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ABSTRACT OF DISSERTATION 
 
 
 
 

ASSOCIATIONS BETWEEN SERUM CONCENTRATIONS OF POLYCHLORINATED 
BIPHENYLS, SERUM CAROTENOIDS, AND THE PROBABILITY OF METABOLIC SYNDROME 

IN THE NATIONAL HEALTH AND NUTRITION EXAMINATION SURVEY 2003-2004 
 
 
 
 

Diabetes and cardiovascular disease are leading causes of death and disability in 
the United States.  These chronic diseases are clinical sequelae of metabolic syndrome 
(MetS), a condition that affects approximately one-third (1/3) of American adults.  
Metabolic syndrome occurs in response to environmental and genetic influences, 
among them food intake, a sedentary lifestyle, BMI, advancing age, and exposure to 
persistent organic pollutants (POPs).  POPs are known to cause endocrine disruption and 
PCBs cause oxidative stress, disrupt endothelial cell integrity, and promote 
atherosclerosis.  Nutrition plays a significant role in the prevention and management of 
these chronic diseases and has been shown to modulate the toxicity of PCBs.  Serum 
carotenoid (SC) concentrations are the best biomarker indicative of fruit and vegetable 
intake and an improved nutritional status.   

 
The purpose of this study was to investigate the relationship between serum 

carotenoid concentrations, serum concentrations of PCBs, and the probability of 
developing metabolic syndrome.  The National Health and Nutrition Examination Survey 
(NHANES) is a program of the National Center for Health Statistics (NCHS), Centers for 
Disease Control and Prevention (CDC), that utilizes a cross-sectional sample survey 
design to collect, maintain, and disseminate the health and nutrition data of persons 
residing in the United States.  Carotenoids and PCBs share similar biological pathways 
due in part to lipophilicity.  Both concentrate to lipids in blood, are stored primarily in 
adipose tissue, and may competitively bind nuclear receptors.   

 
A statistical interaction was sought between the two variables for their 

combined effect on the probability of metabolic syndrome.  An increase in probability 



was observed in the first exposure quartile for many PCBs, individually and pooled, 
suggestive of a low dose endocrine effect.  Statistical modeling consistently showed 
strong decreasing trends in the probability of metabolic syndrome with higher 
concentrations of serum carotenoids in the 3rd and 4th PCB exposure quartiles.  These 
data suggest a protective effect of serum carotenoids, and therefore of fruit and 
vegetable intake, despite higher serum levels of PCBs, in the probability of developing 
metabolic syndrome. 

 
 

Key words: Metabolic syndrome, Polychlorinated Biphenyls, Carotenoids, Nutrition, 
Environmental Health 
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CHAPTER ONE 
 

INTRODUCTION 
 

1.1      Overview 

The past thirty years have seen a dramatic and rapid increase in the prevalence 

of overweight and obesity.  Data indicate that two-thirds of Americans are currently 

either overweight or obese (Ogden, et al. 2010).  Both conditions are associated with 

the metabolic syndrome, which is characterized by a clustering of cardiometabolic risk 

factors that predict Type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and 

mortality (Li, et al. 2006).  In addition to body mass index (BMI), associated risk factors 

include advancing age, a sedentary lifestyle, and the excess calorie consumption so 

easily attained in today’s environment of highly palatable, relatively inexpensive, 

energy-dense foods.  Some environmental contaminants have been implicated in the 

pathogenesis of metabolic syndrome as well and are thought to interfere with normal 

functioning of the endocrine system (Lee DH, et al. 2011b, Ruzzin, et al. 2010, Lee DH, et 

al. 2007b).   

 One group of these contaminants is polychlorinated biphenyls (PCBs), a family of 

209 manufactured compounds known for their persistence, lipophilicity, and damage to 

health (Safe, 1993).  Although production was banned in the late 1970s, they have 

persisted in the environment and are ubiquitous.  The primary vehicle of exposure today 

is through food, primarily marine, mammal, and dairy foods possessing a lipid 

compartment (Longnecker, 2001).  This suggests analogous exposures for many, if not 

most, people.  Importantly, food is also the primary and preferred vehicle for nutrition.  

Nutrition plays an important role in the prevention and treatment of metabolic 

syndrome, T2DM, and CVD, and has been shown to modulate the toxicity of PCBs (Ford, 

2001, Joshipura, et al. 2001, Majkova, et al. 2008, Panagiotakos, et al. 2007).  There is 

scant evidence to date on what foods and nutrients are associated with maintenance of 

health in the presence of PCB exposure.  The studies presented in this dissertation 

reveal associations between specific nutrients known to be abundant in fruits and 
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vegetables, serum concentrations of PCBs, and the probability of developing metabolic 

syndrome.  It is hoped this will contribute to a greater understanding which nutritional 

and overall food patterns may preserve the maintenance of health in a toxic world. 

 

1.2     Metabolic Syndrome 

In 1988, Dr. Gerald Reaven delivered the Banting Lecture, at which time he 

posited the theory of a pathogenic syndrome comprised of individual, interrelated risk 

factors leading to a heightened incidence of CVD and T2DM (Reaven, 1988).  This 

“syndrome x” included specific cardiovascular disease risk factors with underlying, 

persistent insulin resistance.  While hyperglycemia and central obesity were prevalent, 

patients did not always present with these symptoms.  The National Cholesterol 

Education Program (NCEP) Guidelines followed in 2001 with proposals that based 

determination of syndrome x, now referred to as the metabolic syndrome, on common 

clinical measures, allowing for broad and simple diagnosis of the syndrome (3rd Report 

NCEP ATPIII).  Other organizations have put forth their own criteria for a determination 

of metabolic syndrome.  These include, but are not limited to, the World Health 

Organization (WHO) and the American Academy of Clinical Endocrinologists (AACE) (Li, 

et al. 2006).  The NCEP Guidelines have been used in this dissertation. 

Table 1.1  
National Cholesterol Education Program, Adult Treatment Panel III 

(ATP III) Clinical Identification of the Metabolic Syndrome 
RISK FACTOR DEFINING LEVEL 

Abdominal obesity, given as waist circumference  

       Men >102 cm (>40 inches) 

       Women >88 cm   (>35 inches) 

Triglycerides ≥ 150 mg/dL 

HDL cholesterol  

        Men <40 mg/dL 

        Women <50 mg/dL 

Blood pressure ≥ 130/85 mm Hg 

Fasting plasma glucose 100-125 mg/dL* 

*Early determination of impaired fasting glucose was set at ≥110 mg/dL.  The American Diabetes 
Association lowered the cutpoint to 100 mg/dL, at which point a person is considered to have prediabetes. 
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A finding of three or more of the above five criteria constitutes a diagnosis of 

metabolic syndrome.  Triglycerides, HDL-cholesterol, and blood pressure may be 

considered a positive marker for metabolic syndrome if medication is being taken to 

correct for levels beyond normal thresholds.  In recent years, the definition of metabolic 

syndrome has been expanded to include a persistent proinflammatory state and 

prothrombotic state (Grundy SM, et al, 2005), although clinical diagnosis of metabolic 

syndrome does not include their identification and current therapies for them are 

limited, often to daily, low-dose aspirin and lifestyle modification. 

Identification of metabolic syndrome offers an opportunity to clinicians beyond 

the first line treatment and prevention of atherosclerotic disease and diabetes.  The 

Scientific Statement of the American Heart Association (AHA) and National Heart, Lung, 

and Blood Institute (NHLBI) stated in 2005 that the greatest benefit for individuals with 

MetS was to be found in lifestyle intervention (Grundy SM, et al. 2005).  Major lifestyle 

interventions include (1) weight loss in the overweight and obese, (2) increased physical 

activity, (3) smoking cessation, if applicable, and (4) modification of an atherogenic diet, 

i.e. one high in total fat, saturated fat, trans fat, and cholesterol.   

A uniform dietary approach has not been accepted for metabolic syndrome as of 

yet.  The primary goal of preventing atherosclerotic disease, however, has led to a broad 

adoption of the NCEP ATPIII Therapeutic Lifestyle Change (TLC) guidelines for the 

lowering of LDL-cholesterol, which focuses primarily on macronutrient manipulation. 

 

Table 1.2 ATP III Therapeutic Lifestyle Change (TLC) Dietary Recommendations 

NCEP ATP III TLC Dietary Recommendations 

COMPONENT RECOMMENDATION 

Carbohydrate 50-60% of total calories 

Protein Approximately 15% of total calories 

Total fat 25-35% of total calories 

Polyunsaturated fat ≤ 10% of total calories 

Monounsaturated fat ≤ 20% of total calories 

Saturated fats <7% total calories 
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Table 1.2 (continued) 

Dietary cholesterol Less than 200 mg/day 

Dietary fiber 20-30 grams per day 

Plant stanols/sterols 2 grams per day 

 

In a March 2000 interview with Nutrition Action Healthletter, Dr. Reaven proposed a 

Syndrome X diet with a macronutrient distribution of 45% carbohydrate, 15% protein, 

and 40% fat, almost exclusively from unsaturated sources (Reaven, 2000).  He reasoned 

that both carbohydrate and protein would stimulate insulin secretion and that protein 

foods in the western diet are often accompanied by saturated fat.   

Other diets have looked beyond macronutrient distribution and quality.  The 

Dietary Approaches to Stop Hypertension (DASH) and Mediterranean dietary patterns, 

both plentiful in plant foods rich in micronutrients – vitamins, minerals, phytochemicals 

- have shown benefits in reduced incidence of MetS, T2DM, and CVD (Bhupathiraju, et al. 

2011, Carter, et al. 2010, Knoops, et al. 2004).  One group of phytochemicals, the 

carotenoids, is a vast group of colorful plant pigments with associated health benefits.  

The National Academies for the Institute of Medicine has stated that serum carotenoids 

are the best biological markers for the assessment of fruit and vegetable consumption 

(DRIs for Vitamin C, Vitamin E, Selenium, & Carotenoids, IOM 2000).  Higher blood 

concentrations of serum carotenoids have been associated with a healthy weight and 

reduced risk of several chronic diseases.  Further, from a behavioral perspective, daily 

fruit and vegetable consumption at recommended intake levels requires an 

intentionality that can manifest in healthy behaviors in other areas of the lifestyle 

(Dietary Guidelines for Americans 2010, 7th Ed.). 

 

1.3   Serum Carotenoids 

Food carotenoids are a family of over 600 lipophilic plant pigments considered 

beneficial in the prevention of disease.  They are most readily identified by their 

conjugated polyene chain, most commonly having eight isoprenoid units, and this 
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structure informs their physical and chemical characteristics of color, redox potential, 

and responsiveness to heat, light, and acids (Liaaen-Jensen S, 2004).  The carotenoids 

currently known to be important to health and nutrition in the western diet are alpha-

carotene, beta-carotene, alpha-cryptoxanthin, beta-cryptoxanthin, lycopene, lutein, and 

zeaxanthin.  

 

Figure 1.1  Lycopene 

  
Namitha KK, Negi PS (2010). Chemistry & Biotechnology of Carotenoids. Critical Reviews in Food Science & 
Nutrition 50:8, 728-760. 

 

Carotenoids are lipid-soluble and are absorbed with dietary fat and fat-soluble 

vitamins.  Bioavailability is dependent on several factors, but solubility of carotenoids 

into mixed micelles and intestinal absorption is better facilitated with a small amount of 

fat in the meal.  Carotenoids become incorporated into plasma lipoprotein particles 

during transport, and are primarily stored in adipose tissue (Rao, et al. 2007).  No 

dietary reference intakes have been established for carotenoids (DRIs, 2000). 

In the early 1900s, it was noted that the yellow color in plant foods was 

associated with vitamin A activity and subsequently, it was demonstrated that specific 

carotenoids were converted to colorless vitamin A in rats (Barua, 2004).  Less than 10% 

of the carotenoids found in nature have properties allowing conversion to vitamin A.  

The predominant provitamin A carotenoids in the western diet include α- and β-

carotene, and α- and β-cryptoxanthin.  The structural requirement for provitamin A 

activity is one unsubstituted β-ionone ring attached to a polyene chain with at least five 

conjugated double bonds.  Provitamin A activity is the only known physiologic function 

of carotenoids at this time.  Although carotenoids may not convey essentiality, they do 

have biological actions that are becoming increasingly clear in the prevention of disease 

and in optimal biological functioning over the course of a lifetime. 

http://www.tandfonline.com/na101/home/literatum/publisher/tandf/journals/content/bfsn20/2010/bfsn20.v050.i08/10408398.2010.499811/production/images/large/bfsn_a_499811_o_f0001g.jpeg
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Figure 1.2 Beta-Carotene 

 
 

The common non-provitamin A carotenoids, lycopene, lutein, and zeaxanthin, 

are considered to be potent antioxidants (Di Mascio 1989).  More than 80% of dietary 

lycopene is consumed in the form of processed tomatoes.  Epidemiological evidence 

suggests that lycopene is effective against prostate cancer (Giovannucci, 2005), 

atherosclerosis (Palozza, et al. 2010), age-related macular degeneration (ARMD) 

(Sommerburg, et al. 1999), multiple sclerosis, and other diseases.  Zeaxanthin and lutein 

have been associated with prevention of ARMD and cataracts.   

Fruits and vegetables are the primary source of carotenoids in the diet.  It has 

not yet been unequivocally established whether it is the consumption of fruits and 

vegetables in general, the effects of specific nutritional constituents within them, or a 

synergism between the two, that accounts for their health benefits.  Data from 

epidemiological studies have generally supported a protective effect of fruit and 

vegetable consumption on lung cancer risk (Ziegler, 1996; Michaud, 2000).  Studies 

attempting to prove this benefit was due to beta-carotene were abruptly halted 

because of clear evidence showing significant increases in both incidence and death due 

to lung cancer (ATBC Cancer Prevention Study Group 1994; Omen 1996).  In terms of 

carotenoid supplementation, a pro-oxidant effect has been documented.  No such effect 

has been noted with food-sourced carotenoids.  Inverse associations have been 

observed between baseline dietary intake of fruits and vegetables, serum beta-carotene 

and subsequent occurrence of lung cancer.   
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1.4 Polychlorinated Biphenyls 

Polychlorinated biphenyls (PCBs) are a class of synthetic, organic chemicals that 

were produced in the United States and other industrialized countries for nearly fifty 

years, and used widely in a variety of applications.  Chemically, PCBs are lipid soluble, 

aromatic compounds composed of two biphenyl rings with up to ten chlorine 

substituents.  Based on the number and positioning of these chlorine atoms, 209 distinct 

congener PCBs are possible having the basic formula C12H10-nCln, where n = 1-10.   

 

Figure 1.3 Polychlorinated Biphenyl 

 
 

Wolff M, Camann D, Gammon M, Stellman S (1997).  Environmental Health Perspectives; 105(1): 13. 

 

At ambient conditions, individual PCB congeners tend to be colorless, odorless crystals.  

However, PCBs were distributed commercially as mixtures as early as 1929, in the form 

of clear, viscous liquids.  Aroclor 1254, a Monsanto product, referred to a refined PCB 

that was 54% chlorine by weight, and included several individual PCB congener classes 

(Erickson 2001).  This structure yielded physicochemical properties that extended well 

beyond industrial utility to an ongoing, dynamic impact on environmental health (Hopf, 

et al. 2009; White, et al. 2009; Fischer, et al. 1998). 

PCBs are persistent.  PCBs have proven highly useful because of their chemical 

and physical stability.  They demonstrate low flammability and high insulating properties, 

giving them wide commercial utility throughout much of the last century in electrical 

transformers and capacitors, hydraulic fluids, in paints, printing inks, adhesives and 

tapes, insulation materials, as a de-dusting agent, and more.  It is precisely because of 

this stability, however, that the higher chlorinated PCBs, in particular, persist in the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469860/figure/F1/
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environment today.  Consumer products produced before 1977 may still contain PCBs, 

including caulk, microscope oil, fluorescent lighting fixtures, and other electrical devices 

(ATSDR 2000). 

PCBs are ubiquitous.  These chemicals are among a select group considered 

global environmental pollutants.  Their hydrophobic nature causes them to adhere 

primarily to soil, but many congeners readily volatilize and are transported far from 

their site of origin.  PCBs have been measured in remote areas, such as open oceans, 

deserts, the Arctic and Antarctic, without regard for climate or geography.  Although it 

has been estimated that 99% of PCB mass is found in soil, atmospheric transport is 

believed to be the primary route of global dispersion.  Heavier PCBs may also settle in 

river and coastal sediment, where they enter the food chain.  While human exposures 

today may occur for several reasons, including improper disposal or storage, seepage 

from landfill or a closed system accident, the primary route of exposure by far is through 

food consumption. 

PCBs are lipophilic.  They can be absorbed through skin, the gastrointestinal tract, 

or lung.  However, most are ingested with food, where they preferentially partition to 

body fat and reside in adipose tissue indefinitely with steady state equilibrium between 

adipose and blood.  They resist excretion, although the mobilization of adipose tissue by 

weight loss has resulted in significantly increased serum levels, partitioning of PCBs into 

other tissues, including remaining adipose at higher concentrations.  Serum levels of 

PCBs have been demonstrated to increase by 388.2% in obese individuals one year 

following roux-en-Y surgery (Hue, et al. 2006).  Further, it has been hypothesized that 

current obesity rates could be a response to early metabolic programming that favors 

an adipogenic pathway over one favoring osteogenesis.  Studies further suggest the 

body’s response to environmental chemicals may well extend beyond increasing the 

number of fat cells to possibly affecting appetite regulation, resting metabolic rate, and 

regulation of fatty acid synthesis (Janesick, et al. 2011b).  A favorable biological benefit 

in the short-term may be that adipose tissue sequesters lipophilic contaminants from 
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essential organs.  Regardless, humans represent the highest trophic level in the food 

chain and have a vast capacity for fat storage with excess calorie consumption.   

One method of classifying PCBs is by whether they exhibit dioxin-like properties.  

PCBs that possess a minimum of four chlorine atoms in the lateral positions, but do not 

have chlorine atoms in the ortho positions (2, 2’, 6, 6’), are coplanar.  This coplanarity 

restricts the biphenyl rings from rotating.  The configuration gives them properties 

similar to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic dioxin and one by 

which the toxicity of similar compounds is scored.  The coplanar PCB class is the smallest, 

comprised of only four PCB congeners, but is considered to be the most toxic PCB group 

because of its high affinity for the aryl hydrocarbon receptor (AhR), a ligand-activated 

transcription factor in the cytosol of vertebrates.  The AhR is believed to play important 

roles in development, aging, hypoxia, and circadian rhythms (White, et al. 2009).  

Activation of the AhR by exposure to dioxin-like compounds may be expected to disrupt 

cell signaling processes, expression of important metabolic enzymes, and generally alter 

patterns of metabolism.  Binding of AhR to regulatory regions of specific genes, such as 

CYP1A1, may lead to increased and/or inappropriate transcription of that gene.  Chronic 

exposures may inhibit the AhR in its role in homeostasis through a persistent activation 

of this receptor.  Importantly, dioxins and dioxin-like compounds induce toxicity in 

animals and humans. 

A second class, the mono-ortho-substituted PCBs, exhibit partial dioxin-like 

activity.  As the name implies, this group has one chlorine atom in the ortho position.  

There are eight mono-ortho-substituted PCBs.  Mono-ortho-substituted PCBs have a 

weaker affinity for the AhR, and are known to act via non-AhR pathways as well.   

A third class, the non-dioxin-like PCBs (di-ortho-substituted PCBs), is the largest 

group at 197 of 209 congeners (Henry T, et al. 2003).  This class varies in toxicity, but its 

chemical conformation does not allow binding of the AhR, so this biochemical pathway 

and the damage potentiated by it are not at issue with these chemicals.   Research does 

suggest they cause oxidative stress, an inflammatory response, and may affect gene 
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expression via other nuclear receptor pathways.  Evidence is increasing that they 

aggravate the dioxin-like compounds and may compound their activity within the body.   

Distinguishing between the different PCB classes is important as this affects their 

mechanism of toxicity.  Degree of chlorination is a consideration as the higher 

chlorinated congeners appear to have greater effects in the body.  It is important to 

note that PCBs enter the environment as mixtures rather than as single congeners.  

Exposure to both dioxin-like and non-dioxin-like compounds is the more likely 

occurrence, a fact further complicated by various biodegradation rates or transport of 

substituents of mixtures in the environment over time, the conversion to hydroxyl or 

methyl sulfone metabolites in vivo, the route and duration of exposures, as well as 

individual responses of the host (Giesy, et al. 1998).  These all affect exposure-risk 

relationships and impact efforts to establish specific guidelines for the exposed in the 

maintenance of their health. 

PCBs are toxic to humans and wildlife.  Human health effects have been 

examined following industrial and accidental exposures, but these represent largely 

acute exposures to high levels of PCBs.  Documented effects include dermal changes, i.e. 

chloracne; elevated hepatic enzymes; dyslipidemia; and carcinogenicity.  Although PCBs 

are not considered directly genotoxic, they are classified as a Group 2A carcinogen 

(probably carcinogenic) to humans by the IARC (IARC Monographs) and as reasonably 

anticipated to be carcinogens by the NTP (NTP ROC12).  Two year rat gavage studies of 

PCBs 118, 126, and 153 conducted by the NTP showed clear evidence of 

cholangeocarcinomas at two years, with hepatocyte hypertrophy noted as early as 14 

weeks, and non-neoplastic lesions at 31 weeks.  Animal studies have also indicated 

immune suppression, neurotoxicity, liver cancer, and aberrations in thyroid and 

reproductive function. 

Less is known about the health effects of chronic exposure to background levels 

of PCBs in the environment, but this is the reality for most people.  PCBs have not left 

the environment.  They have been modified in many cases via partial decomposition, 

incineration, or metabolism, but they still exist in the environment.  If humans are the 
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highest trophic level in the food chain, it must be considered that humans have become 

one final repository for PCBs, as well as other lipophilic contaminants.  And if so, it is 

plausible that their biological effects are being witnessed in the current rates of obesity 

and T2DM. 

 

1.5 Endocrine Disruption 

For the past two decades, scientists have been investigating the toxic effects of 

chemicals that act on the endocrine system.  These “endocrine disrupting chemicals” 

(EDCs) interfere with the natural functioning of hormones and alter their ability to 

communicate with and respond to their environment.  A common feature they share is 

small molecular mass, usually <1000 Daltons, but they otherwise may not be easily 

identifiable (Diamanti-Kandarakis, et al. 2009).  Many are lipophilic and these will be 

persistent chemicals, stored in body fat.  The persistent EDCs, such as PCBs, have a 

phenolic group which mimics natural hormones, allowing them to act as either agonists 

or antagonists.  They may persist in body fat as the original compound or as a potentially 

more toxic metabolite for years. 

The sharp increase in obesity rates over the past few decades has coincided with 

the widespread use of industrial chemicals, some of them EDCs.  With increasing rates 

of obesity come the associated metabolic abnormalities of insulin resistance, 

hyperinsulinemia, hypertension, and dyslipidemia, commonly referred to as metabolic 

syndrome, a precondition of T2DM and CVD.  Diabetes rates have also risen dramatically 

over recent decades, with approximately 311.4 million incident cases worldwide of 

T2DM (WHO Diabetes, 2011).  The obesogen hypothesis states that EDCs actually 

promote obesity directly by increasing the number or size of fat cells, or indirectly by 

acting on the basal metabolic rate and/or hormonal control of appetite and satiety 

(Janesick & Blumberg, 2011).   

Early understanding of EDC-mediated toxic pathways focused on nuclear 

receptors, a superfamily of about 48 members that act as master switches for specific 

genetic programs (Casals-Casas, et al. 2011).  Nuclear receptors activated by 
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endogenous ligands can facilitate gene regulation for such functions as homeostasis, cell 

differentiation, proliferation, and apoptosis.  Once activated, nuclear receptors 

translocate to the nucleus and bind as dimers to specific response elements near target 

gene promoters.  Inappropriate expression or suppression by EDCs, however, disrupts 

these processes in ways that are still being understood. 

 

Figure 1.4 Xenobiotic ligands, nuclear receptors, and identified biological endpoints 

 

 
EDCs (top row of figure) interact with nuclear receptors: AhR – aryl hydrocarbon receptor; ARNT – aryl 
hydrocarbon receptor nuclear translocator; GR – glucocorticoid receptor; ER – estrogen receptors; TR – 
thyroid hormone receptors; RXR – retinoid X receptor; peroxisome proliferator-activated receptor gamma; 
constitutive androstane receptor; pregnane X receptor; (dashed lines indicate mechanism not well 
understood). 
 

Research has broadened the knowledge of EDCs’ actions to include membrane 

and neurotransmitter receptor pathways, enzymatic pathways, as well as other 

mechanisms.  There are important physiological consequences to the effects of EDCs 

that call for consideration, as outlined in the First Endocrine Society Statement 

(Diamanti-Kandarakis 2009). 

1) The effects of exposure in the womb or shortly after birth may be very 

different than the effects of exposure as an adult; 
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2) The consequences of exposure during development may not manifest until 

later in life; 

3) Different classes of EDCs within an individual may have additive or synergistic 

effects; 

4) EDCs may exhibit non-traditional dose response curves, low dose exposures 

may exert more potent effects than high dose exposures, and this can yield 

non-traditional curves, such as U- or inverted U-shaped curves as seen with 

hormones and neurotransmitters; and 

5) Later generations may be affected through epigenetic regulation causing 

either transcription or silencing of certain genes via DNA methylation and 

histone acetylation. 

 

Diet may be crucial in this milieu.  Plant foods provide a natural and plentiful 

source of ligands for specific nuclear receptors and should not be overlooked as an 

important factor in modulating endocrine signaling pathways.  Phytochemicals, such as 

carotenoids and flavonoids, are important to health but lack the essentiality of vitamins 

and minerals.  Their natural affinity for nuclear receptors could favorably influence 

critical pathways (Jeuken, et al. 2003, Fukuda, et al. 2004).  Daily exposure to beneficial 

plant constituents may, through competitive binding or other mechanisms yet revealed, 

provide a pathway to health with a molecular modality. 

 

1.6 National Health and Nutrition Examination Survey 

The National Health and Nutrition Examination Survey (NHANES) is a program of 

the National Center for Health Statistics (NCHS), Centers for Disease Control and 

Prevention (CDC), that utilizes a cross-sectional sample survey design to collect, 

maintain, and disseminate the health and nutrition information of non-institutionalized, 

non-military persons residing in the United States.  The collection of a broad range of 

data, including dietary intake of foods and fluids, biomonitoring of environmental 

pollutants, biochemical laboratory testing, and physical examinations, made the present 
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work possible.  Approximately 5,000 persons are assessed each year.  Although the 

program began in 1960, NHANES began collecting extensive environmental pollutant 

data in blood and urine in 1999.  The 2003-2004 data release was utilized for this 

dissertation.  These data are publicly available on-line (CDC 2003-2004).  

 

 

1.7 Hypothesis 

A diet rich in fruits and vegetables, as determined by serum carotenoid 

concentrations, mitigates the effects of PCB exposure on cardiometabolic disease, as 

defined by the reduced probability of developing metabolic syndrome. 

 

1.8 Specific Aims 

The aims of this research were to examine the associations between serum 

concentrations of PCBs; serum concentrations of specific nutrients, carotenoids, 

vitamins C and E; with related socioeconomic and lifestyle characteristics; on the 

probability of developing metabolic syndrome.  Polychlorinated biphenyls have been 

studied in animal models and in epidemiological studies, and have been linked to the 

etiology of cardiovascular disease, insulin resistance, and T2DM.  The carotenoids, 

considered a biomarker of fruit and vegetable consumption and important dietary 

antioxidants, are associated with the promotion and maintenance of human health.  

Ecological studies have shown inverse associations between food-sourced carotenoids, 

and cardiovascular disease and glucose tolerance.  Research objectives address the 

variables more particularly, as each contained several factors requiring it. 

 

1.8.1 Research Objectives: PCBs 

1.8.1.1 To assess PCBs individually and as pooled subclasses, defined by the 

presence of one or more chlorine atoms in the ortho- position, which is 

adjacent to the biphenyl bridge; 

1.8.1.2 To assess PCBs in concentrations and as ranks; 
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1.8.1.3 To assess PCBs in quartiles, continuous linear, and continuous quadratic; 

1.8.1.4 To apply different modeling of covariates to use as surrogates for 

NHANES sample weights; 

1.8.1.5 To analyze data results with and without the first exposure quartile, 

relating to the persistent first quartile increasing trend in the probability 

of metabolic syndrome.  While this finding was compelling and suggested 

a biological mechanism, it obfuscated clear statistical analysis of trends in 

the short-term. 

1.8.1.6 To assess PCBs in solitaire and in a combined interaction model with 

nutrients to consider their overall effect on the probability of MetS; 

1.8.1.7 To consider analyzing models of PCBs as ng/g (ppb) whole weight and as 

lipid weight ng/g (ppb).  PCBs concentrate to lipids in blood.  Lipid-

adjusted values are adjusted for total cholesterol and triglycerides by 

NHANES.  Using of whole weight values would necessitate independently 

adjusting for total cholesterol and triglycerides.  Fasting triglyceride is 

one criterion of MetS.  Evaluating several models may be useful. 

 

1.8.2 Research Objectives: Serum Carotenoids 

1.8.2.1 To assess twelve serum carotenoids individually and as a pooled sub-class; 

1.8.2.2 To assess serum vitamin C; 

1.8.2.3 To assess three serum tocopherols: α, δ, and γ; 

1.8.2.4 To assess serum carotenoids, vitamin C, and the tocopherols, as an 

antioxidant pool; 

1.8.2.5 To assess all serum nutrients combined; 

1.8.2.6 To assess dietary recall-sourced nutrients, i.e. carotenoids, potassium, 

magnesium, calcium, fiber, monounsaturated fat, polyunsaturated fat, 

vitamin K, and selenium; 
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1.8.2.7 To assess dietary recall-sourced fruit and vegetable intakes using 

NHANES-U.S.D.A. interfaced databases, i.e. MyPyramid Equivalents 

Database 2.0 and Food and Nutrient Database for Dietary Studies 2.0; 

1.8.2.8 To assess nutrients singly and in a combined interaction model with PCBs 

to consider their overall effect on the probability of metabolic syndrome. 

 

1.9 Research Questions 

1.9.1 What was the prevalence of metabolic syndrome in this population? 

1.9.2 What PCB congeners, subclasses, or mixtures were associated with 

metabolic syndrome in this population? 

1.9.3 Were serum carotenoids, singly or pooled, associated with risk reduction 

of metabolic syndrome in a PCB exposed population? 

1.9.4 Were serum nutrients, other than carotenoids, associated with risk 

reduction of metabolic syndrome in a PCB exposed population? 

1.9.5 Were fruit and vegetable servings, as compiled from the sum of two 24-

hour dietary recalls, associated with risk reduction of metabolic syndrome in a 

PCB exposed population? 

1.9.6 Were specific nutrients, as compiled from the sum of two 24-hour dietary 

recalls, associated with risk reduction of metabolic syndrome in a PCB exposed 

population? 

 

1.10 Justification 

Cardiovascular disease is the leading cause of death in the United States and 

Kentucky.  Diabetes mellitus ranks as the seventh leading cause of death according to 

the CDC’s preliminary data release, 2009 National Vital Statistics Reports, (Kochanek, et 

al. 2011).  Obesity rates have dramatically risen the past two to three decades, with 33.8% 

U.S. adults now considered obese.  In 2010, Kentucky’s obesity rates were documented 

at 31.3% (CDC, Overweight & obesity).  Obesity, T2DM, and CVD are closely related.  

Metabolic syndrome is a pre-diabetic state that is easily diagnosable in a clinical setting.   
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A diagnosis of metabolic syndrome places an individual at five times the relative risk of 

T2DM and two times the risk of CVD (Wilson, et al. 2005).  Lifestyle intervention has 

been shown to reduce the incidence of diabetes by 58% (DPPRG 2002).    

Cross-sectional survey analyses of U.S. adult populations have revealed positive 

associations between persistent organic pollutants (POPs), including dioxin-like and non-

dioxin-like PCBs, with T2DM (Patel, et al. 2010; Lee, et al. 2006; Lee, et al. 2007c), 

metabolic syndrome (Lee, et al. 2007b; Lim, et al. 2008), insulin resistance (Lee, et al. 

2011b; Lee, et al. 2007a), hypertension (Ha, et al. 2009), cardiovascular disease (Ha, et al. 

2007), and non-alcoholic fatty liver disease (Cave, et al. 2010).  Animal model studies, 

including University of Kentucky Superfund Research Program (UK-SRP) bench studies of 

the aryl-hydrocarbon receptor ligand, PCB 77, have demonstrated disruption of arterial 

endothelial cell integrity (Hennig, et al. 2005; Hennig, et al. 2001) as well as adipose 

mass increases of gonadal, visceral, and liver tissues (Arsenescu, et al. 2008).   

Analyses of broad population cross-sectional surveys have also indicated that 

food-sourced serum antioxidants, including carotenoids, are associated with normal 

glucose tolerance (Ford, et al. 1999), and inversely associated with metabolic syndrome 

(Suzuki, et al. 2011;  Beydoun, et al. 2011) and C-reactive protein (Ford, et al. 2003a). 

Importantly, communities are living with the effects of environmental pollutants 

in the present.  While many of these damaging compounds are no longer being 

manufactured, they persist in the environment and in adipose tissue for decades.  

Evidence suggests that in utero exposures cause changes to the phenotype that may 

well be transgenerational and lead to the unwelcome progression of obesity, metabolic 

syndrome, T2DM, and CVD.  If research can be undertaken to more clearly understand 

the environmental pollutant, nutrition, and disease/health paradigm, then it most 

certainly is justified.   

 

1.11 Assumptions 

For quantitative measurements, the sample was representative of the United 

States non-institutionalized, non-military, adult population according to the Census for 
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the years 2003-2004.  That all procedures, quality control measures, questionnaires, and 

indices were executed correctly and by trained and certified professionals.  The 

equipment was calibrated and tested accurately and routinely.  That all participants 

responded honestly, and that all data were collected, reported, maintained, and 

disseminated in an ethical and responsible manner. 

 

1.12 Limitations 

 The findings in this study must be interpreted with caution because of the cross-

sectional nature of the study.  It was not possible to determine cause and effect or to 

ascribe temporal characteristics to any part of the dataset.  It would be possible, for 

instance, for the metabolic disturbances of disease to create differences in nutrient or 

pollutant concentrations.   

Secondly, the relationships involving PCBs are complex.  Most could not be 

interpreted by seeking a monotonic dose response curve and small p-value.  Many of 

the PCBs showed a low dose effect that was further complicated by lack of a true 

reference group.  Our statistical reference group would be provided by observations 

below the 60% limit of detection (LOD).  However, there were no observations for many 

PCBs below the LOD.  A chemical has a 95% probability of being greater than zero at the 

LOD and values above the LOD (from 60-100%) may be evaluated across quartiles.  The 

2003-2004 dataset had many PCBs with zero observations below the LOD, which 

confounded efforts to execute a standard multivariate regression adjusted odds-ratio 

analysis.  The decision to seek a statistical interaction between PCBs and serum 

carotenoids influenced further attempts to analyze using multivariate regression.  

Rather, seeking consistency across several models and across similar studies was useful.  

We sought interactions between PCBs and serum carotenoids early and significant 

findings were meaningful and inferred significance for PCBs had carotenoids not been 

present.  

A third limitation may have been due to the presence of pollutant mixtures in 

study participants rather than just PCBs.  Also, analyzing the effect of participants’ 
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overall dietary intakes on health outcomes was beyond the scope of this dissertation.  

Health outcomes could be related to exposure to chemical mixtures beyond PCBs, 

dietary patterns beyond fruit and vegetable intakes, or genotypes susceptible to T2DM 

and/or CVD.  Any of these factors may have contributed to these results.   

A fourth limitation also holds promise in future research.  By seeking significant 

interactions between serum carotenoids and PCBs, multivariate regression analysis 

modeling of factors that may independently be associated with the three variables – 

PCBs, carotenoids, and metabolic syndrome – could not accommodated in the usual 

manner.  Advancing age is known to have a strong independent association with both 

metabolic syndrome and PCBs.  There is no age-related association with carotenoids.  

Analysis using age as a cut-point may be executed moving forward.  Statistical and 

nutritional analyses are continuing in a prudent manner.   
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CHAPTER TWO 

REVIEW OF LITERATURE 

 

 Metabolic Syndrome has been examined in relation to diet and nutrition.  Diet 

and nutrition have been examined in relation to environmental chemical contamination.  

Environmental chemical contamination has been examination in relation to metabolic 

syndrome.  The purpose of this chapter is to provide a foundation upon which to 

examine all three variables combined: the effects of nutrition, as assessed by serum 

carotenoid concentrations, in the presence of environmental chemical contamination, 

on the probability of developing metabolic syndrome. 

 

2.1 Metabolic Syndrome 

 The NCEP Expert Panel on Detection, Evaluation, and Treatment of High Blood 

Cholesterol in Adults (Third Report, NCEP), has set metabolic syndrome as a secondary 

target of coronary heart disease risk reduction beyond the primary target of lowering of 

LDL-cholesterol.  Stated goals of the clinical management of metabolic syndrome are to 

reduce the risk of atherosclerotic disease and risk for T2DM, where the latter has not 

yet manifested (Grundy, et al. 2005).  Metabolic syndrome has been shown in 

prospective studies to increase the risk of CVD and T2DM.  At 8-year follow-up of the 

Framingham Heart Study Offspring cohort, grouping of participants by metabolic 

syndrome trait clustering found that when impaired fasting glucose (IFG) was not one of 

three criteria, they were seen to have two times the relative risk (RR) of CVD events and 

five times the RR of T2DM as people without that trait grouping.  Participants meeting 

the criteria for metabolic syndrome with IFG as one of the three traits plus any other 

two were seen to have a RR of 2.5 for CVD and a RR of 11.0 for T2DM (Wilson, et al. 

2005).  Giving clinicians the tools to identify the patients at significant risk does not 

answer the more prescient question of why there has been such a dramatic increase of 

this syndrome over the past three decades and what can be done to attenuate it. 
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 The environmental factors involved in the etiology of metabolic syndrome 

include diet, sedentary lifestyle, and obesity (Miegs, 2002; Millen, et al. 2006).  These 

collectively may be referenced as a state of energy imbalance and are characteristic of 

the modern lifestyle.  The metabolic syndrome also has a genetic basis, as may be seen 

with most disease processes.  The Third National Health and Nutrition Examination 

Survey (NHANES) 1988-1994 found that among 8814 participants, there was a 21.8% 

prevalence of metabolic syndrome unadjusted, with age-adjusted prevalence at 23.7% 

(Ford, et al., 2002).  Among race/ethnicity, Mexican Americans had the highest 

prevalence at 31.9%.  When compared to rates of metabolic syndrome in the 

subsequent NHANES release, 1999-2000 (n = 1,677), age-adjusted increases were 

observed of 23.5% in women and 2.2% in men, yielding overall metabolic prevalence of 

27.0%.  Importantly, obesity was an important determinant in both studies.  Analysis of 

NHANES 2003-2006 data reveal 34% of adults met the criteria for metabolic syndrome 

(Ervin, 2009).   As rates of obesity continue to climb, the incidence of metabolic 

syndrome, T2DM, and CVD, may be expected to follow. 

 Age remains a significant independent factor in the probability of metabolic 

syndrome.  The prevalence of persons meeting the criteria of metabolic syndrome 

among NHANES 2003-2006 participants was found to be three times more likely in the 

40-59 age range than in the 20-39 age range.  Among those sixty years and older, men 

were over four times and women over six times more likely to have metabolic syndrome 

than the 20-39 age group (Ervin, 2009).  The Framingham Offspring Study (FOS) cohort 

found an age-adjusted increase in the prevalence of metabolic syndrome at eight year 

follow-up of 56% among men (baseline mean age of 50) and 47% among women 

(baseline mean age of 51) (Wilson, et al. 2005).  Analysis of NHANES III (1988-1994) 

participants found the prevalence increased from 6.7% through the 20’s to 43.5% and 

42.0% for participants in their sixties and ≥ 70, respectively (Ford, et al. 2002). 

 Therapeutic lifestyle changes remain at the forefront of treatment and 

prevention.   An ancillary twelve year analysis of the FOS cohort diets and metabolic 

syndrome indicated that a lower diet quality was positively associated with increased 
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incident metabolic syndrome.  The lower quality diet was higher in total fats, alcohol, 

and lower in total carbohydrate, fiber, and all micronutrients.  The higher diet quality 

scores were more compliant with the NCEP ATP III dietary guidelines for total fat, 

cholesterol, carbohydrate, and fiber (Millen, 2006). A five year review of carbohydrate-

associated constituents found lower insulin resistance with diets high in whole grains, 

and fruit and vegetable fibers, although only cereal fiber was found to be inversely 

associated with prevalence of metabolic syndrome.  Fruit, vegetable, and legume fibers 

were not inversely related (McKeown, et al. 2004).     

 Obesity is considered a proinflammatory state (Krug, 2005; Lumeng, 2111).  

Inflammatory mechanisms in the body appear to interfere with insulin signal 

transduction causing insulin resistance, increases in free fatty acid concentrations, and 

further promoting oxidative stress and metabolic syndrome (Dandona, et al. 2005).  

Analysis of the dietary constituents that have a pro-oxidant effect on the body has 

implicated excessive macronutrient intake.  Healthy, fasted individuals were randomized 

to one of three groups, then given a challenge of glucose, cream, or casein, and 

subsequently assayed at baseline, one, two, and three hours.  Reactive oxygen species 

(ROS) were generated at significant levels in all three groups (Mohanty 2002; Mohanty 

2000).   A later study demonstrated similar results with a mixed macronutrient fast food 

meal.  Nine non-diabetic, fasted individuals were given a 910 kcal 

egg/sausage/potato/muffin breakfast to consume within fifteen minutes and blood 

drawn at baseline, one, two, and three hours.  As in earlier studies, the controls 

consumed only water.  Significant increases were seen in intranuclear NF-kB binding 

activity at one and two hours, and in cellular p47phox, the key protein component of 

NADPH oxidase involved in ROS generation.   p47phox increases were seen within an hour 

of the meal and lasting for three or more hours, or essentially until the next meal for 

many people.   Importantly, NF-kB is thought to bind the p65:p50 heterodimer that is 

responsible for transcription of proinflammatory genes (Aljada, 2004). 

 Examination of the associations between habitual dietary patterns and 

metabolic syndrome found stronger associations in women between metabolic 
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syndrome and a pattern replete with empty calorie foods and beverages, i.e. higher 

intakes of total fat, calories, and sugar, and low in fiber and vegetables (Sonnenberg, et 

al. 2005).  This was true for obese and non-obese participants.  Similarly, in a typical 

western dietary pattern (WDP) dominated by refined grains, french fries, cheese dishes, 

red and processed meats, and sweetened desserts, beverages, and snacks, stronger 

associations with metabolic syndrome were seen in 19-39 year olds than in participants 

consuming a prudent diet comprised more of fruits, vegetables, broth-based soups, 

salads, and poultry (Deshmukh-Taskar, et al. 2009).  A Greek population consuming a 

Mediterranean dietary pattern rich in cereals, fish, legumes, fruits, and vegetables was 

found to have a 13% lower likelihood of having metabolic syndrome (Panagiotakos, et 

al., 2007), and in older participants at high cardiovascular risk (PREDIMED Study), 

quartile analysis of adherence to Mediterranean diet components was associated with a 

56% lower risk of having metabolic syndrome than were those at lower quartile 

adherence (Babio, et al. 2009).  Importantly, where weight loss may not be achievable 

or advisable, modifications to the nutrient profile of the diet may be sufficient.   

 Micronutrient modulation of the diet could present significant opportunities for 

the prevention of MetS and its complications.  The Dietary Approaches to Stop 

Hypertension (DASH) diet, which emphasizes fruits, vegetables, whole grains, low fat 

dairy, and lean protein, has been effective in reducing hypertension, one marker of 

metabolic syndrome (U.S.D.H.H.S. 2006).  A randomized controlled trial placing 81 

individuals with metabolic syndrome on a calorie controlled DASH diet found that those 

further supplemented with vegetable juice lost significantly more weight, had significant 

decreases in serum leptin, and increased intakes of vitamin C, potassium, and 

vegetables, although neither systolic nor diastolic blood pressure were statistically 

significantly changed over the twelve week intervention.  The only metabolic syndrome 

marker statistically affected was elevated triglyceride, with the juice-supplemented 

group found 10% less likely to have elevated triglycerides than those not consuming 

vegetable juice (40%) (Shenoy, et al., 2010).  Notably, all participants were on the DASH 

diet.  No analysis was included for diets other than DASH. 
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 Studies utilizing cross-sectional surveys of antioxidant associations and metabolic 

syndrome found benefits of higher antioxidant status.  Waist circumference, 

hypertriglyceridemia, and low HDL were most associated with antioxidant status in 

NHANES III, 1988-1994, (Ford, 2003b).  Participants meeting all five criteria of metabolic 

syndrome had 40% lower vitamin C concentrations, 27% lower total carotenoid 

concentrations, and consumed fewer fruits and vegetables than participants not 

meeting the criteria for metabolic syndrome.  Analysis of NHANES 2001-2006 data found 

a significant inverse relationship between beta-carotene and vitamin C for men and 

women, beta-cryptoxanthin for men, and lutein/zeaxanthin for women with metabolic 

syndrome.  Prevalence of metabolic syndrome for these six years was found to be 32% 

in men and 29.5% in women (Beydoun, et al. 2011).  A cross-sectional Japanese study 

found significantly lower levels of beta-carotene, but higher levels of beta-cryptoxanthin 

(significant only in women) in the metabolic syndrome group (Suzuki, et al. 2011).  The 

criteria for metabolic syndrome differ in Japan, with waist circumference set at ≥ 85 cm 

for men and ≥ 90 cm for women, SBP ≥ 130 mm Hg, FPG ≥ 110, and HDL ≤ 40 for both 

genders.  Prevalence of metabolic syndrome was 22.3% in men and 7.5% in women in 

this study. 

 Analysis of NHANES III data revealed differences in serum carotenoid status 

between participants with normal glucose tolerance (NGT), impaired glucose tolerance 

(IGT), and newly diagnosed diabetes (Ford, et al. 1999).   Lycopene and beta-carotene 

were both inversely related to glucose tolerance.  In the newly diagnosed diabetes 

participants, the mean of serum cryptoxanthin was 23% lower than in normal glucose 

tolerance participants.  All carotenoids were significantly inversely related to fasting 

serum insulin concentrations. 

 

2.2 Carotenoids and Related Antioxidants 

 Oxidative damage is a key factor in disease processes, whether secondarily or 

causally.  The balance between oxidants and antioxidants, altered in favor of oxidants in 

the disease state, may be favorably modulated by an antioxidant-rich diet.  Carotenoids 
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are potent antioxidants and singlet oxygen quenchers and are known to be involved in 

many different cellular pathways.  Individual carotenoids and fruit and vegetable 

consumption in general, are associated with an enhanced antioxidant capacity and the 

ability to inhibit disease processes, including features of metabolic syndrome, 

cardiovascular disease, or carcinogenesis (Hermsdorff, et al. 2010; Krinsky & Johnson 

2005).   

 

2.2.1 Cancer 

 Epidemiological studies have shown that lower levels of antioxidants, in 

particular vitamins C, E, carotenoids, and polyphenols, to be associated with a higher 

prevalence of cardiovascular diseases, cancer, and metabolic syndrome.  Importantly, 

these studies considered antioxidants from fruits and vegetables. 

An ecological study among 634 Japanese men found inverse associations for 

plasma levels of specific carotenoids, alpha-tocopherol, and vitamin C with risk of gastric 

cancer (Tsubono, et al. 1999).  A two-year Swiss study measured plasma levels of 

Vitamins C, E, and carotene at baseline in healthy men and women.  Review of mortality 

records at seventeen years revealed that 290 of 814 men had died of cancer.  Cancer 

mortality was associated with low carotene and vitamin C levels at baseline (Eichholzer 

1996).  During a 25-year follow-up of a Finnish study that evaluated associations 

between fruit and vegetable antioxidant intake and lung cancer, significant inverse 

relationships were observed with alpha-carotene, fruits, and root vegetables (Knekt 

1999).  Similar associations were seen with lung cancer risk for dietary alpha- and beta-

carotenes and lutein, with the strongest protection conferred by consumption of a 

variety of vegetables rather than one particular carotenoid-concentrated food (Le 

Marchand 1993).  Pooled analyses of food carotenoids and risk of lung cancer in two U.S. 

cohorts found significant inverse associations between lung cancer risk and alpha-

carotene and lycopene (Michaud 2000).   

The two large randomized control studies supplementing the diet of smokers 

with beta-carotene and either alpha-tocopherol (ATBC study) or retinol (CARET) 
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observed an increased incidence of and mortality to lung cancer (Albanes, et al. 1995; 

Omenn, et al. 1996).  ATBC was terminated on schedule at a median duration of 6.1 

years, with an 18% statistically significant increase in lung cancer incidence noted in the 

β-carotene group at term.  CARET was terminated 21 months early in light of a 28% 

increase in the number of lung cancers and a 17% increase in deaths among the 

intervention group only.  In the ATBC study, subsequent analysis of participant diets 

found total fruit and vegetable intakes significantly associated with reduced risk of lung 

cancer.  In particular, dietary lycopene, lutein/zeaxanthin, beta-cryptoxanthin, and total 

carotenoids, were associated with a 15-28% lower lung cancer risk (Holick, et al., 2002).  

A twelve year follow-up of CARET participants found a 44% lower lung cancer risk only 

among placebo participants consuming eleven servings of fruit per week, as opposed to 

those consuming only two servings per week.  No statistically significant decrease in risk 

was seen in the intervention group, even with high fruit intake (Neuhouser, et al., 2003).   

 

2.2.2 Cardiovascular Disease 

 A diet rich in fruits and vegetables has long been associated with cardiovascular 

health.  Epidemiological studies have suggested that persons who consume more fruits 

and vegetables are more likely to maintain a healthy weight and have lower rates of 

cardiac and vascular diseases.  Pooled analyses of two U.S. cohort studies with similar 

designs found for the highest quintiles of fruit and vegetable intake a 0.80 relative risk 

for coronary heart disease (CHD) and 0.69 relative risk of ischemic stroke, as compared 

to the lower quintiles of intake (Joshipura, 2001; Joshipura, 1999).  Median intakes of 

total fruits and vegetables were 5.8 servings per day for women and 5.1 servings for 

men; however, 1 additional serving per day was associated with a 6% lower risk of 

ischemic stroke.  The fruits and vegetables associated with lowest risks for CHD and 

ischemic stroke were green leafy vegetables, cruciferous vegetables, and vitamin C-rich 

fruits and vegetables.  However, no inverse association was seen for legumes and 

potatoes.  Neither was an inverse association seen for citrus juice, but only with CHD. 
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 A cohort follow-up study from the NHANES I (1971-1975), examined 9608 

participants for fruit and vegetable consumption and risk of cardiovascular disease, and 

found that fruit and vegetable intake ≥ 3 times/day as compared to < 1 time/day was 

associated with: 

 

Table 2.1 Fruit and vegetable intake and CVD risk reduction in NHANES I follow-up cohort 

 

27% lower incidence of stroke 
42% lower mortality from stroke 
24% lower mortality from ischemic heart disease 
27% lower mortality from CVD 
15% lower mortality from all causes 

 

These data were collected by food frequency questionnaire in 1982-1984, 1986, 1987, 

and 1992, and were adjusted for diabetes, as well as significant demographic and 

lifestyle covariates (Bazzano, et al., 2002).  Cross-sectional analysis of NHANES III data to 

determine associations between serum vitamins, carotenoids and angina pectoris found 

that after adjusting for multiple CVD-related risk factors, none of the serum vitamins (A, 

C, E, B12, serum folate, and red blood cell folate) suggested any predictive trend for 

angina pectoris.  In contrast, all of the serum carotenoids showed significant inverse 

associations with angina pectoris (Ford, 2000).  The highest quartiles of α-carotene, β-

carotene, and β-cryptoxanthin were associated with a reduced risk of angina pectoris of 

55%, 43%, and 43%, respectively, as compared to the lowest quartiles. 

 Reviews of carotenoids have sought to identify one or more single nutrient 

involved in protection against cardiovascular disease.  In an elderly Dutch cohort, a 

significant reduced risk of myocardial infarction (MI) was seen in the highest tertile of 

beta-carotene intake as compared to the lowest (RR = 0.55), although no association 

was seen for food sourced vitamins C and E (Klipstein-Grobusch, et al., 1999).  Similarly, 

reduction in the risk of acute myocardial infarction (AMI) was noted in the fourth intake 

quartile for α-carotene (OR=0.71), β-carotene (OR=0.71), and β-cryptoxanthin (OR=0.64) 

in a case-control study of an Italian population (Tavani, et al., 2006), suggesting a weak 
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inverse association with risk of nonfatal AMI.  In a nested case-control study of healthy 

physicians evaluated for risk of ischemic stroke, participants with baseline plasma levels 

of α-carotene, β-carotene, and lycopene in the second through fifth quintiles tended to 

have lower risks of ischemic stroke throughout the study duration (mean 7.3 years).  For 

β-carotene, a 43% lower risk of ischemic stroke was seen (Hak, et al. 2004).  Conversely, 

no similar associations were seen in risk of ischemic stroke when levels of α-carotene, β-

carotene, and lycopene were measured by food frequency questionnaires (Ascherio, et 

al. 1999), perhaps related to the subjective nature of data collection.   

 Lycopene has been studied for its ability to protect against atherosclerosis.  

Found predominantly in tomatoes, its properties confer a high bioavailability, heat 

resistant antioxidant activity, and the most powerful singlet oxygen quenching ability of 

the common plant carotenoids (Di Mascio, et al. 1989).  Serum lycopene levels have 

been reported to be inversely related to intimal wall thickness and lesions in the carotid 

artery and aorta (Rissanen, et al. 2003), and may even limit oxidative stress caused by 

cigarette smoke by modulating molecular pathways (Palozza, et al. 2005).  Other studies 

have indicated that lycopene may reduce macrophage foam cell formation (Napolitano, 

et al. 2007) by decreasing lipid synthesis in response to modified LDL, and to also inhibit 

7-ketocholesterol-induced (7-KC) ROS production, as well as reduced levels of hsp70, 

hsp90, and oxidative DNA damage (Palozza, et al. 2010a).  Importantly, 7-KC is an 

oxysterol found in high concentrations in atherosclerotic plaque.  An earlier study 

suggested that lycopene activity may be dependent on the type of lipoprotein carrier 

(Moore, et al. 2004), citing enhanced lipid accumulation in macrophages when carried in 

chylomicron remnants, inhibition of oxidation when carried in LDL, and down-regulated 

expression of SR-A, a scavenger receptor known to endocytose modified LDL.  Further, 

decreased expression of IL-10, an anti-inflammatory cytokine, was observed by 

macrophages treated with lycopene by up to 75%, whether LDL was present or not 

(Napolitano, et al. 2007).  With its long polyene chain, lycopene is known to be an 

important reducing agent and has been shown to inhibit ROS production and pro-

inflammatory cytokine secretion (Palozza, et al. 2010b).   
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 Tomato extract components were shown to inhibit platelet aggregation in a 

time-course study of healthy humans (O’Kennedy, et al. 2006).  A significant decrease in 

platelet activity was seen three hours after extract consumption, suggesting reduced 

risk of thrombotic and related proinflammatory events.  Adipose tissue biopsies were 

analyzed in a case-control study (EURAMIC Study) for concentrations of α-carotene, β-

carotene, and lycopene shortly after myocardial infarction (Kohlmeier, et al. 1997).  

While each carotenoid appeared to be protective when assessed individually, once 

pooled and adjusted for significant demographic and lifestyle covariates, only lycopene 

was found to be protective at significant levels with an adjusted odd-ratio of 0.57 (10th 

to 90th percentile).  A Japanese population cohort study examined associations between 

serum levels of α-carotene, β-carotene, and lycopene, and cardiovascular disease 

mortality over 11.9 years (Ito, et al., 2006).  Mortality records revealed significant 

inverse relationships between CVD and stroke for α-carotene, β-carotene, and total 

carotene; and for CHD and α-carotene and total carotene.  Lycopene showed protective 

effects for CVD at significance (p = 0.032) in modeling adjusted for gender, age, and 

smoking. 

 A diet study of 412 U.S. adults with an average SBP of 120-159 mm Hg and DBP 

of 80-95 mm Hg randomized participants to either a typical western diet or the DASH 

diet for thirty days.  The Dietary Approaches to Stop Hypertension (DASH) diet 

emphasizes plentiful fruits and vegetables, but also low fat dairy and protein.  Further 

randomization occurred within the two diets providing low, medium, and high sodium 

intakes.  The DASH diet lowered blood pressure at all sodium intake levels, but it had a 

more pronounced effect on both systolic and diastolic blood pressure at the high 

sodium levels (p < 0.001 for interaction) than it did at low levels (Sacks, et al., 2001).  

Adherence to a Mediterranean dietary plan, also abundant in fruits, vegetables, and 

legumes, was assessed in relation to overall mortality during a 44 month follow-up 

period (EPIC Study).  Greater adherence to the diet was associated with reduced 

mortality to CHD with an adjusted hazard ratio of 0.67, although individual constituents 

within the diet were not found to be significant (Trichopoulou, et al., 2003).  The 
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Mediterranean-Diet Scale scored beneficial foods consumed below the median at “0”; 

those consumed above median were scored “1”.  Detrimental foods were scored in an 

inverse order.  A mere two point improvement in the overall score was associated with 

a 25% reduction in total mortality (p < 0.001). 

 

2.2.3   Metabolic Disease 

 A prospective study of first and second degree relatives of type 2 diabetics were 

assessed for dietary and plasma antioxidant intake status, and glucose tolerance (Botnia 

Dietary Study).  Plasma β-carotene concentrations were inversely correlated with insulin 

resistance (p=0.003) and BMI; in men only, total dietary carotenoids were inversely 

associated with fasting plasma glucose concentrations (p <0.05) (Ylönen, et al., 2003).  

Importantly, this population could be considered at higher risk of T2DM than the 

general population.  A cohort 23-year follow-up study (Finnish Mobile Clinic Health 

Examination Survey) to assess dietary antioxidant intake and T2DM risk found strong 

inverse associations with β-cryptoxanthin, total vitamin E, α- and γ-tocopherols, and β-

tocotrienol and risk of T2DM.  The p-trend for the RR of T2DM and dietary total 

carotenoid intake was 0.07 (Montonen, et al., 2004).  A longitudinal study of serum 

carotenoids, fat-soluble vitamins, and women with T1DM and preeclampsia, revealed 

lower α- and β-carotenes and vitamin D in women prior to developing preeclampsia 

(Azar 2011).  T1DM occurs in response to the autoimmune destruction of pancreatic 

beta cells, but optimal antioxidant status may be expected to prevent or modulate 

comorbid conditions. 

 Analysis of the NHANES III cohort for associations between serum carotenoids 

and glucose tolerance found inverse relationships for all carotenoids and fasting serum 

insulin after adjustment for several cofounders (Ford, et al. 1999).  Participants with IGT 

and newly diagnosed diabetes had mean β-carotene levels 13% and 20% lower, 

respectively, than participants with NGT.   Mean serum lycopene levels were 6% and 17% 

lower in participants with IGT and newly diagnosed diabetes.  Cryptoxanthin was about 

23% lower in those with newly diagnosed diabetes as compared to those with NGT.  
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Additional analysis of the same survey population for metabolic syndrome found an age-

adjusted prevalence of 23.7% MetS with lower concentrations of vitamin C, α- and β-

carotenes, β-cryptoxanthin, and lutein/zeaxanthin (Ford, et al., 2003b).  A NHANES 

2001-2006 population was found to have a higher prevalence of 32% (men) and 29.5% 

(women) metabolic syndrome, but lower total carotenoid and vitamin C concentrations 

than those without metabolic syndrome (Beydoun, et al., 2011).   

 Several other population-based, cross-sectional studies have assessed the impact 

of antioxidants and carotenoids on the prevalence of metabolic syndrome.  The mean 

dietary carotenoid intake of 440 middle-aged and elderly men was assessed at ~10 

mg/day and their prevalence of metabolic syndrome at 22%.  A significant inverse 

association was noted between higher carotenoid intake and metabolic syndrome, 

primarily lycopene and β-carotene.  Among individual metabolic syndrome markers, 

higher lycopene was associated with lower triglyceride concentrations (p-trend = 0.04) 

and higher β-carotene was associated with smaller waist circumference (p-trend = 0.01) 

(Sluijs, et al., 2009).  A cross-sectional Australian study found an overall prevalence of 24% 

metabolic syndrome, although men consuming four or more servings of vegetables per 

day were less like to have metabolic syndrome than those consuming one or less serving.  

Significantly lower concentrations of α-carotene, β-carotene, and total carotenoids were 

seen in participants with metabolic syndrome.  As the number of individual metabolic 

syndrome components increased, serum carotenoid concentrations were observed to 

decrease (Coyne, et al. 2009).  Significant gender differences were seen in a Japanese 

cross-sectional study of metabolic syndrome, with men presenting at 22.3% and women 

at 7.5% (Suzuki, et al., 2011).  Serum β-carotene was significantly and inversely related 

to MetS in both genders, as was β-cryptoxanthin in women.  Significant associations 

were observed between individual metabolic syndrome features and individual serum 

carotenoids.   

   In a NHANES III follow-up study, serum α-carotene was inversely associated with 

all-cause mortality, both adjusted and non-adjusted (Li, et al., 2010).  This association 

was independent of demographic and lifestyle characteristics, and relevant health risk 
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factors.  In vivo studies of α-carotene have shown it to be more effective than β-

carotene in inhibiting tumor cell proliferation.  The current study showed significant 

inverse association for α-carotene and death from all causes.  Notably, α-carotene is not 

routinely found in supplements, but would be plentiful in yellow-orange and dark-green 

leafy and cruciferous vegetables.  13,293 NHANES III participants were examined for 

associations between serum carotenoid concentrations and all-cause mortality, using 

mortality records through 2006.  Total carotenoids, α-carotene, and lycopene were 

inversely, significantly associated with all-cause mortality (Shardell, et al., 2011).  Alpha-

carotene was inversely, significantly associated with CVD mortality.  High β-carotene 

concentration was not associated with reduced mortality from any cause.  Neither were 

any carotenoids associated with reduced mortality from cancer. 

 

2.2.4 General  

A separate analysis of NHANES III participants examined relationships between 

carotenoids, vitamins, selenium, and inflammation (Ford, et al., 2003a).  Age-adjusted 

concentrations of retinol, retinyl esters, vitamin C, serum folate, the carotenoids, and 

selenium were inversely related to C-reactive protein concentrations (p < 0.001).  

Analysis of 4,557 nonsmoking NHANES III participants yielded a 30% subsample with 

detectable C-reactive protein levels above 0.21 mg/dL (Kritchevsky, et al., 2000).  All five 

serum carotenoid concentrations were statistically significantly lower in the 30% than in 

those without detectable C-RP levels.  Beta-carotene and α-carotene were about 20% 

lower in the highest C-RP category.  Neither fibrinogen nor white cell count was 

associated with overall carotenoid concentrations with similar results.   Similar results 

were seen in the Nun’s Study, where 11.5% (10 of 85 nuns) had detectable C-RP, defined 

as above 1.5 mg/dL (Boosalis, et al. 1996).  While no significant relationship was seen 

between lutein/zeaxanthin or cryptoxanthin and C-RP, the remaining carotenoids 

individually and all carotenoids pooled were significantly, inversely associated. 

 Lycopene was found to be protective to the male reproductive system of healthy 

Sprague-Dawley rats when administered in combination with the PCB mixture, Aroclor 
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1254 (Ateşşahin, et al. 2010).    PCBs have been shown to be damaging to the 

reproductive system in various ways, including decreased hormone levels, diminished 

gland weight and sperm count, decreased sperm motility, and altered gene expression.  

Significant improvements were observed in sperm and tissue quality and the 

antioxidant-oxidant balance in the lycopene treated rats.   

 

Lifestyle covariates have been affected by carotenoid concentrations.  Smoking 

was significantly associated with decreased levels of beta-carotene and vitamin C, and 

physical activity significantly associated with increased levels of the same.  Oral 

contraceptive use was associated with lower beta-carotene only (Pincemail, et al., 2011).  

NHANES III participants were analyzed for associations between serum lycopene 

concentrations and various population characteristics (Ganji & Kafai, 2005).  Lower 

concentrations were reported for women, the elderly, participants below the poverty 

income ratio and with less education, participants residing in the south, those with 

lowest total cholesterol, highest serum triglyceride, dietary fat intake, and, not 

surprisingly, low reported tomato and tomato-based product consumption.   Analysis of 

1990 Behavioral Risk Factor Surveillance System (BRFSS) responses of 21,892 

participants correlating fruit and vegetable intake to cigarette smoking, leisure-time 

physical activity, alcohol consumption, and cholesterol screening, found inverse 

relationships between smoking status, alcohol consumption, and cholesterol screening 

and levels of fruit and vegetable consumption (Serdula, et al., 1996).  Physical activity 

level and frequency of fruit and vegetable intake were directly related.  Less than 1/3 of 

participants in any of the risk-behavior categories consumed five or more servings per 

day suggesting those at greatest risk of chronic disease are consuming the lowest levels 

of fruits and vegetables. 

 

2.3 Polychlorinated Biphenyls 

 Although production of PCBs was banned in the United States in the late 1970s, 

about 70% of those are still present in the environment (Birnbaum, 2008), and their 
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complete degradation could take decades or centuries to complete (Li, et al., 2009).  

PCB production was at its height around 1970 and ended in 1993 when Russia closed its 

last plant (Brevik, et al., 2011).  While levels in the U.S. are decreasing, air 

concentrations of PCBs in Asia and Africa, where PCBs were not used to any great extent, 

remain high. 

More than 95% of human exposure to dioxin-like PCBs occurs through food.  

PCBs are persistent and concentrate to lipids within an organism, which results in 

biomagnification through the food chain.  This further causes greater concentrations of 

PCBs at higher trophic levels (Ritter, et al.)  Dioxin-like PCBs may account for up to 50% 

of the toxic equivalency factor (TEQ) in human milk, although this will vary somewhat by 

country.  Breast milk has been monitored since the 1950s when concentrations of DDT 

were first detected in samples, but breastfeeding continues to be recommended for 

infants by the American Academy of Pediatrics, World Health Organization, and the 

Department of Health and Human Services (Am. Acad. Pediatric Comm. Environ. Health).   

 Research has shown that PCBs are toxic to wildlife and humans.  Animal model 

studies of individual congeners have elicited wide toxic responses.  PCB 126 was 

administered to female Harlan Sprague-Dawley rats to evaluate the effects of chronic 

exposure on the cardiovascular system (Lind, et al. 2004) and they found elevated 

serum cholesterol, increased blood pressure, and increased myocardial mass.  The NTP 

rat gavage studies administered PCB 126 singly and in a binary mixture with PCB 118, 

then evaluated at 14, 31, 53, and 104 weeks.  They demonstrated altered thyroid 

hormone concentrations at just 14 weeks; hepatic cell proliferation at 14, 31, and 53 

weeks; increased CYP1A1, CYP1A2, and CYP2B1 activities at 14, 31, and 53 weeks; and 

detectable concentrations of PCB 126 in liver, fat, lung, and blood tissues.  At two years, 

there was clear evidence of cholangiocarcinoma of the liver (NTP Technical Rpt PCB 126).  

PCB 126 is the most potent coplanar PCB with a TEF of 0.1, accounts for 40-90% of the 

total toxic potency of PCBs having dioxin-like activity, and has high bioaccumulation in 

the food chain.  PCB 118 has a single chlorine atom in the ortho- position, exhibits 

partial dioxin-like activity with a TEF of 0.0001, and accounts for 14% of the PCB toxic 
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equivalency present in human tissues (NTP Technical Rpt PCB 118).  PCB residues are 

present in fish, milk and other dairy products, meat and animal products, but have also 

been detected in vegetables.  

PCB 153 is a di-ortho-substituted PCB, does not exhibit dioxin-like activity, and is 

a Phenobarbital-like inducer of hepatic cytochrome P-450.  Nonplanar PCBs have been 

shown to induce neurobehavioral toxicity as well as endocrine alterations (Fischer, et al. 

1998).  PCB 153 has been shown to reduce long-term potentiation in Sprague-Dawley 

rats and may be a factor in reduced learning ability and IQ deficits (Hussain, et al. 2000).  

PCB 153 has been measured at the highest concentrations in human tissue on a molar 

basis of all PCBs due to its persistence (NTP Technical Rpt PCB 153).    

 A human study of a Swedish fishing community to determine PCB exposure and 

prevalence of T2DM found that 6% of men and 5% of women had T2DM, with PCB 153-

associated ORs of 1.16 for those with diabetes (Rylander 2005).  The diabetic 

participants had a significantly higher PCB 153 body burden than did the non-diabetic 

participants.  A follow-up study composed of 38% of the wives was undertaken to 

confirm earlier findings (Rignell-Hydbom 2007).  Age-adjusted modeling of PCB 153-

associated T2DM corresponded to an OR of 1.4, confirming an increased risk of having 

T2DM with higher levels of PCB 153.  A cohort study of Great Lakes sport fishermen 

consumers found significant negative associations between triiodothyronine (T3), 

thyroxine (T4), thyroid stimulating hormone (TSH), and sex-hormone binding globulin 

(SHBG)-bound testosterone and PCB concentrations (Turyk, et al. 2006).   This cohort, 

evaluated in 1994-1995, was administered follow-up questionnaires in 1995-1996, 

2001-2003, 2003, and 2004-2005, to assess incident diabetes (Turyk, et al. 2009).  DDE 

exposure was positively associated with T2DM incidence, but no association was found 

between years of sport fish consumption and PCB 118, total PCBs, or DDE. 

  Another study examined fasting plasma glucose and insulin levels, seventeen 

serum PCDDs and PCDFs, and 12 PCBs of non-diabetic, pregnant women (Chen, et al. 

2008).  PCBs 123, 126, and 169 levels were significantly associated with a decrease in 

insulin sensitivity.  Cross-sectional analysis of a Native-American Mohawk population 
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found positive associations between total PCBs, PCB 74, PCB 153, DDE, and HCB, and an 

elevated incidence of T2DM after adjustments for age, BMI, serum lipids, gender, and 

smoking (Codru, et al. 2007).   

 The Michigan PBB cohort began in 1976 with physical examination and 

biochemical indices, and concluded in 2001 by surveying participants on their health 

status, including presence of diabetes.  They found that PCBs (not PBBs) were associated 

with an increased incidence of diabetes in women, but not men (Vasiliu, et al. 2006).  An 

elderly, Swedish cohort (PIVUS Study) was evaluated at baseline for plasma 

concentrations of 21 POPs (14 PCBs) and at five years for incident diabetes (Lee, et al. 

2011a).  Only 5% (n=36) developed diabetes in that time, but plasma concentrations of 

PCBs strongly predicted future risk of diabetes.  Cross-sectional survey analysis of a 

Japanese population found that of 29 dioxin-like chemicals (10 PCDDs, 7 PCDFs, 12 PCBs) 

examined in relation to prevalence of metabolic syndrome, the PCBs were significantly 

associated with each clinical marker of metabolic syndrome (Uemura, et al. 2009).  The 

ORs within the highest quartiles of PCB 126 and PCB 105 were 9.1 and 7.3, respectively. 

 NHANES 1999-2002 cross-sectional survey data have been analyzed for 

associations between POPs and obesity (Elobeid, et al. 2010), cardiovascular disease (Ha, 

et al. 2007), hypertension (Ha, et al. 2009), insulin resistance (Lee, et al. 2007a), 

metabolic syndrome (Lee, et al. 2007b), and diabetes (Lee, et al. 2007c).  In most cases, 

approximately 19 POPs were investigated above the 60% LOD, including PCDDs, PCDFs, 

PCBs, and organochlorine pesticides.   The Elobeid study using obesity and waist 

circumference as a clinical endpoint was an exception as it evaluated only two dioxins 

and three pesticides, choosing not to evaluate PCBs at all.  In the remaining studies, 

PCBs were positively associated with CVD, and both dioxin-like and non-dioxin-like PCBs 

were positively associated with hypertension (ORs of 2.3 & 2.8, respectively), but only 

among the men.  Organochlorine pesticides showed a strong p-trend for a positive 

association with insulin resistance (p < 0.01).  Individual analysis of PCBs 170 and 187 

showed significant associations with HOMA-IR.  Dioxin-like PCBs were most strongly 

associated with diabetes and organochlorine pesticides were most strongly associated 
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with metabolic syndrome.  However, dioxin-like PCBs were positively associated and 

non-dioxin-like PCBs yielded an inverted-U curve suggestive of a low-dose response.  Of 

individual metabolic syndrome markers, PCBs were associated with waist circumference, 

hypertriglyceridemia, and impaired fasting glucose.   

 Analysis of NHANES 2003-2004 data for associations between non-alcoholic fatty 

liver disease (NALFD) and POPs found significant positive associations between NALFD 

and dioxin-like and non-dioxin-like PCBs (p-trend < 0.001 for both) (Cave, et al. 2010), 

citing dose-dependent associations with PCB 126 and PCB 153, in particular. 
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CHAPTER THREE 
 

METHODOLOGY 
 

3.1 Introduction 

 The specific aim of this research was to examine associations between serum 

concentrations of PCBs; serum concentrations of specific nutrients, carotenoids, 

Vitamins C and E; related socioeconomic and lifestyle characteristics; and the probability 

of developing metabolic syndrome.  This research used existing data from the 2003-

2004 NHANES release.  Data were analyzed using SAS 9.2©. 

 

3.2 Selection of Research Design  

 A growing body of research exists on the effects of persistent organic pollutants, 

including PCBs, on health.  Similarly, extensive research has been conducted on the 

effects of specific nutrients and/or foods on health.  There exists scant evidence on the 

combined effects of pollutants and nutrition on human health and disease.  Even 

individuals with similar exposures can have vastly different health profiles.  Nutrition is 

associated with a healthy weight, absence of chronic disease, and/or modulation of 

disease progression.    

NHANES uses a cross-sectional sample design for examining associations, 

patterns, and confounding influences between dependent and independent variables.  

Among its eight stated goals, NHANES includes the following: 

• Monitor trends in risk behaviors and environmental exposures; 

• Analyze risk factors for selected diseases; 

• Study the relationship between diet, nutrition, and health. 

While this design cannot establish cause and effect, it can be useful in assessing the 

interactions between these variables, the consistency of findings within individual 

exposures, as well as across statistical models, and any significant socioeconomic and 

lifestyle covariates.  Findings such as these may contribute to development of new 

hypotheses, research on the effects of nutrition on POPs exposure and health, and may 
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contribute to the development and validation of nutritional recommendations for the 

exposed. 

 

3.3 Description of the Data Source  

NHANES is a continuous, population-based survey of the non-institutionalized, 

civilian U.S. population.  It is one program of the National Center for Health Statistics 

(NCHS), Centers for Disease Control and Prevention (CDC).  Data are available online to 

the public and periodic, ongoing updates and additions to the data are announced.  

NHANES applies a complex, probability random sampling method to yield a 

representative population of all ages for evaluation.  The program combines interviews 

with physical examination and laboratory testing of blood, serum, and urine.  Field staff 

receives extensive training and strict quality control standards are applied to all data 

collection and analyses.   

The complex sample survey design requires proper use of sample weights and 

variance estimation to yield proper estimates and standard error of estimates.  Sample 

weights correct for the probability of selection, participant non-response, oversampling 

of certain groups, and factors uniquely related to the sample characteristics.  Variance 

estimation tests for sampling errors.   

NHANES tested for 219 environmental chemicals in blood, serum, or urine 

between 1999 and the 2003-2004 data period.  The Fourth National Report on Human 

Exposure to Environmental Chemicals presents biomonitoring data on these chemicals 

for the years 1999-2004 (CDC 4th Nat’l Rpt).  Nutritional biochemistries were collected 

for retinyl palmitate, retinyl stearate, retinol, Vitamin B6, Vitamin B12, folate, Vitamin C, 

Vitamin D, α-tocopherol, β-tocopherol, γ-tocopherol, α-carotene, β-carotene, α-

cryptoxanthin, β-cryptoxanthin, lycopene, lutein, zeaxanthin, phytoene, and 

phytofluene.  Standard blood, serum, and urinary laboratory tests, such as complete 

blood counts (CBC), were executed.   Additionally, two days of 24-hour dietary recall 

data and food frequency questionnaire were collected during the MEC interview process. 
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Initial health interviews were conducted in participant homes.  The physical 

examination usually occurred within one to two weeks later at the MEC.  MEC 

appointment duration was about 3.5 hours.  Although the MEC was located within the 

PSU for easy access, transportation was available to participants requiring assistance 

and to minimize barriers to participation.  The MEC laboratory staff was comprised of 

three certified medical technologists and/or phlebotomists who tested some samples 

on-site.  All other specimen testing was conducted by federal, private, or university-

based laboratories under contract to NCHS. 

NHANES data were collected in an ethical manner with regard to informed 

consent and confidentiality.  Institutional Review Board (IRB) approval for NHANES 

1999-2004 was granted by the NCHS Research Ethics Review Board (ERB) under Protocol 

#98-12.  Participants received remuneration for the MEC visit and additional 

remunerations for fasting, completing the 24-hour dietary telephone interview, and the 

food frequency questionnaire. 

 

3.4 Description of the Dataset  

While NHANES attempts to examine a nationally representative sample, they do 

so by evaluating approximately 5,000 individuals across 15 counties each year.  Any 

disparities from actual population parameters are corrected for by using the complex 

survey design characteristics of stratification, clustering, and weighting.  The subjects in 

the present study were male and female, 20 years and older, of diverse racial and ethnic 

backgrounds, and residing in the United States during 2003-2004.  Importantly, while all 

MEC participants underwent extensive testing, not all participants were tested for all 

parameters.  NHANES MEC Subsample C, which was comprised of individuals who were 

analyzed for serum concentrations of PCBs, provided the initial sample pool for this 

study. 

10,122 individuals participated in the in-home interview process of NHANES 

2003-2004.  95.3% of these participated in the MEC physical examination portion of the 

study, including biochemical lab analyses and the first of two 24-hour dietary recalls.  
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For analyses of environmental chemicals, 5-10 ml of serum was drawn and participants 

randomly assigned to subsample A, B, or C.  This placement determined which classes of 

environmental chemicals for which they would be analyzed.  The sample size tested for 

subsample C pollutants was 1,850.  The final subpopulation for this study after removal 

of participants for necessary exclusions and missing data consisted of 1,058 persons.   

 

3.5 Exclusions from the Dataset  

 3.5.1 Age. 

Persons younger than twenty years of age were excluded from the study.  The 

SRP Community Engagement Core (CEC) NIEHS grant (P42ES007380) does not permit 

children or adolescents to be participants in CEC research initiatives.  Further, exposure 

to PCBs and the effects of nutrition and usual dietary intake patterns on the 

development of cardiometabolic illness have temporal implications that are best 

analyzed in an adult population.   

 

3.5.2 Diabetes Mellitus 

 Persons diagnosed with diabetes mellitus were excluded from the dataset.  

Metabolic syndrome is a condition that is consistently associated with increased risks of 

T2DM and cardiovascular disease, but one which precedes an actual diagnosis of T2DM.  

A diagnosis of diabetes could be established from two different sections of NHANES 

data, the questionnaire or physical examination.  Either a fasting plasma glucose value 

of ≥ 126 mg/dL (≥ 7.0 mmol/L) or a history of physician diagnosed diabetes would 

establish a basis for eliminating these participants from the study.  

 

Table 3.1 NHANES Determination for Type 2 Diabetes Mellitus  
 

ITEM LABEL SAS LABEL NHANES 2003-2004 COMMENT 

ITEM NUMBER DATA FILE  

DIQ 010 Doctor told you have 
diabetes 

174 DIQ_C  

LBXGLU Plasma Glucose ≥ 126 
mg/dL 

 L10AM_C Count: 3169 
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3.5.3 Metabolic Syndrome Determinants  

Persons with insufficient data to make a determination of metabolic syndrome 

were excluded from the study.  The NCEP ATPIII criteria for metabolic syndrome is based 

on five measures routinely collected in clinical settings and by NHANES.   Any three or 

more of the five criteria yield a finding of metabolic syndrome.  Blood pressure and 

waist circumference were obtained during the MEC physical examination.  HDL-

cholesterol was a non-fasting laboratory analysis and could be collected at either the 

morning or afternoon lab draw.  Accurate triglyceride and plasma glucose analyses for 

metabolic syndrome required an overnight fast.  These participants were asked to fast 

for nine hours for the morning session or six hours for the afternoon and evening 

sessions.  If the participant failed to fast for the required time, efforts were made to 

obtain the fasting measures at the end of the MEC visit if the participant was within 

thirty minutes of the required fasting time.  As metabolic syndrome is based on the 

presence of three or more criteria, a stepwise method was used to eliminate 

participants, if necessary.   

1) If fasting blood work was not done (plasma glucose and triglyceride values), 

but a participant met the definition of metabolic syndrome based on the 

remaining three criteria (low HDL-cholesterol, elevated blood pressure, and 

central adiposity), the participant met the requirement for metabolic 

syndrome and was included in the study.  If, however, fasting lab work was 

not collected and one or more of the remaining three indices were missing, 

the subjects were excluded from the study, as a determination of metabolic 

syndrome could not conclusively be done. 

2) If fasting plasma glucose and triglyceride values were collected and: 

a. All five markers were available a determination of metabolic 

syndrome could be made.  No subjects were excluded in this scenario. 

b. One or two measures were missing from the remaining three indices, 

HDL-cholesterol, blood pressure, and waist circumference, the 
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participants were eliminated if a determination was dependent on 

the missing value(s). 

i. One measurement missing: 

1. If zero or one criterion were met for metabolic 

syndrome, the participant still would not meet the 

definition of metabolic syndrome, even if the missing 

index had been collected and found positive for 

metabolic syndrome.  These participants were not 

excluded from the study. 

2. If two criteria were met for metabolic syndrome, a 

single missing index would either meet or reject the 

definition of metabolic syndrome.  These participants 

were excluded from the study. 

3. If three or four criteria were met for metabolic 

syndrome, these participants met the definition of 

metabolic syndrome, even in the absence of one 

marker.  These participants were not excluded. 

ii. Two measurements missing: 

1. If a determination of metabolic syndrome could be 

made with the remaining three markers, the subjects 

were included in the study. 

2. If a determination of metabolic syndrome was 

dependent on the missing values, the subjects were 

excluded from the sample. 

3) If three or more measurements were missing, a determination of metabolic 

syndrome could not be made regardless of fasting laboratory measures.  

These participants were excluded from the sample. 
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3.5.4 24-Hour Dietary Recall Data 

NHANES 2003-2004 collected two days of dietary intake data collection.  Two 

days of food and fluid records have been shown to more closely correlate with usual 

intake patterns than one day’s intake.  Accurate analysis of food and fluid intakes with 

the specific aim of estimating the effect of diet on health must be targeted to usual 

intake patterns, as opposed to acute or unusual exposures.  Subjects with two days of 

complete and reliable dietary intake data were included in the sample.  If participants 

completed only one 24-hour dietary recall or if the data were unreliable or incomplete, 

the participants were excluded from the sample. 

 

3.6 Measurement of Independent Variables  

 3.6.1 Polychlorinated Biphenyls  

Serum specimens of PCBs were measured by high-resolution gas 

chromatography/isotope-dilution high-resolution mass spectrometry.  Quality assurance 

measures included the measurement of samples in each analytical run for accuracy and 

precision, verification of calibration materials, and review of all operational parameters.  

All PCBs above the 60% LOD were analyzed.  Lower limits of detection for PCBs varied as 

each analyte had its own limit.  If no observations were seen above the 60% LOD, those 

observations were dropped from the sample.  PCBs lacking observations below the LOD 

presented a challenge in that below-LOD observations offered the closest 

approximation to a reference group for environmental pollutant data, where no true 

reference group exists.  The greater the sample volume the lower the detection limit.  

Nearly five times more blood volume was drawn in 2003-2004 than in NHANES 1999-

2002.  This resulted in many more PCB congeners in the 2003-2004 population with zero 

observations below the LOD.  

Importantly, PCBs entered the environment as mixtures.  Studies assessing 

background exposures to PCBs have estimated, as one example, Aroclor 1254 exposure 

by summing PCB congeners 99, 118, 138/163, 145, 132/153/105, 167, 170/190, 172/197, 

177, 178, 180, 182/187, 194, 195/208, 201, 203/196, and 206 (Lang, 1992; Burse, et al. 
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1990 & 1994).  It is known that Monsanto manufactured a variant of Aroclor 1254 in the 

1970s (Frame, 2001), and that the effects of the environment on decomposition vary by 

congener.  Chemical analyses of different Aroclor 1254 lots have revealed substantial 

differences in congener composition with challenges for determining biological 

endpoints (Kodavanti, et al., 2001).  

   

 3.6.1.1 Lipid-adjusted versus whole weight 

 NHANES reported PCBs as both grams per total lipid (pg/g lipid or ppt) and as 

grams per whole weight serum (ng/g or ppb).  PCBs are lipophilic and gravitate to lipids 

in serum.  Concentrations of lipid-adjusted PCBs are considered a reflection of PCB 

concentrations stored in body fat.  Whole weight PCB measures are useful for 

comparison studies, although it has been suggested that wet weight PCBs (not lipid-

adjusted) should be considered because PCBs may disturb normal lipid metabolism 

(Schisterman, et al., 2005).  One recent study examining the low dose effects of some 

POPs on obesity, insulin resistance, and dyslipidemia, used whole weight POP measures 

after adjusting for total cholesterol and triglycerides (Lee, et al. 2010 & 2011b).  

Dyslipidemia has been demonstrated to precede clinical manifestation of T2DM, as is 

observed with metabolic syndrome.  Adjusting PCBs for circulating lipid concentrations 

in this case could underestimate true risk associations.  Conversely, not using lipid-

adjusted PCBs would under-adjust at baseline further underestimating body burden and 

related associations to disease.  Due to the NHANES recommendation to use lipid-

adjusted values and to better facilitate comparison with related research almost 

exclusively using lipid-adjusted concentrations this dissertation relied on lipid-adjusted 

PCB values. 

 

3.6.1.2 Rank versus Concentration 

As participants were exposed to several PCB congeners, an order ranking 

method was used to provide a systematic way for assessing cumulative exposures.  

Participants were ranked according to their measured concentration of each individual 
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PCB, the ranks within a subclass summed, and a combined exposure ranking assigned.  

Participants could then be placed with one of four quartiles as one observation 

representing a cumulative exposure to several PCBs.  PCB concentrations were applied 

in several models as well, using a similar method.  Serum PCB concentrations are 

considered a reflection of body burden.  The use of pollutant concentrations instead of 

rank gave a participant’s placement within the quartile greater context, and yielded 

additional information. 

 

3.6.1.3 Quartile versus Continuous 

Models were executed primarily by ranking PCBs across four quartiles.  For those 

PCBs having observations below the LOD, this range was assigned as reference group in 

addition to the quartiles.  PCBs lacking a reference group relied on the first exposure 

quartile as the reference group.  Even though use of quartiles does not facilitate analysis 

of the mean, quartile analysis is primarily used in environmental chemical studies.  

Skewed distributions and outliers are common in exposure assessment studies.  

Covariate analysis across quartiles may be expected to reveal a more enhanced analysis 

of the variables than would measurements of central tendency or dispersion.  However, 

some modeling relied on placement of PCBs along a continuous scale to better 

understand the complex relationships between variables. 

 

3.6.1.4 Four Covariate versus Full Covariate Modeling 

Observations were adjusted for age, gender, race/ethnicity, and poverty income 

ratio (PIR) instead of applying one NHANES subsample weight.  This method has been 

considered an acceptable compromise between bias and efficiency (Graubard & Korn, 

1999; Korn & Graubard, 1991).  As discussed previously, NHANES uses a random 

sampling method within specific predetermined population domains.  Thus, certain 

groups are oversampled.  Applying the sample weight corrects for this oversampling, in 

addition to correcting for probability of selection, non-response, and any unique 

characteristics related to a specific subsample.  Several of these subsamples were used 
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in the present study and it was untenable to apply one weight to correct for disparate 

characteristics across samples.  The four covariate model provided a good surrogate for 

sample weights. 

The relevant demographic and behavioral characteristics that can affect the  

probability of developing metabolic syndrome, an individual’s serum concentrations of 

PCBs, or their serum concentrations of carotenoids include age, gender, race/ethnicity, 

PIR, cigarette smoking, serum cotinine, alcohol consumption, leisure-time physical 

activity, BMI, use of dietary supplement, total cholesterol, and non-HDL cholesterol.  For 

actual food intake records, total caloric intake would adjust for the ratio of nutrient 

dense intake per total calorie intake.  A reasonable assumption was that exposure to 

PCBs, rather than being singly causative of metabolic syndrome, should be considered 

as one additional covariate across the full spectrum of demographic and lifestyle factors.  

For this reason, a full covariate model was executed in which all of the above 

characteristics were included a priori. Ultimately, the four covariate model was applied 

as a closer approximation to NHANES weighting. 

   

3.6.1.5 First Quartile: With and Without 

The application of general linear models revealed that most PCBs did not 

respond in a standard toxicological dose-response manner, and that the relationships 

were complex.  While variability occurred among congeners, one consistency was the 

increased probability of metabolic syndrome within the first quartile for all PCBs.  

Analysis was further compounded by the lack of a reference group for many congeners.  

Models were executed with and without the first quartile to assess relationships 

between variables across increasing exposure quartiles.  This low dose effect has been 

documented in other literature and may be indicative of disruption of normal endocrine 

function.  At physiologically active hormone levels, a mimic would be expected to either 

saturate or down-regulate receptor activity at relatively low levels. 
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3.6.2 Serum Carotenoids 

 Twelve carotenoids were measured in serum using high performance liquid 

chromatography with multiwave-length photodiode-array absorbance detection.  

Carotenoids were measured at an UV absorbance capacity of 450 nm.  As fat soluble 

molecules, carotenoids have in common a conjugated double bond system of primarily 

eight isoprenoid units that interact with UV and visible light, yielding their characteristic 

yellow, orange, or red color.  

 

 Figure 3.1  Alpha-Cryptoxanthin  

 
 http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=17425144&viewopt=Deposited; accessed 
10-17-11. 
 

The carotenoids analyzed in sera by NHANES 2003-2004 included alpha-carotene, alpha-

cryptoxanthin, cis-beta-carotene, trans-beta-carotene, beta-cryptoxanthin, cis-lycopene, 

trans-lycopene, lutein, zeaxanthin, total lutein/zeaxanthin, phytoene, and phytofluene.  

Values were given in umol/L and ug/dL.  The present study included alpha- and beta-

carotenes, alpha- and beta-cryptoxanthins, total lycopene, and total lutein/zeaxanthin. 

Carotenoids and PCBs share some similarities in that both are lipid-soluble, both 

concentrate to lipid fractions in serum, and both are considered to have an effect on the 

probability of metabolic syndrome, although opposing effects.  For these reasons, a 

statistical interaction was first sought for carotenoids and PCBs in serum.  If statistical 

significance for this interaction was revealed within the models for individual and 

pooled PCB subpopulations, this would imply significance for carotenoids and PCBs 

individually.  The combined interactions were evaluated across four quartiles, and then 

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=17425144&viewopt=Deposited
javascript: void window.open('../image/structurefly.cgi?sid=17425144&width=400&height=400', 'StructureFly', 'resizable=yes, scrollbars=yes, WIDTH=620, HEIGHT = 620')
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across sixteen moving quartiles, to examine their effect on the probability of developing 

metabolic syndrome. 

 

3.6.3 Vitamin E 
 
Serum concentrations of three forms of Vitamin E, alpha-tocopherol, delta-

tocopherol, and gamma-tocopherol, were measured using high performance liquid 

chromatography with multiwave-length photodiode-array absorbance detection.  The 

tocopherols were measured by UV absorbance at maxima of between 292 and 300 nm.   

 
Figure 3.2 Alpha-Tocopherol 

 

 
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=14985&loc=ec_rcs; accessed 10-17-11 

 

NHANES 2003-2004 measured three of the eight naturally occurring forms of 

Vitamin E.  The RDA for Vitamin E is based on α-tocopherol because other forms are not 

converted to α-tocopherol in humans (DRIs 2000).  Alpha-, gamma-, and delta-

tocopherols were evaluated in the present study.  NHANES values for Vitamin E were 

given in umol/L and ug/dL.   

Vitamin E is lipid-soluble and concentrates to lipid fractions.  Analysis of Vitamin 

E was undertaken as with carotenoids by seeking a significant interaction with PCBs first, 

then evaluating their combined effect on the probability of developing metabolic 

syndrome.  Analyses were executed across four quartiles, and then across sixteen 

moving quartiles, for a more precise evaluation. 

 

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=14985&loc=ec_rcs
javascript: void window.open('../image/structurefly.cgi?cid=14985&width=400&height=400', 'StructureFly', 'resizable=yes, scrollbars=yes, WIDTH=620, HEIGHT = 620')
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3.6.4 Vitamin C 

Vitamin C is an essential, water-soluble vitamin.  The term refers to ascorbic acid 

and dehydroascorbic acid (DHA), and it functions as a powerful reducing agent of 

reactive oxygen species (DRIs 2000).   

Vitamin C in serum was measured by NHANES 2003-2004 by isocratic HPSC 

electrochemical detection at 650 mV.  Peak height was quantified and based on a 

standard curve using three different concentrations, 0.005, 0.030, and 0.100 mg/dL.  

NHANES values for Vitamin C were given in umol/L and ug/dL.   

A significant interaction was sought between PCBs and Vitamin C.  For those with 

a significant result, analysis was executed of their combined effect across four quartiles, 

and then across sixteen moving quartiles, for a more refined evaluation of their overall 

effect in the probability of developing metabolic syndrome. 

 

3.7 Measurement of Dependent Variables 

 

3.7.1 Metabolic Syndrome 

The five clinical criteria necessary for a determination of metabolic syndrome 

were accessed from the laboratory, examination, and questionnaire data files of 

NHANES 2003-2004. 

 

3.7.1.1 Waist Circumference   

Abdominal obesity is defined as a waist circumference greater than 40 inches 

(102 cm) for men and 35 inches (88 cm) for women. 

 

Table 3.2 NHANES Determination for Waist Circumference 
ITEM LABEL SAS LABEL DATA FILE COUNT MISSING 

BMXWAIST Waist Circumference (cm) BMX_C 8397 1247 
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3.7.1.2 Elevated Blood Pressure 

Elevated blood pressure is defined as average pressure greater than or equal to 

130/85 or if participant answered “yes” to the question, “Are you currently taking 

antihypertensive medication?”  Up to four blood pressure measurements were taken 

from participants.  If three or four measurements were taken an average of the last two 

measurements were used to assess blood pressure status.  If two measurements were 

taken the second measurement was used.  If only one measurement was taken, it was 

used as a measurement of blood pressure status.  If, however, the participant answered 

affirmatively that he or she was currently taking medication for elevated blood pressure, 

he/she was classified as having elevated blood pressure. 

 

Table 3.3 NHANES Determination for Elevated Blood Pressure 
ITEM LABEL SAS LABEL  DATA FILE COUNT MISSING 

BPXSY1 Systolic: blood pressure 1st reading 
mm Hg 

BPX_C 6274 3369 

BPXDI1 Diastolic: blood pressure 1st reading 
mm Hg 

BPX_C 6274 3369 

BPQ040A Because of your high blood pressure, 
have you ever been told to take 
prescribed medicine? 

BPQ_C 1452 4412 

 

 

3.7.1.3 Elevated Fasting Triglycerides 

Elevated fasting triglycerides are defined as ≥ 150 mg/dL (≥ 1.7 mmol/L).  

NHANES 2003-2004 measured triglycerides in participants who had fasted 8.5 hours or 

more.  Triglycerides were measured enzymatically in serum using a series of coupled 

reactions that hydrolyzed triglyceride to glycerol.  Absorbance was measured at 500 nm.   

 

Table 3.4 NHANES Determination for Elevated Fasting Triglycerides 
ITEM LABEL SAS LABEL DATA FILE COUNT MISSING 

LBXTR Triglyceride (mg/dL) L13A M_C 3680 354 
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3.7.1.4  Low HDL-Cholesterol 

Low HDL-cholesterol is defined as < 40 mg/dL (<0.9 mmol/L) for men and < 50 

mg/dL (< 1.1 mmol/L) for women.  HDL-cholesterol was measured directly in sera at 

absorbance maxima of 600 nm.  

 

Table 3.5 NHANES Determination for Low HDL-Cholesterol 
ITEM LABEL SAS LABEL DATA FILE COUNT MISSING 

LBXHDD Direct HDL Cholesterol (mg/dL) L130C 7773 783 

 

 

3.7.1.5 Fasting Plasma Glucose 

Fasting plasma glucose is defined as greater than 100 mg/dL (> 5.6 mmol/L) but 

less than 126 mg/dL, which reaches the threshold of diabetes mellitus.  Fasting plasma 

glucose was measured in participants fasting 8.5 hours or longer.  Participants with 

fasting plasma glucose greater than 100 mg/dL but less than 126 mg/dL, or who 

responded “yes” to the question, “Have you ever been told by a doctor or health 

professional that you have diabetes or sugar diabetes? 

 

Table 3.6 NHANES Determination for Fasting Plasma Glucose 
ITEM LABEL SAS LABEL  DATA FILE COUNT MISSING 

LBXGLU Systolic: blood pressure 1st reading 
mm Hg 

L10AM_C 3169 187 

DIQ010 Doctor told you have diabetes DIQ_C 559 9645 

 

The nicotinamide adenine dinucleotide (NADH) generated in the second step of 

glycolysis is proportional to glucose concentration, measurable at absorbance of 340 nm.   

 

3.8 Measurement of Covariates 

3.8.1 Smoking Status 

Smoking status was determined from three variables from the questionnaire 

section of the NHANES data file.  Participants were coded as “never smoker”, “current 

smoker”, or “former smoker”. 
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Table 3.7 NHANES Determination for Cigarette Smokers 
ITEM LABEL SAS LABEL  DATA FILE COMMENT 

SMQ020 Smoked at least 100 cigarettes in life SMQ_C “No”; code as NEVER smoker 

SMQ040 Do you now smoke cigarettes SMQ_C “Everyday” & “some days”’’ 
code as CURRENT smoker 

SMQ050Q How long since quit smoking SMQ_C “Range of values”; code as 
FORMER smoker 

 

 

3.8.2 Serum Cotinine 

Cotinine is the primary metabolite of nicotine and has been considered the best 

biomarker of active and passive smoking.  The plasma half-life of cotinine is 

approximately 16 hours, whereas the half-life of nicotine is less than 3 hours, making 

serum cotinine a better reflection of true smoking status.  The detection limit for serum 

cotinine in the NHANES 2003-2004 data release was 0.015; the below limit of detection 

was 0.011.  Nonsmoking has been defined as a serum cotinine level of ≤ 10 ng/mL.  

However, exposure to high levels of environmental tobacco smoke (ETS), commonly 

referred to as “second hand smoke”, may exceed 10 ng/mL.  Participants were coded as 

positive or negative for serum cotinine. 

 

Table 3.8 NHANES Determination for Serum Cotinine 
ITEM LABEL SAS LABEL DATA FILE COUNT MISSING 

LBXCOT Cotinine (ng/mL) L06COT_C 6478 764 

 

 

3.8.3 Alcohol Consumption 

Alcohol consumption status was determined from the questionnaire section of 

the NHANES 2003-2004 data release.  Participants were coded as “non-drinker”, “non-

excessive drinker”, or “excessive drinker”, using a scale adapted from a cross-sectional 

study correlating patterns of alcohol use, obesity, and elevated serum hepatic enzymes 

(Tsai, et al. 2011).   Participants consuming no alcoholic beverages over the past month 

were coded as “non-drinkers”.  Males consuming ≤ 2 drinks per day (≤ 14 per week), and 

women consuming ≤ 1 drink per day (≤ 7 drinks per week) were coded as non-excessive 
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drinkers.  Males exceeding two per day (> 14 per week) and women exceeding one per 

day (> 7 per week) were coded as excessive drinkers.  If, however, a non-excessive 

drinker responded that they consumed ≥ 5 drinks on any one day, they were coded as 

an excessive drinker, as this meets the definition of binge drinking. 

 

Table 3.9 NHANES Determination for Alcohol Consumption 
ITEM LABEL SAS LABEL  DATA FILE COMMENT 

ALQ120Q In past 12 months, how often did you 
drink any type of alcoholic beverage 

ALQ_C “Zero”; code as NON-DRINKER 

ALQ120U Unit of measure ALQ_C Yields days per week, month, year 

ALQ130 In past 12 months, on those days that 
you drank alcohol, on average, how 
many drinks did you have 

ALQ_C Drinks per day, on average 

ALQ140Q In past 12 months, on how many days 
did you have 5 or more drinks of any 
alcoholic beverages 

ALQ_C ≥ 5 drinks per day; code as 
EXCESSIVE DRINKER 

 

 

3.8.4 Leisure-Time Physical Activity 

Leisure-time physical activity status was determined from participant self-

reporting of specific activities.  Participants’ activity status was coded as “vigorous”, 

“moderate”, or “none”.  Initially, it was deemed reasonable that if no activities were 

identified for a respondent that the participant would be coded as “none”, i.e. 

sedentary.  This proved to be problematic however, as all 1058 participants coded at 

least one activity.  The formatting of this data set prompted positive responses.  Further, 

participants falling in the highest category for vigorous exercise were excessive, with 

many participants reporting many hours of vigorous exercise.  It was noted that if a 

participant played a 4-hour football game, he/she recorded 4 hours of actual physical 

activity.  Similarly, a 4-hour dance was reported as 4 hours of continuous dancing.  

Conversely, if a metabolic equivalent score (MET) for an activity was recorded as less 

than ten minutes, it was excluded by NHANES.   

A simple method was adopted to report leisure-time physical activity.  The 

U.S. Department of Health and Human Services recommendations for healthy adults are 

to achieve 150 minutes of moderate activity or 75 minutes of vigorous activity per week 
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U.S.D.H.H.S. 2008 Physical Activity Guidelines).  Activities reported as moderate were 

weighted by a factor of one.  Activities reported as vigorous were weighted by a factor 

of two.  Participants reporting less than 90 minutes of leisure-time physical activity per 

week were scored as “none”, or sedentary. 

 

Table 3.10 NHANES Determination for Leisure-Time Physical Activity 
ITEM LABEL SAS LABEL  DATA FILE COMMENT 

PADACTIV Leisure time activity PAQIAF_C Code all activities that apply 

PADLEVEL Activity level PAQIAF_C Moderate; vigorous 

PADTIMES Number of times did activity past thirty 
days 

PAQIAF_C Range of values 

PADDURAT Over past 30 days, on average about 
how long did you do activity each time 

PAQIAF_C Average duration of activity 
(minutes) 

 

 

3.8.5 Body Mass Index 

Body mass index (BMI), defined as weight (kg) divided by [height (m)]2, has been 

correlated with overall mortality and nutritional risk.  The Expert Panel on the 

Identification, Evaluation, and Treatment of Overweight and Obesity in Adults has 

endorsed the following classifications.  Anthropometric measures were assessed in 

participants as part of the MEC physical examination.   

 

Table 3.11 World Health Organization International Classification for Body Mass Index 

Underweight < 18.5 kg/m2 

Normal weight 18.5 – 24.9 kg/m2 

Overweight 25 – 29.9 kg/m2 

Obesity (Class I) 30 – 34.9 kg/m2 

Obesity (Class II) 35 – 39.9 kg/m2 

Extreme obesity (Class III) ≥ 40 kg/m2 
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3.8.6 Dietary Supplement Use 

Dietary supplement use was determined by participant response to the question, 

“Have you used or taken any vitamins, minerals, or other dietary supplements in the 

past month?”  A separate analysis of NHANES 2003-2006 data found that 54% of adults 

reported dietary supplement use and that fewer obese individuals reported dietary 

supplement use than either overweight or normal weight individuals (Bailey, et al., 

2011).  Positive associations were also seen with higher educational status and non-

Hispanic white race-ethnicity.   

 

Table 3.12 NHANES Determination for Dietary Supplement Use 
ITEM LABEL SAS LABEL DATA FILE YES NO MISSING 

DSD010 Any dietary supplements 
taken 

DSQ1_C 3820 6273 14 

 

 

All datasets were accessed before October 31, 2011.   
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CHAPTER FOUR 

RESULTS 

Project I.  Serum concentrations of PCB 118, PCB 126, and PCB 153; serum carotenoids; 
and the probability of metabolic syndrome 

 
 

Three PCBs were identified for initial analysis and a preliminary study 

undertaken to determine if significant differences existed between the mean serum 

carotenoid concentrations of those with and without metabolic syndrome across 

increasing PCB exposure quartiles.  In other words, participants with similar PCB 

concentrations (by quartile), and defined by health status (i.e. with or without metabolic 

syndrome), could be assessed by differences in their mean serum carotenoid 

concentrations.   Serum carotenoids have been defined by the IOM as the best 

biomarker of fruit and vegetable intake.   

PCBs 118, 126, and 153 represent different congener subclasses based on the 

ortho positioning of their chlorine atoms.  Further, all have previously been selected by 

the NTP for two-year rat gavage studies relating to their toxicity, persistence, and 

bioaccumulation in tissue.  The analytic samples were maintained as three disparate 

samples at this time relating to differences in their chemistry and effects in vivo.  Seven 

serum carotenoids were examined as a pool of “total carotenoids”, which represented 

the sum of each participant’s serum concentrations of α-carotene, β-carotene, α-

cryptoxanthin, β-cryptoxanthin, lycopene, and lutein/zeaxanthin. A determination of 

metabolic syndrome was found if three or more NCEP ATPIII criteria were met.  In this 

project, NHANES methodology was strictly followed with regard to sample weight and 

variance estimation.  MEC Subsample C provided the smallest sample size for proper 

weight selection in accordance with the Continuous NHANES Tutorial (CDC, Cont 

Tutorial) and NHANES Environmental Chemical Data Tutorial (CDC, NHANES Env Chem 

Tutorial), as well as providing three sub-populations that had been tested for PCB 118, 

PCB 126, and PCB 153 concentrations.   
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A. PCB 118 - 2,3’,4,4’,5-Pentachlorobiphenyl 

PCB 118 status was categorized by rank, n = 917.  No observations were found 

below the LOD for PCB 118 in the 2003-2004 data release. 

 

Table 4.1 PCB 118 rank analysis by quartile 

Analysis Variable : LBX118LA PCB118 Lipid Adj (ng/g) 

Values of 
PCB118_p 

were 
Replaced by 

Ranks 
N 

Obs N Mean Std Dev Minimum Maximum 

1 223 223 2.1838117 0.5279258 0.7600000 2.9500000 

2 240 240 3.7319167 0.4994001 3.0000000 4.5100000 

3 224 224 5.6838393 0.9866747 4.5300000 7.9000000 

4 230 230 22.5208261 23.4045465 7.9100000 177.0000000 

 

 

Observations were nearly equally distributed across the quartiles.  The mean, minimum, 

and maximum do not reflect actual pollutant concentrations.  A ranking system, as used 

in similar studies (Ha, et al. 2007; Cave, 2010), was applied.  The mean and maximum in 

the highest quartile are indicative of outliers, a not uncommon occurrence when dealing 

with environmental pollutant measures.
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Figure 4.1 Mean serum carotenoid concentrations across PCB 118 quartiles 

 
       * p < 0.01 

 

The above graph tracks the serum carotenoid concentrations of participants with 

metabolic syndrome (red) and participants without metabolic syndrome (blue) across 

increasing exposure quartiles of PCB 118 by rank.  A significant association was seen at 

the highest PCB 118 rank quartile (p < 0.01) for participants with high serum carotenoid 

concentrations.  Individuals in the fourth quartile would have had similar PCB 118 levels 

in their serum at the highest observed concentrations.  They were shown to have a 

significantly lower probability of developing metabolic syndrome based on their serum 

carotenoid concentrations.  Serum carotenoids appeared to have no effect in the first 

exposure quartile.  While both groups’ carotenoid levels parallelled linearly in the first 

quartile, the participants with metabolic syndrome actually had the higher serum 

carotenoid concentrations.  This trend ended abruptly at the second quartile, however.
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Table 4.2 Multivariate Regression: PCB 118 and the probability of metabolic syndrome 

Analyte <25th 
percentile 

25th-<50th 
percentile 

50th-<75th 
percentile 

>75th 
percentile 

Ptrend Pcovariate 

Concentration 
(ng/g of lipid) 

2.18/0.53 3.73/0.50 5.68/0.99 22.52/23.4
0 

  

Cases / n 21/223 34/240 42/224 55/230   
Prevalence (%) 8.61 12.41 15.79 19.30   
Model 0 referent 1.3 

(0.7-2.5) 
1.4 

(0.7-2.5) 
2.0 

(1.1-3.6) 
0.41  

Model 1 – age referent 1.3 
(0.7-2.5) 

1.2 
(0.6-2.2) 

1.4 
(0.8-2.7) 

0.91 0.02 

Model 2 – gender referent 1.4 
(0.7-2.7) 

1.4 
(0.7-2.6) 

2.1 
(1.1-4.0) 

0.44 0.15 

Model 3 – 
race/ethnicity 

referent 1.3 
(0.7-2.5) 

1.4 
(0.7-2.7) 

1.9 
(1.0-3.7) 

0.44 0.28 

Model 4 – PIR referent 2.0 
(1.0-4.0) 

1.8 
(0.9-3.5) 

2.7 
(1.4-5.1) 

0.97 0.97 

Model 5 – 
cigarette 
smoking 

referent 1.3 
(0.7-2.5) 

1.4 
(0.8-2.6) 

2.0 
(1.1-3.7) 

0.44 <0.01 

Model 6 – serum 
cotinine 

referent 1.3 
(0.7-2.5) 

1.4 
(0.7-2.5) 

2.0 
(1.1-3.6) 

0.43 0.50 

Model 7 – 
alcohol 
consumption 

referent 0.5 
(0.1-2.1) 

1.6 
(0.5-5.0) 

2.3 
(0.8-6.4) 

0.04 0.50 

Model 8 – leisure 
physical activity 

referent 1.4 
(0.7-2.6) 

1.4 
(0.7-2.5) 

1.8 
(1.0-3.3) 

0.71 0.04 

Model 9 - BMI referent 1.2 
(0.7-2.3) 

1.3 
(0.7-2.4) 

1.8 
(1.0-3.4) 

0.39 <0.01 

 

The demographic and behavioral characteristics thought to be involved in the etiology 

of metabolic syndrome were examined above.  Carotenoids were not considered in this 

analysis.  The first quartile of PCB 118 was used as reference group as no observations 

were detected below the LOD.  Model 0 represented PCB 118 without other covariate 

influence.  P-trend indicated there was no association between PCB 118 and the 

probability of metabolic syndrome.  P-trend tests for any trend across quartiles, as 

compared to the reference group.  The lack of a true reference group in this analysis 

may be expected to impact findings.  Significance was seen, however, in modeling of 

PCB 118, alcohol consumption, and the probability of metabolic syndrome.  P-covariate, 

which considers only the covariate’s influence (in absence of PCB 118), revealed age, 
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cigarette smoking, leisure time physical activity, and BMI, as having a significant effect 

on the probability of metabolic syndrome.   

 

Table 4.3 PCB 118 concentration as a continuous variable in the probability of metabolic 
syndrome 

 
Model PCB 118 Pcovariate 

Model 0 0.01  
Model 1 – age 0.09 0.05 
Model 2 – gender 0.01 0.17 
Model 3 – race/ethnicity 0.01 0.19 
Model 4 – PIR 0.01 0.87 
Model 5 – cigarette smoking 0.01 <0.01 
Model 6 – serum cotinine 0.01 0.52 
Model 7 – alcohol consumption 0.06 0.47 
Model 8 – leisure-time physical activity 0.03 0.07 
Model 9 - BMI 0.01 <0.01 

 

PCB 118 was examined as a continuous variable in this analysis rather than as a 

categorical variable across quartiles.  Significance was observed for several covariates in 

modeling with PCB 118 in the probability of developing metabolic syndrome.  Age, 

which is known to have a strong independent association with metabolic syndrome, was 

not indicated as being significant in modeling with or without PCB 118 above.  When 

evaluated as a continuous variable, PCB 118 was shown to have a significant association 

with the probability of metabolic syndrome. 
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B. PCB 126 - 3,3’,4,4’,5-Pentachlorobiphenyl 

PCB 126 status was categorized by rank, n = 996.  69 observations were found 

below the LOD for PCB 126 in the 2003-2004 data release, allowing for quartile 

analysis with a reference group. 

 

Table 4.4 PCB 126  rank analysis by quartile 

Analysis Variable : LBXPCBLA 3,3',4,4',5-pcnb Lipid Adj (pg/g) 

Values of 
PCB126_p 

Were 
Replaced by 

Ranks 
N 

Obs N Mean Std Dev Minimum Maximum 

0 69 69 4.8884058 1.1786753 2.2000000 7.6000000 

1 233 233 6.8781116 1.7103619 2.2000000 9.2000000 

2 231 231 11.3268398 1.2002058 9.3000000 13.2000000 

3 227 227 16.7229075 2.0231852 13.3000000 20.6000000 

4 236 236 53.2084746 51.8971759 20.7000000 341.0000000 

 

Observations were fairly evenly distributed across PCB 126 quartiles, with 69 

observations below the LOD.  Fourth quartile values were skewed due to outliers with 

higher PCB 126 levels, resulting in the much higher values.   
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Figure 4.2 Mean serum carotenoid concentrations across PCB 126 quartiles 

  

 
*p < 0.01 

 

The above graph tracks the serum carotenoid concentrations of participants with 

metabolic syndrome (red) and participants without metabolic syndrome (blue) across 

increasing exposure quartiles of PCB 126 by rank.  Significant associations were seen at 

the first and fourth quartiles (p < 0.01) for participants with higher serum carotenoid 

concentrations and a reduced probability of metabolic syndrome.  Observations within 

the same PCB quartile would have had similar PCB concentrations in their serum.    

Serum carotenoid concentrations trended upward for participants without metabolic 

syndrome despite increasing concentrations of PCB 126, suggesting a protective 

influence.  The carotenoid concentrations of participants with metabolic syndrome 

revealed no meaningful pattern. 

 

1.52 
1.58 

1.64 1.65 

1.86 

1.34 

1.27 

1.68 
1.83 

1.43 

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 1 2 3 4

Se
ru

m
 c

ar
ot

en
oi

d 
co

nc
en

tr
at

io
ns

 u
m

ol
/L

 

PCB 126 ranks by quartile 

Without Metabolic
Syndrome

* 

* 



64 
 

Table 4.5 Multivariate Regression: PCB 126 and the probability of metabolic syndrome 

Analyte Not 
detectable 

<25th 
percentile 

25th-<50th 
percentile 

50th-<75th 
percentile 

>75th 
percentile 

Ptrend Pcovariate 

Concentration 
(ng/g of lipid) 

4.89/1.18 6.88/1.71 11.32/1.2 16.72/2.02 53.21/51.89   

Cases / n 8/69 22/233 28/231 45/227 56/236   
Prevalence (%) 10.39 8.63 10.81 16.54 19.18   
Model 0 referent 0.9 

(0.4-2.3) 
1.0 

(0.4-2.5) 
1.9 

(0.8-4.6) 
2.1 

(0.9-5.1) 
0.02*  

Model 1 – age referent 0.9 
(0.3-2.2) 

0.9 
(0.4-2.4) 

1.8 
(0.7-4.2) 

1.7 
(0.7-4.1) 

0.04* 0.05 

Model 2 – gender referent 0.9 
(0.4-2.4) 

1.1 
(0.4-2.6) 

2.0 
(0.8-4.8) 

2.3 
(0.9-5.5) 

0.01* 0.11 

Model 3 – 
race/ethnicity 

referent 1.0 
(0.4-2.5) 

1.1 
(0.5-2.7) 

2.0 
(0.8-5.0) 

2.3 
(1.0-5.4) 

0.01* 0.28 

Model 4 – PIR referent 0.7 
(0.3-1.8) 

1.0 
(0.4-2.5) 

2.0 
(0.8-4.9) 

2.0 
(0.9-4.8) 

<0.01* 0.26 

Model 5 – 
cigarette smoking 

referent 0.9 
(0.4-2.3) 

1.2 
(0.5-2.9) 

2.3 
(1.0-5.6) 

2.6 
(1.1-6.1) 

<0.01* <0.01 

Model 6 – serum 
cotinine 

referent 0.9 
(0.4-2.3) 

1.0 
(0.4-2.5) 

1.9 
(0.8-4.5) 

2.1 
(0.9-5.0) 

0.02* 0.54 

Model 7 – alcohol 
consumption 

referent 4.0 
(0.4-39.2) 

7.1 
(0.7-68.8) 

8.2 
(0.9-76.1) 

15.4 
(1.8-135.2) 

0.06* 0.35 

Model 8 – leisure 
physical activity 

referent 0.9 
(0.3-2.2) 

1.0 
(0.4-2.4) 

1.9 
(0.8-4.5) 

1.9 
(0.8-4.4) 

0.02* 0.02 

Model 9 - BMI referent 0.7 
(0.3-1.8) 

0.8 
(0.3-1.9) 

1.4 
(0.6-3.4) 

1.5 
(0.6-3.5) 

0.01 <0.01 

        *quadratic trend 

The demographic and behavioral characteristics thought to be involved in the etiology 

of metabolic syndrome were examined above.  Carotenoids were not considered in this 

analysis.  The p-trend for all models was found to be significant, indicating the trend 

across quartiles for PCB 126 and covariate showed significant associations in the 

probability of metabolic syndrome.  However, only BMI had a linear trend.  All other 

models showed a quadratic trend.  Alcohol consumption revealed much larger adjusted 

odds ratios and confidence intervals, suggesting an interaction.  P-covariate modeling, 

which considered the effect of the covariate alone, indicated that cigarette smoking, 

leisure time physical activity, and BMI showed significant associations with metabolic 

syndrome.  Age was found to be borderline significant (p = 0.05); however, age has 

shown a strong independent association with metabolic syndrome in cross-sectional 

studies.  Notably, the PCB 126 model had a below LOD reference group, which allowed 

for adjusted odds ratio comparisons across four quartiles, unlike PCB 118 and PCB 153. 
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Table 4.6 Analysis of PCB 126 and alcohol consumption 

Table of PCB126_p by alcohol 

PCB126_p(Values of 
PCB126_p Were 
Replaced by Ranks) Alcohol 

Frequency, Percent 
Row Pct, Col Pct . non-drinker yes Total 

0 9 
2.67 

39.13 
11.11 

12 
3.56 

52.17 
5.31 

2 
0.59 
8.70 
6.67 

23 
6.82 

 
 

1 24 
7.12 

32.88 
29.63 

42 
12.46 
57.53 
18.58 

7 
2.08 
9.59 

23.33 

73 
21.66 

 
 

2 10 
2.97 

14.49 
12.35 

58 
17.21 
84.06 
25.66 

1 
0.30 
1.45 
3.33 

69 
20.47 

 
 

3 16 
4.75 

19.51 
19.75 

63 
18.69 
76.83 
27.88 

3 
0.89 
3.66 

10.00 

82 
24.33 

 
 

4 22 
6.53 

24.44 
27.16 

51 
15.13 
56.67 
22.57 

17 
5.04 

18.89 
56.67 

90 
26.71 

 
 

Total 81 
24.04 

226 
67.06 

30 
8.90 

337 
100.00 

Frequency Missing = 3279 

 

An additional analysis of PCB 126 and alcohol consumption was done to further 

understand any possible effect between these variables.  The overall number of 

participants responding to the questions related to alcohol consumption, including the 

reference group, was 30.  The high adjusted odds ratios and confidence intervals found 

in Table 4.7 were related to small sample sizes within the PCB 126 quartiles and an 

excessively high frequency of missing responses (n = 3279), rather than any meaningful 

interaction between these variables. 
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Table 4.7 PCB 126 concentration as a continuous variable in the probability of metabolic 
syndrome 

 
Model PCB 126 Pcovariate 

Model 0 0.02  
Model 1 – age 0.24 0.02 
Model 2 – gender 0.01 0.14 
Model 3 – race/ethnicity 0.01 0.20 
Model 4 – PIR 0.02 0.46 
Model 5 – cigarette smoking 0.01 <0.01 
Model 6 – serum cotinine 0.02 0.4 
Model 7 – alcohol consumption 0.19 0.26 
Model 8 – leisure-time physical activity 0.09 0.03 
Model 9 - BMI 0.03 <0.01 

 

PCB 126 was examined as a continuous variable rather than as a categorical variable in 

quartile analysis.  Significance was observed for several covariates in modeling with PCB 

126 in the probability of developing metabolic syndrome.  Model 0 indicated that PCB 

126 had a significant association with metabolic syndrome without consideration of 

other covariate influence.  The CDC’s Fourth National Report on Human Exposure to 

Environmental Chemicals 2009 has recommended quartile analysis for studies of 

environmental chemical contamination.   
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C. PCB 153 – 2,2’,4,4’,5,5’-Hexachlorobiphenyl 

PCB 153 status was categorized by rank; n = 921.  No observations were found below 

the LOD for PCB 153 in the 2003-2004 data release. 

 

Table 4.8 PCB 153 rank analysis by quartile 

 
Analysis Variable : LBX153LA PCB153 Lipid Adj (ng/g) 

Values of 
PCB153_p 

Were Replaced 
by Ranks 

N 
Obs N Mean Std Dev Minimum Maximum 

1 230 230 5.6653913 1.5173859 1.0500000 7.8600000 

2 230 230 11.2623913 2.2049157 7.9000000 15.3000000 

3 231 231 23.7300433 6.2078795 15.3600000 36.4000000 

4 230 230 77.7783913 57.7951485 36.5000000 546.0000000 

 

The number of observations in each quartile was nearly identical.  The mean, minimum, 

and maximum do not reflect actual pollutant concentrations.  A ranking system, as used 

in similar studies (Ha, et al. 2007; Cave, 2010), was applied.  The mean and maximum in 

the highest quartile was indicative of outliers, a common occurrence with 

environmental pollutant measures. 
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Figure 4.3 Mean serum carotenoid concentrations across PCB 153 quartiles 

 
 

The above graph tracks the mean serum carotenoid concentrations of participants with 

metabolic syndrome (red) and participants without metabolic syndrome (blue) across 

increasing exposure quartiles of PCB 153 by rank.  Significant associations were seen at 

the third and fourth quartiles (p < 0.01) for participants with higher serum carotenoid 

concentrations and a reduced probability of metabolic syndrome.  A reverse trend was 

seen at the first quartile with higher serum carotenoid concentrations being associated 

with metabolic syndrome at significant levels (p = 0.01).  Carotenoids appear to be 

dramatically protective at higher levels of serum PCB 153. 
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Table 4.9 Multivariate Regression: PCB153 and the probability of metabolic syndrome 
 

Analyte <25th 
percentile 

25th-<50th 
percentile 

50th-<75th 
percentile 

>75th 
percentile 

Ptrend Pcovariate 

Concentration 
(ng/g of lipid) 

 
5.67/1.52 

 
11.26/2.20 

 
23.73/6.21 

 
77.78/57.80 

  

Cases / n 32/230 31/230 34/231 56/230   
Prevalence (%) 12.21 11.88 12.83 19.58   
Model 0 referent 0.8 

(0.5-1.5) 
0.6 

(0.3-1.2) 
1.6 

(0.9-2.7) 
0.03  

Model 1 – age referent 0.7 
(0.4-1.3) 

0.4 
(0.2-0.8) 

0.7 
(0.4-1.5) 

0.56 <0.01 

Model 2 – gender referent 0.8 
(0.4-1.5) 

0.6 
(0.4-1.2) 

1.5 
(0.9-2.6) 

0.03 0.38 

Model 3 – 
race/ethnicity 

referent 0.8 
(0.4-1.5) 

0.6 
(0.3-1.2) 

1.6 
(0.9-2.9) 

0.02 0.12 

Model 4 – PIR referent 0.8 
(0.4-1.5) 

0.7 
(0.4-1.2) 

1.7 
(1.0-3.0) 

0.02 0.90 

Model 5 – cigarette 
smoking 

referent 0.8 
(0.5-1.5) 

0.6 
(0.3-1.2) 

1.6 
(0.9-2.7) 

0.03 <0.01 

Model 6 – serum 
cotinine 

referent 0.8 
(0.4-1.5) 

0.6 
(0.3-1.2) 

1.5 
(0.9-2.6) 

0.03 0.59 

Model 7 – alcohol 
consumption 

referent 1.0 
(0.3-3.6) 

0.8 
(0.2-2.5) 

2.1 
(0.7-6.2) 

0.26 0.47 

Model 8 – leisure 
physical activity 

referent 0.8 
(0.5-1.5) 

0.6 
(0.3-1.1) 

1.4 
(0.8-2.4) 

0.07 0.06 

Model 9 - BMI referent 0.8 
(0.4-1.5) 

0.7 
(0.4-1.3) 

1.6 
(1.0-2.8) 

0.02 <0.01 

 

The demographic and behavioral characteristics thought to be involved in the etiology 

of metabolic syndrome were examined above.  Carotenoids were not considered in this 

analysis.  The first quartile of PCB 153 was used as reference group as no observations 

were detected below the LOD.  The p-trend for most models was significant, indicating 

the trend across quartiles for PCB 153 and covariate showed significant associations in 

the probability of developing metabolic syndrome.  The lack of a reference group below 

the LOD in this analysis may be expected to impact findings as trends were compared to 

the first quartile, ultimately allowing only for tertile analysis of the adjusted odds ratios.  

P-covariate, which considers only the covariate’s influence (in absence of PCB 153), 

indicated that age, cigarette smoking, and BMI, had a significant effect on the 

probability of developing metabolic syndrome.   
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Table 4.10 PCB 153 concentration as a continuous variable in the probability of 
metabolic syndrome 

 
Model PCB 153 Pcovariate 

Model 0 0.03  
Model 1 – age 0.67 0.02 
Model 2 – gender 0.03 0.26 
Model 3 – race/ethnicity 0.02 0.17 
Model 4 – PIR 0.02 0.99 
Model 5 – cigarette smoking 0.02 <0.01 
Model 6 – serum cotinine 0.03 0.49 
Model 7 – alcohol consumption 0.05 0.42 
Model 8 – leisure-time physical activity 0.11 0.05 
Model 9 - BMI 0.01 <0.01 

 

When examined as a continuous variable, PCB 153 was significant in several covariate 

models in the probability of developing metabolic syndrome.  Age, which is known to 

have a strong independent association with metabolic syndrome, was not indicated as 

being significant in modeling with PCB 153.  When considered in absence of PCB 153, 

age did show a significant association (p = 0.02).  Cigarette smoking and BMI were 

significantly associated with the probability of developing metabolic syndrome (p < 0.01).  

When evaluated as a continuous variable, PCB 153 was shown to have a significant 

association with the probability of metabolic syndrome.  Continuous and 

categorical/quartile analysis showed similar findings.  Quartile analysis has been 

recommended by the CDC Fourth National Report on Human Exposure to Environmental 

Chemicals 2009 (CDC National Report). 
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Project II.  PCB 118, PCB 126, PCB 153, and fruit consumption 

 

The purpose of this project was to correlate dietary intake patterns with serum 

carotenoid findings in Project I.  NHANES examines food and fluid intakes individually in 

the Individual Foods File, and cumulatively for the day, in the Total Nutrients File.  

Carotenoids obtained from foods and fluids can be accessed from both files.  

Carotenoids are found in the colorful pigments of fruits and vegetables.  The objective 

of this project was to determine total fruit consumption using the U.S.D.A. interfaced 

databases for analysis (1)MyPyramid Equivalents Database 2.0 (MPED 2.0) (Bowman,  

Friday, Moshfegh 2008), and/or(2) Food and Nutrient Database for Dietary Studies 2.0 

(FNDDS 2.0) (USDA FNDDS 2.0 2006).   

  

The MPED 2.0 converts the dietary intake data from NHANES 2003-2004 into 

“cup equivalents” or “ounce equivalents” per 100 grams, as based on the U.S.D.A. 

National Nutrient Database for Standard Reference, Release 18.  The resulting portions 

were often both counter-intuitive and exceeded nutritional recommendations for a 

serving.  The MPED 2.0 fruit group was divided into two subgroups; the vegetable group 

was divided into six.   Subgroups were relevant, in particular for vegetables, as they 

included starchy vegetables, not especially rich in carotenoids. 

 

MPED 2.0 was utilized for fruit consumption.  Data was extracted from NHANES 

2003-2004 Individual Foods File, Day 1 and Day 2 diet recalls.  Total fruit consumption 

was determined by summing intakes (cup equivalents) over two days and factoring per 

1000 kcals.  This disengaged the analysis from the participants’ overall (or 

recommended) calorie intake, i.e. a ratio of nutrient density per total calories, to 

analysis of the nutrient density of diet based on fruit consumption per participant per 

1000 calories. 
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PCBs 118, 126, and 153 were assessed individually as in Project 1, utilizing 

subsample C weight and adhering to all other NHANES tutorial instructions.  The 

response variable was metabolic syndrome, and a positive finding of metabolic 

syndrome was met by three or more ATPIII criteria. 

 

A. PCB 118 - 2,3’,4,4’,5-Pentachlorobiphenyl 

PCB 118 status was categorized by rank across quartiles; n = 917.  No 

observations were found below the LOD for PCB 118 in the 2003-2004 data 

release. 

 
Figure 4.4 Mean fruit intake per 1000 calories across PCB 118 quartiles and the 

probability of metabolic syndrome 
 

 
 

No associations were observed, no significance found.  The mean fruit intake of 

participants with metabolic syndrome was shown to be higher at the first, third, and 

fourth quartiles.  Consideration was given to the balance of the diet, which was 

unknown at this time, as well as the MPED 2.0 method of disaggregating foods.  Hence, 

a 10% fruit juice product would be considered as one-tenth of a fruit cup equivalent.  
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The remaining 90% of the product, which may be sugar, water, alcohol, or other 

additions, would not be considered in the analysis at all.  Last, two days of dietary recalls 

may not reflect usual intakes.  Occasional or acute intakes would not accurately reflect 

cardiometabolic risks related to diet. 

 

B. PCB 126 - 3,3’,4,4’,5-Pentachlorobiphenyl 

PCB 126 status was categorized by rank across quartiles; n = 996.   

 
Figure 4.5 Mean fruit intake per 1000 calories across PCB 126 quartiles and the 

probability of metabolic syndrome 
 

 
 

No associations were observed; no significance found.  The lack of any meaningful 

pattern, while troubling, may be attributed to many factors yet unknown about the 

entirety of the diet, or other relevant demographic or behavioral factors.
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C.   PCB 153 – 2,2’,4,4’,5,5’-Hexachlorobiphenyl 

 PCB 153 status was categorized by rank; n = 921.   

 

Figure 4.6 Mean fruit intake per 1000 calories across PCB 153 quartiles and the 
probability of metabolic syndrome 

 

 
 

No significant associations were seen in analysis of PCB 153, fruit intake based on MPED 

2.0 cup equivalents per 1000 calories, and the likelihood of developing metabolic 

syndrome.  However, for this non-dioxin-like PCB, participants with higher fruit intake 

were consistently shown to have a greater likelihood of having metabolic syndrome.   

0.35 
0.43 

0.46 0.47 0.36 

0.59 0.59 
0.64 

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3

Fr
ui

t i
nt

ak
e 

1 
cu

p 
eq

ui
va

le
nt

 p
er

 1
00

0 
ca

lo
rie

s 

PCB 153 by quartile / PCB concentrations replaced by ranks 

without Metabolic
Syndrome
with Metabolic
Syndrome



75 
 

D. Log transformed regression analysis.  Associations between independent 
variables: PCB 118, PCB 126, PCB 153, and serum carotenoids, with carotenoids 
sourced from the Individual Foods Files (IFF) and Total Nutrients Files (TNF) 
 

Table 4.11 Correlations between serum variables and food-sourced carotenoids 
Model Food-sourced 

log(food+0.01) 
p-

value 
 Nutrient-sourced 

Log(nutr+0.01) 
p-

value 
 

PCB 118 
(log) 

α-carotene 0.25 No 
correlation 

α-carotene 0.15 No 
correlation 

β-carotene 0.31 No 
correlation 

β-carotene 0.25 No 
correlation 

β-cryptoxanthin 0.78 No 
correlation 

β-cryptoxanthin 0.56 No 
correlation 

Lycopene 0.40 No 
correlation 

Lycopene 0.51 No 
correlation 

Lutein/zeaxanthin 0.54 No 
correlation 

Lutein/zeaxanthin 0.40 No 
correlation 

Total carotenoid 0.38 No 
correlation 

Total carotenoid 0.63 No 
correlation 

PCB 126 
(log) 

α-carotene 0.18 No 
correlation 

α-carotene 0.19 No 
correlation 

β-carotene 0.22 No 
correlation 

β-carotene 0.28 No 
correlation 

β-cryptoxanthin 0.85 No 
correlation 

β-cryptoxanthin 0.73 No 
correlation 

Lycopene 0.38 No 
correlation 

Lycopene 0.42 No 
correlation 

Lutein/zeaxanthin 0.51 No 
correlation 

Lutein/zeaxanthin 0.59 No 
correlation 

Total carotenoid 0.94 No 
correlation 

Total carotenoid 0.99 No 
correlation 

PCB 153 
(log) 

α-carotene 0.21 No 
correlation 

α-carotene 0.09 No 
correlation 

β-carotene 0.64 No 
correlation 

β-carotene 0.37 No 
correlation 

β-cryptoxanthin 0.87 No 
correlation 

β-cryptoxanthin 0.61 No 
correlation 

Lycopene 0.30 No 
correlation 

Lycopene 0.37 No 
correlation 

Lutein/zeaxanthin 0.83 No 
correlation 

Lutein/zeaxanthin 0.70 No 
correlation 

Total carotenoid 0.21 No 
correlation 

Total carotenoid 0.49 No 
correlation 

Total serum 
carotenoids 

α-carotene <0.01 Ec=0.027 α-carotene <0.01 Ec=0.026 
β-carotene <0.01 Ec=0.092 β-carotene <0.01 Ec=0.090 
β-cryptoxanthin <0.01 Ec=0.039 β-cryptoxanthin <0.01 Ec=0.036 
Lycopene <0.01 Ec=0.034 Lycopene <0.01 Ec=0.028 
Lutein/zeaxanthin <0.01 Ec=0.122 Lutein/zeaxanthin <0.01 Ec=0.114 
Total carotenoid <0.01 Ec=0.116 Total carotenoid <0.01 Ec=0.117 

Ec = Estimated coefficient 
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In models of PCB 118, PCB 126, and 153, no correlation was found between the 

PCBs and carotenoids from either NHANES dietary data file.  Carotenoids sourced from 

foods can be accessed from: (1) the Individual Foods File (IFF) (“food-sourced”), or (2) 

the Total Nutrients File (TNF) (“nutrient-sourced”).    

 

A significant correlation was found in modeling of total serum carotenoids and 

carotenoids from the individual foods files and the total nutrients files.  The dietary 

recall portion of NHANES represents two days of intake at approximately seven to ten 

days apart.  Only participants with two days of complete and reliable dietary recalls 

were included in the dataset.  The values were summed and divided by “2” to represent 

average intake over two days.  Serum carotenoid concentrations were assessed once at 

the MEC physical examination.  A positive correlation was shown for all significant 

models and provided internal validation of subjective dietary intake data with the serum 

carotenoid concentrations.   
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Project III.  Diet Quality Analysis for Toxin Exposure, DQATE  

 

The purpose of this project was to create an instrument that could be used to 

score food and fluid intakes of participants with environmental chemical contamination 

exposures.  Comparing the dietary intakes of participants with similar PCB 

concentrations, but very different clinical outcomes, may provide an important first step 

in the development of nutritional recommendations for individuals exposed to PCBs, as 

well as the other halogenated organics and POPs.  The primary objective of this project 

was to develop an instrument to score diet quality, DQATE.  Ancillary objectives were to 

(1) review existing diet quality indices; (2) review current dietary recommendations for 

adequacy and maintenance of health, as well as those in place for modulation of specific 

disease; and (3) to determine the best method to access the full diet of NHANES 2003-

2004 subsample C participants (those evaluated for PCB concentrations) for analysis 

using DQATE.   

 

Dietary quality may be based on several criteria.  Have the dietary reference 

intakes been met?  Have the prevailing recommendations of an oversight body been 

met?  Has the instrument been validated, the findings reproduced, are they related to 

risk reduction?  Dietary recommendations for the public generally reflect the consensus 

of an expert panel and are based on their conclusions about the relationship of diet to 

specific health parameters with regard to risk reduction (Cronin, et al. 1987) or with the 

intent to address population requirements for nutrient adequacy (IOM 2000) by 

determining the needs of 50% of the healthy population where possible, plus two 

standard deviations.   

 

The diet indices reviewed included Healthy Eating Index (HEI) 1995 (Bowman, et 

al., 1998), Healthy Eating Index-Revised (HEI-R) 2005 (Guenther, et al., 2005), Diet 

Quality Index (Seymour, et al. 2003), and Diet Quality Index Revised (DQI-R) (Haines, et 

al. 1999).  Five modified diet indices were examined in relation to plasma markers of 
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inflammation and endothelial dysfunction (Fung, et al. 2005).  In addition to the HEI and 

DQI-R, these indices included an Alternate HEI, Alternate Mediterranean Diet Index 

(aMED), and the Recommended Food Score (RFS).  Similar intake patterns were 

associated with reduced concentrations of inflammation and endothelial dysfunction.   

 

The health maintenance/adequacy dietary recommendations reviewed included 

Dietary Guidelines 2005 and 2010, DASH, My Pyramid (Britton, et al. 2006; Marcoe, et al. 

2006), and the Mediterranean Diet (Gavrilla, et al. 2011).  A cursory categorization of 

the prevailing nutritional recommendations by system involvement, i.e. cardiac, vascular, 

metabolic, immune, and for the reduction of persistent organic pollutant body burden 

follows. 
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Table 4.12 Current nutritional recommendations by system involvement 

System Involvement Program/Governing Body Recommendations 

Cardiac NCEP ATPIII Saturated fat < 7% 
PUFA≤ 10% 
MUFA ≤ 20% 
Dietary cholesterol < 200 mg/day 
Plant stanols/sterols 2 g/day 
Dietary fiber 20-30 g/day 
≥ 3 vegetables/day 
- ≥ 1 dark green or orange 
≥ 2 fruits/day 
Carbohydrate – 50-60% 
Protein ~15% 
Total fat – 25-35% 
Expend ≥ 200 kcal/day physical 
activity 

Vascular NHLBI, DASH Diet Saturated fat - 6% 
Dietary cholesterol – 150 mg. 
Dietary fiber – 30 g/day 
~9 fruits & vegetables (plentiful) 
Carbohydrate – 55% 
Protein – 18% 
Total fat – 27% 
Low fat dairy, nuts, seeds, 
legumes 

Metabolic ADA Position Statement: Standards of 
Care for the Prevention, Delay, & 
Management of Diabetes Mellitus 

Saturated fat < 7% total calories 
14 grams fiber/1000 calories 
Carbohydrate management per   
guidelines of ≥ 130 g/day 
Meet DRIs 
No supplementation of C, E, 
carotene 

 ATPIII Guidelines Metabolic Syndrome Total fat – 35% 
Total carbohydrate – 50% 
Total protein – 15% 

 Gerald Reaven, MD, Insulin Resistance 
Diet 

45% carbohydrate 
15% protein 
40% fat – mostly unsaturated 
5-10%  saturated fat 
5-10 svg. Fruits & vegetables/day 
Calcium supplement 

Immune AICR’s Food, Nutrition, Physical Activity, 
& the Prevention of Cancer: a Global 
Perspective 

Eat mostly plant-based foods 
- Low in energy density 
- High in micronutrients, fiber 

Minimize body burden Undetermined Maintenance of healthy weight* 
High fiber diet* 
Augment meals with Olestra®* 
Aerobic activity* 

*These recommendations have not undergone randomized controlled clinical trials. 
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Table 4.13 The Dietary Approaches to Stop Hypertension (DASH) Eating Plan—Number 
of Food Servings by Calorie Recommendation & per 1000 calories 

 

Food Group  
1,200 
Cal.  

1,400 
Cal.  

1,600 
Cal.  

1,800 
Cal.  

2,000 
Cal.  

2,600 
Cal.  

3,100 
Cal.  

Per 1000 kcal 1,200/1.2 1,400/1.4 1,600/1.6 1,800/1.8 2,000/2.0 2,600/2.6 3,100/3.1 

Grainsa  4–5 5–6 6 6 6–8 10–11 12–13 
Grains: servings per 1000 
kcal  
(1/2 whole grain) 

3.33-4.17 

(1.67-2.08) 

3.57-4.29 

(1.79-2.14) 

3.75 

(1.88) 

3.33 

(1.67) 

3.0-4.0 

(1.5-2.0) 

3.85-4.23 

(1.93-2.12) 

3.87-4.19 

(1.94-2.1) 

Vegetables  
3–4 3–4 3–4  4–5 4–5  5–6  6 

Vegetables: servings per 
1000 kcal e 

2.5-3.33 2.14-2.86 1.88-2.5 2.22-2.78 2.0-2.5 1.92-2.31 1.94 

Fruits f 3–4 4 4  4–5 4–5  5–6  6 
Fruits: servings per 1000 
kcal 
(1/2 whole fruit) 

2.5-3.33 

(1.25-1.67) 

2.86 

(1.43) 

2.5 

(1.25) 

2.22-2.78 

(1.11-1.39) 

2.0-2.5 

(1.0-1.25) 

1.92-2.31 

(0.96-1.16) 

1.94 

(0.97) 

 
Fat-free or low-fat milk and 
milk productsb 

2–3 2–3 2–3 2–3 2–3  3  3–4 

Fat-free/low-fat dairy: 
servings per 1000 kcal 1.67-2.5 1.43-2.14 1.25-1.88 1.11-1.67 1.0-1.5 1.15 0.97-1.29 

Lean meats, poultry, and 
fish  3 or less 3–4 or less 3–4 or less  6 or less 6 or less  6 or less 6–9 

Lean meats, poultry, & 
fish: servings per 1000 
calories 

≤2.5 ≤2.14-2.86 ≤1.88-2.5 ≤3.33 ≤3.0 ≤2.31 1.94-2.90 

Nuts, seeds, and legumes  
3 per week 3 per week 3–4 per 

week  

4 per week 4–5 per 

week  

1  1 

Nuts, seeds, & legumes, 
servings per 1000 calories 2.5 (0.36) 2.14 (0.31) 1.88-2.5 

(0.27-0.36) 

2.22 (0.32) 2.0-2.5  

(0.29-0.36) 

(0.38) (0.32) 

Fats and oilsc  1 1 2  2–3 2–3  3  4 
Fats and oils, servings per 
1000 calories 0.83 0.71 1.25 1.11-1.67 1.0-1.5 1.15 1.29 

Sweets and added sugars 
3 or less per 

week 

3 or less per 

week 

3 or less per 

week 

5 or less per 

week 

5 or less per 

week  

≤2  ≤2  

 
       Maximum sodium limitd 2,300 

mg/day 

2,300 

mg/day 

2,300 

mg/day 

2,300 

mg/day 

2,300 

mg/day 

2,300 

mg/day 

2,300 

mg/day 

A               Whole grains are recommended for most grain servings as a good source of fiber and nutrients.  

B              For lactose intolerance, try either lactase enzyme pills with milk products or lactose-free or lactose-reduced milk.  

C              Fat content changes the serving amount for fats and oils. For example, 1 Tbsp regular salad dressing = one serving; 1    

Tbsp low-   fat dressing = one-half serving; 1 Tbsp fat-free dressing = zero servings.  

D             The DASH eating plan consists of patterns with a sodium limit of 2,300 mg and 1,500 mg per day.  

E  No starchy vegetables included as vegetable servings – potatoes, corn, lima beans, legumes. 
 
F No more than ½ fruit servings from juice. 

http://www.nhlbi.nih.gov/health/dci/Diseases/dash/dash_all.html#footnote1a
http://www.nhlbi.nih.gov/health/dci/Diseases/dash/dash_all.html#footnote1b
http://www.nhlbi.nih.gov/health/dci/Diseases/dash/dash_all.html#footnote1c
http://www.nhlbi.nih.gov/health/dci/Diseases/dash/dash_all.html#footnote1d
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Table 4.14 Diet Quality Analysis for Toxin Exposure (DQATE) 
 

Dietary Recommendation Score Cutpoint 

Total fat intake at ≤ 30% total calories 2 
1 
0 

≤ 30% 
30-40% 
>40% 

Saturated fat intake at ≤ 7% total calories 2 
1 
0 

≤ 7% 
7.01 – 10% 
≥10% 

Dietary cholesterol intake at < 200 mg/day 2 
1 
0 

<200 mg. 
200-300 mg. 
>300 mg. 

Dietary fiber intake at 14 grams/1000 calories 2 
1 
0 

≥14 grams 
10 < 14 grams 
< 10 grams 

Grain, cereal servings ≥ 3.0 ounce equivalents per 1000 calories 2 
1 
0 

≥3.0 per 1000 kcal 
1.5-2.9 per 1000 kcal 
<1.5 per 1000 kcal 

Grain, cereal servings from whole grain ≥ 1.5 ounce equivalents 
per 1000 calories 

2 
1 
0 

≥ 1.5 per 1000 kcal 
0.75-<1.5 per 1000 kcal 
<0.75 per 1000 kcal 

Vegetable servings at 1.9 cup equivalents per 1000 calories 2 
1 
0 

≥1.9 per 1000 kcal 
0.95-1.9 per 1000 kcal 
<0.95 kcal per 1000 kcal 

Dark green vegetable servings at 0.15 cup equivalents per 1000 
calories 

2 
1 
0 

≥0.15 per 1000 kcal 
0.07-<0.15 per 1000 kcal 
<0.07 per 1000 kcal 

Orange & red vegetable servings at 0.6 cup equivalents per 
1000 calories 

2 
1 
0 

≥0.6 per 1000 kcal 
0.3-<0.6 per 1000 kcal 
<0.3 per 1000 kcal 

Fruit servings at 1.9 cup equivalents per 1000 calories 2 
1 
0 

≥1.9 per 1000 kcal 
0.95-1.9 per 1000 kcal 
<0.95 kcal per 1000 kcal 

Milk & milk products at 1.0 cup equivalents per 1000 calories 2 
1 
0 

≥1.0 per 1000 kcal 
0.1-0.99 per 1000 kcal 
0 cup equivalents 

Lean meats, poultry, & fish at 2.0 ounce equivalents per 1000 
calories 

2 
1 
0 

≥2.0 per 1000 kcal 
1.0-1.99 per 1000 kcal 
<1.0 oz. per 1000 kcal 

Nuts, seeds, & legumes at 0.27 ounce equivalents per 1000 
calories 

2 
1 
0 

≥0.27 per 1000 kcal 
0.1-0.26 per 1000 kcal 
0 ounce equivalents 

Maximum sodium limit 1,500 mg/day 2 
1 
0 

≤1,500 mg/day 
1,501-3,600 mg/day 
>3,600 mg/day 

Added sugars & alcohol, ≤ 20% total calories 2 
1 
0 

≤20% total calories 
>29-35% total calories 
>35% total calories 

Copyright © Carolyn R. Hofe 2011 
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Project IV. PCBs, Serum Carotenoids,  and the Probability of Metabolic Syndrome: 
Covariate Modeling  

 
A. Baseline and Lifestyle Characteristics 

 
The study subpopulation of 1058 men and women was taken from the MEC 

subsample C NHANES 2003-2004 population, who were individuals tested for subsample 

C pollutants.  These pollutants included, but were not limited to, PCBs.  Participants 

were 20 years of age or older, did not have type 1 or 2 diabetes mellitus, completed two 

days of reliable and complete dietary data collection, and provided sufficient clinical 

parameters for a determination of metabolic syndrome.  Demographic and lifestyle 

characteristics are categorized below.  As shown below, prevalence of MetS was 22.1%.   

 

Table 4.15 Baseline Characteristics 
 

Gender Frequency Percentage 
male 516 48.77 

female 542 51.23 
 

Race Frequency Percentage 
Mexican American 197 18.62 

Other Hispanic 37 3.50 
Non-Hispanic White 605 57.18 
Non-Hispanic Black 176 16.64 

Other Race – including 
multi-racial 

43 4.06 

 
 

Age Frequency Percentage 
20 – 34 303 28.64 
35 – 49 279 26.37 
50 – 64 218 20.60 
65 – 79 182 17.20 
>= 80 76 7.18 

 
 

PIR Frequency Percentage 
Above (>= 1) 857 84.27 
Below (< 1) 160 15.73 

 
 

BMI Frequency Percentage 
underweight 18 1.71 

healthy 331 31.37 
overweight 366 34.69 

obese 340 32.22 
 
 

MetS Frequency Percentage 
 MetS+ 234 22.12 
MetS- 824 77.88 
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Table 4.16 Characteristics by Metabolic Syndrome Status 
 

 
Baseline & Lifestyle Characteristics by Metabolic Syndrome Status 

 
MetS+ 
N=234 

 
MetS- 
N=824 

Gender Female 106 436 
Male 128 388 

 
 
Race/ethnicity 

Mexican American 45 152 
Other Hispanic 9 28 

Non-Hispanic White 137 468 
Non-Hispanic Black 32 144 

Other Race –  
Including Multi-Racial 

11 32 

 
Cigarette smoking 

Never 109 436 
Former 46 186 
Current 79 201 

Serum Cotinine ≥ 0.015 ng/mL 187 649 
<0.015 ng/ml 47 173 

 
Alcohol consumption 

Non-drinker 63 139 
Non-excessive drinker 81 321 

Excessive drinker 50 221 
 
Physical activity 

Sedentary (no physical 
activity) 

61 233 

Low activity 28 100 
Moderately to vigorously 

active 
34 184 

 
BMI 

<18.5 0 18 
18.5-24.9 32 299 
25.0-29.9 91 275 

≥30 110 230 
Dietary supplement yes 121 436 

no 113 387 
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Table 4.17 Mean Analysis of Serum Nutrients by Metabolic Syndrome Status 
 

Nutrient Analyte 
umol/L 

Without metabolic syndrome 
Mean 

With metabolic syndrome 
Mean 

Age at Screening 46.866 55.641 
Family Poverty Income Ratio 2.716 2.602 
Alpha-carotene 0.0831683 0.0634927 
Alpha-cryptoxanthin 0.0492606 0.0405013 
Beta-carotene 0.3776834 0.3105232 
Beta-cryptoxanthin 0.1764506 0.1552558 
Lycopene 0.7738627 0.6761464 
Lutein/zeaxanthin 0.2936455 0.2688734 
Alpha-tocopherol 31.5914209 36.4841017 
Delta-tocopherol 0.1530406 0.2054309 
Gamma-tocopherol 5.1014411 6.4090137 
Retinyl palmitate  0.0413989 0.0478064 
Retinyl stearate 0.0132151 0.0145120 
Retinol 2.0141357 2.1117940 
Vitamin C 57.9829448 52.6510823 
Vitamin D (ng/mL) 23.4453883 21.7435897 
Vitamin B6 (nmol/L) 69.9550617 51.6043103 
Vitamin B12 (pmol/L 446.8441677 372.110042 
Folate, serum (nmol/L) 32.3224787 30.5752137 

  



85 
 

B. Mean associations between serum carotenoids, PCBs, and metabolic 
syndrome: covariate modeling 
 

NHANES dietary recall data have a dedicated sample weight that is substantially 

larger than the environmental pollutant subsample C weight or the fasting blood work 

weight.  While tutorials instructed to use the smallest sample weight, they also 

instructed to use the dietary recall weight preferentially.  Further, they stated that using 

too large a sample weight, especially with data having outliers (common with both 

environmental pollutants and dietary intake data), would likely distort results.  This 

dissertation project utilizes several NHANES 2003-2004 subpopulations with dedicated 

weights, as well as some similar and disparate characteristics.  A review of the relevant 

literature informed of a procedure for applying an unweighted estimation using the 

same covariates that had been used to construct the sample weights (Graubard & Korn 

1999).     

A comparison of the mean serum carotenoid concentrations was executed to 

seek associations between participants with and without metabolic syndrome.  While 

similar to earlier data runs, these differed in two significant ways.  First, three covariate 

modeling was used in lieu of subsample C weight.  Second, pooled PCB subclasses and 

total PCBs were assessed rather than three individual congeners, PCBs 118, 126, and 

153. 

 

Table 4.18 Non-dioxin-like PCBs, serum carotenoids, & the probability of metabolic 
syndrome 

 
Non_dioxin-like PCBs 1st quartile 2nd quartile 3rd quartile 4th quartile 

n = (without/with MetS) 119/21 195/40 265/73 256/88 
Prevalence 15.0% 17.0% 21.6% 25.6% 

p-value 0.2009 0.1345 0.0007 0.0141 
 
 
 
 

mean 

Metabolic syndrome 
(0 – 1) 

-0.27 0.18 0.35 0.25 

without metabolic 
syndrome 

1.80 1.92 1.93 1.89 

With 
metabolic syndrome 

2.08 1.74 1.58 1.63 

 
 
 
 

median 

Metabolic syndrome 
(0 – 1) 

-0.10 0.14 0.38 0.12 

without metabolic 
syndrome 

1.85 1.85 1.85 1.68 

With 
metabolic syndrome 

1.95 1.71 1.47 1.56 
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Mean analysis of serum carotenoid concentrations within the four exposure 

quartiles of non-dioxin-like PCBs highlight differences between individuals with and 

without metabolic syndrome.  Persons with higher concentrations of serum carotenoids 

were less likely to have MetS and this was significant at higher exposures in the third 

and four quartiles.  Higher concentrations of serum carotenoids, i.e. higher fruit and 

vegetable intake, were significantly associated with a lower probability of metabolic 

syndrome in the third and fourth quartiles of non-dioxin-like PCBs.  The first exposure 

quartile was associated with an increased risk of metabolic syndrome, a finding that was 

predominant throughout the study.   

 
 
Figure 4.7 Probability of metabolic syndrome across non-dioxin-like PCB quartiles in 

relation to serum carotenoid concentrations in umol/L 
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Table 4.19 Dioxin-like PCBs, serum carotenoids and probability of metabolic syndrome 
 

Dioxin-like PCBs 1st quartile 2nd quartile 3rd quartile 4th quartile 
n = without/with MetS 118/20 202/37 287/69 246/100 

Prevalence 14.5% 15.5% 19.4% 28.9% 
 
 
 
 

mean 

p-value 0.0746 0.0816 0.0159 0.0010 
Metabolic syndrome 

(0 – 1) 
-0.30 0.23 0.27 0.32 

without metabolic 
syndrome 

1.74 1.86 1.93 1.94 

With 
metabolic syndrome 

2.04 1.63 1.67 1.62 

 
 
 
 

median 

Metabolic syndrome 
(0 – 1) 

-0.20 0.41 0.29 0.15 

without metabolic 
syndrome 

1.65 1.84 1.82 1.72 

With 
metabolic syndrome 

1.85 1.43 1.53 1.57 

 

Mean analysis of serum carotenoid concentrations within the four exposure 

quartiles of dioxin-like PCBs reveal differences between individuals with and without 

metabolic syndrome.  Persons with higher concentrations of serum carotenoids were 

less likely to have metabolic syndrome and this was significant at higher exposures in 

the third and four quartiles.  Higher concentrations of serum carotenoids, i.e. higher 

fruit and vegetable intake, were significantly associated with a lower probability of 

metabolic syndrome in the third and fourth quartiles of dioxin-like PCBs.  

 
Figure 4.8 Probability of metabolic syndrome across dioxin-like PCB quartiles in relation 

to serum carotenoid concentrations in umol/L  
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Table 4.20 Combined total PCBs, serum carotenoids and probability metabolic syndrome 
 

Combined total PCBs 1st quartile 2nd quartile 3rd quartile 4th quartile 
n = without/with MetS 108/18 204/37 269/81 254/86 

Prevalence 14.3% 15.4% 23.1% 25.3% 
 
 
 
 
 

mean 

p-value 0.4579 0.4438 0.0012 0.0066 
Metabolic syndrome 

(0 – 1) 
-0.18 0.10 0.33 0.28 

without metabolic 
syndrome 

1.80 1.91 1.88 1.95 

With 
metabolic syndrome 

1.98 1.81 1.56 1.66 

 
 
 
 

median 

Metabolic syndrome 
(0 – 1) 

0.08 0.07 0.38 0.14 

without metabolic 
syndrome 

1.84 1.81 1.81 1.72 

With 
metabolic syndrome 

1.76 1.74 1.43 1.58 

 

Mean analysis of serum carotenoid concentrations within the four exposure 

quartiles of total pooled PCBs reveal differences between individuals with and without 

metabolic syndrome.  Persons with higher concentrations of serum carotenoids were 

less likely to have metabolic syndrome and this was significant at higher exposures in 

the third and four quartiles (p < 0.01) of combined total PCBs.  The first exposure 

quartile was associated with an increased risk of metabolic syndrome. 

 

Figure 4.9 Probability of metabolic syndrome across combined total PCB quartiles in 
relation to serum carotenoid concentrations in umol/L  
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C. Logistical Regression: Serum Nutrients, Polychlorinated Biphenyls 

Individual associations were sought between various serum nutrients and 

metabolic syndrome.  Variables were adjusted for age, race, and poverty income ratio as 

a surrogate to NHANES sample weighting. 

 

Table 4.21 Logistical regression of serum nutrients on the probability of metabolic 
syndrome 

 
Nutrients Coefficient p-value 

Serum carotenoids 0.3540 0.0004 

Vitamin E (α, δ, γ-tocopherols) -0.0159  0.0009  

Vitamin A (retinol,retinyl-esters) -0.1008  0.4411  

Vitamin C 0.00833  0.0016  

Vitamin D 0.0286  0.0036  

Vitamin B6 0.00538  0.0002  

Pooled carotenoids, Vitamins C & E 0.00260  0.2047  

Pooled carotenoids, A, C, E, D, B6 0.00368  0.0002  

 

Combined serum carotenoids were strongly associated with a reduced risk of 

metabolic syndrome at p = 0.0004.  Regression coefficients for pooled Vitamins A and E 

indicate that greater concentrations of these two vitamins were associated with an 

increased risk of developing metabolic syndrome, although only the tocopherols were 

significant at p < 0.05.    Significant associations were shown for other serum nutrients 

and a reduced probability of metabolic syndrome, i.e. Vitamin C, Vitamin D, and Vitamin 

B6.  Carotenoids, Vitamins C and E have been thought to work synergistically as 

antioxidants.  Neither association nor significance was observed in this analysis with 

metabolic syndrome as the response variable.  When all of the above nutrients were 

pooled, however, significance was shown at p = 0.0002.  The strongest coefficient 

overall was indicated with pooled serum carotenoids.   
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Individual associations were sought between serum levels of PCBs and metabolic 

syndrome.  Variables were adjusted for age, race, and poverty income ratio as a 

surrogate to NHANES sample weighting. 

 

Table 4.22 Logistical regression of serum PCBs on the probability of metabolic syndrome 

Serum PCBs by Subclass p-value 

Non-dioxin-like PCBs 0.5597 

Dioxin-like PCBs 0.9932  

Combined total PCBs 0.2377  

 

Individual PCB congeners were not evaluated in this data set and may well have 

yielded different results.  Coplanar and mono-ortho-substituted PCBs, which exhibit 

partial coplanarity, were combined into “Dioxin-like PCBs”.  Neither PCB subclass, nor 

pooled total PCBs, were significantly associated with metabolic syndrome in this analysis.  

The toxicology of PCBs is well documented (ATSDR, Toxicological Profile for PCBs).  

Earlier studies have documented the damaging effects of PCBs in relation to cardiac, 

vascular, and metabolic diseases (Chen, et al. 2008; Codru, et al. 2007; Ha, et al. 2007 & 

2009; Hennig, et al. 2001 & 2005; Lee, et al. 2006, 2007a,b,c, 2010, 2001a,b; Lind, et al. 

2004; Rignell-Hydbom, et al. 2007; Ruzzin, et al. 2010; Rylander, et al. 2005; Turyk, et al. 

2006 & 2009; Uemura, et al. 2009; & Vasiliu, et al. 2006).  Some of these studies utilized 

earlier NHANES releases in which smaller blood volumes were drawn, yielding more 

observations below the LOD, and a reference group important for multivariate 

regression analysis across quartiles.  Other factors may account for this lack of statistical 

significance that could not be identified from logistical regression.  For these reasons, a 

statistical interaction between serum PCBs and serum carotenoids was sought for 

significance and any other relevant factors. 



91 
 

D. Interaction Plots: PCBs, serum carotenoids, and their combined associations 
with metabolic syndrome 

 
 

Figure 4.10 Non-dioxin-like PCBs, serum carotenoids, and the probability of metabolic 
syndrome 

 
The y-axis above represents the probability of not developing metabolic 

syndrome.  The x-axis represents increasing serum carotenoid concentrations as a 

continuous variable.  It should be clear that only the first PCB quartile, represented by a 

black line, characterizes a somewhat dramatic increase in the probability of metabolic 

syndrome.  The second, third, and fourth quartiles, shown in green, red, and yellow, 

respectively, clearly demonstrate a reduced probability of metabolic syndrome as serum 

concentrations of carotenoids increase.  Serum carotenoids were associated with a 

reduction in the probability of metabolic syndrome at higher PCB concentrations in this 

analysis. 
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Figure 4.11 Dioxin-like PCBs, serum carotenoids, and the probability of metabolic 
syndrome 

 
 

As observed with non-dioxin-like PCBs above, the first quartile of dioxin-like PCBs 

was associated with an increased probability of developing metabolic syndrome.  The 

second, third, and fourth exposure quartiles were associated with a reduced probability 

of metabolic syndrome as serum carotenoid concentrations increased.  Notably, this 

occurred at higher PCB quartiles, which relate to higher serum PCB concentrations.  The 

first PCB quartile represented the lowest exposure category above the 60% LOD.  In this 

analysis, carotenoids were associated with a reduced likelihood of developing metabolic 

syndrome at higher PCB concentrations. 
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E. Mean analysis: Individual Carotenoids / PCB Subclasses 

 
In this analysis, PCBs were evaluated by subclass: non-dioxin-like, dioxin-like, and 

total, combined PCBs; and each quartile was evaluated individually.  Each serum 

carotenoid was analyzed individually.  Differences between the means of those with and 

without metabolic syndrome were compared across quartiles for each carotenoid.  An 

increase in the probability of metabolic syndrome was observed in the first PCB quartile 

in twelve of eighteen cases, although those findings were significant only once, in the 

first quartile of lycopene for dioxin-like PCBs (p = 0.03).   A significant benefit was seen 

most often in the third and/or fourth exposure quartiles and in the “overall” row, which 

represented the sum of all quartiles for combined PCB congeners, suggesting a 

protective influence at higher exposures. 

Table 4.23 Mean distinctions between Alpha-carotene and PCBs 

 
Alpha-Carotene 

mean without 
MetS 

 
mean with MetS 

difference 
(0 – 1) 

 
p-value 

Overall          0.08 0.06 0.02 0.0004 
 

non dioxin 
like 

1st quartile          0.06 0.07 -0.01 0.7448 
2nd quartile        0.08 0.07 0.01 0.5775 
3rd quartile        0.08 0.06 0.02 0.0436 
4th quartile        0.10 0.06 0.04 0.0008 

 
 

dioxin like 

1st quartile        0.06 0.07 -0.01 0.6822 
2nd quartile        0.07 0.05 0.02 0.1720 
3rd quartile 0.09 0.07 0.02 0.1397 
4th quartile 0.09 0.06 0.03 <0.0001 

 
 

combined  

1st quartile 0.06 0.06 0 0.9422 
2nd quartile 0.07 0.07 0 0.9370 
3rd quartile 0.08 0.06 0.02 0.0588 
4th quartile 0.10 0.06 0.04 0.0002 

 
 

Table 4.24 Mean distinctions between Alpha-cryptoxanthin and PCBs 
 

 
Alpha-Cryptoxanthin 

mean without 
MetS 

 
mean with MetS 

difference 
(0 – 1) 

 
p-value 

                               Overall 0.05 0.04 0.01 <0.0001 
 

non dioxin 
like 

1st quartile 0.06 0.05 0.01 0.2270 
2nd quartile 0.05 0.04 0.01 0.0001 
3rd quartile 0.05 0.04 0.01 0.0005 
4th quartile 0.05 0.04 0.01 0.0009 

 
 

dioxin like 

1st quartile 0.05 0.04 0.01 0.0641 
2nd quartile 0.05 0.04 0.01 <0.0001 
3rd quartile 0.05 0.04 0.01 0.0352 
4th quartile 0.05 0.04 0.01 <0.0001 

 
 

combined  

1st quartile 0.05 0.04 0.01 0.0555 
2nd quartile 0.05 0.04 0.01 0.0056 
3rd quartile 0.05 0.04 0.01 0.0015 
4th quartile 0.05 0.04 0.01 0.0005 
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Table 4.25 Mean distinctions between total beta-carotene and PCBs 
 

 
Total beta-carotene 

mean without 
MetS 

 
mean with MetS 

difference 
(0 – 1) 

 
p-value 

Overall 0.37 0.31 0.01 0.0099 
 

Non dioxin 
like 

1st quartile 0.28 0.33 -0.05 0.6157 
2nd quartile 0.30 0.23 0.07 0.0397 
3rd quartile 0.35 0.27 0.08 0.0093 
4th quartile 0.46 0.38 0.08 0.1132 

 
Dioxin like 

1st quartile 0.25 0.33 -0.08 0.4303 
2nd quartile 0.29 0.21 0.08 0.1037 
3rd quartile 0.36 0.29 0.07 0.0457 
4th quartile 0.46 0.35 0.11 0.0171 

 
Combined 

PCBs 

1st quartile 0.28 0.30 -0.02 0.7795 
2nd quartile 0.29 0.24 0.05 0.1765 
3rd quartile 0.34 0.27 0.07 0.0145 
4th quartile 0.48 0.38 0.10 0.0671 

 
 

Table 4.26 Mean distinctions between beta-cryptoxanthin and PCBs 
 

 
Beta-cryptoxanthin 

mean without 
MetS 

 
mean with MetS 

difference 
(0 – 1) 

 
p-value 

Overall 0.18 0.15 0.03 0.0108 
 

Non dioxin 
like 

1st quartile 0.19 0.22 -0.03 0.6059 
2nd quartile 0.19 0.16 0.03 0.1433 
3rd quartile 0.17 0.14 0.03 0.0084 
4th quartile 0.16 0.15 0.01 0.1942 

 
Dioxin like 

1st quartile 0.17 0.18 -0.01 0.8412 
2nd quartile 0.18 0.14 0.04 0.0840 
3rd quartile 0.18 0.16 0.02 0.3469 
4th quartile 0.18 0.14 0.04 0.0263 

 
Combined 

PCBs 

1st quartile 0.19 0.16 -0.03 0.3733 
2nd quartile 0.19 0.19 0 0.9266 
3rd quartile 0.17 0.14 0.03 0.0067 
4th quartile 0.17 0.15 0.02 0.1560 

 
 
Table 4.27 Mean distinctions between Lycopene and PCBs 

 
Total Lycopene 

mean without 
MetS 

 
mean with MetS 

difference 
(0 – 1) 

 
p-value 

Overall 0.76 0.68 0.08 0.0006 
 

Non dioxin 
like 

1st quartile 0.79 0.91 -0.13 0.1073 
2nd quartile 0.84 0.80 0.04 0.5861 
3rd quartile 0.80 0.67 0.13 0.0119 
4th quartile 0.65 0.60 0.05 0.1753 

 
Dioxin like 

1st quartile 0.79 0.96 -0.17 0.0362 
2nd quartile 0.81 0.77 0.04 0.6186 
3rd quartile 0.79 0.66 0.13 0.0064 
4th quartile 0.68 0.63 0.05 0.1798 

 
Combined 

PCBs 

1st quartile 0.79 0.94 -0.15 0.0841 
2nd quartile 0.84 0.82 0.02 0.7303 
3rd quartile 0.78 0.66 0.12 0.0107 
4th quartile 0.67 0.61 0.06 0.1619 
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Table 4.28 Mean distinctions between lutein/zeaxanthin and PCBs 

 
Combined 

lutein/zeaxanthin 

 
mean without 

MetS 

 
mean with MetS 

 
difference 

(0 – 1) 

 
p-value 

Overall 0.29 0.27 0.02 0.0171 
 

Non dioxin 
like 

1st quartile 0.26 0.29 -0.03 0.4861 
2nd quartile 0.28 0.26 0.02 0.2164 
3rd quartile 0.30 0.26 0.04 0.0073 
4th quartile 0.32 0.27 0.05 0.0323 

 
Dioxin like 

1st quartile 0.26 0.25 0.01 0.7522 
2nd quartile 0.28 0.25 0.03 0.1390 
3rd quartile 0.29 0.29 0 0.8655 
4th quartile 0.33 0.26 0.07 0.0008 

 
Combined 

PCBs 

1st quartile 0.26 0.27 -0.01 0.8224 
2nd quartile 0.28 0.26 0.02 0.2556 
3rd quartile 0.29 0.26 0.03 0.0294 
4th quartile 0.32 0.28 0.04 0.0188 

 
 
 

 

 

 

F. First Quartile Interactions: Individual carotenoids / PCB subclasses 

The analysis below examines three models: non-dioxin-like PCBs, dioxin-like PCBs, and 

combined total PCBs.  Within each model, regression analysis assesses the effect of an 

individual carotenoid, individual PCB subclass, and the interaction between individual 

serum carotenoids and PCB subclasses.  A significant interaction between serum 

carotenoid and PCB concentrations implies a significant PCB effect.  Relationships 

involving PCBs are complex and analysis of their effects may be more clearly determined 

by evaluating several models for continuity.  The negative coefficient indicates an 

inverse relationship between serum carotenoids and the probability of developing 

metabolic syndrome. 

 

Table 4.29 First quartile analysis of alpha-carotene : PCB interactions  
Variable p-value 

Non-dioxin-like PCBs 
Non-dioxin-like PCBs 0.9644 

Alpha-Carotene  
(coefficient = -2.5856) 

0.0436 

Alpha-Carotene *Non-dioxin-like PCBs 0.0862 
Dioxin-like PCBs 
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Dioxin-like PCBs 0.3830 
Alpha-Carotene 

(coefficient = -2.7521) 
0.0341 

Alpha-Carotene *Dioxin-like PCBs 0.0332 
Combined PCBs 

Combined PCBs 0.9922 
Alpha-Carotene  

(coefficient = 2.6563) 
0.0423 

Alpha-Carotene *Combined PCBs 0.0499 
 

variable p-value 
Non-dioxin-like PCBs 

Non-dioxin-like PCBs 0.4979 
Alpha-Cryptoxanthin  

(coefficient = -20.1596) 
<0.0001 

Alpha-Cryptoxanthin *Non-dioxin-like PCBs 0.6442 
Dioxin-like PCBs 

Dioxin-like PCBx 0.1650 
Alpha-Cryptoxanthin 

(coefficient = -22.0729) 
0.0001 

Alpha-Cryptoxanthin *Dioxin-like PCBs 0.1743 
Combined PCBs 

Combined PCBs 0.7444 
Alpha-Cryptoxanthin  

(coefficient = -21.3296) 
0.0001 

Alpha-Cryptoxanthin *CombinedPCBs 0.9171 
 

variable p-value 
Non-dioxin-like PCBs 

Non-dioxin-like PCBs 0.1299 
Total beta-carotene  

(coefficient = -0.9229) 
0.0189 

Total beta-carotene *Non-dioxin-like PCBs 0.0421 
Dioxin-like PCBs 

Dioxin-like PCBs 0.2778 
Total beta-carotene 

(coefficient = -0.6808) 
0.0910 

Total beta-carotene *Dioxin-like PCBs 0.0666 
Combined PCBs 

Combined PCBs 0.2183 
Total beta-carotene  

(coefficient = -0.7139) 
0.0540 

Total beta-carotene *Combined PCBs 0.2283 

 

Significant interactions were seen between alpha-carotene and dioxin-like PCBs 

(p = 0.03), alpha-carotene and combined PCBs (p = 0.049), beta-carotene and non-

dioxin-like PCBs (p = 0.04).  Near significant interactions were seen between beta-

carotene and dioxin-like PCBs (p = 0.06) and alpha-carotene and non-dioxin-like PCBs (p 

= 0.08).  Beta-cryptoxanthin, lycopene, and lutein/zeaxanthin lacked significance and 

results were not included in this section. 
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G. PCB & carotenoid interactions: Modeling of serum variables 
 
 

PCBs were examined by subclass with pooled and individual serum carotenoids 

to seek significant interactions using three models: 

1) PCBs in four quartiles and in interaction with serum carotenoids; 

2) PCBs as summed ranks on a continuous scale in interaction with serum 

carotenoids; 

3) Quadratic (squared) PCBs on a continuous scale in interaction with serum 

carotenoids. 

 

 

Table 4.30 Statistical Interactions: Pooled serum carotenoids 
 

 
PCB subclasses 

Model 1 Model 2 Model 3 
PCB (quartile) 

* SC 
PCB (continuous) 

* SC 
PCB (continuous) * 

SC 
PCB(continuous) 

*PCB(continuous) 
*SC 

Non-dioxin-like 
PCBs 

0.6402 0.8270 0.1936 0.1803 

Dioxin-like PCBs 0.9105 0.9402 0.0131 0.0133 
Combined PCBs 0.3401 0.9242 0.0846 0.0800 

 
 
 

Table 4.31 Statistical Interactions: Alpha-carotene 
 

 
PCB subclasses 

Model 1 Model 2 Model 3 
PCB (quartile) 

* AC 
PCB (continuous) 

* AC 
PCB (continuous) 

* AC 
PCB(continuous) 

*PCB(continuous) 
*AC 

Non-dioxin-like 
PCBs 

0.5090 0.2559 0.8517 0.9766 

Dioxin-like PCBs 0.0771 0.0689 0.2994 0.4715 
Combined PCBs 0.2728 0.0417 0.2571 0.3969 

 

Table 4.32 Statistical Interactions: Beta-carotene 
 

 
PCB subclasses 

Model 1 Model 2 Model 3 
PCB (quartile) 

* BC 
PCB (continuous) 

* BC 
PCB (continuous) 

* BC 
PCB(continuous) 

*PCB(continuous) 
*BC 

Non-dioxin-like 
PCBs 

0.3546 0.1933 0.5650 0.6692 

Dioxin-like PCBs 0.3439 0.1265 0.4155 0.2873 
Combined PCBs 0.4743 0.3124 0.5193 0.4269 
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Table 4.33 Statistical Interactions: Lycopene 
 

 
PCB subclasses 

Model 1 Model 2 Model 3 
PCB (quartile) 

* Lycopene 
PCB (continuous) 

* Lycopene 
PCB (continuous) 

* Lycopene 
PCB(continuous) 

*PCB(continuous) 
*Lycopene 

Non-dioxin-like 
PCBs 

0.2486 0.6802 0.0559 0.0491 

Dioxin-like PCBs 0.6793 0.4742 0.1309 0.1071 
Combined PCBs 0.5843 0.3873 0.1919 0.1573 

 

 

 

H. Five covariate modeling: Carotenoids 

A five covariate model was applied to evaluate the additional effects of covariates BMI 

and total cholesterol.  PCBs and carotenoids concentrate to lipids, including serum lipids 

and adipose tissue.  BMI is independently associated with metabolic syndrome.  Several 

individual PCBs lacked observations below a 60% LOD, which eliminated a reference 

group.  The prevalent first quartile trend yielded a non-monotonic curve that suggested 

low dose toxicity, yet resisted a linear dose-response finding in the p-values.  The first 

quartile was eliminated in this analysis due to a confounding effect on understanding 

overall relationships.   

 

Table 4.34 Five covariate modeling of PCB subclasses and serum carotenoids for 
significant interactions: 1st quartile eliminated 

 
 

PCB subclasses 
Model 1 Model 2 Model 3 

PCB (quartile) 
* SC 

PCB (continuous) 
* SC 

PCB (continuous) * 
SC 

PCB(continuous) 
*PCB(continuous) 

*SC 
Non-dioxin-like PCBs 0.5190 0.7166 0.1793 0.1600 

Dioxin-like PCBs 0.9588 0.8372 0.0171 0.0154 
Combined PCBs 0.2979 0.7544 0.0992 0.0880 
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Table 4.35 Five covariate modeling of PCB subclasses and alpha-cryptoxanthin for 
significant interactions: 1st quartile eliminated 

 
 

PCB subclasses 
Model 1 Model 2 Model 3 

PCB (quartile) 
* α-cryptoxanthin 

PCB (continuous) 
* α-cryptoxanthin 

PCB (continuous) * 
α-cryptoxanthin 

PCB(continuous) 
*PCB(continuous) 
* α-cryptoxanthin 

Non-dioxin-like PCBs 0.1220 0.5916 0.3720 0.4070 
Dioxin-like PCBs 0.4398 0.2175 0.0281 0.0447 
Combined PCBs 0.1706 0.4949 0.3243 0.3739 

 
 
Table 4.36 Five Covariate modeling of PCB subclasses and beta-cryptoxanthin for 

significant interactions: 1st quartile eliminated 
 

 
PCB subclasses 

Model 1 Model 2 Models 3 & 4 
PCB (quartile) 

* B-cryptoxanthin 
PCB (continuous) 
* B-cryptoxanthin 

PCB (continuous) *  
B-cryptoxanthin 

PCB(continuous) 
*PCB(continuous) 
*B-cryptoxanthin 

Non-dioxin-like 
PCBs 

0.2649 0.8078 0.0851 0.0781 

Dioxin-like PCBs 0.2200 0.4888 0.0015 0.0018 
Combined PCBs 0.1191 0.9946 0.0300 0.0295 

 
 
Table 4.37 Five Covariate modeling of PCB subclasses and total lycopene for significant 

interactions:  1st quartile eliminated 
 

 
PCB subclasses 

Model 1 Model 2 Models 3 & 4 
PCB (quartile) 

* Lycopene 
PCB (continuous) 

* Lycopene 
PCB (continuous) * 

Lycopene 
PCB(continuous) 

*PCB(continuous) 
*Lycopene 

Non-dioxin-like 
PCBs 

0.1282 0.4926 0.0477 0.0364 

Dioxin-like PCBs 0.6549 0.3690 0.0938 0.0698 
Combined PCBs 0.3712 0.2580 0.1670 0.1215 

 
 

Significance in the above models was revealed when PCBs were observed in all 

three models – quartile, continuous, and quadratic, with the first quartile removed.  The 

dioxin-like-PCB subclass showed significant interactions with pooled serum carotenoids, 

alpha-cryptoxanthin, and beta-cryptoxanthin.  Non-dioxin-like PCBs showed significant 

interactions with lycopene.  The two classes combined showed significant interactions 

with beta-cryptoxanthin.  The remaining carotenoids analyzed, alpha-carotene, beta-

carotene, and lutein/zeaxanthin lacked significance overall in this set and were not 

included above. 
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I. Expanded interaction analysis: dioxin-like PCBs & serum carotenoids 

 
Table 4.38 Expanded Interaction Analysis: Continuous quadratic modeling of dioxin-like 

PCBs and serum carotenoids  
 

PCB Model 3 
 PCB (continuous) * SC PCB(continuous) 

*PCB(continuous) 
*SC 

PCB 28 0.0372 0.0396 
PCB 66 0.9063 0.8322 
PCB 74 0.0116 0.0128 

 PCB 126 0.4830 0.5253 
 PCB 169 0.0778 0.0802 
 PCB 105 0.2030 0.1844 
 PCB 118 0.1111 0.1052 
 PCB 156 0.3719 0.3359 
 PCB157 0.1425 0.1337 
 PCB 167 0.0049 0.0071 

 
 
 
 

J. Serum carotenoids ≥ 2.0 µmol/L are associated with a reduced probability of 
metabolic syndrome at median rank 600 PCB 167 

 
 
Figure 4.12 Bivariate fit of the probability of metabolic syndrome by rank of PCB 167 and 

serum carotenoids at or above the mean concentration of 2.0 μmol/L.  
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Summary of Fit 
   
RSquare 0.188419 
RSquare Adj 0.181926 
Root Mean Square Error 0.099474 
Mean of Response 0.197141 
Observations (or Sum Wgts) 253 
  
  
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 2 0.5743135 0.287157 29.0203 
Error 250 2.4737549 0.009895 Prob > F 
C. Total 252 3.0480684   <.0001* 
  
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept   0.1096053 0.019986 5.48 <.0001* 
rank167   5.9163e-5 3.073e-5 1.92 0.0554 
(rank167-582.692)^2   1.278e-6 1.76e-7 7.26 <.0001* 

  
 
Figure 4.13 Bivariate fit of the probability of metabolic syndrome by rank of PCB 167 and 

serum carotenoids below the mean concentration of 2.0 μmol/L.  

 
 

 
Polynomial Fit Degree=2 
Prob[MetS+] = 0.1429183 + 0.0002679*rank167 - 6.8297e-7*(rank167-596.14)^2 
  
Summary of Fit 
   
RSquare 0.150928 
RSquare Adj 0.146574 
Root Mean Square Error 0.132847 
Mean of Response 0.277668 
Observations (or Sum Wgts) 393 
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 Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 2 1.2234711 0.611736 34.6625 
Error 390 6.8828611 0.017648 Prob > F 
C. Total 392 8.1063323   <.0001* 
  
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept   0.1429183 0.023096 6.19 <.0001* 
rank167   0.0002679 0.000035 7.65 <.0001* 
(rank167-596.14)^2   -6.83e-7 2.027e-7 -3.37 0.0008* 
  
 

The first figure above (Figure 4.12) shows high serum carotenoid concentrations, 

above the median of 2.0 umol/L.  At approximately rank = 600 for PCB 167, the 

probability of metabolic syndrome diminishes to about 15% then rises to about 30% by 

rank 900.  The second graph represents low serum carotenoid concentrations, below 

the median concentration of 2.0 umol/L.  At rank 600, the probability of metabolic 

syndrome rises to 30% and stays there until rank = 900.  Comparing the two graphs, it is 

apparent that a participant in the median of the graph (rank = 600, ≈ 700) has two times 

the risk of metabolic syndrome with low serum carotenoid concentrations than the 

participant with high serum carotenoid concentrations.  Further, this elevated risk was 

observed nearly to rank 900, where it began to taper off and the benefit of carotenoids 

appeared less pronounced.  The trajectory of above-median and below-median 

carotenoid curves were entirely counter to each other, suggesting a pronounced 

influence of the carotenoids. 
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K. Five Covariate modeling: Tocopherols and Vitamin C 
 

Table 4.39 Five Covariate modeling of PCB subclasses and serum tocopherols for 
significant interactions: 1st quartile eliminated 

 
 

PCB subclasses 
Model 1 Model 2 Model 3  

PCB (quartile) 
* Vitamin E 

PCB (continuous) 
* Vitamin E 

PCB (continuous) *  
Vitamin E 

PCB(continuous) 
*PCB(continuous) 

*Vitamin E 
Non-dioxin-like 

PCBs 
0.1866 0.0767 0.6789 0.5017 

Dioxin-like PCBs 0.0644 0.0251 0.1970 0.3180 
Combined PCBs 0.2805 0.0427 0.9480 0.7235 

 

Table 4.40 Five Covariate modeling of PCB subclasses and serum Vitamin C for 
significant interactions: 1st quartile eliminated 

 
 

PCB subclasses 
Model 1 Model 2 Model 3 

PCB (quartile) 
* Vitamin C 

PCB (continuous) 
* Vitamin C 

PCB (continuous) *  
Vitamin C 

PCB(continuous) 
*PCB(continuous) 

*Vitamin C 
Non-dioxin-like 

PCBs 
0.0336 0.0288 0.7587 0.9988 

Dioxin-like PCBs 0.0077 0.0086 0.1031 0.2046 
Combined PCBs 0.1326 0.0178 0.7042 0.9705 

 
 
Table 4.41 Five Covariate modeling of PCB subclasses and combined serum carotenoids, 

Vitamin C, and tocopherols for significant interactions: 1st quartile eliminated 
 

PCB subclasses Model 1 Model 2 Model 3 
PCB (quartile) 
* SC+VC+VE 

PCB (continuous) 
* SC+VC+VE 

PCB (continuous) * 
SC+VC+VE 

PCB(continuous) 
*PCB(continuous) 

* SC+VC+VE 
Non-dioxin-like 

PCBs 
0.0514 0.0388 0.9283 0.7042 

Dioxin-like PCBs 0.0090 0.0135 0.1088 0.2017 
Combined PCBs 0.2234 0.0265 0.8946 0.8546 

 
Dioxin-like PCBs were shown to have significant interactions with vitamin E, 

vitamin C, and combined carotenoids + vitamin C + vitamin E, but not consistently.  Non-

dioxin-like PCBs had a significant interaction with vitamin C in quartile modeling.  

Combined total PCBs were observed to have some significant interactions with vitamin E 

and with combined carotenoids + vitamin C + vitamin E in continuous modeling.  

Importantly, these interactions do not indicate whether there was a direct or inverse 

association with probability of metabolic syndrome.  Vitamin E was shown to typically 

be associated with an increased probability of metabolic syndrome in earlier analyses.   
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L. Moving Quartiles 

The first quartile was replaced and quartile analysis (rather than continuous) resumed.  

PCBs and serum carotenoids have demonstrated complicated relationships, which 

encouraged quartile analysis, even though significance was more often observed in 

continuous linear and quadratic modeling.  To refine the graphs further, each quartile 

was divided into four additional graphs, each representing a 5% shift.  In the graphs 

below, the first plot represented quartile 1 (0-25%).  Subsequent plots occurred at 5% 

shifts: 5-30%, 10-35%, 15-40%...75-100%.  This yielded a more detailed illustration of the 

PCB: serum carotenoid interaction in relation to the probability of metabolic syndrome.  

Of particular interest was the prevalent first quartile effect of increased probability of 

metabolic syndrome, suggestive of endocrine disruption, and the positive, protective 

influence of serum carotenoids at higher PCB concentrations. 

 
Figure 4.14 Moving quartiles 1-6 of non-dioxin-like PCBs and serum carotenoids on the 

probability of metabolic syndrome 
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Figure 4.15 Moving quartiles 6-11 of non-dioxin-like PCBs and serum carotenoids on the 
probability of metabolic syndrome 

 

 
 

 
Figure 4.16 Moving quartiles 11-16 of non-dioxin-like PCBs and serum carotenoids on 

the probability of metabolic syndrome 
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The slope can be observed gradually increasing across increasing PCB quartiles, 

which indicates that serum carotenoids have a bigger positive effect at higher 

concentrations of PCBs.  The highest set of quartile exposures has similar slopes for each 

moving quartile.  Overall, serum carotenoids & the variables associated with them have 

demonstrated a strong protective effect on the probability of metabolic syndrome.  

 

 

Figure 4.17 Non-dioxin-like PCBs, serum carotenoids, & the probability of metabolic 
syndrome: Four Quartile Scatterplot 

 

First quartile of non-dioxin-like PCBs 
 

 

Second quartile of non-dioxin-like PCBs 
 

 
Third quartile of non-dioxin-like PCBs 

 

 

Fourth quartile of non-dioxin-like PCBs 
 

 
 
 

 

 



107 
 

M. Statistical Interactions: Congener PCBs and Total, Serum Carotenoids 
 
 
Table 4.42 Statistical interactions between PCB 118, PCB 126, and PCB 153, & serum 

carotenoids: 3 covariate modeling 
   

Interaction p-values between PBCs & SC 
Analyte 3 covariate model 
PCB118 0.09 
PCB126 0.86 
PCB153 0.04 

 
PCB 118, PCB 126, and PCB 153 are congeners from three different subclasses of 

PCBs and are known to be damaging from animal models and human studies.  The PCB 

153 and serum carotenoid interaction reached significance above (p = 0.04).  PCB 118 

and carotenoids reached near significance (p = 0.09), considered comment worthy when 

using small sample sizes in non-linear studies (Lee, et al. 2011b). 

 

Figure 4.18 PCB 118 Best Fit  

 

 

1st quartile of PCB118 

 

2nd quartile of PCB118 

 
3rd quartile of PCB118 

 

4th quartile of PCB118 
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Table 4.43 PCB 118 Baseline and Lifestyle Characteristics  

 

PCB118 
Baseline & Lifestyle Characteristics 

 
MetS+ 
N=234 

 
MetS- 
N=824 

Gender 
 

Female 97 386 
Male 109 344 

Poverty Income Ratio average 2.58 2.67 

 
 

Race/ethnicity 
 

Mexican American 36 136 
Non-Hispanic White 126 416 
Non-Hispanic Black 27 127 

Other Race – Including Multi-Racial 17 51 
 

Cigarette smoking 
 

Never 95 384 
Former 68 177 
Current 43 169 

Serum Cotinine 
 

≥ 0.015 ng/mL 168 579 
<0.015 ng/ml 38 149 

 
Alcohol consumption 

 

Non-drinker 50 123 
Non-excessive drinker 77 281 

Excessive drinker 42 201 
 

Physical activity 
 

Sedentary (no physical activity) 56 213 
Low activity 22 88 

Moderately to vigorously active 32 157 
 

BMI 
<18.5 0 15 

18.5-24.9 25 267 
25.0-29.9 83 247 

≥30 98 200 
Dietary supplement use yes 107 393 

no 99 336 
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Table 4.44 Adjusted Odds Ratios and 95% Confidence Intervals for the Probability of 
Metabolic Syndrome across quartiles of PCB 118 

 

PCB118 <25th 25th-<50th 50th-<75th >75th Ptrend Pcovariate 

Concentration 
(ng/g of lipid) 

2.45/0.62 4.59/0.70 8.62/1.81 30.51/24.32   

Cases/n 30/233 50/235 56/234 70/234   
Prevalence (%) 12.88 21.28 23.93 29.91   

       
Model 0 referent 1.6 

(1.0 – 2.7) 
1.4 

(0.8 – 2.5) 
1.4 

(0.8 – 2.6) 
0.34  

Model 1 
(age) 

referent 1.6 
(1.0 – 2.7) 

1.4 
(0.8 – 2.5) 

1.4 
(0.8 – 2.6) 

0.34 <0.01 

Model 2 
(gender) 

referent 1.6 
(1.0 – 2.8) 

1.5 
(0.8 – 2.5) 

1.5 
(0.8 – 2.7) 

0.32 0.19 

Model 3 
(race/ethnicity) 

referent 1.6 
(1.0 – 2.7) 

1.4 
(0.8 – 2.5) 

1.4 
(0.8 – 2.6) 

0.34 0.68 

Model 4 
(PIR) 

referent 1.6 
(1.0 – 2.7) 

1.4 
(0.8 – 2.5) 

1.4 
(0.8 – 2.6) 

0.34 0.29 

Model 5 
(cigarette 
smoking) 

referent 1.7 
(1.0 – 2.8) 

1.5 
(0.8 – 2.5) 

1.5 
(0.8 – 2.8) 

0.29 0.39 

Model 6 
(serum cotinine) 

referent 1.7 
(1.0 – 2.8) 

1.4 
(0.8 – 2.5) 

1.4 
(0.8 – 2.7) 

0.30 0.16 

Model 7 
(alcohol 

consumption) 

referent 1.6 
(1.0 – 2.7) 

1.4 
(0.8 – 2.5) 

1.4 
(0.8 – 2.6) 

0.33 0.91 

Model 8 
(leisure-time 

physical activity) 

referent 1.7 
(0.8 – 3.3) 

1.3 
(0.6 – 2.8) 

1.2 
(0.5 – 2.9) 

0.53 0.91 

Model 9 
(BMI) 

referent 1.7 
(1.0 – 2.9) 

1.3 
(0.7 – 2.3) 

1.2 
(0.6 – 2.3) 

0.26 <0.01 

Model 10 
(total calories) 

referent 1.6 
(1.0 – 2.7) 

1.4 
(0.8 – 2.5) 

1.4 
(0.8 – 2.6) 

0.34 0.96 

Model 11 
(dietary 

supplement use) 

referent 1.6 
(1.0 – 2.7) 

1.5 
(0.8 – 2.5) 

1.4 
(0.8 – 2.7) 

0.33 0.03 

Model 12 
(total cholesterol) 

referent 1.7 
(1.0 – 2.8) 

1.5 
(0.8 – 2.5) 

1.4 
(0.8 – 2.7) 

0.29 0.12 

Model 13 
(Non-HDL  

cholesterol) 

referent 1.8 
(1.1 – 3.1) 

 1.6 
(1.0 – 2.9) 

1.7 
(1.0 – 3.2) 

0.16 <0.01 
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Figure 4.19 PCB 126 Best Fit 

 

 

PCB126: below detection limit 

 
1st quartile of PCB126 

 

2nd quartile of PCB126 

 
3rd quartile of PCB126 

 

4th quartile of PCB126 
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Table 4.45 PCB 126 Baseline and Lifestyle Characteristics 

 

PCB126 
Baseline & Lifestyle Characteristics 

 
MetS+ 
N=234 

 
MetS- 
N=824 

Gender 
 

Female 96 385 
Male 106 343 

Poverty Income Ratio average 2.61 2.68 

 
 

Race/ethnicity 
 

Mexican American 35 135 
Non-Hispanic White 122 412 
Non-Hispanic Black 27 129 

Other Race – Including Multi-Racial 18 52 
 

Cigarette smoking 
 

Never 95 382 
Former 68 177 
Current 39 169 

Serum Cotinine 
 

≥ 0.015 ng/mL 165 579 
<0.015 ng/ml 37 147 

 
Alcohol consumption 

 

Non-drinker 52 120 
Non-excessive drinker 74 286 

Excessive drinker 38 197 
 

Physical activity 
 

Sedentary (no physical activity) 53 212 
Low activity 23 88 

Moderately to vigorously active 29 159 
 

BMI 
<18.5 0 14 

18.5-24.9 27 265 
25.0-29.9 76 247 

≥30 98 201 
Dietary supplement use yes 104 388 

no 98 339 

 

crhofe0
Cross-Out
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Table 4.46 Adjusted Odds Ratios and 95% Confidence Intervals for the Probability of 
Metabolic Syndrome across quartiles of PCB 126 

 
 

 

PCB126 Not 
detectble 

<25th 25th-<50th 50th-<75th >75th Ptrend Pcovariate 

Concentration 
(ng/g of lipid) 

4.89/1.60 8.80/1.78 14.74/1.94 23.19/3.17 65.68/56.99   

Cases/n 7/44 30/233 41/219 56/222 68/222   
Prevalence(%) 15.91 13.45 18.72 25.23 30.63   

Model 0 referent 0.9 
(0.3 – 2.4) 

1.3 
(0.5 – 3.4) 

1.5 
(0.6 – 3.8) 

1.4 
(0.5 – 3.7) 

0.47  

Model 1 
(age) 

referent 0.9 
(0.3 – 2.4) 

1.3 
(0.5 – 3.4) 

1.5 
(0.6 – 3.8) 

1.4 
(0.5 – 3.7) 

0.47 <0.01 

Model 2 
(gender) 

referent 0.9 
(0.3 – 2.5) 

1.4 
(0.5 – 3.5) 

1.5 
(0.6 – 4.0) 

1.5 
(0.6 – 3.9) 

0.40 0.18 

Model 3 
(race/ethnicity) 

referent 0.9 
(0.3 – 2.4) 

1.3 
(0.5 – 3.4) 

1.5 
(0.6 – 3.8) 

1.4 
(0.5 – 3.7) 

0.47 0.64 

Model 4 
(PIR) 

referent 0.9 
(0.3 – 2.4) 

1.3 
(0.5 – 3.4) 

1.5 
(0.6 – 3.8) 

1.4 
(0.5 – 3.7) 

0.47 0.38 

Model 5 
(cigarette 
smoking) 

referent 0.9 
(0.3 – 2.4) 

1.3 
(0.5 – 3.4) 

1.5 
(0.6 – 3.9) 

1.5 
(0.6 – 3.9) 

0.43 0.43 

Model 6 
(serum cotinine) 

referent 0.9 
(0.4 – 2.5) 

1.4 
(0.5 – 3.6) 

1.6 
(0.6 – 4.1) 

1.5 
(0.6 – 4.0) 

0.40 0.12 

Model 7 
(alcohol 

consumption) 

referent 0.9 
(0.3 – 2.5) 

1.3 
(0.5 – 3.4) 

1.5 
(0.6 – 3.9) 

1.5 
(0.6 – 3.8) 

0.44 0.53 

Model 8 
(leisure-time 

physical activity) 

referent 1.4 
(0.4 – 5.1) 

1.4 
(0.4 – 5.1) 

1.5 
(0.4 – 5.5) 

1.6 
(0.4 – 5.9) 

0.98 0.78 

Model 9 
(BMI) 

referent 0.8 
(0.3 – 2.3) 

1.1 
(0.4 – 3.1) 

1.3 
(0.5 – 3.5) 

1.1 
(0.4 – 3.0) 

0.64 <0.01 

Model 10 
(total calories) 

referent 0.9 
(0.3 – 2.4) 

1.3 
(0.5 – 3.4) 

1.5 
(0.6 – 3.8) 

1.4 
(0.5 – 3.7) 

0.47 0.99 

Model 11 
(dietary 

supplement use) 

referent 0.9 
(0.3 – 2.3) 

1.3 
(0.5 – 3.4) 

1.5 
(0.6 – 4.0) 

1.4 
(0.6 – 3.8) 

0.35 0.02 

Model 12 
(total cholesterol) 

referent 0.9 
(0.3 – 2.3) 

1.3 
(0.5 – 3.3) 

1.4 
(0.6 – 3.7) 

1.4 
(0.5 – 3.6) 

0.45 0.46 

Model 13 
(Non-HDL  

cholesterol) 

referent 0.7 
(0.3 – 1.9) 

1.1 
(0.4 – 2.8) 

1.3 
(0.5 – 3.3) 

1.2 
(0.5 – 3.3) 

0.26 <0.01 
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Figure 4.20 PCB 153 Best Fit 
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Table 4.47 PCB 153 Baseline and Lifestyle Characteristics 

PCB153 
Baseline & Lifestyle Characteristics 

 
MetS+ 
N=234 

 
MetS- 
N=824 

Gender 
 

Female 98 387 
Male 110 348 

Poverty Income Ratio average 2.58 2.67 

 
 

Race/ethnicity 
 

Mexican American 36 136 
Non-Hispanic White 127 420 
Non-Hispanic Black 27 128 

Other Race – Including Multi-Racial 18 51 
 

Cigarette smoking 
 

Never 96 384 
Former 69 180 
Current 43 171 

Serum Cotinine 
 

≥ 0.015 ng/mL 170 584 
<0.015 ng/ml 38 149 

 
Alcohol consumption 

 

Non-drinker 52 123 
Non-excessive drinker 77 285 

Excessive drinker 42 202 
 

Physical activity 
 

Sedentary (no physical activity) 56 213 
Low activity 22 89 

Moderately to vigorously active 32 158 
 

BMI 
<18.5 0 15 

18.5-24.9 26 267 
25.0-29.9 83 249 

≥30 99 203 
Dietary supplement use yes 108 395 

no 100 339 
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Table 4.48 Adjusted Odds Ratios and 95% Confidence Intervals for the Probability of 

Metabolic Syndrome across quartiles of PCB 153 
 
 

  

 The p-trend looks for significance across each of the four quartiles in relation to 

the reference group.  There were no significant p-trend values for PCB 118, PCB 126, or 

PCB 153 in the multi-regression covariate analyses.  These data were obfuscated by the 

lack of a true reference group and possibly too small of a sample size.  P-covariate 

considers only the effect of the covariate to see what effect it has on the probability of 

metabolic syndrome.  All three PCBs showed significance for the same covariates: age, 

BMI, dietary supplement use, and non-HDL cholesterol.    Adjusted odds-ratio tables 

PCB153 <25th 25th-<50th 50th-<75th >75th Ptrend Pcovariate 

Concentration 
(ng/g of lipid) 

6.91/2.40 17.75/4.11 36.58/6.80 97.07/81.62   

Cases/n 36/235 45/236 62.236 65/236   
Prevalence(%) 15.32 19.07 26.27 27.54   

Model 0 referent 1.0 
(0.6 – 1.6) 

0.9 
(0.5 – 1.7) 

0.7 
(0.3 – 1.4) 

0.52  

Model 1 
(age) 

referent 1.0 
(0.6 – 1.6) 

0.9 
(0.5 – 1.7) 

0.7 
(0.3 – 1.4) 

0.52 <0.01 

Model 2 
(gender) 

referent 0.9 
(0.5 – 1.6) 

0.9 
(0.5 – 1.7) 

0.7 
(0.3 – 1.3) 

0.51 0.24 

Model 3 
(race/ethnicity) 

referent 1.0 
(0.6 – 1.6) 

0.9 
(0.5 – 1.7) 

0.7 
(0.3 – 1.4) 

0.52 0.54 

Model 4 
(PIR) 

referent 1.0 
(0.6 – 1.6) 

0.9 
(0.5 – 1.7) 

0.7 
(0.3 – 1.4) 

0.52 0.33 

Model 5 
(cigarette smoking) 

referent 1.0 
(0.6 – 1.7) 

0.9 
(0.5 – 1.7) 

0.7 
(0.3 – 1.4) 

0.57 0.58 

       
Model 6 

(serum cotinine) 
referent 0.9 

(0.6 – 1.6) 
0.9 

(0.5 – 1.7) 
0.7 

(0.3 – 1.4) 
0.52 0.19 

Model 7 
(alcohol 

consumption) 

referent 1.0 
(0.6 – 1.7) 

1.0 
(0.5 – 1.8) 

0.7 
(0.3 – 1.4) 

0.56 0.85 

Model 8 
(leisure-time 

physical activity) 

referent 1.0 
(0.5 – 2.1) 

1.0 
(0.4 – 2.3) 

0.8 
(0.3 – 2.2) 

0.89 0.94 

Model 9 
(BMI) 

referent 1.1 
(0.6 – 1.9) 

1.0 
(0.5 – 1.9) 

0.8 
(0.4 – 1.7) 

0.79 <0.01 

Model 10 
(total calories) 

referent 1.0 
(0.6 – 1.6) 

0.9 
(0.5 – 1.7) 

0.7 
(0.3 – 1.4) 

0.53 0.80 

Model 11 
(dietary supplement 

use) 

referent 1.0 
(0.6 – 1.7) 

0.9 
(0.5 – 1.7) 

0.7 
(0.3 – 1.4) 

0.56 0.04 

Model 12 
(total cholesterol) 

referent 1.0 
(0.6 – 1.6) 

0.9 
(0.5 – 1.7) 

0.7 
(0.3 – 1.4) 

0.59 0.20 

Model 13 
(Non-HDL  

cholesterol) 

referent 0.9 
(0.5 – 1.6) 

0.9 
(0.5 – 1.7) 

0.7 
(0.4 – 1.5) 

0.81 <0.01 
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seek a larger number for a greater association.  It is noteworthy that the higher ORs are 

found in the 2nd and 3rd quartiles in most cases, suggestive of a low dose effect.  PCB 126 

was the only PCB of the three with observations below the 60% LOD, providing a 

reference group and allowing for p-trend comparisons across four quartiles.  PCB 126 

also did not reveal the first quartile increase in the probability of metabolic syndrome, 

as was seen with PCB 118 and PCB 153.   

 Model 0 shows the significance of the PCB on the probability of developing 

metabolic syndrome across quartile exposures without covariate influence.  None of the 

three PCBs had significant p-trends: PCB 118-0.34; PCB 126-0.47; and PCB 153-0.52.  

Again, this may be a reflection of the complex relationships involving PCBs and the lack 

of a traditional dose-response relationship. 
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N. Statistical Interactions: Four Covariate Modeling / All Known Relevant, “Full” 
Covariate Modeling 
 
 

Table 4.49 Dioxin-like PCBs and Serum Carotenoids: Four Covariate / Full Covariate 
Modeling 

 
 

Dioxin-like PCBs 
4 covariates All relevant covariates 

PCB SC PCB*SC 
(interaction) 

PCB SC PCB*SC 
(interaction) 

3,4,4'5-
Tetrachlorobiphenyl 

(PCB 81) 

0.93 0.99 0.62 0.29 0.29 0.32 

3,3',4,4',5-
Pentachlorobiphenyl 

(PCB 126) 

0.11 <0.01 0.26 0.64 0.27 0.55 

3,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 169) 

0.01 <0.01 0.05 0.36 0.05 0.14 

2,4,4'-
Trichlorobiphenyl 

(PCB 28) 

0.90 0.25 0.94 0.14 0.05 0.07 

2,3',4,4'-
Tetrachlorobiphenyl 

(PCB 66) 

0.06 <0.01 0.21 0.45 0.31 0.33 

2,4,4',5-
Tetrachlorobiphenyl 

(PCB 74) 

0.16 <0.01 0.36 0.63 0.22 0.40 

2,3,3',4,4'-
Pentachlorobiphenyl 

(PCB 105) 

0.06 <0.01 0.13 0.38 0.10 0.34 

2,3',4,4',5-
Pentachlorobiphenyl 

(PCB 118) 

0.05 <0.01 0.17 0.43 0.14 0.44 

2,3,3',4,4',5-
Hexachlorobiphenyl 

(PCB 156) 

0.28 <0.01 0.41 0.93 0.42 0.92 

2,3,3'4,4',5'-
Hexachlorobiphenyl 

(PCB 157) 

0.16 0.01 0.32 0.94 0.24 0.84 

2,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 167) 

0.03 <0.01 0.09 0.54 0.26 0.750.03 

2,3,3',4,4',5,5'-
Heptachlorobiphenyl 

(PCB 189) 

0.02 <0.01 0.02 0.40 0.08 0.48 

pooled 0.02 <0.01 0.06 0.96 0.56 0.82 
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Table 4.50 Non-dioxin-like PCBs and Serum Carotenoids: Four Covariate / Full Covariate 
Modeling 

 
Non-dioxin-like PCBs 4 covariates All relevant covariates 

PCB SC PCB*SC 
(interaction) 

PCB SC PCB*SC 
(interaction) 

2,2',3,5'-
Tetrachlorobiphenyl 

(PCB 44) 

0.26 0.05 0.50 0.04 0.05 0.09 

2,2',4,5'-
Tetrachlorobiphenyl 

(PCB 49) 

0.57 0.09 0.86 0.14 0.15 0.33 

2,2',5,5'-
Tetrachlorobiphenyl 

(PCB 52) 

0.63 0.13 0.93 0.09 0.04 0.08 

2,2',3,4,5'-
Pentachlorobiphenyl 

(PCB 87) 

0.57 0.26 0.84 0.37 0.69 0.93 

2,2',4,4',5-
Pentachlorobiphenyl 

(PCB 99) 

0.18 <0.01 0.26 0.66 0.29 0.79 

2,2',4,5,5'-
Pentachlorobiphenyl 

(PCB 101) 

0.22 0.05 0.72 0.18 0.49 0.59 

2,3,3',4',6-
Pentachlorobiphenyl 

(PCB 110) 

0.33 0.11 0.99 0.25 0.47 0.76 

2,2',3,3',4,4'-
Hexachlorobiphenyl 

(PCB 128) 

0.23 0.93 0.27 0.31 0.94 0.73 

 (PCB 138 & PCB 158) 0.10 <0.01 0.18 0.95 0.33 0.72 
2,2',3,4',5,5'-

Hexachlorobiphenyl  
(PCB 146) 

0.16 0.01 0.39 0.67 0.54 0.94 

2,2',3,4',5',6-
Hexachlorobiphenyl 

(PCB 149) 

0.30 0.65 0.03 0.28 0.11 0.03 

2,2',3,5,5',6-
Hexachlorobiphenyl 

(PCB 151) 

0.45 0.10 0.88 0.68 0.61 0.24 

2,2',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 153) 

0.08 <0.01 0.21 0.97 0.30 0.64 

2,2',3,3',4,4',5-
Heptachlorobiphenyl 

(PCB 170) 

0.07 <0.01 0.16 0.27 0.08 0.14 

2,2',3,3',4,5,5'-
Heptachlorobiphenyl 

(PCB 172) 

0.11 0.01 0.26 0.30 0.10 0.16 

2,2',3,3',4,5',6'-
Heptachlorobiphenyl 

(PCB 177) 

0.26 <0.01 0.31 0.56 0.06 0.10 
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Table 4.50 (continued) 

2,2',3,3',5,5',6-
Heptachlorobiphenyl 

(PCB 178) 

0.16 0.01 0.41 0.46 0.11 0.20 

2,2',3,4,4',5,5'-
Heptachlorobiphenyl 

(PCB 180) 

0.06 0.01 0.35 0.33 0.15 0.20 

2,2',3,4,4',5',6-
Heptachlorobiphenyl 

(PCB 183) 

0.12 <0.01 0.25 0.65 0.10 0.16 

2,2',3,4',5,5',6-
Heptachlorobiphenyl 

(PCB 187) 

0.15 <0.01 0.29 0.62 0.13 0.18 

2,2',3,3',4,4',5,5'-
Octachlorobiphenyl 

(PCB 194) 

0.06 0.01 0.30 0.26 0.13 0.12 

2,2',3,3',4,4',5,6-
Octachlorobipenyl 

(PCB 195) 

0.06 <0.01 0.09 0.31 0.13 0.18 

(PCB 196 & PCB 203) 0.06 <0.01 0.22 0.40 0.03 0.03 
2,2',3,3',4,5,5',6-

Octachlorobiphenyl 
(PCB 199) 

0.03 <0.01 0.10 0.18 0.01 0.01 

2,2',3,3',4,4',5,5',6-
Nonachlorobiphenyl 

(PCB 206) 

0.16 <0.01 0.23 0.56 0.08 0.08 

2,2',3,3',4,4',5,5',6,6'-
Decachlorobiphenyl 

(PCB 209) 

0.17 <0.01 0.19 0.63 0.08 0.12 

pooled 0.05 <0.01 0.18 0.77 0.41 0.57 
 

 The first column applies a four covariate analysis, which was used in place  of the 

sample weights used by NHANES.  The four covariates were age, gender, race/ethnicity, 

and poverty income ratio.  The second column augmented the four covariates with all 

additional demographic and lifestyle covariates known to be significant to the variables 

of interest – metabolic syndrome, PCB concentrations, and carotenoid concentrations.  

These include the four previously mentioned, as well as cigarette smoking, serum 

cotinine, leisure time physical activity, alcohol consumption, BMI, dietary supplement 

use, total cholesterol, and non-HDL cholesterol.  The PCBs were analyzed as 

concentrations, not as ranks.  The first quartile was removed for this analysis to remove 

any possible confounding within the first quartile that could obfuscate a true significant 

relationship.  Most significance was lost in the full covariate analysis (second column). 
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Table 4.51 Dioxin-like PCBs and Serum Vitamin C: Four Covariate / Full Covariate 
Modeling 

 
 

Dioxin-like PCBs 
4 covariates All relevant covariates 

PCB Vit C PCB*VC 
(interaction) 

PCB Vit C PCB*VC 
(interaction) 

3,4,4'5-
Tetrachlorobiphenyl 

(PCB 81) 

0.12 0.12 0.16 0.88 0.60 0.33 

3,3',4,4',5-
Pentachlorobiphenyl 

(PCB 126) 

0.27 <0.01 0.61 0.67 0.61 0.66 

3,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 169) 

0.45 0.37 0.56 0.96 0.56 0.73 

2,4,4'-
Trichlorobiphenyl 

(PCB 28) 

0.89 0.13 0.95 0.40 0.41 0.26 

2,3',4,4'-
Tetrachlorobiphenyl 

(PCB 66) 

0.49 0.04 0.73 0.77 0.87 0.86 

2,4,4',5-
Tetrachlorobiphenyl 

(PCB 74) 

0.73 0.05 0.60 0.48 0.90 0.55 

2,3,3',4,4'-
Pentachlorobiphenyl 

(PCB 105) 

0.64 0.01 0.70 0.81 0.19 0.61 

2,3',4,4',5-
Pentachlorobiphenyl 

(PCB 118) 

0.58 0.01 0.71 0.78 0.44 0.53 

2,3,3',4,4',5-
Hexachlorobiphenyl 

(PCB 156) 

0.47 0.65 0.17 0.66 0.64 0.61 

2,3,3'4,4',5'-
Hexachlorobiphenyl 

(PCB 157) 

0.64 0.56 0.20 0.85 0.91 0.75 

2,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 167) 

0.37 0.01 0.91 0.80 0.70 0.89 

2,3,3',4,4',5,5'-
Heptachlorobiphenyl 

(PCB 189) 

0.32 0.02 0.37 0.76 0.10 0.96 

pooled 0.52 0.18 0.62 0.22 0.05 0.21 
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Table 4.52 Non-dioxin-like PCBs and Serum Vitamin C: Four Covariate / Full Covariate 
Modeling 

 
Non-dioxin-like 

PCBs 
4 covariates  All relevant covariates 

PCB Vit C PCB*VC 
(interaction) 

PCB Vit C PCB*VC 
(interaction) 

2,2',3,5'-
Tetrachlorobiphenyl 

(PCB 44) 

0.31 0.07 0.62 0.15 0.33 0.31 

2,2',4,5'-
Tetrachlorobiphenyl 

(PCB 49) 

0.68 0.19 0.99 0.24 0.52 0.56 

2,2',5,5'-
Tetrachlorobiphenyl 

(PCB 52) 

0.80 0.24 0.86 0.36 0.43 0.27 

2,2',3,4,5'-
Pentachlorobiphenyl 

(PCB 87) 

0.57 0.21 0.70 0.17 0.55 0.51 

2,2',4,4',5-
Pentachlorobiphenyl 

(PCB 99) 

0.96 0.01 0.72 0.93 0.69 0.79 

2,2',4,5,5'-
Pentachlorobiphenyl 

(PCB 101) 

0.27 0.09 0.99 0.12 0.42 0.39 

2,3,3',4',6-
Pentachlorobiphenyl 

(PCB 110) 

0.17 0.04 0.86 0.06 0.14 0.19 

2,2',3,3',4,4'-
Hexachlorobiphenyl 

(PCB 128) 

0.34 0.86 0.42 0.24 0.77 0.75 

 (PCB 138 & PCB 
158) 

0.77 0.23 0.33 0.34 0.56 0.42 

2,2',3,4',5,5'-
Hexachlorobiphenyl  

(PCB 146) 

0.97 0.43 0.24 0.25 0.40 0.32 

2,2',3,4',5',6-
Hexachlorobiphenyl 

(PCB 149) 

0.77 0.64 0.19 0.85 0.52 0.38 

2,2',3,5,5',6-
Hexachlorobiphenyl 

(PCB 151) 

0.74 0.13 0.44 0.76 0.21 0.12 

2,2',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 153) 

0.93 0.32 0.29 0.28 0.43 0.32 

2,2',3,3',4,4',5-
Heptachlorobiphenyl 

(PCB 170) 

0.63 0.18 0.63 0.60 0.66 0.59 

2,2',3,3',4,5,5'-
Heptachlorobiphenyl 

(PCB 172) 

0.62 0.26 0.58 0.91 0.91 0.88 
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Table 4.52 (continued) 

2,2',3,3',4,5',6'-
Heptachlorobiphenyl 

(PCB 177) 

0.97 0.07 0.62 0.42 0.98 0.91 

2,2',3,3',5,5',6-
Heptachlorobiphenyl 

(PCB 178) 

0.60 0.23 0.56 0.37 0.47 0.48 

2,2',3,4,4',5,5'-
Heptachlorobiphenyl 

(PCB 180) 

0.34 0.25 0.46 0.55 0.51 0.49 

2,2',3,4,4',5',6-
Heptachlorobiphenyl 

(PCB 183) 

0.67 0.07 0.77  0.39 0.94 0.76 

2,2',3,4',5,5',6-
Heptachlorobiphenyl 

(PCB 187) 

0.56 0.05 0.71 0.32 0.95 0.77 

2,2',3,3',4,4',5,5'-
Octachlorobiphenyl 

(PCB 194) 

0.29 0.15 0.64 0.49 0.47 0.48 

2,2',3,3',4,4',5,6-
Octachlorobipenyl 

(PCB 195) 

0.38 0.01 0.71 0.67 0.73 0.61 

(PCB 196 & PCB 203) 0.53 0.19 0.44 0.32 0.82 0.61 
2,2',3,3',4,5,5',6-

Octachlorobiphenyl 
(PCB 199) 

0.37 0.09 0.76 0.25 0.72 0.52 

2,2',3,3',4,4',5,5',6-
Nonachlorobiphenyl 

(PCB 206) 

0.74 0.11 0.38 0.02 0.15 0.08 

2,2',3,3',4,4',5,5',6,6'-
Decachlorobiphenyl 

(PCB 209) 

0.82 0.12 0.36 0.04 0.42 0.20 

pooled 0.57 0.14 0.43 0.16 0.10 0.11 
  

 

 No significant interactions were observed between PCBs and Vitamin C in either 

the four covariate model or the full covariate model.  Carotenoids and Vitamin C have 

been demonstrated to interact in vitro as antioxidants.  However, this would not be 

reflected in the above analysis. 
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Table 4.53 Dioxin-like PCBs and Serum Alpha-Tocopherol: Four Covariate / Full Covariate 
 Modeling 
 
 

 
Dioxin-like PCBs 

4 covariates All relevant covariates 
PCB Α-toc PCB*αt 

(interaction) 
PCB Α-toc PCB*αt 

(interaction) 
3,4,4'5-

Tetrachlorobiphenyl 
(PCB 81) 

0.81 0.20 0.54 0.69 0.29 0.73 

3,3',4,4',5-
Pentachlorobiphenyl 

(PCB 126) 

0.56 0.96 0.95 0.34 0.29 0.33 

3,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 169) 

0.29 0.83 0.96 0.82 0.87 0.51 

2,4,4'-
Trichlorobiphenyl 

(PCB 28) 

0.44 0.19 0.39 0.31 0.18 0.36 

2,3',4,4'-
Tetrachlorobiphenyl 

(PCB 66) 

0.49 0.15 0.14 0.19 0.17 0.20 

2,4,4',5-
Tetrachlorobiphenyl 

(PCB 74) 

0.91 0.29 0.59 0.23 0.30 0.28 

2,3,3',4,4'-
Pentachlorobiphenyl 

(PCB 105) 

0.94 0.22 0.48 0.58 0.33 0.45 

2,3',4,4',5-
Pentachlorobiphenyl 

(PCB 118) 

0.94 0.34 0.50 0.60 0.38 0.41 

2,3,3',4,4',5-
Hexachlorobiphenyl 

(PCB 156) 

0.85 0.33 0.61 0.96 0.70 0.99 

2,3,3'4,4',5'-
Hexachlorobiphenyl 

(PCB 157) 

0.69 0.17 0.39 0.39 0.19 0.39 

2,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 167) 

0.87 0.27 0.34 0.50 0.17 0.29 

2,3,3',4,4',5,5'-
Heptachlorobiphenyl 

(PCB 189) 

0.88 0.48 0.91 0.66 0.50 0.46 

pooled 0.50 0.57 0.80 0.34 0.28 0.38 
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Table 4.54 Non-dioxin-like PCBs and Serum Alpha-Tocopherol: Four Covariate / Full 
Covariate Modeling 

 
 

Non-dioxin-like 
PCBs 

4 covariates All known covariates 
PCB α-toc PCB*αt 

(interaction) 
PCB α-toc PCB*αt 

(interaction) 
2,2',3,5'-

Tetrachlorobiphenyl 
(PCB 44) 

0.11 0.57 0.15 0.34 0.71 0.54 

2,2',4,5'-
Tetrachlorobiphenyl 

(PCB 49) 

0.35 0.94 0.36 0.76 0.28 0.87 

2,2',5,5'-
Tetrachlorobiphenyl 

(PCB 52) 

0.43 0.97 0.53 0.63 0.77 0.63 

2,2',3,4,5'-
Pentachlorobiphenyl 

(PCB 87) 

0.86 0.13 0.39 0.96 0.11 0.41 

2,2',4,4',5-
Pentachlorobiphenyl 

(PCB 99) 

0.53 0.30 0.30 0.57 0.52 0.37 

2,2',4,5,5'-
Pentachlorobiphenyl 

(PCB 101) 

0.38 0.48 0.91 0.91 0.14 0.62 

2,3,3',4',6-
Pentachlorobiphenyl 

(PCB 110) 

0.51 0.40 0.87 0.64 0.25 0.86 

2,2',3,3',4,4'-
Hexachlorobiphenyl 

(PCB 128) 

0.11 0.27 0.12 0.40 0.59 0.75 

 (PCB 138 & PCB 
158) 

0.60 0.21 0.31 0.20 0.18 0.26 

2,2',3,4',5,5'-
Hexachlorobiphenyl  

(PCB 146) 

0.59 0.09 0.21 0.17 0.12 0.26 

2,2',3,4',5',6-
Hexachlorobiphenyl 

(PCB 149) 

0.05 <0.01 0.01 0.11 <0.01 0.02 

2,2',3,5,5',6-
Hexachlorobiphenyl 

(PCB 151) 

0.42 0.10 0.12 0.54 0.12 0.19 

2,2',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 153) 

0.68 0.15 0.25 0.25 0.20 0.32 

2,2',3,3',4,4',5-
Heptachlorobiphenyl 

(PCB 170) 

0.87 0.43 0.60 0.79 0.54 0.85 

2,2',3,3',4,5,5'-
Heptachlorobiphenyl 

(PCB 172) 

0.80 0.27 0.37 0.66 0.37 0.66 
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Table 4.54 (continued) 
 

2,2',3,3',4,5',6'-
Heptachlorobiphenyl 

(PCB 177) 

0.67 0.42 0.49 0.42 0.45 0.80 

2,2',3,3',5,5',6-
Heptachlorobiphenyl 

(PCB 178) 

0.65 0.14 0.25 0.23 0.15 0.34 

2,2',3,4,4',5,5'-
Heptachlorobiphenyl 

(PCB 180) 

0.98 0.16 0.24 0.79 0.49 0.82 

2,2',3,4,4',5',6-
Heptachlorobiphenyl 

(PCB 183) 

0.35 0.08 0.11 0.12 0.11 0.22 

2,2',3,4',5,5',6-
Heptachlorobiphenyl 

(PCB 187) 

0.24 0.03 0.08 0.11 0.09 0.26 

2,2',3,3',4,4',5,5'-
Octachlorobiphenyl 

(PCB 194) 

0.81 0.23 0.37 0.79 0.48 0.85 

2,2',3,3',4,4',5,6-
Octachlorobipenyl 

(PCB 195) 

0.69 0.84 0.93 0.84 0.86 0.82 

(PCB 196 & PCB 203) 0.33 0.03 0.05 0.35 0.32 0.67 
2,2',3,3',4,5,5',6-

Octachlorobiphenyl 
(PCB 199) 

0.99 0.34 0.39 0.88 0.91 0.56 

2,2',3,3',4,4',5,5',6-
Nonachlorobiphenyl 

(PCB 206) 

0.51 0.15 0.24 0.73 0.91 0.50 

2,2',3,3',4,4',5,5',6,6'-
Decachlorobiphenyl 

(PCB 209) 

0.73 0.25 0.49 0.53 0.93 0.51 

pooled 0.75 0.19 0.22 0.26 0.18 0.28 
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Table 4.55 Dioxin-like PCBs and Serum Delta-Tocopherol: Four Covariate / Full Covariate 
Modeling 

 
 

Dioxin-like PCBs 
4 covariates All relevant covariates 

PCB δ-toc PCB*δt 
(interaction) 

PCB δ-toc PCB*δt 
(interaction) 

3,4,4'5-
Tetrachlorobiphenyl 

(PCB 81) 

0.77 0.19 0.26 0.87 0.66 0.69 

3,3',4,4',5-
Pentachlorobiphenyl 

(PCB 126) 

0.62 0.02 0.52 0.81 0.59 0.94 

3,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 169) 

0.07 0.25 0.58 0.89 0.31 0.33 

2,4,4'-
Trichlorobiphenyl 

(PCB 28) 

0.27 <0.01 0.15 0.66 0.83 0.73 

2,3',4,4'-
Tetrachlorobiphenyl 

(PCB 66) 

0.99 <0.01 0.18 0.48 0.57 0.54 

2,4,4',5-
Tetrachlorobiphenyl 

(PCB 74) 

0.74 <0.01 0.38 0.75 0.84 0.78 

2,3,3',4,4'-
Pentachlorobiphenyl 

(PCB 105) 

0.61 <0.01 0.49 0.83 0.34 0.58 

2,3',4,4',5-
Pentachlorobiphenyl 

(PCB 118) 

0.45 <0.01 0.49 0.74 0.94 0.96 

2,3,3',4,4',5-
Hexachlorobiphenyl 

(PCB 156) 

0.42 0.09 0.59 0.47 0.24 0.19 

2,3,3'4,4',5'-
Hexachlorobiphenyl 

(PCB 157) 

0.30 0.19 0.56 0.45 0.31 0.22 

2,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 167) 

0.53 <0.01 0.33 0.32 0.54 0.47 

2,3,3',4,4',5,5'-
Heptachlorobiphenyl 

(PCB 189) 

0.53 0.96 0.67 0.25 0.31 0.22 

pooled 0.24 0.06 0.80 0.98 0.72 0.59 
 



127 
 

Table 4.56 Non-dioxin-like PCBs and Serum Delta-Tocopherol: Four Covariate / Full 
Covariate Modeling 

 
 Non-dioxin-like PCBs 4 covariates All relevant covariates 

PCB δ-toc PCB*δt 
(interaction) 

PCB δ-toc PCB*δt 
(interaction) 

2,2',3,5'-
Tetrachlorobiphenyl 

(PCB 44) 

0.83 0.01 0.37 0.44 0.97 0.99 

2,2',4,5'-
Tetrachlorobiphenyl 

(PCB 49) 

0.80 0.02 0.53 0.39 0.89 0.93 

2,2',5,5'-
Tetrachlorobiphenyl 

(PCB 52) 

0.60 0.01 0.34 0.90 0.94 0.98 

2,2',3,4,5'-
Pentachlorobiphenyl 

(PCB 87) 

0.21 0.11 0.61 0.16 0.64 0.56 

2,2',4,4',5-
Pentachlorobiphenyl 

(PCB 99) 

0.95 <0.01 0.49 0.61 0.98 0.80 

2,2',4,5,5'-
Pentachlorobiphenyl 

(PCB 101) 

0.26 0.05 0.99 0.17 0.62 0.74 

2,3,3',4',6-
Pentachlorobiphenyl 

(PCB 110) 

0.25 0.01 0.89 0.18 0.95 0.85 

2,2',3,3',4,4'-
Hexachlorobiphenyl 

(PCB 128) 

0.88 0.29 0.91 0.43 0.05 0.43 

 (PCB 138 & PCB 158) 0.39 0.01 0.99 0.94 0.41 0.39 
2,2',3,4',5,5'-

Hexachlorobiphenyl  
(PCB 146) 

0.15 0.06 0.51 0.99 0.46 0.40 

2,2',3,4',5',6-
Hexachlorobiphenyl 

(PCB 149) 

0.11 0.19 0.29 0.07 0.42 0.17 

2,2',3,5,5',6-
Hexachlorobiphenyl 

(PCB 151) 

0.20 0.03 0.83 0.19 0.89 0.48 

2,2',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 153) 

0.24 0.02 0.80 0.77 0.34 0.27 

2,2',3,3',4,4',5-
Heptachlorobiphenyl 

(PCB 170) 

0.34 0.02 0.96 0.82 0.55 0.58 

2,2',3,3',4,5,5'-
Heptachlorobiphenyl 

(PCB 172) 

0.45 0.01 0.67 0.81 0.90 0.82 
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Table 4.56 (continued) 
 

2,2',3,3',4,5',6'-
Heptachlorobiphenyl 

(PCB 177) 

0.62 0.02 0.93 0.30 0.65 0.88 

2,2',3,3',5,5',6-
Heptachlorobiphenyl 

(PCB 178) 

0.36 0.01 0.86 0.63 0.90 0.97 

2,2',3,4,4',5,5'-
Heptachlorobiphenyl 

(PCB 180) 

0.11 0.03 0.90 0.76 0.48 0.55 

2,2',3,4,4',5',6-
Heptachlorobiphenyl 

(PCB 183) 

0.48 0.01 0.88 0.50 0.71 0.95 

2,2',3,4',5,5',6-
Heptachlorobiphenyl 

(PCB 187) 

0.46 0.01 0.91 0.22 0.80 0.80 

2,2',3,3',4,4',5,5'-
Octachlorobiphenyl 

(PCB 194) 

0.14 0.06 0.84 0.96 0.76 0.77 

2,2',3,3',4,4',5,6-
Octachlorobipenyl 

(PCB 195) 

0.81 0.04 0.50 0.89 0.85 0.85 

(PCB 196 & PCB 203) 0.22 0.01 0.90 0.43 0.66 0.94 
2,2',3,3',4,5,5',6-

Octachlorobiphenyl 
(PCB 199) 

0.21 0.02 0.94 0.29 0.61 0.98 

2,2',3,3',4,4',5,5',6-
Nonachlorobiphenyl 

(PCB 206) 

0.45 0.02 0.88 0.82 0.12 0.13 

2,2',3,3',4,4',5,5',6,6'-
Decachlorobiphenyl 

(PCB 209) 

0.50 0.01 0.82 0.18 0.81 0.77 

pooled 0.27 0.01 0.90 0.99 0.89 0.83 
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Table 4.57 Dioxin-like PCBs and Serum Gamma-Tocopherol: Four Covariate / Full 
Covariate Modeling 

 
 

 
Dioxin-like PCBs 

4 covariates All relevant covariates 
PCB γ-toc PCB*γt 

(interaction) 
PCB γ-toc PCB*γt 

(interaction) 
3,4,4'5-

Tetrachlorobiphenyl 
(PCB 81) 

0.45 0.06 0.17 0.97 0.94 0.88 

3,3',4,4',5-
Pentachlorobiphenyl 

(PCB 126) 

0.63 <0.01 0.50 0.87 0.68 0.65 

3,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 169) 

0.23 0.03 0.77 0.62 0.29 0.21 

2,4,4'-
Trichlorobiphenyl 

(PCB 28) 

0.49 0.01 0.41 0.45 0.59 0.33 

2,3',4,4'-
Tetrachlorobiphenyl 

(PCB 66) 

0.81 <0.01 0.35 0.81 0.34 0.86 

2,4,4',5-
Tetrachlorobiphenyl 

(PCB 74) 

0.78 <0.01 0.15 0.71 0.75 0.24 

2,3,3',4,4'-
Pentachlorobiphenyl 

(PCB 105) 

0.54 <0.01 0.55 0.97 0.17 0.78 

2,3',4,4',5-
Pentachlorobiphenyl 

(PCB 118) 

0.46 <0.01 0.53 0.55 0.60 0.66 

2,3,3',4,4',5-
Hexachlorobiphenyl 

(PCB 156) 

0.70 0.01 0.80 0.39 0.39 0.19 

2,3,3'4,4',5'-
Hexachlorobiphenyl 

(PCB 157) 

0.76 0.01 0.55 0.42 0.64 0.27 

2,3',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 167) 

0.57 <0.01 0.32 0.26 0.66 0.38 

2,3,3',4,4',5,5'-
Heptachlorobiphenyl 

(PCB 189) 

0.92 0.22 0.76 0.56 0.82 0.80 

pooled 0.32 0.01 0.67 0.68 0.92 0.34 
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Table 4.58 Non-Dioxin-like PCBs and Serum Gamma-Tocopherol: Four Covariate / Full 
Covariate Modeling 

 
Non-dioxin-like PCBs 4 covariates All relevant covariates 

PCB γ-toc PCB*γt 
(interaction) 

PCB γ-toc PCB*γt 
(interaction) 

2,2',3,5'-
Tetrachlorobiphenyl 

(PCB 44) 

0.99 0.04 0.69 0.61 0.74 0.98 

2,2',4,5'-
Tetrachlorobiphenyl 

(PCB 49) 

0.74 0.11 0.88 0.36 0.99 0.68 

2,2',5,5'-
Tetrachlorobiphenyl 

(PCB 52) 

0.96 0.02 0.76 0.96 0.58 0.97 

2,2',3,4,5'-
Pentachlorobiphenyl 

(PCB 87) 

0.64 <0.01 0.56 0.19 0.74 0.59 

2,2',4,4',5-
Pentachlorobiphenyl 

(PCB 99) 

0.79 <0.01 0.27 0.63 0.39 0.85 

2,2',4,5,5'-
Pentachlorobiphenyl 

(PCB 101) 

0.54 0.01 0.64 0.35 0.73 0.94 

2,3,3',4',6-
Pentachlorobiphenyl 

(PCB 110) 

0.41 <0.01 0.82 0.33 0.41 0.99 

2,2',3,3',4,4'-
Hexachlorobiphenyl 

(PCB 128) 

0.49 0.05 0.52 0.52 0.56 0.97 

 (PCB 138 & PCB 158) 0.73 <0.01 0.44 0.89 0.93 0.50 
2,2',3,4',5,5'-

Hexachlorobiphenyl  
(PCB 146) 

0.48 <0.01 0.63 0.89 0.80 0.65 

2,2',3,4',5',6-
Hexachlorobiphenyl 

(PCB 149) 

0.21 0.05 0.51 0.08 0.76 0.17 

2,2',3,5,5',6-
Hexachlorobiphenyl 

(PCB 151) 

0.37 <0.01 0.73 0.23 0.87 0.55 

2,2',4,4',5,5'-
Hexachlorobiphenyl 

(PCB 153) 

0.55 <0.01 0.49 0.70 0.69 0.33 

2,2',3,3',4,4',5-
Heptachlorobiphenyl 

(PCB 170) 

0.73 <0.01 0.31 0.99 0.77 0.94 

2,2',3,3',4,5,5'-
Heptachlorobiphenyl 

(PCB 172) 

0.64 <0.01 0.48 0.84 0.80 0.84 
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Table 4.58 (continued) 

 

2,2',3,3',4,5',6'-
Heptachlorobiphenyl 

(PCB 177) 

0.84 <0.01 0.41 0.22 0.65 0.58 

2,2',3,3',5,5',6-
Heptachlorobiphenyl 

(PCB 178) 

0.64 <0.01 0.48 0.56 0.50 0.80 

2,2',3,4,4',5,5'-
Heptachlorobiphenyl 

(PCB 180) 

0.32 <0.01 0.54 0.98 0.69 0.99 

2,2',3,4,4',5',6-
Heptachlorobiphenyl 

(PCB 183) 

0.65 <0.01 0.56 0.57 0.93 0.99 

2,2',3,4',5,5',6-
Heptachlorobiphenyl 

(PCB 187) 

0.87 <0.01 0.35 0.27 0.54 0.79 

2,2',3,3',4,4',5,5'-
Octachlorobiphenyl 

(PCB 194) 

0.19 0.02 0.74 0.82 0.47 0.83 

2,2',3,3',4,4',5,6-
Octachlorobipenyl 

(PCB 195) 

0.66 0.04 0.59 0.91 0.90 0.89 

(PCB 196 & PCB 203) 0.22 0.01 0.94 0.60 0.98 0.84 
2,2',3,3',4,5,5',6-

Octachlorobiphenyl 
(PCB 199) 

0.37 <0.01 0.60 0.37 0.94 0.96 

2,2',3,3',4,4',5,5',6-
Nonachlorobiphenyl 

(PCB 206) 

0.37 0.01 0.86 0.90 0.20 0.11 

2,2',3,3',4,4',5,5',6,6'-
Decachlorobiphenyl 

(PCB 209) 

0.41 0.01 0.83 0.38 0.80 0.57 

pooled 0.62 <0.01 0.32 0.90 0.33 0.92 
 

 Alpha-, delta-, and gamma-tocopherols are naturally occurring forms of vitamin E, 

but are neither inter-convertible nor metabolically interchangeable (IOM DRIs 2000).  All 

three forms are found in foods, but the EAR is determined from alpha-tocopherol alone.  

Significant interactions were observed above for alpha-tocopherol and PCB 149 and 

PCB196/203.  Direction is not indicated by this data run.  The tocopherols have been 

associated with an increased probability of metabolic syndrome in earlier portions of 

this project, a compelling question not yet considered. 
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O. PCB & Nutrient Interactions from the 24-hour Dietary Recalls (Total Nutrients 
File) 
 

Significant interactions were sought between nutrients obtained from NHANES 

2003-2004 Total Nutrients Files, Days 1 & 2, which represent the nutrients obtained 

from foods recorded in day 1 and day 2 dietary recalls.  These data were statistically 

combined with PCB subclasses, total PCBs, dioxins, furans, and dioxin-like chemicals, to 

seek significance across various modeling: quartile, continuous, and continuous 

quadratic.  The purpose was to assess their combined effect on the probability of 

metabolic syndrome. 

Table 4.59 Lycopene, sourced from 24-hour dietary recalls, in statistical interaction with 
PCBs, dioxins, and furans 

 
PCB subclasses model 1 model 2 model 3 

PCB (quartile) 
* L 

PCB (continuous) 
* L 

PCB (continuous) 
* L 

PCB(continuous) 
*PCB(continuous) 

*L 
Non-dioxin-like 

PCBs 
0.5522 0.4514 0.2506 0.2047 

Dioxins, furans, 
dioxin-like PCBs 

0.2038 0.0244 0.7108 0.4797 

Dioxins 0.1433 0.2111 0.0354 0.0220 
Furans 0.0378 0.0255 0.9822 0.7208 

Dioxin-like PCBs 0.1904 0.1474 0.2120 0.1474 
Combined PCBs 0.7151 0.1734 0.6049 0.4784 

 
 
Table 4.60 Vitamin C, sourced from 24-hour dietary recalls, in statistical interaction with 

PCBs, dioxins, and furans 
 

PCB subclasses model 1 model 2 model 3 
PCB (quartile) 

* VC 
PCB (continuous) 

* VC 
PCB 

(continuous) * 
VC 

PCB(continuous) 
*PCB(continuous) 

* VC 
Non-dioxin-like 

PCBs 
0.6514 0.2883 0.2101 0.1650 

Dioxins, furans, 
dioxin-like PCBs 

0.0096 0.0019 0.6003 0.9620 

Dioxins 0.0043 0.0009 0.9560 0.6048 
Furans 0.8416 0.5280 0.9446 0.8620 

Dioxin-like PCBs 0.0223 0.0047 0.9728 0.6424 
Combined PCBs 0.6867 0.0824 0.2538 0.1688 
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Table 4.61 Vitamin K, sourced from 24-hour dietary recalls, in statistical interaction with 
PCBs, Dioxins, and Furans  

 
PCB subclasses model 1 model 2 model 3 

PCB 
(quartile) 

* VK 

PCB (continuous) 
* VK 

PCB 
(continuous) * 

VK 

PCB(continuous) 
*PCB(continuous) 

* VK 
Non-dioxin-like 

PCBs 
0.8905 0.9361 0.1220 0.1207 

Dioxins, furans, 
dioxin-like PCBs 

0.9656 0.9344 0.8030 0.7902 

Dioxins 0.2591 0.3576 0.2677 0.3300 
Furans 0.4112 0.2122 0.6268 0.7608 

Dioxin-like PCBs 0.4337 0.7176 0.9838 0.9400 
Combined PCBs 0.8729 0.8529 0.1512 0.1550 

 
 
 
 
 
Table 4.62 Magnesium, sourced from 24-hour dietary recalls, in statistical interaction 

with PCBs, Dioxins, and Furans 
 

PCB subclasses model 1 model 2 model 3 
PCB (quartile) 

* M 
PCB (continuous) 

* M 
PCB 

(continuous) * 
M 

PCB(continuous) 
*PCB(continuous) 

* M 
Non-dioxin-like 

PCBs 
0.5157 0.1137 0.5184 0.6643 

Dioxins, furans, 
dioxin-like PCBs 

0.9889 0.2892 0.3587 0.2770 

Dioxins 0.3749 0.9114 0.0838 0.0803 
Furans 0.1088 0.0525 0.4151 0.5944 

Dioxin-like PCBs 0.2719 0.4729 0.2997 0.2478 
Combined PCBs 0.4718 0.1305 0.7391 0.9069 
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Table 4.63 Potassium, sourced from 24-hour dietary recalls, in statistical interaction with 
PCBs, Dioxins, and Furans 

 
PCB subclasses model 1 model 2 model 3 

PCB (quartile) 
* P 

PCB (continuous) 
* P 

PCB 
(continuous) * 

P 

PCB(continuous) 
*PCB(continuous) 

* P 
Non-dioxin-like 

PCBs 
0.3404 0.0684 0.7945 0.9944 

Dioxins, furans, 
dioxin-like PCBs 

0.9845 0.2935 0.2804 0.2119 

Dioxins 0.0689 0.4989 0.0206 0.0240 
Furans 0.0648 0.0762 0.7142 0.5198 

Dioxin-like PCBs 0.3573 0.2896 0.3030 0.2304 
Combined PCBs 0.2004 0.0550 0.8128 0.9671 

 
 
Table 4.64 Calcium, sourced from 24-hour dietary recalls, in statistical interaction with 

PCBs, Dioxins, and Furans 
 

PCB subclasses model 1 model 2 model 3 
PCB (quartile) 

* C 
PCB (continuous) 

* C 
PCB 

(continuous) * 
C 

PCB(continuous) 
*PCB(continuous) 

* C 
Non-dioxin-like 

PCBs 
0.5361 0.0616 0.5141 0.3550 

Dioxins, furans, 
dioxin-like PCBs 

0.6325 0.6721 0.0945 0.0819 

Dioxins 0.8430 0.7803 0.1171 0.1209 
Furans 0.1961 0.2298 0.5701 0.4332 

Dioxin-like PCBs 0.8483 0.8073 0.0698 0.0663 
Combined PCBs 0.4230 0.0877 0.4863 0.3405 

 
 
Table 4.65 Magnesium + Potassium + Calcium, sourced from 24-hour dietary recalls, in 

statistical interaction with PCBs, Dioxins, and Furans 
 

PCB subclasses model 1 model 2 model 3 
PCB (quartile) 

* MPC 
PCB (continuous) 

* MPC 
PCB 

(continuous) * 
MPC 

PCB(continuous) 
*PCB(continuous) 

* MPC 
Non-dioxin-like 

PCBs 
0.3934 0.0505 0.9918 0.7859 

Dioxins, furans, 
dioxin-like PCBs 

0.9842 0.3447 0.1840 0.1382 

Dioxins 0.1709 0.5744 0.0272 0.0306 
Furans 0.0717 0.0792 0.7536 0.5502 

Dioxin-like PCBs 0.4380 0.3984 0.1468 0.1128 
Combined PCBs 0.2233 0.0473 0.9859 0.7539 
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Table 4.66 Monounsaturated Fatty Acid (MUFA) to Polyunsaturated Fatty Acid (PUFA) 
ratio, sourced from 24-hour dietary recalls, in statistical interaction with PCBs, 
Dioxin, and Furans 

 
PCB subclasses model 1 model 2 model 3 

PCB (quartile) 
* MtP 

PCB (continuous) 
* MtP 

PCB 
(continuous) * 

MtP 

PCB(continuous) 
*PCB(continuous) 

* MtP 
Non-dioxin-like 

PCBs 
0.3172 0.1977 0.7931 0.6609 

Dioxins, furans, 
dioxin-like PCBs 

0.1799 0.2418 0.3799 0.4755 

Dioxins 0.2708 0.3385 0.2127 0.2659 
Furans 0.2983 0.0675 0.6891 0.9069 

Dioxin-like PCBs 0.9949 0.8415 0.2472 0.2325 
Combined PCBs 0.4749 0.2778 0.7562 0.6412 

 
 
 
 
 
Table 4.67 Polyunsaturated Fatty Acid (PUFA) to Saturated Fatty Acid (SFA) ratio, 

sourced from 24-hour dietary recalls, in statistical interaction with PCBs, 
Dioxins, and Furans 

 
PCB subclasses model 1 model 2 model 3 

PCB (quartile) 
* PtS 

PCB (continuous) 
* PtS 

PCB 
(continuous) * 

PtS 

PCB(continuous) 
*PCB(continuous) 

* PtS 
Non-dioxin-like 

PCBs 
0.9240 0.1767 0.5856 0.5222 

Dioxins, furans, 
dioxin-like PCBs 

0.9757 0.1348 0.9238 0.8989 

Dioxins 0.9673 0.2045 0.5863 0.5199 
Furans 0.9985 0.2559 0.3347 0.3336 

Dioxin-like PCBs 0.9987 0.4559 0.3148 0.3175 
Combined PCBs 0.9982 0.1408 0.9267 0.9302 
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Table 4.68 Dietary Fiber, sourced from 24-hour dietary recalls, in statistical interaction 
with PCBs, Dioxins, and Furans 

 
PCB subclasses model 1 model 2 model 3 

PCB (quartile) 
* F 

PCB (continuous) 
* F 

PCB 
(continuous) * 

F 

PCB(continuous) 
*PCB(continuous) 

* F 
Non-dioxin-like 

PCBs 
0.3935 0.3490 0.3870 0.3258 

Dioxins, furans, 
dioxin-like PCBs 

0.4433 0.6081 0.1787 0.1527 

Dioxins 0.4627 0.4880 0.3208 0.2650 
Furans 0.2463 0.1457 0.2756 0.3544 

Dioxin-like PCBs 0.9538 0.9872 0.1489 0.1453 
Combined PCBs 0.3683 0.7281 0.1017 0.0917 

 
 
 
 
 
Table 4.69 Selenium, sourced from 24-hour dietary recalls, in statistical interaction with 

PCBs, Dioxins, and Furans 
 

PCB subclasses model 1 model 2 model 3 
PCB (quartile) 

* S 
PCB (continuous) 

* S 
PCB 

(continuous) *  
S 

PCB(continuous) 
*PCB(continuous) 

* S 
Non-dioxin-like 

PCBs 
0.1582 0.0419 0.2834 0.4148 

Dioxins, furans, 
dioxin-like PCBs 

0.5052 0.0397 0.2935 0.1747 

Dioxins 0.0249 0.1749 0.0044 0.0021 
Furans 0.1437 0.0741 0.6284 0.4415 

Dioxin-like PCBs 0.2395 0.1103 0.5168 0.3728 
Combined PCBs 0.1992 0.0248 0.3538 0.5286 
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P. PCB and nutrient interactions from food: Modeling of fruit and vegetable 
servings 
 

Significant interactions were sought between fruit and vegetable servings 

obtained from NHANES 2003-2004 Individual Foods Files, Days 1 & 2, which represent 

the foods and fluids obtained from the diet as recorded in day 1 and day 2 dietary 

recalls.  These data were statistically combined with PCB subclasses, total PCBs, dioxins, 

furans, and dioxin-like chemicals, to seek significance across various modeling: quartile, 

continuous, and continuous quadratic.  The purpose was to assess their combined effect 

on the probability of developing metabolic syndrome.  NHANES Individual Food Files 

offer raw data in gram weight.  The U.S.D.A Food and Nutrient Database 2.0 (FNDDS 2.0) 

facilitates extraction of data, however, still in gram weight.  A review of relevant 

literature revealed a 1990 article, in which fruits and vegetables from NHANES II were 

converted into servings (Patterson, et al. 1990).  A modified version of this method was 

adopted. 

 

Table 4.70 Fruit and Vegetable Servings, sourced from 24-hour dietary recalls, in 
statistical interaction with PCBs, Dioxins, and Furans 

 
PCB subclasses model 1 model 2 model 3 

PCB (quartile) 
* FVS 

PCB (continuous) 
* FVS 

PCB (continuous) 
* FVS 

PCB(continuous) 
*PCB(continuous) 

* FVS 
Non-dioxin-like PCBs 0.3886 0.1821 0.6725 0.5504 

Dioxins, furans, dioxin-
like PCBs 

0.6634 0.2977 0.9955 0.8697 

Dioxins 0.1914 0.0466 0.7540 0.5512 
Furans 0.3424 0.3734 0.1701 0.2032 

Dioxin-like PCBs 0.8225 0.6197 0.9332 0.8774 
Combined PCBs 0.7036 0.1915 0.8895 0.7490 
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Q. Above Median Serum Carotenoids Mitigate the Effects of PCBs on the 
Probability of Metabolic Syndrome 

 

Figure 4.21  At or above median 1.75 μmol/L serum carotenoids mitigates the effects of 
PCB 118 on the probability of metabolic syndrome across all quartiles 
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 Only participants with metabolic syndrome were represented on this figure.  The 

serum carotenoid concentrations of participants with metabolic syndrome were 

examined in order to extrapolate risk ratios to the general population based on serum 

carotenoid concentrations, i.e. fruit and vegetable consumption (IOM, 2000).   

 

 This graph analyzed PCB 118 concentrations across four increasing exposure 

quartiles.  Serum carotenoid concentrations were divided at a median cutpoint of 1.75 

umol/L.  Above median observations were represented by the red bars; below median 

observations were represented by the blue bar.  There was a significant increasing trend 

in the probability of metabolic syndrome with below median serum carotenoid 
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concentrations.  While the trend did increase in the above median carotenoid group, it 

lacked significance.   

 

 

Figure 4.22 At or above median 1.75 μmol/L serum carotenoids mitigates the effects of 
PCB 126 on the probability of metabolic syndrome across all quartiles 
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 Only participants with metabolic syndrome were represented on this figure with 

the intent of comparing risk ratios of those with high versus low carotenoid 

concentrations; therefore, high versus low fruit and vegetable consumption (IOM, 2000).   

 

 There was a significant increasing trend in the probability of metabolic syndrome 

with below median serum carotenoid concentrations (blue bar) for PCB 126.   For above 

median carotenoid concentrations (red bar), the trend increased across quartiles 1, 2, 

and 3, but then slightly decreased in quartile.  Overall, the trend for above median 

carotenoid concentrations lacked significance. 



140 
 

Figure 4.23 At or above median 1.75 μmol/L serum carotenoids mitigates the effects of 
PCB 153 on the probability of metabolic syndrome across three quartiles 
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Only participants with metabolic syndrome were represented on this figure.  The serum 

carotenoid concentrations of participants with metabolic syndrome were examined in 

order to extrapolate risk ratios to the general population based on serum carotenoid 

concentrations, i.e. fruit and vegetable consumption (IOM, 2000).   

 

Participants with below median serum carotenoid concentrations, represented by the 

blue bar, had a significant increasing trend for metabolic syndrome.  The above median 

serum carotenoid group, represented by the red bar, also demonstrated an increasing 

trend for metabolic syndrome, but this trend lacked significance overall. 

 

 

Copyright© Carolyn R. Hofe 2012 
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CHAPTER FIVE 

DISCUSSION 

 

Research Question 1.  The prevalence of metabolic syndrome was 22.1% in this 

NHANES 2003-2004 subpopulation of 1058 participants.  The most recent National 

Center for Health Statistics (NCHS) report on metabolic syndrome among adults found a 

prevalence of 34.0%, using both crude and age-adjusted data (Ervin, 2009).  The NCHS 

dataset utilized the NHANES release years 2003-2006, n = 3,423.  The current study was 

taken from two of the same release years, but no reason for the disparity was easily 

apparent beyond those created by different data sets.  The present study assessed 

participants who had been evaluated for serum PCB concentrations, i.e. MEC subsample 

C, a random subsample of approximately 1/3 mobile examination center participants. 

 

Research Question 2.  PCBs were associated with the probability of metabolic 

syndrome, although not consistently.  Logistical regression modeling of serum PCBs on 

the probability of metabolic syndrome (Table 4.22) failed to reach significance.  Only 

three subclasses were examined in this analysis, dioxin-like PCBs (p=0.99), non-dioxin-

like PCBs (p=0.56), and combined PCBs (p=0.24).  Individual PCBs were not examined.  

While disappointing, this was not a deterrent to proceeding.  Cross-sectional studies 

have shown damaging effects of PCBs with metabolic and cardiovascular clinical 

endpoints, and the relationships involving PCBs are complex.  While some of these 

studies used NHANES datasets, they were from NHANES 1999-2002.  Analytical samples 

from NHANES 1999-2002 were based on a 1-2 ml blood sample.  NHANES 2003-2004 

analytical samples were based on 5-10 ml.  The larger blood sample yielded fewer 

observations below the LOD.  While this was a desirable effect on one hand, it also 

diminished the likelihood of a reference group, which was provided by observations 

below the 60% LOD.   
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It is also noteworthy that no true reference group exists with environmental 

chemical contamination human studies.  Everyone has a body burden.  There are no 

zero values.  Demographic and lifestyle covariates known to act as confounders in PCB 

data analysis are relevant as well.  Age, BMI, and diet-related lipids, in particular, are 

known to be independently associated with PCBs.  Some PCB congeners demonstrate a 

non-linear, dose-response relationship.  In cross-sectional analysis of non-dioxin-like 

PCBs and metabolic syndrome (Lee, et al. 2007b), a non-monotonic inverted U-shaped 

curve was prevalent with non-dioxin-like PCBs.  This curve is suggestive of a greater 

effect at lower doses, as might be seen with background exposures through food, breast 

milk, and placental transfer.  While this is certainly worthy of further consideration, it 

may not be reflected in a small p-value.  The lack of a reference group for some PCB 

congeners and non-monotonic curves may dramatically affect the p-value.  The logical 

regression results for PCBs were noted. 

 

In a separate analysis, multivariate logical regression of three individual PCBs – 

118, 126, and 153, found both 126 and 153 to be significant for metabolic syndrome.  

PCB 126, a coplanar PCB with AhR receptor affinity, was significant with ptrend < 0.02 

(Table 4.5).  Several demographic and behavioral covariates were significant in modeling 

with PCB 126; however, all except BMI had a quadratic trend.  In modeling of PCB 153 

(Table 4.9), a significant ptrend < 0.03 was observed for metabolic syndrome.  Covariates 

associated with the etiology of metabolic syndrome were significant for several PCB 153 

models.  However, these all showed a linear trend.   

 

Neither PCB 118 nor PCB 153 had observations below the 60% LOD.  For 

logistical regression modeling, the 1st quartile substituted as the reference group, 

allowing for tertile analysis.  Further complicating matters, there often was observed a 

rise in the first quartile in the probability of metabolic syndrome.  These two factors may 

obfuscate statistical outcomes concerning the influence of PCB exposure on 

cardiometabolic health. 
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PCB 126 did have observations below the 60% LOD allowing for quartile 

multivariate regression analysis.  However, the prevalent first quartile increase in the 

probability of metabolic syndrome may have contributed to the non-linear trend and 

use of polynomial regression for PCB 126 and all covariates, except BMI. 

 

The first quartile trend in increasing probability of metabolic syndrome was 

clearly demonstrated in modeling of PCB subclasses (Figures 4.10 & 4.11).  While 

distinctions between the 2nd, 3rd, and 4th quartiles were unclear in this analysis, the first 

quartile increase in probability of metabolic syndrome in both the dioxin-like and non-

dioxin-like PCB subclasses was distinct and dramatic.  While there are extensive data on 

the low-dose endocrine effects of PCBs, much of it to date has focused on the thyroid, 

estrogen and androgen hormone systems, and neurodevelopment (Brouwer, et al. 

1999).   Cross-sectional and case-control studies have linked PCBs to T2DM and 

metabolic syndrome, showing a quadratic trend for non-dioxin-like PCBs and metabolic 

syndrome, and both quadratic and cubic trends for T2DM and various PCBs (Lee, et al. 

2010 & 2011b). 

 

Research Question 3.  Serum carotenoids were shown to be associated with a 

reduced probability of metabolic syndrome.   Logistical regression modeling (Table 4.21) 

indicated a strong inverse association between pooled total carotenoids and the 

probability of developing metabolic syndrome at p = 0.0004 (coefficient 0.3540).  When 

combined with other serum nutrients – Vitamins A, C, E, D, and B6 – significance was 

observed at p = 0.0002.   

 

In comparisons of the mean differences between carotenoid concentrations of 

individuals with and without metabolic syndrome, a significant benefit was shown for 

individuals with greater carotenoid concentrations at higher PCB exposures.  In Table 

4.18, non-dioxin-like PCBs were assessed across four quartiles of increasing PCB 

concentrations.  Although prevalence of metabolic syndrome was seen to increase with 
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increasing PCB concentrations (15.0%, 17.0%, 21.6%, 25.6%), at the highest, i.e. third 

and fourth, exposure quartiles, the mean serum carotenoid concentrations of 

participants without metabolic syndrome were significantly higher at p < 0.01 and p = 

0.01, respectively.  This demonstrated that carotenoids were protective at higher serum 

PCB concentrations. 

 

 In modeling of dioxin-like PCBs and total combined PCBs (Tables 4.19 & 4.20), 

similar protection was observed.  The prevalence of metabolic syndrome in the fourth 

quartile of dioxin-like PCBs was 28.9%.  However, the mean carotenoid concentrations 

of those without metabolic syndrome in the 4th quartile was also found to be higher, 

with significance observed at p = 0.001 (3rd quartile, p = 0.02).  For the combined PCB 

group, significance was observed at p < 0.01 for both the 3rd and 4th quartiles.  Despite 

higher levels of PCBs, serum carotenoids were protective.   

 

Later evaluations of the effects of above and below median serum carotenoid 

concentrations on individuals with metabolic syndrome and individual PCB congener 

concentrations (Figures 4.21-4.23) were interesting when considered in relation to the 

above analyses.  A significant increase in the probability of metabolic syndrome was 

observed for participants with below median concentrations of serum carotenoids 

(<1.75 µmol/L) at all quartiles of PCBs 118, 126, and 153.  For participants with above-

median serum carotenoid concentrations, however, while an increasing trend was 

observed in the probability of metabolic syndrome, it lacked statistical significance 

overall.  Participants with below median serum carotenoid concentrations in the third 

quartile of PCB 153 were observed to have twice the probability of metabolic syndrome 

than those above the median.  No evaluation was executed for individuals without 

metabolic syndrome in this analysis. 

 

In mean analysis of the individual carotenoids (Tables 4.23 – 4.28), significant 

protections were observed.  Most impressive were the findings of the “overall” row, 
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which represented the sum of all quartiles for all PCBs.  For differences between the 

mean for overall PCBs, an inverse association was seen between the probability of 

metabolic syndrome and alpha-carotene (p = 0.0004), alpha-cryptoxanthin (p < 0.0001), 

beta-carotene (p = 0.01), beta-cryptoxanthin (p = 0.01), lycopene (p = 0.0006), and 

lutein/zeaxanthin (p = 0.02).    

 

Significance was most often observed in the third and fourth quartiles of non-

dioxin-like PCBs, dioxin-like PCBs, and combined PCBs, indicating that the individual 

carotenoids were also protective at higher PCB concentrations against metabolic 

syndrome.  Of the eighteen first quartile observations in this analysis, twelve revealed 

an increase in the probability of metabolic syndrome.  This trend was provocative and, 

again, may represent a low-dose, endocrine-related effect.  It is quite possible that 

down-regulation or saturation of hormone receptors occur at the second quartile, at 

which time a distinctly different linear trend occurs. 

 

 A new modeling was applied (Table 4.29) moving forward in order to first seek a 

statistical interaction between PCBs and serum carotenoids, and then to observe their 

combined effect on the probability of metabolic syndrome.  PCBs and carotenoids share 

some characteristics.  They both concentrate to lipids in serum, are both stored 

primarily in adipose tissue, and some function as ligands for nuclear receptors.  PCBs, 

however, are known to be damaging.  Carotenoids are beneficial.  They have opposing 

effects on the probability of metabolic syndrome.  Statistical significance for a PCB 

carotenoid interaction would also infer significance overall where significance for the 

PCB alone may have been lacking.  While several cross-sectional and prospective studies 

have examined the effects of two factors, i.e. one dependent and one independent 

variable, such as the effect of PCBs on diabetes, no studies were found in these areas 

that considered three factors from the outset.  This complicated data analysis greatly.   

Seeking a statistical interaction between PCBs, either one congener or an entire subclass, 

and carotenoids, either pooled or individual, made intuitive and deductive sense.  For 
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interactions, significance was observed for alpha-carotene: dioxin-like PCBs (p = 0.03) & 

combined PCBs (p = 0.05); and for beta-carotene & non-dioxin-like PCBs (p = 0.04).  A 

near significant interaction was seen for beta-carotene and dioxin-like PCBs (p = 0.06).  

Analysis of individual PCB congeners may have yielded additional significance. 

 

An expanded interaction analysis of dioxin-like PCBs and total serum carotenoids 

found significant interactions for PCBs 28, 74, and 167 using rank analysis of the PCBs in 

continuous, quadratic modeling (Table 4.38).  PCB 167, a mono-ortho-substituted PCB, 

was found to have significant interactions with total carotenoids at p = 0.007.  Both are 

considered to have an effect on the probability of metabolic syndrome, but an opposing 

effect.  Figures 4.12 & 4.13 illustrate their combined effect.  Persons ≥ median 2.0 

µmol/L carotenoid concentrations (Figure 4.12) were found to have a 15% probability of 

developing metabolic syndrome at rank 600 PCB 167.  By contrast, persons with below 

median 2.0 µmol/L carotenoid concentrations (Figure 4.13), demonstrated a 30% 

probability of developing metabolic syndrome at rank 600 PCB 167, and this trend 

stayed elevated at 30% until nearly rank 900.  Persons with low serum carotenoid 

concentrations were observed to have twice the probability of developing metabolic 

syndrome at rank 600 PCB 167.  Serum carotenoids provided clear protective benefits in 

this analysis, most dramatically at the median PCB level.  

 

Various modeling techniques have been used to better understand the serum 

PCB-carotenoid relationship.  Models were run with and without the first quartile to 

determine the effect of the first quartile rise on statistical outcomes.  PCBs were 

assessed using chemical concentration and using rank.  PCBs and carotenoids have been 

assessed individually and as pooled subclasses.  PCBs have been assessed as linear terms, 

continuous and categorical (quartile); and as quadratic continuous terms.  Significant 

interactions were most often shown using the continuous quadratic term; only alpha-

carotene demonstrated significant interactions with total combined PCBs using 
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continuous linear modeling (p < 0.05).    Even so, quartile analysis of the interaction 

between non-dioxin-like PCB subclass and pooled carotenoids was executed next.   

 

Environmental chemical exposure studies usually lack normality.  Quartile 

analysis may be expected to provide information that could be missed using continuous 

analysis and measurements of central tendency and distribution.  To better understand 

the effects of the PCB:carotenoid interaction, the four quartiles were further divided 

into four additional plots each, yielding sixteen plots.  These moving quartiles shifted by 

5% increments: 0-25%, 5-30%, 10-35%...75-100% (Figures 4.14 – 4.17).  The resulting 

sixteen plots of pooled non-dioxin-like PCBs and serum carotenoids showed some 

familiar trends.  The first quartile (0-25%) was distinctly different from the remaining 

fifteen, with a shape similar to a horizontal “s”.  This trend disappeared at the first 5% 

shift, however, with a flattening and slight increase in slope.  A noticeable trend in 

increasing slope could also be observed by the second 5% shift, and continued across 

increasing PCB quartiles, with the most dramatic slopes observed at the third quartile 

(45-70% & 50-75%) plots.  While a slight leveling of slope was observed in the fourth 

quartile, this analysis clearly demonstrated that higher serum carotenoids were 

associated with a lower probability of developing metabolic syndrome.  Further, serum 

carotenoids had a bigger positive effect at higher concentrations of PCBs.   

 

Serum carotenoids, singly and combined, were associated with the reduced 

probability of metabolic syndrome.  Carotenoids provided protection despite the 

presence of higher PCB concentrations.  In some analyses, above-median carotenoid 

concentrations assigned one-half the probability of developing metabolic syndrome.    

 

Research Question 4.  Logistical regression of Vitamins C, D, and B6 indicated a 

strong inverse association with the probability of developing metabolic syndrome, at p < 

0.01 for all three (Table 4.21).  This was neither unexpected nor surprising.  Good 

nutrition has been long associated with good health.  The regression coefficients were 
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larger for serum carotenoids.  When Vitamins C, D, and B6 were combined with serum 

carotenoids, significance overall was observed at p < 0.0002.   

 

Mean nutrient analysis of participants with and without metabolic syndrome 

revealed clear differences between the two groups (Table 4.17).  Persons without 

metabolic syndrome were consistently found to have higher means of all carotenoids, 

and Vitamins C, D, B6, B12, and serum Folate.  Conversely, participants with metabolic 

syndrome were shown to have higher mean concentrations of alpha-, delta-, and 

gamma-tocopherol, and retinol, retinyl-palmitate, and retinyl-stearate.  It is unclear why 

Vitamins E and A would be higher in persons with metabolic syndrome.  However, they 

were consistently observed to be higher. 

 

A five covariate model was applied with PCB subclasses to seek statistical 

interactions in the probability of metabolic syndrome.  Table 4.39 examined pooled 

tocopherols in quartile, continuous linear, and continuous quadratic modeling.  Using a 

continuous linear model, significance was shown for all PCB subclasses and Vitamin E.  

While this analysis did not indicate direction, all tocopherols in this project, as well as 

similar cross-sectional studies (Beydoun, et al. 2011), observed direct associations 

between Vitamin E and probability of metabolic syndrome. 

 

The same five covariate modeling was executed for Vitamin C and PCB 

subclasses (Table 4.40).  Significance was observed for all PCB subclasses with 

continuous linear modeling, as above.  Significance was also seen for non-dioxin-like 

PCBs (p < 0.05) and dioxin-like PCBs (p < 0.01) with quartile analysis.  Combined PCBs 

lacked significance. 

 

Combined carotenoids, tocopherols, and Vitamin C were significant (Table 4.41) 

for all PCB subclasses with continuous linear modeling (p < 0.05).  Significance was also 

seen for non-dioxin-like and dioxin-like PCBs using quartile modeling (p < 0.05). 
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Importantly, these last three analyses (Tables 4.39 – 4.41) were an early attempt 

to seek interactions between serum nutrients and serum PCBs.  Several questions 

remain, among them direction of the association and influence of relevant covariates.  

The relationships between PCBs and serum nutrients have proven challenging, but 

useful. 

 

Four covariate modeling and full covariate modeling was executed for alpha-

tocopherol, delta-tocopherol, and gamma-tocopherol with each individual PCB 

congener to seek significant interactions (Tables 4.53 – 4.58).  The four covariate model 

adjusted for age, gender, race/ethnicity, and PIR.  The full covariate model adjusted for 

all covariates known to be relevant to the etiology of metabolic syndrome.  Only alpha-

tocopherol was observed to be significant for PCB 149, a non-dioxin-like PCB, at p = 0.01, 

4 covariate model, and p = 0.02, full covariate model. Near significance was shown for 

PCB 196/203 at p = 0.05.  PCB 196 and PCB 203 are reported together in NHANES 2003-

2004.  Again, direction of the association was not indicated in this analysis. 

 

The same four covariate and full covariate modeling was executed for Vitamin C 

and individual PCB congeners.  No significant interactions were observed.  Near 

significance was noted for PCB 206, a non-dioxin-like PCB, at p = 0.08, and for overall, 

pooled non-dioxin-like PCBs at p = 0.11 in the full covariate model.  Carotenoids and 

Vitamin C provide antioxidant protection and may work synergistically.  The lack of a 

significant statistical interaction between Vitamin C and PCBs does not negate the 

benefit of Vitamin C as an antioxidant in biological systems. 

 

 The four covariate and full covariate modeling was undertaken in part to 

examine the PCB : carotenoid, PCB : Vitamin C, and PCB : Vitamin E interactions from 

new perspectives.  These models evaluated PCBs as categorical terms, in quartiles; and 

as continuous terms, linear and quadratic (squared).  Neither PCBs nor carotenoids are 

likely to yield normal curves and outliers are common with both.  These data runs were 
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executed to survey any three dimensional characteristics of the data.  Although 

significance was somewhat more often seen with continuous linear and continuous 

quadratic modeling, it was determined that analysis of PCBs would proceed as quartiles, 

and that a broader interpretation of the data could be accomplished with this format.  

 

 Research Question 5.  Fruit and vegetable servings were evaluated from two 24-

hour dietary recalls (Table 4.70).  Foods and fluids were extracted from the NHANES 

database in gram weight and converted to servings using a modified version of a 

method developed to measure fruit and vegetable servings in an NHANES II study 

(Patterson, et al. 1990).  Fruits and vegetables were extracted in one of four groups: 

cooked or raw fruit, cooked or raw vegetable, juice, and salad/raw greens.  An 

interesting observation was that of twelve individuals who consumed between 5-10 

servings of juice, four met the criteria for metabolic syndrome.  This intake level of juice 

throughout the day would be expected to contribute to hyperglycemia in vulnerable 

populations, but these individuals would still score higher in overall fruit servings using 

this method.  Notably, this method was developed to gauge population adherence to 

Five-A-Day recommendations rather than risk reduction related to metabolic disease. 

 

Significant interactions were sought between fruit and vegetables from the diet 

and PCB subclasses using quartile modeling, continuous linear modeling, and continuous 

quadratic modeling.  No significance was observed until the last group of 120 salad 

servings was entered.  Significant interactions were seen for dioxins (not dioxin-like 

PCBs), but polychlorinated dibenzo-p-dioxins, and fruit and vegetable servings, using 

continuous linear modeling (p < 0.05).  Dioxins are most often produced as a byproduct 

of incineration and have no commercial utility.  Dioxin-like PCBs act through similar 

mechanisms as the dioxins to produce toxic effects; both are ligands for the AhR and 

induce gene expression of the cytochrome P450 enzyme, CYP1A1, CYP1A2, and CYP1B1, 

families (Williams, et al. 2005).  The most potent dioxin, 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD), has been assigned a TEF = 1.0.  The coplanar and mono-ortho-substituted 
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PCBs have also been assigned a TEF, determined by the product of the individual 

congener concentration and potency relative to TCDD.  Despite these similarities, no 

PCBs were found to be significant in this analysis. 

 

In Project II, a preliminary analysis of PCBs 118, 126, and 153 was executed with 

fruit servings (Figures 4.4 – 4.6) in the probability of metabolic syndrome.  The fruit 

servings were based on two 24-hour dietary recalls, but the data were converted by the 

MPED 2.0 to “cup equivalents”.  The cup equivalents were based on MyPyramid servings.  

For this data run, cup equivalents were assessed “per 1000” calories to disengage from 

calorie intake.  This permitted assessment of nutrient density per 1000 calories without 

regard for calorie recommendations or total calorie intake.  No associations were 

observed, however, between fruit intake and metabolic syndrome in any PCB model.  

The MPED2.0 database presented some challenges.  “Cup equivalents” were based on 

amounts per 100 gram weight as extracted from Release 18 of the U.S.D.A. National 

Nutrient Database for Standard Reference.  Resulting amounts did not necessarily 

represent a “serving” or make intuitive sense when analyzing intakes.  Further, the 

MPED 2.0 method of disaggregating foods would, for instance, count only the 

strawberries on a cheesecake.  Too much of the diet remained unknown, but may have 

been a factor in disease risk.  No associations were observed between fruit intake and 

reduced probability of metabolic syndrome using the MyPyramid Equivalent Database 

2.0 in models of PCB 118, PCB 126, and PCB 153.  Further, this analysis occurred prior to 

the application of covariate modeling as a surrogate for sample weights.  The use of 

MEC subsample C weight in this analysis across several samples with disparate 

characteristics was structured according to NHANES tutorials to use the smallest sample 

weight.  Applying the covariate model may well yield different results, although the 

same challenges would exist with MPED 2.0.   

 

 A stated objective of Project III was to determine the best method to access the 

full diet of NHANES 2003-2004 subsample C participants (those evaluated for PCB 
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concentrations) for analysis using DQATE.  Analysis of the broader, overall diet was not a 

task easily accomplished with NHANES.  The database more easily accommodated 

extraction and analysis of specific data points related to diet.   

 

Research Question 6.  Nutrient analysis was based on two 24-hour dietary recalls 

(Tables 4.59 – 4.69).  These nutrients were analyzed in quartile, continuous linear, and 

continuous quadratric models for all PCB subclasses, but also dioxins, furans, and 

combined dioxin-like chemicals (dioxin-like PCBs + dioxins + furans).  Statistical 

significance spanned all models for various nutrients, but the recall-sourced nutrients 

with significance included lycopene, Vitamin C, potassium, magnesium + potassium + 

calcium, and selenium.  Dietary carotenoids and food-sourced nutrients are associated 

with lower prevalence of several chronic diseases. 

 

The mean nutrient intake of participants was assessed in Appendix I across fruit 

and vegetable servings.  Participants were classified into one of five groups ranging from 

zero to ≥ 9 servings per day.  Magnesium, potassium, and dietary fiber increased across 

the five groups.  These nutrients are plentiful in fruits and vegetables.  Total sugars and 

total carbohydrate were also higher in the ≥ 9 servings category, although participants 

consuming no fruits and vegetables had higher carbohydrate and total sugar intakes 

than participants in either of the next two groups (>0<3 & 3<6).  Total sugar intake 

represents not only the natural sugars (glucose, fructose, & galactose) found within 

carbohydrate-containing foods, but also the added sugars (sucrose, high-fructose corn 

sweetener) found in refined, sweetened foods, desserts, and soft drinks.  Several 

nutrients were found at the highest mean concentrations in the fourth intake level, 6 up 

to 9 servings per day, and then tapering off at ≥ 9 servings per day.  Only nineteen 

participants comprised this highest intake category, twelve of whom consumed 

between 5-10 servings of juice.  While these participants were more likely to have met 

the recommended fruit and vegetable intake level, questions remain as to the quality of 

their overall diet and lifestyle. 
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General Discussion. The mean age for participants with metabolic syndrome in 

this study was 55.6 years as compared to 46.9 years for those without metabolic 

syndrome.  The subpopulation was fairly equally distributed by gender, with females 

making up 51.2% of the dataset.  Among women, 19.6% met the criteria for metabolic 

syndrome.  Among men, 24.8% met the criteria.   

 

 Of the overall dataset, non-Hispanic whites made up 57.2%, Mexican Americans 

made up 18.6%, and non-Hispanic blacks comprised 16.6%.  The “other” category 

included Hispanics other than Mexican heritage, multi-racial, American Indian, and 

other races that may have been mentioned.  NHANES oversampled Hispanic and black 

participants to increase validity of responses, but corrected for oversampling by 

applying sample weights to ensure the responses were a reflection of the U.S. Census 

for that timeframe.  As mentioned in Chapter 3, the application of NHANES sample 

weights was not an option due to the use of different subsamples with disparate 

characteristics and dedicated subsample weights.  Instead, the variables used by 

NHANES to establish their weighting methodology were used, one of which was 

“race/ethnicity” (Graubard & Korn, 1999).  Among Mexican Americans, 22.8% met the 

criteria for metabolic syndrome.  22.6% of non-Hispanic whites and 18.2% of non-

Hispanic blacks met the criteria of metabolic syndrome.   

 

Demographic and lifestyle characteristics examined by metabolic syndrome 

status revealed some interesting distinctions.  Among participants with metabolic 

syndrome, only 33.8% reported being current cigarette smokers.  Yet, 79.9% of 

participants with metabolic syndrome tested positive for serum cotinine (≥0.015 ng/mL), 

considered a marker for passive and/or active smoking.  Similar trends were seen for 

participants without metabolic syndrome (24.4% current smokers, 79.0% positive serum 

cotinine).  This either illustrates one challenge encountered with subjective data 

collection or this dataset possessed a great many passive smokers.   
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 Alcohol consumption was evaluated categorically as non-drinker, moderate 

drinker, and excessive drinker.  Of the 875 participants that responded to this part of 

the questionnaire, moderate drinkers made up the largest category without regard for 

their metabolic syndrome status.  Of those not meeting the criteria for metabolic 

syndrome, 47.1% were moderate drinkers, whereas 41.8% of moderate drinkers did 

meet the criteria for metabolic syndrome.  

  

 Epidemiological studies have categorized PCBs in various ways to better 

understand their complicated relationships and health effects.  Different congener 

profiles evoke different biological responses.  PCBs have often been classified by 

whether they possess one or more chlorine atoms in the ortho- position.  Non-ortho-

substituted PCBs are dioxin-like and are given a TEF rating based on their toxicity in 

relation to tetrachlorodibenzo-p-dioxin (TCDD), which has the highest toxicity rating.  

Dioxin-like PCBs are ligands for the aryl hydrocarbon receptor (AhR), a nuclear receptor 

that regulates transcription of the CYP 1A1 and 1B1 families.  The mono-ortho-

substituted PCBs have one chlorine atom in the ortho- position, exhibit partial dioxin-

like activity, and are also given a TEF rating, although weaker.  Finally, the di-ortho-

substituted PCBs are non-dioxin-like and follow different pathways.  New evidence 

suggests they are ligands for the constitutive androstane receptor (CAR) transcription 

factor.  Researchers have also categorized PCBs by their degree of chlorination without 

regard for subclass or receptor affinity, finding that dose response curves differed with 

degree of chlorination.  A recent prospective study found that with moderately 

chlorinated PCBs, such as 87, 99, and 118, insulin resistance (determined by elevated 

HOMA-IR) occurred above the 3rd quartile, but with the higher chlorinated PCBs 178, 

194, and 199, HOMA-IR increased from the 1st to the 2nd quartile, then decreased 

through the 4th quartile, forming the inverted U-shape (Lee, et al. 2011b).  Yet, other 

researchers have considered analyzing PCB effects based on underlying hormonal 

effects, i.e. estrogenic, neurotoxic, anti-estrogenic (Wolff M, Camann D, Gammon M, 

Stellman S, 1997).  The majority of studies have classified PCBs according to their 
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classification based on the ortho- positioning of chlorine atoms, and NHANES classified 

PCBs in this manner and placed non-ortho- and mono-ortho-substituted PCBs with 

dioxins and furans exhibiting similar characteristics.  This study followed the NHANES 

classification method.  PCB categorization was but one of the methodological issues that 

could influence results and had to be considered before nutrition could be factored. 

 

   It became clear early on that interpreting the effect of two variables, diet and 

PCBs, on the probability of metabolic syndrome would have to be approached with 

caution.  Both PCBs and dietary intake data lack normality and outliers are common. 

Analyzing the broader diet beyond extracting specific data points became untenable in 

conjunction with serum PCB concentrations.  Earlier NHANES data releases have 

facilitated analysis of the diet using the Healthy Eating Index 2005 (HEI-2005) for 

evaluation.  NHANES 2003-2004 does not allow for dietary analysis using HEI-2005 at 

this time.  The HEI-2005 may be a better measure of intakes when assessing nutrient 

adequacy rather than as a measure of risk reduction for individuals exposed to PCBs or 

at risk of developing metabolic syndrome.  However, it could establish a baseline.   

 

One type of measurement error that can arise with 24-hour dietary intake recalls 

in the assessment of diet-disease relationships concerns foods that are episodically 

consumed.  These are foods that may be a usual part of the diet, but are not consumed 

daily, such as salad greens.   Two 24-hour dietary recalls can miss consumption of these 

foods entirely.  Assessing overall diet in this manner and then relating to a health 

outcome could lead to error, as well as oversight of the true dietary patterns relevant to 

disease risk.  The NHANES 2003-2004 food frequency questionnaire (FFQ) measured 

usual dietary intake for the preceding twelve month period.  While FFQs are known to 

be susceptible to reporting bias, combining a FFQ with 24-hour dietary intake recalls has 

been shown to substantially increase the measurement of true intakes of episodically 

consumed foods (Kipnis, et al. 2009).  These episodically consumed foods would include 

not only salad greens, but most colorful vegetables.   While combining two 24-hour 
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recalls and the FFQ may provide an increased ability to predict true intake, the 

interaction of any and all dietary constituents/food patterns with PCBs must be factored 

first.  

 

 The demographic and behavioral covariates relevant to metabolic syndrome, 

PCB concentrations, and nutrient concentrations, have been previously defined and 

categorized.  Adjustment for these variables after PCB : nutrient statistical interaction 

modeling has proven challenging.  In particular, age has been shown to have a strong 

independent influence on the probability of metabolic syndrome.  Age-adjusted analysis 

of the prevalence of metabolic syndrome for significant PCB : carotenoid interactions 

has been ongoing. 

 

             A significant inverse association has been demonstrated in this study between (1) 

serum carotenoids and (2) food-sourced (dietary recall-sourced) nutrients in modeling 

with PCBs, and (3) fruit and vegetable servings in modeling with polychlorinated 

dibenzo-p-dioxins, in the probability of developing metabolic syndrome.  While several 

of these analyses may be expanded, these results are encouraging.  In particular, serum 

carotenoids have been shown to be strikingly protective in the probability of metabolic 

syndrome, despite even the presence of higher PCB concentrations. 
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CONCLUSIONS 

 

PCBs have neither been manufactured nor distributed since the late 1970s, yet 

they persist in the environment and will take decades or longer to degrade.  Evidence of 

their harmful effects has been well documented in animal and human studies.  Results 

from animal models have suggested nutrient therapies, but these studies often analyze 

one PCB and one nutrient at levels that do not represent actual environmental risk 

ratios.  Importantly, individuals and communities have lived with environmental 

chemical contamination for decades and continue to do so. 

The various modeling that has been developed and executed in this work has 

been undertaken to evaluate the effects of PCBs and serum carotenoids on the 

probability of developing metabolic syndrome.  Further, it was based on the actual 

serum concentrations and clinical parameters of individuals residing in the United States 

in 2003-2004.  Metabolic syndrome is a precondition of CVD and T2DM, which are 

leading causes of morbidity and mortality in Kentucky and the United States.  This work 

represents an initial step toward understanding the complex relationships that 

determine the fate of PCB exposure on cardiovascular and metabolic health.  It is 

noteworthy that these data represent actual pollutant and nutrient concentrations in 

human beings undergoing a comprehensive clinical medical examination to assess 

health status.  

Nutrition is the ideal mode for mitigating the damage caused by PCBs.  On the 

molecular level, a growing number of phytochemicals have been identified as natural 

ligands for nuclear receptors influencing various pathways related to homeostasis.  The 

biochemical and   physiological functions of vitamins, minerals, and fiber to health have 

been long established.  As a behavioral modality, improved nutrition may be best 

gauged by fruit and vegetable consumption.  Nine servings per day seldom occur by 

chance, and the commitment to good nutrition often yields benefits beyond an 

improved nutritional status to other healthy behaviors across the lifestyle.  And, yet, the 

primary route of exposure to PCBs is also through food.  Importantly, the foods 
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suggested in this work to effectively decrease the probability of developing metabolic 

syndrome are the foods less likely to concentrate with PCBs and they are plentiful in 

vitamins, minerals, phytochemicals, and fiber.  Mechanistic studies may undoubtedly 

reveal additional benefits. 

Nutrition professionals daily provide recommendations based on the current 

evidence with confidence that these recommendations will improve the health and 

wellbeing of their clientele.  The current state of evidence recommends a normal weight 

BMI of 18.5-24.9 to prevent the development of chronic disease, in particular the 

cardiometabolic abnormalities addressed in this dissertation.  If the excess adipose 

tissue of a BMI ≥ 25.0 is concentrated with PCBs and other lipophilic contaminants, it 

should be considered that weight loss may not be an entirely safe and recommended 

therapy.  Many questions remain.  However, where weight loss may be neither 

advisable nor achievable, the practice of consistent, sound nutrition may be expected to 

yield positive and dynamic benefits. 
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APPENDIX A 
 

ACRONYMS 

 

AACE  American Academy of Clinical Endocrinologists 
AHA  American Heart Association 
AhR  aryl hydrocarbon receptor 
AICR  American Institute for Cancer Research 
AMI  acute myocardial infarction 
ARMD  age-related macular degeneration 
ATBC  alpha-tocopherol beta-carotene 
ATPIII  Adult Treatment Panel III 
ATSDR  Agency for Toxic Substances and Disease Registry 
BRFSS  Behavioral Risk Factor Surveillance System 
BMI  body mass index 
CARET  Beta Carotene and Retinol Efficacy Trial 
CBC  complete blood count 
CDC  Centers for Disease Control and Prevention 
CEC  Community Engagement Core 
CHD  coronary heart disease 
cm  centimeters 
C-RP  c-reactive protein 
CYP1A1 cytochrome P450 1A1 
CVD  cardiovascular disease 
DASH  Dietary Approaches to Stop Hypertension 
DBP  diastolic blood pressure 
DDE  dichlorodiphenyldichloroethylene 
DDT  1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane,   

- commonly dichlorodiphenyltrichloroethane 
DHA  dehydroascorbic acid 
DNA  deoxyribonucleic acid 
DQATE  Diet Quality Index for Toxin Exposure 
DRIs  Dietary Reference Intakes 
EDCs  endocrine disrupting chemicals 
ERB  Ethics Review Board 
ETS  environmental tobacco smoke 
FOS  Framingham Offspring Study 
FNDDS  Food and Nutrient Database for Dietary Studies 
HCB  hexachlorobenzene 
HDL  high-density lipoprotein 
Hg  mercury 
HOMA-IR homeostatic model assessment of insulin resistance 
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IARC  International Agency for Research on Cancer 
IFF  Individual Foods File 
IFG  impaired fasting glucose 
IGT  impaired glucose tolerance 
IL-10  interleukin 10 
IOM  Institute of Medicine of the National Academies 
IRB  Institutional Review Board 
kcals  kilocalories 
kg  kilogram 
LDL  low-density lipoprotein 
LOD  limit of detection 
m2  per squared meter 
MEC  Mobile Examination Center 
MET  metabolic equivalent 
MetS  metabolic syndrome 
µg/dL  micrograms per deciliter 
µmol/L  micromoles per liter 
mg/dL  milligrams per deciliter 
MI  myocardial infarction 
mmol/L millimoles per liter 
MPED  My Pyramid Equivalents Database 
mV  millivolt 
MUFA  monounsaturated fatty acid 
NADPH  nicotinamide adenine dinucleotide phosphate  
NALFD  non-alcoholic fatty liver disease 
NCEP  National Cholesterol Education Program 
NCHS  National Center for Health Statistics 
NF-kB  nuclear factor kappa-B  
ng/g  nanograms per gram 
ng/mL  nanograms per milliliters 
NGT  normal glucose tolerance 
NHANES National Health and Nutrition Examination Survey 
NHLBI  National Heart Lung and Blood Institute 
NHSR  National Health Statistics Reports 
NIEHS  National Institute of Environmental Health Sciences 
NIH  National Institutes of Health 
nm  nanometers 
NTP  National Toxicology Program 
OR  odds ratio 
PBBs  polybrominated biphenyls 
PCDDs  polychlorinated dibenzodioxins 
PCDFs  polychlorinated dibenzofurans 
PCBs  polychlorinated biphenyls 
pg/g  picograms per gram 
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POPs  persistent organic pollutants 
ppm  parts per million 
ppt  parts per trillion 
PSU  primary sampling unit 
PUFA  polyunsaturated fatty acid 
RDA  Recommended Daily Allowance 
ROS  reactive oxygen species 
RR  relative risk 
SBP  systolic blood pressure 
SC  serum carotenoids 
SFA  saturated fatty acid 
T1DM  Type 1 diabetes mellitus 
T2DM  Type 2 diabetes mellitus 
TCDD  2,3,7,8-tetrachlorodibenzo-p-dioxin 
TEQ  toxicity equivalent 
TLC  therapeutic lifestyle change 
TNF  Total Nutrients File 
UK-SRP  University of Kentucky Superfund Research Program 
USDA  United States Department of Agriculture 
USDHHS United States Department of Health and Human Services 
UV  ultraviolet 
WDP  western dietary pattern 
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APPENDIX B 
 

CONCEPTUAL DEFINITIONS 
 

Bioaccumulation.  The progressive increase in the amount of a substance in an organism 
or part of an organism, which occurs because the rate of intake exceeds the organism’s 
ability to remove the substance from the body. (International Union of Pure & Applied 
Chemistry, 1993) 

Bioconcentration.  A process leading to a higher concentration of a substance in an 
organism than in the environmental media to which it is exposed (Barron, 1990; Toxic 
Substances Hydrology Program, United States Geological Survey) 

Biomagnification.  Biomagnification is the sequence of processes in an ecosystem by 
which higher concentrations of a particular chemical, such as the pesticide DDT, are 
reached in organisms higher up the food chain, generally through a series of prey-
predator relationships (Oxford University, 2008) 

Biotransformation.  Biochemical mechanism employed by target to breakdown the 
agent; enzymatic pathways.  Metabolic activation or detoxification reactions that 
increase hydrophilicity and promote excretion by changing an agent into its metabolite 
which may be more or less toxic to target (Eaton, 2005) 
 
Body burden.  The total amount of a chemical, metal, or radioactive substance present 
at any time after absorption in the body of a human or animal (biology-online.org). 
 
Dose-response relationship.  A relationship in which a change in the amount, intensity 
or duration of exposure is associated with a change, either increase or decrease, in risk 
of a specified outcome (International Programme on Chemical Safety 2001) 
 
Exposure.  Contact between an agent and a target with contact taking place at an 
exposure surface over an exposure period by an exposure route (International 
Programme on Chemical Safety, 2000) 
 
Mixture.  Any combination of two or more agents regardless of source or of special or 
temporal proximity (Agency for Toxic Substances and Disease Registry, 2001) 
 
Persistent organic pollutant.  Persistent organic pollutants (POPs) are chemical 
substances that persist in the environment, bioaccumulate through the food web, and 
pose a risk of causing adverse effects to human health and the environment.  (United 
Nations Environmental Programme) 
 
 

http://toxics.usgs.gov/definitions/food_web.html
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APPENDIX C 
 

HISTORY OF NHANES 
 
 
YEAR   EVENT 
 
1902   U.S. Bureau of the Census established to collect vital statistics 

1949   U.S. National Committee on Vital and Health Statistics  

1951   Subcommittee on National Morbidity Surveys Report 

1953   Merged into U.S. Department of Health, Education, and Welfare 

1953   Proposal for Collection of Data on Illness and Impairment  

1956   National Health Survey Act (Public Law 652) 

   National Center for Health Statistics (NCHS) 

1956-1960  Public Health Services Report to the Surgeon General 

   Public Health Conference on Records & Statistics 

1960-1962  First National Health Examination Survey NHES I 

1963-1965  NHES II 

1966-1970  NHES III 

1969   White House Task Force Report on Nutrition 

1971-1975  National Health and Nutrition Examination Survey 

   NHANES I 

1976-1980  NHANES II 

1982-1984  Hispanic NHANES 

1988-1994  NHANES III 

1999-present  Continuous NHANES 

 
U.S. Vital Statistics System, Major Activities and Developments, 1950-1995; by the CDC, 
NCHS 1997. 
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APPENDIX D 

NHANES SAMPLING STATUS  

 

 

INTERVIEW  STATUS 
= 10,122

NHANES 2003-2004
MOBILE EXAM CENTER 

(MEC) STATUS
= 9,643

Fasting lab work
≈ 50% MEC Exam Status

Pollutant lab work 
≈ 1/3 MEC Exam Status

SERUM POLLUTANT DATA

SUBSAMPLE C SUBSAMPLE B SUBSAMPLE A
VOC

WEIGHT
Dioxins, Furans, 
Coplanar PCBs

N ≈ 1850

Non-dioxin-like 
PCBs

N ≈ 1850

Total combined PCBs

(Class created by 
Cave)

Organochlorine
pesticides

N ≈ 1950

Polybrominated
diphenyl ethers

N ≈ 2000

Polyfluorinated
compounds*

N ≈ 2000

Volatile organic 
compounds*

(whole blood)

Other Subsample C pollutants: Other Subsample B pollutants: Other Subsample A 
pollutants: 

Urinary OrganoPhosphate Insecticides, Urinary Iodine*, Urinary 
Environmental Phenols*, Urinary Current Use Pesticides, Urinary 
Environmental Pesticides*

Urinary Phthalates*, Urinary PAHS Total & Speciated
Arsenics*, Heavy 
metals*, Urinary 
Mercury*

Exclusions:
- < 20 years  old
- Diagnosis  DM
- Data missing necessary for Dx MetS
- < 2 days dietary intake recall data
-Dietary data not considered reliable

* Also available in 2005-2006
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APPENDIX E 

 

FRUIT AND VEGETABLE SERVINGS 

3RD & 4TH PCB QUARTILES 

PARTICIPANTS NOT MEETING CRITERIA OF METABOLIC SYNDROME 

 
 
  
Fruit and vegetable servings of participants within the 3rd and 4th PCB exposure quartiles 

who do not meet the criteria of MetS 
 

 MEAN MINIMUM MAXIMUM 
 
Non-dioxin-like 
PCBs 

3rd 
quartile 

Fruit 1.0848 0 6.0490 
Vegetable 1.6890 0 6.3335 

4th 
quartile 

Fruit 1.1953 0 7.3985 
Vegetable 1.5442 0 6.4715 

 
Dioxin-like PCBs 

3rd 
quartile 

Fruit 1.1244 0 7.3985 
Vegetable 1.7132 0 8.8725 

4th 
quartile 

Fruit 1.2488 0 8.2535 
Vegetable 1.6139 0 6.4715 

 
Combined PCBs 

3rd 
quartile 

Fruit 1.0980 0 8.2535 
Vegetable 1.7564 0 8.8725 

4th 
quartile 

Fruit 1.2570 0 7.3985 
Vegetable 1.5464 0.0090 6.4715 
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APPENDIX F 

 

FRUIT AND VEGETABLE SUBCATEGORY SERVINGS 

3RD & 4TH PCB QUARTILES 

PARTICIPANTS NOT MEETING CRITERIA OF METABOLIC SYNDROME 

 
 
  
Fruit and vegetable subcategory servings of participants within the 3rd and 4th PCB 

exposure quartiles who do not meet the criteria of MetS 
 
 

 MEAN MINIMUM MAXIMUM 
 
 
 
 
 
 
 
 
 
 
Non-dioxin-
like PCBs 

 
 
 
 
3rd quartile 

fruit 1.0848 0 6.0490 
F_CITMLB 0.4954 0 4.9555 
F_OTHER 0.5893 0 4.9555 
vegetable 1.6890 0 6.3335 
V_POTATO 0.3801 0 2.1800 
V_TOMATO 0.3971 0 3.1595 
V_DRKGR 0.1166 0 2.3320 
V_ORANGE 0.0911 0 2.0130 
V_STARCHY 0.0759 0 1.6580 
V_OTHER 0.6280 0 2.4835 

 
 
 
 
4th quartile 

Fruit 1.1953 0 7.3985 
F_CITMLB 0.4908 0 3.9595 
F_OTHER 0.7044 0 6.5385 
Vegetable 1.5442 0 6.4715 
V_POTATO 0.3958 0 3.1140 
V_TOMATO 0.3117 0 2.2895 
V_DRKGR 0.1245 0 1.5500 
V_ORANGE 0.0936 0 1.4685 
V_STARCHY 0.0936 0 2.0410 
V_OTHER 0.5253 0 2.8335 

 
 
 
 
 
 
 
 
 
Dioxin-like 
PCBs 

 
 
 
 
3rd quartile 

Fruit 1.1244 0 7.3985 
F_CITMLB 0.5213 0 4.9555 
F_OTHER 0.6031 0 5.0735 
Vegetable 1.7132 0 8.8725 
V_POTATO 0.4155 0 4.9875 
V_TOMATO 0.4056 0 2.7560 
V_DRKGR 0.1148 0 1.4680 
V_ORANGE 0.0941 0 2.0130 
V_STARCHY 0.0835 0 1.6580 
V_OTHER 0.5996 0 2.6105 

 
 
 
 
4th quartile 

Fruit 1.2488 0 8.2535 
F_CITMLB 0.5147 0 6.8275 
F_OTHER 0.7341 0 6.5385 
Vegetable 1.6139 0 6.4715 
V_POTATO 0.3795 0 3.1140 
V_TOMATO 0.3521 0 3.1595 
V_DRKGR 0.1266 0 2.3320 
V_ORANGE 0.0877 0 1.4685 
V_STARCHY 0.0893 0 2.0410 
V_OTHER 0.5786 0 2.8335 
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APPENDIX F (CONTINUED) 

 

  

 
 
 

 
 
 
 
 
 
3rd quartile 

Fruit 1.0980 0 8.2535 
F_CITMLB 0.5314 0 6.8275 
F_OTHER 0.5665 0 4.9555 
Vegetable 1.7564 0 8.8725 
V_POTATO 0.4292 0 4.9875 
V_TOMATO 0.4133 0 3.1595 
V_DRKGR 0.1228 0 2.3320 
V_ORANGE 0.0843 0 1.0755 
V_STARCHY 0.0816 0 1.6580 
V_OTHER 0.6249 0 2.4835 

 
 
 
 
 
4th quartile 

Fruit 1.2570 0 7.3985 
F_CITMLB 0.4948 0 3.9595 
F_OTHER 0.7621 0 6.5385 
Vegetable 1.5464 0.0090 6.4715 
V_POTATO 0.3668 0 3.1140 
V_TOMATO 0.3170 0 2.2895 
V_DRKGR 0.1211 0 1.5500 
V_ORANGE 0.1047 0 2.0130 
V_STARCHY 0.0936 0 2.0410 
V_OTHER 0.5431 0 2.8335 
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APPENDIX G 

GRAMS TO SERVINGS CONVERSION TABLE 
 

Food and Nutrient Database for Dietary Studies 2.0 
 
The following considerations were used to convert gram weight to servings: 
 
Fruit:  average piece of whole fruit 
  6 ounces juice 
Vegetables: ½ cup cooked or raw 
 
Lower limits: 30 grams fruit or vegetable 
  62 grams juice 
  20 grams salad/raw greens 
 
A large single serving of fruit or vegetable could not exceed 2 servings. 
Juice consumed on a single eating occasion could not exceed 3 servings. 
 
1 serving: Vegetables – many ½ cup portions weight ~ 75 grams 
  Fruits – many whole fruits weigh ~ 120 grams 
 
2 servings: any portion of vegetables (except salad) weighing ≥ 150 grams  
  Any portion of fruit (except fruit juice) weighing ≥ 240 grams 
  Fruit juice: 372-557 grams 
   
3 servings: Fruit juice: ≥ 558 grams 
 
Salad:  Coded as one serving per eating occasion up to a maximum of 4 per day  
  (1 cup Romaine = 45 grams) 
 
Extended as follows: 
Juice: 6 ounces < 12 ounces (186–371 g) 
 12 ounces < 18 ounces (372-557 g) 
 18 ounces < 24 ounces (558-743 g) 
 24 ounces < 30 ounces (744-930 g) 
 
Fruit: 1 serving = 30-239 g   Vegetable: 1 serving = 30-149 g 
 2 servings = 240-449 g    2 servings = 150-269 g 
 3 servings = 450-659 g    3 servings = 270-389 g 
 4 servings = 660-869 g    4 servings = 390-509 g 
 5 servings = 870-1079 g    5 servings = 510-629 g 
 6 servings = 1080-1289 g    6 servings = 630-749 g 
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APPENDIX G (CONTINUED) 

 

Eliminate white potatoes and legumes.  White potatoes were considered as a starchy 
vegetable in this analysis.  Legumes were considered a plant protein or starchy 
vegetable. 

 VEGETABLE FRUIT JUICE SALAD/RAW 
GREENS 

Lower limit 30 grams 30 grams 62 grams 20 grams 
1 serving 30-149 grams 30-239 grams 62-371 grams 1 serving per 

eating occasion  
2 servings 150-269 grams 240-449 grams 372-557 grams 1 serving per 

eating occasion 
3 servings 270-389 grams 450-659 grams 558-743 grams 1 serving per 

eating occasion 
4 servings 390-509 grams 660-869 grams 744-929 grams 1 serving per 

eating occasion-
maximum of 4 

5 servings 510-629 grams 870-1079 
grams 

930-1115 
grams 

 

6 servings 630-749 grams 1080-1289 
grams 

1116-1301 
grams 

 

7 servings 750-869 grams 1290-1499 
grams 

1302-1487 
grams 

 

8 servings 870-989 grams 1500-1709 
grams 

1488-1673 
grams 

 

9 servings 990-1109 grams 1710-1919 
grams 

1674-1859 
grams 

 

10 servings 1110-1229 grams 1920-2129 
grams 

1860-2045 
grams 

 

 
Modified from Patterson, Block, Rosenberger, Pee, Kahle, 1990. 
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APPENDIX H 
 

BASELINE CHARACTERISTICS BY FRUIT AND VEGETABLE INTAKE 
 

Fruit and Vegetable Intake based on 2 day dietary recalls 
FNDDS 2.0 & NHANES Individual Food Files, Days 1 & 2. 

FNDDS2.0 analyzes portion size per gram weight.   
Conversion to servings per day based Patterson, et al. 1990 

 
 

  0 
servings/day 

> 0 < 3.0 
servings 

3.0 < 6.0 
servings 

6.0 < 9.0 
servings 

≥ 9.0 
servings/day 

Number participants 29 427 448 100 19 
Fruit/vegetable intake, mean 

(servings) 
0 1.56 3.71 6.81 10.05 

Age at screening 39.31 46.07 52.37 48.82 49.74 
Gender Male 18 215 205 45 13 

Female 11 212 243 55 6 
 
 

Race/ethnicity 

Mexican 
American 

6 90 79 14 3 

Other 
Hispanic 

0 11 23 3 0 

Non-
Hispanic 

White 

15 229 266 62 12 

Non-
Hispanic 

Black 

8 81 63 12 4 

Other Race – 
Uncluding 

Multi-Racial 

0 16 17 9 0 

Poverty income ratio 2.22 2.53 2.86 2.92 3.44 
Total cholesterol 197.60 202.24 202.24 203.02 202.63 

Cigarette 
smoking status 

never 15 211 239 54 11 
current 13 122 68 14 2 
former 1 94 142 32 6 

Serum cotinine <0.015 2 75 114 21 5 
>=0.015 27 352 332 79 14 

Physical activity 
status 

<=390 mins 4 80 75 12 2 
>390 mins 10 151 222 57 12 

Alcohol status drinker 4 15 21 0 0 
non-drinker 19 284 298 70 16 

 
BMI 

underweight 1 8 5 2 0 
normal 12 131 134 38 5 

overweight 8 129 171 37 9 
obese 8 158 136 23 5 

Dietary 
supplement use 

yes 8 198 260 66 12 
no 21 229 188 34 7 

C-reactive 
protein 

<0.02 3 6 10 2 0 
>=0.02 26 421 438 98 19 
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APPENDIX I 
 

MEAN NUTRIENT INTAKES 
PER SERVINGS FRUITS & VEGETABLES 

 
 
 
 

 0 
servings/day 

> 0 < 3.0 
servings 

3.0 < 6.0 
servings 

6.0 < 9.0 
servings 

≥ 9.0 
servings/day 

Number of 
participants 

29 427 448 100 19 

Fat grams 82.44 82.03 78.68 86.27 83.91 
Carbohydrate 

grams 
280.43 253.59 265.36 328.20 330.77 

Protein grams 77.23 80.45 82.08 98.23 92.42 
Dietary fiber 

(grams) 
11.92 13.56 17.60 23.01 26.53 

Total sugars 
(grams) 

137.85 115.61 124.59 160.31 160.62 

Magnesium (mg) 220.60 255.04 295.22 382.54 400.47 
Potassium (mg) 2131.69 2418.01 2883.88 3878.33 4361.66 

Calcium (mg) 703.66 819.03 878.28 1180.17 1002.26 
Zinc (mg) 10.94 11.99 12.09 14.63 12.59 
Iron (mg) 14.00 15.59 16.07 20.92 17.30 

Selenium (mcg) 102.95 106.74 110.34 128.44 122.18 
Vitamin B6 (mg) 1.48 1.74 2.02 2.61 2.39 

Total Folate (mcg) 332.28 369.98 427.70 562.14 505.92 
Vitamin B12 (mcg) 4.22 5.89 5.31 6.06 4.09 

 
  



172 
 

APPENDIX J 
 

BASELINE & LIFESTYLE CHARACTERISTICS BY METABOLIC SYNDROME STATUS 

 

  

 
Baseline & Lifestyle Characteristics by Metabolic 

Syndrome Status 

 
MetS+ 
N=234 

 
MetS- 
N=82

4 
Gender Female 106 436 

Male 128 388 
 
 
Race/ethnicity 

Mexican 
American 

45 152 

Other Hispanic 9 28 
Non-Hispanic 

White 
137 468 

Non-Hispanic 
Black 

32 144 

Other Race –  
Including Multi-

Racial 

11 32 

 
Cigarette smoking 

Never 109 436 
Former 46 186 
Current 79 201 

Serum Cotinine ≥ 0.015 ng/mL 187 649 
<0.015 ng/ml 47 173 

 
Alcohol consumption 

Non-drinker 63 139 
Non-excessive 

drinker 
81 321 

Excessive drinker 50 221 
 
Physical activity 

Sedentary (no 
physical activity) 

61 233 

Low activity 28 100 
Moderately to 

vigorously active 
34 184 

 
BMI 

<18.5 0 18 
18.5-24.9 32 299 
25.0-29.9 91 275 

≥30 110 230 
Dietary supplement yes 121 436 

no 113 387 
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APPENDIX K 

MEAN SERUM NUTRIENT ANALYSIS BY METABOLIC SYNDROME STATUS 

 

Nutrient Analyte 
umol/L 

Without metabolic 
syndrome Mean 

With metabolic syndrome 
Mean 

Age at Screening 46.866 55.641 
Family Poverty Income Ratio 2.716 2.602 
Alpha-carotene 0.0831683 0.0634927 
Alpha-cryptoxanthin 0.0492606 0.0405013 
Beta-carotene 0.3776834 0.3105232 
Beta-cryptoxanthin 0.1764506 0.1552558 
Lycopene 0.7738627 0.6761464 
Lutein/zeaxanthin 0.2936455 0.2688734 
Alpha-tocopherol 31.5914209 36.4841017 
Delta-tocopherol 0.1530406 0.2054309 
Gamma-tocopherol 5.1014411 6.4090137 
Retinyl palmitate  0.0413989 0.0478064 
Retinyl stearate 0.0132151 0.0145120 
Retinol 2.0141357 2.1117940 
Vitamin C 57.9829448 52.6510823 
Vitamin D (ng/mL) 23.4453883 21.7435897 
Vitamin B6 (nmol/L) 69.9550617 51.6043103 
Vitamin B12 (pmol/L 446.8441677 372.110042 
Folate, serum (nmol/L) 32.3224787 30.5752137 
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APPENDIX L 
 

ANALYTE, NUMBER OF OBSERVATIONS, LOD, MEAN, MEDIAN, GEOMETRIC MEAN 
for 

NON-DIOXIN-LIKE PCBS 
 
 
 

Chemical 
Compound 

 
Variable 

 
N= 

LLOD 
value 

% 
above 
LOD 

 
Mean 

 
Media

n 

Geometri
c mean 

Non-dioxin-like PCBs 
PCB 44 LBX044LA 939 - 100 2.45 2.00 2.01 
PCB49 LBX049LA 933 0.11 99.46 1.54 1.30 1.26 
PCB52 LBX052LA 943 - 100 3.22 2.70 2.62 
PCB87 LBX087LA 939 0.19 83.39 1.07 0.90 0.67 
PCB99 LBX099LA 935 0.10 99.89 6.95 4.20 4.56 
PCB101 LBX101LA 942 0.26 97.03 2.20 1.65 1.62 
PCB110 LBX110LA 933 0.33 99.25 1.62 1.20 1.20 
PCB128 LBX128LA 934 0.22 27.19 0.20 0.08 0.11 
PCB138 & 158 LBX138LA 942 - 100 29.58 18.62 18.07 
PCB146 LBX146LA 943 0.08 99.58 4.67 2.79 2.69 
PCB149 LBX149LA 932 0.11 96.24 0.79 0.60 0.59 
PCB151 LBX151LA 928 0.16 80.60 0.41 0.30 0.27 
PCB153 LBX153LA 943 - 100 39.61 25.80 24.10 
PCB170 LBX170LA 942 0.22 99.58 11.66 8.21 6.95 
PCB172 LBX172LA 938 0.22 82.84 1.60 1.11 0.82 
PCB177 LBX177LA 941 0.22 92.14 2.76 1.65 1.48 
PCB178 LBX178LA 940 0.22 90.74 2.28 1.50 1.21 
PCB180 LBX180LA 942 0.16 99.89 33.24 22.50 19.15 
PCB183 LBX183LA 939 0.16 96.17 3.12 2.00 1.85 
PCB187 LBX187LA 939 0.16 99.47 9.43 5.90 5.36 
PCB194 LBX194LA 919 0.22 92.71 7.53 5.04 3.59 
PCB195 LBX195LA 911 0.42 70.36 1.63 1.10 0.82 
PCB196 & 203 LBX196LA 938 0.16 96.80 6.21 4.20 3.41 
PCB199 LBX199LA 932 0.16 95.82 7.97 4.71 3.82 
PCB206 LBX206LA 933 0.31 98.61 5.21 2.82 2.66 
PCB209 LBX209LA 930 0.31 98.17 3.95 1.58 1.80 
 
LLOD is the value below which the chemical was not detectable. 
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APPENDIX M 
 

ANALYTE, NUMBER OF OBSERVATIONS, LOD, MEAN, MEDIAN, GEOMETRIC MEAN 
for 

DIOXIN-LIKE PCBS 
 
 
 

 

LLOD is the value below which the chemical was not detectable. 
  

Chemical 
Compound 

 
Variable 

 
N= 

LLOD 
value 

% 
above 
LOD 

 
Mean 

 
Media

n 

Geometri
c mean 

 

Dioxin-like PCBs 
PCB28 LBX028LA 923 - 100 5.59 4.98 4.89 
PCB66 LBX066LA 943 0.38 99.15 1.80 1.37 1.43 
PCB74 LBX074LA 943 - 100 8.58 4.90 5.44 
PCB105 LBX105LA 933 0.13 98.71 2.29 1.20 1.36 
PCB118 LBX118LA 936 - 100 11.54 6.00 6.89 
PCB156 LBX156LA 941 0.16 94.79 6.35 4.03 3.26 
PCB157 LBX157LA 929 0.22 80.94 1.52 0.98 0.73 
PCB167 LBX167LA 931 0.22 72.18 1.52 0.90 0.62 
PCB189 LBX189LA 912 0.22 31.80 0.38 0.09 0.16 
3,3’,4,4’,5-
pncb PCB126 

LBXPCBLA 930 8.90 95.27 27.03 17.60 18.61 

3,4,4’,5-tcb, 
PCB81 

LBXTC2LA 930 9.10 39.46 5.86 4.50 5.00 

3,3’,4,4’,5,5’-
hxcb PCB169 

LBXHXCL
A 

931 10.20 76.48 17.24 12.10 11.65 
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APPENDIX N 
 

ANALYTE, NUMBER OF OBSERVATIONS, LOD, MEAN, MEDIAN, GEOMETRIC MEAN 
for 

SERUM CAROTENOIDS, TOCOPHEROLS, VITAMIN C 
 
 
 

 
Chemical 

Compound 

 
Variable 

 
N= 

Fill 
Value/ 
Below 
LOD 

 
% 

above 
LOD 

 
mean 

 
Median 

Geometric 
mean 

 
Serum Carotenoids 

Alpha-carotene LBDALCSI 1050 0.0039 98.67 0.08 0.05 0.05 
Alpha-
cryptoxanthin 

LBDACYSI 1050 0.0025 99.33 0.05 0.04 0.04 

Total  
beta-carotene 

LBDBCCSI 1050 - 100 0.36 0.24 0.25 

Beta-
cryptoxanthin 

LBDCRYSI 1050 0.0025 99.81 0.17 0.13 0.13 

Total lycopene LBDLCCSI 1050 0.0039 100 0.75 0.73 0.66 
Lutein/zeaxanthin LBDLUZSI 1050 0.0025 100 0.29 0.26 0.26 

Vitamin E 
Alpha-tocopherol LBDATCSI 1050 0.1625 100 32.68 28.33 29.89 
Delta-tocopherol LBDDTCSI 1050 0.0497 67.62 0.16 0.12 0.12 
Gamma-
tocopherol 

LBDGTCSI 1050 0.1681 99.90 5.39 4.83 4.48 

Vitamin C 
Vitamin C LBDVICSI 1046 0.01 99.62 56.81 57.30 46.13 
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