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ABSTRACT OF DISSERTATION 

 
 PROTEIN BASED BIOMIMETIC APPROACH TO SURFACE HEMOCOMPATIBILITY 

AND BIOCOMPATIBILITY ENHANCEMENT 
 
 

T. pallidum can survive a primary immune response and continue growing in 
the host for an extended period of time.  T. pallidum is thought to bind serum 
fibronectin (FN) through Tp0483 on the surface to obscure antigens.  A Tp0483 
fragment (rTp0483) was adsorbed onto functionalized self-assembled monolayers 
(SAMs) with FN.  FN capture by adsorbed rTp0483 depended greatly on surface 
chemistry with COO- groups being best for FN binding.  Hemocompatibility was 
determined by analysis of plasma protein adsorption, intrinsic pathway activation, 
and platelet activation.  rTp0483+FN bound an equal or lesser amount of fibrinogen 
(Fg), human serum albumin (HSA), and factor XII (FXII) compared to rTp0483 or FN 
alone and adsorption of rTp0483 prior to FN greatly decreased platelet activation.  
Inhibition of protein binding and platelet activation suggested an attenuated 
hematological response.  Biocompatibility of rTp0483 and FN coated surfaces was 
characterized by macrophage uptake of protein coated polystyrene microspheres 
(PSMs), macrophage adsorption onto protein coated surfaces, cytotoxic effects of 
adsorbed rTp0483 and FN, and TNF-α and NO2- release in macrophages stimulated 
with rTp0483 and FN adsorbed and in solution.  Addition of FN to rTp0483 on plain 
and COO- PSMs reduced phagocytosis compared to rTp0483 alone and on plain 
PSMs compared to FN alone.  On plain PSMs addition of FN to adsorbed rTp0483 
decreased TNF-α generation.  Adsorption of rTp0483 before FN on large, flat COO- 
surfaces decreased macrophage adsorption and TNF-α and NO2- generation.  High 
concentrations of rTp0483 were mildly cytotoxic to macrophages.  FN binding by 
Tp0483 on T. pallidum likely plays a role in antigenic disguise and rTp0483+FN 
coatings may potentially inhibit FN and rTp0483 specific interactions with 
macrophages.  Molecularly imprinted polymer coatings were also examined for 
biomaterial development.  Fouling resistant 2-methacryloyloxyethyl 
phosphorylcholine (MPC) was imprinted with bovine serum albumin (BSA) protein 
templates to facilitate BSA specific binding.  The BSA template was constructed and 
verified and BSA specific binding quantified using quartz crystal microbalance 
(QCM) and enzyme linked immunosorbent assay (ELISA).   BSA imprinted coatings 



were determined to bind significantly more BSA than nonfouling MPC controls 
demonstrating the feasibility of targeted protein capture. 
 
KEYWORDS: Antigenic Disguise, Treponema pallidum, Biomaterial, 
Hemocompatibility, Molecular Imprinting 
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Chapter 1: INTRODUCTION 

 

Medical science is an ever-evolving field comprised of diverse areas of 

research.  The development of biomaterials has been an important facet of the field 

for many years.  The term biomaterial refers to synthetic or natural materials that 

for a period of time augment or replace a portion of the body’s function.  Man has 

long searched for ways to replace this lost function as a consequence of injury or 

disease and in the past century has made significant progress toward this goal.  A 

successful biomaterial is expected to serve its desired function while avoiding 

unfavorable or harmful interactions with its biological environment.  A material that 

fulfills these prerequisites can be referred to as biocompatible.  Many ways of 

improving material biocompatibility exist, one of which is investigated in this work. 

 Use of an adsorbed recombinant bacterial protein from T. pallidum 

(rTp0483) along with human serum fibronectin (FN) to form a biocompatible 

surface coating is explored.  Whole T. pallidum is able to survive the primary 

immune response to infection and grow undetected in the host for extended periods 

of time.1-3  It was theorized that the immune response to T. pallidum is inhibited 

when the surface protein (Tp0483) binds soluble FN.  The phenomenon where a 

microorganism binds native host materials to conceal its presence is often referred 

to as antigenic disguise.  By adsorbing rTp0483 on a surface along with FN it was 

hypothesized that the host response could be attenuated in a manner similar to 

whole T. pallidum. 
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  Control of protein surface adsorption using a molecularly imprinted polymer 

coating was also examined and is presented in Appendix A.  Molecular imprinting is 

a technique used to impart a specific binding affinity for a protein or similar 

biomolecule into a polymer layer.  The molecule of interest is added to a polymer 

solution either alone or immobilized on a substrate and the polymer is polymerized 

around the target.  After the target is removed the polymer layer retains a high 

affinity for the original target.4-6  Use of fouling resistant 2-methacryloyloxyethyl 

phosphorylcholine (MPC) polymer allows nonspecific protein binding to be limited 

while specific binding of a selected protein is facilitated.7-9  By controlling what 

proteins bind to a surface the host response can be directed leading to improved 

material biocompatibility.   

 The primary objective was to investigate the application of surface adsorbed 

rTp0483 with human serum FN in the preparation of a biocompatible coating.  

Specific objectives related to this primary objective are listed below. 

 

- Analyze rTp0483 adsorption onto self-assembled monolayers (SAMs) 

- Determine orientation, surface distribution, and FN binding affinity of 

rTp0483 adsorbed onto SAMs 

- Investigate binding and desorption kinetics of rTp0483 binding onto SAMs 

and FN binding onto rTp0483 on SAMs 

- Elucidate peptide sequences on rTp0483 and FN responsible for binding 
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- Investigate hemocompatibility enhancement of rTp0483, FN, and 

rTp0483+FN coated SAMs by quantifying plasma protein adsorption, 

intrinsic pathway activation, and platelet activation 

- Determine effect of rTp0483, FN, and rTp0483+FN coatings on phagocytosis 

of polystyrene microspheres and surface adsorption of macrophages 

- Compare TNF-α and NO2- generation and cytotoxic effects in macrophages 

when exposed to rTp0483, FN, and rTp0483+FN surface adsorbed and in 

solution 

 

 The objective of the appendix chapter was to determine the feasibility of 

synthesizing a molecularly imprinted MPC polymer layer for capture of specific 

proteins for the purpose of controlling the host immune response.  Specific 

objectives related to this primary objective are listed below. 

 

- Synthesize a BSA imprinted MPC polymer coating 

- Compare BSA adsorption on BSA imprinted MPC to non-imprinted MPC, MPC 

imprinted with a template without BSA, and to hydrophobic BMA 

 

 Chapter 2 provides relevant background related to the material covered.  

Biomaterials are discussed along with host immune and hematological responses.  

The pathophysiology of T. palldium is discussed along with how the surface protein 

Tp0483 is believed to interact with host FN to produce an antigenic disguise.    
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Chapter 3 reviews several analysis techniques employed including quartz 

crystal microbalance (QCM), surface plasma resonance (SPR), atomic force 

microscopy (AFM), and flow cytometry.  Relevant kinetic models used to simulate 

rTp0483 and FN binding and desorption kinetics are also summarized. 

 Chapter 4 covers the process employed to synthesize recombinant T. 

pallidum protein fragment rTp0483.  Protocols employed for protein expression, 

purification, and validation are described.     

 Chapter 5 outlines the assembly of functionalized SAMs, which are used in a 

large number of the studies detailed in this work.  In order to verify successful SAM 

formation experimental data collected is compared to literature and theoretical 

values. 

 Chapter 6 explores the binding of rTp0483 to functionalized SAMs and FN 

binding to adsorbed rTp0483.  The binding and desorption kinetics of rTp0483 onto 

SAMs and FN onto adsorbed rTp0483 are also investigated.  In addition, the 

orientation and surface distribution of rTp0483 monolayers are examined.  Finally, 

antibodies and peptides are employed to probe potential binding sites on rTp0483 

and FN. 

 In Chapter 7 the potential hemocompatibility enhancing effect of adsorbed 

rTp0483 with FN is evaluated.  Adsorption of selected plasma proteins is 

determined along with intrinsic activity of plasma and activation of platelets in 

contact with adsorbed protein layers. 

 Chapter 8 investigates the immunosuppressive effect of adsorbed and free 

rTp0483 with FN by examining the response of macrophages.  Phagocytosis of 
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protein coated microspheres is analyzed in addition to surface adsorption of 

macrophages to protein coated surfaces.  Potential cytotoxicity of rTp0483 with FN 

in solution and adsorbed to surfaces is determined as well.  Finally, macrophage 

activation is quantified by measuring the production of TNF-α and NO2- in response 

to rTp0483 with FN in solution and adsorbed to surfaces. 

 In Chapter 9 overall conclusions based on collected data are made.  The 

relation of FN binding by rTp0483 to T. pallidum antigenic disguise and the viability 

of rTp0483 with FN as a biocompatible surface coating are discussed along with the 

feasibility of molecular imprinting of proteins as a method to control host response 

to a biomaterial. 

 An appendix covers the synthesis of a BSA imprinted MPC polymer coating 

and the subsequent verification of its effectiveness.  BSA binding on BSA imprinted 

MPC surfaces were compared to unpatterned MPC, patterned MPC without BSA, and 

BMA onto which proteins adsorb freely. 
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Chapter 2: BACKGROUND 

 

2.1. Biomaterials 

 The National Institute of Health (NIH) provides the comprehensive definition 

of a biomaterial as follows: any substance, other than a drug, or combination of 

substances, synthetic or natural in origin, which can be used for any period of time, 

as a whole or as a part of a system which treats, augments, or replaces any tissue, 

organ, or function of the body.10  As such, the scope of biomaterial development is 

vast, encompassing many divergent areas of research.  Biomaterials have existed in 

some form since antiquity; however, in the last century great strides have been 

made to advance the field.11  In the 20th century as technology progressed, an array 

of synthetic polymers, metal alloys, and ceramic formulations were developed to 

provide the building blocks of modern biomaterial development.  As a result of these 

advances, countless lives were saved or improved through the implementation of 

biomaterials like stents, joint replacements, and dental prostheses.11   

  

 2.1.1. Biomaterial Classes 

 Biomaterials fall into four broad categories composed of metals, ceramics, 

polymers, and natural materials, which can further be combined in various ways to 

produce an range of hybrid materials.11, 12  Metal biomaterials have been most 

widely employed in the field of orthopedics where mechanical support is required 

for applications like knee and hip replacement.    Important concerns for metallic 

implants are wear and corrosion resistance as well as the modulus of the 
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biomaterial.12, 13  If the modulus is much higher than bone the implant prevents 

stress transfer to nearby cells which leads to bone resorption and implant loosening 

and if the modulus is lower than bone it will not be able to bear normal stresses and 

will fail over time.  Commonly used metal materials include various formulations of 

stainless steel, cobalt chromium alloys, and titanium alloys.  Among these, titanium 

is favored for its good corrosion resistance, appropriate modulus, good 

biocompatibility, and the ability to form a strong bond with natural bone.12, 13   

 Ceramics are also primarily used in orthopedic applications because ceramic 

materials are composed of aligned crystalline minerals like natural bone.12, 14  These 

ceramic biomaterials offer several advantages including good biocompatibility, high 

corrosion resistance, and high mechanical strength; however, ceramics are generally 

more brittle than metals.12, 14  Some examples of currently employed ceramic 

biomaterials include inert materials like alumina as well as bioactive materials like 

hydroxyapatite.  Hydroxyapatite (Ca10(PO4)6(OH)2) is one of the most widely used 

ceramic biomaterials; it degrades naturally over time and its main application is the 

repair of bone defects.12, 14-16  Apatite is a major component of natural bone 

composed of calcium and phosphate and when it is contacts hydroxyapatite in vivo a 

strong chemical bond is formed.   In addition, hydroxyapatite has been shown to 

induce bone differentiation and thus speed up bone regeneration.15, 16   

 Polymeric materials comprise the third class of biomaterials.  Polymers have 

a large range of biomaterial applications including vascular grafts, degradable 

sutures, drug delivery platforms, and tissue regeneration scaffolds.12, 17, 18  Soft 

tissues that provide physiological and biochemical function are found throughout 
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the body; however, there were no biomaterials capable of mimicking these natural 

functions and thus polymers were developed in order to fulfill this need.12  The 

adjustability of polymer composition makes them uniquely qualified to perform this 

task.  By combining different types of monomer units the chemical and physical 

properties of a polymer can be adjusted to meet a specific need.  Polymers can be 

developed to degrade over a set amount of time or to remain whole indefinitely.  A 

degradable polymer is ideal for a drug delivery system in order to allow the 

encapsulated therapeutic to escape or for a tissue scaffold in order to allow for cell 

and tissue migration as well as angiogenesis.12, 17  On the other hand, a 

nondegradable polymer is suited for a applications that require an extended 

residence time such as components of joint implants, heart valves, and vascular 

grafts.12   

 The fourth class of biomaterial is based on naturally occurring substances.  In 

general, the development of natural biomaterials is based around components of the 

extracellular matrix (ECM) and is largely focused on the application of collagen, 

which is the most abundant protein found in the ECM.12, 19  The ECM refers to the 

extracellular network of proteins and polysaccharides that lend support to cells 

located in tissue.  The main components of the ECM are polysaccharide-protein 

complexes known as proteoglycans, which provides resistance against compressive 

stress, regulate cell migration, and affect protein activity along with a number of 

proteins including collagen, elastin, FN, and laminin that provide structural and 

adhesive support for cells.19  Some key advantages of using natural biomaterials are 

that they are degraded by normal enzymatic processes and that they share similar 
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structure with that of the tissue being replaced.  As a result, natural biomaterials 

elicit a more natural healing response including increased cell infiltration, 

proliferation, and differentiation.20  These properties make natural biomaterials 

suitable for tissue regeneration applications.  Disadvantages include poor 

mechanical properties and potential immunogenicity if they are not properly 

processed.20  As research in biomaterial development progresses our understanding 

of underlying biological responses increases and material synthesis techniques 

evolve.  As a consequence, our ability to guide natural biological responses will 

continue to expand and with it our ability to fight disease and repair injury.   

 When analyzing the relative merit of potential biomaterials there are two key 

conditions that must be fulfilled; a biomaterial must successfully execute its desired 

function and it must be biocompatible.  In order to be considered biocompatible a 

material must be nontoxic, nonthrombogenic, noncarcinogenic, nonantigenic, and 

nonmutagenic.21  Material rejection due to these issues resulting in inhibition of 

function and adverse effects is a constant concern for biomaterials so initial 

development focused on minimizing biological interactions between the patient and 

biomaterial.  Such materials are often referred to as inert because they do not 

interact with their physiological environment.11  The majority of host interactions 

are initiated by the adsorption of serum proteins onto the biomaterial surface, thus 

in order to limit these interactions the adsorption of proteins must be prevented.11  

A number of approaches have been developed to accomplish this goal including 

hydrophilic polymers coatings, phospholipid mimicking polymer coatings, and self-

assembled monolayers (SAMs) functionalized with similar hydrophilic head 



 

10 
 

groups.22  Each of these techniques relies on the hydrophilic nature of the material 

to tightly bind a layer of water molecules forming a steric barrier against protein 

adsorption.23  These surface modification techniques are promising; however, they 

are not perfect.  Hydrophilic polymer coatings resist protein and cell interactions so 

in cases where a biologically active surface is desired such coatings are unattractive.  

Moreover, it has been shown that such coatings are not universally effective in 

repulsing protein binding and become less effective over time.24-26  While the 

development of inert materials continues, more recently, a new approach to 

biomaterial development has begun to emerge.   

  

 2.1.2. Approaches to Surface Biocompatibility Enhancement 

 Starting in the 1970s major breakthroughs in molecular biology and 

proteomics revealed various growth factors and enzymes, which have since allowed 

scientists to artificially regulate biological processes.11   As scientists began to grasp 

the complex interactions behind these events biomaterials quickly expanded from 

simply providing mechanical support and limiting biological interactions to actively 

promoting or suppressing biological responses in the targeted area.   These new 

biomaterials that actively interact with the body and moderate biological processes 

are often referred to as bioactive systems.22   

 Natural components of the body are rarely inert.  Each part interacts in 

complex ways with the surrounding environment, thus a completely inert 

biomaterial is less than ideal.  Biomaterials should fulfill any required biological 

functions in addition to mechanical functions, thus the development of bioactive 
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materials is the next natural step.  For example, a material designed for use as a 

vascular graft would be expected to effectively transport blood and bear the 

pressures associated with the process; however, taken a step further, to ensure 

optimal performance the graft should also repulse nonspecific protein and platelet 

adhesion while promoting natural endothelial cell layer formation.  Common 

approaches in the development of bioactive systems focus on the integration of 

adhesion molecules, growth factors, or more general physiochemical interactions 

into the biomaterial.27   

 Adhesion molecules are proteins and peptides that promote specific 

biological events including further protein binding and cellular interactions.  Typical 

protein adsorption onto a biomaterial is nonspecific; however, with this type of 

bioactive system, adsorption is controlled by presenting specific binding sites.27  By 

directing the interactions of a material and its environment, it is possible to tune the 

biological responses to suit a particular application.  Continuing the example of a 

vascular graft, it is possible to selectively promote endothelial cell attachment while 

preventing platelet binding using this technique.  A protein called α4β1 is found on 

the surface of endothelial cells but not on platelets, so by integrating a 

corresponding receptor peptide, REDV from the serum protein fibronectin (FN), 

endothelial cells bound to the graft surface while platelets did not.27  This approach 

is sometimes referred to as biomimetics because it attempts to replicate a natural 

biological response using an artificially constructed system.  Biomimetics forms the 

basis of bacterial antigenic disguise mimicry outlined in the proceeding sections 
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where a bacterial surface protein is combined with a host serum protein in order to 

reproduce the ability of whole bacteria to suppress adverse biological responses.     

 An intriguing alternative to the direct integration of adhesion molecules is 

the newly emerging field of molecular imprinting.  The goal of molecular imprinting 

is to synthesize a biomaterial capable of selectively binding a predetermined target 

molecule.  This is accomplished by copolymerization of monomers with a cross-

linking agent around a template to form a molecularly imprinted polymer (MIP).  

After the polymer is formed the template is removed and the voids left behind retain 

high affinity for the target molecule.4-6   The concept of MIPs is well suited to the 

construction of tissue regeneration scaffolds.  By tuning polymeric scaffolds to 

recognize key proteins like collagen, FN, or laminin the cellular interactions 

between the polymeric biomaterial and cells are improved; however, a major 

obstacle in the development of such MIP systems is nonspecific adsorption of 

unwanted proteins.  Patterning of a non-fouling polymer to promote only the 

adsorption of a desired target protein offers a solution to this issue.  Significant 

work has focused on the integration of 2-methacryloyloxyethyl phosphorylcholine 

(MPC) into a number of polymer systems in order to eliminate nonspecific protein 

adsorption.7-9  MPC polymer mimics a natural cell membrane by integrating 

zwitterionic phorphorylcholine functionality onto a polymer backbone.9   By 

patterning non-fouling MPC a great deal of control over cell and protein interactions 

is afforded.  In addition, by controlling the dispersal of molecular recognition sites 

through the scaffold the spatial distribution of proteins and by extension cells can be 

tailored to correspond to that of natural tissue.5, 6  Using this approach imprinted, 
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non-fouling MPC layers were pursued as a means to prepare tunable biomaterial 

coatings for the control of protein and cell interactions. 

 The integration of growth factors into bioactive systems is also a commonly 

employed method to elicit desired biological responses.  Growth factors are 

biologically active chemicals that regulate cellular responses including cell 

proliferation, differentiation, and protein generation.27  The integration of growth 

factors into a bioactive material has major applications in the field of tissue 

regeneration including the repair of bone defects and soft tissue replacement.  

Release of growth factors has been employed to increase the rate of bone renewal as 

well as promote cell migration along with improved angiogenesis.27, 28  Thus, the 

inclusion of growth factors can improve the speed of wound healing as well as 

improve the overall quality of the resultant tissue compared to natural healing.  

 In addition to specific interactions derived from the inclusion of adhesion 

molecules and growth factors, more general physiochemical properties such as 

surface charge have also been exploited in the development of bioactive systems.  

For example, heparin possesses a strong negative charge, which enables it to act as 

an effective anti-coagulant but it can also promote or inhibit growth factor 

binding.27    Moreover, this property is not limited to heparin but can be observed in 

a number of other materials granted that the surface is sufficiently sulfonated to 

produce a similar negative charge density.  Through the inclusion of adhesion 

molecules and growth factors or via nonspecific methods like surface charge it is 

possible to produce biomaterials that behave in a well-defined manner.  Using these 
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bioactive systems, biomaterials are able to elicit a more natural response thereby 

increasing to efficacy of the treatment.   

  

2.2. Host Immune Response 

 The host immune response plays a significant role in material 

biocompatibility.  The immune system is composed of a number of different 

mechanisms by which the body defends itself against foreign agents.  While this 

system is primarily geared toward fighting infection by pathogenic organisms, 

certain aspects of the response must be considered with regards to implanted 

biomaterials.  The immune system can be divided into two general categories 

known as the innate and the adaptive immune responses.29 

 The innate immune system encompasses a number of general immunological 

responses to foreign materials.  These responses do not change based on the target 

nor does the intensity vary upon re-exposure to the same stimulus.30  Upon entry 

into the body, foreign agents including biomaterials are quickly targeted by 

phagocytic cells like macrophages and dendritic cells.29  This process is represented 

in Figure 2.1.  These cells are programmed to identify, engulf, and digest foreign 

materials based on abnormal surface makeup or by recognition of opsonins bound 

to the surface.  An opsonin is a designation given to proteins, which when bound 

increase the efficiency of phagocytosis.30  Some common examples include the 

complement factor C3b and IgG, which is an antibody produced by B cells.  This 

response is typically accompanied by local inflammation and swelling caused by 

leakage of cells, cytokines, and other proinflammatory substances from the blood  
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Figure 2.1:  Schematic illustrating the process of phagocytosis.  (1) The phagocytic 
cell (macrophage, dendritic cell, etc.) detects antigenic targets and engulfs the 
foreign agent, (2) once in the cell the target is contained inside a phagosome 
envelope, (3) the target is enzymatically degraded inside the phagosome, (4) waste 
products are expelled from the cell, portions of the target may be transported to the 
surface to present the antigens to other immune cells, and chemicals may be 
secreted to direct the immune response.  
 

into nearby tissue.  Cytokines are highly active chemical messengers that are 

particularly important because they impact both the innate and adaptive immune 

response.29  They are secreted from phagocytic cells and immune cells and have 

diverse functions including inflammation, immune cell differentiation, and the 

generation of antimicrobial agents.29  The presence of this inflammatory response 

promotes the migration of additional phagocytes to the affected area, allowing the 

body to better respond to the perceived threat; however, if the event is not quickly 
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resolved chronic inflammation can cause harm to normal tissues around the site.  

The migration of such phagocytic cells to the site of a biomaterial a major concern.  

It is thought that nonspecific adsorption and denaturation of serum proteins on a 

biomaterial surface as well as leeching of ions from metallic implants may play a 

role in the recruitment of these cells.30 

 In addition to phagocytic cells, there is a class of proteins found in the body 

known collectively as complement that acts in a number of ways to combat foreign 

agents.  One serious consequence of the complement response is the lysis of 

targeted cells; however, more applicable to biomaterial biocompatibility is the 

coating of the surface with opsonins like complement factor C3b noted above as well 

as the recruitment of phagocytes.31  Moreover, complement can lead to 

inflammation via widening of blood vessels accompanied by capillary leakage, can 

induce antibacterial activity through the induction of oxidative stresses, and is 

intimately interconnected with blood clot formation on biomaterial surfaces.31, 32  It 

is hypothesized that complement factors may play a role in the adhesion of cells to 

blood-contacting implants and also instigate frustrated phagocytosis against 

biomaterials where degradative enzymes and high energy oxygen species are 

secreted at the surface, which could lead to inflammation and further immune 

response.30   One other innate mechanism of note involves natural killer (NK) cells, 

which are nonspecific immune cells.  NK cells are an important defense mechanism 

against intercellular pathogens because they are able to recognize changes on the 

surface of abnormal cells and as a response bind to and induce cell death referred to 

as apoptosis.29   
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 The second type of immune response is the adaptive immune response, 

which unlike innate immunity is highly specific toward designated targets.  For 

example, the blood of an individual recently recovered from measles contains high 

levels of antibodies against the measles virus; however, the same antibodies are 

ineffective against the closely related mumps virus.29  Whereas the innate immune 

response is rapid and ubiquitous, the adaptive immune response requires time to 

ramp up and also changes and evolves to face each new perceived threat.  The 

adaptive response can be subdivided into two categories: humoral and cell-

mediated immunity.  The humoral response is derived from globular, serum 

proteins known as antibodies and is focused on targeting extracellular agents while 

the cell-mediated response relies on specialized immune cells and is effective at 

targeting intercellular agents.29  Both categories are overseen by specialized 

lymphocytes, which are a class of immune cells.  B cells modulate the humoral 

response; these lymphocytes become active and differentiate into antibody 

secreting cells that recognize foreign agents.  Such targets are often referred to as 

antigens and are typically either proteins or polysaccharides associated with a 

pathogen.29   

 Antibodies are a type of globular protein often referred to as an 

immunoglobulin.  These proteins are composed of two types of polypeptide chains 

(heavy (50,000-70,000 daltons) and light (23,000 daltons)) that are linked to one 

another by disulfide bonds.  The Fab region is highly variable and is responsible for 

the specificity of antibodies to their corresponding antigen targets.  The Fc region is 

a constant region and its composition determines the body’s response to antibodies 
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bound to a foreign agent.  For example, the constant region of the IgM class of 

antibodies activates a component of the complement system while the constant 

region of IgG molecules possesses surface receptors for phagocytic cells.29  A subset 

of the activated B cells remains after infection and retain a memory of a particular 

target, which allows for a stronger and more rapid response to re-infection.   

 T cells are another class of immune cells that oversees the cell-mediated 

immune response.  Whereas B cells recognize whole antigens, T cells target antigen 

fragments displayed on the surface of other cells known as antigen presenting cells 

(APCs).  Macrophages and dendritic cells are the primary APCs located throughout 

the body and as a result the innate and adaptive immune responses are closely 

related.  When these phagocytic cells engulf and digest a foreign agent certain 

fragments are chosen and moved to the surface of the cell.  These cells then migrate 

to nearby lymph nodes where T cells recognize the presented antigen fragment, 

activate and replicate to form T cells specific to the target in question.  The active T 

cells seek out and destroy the foreign agent that expresses the specified antigenic 

target.  These cytotoxic T cells are often accompanied by helper T cells, which act as 

APCs and are typically the driving force behind B cell activation associated with the 

humoral response.  Like B cells, once the threat has been removed a subset of T cells 

remains with specificity toward the antigenic target in order to quickly respond to 

subsequent re-infection.  This response is relevant to biomaterial biocompatibility; 

research has demonstrated that certain metals as well as polymers can induce 

adaptive immune cell based responses often referred to as hypersensitivity.30  T 

cells isolated from patients hypersensitive to nickel responded to nickel presented 
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on the surface of APCs and likewise T cells from patients displaying similar 

hypersensitivity reacted to stimulation with metal ions.30  Through a combination of 

innate and adaptive responses the body is able to mount a formidable defense 

against attack by pathogenic organisms.  Unfortunately, the same mechanisms that 

defend from harm can also induce unwanted side effects in response to well 

intentioned biomaterial implants.     

 

2.3. Biomaterial Hemocompatibility 

 The biological response toward a biomaterial in contact with blood is closely 

related to the host immune response.  When developing a biomaterial it is important 

to understand how the components of the hematological response interact with the 

biomaterial as well as with one another in order to limit their effects.  Several 

criteria define a hemocompatible biomaterial: The biomaterial should not induce 

the formation of blood clots, it should not result in hemolysis or complement 

activation, it should not produce chronic inflammation, it should not introduce wear 

particles or toxic substances into the surrounding environment, and it should suffer 

no inhibition of function.33  Immediately upon exposure to blood, serum proteins 

begin to adsorb to the surface of a biomaterial.  This milieu is composed of a 

multitude of components including fibrinogen, which is important to blood clot 

formation and platelet binding, FN that binds a number of cell types, IgG antibodies, 

which activate the complement system and bind lymphocytes, albumin that can 

passivate the surface against adverse reactions, complement factors, which initiate 

various complement responses, and coagulation factors that regulate clot formation 
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and resolution.34   The hematological response to the biomaterial is dependent on 

the relative amounts of each of these diverse components as well as the manner in 

which each is adsorbed.  As a consequence, protein adsorption is often examined to 

establish the relative hemocompatibility of a biomaterial.34-45  An overview of the 

hematological response is shown in Figure 2.2.  There are four primary proteolytic 

pathways that comprise the hematological response, which are complement 

activation, intrinsic pathway activation, extrinsic pathway activation, and 

fibrinolysis.  Complement activation associated with blood coagulation works in a 

manner identical to the innate immune response.  Some degradation products such 

as C3a are potent inflammatory agents while factors C5-C9 facilitate platelet 

adhesion and aggregation.33  The extrinsic and intrinsic pathways are 

interconnected molecular pathways that are central in the formation of a stable 

fibrin network in a blood clot.  Figure 2.3 illustrates the general mechanism for the 

extrinsic and intrinsic pathways.  The extrinsic pathway is initiated by a 

transmembrane protein, tissue factor (TF), that is displayed on the surface of and 

liberated from platelets and leukocytes after to exposure to inflammatory stimuli or 

physical trauma.46  A reaction between TF and cofactors set in motion a cascade of 

proteolytic reactions that result in the synthesis of thrombin, which cleaves 

fibrinogen into fibrin monomers.  These monomers polymerize to form a fibrin 

network that provides physical support for blood clot formation.33, 34, 43, 46  The 

intrinsic pathway proceeds in a similar manner to the extrinsic pathway; however, it 

is initiated by a surface mediated activation of clotting factor XII (FXII).  FXII exists 

in the blood in an inactive form known as a zymogen, but when it adsorbs to a  
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Figure 2.2: Overview of the hematological response.  (1) Plasma proteins adsorb and 
change conformation, (2) proteins trigger thrombin generation and signal platelet 
activation, (3) activated platelets bind and activate more platelets along with other 
biological pathways, (4) fibrin network forms and a blood clot forms on the surface. 
 

 

Figure 2.3: Intrinsic and extrinsic clotting pathways.  Intrinsic activation initiated by 
adsorption and autoactivation of FXII.  Extrinsic activation initiated by the release of 
TF and activation of FVII.  Both cascades generate a stable crosslinked fibrin 
network for blood clot stabilization. 
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negatively charged surface it undergoes a conformation change producing an active 

product (FXIIa).  FXIIa in turn promotes the conversion of inactive prekallikrein to 

kallikrein, which facilitates FXIIa formation in the presence of high-molecular-

weight kininogen (HMWK).33, 43  Thus, a positive feedback loop is creating 

amplifying intrinsic activity.  The production of FXIIa begins a series of additional 

activation events resulting in thrombin generation and fibrin polymerization.33, 34, 43, 

46  The fourth important pathway is fibrinolysis, which exists to balance coagulation 

by the extrinsic and intrinsic pathways.  Fibrinolysis is the process by which blood 

clots are broken down through the enzymatic degradation of the fibrin network by 

plasmin.46  Plasmin is created through the conversion of plasminogen by either 

tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator 

(u-PA).  The two activators are produced in response to the coagulation cascade; t-

PA is released from endothelial cells exposed to thrombin while u-PA is normally 

present as prourokinase and is subsequently activated due to the presence of 

plasmin and intrinsic pathway precursors.  At the same time, t-PA and u-PA are 

regulated by the presence of plasminogen activation inhibitors (PAIs).46  In addition 

to these humoral responses cellular interactions play an important role in the 

hematological response to a biomaterial the most important of which is the 

involvement of platelets.  Platelets are activated by the thrombin generated during 

coagulation and as a result bind to surface adsorbed fibrinogen proteins.  These 

activated platelets secrete an array of clotting factors that activate additional 

platelets, increase clotting, and cause inflammation.  In addition, changes occur in 

the structure of activated platelets resulting in a more negatively charged surface, 
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which facilitates the surface activated events associated with the intrinsic 

pathway.33, 39, 43  The activation and subsequent aggregation of platelets at the 

surface of a biomaterial is an important indicator of a hematological response and is 

commonly analyzed along with the previously mentioned humoral responses to 

determine the hemocompatibility of a biomaterial.35, 37-43, 45, 47, 48  By attenuating 

protein adsorption, intrinsic pathway activation, and/or platelet activation is may 

be possible to increase surface hemocompatibility. 

 

2.4. Treponema pallidum and Antigenic Disguise 

  Syphilis is a chronic, multi-stage, sexually transmitted disease caused by the 

spirochete bacterium Treponema pallidum.  The invasiveness of T. pallidum 

combined with its ability to thrive in the face of the host immune response are well 

documented.1-3  The structure and composition of the outer membrane of T. 

pallidum differs greatly from typical gram negative bacteria; the outer membrane of 

T. pallidum is a fragile and fluid layer that lacks lipopolysaccharide (LPS), a common 

feature of most gram negative bacteria, as well as surface proteins.49, 50  LPS is a 

potent inflammatory agent that is a major contributor in the immune response to 

pathogenic organisms.49, 50  T. pallidum’s unique outer membrane is thought to play 

a central role in the ability of the bacteria to evade the immune response and 

establish a chronic infection.50-58  The surface of T. pallidum possesses less than 1% 

of the number of proteins commonly found on the surface of E. coli.59, 60  Past 

research has suggested that there are a number of outer membrane proteins (OMPs) 

on the surface of T. pallidum based on interactions with whole bacteria but these 
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studies did not present definitive evidence.  Some of these candidates are a laminin-

binding protein labeled Tp0751, a FN- and laminin binding protein labeled Tp0136, 

and a protein labeled TprK, which was shown to induce the production of opsonic 

antibodies.51, 61, 62  Recently, the first definitive evidence of a T. pallidum surface 

protein was confirmed.  The protein is a barrel assembly machinery protein A 

(BamA), Tp0326, and is associated with outer membrane maintenance.50  Because of 

the paucity of antigenic targets T. pallidum has earned the name the “stealth 

pathogen”.1, 56  Despite this well earned reputation, the bacteria elicits a robust 

immune response during the primary stage of infection, after which it enters a latent 

phase characterized by periodic reoccurrence of disease symptoms.  The initial 

immune response is likely due to recognition of one or more antigenic outer 

membrane proteins OMPs on the bacteria, but it remains unclear why a subset of 

the bacteria are able to persist within the host and produce a secondary infection at 

a later time.51, 54-58  TprK was shown to undergo sequence variation, which may 

contribute to immunoevasiveness and it has also been shown that antibody 

generation against Tp0326 is not sufficient to eliminate T. pallidum.58, 61, 62  For 

Tp0326, antibodies produced in a rabbit host were able to bind to the protein but 

antibodies produced in a human were directed at an inaccessible portion of the 

protein, which rendered them ineffective.50  These results suggest that T. pallidum 

may adapt and change over time in answer to the host immune response.  

 FN is a dimeric glycoprotein with a molecular weight of approximately 440 

kDa that is involved with cell adhesion to the ECM as well as wound healing, cell 

proliferation, and cell differentiation.63  It is a common protein found in the blood as 
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well as in the ECM.  A number of proteins of the integrin family as well as a number 

of other biologically important molecules including fibrin, collagen, and heparin are 

known to interact with FN.63  A schematic of the protein structure is shown in Figure 

2.4.  FN is divided into three distinct component regions labeled I, II, and III.63  

Numerous studies have suggested that the RGD peptide sequence located in the 10th 

type III domain of FN plays a significant role in T. pallidum adhesion along with the 

adjacent PHSRN site found in the FIII9 domain.64-67  Prior studies have also 

suggested that the FIII7 and FIII8 domains may influence binding as well.68  All of 

these sites fall within what is known as the central cell-binding domain of FN 

(CCBD).63  It has also been demonstrated that FN facilitates the binding of different 

species of bacteria through a number of other sites including the heparin and 

collagen/gelatin-binding domains.70, 71  

 Studies have shown that T. pallidum binds to a number of ECM components, 

including FN, as a method of adherence and infiltration through tissue.51-53, 64, 72, 73  

One explanation of T. pallidum’s resistance to antibodies and immune cells is that 

host proteins bind to exposed antigens and render them inaccessible to host 

defenses.  The ability of a pathogen to interface with components of the host in 

order to conceal itself from detection is referred to as antigenic disguise as shown in 

Figure 2.5.  The ability to conceal potential antigens combined with the relative 

paucity of exposed targets in general could account for the considerable 

immunoevasiveness of the bacteria.  FN is a part of the host and thus it exists 

external to T. pallidum.  In order for FN to bind to T. pallidum and induce antigenic 

disguise any FN binding proteins must logically be located on the surface of the  
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Figure 2.4: Structural diagram of FN.  FN is a dimeric protein with two nearly 
identical subunits capable of binding a wide range of biologically relevant 
molecules.  Important binding domains are indicated above.  (Adapted from Zhang 
et al. 2007)69 
 

 

 

Figure 2.5: Illustration of the ability of T. pallidum to coat itself with host FN to 
circumvent an immune response (antigenic disguise).   
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bacteria.  In a study by Cameron et al. two putative outer membrane proteins of T. 

pallidum capable of binding FN, identified as Tp0483 and Tp0155.  When expressed 

in a recombinant system the structure of whole Tp0483 and Tp0155 was unstable.  

Stability was greatly improved while retaining an affinity for FN when each were 

expressed as recombinant N-terminal and C-terminal fragments.53  In addition, work 

by Brinkman et al. identified a third putative membrane protein (Tp0136) that 

demonstrated similar affinity for the ECM components FN and laminin.51  While 

Tp0483, Tp0155, and Tp0136 all bound insoluble ECM FN, only Tp0483 showed an 

affinity for soluble FN.53  Binding of ECM FN can be reasonably assumed to be for the 

purpose of host attachment and tissue infiltration; however, the advantage 

conferred by soluble FN binding to T. pallidum remains unclear.  It is postulated that 

soluble FN is bound for the purpose of obscuring exposed antigenic targets from 

detection.  Such an event was postulated in a study by Lukehart et al. as one possible 

explanation for the resistance to phagocytosis by a subset of T. pallidum.74  

Comparable properties have been observed for hepatitis A virus and group A 

Streptococcus where host proteins are used to mask surface antigens.75, 76  Such an 

event could help to explain how T. pallidum is able to persist after the resolution of 

the primary infection.  Determination of the role of recombinant protein fragment 

rTp0483 with serum FN in T. pallidum antigenic disguise would facilitate a better 

understanding of the pathophysiology of the bacteria and could potentially aid in 

the development of a more effective treatment for syphilis.  Furthermore, mimicry 

of T. pallidum antigenic disguise may be applied to produce a hemocompatible 

surface coating.  As detailed in Section 2.1.1, hydrophilic polymer coatings do not 
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entirely prevent protein adsorption and over time their anti-fouling properties 

degrade.  In fact, no coating currently exists that can repel 100% of protein 

adsorption so it makes more sense to control the type and manner of protein 

adsorption rather than try and prevent it completely.   T. pallidum is thought to 

possess the ability to conceal itself from the host immune response via OMPs that 

bind host proteins like FN.  Based on this, it is postulated that immobilized rTp0483 

with FN retains the antigenic disguise property of whole bacteria and using this 

approach it is possible to reduce or eliminate adverse host reactions to the protein-

coated material leading to improved hemocompatibility and biocompatibility.  
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Chapter 3: EXPERIMENTAL TECHNIQUES AND KINETIC MODELING 
APPROACHES 

 

3.1. Quartz Crystal Microbalance with Dissipation 

 A quartz crystal microbalance (QCM) is a sensitive analysis technique used to 

investigate the adsorption of molecules including proteins, polysaccharides, and 

DNA at solid-liquid interfaces.77-80  An electrical voltage is applied to a quartz 

sensing crystal, which induces the quartz crystal to oscillate at a specific frequency 

inherent to the crystal.  Adsorbed materials shift the resonant frequency, thus by 

measuring the frequency change it is possible to determine the surface mass density 

of adsorbed material as seen in Figure 3.1.  This overview focuses on the Q-Sense E4 

QCM with dissipation (QCM-D) from Biolin Scientific (Linthicum, MD), which is 

shown in Figure 3.2.  The E4 has four independent flow cells than can be analyzed in 

parallel or separately; however, for the sake of simplicity only one is shown in the 

illustration.  Buffer solution is circulated through the system during operation; a 

pump allows the flow rate to be controlled.  Liquid passes through the system once 

and is collected in a waste container.  Q-sense control software on the linked 

computer is able to control the temperature inside the flow cells and it records 

frequency and dissipation energy change as a function of time.  To load a sample for 

analysis the pump is stopped and the tubing moved from the buffer to the sample 

container and the flow restarted.  After the desired time the pump is stopped again 

and the tubing moved back to buffer.   
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Figure 3.1: Illustration of the frequency shift that accompanies adsorption to the 
surface of an oscillating quartz crystal. (A) The crystal oscillates at a base frequency, 
(B) when molecules from solution bind the frequency at which the crystal oscillates 
decreases. 
 
 

 

Figure 3.2: Schematic of Q-Sense E4 instrumentation.  Buffer and samples are draw 
through the QCM-D flow cell using a pump while a linked computer controls 
temperature and records frequency and dissipation energy changes. 
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 In addition to the normal functions of a QCM, a QCM-D system is able to 

discern the viscoelastic properties of the adsorbed layer by applying voltage in a 

pulsile manner and measuring the time required for the oscillation to decay.77-80  

Any change in resonant frequency is measured in hertz (Hz) and the viscoelastic 

properties are determined by measuring dissipation energy (D).  Dissipation energy 

is the sum of all energy lost from the system during a single oscillation divided by 

the total energy in the system. Physical properties such as hydration and layer 

fluidity can lead to increases in the dissipation energy of a sample and, based on 

this, it is possible to compare the binding state of proteins on different surfaces.  

This process is shown in Figure 3.3.  A simple Sauerbrey equation can be employed 

to estimate the surface mass density of the adsorbed layer by assuming that it is 

homogeneous and rigid with a no slip condition between the gold layer and 

adsorbed protein (Equation 1).77, 78  To fulfill these conditions, dissipation energy of 

less than 10-5 is required.78 

 

 

 

Here, Γ is the surface mass density (pg/mm2), n is the QCM overtone (n = 1, 3, 5, 

etc.), and C is a constant for a quartz crystal of a specified resonant frequency.  

Overtone refers to the oscillation frequency of the QCM crystal relative to its 

fundamental frequency.  The fundamental frequency of a typical quartz crystal is 5 

MHz and C = 177 pg/Hz•mm2.  So for example, the 3rd overtone corresponds to 

three times the fundamental frequency or 15 MHz. Moreover, when dissipation  
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Figure 3.3: Illustration of dissipation energy determination in QCM-D.  (A) A 
viscoelastic layer is adsorbed onto an oscillating quartz crystal, (B) the applied 
voltage is removed from the quartz crystal allowing it to return to rest, (C) the 
adsorbed layer continues to oscillate for some time after the crystal returns to rest.  
This time is measured and used to calculate the dissipation energy of the adsorbed 
layer. 
 

energy is low, it can be assumed that the deviation between overtones is negligible 

and data gathered from higher overtones used in place of lower to increase the 

signal to noise ratio.  A diverse range of coated quartz crystals is produced to 

facilitate the immobilization of molecules on the surface to the crystal.  Coated 
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quartz crystals give the QCM-D technique a great deal of customizability for the user 

to develop an assay to suit their needs.     

 

3.2. Surface Plasmon Resonance (SPR) 

 Surface plasmon resonance (SPR) is a refractive index based 

technique useful in the analysis of binding of an analyte molecule from 

solution either to an immobilized ligand molecule or directly to a surface in 

real time.  SPR has been employed to analyze a wide variety of biological 

relevant binding events.81-83  Because the measurements are in real time it is 

possible to extract adsorption data and model the kinetics of adsorption and 

dissociation.  A schematic of the process is shown in Figure 3.4.   

 The principle underlying SPR is based on the reflection of light at the 

interface of two transparent materials with different refractive indices.  A 

beam of near-infrared (IR) light is focused through a prism, reflected off of a 

layer of glass in contact with a thin layer of metal (typically gold), and 

collected at a detector.  When the beam of light strikes the metallic surface at 

a specific angle, known as the SPR angle, electrons located at the interface 

enter a resonant state, which leads to the propagation of short-range 

evanescent waves from the surface through any adsorbed materials.  As a 

consequence, there is a measureable decrease in the intensity of reflected 

light at the SPR angle, which is measured by the detector.  The SPR angle is 

affected by a number of parameters most important of which are the 

refractive indices of the materials used, the type of metal used to induce  
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Figure 3.4: Schematic of the SPR process: near-IR light beam focused through 
a prism, reflected off of a gold-coated surface, and collected for analysis.  At 
the SPR angle, which is dependent on the surface mass density of adsorbed 
material, there is a measureable loss in light intensity.  The change in the SPR 
angle is measured and related to the change in surface mass density.    
 

plasmon resonance, and the surface mass density of materials adsorbed at 

the interface.  For a specific system the refractive indices and the type of 

metal are predetermined and unchanging; thus, any change in SPR angle can 

be directly related to a change in surface mass density.  

 One of the leading manufacturers of SPR instruments is Biacore AB 

(Uppsala, Sweden).  The instrument used for experimentation was the 

Biacore X unit, which possesses two individual channels denoted as flow 

channel 1 (FC1) and flow channel 2 (FC2).  This allows for measurement and 
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subtraction of background noise simultaneously with an experiment and for 

each surface to be used for two separate trials.  Figure 3.5 illustrates the 

components that compose the Biacore X system while Figure 3.6 shows a 

schematic of the potential flow patterns the Biacore X is capable of 

producing.  All aspects of the Biacore X are controlled through Biacore 

software located on the linked computer system.  Liquid flow is modulated 

through a syringe pump while the pressure in the system is regulated by an 

external pump system.  Temperature, flow rate, pressure, and the SPR 

response of a surface are all monitored in real time by the computer software 

package. 

 Prior to testing, the gold-coated glass chips (Biacore) can be 

functionalized with the ligand of interest much like coated QCM crystals.  A 

number of ligand immobilization strategies exist ranging from chemical 

bonding to physical adsorption.   Once ready for analysis, the gold-coated 

glass surface is mounted onto a plastic support slide using adhesive tape and 

inserted into the instrument.  After being docked, the chosen analyte solution 

is introduced at the injection port, passed through one or both flow cells, and 

the response measured. Any change in SPR signal is measured in response 

units (RU), where a change of 1 RU was equivalent to a change of 1 pg/mm2 

of protein on the surface.84  A sample SPR response (sensorgram) is shown in 

Figure 3.7; by subtracting the response prior to the injection of analyte from 

the value afterward it is possible to determine the amount of analyte that 

bound to the immobilized ligand. 
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Figure 3.5: Schematic of Biacore X instrumentation.  Running buffer constantly 
circulates through the system.  Flow rate, temperature, and pressure are controlled 
by computer software.  A sample is injected into the sample injection port and flow 
through one or both flow cells.  The SPR response is measured in RU and displayed 
on the computer as a function of time.  
 

 

Figure 3.6: Schematic of available BIACORE X flow configurations.  (A) FC1-2 
(analyte flows through both FCs in series), (B) FC1 (analyte injected into 
FC1), (C) FC2- (analyte injected into FC2). 

A. B. C. 
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Figure 3.7: Overview of SPR data collection.  (A) Schematic illustrating the shift in 
SPR angle as the surface mass density changes (SPR angle corresponds with the 
angle where the intensity of reflected light is lowest), (B) Sample sensorgram 
depicting the change in mass surface density as a function of SPR response in RUs 
over time.  The two quantities are related by the following conversion: 1 RU = 1 
pg/mm2. 
 

3.3. Atomic Force Microscopy 

 Atomic force microscopy (AFM) is a topographical mapping technique that 

can be used in a number of different working environments including open 

atmosphere, vaccum, and in solution.85-88  AFM is the only technique currently 

capable of producing resolutions on the sub-nanometer scale in a liquid 
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environment.85  For this reason it is an attractive method of mapping the 

topography of surface adsorbed proteins as well as cells.69, 88-90   Work by Zhang et 

al. compared the structure of chemically conjugated and physically adsorbed FN on 

polyethylene terephthalate surfaces.69  Another study by Ge et al. analyzed astrocyte 

cell monolayers as well as fresh tissue samples using AFM. 88  In AFM a cantilever is 

moved across a surface and the force between the surface and the cantilever 

analyzed; a laser is reflected off of the back of the cantilever, as shown in Figure 3.8, 

in order to determine the deflection of the cantilever.  The force between the 

cantilever and surface can found indirectly from Hook’s law (F=-kx), where F is the 

force between cantilever and surface, k is the cantilever spring constant, and x is the 

deflection distance.  The cantilever can either physically contact the surface, or stop 

just short of the surface as shown in Figure 3.9.  Contact mode applies a constant 

force as the cantilever moves across the surface.  This technique is used when 

damage to the surface as a consequence of applied forces is not a concern or when 

the response of a sample to an applied force is being investigated.  Non-contacting 

mode is used when the target is unstable or delicate such as is the case for many 

biological samples.  In some cases, an intermittent contact mode may also be 

employed by tapping the surface lightly with the cantilever tip.  With both 

approaches the cantilever is vibrated at a selected frequency and forces determined 

based on the effect the surface has on this resonance.  These approaches allow for 

mapping while preserving the integrity of the materials being examined.  
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Figure 3.8: Illustration of laser based force measurement during AFM analysis.  
Force between the cantilever and surface is calculated based on the stiffness of the 
cantilever and the distance that the cantilever is deflected. 
 
 

 

Figure 3.9: Schematic shows the operation of contact and non-contact AFM.  (A) In 
contact AFM the cantilever tip is in direct contact with the surface and deflection is 
largely in response to topographic features, (B) in non-contact AFM the cantilever 
never makes contact with the surface and deflection is entirely based on the forces 
between the tip and surface. 
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3.4. Flow Cytometry 

 Flow cytometry is an analysis technique used to investigate multiple physical 

characteristics of micron sized particles, typically cells, as they flow through a beam 

of light.  Such characteristics as particle size, internal granularity, and fluorescence 

can be quickly measured for large populations of cells.  Figure 3.10 illustrates the 

general layout of the LSRII flow cytometry unit from BD Sciences (Franklin Lakes, 

NJ) that is discussed here.  BD FACSDiva 6.1.3 software located on a linked computer 

system controls the system.  Collection of side-scattered light (SSC), forward-

scattered light (FSC), and fluorescence can be calibrated as well as the number of 

cells to be analyzed.  Samples are prepared in compatible test tubes, which are 

loaded into the cytometer.  An integrated flow system draws the sample from the 

test tube and through the instrument.  Cells are sorted into a single file line that 

passes through a beam of light where detectors measure SSC, FSC, and any 

fluorescent light produced by the sample as shown in Figure 3.11.  FSC is the portion 

of light that is diffracted but still travels in a largely straight line; it is an indicator of 

the size of the sample.  SSC is measured at a 90° angle to the beam of light.  SSC is the 

light that is reflected within the sample and is related to the internal granulation 

and complexity of the sample.  Also of note is that that population of cells analyzed 

needs not be homogenous.  Based on the physical characteristics of the sample flow 

cytometry analysis can differentiate between multiple cell populations within a 

heterogenous mix.  In a study by Autissier et al. the relative amounts of monocytes, 

lymphocytes, and dendritic cells were investigated in a rhesus macaque model in 

order to better understand how these immune cells react to simian  



 

41 
 

 

 
Figure 3.10: Schematic of AFM instrumentation.  Sample loaded and the system 
automatically pulls it through the system.  FSC, SSC, and fluorescence detectors 
calibrated via computer software.  In the core cells are organized into a single file 
line, which passes through a beam of light.  Detectors record FSC, SSC, and 
fluorescence intensity at set wavelengths. 
 

 

Figure 3.11: Illustration of single cell flow cytometric analysis.  A light source is 
focused on a cell and the response recorded.  Some light is refracted but still travels 
forward (FSC) and is related to the size of the sample.  Other light is reflected within 
the sample (SSC) and can be used to determine the relative internal complexity of 
the sample.  Fluorescent excitation of the sample can also be recorded, which can be 
used to track biological events and detect biomolecules using fluorescent labels.  
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immunodeficiency virus (SIV) with the hope of extending the findings to the 

treatment of AIDS.91  Flow cytometry can also be used to identify biomolecules on 

the surface of cells using fluorescent labeling and to visualize biological responses 

like cell cytotoxicity and phagocytosis.  A study by Dyer et al. used flow cytometry to 

identify eosinophils in mouse tissues using fluorescent antibodies specific to a 

surface receptor.92  Eosinophils are cells recruited by inflammatory agents and 

which plays a role in allergic and hypersensitivity responses.92  In another work by 

Kim et al. flow cytometry was used to track the cytotoxicity of NK cells toward 

cancer cells by loading the cancer cells with a dye then tracking its release as a 

consequence of apoptosis by NK cells.93  At the same time, Kim et al. investigated the 

expression of biomarkers on the surface of the NK cells associated with cell lysis.93  

 

3.5. Protein Adsorption Kinetics 

 The kinetics of protein adsorption play an important role in the function of 

the protein once bound.  Often, protein activity is affected due to changes in the 

conformation of the adsorbed protein or non-optimal orientation.94  This is 

especially important when an adsorbed protein is expected to elicit a biological 

response or interact in a specific fashion with another molecule.  An understanding 

of adsorption kinetics allows for the intelligent design of materials that result in 

optimal protein function.  For the purposes of this work a Biacore X SPR 

spectrometer was employed in the investigation of protein adsorption kinetics.  This 

platform provides a controlled environment with consistent environmental 

conditions in order to accurately determine kinetic parameters.  For determination 
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of adsorption kinetics a high flow rate across the surface is suggested along with a 

relatively low amount of protein in solution.95  When the affinity between a protein 

and a surface is very high it is possible that the mass transport of protein from bulk 

solution to the liquid-solid interface may be slower than adsorption.  This can also 

be the case when there are a large number of active binding sites located on the 

surface.  Increasing the flow rate over the surface increases the rate of mass transfer 

while reducing the amount of protein in solution decreases the rate of adsorption.  

Alteration of one of both of these parameters is often enough to eliminate mass 

transport effects; however, if they persist there are methods to account for the 

effects, which are detailed in the modeling overview below. 

 Three models of protein adsorption kinetics will be reviewed.  The first of the 

three is a simple 1:1 Langmuir binding model of a protein to a surface.  The second 

is a 1:1 Langmuir model that takes into account potential mass transport effects.  

The third model is a bivalent analyte model, which assumes a two step binding 

event. 

 

 3.5.1. 1:1 Langmuir Binding 

 The binding kinetics for 1:1 Langmuir binding are represented in Equation 2 

and the related rate equations are summarized in Equations 3 and 4.  A is a molecule 

in solution, B is a binding site on the surface, and AB is a protein A bound to site B on 

the surface.  In a 1:1 Langmuir binding event a single protein molecule binds with a 

single binding site on the surface.  The bulk concentration of A is assumed to be 
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constant thus the rate equations are written with respect to the change in the 

number of occupied sites on the surface. 

 

 

 

 

 

The injected concentration of A is known, and the number of occupied sites is 

assumed to be zero initially ([AB]0=0).  The maximum binding capacity (Rmax) is 

determined empirically for each surface and assumed to be equal to the number of 

sites B initially ([B]0=Rmax).  The forward reaction is regulated by the rate constant 

ka while the reverse reaction is regulated by the rate constant kd.  BIAevaluation 

software v3.0.2 program is then used to calculate adsorption and dissociation 

kinetics by fitting experimentally obtained SPR adsorption data. 

 

 3.5.2. 1:1 Langmuir Binding with Mass Transport Limitations 

 In this model, the basic 1:1 Langmuir model is modified to account for 

limitations in the transfer of A from bulk solution to the surface.  Equations 5 and 6 

illustrate the modified process.  When mass transport limitations are accounted for 

adsorption becomes a two-step process.  First, A moves from the bulk solution to the 

surface and once it arrives it binds to B.  The impact on adsorption kinetics is 

accounted for through the addition of an extra term in Equation 7 including a mass 
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transfer coefficient (kt) along with a term for the bulk concentration of A in solution 

([A]s), which is assumed to be constant.  The remaining rate equations are shown in 

Equations 8 and 9. 

 

 

 

 

 

 

 

As previously discussed, the injected concentration of A is known, all sites are 

assumed to be empty initially ([AB]0=0), and the total number of sites is determined 

empirically for each surface that is analyzed ([B]0=Rmax).  Additionally, the 

concentration of A is assumed to be zero initially ([A]0=0).  BIAevaluation software 

v3.0.2 is then used to determine the binding and dissociation kinetics for both 

reactions. 

 

 3.5.3. Bivalent Analyte 

 A bivalent analyte adsorption model represents a system where a molecule 

in solution (A) adsorbed to a binding site on a surface (B) as described above; 

however, once AB is formed, it reacts with a second ligand B resulting in the 
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complex AB2.  Like 1:1 Langmuir binding, the concentration of A is assumed to be 

constant, and the equations solved with respect to sites on the surface occupied by 

either AB or AB2.  These reactions are represented below in Equations 10 and 11 

and the corresponding rate equations are shown in Equations 12-14.  The forward 

reactions are regulated by the rate constants ka1 and ka2 while the reverse reactions 

are regulated by the rate constants kd1 and kd2. 

 

 

 

AB + B ⇔ AB2 (11)  

 

∂ B[ ]
∂t

= − ka1 A[ ] B[ ]− kd1 AB[ ]( )− ka 2 AB[ ] B[ ]− kd 2 AB2[ ]( ) (12)  

 

∂ AB[ ]
∂t

= ka1 A[ ] B[ ]− kd1 AB[ ]( )− ka 2 AB[ ] B[ ]− kd 2 AB2[ ]( ) (13)  

 

∂ AB2[ ]
∂t

= ka 2 AB[ ] B[ ]− kd 2 AB2[ ] (14)
 

 

The same assumptions are made for this model as detailed above.  In addition, the 

initial concentration of AB2 is assumed to be zero ([AB2]0=0).  BIAevaluation 

software v3.0.2 is then used to determine the binding and dissociation kinetics for 

both reactions based on adsorption sensorgrams. 
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Chapter 4: EXPRESSION AND PURIFICATION OF RECOMBINANT T. PALLIDUM 
PROTEIN FRAGMENT rTP0483 

 

4.1. Introduction 

 Tp0483 is a FN binding protein believed to reside on the surface of T. 

pallidum and is thought to play a role in the antigenic disguise of the bacteria.53  This 

protein has been successfully expressed and purified by Cameron and a similar 

procedure is used here to express a 22 kDa, recombinant fragment of Tp0483 

(rTp0483) in an E. coli system.96  Once rTp0483 had been expressed and purified its 

purity and concentration were determined using a combination of sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE), western blot, and 

bicinchoninic acid (BSA) assay.  

 SDS-page is a technique developed for the separation of biomolecules based 

on molecular weight.  SDS is an anionic detergent that is added to the protein 

solution; it binds to and unfolds the protein giving it a uniform negative charge.  This 

is necessary because the charge of proteins with similar molecules weights often 

varies greatly.  The denatured protein is loaded into a porous polyacrylamide gel 

and a current applied between a cathode and anode.  All proteins possess an 

equivalent negative charge as a result of treatment with SDS, thus their rate of 

migration through the polyacrylamide gel toward the cathode is completely 

dependent on the molecular weight of the protein.  Smaller proteins move more 

rapidly through the porous gel while larger proteins become constricted and move 

more slowly.  Protein ladders with known proteins with ranges of molecular 
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weights are commercially available and by comparing the migration distance of an 

unknown protein it is possible to determine molecular weight. 

 Using SDS-PAGE the size of rTp0483 was confirmed; however, a more 

specific test was required to verify that the protein was without a doubt rTp0483 

and not an unrelated protein with a similar molecular weight.  Western blotting is 

an immunoblotting technique that exploits the specificity of antibody-antigen 

interactions.  Proteins are treated with SDS, separated using gel electrophoresis, and 

transferred to a polyvinylidene difluoride (PVDF) membrane.  The transfer of 

protein from gel to membrane is accomplished in a manner similar to separation of 

proteins during SDS-PAGE.  The gel and membrane are sandwiched together 

between a cathode and an anode with the gel being closer to the anode.  When a 

current is applied the negatively charged proteins migrate toward the cathode going 

from gel to membrane.  Once the target protein is successfully immobilized on the 

membrane an antibody specific to the target (primary antibody) is added and 

allowed to react.  After the immobilized proteins have reacted with the primary 

antibody a second antibody specific to the primary antibody (secondary antibody) is 

added.  The secondary antibody is conjugated with a detection molecule, which can 

be activated in order to visually confirm the presence of the secondary antibody-

primary antibody-protein complex.  Western blot in combination with SDS-PAGE 

confirmed the presence of rTp0483. 

 The concentration of rTp0483 was determined with a BCA assay, which 

utilizes a modified Biuret reaction to measure protein concentration in solution.  In 

the Biuret reaction Cu2+ is reduced to Cu1+ by proteins in an alkaline solution.  The 
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Cu1+ ions that are produced form a complex with bicinchoninic acid, which results in 

the production of a deep violet color.  The absorbance of this solution is then 

measured and compared to a standard curve with known concentrations to 

determine an unknown concentration.  

 

4.2. Experimental Procedures 

 

 4.2.1. Tp0483 Expression Vector and Maintenance Strain Preparation 

 A pRSETc plamid vector containing the rT0483 expression gene along with 

an N-terminal 6xHIS tag was provided by Caroline Cameron at the University of 

Victoria (Victoria, British Columbia).  Immediately upon receipt, the plasmid was 

reconstituted in deionized water (diH2O) and transformed into a TOP10 chemically 

competent E. coli cell line from Invitrogen (Carlsbad, CA).  One 50 μL vial of TOP10 

cells was thawed on ice.  Once thawed, 5 μL of plasmid solution was added to the 

TOP10 vial, mixed by gently tapping, and incubated on ice for 30 minutes.  The cells 

were heat shocked in a 42°C water bath for 30 seconds and returned to ice.  Once 

cooled, 250 μL of super optimal broth with catabolite repression (SOC) media from 

Invitrogen at room temperature was added to the vial, the vial sealed with paraffin, 

and shaken on its side at 225 RPM and 37°C for 1 hour.  The cell solution was added 

to pre-warmed (37°C) LB agar plates (Sigma (St. Louis, MO)) inoculated with 100 

μg/mL ampicillin (Sigma) in volumes of 20, 50, or 100 μL and incubated overnight 

at 37°C.  The next day, single E. coli colonies were selected and transferred to 5 mL 

of LB broth (Sigma) inoculated with 100 μg/mL ampicillin and incubated overnight 
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at 225 RPM and 37°C.  Finally, 15% (v/v) glycerol (Sigma) was added to the TOP10 

cell stock, the solution divided into 1 mL aliquots, and stored at -80°C.    

  

 4.2.2. rTp0483 Expression Vector Transformation 

 A vial of TOP10 cells with the rTp0483 expression vector was thawed at 

room temperature.  TOP10 cells were transferred from the stock sample into 5 mL 

of freshly prepared LB broth inoculated with 100 μg/mL ampicillin.  The cells were 

grown overnight at 37°C while shaking the sample at 225 RPM, then the cells were 

recovered by centrifugation at 6000 x G for 15 minutes at 4°C.  The rTp0483 

expression vector was extracted using a QIAGEN plasmid mini kit from QIAGEN 

(Hilden, Germany) as per manufacturer instructions.  

 The rTp0483 expression vector was transformed into a BL21(DE3)pLysS 

chemically competent E. coli line from Invitrogen.  One 50 μL vial of 

BL21(DE3)pLysS cells was thawed on ice.  Once thawed, 5 μL of plasmid solution 

was added to the vial, mixed by gently tapping, and incubated on ice for 30 minutes.  

The cells were heat shocked in a 42°C water bath for 30 seconds and returned to ice.  

Once cooled, 250 μL of SOC media was added to the vial, the vial sealed with 

paraffin, and shaken on its side at 225 RPM and 37°C for 1 hour.  The cell solution 

was added to pre-warmed LB agar plates inoculated with 100 μg/mL ampicillin and 

34 μg/mL chloramphenicol (Sigma) in volumes of 20, 50, or 100 μL and incubated 

overnight at 37°C.  The next day, single isolated E. coli colonies were selected and 

transferred to 5 mL of LB broth inoculated with 100 μg/mL ampicillin and 34 μg/mL 

chloramphenicol and incubated overnight at 225 RPM and 37°C. 
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 4.2.3. E. coli Amplification and rTp0483 Expression 

 The 5 mL overnight cell cultures were transferred to 1 L baffled flasks and 

combined with 500 mL of LB broth inoculated with 100 μg/mL ampicillin and 34 

μg/mL chloramphenicol and incubated at 225 RPM and 37°C.  The optical densities 

of the cell suspensions were measured periodically at a wavelength of 600 nm using 

a Spectronic GENSYS 5 photospectrometer until they reached a value between 0.4 

and 0.6, which corresponds to the exponential growth phase of E. coli.  Once in the 

exponential growth phase, isopropyl β-D-1thiogalactopyranoside (IPTG) (Sigma) 

was added to a final concentration of 0.5 mM in order to induce the expression of 

rTp0483.  After the addition of IPTG the cell samples were incubated at 225 RPM 

and 30°C for 3 hours.  The E. coli were pelleted by centrifugation at 4000 RPM and 

4°C for 15 minutes, the LB broth poured off, and the cells stored at -20°C until 

purification was carried out. 

  

 4.2.4. rTp0483 Purification and Refolding 

 The frozen cell pellets were thawed on ice then resuspended and lysed by 

sonication in 20 mL of cold binding buffer (20 mM Tris-base (Fisher), 5 mM 

imidazole (Sigma), 0.5 M NaCl (Sigma), pH 7.9) with 0.1% NP-40 (Sigma) and 1% 

(v/v) EDTA free, Halt protease inhibitor cocktail (HPIC) from Thermo Scientific 

(Rockford, IL).  Sonication was carried out on ice and was cyclic with a 10 second 

interval of sonication followed by a 5 second interval of rest for a total of 6 cycles.  

Lysed cell contents were recovered by centrifugation at 13,000 RPM for 15 minutes.  

The pellet was resuspended in 20 mL of binding buffer with 1% (v/v) HPIC, 
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sonicated, and recovered by centrifugation twice.  Insoluble rTp0483 in the pellet 

was solubilized by resuspending the pellet in 5 mL of binding buffer with 6 M urea 

(Sigma) by sonication and incubating for 1 hour at 4°C on a rotating test tube rack.  

The remaining insoluble material was pelleted by centrifugation at 13,000 RPM for 

15 minutes while solubilized rTp0483 was filtered through 0.45 μm syringe filters 

(Millipore (Bedford, MA)) and mixed with 2 mL of Ni-NTA superflow resin from 

QIAGEN.  This suspension was incubated at 4°C for 1 hour on a rotating test tube 

rack then centrifuged at 2,000 RPM for 5 minutes and the liquid removed.  The resin 

was washed twice with 10 mL of binding buffer with 6 M urea and 5 mM imidazole 

and once with 10 mL of binding buffer with 6 M urea and 20 mM imidazole, each 

time for 10 minutes at 4°C on a rotating test tube rack.  After the third wash was 

removed, rTp0483 was eluted with the addition of 1 mL of elution buffer (20 mM 

Tris-base, 0.5 M NaCl, 1 M imidazole, pH 7.9) and incubation for 1 hour at 4°C on a 

rotating test tube rack.  The resin was removed by centrifugation at 2,000 RPM for 5 

minutes at 4°C and the protein solution filtered through 0.45 μm syringe filters to 

remove any remaining resin.  A process for protein renaturation was adapted from 

Zhang et al.97  Zwittergent 3-12 (Sigma) was added to final concentration of 0.5% 

(w/v) and the protein solution was injected into a 10,000 MW Slide-a-Lyzer dialysis 

cassette from Invitrogen.  The sample was dialyzed for 3 hours then overnight in 

renaturation buffer 1 (100 mM Tris-base, 200 mM NaCl, 10 mM EDTA (Sigma), pH 

8.0) at 4°C.  Then, the sample was dialyzed for 6 hours then overnight in 

renaturation buffer 2 (50 mM Tris-base, 200 mM NaCl, 0.5 mM EDTA) at 4°C.  The 
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solution was removed from the dialysis cassette, filtered through 0.45 μm syringe 

filters, and stored at 4°C until protein analysis was complete. 

  

 4.2.5. SDS-PAGE 

 rTp0483 solution was combined in a 1:1 ratio with 5x SDS loading buffer 

(10% (w/v) SDS (Bio Rad (Hercules, CA)), 30% (v/v) glycerol, 5% (v/v) β-

mercapitalethanol (Sigma), and 0.02% bromophenol blue (Sigma) (w/v) in 250 mM 

Tris-HCl (Sigma), pH 6.8).  The solution was loaded into a 10-20% tris-glycine 

polyacrylamide gel (Invitrogen) along with a Mark12 unstained protein ladder 

(Invitrogen) while any empty lanes were loaded with 5x SDS loading buffer alone.  

Gel electrophoresis was carried out in a Novex mini cell (Invitrogen) at 120 V and a 

starting current of 35 mA.  Once electrophoresis was complete the gel was 

incubated 3 hours in protein fixing solution (50% (v/v) methanol (Sigma), 10% 

(v/v) acetic acid (Sigma), and 40% (v/v) diH2O).  The fixing solution was removed 

and replaced with staining solution (2 g/L Coomassie brilliant blue (Sigma), 45% 

(v/v) methanol, 45% (v/v) diH2O, and 10% (v/v) acetic acid) and the gel incubated 

overnight.  The gel was rinsed twice with fixing solution and then incubated in 

destaining solution (25% (v/v) methanol, 10% (v/v) acetic acid, and 65% (v/v) 

diH2O) for 5 hours.  The destaining solution was removed and the gel was washed 

well with diH2O.  The diH2O was removed and replaced with drying solution (5% 

glycerol, 30% methanol, and 65% diH2O).  The gel was sandwiched between 2 

pieces of cellophane and allowed to dry. 
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 4.2.6. Western Blot 

 rTp0483 and the protein ladder were separated by gel electrophoresis as in 

Section 4.2.5.  Transfer of proteins from gel to a PVDF membrane (Invitrogen) was 

carried out in an XCell II blotting module (Invitrogen) at 25 V for 90 minutes.  The 

membrane was incubated in Tris-buffered saline (TBST) (8 g/L NaCl, 0.2 g/L KCl 

(Sigma), and 3 g/L Tris-base in diH2O, pH 7.4) with 0.1% Tween 20 (Sigma) for 5 

minutes.  The solution was replaced with fresh TBST and incubated 5 minutes.  

TBST was removed and the membrane was incubated in 5% blocking solution (5% 

dried milk in TBST) for 1 hour at room temperature.  The blocking solution was 

removed and the membrane was washed twice with TBST.  An antibody specific to 

rTp0483 was diluted 1:1000 in 5% blocking solution and the membrane was 

incubated overnight in the solution at 150 RPM at room temperature.  The antibody 

solution was removed and the membrane was washed twice with TBST.  A 

secondary, alkaline phosphatase conjugated antibody specific to the rTp0483 

primary antibody was diluted 1:1500 in 5% blocking solution and the membrane 

was incubated in the solution for 1 hour.  The antibody solution was removed and 

the membrane was washed in TBST for 10 minutes.  The membrane was washed 2 

more times with TBST for a total of 3 washes.  The final TBST wash was removed 

and the membrane was incubated in nitro-blue tetrazolium chloride (NBT) and 5-

bromo-4-chloro-3'-indolyphosphate p-toluidine (BCIP) (Thermo Scientific), which 

reacts with alkaline phosphatase to form a dark purple precipitate. 
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 4.2.7. BCA Assay 

 Bovine serum albumin (BSA) standards were prepared in Dulbecco’s 

phosphate buffered saline (DPBS) (137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4 

(Sigma), and 1.5 mM KH2PO4 (Sigma) in diH2O, pH 7.4) and the BCA working 

reagent was prepared as per manufacturer instructions.  100 μL of each sample was 

combined with 2 mL of working reagent; BSA standards were analyzed in duplicate 

while rTp0483 was analyzed at a number of concentrations (100% rTp0483 

solution, 50% rTp0483 solution in DPBS, and 25% rTp0483 solution in DPBS).  The 

samples were sealed with paraffin, incubated 30 minutes in a water bath at 37°C, 

and allowed to cool to room temperature.  The absorbance was then measured at 

562 nm using a photospectrometer.  BSA standards at known concentrations were 

used to generate a calibration curve for the determination of rTp0483 

concentration.  Based on this curve the concentration of rTp0483 was found for 

each sample and an average value determined. 

  

 4.2.8. Protein Storage 

 Once the purity and concentration of rTp0483 was determined, the protein 

solution was aliquoted and stored at -20°C. 

  

4.3. Results 

 Figure 4.1 shows the results of SDS-PAGE and western blot analysis for 

rTp0483.  A protein of the same size as rTp0483 (~22 kDa) was observed on the 

SDS-PAGE gel and NBT-BCIP reacted with alkaline phosphatase conjugated 
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secondary antibody indicating the presence of rTp0483.  Thus, the presence and 

purity of recombinantly expressed rTp0483 was confirmed.  The concentration of 

rTp0483 varied from batch to batch ranging from 400-700 μg/mL  

 

4.4. Conclusions 

 The selected method of vector transformation, cell culture, protein 

expression, and protein purification were successful in producing recombinant 

rTp0483 protein.  Generated protein was of sufficient purity and concentration to 

move forward with further studies. 
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A. 

 

    

B. 

 

Figure 4.1: (A) SDS-PAGE analysis for rTp0483.  Lanes 1 and 2 are Mark12 protein 
ladder, lanes 3 and 4 are empty, and lanes 5 and 6 are rTp0483.  A strong band was 
observed at the appropriate position for rTp0483 (~22 kDa).  (B) Western blot 
analysis of rTp0483.  Lanes 1 and 2 are Mark12 protein ladder, lanes 3-6 are empty, 
and lanes 7 and 8 are rTp0483.  NBT-BCIP precipatate was observed for rTp0483 
but not in the other lanes indicating a specific interaction with rTp0483. 
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Figure 4.2: Representative BSA calibration curve for BCA assay.  Absorbance 
measured at 562 nm is proportional to the concentration of protein in solution.  
Linear regression of BSA standards allows for the determination of rTp0483 
concentration.  ()- BSA standards and ()- rTp0483. 
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Chapter 5: SELF-ASSEMBLED MONOLAYER FORMATION AND VALIDATION 

 

5.1. Introduction 

 The chemisorption of organosulfur compounds onto gold surfaces has been 

demonstrated to be an effective method in the analysis of a wide range of surface 

interactions including protein adsorption, blood coagulation, and biomineralization 

of apatite.98-104  These organosulfur compounds are composed of a functional head 

group with a hydrocarbon tail, which terminates with a thiol group.  The thiol 

groups spontaneously coordinate with a gold surface leading to the formation of a 

tightly packed layer with uniform surface chemistry known as a self-assembled 

monolayer (SAM).  This method can be employed to quickly and efficiently assemble 

surfaces with diverse chemical and physical properties.  Chung et al. generated 

SAMs with phospholipid head groups in order to assess their hemocompatilibilty.98  

In another study by Keslowsky et al. the effect of surface charge on FN binding 

strength and binding site availability was investigated.99  

 The four SAM surface chemistries shown in Figure 5.1 were analyzed to 

determine the effect of charge and hydrophobic interactions on the adsorption 

behaviors of rTp0483 and FN.  Carboxyl, hydroxyl, methyl, and amino-terminated 

SAMs were produced to investigate negatively charged, hydrophilic, hydrophobic, 

and positively charged surfaces respectively.  SAM formation was verified with 

contact angle measurement accompanied by X-ray photoelectron spectroscopy 

(XPS). 
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Figure 5.1: Structure of selected alkanethiol SAM precursors.  (A) 11-mercapto-
undecanoic acid (-COO-) produces a negative surface charge, (B) 11-hydroxy-1-
undecanethiol (-OH) produces a hydrophilic surface, (C) 1-dodecanethiol (-CH3) 
produces a hydrophobic surface, (D) and 11- amino-1-undecanethiol (-NH3+) 
produces a positive surface charge. 
 

5.2. Experimental Procedures 

 

 5.2.1 SAM Formation 

 The SAMs were assembled on gold QCM and SPR surfaces by incubation 

overnight in selected 1 mM alkanethiol solutions; 11-mercapto-undecanoic acid (-

COO-) was purchased from Sigma; 11-hydroxy-1-undecanethiol (-OH), 1-

dodecanethiol (-CH3), and 11- amino-1-undecanethiol hydrochloride (-NH3+) were 

purchased from Asemblon (Redmond, WA).  Gold QCM surfaces were purchased 
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from Biolin Scientific and gold SPR surfaces were purchased from Biacore AB.  Prior 

to analysis surfaces were washed for 15 seconds in ACS grade ethanol (Sigma) 

followed by 15 seconds in diH2O then dried with N2 gas (Scott-Gross (Lexington, 

KY)). 

  

 5.2.2. Contact Angle Analysis 

 Analysis of the angle of contact between a drop of liquid on a surface is an 

effective method for the determination of the hydrophobicity of the surface.  The 

contact angle of liquid on a surface depends on the thermodynamic equilibrium 

between the liquid, the surface, and the environment surrounding them.  This 

relationship is illustrated in Figure 5.2 and is represented by Young’s equation 

below (Equation 15).  At equilibration the three phases are in balance and as a result 

the sum of the surfaces energies add up to zero.  The energy at the interface of the 

liquid with the atmosphere is denoted as γAL, at the interface of the surface and the 

atmosphere as γSA, and at the interface between the liquid and the surface as γSL.  As 

the hydrophobicity of the surface increases the surface energy at the interface 

between the liquid and the surface increases along with the contact angle.  Static 

and advancing contact angles for water on SAM surfaces were measured.  A single 

drop of water was added to each surface then the contact angle measured for static 

detection.  For advancing contact angle analysis water was slowly added to the 

surface while simultaneously measuring the contact angle as it spread across the 

SAMs.  Contact angle studies were conducted using diH2O on a Future Digital 

Scientific Contact Angle Goniometer (Long Island, NY).   
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 )15(cosALSLSA θγ+γ=γ  

 

 

Figure 5.2: Illustration of the thermodynamic balance of surface energies associated 
with liquid spreading on a surface. 
 

 5.2.3. X-ray Photoelectron Spectroscopy 

 X-ray photoelectron spectroscopy (XPS) is a technique used for the 

determination of the chemical composition of a surface.  The sample surface is 

bombarded with X-rays while the number and binding energy of liberated electrons 

is measured.  All elements have unique binding energy signals so by measuring the 

number of each event the chemical composition and relative amounts of materials 

located from 1-10 nm inside of a material can be determined.  XPS data were 

gathered using Mg from a twin anode XR3E2 X-ray source and the CLAM4MCD 

analyzer from Thermo VG Scientific (Waltham, MA). 

 

 
 

Atmosphere (A) Liquid (L) 

Surface (S) 

γSL 

γSA 

γAL 

θcontact 



 

63 
 

 5.2.4. Gold Surface Regeneration 

 Gold coated QCM and SPR surfaces are costly, thus a method for removing all 

adsorbed materials, including SAMs, was required so that the surfaces could be 

reused.  Surfaces were regenerated by either 5 minute immersion in a 5:1:1 mixture 

of diH2O, ammonium hydroxide (VWR (Radnor, PA)), and hydrogen peroxide 

(VWR) at 75 °C followed by 10 min exposure to UV/ozone or a 20 min exposure to 

O2 plasma at a flow rate of 1 standard ft3/h (SCFH) and a pressure of 700 mTorr in a 

PDC-002 (230 V) plasma cleaner with Plasmaflo unit from Harrick Plasma (Ithaca, 

NY) followed by immersion in ACS grade ethanol for at least 14 h.  Success of 

regeneration was determined by assembling a fresh SAM layer on the cleaned gold 

surface and comparing the baseline response to that of a SAM layer assembled new 

gold surface in the Biacore X SPR spectrometer 

 

5.3. Results 

 Functionalized SAMs displaying -COO-, -OH, -NH3+, and -CH3 groups were 

prepared as previously described.  Contact angle and XPS data were determined and 

compared with literature values.98-104  The contact angles shown in Figure 5.3 

corresponded well with literature values, and XPS data shown in Table 5.1 relating 

surface composition indicated SAM formation.  SAMs formed on regenerated gold 

surfaces produced an SPR response equivalent to SAMs formed on new gold 

surfaces indicating successful regeneration. 

 



 

64 
 

5.4. Conclusions 

 Based on contact angle and XPS analysis SAM formation was confirmed.  

Organic materials including SAMs were successfully removed from the gold surfaces 

allowing for them to be reused.  The functionalized SAMs formed allow for the 

analysis of rTp0483 and FN adsorption behavior as well as other biological 

responses as a function of surface chemistry.   

 

 

Figure 5.3:  Comparison of experimental and literature values for the advancing and 
static contact angles of water on each functionalized SAM 
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Table 5.1: X-ray photoelectron spectroscopy (XPS) values.  Experimentally 
determined values from literature as well as theoretical values given for 
comparison.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

66 
 

Chapter 6: FIBRONECTIN BINDING TO THE TREPONEMA PALLIDUM ADHESIN 
PROTEIN FRAGMENT RTP0483 ON FUNCTIONALIZED SELF-ASSEMBLED 

MONOLAYERS 
 

6.1. Introduction 

 A number of studies have demonstrated the FN binding capacity of T. 

pallidum and work by Cameron et al. further implicated the putative surface protein 

Tp0483 in FN adhesion.51-53, 64, 72, 73  A stable Tp0483 fragment known as rTp0483 

was expressed and purified by Cameron et al. that retained the FN binding affinity of 

whole Tp0483.53  Because rTp0483 has been shown to bind soluble plasma FN and 

insoluble ECM FN it was chosen for the investigation of rTp0483 adsorption to 

functionalized SAMs and plasma FN adsorption to rTp0483.  This chapter is based 

on Dickerson et al. (in press). 

Physical adsorption of rTp0483 was investigated on a number of 

functionalized SAMs in order to ascertain the effect of surface chemistry on rTp0483 

adsorption and FN binding affinity.  Adsorption of rTp0483 and subsequently FN 

was analyzed with QCM-D while SPR was used to measure the binding/dissociation 

kinetics of rTp0483 and FN adsorption.  The physical character of the adsorbed 

protein layers was also investigated using QCM-D.  Atomic force microscopy (AFM) 

was used to examine the distribution of rTp0483 on the functionalized SAM 

surfaces.  Two segments of the whole Tp0483 protein sequence located on the 

expressed rTp0483 fragment were identified as potential FN binding sites, then 

peptides and antibodies matching these regions were produced to test their 

involvement in FN binding.  Numerous studies have suggested that the RGD cell-
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binding sequence located in the 10th type III domain of FN plays a significant role in 

T. pallidum adhesion.64-67  In addition, a number of other binding domains exist on 

FN including binding sites specific for heparin and collagen/gelatin.63  It has been 

shown that the binding of certain species of bacteria are modulated by these 

heparin or collagen/gelatin-binding domains of FN.70, 71  In order to elucidate a more 

complete profile of rTp0483 FN binding, anti-RGD, heparin, and gelatin binding 

were studied to determine their involvement in the binding of FN on surfaces coated 

with rTp0483 compared to unmodified -COO- SAMs. 

 

6.2. Experimental Procedures 

 

 6.2.1. Biomolecules and Reagent 

 DPBS was prepared as specified in Section 4.2.7.  Human plasma fibronectin 

(FN) and all other chemicals not specifically mentioned were purchased from Sigma.  

An antibody against the RGD (Arginine-Glycine-Aspartate) cell-binding site of FN 

was purchased from Chemicon International (Temecula, TN) and later from Abcam 

(Cambridge, MA).  The protein fragment rTp0483 was expressed and purified as per 

the protocol provided in Section 4.2.4. 

 Aves Labs (Tigard, OR) identified two possible FN binding peptide sequences 

on rTp0483 using a combination of Hopp-Woods and Kyte-Doolittle 

(hydrophilicity), Emini (surface probability), Karplus-Shulz (chain flexibility), and 

Jameson-Wolf (a combination of attributes) methods.  Peptides corresponding to 

residues 274-289 (D1- QMHSDSKQVDVKLDGN) and 316-333 (D2- 
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QRKEDDSMYSYVTGTMKY) of the complete Tp0483 sequence were prepared along 

with monoclonal antibodies (anti-Tp0483#1 IgY, chicken # 5507-5508 - against 

residues 274-289 and anti-Tp0483#2 IgY, chicken # 5509-5510 - against residues 

316-333) by Aves Labs.  Two other peptides (A3 - AYSSGAPPMPPF and P1 - 

HSSYWYAFNNKT) were provided for use as negative controls. 

 

 6.2.2. QCM 

 A Q-Sense E4 QCM unit was used for rTp0483 and FN adsorption studies.  

SAMs were prepared as described in Section 5.2.1 before they were mounted in the 

QCM sample chamber.  DPBS was employed as a running buffer and used to dilute 

all proteins to the desired concentration for analysis. A constant flow rate of 50 

μL/min was employed.  Once a sample surface was mounted it was primed with 

DPBS until the QCM response was stable.  Samples were introduced by stopping 

buffer flow, moving the inlet tube from the buffer reservoir to the sample vial, and 

resuming flow.  Once the sample had been introduced flow was stopped again, the 

inlet tube moved back to buffer, and flow restarted.  After an injection the signal was 

allowed to stabilize for 10 minutes, then changes in signal as a result of protein 

adsorption were measured as a frequency drop (Δf) in hertz (Hz).  Changes in 

dissipation energy (D) were also recorded. 

 

 6.2.3. rTp0483 Adsorption to SAMs and FN Adsorption to rTp0483 

 To investigate protein adsorption, 20 μg rTp0483/mL was introduced into 

the system for 2 minutes at a flow rate of 50 μL/min.  After rTp0483 adsorption, 2 
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mg BSA/mL was introduced for 2 minutes at a flow rate of 50 μL/min to block the 

surface not covered by rTp0483 and, hence, prevent nonspecific binding of FN to 

exposed SAMs.  Finally, 100 μg FN/mL was introduced into the QCM for 2 minutes at 

a flow rate of 50 μL/min.  

 

 6.2.4. rTp0483 Monolayer Dissipation Energy Analysis 

 The Q-Sense E4 was employed for the analysis of rTp0483 monolayer 

dissipation energy.  For dissipation energy studies, 100 μg rTp0483/mL was 

introduced into the QCM for 2 minutes at a flow rate of 50 μL/min.  The higher 

concentration of rTp0483 was used in this study to produce a more complete 

protein monolayer.  The change in dissipation energy for each surface was divided 

by the frequency change in order to calculate the dissipation energy as a function of 

protein surface mass density. 

 

 6.2.5. SPR 

 A Biacore X SPR unit was used for all kinetic studies.  SAMs were prepared as 

described in Section 5.2.1.  DPBS was employed as a running buffer and was used to 

dilute all proteins to the desired concentrations.  A constant flow rate of 50 μL/min 

was employed.  Once a sample surface was docked, it was primed with DPBS until 

the response signal in both flow channels was stable.  Buffer was circulated through 

FC1 and FC2 in series in order to monitor signal stability.  After the response had 

stabilized buffer flow was changed to single channel flow (either FC1 or FC2) for 

kinetic testing and the other channel was used to monitor background noise.  
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Protein samples were introduced through an injection port and after each injection 

the signal was allowed to stabilize before changes in the SPR signal were recorded.  

After the first flow channel was used flow was reversed and the other was used in a 

similar fashion.  

 

 6.2.6. Kinetic Analysis of rTp0483 and FN Adsorption 

 To investigate the kinetics of rTp0483 binding, 100 μL of rTp0483 was 

injected at concentrations of 5, 10, and 20 μg rTp0483/mL at a flow rate of 50 

μL/min.  The corresponding adsorption sensorgrams were analyzed using Biacore 

BIAevaluation software v3.0.2 to model kinetic parameters based on the models 

presented in Section 3.5. 

 For FN kinetic analysis, 100 μL of rTp0483 was injected at 5 and 20 μg 

rTp0483/mL at a flow rate of 50 μL/min.  A volume of 100 μL of 2 mg BSA/mL was 

injected to block the surface not covered by rTp0483 at a flow rate of 50 μL/min.  

Finally, 100 μL of FN was injected at concentrations of 10, 20, and 40 μg FN/mL at a 

flow rate of 50 μL/min.  These lower FN concentrations were used in order to limit 

the potential of mass transport effects.  The corresponding adsorption sensorgrams 

were analyzed using Biacore BIAevaluation software v3.0.2 in order to model 

kinetic parameters based on the models presented in Section 3.5. 

 

 6.2.7. AFM Imaging of rTp0483 on SAMs 

 A Molecular Imaging PicoSPM from Agilent Technologies (Tempe, AZ) using 

Tap300 Intermittent Contact Tips from Budget Tips (Sofia, Bulgaria) was used to 
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provide images of rTp0483 adsorption on each of the SAMs.  Data analysis was 

completed using PicoScan Software (Agilent Technologies) and Gwyddion Software 

2.5 (General Public License, development supported by the Czech Metrology 

Institute, Brno, Czech Republic).  Functionalized SAMs were incubated in a solution 

of 10 μg rTp0483/mL for 15 minutes at room temperature.  Surfaces were rinsed 

with diH2O, dried with N2 gas, and imaged immediately.  

 

 6.2.8. rTp0483 Binding Domain Analysis  

  The Biacore X SPR spectrometer was used for all rTp0483 antibody and 

rTp0483 peptide studies.  The selected rTp0483 antibodies (aTp) were prepared at 

a concentration of 200 μg antibody/mL.  Initially, 100 μL of 20 μg rTp0483/mL was 

injected and adsorbed onto a surface at a flow rate of 50 μL/min. After stabilization, 

100 μL of 2 mg BSA/mL was injected to block the surface not covered by rTp0483 at 

a flow rate of 50 μL/min.  To test the effect of FN on antibody binding, 100 μL of 100 

μg FN/mL was injected at a flow rate of 50 μL/min and, once the SPR signal was 

stable, 100 μL of aTp#1 or aTp#2 were injected at a flow rate of 50 μL/min.  

Nonspecific antibody binding on the BSA blocked portion of the surface was 

analyzed by injecting 100 μL of 2 mg BSA/mL at 50 μL/min followed by 100 μL of 

aTp#1 or aTp#2 at a flow rate of 50 μL/min.   

 To determine the effect of rTp0483 antibodies on FN binding rTp0483 was 

injected followed by BSA as detailed above.  This was followed by 100 μL of aTp#1 

or aTp#2 at a flow rate of 50 μL/min, then 100 μL of 100 μg FN/mL at a flow rate of 

50 μL/min. 
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 The peptide sequences analogous to the selected antibodies were examined 

along with random, negative control peptides.  Because the corresponding rTp0483 

antibodies bound to rTp0483 only on negatively charged SAMs, only -COO- 

terminated SAMs were examined here.  Samples containing a 20:1 molar ratio of a 

specific rTp0483 peptide or a negative control peptide and were prepared with FN.  

First, 100 μL of 20 μg rTp0483/mL was injected and adsorbed to each surface at a 

flow rate of 50 μL/min.  After stabilization, 100 μL of 2 mg BSA/mL was injected to 

block the surface not covered by rTp0483 at a flow rate of 50 μL/min.  After the SPR 

signal stabilized, 100 μL of one of the 20:1 peptide/FN solutions was injected at a 

flow rate of 50 μL/min.  Alternately, after rTp0483 had been adsorbed and blocked 

with BSA, 100 μL of 100 μg FN/mL was injected for comparison at a flow rate of 50 

μL/min.  Binding inhibition was determined using Equation 16: 

 

 

% FN binding =
FN + peptide on rTp0483 pg

mm2

 
 
 

 
 
 

FN on rTp0483 pg
mm2

 
 
 

 
 
 

x 100% (16)

 

  

 6.2.9. FN Binding Domain Analysis 

 The Biacore X SPR spectrometer was used for all FN binding domain studies. 

Because FN bound preferentially to rTp0483 adsorbed on negatively charged 

surfaces, only -COO- terminated SAMs were analyzed in these tests.  First, 100 μL of 

100 μg rTp0483/mL was injected and adsorbed onto -COO- terminated SAMs at a 

flow rate of 50 μL/min.  After the SPR signal stabilized, 100 μL of 100 μg FN/mL was 
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injected at a flow rate of 50 μL/min.  The signal was again allowed to stabilize, and 

then 50 μL of 2 mg heparin/mL was injected at a flow rate of 50 μL/min.  

Alternately, 100 μL of 100 μg FN/mL was injected and adsorbed onto a -COO- 

terminated SAM without rTp0483 at a flow rate of 50 μL/min followed by 50 μL of 2 

mg/mL heparin at a flow rate of 50 μL/min.  This process was repeated for anti-RGD 

(20 μg/mL) and type A gelatin (1 mg/mL). 

 As the RGD peptide sequence had previously been implicated in the adhesion 

of T. pallidum to FN, the interaction via this site was further characterized.  The 

Biacore X was used to analyze the involvement of the RGD peptide sequence in the 

binding of FN to surface-adsorbed rTp0483 on -COO- functionalized SAMs.  A 100 μL 

of 20 μg rTp0483/mL was injected at a flow rate of 50 μL/min.  Then, 100 μL of 2 

mg BSA/mL was injected to block the surface not covered by rTp0483 at a flow rate 

of 50 μL/min.  After signal stabilization, 50 μL of 10 μg FN/mL blocked with 20 μg 

anti-RGD/mL or 50 μg anti-RGD/mL was injected at a flow rate of 50 μL/min.  

Alternately, 50 μL of 10 μg FN/mL was injected alone onto adsorbed rTp0483 at a 

flow rate of 50 μL/min.  Nonspecific antibody adsorption was measured by injecting 

50 μL of anti-RGD alone at 20 μg anti-RGD/mL and 50 μg anti-RGD/mL at a flow rate 

of 50 μL/min.  The mass of adsorbed anti-RGD+FN complex was adjusted to account 

for the added mass of any bound antibodies.  Because FN is dimeric, it was assumed 

that each FN bound two molecules of anti-RGD.  This added mass was accounted for 

multiplying the observed SPR response by a correction factor as shown in Equations 

17 and 18.  
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Correction Factor =
FN MW

FN + antibody MW

=
440,000 Da

440,000 Da + 2 x 150,000 Da( ) = 0.595 (17)  

 

Fibronectin concentration = Observed concentration x 0.595 (18) 

 

 6.2.10. Statistical Analysis 

 Statistical analysis was carried out using the Microsoft Excel addon StatPlus 

to conduct multiple pair-wise comparisons between each sample group.  One-way 

analysis of variance (ANOVA) was employed for this analysis.  The maximum p-

value considered for significance was 0.05; all data are reported as mean values ± 

standard error.  All reported values are n=3+ with the exception of the aTp studies, 

which are n=2. 

 

6.3. Results 

 

 6.3.1. rTp0483 Adsorption to SAMs and FN Adsorption to rTp0483 

Adsorption results for rTp0483 onto functionalized SAMs are shown in 

Figure 6.1A.  Results for -COO- SAMs indicated an average surface mass density of 

782 ± 46 pg/mm2  while -OH, -NH3+, and -CH3 SAMs were 358 ± 80 pg/mm2, 453 ± 

73 pg/mm2, and 442 ± 30 pg/mm2, respectively.  ANOVA indicated that adsorption 

on the -COO- SAMs was significantly greater than the other three surfaces (p<0.05) 

and that all of the other surfaces were indistinguishable. 

The adsorption of FN onto rTp0483 on functionalized SAMs is shown in 

Figure 6.1B.  As previously mentioned, the portion of each surface not covered by  
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Figure 6.1:  (A) Average rTp0483 binding on SAMs determined by QCM and (B) 
average FN binding to adsorbed rTp0483 on SAMs determined by QCM.  ANOVA 
indicates higher rTp0483 and FN binding on -COO- SAMs (p<0.05).  Data is reported 
as a mean (n=3) for all sample groups with error bars representing standard error. 
From Dickerson et al (2011).105 

 

rTp0483 was blocked with BSA, hence, any FN adsorption observed is onto 

rTp0483.  Minimal binding of FN was observed to rTp0483 on the -OH (60 ± 28 

pg/mm2), -NH3+ (363 ± 82 pg/mm2), and -CH3 (3.5 ± 3.5 pg/mm2) surfaces, 
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however, -COO- SAMs demonstrated significantly higher binding (1380 ± 200 

pg/mm2, p<0.05) than the other three surfaces, which were not significantly 

different from one another.   Because there was significantly more FN binding to 

rTp0483 adsorbed to -COO- functionalized SAMs, it was the only surface employed 

for further study of FN binding to adsorbed rTp0483. 

 

   6.3.2. rTp0483 Monolayer Dissipation Energy Analysis 

 The changes in dissipation energy divided by the frequency shift for 

adsorbed rTp0483 are shown in Figure 6.2.  SAM terminal groups were found to 

have a measureable effect on the relative dissipation energy.  Adsorption of 

rTp0483 on -OH SAMs produced the largest value ((0.220 ± 0.013) × 10-6 Hz−1) 

while adsorption of rTp0483 on -CH3 SAMs produced the lowest value ((0.105 ± 

0.011) × 10-6 Hz−1).  The values for -COO- ((0.1432 ± 0.0085) × 10-6 Hz−1) and -NH3+ 

((0.1675 ± 0.0035) × 10-6 Hz−1) were located between the two.  ANOVA analysis 

indicated that the ratio of dissipation energy to frequency change for -OH SAMs was 

higher than the other three groups (p<0.05), that the value for -CH3 SAMs was lower 

than the other three groups (p<0.05), and that the values for -COO- and -NH3+ SAMs 

were not statistically significant. 
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Figure 6.2:  Ratio of QCM dissipation energy change (ΔD) to frequency shift (Δf) for 
rTp0483 adsorption at 100 μg rTp0483/mL on functionalized SAMs.  ANOVA 
indicates a difference between the groups with -OH being the highest, -CH3 being 
the lowest, and -COO- and -NH3+ being statistically indistinguishable.  Data are 
reported as a mean (n=3) for all sample groups with error bars representing 
standard error.  From Dickerson et al (2011).105 
 

6.3.3. Kinetic Analysis of rTp0483 and FN Adsorption 

 rTp0483 was injected into the Biacore X SPR and adsorbed onto 

functionalized SAMs over a range of concentrations as previously described and the 

adsorption sensorgrams used to model the kinetics of rTp0483 adsorption.  

rTp0483 adsorption data was fit to a 1:1 Langmuir model as well as a 1:1 Langmuir 

model with mass transfer limitations.  The Chi2 parameter (mean square of signal 

noise) was used as a gauge of how well each adsorption model corresponded to 

experimental results.  The lower the Chi2 value, the more closely a model correlated 

to the experimental data.  In general, Chi2 should be of the same magnitude as the 
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noise inherent in a fit to be considered acceptable.95  The best fit was chosen based 

on the lowest Chi2 value and, after being chosen, the Chi2 value was compared to the 

range of noise in the model versus the experimental data.  A 1:1 Langmuir binding 

model with mass transfer limitations produced the best fit for rTp0483 adsorption.  

Chi2 values ranged from 2.5-4.7 RU, while noise deviated from 0 RU up to 10 RU 

compared to experimental data.  Model rTp0483 adsorption and experimental 

results for each of the selected functionalized SAMs are shown in Figure 6.3, and the 

corresponding values for KA are included in Table 6.1.  The KA for rTp0483 

adsorption to functionalized SAMs was found to be (13.10 ± 0.19) × 107 1/M for -

COO- SAMs, (7.23 ± 0.21) × 107 1/M for -OH SAMs, (5.12 ± 0.25) × 107 1/M for -NH3+ 

SAMs, and (4.93 ± 0.08) × 107 1/M for -CH3 SAMs.  ANOVA analysis indicated 

significant differences between these values (p<0.05) except for -NH3+ and -CH3 

SAMs, which were the same. 

 Using the Biacore X unit, rTp0483 was injected and adsorbed onto -COO- 

SAMs followed by BSA in order to block any uncoated area against nonspecific 

adsorption.  This was followed by the injection and adsorption of FN at a range of 

concentrations detailed previously.  The resulting adsorption sensorgrams were 

employed to model the kinetics of FN adsorption onto rTp0483.  A bivalent analyte 

model was found to fit best the adsorption behavior of FN onto rTp0483 

immobilized on -COO- SAMs.  Chi2 values for the bivalent analyte model were 4.0 RU 

and 4.8 RU for 5 μg rTp0483/mL and 20 μg rTp0483/mL respectively, while noise 

deviated from 0 RU up to 15 RU compared to experimental data.  The experimental 

results for FN adsorption onto rTp0483 immobilized on -COO- surfaces along with  
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Figure 6.3: 1:1 Langmuir binding with mass transport limitations for rTp0483 
adsorption onto SAMs at 5 (), 10 (), and 20 () μg rTp0483/mL with surfaces 
functionalized with (A) -COO-, (B) -OH, (C) -CH3, and (D) -NH3+.  Solid lines are 
predicted fits based on 1:1 Langmuir binding with mass transport limitations for 5 
(—), 10 (—), and 20 (—) μg rTp0483/mL.  From Dickerson et al (2011).105 
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Table 6.1: Kinetic constants for 1:1 Langmuir binding with mass transport 
limitations for rTp0483 binding on functionalized SAMs. c 

 

SAM type KA (1/M) a chi2 (RU) b 

-COO- (13.10±0.19)×107 2.5 
-OH (7.23±0.21)×107 2.4 
-CH3 (4.93±0.08)×107 3.7 

-NH3+ (5.12±0.25)×107 4.7 
 
(a) KA- affinity constant; (b) Chi2- goodness of fit; (c) KA was significantly different 
between surfaces (p<0.05) except for -CH3 and NH3+, which were the same (n=3).  
From Dickerson et al (2011).105 
 

the model fit are shown in Figure 6.4.  The corresponding values for KA1 and KA2 are 

included in Table 6.2.  KA1 was found to be slightly higher with 5 μg rTp0483/mL 

adsorbed to the surface ((1.53 ± 0.13) × 109 1/M) compared to the value with 20 μg 

rTp0483/mL adsorbed to the surface ((1.03 ± 0.08) × 109 1/M).  However, KA2 for 

FN adsorption to rTp0483 was higher when 20 μg rTp0483/mL was adsorbed to the 

surface ((4.03 ± 0.47) × 10-2 1/RU) compared to the value when 5 μg rTp0483/mL 

was adsorbed ((2.25 ± 0.21) × 10-2 1/RU).  The second reaction was expressed as a 

function of surface mass density rather than concentration because it is purely a 

surface reaction.  The dissociation constants (KD1) were calculated by taking the 

inverse of the first KA value at each concentration; for 5 μg rTp0483/mL the KD1 was 

0.65 ± 0.05 nM and for 20 μg rTp0483/mL the KD1 was 0.97 ± 0.07 nM, both of 

which indicate very strong interactions between rTp0483 and FN. 
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Figure 6.4:  Bivalent FN binding to adsorbed rTp0483 on -COO- SAMs at 10 (), 20 
(), and 40 () μg FN/mL with (A) 5 μg rTp0483/mL and (B) 20 μg rTp0483/mL 
rTp0483 adsorbed.  Solid lines are predicted fits based on a bivalent analyte model 
for 10 (—), 20 (—), and 40 (—) μg FN/mL.  From Dickerson et al (2011).105 
 

Table 6.2: Kinetic constants for bivalent FN binding to rTp0483 on -COO- SAMs. c  
 

rTp0483 
(μg/mL) KA1 (1/M) a KA2 (1/RU) b Chi2 (RU) 

5 (1.53±0.13) × 109 (2.25±0.21) × 102 4.8 
20 (1.03±0.08) × 109 (4.03±0.47) × 102 4.0 

 
(a) KA1- affinity constant for reaction 1; (b) KA2- affinity constant for reaction 2; (c) 
KA1 and KA2 were significantly different between 5 and 20 μg/mL adsorbed rTp0483 
(p<0.05) (n=3).  From Dickerson et al (2011).105 
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 6.3.4. AFM Imaging of rTp0483 on SAMs 

 AFM was employed to investigate the surface distribution of rTp0483 on 

functionalized SAMs.  Figure 6.5 shows representative AFM images of rTp0483 

binding on each of the functionalized SAM layers and compares them to an 

unfunctionalized gold surface and to a model SAM (-CH3).  Based on its molecular 

weight the average area occupied by a rTp0483 molecule would be expected to be 

considerably less than the observed area.  This suggests that rTp0483 aggregates as 

it adsorbs onto a surface.  Aggregation was less pronounced on the -COO- SAM, 

where the protein was more evenly spread across the entire area.  Also, the size of 

rTp0483 aggregates appeared larger on the -NH3+ SAM than the other three. 
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Figure 6.5:  AFM comparison of gold, a model -CH3 SAM and 10 μg rTp0483/mL 
coated SAMs.  (A) Unmodified gold surface, (B) model SAM (-CH3), (C) rTp0483 on -
COO- SAM, (D) rTp0483 on -CH3 SAM, (E) rTp0483 on -OH SAM, and (F) rTp0483 on 
-NH3+ SAM.  Representative areas with aggregated proteins are noted.  From 
Dickerson et al (2011).105 
 

 6.3.5. rTp0483 Binding Domain Analysis 

 SPR was used to probe two potential FN binding sites located on rTp0483.  

Polyclonal antibodies were raised against two amino acid sequences of rTp0483, 

which were predicted to be surface-exposed and used to determine if they play a 

role in FN binding to rTp0483.  Antibody binding onto rTp0483 adsorbed on -CH3, -

OH, and -NH3+ SAMs was indistinguishable from binding to the respective SAMs in 
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the absence of protein indicating that the targets were inaccessible when bound on 

these surfaces (results not shown).  When considering the -COO- SAM, significantly 

more of both antibodies bound to the adsorbed rTp0483 than directly to the 

unmodified surface (p<0.05). 

 Figure 6.6A shows that when adsorbed onto rTp0483, FN significantly 

decreased the binding of both antibodies (p<0.05).  The binding of aTp#1 decreased 

from 540 ± 28 pg/mm2 to 341 ± 19 pg/mm2, and aTp#2 decreased from 465 ± 49 

pg/mm2 to 204 ± 16 pg/mm2. 

 Figure 6.6B shows that when adsorbed rTp0483 on the -COO- surface was 

blocked with aTp#1 or aTp#2, FN adsorption was significantly reduced (p<0.05).  

FN originally bound to rTp0483 at 846 ± 40 pg/mm2, which decreased to 373 ± 71 

pg/mm2 in the presence of aTp#1 and to 270 ± 73 pg/mm2 in the presence of 

aTp#2.   

 Figure 6.6C shows the results of blocking of FN with the peptide sequences 

corresponding to the selected antibodies.  Binding of FN blocked with D1 was 

indistinguishable from FN alone (92% ± 10%).  D2 was shown to have a measurable 

effect on FN binding, reducing FN binding to 88.0% ± 4.5% of FN alone (p<0.05).  No 

inhibition of FN binding was observed for either negative control (A3- 101.9% ± 

7.7% and P1- 110% ± 12%). 
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Figure 6.6:  rTp0483 binding site studies.  (A)  anti-rTp0483 antibody binding on 
surfaces with adsorbed rTp0483 or rTp0483+FN, (B) FN binding on surfaces with 
adsorbed rTp0483 with and without antibodies, (C) FN binding when blocked with 
peptide sequences compared to FN alone on surfaces with adsorbed rTp0483.  
Binding of FN to rTp0483 reduced the binding of aTp#1 and aTp#2 (p<0.05).  Data 
represent mean (n=2) with error bars representing standard error.  Binding of FN 
onto rTp0483 and aTp#1 or aTp#2 was lower than binding of FN on rTp0483 alone 
(p<0.05).  Data represent mean (n=2) with error bars representing standard error.  
Peptide D2 reduced FN binding (p<0.05).  Data represent mean (n=6) with error 
bars representing standard error.  From Dickerson et al (2011).105 
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 6.3.6. FN Binding Domain Analysis 

 Figure 6.7 shows a comparison of binding of selected molecules to adsorbed 

FN or rTp0483+FN on -COO- SAMs.  The difference in heparin binding was not 

statistically significant on FN (61.3 ± 7.0 pg/mm2) and rTp0483+FN (25 ± 13 

pg/mm2).  Binding of anti-RGD antibody on FN (540 ± 72 pg/mm2) was significantly 

higher than rTp0483+FN (267 ± 46 pg/mm2) (p<0.05).  Binding of gelatin on FN 

(940 ± 120 pg/mm2) was significantly greater than on rTp0483+FN (211 ± 12 

pg/mm2) (p<0.05). 

 Figure 6.8 shows the binding of FN that had been pre-incubated with anti-

RGD and alone to rTp0483 on -COO- SAMs.   The surface mass density bound was 91 

± 25 and 47 ± 33 pg/mm2 for FN with 20 μg/mL and 50 μg/mL anti-RGD, 

respectively.  The amount of FN alone that bound was 282 ± 15 pg/mm2.  ANOVA 

indicated that when blocked with anti-RGD at either ratio, FN binding was 

significantly reduced (p<0.05) suggesting the involvement of the RGD peptide 

sequence in rTp0483 binding.  The same test indicated that the difference in binding 

between the two blocking concentrations was negligible.   
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Figure 6.7:  Binding of heparin, anti-RGD antibody, and gelatin to FN or rTp0483+FN 
on -COO- SAMs.  Binding to Tp0483+FN was determined to be significantly less than 
to FN for anti-RGD and gelatin (p<0.05).  Data represent mean (n=3) with error bars 
representing standard error.  From Dickerson et al (2011).105 
 

6.4. Discussion 

 The goal of the studies presented in this chapter was to determine the effect 

that surface chemistry plays in the adsorption of rTp0483 and its ability to bind 

human plasma FN.  Functionalized SAMs presenting positively charged, negatively 

charge, hydrophobic, and hydrophilic motifs were used to probe these interactions.  

Binding of rTp0483 to the SAM surfaces was investigated as well as binding of FN to 

adsorbed rTp0483.   

QCM analysis indicated that all selected functionalized SAMs bound equal 

quantities of rTp0483 with the exception of -COO-, which bound significantly more 

than the other groups, as seen in Figure 6.1A.  Likewise, Figure 6.1B shows that 

adsorbed rTp0483 on -COO- SAMs bound significantly more FN than the other three 
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under the selected conditions.  The rTp0483 kinetic data shown in Table 6.1 

indicated the affinity of rTp0483 for -COO- SAMs was significantly higher than the 

other functionalized surfaces.  Interestingly, under the conditions employed in the 

adsorption studies, rTp0483 binding on -OH, -NH3+, and -CH3 SAMs was similar; 

however, a kinetic analysis revealed that the KA was slightly higher on -OH SAMs 

than the other two.  The apparent similarity in rTp0483 binding was likely due to a 

combination of mass transport effects and sub-saturation conditions.  These results 

suggest that -COO- functionalized SAMs provide the best conditions for rTp0483 

binding, which is likely due to the high isoelectric point (pI) of the protein.  The pI of 

rTp0483 is 9.3 and since all studies were conducted at a physiological pH (7.4), the 

protein would possess a net positive charge. This in turn should lead rTp0483 to 

interact most strongly with the negatively charged SAM via electrostatic 

interactions.   

This idea can also be seen in the dissipation energy data shown in Figure 6.2.  

Dissipation energy is a measure of the total energy lost per cycle during QCM 

operation.77, 78  The amount of energy lost is related to the physical properties of the 

material adsorbed on the quartz sensing crystal.  A soft, fluid layer deforms while 

oscillating, which leads to high dissipation energy while a rigid, closely packed layer 

does not deform and as a result has low dissipation energy.  rTp0483 adsorption on 

-CH3 SAMs resulted in the lowest energy configuration, while adsorption on -OH 

SAMs resulted in the highest energy configuration.  This indicates that on a 

hydrophobic surface rTp0483 forms a more tightly packed layer with low fluidity, 

and on a hydrophilic surface rTp0483 forms a much more deformable, fluid layer.  
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The dissipation energy for rTp0483 on -COO- and -NH3+ SAMs was similar; however, 

there was a clear difference in both rTp0483 and FN adsorption.  This difference can 

be explained as a combination of hydrophobic and charge effects.  The observed 

trend is that the dissipation energy of rTp0483 is inversely proportional to 

hydrophobicity.  By this logic, it would follow that rTp0483 adsorption on -COO- 

SAMs would result in a dissipation energy value close to that of an -OH SAM and 

slightly higher than an -NH3+ SAM, which in turn should be higher than a -CH3 SAM.  

This, however, does not take into consideration the ionic properties of -COO- and -

NH3+ SAMs.  rTp0483 possesses a net positive charge under experimental 

conditions so it would be expected to bind more tightly to a negatively charged, 

hydrophilic surface than to a hydrophilic surface with no charge.  By the same 

reasoning, binding to a positively charged surface would be looser than to an 

uncharged surface with similar hydrophobicity.  It is also possible that this charge 

interaction contributes to the FN binding capacity of rTp0483 adsorbed onto -COO- 

SAMs.  The observation that FN binds to -COO- SAMs but not onto -OH SAMs, which 

have higher dissipation energy, hints that rTp0483 must undergo a change in order 

to bind FN.  The high energy of rTp0483 on -OH SAMs indicates a weak surface 

interaction and as a result rTp0483 is likely to have a conformation closely related 

to rTp0483 in solution.  This fact may mean that FN binding by adsorbed rTp0483 is 

at least partially a surface mediated event.  It is possible that the binding orientation 

of rTp0483 differs based on surface chemistry, and that the FN binding site is only 

displayed when it is bound to -COO- SAMs or that the FN binding site of rTp0483 is 

normally concealed within a fold of the protein, and when rTp0483 encounters a -
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COO- SAM a change in conformation occurs exposing the binding site and allowing 

FN to bind. 

FN binding with rTp0483 adsorbed on -COO- SAMs was analyzed at two 

rTp0483 concentrations in order to gain more information about the mechanism of 

binding.  Initial analysis at 20 μg rTp0483/mL suggested a bivalent analyte 

mechanism as stated above.  Since FN is a dimeric protein with two nearly identical 

units, each should be able to bind rTp0483, thus a bivalent analyte mechanism is 

reasonable.  Assuming this convention, one unit of a FN molecule encounters and 

binds rTp0483 on the surface, followed by the second unit binding to an additional 

rTp0483 protein to complete the AB2-type complex.  Following this study, it was of 

interest to determine whether with decreasing rTp0483 surface mass density there 

existed a point where the distance between proteins became too great for adsorbed 

FN to reach the second rTp0483 required for AB2 formation.  For this purpose, the 

concentration of rTp0483 was reduced to 5 μg rTp0483/mL and FN adsorption was 

evaluated.  Interestingly, KA1 for FN adsorption was higher for 5 μg rTp0483/mL, 

while KA2 was higher for 20 μg rTp0483/mL.  FN (440kDa) is significantly larger 

than rTp0483 (22kDa), so complete coverage of the surface by rTp0483 is not 

necessary and according to these results may actually lead to a lower surface mass 

density of FN.  rTp0483 and FN adsorption studies along with AFM analysis 

suggested that protein aggregation on the surface may play a role.  The most 

significant FN binding correlated to rTp0483 adsorbed on -COO- SAMs, which also 

displayed the smallest and most evenly distributed aggregate formation.  As the 

rTp0483 concentration increases, the size of the protein aggregates also likely 
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increases.  It is possible that as the aggregate size increases, the affinity for FN of 

proteins within the aggregate becomes limited due to steric hindrance.  This agrees 

with the minimal FN binding to rTp0483 adsorbed on the other SAM surfaces, which 

displayed larger rTp0483 aggregates when compared to -COO- SAMs.  Thus, at the 

lower concentration of 5 μg rTp0483/mL protein aggregates would be smaller, and 

likewise KA1 for FN greater.  Conversely, at a concentration of 20 μg rTp0483/mL 

the size of protein aggregates would increase to limit the binding of a portion of 

rTp0483 proteins, leading to a smaller KA1.  The spacing of aggregates on each 

surface can help account for differences in KA2.  Once bound to rTp0483, FN would 

be stationary, and as a consequence, the chance of interacting with a second 

rTp0483 limited to the range of motion of the unbound FN unit.  While the initial 

affinity of FN for rTp0483 was less at 20 μg rTp0483/mL than at 5 μg rTp0483/mL, 

for the secondary binding event the distance between aggregates becomes 

important.  At 20 μg rTp0483/mL the distance between aggregates is likely less than 

at 5 μg rTp0483/mL, and accordingly the chance that a bound FN is able to reach a 

second rTp0483 increases. 

Unfortunately, the crystal structure of rTp0483 has not been elucidated; 

however, an estimation of its size can be made.  The partial specific volume (υ) of a 

large number of globular proteins was determined experimentally to fall within a 

tight range from 0.70-0.75 cm3/g.106  Using this value as a starting point, an estimate 

of protein volume was made based on the rTp0483 molecular weight using 

Equation 19.  Here υ was assumed to fall in the middle of the range (0.73 cm3/g), MW 
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(g/mol) was the molecular weight of rTp0483, and NA was Avogadro’s number 

(6.02x1023 molecules/mol). 

 

 

υ x 1024 A3

cm3 x MW

NA

x 0.001
nm3

A3 =1.21x10−3 x MW
nm3

molecule
(19)

 

 

 The molecular weight of rTp0483 is 22kDa, and the estimated volume is 27 

nm3.  If surface adsorbed rTp0483 molecules are approximated as spheres the 

average surface area occupied by a single rTp0483 molecule can be estimated.  

Based on this approximation the surface area occupied by an rTp0483 molecule is 

11.3 nm2. 

 The shape of rTp0483 likely varies from surface to surface based upon 

dissipation energy data; however, this is not as apparent in Figure 6.5 because the 

surfaces were dried prior to imaging, which may have impacted protein shape; 

however, based on Figure 6.5, it is apparent that for all surfaces the elevated areas 

have an area greater than 11.3 nm2, which supports the theory that rTp0483 binds 

in aggregate form rather than as single proteins.  The size of these protein islands 

was found to vary with surface chemistry.  On -NH3+ SAMs, protein islands were 

larger compared to the other surfaces.  For -OH and -CH3 surfaces, rTp0483 islands 

were smaller than for -NH3+, while the distance between each island was similar.  

Adsorbed rTp0483 aggregates were the smallest on -COO- SAMs and were spread 

evenly across the entire surface.  The size of the rTp0483 aggregates can be 

correlated to FN binding capacity.  The -COO- SAMs displayed the least aggregation 
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and the most uniform binding of rTp0483 across the surface.  Because rTp0483 

molecules are more spread out, it is probable that a greater number are able to take 

on an ideal binding configuration.  As aggregates form, nearby rTp0483 may become 

restricted and thus access to potential binding sites could be inhibited. 

Two peptide sequences of rTp0483 were identified as possible binding sites, 

and antibodies toward each were produced.  The data show that aTp#1 and aTp#2 

were able to inhibit FN binding to rTp0483 (p<0.05).  When FN was added to 

rTp0483 prior to the antibodies, there was also a significant drop in antibody 

binding (p<0.05).  Additionally, the two antibodies only bound to rTp0483 when 

immobilized on -COO- SAMs, which supports the idea that the targeted sites are 

obscured on all SAMs except for -COO-.  

 Peptides matching the proposed FN binding sites on rTp0483 were 

synthesized and used to block FN.  Peptides were evaluated because their small size 

eliminates the possibility of steric effects, which could result from blocking with the 

larger antibodies.  Only D2 resulted in a significant decrease in FN binding (p<0.05).  

Based on this study, it appears that D1 did not play a direct role in FN-rTp0483 

binding.  It is probable that D2 plays some role; however, the observed reduction is 

not large enough to account for the entire binding event.  The fact that significant 

inhibition was observed for both antibodies while little inhibition was seen for the 

specific peptides may indicate that the active FN binding sites of rTp0483 are 

located near the expressed sequences but do not coincide perfectly with them.  

Further characterization of the tertiary structure of Tp0483 is required to reach a 

conclusion. 
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FN domain studies were conducted to determine the regions of FN that are 

involved in rTp0483 binding.  This was done based on changes in binding to FN 

when it was bound to rTp0483 compared to on unmodified -COO- SAMs.  In a native 

environment, the RGD binding site of FN enables the protein to bind to cells and 

cellular components throughout the body, thereby modulating cell processes such 

as attachment, migration, growth, and differentiation.63  It is also thought to play 

some role in the binding of FN by T. pallidum, which helps the bacteria to infiltrate 

the body via interactions with cells and the ECM.51-53, 64, 72, 73  Further, it has been 

theorized that the adhesion of various host proteins, including FN, to the outer 

surface of T. pallidum partially contributes to the bacterium’s ability to remain in the 

body for long periods of time between outbreaks.  When FN was bound to rTp0483 

adsorbed on -COO- SAMs, a 50% reduction in anti-RGD binding was observed 

compared to when FN was adsorbed on unmodified -COO- SAMs.  To investigate 

further the involvement of the RGD site, an antibody specific to the cell-binding 

domain of FN was used to block the RGD peptide sequence in an effort to determine 

whether this site plays a role in rTp0483 binding.  This study demonstrated a 

significant decrease in FN binding when blocked with 20 μg/mL anti-RGD, which 

agrees with previous reports that indicated a measureable inhibition of T. pallidum 

binding to FN when it was incubated with anti-RGD.64-67 

The heparin-binding domains of FN were also examined as they have been 

implicated previously as potential bacterial targets on FN.71  Results did not show 

strong heparin binding on either of the prepared protein coatings.  One possible 

explanation lies in the location of the major heparin-binding sites.  The stronger 
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heparin II site is very close to the central cell-binding domain (CCBD), thus if there is 

an interaction in this region, it is reasonable to expect low binding on rTp0483+FN 

due to steric effects.63  Low binding on FN can be accounted for based on 

electrostatic interactions.  Heparin is strongly negative, and conversely, its binding 

site is strongly positive.  When FN was adsorbed onto -COO- SAMs, the positively 

charged binding site could have been attracted to the negatively charged surface 

resulting in minimal binding.  The balance of heparin binding can be accounted for 

by the weaker heparin I site; since it is located farther away from the cell-binding 

domain, it would remain unaffected by the binding of rTp0483 and FN. 

Lastly, gelatin binding was examined.  Gelatin is a denatured form of 

collagen; therefore, the gelatin-binding domain also serves as a binding domain for 

collagen.  Like the CCBD and heparin-binding domains, certain species of bacteria 

have been shown to interact with FN through this domain.70  Studies revealed an 

80% reduction in gelatin binding when FN was bound to rTp0483 adsorbed on -

COO- SAMs compared to FN bound to unmodified -COO- SAMs.  This outcome 

suggests that the gelatin/collagen-binding domain of FN may play a role in rTp0483 

binding. 

 

6.5. Conclusions 

 Binding of T. pallidum recombinant protein fragment rTp0483 was shown to 

be greatest on negatively charged -COO- SAMs, while FN only bound in significant 

quantities to rTp0483 adsorbed on these surfaces. QCM analysis of dissipation 

energy to frequency shift ratio of rTp0483 adsorption to functionalized SAMs 
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suggested different binding configurations based on surface chemistry.  Kinetic 

analysis of rTp0483 adsorption revealed that the strength of the bond between the 

protein and surface was dependent on surface chemistry.  Also, kinetic analysis of 

FN binding on adsorbed rTp0483 demonstrated that the surface mass density of 

rTp0483 affects the strength of FN binding.  Decreasing the concentration of 

adsorbed rTp0483 from 20 to 5 μg/mL increased KA1 and decreased KA2 for FN 

binding.  Also, AFM analysis illustrated that rTp0483 binds as protein aggregates 

rather than single proteins.  A blocking study toward the RGD sequence of FN 

demonstrated an involvement in rTp0483 binding, and through the use of 

antibodies and peptides, rTp0483 amino acids 316-333 were observed to play a role 

in FN binding.  FN binding domain studies reinforced the importance of the RGD 

sequence and pointed toward the association of the collagen/gelatin-binding 

domain in rTp0483 binding.  Through the development of an rTp0483 surface 

coating capable of binding FN with high affinity it will be possible to analyze the 

effect of rTp0483 on various aspects of the host response with and without FN in a 

manner resembling natural Tp0483 on the surface of T. pallidum.  In the future this 

may lead to a better understanding of T. pallidum as well as potential applications in 

development of materials with antigenic disguise properties. 

 
 

 

 



 

97 
 

Chapter 7: HEMOCOMPATIBILITY ANALYSIS OF FIBRONECTIN BINDING, 
RECOMBINANT PROTEIN FRAGMENT RTP0483 ON CARBOXYLATE 

TERMINATED SELF-ASSEMBLED MONOLAYERS  
 

7.1 Introduction 

 In order to explore the potential protective capacity of the putative 

surface protein fragment rTp0483 in conjunction with soluble plasma FN a number 

of tests were conducted to quantify any effect on surface hemocompatibility.  The 

recombinant protein fragment rTp0483 was used because of its ability to bind 

plasma FN.53  Surface chemistry often plays a role in the activity of adsorbed 

proteins.99, 101, 107  The study of FN adsorption onto rTp0483 on functionalized SAMs 

in Chapter 6 indicated that binding was highest when rTp0483 was adsorbed on 

negatively charged -COO- SAMs and so they were selected for hemocompatibility 

analysis.  Plasma protein adsorption is the first response of the body to a foreign 

material and type and amount play a large role in the resulting hematological and 

immune response.  Adsorption and activation of one such protein, FXII, initiates the 

intrinsic clotting pathway summarized in Section 2.3 and Figure 2.3.  The positive 

feedback loop from kallikrein resulting from FXII activation is also relevant to this 

process.  Because the intrinsic pathway is the primary clotting pathway on 

biomaterials it is key in understanding surface hemocompatibility.   Platelet 

activation is another indicator of hemocompatibility.  Activated platelets participate 

in the formation of blood clots by releasing clotting factors and acting as a catalyst 

for other events such as FXII activation.    
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Moments after exposure of a foreign body to blood, a mix of circulating 

proteins begin to adsorb to the surface.  Fibrinogen (Fg) adsorbs to biomaterial 

surfaces and active platelets, is converted to insoluble fibrin by thrombin, and 

becomes cross linked to form a fibrin network that stabilizes blood clots. FXII 

becomes active FXIIa when it adsorbed to a negatively charged surface and leads to 

thrombin production and ultimately fibrin network formation through the intrinsic 

pathway.  Human serum albumin (HSA) is the most plentiful protein in the blood 

and is commonly used to model protein adsorption.  For these reasons Fg, FXII, and 

HSA were chosen to model this adsorption event based on their relevance to 

hemocompatibility quantification.34-45  Intrinsic pathway activity as a result of FXII 

and kallikrein activation was examined along with platelet activation.  Both have 

previously been employed for measurement of surface hemocompatibility.35, 37-43, 45, 

47, 48   

SPR was used to observe protein binding on functionalized SAMs. Intrinsic 

activity was quantified in solution and at the material interface using UV/Vis 

spectroscopy to measure p-nitroaniline (pNA) liberation from an H-D-Prolyl-L-

phenylalanyl-L-arginine-p-nitroaniline dichloride (H-D-Pro-Phe-Arg-pNA•2HCl) 

substrate as a function of the conversion of prekallikrein to kallikrein by FXIIa.  This 

reaction is illustrated in Figure 7.1.  Phospholipids known as phosphatidylserines 

are exposed on the surface of activated platelets, which bind strongly with annexin-

V proteins.  Platelet activation was quantified based on phosphatidylserine 

presentation using FITC labeled annexin V (FITC-AXV).  Binding of FITC-AXV was 

determined using fluorescence microscopy.   
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Figure 7.1: Overview of the method used to determine intrinsic pathway activity.  H-
D-Prolyl-L-phenylalanyl-L-arginine-p-nitroaniline dichloride (H-D-Pro-Phe-Arg-
pNA•2HCl) is degraded by FXIIa and kallikrein in the presence of water to liberate 
pNA, which can be quantified by measuring the absorbance at 410 nm. 
 

7.2 Experimental Procedures 

 

 7.2.1. Biomolecules and Reagents  

 DPBS was prepared as specified in Section 4.2.7, H-D-Pro-Phe-Arg-pNA•2HCl 

was purchased from Chromogenix (Milano, Italy) and fresh human platelets and 

plasma were obtained from the Central Kentucky Blood Center (Lexington, KY). 

Annexin V-FITC (AXV-FITC) was purchased from Invitrogen and diluted 1:50 in 

Tyrodes buffer (TB) (10 mM HEPES, 137 mM NaCl, 12 mM NaHCO3, 5.5 mM glucose, 

2.8 mM KCl, 1 mM MgCl2, 0.4 mM Na2HPO4, pH 7.4) with 5 mM CaCl2.  Unless 

specified all proteins were purchased from Sigma.  FXII was purchased from 

Haemtech (Essex Junction, VT).  The protein fragment rTp0483 was expressed and 

purified as per the protocol provided in Section 4.2.4. 
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 7.2.2. SPR 

 A Biacore X SPR unit was used for all plasma protein binding studies.  SAMs 

were prepared as described in Section 5.2.1.  DPBS was employed as a running 

buffer and was used to dilute all proteins to the desired concentrations.  A constant 

flow rate of 50 μL/min was employed.  Once a sample surface was docked it was 

primed with DPBS until the response signal in both flow channels was stable.  Buffer 

was circulated through FC1 and FC2 in series in order to monitor signal stability.  

After the response had stabilized buffer flow was changed to single channel flow 

(either FC1 or FC2) for observation of protein binding and the other channel was 

used to monitor background noise.  Protein samples were introduced through an 

injection port and after each injection the signal was allowed to stabilize before 

changes in the SPR signal were recorded.  After the first flow channel was used flow 

was reversed and the other was used in a similar fashion.  

  

 7.2.3. Plasma Protein Adsorption 

 Plasma proteins were prepared in DPBS at physiological concentrations of 3 

mg/mL fibrinogen (Fg), 45 mg/mL human serum albumin (HSA), and 20 μg/mL FXII 

while rTp0483 and FN were prepared at a concentration of 100 μg/mL in DPBS.  

Protein binding was analyzed on negatively charged -COO- SAMs.  Once the SPR 

signal was stable 100 μL of 100 μg rTp0483/mL was injected at a flow rate of 50 

μL/min.  The signal was allowed to stabilize then 100 μL of 100 μg FN/mL was 

injected at a flow rate of 50 μL/min.  Alternately, either 100 μL of 100 μg 

rTp0483/mL or 100 μL of 100 μg FN/mL was injected alone at a flow rate of 50 
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μL/min.  For each case, 50 μL of one of the plasma protein solutions was injected at 

a flow rate of 50 μL/min after the signal stabilized.  Nonspecific plasma protein 

adsorption was determined by injection of 50 μL of each plasma protein solution 

onto unmodified -COO- SAMs at a flow rate of 50 μL/min.  Data is presented as a 

reduction in plasma protein adsorption compared to nonspecific adsorption on an 

unmodified SAM as shown in Equation 20. 

 

 

Percent Inhibition =

pg
mm2 protein on SAM −

pg
mm2 protein on coated SAM

 
 
 

 
 
 

pg
mm2 protein on SAM

 

 

 
 
  

 

 

 
 
  

x 100% (20)

  

  

 7.2.4. Intrinsic Pathway Activation Study 

 Functionalized -COO- SAM surfaces were prepared as detailed in Section 5.2.1 

and equilibrated in 1 mL of DPBS for 30 min in a 24 well plate.  The DPBS was 

removed and 300 μL of 100 μg rTp0483/mL, 300 μL of 100 μg FN/mL, or 300 μL of 

2 mg/mL BSA was added to an equal number of wells and incubated 40 minutes at 

room temperature.  At the same time 300 μL of 100 μg rTp0483/mL was added to 

an equal number of wells and incubated 40 minutes at room temperature then 

removed, washed twice with 1 mL of DPBS, then incubated with 300 μL of 100 μg 

FN/mL for 40 minutes at room temperature.  After incubation all surfaces were 

washed twice with 1 mL of DPBS. 

 All tests were conducted with a single unit of plasma derived from a single 

donor.  The second DPBS wash was removed and 200 μL of plasma was added to 
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each protein coated sample surface as well as to 3 empty wells, hereafter referred to 

as control plasma, and incubated at room temperature for 1 minute to allow FXII to 

activate and for prekallikrein to be converted to kallikrein.  Then, 20 μL of plasma 

from each well was transferred into separate wells to determine intrinsic activity in 

the plasma; the remaining plasma was discarded.  Next, 300 μL of 0.3 mM H-D-Pro-

Phe-Arg-pNA•2HCl was added to each surface and plasma sample and reacted for 

30 minutes at room temperature.  The reaction was stopped by adding 75 μL of 20% 

(v/v) acetic acid from Sigma.  200 µL of each sample was transferred to a 96 well 

plate and the absorbance analyzed at 410 nm using a UV-Vis spectrophotometer 

equipped with a Cary 50 MPR microplate reader from Varian (Santa Clara, CA).  The 

absorbance change of all sample groups was normalized to the change for control 

plasma 

 

 7.2.5. Platelet Activation Study 

 All tests were conducted with a single unit of plasma and platelets, each 

derived from a single donor.  Protein coated -COO- SAM surfaces were prepared as 

detailed in Section 7.2.4.  Platelets were stored at room temperature and used 

within 3 days of arrival while plasma was aliquoted and stored at -20°C upon 

arrival.  Platelets were diluted 1:6 in plasma and used immediately.  Platelet 

activation experiments closely followed a protocol previously reported by Berrocal 

et al.108  The second DPBS wash was removed from the surfaces and 500 μL of 

diluted platelet solution was added and incubated 2 hours at 37°C, 5% CO2.  The 

platelet solution was removed and the surfaces washed 3 times with 1 mL TB.  500 
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μL of FITC-AXV solution was added to each surface and incubated in the dark for 20 

minutes at room temperature to allow the FITC-AXV to bind with surface exposed 

phosphatidylserine.  The FITC-AXV solution was removed and the surfaces washed 

3 times with 1 mL TB.  Samples were imaged immediately. 

 Imaging was completed at 5X magnification using a Nikon Eclipse LV100 

microscope with a FITC filter set (Melville, NY).  Images were taken with a Nikon DS 

Qi1Mc camera.  Data compilation and analysis were done using NIS-elements BR 3.0 

software.  Each image was analyzed based on the fluorescent intensity of each 

individual pixel.  The lowest intensity value for each image was set to zero then the 

% fluorescence of the image was calculated based on all pixels with intensity greater 

than this background value.  Data were normalized to the values for unmodified 

SAMs.  Observed fluorescence was related to the amount of phosphatidylserine 

presented on the surface of active platelets thus it is possible to compare the 

relative platelet activity on each surface. 

 

 7.2.6. Statistical Analysis 

 Statistical analysis was performed using the Microsoft Office Excel Data 

Analysis tool, StatPlus.  Multiple pair-wise comparisons were made using one-way 

analysis of variance (ANOVA) with a maximum p-value of 0.05.  All data are 

reported as a mean + standard error.  Plasma protein adsorption and intrinsic 

pathway activation tests were n=3 and platelet activation experiments were n=5. 
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7.3 Results 

 

 7.3.1. Plasma Protein Adsorption 

 Percent inhibition of Fg, HSA, and FXII adsorption on rTp0483+FN, rTp0483, 

and FN coated SAMs is shown in Figure 7.2.  The adsorption of Fg to each of the 

three coatings was significantly different (p<0.05) where rTp0483+FN resulted in a 

79.0 ± 2.4% reduction, rTp0483 resulted in a 69.92 ± 0.76% reduction, and FN 

resulted in a 60.3 ± 1.8% reduction compared to adsorption onto unmodified -COO- 

functionalized SAMs.  The inhibition of HSA adsorption was significantly higher on 

rTp0483+FN than on rTp0483 or FN (p<0.05), which were indistinguishable.  

Adsorbed rTp0483+FN resulted in a reduction in HSA adsorption of 90.2 ± 2.5% 

while rTp0483 resulted in a reduction of 75.0 ± 1.2% and FN resulted in a reduction 

of 69.8 ± 5.7%.  The inhibition of FXII adsorption was similar for rTp0483+FN and 

FN where the reduction was 73.1± 5.6% and 73.7 ± 2.2% respectively.  Adsorption 

on rTp0483 was lower than the other two groups (p<0.05) where adsorption was 

reduced by 52.5 ± 3.1%).   
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Figure 7.2: Comparison of plasma protein adsorption to rTp0483+FN, rTp0483, and 
FN on -COO- functionalized SAMs.  Percent inhibition was determined by subtracting 
the plasma protein adsorption on rTp0483+FN, rTp0483, or FN coated -COO- 
functionalized SAMs from adsorption on unmodified -COO- functionalized SAMs, 
dividing by the protein adsorbed to the unmodified -COO- functionalized SAMs, and 
multiplying by 100.  Fg and HSA onto rTp0483+FN less than rTp0483 or FN 
(p<0.05) and FXII onto rTp0483+FN less than rTp0483 (p<0.05).  Data is reported 
as a mean (n=3) with error bars representing standard error.  
 

 7.3.2. Intrinsic Pathway Activation Study 

 Activation of the intrinsic clotting pathway at the surface and in plasma is 

shown in Figure 7.3.  The absorbance of sample groups was measured after 30 min 

and the values were normalized to control plasma.  Liberation of pNA as a result of 

FXII activation and conversion of prekallikrein to kallikrein was used as a measure 

of the relative intrinsic activity in each of the sample groups.  Activity in plasma 

samples with rTp0483+FN (1.03 ± 0.02), FN (1.02 ± 0.02), and BSA (1.06 ± 0.02) 

coatings were indistinguishable from control plasma while activity in plasma for  
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Figure 7.3: Comparison of intrinsic pathway activation on rTp0483+FN, rTp0483, 
and FN coated -COO- functionalized SAMs as well as unmodified COO- functionalized 
SAMs compared to control plasma.  Samples were taken at the material interface 
and in solution and activity measured as the absorbance at 410 nm after 30 min.  
Intrinsic activity at the surface was elevated for all sample groups (p<0.05).  
rTp0483+FN was higher than rTp0483 and BSA (p<0.05), which were 
indistinguishable, and was indistinguishable from FN and unmodified -COO- SAMs.  
Intrinsic activity in plasma higher than control plasma for rTp0483 and unmodified 
-COO- SAMs (p<0.05).  Data reported as a mean (n=3) with error bars representing 
standard error.   
 

rTp0483 (1.08 ± 0.3) and unmodified -COO- SAMs (1.08 ± 0.02) was slightly elevated 

(p<0.05).  Alternately, activity at the surface was elevated for all test groups with 

rTp0483+FN (1.48 ± 0.02), rTp0483 (1.37 ± 0.02), FN (1.44 ± 0.02), BSA (1.36 ± 

0.02), and unmodified -COO- SAMs (1.46 ± 0.03) respectively compared to control 

plasma (p<0.05).  The intrinsic activity of surface adsorbed FN was higher than 

adsorbed rTp0483 or BSA (p<0.05) and equal to unmodified -COO- functionalized 

SAMs.  At the same time, rTp0483 showed similar activity to BSA coated -COO- 
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functionalized SAMs until FN was added at which point the intrinsic activity 

increased to a rate indistinguishable from FN alone. 

 

 7.3.3. Platelet Activation Study 

Sample images of platelet activation are shown in Figure 7.4.  Both the FN 

coated and unmodified -COO- functionalized SAMs visually appeared to display 

more fluorescence than the other surfaces.  Quantitative comparison of the platelet 

activation on each of the coated surfaces normalized to unmodified -COO- 

functionalized SAMs is summarized in Figure 7.5.  Platelet activity on FN coated 

SAMs was 1.38 ± .23 times that of the activity on unmodified -COO- functionalized 

SAMs , on rTp0483 it was 0.26 ± .06 times that of  activity on unmodified -COO- 

functionalized SAMs, and on rTp0483+FN it was 0.18 ± .03 times that of activity on 

unmodified -COO- functionalized SAMs.  ANOVA indicated that platelet activation on 

FN coated and unmodified -COO- SAMs was indistinguishable and that activation on 

rTp0483 and rTp0483+FN coated SAMs was indistinguishable.  The same ANOVA 

showed that platelet activation on FN coated and unmodified -COO- SAMs was 

significantly higher than activity on rTp0483 and rTp0483+FN coated SAMs 

(p<0.05). 

 



 

108 
 

 
 
Figure 7.4: Sample fluorescence microscope images of platelet activation on 
rTp0483+FN, rTp0483, and FN coated -COO- functionalized SAMs.  Activation on an 
unmodified -COO- functionalized SAM is shown as well. Platelet activation was 
quantified by the use of FITC labeled annexin-V (FITC-AXV). A) rTp0483+FN coated 
SAM, B) rTp0483 coated SAM, C) FN coated SAM, and D) unmodified -COO- 
functionalized SAM. 
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Figure 7.5: Comparison of platelet activation on rTp0483+FN, rTp0483, and FN 
coated -COO- functionalized SAMs normalized to unmodified -COO- functionalized 
SAMs.  Platelet activation on FN indistinguishable from activation on unmodified -
COO- SAMs while activation on rTp0483+FN and rTp0483 was significantly lower 
(p<0.05) and indistinguishable from one another.  Data is reported as a mean (n=5) 
with error bars representing standard error.     
 

7.4. Discussion  

 A number of outer membrane proteins (OMPs) found on the surface of T. 

pallidum are believed to act as antigens for immune response as well as facilitate 

bacteria interactions with the ECM.51-58, 64, 72-74  Despite the existence of such 

proteins, T. pallidum exhibits an ability to evade the host immune response and lie 

latent for extended periods of time.  A putative T. pallidum OMP called rTp0483 was 

isolated that shows an ability to bind soluble FN. Here it is theorized that soluble FN 

may be bound in order to increase the hemocompatibility of T. pallidum 
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The adsorption of Fg, HSA, and FXII to SAMs coated with rTp0483+FN, 

rTp0483, or FN was investigated.  In all cases, protein binding was reduced by more 

than 50% compared to unmodified SAMs.  Adsorption of rTp0483+FN resulted in 

the largest reduction in Fg and HSA adsorption while adsorption of rTp0483 

resulted in a moderate decrease in Fg binding compared to FN.  Adsorption of 

rTp0483+FN and FN produced similar results for FXII adsorption while adsorption 

of rTp0483 was less effective.  These results indicate that for Fg, HSA, and FXII at 

physiological concentrations adsorption of rTp0483+FN reduces further protein 

adsorption as well as or more effectively than FN or rTp0483 alone.  

Fg plays an important role in the coagulation cascade; it is known to activate 

platelets and is converted to fibrin by thrombin in order to form a fibril network, 

which aids in thrombus stabilization.34, 38-45  It is interesting that significant Fg 

binding was observed on all coated -COO- SAMs.  A study by Makogonenko et al. 

found that FN and Fg bound only after Fg had been converted to fibrin.109 One 

difference that may account for this is that here Fg binding to surface adsorbed FN 

was observed whereas in the study by Makogonenko et al. FN binding to surface 

adsorbed Fg was examined.  The same manuscript indicated that the conformation 

of Fg is quite labile, which would be even more apparent while free in solution.109  

The binding activity of Fg may have been affected by immobilization, which could 

account for low FN binding.  Reduction of Fg binding when FN was added to an 

rTp0483 coated SAM may indicate access to Fg specific domain(s) is being 

restricted.  As a result of this effect the thrombogenic potential of a surface with 
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adsorbed rTp0483+FN may be attenuated by reducing the Fg binding ability of 

bound FN.   

HSA while not an adhesin protein, is found in normal plasma at a 

concentration of 30-50 mg/mL making it the most prevalent protein in the blood; its 

high concentration makes it a common model for protein adhesion.37, 40  Thus, the 

observed reduction in binding suggests an overall decrease in protein binding, 

which may be indicative of fouling resistance.  As with Fg, rTp0483+FN was more 

effective in reducing adsorption of HSA when compared to rTp0483 or FN alone. 

FXII is a precursor of the intrinsic clotting pathway.34, 35, 38, 39, 41, 43-45  

Adsorption of this factor to a material surface and subsequent conversion to an 

active form (FXIIa) begins a cascade of biochemical events that result in the 

conversion of Fg to fibrin.  FXII binding onto adsorbed rTp0483 was reduced when 

FN was added prior to the introduction of FXII.  Also, binding of FXII to FN on 

rTp0483 was the same as binding on FN alone.  Conversion of circulating FXII to 

active FXIIa is a surface mediated process; therefore, if less FXII is bound it stands to 

reason that intrinsic activity could lessen as well.38, 41, 45  These results point toward 

a possible connection between soluble FN binding by rTp0483 and the reduction of 

plasma protein binding.  

In addition to plasma protein adhesion, intrinsic clotting pathway activation 

was studied at the interface of protein coated -COO- functionalized SAMs as well as 

in solution.  This coagulation pathway is controlled by a number of precursors 

including surface mediated activation of FXII.  In the plasma protein inhibition study 

a significant drop in FXII binding was observed when FN was added to adsorbed 
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rTp0483, which suggested that there might be a reduction in intrinsic pathway 

activation as well; however, the opposite was observed.  Though adsorbed 

rTp0483+FN bound less FXII, it led to increased intrinsic activity compared to 

rTp083 alone.  In solution the only group other than unmodified -COO- 

functionalized SAMs that showed a significant increase in activity was rTp0483.  The 

SPR adsorption study considered only the adsorption of FXII to the protein coated 

SAMs; however, other components of the intrinsic cascade must be considered to 

get the complete picture.  The intrinsic pathway is initiated by the spontaneous 

conversion of FXII into an active FXIIa form when it interacts with a negatively 

charged surface; however, the involvement of kallikrein is also important.38  All test 

groups generated significant intrinsic activity at the surface.  Unreactive 

prekallikrein is activated by FXIIa and in turn kallikrein activates FXII.  The intrinsic 

activity assay measures the overall response, which includes the contributions of 

FXIIa and kallikrein.  Thus, the differences between FXII adsorption and intrinsic 

activity are likely due to the effects of kallikrein.  Another possibility is that simply 

binding to a surface is not sufficient to initiate FXII activation.  rTp0483 alone bound 

20% more FXII than either FN or rTp0483+FN; however, intrinsic activity was 

significantly lower.  With an isoelectric point of 9.3 at physiological pH 7.4 rTp0483 

possesses a net positive charge.  Conversely, FN has an isoelectric point of 6.1 

meaning it possesses a net negative charge.  The positive charge of rTp0483 could 

potentially be slowing the autoactivation of FXIIa.  Subsequently, when FN is added 

to rTp0483 the negative charge of FN allows for the activation of FXII to proceed 

and as a result the rate of intrinsic activity increases.  The increase in intrinsic 
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activity in solution for rTp0483 may be related to the higher surface concentration 

as well.  One possible explanation might be that FXII is so tightly packed on 

adsorbed rTp0483 that as it converts into FXIIa a small amount is forced from the 

surface and leads to activity in the surrounding plasma.  In vivo this would be less of 

a concern as any FXII or FXIIa that detaches would be carried away by blood flow. 

Platelet activation is one of the most commonly studied events in the 

quantification of hemocompatibility.35, 37, 39, 40, 42, 43, 47, 48  Activated platelets play a 

major role in clot formation through the secretion of clotting factors and proteins as 

well as facilitating other key biological events.39  In general, low platelet activation 

was observed for all surfaces as can be seen in Figure 7.4; this is partially due to the 

negative charged -COO- functionalized SAMs that the selected proteins were 

adsorbed onto.  Prior studies saw a decrease in platelet activation when a surface 

was functionalized with -COO- groups.43, 48  Adsorption of 100 μg rTp0483/mL 

appeared to be sufficient to further reduce platelet activation.  Adsorption of 100 μg 

FN/mL was indistinguishable from an unmodified SAM initially; however, when 

added to SAMs that were incubated with 100 μg rTp0483/mL it resulted in platelet 

activation equivalent to 100 μg rTp0483/mL alone.  These results suggest that 

rTp0483 adsorbed on a -COO- functionalized SAM surface is an effective method to 

reduce platelet activation.  Furthermore, the data suggest that platelet activation as 

a result of exposure to FN on a -COO- SAM can be reduced significantly by adsorbing 

rTp0483 onto the surface prior to the adsorption of FN.  

The role of soluble FN in platelet activation and aggregation remains a 

debated topic.  Work by Reheman et al. and Cho et al. reported conflicting outcomes; 
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one study found that soluble FN inhibited platelet activation while the other found 

that it accelerated it.110, 111  Addition of the RGDS cell-binding peptide from FN had 

been shown to inhibit FN binding for platelets.112  Likewise, the RGD peptide was 

able to inhibit T. pallidum adhesion to human endothelial cells and surface adsorbed 

FN.64  These observations suggest that rTp0483 may interact with FN in a way 

similar to T. pallidum by binding to the cell-binding sites of FN and inhibiting 

platelet adhesion.  This property would be highly desirable for a blood contacting 

biomaterial.  FN will eventually adsorb to the surface irrespective of the material 

and this will lead to platelet adhesion, which in turn leads to blood clotting on the 

biomaterial; however, if a layer of rTp0483 were applied prior to implantation, FN 

would still bind but according to these results it would be unable to facilitate 

platelet adhesion. 

 

7.5. Conclusions 

Plasma protein adsorption, intrinsic pathway activation, and platelet 

activation were examined as indicators of hemocompatibility for -COO- 

functionalized, alkanethiol SAMs coated with rTp0483 and/or human plasma FN.  

Studies showed significant plasma protein inhibition and minimal platelet activation 

on -COO- functionalized SAMs with adsorbed rTp0483+FN.  These results indicate 

that binding of soluble plasma FN by rTp0483 may help to reduce further 

interactions with plasma proteins as well as inhibit FN mediated platelet activation. 
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Chapter 8: PHAGOCYTIC RESPONSE OF MOUSE MACROPHAGES TO FN BINDING 
RECOMBINANT PROTEIN FRAGMENT RTP0483 

 

8.1. Introduction 

 The implantation of a biomaterial into the body elicits a complex immune 

reaction.113, 114  As detailed in Section 2.2 the response of phagocytic cells, such as 

macrophages, to the implantation of a biomaterial plays a key role in the overall 

biocompatibility of the implant.115  Soon after entry into the body macrophages 

adhere to the surface of a biomaterial; once adsorbed these cells regulate the 

immune response toward the implant by excreting inflammatory chemicals, 

producing reactive species, and potentially engulfing the material.116-118  For larger 

implants the possibility exists that macrophages will fuse into multinucleated giant 

cells that results in a chronic immune response.119  Attenuating this response is 

critical in the development of new biomaterials.  Common methods of assessing 

macrophage response to biomaterials include the measure of cytokine secretion and 

reactive species, examination of phagocytosis, and extent of macrophage adhesion 

to a surface.120-127 

 In Section 2.4 the unique structure of T. pallidum’s outer membrane was 

discussed.  The outer surface of the bacteria lacks LPS found on other gram-negative 

bacteria and also displays less than 1% of the number of proteins typically found on 

E. coli.  The lack of antigenic targets is thought to play a role in the 

immunoevasiveness of T. pallidum; however, the defenses of the bacteria are not 

perfect and over time an effective immune response is mounted and the majority of 

the bacteria are eliminated.  The immune response to T. pallidum is believed to be in 
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response to OMPs found on the surface of the bacteria.55  The FN binding protein 

fragment rTp0483 was chosen for study because it is believed to play a role in T. 

pallidum’s ability to circumvent the host immune response.  The immune response 

to rTp0483 before and after FN adsorption was investigated by examining the 

response of macrophage cells. 

 Two cell systems were employed; CRL-2449 cells are a nonadherent mouse 

macrophage tumor cell line and RAW 264.7 cells are an adherent mouse 

macrophage tumor cell line.  The effect of FN added to adsorbed rTp0483 on 

surfaces small enough to be engulfed by macrophages was examined by coating 

plain and carboxyl functionalized (COO-) polystyrene microspheres (PSMs) with the 

proteins and observing the phagocytic response of CRL-2449 cells in solution.  

Responses to rTp0483 and FN on rTp0483 were compared to the response of FN 

coated, BSA coated, and unmodified PSMs.  The effect of FN added to adsorbed 

rTp0483 on large surfaces was determined by coating COO- well plates (WPs) with 

the proteins and observing the phagocytic response of adsorbed RAW 264.7 cells.  

Responses to rTp0483 and FN on rTp0483 were compared to the response to FN 

coated, BSA coated, and unmodified surfaces.  In each case, the response of 

macrophages stimulated directly with the proteins in solution was also observed. 

 The response of CRL-2449 cells was determined by measuring the 

production of the inflammatory cytokine tumor necrosis factor α (TNF-α), the 

generation of the antimicrobial nitric oxide (NO), and by examining the 

phagocytosis of protein coated, fluorescent PSMs using flow cytometric analysis.  



 

117 
 

The response of RAW 264.7 cells was determined through measuring the generation 

of TNF-α and NO and calculating the number of adherent macrophage cells. 

 

8.2. Experimental Procedures 

 

 8.2.1. Biomolecules and Reagents 

 CRL-2449 mouse tumor macrophages were purchased from the American 

Type Cell Collection (ATCC (Manassas, VA)) and RAW 264.7 mouse tumor 

macrophages were purchased from Sigma.  Complete CRL-2449 medium (CMCRL) 

was prepared with 1% (v/v) penicillin-streptomycin from Lonza (Walkersville, MD) 

and 10% heat-inactivated, iron supplemented bovine calf serum (Lonza) in 

Dulbecco’s Modified Eagle Medium (DMEM) purchased from ATCC.  Complete RAW 

264.7 medium (CMRAW) was prepared with 1% (v/v) penicillin-streptomycin and 

10% heat-inactivated fetal bovine serum (Lonza) in DMEM.  Mouse TNF-α enzyme-

linked immunosorbent assays (ELISAs) were purchased from Thermo Scientific and 

assays for NO2- detection were purchased from Cayman Chemicals (Ann Arbor, MI).  

Plain and COO-, 200 nm diameter, fluorescent (fluorescein core) and non-fluorescent 

PSMs were purchased from Polysciences (Warrington, PA).  DPBS was prepared as 

specified in Section 4.2.7.  All proteins were purchased from Sigma unless otherwise 

specified.  The protein fragment rTp0483 was expressed and purified as per the 

protocol provided in Section 4.2.4. 
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 8.2.2. Cell Culture 

 CRL-2449 cells were suspended in 10 mL of prewarmed CMCRL and seeded at 

37°C and 5% CO2 in 75 mm2 culture flasks (Fisher).  The culture media was replaced 

every 2-3 days depending on cell growth and the cell density of CRL-2449 was 

maintained between 2 x 105 and 1x 106 cells/mL.  When the cell density approached 

1x 106 cells/mL any weakly attached cells were recovered by scraping, centrifuged 

at 1000 RPM for 5 minutes, and the media replaced.  RAW 264.7 cells were 

suspended in 10 mL of prewarmed CMRAW and seeded at 37°C and 5% CO2 in 75 

mm2 culture flasks.  The culture media was removed every 2-3 days and replaced 

depending on cell growth.  Cells were not allowed to become completely confluent 

in order to preserve proper cell morphology. 

 

 8.2.3. Protein Surface Adsorption and Stability Validation 

 The binding of rTp0483 and FN to plain and COO- PSMs was characterized by 

BCA assay while stability of the protein coatings was determined by zeta potential 

analysis.  500 μL of 30 μg rTp0483/mL in DPBS was prepared and either 5 μL of 

2.5% (w/v) 200 nm plain or COO- PSMs were added.  The samples were incubated 

on a rotating test tube rack at room temperature for 1 hour then the PSMs were 

recovered by centrifugation at 15,000 RPM for 30 minutes at 4°C.  The supernatant 

was removed and saved for BCA analysis.  The rTp0483-coated PSMs were 

resuspended in 1 mL of 2 mg BSA/mL in DPBS by sonication in 1 second pulses for 

30 seconds and incubated on a rotating test tube rack at room temperature for 30 

minutes in order to block any areas still not covered by rTp0483 against nonspecific 
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adsorption, then the PSMs were recovered by centrifugation at 15,000 RPM for 30 

minutes at 4°C.   The samples were resuspended in 1 mL of DPBS by sonication in 1 

second pulses for 30 seconds and incubated on a rotating test tube rack for 15 

minutes to wash away any remaining BSA in the sample tubes.  The PSMs were 

recovered by centrifugation at 15,000 RPM for 30 minutes at 4°C and the samples 

resuspended in 1 mL of 50 μg FN/mL in DPBS by sonication in 1 second pulses for 

30 seconds.  1 mL of 50 μg FN/mL in DPBS was also mixed with 5 μL of 2.5% (w/v) 

200 nm plain or COO- PSMs in separate vials.  With identical BSA blocked, rTp0483 

coated PSMs another 1 mL wash of DPBS was used to resuspend the PSMs in place 

of 50 μg FN/mL.  The samples were incubated on a rotating test tube rack at room 

temperature for 1 hour then the PSMs were recovered by centrifugation at 15,000 

RPM for 30 minutes at 4°C and the supernatant removed and saved for BCA analysis.   

 To test protein adsorption onto COO- WPs 228 μL of 50 μg rTp0483/mL in 

DPBS or 200 μL of 100 μg FN/mL in DPBS was added to wells and incubated 1 hour 

at room temperature.  Solutions were removed and saved for BCA analysis.  Surfaces 

were gently washed with DPBS then 200 μL of 100 μg FN/mL in DPBS was added to 

rTp0483 coated wells and incubated 1 hour at room temperature.  Solutions were 

removed and saved for BCA analysis. 

 A modified form of the BCA assay protocol outlined in Section 4.2.7 was used 

to measure protein concentration in solution.  The samples and reagents were 

prepared as described; however, 25 μL of each sample and standard were combined 

with 200 μL of working reagent in a 96 well plate and incubated at 37°C for 1 hour.  

The change in sample absorbance was measured at 562 nm using a UV-Vis 
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spectrophotometer equipped with a Cary 50 MPR microplate reader.  The amount of 

adsorbed protein was determined by subtracting the concentration of rTp0483 or 

FN in solution after incubation with PSMs from the initial concentration then 

multiplying by the sample volume to obtain the mass of adsorbed protein.  The 

effect of left over BSA from the blocking step between rTp0483 and FN adsorption 

was accounted for by subtracting the BSA concentration left after washing with 

DPBS from the total protein concentration remaining after adsorption of FN to BSA 

blocked rTp0483. 

 Zeta potential analysis was conducted using a Zetasizer Nano-ZS (Malvern, 

UK) with disposable capillary cells (DTS1061) also from Malvern.  Zeta potential is a 

measure of particle surface charge and is determined by measuring the response of 

particles in solution to an applied current.  When a current is applied to charged 

particles in solution they move toward the electrode of opposite charge and by 

analyzing the direction and speed of the particles a measure of the polarity and 

strength of the surface charge can be made.  Protein coatings were applied to plain 

and COO- PSMs as described above and the PSMs were incubated at least an hour in 

2 mg BSA/mL in DPBS to block any uncoated areas against nonspecific protein 

adsorption.  Plain and COO- PSMs blocked for an hour in 2 mg BSA/mL in DPBS as 

well as plain and COO- PSMs in DPBS were also analyzed.  After preparation, 100 μL 

of each sample group, coated and uncoated was combined with 1 mL of CMCRL and 

analyzed immediately with the instrument.  The zeta potential of each sample group 

was assayed in triplicate at an initial time point and again after 10, 20, and 30 
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minutes.  At each time point the zeta potential of the sample was determined 30 

times and averaged. 

 

8.2.4. Phagocytosis of Protein Coated Microspheres 

 CRL-2449 cells were cultured as described in Section 8.2.2 then seeded into 

24 well plates at a concentration of 2 x 105 cells/mL of CMCRL.  Cells were incubated 

overnight at 37°C and 5% CO2 prior to stimulation with microspheres.  1 mL of 60 

μg rTp0483/mL in DPBS was prepared and 10 μL of 2.5% (w/v) 200 nm either plain 

or COO- PSMs were added.  Fluorescent PSMs (ex = 441nm, em = 486nm) were used 

for flow cytometry experiments and non-fluorescent PSMs were used for all other 

studies.  The sample was incubated on a rotating test tube rack at room temperature 

for 1 hour then the PSMs were recovered by centrifugation at 15,000 RPM for 30 

minutes at 4°C and the supernatant was removed.  The PSMs were blocked against 

nonspecific adsorption in 1 mL of DPBS with 2 mg BSA/mL by sonication in 1 

second pulses for 30 seconds.  The sample was incubated on a rotating test tube 

rack at room temperature for 30 minutes then the PSMs were recovered by 

centrifugation at 15,000 RPM for 30 minutes at 4°C and the supernatant was 

removed.  The PSMs were resuspended in 1 mL of DPBS by sonication in 1 second 

pulses for 30 seconds.  500 μL of the rTp0483 coated PSM solution was combined 

with 500 μL of 100 μg FN/mL in DPBS for a final concentration of 50 μg FN/mL 

while the other 500 μL of rTp0483 coated PSM solution was further diluted with 

500 μL of DPBS.  In separate vials, 1 mL of 50 μg/mL FN in DPBS was prepared and 

5 μL of 2.5% (w/v) plain or COO- PSMs were added.  The samples were incubated on 
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a rotating test tube rack at room temperature for 1 hour then the PSMs were 

recovered by centrifugation at 15,000 RPM for 30 minutes at 4°C and the 

supernatant removed.  The coated PSMs were resuspended in 1 mL of DPBS with 2 

mg BSA/mL by sonication in 1 second pulses for 30 seconds.  In separate vials 1 mL 

of DPBS or 1 mL of DPBS with 2 mg BSA/mL was prepared and 5 μL of 2.5% (w/v) 

plain or COO- PSMs were added as controls.  All samples were incubated on a 

rotating test tube rack at room temperature for 1 hour then sonicated in 1 second 

pulses for 30 seconds and seeded at 1.5 x 109 microspheres/well.  After stimulation 

with microspheres the plates were incubated at 37°C and 5% CO2 for 1, 4, 16, or 24 

hours.  The cell samples were transferred to microcentrifuge tubes (Fisher) and the 

CMCRL removed by centrifugation at 1000 RPM for 5 minutes at 4°C.  The samples 

were washed twice for 10 minutes with 1 mL DPBS and the cells recovered each 

time by centrifugation at 1000 RPM for 5 minutes at 4°C.  The cells were fixed by 

incubating 15 minutes in 500 μL of 1% paraformaldahyde.  The paraformaldahyde 

was removed by centrifugation at 1000 RPM for 5 minutes at 4°C and the samples 

were resuspended in 1 mL of DPBS.  The samples were stored at 4°C until ready for 

analysis.  Just before analysis all samples were filtered through 35 μm, 12x75 mm 

round bottom cell strainers (BD Sciences) to break up any cell clumps.  Samples 

were analyzed using the LSRII flow cytometer unit.  CRL-2449 cells not stimulated 

with fluorescent PSMs were used as a negative control to calibrate the instrument.  

The forward light scattering (FSC), side light scattering (SSC), and fluorescence 

intensity were recorded for 15,000 events in each cell sample and used to generate 

dot plots comparing FSC and SSC in addition to a histogram showing the 
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fluorescence of all measured events.  The CRL-2449 population was located on each 

dot plot and only the fluorescence of intact cells analyzed.  The extent of PSM 

phagocytosis by CRL-2449 cells was determined by calculating the average 

fluorescence of the cell population. 

 

 8.2.5. Macrophage Viability and Adsorption 

 CRL-2449 cells were cultured as described in Section 8.2.2 then seeded into 

24 well plates at a concentration of 2 x 105 cells/mL of CMCRL.  Cells were incubated 

overnight at 37°C and 5% CO2 prior to stimulation with microspheres.  Protein 

coatings were applied to plain and COO- PSMs as detailed in Section 8.2.4 and 

seeded into wells containing CRL-2449 cells at a concentration of 1.5 x 109 

microspheres/well.  Alternately cells were stimulated directly by proteins in DPBS.  

rTp0483, BSA, and LPS were prepared at concentrations of 26, 52, and 260 

pmol/well.  Results in Chapter 6 indicated that each FN molecule binds a pair of 

rTp0483 molecules so a 1:2 molar ratio of FN compared to rTp0483 was employed 

for the studies in solution (13, 26, and 130 pmol/well).  rTp0483 and FN (26 pmol 

rTp0483/well + 13 pmol FN/well, 52 pmol rTp0483/well + 26 pmol FN/well, and 

260 pmol rTp0483/well + 130 pmol FN/well) were also preincubated together for 1 

hour prior to addition to cells in order to investigate any effects of the rTp0483/FN 

complex in solution.  LPS was included because it is used as a positive control for 

macrophage activation in later studies.  After stimulation with PSMs or proteins in 

solution the plates were incubated at 37°C and 5% CO2 for 24 hours.  The cell 

samples were transferred to microcentrifuge tubes and the CMCRL removed by 
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centrifugation at 1000 RPM for 5 minutes at 4°C.  The samples were washed for 10 

minutes with 1 mL DPBS and the cells recovered by centrifugation at 1000 RPM for 

5 minutes at 4°C.   

 RAW 264.7 cells were cultured as described in Section 8.2.2.  To coat COO- 

WPs 700 μL of 50 μg rTp0483/mL in DPBS was added to wells and 500 μL of 100 μg 

FN/mL in DPBS was added to an equal number of wells and incubated 1 hour at 

room temperature.  Surfaces were gently washed with DPBS, and 500 μL of 100 μg 

FN/mL in DPBS added to half of the rTp0483 coated wells while 500 μL of DPBS was 

added to the other half along with the FN coated wells then all were incubated 1 

hour at room temperature.  The surface with 100 μg FN/mL were washed gently 

with DPBS and the DPBS was removed from the other wells, after which 500 μL of 2 

mg BSA/mL in DPBS was added to all wells and incubated at room temperature for 

1 hour.  Additional surfaces were blocked for 1 hour with 500 μL of 2 mg BSA/mL in 

DPBS or 500 μL DPBS as controls.  RAW 264.7 cells were seeded onto protein coated 

surfaces or directly into COO- WPs at a concentration of 4 x 105 cells/mL in CMRAW.  

Cells seeded onto protein-coated surfaces were incubated overnight at 37°C and 5% 

CO2 then the cell viability determined.  Cells seeded onto uncoated WPs were 

incubated overnight at 37°C and 5% CO2 then stimulated with the protein solutions 

outlined above and incubated at 37°C and 5% CO2 for 24 hours before determining 

cell viability.  In either case, CMRAW was removed from the samples and they were 

gently washed with 1 mL of DPBS prior to analysis. 

 LIVE/DEAD® assay solution (Invitrogen) was prepared by combining 1.7 μL 

ethidium homodimer/mL assay solution and 1 μL calcein-AM/mL assay solution in 
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DPBS and 500 μL was added to cell samples and incubated at room temperature for 

45 minutes.   Ethidium homodimer is a red dye that targets DNA but does not 

penetrate the cell membrane of healthy cells.  When cells die the outer membrane is 

disrupted allowing the dye to traverse the damaged membrane and dye cellular 

DNA red indicating nonviable cells.  Calcein-AM is a green dye that is readily taken 

into living cells where it reacts to intercellular esterase activity only present in 

viable cells.  Imaging was completed using the Nikon Eclipse LV100 microscope.  

Living cells were imaged using a FITC filter set (Ex: 450, Em: 500-550) while dead 

cells were imaged using a Texas Red filter set (Ex: 530-560, Em: 590-650).   Cells 

were counted using NIS Elements BR 3.0 software (Nikon) and cell viability 

calculated by dividing the number of viable cells by the total number of cells.  The 

cell density of adsorbed, viable RAW 264.7 cells was also determined. 

 

 8.2.6. Macrophage TNF-α Generation  

 CRL-2449 cells were cultured as described in Section 8.2.2 then seeded into 

24 COO- WPs at a concentration of 2 x 105 cells/mL of CMCRL.  Cells were incubated 

overnight at 37°C and 5% CO2 prior to stimulation with PSMs.  Protein coatings 

were applied to plain and COO- PSMs as detailed in Section 8.2.4 and seeded into 

wells containing CRL-2449 cells at a concentration of 1.5 x 109 PSMs/well.  

Alternately cells were stimulated directly by proteins in DPBS at the concentrations 

described in Section 8.2.5.  After stimulation with PSMs or proteins in solution the 

plates were incubated at 37°C and 5% CO2 for 24 hours.  The cell samples were 

transferred to microcentrifuge tubes and the CMCRL collected by centrifugation at 
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15,000 RPM for 30 minutes at 4°C.  The CMCRL samples were stored at 4°C until 

ready for analysis. 

 RAW 264.7 cells were cultured as described in Section 8.2.2 then seeded onto 

protein coated surfaces prepared as detailed in Section 8.2.5 or directly into COO- 

WPs at a concentration of 4 x 105 cells/mL in CMRAW.  Cells seeded onto protein 

coated surfaces were incubated overnight at 37°C and 5% CO2 then the CMRAW was 

collected and centrifuged 5 minutes at 1000 RPM to remove any remaining cells.  

Cells seeded onto uncoated COO- WPs were incubated overnight at 37°C and 5% CO2 

then stimulated with the protein solutions described in Section 8.2.5 and incubated 

at 37°C and 5% CO2 for 24 hours before collecting the CMRAW.  In either case, CMRAW 

was stored at 4°C until ready for analysis. 

 The concentration of TNF-α generated by CRL-2449 and RAW 264.7 cells was 

determined using mouse TNF-α enzyme-linked immunosorbent analysis (ELISA) as 

per manufacturer instructions.  ELISA is a sensitive and highly specific method 

based on antibody-antigen interactions used to investigate the concentration of 

proteins or cytokines in a sample solution.  The process is illustrated in Figure 8.1.  

96 well plates were purchased precoated with a TNF-α antibody that specifically 

bound TNF-α in media samples with a high affinity.  Next, a biotin labeled TNF-α 

antibody was added, which bound to immobilized TNF-α forming a sandwich.  Then, 

a streptavidin-horseradish peroxidase (HRP) complex was added, which bound to 

the biotin label on the TNF-α antibody completing the protein-antibody complex.  

Biotin and streptavidin are widely used because the two molecules form one of the 

strongest noncovalent bonds in nature.   
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Figure 8.1: Overview of ELISA.  WPs are purchased precoated with a TNF-α specific 
antibody.  (1) TNF-α binds to the antibody on the surface, (2) a second biotin labeled 
TNF-α antibody binds to immobilized TNF-α, (3) streptavidin-HRP complex binds 
tightly to biotin label, (4) TMB substrate oxidizes HRP to produce a blue color then 
when the reaction is stopped with 0.16 M sulfuric acid the color changes to bright 
yellow.  TNF-α concentration is determined by subtracting the absorbance 
measured at 550 nm from the absorbance at 450 nm. 
 

The concentration of TNF-α was determined by subtracting the absorbance at 550 

nm from that at 450 nm using the UV-Vis spectrophotometer equipped with a Cary 

50 MPR microplate reader after oxidizing the HRP with TMB substrate and stopping 

the reaction with 0.16 M sulfuric acid.  The concentration of TNF-α generated by 

adsorbed RAW 264.7 cells was normalized to the cell density determined in Section 

8.2.5. 

 8.2.7. Macrophage Nitric Oxide Activity 

 CRL-2449 cells were cultured as described in Section 8.2.2 then seeded into 

24 well plates at a concentration of 2 x 105 cells/mL of CMCRL.  Cells were incubated 



 

128 
 

overnight at 37°C and 5% CO2 prior to stimulation with PSMs.  Protein coatings 

were applied to plain and COO- PSMs as detailed in Section 8.2.4 and seeded into 

wells containing CRL-2449 cells at a concentration of 1.5 x 109 PSMs/well.  

Alternately, cells were stimulated directly by proteins in DPBS at the concentrations 

described in Section 8.2.5.  After stimulation with PSMs or proteins in solution the 

plates were incubated at 37°C and 5% CO2 for 24 hours.  The cell samples were 

transferred to microcentrifuge tubes and the CMCRL collected by centrifugation at 

15,000 RPM for 30 minutes at 4°C.  The CMCRL samples were stored at 4°C until 

ready for analysis. 

 RAW 264.7 cells were cultured as described in Section 8.2.2 then seeded onto 

protein coated surfaces prepared as detailed in Section 8.2.5 or directly into COO- 

WPs at a concentration of 4 x 105 cells/mL in CMRAW.  Cells seeded onto protein 

coated surfaces were incubated overnight at 37°C and 5% CO2 then the CMRAW was 

collected and centrifuged 5 minutes at 1000 RPM to remove any remaining cells.  

Cells seeded onto uncoated COO- WPs were incubated overnight at 37°C and 5% CO2 

then stimulated with the protein solutions described in Section 8.2.5 and incubated 

at 37°C and 5% CO2 for 24 hours before collecting the CMRAW.  In either case, CMRAW 

was stored at 4°C until ready for analysis. 

 Nitric oxide (NO) activity was investigated by measuring the stable end 

products nitrite (NO2-) and nitrate (NO3-) using a colorimetric Greiss assay as per 

manufacturer instructions, which is illustrated in Figure 8.2.  Since the relative 

amounts of the two end products vary widely from cell to cell, NO3- was converted 

to NO2- using nitrate reductase enzyme and the combined concentration of both 
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used to measure NO activity.  After conversion, NO2- was reacted with sulfanilamide 

in an acidic medium to form an intermediate compound, which in turn reacted with 

N-(1-naphthyl) ethylenediamine to form an azo product.   The absorbance was 

measured at 540 nm using the UV-Vis spectrophotometer equipped with a Cary 50 

MPR microplate reader.  The concentration of NO2- generated by adsorbed RAW 

264.7 cells was normalized to the cell density determined in Section 8.2.5. 

 

 

 

Figure 8.2: Illustration of the Greiss reaction for the detection of NO2-.  (1) NO2- 
reacts with sulfanilamide in an acidic medium to form an intermediate compound 
then (2) this compound reacts with N-(1-naphthyl) ethylenediamine to form an azo 
product that can be measured photometrically at 540 nm. 
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 8.2.8. Statistical Analysis 

 Statistical analysis was performed using the Microsoft Office Excel Data 

Analysis tool, StatPlus.  Multiple pair-wise comparisons were made using one-way 

analysis of variance (ANOVA) with a maximum p-value of 0.05.  All data are 

reported as a mean + standard error.  All studies are at minimum n=3 with specific 

sample group sizes noted in the text. 

 

8.3. Results 

 

 8.3.1. Protein Surface Adsorption and Stability Validation 

 Adsorption of rTp0483 and or FN was investigated on 200 nm diameter plain 

and COO- PSMs and on COO- WPs using BCA assay.  The mass of adsorbed proteins 

was divided by the total sample surface area to obtain a surface mass density of 

protein (μg/cm2).  Adsorption to PSMs is shown in Figure 8.3 and adsorption in 

COO- WPs is shown in Figure 8.4.  The surface mass densities of rTp0483 and FN 

adsorbed alone on plain and COO- PSMs were statistically indistinguishable from 

adsorption on COO- WPs; however, the FN binding of rTp0483 was significantly 

higher when rTp0483 was adsorbed to COO- WPs (3.47 ± 0.54 μg/cm2) compared to 

COO- PSMs (0.28 ± .02 μg/cm2) and plain PSMs (0.27 ± 0.04 μg/cm2) (p<0.05). 

 The zeta potential of unmodified and protein coated plain and COO- PSMs 

was analyzed to investigate potential reorganization of adsorbed proteins when the 

PSMs are added to CMCRL as well as differences in surface charge that might 

influence phagocytosis.  Protein adsorption is a rapid process so zeta potential was  



 

131 
 

 

Figure 8.3: rTp0483 and FN adsorption to plain and COO- PSMs.  Surface mass 
density of rTp0483 or FN on each type of PSM was indistinguishable from the other.  
Surface density of FN on rTp0483 coated PSMs was less than for FN adsorbed 
directly onto PSMs (p<0.05).  All data are n=3 and error bars represent standard 
error 
 
 
 

 

Figure 8.4: rTp0483 and FN adsorption to COO- WPs.  Surface mass density of FN on 
rTp0483 is significantly higher than FN adsorbed directly to WPs (p<0.05).  All data 
are n=3 and error bars represent standard error.   
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measured as the PSMs were added to CMCRL and every 10 minutes after up to 30 

minutes.  Note that the surface charge of all samples was negative but is shown as an 

absolute value for data presentation.  Zeta potential values for plain PSM groups are 

shown in Figure 8.5 while values for COO- PSM groups are shown in Figure 8.6.  The 

zeta potentials of all protein coated plain and COO- PSMs were stable over a 30 

minute period.  This indicates that the proteins adsorbed to the PSMs are stable in 

CMCRL.  Uncoated plain and COO- PSMs initially had a lower zeta potential than the 

coated groups; however, after 10 minutes the values increased and stabilized at a 

zeta potential close to that other the coated groups.  This indicates that the majority 

of the uncoated PSMs were covered with proteins from the serum in the CMCRL 

within 10 minutes after exposure.  The zeta potential of plain PSM groups were 

statistically indistinguishable after 30 minutes in CMCRL while the zeta potential of 

FN coated COO- PSMs was lower than all other groups with the exception of 

rTp0483+FN coated PSMs (p<0.05).  
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Figure 8.5: Zeta potential analysis of protein coated plain PSMs.  Zeta potential of 
protein coated plain PSMs did not change after 30 min incubation in CMCRL and the 
zeta potential of uncoated PSMs leveled off after 10 minutes.  After 30 min all groups 
indistinguishable.  All data are n=3 and error bars represent standard error.   
 
 

 

Figure 8.6: Zeta potential analysis of protein coated COO- PSMs.  Zeta potential of 
protein coated PSMs did not change after 30 minute incubation in CMCRL and the 
zeta potential of uncoated PSMs leveled off after 10 minutes.  After 30 min zeta 
potential of FN significantly less negative than the other groups (p<0.05).  All data 
are n=3 and error bars represent standard error.   
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 8.3.2. Phagocytosis of Protein Coated Microspheres 

 Uptake of protein coated plain and COO- PSMs was analyzed to investigate 

the targeting of CRL-2449 macrophages against adsorbed rTp0483 and determine 

how the binding of FN to adsorbed rTp0483 affects this response.  Figure 8.7 shows 

the phagocytosis of unmodified and protein coated plain PSMs over a 24 hour 

period and Figure 8.8 shows the response of unmodified and protein coated COO- 

PSMs over the same time period.  After 24 hours, the average cell fluorescence for 

plain PSMs was highest for rTp0483 (634 ± 14) and FN coated (608 ± 18) PSMs, 

which were indistinguishable.  The average cell fluorescence of rTp0483+FN coated 

(521 ± 16) PSMs was significantly lower (p<0.05) than rTp0483 or FN alone and the 

average cell fluorescence of BSA coated (460 ± 6) and unmodified (413 ± 5) PSMs 

was lower than rTp0483, FN, or rTp0483+FN (p<0.05) but indistinguishable from 

each other.  For COO- PSMs the average cell fluorescence was highest for BSA coated 

(810 ± 10) PSMs followed by unmodified (630 ± 8) PSMs, and rTp0483 coated (542 

± 3) PSMs (p<0.05).  The average cell fluorescence of FN coated (423 ± 11) and 

rTp0483+FN coated (432 ± 8) PSMs was lower than the other groups (p<0.05) and 

indistinguishable from each other.   

 The phagocytosis of rTp0483 and rTp0483+FN coated plain PSMs was the 

same after an hour; however, over time rTp0483 coated PSMs were taken up more 

readily than rTp0483+FN coated PSMs.  On the other hand, the phagocytosis of 

rTp0483+FN coated COO- PSMs was lower than for rTp0483 coated PSMs at all 

measured time points.  Phagocytosis of both rTp0483 and rTp0483+FN coated plain 

PSMs was largely constant between 1 and 24 hours while phagocytosis of rTp043  
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Figure 8.7: Phagocytosis of unmodified and protein coated plain PSMs over a 24 
hour period.  At t = 1 hour all groups reached a constant fluorescence values except 
for FN, which continued to increase until t = 4 hours.  After 24 hours rTp0483+FN 
uptake significantly less than rTp0483 or FN (p<0.05) and BSA and unmodified PSM 
uptake significantly less than rTp0483+FN, rTp0483, or FN (p<0.05).  All data are 
n=3 and error bars represent standard error.   
 
 

 

Figure 8.8: Phagocytosis of unmodified and protein-coated COO- PSMs over a 24 
hour period.  All groups except unmodified PSMs peaked at t = 4 hours and either 
stayed constant or decreased.  Unmodified PSMs spiked at t = 16 hours and 
decreased afterwards.  After 24 hours all groups were significantly different except 
for FN and rTp0483+FN (p<0.05).  All data are n=3 and error bars represent 
standard error.   
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and rTp0483+FN coated COO- PSMs was initially lower than for coated plain PSMs, 

spiked above coated plain PSMs around 4 hours, and then fell below coated plain 

PSMs soon after.  Phagocytosis of BSA coated and unmodified plain PSMs was low 

compared to the other sample groups; however, phagocytosis of BSA coated and 

unmodified COO- PSMs was actually high compared to the other groups.  For plain 

PSMs the addition of FN to adsorbed rTp0483 increased the initial rate of 

phagocytosis but reduced the overall amount after 24 hours compared to FN alone.  

Likewise, for COO- PSMs, the addition of FN to adsorbed rTp0483 increased the 

initial rate of phagocytosis; however, unlike FN coated plain PSMs did not decrease 

the overall amount after 24 hours compared to FN alone. 

  

 8.3.3. Macrophage Viability and Adsorption 

 Potential cytotoxic effects of adsorbed proteins on CRL-2449 and RAW 264.7 

macrophages were analyzed using a LIVE/DEAD assay.  Any effects on RAW 264.7 

macrophage adhesion were also investigated.  The viability of macrophages was 

calculated by dividing the number of living cells by the total number of cells (living 

and dead) and expressing this value as a percentage.  Figure 8.9 shows the viability 

of CRL-2449 macrophages exposed to free proteins in solution at a range of 

concentrations and immobilized on COO- and plain PSMs compared to a macrophage 

activator (LPS), unmodified microspheres, and unstimulated cells.  Figure 8.10 

shows the viability of RAW 264.7 exposed to free proteins in solution at a range of 

concentrations and immobilized on COO- WPs compared to LPS and unstimulated  
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Figure 8.9: Viability of CRL-2449 cells exposed to free proteins in solution and 
proteins adsorbed to plain and COO- PSMs compared with the viability of cells 
exposed to LPS, unmodified PSMs, and unstimulated cells.  No significant effects 
were observed.  All data are n=3 and error bars represent standard error.   
 
 
 

 

Figure 8.10: Viability of RAW 264.7 cells exposed to free proteins in solution and 
proteins adsorbed to COO- WP surfaces compared with the viability of cells exposed 
to LPS and unstimulated cells.  Adsorbed rTp0483 reduced RAW 264.7 viability 
significantly (p<0.05).  All data are n=3 and error bars represent standard error.   
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cells.  When the viability of RAW 264.7 cells was determined the number of 

adherent cells was also recorded as shown in Figure 8.11. 

 None of the protein groups were found to be cytotoxic to CRL-2449 cells in 

solution or when adsorbed to either type of PSM.  When RAW 264.7 cells were 

incubated on rTp0483 coated surfaces a significant drop in viability was observed 

indicating a measureable cytotoxic effect on the adherent RAW 264.7 line.  There 

were significant differences in the number of RAW 264.7 cells adsorbed to protein 

coated surfaces.  The number of viable RAW 264.7 cells that adhered to rTp0483 

and rTp0483+FN coated surfaces was indistinguishable from the number of cells 

adhered to unmodified COO- WP surfaces.  The number of viable RAW 264.7 cells 

that adhered to FN and BSA coated surface was significantly higher than the number 

adhered to unmodified COO- WP surfaces (p<0.05) but indistinguishable from one 

another.  The addition of FN to adsorbed rTp0483 led to significantly less cell 

binding than when FN was adsorbed directly to COO- WP surfaces (p<0.05). 
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Figure 8.11: Number of viable adherent RAW 264.7 cells on unmodified and protein 
coated COO- WP surfaces.  Number of viable cells on rTp0483 and rTp0483+FN 
coated surfaces are indistinguishable compared to cells on unmodified surfaces.  A 
coating of FN or BSA led to increased cell adhesion (p<0.05).  Adsorption of rTp0483 
prior to addition of FN led to less RAW 264.7 binding than FN alone (p<0.05).  All 
data are n=3 and error bars represent standard error 
 

 8.3.4. Macrophage TNF-α Generation 

 TNF-α generation was measured to determine macrophage response to 

stimulation with rTp0483 and how the addition of FN affects this response.  Plain 

and COO- PSMs were coated with rTp0483, FN, rTp0483+FN, or BSA and added to 

CRL-2449 macrophages in solution.  The response was compared to cells stimulated 

with uncoated PSMs, PSMs coated with rTp0483, FN, rTp0483+FN, BSA, or LPS 

proteins in solution, and cells not exposed to any sort of PSM.  Figure 8.12 and 

Figure 8.13 show the results of this study.  As expected, both types of FN coated, BSA 

coated, and uncoated PSMs produced no more TNF-α than unstimulated CRL-2449 

cells.  Both types of rTp0483 coated PSMs produced a significant amount of TNF-α 

compared to unstimulated cells (COO- PSMs were 68.6 ± 2.5 pg/mL and plain PSMs  
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Figure: 8.12. CRL-2449 macrophage TNF-α generation in response to stimulation 
with protein coated and uncoated plain and COO- PSMs compared to unstimulated 
cells.  rTp0483 and rTp0438+FN coatings on both types of PSM resulted in 
significant TNF-α generation compared to unstimulated cells (p<0.05) while the 
response of COO- PSMs were lower than plain PSMs (p<0.05).  Addition of FN to 
rTp0483 lowered TNF-α for plain PSMs (p<0.05) but not COO- PSMs.  All data are 
n=6 and error bars represent standard error. 
 
 

 

Figure 8.13: CRL-2449 macrophage TNF-α generation in response to stimulation of 
cells with proteins in solution.  Stimulation with rTp0483, rTp0483+FN, or LPS 
resulted in significantly more TNF-α than unstimulated cells (p<0.05).  There was no 
difference in TNF-α generation for rTp0483 and rTp0483+FN.  All data are n=6 and 
error bars represent standard error. 
 



 

141 
 

were 198.2 ± 5.6 pg/mL, p<0.05).  The addition of FN to adsorbed rTp0483 resulted 

in a decrease in TNF-α for plain PSMs (154.7 ± 8.4 pg/mL, p<0.05) but did not result 

in a change for COO- PSMs (71.7 ± 2.7 pg/mL).  For both coatings the response 

toward plain PSMs was larger than for COO- PSMs (p<0.05).  As with coated PSMs, 

the response of CRL-2449 cells to FN and BSA in solution were indistinguishable 

compared to unstimulated cells.  TNF-α production was significantly greater than 

for unstimulated cells when rTp0483, rTp0483+FN, or LPS was added (p<0.05). 

 COO- WPs were coated with rTp0483, FN, rTp0483+FN, or BSA then RAW 

264.7 macrophages were cultured on the top of the protein layers and compared to 

cells cultured on uncoated wells.  The results were normalized to the number of 

cells adsorbed to each surface, which were shown in Figure 8.11.  Alternately, cells 

were cultured on uncoated wells then stimulated with rTp0483, FN, rTp0483+FN, 

BSA, or LPS in solution and the response compared to unstimulated cells.  The 

results are shown in Figure 8.14 and Figure 8.15.  TNF-α production of RAW 264.7 

cells cultured on FN and BSA coated surfaces were indistinguishable from cells 

cultured on unmodified surfaces while cells cultured on rTp0483 produced 

significantly more TNF-α (1246.8 ± 141.4 pg/mL, p<0.05).  Cells cultured on 

rTp0483+FN coated surfaces also produced significantly more TNF-α than cells 

cultured on unmodified surfaces; however, it was lower than rTp0483 alone (669.4 

± 23.8 pg/mL, p<0.05).  FN and BSA in solution did not produce significantly more 

TNF-α than unstimulated cells; however, cells stimulated with rTp0483,  
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Figure 8.14: RAW 264.7 macrophage TNF-α generation in response to stimulation 
with protein coated COO- WP surfaces compared to cells cultured on unmodified 
surfaces.  rTp0483 and rTp0438+FN coatings resulted in significant TNF-α 
generation compared to cells on unmodified surfaces (p<0.05).  Addition of FN to 
rTp0483 lowered TNF-α generation (p<0.05).  All data are n=6 and error bars 
represent standard error. 
 

 

Figure 8.15: RAW 264.7 macrophage TNF-α generation in response to stimulation of 
cells with proteins in solution.  Stimulation with rTp0483, rTp0483+FN, or LPS 
resulted in significantly more TNF-α than unstimulated cells (p<0.05).  There was no 
difference in TNF-α generation for rTp0483 and rTp0483+FN.  All data are n=6 and 
error bars represent standard error. 
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rTp0483+FN, and LPS in solution produced significantly more TNF-α than 

unstimulated cells (p<0.05).   There was no statistical difference between cells 

stimulated with rTp0483 and cells stimulated with rTp0483+FN. 

 

 8.3.5. Macrophage Nitric Oxide Activity 

 NO activity was measured along with TNF-α generation to determine the 

activity of macrophage stimulated with rTp0483 and to determine the effect of FN 

binding.  NO activity was determined by measuring the concentration of the end 

product NO2-.  Plain and COO- PSMs were coated with rTp0483, FN, rTp0483+FN, or 

BSA and added to CRL-2449 macrophages in solution.  The response was compared 

to cells stimulated with uncoated PSMs, PSMs coated with rTp0483, FN, 

rTp0483+FN, BSA, or LPS proteins in solution, and cells not exposed to any sort of 

PSMs.  Figure 8.16 and Figure 8.17 show the results of this study.  The NO2- 

generation of CRL-2449 cells stimulated with uncoated PSMs of both types as well 

as all protein coated PSMs was equal to or less than unstimulated cells.  The NO2- 

generation of cells stimulated with any of the proteins free in solution was also 

equal to or less than unstimulated cells.    

 COO- WPs were coated with rTp0483, FN, rTp0483+FN, or BSA then RAW 

264.7 macrophages were cultured on the top of the protein layers and compared to 

cells cultured on uncoated wells.  The results were normalized to the number of 

cells adsorbed to each surface, which were shown in Figure 8.11.  Alternately, cells 

were cultured on uncoated wells then stimulated with rTp0483, FN, rTp0483+FN, 

BSA, or LPS in solution and the response compared to unstimulated cells.  The  
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Figure 8.16: CRL-2449 macrophage NO2- generation in response to stimulation with 
protein coated and uncoated plain and COO- PSMs compared to unstimulated cells.  
The amount of NO2- produced by cells exposed to uncoated and protein coated PSMs 
of both types was equal to or less than unstimulated cells.  All data are n=6 and 
error bars represent standard error. 
 

 

Figure 8.17: CRL-2449 macrophage NO2- generation in response to stimulation of 
cells with proteins in solution.  The amount of NO2- produced by cells exposed 
proteins in solution was equal to or less than unstimulated cells.  All data are n=6 
and error bars represent standard error. 
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results are shown in Figure 8.18 and Figure 8.19.  Cells cultured on FN or BSA 

coated wells led to less NO2- production than cells cultured on unmodified surfaces 

(0.68 ± 0.05 μM, 1.07 ± 0.10 μM, and 2.90 ± 0.11 respectively, p<0.05).  Cells 

cultured on rTp0483+FN produced a similar amount of NO2- as cells cultured on 

unmodified surfaces (3.21 ± 0.11 μM) and cells cultured on rTp0483 produced a 

significantly higher amount (5.79 ± 0.13 μM, p<0.05). 

 

 

Figure 8.18: RAW 264.7 macrophage NO2- generation in response to stimulation 
with protein coated and uncoated COO- WPs compared to unstimulated cells.  Cells 
cultured on FN and BSA produced less than those on unmodified surfaces (p<0.05) 
while cells cultured on rTp0483 produced more than those on rTp0483+FN or on 
unmodified surfaces (p<0.05).  All data are n=6 and error bars represent standard 
error. 
 
 



 

146 
 

 

Figure 8.19: RAW 264.7 macrophage NO2- generation in response to stimulation of 
cells with proteins in solution.  The amount of NO2- produced by cells exposed to 
LPS at all concentrations and 260 pmol rTp0483/well + 130 pmol FN/well was 
higher than controls (p<0.05).  All data are n=6 and error bars represent standard 
error. 
 

8.4. Discussion 

 The relative biocompatibility of rTp0483 coated surfaces and the influence of 

FN binding by adsorbed rTp0483 on biocompatibility were analyzed in a number of 

ways.  Data presented in Chapter 6 indicated that rTp0483 adsorbed onto negatively 

charged SAMs led to the most efficient FN binding.  For these studies a similar COO- 

surface chemistry was chosen to mimic negatively charged COO- SAMs.  For 

microsphere studies plain PSMs without COO- groups were also analyzed in order to 

determine the effect of surface charge on surfaces with curvature.  PSMs were used 

along with a non-adherent macrophage line, CRL-2449, to investigate the impact of 

adsorbed and free rTp0483 with and without FN on cell response toward small 

particles in solution. COO- WPs were used with an adherent macrophage line, RAW 
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264.7, to investigate the impact of adsorbed and free rTp0483 with and without FN 

on the cell response to large surfaces too big for the cells to engulf.   

 First, adsorption of rTp0483 and FN onto both types of PSMs and COO- WP 

surfaces were measured.  rTp0483 and FN binding were similar on all surfaces; 

however, significantly more FN bound to rTp0483 adsorbed onto the flat COO- WP 

surfaces.  While the plain PSMs lack COO- groups they have sulfate groups (SO42-) 

integrated throughout, which are a byproduct of the synthesis process.  These 

groups have a high negative charge that likely accounts for the significant FN 

binding observed for plain PSMs.  The significantly lower FN binding of both types of 

PSMs compared to flat surfaces may result from the curvature of the PSM surface.  

Past studies have demonstrated that the curvature of the substrate onto which 

proteins are adsorbed has a profound effect on the conformation and activity of the 

protein.128, 129  The effect is dependent on the protein in question as shown in Roach 

et al. where albumin denatured as particle size increased (curvature decreased) 

while Fg denatured as particle size decreased (curvature increased).129  Based on 

adsorption data, large flat, negatively charged surfaces facilitate an arrangement of 

rTp0483 that promotes high FN binding affinity.  As curvature increases the 

conformation of adsorbed rTp0483 is impacted leading to decreased FN binding 

affinity.  In addition to adsorption studies, the zeta potential of both types of coated 

and uncoated PSMs was analyzed.  Zeta potential is a quantification of particle 

surface charge, which has been demonstrated to affect the phagocytosis of 

microspheres in past studies.120, 130  All coated surfaces bore a negative charge that 

remained constant over the course of the study.  This suggests that the initial 
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protein coats are stable.  Uncoated plain and COO- PSMs both began slightly less 

negative than the other groups and rapidly came to equilibrium due to the 

adsorption of serum proteins in the cell culture media.  Only FN adsorbed on COO- 

PSMs was significantly different from the other groups (p<0.05).  Phagocytosis has 

been shown to decrease for particles with a weakly negative surface charge so this 

may help explain the low uptake of FN coated COO- PSMs.  In all other cases, the 

surface charge of the coated and uncoated PSMs likely did not account for 

differences in uptake.  It is more likely that differences are a result of receptor-

mediated interactions between the macrophages and coated PSM surfaces. 

 Phagocytosis is the process by which macrophages engulf foreign agents for 

elimination and removal from the body.  Fluorescent plain and COO- PSMs were 

coated with rTp0483, FN, rTp0483+FN or BSA and their phagocytosis by CRL-2449 

macrophages compared to uncoated PSMs of both types using flow cytometry 

analysis.  The phagocytosis of coated and uncoated plain PSMs increased to a 

maximum value and remained constant for the study period.  FN coated PSMs 

reached a maximum value more slowly than the other groups.  On the other hand, 

the phagocytosis of coated and uncoated COO- PSMs increased more slowly than 

plain PSMs.  Values for rTp0483, FN, and rTp0483+FN coated COO- PSMs peaked 

and subsequently fell back to levels lower than the corresponding plain PSM groups 

while the responses of uncoated and BSA coated PSMs were higher for COO- PSMs 

than for plain PSMs (p<0.05).  Uncoated COO- PSMs reached a maximum value more 

slowly than the other groups.  As the surface charges of uncoated and protein coated 

PSMs of both types were indistinguishable (p<0.05), except for FN coated COO- 



 

149 
 

PSMs, it is probable that the binding configuration of the selected proteins on coated 

PSMs and the binding configuration and species of serum proteins from media onto 

uncoated PSMs accounted for these differences.  The surfaces of macrophages are 

covered with a range of receptors that are able to bind a variety of ligands.  Binding 

is dependent on the recognition of targets, which varies based on the adsorbed 

protein configuration.  Differences in target recognition likely led to variation in 

phagocytosis resulting in the observed trends.  For both plain and COO- PSMs uptake 

of rTp0483+FN was less than for rTp0483 alone and in the case of plain PSMs less 

than FN alone.  This suggests that pre-adsorption of rTp0483 may be interfering 

with FN mediated macrophage interactions and that the addition of FN to rTp0483 

could potentially inhibit rTp0483 specific interactions.  Some of the possible 

explanations are discussed below. 

 Certain pathogenic microorganisms as well as synthetic materials may 

exhibit cytotoxic effects in the body leading to cell death.  Viability assays were 

conducted in order to investigate the potential cytoxicity of uncoated and rTp0483, 

FN, rTp0483+FN, and BSA coated plain and COO- PSMs using CRL-2449 

macrophages.  A similar study was conducted with protein coated and uncoated 

COO- WPs using RAW 264.7 macrophages.  Cytoxicity of the selected proteins was 

also compared to a positive control, LPS, in solution for both cell lines.  None of the 

proteins in solution or adsorbed on either type of PSM were found to be cytotoxic to 

CRL-2449 cells while only RAW 264.7 cells adsorbed onto rTp0483 exhibited 

reduced viability.  The total amount of rTp0483 adsorbed prior to addition of RAW 

264.7 cells was equal to the highest concentration of free protein in solution added 
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to cells adsorbed to unmodified surfaces; however, since RAW 264.7 cells grow on 

surfaces, cells cultured on a layer of rTp0483 would be exposed to a higher local 

concentration compared to rTp0483 distributed throughout the culture media.  This 

elevated rTp0483 concentration accounts for the moderate decrease in cell viability.  

The number of viable RAW 264.7 cells adsorbed to each of the surface coatings was 

also recorded and compared to cells cultured on unmodified surfaces.  FN and BSA 

coatings resulted in increased cell adhesion compared to cells cultured on 

unmodified surfaces while rTp0483 coatings led to decreased cell adhesion.  

rTp0483+FN coatings bound more cells than rTp0483 but less than FN.  The 

addition of FN to adsorbed rTp0483 had a measureable effect on RAW 264.7 

binding (p<0.05).  Adsorption of FN to a surface has been shown to increase 

macrophage adhesion and phagocytosis through specific receptors such as αVβ3 and 

α5β1 along with more general scavenger receptors.131, 132    Adsorption of rTp0483 

prior to the addition of FN resulted in a reduction of RAW 264.7 adhesion and plain 

PSM uptake suggesting an inhibition of FN receptor targets.  rTp0483 may bind to 

macrophages through a combination of toll-like receptor 2 (TLR-2) and cluster of 

differentiation 14 (CD14), which has been shown to play a role in the activation of 

inflammatory and antimicrobial responses in phagocytic cells for other T. pallidum 

proteins (TpN47 and Tp0751).55  More general scavenger receptors likely also play 

a role in the adhesion of macrophages to rTp0483, FN, and rTp0483+FN.133, 134  By 

binding FN some rTp0483 target ligands may be rendered inaccessible resulting in a 

smaller immunogenic reaction while FN specific targets are inhibited leading to 

decreased binding.  Scavenger receptors help account for the remaining cell binding. 
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 Macrophages react in a number of ways in response to a perceived threat 

including production of the inflammatory cytokines TNF-α, interleukin-10 (IL-10), 

IL-6, and IL-1β along with prostagladin E2 (PGE-2) and NO, which is quickly 

converted to the end products NO2- and NO3-.55, 122, 125, 126   Two important 

representative molecules, TNF- α and NO2-, were chosen to investigate the 

immunogenic response of CRL-2449 and RAW 264.7 macrophages to adsorbed and 

free rTp0483, FN, rTp0483+FN and BSA compared to uncoated plain and COO- PSMs 

and uncoated COO- WP surfaces.  TNF-α is an inflammatory cytokine that mainly 

serves to recruit additional macrophage and immune cells while NO acts as an 

antibacterial agent.  Activation of the nuclear factor kappa-B (NF-κB) pathway of 

macrophages resulting from interactions with TLR-2 and CD14 receptors, which 

may play a role in rTp0483 binding, has been shown to control the production of 

inflammatory cytokines like TNF-α.55, 122, 125, 126  NO synthesis is regulated by an 

enzyme, inducible NO synthase (iNOS), that is activated in response to stimulation 

with interferon-γ (IFN-γ), TNF-α, or endotoxins like LPS.122, 124-126  Both CRL-2449 

and RAW 264.7 macrophages produced significant amounts of TNF-α in response to 

rTp0483 and rTp0483+FN in solution (p<0.05).  Moreover, there was no significant 

reduction in the TNF-α concentration when FN was added to rTp0483.  This 

indicates that surface adsorption of rTp0483 is important to any 

immunosuppressive effect.  Surface adsorbed rTp0483 is only accessible from a 

single direction, which is subsequently blocked by binding FN.  On the other hand, 

rTp0483 in solution is accessible from 360° so when FN binds it occupies only a 

fraction of the area leaving a large portion of the protein open to macrophage 
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targeting.  NO2- production in CRL-2449 macrophages was equal to or less than 

unstimulated controls for all proteins in solution and adsorbed on both types of 

microspheres.  This corresponds to a study by Fleming et al. that found that even 

when stimulated with the endotoxin LPS CRL-2449 macrophages did not produce 

significantly more NO2- than unstimulated cells.135  In solution, other than the 

positive control, LPS, only cells stimulated with 260 pmol rTp0483 + 130 pmol FN 

produced significantly more NO2- than unstimulated controls (p<0.05).  The effect 

was small and may be a result of increased binding of rTp0483 via opsonization by 

bound FN while in solution. 

 When adsorbed onto plain and COO- PSMs rTp0483 and rTp0483+FN 

produced a significant amount of TNF-α (p<0.05).  The addition of FN to adsorbed 

rTp0483 reduced TNF-α production for CRL-2449 cells stimulated with plain PSMs 

(p<0.05) but not for those stimulated with COO- PSMs.  TNF-α generated by cells 

stimulated with rTp0483 and rTp0483+FN coated COO- PSMs was lower than for 

coated plain PSMs (p<0.05).  This is likely due to the phagocytosis profiles of 

rTp0483 and rTp0483+FN coated plain and COO- PSMs seen in Figure 8.7 and Figure 

8.8.  The uptake of coated COO- PSMs proceeded more slowly than for plain PSMs 

and while it peaked at a higher value it rapidly fell to levels below plain PSMs.  TNF-

α is known to reduce the growth rate of macrophages, which may account for the 

difference in uptake.  Adsorption to COO- PSMs produced protein configurations that 

led to slower phagocytosis compared to proteins adsorbed on plain PSMs.  

Consequently, TNF-α production in response to coated COO- PSMs was lower leading 

to faster cell proliferation.  Conversely, cells stimulated with coated plain PSMs 
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proliferated at a slower rate due to elevated TNF-α.  The uptake of microspheres is a 

linear process while cell proliferation proceeds at an exponential rate.  As a result, 

cells stimulated with rTp0483 and rTp0483+FN coated COO- PSMs proliferated 

more rapidly relative to microsphere uptake leading to a short term spike in 

response followed by a steady decline.  Conversely, cells stimulated with rTp0483 

and rTp0483+FN coated plain PSMs grew more slowly allowing each cell to uptake 

more microspheres.  TNF-α production was lower for rTp0483 and rTp0483+FN 

coated COO- PSMs; however, the charge distribution of SO42- in plain PSMs provided 

a more effective substrate for reduction of TNF-α generation in response to 

adsorbed rTp0483 via FN binding.  Both rTp0483 and rTp0483+FN adsorbed on 

COO- WP surfaces resulted in significant TNF-α and NO2- production (p<0.05).  

rTp0483 adsorbed on COO- WP surfaces displayed a higher FN binding ability than 

either type of PSM and reduced TNF-α and NO2- (p<0.05) generation in RAW 264.7 

cells.  This reinforces the importance of surface chemistry and curvature and 

supports the hypothesis that binding of FN to adsorbed rTp0483 decreases the 

antigenicity of rTp0483.  A possible explanation is that adsorption of FN to adsorbed 

rTp0483 prevents a portion of interactions through the TLR-2 and CD14 receptors 

on macrophages.  TNF-α generation, and ultimately NO2-, is controlled by the NF-κB 

pathway, which is in turn activated by binding through these two receptors.  By 

inhibiting those interactions the associated immune responses are suppressed.  

Differences in NO2- production for RAW 264.7 when rTp0483 and rTp0483+FN 

were adsorbed as opposed to free in solution may point toward a concentration 

dependent response.  In solution the highest concentration of rTp0483+FN 
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produced a small but significant (p<0.05) response compared to unstimulated 

controls while rTp0483 alone did not.  When RAW 264.7 cells were cultured on 

protein coated surfaces rTp0483 alone was significantly higher than unstimulated 

controls (p<0.05) while rTp04843+FN was indistinguishable.  This indicates that in 

solution addition of FN may slightly increase interactions with RAW 264.7 cells; 

however, when RAW 264.7 cells are forced into contact with protein coated surfaces 

the addition of FN to adsorbed rTp0483 appears to attenuate NO2- generation. 

 

8.5. Conclusions 

 rTp0483 and FN were successfully adsorbed to plain and COO- PSMs and 

COO- WP surfaces.  Based on zeta potential analysis the assembled protein surface 

coatings were determined to be stable in culture media.  Phagocytosis of PSMs by 

CRL-2449 cells was dependent on the species of adsorbed proteins as well as the 

surface chemistry of the PSMs.  Above a threshold rTp0483 adsorbed prior to RAW 

264.7 seeding was determined to be cytotoxic and RAW 264.7 binding was 

dependent on adsorbed protein species.  rTp0483 in solution resulted in generation 

of TNF-α in CRL-2449 and RAW 264.7 cells and the addition of FN had no effect 

suggesting that immunosuppression via FN capture was a surface adsorption 

related property.  Adsorption of rTp0483 on COO- PSMs generally led to less TNF-α 

generation than on plain PSMs as a result of slower uptake and increased cell 

proliferation rate; however, for adsorption onto 200 nm PSMs plain polystyrene 

surfaces provided a more effective substrate for reduction of TNF-α generation via 

FN binding to adsorbed rTp0483.  The addition of FN to adsorbed rTp0483 on COO- 



 

155 
 

WP surfaces was effective in reducing TNF-α generation in RAW 264.7 cells.  NO2- 

production in CRL-2449 cells was confirmed to be unresponsive to stimulation.  

Above a certain concentration the addition of FN to rTp0483 in solution may slightly 

increase RAW 264.7 NO2- production, but when adsorbed to a surface prior to cell 

seeding the addition of FN to rTp0483 led to a decrease in production.  
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Chapter 9: CONCLUSIONS   

 

 The first primary objective of this work was to investigate the application of 

surface adsorbed rTp0483 with human serum FN in the preparation of a 

biocompatible coating.  In order to accomplish this primary objective a number of 

specific objectives were developed.  The conclusions drawn from these specific 

objectives are summarized below. 

 The adsorption of rTp0483 onto functionalized SAMs was analyzed along 

with FN binding onto rTp0483 coated SAMs.  It was determined that while rTp0483 

binds to a number of surface chemistries, -COO- SAM surfaces produce the highest 

potential surface concentration.  It was also found that rTp0483 on -COO- SAM 

surfaces serves as the most preferred substrate for FN adsorption.  These results 

indicate that a hydrophilic, negatively charged chemistry is the best choice for 

physical adsorption of FN to rTp0483 coated surfaces. 

 The adsorption of rTp0483 was further characterized by examining the ratio 

of dissipation energy to frequency change in adsorbed protein monolayers.  SAM 

surface chemistry was found to affect this ratio.  Higher dissipation energy 

corresponds to a loosely packed, labile protein layer.   Hydrophilic, negatively 

charged -COO- SAMs were found to have moderate dissipation energy to frequency 

change ratio compared to other surfaces indicating that a specific rTp0483 

configuration is required for FN binding, which is fulfilled by the -COO- surface 

chemistry. 
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 The binding and desorption kinetics of rTp0483 adsorption onto SAMs and 

the adsorption of FN onto rTp0483 coated SAMs was investigated.  rTp0483 

adsorption was best represented by a 1:1 Langmuir adsorption model with mass 

transfer limitations while FN adsorption to rTp0483 was best modeled as a bivalent 

analyte event.  It was also observed that the concentration of adsorbed rTp0483 

plays a role in the subsequent adsorption of FN by influencing the relative rates of 

the two binding events. 

 The surface distribution of rTp0483 was analyzed using AFM to visualize the 

topography of adsorbed protein monolayers.  Aggregation of rTp0483 into protein 

islands was observed along with a relationship between aggregate area and surface 

chemistry.  -COO- SAMs displayed the smallest, most evenly distributed aggregate 

areas, which may help account for the excellent binding characteristics. 

 Blocking studies using peptides and antibodies were conducted to elucidate 

the regions on rTp0483 and FN responsible for binding.  rTp0483 antibody studies 

indicated the involvement of both selected sequences in FN binding while a 

corresponding peptide study suggested the involvement of only one of the two.  An 

accompanying study focused on the binding regions of FN found that the cell-

binding and collagen/gelatin-binding regions were involved in rTp0483 binding.  

 The adsorption of Fg, HSA, and FXII was compared on rTp0483, FN, and 

rTp0483+FN coated -COO- SAMs as a measurement of hemocompatibility.  

Adsorption of rTp0483 prior to FN led to a decrease in Fg and HSA binding 

compared to FN alone while the addition of FN to adsorbed rTp0483 led to 

decreased binding of Fg, HSA, and FXII compared to rTp0483 alone.  Decreased Fg 



 

158 
 

binding may correlate to a reduction in the rate of fibrin network formation, which 

indicates an increase in hemocompatibility.  Decrease in HSA binding further shows 

that adsorption of rTp0483 prior to FN alters the adhesive properties of FN. 

 Hemocompatibility was further evaluated by analyzing the activation of the 

intrinsic clotting pathway on -COO- SAMs coated with rTp0483, FN, and 

rTp0483+FN.  Adsorption of rTp0483 prior to the addition of FN did not alter the 

response at the surface compared to FN alone while rTp0483 alone produced a 

smaller surface response than rTp0483+FN despite binding more FXII than either of 

the other surface coatings.  Activation of adsorbed FXII is facilitated by a negative 

surface charge, thus the positive net charge of rTp0483 likely led to a reduction in 

the rate of activation.  The response of rTp0483+FN and FN was similar because the 

net charge of FN was comparable in each case. 

 In addition to protein adsorption and intrinsic clotting pathway activation, 

the activation of platelets in contact with rTp0483, FN, and rTp0483+FN coated -

COO- SAMs was analyzed to quantify surface hemocompatibility.  Adsorption of 

rTp0483 prior to the addition of FN resulted in a drastic reduction of platelet 

activation compared to FN alone.   By reducing this response the hemocompatibility 

of the coated surface will increase substantially. 

 Biocompatibility was examined by observing the impact of rTp0483, FN, and 

rTp0483+FN coatings on phagocytosis of COO- and plain PSMs.  The addition of FN 

to adsorbed rTp0483 resulted in decreased phagocytosis for both types of PSMs 

compared to rTp0483 alone and for plain PSMs the adsorption of rTp0483 prior to 

the addition of FN led to decreased phagocytosis compared to FN alone.  The surface 
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chemistry of the PSMs also affected phagocytosis.  COO- PSMs were initially taken up 

more slowly than plain PSMs and while the average fluorescence for macrophages 

with plain PSMs was largely constant over 24 hours, the average fluorescence for 

macrophages with COO- PSMs increased more slowly, peaked above macrophages 

with plain PSMs, then feel back to lower values.  

 The impact of rTp0483, FN, and rTp0483+FN coating on macrophage surface 

adhesion was also investigated.  FN coated surfaces bound more macrophages than 

rTp0483 coated surfaces and when rTp0483 was adsorbed prior to the addition of 

FN the number of cells decreased compared to FN.  This result indicated that when 

FN binds to adsorbed rTp0483 it undergoes a change that reduces its ability to bind 

macrophage cells.  Suppression of macrophage adhesion may lead to an increase in 

biocompatibility. 

 Potential cytotoxic effects of rTp0483, FN, and rTp0483+FN free in solution 

and adsorbed to surfaces were examined as an indicator of biocompatibility.  No 

cytotoxic effects were observed for proteins in solution or adsorbed to PSMs; 

however, moderate cytotoxicity was observed when rTp0483 was adsorbed alone to 

COO- WP surfaces prior to macrophage seeding.  This is believed to be due to high 

local rTp0483 concentrations in direct contact with adsorbed macrophages. 

 In addition to phagocytosis and cytotoxicity, generation of TNF-α and NO2- by 

macrophages exposed to rTp0483, FN, and rTp0483+FN free in solution and 

adsorbed to surface were examined as indicators of biocompatibility.   Addition of 

FN to rTp0483 on plain PSMs resulted in a decrease in TNF-α production compared 

to rTp0483 alone while on COO- PSMs it had no effect.  In contrast, the addition of 
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FN to rTp0483 on COO- WP surfaces led to a reduction in TNF-α production 

compared to rTp0483 alone.  Surface curvature of PSMs compared to flat WPs likely 

accounts for this difference.  Macrophages exposed to rTp0483+FN or rTp0483 in 

solution produced significant TNF-α and were indistinguishable from one another 

indicating that any reduction in TNF-α production as a consequence of FN binding 

by rTp0483 is a surface mediated event.  NO2- production by CRL-2449 cells 

exposed to proteins free in solution and protein coated PSMs was equal to or less 

than unstimulated controls while NO2- production by adherent macrophages was 

greater than unstimulated controls for positive LPS controls, adsorbed rTp0483, 

and for the highest concentration of rTp0483+FN in solution.  For CRL-2449 cells 

this outcome indicates that the activation response does not include elevated nitric 

oxide activity.  RAW 264.7 cells responded appropriately to stimulation with LPS, 

producing an elevated level of NO2-; however, while cells adsorbed to rTp0483 and 

rTp0483+FN coated surfaces produced significant TNF-𝛼 only cells adsorbed to 

rTp0483 coated surfaces produced significantly more NO2- than unstimulated 

controls.  When exposed to free protein in solution only the highest concentration of 

rTp0483+FN elicited a response higher than unstimulated controls.  This may 

indicate that in solution binding of FN by rTp0483 increases macrophage response 

in contrast to when adsorbed. 
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APPENDIX A: CELL AND PROTEIN PATTERNING VIA MOLECULARLY 
IMPRINTED BIOFOULING RESISTANT POLYMERS 

 
 

A.1. Introduction 

 Biomaterial biocompatibility depends greatly on the reaction of natural 

immune and wound healing processes on and around an implanted device.  These 

responses are largely predicated on cell and protein interactions with the surface of 

the device, thus by directing the host response it is possible to attenuate the 

immune response and facilitate natural wound healing around the implant area.  A 

material synthesis technique known as molecular imprinting was employed with a 

goal of synthesizing a polymer coating capable of binding predetermined proteins or 

short oligopeptides for the purpose of generating organized cell arrays and 

potentially controlling host material interactions.  Preliminary studies were 

conducted at Tokyo University in association with Dr. Kazuhiko Ishihara to generate 

a BSA specific substrate during the summer of 2009.   A copolymer integrating 

fouling resistant MPC was used in the formation of the polymer coating to eliminate 

nonspecific protein interactions.  Silica microspheres were functionalized with a 

copolymer of 3-(methacryloxy) propyl trimethoxysilane (MPTS), MPC, and p-

nitrophenyloxycarbonylethylene glycol methacrylate (MEONP) called PMSiN.  A 

similar copolymer was formed from MPC, MEONP, and butyl methacrylate (BMA) 

called PMBN.  MPTS can form strong chemical bonds with silica microspheres that 

were used as physical support for the imprinting template, MPC prevents 

nonspecific protein interactions, and MEONP where the reactive p-nitrophenol 

(pNP) terminal group reacts with amino functionalities in the selected protein to 
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form a stable bond.136  Once the protein is bound the remaining pNP groups are 

consumed by hydrolysis.  The protein coated silica microspheres served as a 

template in the formation of molecularly imprinted surfaces.  BSA was immobilized 

on the silica microspheres and the template added to a layer of photoreactive 2-

methacryloyloxyethyl phosphorylcholine-co-2-methacryloyloxyethyloxycarbonyl 4-

phenylazido (PMPAz).  After the PMPaz coating was cross-linked via UV initiated 

polymerization the protein templates were removed and the adsorption of BSA 

compared to non-templated PMPaz, PMPaz templated with microspheres without 

BSA, and hydrophobic BMA using QCM and BSA ELISA. 

 

A.2. Experimental Procedures 

 

 A.2.1. Biomolecules and Reagents 

 MPC, MEONP, and PMPaz were synthesized as previously detailed.137-139  

BMA was purchased from Kanto Chemical (Tokyo, Japan) and MPTS was purchased 

from Shin-Etsu Chemical (Tokyo, Japan).  All other materials were obtained from 

Kanto Chemical unless stated otherwise.  Silica microspheres (15 μm diameter) 

were purchased from Fuji Silysia Chemical (Tokyo, Japan).  The structures of 

selected monomer units are shown in Figure A.1.  

 

 A.2.2. PMBN and PMSiN Polymer Synthesis 

 PMBN was synthesized by combining MPC, BMA, and MEONP in a molar ratio 

of 20/60/20.  A total molar concentration of 1.0 M was employed with monomer  
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Figure A.1: Monomer unit structures.  Subscripts indicate the molecular ratios of 
various monomers for copolymer formulations.  MPC resists nonspecific protein 
adsorption, BMA is a hydrophobic unit included in the formulation of PMBN to make 
the copolymer non water soluble, MEONP is able to react with proteins to form a 
chemical bond, MPTS is able to form a chemical bond with silica surfaces, and 
MPMaz is a photoreactive form of MPC. 
 

concentrations of 0.2 M MPC, 0.6 M BMA, and 0.2 M MEONP and the reaction was 

initiated with 10 mM AIBN.  The monomers were dissolved in 50 mL of ethanol 

along with AIBN initiator and the solution degassed 10 minutes with argon (Ar).  

After degassing, the samples were moved to a -20° C freezer for 5 minutes then 

sealed in a glass tube.  The sealed tube was immersed in a 60°C hot oil bath for 3 

hours to initiate the polymerization reaction.  The sealed tube was moved to the -

20°C freezer for 10 minutes.  At the same time, a 1000 mL of 80:20 ether to 

chloroform was prepared.  After 10 minutes in the freezer the tube was unsealed 
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and the polymer solution was slowly added to the solvent solution under a fume 

hood.  After 10 minutes the solvent solution was decanted off and replaced with 

fresh solvent.  The sample solution was stirred for 1 hour then the precipitate was 

recovered.  The polymer was dried under vacuum for 2 days.  Polymerization was 

verified using a nuclear magnetic resonance (NMR) instrument manufactured by 

JEOL (Tokyo, Japan).  The structure of PMBN is shown in Figure A.2. 

 PMSiN was synthesized by combining MPC, MPTS, and MEONP in a molar 

ratio of 70/10/20.  A total molar concentration of 0.3 M was employed with 

monomer concentration of 0.21 M MPC, 0.03 M MPTS, and 0.06 M MEONP while the 

reaction was initiated with 5 mM AIBN. The monomers were dissolved in 25 mL of 

ethanol with AIBN.  The polymerization protocol was identical to PMBN.  After the 

polymer had been precipitated it washed in ethanol overnight before it was vacuum 

dried.  Polymerization was verified using NMR.  The structure of PMSiN is shown in 

Figure A.2.  PMSiN was chosen for molecular imprinting studies because it can form 

a strong chemical bond with the silica microspheres chosen as the protein template 

substrate.  
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Figure A.2: Synthesized copolymer structures.  Subscripts indicate the molecular 
ratios of monomer units.  PMBN is physically adsorbed to a surface and is capable of 
chemically bonding proteins.  PMSiN chemically bonds with silica surfaces as well as 
proteins. 
 

 A.2.3. Silica Microsphere PMSiN Coating 

 Silica microspheres were cleaned for 20 minutes under oxygen plasma in a 

PR500 Plasma Cleaner from Yamato Scientific (Tokyo, Japan).  At the same time 0.5 

% (w/v) PMSiN was dissolved in ethanol.  After being cleaned, 250 mg of silica 

microspheres were added to 25 mL of PMSiN solution and incubated for 1 hour on a 

rotating test tube rack.  The microspheres were recovered by centrifugation at 1000 

RPM for 1 minute.  The polymer solution was decanted off and the microspheres 

were dried at room temperature for 2 hours.  The microspheres were incubated at 

70°C for 3 hours to crosslink the PMSiN polymer.  The coated microspheres were 

washed with ethanol for 1 hour and centrifuged at 1000 RPM for 1 minute.  The 

ethanol was removed and the coated microspheres were dried at room 
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temperature.  Phosphate buffered saline (PBS) (0.1 M potassium 

dihydrogenphosphate (Sigma) and 0.1 M NaOH in diH2O, pH 7.8) and 0.5 M NaOH 

were prepared.  The surface concentration of PMSiN was estimated by measuring 

the concentration of pNP liberated from MEONP groups when coated microspheres 

were exposed to NaOH.  A similar liberation of pNP would be observed when a 

protein (BSA) became chemically bound to adsorbed PMSiN.  A solution containing 

1 mg/mL pNP was prepared in NaOH and diluted to 10, 5, 2, 1, and 0.1 μg/mL pNP.  

The absorbance spectrum was measured from 250-600 nm and a peak 

corresponding to pNP recorded at 400 nm.  Using this information a pNP calibration 

curve was generated for the coated microspheres.  10 mg of coated microspheres 

were mixed with 0.5 M NaOH, centrifuged at 1000 RPM for 1 minute and the 

concentration of pNP liberated measured.   

  

 A.2.4. BSA Template Imprinting 

 Circular or rectangular glass slides were washed with ethanol then cleaned 

by exposing them to oxygen plasma for 20 minutes.  Chrome was sputter coated 

onto the slides for 10 seconds followed by gold for 30 seconds.  Coated rectangular 

slides were cut into squares.  Alternately, gold QCM substrates were purchased from 

Biolin.  The gold coated slides and QCM substrates were cleaned by exposing them 

to oxygen plasma for 20 minutes.  A thin layer of BMA was spin coated onto sputter 

coated slides and QCM substrates to facilitate PMPaz adhesion.  50 μL of BMA was 

added to the substrate surfaces and spun in a spin coater for 10 seconds at low 

speed followed by 5 seconds at high speed.  50 μL of PMB30 (30:70 copolymer of 
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MPC:BMA) was also added to the backs of the sputter coated slides to prevent 

nonspecific BSA adsorption.  10 mg of PMSiN coated microspheres were either 

incubated 24 hours in 1 mg/mL BSA in PBS (pH 7.8) or in PBS alone.  The binding of 

BSA was confirmed by analyzing the concentration of pNP liberated from the 

surface of the PMSiN coated microspheres by measuring the absorbance at 400 nm.  

Coated microspheres were washed with 1 mL of PBS and recovered by 

centrifugation at 1000 RPM for 1 minute.  The coated microspheres were washed 

two more times and after the supernatant had been removed they were 

resuspended in 1.6 μg SDS/mL and 2.5 mg PMPaz/mL in diH2O.  100 μL of PMPaz 

solution alone was added to a portion of surfaces while 100 μL of PMPaz solution 

with SDS and BSA coated templates (BSA imprinted PMPaz - BI-PMPaz) and PMPaz 

solution with just PMSiN coated microspheres (microsphere imprinted PMPaz - MI-

PMPaz) were added to an equal number of surfaces.  Lastly, an equal number were 

left as BMA.  The liquid was evaporated at 37°C and polymerization initiated using 

UV radiation for 1 minute at 800 power in a CL-1000 UV crosslinker from Funakoshi 

(Tokyo, Japan).  Polymer coverage and template removal were verified on the 

square gold coated slides using an AXIS-His165 XPS instrument 

from Kratos/Shimadzu (Kyoto, Japan).  

 

 A.2.5. QCM Analysis of BSA Adsorption 

 A Q-Sense D-300 QCM from Biolin was employed for all QCM measurements.  

Flow was manually controlled using a knob on the instrument to open and close the 

flow path.  The temperature inside the sample chamber was held at 37°C and 
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experimental data recorded using a Q-Sense software package on an attached 

computer.  Frequency change in the 7th overtone was measured in hertz (Hz) for the 

5 Mhz substrates as a function of time.  PBS was used to dilute BSA to 1 mg BSA/mL 

and also used to equilibrate the QCM substrates. 

 QCM substrates were prepared as indicated with PMPaz, MI-PMPaz, BI-

PMPaz, or BMA coatings.  A coated substrate was loaded and PBS flowed over it until 

the QCM signal was stable.  The sample loop was filled with 1 mg BSA/mL and then 

flowed over the substrate until 5 drops left the exit line.  Flow was stopped and the 

BSA incubated with the coated substrate for 30 minutes.  The lines were flushed 

well with PBS then the flow was stopped and the QCM signal allowed to stabilize.  

The response was calculated by subtracting the frequency after BSA adsorption 

from the initial frequency before exposure to BSA.  

 

 A.2.6. ELISA Analysis of BSA Adsorption 

 PMPaz, MI-PMPaz, BI-PMPaz, and BMA coatings were applied to circular gold 

coated glass slides as previously detailed.  Surfaces were rinsed with PBS and half 

were incubated 3 hours at 37°C in 0.1% (w/v) BSA in PBS while the other half were 

incubated in PBS with no BSA.  All groups were prepared in triplicate.  The liquid 

was removed from the samples and they were washed 4x with 1 mL portions of PBS.  

The PBS was removed and the samples were incubated 15 minutes at 37°C in 500 

μL of a 1:5 dilution of blocking solution (NOF (Tokyo, Japan)) in PBS to prevent 

nonspecific antibody binding.  1:1000 dilutions of primary (Bethyl Laboratories 

(Montgomery, TX)) and secondary (R&D Systems) BSA antibodies were prepared in 
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stabilizing solution (NOF (Tokyo, Japan)) and 500 μL of primary antibody solution 

was added to each sample and incubated 1 hour at 37°C.  The primary antibody 

solution was removed and the samples were washed 4x with 1 mL portions of PBS.  

500 μL of secondary antibody solution was added to each sample and incubated 1 

hour at 37°C.  The samples were again washed 4x with 1 mL portions of PBS.  500 μL 

of HRP-substrate (SUMILION (Tokyo, Japan)) was added to each sample and 

incubated 20 minutes at RT then 500 μL of stop solution (SUMILION) was added to 

halt the reaction.  BSA adsorption was determined by measuring sample absorbance 

at 450 nm using a Wallac 1420 ARVOsr microplate reader from Perkin Elmer 

(Waltham, MA) 

 

 A.2.7. Statistical Analysis 

 Statistical analysis was performed using the Microsoft Office Excel Data 

Analysis tool, StatPlus.  Multiple pair-wise comparisons were made using one-way 

analysis of variance (ANOVA) with a maximum p-value of 0.05.  All data are 

reported as a mean + standard error.  All studies are at minimum n=3 with specific 

sample group sizes noted in the text. 

 

A.3. Results 

 

 A.3.1. PMBN and PMSiN Polymer Synthesis 

 PMBN and PMSiN were successfully synthesized.  This was verified using 

NMR analysis.  Figure A.3 illustrates the unique protons that were used to identify 
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each monomer unit.  Figure A.4 shows the NMR spectra for PMBN.  The two peaks 

observed at 7.5 and 8.3 ppm are MEONP, the peak at 3.0 ppm is MPC, and the two 

peaks at 1.4 and 1.6 ppm are BMA.  The peaks at 5.5 and 6.0 ppm are unreacted MPC 

monomer.  The ratio of components was determined by dividing the value of each 

set of peaks by the number of proteins represented.  A molar ratio of 20/60/20 of 

MPC, BMA, and MEONP was combined to form PMBN and actual composition of the 

resulting polymer was determined to be 25/68/7.  Figure A.5 shows the NMR 

spectra for PMSiN.  The two peaks at 7.5 and 8.3 ppm are MEONP, the peak at 3.0 

ppm is MPC, and the peak at 0.6 ppm is MPTS.  Once again the two peaks at 5.5 and 

6.0 ppm are unreacted MPC monomer.  A molar ratio of 70/10/20 for MPC, MPTS, 

and MEONP was combined to form PMSiN and the actual composition of the 

resulting polymer was determined to be 90/3/7. 
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Figure A.3: Illustration of unique proton configurations used to identify each 
monomer.  For MPC and MPTS all protons analyzed are the same (single peak) while 
for BMA and MEONP there are two types (double peak).  
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Figure A.4: NMR spectra for PMBN polymer.  Peaks at 7.5 and 8.3 ppm are MEONP, 
peaks at 5.5 and 6.0 ppm are MPC monomer, peak at 3.0 ppm is MPC, and peaks at 
1.4 and 1.6 ppm are BMA. 
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Figure A.5: NMR spectra for PMSiN Polymer. The peaks at 7.5 and 8.3 ppm are 
MEONP, peaks at 5.5 and 6.0 ppm are MPC monomer, the peak at 3.0 ppm is MPC, 
and the peak at 0.6 ppm is MPTS.   
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 A.3.2. Silica Microsphere PMSiN Coating 

 Silica microspheres were successfully coated with PMSiN polymer.  MEONP 

in the adsorbed PMSiN polymer was hydrolyzed in 0.5 M NaOH and the release of 

pNP measured at 400 nm.  A calibration curve (shown in Figure A.6) was 

constructed using known pNP concentrations and the amount liberated from coated 

microspheres was calculated.  The liberated pNP was found to be 0.19 μg pNP/mg 

silica microspheres.  This provides sufficient surface concentration of MEONP to 

facilitate saturation by BSA. 

 

 

Figure A.6: pNP calibration curve for determination of PMSiN surface concentration.  
Absorbance measured at 400 nm is proportional to the concentration of pNP in 
solution.  Linear regression of pNP standards allows for the determination of surface 
concentration of coated silica microspheres. ()- PMSiN coated silica microspheres 
and ()- pNP controls. 
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 A.3.3. BSA Template Imprinting 

 Measurement of pNP liberation in PBS at pH 7.8 indicated that all MEONP 

subunits were hydrolyzed after 24 hours.  Samples in PBS with no BSA released 

0.164 ± 0.029 μg pNP/mg microspheres while samples in PBS with 1 mg BSA/mL 

release only 0.156 ± 0.002 μg pNP/mg microspheres.  This indicates that no 

unreacted groups remain to react with other amine containing materials during 

testing. 

 XPS was used to investigate the surface composition of BI-PMPaz and MI-

PMPaz compared to unmodified gold surfaces.  The results are shown in Table A.1.  

The gold surface had small traces of hydrocarbons likely from the atmosphere as the 

samples were loaded.  High levels of carbon and oxygen indicate successful polymer 

coating for both BI-PMPaz and MI-PMPaz.  Absence of nitrogen indicates the 

successful removal of BSA from BI-PMPaz. 

 

Table A.1: XPS Data for BI-PMPaz, MI-PMPaz, and an unmodified gold surface. 

Sample Carbon Phosphate Gold Nitrogen Oxygen Sulfur 

Gold 
Control 2% 0% 97% 0% 1% 0% 

BI-PMPaz 30% 1% 52% 1% 17% 0% 

MI-PMPaz 65% 1% 4% 1% 29% 0% 

 

 A.3.4. QCM Analysis of BSA Adsorption 

 QCM analysis of BSA adsorption was used to determine whether BI-PMPaz 

was able to successfully facilitate BSA specific protein adsorption while MI-PMPaz 



 

176 
 

retains the anti-fouling properties of PMPaz alone.  Figure A.7 shows the results of 

the QCM study.  The BSA binding of PMPaz and MI-PMPaz was indistinguishable 

with responses of 34.5 ± 3.9 Hz and 30.6 ± 10.1 Hz respectively.  The BSA binding of 

BI-PMPaz was significantly higher than PMPaz or MI-PMPaz (70.0 ± 10.2 Hz, 

p<0.05) and the binding of BMA was higher than any of the other three groups 

(126.5 ± 6.0 Hz, p<0.05).  This indicates that PMPaz was able to significantly reduce 

protein binding compared to BMA and that by integrating a protein specific imprint 

BSA binding can be increased for PMPaz. 

 

 

Figure A.7: QCM analysis of BSA binding to selected polymer coatings.  The 7th 
overtone of 5 MHz quartz crystals was analyzed.  BSA binding on MI-PMPaz was 
indistinguishable compared to PMPaz; however, BI-PMPaz bound significantly more 
protein (p<0.05).  BMA bound more than the other three groups (p<0.05).  
 

 A.3.5. ELISA Analysis of BSA Adsorption 

 To verify the findings of the QCM study a BSA ELISA was carried out.  The 

results are shown in Figure A.8.  The absorbance of BMA and BI-PMPaz coated 
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surfaces incubated with 1 mg BSA/mL were significantly higher than the 

absorbance of surfaces incubated in PBS (0.036 ± 0.013 and 0.021 ± 0.005 

respectively, p<0.05).  PMPaz and MI-PMPaz coated surfaces incubated with 1 mg 

BSA/mL were indistinguishable from surfaces incubated in PBS (0.005 ± 0.003 and 

0.015 ± 0.016 respectively). 

 

 
 
Figure A.8: ELISA analysis of BSA binding to selected polymer coatings.  Absorbance 
at 450 nm for surfaces incubated in PBS was subtracted from the absorbance of 
surfaces incubated in 1 mg BSA/mL.  BSA binding on PMPaz and MI-PMPaz was 
insignificant; however, BMA and BI-PMPaz bound a significant amount of protein 
(p<0.05).  
 

A.4. Conclusions 

 Surface biocompatibility is dependent on the adsorption of cells and proteins.  

By controlling which components bind it may one day be possible to guide the host 

response to implanted biomaterials.  The goal of this project was to prepare a non-

fouling MPC polymer coating capable of selectively binding a target protein.  A 
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protein stamp was manufactured by chemically coupling MPC based polymer chains 

to silica microspheres and then chemically bonding a model protein (BSA) to the 

surface of the silica microspheres.  The stamp was combined with a surfactant (SDS) 

to assist in template removal and the bulk polymer substrate (PMPaz) to form the 

molecularly imprinted polymer coating (BI-PMPaz).  NMR analysis established 

successful production of PMBN and PMSiN while XPS and UV absorbance 

measurement of pNP demonstrated functionalization of silica microspheres.  

Improved BSA binding for BI-PMPaz coatings compared to PMPaz alone was 

observed in QCM and ELISA studies.  Similarly, MI-PMPaz coatings did not impact 

BSA binding indicating that the addition of the BSA template was critical in 

increasing protein binding. 
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