and endothelial cells of the spinal vascular 

system, which is known as the primary damage after SCI. Primary damage mainly affects 

spinal gray matter due to its softer consistency and greater vascularity, with relatively 

little damage to white matter outside the injury epicenter (Wolman, 1965). Those primary 

damage events occur immediately after injury and are usually irreversible and inevitable, 

therefore no clinically useful therapeutic targets are provided at this stage other than 

neurorestorative to regenerate or replace the damaged cells. 
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Secondary Damage 

 

Typically after primary damage, residual white matter contains some portions of 

intact motor or sensory tracts, allowing for the possibility of neurological recovery. 

However, during the first minutes and hours following injury, a secondary degenerative 

process is initiated involving vascular abnormalities, ischemia-reperfusion, glutamate 

excitotoxicity and disturbances in ionic homeostasis, oxidative cell injury, and a robust 

inflammatory response (Anderson and Hall, 1993; Lewen et al., 2000; Tator and Fehlings, 

1991; Dumont et al., 2001), which leads to a continued period of delayed and prolonged 

damage after the primary injuries. This leads to the notion that pharmacological 

treatments which interrupt the secondary cascade, if applied in a timely fashion, could 

improve spinal cord tissue survival. Therefore, a knowledge of these secondary events 

involved in SCI is essential for developing beneficial pharmacological interventions. 

Principal secondary damage mechanisms (Figure 1.2 above) are addressed in this section 

one by one.  

 

Vascular Damage 

 

The vascular insults after SCI produce both hemorrhagic and ischemic damage. The 

large spinal vessels such as the anterior and posterior spinal arteries are typically spared 

while small intramedullary arteries and veins appear to be very vulnerable to damage 

following SCI, both at the site of injury and for some distances rostral and caudal to the 

injury epicenter (Tator, 1991; Tator and Fehlings, 1991; Tator and Koyanagi, 1997). 

Small areas of hemorrhage due to the disruption of microcirculation progress to regions 

of hemorrhagic necrosis with time (Tator and Koyanagi, 1997). Additionally, 

post-traumatic ischemia occurs progressively and may result from vasospasm, 

intravascular thrombosis (Nemecek, 1978), microcirculation decreases and systemic 

hypoperfusion (Tator, 1991; Tator and Fehlings, 1991). Following ischemia and 

hypoperfusion, any subsequent improvement in spinal cord blood flow will result in 

post-ischemic reperfusion that may exacerbate injury through the production of 

deleterious free radicals and other toxic byproducts (Lewen et al., 2000; Piantadosi and 
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Zhang, 1996). Furthermore, breakdown of the blood-spinal cord barrier (BSCB) at the 

injury epicenter not only leads to the protein extravasation (Nobel and Wrathall, 1989), 

but also results in the inflammatory invasion of neutrophils, macrophages and T-cells 

(Bareyre and Schwab, 2003), which potentially contribute to the secondary injury 

mechanisms (Kakulas, 1984; Blight, 1992; 1994; Park et al., 2004).  

Inflammatory Response 

A biphasic inflammatory response occurs following SCI. First, neutrophils infiltrate 

the injured cord, release lytic enzymes and reactive oxygen species (ROS) and potentially 

exacerbate injury to neurons, glia and blood vessels (Hausmann, 2003). It is reported that 

neutrophil accumulation in the injury area is significantly increased within 3 hrs and 

peaks within 24 hrs of SCI (Carlson et al., 1998; Dusart and Schwab, 1994; Popovich et 

al., 1997). Neutrophil infiltration is followed by the activation of resident microglia and 

the migration of bone-derived macrophages into the injured region. These cells then 

phagocytose debris and release cytokines mediating inflammation that may paradoxically 

promote tissue repair.  

Microglial activation is maximal between 3 and 7 days post SCI and precedes the 

majority of monocyte and macrophage infiltration (Popovich et al., 1997). These 

inflammatory responses probably contribute to subsequent secondary injury as evidence 

have demonstrated improved behavioral recovery upon deletion of leukocytes prior to 

compressive SCI (Taoka et al., 1997). The production of cytokines by invading 

inflammatory cells has been implicated as mediators of damage through generation of 

free radicals (Blight, 1994). However, the numerous types of cytokines and their 

multi-faceted effects complicate the interpretation of their exact roles (Park et al., 2004). 

For example, tumor necrosis factor alpha (TNF-α), a key inflammatory mediator 

produced by microglia, macrophages and potentially by neurons as well, increased as 

early as 30 min and the elevated level maintained to several hours after SCI (Yakovlev 

and Faden, 1994; Wang et al., 1996). The increase of TNF-α level and subsequent 

activation of TNF-receptor-nuclear factor κB (NF-κB) can be suppressed by 

methylprednisolone (MP), the only proven drug for treating SCI, suggesting the 
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effectiveness of inhibiting post-traumatic inflammatory responses (Xu et al., 1998). 

Additionally, an in vitro study showed that the application of TNF-α resulted in lysis of 

oligodendrocytes, which is presumably mediated by the production of another important 

inflammatory mediator, nitric oxide (•NO) (Merrill et al., 1993). However, conflicting 

results exist concerning the pathophysiological significance of cytokines after SCI. For 

example, worse functional recovery, larger lesion size and an increase of apoptotic cell 

death were demonstrated after SCI in mice lacking TNF-receptor (TNFR) (Kim et al., 

2001). Furthermore, TNF-α knock-out mice showed slightly decreased white matter 

preservation after SCI, without any beneficial effects on functional outcome (Farooque et 

al., 2001). These results suggest that inflammatory mechanisms mediated by cytokines 

such as TNF-α may have deleterious effects at the early phase post injury, but may also 

play a role in neural repair at later time points (Park et al., 2004).  

Glutamate Excitotoxicity 

Glutamate is the major excitatory neurotransmitter of the CNS and is involved in the 

synaptic plasticity underlying learning and memory as well as the formation of neuronal 

networks during CNS development. However, excessive or prolonged exposure to 

glutamate is toxic to CNS can lead to neuronal cell death (Doble, 1999). Following SCI, 

extracellular concentrations of excitatory amino acid including glutamate, aspartate, 

glutamine and asparagines, increase to neurotoxic levels rapidly (Liu et al., 1991; 

Farooque et al., 1996; McAdoo et al., 1999). The observed rise in glutamate is 

responsible for sustained activation of glutamate receptors in CNS resulting in neuronal 

cell death (Lipton and Rosenberg, 1994; Park et al., 2004). The subsequent 

over-activation of glutamate receptors allows excessive Ca2+ influx into the cell, either 

through the activation of ligand-gated channels or opening of voltage-gated Ca2+ channels 

due to cell membrane depolarization. Excessive Ca2+ entry results in cell death via 

secondary messenger cascades including activation of protein kinases, phospholipases, 

proteases, ROS and mitochondrial dysfunction (Lipton and Rosenberg, 1994). In 

particular, high intracellular Ca2+ levels activate the Ca2+-dependent cysteine protease 

calpain, resulting in myelin and cytoskeletal degradation, thereby compromising axonal 

integrity and function (Banik et al., 1997ab; Schumacher et al., 1999; Park et al., 2004). It 
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has also been proposed that mitochondria play a key role in glutamate neurotoxicity. 

Glutamate-induced intracellular Ca2+ overload overwhelms the mitochondrial function by 

decreasing mitochondrial membrane potential and ATP synthesis, increasing ROS 

generation and ultimately leads to necrotic and/or apoptotic cell death (Nicholls and Budd, 

1998). 

Apoptosis 

Apoptosis, or programmed cell death, has been seen after ischemic or traumatic 

injury to the central nervous system (CNS), suggesting that active cell death may also 

mediate secondary damage after CNS injury (Springer et al., 1999; Beattie et al., 2002). 

In SCI rat models, apoptotic cells were found from 6 hours to 3 weeks after injury, many 

of which are oligodendrocytes (Crowe et al., 1997; Shuman et al., 1997). It has been 

suggested that SCI-induced apoptosis has two stages, an early glial and neuronal 

apoptosis within 24 hrs of injury at the lesion site, and a later phase involving white 

matter microglia and oligodendrocytes outside the injury epicenter (Liu et al., 1997; 

Warden et al., 2001). The later phase of apoptotic cell death, which is maximal at 8 days 

post injury, may result from the loss of trophic support after axonal degeneration or it 

may be the consequence of microglial activation (Shuman et al., 1997). Undoubtedly, 

apoptotic cell death of oligodendrocytes will induce myelin degeneration and cause 

additional disturbances of axonal function. 

On the other hand, spinal cord trauma leads to increased expression of death 

receptors and their ligands as well as activation of caspases and calpain (Banik et al., 

1997b; Springer et al., 1999; Casha et al., 2001). Evidence indicates that caspases play 

important roles in mediation of apoptosis following SCI (Springer et al., 1999). 

Activation of caspases has been proposed to induce apoptosis simultaneously through 

extrinsic or intrinsic pathways (Ray and Banik, 2003; Ray et al., 2003). Following injury, 

increased production of TNF-α may induce the extrinsic caspase cascades leading to 

apoptosis. Also, SCI increases production of intracellular signaling molecules, such as 

Ca2+ and ROS, which activate Ca2+-sensitive calpain and intrinsic caspase pathways. 

These receptor mediated-extrinsic and mitochondria-mediated intrinsic pathways 
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converge to caspase-3, the key executioner of apoptosis, and culminate in programmed 

cell death (Ray et al., 2003). 

Free radical damage 

    Free radicals are highly reactive molecules with unpaired electons in their outer orbit 

and are thought to play a large and important role in trauma-induced CNS damage and 

stroke or ischemia (Hall, 1989; Hall and Braughler, 1993; Lewen et al., 2000). 

Oxygen-derived free radicals such as superoxide (O2
•-), hydroxyl radicals (•OH), nitric 

oxide (•NO) and peroxynitrite (ONOO-) are generated at least through the following 

cellular pathways: 1) SCI-induced ischemia-reperfusion of the vascular system (Oliver et 

al., 1990); 2) mitochondrial dysfunction due to intracellular Ca2+ overload (Nicholls and 

Budd, 1998) and 3) the inflammatory responses following SCI (Blight, 1994). Other 

resources for free radicals include, but not limited to, nitric oxide synthase (NOS), 

Ca2+-mediated activation of phospholipases, xanthine oxidase, inflammatory cells and the 

Fenton and Harber-Weiss reactions (Lewen et al., 2000). Highly reactive oxygen and 

nitrogen species can be utilized by immune system to kill pathogen, but excessive 

production will contribute to cellular damage by oxidizing and nitrating proteins, lipids 

and nucleic acids. Free radicals can also initiate cell membrane damage by oxidizing the 

polyunsaturated fatty acids (PUFAs) in the lipid bilayer and induce lipid peroxidation 

(LP). Moreover, other oxidative mechanisms involving protein/DNA nitration and 

oxidation are important contributors to secondary damage after CNS injury.  

Free radical attenuation has long been investigated as a major therapeutic target. 

Methylprednisolone (MP), the only proven pharmacological treatment used clinically for 

acute SCI, is believed to exert its beneficial effects in large part by suppressing free 

radical-induced damage (Hall, 1993). In the next section, I will focus on the secondary 

injury cascades that are involved in oxidative damage and the crucial role of a potent 

oxidizing ROS: peroxynitrite (PN) and its derived free radicals following SCI. 
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III. Free Radical Production and Oxidative Damage in Traumatic Spinal 

Cord Injury 

Key Concepts 

 

Oxidative Stress and Oxidative Damage 

 

Oxygen is necessary for life. However, it can also be deleterious. Among all the O2 

taken up by mammalian cells, about 85-90% is effectively utilized by their mitochondria 

for energy production. The remainder may convert to reactive oxygen species (ROS) or 

free radicals. In normal conditions, the production of reactive species (RS) is 

approximately balanced by antioxidant defense systems including, but not limited to, 

mitochondrial manganese-containing superoxide dismutase and reduced glutathione. 

However, this balance is not perfect, especially under pathological conditions, so that 

some RS-mediated damaging occurs. The term ‘oxidative stress’ refers to a serious 

imbalance between RS production and antioxidant defenses and Sies defined it as “a 

disturbance in the pro-oxidant–antioxidant balance in favor of the former, leading to 

potential damage” (Sies, 1991). Such damage is often called ‘oxidative damage’. 

Halliwell and Whiteman have defined oxidative damage as “the biomolecular damage 

caused by attack of RS upon the constituents of living organisms” (Halliwell and 

Whiteman, 2004). Increased levels of oxidative damage can result not only from 

oxidative stress, but also from failure of repair or replacement systems.  

 
Free Radical and Reactive Species 

 

A free radical can be defined as “any molecular species capable of independent 

existence (hence the term “free”) that contains one or more unpaired electrons” (Halliwell 

and Gutteridge, 2006). 

 

Reactive oxygen species (ROS) is a term used to describe a number of 

oxygen-derived radicals, such as O2
•- and •OH, and some non-radical derivatives of O2. 



- 10 - 

Non-radicals ROS have no unpaired electron, but they are oxidizing agents and/or are 

readily converted into radicals (Halliwell, 2006). Note that all oxygen radicals are ROS, 

but not all ROS are oxygen radicals.  

 

Reactive nitrogen species (RNS) is a similar descriptor that includes radicals •NO 

and •NO2, and nonradicals derivatives of •NO such as HNO2 and N2O4 (Halliwell and 

Gutteridge, 2006). Due to some overlapping between ROS and RNS, reactive species (RS) 

is used as a collective term to include both. It is important to know that the reactivity 

differs from each other among ROS. For instance, H2O2, •NO and O2
•- react quickly with 

only a few molecules, whereas •OH is a strong oxidant that reacts rapidly with almost 

everything it comes into contact with (Halliwell, 2006). The classification of RS is shown 

in Table 1.2 (Modified from Halliwell, 2006). 
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Important Reactive Species 

 
Superoxide Radical (O2

•-) and Hydrogen Peroxide (H2O2) 

 

Superoxide radical (O2
•-) is one of the most important primary ROS and can be 

produced from a variety of sources (Kontos, 1989). One major source of O2
•- in vivo is 

through the mitochondrial electron transport chain (ETC). It is estimated that up to 1% of 

total mitochondrial O2 consumption goes toward the production of O2
•- or hydrogen 

peroxide (H2O2) at intermediate steps of the mitochondrial electron transport 

(Ischiropoulos and Beckman, 2003). ETC complex I (NADH dehydrogense) and 

coenzyme Q (ubiquinone-cytochrome b) appear to be the two primary sites of O2
•- 

generation by proton “leakage” from the ETC to O2 (Turrens and Boveris, 1980). The 

rate of leakage at physiological O2 concentration is probably less than 5% of total 

electron flow of ETC, but the leaking rate rises as the O2 concentration is increased 

(Halliwell, 1992; Turrens, 2003). 

  

In addition to mitochondrial leakage, there are also other sources of O2
•-. Some O2

•- 

is produced by activated phagocytic cells to kill pathogens (Halliwell, 2006). Activated 

phagocytic cells are capable of reducing O2 into O2
•- through the activity of NAD(P)H 

oxidase (Bianca et al., 1999). Another source of O2
•- is the largely endothelial 

cell-contained xanthine oxidase (Kontos, 1989; Fridovich, 1970). Most of 

xanthine/hypoxanthine oxidation in vivo is catalysed by xanthine dehydrogense, which 

transfers electrons from the substrates onto NAD+ and will not generated O2
•-. However, 

under ischemic and post-ischemic reoxygenation conditions, xanthine dehydrogenase can 

be converted to the oxidase form, and therefore produce O2
•- and H2O2 while oxidizing 

xanthine or hypoxanthine (Figure 1.3) 
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The transport of O2 by erythrocytes is another possible source of superoxide. It is 

believed that hemoglobin, the preponderant protein in erythrocytes, is susceptible to a 

slow autoxidation (Misra and Fridovich, 1972). Normally, the iron in the heme rings of 

hemoglobin remains in the ferrous state (Fe2+) for O2 binding. However, some 

delocalization of the electron takes place and results in an intermediate structure 

(methemoglobin), producing ferric iron (Fe3+) in the heme ring. Ferric ion present in the 

heme ring is unable to bind O2, thereby releases a molecule of superoxide radical.  

 
Moreover, O2

•- can be produced from the arachidonic acid cascade through prostaglandin 

hydroperoxidase (PGH) and 5-lipoxygenase activity as a side-chain reaction, depending 

on the presence of NADH or NADPH (Kukreja et al., 1986). More recently, Ca2+ influx 

was suggested to be a source of mitochondrial O2
•- as well. Grijalba et al proposed that 

Ca2+ alters the lipid organization of mitochondrial intermembrane and affects ETC 

function such as coenzyme Q mobility, leading to mono-electronic oxygen reduction 

which promotes the production of O2
•- (Grijalba et al.,1999). 
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Although O2
•- is generated from a variety of sources, several scavenging 

mechanisms exist to antagonize its potential damaging effects. Superoxide dismustase 

(SOD), a potent antioxidant enzyme, is specific for O2
•- and effectively neutralize O2

•- by 

the dismutation. Indeed, owing to this spontaneous or enzyme-catalyzed dismutation, 

most of O2
•- ends up as H2O2 (Kontos, 1989).  H2O2 is also one major form of ROS and 

can be produced directly by divalent reduction of oxygen (Chance et al., 1979). However, 

it is poorly reactive at physiological level and is usually removed by catalase or 

glutathione peroxidase (GPx) (Figure 1.4). 

 
As illustrated, O2

•- can deplete the endogenous antioxidant enzyme reservoir by 

direct reactions, such as catalase and GPx, as well as some redox enzymes involved in 

energy metabolism (Zhang et al., 1990; Winterbourn, 1993; Imlay, 2003). However, O2
•- 

is not a strong oxidant, only reacts rapidly with a few molecules (Halliwell, 2006). 

Neither O2
•- nor H2O2 is sufficiently reactive to account for much of post-traumatic 

oxidative damage found in vivo. Indeed, it is known that O2
•--derived secondary ROS are 

much more cytotoxic than O2
•- itself.  

 
Hydroxyl radical (•OH) 

 

In contrast to O2
•-, hydroxyl radical (•OH) is an extremely reactive form of ROS and 

can be generated directly in tissues by radiation or secondarily from the reaction between 

O2
•- and H2O2:  
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However, this reaction is not considered as a significant source of •OH unless in the 

presence of a catalytic transitional metal, usually iron. In that case, H2O2 generate •OH via 

the Fenton reaction (Halliwell, 1978; McCord and Day, 1978): 

 
The resulting Fe3+ may be reduced by O2

•-, making possible the repetition of the cycle: 

 
Hydroxyl radical can also be produced from decomposition of peroxynitrite (ONOO-), 

which is not dependent on the presence of transition metal ions (Beckman et al., 1990; 

Radi et al., 1991ab; Crow et al., 1994). Detailed explanation will be provided in the 

‘Peroxynitrite’ section below. 

 

Although •OH is a highly reactive ROS and capable of destroying various 

biomolecules, the reaction with organic molecules is diffusion rate-limited, with a rate 

ranging from 109 to 1010•M-1S-1 (Halliwell and Gutteridge, 1989). Therefore, it will react 

as fast as it is formed and disappear quicky, which cannot explain any form of oxidative 

damage that occurs remotely from its site of formation. Moreover, far greater 

concentrations of free metals and H2O2 than those present in vivo would be required to 

cause oxidative damage through Fenton reaction pathway (Beckman, 1994; Crow and 

Beckman, 1996). For this and many other reasons, •OH may not be as important a cause 

of oxidative stress in vivo as thought in the past (Beckman, 1994; Crow and Beckman, 

1996; Murphy et al, 1998). 

 

Nitric oxide (NO, •NO) 

   

Nitric oxide (•NO) is a ubiquitous diffusible messenger that can regulate vascular 

tone, modulate neuronal signaling and kill pathogens (Moncada et al., 1991). It is formed 

from arginine, O2 and NADPH by the enzyme nitric oxide synthase (NOS): 
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There are three identified isoforms of NOS, which include endothelial NOS (eNOS), 

neuronal NOS (nNOS) and inducible NOS (iNOS), all of which appear to be involved in 

the pathology of CNS injury. Studies have shown an early increase of nNOS activity and 

expression in resident spinal cord cells, followed by a late increase of iNOS activity and 

expression in inflammtory infiltrating cells following SCI (Conti et al., 2007). Recently a 

novel isoform of NOS was described located within mitochondria, thus named 

mitochondrial NOS (mtNOS) (Bates et al., 1995; Lopez-Figueroa et al., 2000), which 

was also responsible for •NO formation upon intra-mitochondrial Ca2+ increase.  

  

Nitric oxide is a free radical because it is composed of seven electrons from nitrogen 

and eight electrons from oxygen: 

 
This odd number of electrons means that one is unpaired causing •NO to be a free radical. 

However, •NO is not highly reactive simply because it is a free radical. It only reacts 

rapidly with a select range of molecules that have unpaired electrons, which are typically 

other free radicals and with transition metals like heme iron. The biological chemistry of 
•NO can be simplified in a reasonable approximation to three major reactions (Figure 

1.5): its activation of guanylate cyclase, which is responsible for signal transduction; its 

elimination by reaction with oxyhemoproteins such as oxyhemoglobin or oxymyoglobin 

(P-Fe2+-O2) (Goretski and Hollocher, 1988) and its transformation to peroxynitrite by 

reaction with O2
•- (Beckman et al., 1990; Beckman and Koppenol, 1996). 
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The reaction rate between O2

•- and •NO occurs at the near-diffusion-controlled rate 

of 6.7×109 M-1•S-1 (Huie and Padmaja, 1993), so that nearly every collision between O2
•- 

and •NO results in the irreversible formation of peroxynitrite (ONOO-). As shown in 

Figure 1.6, this reaction rate is approximately three times faster than the scavenging of 

O2
•- by superoxide dismutase (SOD) (Cudd and Fridovich, 1982; Beckman and Koppenol, 

1996).  

    
Thus •NO is the only biological molecule that can outcompete endogenous SOD for O2

•-, 

if being produced in high enough concentrations under pathological conditions (Beckman 

and Koppenol, 1996). It has been demonstrated that •NO can exert both protective and 

detrimental effects in several disease states of the CNS, including SCI. Low nitric oxide 

(•NO) concentrations are required in physiologic processes, whereas large amounts of 
•NO may be detrimental by increasing oxidative stress (Conti et al., 2007). For example, 

concentrations of •NO that cause vasodilatation are on the order of 5-10 nM and will not 

effectively compete with SOD for O2
•-; when the concentration of •NO rises to 
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micromolar concentrations under pathological conditions such as ischemia brain injury or 

spinal cord injury (SCI) (Malinski et al., 1993; Nakahara et al., 2002), it can effectively 

compete with SOD because of its higher reaction rate with O2
•- and form the potent 

oxidant ONOO-. This is probably an important mechanism that underlies the toxic effects 

of excessive •NO production in pathological conditions. Direct evidence has been shown 

that NO inhibits mitochondrial ETC through peroxynitrite formation (Riobo et al., 2001).  

 

Peroxynitrite (ONOO-, PN) 

 

i. Biochemistry 

 

Peroxynitrite (PN) is a term used to refer to the sum of the peroxynitrite anion 

(ONOO-) and its conjugate acid peroxynitrous acid (ONOOH) (Szabo et al., 2007). After 

Beckman and colleagues proposed PN to be the most important player in biological 

oxidative damage (Beckman et al., 1990), mounting evidence has been shown to support 

this notion. 

 

As described previously, the peroxynitrite anion (ONOO-) is produced by the 

reaction of •NO and O2
•- radicals at a diffusion-controlled rate (Huie and Padmaja, 1993). 

The peroxynitrite anion (ONOO-) is relatively stable in alkaline solutions, slowly 

breaking down to nitrite and oxygen (Murphy et el., 1998). 

 

 

Around neutral pH, peroxynitrite anion (ONOO-) is protonated to its conjugate acid 

ONOOH, which is unstable and rapidly decomposes to nitrate (Murphy et al., 1998; 

Koppenol et al., 1992). 

 

 

 

Both peroxynitrite anion (ONOO-) and peroxynitrous acid (ONOOH) are reactive and 

can participate directly in one- and two-electron oxidation reactions with biomolecules. 
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Inside a cell, the intracellular free thiol concentration is relatively high (5-10 mM), PN 

will prefererably react with reduced glutathione (GSH) and forms thiol radicals and 

sulphenic acid derivatives (Reed, 1990). These products are unstable and react rapidly 

with reduced glutathione (GSH) to form oxidized glutathione (GSSG). GSSG will be 

recycled by glutathione reductase, and O2
•- will be neutralized by SOD (Murphy et al., 

1998; Winterbourn, 1993). See Figure 1.7 (modified from Murphy et al., 1998) for the 

pathways involved in this reaction: 

 
Therefore, glutathione may be an effective antioxidant defense system to scavenge 

peroxynitrite generated inside a cell. However, when excessive PN is formed or the 

intracellular thiols are depleted, the thiol radical will attack other compounds and form 

protein cross-linking and the mixed disulphides. Moreover, thiol radicals react very 

rapidly with oxygen to form peroxyl radicals and other sulphur-derived oxidants, leading 

to subsequent oxidative stress (Murphy et al., 1998). It has been shown that the depletion 

of the glutathione reservoir makes mitochondria more susceptible to PN damage (Scarlett 

et al., 1996; Barker et al., 1996).  

 

Detoxification of PN by thiols will be much less effective in plasma because plasma 

thiol concentration (～0.5 mM) is about 10-fold less than inside cells (Murphy et al., 

1998). Alternatively, due to the high concentration of carbon dioxide (CO2) in plasma (～

1.3 mM), the reaction of PN with CO2 or bicarbonate anion (25 mM) becomes more 
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biologically significant (Denicola et al., 1996). Indeed, in plasma the reaction rate of PN 

with CO2 is about 60-fold faster than that with thiols (Murphy et al., 1998), which leads 

to the formation of one-electron oxidants carbonate (CO3
•-) and nitrogen dioxide (•NO2) 

radicals (yield～35%) (Szabo et al., 2007; Radi et al., 2001): 

 
Nitrogen dioxide (•NO2) can undergo diffusion-controlled radical-radical termination 

reactions with biomolecules, resulting in nitrated compounds. Radical-radical termination 

refers to a reaction between two radicals leading to a non-radical adduct as end product 

and thus stops radical propagation reactions (Szabo et al., 2007). 

 

Additionally, ONOOH can undergo homolytic fission, which means rupture of a 

covalent bond in a molecule, in which the two resulting products keep one of the bond 

electrons, to generate one-electron oxidants, •OH and •NO2 radicals with a 30% yield 

(Szabo et al., 2007): 

 
However, this reaction is relatively slow compared with the other PN-derived reactions 

and therefore is a modest component of the in vivo reactivity of PN in aqueous 

compartments. However, ONOOH can readily cross cell membranes (Denicola et al., 

1998) and its decomposed •NO2 and •OH radicals therefore initiate the lipid peroxidation, 

protein nitration and other oxidative reactions (Szabo et al., 2007; Radi et al., 1991).  
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The biochemistry of PN is summarized in Figure 1.8 (modified from Szabo et al., 

2007). As illustrated, nitric oxide (•NO) and superoxide (O2
•-) react rapidly to form 

peroxynitrite anion (ONOO-), which is in equilibrium with its conjugated 

acid-peroxynitrous acid (ONOOH). Both ONOO- and ONOOH can undergo direct 

reactons with biomolecules and deplete the endogenous antioxidant defense system. But 

more importantly, in the presence of CO2, ONOO- and CO2 will react to form 

nitrosoperoxocarbonate (ONOOCO2
-) which can decompose to potent oxidants carbonate 

radical (CO3
•-) and nitrogen dioxide radical (•NO2) (with a 35% yield) that lead to 

nitration and oxidation of protein and DNA. Alternatively, ONOOH can generate 

hydroxyl (•OH) and •NO2 radicals by homolytic fission with a 30% yield. PN-derived 
•OH plays a key role in initiating lipid peroxidation and PN-derived •NO2 can undergo 

termination reactions with other biomolecule-derived radicals, resulting in nitrated 

proteins, which is currently considered as a biomarker or footprint for PN formation 

(Szabo et al., 2007; Beckman, 1996).  
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ii. Oxidative Mechanisms 

 

Peroxynitrite is a biologically significant oxidant that is capable to inflict cellular 

damage through a variety of pathways, the principal biological effects of PN are outlined 

in Figure 1.9. Three principal oxdiative mechanisms including lipid peroxidation, protein 

modification by nitration and oxidation, oxidative damage to DNA, are discussed 

respectively in this section. 

 
 

Lipid Peroxidation: Lipid peroxidation (LP) is generally thought to be a major 

mechanism for inducing cellular oxidative damage. Free radicals, either from PN 

decomposition or other sources, can react with lipids resulting in the peroxidation of fatty 

acids. Central nervous system (CNS) tissue is particularly susceptible to LP due to its 

high content in poly-unsaturated fatty acids (PUFAs), which serve as excellent substrates 

for LP because of the presence of reactive bis-allylic methylene groups. In these groups, 

the hydrogen atoms are easily abstracted due to the low bond dissociation energies on the 

carbon-hydrogen bonds (Kelly et al., 1998).  

 

LP in biological systems proceeds through complex reactions consisting of three 

phases: initiation, propagation, and termination. Initiation starts when a free radical 

comes along, it can easily remove the hydrogen atom and the associated electron. 

Peroxidation therefore occurs by abstraction of a hydrogen atom from a methylene 
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carbon in the lipid (LH) to generate a highly reactive lipid radical (L·), termed alkyl 

radical. In the propagation phase, oxygen adds rapidly to L· at a diffusion-controlled rate 

to produce the lipid peroxyl radical (LOO·). The resulting LOO· is able to attack other 

biomolecules such as DNA and proteins, and form the primary oxidation product, a lipid 

hydroperoxide (LOOH). In the absence of antioxidants (i.e. α-tocopherol), LOO· can also 

abstract a hydrogen from neighboring lipid molecule (LH), producing another alkyl 

radical (L·), therefore the LP propagates throughout the cell membrane (Kelly et al., 

1998). Termination of lipid peroxidation occurs via the coupling of any two radicals to 

form nonradical products (radical-radical elimination). Nonradical products are stable and 

unable to propagate lipid peroxidation chains. An overview of lipid peroxidation 

processes is provided in Figure 1.10 (modified from Kelly et al., 1998). 
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PN-derived radicals •NO2, CO3
•- and •OH are potent oxidants that are capable of 

inducing intensive tissue damage by initiating LP. As a result, LP decreases membrane 

fluidity, increases permeability of the membrane bilayer to various substances that are 

normally impermeable and inactivates certain membrane-bound enzymes (Kelly et al., 

1998). The continuation of oxidation of fatty acid side chains and their fragmentations to 

produce aldehydic breakdown products eventually leads to the loss of membrane integrity. 

Moreover, the products of LP, such as LOO•, LO• and downstream aldehydes can induce 

severe damage to proteins. For example, 4-hydroxynonenal (HNE), the main end-product 

of LP, can conjugate onto proteins causing toxic protein aggregates within membranes 

(Keller et al., 1997; Kruman et al., 1997). Furthermore, it has been shown that another LP 

product 4-hydroxyhexenal (HHE) is a potent mediator of mitochondrial permeability 

transition (Kristal et al., 1996). 

The primary lipid oxidation products, LOOH, are unstable and decompose to form 

secondary products such as aldehydes and ketones through various reaction pathways. 

The resulting diverse breakdown products, coupled with a small concentration of these 

products in vivo, complicate the accurate quantification of lipid peroxidation. The widely 

applied bioassay for LP is to measure the aldehyde “end-products”. Reactive aldehydes, 

among which 4-HNE is one of the most cytotoxic aldehydes (Keller et al., 1997), are able 

to bind rapidly to proteins, therefore providing for immunoblotting measurement of such 

adducts within cells and tissues. Moreover, immunohistochemical methods can be used to 

locate the distribution of such adducts to demonstrate the spatial characteristics of 

LP-induced oxidative damage (Niki et al., 2005).  

 

Protein Nitration/Oxidation: Many biomolecules are susceptible to PN-derived radicals 

by nitration or/and oxidation, including tyrosine residues, thiols, DNA and PUFAs. 

Indeed, 3-nitrotyrosine (NT), 3,3’-dityrosine and 3,4’-dihydrophenylalanine formed by 

PN through tyrosine nitration, dimerization and hydroxylation respectively, are entirely 

dependent on free-radical pathways (Radi, 2004). The nitration of protein tyrosine 

residues to 3-NT by PN also contributes relatively specifically to the toxicity of PN and is 

widely used as a bioassay to detect PN formation in vivo (Beckman, 1996). Tyrosine 
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nitration can inactivate enzymes, for example MnSOD (MacMillan-Crow et al., 1996), 

thus increasing the amount of O2
•- available to react with •NO and establishing an 

autocatalytic spiral of increasing mitochondrial PN formation. Furthermore, tyrosine 

nitration blocks tyrosine phosphorylation and thus disrupts downstream tyrosine kinase 

signaling pathways (Kong et al., 1996), resulting in permanent impairment of cyclic 

cascades that control signal transduction processes and regulate cell cycles. Additionally, 

the nitrated lipids may lead to the secondary inhibition of protein function and assist in 

protein tyrosine oxidation and nitration in biomembranes and lipoproteins (Bartesaghi et 

al., 2006). 

The general assay of oxidative protein damage is to measure the protein carbonyls. 

The rationale is based on the fact that several reactive species attach amino acid residues 

to generate products with carbonyl groups, which can be measured after reaction with 

2,4-dinitrophenylhydrazine (DNPH). The immuno-detection is designed to recognize the 

protein with carbonyl group that is conjugated to DNPH. 

Oxidative damage to DNA: DNA is another key cellular component that is particularly 

susceptible to oxidative damage. Before the exploration the importance of PN, the 

primary ROS responsible for DNA damage was believed to be •OH, as neither O2
•- nor 

H2O2 radicals react directly with DNA (Halliwell and Aruoma, 1991). Generally 

speaking, •OH can attack on DNA bases leading to three classes of damage: 

hydroxylation, ring opening, and fragmentation. The resulting lesions are usually 

products of the secondary reactions that occur after the initial radical attack. In addition 

to producing direct damage to bases, a transient radical species generated within the DNA 

base may covalently bind with other macromolecules within the cell, forming 

protein-DNA cross-link. Not only this, •OH may also attack the sugar-phosphate 

backbone of DNA, causing a different variety of lesions. Another indicator for radical 

attack on the DNA backbone is the fragmentation of deoxyribose. Single strand breaks 

occur via hydrogen abstraction at the C-4 position, leading to oxidation of the sugar 

moiety. This may be coupled with a second sugar oxidation on the complimentary strand, 

causing a double strand break. Strand breaks in the DNA molecule may prove mutagenic 

or even lethal for the cell (Halliwell and Aruoma, 1991). PN is another biologically 
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important oxidant to induce DNA damage. Evidence showed peroxynitrite causes 

single-strand DNA strand breaks in both plasmid supercoiled DNA (Salgo et al., 1995a) 

and viable DNA in rat thymocytes in a dose-dependent fashion (Salgo et al., 1995b). It is 

believed PN reacts preferentially with guanine in DNA (Douki and Cadet, 1996), and the 

majority of mutations caused by PN occur at G:C base pairs (Juedes and Wogan, 1996). 

PN-mediated DNA strand breakage resulted in a significant decrease activation of DNA 

repair enzyme poly-(ADP-ribose) polymerase, which depletes celluar NADH and 

disrupts energy metabolism (Szabo et al., 1996).
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IV. Role of Mitochondria in Traumatic Spinal Cord Injury 

 
The mitochondrion is the ‘powerhouse’ of the cell. Maintaining mitochondrial 

bioenergetics in neurons is critical, because their energy supply is almost solely 

dependent on mitochondrial-derived ATP (Budd and Nicholls, 1998; Nicholls and Budd, 

2000; Sullivan et al., 1998; Sullivan et al., 2005). After CNS injury, compromised 

mitochondrial function is believed to play a pivotal role in neuronal death due to, but not 

limited to the following mechanisms: a) mediating glutamate excitotoxicity through the 

regulation of Ca2+ signaling (Schinder et al., 1996); b) giving rise to more generation of 

ROS and thus inducing further oxidative damage; c) initiating the necrotic or apoptotic 

pathways by opening mitochondrial permeability transition pore (mPTP) (Fiskum, 2000; 

Friberg and Wieloch, 2002; Wieloch, 2001). Each topic is addressed briefly in this 

section.  

  

Mitochondria as a Ca2+ Sink 

 

Disruption of ionic balance, especially Ca2+ homeostasis has been observed in the 

lesion site after experimental SCI (Park et al., 2004). Apart from physical shearing of cell 

membranes resulting in the loss of ionic normal gradients, more subtle effects, such as 

Na+-K+ ATPase failure after experimental SCI (Clendenon et al., 1978) will greatly 

increase the cytosolic Ca2+ concentration (Young and Koreh, 1986). Failure of Na+-K+ 

ATPase depolarizes the cell membrane, which in turn activates the voltage-gated Ca2+ 

channel and causes subsequent Ca2+ influx. Additionally, impaired ATPase causes 

intracellular Na+ accumulation and the reversal of Na+-Ca2+ exchangers (Stys et al., 1992), 

further exacerbating the intracellular Ca2+ overload. More importantly, previously 

described glutamate excitotoxicity, an important pathological event after CNS injury, is 

triggered by massive Ca2+ influx arising from over-stimulation of the NMDA subtype of 

glutamate receptors (Faden et al., 1989). Major sources of intracellular Ca2+ after CNS 

trauma are illustrated in Figure 1.11. 
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Mitochondria serve as high capacity Ca2+ sink and help in maintaining cellular Ca2+ 

homeostasis which is essential for normal neuronal function (Ichas and Mazat, 1998; 

Rizzuto et al., 1999; Rizzuto et al., 2000). Specifically, when the intracellular Ca2+ 

reaches a “set-point” of 500 nm, the unique features of mitochondria allow them to take 

up Ca2+ in order to modulate Ca2+ homeostasis (Schinder et al., 1996). However, if the 

increase of intracellular Ca2+ is beyond the mitochondrial buffering capability or 

mitochondrial function is impaired under abnormal conditions such as CNS injury, 

intracellular Ca2+ overload occurs and initiate a chain of pathological events. For instance, 

excessive mitochondrial Ca2+ accumulation uncouples electron transport from ATP 

synthesis and leads to mitochondrial dysfunction (Beatrice et al., 1980; Gunter and 

Pfeiffer, 1990; Bernardi et al., 1994). Indeed, mitochondrial dysfunction is believed as 

the primary event and an essential mediator of glutamate excitotoxicity (Schinder et al., 

1996).  

 

Mitochondria and ROS formation 

 

Mitochondrial production of energy is accompanied by the generation of ROS as 

by-products of the oxidative phosphorylation process. Oxidants such as O2
•-, H2O2, •OH 
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are constantly generated even during normal metabolism as the intrinsic rate of proton 

leakage (Shigenaga et al., 1994). There are some cellular anti-oxidant defenses including 

glutathione, SOD and catalase that neutralize the production of oxidants. However, under 

pathological conditions such as SCI, the rate of ROS production within mitochondria is 

exacerbated and if the amount of ROS unbalances the endogeous antioxidants, oxidative 

stress occurs, followed by cellular oxidative damage. The CNS is particularly susceptible 

to ROS-induced damage because a) it has a high consumption of oxygen; b) it contains 

high levels of membrane polyunsaturated fatty acids (PUFAs) susceptible to free radical 

attack; c) it is relatively deficient in oxidative defenses (e.g. poor catalase activity and 

moderate superoxide dismutase and glutathione peroxidase activities) and d) a high 

content in iron and ascorbate can be found in some regions of the CNS (Halliwell, 1992). 

Tissue injury, for example by ischemia or trauma, can cause increased metal ion 

availability and cerebrospinal fluid (CSF) cannot bind released iron, which will in turn 

enable more generation of ROS through the Fenton and Haber-Weiss reactions 

(Halliwell, 1992). 

 

Moreover, the disturbance of energy metabolism during Ca2+ overload results in an 

increase in the mitochondrial leak of oxygen radicals, which can overwhelm the 

antioxidant defense mechanisms and contribute to cell death (Nicholls and Budd, 2000). 

It has been shown that Ca2+ influx induces inner mitochondrial membrane (IMM) lipid 

re-organization by interacting with the anionic head of cardiolipin, which is abundant in 

IMM. As a result, single electrons delivered to oxygen at intermediate steps in the ETC 

results in to the production of O2
•- (Grijalba et al., 1999). In addition, •NO is also 

produced intra-mitochondrially through the activation of an isoform of NOS located 

within the mitochondria. It was suggested that this isoform of NOS is activated upon 

mitochondrial Ca2+ uptake (Giulivi, 1998). The simultaneous increases of O2
•- and •NO 

then promote the diffusion-controlled formation of PN, which is now proposed as an 

essential player mediating oxidative damage following CNS injury. Although •NO is 

believed to have a potentially toxic effect by itself, the toxicity that some have attributed 

to •NO is more likely mediated by PN and its decomposition products rather than •NO 

itself (Szabo et al., 2007; Bringold et al., 2000). For example, early work indicated that in 
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cells exposed to •NO, mitochondrial respiration was inhibited by the inactivation of 

electron-transport complex I and III (NADH-dependent and succinate-dependent 

respiration, respectively) without affecting complex IV (cytochrome c oxidase, the site of 

oxygen consumption). Those effects were later demonstrated both in isolated 

mitochondria and in cells to occur mainly through generation of PN (Radi et al., 1994; 

Riobo et al., 2001). Moreover, the inactivation of MnSOD by PN, due to nitration of the 

critical tyrosine-34 residue, could also amplify mitochondrial injury (MacMillan-Crow et 

al., 1996). Therefore, the mitochondrion serves as a primary source of ROS formation in 

pathological conditions and it is also a vulnerable target of self-derived ROS. 

 

Mitochondrial permeability transition pore (mPTP) 

Post-traumatic excessive mitochondrial sequestration of Ca2+ can lead to a sudden 

increase in inner membrane permeability to compounds with a molecular mass less than 

1,500 Daltons, defined as the formation of mitochondrial permeability transition pore 

(mPTP) (Bernardi et al., 1994; Crompton, 1999). The mPTP formation is an underlying 

mechanism for causing mitochondrial swelling, metabolic failure and ultimately cell 

death (Zamzami et al., 1997). Although it was considered to be a non-specific membrane 

opening or megachannel (estimated to be 2-3 nm in diameter), evidence showing that the 

onset of the mPTP can be prevented by the immunosuppressant cyclosporine A (CsA) 

suggested it is more than a non-specific membrane rupture (Bernardi et al., 1994; 

Bernardi 1996; Sullivan et al., 1999). Multiple studies have indicated that the oxidation of 

mPTP components may play a role in promoting mPTP formation. Direct evidence 

showed mPTP formation is induced by the depletion of glutathione and the oxidation of 

pyridine nucleotides (Nieminen et al., 1997). Some evidence has indicated that mPTP 

occurs when thiol (-SH-) groups of inner membrane proteins are oxidized (McStay et al., 

2002). The mPTP appears to have two open conformations in corresponding 

physiological pathways (Ichas and Mazat, 1998), that is, a low-conductance state which 

is involved in the regulation of the Ca2+ homeostasis during the life of the cell, and a 

high-conductance state which initiates the apoptotic cascade during Ca2+-dependent cell 

death. A low-conductance state, that allows the diffusion of small ions like Ca2+, is 
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pH-operated, promoting spontaneous closure of the channel. A high-conductance state, 

that allows the unselective diffusion of big molecules, stabilizes the channel in the open 

conformation, disrupting in turn the mitochondrial structure and causing the release of 

proapoptotic factors. 

An interesting hypothesis about mPTP formation is that it might serve as a defense 

mechanism to ameliorate or eliminate high ROS-producing cells and prevent further 

oxidative damage (Starkov, 1997). In this theory, mPTP is formed upon Ca2+ influx, 

which assists O2 consumption through dissipating membrane potential (∆Ψm) and proton 

force (∆pH) across the membrane. By increasing the proton leak through the inner 

mitochondrial membrane (IMM) or uncoupling, mitochondrial respiration is promoted 

and less oxygen is available for ROS production. Therefore mPTP formation appears to 

be a modulator responding to increased oxidative stress. However, complete uncoupling 

of mitochondrial respiration and ADP phosphorylation or prolonged uncoupling through 

mPTP will exhaust ADP in the matrix and lead to the inhibition of respiration. Highly 

oxidized mPTP will not be able to recover and result in disruption of outer mitochondrial 

membrane. Another theory is, excessive Ca2+ will saturate the internal Ca2+-binding sites 

of the mPTP and induce the irreversible switching from low- to high-conductance state 

(Ichas and Mazat, 1998). Once reaching this point of no return, small proteins that trigger 

the initiation of apoptosis, such as cytochrome c and apoptosis-inducing factor (AIF), are 

released from the mitochondrial intermembrane space into the cytoplasm (Brustovetsky 

et al., 2002; Brustovetsky et al., 2003; Green and Kroemer, 2004; Sullivan et al., 2005). 

Released cytochrome c binds apoptotic protease activating factor 1 (Apaf-1) and activates 

the caspase cascade (Hengartner, 2000). 

It is important to note that compared to brain, spinal cord (SC) mitochondria are 

more susceptible to oxidative damage and intracellular Ca2+ overload based on the fact 

that after traumatic brain injury (TBI), cyclosporine A reduces damage (Sullivan et al, 

1999) but is ineffective following SCI (Rabchevsky et al., 2001). This disparity is found 

to be attributable to: 1) significantly higher levels of O2
·- production, lipid peroxidation 

and mitochondrial DNA oxidation in normal SC neurons; 2) decreased complex I enzyme 

activity and respiration in normal SC mitochondria; 3) substantially reduced threshold for 
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Ca2+-induced mitochondrial permeability transition in SC (Sullivan et al., 2004). Because 

of above reasons, mitochondrial dysfunction and oxidative damage in SCI, compared to 

TBI, are more important issues to address and to prevent. 
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V. Calpain-Mediated Cytoskeletal Proteolysis in Traumatic Spinal Cord 

Injury  

SCI evokes an increase in intracellular free Ca2+ level resulting in activation of 

calpain, a Ca2+-dependent cysteine protease which cleaves a broad spectrum of substrates. 

Mounting evidence indicates that uncontrolled calpain activity mediates the breakdown of 

many cytoskeletal and membrane proteins leading to neuronal death and is considered as 

another crucial mediator in the pathophysiology of SCI (Ray and Banik, 2003; Banik et al., 

1992; 1997ab; Springer et al., 1997b). 

Calpain family 

 

Calpain, discovered by Guroff in the CNS (Guroff, 1964), is a family of 

Ca2+-activated cysteinyl/thiol (neutral) proteases, in which cysteine residues are present 

in its active site. The calpain family consists of several tissue-specific isoforms 

(n-calpain) and two ubiquitous isoforms (µ-calpain and m-calpain). Ubiquitous calpain 

isoforms are abundantly expressed in the CNS and are regulated by calpastatin, an 

endogenous calpain-specific inhibitor. Calpains are expressed in all vertebrates in which 

they are highly conserved across species. They are also found in various cell types and 

tissues (Sorimachi et al., 1997). The two ubiquitous calpain isoforms are categorized 

mainly on the basis of their sensitivity to [Ca2+] upon activation in their purified state in 

vitro. In other word, µ-calpain (or calpain 1) has micro-molar sensitivity to Ca2+ and is 

located primarily in the neuronal soma and dendrites. m-Calpain (or calpain 2) has a 

milli-molar sensitivity to Ca2+ activation and is primarily located in axons and glia. 

Moreover, because of the distinct subcellular localization of the calpain subtypes, they 

may serve specific physiological roles (Hamakubo et al., 1986). More recently, µ-calpain, 

which has higher affinity for Ca2+ binding, has been shown to locate in mitochondria 

(Garcia et al., 2005).  

 

Calpain structure and activation 
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Both μ-calpain and m-calpain consist of two parts: a non-identical 80 kDa catalytic 

subunit and an identical 30 kDa regulatory subunit (Ray et al., 2003). The 80 kDa large 

subunit can be divided in four domains (I, II, III, and IV), and the 30 kDa small subunit in 

two domains (V and VI) (Croall and Demartino, 1991). The domain structure of calpain 

subunits is illustrated in Figure 1.12 (modified from Ray et al., 2003). 

 

In resting cells, calpain is an inactive proenzyme in the cytosol where the intracellular free 

Ca2+ concentration stays 50–100 nM (Pietrobon et al., 1990). Calpain activation is 

triggered by an increase in intracellular free Ca2+ concentration in the cytosol. Some 

researchers believed calpain activation is accomplished by autolysis of N-terminal 

propeptide portions of both subunits, which results in a conformational change in the 

molecule and separation of truncated subunits leading to activation (Ray et al., 2003; 

Imajoh et al., 1986; Inomata et al., 1988). However, another mechanism proposes that 

elevated intracellular free Ca2+ concentration triggers the translocation of inactive calpain 

from the cytosol to the cell membrane (Molinari et al., 1994; Suzuki et al., 1987), where 

calpain is activated with the aid of membrane effectors such as phospholipids (Saido et al., 

1991) and calpain activator protein (Melloni et al., 1998; Ray et al., 2003). Once activated 
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on the membrane, calpain diffuses back into the cytosol and becomes resistant to the 

inhibition of calpastatin. Depending on the location of activation, calpain isoforms 

generated from activation processes may be involved in the physiological functions (Ray 

et al., 2003). Simplifed illustration of calpain activation hypotheses and major calpain 

substrates is displayed in Figure 1.13 (modified from Dr. Geddes). 

 

Role of Calpain in SCI 

 

Early studies on SCI found that progressive breakdown of myelin proteins such as 

myelin basic protein (MBP) and proteolipid protein (PLP), and axonal proteins such as 

neurofilament protein (NFP) and microtubule-associate protein 2 (MAP2) are associated 

with the structural degeneration of myelin and axons in the spinal cord after trauma (Banik 

et al., 1980). Increased calpain immunoreactivity has also been detected in macrophages, 

reactive astrocytes, microglia, and neurons in the SCI lesion as well as the adjacent areas 

(Ray et al., 2003; Li et al., 1995). The early increase in calpain expression and activity 
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following SCI is probably provoked by elevation of intracellular Ca2+ levels. Later 

increase of calpain activity is likely to stem from the inflammatory cells through 

production of cytokines and activation of the arachidonic acid cascade (Ray et al., 2003). 

Since calpain plays a key role in the pathophysiology of neurodegenerative disorders and 

diseases, many studies have been performed to identify calpain inhibitors and their 

potential beneficial effects. In traumatic SCI models, protease inhibitors that block 

calpains have been shown to attenuate the cytoskeletal protein loss, enhance the axonal 

survival and thus improve the neurological function after injury (Schumacher et al., 2000; 

Ray et al., 2000; Zhang et al., 2003). 
 

Since subunit autolysis seems to be an early event in the intramolecular activation of 

µ-calpain, the ratio of the activated, autolyzed 76 kD isoform to the 80 kD precursor form 

has been used as an index for µ-calpain activation. However due to the concept that 

calpain activation does not require autolysis, a more reliable and commonly used method 

of measuring calpain activity is to detect the presence of breakdown products (BDPs). 

Preferred substrates for calpain include cytoskeletal proteins spectrin, MAP2 and 

neurofilament proteins (NF), which are major components of neuronal cytoskeleton and 

membrane. The breakdown fragments of the 280 kD α-spectrin include calpain-specific 

145kD proteins, so called signature breakdown protein (SBDP) and 150 kD fragments 

which are generated by calpain and/or caspase 3. Therefore calpain activity can be 

indirectly detected by using antibody-based immuno-detection (Wang, 2000). The 

neuronal cytoskeleton is an important component maintaining cell architecture, as well as 

axonal transport, and possibly neuronal plasticity (Ludin and Matus, 1993). Studies have 

been shown that after experimental SCI, the cytoskeletal disrupton has 2 phases: a rapid 

loss of MAP2, Tau or nonphosphorylated NF, and a delayed loss of phosphorylated NF at 

1 week post injury (Zhang et al., 2000). Our time course study of calpain-mediated 

spectrin breakdown also revealed rapid accumulations of SBDPs but the peak did not 

occur until 72 hours post injury (Xiong et al., 2007). These various studies indicate the 

important role of calpain in cytoskeletal de-arrangement and degradation after SCI. 
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VI. Hypotheses and Specific Aims 

 
Based on described rationales and mechanisms, we hypothesized that: 

 

Hypothesis 1: Peroxynitrite-mediated oxidative stress is an important factor in secondary 

SCI, which causes cellular damage by lipid peroxidation and protein oxidation and 

nitration. (oxidative damage). 

 

Hypothesis 2: Cellular and mitochondrial oxidative damage contributes to an increase in 

intracellular Ca2+, which triggers calpain-mediated cytoskeletal degradation. 

 

Hypothesis 3: Tempol, a scavenger of peroxynitrite-derived free radicals, should be an 

effective neuroprotective agent for treating SCI that will reduce oxidative damage, 

preserve mitochondrial function, calpain-mediated cytoskeletal degradation. 

 

To test our hypotheses, we came up with and finished working on the following specific 

aims: 

 

Specific Aim 1: Investigate the time course of oxidative damage in the contused rat spinal 

cord using immunoblotting and immunohistochemical methods by applying three 

oxidative markers including peroxynitrite-derived 3-NT, lipid-peroxidized 4-HNE and 

protein-oxidized protein carbonyls. 

  

Specific Aim 2: Investigate the time course of calpain-mediated cytoskeletal damage in 

the contused rat spinal cord by measuring α-spectrin breakdown.  

 

The results of these two aims were published in the paper “Role of peroxynitrite in 

secondary oxidative damage after spinal cord injury” Xiong Y, Rabchevsky A and Hall 

ED. J. Neurochem. (2007) Feb;100(3):639-49. (Chapter Two) 
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Specific Aim 3: Examine the neuroprotective effects of tempol in the rat spinal cord 

contusion model by evaluating tempol’s ability to inhibit oxidative damage, preserve the 

mitochondrial function and reduce cytoskeletal degradation after spinal cord injury. 

 

The results of this specific aim were presented at the 36th Annual Meeting of the Society 

for Neuroscience in October, 2006 and 25th Annual National Neurotrauma Society 

Symposium in July, 2007 and are in the process of submitting to Journal of Neuroscience 

in a manuscript titled “Beneficial effects of tempol, a catalytic scavenger of peroxynitrite, 

in a rat spinal cord injury model”. (Chapter Three) 

 

Supplementary Specific Aim 4: Provide direct evidence that tempol exerts its 

neuroprotective effects at least partly through scavenging peroxynitrite-derived radicals 

by exposure isolated healthy spinal cord mitochondria to peroxynitrite donor SIN-1. 

 

Some results of this specific aim were also presented at the 36th Annual Meeting of the 

Society for Neuroscience in October, 2006 and are in the process of submitting to Free 

Radical Research in a manuscript titled “Tempol protects spinal cord mitochonodria from 

oxidative damage induced by peroxynitrite donor SIN-1” (Chapter Four) 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Yiqin Xiong 2008
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CHAPTER TWO 

 

ROLE OF PEROXYNITRITE IN SECONDARY OXIDATIVE DAMAGE AFTER 

SPINAL CORD INJURY 

 

J Neurochem. 2007 Feb;100(3):639-49. 

 

Note: I, Yiqin Xiong, contributed 100% to the research shown in the result section of 

Chapter Two. Thanks to Dr. Rabchevsky for the spinal cord injury expertise and the 

revision of this article. 
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I. Introduction 
 

Much of the damage that occurs in the spinal cord following traumatic injury is due 

to the secondary effects of glutamate excitotoxicity, Ca2+ overload, and oxidative stress, 

three mechanisms that take part in a spiraling interactive cascade ending in neuronal 

dysfunction and death (Tator and Fehlings, 1991; Anderson and Hall, 1993; Young, 1993; 

Lynch and Dawson, 1994). The role of reactive oxygen-induced oxidative damage to 

spinal cord lipids (i.e. lipid peroxidation, LP) and proteins has been strongly supported in 

previous work (Hall and Braughler, 1989; 1993; Azbill et al., 1997; Springer et al., 1997a; 

Baldwin et al., 1998; Juurlink and Paterson, 1998; Aksenova et al., 2002). Among the 

ROS species, hydrogen peroxide (H2O2) and its derived hydroxyl radical (•OH) are 

known to play an important role in post-traumatic oxidative damage (Braughler and Hall, 

1984; 1989). However, in 1990, Beckman and coworkers (Beckman et al., 1990) 

introduced the theory that the principal ROS involved in producing secondary tissue 

injury in neurological disorders is peroxynitrite (PN, ONOO-), formed by the reaction of 

nitric oxide synthase (NOS) generated •NO and O2
•- at almost diffusion-limited rates 

(6.7×109 M-1.S-1, Huie and Padmaja, 1993). Since that time, the biochemistry of PN (also 

referred to as a reactive nitrogen species) has been further identified. It is believed that 

the potent oxidizing ability of PN is actually due to its decomposition products that 

possess potent free radical 

characteristics. These products are 

formed in two pathways. As shown 

at left, the first involves the 

protonation of PN to form 

peroxynitrous acid (ONOOH), 

which can undergo hemolytic 

decomposition to form the highly reactive nitrogen dioxide radical (•NO2) and hydroxyl 

radical (•OH). Probably more physiologically important, PN will react with carbon 

dioxide (CO2) to form nitrosoperoxocarbonate (ONOOCO2
-), which can decompose into 

nitrogen dioxide (•NO2) and carbonate radical (CO3
•-). 
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Peroxynitrite-derived radicals (•OH, •NO2, CO3
•-) can initiate lipid peroxidation (LP) 

cellular damage by attacking unsaturated fatty acid or cause protein carbonylation by 

reacting with susceptible amino acids. LP products malondialdehyde (MDA) and 

4-hydroxynonenal (4-HNE) can therefore bind to cellular proteins compromising their 

structural and functional integrity. 4-Hydroxynonenal is the more important player in that 

it is actually itself neurotoxic (Kruman et al., 1997) and may be a more specific marker 

for LP than MDA (Uchida et al., 1992; Schmidt et al., 1996). Additionally, •NO2 can 

nitrate the 3-position of tyrosine residues in proteins, the measurement of 3-nitrotyrosine 

(3-NT) accumulation thus provides a biomarker of peroxynitrite action (Beckman et al., 

1996). These oxidative mechanisms undoubtedly underlie the demonstrated 

neurodegenerative effects of PN shown in neuronal cell culture models (Kruman et al., 

1997; Neely et al., 1999). 

 

Another critical mechanism in the evolution of secondary injury involves the 

activation of Ca2+-dependent proteases (calpains) (Zimmerman and Schlaepfer, 1984; 

Suzuki et al., 1987; Saido et al., 1994) that can cleavage a broad spectrum of substrates, 

including the cytoskeletal proteins (Braughler and Hall, 1984; Banik et al., 1997ab; 

Bartus et al., 1995; Kampf et al., 1997), which are essential for normal cellular function 

and survival (Schlaepfer and Zimmerman, 1985; Siman et al., 1989; Johnson et al., 

1991). One of the cytoskeletal substrates is α-spectrin, which has recently been proposed 

as a potential diagnostic biomarker for calpain activation in CNS injury (Wang, 2000; 

Hall et al., 2005; Ringger et al., 2004). The breakdown products of α-spectrin include the 

Ca2+-specific 145 kD fragment (SBDP 145) and calpain/caspase 3-generated 150 kD 

fragment (SBDP 150). Over the past few years, the role of oxidative damage in 

post-traumatic Ca2+ overload and the resulting calpain activation has been strongly 

supported. Oxidative damage is known to exacerbate excitotoxic glutamate and to 

compromise the neuronal homeostatic mechanisms that either directly or indirectly 

regulate intracellular Ca2+ including, the Na+-K+ ATPase, Ca2+-ATPase, Na+-Ca2+ 

exchanger and mitochondrial Ca2+ sequestration (Siesjo and Bengtosson, 1989; 

Pellegrini-Giampietro et al., 1990; Hall, 1995; Sullivan et al., 1998). Thus, oxidative 

damage most likely contributes to calpain activation by disruption of Ca2+ homeostasis. 
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To investigate the hypothesis that PN is a crucial player in secondary oxidative 

damage in SCI, the present study was undertaken in a rat model of moderately severe 

contusion SCI to examine temporal changes in three oxidative markers, 3-NT, 4-HNE 

and protein carbonyl, over the first week post-injury. In parallel, the time course of 

calpain-mediated α-spectrin breakdown was also determined to provide a better 

understanding of the temporal relationship between oxidative damage and intracellular 

Ca2+ overload-mediated calpain activation. 
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II. Materials and methods 
 

Subjects 

This study employed young adult female Sprague-Dawley rats (Charles River, Portage, 

MI) weighing between 200 and 225 grams. The animals were randomly cycling and were 

not tested for stage of the estrus cycle. They were fed and watered ad libitum. All 

procedures described below have been approved by the University of Kentucky 

Institutional Animal Care and Use Committee and followed NIH guidelines. 

 

Rat Model of Traumatic Spinal Cord Contusion Injury 

Rats were anesthetized with ketamine (80 mg/kg) and xylazine (10 mg/kg) before a 

laminectomy of the T10 vertebrae was performed. Spinal cord 

injury was performed using the Infinite Horizon (IH) device 

shown at the left (Scheff et al., 2003), which creates a reliable 

contusion injury to the exposed spinal cord by rapidly applying 

a force-defined impact with a stainless steel-tipped impounder. 

Care was taken to perform laminectomies that were slightly 

larger than the 2.5 mm impactor tip. The vertebral column was 

stabilized by clamping the rostral T9 and caudal T11 vertebral 

bodies with forceps. The vertebral column and exposed spinal cord was carefully aligned 

in a level horizontal plane. During impact, the stepping motor drove the coupled rack 

toward the exposed spinal cord inflicting the contusion injury. The force applied to spinal 

cord was 200 kdyn, which produces a moderately severe injury. The impactor device was 

connected to a computer that records the impounder velocity, actual force and 

displacement of the spinal cord. 

 

Immunoblotting Analysis for 4-HNE, 3-NT and Protein Carbonyl 

At different time points following surgery (1hr, 3hr, 6hr, 24hr, 48hr, 72hr, 1week), a first 

set of animals (6 rats per time point) was killed by sodium pentobarbital overdose (150 

mg/kg). A 20 mm segment of spinal cord containing the impact epicenter was removed 

rapidly by laminectomy. The harvested tissue was dissected on a chilled stage and 
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immediately transferred to a centrifuge tube containing 800 μl Triton lysis buffer [20 mM 

Tris-HCl, 150 mM NaCl, 1% Triton X-100, 5 mM EGTA, 10 mM EDTA, 20 mM 

HEPES, 10% solution of glycerol and protease inhibitor cocktail (Roche Inc. Nutley, 

NJ)] and then briefly sonicated. Following dismembranation, the spinal cord tissue 

samples were centrifuged at 15,000×g for 30 min at 4°C, the supernatant was collected, 

protein levels were determined using the Protein Assay Kit (Pierce Biotechnology, Inc. 

Rockford, IL), the samples then diluted to a concentration of 1 μg/μl and stored at -80°C 

until assay. 

 

Measurement of Oxidative damage by Slot immunoblotting 

A 2 μl protein sample (2 μg) was loaded on slot blot apparatus for optimal antibody 

binding sensitivity. After addition of 200 ml Tris-buffered saline (TBS), protein was 

slowly brought down to the underneath nitrocellulose membrane (Bio-Rad Laboratories, 

Hercules, CA) by gravity. For lipid peroxidation, rabbit polyclonal anti-HNE antibody 

was applied (1:5,000 Alpha Diagnostics International, Inc. San Antonio, TX). For 

PN-generated 3-NT, rabbit polyclonal anti-nitrotyrosine antibody was employed (1:2,000 

Upstate USA, Inc. Charlottesville, VA). To detect protein oxidation, the oxy-blot 

technique was used (Oxy-blot Protein Oxidation Detection Kit; Chemicon International, 

Temecula, CA). The slot blots were analyzed using the Li-Cor Odyssey Infrared Imaging 

System (LI-COR Biosciences, Lincoln, Nebraska), which employs IRDye800 conjugated 

goat anti-rabbit IgG (1:5,000, Rockland; Gilbertsville, PA) as the secondary antibody. 

Preliminary studies in our laboratory were carried out to demonstrate that the 2 μg sample 

was within the linear range of densitometry curve for each of the oxidative markers. 

Thus, we were able to verify that the densitometric readings were not beyond the range of 

accurate quantitation. On all blots, a blank slot without any protein loading was employed 

to correct for nonspecific binding. The value of the blank was background-subtracted 

from the values for all the other samples. 

 

Immunohistochemistry for 3-NT and 4-HNE 
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At different time points following surgery (1hr, 3hr, 6hr and 24hr), a second set of 

animals was overdosed with sodium pentobarbital (150 mg/kg) and perfused with 150 ml 

of 0.1M phosphate-buffered saline (PBS) followed by 200 ml of 4% paraformaldehyde in 

PBS (PH=7.4). For cross sections, a 5 mm spinal cord segment, centered on the injury 

epicenter, was dissected at different time points. For longitudinal sections, a 15 mm 

spinal cord segment including the impact site was dissected 24 hrs after injury. After 

harvesting, the spinal cords were immersed in 4% paraformaldehyde in PBS for 4 hrs and 

transfer the tissues to PBS overnight and cryopreserved in phosphate buffered 20% 

sucrose for two days. Spinal cords were sectioned at 20 μm in a transverse or longitudinal 

plane, and the section was transferred directly onto a series of Superfrost plus slides 

(Fisher Scientific International Inc., Hampton, NH). After collecting all the spinal cord 

sections, the slides were placed on a tray and stored at 4°C to dehydrate overnight after 

which they were stored at -20°C until staining. 

 

On the day of staining, the frozen slides were removed from -20°C and let thaw at 

room temperature for 30 min. After rinsing in 0.2 M phosphate-buffered saline (PBS), the 

sections were incubated in 3% H2O2 in 0.2 M PBS for 30 min, followed by incubation in 

blocking buffer (5% goat serum, 0.25% Triton-X, 1% dry milk in 0.2 M PBS) for 1 hr, 

followed by exposure to either the rabbit polyclonal anti-4-HNE (1:5000) or anti-3-NT 

antibody (1:2000) overnight. The following day, sections were incubated for 2 hrs at 

room temperature with biotinylated goat anti-rabbit secondary antibody (1:200, Vector 

ABC-AP Kit, Vector Labs, Burlingame, CA). After rinsing, the sections were incubated 

in VECTASTAIN ABC reagent (Vector Labs, Burlingame, CA) for 1 hr followed by 

development of the staining using the Vector blue method (Vector Blue Alkaline 

Phosphatase Substrate Kit, Vector Labs, Burlingame, CA) in the dark for 10-30 min. 

After reaction, spinal cord sections were counter-stained with nuclear fast red (Vector 

labs, Burlingame, CA), dehydrated and then photographed on an Olympus Provis A70 

microscope with an Olympus Magnafire digital camera (Olympus America, Inc., 

Melville, NY).  
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Western Blot Analysis for α-Spectrin Breakdown 

Five μg of each sample was run on SDS/PAGE [3-8% (w/v) acrylamide, Bio-Rad 

Criterion XT precast gel] with a Tris-Acetate running buffer system and then transferred 

to nitrocellulose membranes using a semi-dry electro transferring unit (Bio-Rad 

Laboratories, Hercules, CA) at 20 mA for 15 min. The blots were probed with mouse 

monoclonal anti-α-spectrin antibody (1:5,000, Affiniti, Inc., Ft. Lauderdale, FL; now part 

of Biomol, International, LP), which recognizes an epitope that is common to the 280 

kilo-dalton (kD) parent α-spectrin as well as each of the 150 kD and 145 kD proteolytic 

fragments. Exposure to the primary antibody was followed by application of the 

secondary IRdye800 conjugated goat anti-mouse IgG (1:5,000, Rockland, Gilbertsville, 

PA) for 1 hr in the darkness. Imaging analysis of Western blots was done using the 

Li-Cor Odyssey Infrared Imaging System, to quantify the content of the 145 and 150 kD 

α-spectrin breakdown products (SBDP 145 and SBDP 150). Each western blot included a 

standardized protein loading control to allow for correction in regards to intensity 

differences from blot to blot. This quantitative method has been employed in this 

laboratory for multiple studies (Hall et al., 2005).  

 

Statistical Analysis 

Quantitative densitometry analysis was used for reading the slot blots and western 

immunoblots. Statistical analysis was done using the STATVIEW software package 

(JMP software, Cary, NC). All values are expressed as mean ± standard error (S.E.M.). A 

one-way analysis of variance (ANOVA) was first run. If the ANOVA revealed a 

significant (p<0.05) effect, post-hoc testing was carried out to compare individual 

post-traumatic time points to the sham, non-injured group by Fisher's PLSD test. In all 

cases, a p value of <0.05 was considered significant. 
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III. Results 

Time Course of Peroxynitrite-induced Oxidative Damage after SCI 

 

Rapid accumulation of 3-NT after spinal cord injury is evidenced in the 

representative slot blot (Figure 2.1). Sham rats are non-injured animals that underwent 

laminectomy surgery followed by tissue harvesting 24 hrs later. Compared to the 

non-injured sham group, injury produced a significant increase in 3-NT measured in the 

injured spinal cord tissue across the post-traumatic time course [One-way ANOVA 

F(7,40)=22.784; p<0.0001]. Figure 2.1 displays the time course of 3-NT production 

between 1 hr and 1 week after SCI. Post-hoc testing revealed a significantly higher level 

of 3-NT as early as 1 hr post injury, suggesting the rapid increase of PN formation after 

SCI. The peak in 3-NT occurred at 24 hrs post injury (p<0.05 vs. 6 hrs, n=6) and 

decreased at later time points (p<0.05 vs. 48 hrs, 72 hrs, 1 week, n=6). However, 

compared to sham rats, the significantly high level of 3-NT maintained up to 1 week after 

SCI (p<0.0001, n=6). Y axis indicates the arbitrary density ratio to control bands in each 

blot, which normalized the bands across different blots. Control tissues are combined SC 

tissues from rats that underwent laminectomies and were sacrificed at 3 hrs, 24 hrs and 48 

hrs.  
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The production of protein oxidation-derived protein carbonyls after spinal cord 

injury showed a similar pattern (Figure 2.2). Left panel demonstrated a representative 

blot of protein carbonyls staining. One-way ANOVA showed an overall increase in 

protein carbonyl contents was observed after injury [F(7,40)=16.978, p<0.0001]. 

Post-hoc testing revealed that the level of protein carbonyls was significantly elevated at 

1 hr post injury compared to the sham groups. The high levels were sustained to 1 week 

post injury (p<0.0001, n=6). Although the protein carbonyl level produced at 24 hrs post 

injury was slightly higher than other time points, no significant differences were detected 

among different time points. 

 
Figure 2.3 displays the time course of production of lipid peroxidation-generated 

4-HNE between 1 hr and 1 week after moderate SCI. Injury resulted in a sustained 

increase in 4-HNE after injury [One-way ANOVA F(7,40)=6.822, p<0.0001]. The 

significant elevation of 4-HNE was observed at all time points observed after SCI 

(p<0.0001, n=6). The peak increase was observed at 24 hrs post injury (p<0.01 vs. 6 hrs, 

n=6) and the high levels waned thereafter (p<0.05 vs. 48 hrs, 72 hrs, 1 week, n=6). Based 

on these results, the temporal characteristics of the formation of PN, protein carbonyls 

and 4-HNE after SCI are in excellent agreement with each other.  
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Immunohistochemical Analysis of Peroxynitrite-induced Oxidative Damage 

 

As shown in Figure 2.4, 3-NT immunoreactivity (3-NT-IR) was absent in cross 

sections obtained from laminectomy control (sham) animals harvested at 24 hrs following 

surgery. In contrast, at 1 hr following injury, a massive increase in 3-NT-IR was detected 

in cross sections examined at the epicenter of the contusion injury. Staining was most 

intense in the gray matter, but was also seen to extend into the surrounding white matter. 

By 3 hrs post-injury, a necrotic (hemorrhagic) lesion appeared in the gray matter dorsal to 

the central canal. Between 3 and 6 hrs this lesion increased in size and was surrounded by 

3-NT immunostaining. No 3-NT immunoreactivity was detected in the section in the 

absence of primary antibody exposure (Data not shown). Scale bar: 0.2 mm. 
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The cross sectional immunohistochemical analysis of 4-HNE accumulations after 

SCI is shown in the lower panel of Figure 2.5. The spatial and temporal staining patterns 

of 4-HNE are quite similar to those for 3-NT staining. Positive 4-HNE immunoreactivity 

(HNE-IR) was weak, but present, in the gray matter of sham non-injured rats. At 1 hr 

following injury, intense HNE-IR was detected around the impact site and was primarily 

associated with the gray matter, and a major necrotic cavitation formed by 6 hrs 

following SCI. The co-localization of lipid peroxidized 4-HNE and PN marker 3-NT 

suggested that lipid peroxidation, which is at least partly mediated by or associated with 

PN formation, is another important oxidative mechanism following acute SCI. 

 

 
 

It should be noted that the apparent discrepancy between the slot blot studies which 

showed a substantial 3-NT and 4-HNE signal in the sham, non-injured animals and the 

immunohistochemical studies which showed little or no 3-NT or 4-HNE staining in the 

shams we believe is probably due to the difference in preparation of the animals. The slot 

blot measurements were made on samples obtained from animals that were not perfused. 

Thus, it is probable that the measured 3-NT and 4-HNE is largely due to presence of 

blood components in the samples. In contrast, the animals used for the 

immunohistochemistry were of necessity perfused with PBS and with paraformaldehyde 

which would eliminate blood contribution.  In any case, even though the apparent 

magnitude of the oxidative damage increase is more dramatically seen in the 
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immunohistochemical studies compared to the immunoblot analyses, the extended time 

course of the post-traumatic increase in oxidative damage is observed with both methods.  

 

To have a better understanding of the co-localized phenomenon of 3-NT and 4-HNE 

staining, higher power views (20X) of the 3-NT and 4-HNE immunohistochemistry at 6 

hrs post injury are provided in Figure 2.6. Intense 3-NT and 4-HNE immunostaining are 

seen in motor neuron somata and axons that course through the ventral spinal white 

matter. Increased staining is also apparent throughout the neuropil. The staining patterns 

of 3-NT and 4-HNE observed in high power views are also resembled to each other. 

Scale bar: 0.2 mm. 

 
 

Careful observation of 3-NT staining showed PN formation is not just limited to the 

injury site, the ensuing oxidative stress spread within the SC tissue. Figure 2.7 displays 

the distribution of 3-NT immunostaining in five sections over an 8 mm distance which 

includes the epicenter and the surrounding rostral (+) and caudal (-) tissues. The sections 

were obtained from animals that sacrificed at 6 hrs after SCI. Intense 3-NT 
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immunoreactivity was detected even at sections 4 mm rostral to the injury epicenter. 

Scale bar: 0.2 mm. 

 
In Figure 2.8, examples of 15 mm longitudinal SC sections are shown which 

demonstrate the extent and coincidence of 3-NT and 4-HNE accumulations at 24 hrs 

following injury. Obvious tissue loss and cavitation could be observed at the impact sites. 

The 3-NT-IR was most intense around the injury site, but was clearly detected up to 5 

mm rostral and caudal to the injury epicenter. Although the staining was most intense in 

the gray matter, increased staining is also seen in the white matter. The 4-HNE-IR 

showed the similar staining pattern again underscoring the overlap and coincidence of 

nitrative and lipid peroxidative damage after SCI. Scale bar: 1 mm. 
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Time Course of Calpain-Mediated Cytoskeletal Degradation 

 

We next carried out experiments to investigate the calpain activation and subsequent 

cytoskeletal disruption after SCI by measuring the breakdown of α-spectrin. Figure 2.9 

shows the time course of changes in the levels of the breakdown products of the 

cytoskeletal protein α-spectrin which has been demonstrated to be produced by the 

proteolytic action of calpain (Wang, 2000). A representative western blot is shown in the 

upper panel. The bands from the top to the bottom are stained for intact α-spectrin (280 

kD), calpain/caspase 3-generated 150 kD and calpain-generated 145 kD fragments, 

respectively. In the present study, we focused on the 145 kD fragments. The 

accumulation of calpain-specific SBDP 145 was readily detected across the 

post-traumatic time course [One-way ANOVA F(7,40)=22.620, p<0.0001]. Post-hoc 

analysis showed that there was a significant increase in the 145 kD as early as 1 hr 

post-injury, indicating the rapid onset of calpain activation after SCI. Quantitative 

analysis of SBDP 145 showed the significant increases of all the injury groups compared 

to the sham group (p<0.0001, n=6). However the peak increases didn't occur until 72 hrs 
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post-injury (p<0.05 vs. 48 hrs, n=6), suggesting that maximal activation of calpain was 

somewhat delayed in comparison to the earlier peak in oxidative damage which occurred 

at 24 hours post injury (Figure 2.1 and 2.3). At 1 week post injury, the increase of SBDP 

145 decreased back toward the control level (p<0.0001 vs. 72 hrs, n=6), but remained 

significantly higher than the non-injured sham group (p<0.0001, n=6).  
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IV. Summary and discussion 
 

Spatial and Temporal Pattern of PN-Mediated Oxidative Damage: Although the 

role of reactive oxygen species (ROS) and oxidative damage has been widely studied in 

spinal cord injury models (Hall and Braughler, 1989; 1993; Azbill et al., 1997; Springer 

et al., 1997; Juurlink and Paterson, 1998; Aksenova et al., 2002), only a few 

investigations have addressed the role of the ROS PN post spinal cord injury 

pathophysiology. In previous studies, neuronal NOS activity was shown to be 

upregulated at 5 hrs following SCI in rats (Sharma et al. 1996). Subsequently, it was 

shown that inducible NOS expression levels and activity are also increased after 

contusion SCI except this does not occur until 72 hrs after contusion SCI (Diaz-Ruiz et 

al., 2004). Evidences have shown that the administration of NOS inhibitors can exert a 

neuroprotective effect in the injured rat spinal cord and improve neurological recovery 

(Cohen, 1996). From these studies, it was originally proposed that •NO itself plays an 

important role in secondary damage following SCI (Sharma et al. 1996). However, 

interpretation of these data has changed since it is now clear that PN is the mediator of 
•NO cytotoxicity (Bartosz, 1996). Consistent with the hypothesis that PN is a critical 

player in post-traumatic oxidative damage, three different antioxidant compounds that 

either scavenger PN or its derived free radicals •OH, •NO2 and CO3
•-, have been shown to 

be neuroprotective and/or to improve neurological recovery in rat SCI models. For 

instance, uric acid, a selective inhibitor of certain PN-mediated reactions, protected the 

spinal cord tissue from secondary damage in vitro and in a mouse SCI model (Scott et al., 

2005). Tempol, a scavenger of PN-generated free radicals (Carroll et al., 2000), improves 

locomotor and histological outcomes after spinal cord contusion in rats (Hillard et al., 

2004). More recent study has shown that exposure of rat spinal cord tissue in vivo to PN 

can produce oxidative damage like that found in the mechanically injured spinal cord 

(Liu et al., 2005). All these findings strongly support the concept that PN is an important 

mediator of secondary oxidative damage after acute SCI.  

 

Despite these previous studies which imply that PN is involved in post-SCI 

secondary injury, an understanding of the spatial and temporal characteristics of 
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PN-induced oxidative damage has been lacking. The present results provide this much 

needed information. First of all, the time courses of protein nitration, LP and protein 

oxidation show an almost identical temporal pattern. Moreover, all three markers, as 

measured by either immunoblotting or immunohistochemistry, increased rapidly (as early 

as 1 hr) after spinal cord injury. In the case of lipid peroxidative (i.e. 4-HNE) and protein 

oxidative (i.e. protein carbonyl) damage, this is consistent with the findings of earlier 

researchers who have examined time courses of lipid and protein oxidative secondary 

injury in rat SCI models (Azbill et al., 1997; Springer et al., 1997; Baldwin et al., 1998; 

Aksenova et al., 2002). However, our current time course is more complete in that it 

includes both LP and protein oxidation in parallel as well as including protein nitrative 

damage after SCI. 

 

In our immunohistochemical analysis, intense 3-NT and 4-HNE immunoreactivity 

was seen in the injury epicenter and adjacent area, and more importantly, in those areas, 

the 3-NT and 4-HNE staining are spatially and temporally coincident. It is well known 

that LP is a self-perpetuating form of free radical damage that is believed to be a major 

factor in the spread of spinal tissue degeneration after SCI (Hall, 1991; Hall and 

Braughler, 1993; Anderson and Hall, 1993; Luo, 2005). It is a multi-step process that 

causes damage to membrane lipids and results in the changes in membrane fluidity and 

permeability, altered function of membrane-associated proteins and increased likelihood 

of organelle and cell lysis (Gutteridge and Halliwell, 1989; Halliwell and Chirico, 1993). 

Our finding that the spatial and temporal patterns 3-NT and 4-HNE go hand in hand 

suggests that PN may be a common mediator of LP as well as protein nitration. However, 

it is also likely that iron catalyzed, •OH-initiated LP mechanisms also play some role in 

post-traumatic LP and protein oxidation in injured spinal cord tissue (Braughler and Hall, 

1989; Hall and Braughler, 1989; 1993) although they cannot directly contribute to protein 

nitration. Both protein nitration and LP are most intense in the central gray matter and 

progressively extend into the surrounding white matter. This extension of oxidative 

damage from the center of the cord toward its periphery is consistent with the long 

known centrifugal progression of post-traumatic neurodegeneration that occurs after 

blunt SCI. Furthermore, our longitudinal immunohistochemical observation at 24 hrs 
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after SCI demonstrated that both 3-NT and 4-HNE staining spreads a considerable 

distance from the injury site, suggesting oxidative damage is a crucial pathological event 

after SCI that leads to further damage by affecting adjacent area.  

 

Secondly, our results show that the time course of PN-mediated oxidative damage 

extends out to at least a week after injury. This finding of sustained oxidative damage 

suggests that antioxidant strategies which target PN may need to be prolonged for 

multiple days in order to adequately protect the injured spinal cord. Thus, the single dose 

studies that have so far been carried out in rodent SCI models with either the PN 

scavenger uric acid (Scott et al., 2005) or the PN radical scavenger Tempol (Hillard et al., 

2004) although sufficient to show some positive effects, are probably inadequate to 

produce optimal antioxidant protection. 

 

Relationship of Oxidative Damage to the Temporal Pattern of 

Calpain-Mediated Cytoskeletal Degradation: Previous studies have shown 

calpain-mediated proteolysis is also a key contributor to the post-traumatic damage in the 

injured spinal cord (Braughler and Hall, 1984; Springer et al., 1997; Aksenova et al., 

2002; Ray and Banik, 2003). Calpains, a family of Ca2+-dependent cytosolic proteases, 

are abundantly expressed in the central nervous system. Pathological calpain activation is 

known to be triggered by excessive intracellular Ca2+ accumulation (Bartus, 1995; 

Kampfl et al., 1997), which is believed to be associated with the glutamate release and 

sustained NMDA activation as well as depolarization-induced opening of 

voltage-dependent Ca2+ channels after CNS trauma. After activation, calpains trigger 

multi-pattern neuronal death by cleavage of a broad spectrum of substrates including 

cytoskeletal proteins, membrane-associated proteins, enzymes involved in signal 

transduction, transcription factors and others (Carafoli and Molinari, 1998; Wang, 2000). 

Calpain-mediated proteolysis of the major membrane-skeletal protein, α-spectrin, results 

in the appearance of two highly stable breakdown products, calpain-specific SBDP 145 

and the non-specific calpain/caspase 3 generated SBDP 150.  
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Several lines of evidence indicate that ROS and oxidative damage mechanisms 

participate in the exacerbation of post-traumatic Ca2+ overload and calpain-mediated 

cellular proteolysis. It has been generally reported that ROS cause a rapid increase in 

Ca2+ concentration in the cytoplasm of diverse cell types (Roveri et al., 1992; Chakraborti 

et al., 1999; Okabe et al., 2000). Growing evidence has shown that ROS regulate 

mitochondrial Ca2+ homeostasis and respiration (Richter, 1995). Specifically, PON 

formed by mitochondrial nitric oxide synthase (NOS) has been found to promote Ca2+ 

release from intact mitochondria (Bringold, 2000). All these studies support the notion 

that ROS probably promote calpain activation by disrupting intracellular Ca2+ regulation 

and thereby increasing Ca2+ overload.  

 

On the other hand, our data suggests that the effect of ROS on calpain activation is 

more complicated than simply exacerbating its activity by compromising intracellular 

Ca2+ homeostasis and it has been hypothesized that the proteolysis of substrates by 

calpain is affected by the redox state of the local environment. Indeed, several 

investigators have reported that calpain activity can be strongly inhibited by ROS 

(Benuck et al., 1992; Rodney et al., 1997; Guttmann et al., 1997; Guttmann and Johnson, 

1998; Jamie et al., 2001). To obtain a better understanding of the linkage between 

PN-mediated oxidative damage and calpain activation following SCI, a complete time 

course study of calpain-mediated cytoskeletal degradation, indicated by measurement of 

calpain-specific SBDP 145, was carried out. The results show that there is a biphasic time 

course of post-traumatic calpain-mediated α-spectrin degradation. Initially, there is a 

rapid onset of calpain activation and followed by a gradual secondary increase in 

α-spectrin degradation. The peak in cytoskeletal degradation is not achieved until 72 hrs 

following SCI even though it is well known that intracellular Ca2+ overload is triggered 

very early after acute SCI (Young et al., 1982; Stokes et al., 1983). A similar pattern of 

slowly progressive calpain-mediated α-spectrin degradation has also been observed in the 

hippocampus, cortex and striatum in transient ischemic injury model (Subert et al., 1989; 

Saido et al., 1993; Neumar et al., 2001). It is possible that even though calpain activation 

and cytoskeletal damage is initiated very early, it is partially mitigated by some initial 
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ROS-induced inhibition of calpain activity. Later, as oxidative damage progressively 

impairs the various Ca2+ homeostatic mechanisms, intracellular Ca2+ overload will 

increase and calpain activation will intensify.  

 

 

Hypothesis and Summary: Our overall hypothesis based upon the findings in this 

study is illustrated in Figure 2.10. Initial insults to the spinal cord cause membrane 

depolarization, resulting in the opening the voltage-dependent Na+, K+ and Ca2+ channels, 

and the release of glutamate into the extracellular spaces, which will lead to the sustained 

activation of NMDA receptor. Both mechanisms directly or indirectly elevate 

intracellular Ca2+ and therefore activate cytosolic calpain. This initial Ca2+ influx results 
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in the rapid onset of calpain activation and the early accumulation of α-spectrin 

fragments (e.g. SBDP 145). At the same time, mitochondria take up the excessive Ca2+ in 

the cell, which subsequently activates mitochondrial NOS and results in overproduction 

of •NO radical. Elevated •NO out-competes superoxide dismutase (SOD) for superoxide 

radical (O2
•-), leading to the formation of PN. Then, PN-derived free radicals initially 

produce a partial inhibition of calpain activity. However, prolonged oxidative stress 

induces cellular oxidative damage by lipid peroxidation (LP), protein oxidation and 

nitration, indicated as increased 4-HNE, protein carbonyls and 3-NT respectively. These 

cytotoxic products exacerbate Ca2+ overload by compromising the mitochondrial Ca2+ 

transport, reversing the Na+-Ca2+ exchanger (Li et al., 2000) and impairment of the 

Ca2+-ATPase (Kurnellas, 2005). This secondary disruption of Ca2+ homeostasis results in 

persistent calpain activation, which dramatically out-competes the initial inhibition of 

ROS, induces further cytoskeletal degradation, which is indicated as the delayed phase of 

our α-spectrin breakdown analysis.  

 

In summary, the findings of this study strongly support the important role of 

PN-mediated oxidative damage following spinal cord injury. Prolonged oxidative damage 

and calpain activation after SCI, these two important events interact and are responsible 

for much of the secondary injury tissue loss after SCI. Accordingly, a combination of 

PN-targeted antioxidants and a calpain inhibitor might have a better neuroprotective 

action than either approach alone. Future studies in our laboratory will explore this 

possibility. 

 

 

 

 

 

 

 

Copyright © Yiqin Xiong 2008
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CHAPTER THREE 

 

BENEFICIAL EFFECTS OF TEMPOL, A CATALYTIC SCAVENGER OF 

PEROXYNITRITE-DERIVED FREE RADICALS, IN A RAT MODEL OF SPINAL 

CORD CONTUSION INJURY  

 

Abstract of some portions of this work has been published as: 

 

Beneficial effects of tempol on oxidative damage, mitochondrial dysfunction and 

cytoskeletal degradation after spinal cord injury in rats. (2007) J. Neurotrauma. 24(7): 

p229  

 

This manuscript is in the process of submitting to J. Neuroscience. 

 

Note: I, Yiqin Xiong, contributed 100% to the research shown in the result section of 

Chapter Three. Thanks to Drs. Alexander G. Rabchevsky and Indrapal N. Singh for 

mitochondrial expertise.  
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I. Introduction 

Oxidative damage is one of the well-documented secondary injury mechanisms after 

initial insults to CNS. Among all the reactive oxygen species (ROS), the role of 

peroxynitrite (PN), formed by nitric oxide (•NO) and superoxide (O2
•-) (Beckman et al., 

1990), has been proposed as a key contributor of post-traumatic oxidative damage 

(Beckman, 1994; Crow and Beckman, 1996), mainly because its decomposition products 

(•NO2, •OH, CO3
•-) possess potent free radical characteristics. PN-derived radicals exert 

toxic effects by oxidizing protein, modifying protein by tyrosine nitration and inducing 

lipid peroxidation (Hall and Braughler, 1989; 1993; Kruman et al., 1997; Alvarez and Radi, 

2003; Xiong et al., 2007). Moreover, PN can react with DNA forming single-strand DNA 

breaks (Salgo et al., 1995a; Szabo et al., 1996) and directly inhibit mitochondrial 

respiration (Bolanos et al., 1995), resulting in further cellular and tissue damages. In 

agreement, a number of PN-targeting compounds protected against secondary damage, 

reduced inflammation and improved the functional recovery after spinal cord injury (SCI), 

either by selectively inhibiting PN-mediated reactions or scavenging PN (Scott et al., 2005; 

Genovese et al., 2007), which strongly supported the role of PN in mediating secondary 

damage and open up a novel direction to neuroprotective therapy after CNS trauma.  

In the present study we focused on tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine 

-N-oxyl), a representative of a newly emerged antioxidant family: stable nitroxide radicals 

(Krishna and Samuni, 1994). Nitroxides are endowed with versatile antioxidant properties 

including but not limited to: (superoxide dismutase) SOD-mimic activity with better 

membrane permeability and potency than SOD (Krishna et al., 1996); catalase and 

peroxidase-like activities (Mehlhorn and Swanson, 1992; Krishna et al., 1996), inhibition 

of the production of hydroxyl radicals (•OH) during Fenton-type reactions (Zeltcer et al., 

1997) and inhibition of lipid peroxidation by disrupting lipid radical chain reactions 

(Miura et al., 1993). Studies showed that 6-membered cyclic nitroxides, such as tempol, 

are more effective antioxidants since they react with superoxide (O2
•-) about 2 orders of 

magnitude faster than 5-membered ring nitroxides (Samuni et al., 1990). Moreover, several 

other unique characteristics of tempol make it superior including the fact that it has a small 

molecule weight (MW:172) and can cross the blood brain barrier readily (Mitchell et al., 
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1991), and most importantly, tempol can catalytically decompose the PN-generated free 

radicals nitrogen dioxide (•NO2) and carbonate radical (CO3
•-) (Carroll et al., 2000). The 

oxidized forms of tempol can exchange among themselves without depletion in the 

reaction with PN-derived radicals. Consistent with this mechanism of action, it has been 

shown that the level of 3-nitrotyrosine (NT), a specific marker for PN formation, 

decreased in the tempol-treated tissue, supporting the notion that tempol may largely exert 

its protective effects through scavenging PN-derived radicals (Carroll et al., 2000). 

We have previously reported that PN-mediated oxidative damage involved spinal 

cord tissue and downstream calpain-activated cytoskeletal breakdown (Chapter Two). Past 

studies demonstrated mitochondrial oxidative damage paralleled subsequent functional 

compromise in traumatic brain injury, strongly suggesting that mitochondria are the 

primary source and target of PN (Singh et al., 2006). Similar mitochondrial dysfunction 

was also observed following SCI (Sullivan et al., 2007). Therefore, the current experiments 

were conducted to assess tempol’s ability to reduce post-traumatic PN-induced oxidative 

damage, mitochondrial dysfunction and calpain-mediated cytoskeletal breakdown. By 

taking this pharmacological approach, we are able to establish a mechanistic linkage 

between these successive pathophysiological events; confirm the beneficial effects of 

tempol after SCI recently reported by others (Hillard et al., 2004) and perhaps advance a 

promising therapeutic approach for acute neuroprotection after SCI.  
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II. Materials and methods 

Subjects 

This study employed young adult female Sprague-Dawley rats (Charles River, Portage, MI) 

weighing between 200 and 225 grams. The animals were randomly cycling and were not 

tested for stage of the estrus cycle. They were fed and watered ad libitum. All procedures 

described below have been approved by the University of Kentucky Institutional Animal 

Care and Use Committee and followed NIH guidelines. 

Rat Model of Traumatic Spinal Cord Contusion Injury 

Rats were anesthetized with ketamine (80 mg/kg) and xylazine (10 mg/kg) before a 

laminectomy at T10 vertebrae level was performed. Spinal cord injury was carried out 

using the Infinite Horizon device (Scheff et al., 2003) as previously described (Chapter 

Two). The force applied to spinal cord was 200 kdyn, which produces a moderately severe 

injury. 

Tempol Preparation and Dosing 

Tempol was purchased from Sigma-Aldrich (Milwaukee, WI, USA) and freshly prepared 

in 0.9% saline before abdominal intraperitoneal (i.p.) injection. Rats were randomly 

allocated into 3 or 4 groups (n=6 per group): (I) Sham, subjected to T10 laminectomy and 

no treatment. (II) Vehicle, subjected to spinal cord injury and given 0.9% saline or DMSO 

as vehicle i.p. at the onset of injury. (III) Tempol-treated, subjected to SCI and given 

tempol (300 mg/kg) i.p. at the onset of injury. (IV) For initial experiments, lower dose of 

tempol (150 mg/kg, i.p.) group was also included to determine the optimal dosing. 

Slot-Immunoblotting and Western-Blotting Analysis 

Spinal cord was rapidly squirted out 24 hrs after laminectomy or SCI. 10 mm spinal cord 

(SC) tissue including impact epicenter was dissected and homogenated in ice cold buffer 

(20 mmol/L Tris-HCL, 150 mmol/L NaCl, 1% Triton X-100, 5 mmol/L EGTA, 10 mmol/L 

EDTA, 20 mmol/L HEPES, 10% glycerol) containing protease inhibitor (Roche Inc., 



- 64 - 

Nutley, NJ, USA). Following sonication, the dissolved proteins were centrifuged at 

15,000×g for 30 min and the supernatant was collected and normalized to 1 µg/µl by 

protein assay (Pierce Biotechnology, Inc., Rockford, IL, USA). For slot blots, 2 µg 

proteins was loaded in each well of the slot blot apparatus and collected on the 

nitrocellulose membrane by sedimentation. For western blot, 5 µg of protein was loaded 

on 3-8% SDS/PAGE gels and transferred to nitrocellulose membranes after electrophoresis. 

The membranes were blocked in odyssey blocking buffer for 1 hr followed by incubating 

in primary antibody at 4°C overnight. Rabbit polyclonal anti-hydroxynonenal (HNE) 

antibody (1:5000; Alpha Diagnostics International, Inc., San Antonio, TX, USA), rabbit 

anti-nitrotyrosine (NT) antibody (1:2000; Upstate USA, Inc., Charlottesville, VA, USA) 

were applied to detect lipid peroxidation and protein nitration, respectively. Oxy-blot 

detection kit (Chemicon International, Temecula, CA, USA) was employed to detect 

protein oxidation. For α-spectrin breakdown products, mouse monoclonal anti-α-spectrin 

antibody (1:5000; Biomol International, LP Plymouth, PA, USA) was applied. The blots 

were analyzed using the Li-cor odyssey infrared imaging system (Li-cor Biosciences, 

Lincoln, NE, USA), which employs IRDye800 conjugated goat anti-rabbit IgG or goat 

anti-mouse IgG (1:5000, Rockland) as the secondary antibodies.  

Immunohistochemical Analysis for 3-NT 

At 24 hrs post-injury another two sets of rats (2 per set), one was injured and the other was 

tempol treated (300 mg/kg i.p.), were overdosed with sodium pentobarbital (150 mg/kg) 

and perfused with 0.1M PBS followed by 4% Paraformaldehyde in 0.1M PBS. 10 mm SC 

segment containing impact center was then harvested and properly stored. Spinal cords 

from injured and tempol-treated group were paralleled and sectioned at 20 μm in a 

transverse plane. After rinsing at the day of staining, the sections were incubated, blocked 

and exposed to anti-3-NT antibody overnight. The following day, sections were 

incubated for 2 hrs with biotinylated goat anti-rabbit secondary antibody (1:200; Vector 

ABC-AP Kit; Vector Labs, Burlingame, CA, USA). After rinsing, the sections were 

incubated in VECTASTAIN ABC reagent (Vector Labs) for 1 hr followed by 

development of the staining using the Vector blue method (Vector Blue Alkaline 

Phosphatase Substrate Kit; Vector Labs) in the dark for 10-30 min. After reaction, spinal 
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cord sections were counter-stained with nuclear fast red (Vector Labs, Burlingame, CA), 

dehydrated and then photographed on an Olympus Provis A70 microscope with an 

Olympus Magnafire digital camera (Olympus America, Inc., Melville, NY, USA). 

Mitochondrial Ficoll Gradient Purification 

Briefly, the whole spinal cord were rapidly squirted out and 20 mm segments with injury 

site in the center were homogenized in a Potter-Elvehjem homogenizer containing 2 ml of 

ice-cold isolation buffer (215 mmol/L mannitol, 75 mmol/L sucrose, 0.1% BSA, 20 

mmol/L HEPES, adjusted to a pH of 7.2 with KOH) with 1 mmol/L EGTA. The 

homogenate was subjected to differential centrifugation at 4℃. First, it was centrifuged 

twice at 1,300×g for 3 min in an eppendorf microcentrifuge at 4℃ to remove cellular 

debris and nuclei. Then the pellet was discarded, and the supernatant was further 

centrifuged at 13,000×g for 10 min. The crude mitochondrial pellet so obtained was then 

subjected to nitrogen decompression in a cell disruption bomb (Parr Instrument Company, 

Moline, Illinois) to release synaptic mitochondria and cooled to 4℃ under a pressure of 

1,200 psi for 10 min (Brown et al., 2004; Singh et al., 2006). After nitrogen disruption, the 

mitochondria were placed atop a discontinuous Ficoll gradient (7.5%, 10%), and 

centrifuged at 100,000×g for 30 min (Sullivan et al., 2003, Singh et al., 2006). The 

mitochondrial pellets at the bottom were then transferred to microcentrifuge tubes and 

topped off with isolation buffer without EGTA and centrifuged at 10,000×g for 5 min at 

4℃ to yield a tighter pellet (Singh et al., 2006). The final mitochondrial pellet was 

re-suspended in 35 μg isolation buffer without EGTA. The mitochondrial protein 

concentration was determined using a BCA protein assay kit with a BioTek Synergy HT 

plate reader (Winooski, VT). 

Mitochondrial Respiration Measurement 

Mitochondrial respiratory rates were measured using a Clark-type electrode in a 

continuously stirred sealed and thermostatically controlled chamber (Oxytherm System, 

Hansatech Instruments Ltd., Norfolk, England) maintained at 37℃ as described 

previously (Sullivan et al., 2003). In all, about 30 μl of isolated mitochondrial protein was 
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placed in a chamber containing 250 μL of KCl-based respiration buffer (125 mmol/L KCl, 

2 mmol/L MgCl2, 2.5 mmol/L KH2PO4, 0.1% BSA, and 20 mmol/L HEPES at pH 7.2) and 

allowed to equilibrate for 1 min. State II respiration is fueled by complex I substrates, 5 

mmol/L pyruvate and 2.5 mmol/L malate. Two boluses of 150 μmol/L ADP were added to 

the mitochondria to initiate the state III respiratory rate for 2 min, followed by the addition 

of 2 μmol/L oligomycin, an inhibitor of ATPase, to monitor the state IV respiration rate for 

another 2 min. For the measurement of the uncoupled respiratory rate (state V), 2 μmol/L 

uncoupler FCCP was added to the mitochondria in the chamber, and oxygen consumption 

was monitored for 2 min, followed by the addition of rotenone (1 μM) to shut down state 

I-driven respiration completely. Complex II-driven respiration is then initiated by the 

addition of 10 mmol/L complex II activator succinate (Singh et al., 2006). The respiratory 

control ratio (RCR) was caculated by dividing state III oxygen consumption (rate obtained 

in the presence of ADP, second bolus addition) by state IV oxygen consumption (rate 

obtained after the addition of oligomycin) and serves as a sensitive index for 

mitochondrial functional analysis. Fresh mitochondria were prepared and run for 

respiration immediately for each experiment to assess the mitochondrial bioenergetics.  

Electron Microscopy of Mitochondrial Ultra-structure 

As described previously (Nukala et al., 2006; Singh et al., 2006), the purified 

mitochondrial pellets were fixed in 4% glutaraldehyde overnight at 4°C before being 

embedded for electron microscopy. The fixed mitochondrial pellets were then washed 

overnight at 4°C in 0.1 mol/L sodium cacodylate buffer, followed by 1 hr secondary 

fixation at room temperature in 1% osmium tetroxide (in sodium cacodylate buffer). 

Then, the mitochondrial pellets were rinsed with distilled water and dehydrated in a 

gradient ethanol series up to 100% and twice in propylene oxide. The pellets were then 

placed in a 1:1 mixture of propylene oxide and Epon/Araldite resin and infiltrated 

overnight on a rotator. Next, 100% Epon/Araldite resin was added and rotated for 1 hr at 

room temperature. Finally, fresh resin was prepared and degassed using a vacuum 

chamber. The mitochondrial pellets were added to the flat molds, filled with fresh resin, 

and baked overnight at 60°C. The 90nm ultra-thin sections were cut using an RMC 

MT-7000 ultra-microtome mounted on 150 mesh copper grids and stained with uranyl 
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acetate and lead citrate. A Zeiss 902 electron microscope was used to examine and 

photograph the samples. 

Statistical Analysis 

Quantitative densitometry analysis was used for reading the slot blots and western blots. 

Statistical analysis was performed using the STATVIEW package (JMP Software, Cary, 

NC). All values are expressed as mean ± standard error (S.E.M.). A one-way analysis of 

variance (ANOVA) was first run. If the ANOVA revealed a significant effect, post-hoc 

testing was then carried out to compare individual tempol or saline-treated groups to the 

sham, non-injured group by Student-Newman-Keuls (SNK) analysis. In all cases, a p<0.05 

was considered significant. 
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III. Results 

Tempol Effects on Peroxynitrite-mediated Oxidative Damage after SCI 

A. Slot-Immunoblotting and Western-Blotting Analysis: There are at least three oxidative 

mechanisms including protein nitration, lipid peroxidation and protein oxidation involved 

in PN-mediated oxidative damage following SCI (Chapter Two). The specific marker for 

PN formation 3-nitrotyrosine (NT), the lipid peroxidation product 4-hydroxynenonal 

(HNE) and protein oxidation–derived protein carbonyls (PC) were employed as markers 

for these oxidative events respectively. Animals were sacrificed 24 hrs post-injury when 

the maximal oxidative damage occurred (Chapter Two). Figure 3.1 shows the results 

obtained from quantitative antibody-based immuno-slotblotting. For each oxidative 

marker, One-way ANOVA revealed that there is a significant effect associated with 

treatment (for 3-NT: F(2,15)=30.677; P<0.0001]; for 4-HNE: [F(2,15)=14.02; P<0.001]; 

for PC: [F(2,15)=54.616; P<0.0001]). Student-Newman-Keuls (SNK) analysis showed 

injury resulted in significantly increased levels of 3-NT, 4-HNE and PC compared to the 

sham group, and 300 mg/kg tempol administration reduced the injury-induced elevations 

of 3-NT and 4-HNE significantly compared to saline-treated vehicle group (# p<0.0001, 

n=6). However, the beneficial effects of tempol were partial as 3-NT and 4-HNE levels 

remained significantly higher compared to the sham group (*p<0.001 vs sham, n=6). A 

better protective effect of tempol is observed in terms of protein oxidation since tempol 

was able to bring PC level back to normal level (# p<0.0001 vs. injured, n=6). 
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Western blot analysis of PN-mediated oxidative damage was also carried out to 

further confirm the effects of tempol. Representative blots of 3-NT, 4-HNE and PC shown 

in Figure 3.2 provide a clear view of different staining patterns and side-by-side 

qualitative comparisons of protein nitration, lipid peroxidation and protein oxidation 

among different groups. As demonstrated, injury (I) produced a rise of staining intensity in 

all markers comparing to the sham groups (S) and tempol treatment (300 mg/kg i.p.) (T) 

reduced the degree of injury-induced positive staining. Quantifications were also 

performed by densitometrically measuring the full-length blot as indicated by the red box. 

The results shown in Figure 2B are similar to what we obtained in slot blotting. One-way 

ANOVA was first run to indicate a significant effect associated with treatment (for 3-NT: 

F(2,15)=14.697; P<0.001]; for 4-HNE: [F(2,15)=12.550; P<0.001]; for PC: 

[F(2,15)=32.515; P<0.0001]). Post-hoc analysis showed injury produced a significant 

increases of 3-NT, 4-HNE and PC levels comparing to the sham group (*p<0.05, n=6). 

Tempol decreased injury-induced oxidative damage significantly (#p<0.05, n=6). 

However, similar to the slot immunoblot measurements, the protective effects of tempol 

detected by western blot were incomplete since the tempol-treated groups remained 
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significant higher levels in 3-NT and PC when compared with sham groups (*p<0.05, 

n=6).  

 

B. Immunohistochemical Analysis: Figure 3.3 displays the cross sectional illustration of 

the distribution of 3-NT immunostaining at 24 hrs post-injury. 3-NT immuno-reactivity 

was compared between a saline and a tempol-treated animal side by side. In the upper 

panel, which showed sections obtained from the saline-treated vehicle group, contusion 

SCI resulted in the appearance of a central necrotic lesion at the epicenter, with sparing of 

a peripheral rim of tissue. Intense 3-NT immuno-staining is observed prominently in the 
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gray matter, suggesting the gray matter is especially susceptible to PN-induced oxidative 

damage, which is not just limited to the injury epicenter but also spreading for some 

distances along the spinal cord. As displayed, extensive 3-NT immuno-reactivity is still 

remarkable at the injured sections 2 mm rostral or caudal to the epicenter. In comparison, 

no necrotic cavity and less 3-NT immuno-reactivity in the gray and white matter were 

observed at the epicenter of tempol-treated spinal cord (lower panel). Tempol 

administration clearly limited the 3-NT immuno-reactivity observed in the sections 2 mm 

rostral and caudal to the epicenter. Scale bar: 0.2 mm. 

 

Tempol Effects on Mitochondrial Dysfunction after SCI 

Previous studies showed evidence of mitochondrial oxidative damage and subsequent 

functional impairment following SCI and the injury-induced mitochondrial dysfunction is 
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at least partly attributable to PN-mediated oxidative damage (Chapter Two; Sullivan et al., 

2007). We next determined whether tempol can protect mitochondria from PN toxicity 

following SCI. Mitochondrial bioenergetics were assessed by measuring oxygen 

consumption (respiration) of isolated mitochondria from four experimental groups 

including sham non-injured, injured plus saline-treated, injured plus 150 mg/kg 

tempol-treated and injured plus 300 mg/kg trempol-treated animals. Figure 3.4 shows a 

simplified illustration of mitochondrial electron transport chain (ETC) and oxidative 

phosphorylation. Upper panel (A) displays a typical respiratory trace of spinal cord 

mitochondrial respiration. Lower panel (B) shows simplified pathways of electron 

transport through ETC. ETC consists of Complex I (NADH dehydrogenase), Complex II 

(succinate dehydrogenase), Complex III (cytochrome reductase), Cytochrome b and c, 

Complex IV (cytochrome oxidase) and Complex V (F0F1 ATPase or ATP synthase). (For 

simplification, some other components such as ubiquinone, are not shown in this figure). 

Briefly, electrons are fed into Complex I by pyruvate and malate, or into Complex II by 

succinate, transported through Complex III, cytochrome c and finally reach Complex IV. 

Each electron is accepted by O2 and reduced to H2O. As the electron flows, protons (H+) 

are pumped from the matrix into the mitochondrial intermembrane space (IMM) thus 

forming a proton gradient across the IMM. When H+ flows back into the matrix through 

ATP synthase (Complex V), ADP is phorsphorylated to ATP. Knowledges of this process, 

known as oxidative phosphorylation, are crucial to understand the subsequent 

mitochondrial respiration studies we employed. Figure 3.4A shows typical responses or 

respiraton of healthy mitochodria obtained from SC. Addition of pyruvate and malate 

fuel Complex I and initiate respiratory state II; 2 bolus of ADP activate ATP synthase 

and initiate State III; Oligomycin is an inhibitor of ATP synthase, so little ADP or O2 is 

consumed after addition of oligomycin, which is named State IV. FCCP is an uncoupler 

that dissipates the proton gradient and electron transport then works at its maximal extent 

to make up the loss of the gradient, therefore initiating complex I-driven State V. 

Rotenone shuts down Complex I-driven respiration and addition of succinate fuels 

Complex II to initiate Complex II-driven State V.  
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Figure 3.5 demonstrated the effects of tempol on mitochondrial respiration after SCI 

in terms of respiratory control ratio (RCR). RCR is a widely used index in mitochondrial 

functional analysis since it is a sensitive measure of mitochondrial respiration and how 

well the ETC is coupled to oxidative phosphorylation (i.e., efficiency of ATP production). 

It is calculated as the ratio of oxygen consumption in the presence of ADP (respiration state 
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III) to the addition of ATPase inhibitor oligomycin (respiration state IV). Mitochondria are 

considered healthy if presented with a RCR≥5.0. Figure 3.5A displays a representative 

respiratory trace obtained from sham non-injured SC for comparison. Quantification of 

RCR in Figure 3.5C indicated mitochondria isolated from sham rats were metabolically 

intact and well coupled, with a RCR>7.0. A one-way ANOVA revealed a significant effect 

of treatments post-injury [F(3,20)=31.501, p<0.0001]. A significant drop of RCR was 

found 24 hrs after contusion injury with the mean value decreased from 7.4 down to 2.9 

(*p< 0.0001 vs. sham, n=6). This mitochondrial functional failure was consistent with the 

ultrastructural changes observed in the following electron microscopic photomicrographs. 

 

Injury inflicted severe ultra-structural damage to the spinal cord mitochondria, 

resulting in swelling, dilated cristae and disrupted inner and outer membranes. 

Quantifications of the RCR showed that a single bolus of tempol (150 mg/kg, i.p.) 

significantly improved mitochondrial bioenergetics by bringing back the mean RCR to 4.5 

(#p<0.001 vs. injured, n=6), as indicated in Figure 3.5C. A higher dose of tempol (300 

mg/kg) showed slightly better effects by increasing the mean RCR to 4.7 (#p<0.001 vs. 

injured, n=6). However, both tempol treatments can only improve injury-induced 

mitochondrial dysfunction partially, with RCRs remaining significantly lower compared to 

the sham group (*p<0.001, n=6). A representative overlay traces in Figure 3.5B 

demonstrated the impaired oxygen consumption of SC mitochondria isolated from 

vehicle-treated rats and improved respiration of mitochondria isolated from tempol-treated 

(300 mg/kg) rats. In agreement, the electron microscopic mitochondrial picture in Figure 
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3.6 appears to have more normal-looking mitochondria in tempol-treated (300 mg/kg) 

group comparing to vehicle-treated group. 
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Quantification of mitochondrial bioenergetics (Figure 3.7) shows significant effects 

of tempol treatment in regards to the different mitochondrial respiratory states except 

complex II-driven state V, indicating that components of the ETC downstream of complex 

I were still functioning. (state II: [F(3,20)=3.515, p<0.05]; state III: [F(3,20)=13.634, 

p<0.0001]; state IV: [F(3,20)=15.979, p<0.0001]; complex 1-driven state V: 

[F(3,20)=4.887, p<0.0001]). Post-hoc analysis with SNK indicated a significant decrease 

in state III respiration (RCR numerator) and increase in state IV (RCR denominator) 24 hrs 

post injury. Both tempol does simultaneously increased state III and decreased state IV 

with statistical significances compared to vehicle treated group, indicating better capacity 

of ATP production and coupling (#p<0.001,n=6). However, state IV and complex I-driven 

state V in the tempol-treated groups were still significantly lower compared to the sham 

group, suggesting that the salvage of mitochondrial function was significant, but 

incomplete. No significant differences in complex II-driven state V respiration could be 

detected across the experimental groups. 
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Tempol Effects on Calpain-mediated α-Spectrin Breakdown after SCI 

PN-mediated oxidative damage and mitochondrial dysfunction results in intracellular 

Ca2+ overload, which activates the intracellular protease calpain leading to cytoskeletal 

protein (α-spectrin) degradation. Two fragments (145 kD and 150 kD) are formed due to 

the proteolysis of α-spectrin. Fragment 145 kD, also known as signature breakdown 

protein 145 (SBDP 145), is generated specifically by calpain SBDP 150 and therefore 

considered as an indicator of calpain activation. In contrast, SBDP 150 is generated by two 

enzymes: calpain and caspase 3. Two groups of western blots are shown in Figure 3.8A. 

The three bands from the top to the bottom are intact spectrin (280 kD), SBDP 150 and 

SBDP 145 respectively. As shown, the elevated level of calpain-specific SBDP 145 was 

readily observed following injury and tempol administration (300 mg/kg, i.p.) reduced 

SBDP 145 accumulation. Quantification of SBDP 145 (Figure 3.8B) shows injury induced 

a ten-fold increase of this fragment (*p<0.0001 vs Sham, n=6), this Ca2+-activated 

calpain-mediated spectrin proteolysis was significantly decreased in the tempol group 
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(#p<0.0001 vs Injured, n=6). Quantification of calpain/caspase 3-generated SBDP 150 

(Figure 3.8C) displays that tempol also reduced this breakdown fragment significantly 

(#p<0.001 vs Injured, n=6), with a relatively high level detected in the sham group 

compared to SBDP 145.  

 

 

Therapeutic Time Window for Tempol Effect 

Evidence from our studies has shown that a single dose of tempol acutely 

administered after SCI effectively protects spinal cord against PN-induced oxidative 

damage, mitochondrial dysfunction and spectrin breakdown. We then carried out 

experiments to determine the time window for the efficacy of tempol, which will be an 

important step towards its clinical application. Treatment was begun at the time of injury or 

after 1, 2 or 4 hours delay and the attenuation of calpain-activated cytoskeletal breakdown 

by single dose of tempol (300 mg/kg, i.p.) was assessed at 24 hrs post injury. A 

representative western blot is displayed in the upper panel of Figure 3.9, in which six 



- 79 - 

experimental groups of α-spectrin proteolysis are compared. As demonstrated, injury 

induced intense accumulations of calpain-generated SBDP 145 and these accumulations 

were attenuated in acutely-treated tempol (<5min post injury) group and decreased to some 

extent in 1 hr delay group, whereas remarkable staining of SBDP 145 was easily detected 

in 2 hrs and 4 hrs delay groups. Quantification of SBDP 145 is showed in the lower panel 

and a one-way ANOVA revealed a significant effect of treatments post-injury 

[F(3,20)=8.659, p<0.0001]. SBDP 145 fragments in all vehicle or tempol-treated groups 

were significantly higher compared to the sham (*p<0.001, n=6). Tempol treatment 

immediately post-injury significantly attenuated calpain-mediated proteolysis (#p<0.0001 

vs injured, n=6), which is consistent with our previous experiments (Figure 3.8). Although 

there is a downward trend in the 1 hr delay group observed in the blot, post-hoc SNK 

testing indicates no significant difference compared to the vehicle-treated injured group, 

and tempol treatment starting at 2 hrs or 4 hrs post injury showed no reductions of 

α-spectrin breakdown when compared to vehicle group. This suggests that tempol has a 

very short therapeutic window of < 1 hr.  
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IV. Summary and Discussion 

In the present study, a thorough analysis has been conducted to evaluate the 

therapeutic effects of tempol in regard to its ability to attenuate 1) PN-mediated oxidative 

damage; 2) mitochondrial dysfunction; 3) calpain-mediated proteolysis following spinal 

cord contusion injury in a rat model. This pharmacological approach we employed not only 

strongly supports a pivotal role of PN-mediated oxidative damage in post-traumatic injury, 

as we previously reported (Chapter Two), but also helps to establish a mechanistic 

relationship between PN-induced oxidative damage and the downsream secondary injury 

events mitochondrial dysfunction and Ca2+-activated, calpain-mediated cytoskeletal 

degradation after SCI. More importantly, the effectiveness of tempol in SCI rat model, by 

scavenging PN-derived free radicals, strongly suggests that PN is a promising therapeutic 

target after SCI.  

In the past decade, although mounting evidence has verified the neuroprotective 

effects of tempol in various injury models (Beit-Yannai et al., 1996; Cuzzocrea et al., 2000; 

Kwon et al., 2003; Hillard et al., 2004), few studies were carried out to explore the 

mechanisms underlying the beneficial effects of tempol. In those studies, it was suggested 

that the protective effects of tempol were due to its catalytic scavenging of superoxide (O2
•-) 

as a SOD mimetic. However, with the unveiling of the important role of PN-mediated 

oxidative damage in secondary CNS injury, tempol’s effects need to be re-evaluated 

considering its catalytic scavenging ability of PN-derived radicals •NO2 and CO3
•- (Carroll 

et al., 2000). To meet that aim, a stable, widely-used biomarker for PN oxidative damage, 

3-nitrotyrosine (NT) was applied to investigate tempol’s ability to reduce PN-mediated 

oxidative damage. Although specificity of 3-NT for PN was questioned since nitric oxide 

(•NO) could also give rise to tyrosine nitration, subsequent analyses indicated 
•NO-mediated nitration is probably from PN-derived •NO2 and PN is the major source for 

3-NT production (Denicola et al. 1996; Radi., 1998; Alvarez and Radi, 2003). Since 

PN-derived radicals can also lead to lipid peroxidative cellular damage (Radi et al., 1991b) 

and direct protein oxidation, two other oxidative markers, 4-HNE and protein carbonyls 

were also used to confirm tempol’s antioxidant efficacy. Our results from quantitative slot 

and western blotting showed that acutely treatment of animals with a single dose of tempol 
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(300 mg/kg, i.p.) effectively reduced PN-mediated oxidative damage 24 hrs after SCI in 

terms of protein nitration, lipid peroxidation and protein oxidation, as measured by 3-NT, 

4-HNE and protein carbonyls levels, respectively. Western blots provided side-by-side 

comparisons of different groups and distinct staining patterns of three markers confirmed 

the non-overlapping, co-existence of these oxidative mechanisms following SCI. 

Detection of 3-NT formation by immunohistochemistry demonstrated single dose of 

tempol protected spinal cord against PN-induced oxidative damage following injury, 

which is similar to previous study (Hillard et al., 2004), further supporting our hypothesis 

that tempol exerts its effects at least partly by targeting PN-derived free radicals.  

Peroxynitrite-derived free radicals not only lead to cellular oxidative damage, they 

also attack mitochondria, which are proposed as a key source of PN formation and a target 

of it’s free radical-mediated damaging effects (Carroll et al., 2000). A high content of 

polyunsaturated fatty acids (PUFAs) in membrane makes mitochondria an especially 

vulnerable target for oxidative damage. PN has been reported to increase mitochondrial 

proton leak and electron transport uncoupling (Echtay et al., 2003). In vitro study showed 

exogenous PN increased levels of PN footprint 3-NT, LP-induced 4-HNE and increased 

protein carbonyls in isolated brain mitochondrial proteins after exposure to the PN 

generating compound SIN-1 (Singh et al., 2006). In the currently employed experimental 

SCI model, a progressive increase in mitochondrial oxidative damage, including increased 

3-NT, is observed prior to the loss of mitochondrial bioenergetics (Sullivan et al., 2007). 

These studies strongly suggest that PN-derived free radical damage may be a major cause 

for mitochondrial dysfunction. To verify this theory, we then evaluated the efficacy of 

tempol, as a PN-scavenging compound, to antagonize mitochondrial dysfunction after SCI. 

Our results showed both tempol doses (150 mg/kg, 300 mg/kg, i.p.) administered 

immediately after injury preserved mitochondrial function following SCI, with slightly 

better effect observed at higher dosage of tempol treatment. Mitochondrial electron 

microscopic pictures showed tempol (300 mg/kg) increased the number of normal-looking 

mitochondria after SCI, which is consistent with and provides an ultrastructural correlated 

for our functional analysis. Quantification of mitochondrial respiration states showed 

tempol improved mitochondrial bioenergetics by increasing the ATP production capacity 
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and better coupling of ADP phosphorylation to electron transport, which is shown by the 

increase of state III and the decrease of state IV, respectively. While complex I-driven 

respiration is susceptible to PN damage and sensitive to tempol treatments, no differences 

regarding complex-II driven respiration are detected across the groups. This reiterated the 

fact that complex-I flavin mononucleotide (FMN) group and pyruvate dehydrogenase are 

very susceptible to oxidative damage and confirmed that components downstream of 

complex-II in the ETS are still functional, as previously reported (Starkov et al., 2002; 

Martin et al., 2005; Sullivan et al., 2007).  

Severe injury to the spinal cord causes excitotoxic insult due to activation of the 

glutamatergic mechanisms (Stout et al., 1998). The consequent increases in physiological 

Ca2+ levels is buffered by mitochondria, which acts as a Ca2+ sink thus maintaining cellular 

homeostasis. However, this important aspect of Ca2+ homeostasis is lost with time when 

the Ca2+ load far exceeds the buffering capacity of the mitochondria, especially when 

mitochondrial function is compromised, eventually leading to cell death (Kristal and 

Dubinsky, 1997; Crompton, 1999). In the present study, we hypothesized that 

PN-oxidative damage and subsequent mitochondrial dysfunction exacerbate the disruption 

of Ca2+ homeostasis following SCI, resulting in excessive activation of calpain and 

proteolytic degradation of a number of neuronal proteins, which has been suggested to be 

final common pathway of neuronal cell death in CNS injuries and neurodegenerative 

diseases (Bartus, 1997). We previously reported the temporal characteristics of α-spectrin 

breakdown after spinal cord injury (Chapter Two), indicating cytoskeletal degradation is 

one of important post-traumatic pathological events following SCI. In this study, the 

experiments were then performed to investigate the effect of tempol on Ca2+-activated, 

calpain-mediated α-spectrin breakdown. Results showed tempol significantly decreased 

the levels of calpain-specific SBDP 145 and calpain/caspase SBDP 150 after injury, with 

greater effects observed in SBDP 145 (Figure 3.8C), suggesting tempol’s 

cytoskeletal-protective effect is mostly due to the attenuation of calpain activation. 

However, the present experiments do not rule out a contribution of caspase-3 activation in 

the degradation of the cytoskeleton, nor do they eliminate the possible inhibition of 

caspase-3 activation as being part of the protective effect of tempol. Indeed, the significant 
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reduction of calapin/caspase 3-generated SBDP 150 by tempol suggests tempol also 

inhibits the apoptosis after SCI, as caspase 3 is the main executioner of the apoptotic 

pathway. This data is not surprising to us based on the facts that PN can activate caspases 

3, 2, 8, 9 and lead to delayed, programmed apoptotic cell death (Virag et al., 1998; Zhuang 

et al., 2000; Vicente et al., 2006).  

Another important finding of this study is the investigation of therapeutic window of 

tempol’s efficacy. Although tempol showed potent neuroprotective effects in various 

injury models (Cuzzocrea et al., 2000; Hillard et al., 2002), tempol treatments has been 

initiated acutely after the injury in these studies, which will be impractical in nearly all 

injured patients. Therefore, defining the therapeutic time window for tempol is an 

important step towards its clinical application. Unfortunately, our results indicated tempol 

has a very short time window and has to be given within one hour post injury to show its 

neurochemical benefits.  

In conclusion, despite the possibly limited therapeutic potential of tempol due to its 

short time window, the protective efficacy of this compound strongly supports our 

hypothesis that PN-mediated oxidative damage is an early post-traumatic event that 

contributes to mitochondrial dysfunction, intracellular Ca2+ overload, cytoskeletal 

degradation and neurodegeneration as illustrated in Figure 3.10. It seems that in the future, 

antioxidant treatment may need to be given repeated dosages to prolong its benefits or 

combined with other agents that more directly target mitochondria and/or calpain 

activation in order to achieve a more pronounced and practical neuroprotective approach. 
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CHAPTER FOUR 

TEMPOL PROTECTS SPINAL CORD MITOCHONDRIA FROM OXIDATIVE 

DAMAGE INDUCED BY PEROXYNTIRTE DONOR SIN-1 

 

Abstract of some portions of this work has been published as: 

 

Effects of Tempol on mitochondrial dysfunction and cytoskeleton degradation after 
spinal cord contusion injury in rats. Soc. Neurosci. Abstract, Atlanta, Georgia. (2006). 
 

This manuscript is in the process of submitting to Free Radical Res.  

 

Note: I, Yiqin Xiong, contributed 100% to the research shown in the result section of 

Chapter Four although guidance in the performance of this work was provided by Dr.  

Indrapal N. Singh.  
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I. Introduction 

Mitochondria are the specialized organelles for energy metabolism. The primary 

physiological function of the mitochondrion is to generate ATP through oxidative 

phosphorylation via the electron transport chain (ETC). However, they are also involved 

in both the necrotic and apoptotic cell death pathways by a number of oxidative or 

nitrosative reactions (Fujimura et al., 2000; Green and Kroemer, 2004). Maintaining 

mitochondrial bioenergetics in neurons is even more critical, since their energy supply 

almost completely depends on the mitochondria-derived ATP (Budd and Nicholls, 1998; 

Nicholls and Budd, 2000). Mitochondrial defects or failure have been well-documented 

as a crucial mechanism underlying a variety of neurodegenerative diseases (Baron et al., 

2007; Bonilla et al., 1999; Schapira, 1999). Due to the fact that reactive oxygen species 

(ROS) are the by-products of the oxidative phosphorylation process, the direct 

association of mitochondrial impairments and oxidative damage has been studied 

extensively over the past decades (Patel, 2004; Albers and Beal, 2000; Beal, 2004). 

Indeed, the mitochondrion is believed to be the major source of increased oxidative stress 

in pathological conditions, as well as a vulnerable target of itself derived-free radicals 

(Trushina and McMurray, 2007).  

 

Recently, there has been increasing appreciation of the role of ROS-induced 

mitochondrial dysfunction in the secondary injury cascades following CNS trauma 

(Singh et al., 2006; Sullivan et al., 2003; 2007; Lifshitz et al., 2004). Among these 

reactive species, the most important player has been proposed to be peroxynitrite (PN), a 

potent oxidizing agent formed by the diffusion-controlled combination of nitric oxide 

(•NO) and superoxide (O2
•-) (Beckman et al., 1990; Huie and Padmaja, 1993). PN exerts 

its cytotoxic effects mainly through mitochondrially-derived free radicals (•OH, •NO2, 

CO3 •-), which lead to secondary oxidative damage by nitrating and oxidizing protein, 

lipids (Chapter Two) and DNA (Salgo et al., 1995ab; Szabo et al., 1996; 2007). 

Specifically, PN is considered as a central contributor to protein nitration and its major 

product 3-nitrotyrosine (NT) is widely used as the footprint for PN formation (Radi et al., 

2001). Previous in vitro studies have demonstrated that PN impairs mitochondrial 
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respiration through at least three mechanisms: a) nitrating cytochrome c, an important 

componet of electron transport chain (ETC) (Cassina et al., 1996); b) selectively 

inhibiting NADH:ubiquinone reductase (ETC Complex I) (Riobo et al., 2001); 3) 

depleting mitochondrial anti-oxidant defense system (i.e. manganese superoxide 

dismutase, glutathione) and leading to mitochondrial oxidative damage 

(MacMillan-Crow et al., 1997; Radi et al., 2002). In agreement, in vivo studies using a 

variety of animal injury models have also supported a pivotal role of PN in mediating the 

progress of secondary injury cascades (Cuzzocrea et al., 2000; Szabo et al., 2002; 

Deng-bryant et al., 2007; Xiong et al., 2007). Additionally, evidence showed that 

SCI-induced mitochondrial dysfunction is correlated with the increase of oxidative 

damage, especially the elevation of the PN footprint 3-NT in mitochondrial proteins 

(Xiong et al., 2007; Sullivan et al., 2007), strongly suggesting the direct linkage of PN 

and post-traumatic mitochondrial oxidative damage. 

 

 

In Chapters Two and Three, we have carried out systematic and in-depth analysis to 

examine the co-existence of three pathological events including PN-induced oxidative 

damage, mitochondrial dysfunction and Ca2+-induced calpain-mediated cytoskeletal 

breakdown in rat spinal cord contusion injury model. Tempol, by scavenging PN-derived 

free radicals, was able to antagonize these pathological events, suggesting PN-induced 

oxidative damage might be an early event leading to subsequent mitochondrial 

impairment and cytoskeletal degradation following SCI. The effectiveness of targeting 

PN-derived radicals indeed provides a promising therapeutic strategy for the acute 

neuroprotection of SCI. To further understand the contribution of PN in SCI-induced 

mitochondrial dysfunction and the mechanism(s) underlying tempol’s neuroprotective 

effects in SCI animal model, we applied PN donor SIN-1 (3-morpholinosydnonimine) 

directly to healthy spinal cord mitochondria to evaluate PN’s toxic effects on 

mitochondrial respiration. SIN-1 is capable of generating PN precursors, •NO and O2
•- 

simultaneously and is therefore widely used as a PN donor in vitro (Hogg et al., 1992; 

Singh et al., 2007). We pretreated mitochondria with tempol prior to their exposure to 

SIN-1, by measuring mitochondrial bioenergetic parameters and oxidative damage in 
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mitochondrial protein and provided direct evidence that tempol is able to antagonize 

SIN-1-induced spinal cord mitochondrial damage.  
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II. Materials and Methods 

Animals 

Experiments were performed with isolated mitochondria from young adult female 

Sprague-Dawley rats (Charles River, Portage, MI) (200 to 225 grams) that were fed and 

watered ad libitum. The animals were randomly cycling and were not tested for stage of 

the estrus cycle. They were fed and watered ad libitum. The protocols for spinal cord 

removal and mitochondrial harvesting were approved by the University of Kentucky 

Institutional Animal Care and Use Committee and are consistent with the NIH Guidelines 

for the Care and Use of Animals. 

Chemicals 

Chemicals and mitochondrial respiration substrates includeing SIN-1 

(3-morpholinosydnonimine), tempol (4-hydroxy-TEMPO, free radical), mannitol, sucrose, 

bovine serum albumin (BSA), ethylene glycol tetraacetate (EGTA), 

N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) potassium salt, 

potassium phosphate monobasic anhydrous (KH2PO4), magnesium chloride (MgCl2), 

malate, pyruvate, adenosine 5’-diphosphate (ADP), oligomycin A, carbonyl cyanide 

4-(trifluoromethoxy)phenylhydrazone (FCCP), rotenone, and succinate were purchased 

from Sigma-Aldrich (St Louis, MO). BCA protein assay kit was obtained from Pierce 

(Rockford, IL). 

Isolation of Ficoll-Purified Spinal Cord Mitochondria 

Spinal cord mitochondria were extracted as described previously with some 

modifications (Sullivan et al., 2004; Singh et al., 2006). Briefly, the rats were decapitated, 

and the spinal cords were quickly squirted out by 

a 60 ml syringe filled with saline from the bottom 

of spinal column. By using the lumbar 

enlargement as a landmark, a 2 cm segment of 

spinal cord containg mid-thoracic region was dissected on a ice-cold glass plate and then 

homogenized in a Potter-Elvehjem homogenizer containing 2 ml isolation buffer with 1 
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mmol/L EGTA (215 mmol/L mannitol, 75 mmol/L sucrose, 0.1% BSA, 20 mmol/L 

HEPES, and 1 mmol/L EGTA, adjusted to a pH of 7.2 with KOH). The homogenate was 

first centrifuged twice at 1,300×g for 3 min in an Eppendorf microcentrifuge at 4℃ to 

remove cellular debris and nuclei. Then the supernatant was collected and further 

centrifuged at 13,000×g for 10 min. The crude mitochondrial pellet was then obtained 

and subjected to nitrogen decompression to release synaptic mitochondria, using a 

nitrogen cell disruption bomb, and cooled to 4℃ under a pressure of 1,200 psi for 10 min 

(Brown et al., 2004; Singh et al., 2006). After nitrogen disruption, the mitochondria were 

placed atop a discontinuous Ficoll gradient (7.5%, 10%), and centrifuged at 100,000×g 

for 30 min. The mitochondrial pellets were then transferred to microcentrifuge tubes and 

topped off with isolation buffer without EGTA and centrifuged at 10,000×g for 5 min at 

4℃ to yield a tighter pellet. The final mitochondrial pellet was resuspended in isolation 

buffer without EGTA and the mitochondrial protein concentration was determined using 

a BCA protein assay kit with a BioTek Synergy HT plate reader (Winooski, VT). 

Mitochondrial Respiration Studies 

Mitochondrial respiratory rates were measured using a Clark oxygen electrode in a 

continuously stirred sealed and thermostatically controlled (37 ℃) chamber (Oxytherm 

System, Hansatech Instruments Ltd.) as described previously (Sullivan et al., 2003; Singh 

et al., 2006). Briefly, 30-35 μg of mitochondrial protein was loaded into the chamber 

containing 250 μL of KCl-based respiration buffer (125 mmol/L KCl, 2 mmol/L MgCl2, 

2.5 mmol/L KH2PO4, 0.1% BSA, and 20 mmol/L HEPES at pH 7.2) and allowed the 

mitochondria to equilibrate for 1 min. This was followed by the additions of: 1) complex 

I substrates (5 mmol/L pyruvate and 2.5 mmol/L malate) to initiate the state II respiratory 

state; 2) Two boluses of 150 μmol/L ADP to initiate the state III respiratory rate for 2 min; 

3) 2 μmol/L oligomycin to monitor the state IV respiration rate for an additional 2 min; 4) 

2 μmol/L FCCP to measure the uncoupled respiratory rate (state V) for another 2 min 5) 

rotenone (1 μM) to completely block complex I-driven respiration; 6) 10 mmol/L 

succinate to activate complex II-driven respiration. The respiratory control ratio (RCR) 

was calculated by dividing state III oxygen consumption (the respiratory rate in the 

presence of ADP, second bolus addition) by state IV oxygen consumption (the 
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respiratory rate in the presence of oligomycin). Mitochondria were prepared freshly and 

used immediately for each experiment. 

Slot-Blotting Measurement of Oxidative Damage Markers in Isolated Mitochondria 

A portion of the mitochondrial protein from different treated groups [control, SIN-1 (5 

μm) alone and SIN-1 (5 μm) + Tempol (5 μm)] was used for quantitative measurement of 

mitochondrial oxidative damage. 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) 

were applied as markers for protein nitration and lipid peroxidation by using the slot-blot 

apparatus. In all, approximately 2 μg of mitochondrial protein was transferred to a 0.2 μm 

nitrocellulose membrane (Bio-Rad Laboratories, Hercules, CA) by slot-blot apparatus 

(Schleicher & Schuell, Dassel, Germany). The slot was loaded with 2 μg of 

mitochondrial protein and 300 μL TBS, and the mitochondrial proteins were then filtered 

through the membrane by gravity. For detection of protein tyrosine nitration, a rabbit 

polyclonal antityrosine antibody (Upstate Biotechnology, Milford, MA) was used 

(1:2,000) with incubation overnight at 4℃. For detection of 4-HNE, a rabbit polyclonal 

anti-HNE antibody (Alpha Diagnostics International) was used (1:5,000) with incubation 

overnight at 4℃. The following morning a secondary IR-Dye 800CW goat anti-rabbit 

antibody was applied (1:5000; Vector Laboratories, Burlingame, CA) in the dark for 1 hr. 

The intensity of the bands was then detected and quantified by using the Li-Cor Odyssey 

Infrared Imaging System (LI-COR Biosciences, Lincoln, Nebraska). On all blots, a blank 

slot without any mitochondrial protein was employed to correct for nonspecific binding. 

The value of the blank was background-subtracted from the values for all the other 

samples.  

Statistical Analysis 

Statistical analysis was performed using the STATVIEW package (JMP software, Cary, 

NC). All results are expressed as means±SEMs. Data were analyzed by one-way 

analysis of variance (ANOVA) first, if the ANOVA revealed a significant effect, 

post-hoc analysis was carried out by using the Student-Neuman-Keul (SNK) test. A 

difference was considered significant at p < 0.05. 
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III. Results 

Exposure of Spinal Cord Mitochondria to PN Donor SIN-1 Impairs Mitochondrial 

Complex I Respiration 

 

We first investigated the ability and potency of exogenous PN (SIN-1) to cause 

mitochondrial respiratory dysfunction in isolated healthy spinal cord (SC) mitochondria. 

Ficoll-purified SC mitochondria (30-35 μg) was suspended in respiration buffer and 

pretreated with different concentrations (1 μM, 2.5 μM, 5 μM and 10 μM) of PN donor 

SIN-1. Mitochondrial states II, III, IV, and V respiratory rates were then measured and 

expressed in nanomoles of oxygen per milligram (nmol/ml) of isolated mitochondrial 

protein. The representative respiratory traces in Figure 4.1A demonstrate the 

dose-dependent alterations of SC mitochondrial bioenergetics after exposure to different 

concentrations of SIN-1. With the increase of SIN-1, SC mitochondrial respiration was 

compromised and the oxygen consumption was decreased progressively. At a dosage of 10 

μM SIN-1, mitochondrial function was severely impaired with little response to substrates 

as shown in the respiratory trace. Figure 4.1B displays the dose-response analysis of 

SIN-1-induced mitochondrial dysfunction by the quantification of RCR. RCR is the ratio 

of state III oxygen consumption (rate in the presence of ATP, second bolus) to state IV 

oxygen consumption (rate in the presence of ATPase inhibitor oligomycin). The RCR is 

considered as a sensitive measure of mitochondrial function and how well the electron 

transport is coupled with ADP phosphorylation. One-way ANOVA showed treatments 

produced a significant effect in terms of the RCR across all groups [F(4,16)=24.026; 

p<0.0001]. Mitochondria isolated from the SC tissue of healthy animals were found to be 

metabolically intact and well coupled (RCR > 6.0). Pretreatment of mitochondria with PN 

donor SIN-1 for 5 min resulted in a progressive decrease in RCR compared with that in the 

untreated mitochondria (control group). Data are presented as means±SEMs; *p<0.0001 

compared with control as determined by one-way ANOVA and the 

Student-Neuman-Keuls post hoc test. 
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Figure 4.1 Dose-related effect of PN donor SIN-1 on respiratory dysfunction in 

Ficoll-purified isolated mitochondria. A: The representative oxymetric traces show the 

dose-dependent alterations in SC mitochondrial bioenergetics following exposure to 

different dosages of SIN-1. B: SIN-1 induced mitochondrial dysfunction in a 

dose-dependent fashion in terms of RCR (*p<0.0001 vs control by SNK). 
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Quantification of mitochondrial bioenergetics (Figure 4.2) shows significant 

increases in state II respiration after SIN-1 exposure of all concentrations (*p<0.001 vs 

control). State III (RCR numerator, rate of the presence of ADP) and complex 1 

driven-state V (uncoupled in the presence of FCCP) showed significant dose-related 

decreases as the increase of SIN-1 concentration. In contrast, state IV respiration (RCR 

denominator, the rate in the presence of the ATP synthase inhibitor oligomyclin) was 

increased by SIN-1 (*p<0.001 vs control), suggesting the compromised coupling of ETC 

and ATP production due to PN formation. Therefore, the dose-dependent decrease of 

RCR showed in Figure 4.1B was attributable to the simultaneous decrease of State III and 

increase of State IV following SIN-1 exposure. Moreover, it deserves to be pointed out 

that although complex I-driven mitochondrial respiration was sensitively affected by 

SIN-1 exposure, maximum complex II-driven respiration (the rate in the presence of 

succinate) was not modified, supporting the notion that the complex I component in the 

ETC is a selective target for PN-mediated oxidative damage (Riobo et al., 2001; Murray 

et al., 2003; Singh et al., 2007). 
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Tempol Partially Protects Spinal Cord Mitochondria from SIN-1-induced 

Respiratory Dysfunction  

 

We then carried out a dose-response analysis of the ability of tempol pretreatment to 

antagonize SIN-1-induced mitochondrial dysfunction. The concentration of SIN-1 we 

applied was determined as 5 μM since at this dosage the impaired RCR is closest to the 

mitochondrial RCR 24 hrs following SCI (Sullivan et al., 2007). In attempting to titrate 

the optimal dosage of tempol, five concentrations (1.25 μM, 2.5 μM, 3.75 μM, 5 μM, 10 

μM) were employed for a detailed analysis of its protective effects against SIN-1. As 

demonstated in Figure 4.3A, one-way ANOVA displays treatments produced a 

significant effect across all groups [F(6,18)=30.043, p<0.0001]. Pretreatment with tempol 

at concentrations of 3.75 μM and 5 μM significantly increased the RCR compared to the 

SIN-1 (5 μM) alone group (#p<0.001, n=5), suggesting a preservation of mitochondrial 

respiration. However, tempol lost its efficacy at a higher concentration of 10 μM 

indicative of a U-shaped dose-response. Additionally, in all tempol-treated groups the 

RCR remained significantly suppressed when compared to the control untreated 

mitochondria (*p<0.001). Data are presented as means±SEMs; *p<0.0001 compared 

with control as determined by one-way ANOVA and SNK post hoc test. 
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As indicated in Figure 4.3B, quantification of all respiratory states showed only 

tempol at 5 μM, but not at lower or higher concentrations, improved state III (RCR 

numerator) with a statistical significance (#p<0.001, n=5). In all tempol-treated groups, 

there was a downward trend in terms of state IV respiration (RCR denominator) 

compared to SIN-1 alone group, but no significantly differences detected. As for complex 

I-driven State V respiratory rates, 3.75 μM tempol treatment has a significant effect 

compared to the SIN-1 alone group (#p<0.001), but not other concentrations. No 

significant differences were detected across all groups in terms of complex II-driven 

respiration.  

 

Tempol Protects Spinal Cord Mitochondria against SIN-1 induced 3-NT formation 

 

In a separate set of experiments, we determined the oxidative damaging effects of 

the previously demonstrated mitotoxic concentration of SIN-1 (5 μM) in spinal cord 

mitochondria. As shown in Figure 4.4, 5 min of exposure of the mitochondria to SIN-1 

produced a significant increase in 3-NT formation, as measured by immunoblotting. The 

representative slot blots (Figure 4.4A) demonstrated SIN-1 pretreatment dramatically 

increased 3-NT immunoreactivity in SC mitochondrial protein and tempol (5 
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μM)-pretreated mitochondria almost completely blocked the SIN-1-induced formation of 

3-NT in mitochondria by bringing the 3-NT immunoreactivity back to sham level. 

Densitometric quantification of the blots (Figure 4.4B) showed PN donor SIN-1 

significantly increased 3-NT level in SC mitochondria, with a 6-fold increase compared 

to the control group (*p<0.0001 vs. control, n=6). Tempol pretreatment effectively 

prevented SIN-1-induced 3-NT formation in SC mitochondria, by significantly 

decreasing the level when compared to SIN-1 alone group (# p<0.0001 vs. SIN-1 alone 

group, n=6). This effect is considered complete since there is no significant difference 

between the control and tempol treated mitochondria.  
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Exposure of SIN-1 to Spinal Cord Mitochondria has no effects on 4-HNE formation 

Although 5 min incubation of SIN-1 induced 3-NT formation in mitochondrial 

protein, it had no effects on the lipid peroxidation marker 4-HNE. The representative 

blots demonstrated (Figure 4.5A) 4-HNE levels in mitochondria proteins among all 

groups. Note that a basal level of 4-HNE formation could be detected in control untreated 

mitochondrial protein, indicating the existence of lipid peroxidation in healthy spinal cord 

mitochondria. No evidence of elevated 4-HNE was observed in SIN-1 alone treated and 

SIN-1 and tempol treated groups. Quantification in Figure 4.5B showed there was no 

increase in 4-HNE after exposure to SIN-1 and there was no significant differences 

detected among three groups.  
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IV. Summary and Discussion 

It has been well established that mitochondrial dysfunction and free radical damage 

are two important pathological events following acute central nervous system injury (Hall 

et al., 2004; Sullivan et al., 2000; 2004; 2007; Lifshitz et al., 2004). Recent studies from 

our laboratories strongly suggest that the principal ROS involved in the secondary 

damage after CNS injury is PN, often referred to as a reactive nitrogen species (Hall et al., 

1999; 2004; Xiong et al., 2007; Deng-Bryant et al., 2007). The mitochondrion is both a 

major source of posttraumatic PN formation and a vulnerable target of its free 

radical-mediated damaging effects (Carroll et al., 2000; Szabo et al., 2007). 

PN-associated reactions modulate mitochondrial function in various pathways including, 

but not limited to, inhibition of mitochondrial electron transport (Radi et al., 1994), 

inactivation of the pyruvate dehydrogenase complex (Martin et al., 2005), inhibition of 

mitochondrial NADH:ubiquinone reductase activity (Riobo et al., 2001). Inactivation of 

mitochondrial electron-transport enzymes increases the amounts of superoxide and 

hydrogen peroxide generated by the mitochondria, which may further contribute to 

cellular injury, in an additive or synergistic fashion.  

PN is formed by the diffusion-limited combination of •NO and O2
•- with a rate 

constant on the order of 109 or 1010 mol/sec (Huie and Padmaja, 1993; Halliwell and 

Gutteridge., 1998). As described previously, PN is protonated to form peroxynitrous acid 

(ONOOH), which can undergo homolytic decomposition and generation of the highly 

reactive nitrogen dioxide radical (•NO2) and hydroxyl radical (•OH) (Radi et al., 1991). In 

a more physiologically relevant reaction, PN will react with carbon dioxide (CO2) to form 

nitrosoperoxocarbonate (ONOOCO2
-) which homolytically decompose to generate •NO2 

and carbonate radical (•CO3) (DeNicola et al., 1996; Radi, 2004). It is widely accepted 

that the potent oxidizing ability of PN is actually due to its decomposition free radicals. 

PN-derived •OH, •NO2, and CO3
•- can initiate lipid peroxidative cellular damage by 

attacking polyunsaturated fatty acid or cause protein carbonylation by reacting with 

susceptible amion acids (Radi et al., 1991; Radi, 2004). Additionally, •NO2 can nitrate the 

3-position of tyrosine residues in proteins and inactivate important enzymes (i.e. 
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MnSOD), components of mitochondrial electron transport chain and disrupt tyrosine 

signaling pathways (Cassina et al., 2000; Riobo et al., 2001; Murray et al., 2003). 

 The understanding of the importance of PN in posttraumatic mitochondrial 

function impairment provides a promising therapeutic target for acute treatment after 

CNS injury. Increasing evidence has been shown compounds that interfere with 

PN-mediated reactions (Scott et al., 2005) or neutralize PN, effectively protect tissues 

and animals from oxidative stress conditions. In the present study, we provided direct 

evidence that tempol, a stable nitroxide antioxidant which has been shown to have 

protective effects in various experimental models (Cuzzocrea et al., 2000; Szabo et al., 

2002; Hillard et al., 2004; Deng-Bryant et al., 2007 and Chapter Four), is actually 

exerting its beneficial effects through scavenging of PN-derived radicals. Although 

tempol is a well-documented neuroprotective nitroxide, its neuroprotective effects have 

been attributed simply to its superoxide dismutase (SOD) mimicry. However, recent 

studies showed tempol can catalytically decompose the PN-derived free radicals •NO2 

and CO3
•- (Carroll et al., 2000). This latter property is probably reflected in the decrease 

in 3-NT, a specific marker for PN formation, in tempol-treated mitochondrial and spinal 

cord tissue, suggesting a linkage between tempol’s mitochondrial protection and 

scavenging of PN-derived free radicals. Although this relationship has been partially 

confirmed by investigating PN-mediated oxidative damage and the protective effects of 

tempol in brain mitochondria (Singh et al., 2007), the current study has, for the first time, 

examined the responses of spinal cord mitochondria to exogenous PN. Previous studies 

have reported the physiological differences exist in the mitochondria isolated from 

different organs or subregions (Andreyev et al., 1998; Andreyev and Fiskum, 1999; 

Friberg et al., 1999). Indeed, there are intrinsical differences between the mitochondria 

localized in the brain and those in spinal cord (SC) (Sullivan et al., 2004). Our 

preliminary studies confirmed this concept (Figure 4.6). From the representative 

mitochondrial traces, the same amount of brain mitochondria showed better coupling and 

more O2 consumption (i.e. more efficient ATP synthesis) to added substrates when 

compared to the mitochondria obtained from SC, and the maximal capacity of the 

electron transport chain in brain mitochondria is much higher than that in SC 
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mitochondria which can be seen after the addition of the uncoupler FCCP. Although both 

of them are considered healthy, the mean respiratory control ratio (RCR) showed 

significantly higher value in brain compared to SC mitochondria (*p<0.01 vs SC, n=8).  

 

It was surprising to us that exposure of isolated normal, healthy spinal cord 

mitochondria to PN delivered via SIN-1 caused rapid protein nitration but not lipid 

peroxidation. The increase in 3-NT was coincident with severe impairment of 

mitochondrial respiration. However, the PN marker 3-NT, but not the lipid peroxidation 

product 4-HNE, dramatically increased in isolated SC mitochondria within minutes of 

SIN-1 exposure, suggesting the impaired mitochondrial respiratory function has a strong 

association with mitochondrial protein nitration but not lipid peroxidation. Lipid 

peroxidation may be a siginificant oxidative mechanism involved in PN-mediated 

oxidative damage in vivo, however, 5 min exposure of SC mitochondria to PN was 

probably too short to allow lipid peroxidation to take place. In isolated brain 

mitochondria, Singh et al. similarly observed only a non-significant increase in 4-HNE 
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signals but statistically significant increases in 3-NT formation after 5 min exposure to 

SIN-1. Thus, for both brain and SC mitochondria, it appears that the PN-mediated 

mitochondrial dysfunction is mainly attributable to PN-mediated nitration. Indeed, 

PN-induced nitration has been extensively studied as a crucial mechanism underlying the 

PN’s toxicity. Past studies have shown that the nitration was involved in the inactivation 

of Mn superoxide dismutase (MnSOD), therefore amplifying mitochondrial injury by 

depleting this important anti-oxidant defense mechanism (MacMillan-Crow et al., 1996). 

Furthermore, recent data have revealed that a crucial mitochondrial target for PN is 

cytochrome c. Nitration of cytochrome c results in a marked increase in its peroxidase 

activity, which may exacerbate the oxidative damage to mitochondrial proteins and 

membranes after PN exposure (Cassina et al., 2000; Batthyany et al., 2005).  

Although tempol is effective to antagonize PN-mediated 3-NT formation, the 

preservation of mitochondrial respiration is incomplete, suggesting that there are other 

mechanisms involved in PN-induced mitochondrial dysfunction which cannot be 

reversed by tempol; secondly, the neuroprotective effects shown by tempol in various 

vivo settings is largely due to its prevention of protein nitration. The first notion is easy to 

understand due to the multi-factorial effects of PN toxicity. The second notion is indeed 

consistent with previous biochemical studies based on tempol reaction with PN, which is, 

3-NT is mainly from PN-dervived •NO2 and tempol has the ability to divert nitration to 

nitrosation (Caroll et al., 2000) as demonstrated in following reaction: 
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In summary, the protective effects of tempol on mitochondrial respiration were 

accompanied by a decrease in the 3-NT, strongly suggesting that the beneficial effects of 

tempol we observed in vivo, including attenuation of oxidative damage, mitochondrial 

dysfunction and cytoskeletal degradation, resulted from direct scavenging of PN-derived 

free radicals.  
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CHAPTER FIVE 

 

GENERAL SUMMARY AND DISCUSSION 

 

Traumatic spinal cord injury (SCI) is comprised of the primary injury and secondary 

injury. The initial mechanical insult to the spinal cord induces some instantaneous tissue 

damage, which is termed the primary injury. However, the primary injury induces a 

cascade of neurochemical changes, which lead to further neuronal cell loss, 

microvascular damage and dysfunction and impairment in behavioral function. 

Secondary injury begins immediately after injury, and this post-injury phase may last for 

days and weeks depending on the severity of the initial injury. Although little can be done 

to reduce the primary injury apart from decreasing the risk of SCI, it is feasible to 

ameliorate post-SCI secondary injury by timely pharmacological interventions. Thus, 

understanding pathological mechanisms responsible for post-traumatic neuronal damage 

will shed light on neuroprotective pharmaceutical approaches.  

 

The current project has identified peroxynitrite (PN) as an important therapeutic 

target for pharmacological intervention. We evaluated the effect of PN-derived radical 

scavenger, tempol, on PN-induced oxidative damage, mitochondrial dysfunction and 

calpain-mediated proteolysis. Furthermore, the therapeutic window of tempol has also 

been investigated to determine the possibility to move tempol forward to its clinical 

transition. Finally, we explored the mechanism underlying tempol’s mitochondrial 

protection and provided direct evidences showing tempol’s ability to scavenge 

PN-derived free radicals.  

 
The first study is a thorough comparative time course assessment of PN-induced 

oxidative damage and calpain-mediated α-spectrin breakdown in a rat spinal cord 

contusion model. Temporal and spatial co-existence of 3-NT and 4-HNE observed in 

both quantitative slot-blotting and immunohistochemical studies indicated that PN is the 
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main source of protein nitration and lipid peroxidation, strongly suggesting that PN is an 

important mediator of post-traumatic oxidative damage after SCI. The onset of 

PN-mediated oxidative damage measured in spinal cord tissue begins immediately after 

injury and peaks around 24 hr post injury. This is coincident with an increase of oxidative 

damage and functional deficit observed in spinal cord mitochondria (Sullivan et al., 2007), 

suggesting that mitochondria are perhaps the major source and target of post-traumatic 

production of PN. Furthermore, quantitative western-blots measured calpain-mediated 

cytoskeletal degradation which is also dramatically increased within the first hours after 

injury. The increased appearance of calpain-mediated spectrin breakdown (SBDPs) 

progresses slowly over time probably due to the inhibition of early production of 

oxidative stress and the peak occurred at 72 hrs post-injury. The second wave of calpain 

activataion is most likely due to the later compromised mitochondrial dysfunction and 

subsequent disruption of intracellular Ca2+ homeostasis. The increments of 

calpain/caspase 3-generated SBDP150 after SCI suggested a role of apoptosis in the 

progress of SCI pathophysiology.  

 

Our time course study on PN-oxidative damage reveals a prolonged existence of 

oxidative stress following SCI. Considering the role of inflammation after acute injury, 

some aspect of the ROS production is most likely due to the invading neutrophils and 

macrophages. However, with the progress of secondary injury cascade, mitochondria, 

especially when their function get compromised by overwhelming intracellular Ca2+, may 

become the major source for ROS formation and contribute, along with inflammatory 

mechanisms to the oxidative damage observed at later time points (72 hrs and 1 week 

post injury). Indeed, this two-phase oxidative damage notion is in excellent agreement 

with the time course study of Ca2+-activated calpain-mediated spectrin breakdown, which 

reveals two phases of calpain activation. The first, rapid accumulation of SBDPs 145 and 

150 at 1 hr post injury indicated an immediate influx of Ca2+ into the cell after SCI, 

which is attributable to the initial insults involving cellular and mitochondrial membrane 

ruptures. However, the later phase of calpain activation should due to distinct 

mechanisms that involve several interacting secondary injury events including 

PN-induced cellular and mitochondrial damage. 
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 Aside from the concept that PN plays an important role after SCI by protein 

nitration and oxidation and lipid peroxidation, other points can be derived from our time 

course study. Firstly, the prolonged time course of PN-oxidative damage provides a 

practical time window for pharmacological intervention or at least a prolonged anti-PN 

therapeutic treatment should give us better protection over oxidative damage. Secondly, 

the quantitative measurement of the end products of oxidative damage and 

calpain-mediated proteolysis also provides measurable biomarkers for future therapeutic 

studies. Targeting PN-induced oxidative damage may have multiple beneficial effects 

through inhibition of several key mediators in the secondary injury process. However, the 

early onset of oxidative stress also makes PN-induced damage a difficult target. Timely 

treatment is critical in order optimally inhibited PN-mediated damage mechanisms.   

 
To test the hypothesis that blockade of upstream PN-induced oxidative damage will 

produce a neuroprotective effect, and also to establish a mechanistic linkage of 

PN-induced damage, mitochondrial dysfunction and calpain over-activation, we 

pharmacologically targeted PN using a potent antioxidant, tempol, in a rat SCI model. 

Tempol is a membrane permeable, catalytic scavenger of PN-derived free radicals. In an 

initial study, we examined two dosages of tempol (150 mg/kg and 300 mg/kg) and 

evaluated the ability of tempol to preserve post injury mitochondrial dysfunction and 

found 300 mg/kg is a better working dosage for neuroprotection (see more detailed 

description in next paragraph). We then employed this effective dosage throughout the 

subsequent experiments and chose the PN-specific marker 3NT, the lipid peroxidation 

marker 4-HNE and protein oxidation-derived protein carbonyls as indices to examine the 

effects of tempol on PN-induced oxidative damage. In order to achieve maximal effect, 

tempol was administered i.p. immediately after injury (approximately within 5 min post 

injury) and tissue was harvested at 24 hr post-injury when oxidative damage is at its peak. 

Both immunoblotting (slot-blotting and western-blotting) and immunohistochemical 

evidences show that acute tempol treatment effectively inhibited PN-mediated oxidative 

damage.  

 
To confirm our hypothesis that oxidative damage is an upstream element in the 

secondary injury cascade, we hypothesized that mitochondria are the main source of PN 
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production based upon previous studies (Singh et al., 2006; 2007; Sullivan et al., 2007) 

showing that PN-mediated damage occurs in mitochondria from the injured brain or 

spinal cord which parallels the loss of respiratory function and Ca2+ buffering capacity. 

Indeed, in response to glutamate-induced excitotoxic Ca2+ influx, mitochondrial Ca2+ 

uptake induces superoxide and nitric oxide radical production, which can combine with a 

diffusion rate-limited rate constant to produce PN. To test the association between 

mitochondrial PN oxidative damage and respiratory dysfunction, we administered two 

dosages of tempol at the onset of injury and isolated the mitochondria from the injured 

spinal cord at 24 hrs post-injury. Using Clarke-type electrode measurement of 

mitochondrial respiration, both tempol-treated (150 mg/kg and 300 mg/kg) mitochondria 

showed improved maintenance of respiratory function, with a slightly better effect seen 

in 300 mg/kg tempol-treated group. The protective effect of tempol on mitochondrial 

function reveals that: 1) tempol is membrane permeable and effective in penetrating into 

mitochondrial matrix; 2) mitochondria are a main source for PN production as well as the 

primary target of PN-mediated oxidative damage. Moreover, the success of using tempol 

in vivo to preserve mitochondrial function, strongly suggests that PN plays a significant 

role in mediating mitochondria Ca2+ influx-induced functional impairment.  

 
Moving downstream in the hypothesized secondary injury cascade, we examined the 

effect of tempol on Ca2+-dependent calpain activity. Calpain is activated upon Ca2+ influx 

and is shown to play an important role in cytoskeletal degradation, which is considered as 

a final common pathway to cell death. Because of the close relationship of calpain and 

cytosolic calcium level, we hypothesize that tempol, by preserving mitochondrial 

function and maintaining calcium homeostasis, will indirectly attenuate calpain activity. 

To test this hypothesis, we administered single i.p. dose of tempol immediately after 

injury and evaluated calpain-mediated SBDPs at 24 hrs post-injury measured by 

quantitative western-blotting. The results demonstrate that tempol significantly reduces 

calpain-specific SBPDs 145 and 150 after injury. The inhibitory effect of antioxidant 

tempol on calpain-mediated cytoskeletal proteolysis strongly confirms that PN-induced 

oxidative damage is upstream to calpain over-activation.  

 
We then carried out a tempol therapeutic window study by measuring 
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calpain-mediated SBDPs after delaying tempol administration until 1 hr, 2 hrs and 4 hrs 

post injury. The results showed tempol lost its efficacy to antagonize calpain-mediated 

spectrin breakdown as early as 1 hr delay, suggesting tempol has a very short therapeutic 

window. Although it is apparent that the first one hour is crucial for PN-induced 

oxidative damage, this result does not rule out the possibility that by using a multiple 

dosing regimen or combination therapy with another compound that targets a different 

injury mechanism (i.e. calpain inhibitor, lipid peroxidation inhibitor) tempol will be able 

to demonstrate more clinically practical benefits. Based on the potent inhibition we 

observed of tempol on PN-induced oxidative damage after SCI, tempol, although having 

an impractically short therapeutic window, should be considered as an excellent tool drug 

to explore the role of PN in pathophsiology after SCI in animal models and also a 

possible candidate for combination therapy of SCI.   

 

We have successfully proven that tempol, by preventing upstream PN-induced 

oxidative damage, ameliorated mitochondrial dysfunction and attenuated 

calpain-mediated cytoskeletal degradation in vivo. In the last study, we extend our 

investigation in vitro to better understand the underlying mechanisms involved in 

PN-mediated mitochondrial dysfunction and tempol’s protective effects on mitochondria. 

This data is complementary to our vivo studies and provided direct evidences showing 

the ability of tempol to antagonize PN-induced damage to mitochondria. From the fact 

that SIN-1 induced impaired mitochondrial respiration in a dose-dependent manner in 

vitro, together with the evidences of PN-induced oxidative damage in vivo, we can 

conclude that the mitochondrial dysfunction we observed in vivo after SCI is largely 

caused by PN. Secondly, tempol effectively antagonize the 3-NT formation at the SIN-1 

exposured mitochondria, suggesting the in vivo 3-NT is primarily from endogenous PN 

and tempol’s benefits we observed in vivo strongly associated with its PN scavenging 

property.  

 
In conclusion, in this dissertation research has successfully provided strong evidence 

for PN-induced oxidative damage being an important upstream mediator in the secondary 

cell death cascade in the injured spinal cord. By scavenging PN-derived free radicals with 
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the nitroxide antioxidant tempol, it is possible to protect mitochondrial function and 

probably Ca2+ buffering capacity which in turn reduces downstream calpain-mediated 

proteolysis. However, the short therapeutic window of tempol and the complexity of the 

secondary injury process after SCI challenge the idea that single therapy can achieve 

optimal neuroprotection and improvement in functional outcome. In the future, the 

combination therapies that simultaneously target PN-induced oxidative damage, along 

with either inhibition of lipid peroxidation, or mitochondrial permeability transition pore, 

or calpain activation, may be needed to provide optimal neuroprotections after acute SCI. 
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APPENDIX: ABBREVIATIONS 

 
∆Ψm mitochondrial membrane potential  
∆pH proton force  
3-NT 3-nitrotyrosin  
4-HNE 4-hydroxynonenal  
8-OH-G  8-hydroxyguanine  
8-OHdG  8-hydroxydeoxyguanosine  
ADP adenosine diphosphate  
ALS amyotrophic lateral sclerosis 
AIF apoptosis inducing factor  
ATP adenosine triphosphate  
BBB blood-brain barrier 
BCA bicinchoninic acid 
BSA bovine serum albumin 
BSCB blood-spinal cord barrier 
BDPs breakdown products  
CNS central nervous system  
CsA cyclosporine A  
CSF cerebrospinal fluid  
Cyt c cytochrome c  
DNPH  2,4-dinitrophenylhydrazine  
eNOS  epithelial nitric oxide synthase  
ETC electron transport chain  
EGTA ethylene glycol tetraacetic acid 
FADH2 reduced flavin adenine dinucleotide  
FCCP  p-trifluoromethoxy carbonyl cyanide phenyl hydrazone  
Fisher's PLSD Fisher's Protected Least Significant Difference 
FMNH2 reduced flavin mononucleotide  
GPX glutathione peroxidase  
GSH glutathione 
GSSG oxidized glutathione 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
IMM inner mitochondrial membrane  
iNOS inducible nitric oxide synthase  
LP  lipid peroxidation  
NADPH  nicotinamide adenine dinucleotide phosphate, reduced form  
nNOS  neuronal nitric oxide synthase  
MAP2  microtubule-associated protein 2 
MBP  myelin basic protein  
MDA malondialdehyde  
mPTP  mitochondrial permeability transition pore  
MPTP  1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine  
mtNOS  mitochondrial nitric oxide synthase  
NADH  nicotinamide adenine dinucleotide, reduced form  
NADPH  nicotinamide adenine dinucleotide phosphate, reduced form  
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NF neurofilament  
NF-κB TNF-receptor-nuclear factor κB 
NFP neurofilament protein 
NMDA N-Methyl-D-aspartate  
NO nitric oxide  
NOS nitric oxide synthas  
ONOO -  peroxynitrite anion  
ONOO  peroxynitrite anion  
ONOOH  peroxynitrite acid  
ONOOCO2  nitrosoperoxo carbonate  
PARS  ADP-ribose synthetase  
PBS  phosphate-buffered saline  
PGH prostaglandin hydroperoxidase 
PLP proteolipid protein  
PN peroxynitrite  
PUFAs  polyunsaturated fatty acids  
RCR respiratory control ratio  
ROS reactive oxygen species  
RNS reactive nitrogen species  
SBDPs  α-spectrin breakdown products  
SC spinal cord 
SCI spinal cord injury  
SDS/PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  
SEM standard error of the mean  
SIN-1 3-morpholinosydnonimine hydrochloride 
SOD superoxide dismutase  
TBI traumatic brain injury  
TBS tris-buffered saline  
TNF-α necrosis factor alpha  
UCPs uncoupling proteins  
UQ ubiquinone  
XDH xanthine dehydrogenase  
XO xanthine oxidase  
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