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ABSTRACT OF DISSERTATION 
 
 
 
 

INSIGHTS INTO HEPATIC ALPHA-FETOPROTEIN GENE REGULATION 
DURING LIVER DEVELOPMENT AND DISEASE 

 
The liver is an essential organ for cholesterol homeostasis.  If this process 

becomes dysregulated, cardiovascular disease (CVD) develops.  Zinc-fingers and 

homeoboxes 2 (Zhx2) as an important hepatic gene regulator and contributes to 

CVD. BALB/cJ mice, with mutant Zhx2 allele, have fewer atherosclerotic 

plaques compared to other strains on a high fat diet.  In my dissertation, I focused 

on the liver phenotype in BALB/cJ mice on a high-fat diet and found increased 

liver damage compared to wild-type Zhx2 mice.  These data indicates that 

reduced Zhx2 in the liver leads to CVD resistance, but increases liver damage.  

Therefore, Zhx2 has an important role in lipid metabolism and liver function. 

 Hepatic alpha-fetoprotein (AFP) is expressed abundantly in the fetal liver 

and repressed after birth regulated through three enhancers (E1, E2, and E3).  E3 

activity is restricted to a single layer of hepatocytes surrounding central veins 

(pericentral region) along with glutamine synthetase (GS).  In my dissertation, I 

explore pericentral gene regulation in the adult liver.  A GS enhancer (GSe) also 

exhibits pericentral activity which, along with E3, is regulated by the -catenin 

signaling pathway. Orphan receptors, Rev-erb, Rev-erb, and ROR, contribute 

to E3 activity elucidating a potential mechanism for zonation. 

Keywords: AFP, Zhx2, zonation, -catenin, cholesterol 

       Erica Leigh Clinkenbeard 
        January 30, 2012 
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CHAPTER 1 

 
Introduction 

 

Liver Cell Composition 

 
The liver is the largest internal organ in mammals and it plays a key role in metabolic 

homeostasis, biosynthesis and xenobiotic clearance [1]. Gestational events in the fetal 

liver are crucial for proper development of all hepatic cell types [2]. In mice, the liver bud 

forms from hepatoblasts that migrate from the foregut endoderm and invade the septum 

transversum mesenchyme; this process begins at about embryonic day 8.5 (e8.5) and is 

essential for generating all cell types in the adult liver [3, 4]. Mesenchymal cells include 

progenitors for hepatic stellate cells and hepatic fibroblasts [5].  Signals from these cells, 

as well as cardiac myocytes, promote the proliferation of hepatoblasts [6] and induce fetal 

expression of hepatic genes, including albumin and alpha-fetoprotein (AFP), through the 

activation  of transcription factors such as Hepatocyte Nuclear Factor 3 (Foxa) and 

CCAAT/enhancer-binding protein (C/EBP) [7].  -catenin is a key signaling molecule 

(described below in greater detail) important for cell proliferation and expansion of the 

liver bud.  Several groups have shown the absence of -catenin early during liver 

development is embryonic lethal, demonstrating a critical role for -catenin signaling at 

this early stage for the liver and other tissues [8-10].  At roughly e13, bipotential 

hepatoblasts begin to differentiate into mature hepatocytes [albumin-positive] or biliary 

epithelial cells [cytokeratin-19 (CK19)-positive]  which are localized to a region that 

surrounds the portal vein [11]. As liver maturation continues, biliary epithelial cells form 

tubular ducts that collect bile, which is later transported to the gall bladder [11].  -

catenin protein levels decrease later in liver development, leading to a reduction in 

proliferation and ultimately quiescent mature hepatocytes [8]. Gene expression profiles 

differ substantially between the neonatal and adult liver, which is due, in large part, to 

different hormonal and nutritional signals [12, 13]. 

Hepatocytes account for 60-70% of the normal liver parenchyma and are involved 

in the majority of liver functions, including synthesis of glutamine, bile acid and amino 
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acids, gluconeogenesis, urea production, glycogen storage, and xenobiotic detoxification. 

In the adult liver, hepatocytes are generally quiescent although they are capable of 

proliferation in response to hepatocyte loss [14].  Hepatic stellate cells, in addition to 

providing growth signals during development, become the major sites of vitamin A 

storage in adults [15].  In response to persistent damage, due to a number of factors 

including viral infection and alcohol toxicity, stellate cells are activated and transform 

into collagen-depositing fibroblasts [16].  In this regard, stellate cells are important in 

chronic injury that leads to liver fibrosis [17].  While activation of stellate cells leads to 

injury, depletion of stellate cells reduces the liver’s ability to regenerate and decreases 

survival due to hepatocyte apoptosis [18]. Resident macrophages of the liver, called 

Kupffer cells, account for about 50% of the macrophages in adult mammals [19].  

Kupffer cells can engulf dietary and bacterial toxins, limiting their presence in the 

enterohepatic circulation and reducing inflammation [20]; another critical role of Kuppfer 

cells is to phagocytose aged erythrocytes [21].  While there is some debate regarding 

stem cells in the liver, it is generally agreed that a small population of cells in the portal 

triad region, called oval cells, are bi-potent progenitor cells that can give rise to 

hepatocytes and biliary epithelial cells [22, 23]. Liver damage caused either by partial 

hepatectomy or treatment with hepatotoxic agents such as carbon tetrachloride or 

acetaminophen, elicits a coordinated response by all liver cells to induce proper 

regeneration through proliferation of quiescent hepatocytes and oval cells [24, 25].  In 

summary, a variety of cells in the mature liver must function in a coordinated manner for 

the liver to function properly and respond to stimuli; any imbalance can lead to disease 

including fibrosis and cirrhosis. 

 

Liver Architecture and Zonation 

 

Proper liver function requires hepatocytes to carry out a myriad of functions.  To 

facilitate this, the adult liver has a unique structure of repeating hexagonal units called 

lobules (Figure 2A).  The middle of each lobule contains a central vein, whereas each of 

the six corners consists of the portal triad, containing the hepatic artery, portal vein and 

bile ducts [1].  Oxygen-rich blood via the hepatic artery and nutrient-rich blood via the 
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portal vein enter the liver and flow along sinusoids towards the central vein, where the 

blood exits the liver (Figure 2B).  Specialized highly fenestrated endothelial cells filter 

nutrients into the space of Disse, which separates the baso-lateral sides of hepatocytes 

from the sinusoids [26, 27]. Tight junctions between neighboring hepatocytes create the 

bile canaliculi which is necessary for the collection of bile released by the apical side of 

hepatocytes. Bile flows towards the intrahepatic bile ducts, opposite of blood flow, 

towards the portal triad where they are transported via bile ducts to the gall bladder for 

storage before release into the small intestine [28].  Kupffer cells reside primarily in the 

sinusoids nearer the portal vein where they can sense and phagocytose bacteria, damaged 

red blood cells and macromolecules from the circulation [29].  Vitamin A-storing stellate 

cells are anchored on the endothelial sinusoid cells in the space of Disse and are more 

abundant in regions surrounding the portal triad (periportal regions) [17]. 

The liver carries out a number of opposing metabolic functions, many of which 

cannot occur simultaneously within the same cell.  To overcome this, the liver has 

developed heterogeneity of gene expression, a fascinating phenomenon called zonal gene 

regulation [30].  Certain genes are expressed in specific regions along the portocentral 

axis, with some genes expressed solely in pericentral hepatocytes (those surrounding the 

central vein) and others expressed in periportal hepatocytes [31] (Figure 2B).  Expression 

of some of these genes is highly restricted to a layer of one to two hepatocytes in a 

particular zone, whereas others have a more diffuse gradient pattern of zonal expression.   

The first gene found to exhibit zonal expression was glutamine synthetase (GS) [32]. GS 

is expressed in liver, brain and kidney and drives the production of glutamine through a 

reaction between ammonia and glutamate [33].  GS is expressed in all hepatocytes in the 

neonatal liver but this expression becomes highly restricted in the adult liver to one to 

two layers of hepatocytes surrounding the central vein [34].  This pattern of GS 

expression is invariant and not influenced by hormones or nutrients so its pattern does not 

alter, although the expression of other zonal genes can change in response to external 

stimuli.  The bulk of ammonia is converted to urea in periportal hepatocytes by 

carbamoyl-phosphate synthetase (CPS1), which exhibits higher expression  in periportal 

hepatocytes [35].  The absence of periportal ammonia-metabolizing enzymes results in 

death due to ammonia toxicity [36] and patients who are deficient in CPS1 develop life 
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threatening hyperammoniemia [37].  Ammonia detoxification forming urea and 

glutamine are not the only metabolic pathways that exhibit zonal activity.  

Gluconeogenesis, required to generate energy, occurs in periportal hepatocytes where the 

rate limiting enzyme of the pathway, phosphoenolpyruvate carboxykinase (PEPCK), is 

zonally expressed.  PEPCK expression is not static but changes in response to blood-

borne nutritional signals [38, 39].  In contrast, Glucose-6-phosphatase is found in 

pericentral hepatocytes where it converts glucose to glycogen for storage when energy is 

not needed [40, 41].  A variety of Cytochrome P450 (CYP) enzymes are crucial proteins 

for xenobiotic metabolism and clearance and many are found at highest levels in the 

liver.  Most CYP enzymes are zonally expressed, mainly in pericentral hepatocytes, but 

this can change during uptake of chemicals, such as ethanol or phenobarbital, that must 

be metabolized by a specific CYP [42, 43].             

 

Regulation of liver zonation  

 

 Although many enzymes exhibit a zonal pattern of expression, the mechanism of 

zonal control is not fully understood.  One hypothesis is that blood flow along the 

portocentral axis creates a gradient of oxygen and/or nutrients that can lead to differential 

gene regulation along this axis [44].  Any mechanism must account for how certain 

enzymes, including GS, remain static whereas others are dynamic which is found to be 

regulated, to a large extent, at the level of transcription.  Early transgenic studies showed 

that the 2.5 kb region upstream of the GS gene could confer pericentral regulation to a 

linked reporter gene.  This region contains an enhancer located 2520 to 2148bp upstream 

of the transcription start site; other studies identified another enhancer within the first GS 

intron [45]. While no obvious trans-factor binding sequence was identified in the 5’ 

enhancer, this element, when linked to a heterologous promoter, increased reporter gene 

activity in human hepatoma HepG2 cells.  PEPCK, the classically studied periportal gene 

due to its involvement in energy homeostasis, is regulated by many factors.  

Gluccocorticoids stimulate PEPCK expression through cyclic AMP (cAMP) binding [46] 

as well as gluccocorticoid receptors binding to response elements in the promoter [38]. 

PEPCK is also activated by the hormones glucagon and repressed by insulin during 
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starvation and refeeding periods, respectively [47]. However, none of these multiple 

factors have been identified as being responsible for zonal regulation of the 1kb PEPCK 

promoter region.  

 Investigation into known hepatic transcription factors yielded some potential 

insight regarding mechanisms of zonal regulation.  Most of these factors show no change 

in zonal expression across the liver lobule.  However, HNF4 (hepatocyte nuclear factor 

4 ) was expressed mainly in pericentral hepatocytes [48]. HNF4 is an orphan nuclear 

receptor that functions during development to promote liver specific gene expression in 

hepatoblasts and repress mesenchymal genes [49]. Loss of HNF4 in adult hepatocytes 

altered zonal gene expression in the adult liver.  In particular, GS and several other 

pericentral genes were expressed in non-pericentral hepatocytes when HNF4 was 

deleted.  Zonality of PEPCK was also disrupted with the loss of HNF4, suggesting a 

possible role for this factor in zonal regulation [50]. However, HNF4 regulates many 

other genes that are not found to have zonal patterns, indicating that HNF4 is not the 

sole factor responsible for this regulation [51, 52]. 

 

-catenin 

 

 -catenin, the downstream target of the canonical wnt signaling pathway, is 

involved in a number of biological processes including the control of target genes [53] 

and function of adherens junctions with E-cadherin [54, 55]. In the absence of signaling 

cytosolic -catenin is post-translationally modified by an inhibitory complex [56] that 

includes adenomatus polyposis coli (APC), axin, casein kinase 1 (CK1) and glycogen 

synthase kinase B (GSK3B).  This complex binds and phosphorylates -catenin at 

specific serine and threonine residues which target it for ubiquitin-mediated proteolysis 

[56]. Wnt protein binding to a Frizzled receptor activates the signaling pathway, in which 

the protein disheveled inactivates the inhibitory complex, allowing -catenin to become 

stable and accumulate in the cytoplasm [57-59]. Through a mechanism that is not fully 

understood, the stable -catenin translocates to the nucleus to activate gene expression. 

While it does not bind directly to DNA, -catenin associates with T-cell factor/Lymphoid 
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enhancer factor (TCF/LEF) transcription factors already bound to sites in target genes 

[53, 60]. In the absence of -catenin, TCF/LEF recruits co-repressors, including Groucho, 

to target genes to actively repress their expression (reviewed in [61].  Upon entering the 

nucleus, -catenin interacts with TCF/LEF, resulting in the dissociation of Groucho and 

recruitment of CBP/p300 coactivators to activate target gene transcription [62], including 

those involved in cell cycle and cell migration [63, 64]. 

-catenin activation is important for the development of the liver as well as many 

other tissues.  Before the foregut invades the septum transversum (STM), a gradient of 

wnt activation is needed for the appropriate segmentation of the endoderm. At this stage, 

wnt signaling is inhibited by fibroblast growth factor (FGF) signaling from the STM to 

promote foregut gene expression [65]. -catenin activity is re-established along with 

other signals to promote proliferation and expansion of hepatoblasts in the liver bud [10]. 

At e14 in mice, -catenin levels begin to decrease, leading to undetectable levels at birth 

and causing the hepatocytes to slow their rate of proliferation and begin the maturation 

process.  -catenin expression is reestablished at postnatal day 10 (P10) in mice and 

participates in cell-cell adhesion [66] and maintaining stem cell niches [67, 68]. During 

liver damage, -catenin is rapidly activated to assist in hepatocyte proliferation [69]. 

With partial hepatectomy, a loss of -catenin results in a delayed response of 

proliferation [70, 71].  

Studies of HCC as well as other cancers has revealed a number of mutations in 

the Wnt signaling pathway, including loss-of-function mutations in the inhibitory 

complex, mainly in APC, and gain-of-function mutations in -catenin [72, 73]. If -

catenin is not degraded due to these mutations, it becomes constitutively active and 

causes uncontrolled proliferation through activation of cyclin D [74]. Cadoret et al, 

investigating -catenin mutations in murine HCC, found a correlation with pericentral 

gene overexpression in different tumor and cell lines using subtractive hybridization. 

These results were corroborated by injecting mice with an adenovirus containing a 

mutant -catenin that remains constitutively active (S37A); this results in increased 

expression of the pericentral genes GS, OAT and GLT-1. Correlation between GS 

expression and active -catenin was found in ~11% of human HCC samples [75]. This 
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study provided the first association between -catenin and zonal regulation. A later study 

found that the negative regulator APC had a zonal pattern in adult liver with the highest 

APC expression in periportal hepatocytes and a gradual decrease towards the central 

vein. -catenin staining was mainly membraneous; however, cytosolic accumulation of 

-catenin was observed in pericentral hepatocytes. Conditional deletion of APC increased 

-catenin activity and increased expression of GS in non-pericentral hepatocytes along 

with a loss in periportal gene expression.  In contrast, blocking -catenin through 

adenoviral-mediated introduction of the Wnt antagonist, dickkopf-1, had the opposite 

effect: a loss of pericentral gene expression and increased expression of periportal genes 

in pericentral regions [36].  This elegant study provided strong evidence for the role of -

catenin in liver zonation.  

    

Alpha-Fetoprotein 

 

Alpha-fetoprotein (AFP) is a 65kDa serum glycoprotein that is produced during 

fetal development.  AFP is predicted to have a number of functions, including a regulator 

of osmolarity and transporter of a variety of molecules [76].  During gestation, AFP is 

highly expressed in the yolk sac, fetal liver and to a lesser extent in the intestine [77]. 

Elevated maternal serum AFP levels, monitored during pregnancy, can indicate fetal 

neural tube defects [78] as well as chromosome 21 trisomy [79]. AFP is abundantly 

expressed in the fetal liver and repressed to nearly undetectable levels during the first few 

weeks after birth [80].  AFP is often found reactivated in cancers [81] and during liver 

regeneration from expansion and differentiation of the oval cells [82].  HCC tumors also 

express AFP that can be detected in serum and therefore, is used as a diagnostic marker 

[83].  

AFP belongs to the gene family on mouse chromosome 5 that includes albumin, 

vitamin D binding protein and alpha-albumin [84-86] (Figure 3A). The AFP regulatory 

elements consists of  250 bp minimal promoter as well as three enhancers located 

between albumin and AFP [87] at positions 2.5 (E1), 5.0 (E2) and 6.5 (E3) kb upstream 

of the AFP transcription start site [87, 88] (Figure 3B). To understand their contribution 

to AFP expression, each AFP enhancer was fused individually to a reporter gene 



 

8 
 

containing the human -globin promoter linked to the histocompatability class I gene H-2 

Dd (βgl-Dd) and analyzed in transgenic mice. The enhancerless gl-Dd transgene had no 

activity in any tissue.  In contrast, each enhancer could activate gl-Dd to high levels in 

the fetal liver and adult liver.  Surprisingly, immunohistochemical analysis with anti-Dd 

antibodies revealed distinct patterns of expression in the adult liver. E1- and E2-regulated 

transgenes were expressed in all hepatocytes with a gradual decrease in a pericentral-

periportal direction. E3 activity became highly restricted in one to two hepatocyte layers 

around the central vein, the same pattern of endogenous GS expression [89]. Transgenes 

with E2 and E3 together exhibited a highly restricted zonal pattern that was identical to 

transgenes with E3 alone, demonstrating an active repression of transgenes in non-

pericentral hepatocytes mediated by E3 [90].  

Based on these data, I hypothesize that β-catenin signaling controls zonal E3 

activity in the adult liver.  The first part of my dissertation will explore this model (Figure 

4) in which Wnt/-catenin signaling is active in pericentral hepatocytes activating the 

pericentral genes including E3-gl-Dd. On the other hand, periportal hepatocytes degrade 

any cytosolic -catenin and target genes are actively repressed. In addition, I hypothesize 

that TCF4 binding sites in E3 and the GS upstream enhancers are required for the 

activation. Since both AFP and -catenin have similar developmental profiles and can be 

reactivated in HCC, I also hypothesize that -catenin has a role in AFP regulation during 

development. 

 

Zhx2  

 

 Although the AFP gene is dramatically repressed after birth, the basis for this 

silencing is not fully understood.  Clues regarding AFP repression have come from 

humans with Hereditary Persistence of AFP (HPAFP) and BALB/cJ mice.  Several 

human pedigrees have found an association between HPAFP mutations in hepatocyte 

nuclear factor 1 (HNF1) binding sites in the AFP promoter [91].  The explanation for 

HPAFP in BALB/cJ mice is more complex. In 1979, analysis of serum from numerous 

inbred mouse strains found that one strain, BALB/cJ, had significantly elevated serum 

AFP levels [92].  The locus controlling this trait was called Alpha-fetoprotein regulator 1 
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(Afr1).  Furthermore, the Tilghman lab showed that BALB/cJ adult liver AFP mRNA 

levels were 10- to 20-fold higher than adult liver AFP levels in other strains (Figure 5A) 

[93]. These and other studies suggested that Afr1 was a negative regulator responsible for 

postnatal AFP repression and that Afr1 was mutated in BALB/cJ mice. Afr1-mediated 

postnatal repression does not occur through the enhancers [94], but through the 250 bp 

AFP promoter [95]. Linkage analysis performed in the Spear lab identified a region on 

mouse chromosome 15 associated with high levels of AFP as well as high H19, another 

target of Afr1. Examination of this region identified a gene encoding zinc-finger and 

homeoboxes 2 (Zhx2), a protein predicted to contain two zinc-fingers and four 

homeodomains. Further investigation revealed that the BALB/cJ Zhx2 gene contained a 

hypomorphic mutation due to insertion of  mouse endogenous retroviral (MERV) 

element into the first Zhx2 intron, causing aberrant splicing to the element, although 

correct splicing occurs approximately 5% of the time [96, 97].  Northern blots show 

absence of Zhx2 elevates H19 mRNA while presence of Zhx2 lowers H19 mRNA to 

undetectable levels (Figure 5B). A hepatocyte specific transthyretin (TTR) promotes 

Zhx2 transgene on a BALB/cJ background corrected the persistent AFP and H19 

phenotype, indicating that Zhx2 is responsible for the Afr1 phenotype and demonstrating 

the role of Zhx2 in AFP postnatal repression (Perincheri, Peyton et al. 2008).  

 Zhx2 was originally identified in yeast 2-hybrid studies to interact with either 

transcription factor NF-Y and other closely-related family members Zhx1 and Zhx3 [98, 

99]. Despite the prediction that Zhx2 encodes a transcription factor and data indicating 

that it controls the AFP promoter, there is no direct evidence that it binds the AFP 

promoter (unpublished data Morford L., Peterson, M., Spear B.T.).  Nuclear run-on 

studies indicate that there is no difference in the transcription of AFP and H19 genes 

between BALB/cJ and other mouse strains, despite the differences in steady-state AFP 

and H19 mRNA levels (Morford L., Peterson, M., Spear, B.T.).  This suggests that Zhx2 

might function at the posttranscriptional level. Interestingly, cytoplasmic accumulation of 

unspliced AFP mRNA is found in wild-type mice, suggesting that Zhx2 might be 

involved in pre-mRNA splicing and/or export (Turcios and Peterson, unpublished).  

BALB/cJ mice, on the other hand, maintain correct splicing of AFP which could account 

for higher AFP mRNA levels in these mice.  Since AFP is also frequently reactivated in 
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HCC, there is interest in whether Zhx2 is also disregulated in liver cancer.  To date, the 

data are not clear.  One study suggested that Zhx2 was repressed in liver cancer, whereas 

another study saw increased Zhx2 in HCC. [100, 101].  Studies from our collaborator in 

China, Chunhong Ma (Shandong University), suggested that nuclear localization of Zhx2 

might be reduced in HCC.  It should also be noted that Zhx2 is not a liver-specific factor 

but is ubiquitously expressed [96].  An increasing number of studies have implicated 

Zhx2 in erythrocyte development [102], kidney disease [103, 104], B-cell development 

[105] and multiple myeloma progression [106].   

      

Liver cholesterol homeostatsis 

 

 Cholesterol, a hydrophobic molecule, is required for membrane stability, 

establishing membrane microdomains for signaling [107] and is a substrate for producing 

steroid hormones and bile acids [108, 109].  Cholesterol can be ingested or can be 

synthesized de novo.  Complex regulatory mechanisms have evolved to maintain 

appropriate physiological cholesterol levels.  While all cells are capable of synthesizing 

cholesterol, the liver is the main site for cholesterol homeostasis by balancing 

biosynthesis, export, uptake and catabolism of cholesterol.  Once ingested, cholesterol is 

packaged in chylomicrons and transported to the liver via the lymphatic system [110]. 

Cholesterol is then either metabolized or incorporated into low density lipoproteins 

(LDL), which also contain triglycerides and transport cholesterol to peripheral sites. 

Reverse cholesterol transport occurs through efflux using ATP-binding cassette 

transporter A1 (ABCA1); high density lipoproteins (HDL) transport excess cholesterol 

from the periphery back to the liver [111]. Balanced levels of cholesterol need to be 

maintained; an excess of LDL in the circulation can lead to atherosclerosis and arterial 

cholesterol plaque buildup. This results in cardiovascular disease (CVD), one of the 

leading causes of morbidity and mortality in developed countries.  

Atherosclerosis is a complex disease with genetic and environmental 

contributions.  Based on its clinical significance, there is considerable interest in 

understanding the biochemical basis for elevated cholesterol and developing improved 

strategies to reduce serum cholesterol.  Sterol regulatory element binding-proteins 
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(SREBP) are critical regulators of genes that control lipogenesis [112].  Under non-

stimulated conditions, SREBP proteins are sequestered in the endoreticulum (ER).  Upon 

stimulation, Sterol sensing SREBP cleavage protein (SCAP) escorts SREBP to the golgi 

where it becomes biologically active through cleavage events [113, 114].  This leads to 

SREBP accumulation in the nucleus, where it up-regulates genes required to synthesize 

triglycerides and/or cholesterol [115]. Importantly, insulin resistance, which often occurs 

in obese patients, can lead to de-repression of the de novo synthesis genes resulting in an 

overproduction of cholesterol and triglycerides [116].  In response to excess cholesterol, 

the rate-limiting bile acid enzyme Cyp7a1 is up-regulated to synthesize bile acids as is 

the LDL receptor to remove cholesterol from circulation [117]. Production of bile acids 

using cholesterol as the substrate is seen as the most effective way for the removal of 

excess cholesterol and one major target for treatment of high cholesterol.  Mouse studies 

have identified apolipoprotein E (ApoE) as an important regulator of cholesterol 

homeostasis; ApoE knockout mice develop atherosclerosis even when they are fed a 

normal non-atherogenic diet [118].  Treatments to treat elevated cholesterol in humans 

have been developed based on these studies and include statins, to inhibit de novo 

cholesterol synthesis [119], and bile acid sequestrants, to reduce cholesterol recycling 

from the intestine and increase bile acid synthesis [120]. 

Various genetic studies, including Quantitative Trait Locus (QTL) mapping, have 

been used to identify genes involved in cholesterol-mediated atherosclerosis.  The lab of 

Dr. Jake Lusis (UCLA) performed QTL mapping using the mouse strains BALB/cJ, 

which is resistant to atherosclerosis, and MRL, which is susceptible to atherosclerosis, to 

identify loci that govern this trait.  One locus identified from this study, located on 

chromosome 15, was called hyperlipidemia 2 (Hyplip2) [121]. Higher resolution 

mapping localized Hyplip2 to the same interval that contained Zhx2.  In collaboration 

with the Lusis lab, we have found that Zhx2 is the gene responsible for the Hyplip2 

phenotype [122]. These data indicate that Zhx2 also controls genes involved in 

cholesterol and triglyceride homeostasis. 

Microarray analysis performed by the Lusis lab identified genes that might be 

potential targets of Zhx2 [121].  The second part of my thesis involves diet studies using 

the strains BALB/cJ, BALB/c, and BALB/cJ mice containing the hepatocyte specific 
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Zhx2 transgene. I hypothesize that Zhx2 regulates cholesterol-homeostasis genes, 

identified from the microarray study, such that cholesterol is unable to get processed and 

cleared, leading to accumulation in the serum.  Unexpectedly, mice lacking wildtype 

Zhx2 had an increase in serum alanine aminotransferase (ALT) and liver AFP mRNA 

levels suggesting Zhx2 protects the liver from lipid-induced damage.  This part of my 

dissertation will analyze the liver phenotype in BALB/cJ mice maintained on a high fat 

diet.     
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Figure 1. Embryonic liver development modified from [123]. Endoderm formation (in 

yellow) begins at e7 in the mouse embryo. By e8 the patterning of the endoderm is 

determined by the gradient of Wnt signaling. Foregut (fg; in red) ultimately developing 

into the liver, expresses wnt antagonists to prevent signaling in these cells. The midgut 

(mg) and hindgut (hg) have increasing levels of wnt signaling, the highest found within 

the hindgut. By e9 the developing liver bud has invaded the STM and begins to express 

hepatocyte marker genes including AFP, Albumin and HNF4α. Between e10 and e15 the 

liver bud undergoes massive expansion mediated in part by β-catenin as well as other 

growth signals. At e13 the expanded hepatoblasts begin differentiating into hepatocytes 

or bile epithelial cells. Prior to birth, β-catenin expression has decreased and the 

architecture develops as cells mature. After birth, the postnatal liver (in red) continues 

maturing while gradually decreasing AFP expression.  

WNT

AFP
Albumin 
HNF4α 

β-catenin 
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Figure 2. Liver architecture cartoon used with permission from [2]. Hexaganol in shape, 

the liver lobule is the basic unit of the liver. A central vein (CV) lies within the center of 

the lobule surrounded by hepatocytes radiating outward to the portal triad. Bile duct, the 

portal vein and the hepatic artery makes up the portal triad. Blood enters into the lobule at 

the portal triad via the HA rich in oxygen and in nutrients from the portal vein flows 

toward the central vein. Bile produced by hepatocytes flows opposite of blood towards 

the bile duct for collection. Two main zones exist in the liver; periportal hepatocytes 

surround the portal triad, alternatively, pericentral hepatocytes surround the central vein. 

One well accepted hypothesis for establishing zonation is that blood flow creates a 

gradient of oxygen or hormones and other signaling molecules. This gradient therefore 

creates differential signaling in periportal hepatocytes that receive more of the molecule 

versus pericentral hepatocytes that receive less.   
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Figure 3. Gene family and regulatory elements of AFP. A. Chromosomal representation 

modified from [124] shows AFP is linked to a gene family on mouse chromosome 5. 

Albumin (ALB), AFP and alpha-albumin (AFM) are in close proximity to each other 

while vitamin D binding protein (DBP) lies far upstream separated by three unrelated 

genes. Duplication events gave rise to these different genes which is reflected by their 

similar gene and protein structures. While they all are expressed in the liver, the timing of 

each is slightly different. B. In the 14kb intergenic region between AFP and ALB three 

enhancers E1, E2 and E3 are located at -2.5, -5.0 and -6.5kb, respectively. This enhancer 

region contributes to early fetal liver expression of AFP and ALB but not expression of 

the other family members.  
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Figure 4. Model for E3 regulation by wtn/β-catenin used with permission from [125]. 

Based on previous work showing wnt/β-catenin signaling pathway is involved in 

zonation, we have developed a working model for β-catenin regulation of E3 in 

pericentral hepatocytes. A. This cartoon figure depicts events in periportal hepatocytes. In 

these cells the Frizzled receptor is not active therefore any cytosolic b-catenin is 

complexed with Axin, APC, GSK3β and CK1. These proteins phosphorylate β-catenin 

which is then targeted for degradation by proteosomes. In the nucleus of periportal 

hepatocytes proteins are bound to E3 actively repressing expression of the reporter gene 

including TCF4, the traditional β-catenin binding partner. B. Pericentral genes, in the 

right cartoon, have activated wnt signaling although, the wnt isoform responsible for this 

activation is not known. Activated Frizzled receptor results in Disheveled (DSH) 

disassembling β-catenin from the inhibitory complex causing cytosolic accumulation. 

Translocation of β-catenin into the nucleus occurs through unknown mechanisms where 

it activates target genes by associating with bound TCF4 and recruiting co-activators such 

as CBP. 
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Figure 5. Regulation of AFP by Zhx2.  A. Liver RNA was extracted and analyzed for 

AFP expression. This was normalized to total mRNA and values were plotted on a log 

scale from [93] with permission. Mouse livers at e18.5 express high levels of AFP which 

is repressed gradually after birth (B). In C3H and C57BL/6 mice this repression continues 

until it is barely detectable by postnatal day 28 (P28). BALB/cJ mice, in red, reduce AFP 

after birth although not completely thereby remaining 10 to 20-fold higher compared to 

wild-type strains C3H and C57BL6. B. Zhx2 is responsible for the Afr1 phenotype 

identified through linkage map analysis. Adult BALB/cJ livers (first two lanes) have very 

low endogenous Zhx2 expression observed through northern blot. This is coordinated 

with high expression of H19, another known target of the Afr1.When endogenous Zhx2 

is present in the third lane, H19 mRNA levels decrease. Hepatic specific expression of a 

Transthyretin (TTR)-Zhx2 transgene on a BALB/cJ background decreases liver H19 

expression [96]. AFP mRNA expression exhibits the same patterns of H19 with or 

without presence of Zhx2 from an endogenous gene or hepatic transgene (not shown). 

This data demonstrates Zhx2 is involved in postnatal repression of AFP and TTR-Zhx2 

corrects the Afr1 phenotype. Copyright 2005 National Academy of Sciences, U.S.A. 
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CHAPTER 2 

 

Materials and Methods 
 

Mice. All transgenic mice generated by the University of Kentucky Transgenic Facility 

were housed in the Division of Laboratory Animal Research (DLAR) facility and kept 

according to Institutional Animal Care and Use Committee (IACUC) approved protocol. 

All mice had access to food and water and were kept on a 12-12hr light-dark cycle. Mice 

containing the E3-βgl-Dd transgene or RORα mutant allele were bred with Bl6/C3H mice 

(Jackson Lab). Mice containing TTR-Zhx2-Flag transgene were bred with BALB/cJ mice 

(Jackson Lab). Hepatocyte β-catenin knockout transgene positive mice were generated 

through crosses between βcatfl/fl, Alb-Cre and either E3-βgl-Dd or RGSe-βgl-Dd mice. 

Offspring from intercrosses were monitored for presence of Alb-Cre and βgl-Dd.  

 

Genotyping. At approximately 14-days old each mouse pup was given an ear tag for 

numbering and 1mm tail snips were taken. To extract the DNA, the tail pieces were 

incubated with a lysis solution (100mM Tris-HCl pH 8.5, 5mM EDTA, 200mM NaCl) 

with added 2.5 units proteinase K (Sigma). After overnight incubation in a 52oC 

waterbath the remaining material was pelleted through centrifugation at 14,000xg for 12 

min. The supernatant containing DNA was decanted into isopropanol to precipitate the 

DNA. After another centrifugation for 1 min the DNA was washed with 95% ethanol and 

dried for 5 min. Resulting DNA was resuspended in 250 uL water with vortexing. 2.5 uL 

of DNA was added to 12.5 uL ThermoStart Master Mix (ThermoScientific), 5 uL water 

and 5 uL of primer mix using primers in Table 1. 0.2 mL tubes were placed in the 

thermocycler for the indicated number of cycles. All samples underwent the same 

protocol: 95oC for 15 min, cycles with 95oC 30 sec, annealing temperature for 30 sec, 

72oC for 20 sec and then a final 72oC for 5 min. When complete, 5 uL of 6X loading dye 

(Fermentas) was added to each sample and mixed by pipetting. 10 uL of sample was 

loaded into the wells of a 1.5% w/v agarose (SeaKem) gel along with a 100 bp ladder 

(Fermentas). Electrophoresis separation was done at 140V for 45 min in gel box using 1X 

TBE. Bands were visualized with UV light and captured using software. 
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Cloning. Megaprimer PCR was used to generate TCF4 mutations in E3. Platinum PCR 

Supermix High fidelity (Invitrogen) was added to 1uL of 1:10 diluted E3-pGL3 plasmid 

along with 400 uM primer mix of pGL3R and E3TCF4mutF (Table 2). After 

amplification in the thermocycler, the whole sample was separated with electrophoresis 

in a 1.5% agarose gel. 250 bp amplicon was cut out from the gel using a scalpel, weighed 

and gel extracted (Gel extraction kit, Qiagen) according to the manufacturer’s protocol. 

10 uL of the eluted megaprimer was added to 1 uL of 1:100 diluted E3-pGL3, 12.5 uL of 

ThermoStart Taq and 200 uM of pGL3F primer. PCR was run for 35 cycles with 

annealing temperature of 45oC and increasing the times during the PCR reaction to 1 min. 

Once complete, the 450 bp amplicon was gel extracted and ligated into pGEMTeasy 

(Promega) vector according to the kit protocol. After JM109 transformation and miniprep 

plasmid DNA extraction (Qiagen), positive colonies, selected through restriction enzyme 

digestion, were sent off for sequencing (ACGT). Correct plasmids and pGL3 promoter 

were digested with SacI in 50 uL reaction for two hours in 37oC water bath. Afterwards 

the plasmids were precipitated by adding 5uL 5M NaCl and 110uL 100% ethanol. 

Pelleted DNA was resuspended in 43 uL water and immediately digested with BglII in 

the 37oC waterbath for 2 hours. The 400 bp E3TCF4mut fragment and digested pGL3 

promoter vector were gel extracted on a 0.75% agarose gel and processed with the gel 

extraction kit. After checking eluted DNA on a 1.5% gel 1uL pGL3 promoter was ligated 

to 8uL E3TCF4mut fragment with 10 uL 2X buffer and 1 uL ligase. Positive plasmids in 

JM109 were maxi prepped as described below.   

 RGSe was first cloned into pGL3 promoter. RGSe-βgl-Dd in pUC9 was digested 

with BamH1 while pGL3 promoter was digested with BglII. pGL3 after digestion was 

incubated with 5 units of Antarctic Phosphatase in the supplied buffer (New England 

BioLabs) for 15min at 37oC to remove the phosphate groups and then at 65oC for 10 min 

to heat inactivate the enzyme. The 350 bp RGSe fragment and 5 kb pGL3 promoter were 

gel extracted as described above from a 0.75% gel with the Qiagen gel extraction kit. The 

two purified fragments were ligated with 2X buffer and ligase from the pGEMT Promega 

kit. Positive clones in JM109 cells monitored with HindIII for orientation were grown up 

in maxi prep as described below. For TCF4 mutation in RGSe two PCR reactions were 
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performed using 25 uL ThermoStart Taq, 1 uL 1:10 diluted RGSe-βgl-Dd and a 

combination of either pUC9F and RGSTCF4mutR (RGS1) and RGSTCF4mutF and βglR 

(RGS2). RGS1 115 bp and RGS2 300 bp fragments were gel purified from a 1.5% 

agarose gel. Both fragments were ligated into pGEMTeasy according to the kit protocol. 

Once positive clones in JM109 were identified both were grown up for maxi prep and 

extracted using the Qiagen Maxi Prep kit according to the manufacturer’s protocol. 5 ug 

of RGS2 was digested with XmaI, dephosphorylated as described above and purified on a 

1.5% gel. 20 ug of RGS1 was digested with XmaI and the 87 bp fragment was purified 

from a 12% acrylamide gel through electroelution as described in Maniatis Molecular 

Biology. The DNA was extracted through addition of an equal volume of 

Phenol:Chloroform:Isoamyl Alcohol (PCI), was ethanol precipitated and the resulting 

pellet resuspended in 20 uL water. 10 uL of RGS1 was ligated into RGS2-pGEMT XmaI 

digested vector using 2x buffer and ligase from the pGEMTeasy kit. Minipreps of 

transformed JM109 cells were digested with BamH1 to determine correct orientation. 

Positive colonies were digested with BamH1 to excise the RGSTCF4mut fragment. After 

gel purification RGSTCF4mut was ligated into pGL3 promoter BglII digested and 

dephosphorylated as described above. Minipreps of RGSmut-pGL3 were digested with 

HindIII to find positive inserts and determine correct orientation. The final positive 

plasmid was grown up in maxi prep as described below.           

 

Transformations. Plasmids were transformed into JM109 E coli bacteria by incubating 

10uL of plasmid DNA with 100uL JM109 cells on ice for 30 min. Cells were heat 

shocked for 45 seconds at 45oC and then incubated on ice for 2 minutes. S.O.C. media 

was added and the cells were shaken at 37oC for one hour. Cells were then pelleted in a 

one minute centrifugation. S.O.C. was decanted and the cells resuspended in the 

remaining liquid. Cells were then plated out on LB plates containing ampicillin (Sigma) 

and incubated overnight at 37oC. If plasmid was from a low stock of an already maxi 

prepped sample, after shaking, 100 uL of sample was placed on the LB plate without 

pelleting the cells. 
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Miniprep. Individual plated colonies were picked and placed in 1.5mL of LB plus 

ampicillin. Cells grew overnight in a shaker at 37C. Cells were pelleted by one minute 

centrifugation and the LB media was aspirated. Cells were resuspended in 100 uL of 

Plasmid Prep Solution 1 (50mM sucrose, 25mM Tris pH8, 10mM EDTA) through 

vortexing. Fresh 200 uL plasmid prep solution 2 (0.2N NaOH, 1%SDS) was added to the 

cell mixture and mixed by inversion. 150 uL of 3M potassium acetate was added to each 

sample and mixed by inversion. 150 uL Chloroform:Isoamyl Alcohol at 24:1 was added 

to each sample and vigorously mixed. Samples were centrifuged for three minutes at 

14,000 x g. Interface precipitated was removed with a toothpick and the upper layer was 

removed. 900 uL of 100% Ethanol precipitated the plasmid DNA/RNA which was then 

pelleted through centrifugation for 3 min at 14,000 x g. All liquid was aspirated and 

pellet was resuspended in 100 uL of water. After vortexing 100uL of 3M Ammonium 

Acetate (Sigma) was added and mixed by vortexing. 500 uL of 100% ethanol was mixed 

by vortexing and spun for 3 min at 14,000 x g. All liquid was removed and the pellet 

washed in 95% ethanol. After drying on the bench for 5 minutes the pellet was 

resuspended in 50 uL of water. 

 

Maxi Prep. Transformed cells were grown in 450 mL LB with 450 uL amp. After 

overnight growth at 37oC bacteria was pelleted by centrifugation in Jouan for 20 min. 

Cells were resuspended first in 10 mL of plasmid prep solution 1 then shaken with 20 mL 

of plasmid prep solution 2. 10mL KoAc was added and the precipitate was pelleted by 

centrifugation in the Jouan. The supernatant was passed through gauze and precipitated 

with addition of isopropanol. Pelleted DNA was resuspended with 3 mL (TE) then 

cesium chloride (CsCl) and ethidium bromide. Samples were placed in a centrifuge tube, 

sealed and spun overnight in the ultra centrifuge at 55,000 x g. Bands isolated were 

transferred to a new centrifuge tube with TE-CsCl. After a 6 hour spin isolated bands had 

ethidium bromide extracted using isoamyl alcohol. Samples were then placed in dialysis 

tubing and dialyzed overnight with 0.5M EDTA and 1M Tris-EDTA. After 6 hours of a 

second round of dialysis DNA was ethanol precipitated. DNA concentrations were 

measured in the spectrophotometer and diluted to 1ug/uL.    
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Cell Culture. Cryopreserved Hep3B, HepG2 and HEK293 cells were removed from 

liquid nitrogen and placed in the appropriate media in T75 Flasks. Hep3B and HEK293 

cells grow in Dulbecco’s minimal eagle’s media (DMEM, Cellgro) supplemented with 

10% fetal bovine serum (FBS, Cellgro), 1% L-glutamine and 1% Pen-Strep (Gibco). 

HepG2 cells are grown in media containing 1:1 mix of DMEM: Ham’s F-12(Gibco) 

supplemented with 10% FBS, 1% L-glutamine, 1% penstrep and 0.1% insulin (Gibco). 

All cells were cultured in the Napco incubator set at 37C and 5% CO2. 

 

Transient transfections. Hep3B cells were seeded onto 12 well plates. The following 

day cells were transfected using the calcium phosphate protocol. 43.5 uL water, 5 uL 

calcium chloride (CaCl2) and plasmids: 500 ng of reporter, 1 ug of the expression 

plasmid along with 12.5 ng of normalizing vector Renilla were mixed together in a 

microfuge tube. While the samples were bubbled with air, 50 uL 2X Hepes-buffered 

saline (HBS; 280mM Nacl, 1.5mM Na2HPO4, 50mM Hepes, pH 7.1) was added 

dropwise and bubbling continued for 30 sec. After 30 min incubation at room 

temperature the mixture was added dropwise into the wells. Each sample was made for 

duplicate wells. 6 hours later the media was changed by washing the cells with 1X PBS 

and at 48 hours the cells were harvested. 

 

Dual luciferase assay. Cells were harvested 48 hours after transfection by washing with 

sterile 1X phosphate buffered saline (PBS) and 10 min incubation with 200 uL Glo Lysis 

Buffer. Glo lysis collected samples were pelleted with 30 sec 13,000 x g centrifugation. 

25 uL of Hep3B or 20 uL of HepG2 supernatant were placed in duplicate into 96-well 

luciferase plates (CoStar). Analysis was performed on luminometer that injected 25 uL of 

both dual luciferase substrates (Promega) into the designated wells. Luciferase values 

were normalized to renilla values.  

 

Nuclear extractions. HEK293 cells were seeded onto 10 cm plates. The following day 

cells were transfected using the calcium phosphate protocol containing 15 ug of TCF4 

expression plasmid. Six hours later the media was changed and 48 hours the cells were 

scrapped from the plate using 1 mL of PBS. Cells were pelleted for 1 min at 13,000 x g  
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and supernatant removed. Cell fractions were collected from the cells using the NE-PER 

nuclear and cytoplasmic extraction kit (Thermo-scientific). Protein concentrations from 

nuclear fractions were analyzed from each sample in duplicate using the BCA protein 

concentration assay kit (Peirce) at 562 nm in the spectrophotometer. 

 

Electromobility shift assay (EMSA). Oligos (IDT) in Table 3 were generated based on 

sequences from E3 and RGSe enhancers containing the TCF4 site as well as a consensus 

TCF4 which were resuspended to a final stock concentration of 1 ug/uL. Oligos were 

annealed using 10 ug of each plus 5M NaCl and water and by heating to 75oC for 3 

minutes and cooling to room temperature. The products were checked on a 12% 

acrylamide gel using a 29:1 bis:acrylamide mixture. 10 uL of wildtype annealed products 

were radiolabeled with 32P using T4 kinase (Lucigen) according to manufacturer’s 

protocol. After quenching the reaction with 0.5M EDTA the sample was passed through a 

centri-spin20 column (Princeton Separations) to collect only the kinased sample. 

Radioactive counts of 1 uL of sample in 2 mL of scintillation fluid (Research Products 

Int) was measured in scintillation counter. Labeled probes were diluted with water to 

15,000 cpm/uL. 5X Binding buffer, dI:dC, nuclear extract and possible cold double 

stranded unlabeled probe were incubated on ice for 10 min before 1 uL of probe was 

added and incubated for an additional 30 min at room temperature. Samples were then 

loaded on a 5% acrylamide gel using a 75:1 bis:acryl mixture and run at 230V for about 

1.5 hours at room temperature. After the gel was dried it was placed onto a phosphorus 

screen overnight in a cassette in the dark. Screens were analyzed with Storm 860 

phosphoimager (ThermoScientific) with ImageQuant software. 

 

Diet Study. 6 week old BALB/cJ females (Jackson Lab) and age matched BALB/c 

female mice (Harlan)  along with age matched female Zhx2 transgene positive and 

negative mice were placed on either normal low fat chow with 6.8% fat  or “western 

style” chow (Harlan Teklad) with 15.8% of fat from cocoa butter for eight weeks. 

Contents of these diets can be found in Table 3 Mice had access to water at all times 

during the study. Every week weight measurements for each mouse were recorded and 

every other week the mice were fasted for four hours for serum collection. 
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ALT measurement. Every two weeks each mouse was fasted for four hours but still had 

access to water. Mice were warmed under a heat lamp for increased blood flow and after 

5 minutes restrained in a plastic tube. A #20 scalpel blade was used to make a small 

incision near the tip of the tail across a vein. Approximately 200 uL of blood was 

collected in a serum separator tube (Becton, Dickson Co.). Centrifugation at 13,000 x g 

for 1 min separated the serum from red blood cells. 1 uL of serum and 9 uL 0.9% Saline 

were incubated with 1 mL prepared ALT solution from the ALT kit (Pointe Scientific). 

Kinetic measurements were taken on the Biomate 3 spectrophotometer (Thermo 

Scientific) every minute after incubation at 37oC for a total of 3 readings. Differences in 

the absorbance readings were calculated and multiplied by the dilution factor 1768 to 

determine concentration (IU/L) of ALT in the serum.  

 

RNA extraction and Real-Time PCR. Approximately 100 mg of liver was placed into 1 

mL of Trizol (Invitrogen) in 2063 tube and homogenized at highest speed for 30 sec. All 

liquid was transferred to 1.5 mL microfuge tube. 200 uL of chloroform was added to each 

sample and vigorously mixed for 15 sec. Samples were spun down in 4oC cold room at 

10,000 x g for 15 min. The top clear aqueous layer was carefully removed and placed into 

a new tube which was then filled with 500 uL of isopropanol. After incubation at room 

temperature for 10 min the samples were spun down for 10 min at 10,000 x g at 4oC. 

Liquid was decanted off and the RNA pellet washed with 1 mL 95% ethanol. Samples 

were spun again for 5 min and the wash fluid removed. Pellets were dried at the bench for 

10 min and resuspended in 100 uL water. Complete resuspension was accomplished by 

placing the samples in the 52oC waterbath for 10 min. After another round of Trizol 

extraction the RNA was quantified at 260 nm using a Biomate 3 spectrophotometer 

(Thermo Scientific) by placing 2 uL of RNA in 500 uL of water. Concentration was 

determined by applying the dilution factor to the calculation. 1 ug of RNA was processed 

into cDNA using qscript kit (Quanta Biosciences) according to the manufacturer’s 

instructions and run in the reverse transcriptase protocol in iCycler (BioRad). Each 

sample was then diluted 1:5 with water. Quantitative PCR was carried out using 2.5 uL of 

diluted cDNA with 10 uL of Sybr Green (Quanta Biosciences), 5 uL of primer mix and 
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2.5uL of water. Samples were placed in duplicate in a 96 well plate and covered with film 

and analyzed with Bio-rad iCycler. All CT (MyIQ) levels were normalized in ΔΔCT 

method to ribosomal gene L30.  

 

Immunohistochemistry. Livers frozen in OCT (Richard-Allen Scientific) were allowed 

to acclimate to -20oC 5 minutes prior to sectioning in the Microm HM505 N cryostat. 

Slices at 10 um thickness were placed onto glass slides. For transgene activity, surface 

staining analysis, the sections were fixed for 10 min in 100% ethanol. After two 10 

minute PBS washes the slides were placed in a humidifier chamber at 4oC. Slides were 

incubated overnight with a 1:75 mix of H2-Dd FITC antibody in PBS. Slides were then 

washed for 3 min and coverslipped using VECTAshield (Invitrogen). For 

intracellular/nuclear analysis slides were fixed in 4% paraformaldehyde plus 0.5% 

Triton-X for 10 min then washed twice for 10 minutes in PBS plus 0.5% Triton-X. 

Blocking occurred for one hour at room temperature with 10% normal sheep serum or 

10% normal goat serum. Primary antibody Rabbit anti-GS (Sigma), were incubated 

overnight at 4oC in a 1:75 dilution in PBS plus 0.5% Triton-X. After a 3 minute wash the 

slides were incubated with respective secondary antibody at 1:100 dilution in PBS plus 

0.5% Triton-X for 1.5 hours at 4oC. Slides were coverslipped using VECTAshield. 

Pictures were taken on Zeiss Upright Microscope with AxioVision Software. 

 

Oil Red O. Frozen OCT livers were cryosectioned at 10 um thick and placed on slides. 

Sections were first fixed in ice cold formalin (Fisher). Sections were then rinsed in water 

and equilibrated in propylene glycol (Sigma). Slides were then placed in 60oC 0.5% oil 

red o (Sigma) in propylene glycol for 8 min. Sections were first placed in 85% propylene 

glycol for 5 min then rinse. Slides were incubated in haematoxylin for 1 min to 

counterstain the nuclei blue. After a 3 min rinse in tap water slides were coverslipped 

using VECTAshield. Pictures were captured using Ziess Upright Microscope and 

AxioVision software. 

 

Statistical analysis. All values within a group were averaged and plotted as mean +/-

standard deviation. p-values were calculated between two groups using student’s t-test. 
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Diet study groups were analyzed with ANOVA followed by Tukey’s test.  To determine 

significant interaction between strain and type of diet two-way ANOVA analysis was 

performed. A p-value less than 0.05 was considered significant. 
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Table 1. List of Plasmids 

Plasmid Name Description 

pcDNA 3.1 Empty expression vector 

pGL3 promoter Promega SV40 promoter driving luciferase 

pGL3 control Promega SV40 promoter and enhancer luciferase vector 

WT-pGL3 wildtype AFP E3 linked to E2 in pGL3 promoter generated by J. Butler 

SS-pGL3 NR mutant E3 linked to E2 in pGL3 promoter generated by J. Butler 

mE3-pGL3 
Mouse E3 cloned into expanded MCS in pGL3 promoter generated by J. 
Butler 

RGSe-pGL3 PCR amplicon from RGSe-Bgl-Dd in pGL3 promoter 

mE3mut-pGL3 E3 megaprimer mutation of TCF4 site in pGl3 promoter 

RGSemut-pGL3 RGSe mutation of TCF4 site in pGL3 promoter 

TOP-Flash Tandem TCF4 sites - minimal promoter - luciferase 

FOP-Flash Tandem mutant TCF4 sites - minimal promoter - luciferase  

Renilla  Promega CMV driven luciferase vector 

β-catenin 
Wild-type β -catenin expression plasmid obtained from C. Mao 
University of Kentucky 

βcatS37A 
Constitutively active β -catenin expression plasmid obtained from C. 
Mao Univeristy of Kentucky 

RORα RORα expression plasmid obtained from J.L.Danan CNRS 

Rev-erbα Rev-erbα expression plasmid obtained from J.L.Danan CNRS 

Rev-erbβ Rev-erbβ expression plasmid obtained from J.L. Danan CNRS 

TCF4 
TCF4 expression plasmid obtained from Chunming Liu University of 
Kentucky 
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Table 2. Oligos 

Genotyping   

βgl-Dd transgene F 5' CACTCACCAGCGCGGGTCTGAGTC 

  R 5' ACACCCTAGGGTTGGCCAATCTACT 

Cre recombinase F 5' ACCTGAAGATGTTCGCGATTATCT 

  R 5' ACCGTCAGTACGTGAGATATCTT 

ROR wildtype allele F 5’ TCTCCCTTCTCAGTCCTGACA 

  R 5’ TATATTCCACCACACGGCAA 

ROR mutant allele F 5’ GATTGAAAGCTGACTCGTTCC 

  R 5’ CGTTTGGCAAACTCCACC 

TTR-Zhx2 transgene F 5’ TGTTCCAGAGTCTATCACCG 

  R 5’ CCCATAGATTTCACCTCAACC 

Real-time   

AFP F 5' CCGGAAGCCACCGAGGAGGA 

  R 5’ TGGGACAGAGGCCGGAGCAG 

β-catenin F 5’ CTCTTCAGGACAGAGCCAATG 

  R 5’ ATGCTCCATCATAGGGTCCA 

Rev-erbα F 5' CAAGGCAACACCAAGAATGTTC 

  R 5' TTCCCAGATCTCCTGCACAGT 

PEPCK F 5’ TGGCTACGTCCCTAAGGAA 

  R 5’ GGTCCTCCAGATACTTGTCGA 

OAT  F 5’ AGGACACTGCCACCCAAAGA 

  R 5’ GACGAGCGAGCTTACATGCA 

RhBG F 5’ GTGTGGGCTTTACCTTCCTCG 

  R 5’ CGCAGAAGTCAGCGTTGAT 

Rnase4 F 5’ GAACGGCCAGATGAACTGTCA 

  R 5’ CTGGTTCTTGCCCTGTATCTA 

GLUT1 F 5’ ATGTCCACGACCATCATTGC 

  R 5’ ACCTCGTCGTTCTTCTTCCC 

Glutaminase2 F 5’ AACCCAGTGGTCTGCGCTAT 

  R 5’ ACAATGGCACCAGCATTGAC 

Glutamine Synthetase F 5’ TTTATCTTGCATCGGGTGTG 

  R 5’ TTGATGTTGGAGGTTTCGTG 

Glut2 F 5’ GAAGACAAGATCACCGGAACCTTGG 

  R 5’ CACACCGACGTCATAGCCGAACTGG 

Cyp8B1 F 5’ CAGAGAAAGCGCTGGACTTC 

  R 5’ GGCCCCAGTAGGGAGTAGAC 

Lipoprotein Lipase F 5’ TGGCTACACCAAGCTGGTGGGA 

  R 5’ GGTGAACGTTGTCTAGGGGGTAGT 

  Oligos continued on next page 
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Elovl3 F 5’ CCTCTGGTCCTTCCTGGCA 

  R 5’ CGGCGTCATCCGTGTAGATGGC 

TNFα F 5′ CATCTTCTCAAAATTCGAGTGACAA 

  R 5′ TGGGAGTAGACAAGGTACAACCC 

L30 F 5’ ATGGTGGCCGCAAAGAAGACGAA 

  R 5’ CCTCAAAGCTGGACAGTTGTTGGCA 

Probes   

mE3 TCF4  F 5’ AGATAAAATTCCTTTGATGAAGGAAAA

  R 5’ TTTTCCTTCATCAAAGGAATTTTATCT 

mE3 TCF4 mut  F 
5’ 
AGATAAAATTCCCGGGATGAAGGAAAA 

  R 5’ TTTTCCTTCATCCCGGGAATTTTATCT 

RGSe TCF4  F 5’ CATGGAAGGATCAAAGCAAGCCTGC 

  R 5’ GCAGGCTTGCTTTGATCCTTCCATG 

RGSe TCF4 mut  F 5' CATGGAAGGACCCGGGCAAGCCTGC 

  R 5’ GCAGGCTTGCCCGGGTCCTTCCATG 

TCF4 consensus  F 5’ GGTACTGGCCCTTTGATCTTTCTGG 

  R 5’ CCAGAAAGATCAAAGGGCCAGTACC 

TCF4 consensus mut F 5’ GGTACTGGCCCGGGGATCTTTCTGG 

  R 5’ CCAGAAAGATCCCCGGGCCAGTACC 

Cloning   

pGL3  F 5’ CAGTGCAAGTGCAGGTGCCAGAAC 

  R 5’ GGGACTATGGTTGCTGACTAATTG 

E3 TCF4 mut  F 
5’ 
AGATAAAATTCCCGGGATGAAGGAAAA 

  R 5’ TTTTCCTTCATCCCGGGAATTTTATCT 

RGSe TCF4 mut  F 5' CATGGAAGGACCCGGGCAAGCCTGC 

  R 5’ GCAGGCTTGCCCGGGTCCTTCCATG 
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CHAPTER 3 

 

β-catenin Positively Regulates AFP E3 and RGSe Pericentral Activity 
 

Introduction 

  

 Zonality of enzyme expression compartmentalizes opposing metabolic pathways 

in different regions of the adult liver.   As described in Chapter 1, numerous liver 

enzymes have been shown to be expressed only in hepatocytes around the central vein 

(pericentral) or surrounding the portal triad (periportal).  While several hypotheses have 

been proposed to explain this special expression, the regulatory mechanism has yet to be 

fully elucidated. During gestation, many zonal genes are expressed throughout the fetal 

liver [34] since architecture has not yet been fully developed. After birth, nutritional 

signals from the diet and energy demands that begin during the perinatal period help to 

establish the zonal pattern of gene expression observed in the adult liver.  Regardless of 

the stimulus, intracellular signaling pathways are required to link extracellular events to 

the nucleus to govern zonal gene regulation.  

An elegant study by Benhamouche et al [36] demonstrated that -catenin 

signaling governs pericentral gene regulation in the adult liver.  -catenin is the 

downstream activator of the wnt signaling pathway.  In the absence of Wnt signaling, 

cytosolic -catenin is complexed with adenomatous polyposis coli (APC), axin and the 

kinases GSK-3 and CK1.  This inhibitory complex phosphorylates -catenin at specific 

serine residues that signal it for ubiquitin-mediated proteolysis.  In the absence of this 

inhibitory complex (i.e., when blocked by wnt signaling via the frizzled receptor), -

catenin is stabilized and can enter the nucleus and regulate target gene expression [126].  

In regards to zonal gene regulation, activated -catenin (through the expression of a non-

degradable form of -catenin or loss of APC) is associated with increased expression of 

pericentral genes including GS and ornithine aminotransferase (OAT), and decreased 

expression of phosphoenolpyruvate carboxykinase (PEPCK) and other periportal 

enzymes [36, 75].  In contrast, blocking -catenin signaling results in a loss of pericentral 

enzymes and increased expression of periportal enzymes [127, 128].  
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 -catenin does not bind DNA directly, but instead regulates target genes through 

several pathways.  In the canonical pathway, -catenin controls target genes via 

interactions with T cell factor/lymphoid enhancer factor (TCF/LEF) family of factors 

[60].  In the absence of -catenin, TCF/LEF proteins are bound to consensus motifs and 

silence target genes by recruitment of co-repressors such as Groucho.  Upon entry into 

the nucleus, -catenin interacts with TCF/LEF proteins, resulting in the dissociation of 

repressors and recruitment of the co-activators CBP/p300, leading to target gene 

activation [129].  While -catenin is clearly involved in zonal gene regulation, the cis-

acting elements and trans-acting factors involved in this control have not been identified.   

 Alpha-fetoprotein (AFP) is expressed abundantly in the fetal liver and is repressed 

after birth.  While AFP itself is not considered a zonal gene, there are parallels between 

AFP silencing and zonal gene control.  Perinatal repression of AFP begins near the portal 

triad and continues towards the central vein, with pericental hepatocytes being the last 

cells to express AFP until the gene is completely silenced.  The AFP gene remains 

inactive in the adult liver but can be transiently reactivated during liver regeneration and 

is frequently activated in hepatocellular carcinoma (HCC) and other cancers.  Previous 

transgenic studies have shown that three distinct upstream enhancers, each roughly 300 

bp in length, contribute to high AFP activity during fetal development. We showed 

previously that AFP enhancer 3 (E3) activity in the adult liver is highly restricted to a 

single layer of pericentral hepatocytes whereas enhancers E1 and E2 are active in a 

broader pattern across the liver lobule [90].  Immunohistochemical staining shows that 

hepatic E3 transgene expression overlaps with endogenous GS (Figure 6) suggesting 

similar regulation mechanisms. Regulation through E3 is dominant; when E3 and E2 are 

linked together on the same transgene, expression in the adult liver is highly restricted to 

pericentral hepatocytes as seen with transgenes regulated by E3 alone [90].  

Based on previous studies on -catenin and zonal control, we hypothesized that it 

was also a key regulator for AFP E3 and enhancers of other pericentral genes.  Our lab 

previously analyzed the upstream enhancer from the rat GS gene (RGSe) using the gl-Dd 

reporter transgene and found that it is also zonally active similarly to endogenous GS.  

We also showed by immunohistochemistry that E3 activity overlaps with 

unphosphorylated (nuclear) -catenin around the central vein. Hydrodynamic tail vein 
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injections of a constitutively active form of -catenin (catS37A) activated E3 transgenes 

in non-pericentral hepatocytes.  In addition, conditional deletion of -catenin in the livers 

of adult mice containing either E3- or RGSe-regulated transgenes resulted in a loss of 

transgene expression, along with endogenous GS (Butler, J., Spear, B.T. unpublished 

data).  Taken together, these data demonstrate that -catenin is required for E3 and RGSe 

activity in pericentral hepatocytes.   

The work described in this chapter builds on our current model of zonal gene 

regulation by -catenin.  As mentioned above, -catenin lacks the ability to bind to DNA 

itself. Therefore, I hypothesized that TCF4 binding sites would be present in E3 and 

RGSe and are required for -catenin-mediated control. Binding site analysis, sequence 

alignment and electromobility shift assays all provide data to support this hypothesis. 

Furthermore, binding site mutations and cotransfections in cell culture demonstrate an 

inability of -catenin to activate the enhancers. Both -catenin and AFP have a somewhat 

similar developmental pattern and are both often found reactivated in liver cancer so I 

hypothesize that -catenin activates endogenous AFP early in development through its 

control of E3. Immunohistochemistry and RNA analysis of postnatal d1 livers provides 

evidence in support of this hypothesis. 

 

Results 

 

 TCF4 binding sites identified in E3 and RGSe enhancers show high 

conservation. AFP E3 is a 340 bp element found 6.5 kb upstream from the AFP 

transcription start site (TSS) and RGSe is a 400 bp element isolated from 2.5 kb upstream 

of the rat GS TSS.  Both were cloned into the gl-Dd reporter cassette.  

Immunohistochemistry, using a fluorescent antibody against the membrane-bound Dd 

protein, showed that both E3-gl-Dd and RGSe-gl-Dd transgenes were expressed in the 

same pericentral region as active -catenin (Figure 7).  

 The role of -catenin in zonal gene control raises the possibility that TCF/LEF 

factors are also involved in this regulation.  In several zonal genes, including GS, TCF 

sites have been identified and ChIP analysis has shown binding of TCF4 proteins.  TCF4 
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is a traditional binding partner for -catenin.  Further analysis revealed that the TCF site 

in RGSe is highly conserved across many species, providing further evidence of the 

importance of this site (Table 3A).  My analysis of E3 using the transcription element 

software search (TESS, University of Pennsylvania) binding site program predicted a 

strong candidate TCF binding site near the 3’ end of E3.  While deletion analysis of E3 

many years ago suggested a role for the 3’ end of E3 in HepG2 cells, the factor(s) that 

bind this region of E3 were not identified [88].  This putative TCF site in E3 is also 

highly conserved, further suggesting an important role in E3 activity (Table 3B). 

 

 TCF4 proteins bind to putative TCF binding sites in both E3 and RGSe 

enhancers.  Based on the putative site identification, I investigated whether TCF4 is 

capable of binding to these sites using electromobility shift assays (EMSA).  Nuclear 

extracts were prepared from HEK293 cells transfected with a FLAG-tagged TCF4 

expression vector.  Oligonucleotides, 23 bp in length, were generated to contain either the 

TCF sites from E3 (E3-TCF), RGSe (RGSe-TCF), and a consensus TCF sequence 

(TCFc); double-stranded versions of these 23-mers with mutated TCF sites were also 

prepared.  All wildtype double-stranded products were used as radiolabeled probes or as 

cold competitors.  These data indicated that all three wild-type TCF sites could bind 

TCF4 and were effective as cold competitors at a 100X molar excess.  None of the 

mutant probes could compete.  Further evidence that TCF4 was bound to these sites came 

from supershifts using anti-FLAG antibodies (Figure 8A-C).  These data provide direct 

evidence that TCF4 can bind the predicted TCF sites in E3 and RGSe. 

 

 β-catenin activates E3 and RGSe enhancers through the predicted TCF4 

sites.  To provide further evidence of -catenin regulation of E3 and RGSe through the 

predicted TCF sites, wild-type and TCF-mutant versions of these enhancers were linked 

to the pGL3 luciferase vector.  The TCF mutations were generated by PCR-based 

megaprimer mutagenesis to incorporate the same mutations as those used in EMSA as 

cold competitors.  These mutations converted three T nucleotides, which are essential for 

TCF4 binding, to G nucleotides; these changes also create a SmaI restriction site.  The 



 

36 
 

full-length mutant amplicons were purified, cloned into pGEMT-easy and sequenced 

before being subcloned into pGL3. 

To determine responsiveness to -catenin, wild-type and mutant enhancer-pGL3 

reporter constructs were transiently co-transfected into Hep3B cells with wild-type and 

constitutively active -catenin (catS37A) expression vectors.  TOP-Flash, which 

contains tandem repeats of consensus TCF4 binding sites linked to a minimal promoter 

driving a luciferase gene and FOP-Flash, identical to TOP-Flash except the TCF sites are 

mutated, were used as positive and negative controls, respectively.  Hep3B cells were 

used since they contain less endogenous -catenin than do HepG2 cells, which are also 

frequently used in our lab for transfections.  Forty-eight hours after transfections, cell 

lysates were prepared.  Luciferase levels from the reporter and renilla were measured 

using a dual-luciferase assay. TOP-Flash, E3-pGL3 and RGSe-pGL3 exhibited a dose-

dependent increase in activity in response to catS37A compared to the empty vector 

control.  In contrast, FOP-flash and TCF4 mutant constructs, E3(tcf-) -pGL3 and 

RGSe(mut-)-pGL3, did not respond to increasing catS37A levels. Similar results were 

observed using a wild-type -catenin expression construct although these results were not 

as dramatic (data not shown). Hep3B cells harbor intact inhibitory -catenin proteins; 

therefore a wildtype -catenin construct can undergo degradation while catS37A 

construct does not.  These data demonstrate that -catenin activation occurs through 

TCF4 at these sites in the enhancers. Interestingly, E3(tcf-)-pGL3 and RGSe(tcf-)-pGL3 

had increased activity than their corresponding wild-type constructs in the absence of co-

transfected -catenin (Figure 9).  This result provides further evidence of -catenin 

responsiveness.  In the absence of -catenin, TCF4 recruits Groucho-family co-repressors 

to their cognate sites.  Through the action of other positive-acting factors that bind E3 and 

RGSe, these enhancers have greater activity when co-repressors cannot be recruited by 

the mutated TCF sites are mutated.  

 

β-catenin influences perinatal E3 activity and AFP expression during the 

perinatal period.  In contrast to the pericentral expression seen in the adult liver, E3-gl-

Dd transgenes are expressed in all hepatocytes in the fetal liver [89].  This loss of E3 
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activity in periportal hepatocytes occurs during the first few weeks after birth.  This 

gradual loss of E3 activity after birth led me to consider whether E3 activity in the 

perinatal period, when the enhancer is still active in non-pericentral hepatocytes, is also 

dependent on -catenin.  To test this, I monitored E3-gl-Dd expression by 

immunofluorescence with anti-Dd antibodies at postnatal day 1 (p1) in Catliv mice.  I 

chose p1 rather than prenatal timepoints since hepatic Alb-Cre expression begins late 

during fetal development [130]. Similarly to what was seen in the adult liver, E3-gl-Dd 

transgenes were expressed at low levels in p1 Catliv livers compared to Catfl/fl livers 

(Figure 10A). Transgenes were still expressed sporadically in hepatocytes throughout the 

liver; continued expression is likely due to incomplete Cre-mediated deletion of -catenin 

in this small population of cells.   

Since endogenous AFP expression in the developing liver requires the AFP 

enhancer region, I predicted that B-catenin is important for AFP expression in early liver 

development.  I analyzed hepatic AFP mRNA levels in expression through real-time PCR 

in p1 Catliv and wild-type livers.  While the reduction of -catenin and AFP levels 

varied between mice, we found a significant reduction in AFP mRNA levels when -

catenin levels were low (Figure 10B).  This data suggests that -catenin contributes to 

AFP expression in the developing liver.  

 

Discussion 

 

The compartmentalization of function in the adult liver, resulting from the 

expression of certain genes in pericentral or periportal regions, enables this organ to carry 

out a variety of different, and in some cases, opposing functions.  Previous studies have 

shown that the -catenin signaling pathway has an important role in regulating a number 

of zonally-regulated genes in the adult liver.  However, the mechanism by which -

catenin regulates target genes in the adult liver is not fully understood.  Here, we have 

shown that two defined enhancer elements that exhibit pericentral activity in the adult 

liver, AFP enhancer E3 and the -2.5 kb rat GS enhancer RGSe, are regulated by -

catenin.  Furthermore, we have identified highly conserved TCF/LEF sites in these 
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enhancers that are required for -catenin responsiveness.  These studies also indicate that 

expression of AFP is reduced in the perinatal liver in the absence of -catenin, indicating 

that this pathway may also be involved in developmental AFP regulation.  Taken 

together, these data support a model in which postnatal AFP repression and zonal 

regulation are mechanistically related. 

 

While -catenin can control target genes through several pathways, my data 

indicate that the canonical pathway involving interactions between -catenin and 

TCF/LEF family of DNA binding proteins contributes to E3 and RGSe enhancer activity 

in vivo.  The ~350 bp E3 and RGSe enhancers were found to contain a single strong 

consensus TCF/LEF site, both of which are highly conserved across numerous mammals.  

These sites could bind TCF4 in vitro, and both enhancers were activated by wild-type and 

the constitutively active S37A variant of -catenin in transient co-transfections.  These 

data provide strong evidence that the highly conserved TCF/LEF sites in E3 and RGSe 

are important for -catenin-mediated regulation.  In the absence of co-transfected -

catenin, the activities of both E3 and RGSe were increased when their respective 

TCF/LEF sites were mutated.  Since TFC/LEF factors can bind the Groucho family of 

co-repressors in the absence of -catenin, it is not surprising that we saw a de-repression 

of enhancer activity when TCF/LEF proteins could no longer bind their cognate sites.  

While I did not directly test the role of Groucho-related proteins in repressing E3 or 

RGSe, these results do raise the question whether these co-repressors also contribute to 

zonal gene regulation in the adult liver.  In this regard, it is interesting that 

overexpression of the Groucho-related co-repressor Grg3 in the H2.35 liver cell line 

reduces endogenous AFP activity (Sekiya and Zaret, Molec. Cell, 28:291-303), and at 

least one groucho-related protein, Grg5, is expressed in the adult mouse liver (Miyasaka 

et al, Eur. J. Biochem, 216:343; Mallo & Gridley, Mech of Develop, 42:67)   

 -catenin and AFP are both expressed during liver development and reactivated 

in HCC which led us to examine a potential relationship. At postnatal d1, mouse livers 

lacking -catenin have greatly reduced E3 activity and a significant decrease in AFP 

expression. While this suggested -catenin regulates endogenous AFP, no linkage 
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between these two is found in HCC tumor samples. These data suggest that AFP 

reactivation in HCC is independent of catenin. It should also be considered that E3 is 

one of four AFP regulatory elements that govern AFP expression. Regulation occurring 

at the other elements may override -catenin activation at E3. E1 and E2 are robustly 

active in adult liver for which the mechanism and trans-acting factors are not known. It is 

possible activation through E1, E2 or the AFP promoter are the primary sites for AFP 

induction in HCC.   
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Figure 6. E3 shows pericentral activity in adult liver correlating with endogenous GS 

expression. E3 was cloned from the mouse genome and placed into the reporter gene 

construct with human β-globin promoter driving MHC class I Dd gene (E3-βgl-Dd). 

When the reporter gene is active the protein is detected on the cell surface membrane 

through the use of a fluorescent conjugated anti-Dd antibody. Adult livers from E3-βgl-Dd 

mice stained for Dd show activity only in hepatocytes directly surrounding the central 

vein (green) which coincides with endogenous pericentral GS staining (red).   
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Figure 7. Active -catenin and E3 overlap in pericentral hepatocytes. Adult livers were 

dissected and cryosectioned at 10um thick. Liver sections underwent double staining for 

E3, using the anti-Dd antibody conjugated to FITC (green) and unphosphorylated active 

-catenin TRITC antibody (red). While there is robust background for -catenin, 

cytoplasmic accumulation is only observed in pericentral hepatocytes. Overlay of these 

two antibodies produce a yellow color indicative of co-localization demonstrating a 

relationship between E3 activity and -catenin signaling. 

Overlay

 Active β‐catenin E3-βgl-Dd 
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Table 3. TCF4 sites from E3 and RGSe are highly conserved. Binding site analysis with 

TESS revealed putative TCF4 sites at the 3’end in both E3 and RGSe. DNA sequence for 

A) RGSe and B) E3were assembled from multiple species including Human (hum), 

Chimpanzee (Chi), Rhesus monkey (Rhe), Lemur (Lem), Horse (Hor), Dog, Cat, Guinea 

pig (Gui), Mouse (Mou) and Rat and aligned. TCF4 binding site centered the alignment 

flanked by sequences 5’ and 3’ to the site. Based on this analysis the TCF4 binding site 

sequence is highly conserved in E3 and RGSe from mouse to human with single 

nucleotide polymorphisms observed in a few species in red.  Such a high degree of 

conservation suggests an important function. 

 

A. RGSe TCF4 site alignment 

      TCF4 site    

Hum acatgaatgg atcaaagc aaatccattt
Chi aacatgaatgg atcaaagc aaatccattt
Rhe acatgaatgg atcaaagc aaatccattt
Lem acatgaacgg atcaaagc gaatctcttt
Dog acatgaatgg atcaaagc aaatccattt
Cat acatgaatgg atcaaagc aaatccattt
Gui acatgaaagg atcaaagc aaatccattt
Rat acatgaaagg atcaaagc aagcctgctt

Mous acatgaaagg atcaaagc aaatccgctt

a/ta/tcaaag(g)
 

B. E3 TCF4 site alignment 

      TCF4 site    

Hum atttcacttc atcaaagg gatcttctcc
Chi atttcacttt atcaaagg gactccgccc
Rhe gtttcccttt atcaaagg gatcttgtcc
Lem gttttccttc atcaaagg gattttattt
Dog tcattccttc atcaaagg gattttgcct
Cat tcattccttt atcaaaga gattttgcct
Gui catttcctca atcaaaag gactttactt
Rat ttttccctcc atcaaagg aattttatct

Mous gttttccttc atcaaagg aattttatct

a/ta/tcaaag(g)
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Rat Glutamine 
Synthetase enhancer 

– TCF4 site 

Nuclear extract:

100x Competitor:

Antibody: 

‐           ‐           ‐        Self  RGSmut   4c    4cmut     ‐ 

    ‐           ‐           ‐          ‐           ‐           ‐          ‐       Flag 

  ‐         Mock  TCF4   TCF4   TCF4   TCF4   TCF4  TCF4 B. 

Nuclear extract: 

100x Competitor:

Antibody: 

             ‐       Mock TCF4  TCF4  TCF4  TCF4  TCF4  TCF4 

                    ‐         ‐         ‐       Self   E3mut   4c  4cmut     ‐ 

    ‐         ‐          ‐          ‐         ‐          ‐         ‐      Flag 

Mouse AFP E3 
– TCF4 site

A. 
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NE (5ug): 

100x competitor: 

Antibody: 

      ‐     Mock  TCF4    TCF4    TCF4   TCF4   TCF4   TCF4    TCF4    TCF4

    ‐        ‐           ‐         Self   Selfmut  E3    E3mut   RGS   RGSmut   

      ‐         ‐           ‐           ‐           ‐           ‐           ‐           ‐           ‐        Flag

TCF4 
Consensus 
site probe 

C. 
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Figure 8. The TCF4 protein binds to putative sites within E3 and RGSe. A) Wild-type E3 

(E3Tcf4) probe was incubated with 5ug nuclear extracts from HEK293 cells either mock 

transfected or expressing TCF4-flag protein. 100X cold competitors were used to assess 

specificity of the shifted band. These include cold E3Tcf4, mutant TCF4 site 

(E3Tcf4mut), TCF4c and mutant consensus (TCF4cmut). A supershifted band appears 

when incubated with the anti-Flag antibody. B) RGSe (RGSeTcf4) probe was incubated 

with 5 ug nuclear extracts from HEK293 cells either mock transfected or expressing 

TCF4-flag protein. 100X cold competitors were used to assess specificity of the shifted 

band. These include cold RGSeTcf4, mutant TCF4 site (RGSeTcf4mut), TCF4c and 

mutant consensus (TCF4cmut). A supershifted band appears when incubated with the 

anti-flag antibody. C) A synthetic consensus TCF4 (TCF4c) probe was incubated with 5 

ug nuclear extracts from HEK293 cells either mock transfected or expressing TCF4-flag 

protein. TCF4c was also incubated with 100X cold self, TCF4cmut, E3Tcf4, E3Tcf4mut, 

RGSeTcf4 and RGSeTCF4cmut. A supershifted band appears when incubated with the 

anti-Flag antibody. TCF4 has the ability to bind to each probe which can be competed 

away with all other wild-type probes and not mutant probes. Binding is specific to TCF4 

for a supershifted band appears when using the flag antibody.  
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Figure 9. -catenin activates enhancer constructs through TCF4 sites. Hep3B cells were 

transfected with 0.5ug luciferase reporter, 1.0ug expression construct and 12.5ng Renilla. 

Cells were harvested 48 hours post-transfection using Glo Lysis buffer. Supernatants 

were measured for luciferase and normalized to Renilla levels to account for transfection 

efficiency (Y-axis). All reporter constructs were co-transfected with an empty vector 

pcDNA to determine basal luciferase activity. Positive control TOP-Flash (light blue) as 

well as wildtype TCF4 constructs E3-pGL3 (light red) and RGSe-pGL3 (light purple) 

increased luciferase activity with constitutively active -catenin (catS37A) compared to 

empty vector. When the TCF4 sites were mutated in E3(tcf-)-pGL3 (dark red) and 

RGSe(tcf-)-pGL3 (dark purple) basal luciferase activity with pcDNA increases compared 

to the respective wild-type enhancer construct. The negative control FOP-Flash (dark 

blue), E3(tcf-)-pGL3 and RGSe(tcf-)-pGL3 are not more active with increasing catS37A 

demonstrating -catenin activation is abolished with mutation of the TCF4 binding site. 

Therefore -catenin activates these enhancers via TCF4. TCF4 binding is also important 

for repression in the absence of activated -catenin signaling. 
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Figure 10. β-catenin regulates E3 and AFP expression after birth. To determine if β-

catenin impacts postnatal developmental expression livers from hepatocyte β-catenin 

knockout (Catliv) mice were analyzed. A. Sections from d3 livers from β-catenin 

wildtype (βcatfl) or Catliv both containing E3-gl-Dd were cryosectioned and 

immunohistochemically stained with anti- Dd. βcatfl livers have robust E3 activity around 

the central vein, but in more hepatocytes than adult livers. Catliv d3 livers have very 

little E3 activity. Sporadic cells that still express the transgene may not have undergone 

the cre-recombinase reaction to remove β-catenin. (Magnification, 20X) B.  RNA was 

extracted from two d1 litters and analyzed for AFP (left two bars) and β-catenin (right 

bars) mRNA from βcatfl (black, n=5) and Catliv (shaded, n=7) livers. Real-time RT-

PCR Ct values from each primer set were normalized to the ribosomal gene L30. β-

catenin (Cat) mRNA levels are significantly decreased in knockout livers compared to 

βcatfl livers which correlated with a significant decrease of AFP mRNA. β-catenin 

expression is crucial during fetal development and also plays a role in regulating AFP 

expression in fetal liver development through E3. * and ** p<0.05 
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CHAPTER 4 

 

Orphan nuclear receptors ROR and Rev-erb/ regulate AFP enhancer 3 
 

Introduction 

 

 The adult liver has a defined architecture consisting of multiple lobules that is 

essential for hepatic function.  The lobule is a hexagonal structure with the central vein at 

the center and portal triads (each consisting of a hepatic artery, portal vein, bile duct) at 

each of the six corners of the hexagon (Figure 2). Blood enters the liver through the 

hepatic arteries and portal veins, flows through sinusoids along anistomizing plates of 

hepatocytes, and exits through the central veins.  The distance between each portal triad 

and central vein is roughly 15-20 hepatocytes.  An active exchange of compounds occurs 

between the basolateral surface of hepatocytes and blood.  The apical sides of 

hepatocytes contain the bile caniculi; bile salts and other compounds are trafficked from 

hepatocytes to the caniculi and flow in a retrograde manner to the bile ducts for transport 

to the gall bladder.   

In 1983, Gebhardt and colleagues discovered that the Glutamine Synthetase (GS) 

gene is expressed in a layer of 1-2 hepatocytes surrounding the central veins[32].  Since 

then, numerous other hepatic enzymes have been found to be zonally regulated, with 

many genes expressed similarly to GS in pericentral regions and other genes expressed in 

the region around the portal triad (periportal region).  This phenomenon of zonal gene 

regulation enables the liver to carry out specific functions in different populations of 

hepatocytes.  Elegant studies by Perret and colleagues have shown that -catenin is an 

important regulator of zonal gene regulation [36].   However, the molecular basis of zonal 

gene regulation is still not fully understood. 

Our lab has been studying alpha-fetoprotein (AFP) regulation for many years.  

The AFP gene is abundantly expressed in the fetal liver but dramatically repressed after 

birth.  This postnatal silencing can be reversed; the AFP gene is transiently induced in 

regenerating liver and frequently reactivated in liver cancer.  AFP expression is 

controlled by a promoter region and three upstream enhancers, E1, E2 and E3, located 
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2.5, 5.0 and 6.5 kb upstream of AFP exon 1, respectively.  Each enhancer is roughly 300 

bp in length.  In our studies of the AFP enhancers in transgenic mice, we found that all 

three enhancers continued to be active in the adult liver.  E1 and E2 were active in all 

hepatocytes, with a gradual reduction in activity in a pericentral-periportal direction.  E3, 

however, was active only in a layer of 1-2 hepatoctyes surrounding the central veins in a 

pattern that was identical to the GS gene.  This was the first example of a defined 

regulatory element that exhibited zonal activity [89, 90].  We have continued to 

investigate E3 activity as a model of zonal gene regulation.  Our studies support a model 

in which the absence of E3 activity in non-pericentral hepatocytes is due to active 

repression. 

Once E3 was found to have pericentral activity, we began to focus on factors that 

might regulate this pattern.  As described in chapter 3, we have identified a TCF4 site at 

the 3’ end of E3.  However, most studies have focused on the 5’ end of this enhancer. 

Three major binding sites have been identified in this region, including a C\EBP site, 

FoxA site and a nuclear receptor (NR) site (Fig 11) [131-133].  Nuclear receptors 

comprise a large class of transcription factors involved in regulating growth and 

homeostasis [134-136]. Many NRs are ligand-inducible transcription factors.  Generally, 

the NR response element in target genes is tandem or inverted repeats of AGGTCA 

separated by two or three nucleotides. However, slight variations in the sequence allow 

for gene-specific actions of these receptors [137, 138] 

One class of NRs is the orphan nuclear receptor family, appropriately named 

since their activating ligand remains unknown or does not exist. Rev-erb was the first 

orphan nuclear receptor identified [139]. Interestingly, while Rev-erb maintains the 

domain to bind a ligand and has recently been suggested to bind to heme [140, 141], it 

cannot undergo a conformational change upon ligand binding.  Therefore, Rev-erb acts 

as a constitutive transcriptional repressor [142]. Rev-erb can homodimerize, but it can 

also bind as a monomer to a half-site or single repeat of the response element, where it 

recruits nuclear receptor corepressor (NcoR) [140, 142] and histone deacetylase 3 

(HDAC3) to repress target genes [143, 144]. Rev-erb is expressed in metabolically 

active tissues including liver, adipose, where it is involved in adipocyte differentiation 

[145], and muscle, where its function remains unknown. Loss of Rev-erb in mice results 
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in a mild phenotype, but these mice exhibit a disruption in circadian pattern. Rev-erb 

and its closely related family member Rev-erb, both regulate the major circadian rhythm 

regulator Bmal1 [146]. Monomeric response element binding is also a feature of orphan 

nuclear receptor ROR (retinoic-acid orphan receptor ), which binds to a half-site that 

is similar to that of to Rev-erb proceeded by an A/T rich region [147]. Unlike Rev-erb, 

ROR was observed to bind to the co-activators glucocorticoid receptor-interacting 

protein 1 (GRIP-1) and peroxisome proliferator-activated receptor binding protein (PBP) 

[148].  Competition between ROR and Rev-erb to the same DNA element was 

observed when both proteins were co-expressed, with both Rev-erbs opposing gene 

activation by ROR [149]. 

Having found that -catenin was important in zonal control of E3 activity, we 

wanted to determine whether any of the factor binding sites on the 5’ end of E3 

contributed to zonal E3 activity.  In particular, we were interested in whether any of these 

sites contributed to the repression of E3 activity in non-pericentral hepatocytes.  As 

mentioned previously, our working model is that the absence of E3 activity in this 

population of cells is due to active repression.  This was based on the fact that a transgene 

with E3 and E2 combined had the same pericentral activity as transgenes with E3 alone, 

whereas E2-regulated transgenes were active throughout the liver [90].  We generated a 

series of E3-E2 containing transgenes in which the NR, C/EBP and FoxA sites were 

individually mutated.  Transgenes with the FoxA and C/EBP mutations exhibited the 

same pericentral activity as wild-type transgenes.  However, the mutation in the NR site 

had a dramatic effect, resulting in transgene activity throughout the adult liver similarly 

to those transgenes with E2 alone (J. Butler, ELC, BTS, in preparation).  This indicated 

that the NR site is required for repression of E3 activity, in non-pericentral hepatocytes.  

Previous EMSA studies from our lab showed that ROR, Rev-erb and Rev-erb were 

able to bind to this NR site [133]. Transient transfections also showed that ROR 

enhanced E3 activity while both Rev-erb and Rev-erb repressed E3 activity (Figure 

12).  My work in this chapter continues from these observations. Since there is strong 

evidence that ROR is the activator, I predicted E3 activity would be lost in mice lacking 

ROR.  ROR and the Rev-erb proteins are both involved in circadian rhythm regulation 
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and in fact have a circadian pattern themselves.  Therefore, I also performed a study to 

test if E3 activity has a circadian pattern. 

 

Results 

 

 RORα is an important positive regulator of E3 activity. Studies have shown 

that the orphan nuclear receptor ROR is normally a positive transcription factor of its 

target genes.  Transfections and EMSAs performed by a previous graduate student in the 

lab, James Butler, indicated that the E3 NR site is regulated by ROR. This result led me 

to consider whether ROR controls E3 activity in the adult liver. Unlike other orphan 

receptors, such as HNF4, ROR has not been shown to have any zonal pattern of 

expression in the adult liver.  The Staggerer mutant mouse contains a natural mutation in 

the ROR gene, a 6.8kb deletion that results in a complete null allele that cannot express 

any of the four ROR isoforms. These mice have altered cerebellular development 

resulting in an impaired gait, hence, the name [150].  Staggerer mice are viable for only 

3-4 weeks after birth. Heterozygous female mice (RORawt/-) purchased from the Jackson 

laboratory were crossed with E3-gl-Dd mice. Transgene positive RORwt/- mice were 

then intercrossed to generate E3-positive mice that were RORwt/wt or ROR-/-.  Livers 

were removed as close to four weeks of age as health of the animal would allow. 

Immunohistochemistry of frozen liver sections with anti-Dd antibody showed a dramatic 

reduction in E3 activity in the ROR null mice. Even though there is not a complete loss 

of E3 activity, it is still only found in hepatocytes directly adjacent to the central vein 

(Figure 13). 

 

 RORα regulates other pericentral enzymes. Since E3 and GS are similarly 

regulated by -catenin (chapter 3) we hypothesized that ROR may also regulate other 

pericentral genes. RNA isolated from ROR-/- and littermate RORwt/wt livers were analyzed 

by real-time RT-PCR for the expression of pericentral genes GS, OAT, and Rhesus 

Monkey Glycoprotein B (RhBG) (Figure 14A) as well as periportal genes PEPCK, 

Glutaminase2 and GLUT2 (Figure 14B).  All pericentral genes examined showed 
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reduced expression in ROR-/- mice compared to the wild-type littermates. Periportal gene 

expression was not changed regardless of ROR status.      

 

E3-βgl-Dd does not exhibit a circadian rhythm pattern of expression. ROR 

and the Rev-erb proteins have opposing effects on E3 activity in cultured cells, and my 

data indicates that RORis a positive regulator of E3 in the adult liver.  Assessing the 

contribution of the Rev-erb proteins became difficult mainly due to the redundancy of the 

two proteins and the requirement for double knockout mice that, at this point, do not 

exist.  Both Rev-erb proteins and ROR are involved in circadian regulation [151] and 

exhibit circadian rhythm changes in expression [152]. We hypothesized that the circadian 

pattern changes in these orphan receptors might lead to a circadian change in E3 in vivo.  

Adult E3 livers, three in each group, were removed at 4 hour intervals during a 24 hour 

time period. RNA analysis using reverse transcriptase PCR (RT-PCR) for Rev-erb 

showed expression peaks at 4-8 hours after the light cycle begins. However,  RT-PCR 

shows no change in E3-gl-Dd transgene expression was detected at any of the time 

points (Figure 15).   

 

E3 with a mutant NR site is still activated by RORα but not repressed by 

Rev-erb proteins in transient transfections.  To examine further the role of the NR 

proteins in E3 regulation, co-transfections were performed in Hep3B cells using E3/E2-

regulated pGL3-luciferase reporter plasmids [with E3 wild-type (WT) or a mutant NR 

site (SS)] and expression vectors for ROR, Rev-erb, and Rev-erbFigure 16A-B).  

Luciferase activity of WT and SS plasmids are very similar when co-transfected with the 

empty vector pcDNA 3.1.  Addition of ROR increased luciferase levels from both WT 

and SS vectors. In contrast, increasing concentrations of Rev-erb proteins (especially 

Rev-erb) dramatically decreased luciferase levels from the WT vector (Figure 16A). 

However, the highest levels of the Rev-erb proteins did no affect SS luciferase levels 

(Figure 16B). These data demonstrate SS is still activated by ROR but the NR mutation 

prevents repression by Rev-erb and Rev-erb    
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Discussion 

 

Nuclear receptors are gaining attention due to of their global role in gene 

regulation that can be tissue-specific and involved in diseases [153, 154]. The structure of 

these proteins lends themselves to being good pharmacological targets since complete 

activity requires binding a ligand. The orphan nuclear class of receptors are important 

gene regulators even though their ligands have not yet been identified. In particular Rev-

erb and ROR are known to regulate circadian rhythm through competitive regulation 

of Bmal1 [151]. Both proteins were also recently shown to regulate energy metabolism. 

ROR deficient mice develop severe atherosclerosis on a high fat diet [155] and Rev-erb 

mice exhibit dislipidemia [156]. One of the main metabolic tissues is the liver, which 

compartmentalizes metabolic pathways. This study shows that ROR and Rev-erb and 

Rev-erb play a role in this regulation. 

E3 offers a model system for studying this mechanism of zonation. Initial binding 

site analysis elucidated a nuclear receptor site at the 5’ end of E3. Classification of the 

NR binding site found it was a half-site, thereby limiting potential binding proteins to 

orphan nuclear receptors. Previous studies by our lab and others show all of these 

candidate orphan nuclear receptors ROR and Rev-erb and Rev-erb bind to the E3 NR 

site through EMSA analysis [133]. Regulation by these proteins, observed with in vitro 

transfections, is consistent with what is observed at other target genes; ROR increases 

E3 activity while Rev-erb and Rev-erb repress E3 activity. My studies build upon 

these observations to better understand regulation of E3 via these proteins.  

Consistent with ROR activating E3 in vitro, ROR-/- liver lost the majority of E3 

activity, although it was not completely absent. Nuclear receptors bind very similar sites 

and can occasionally be promiscuous in binding. In particular, chicken ovalbumin 

upstream promoter-transcription factor (COUP-TFII) is known to bind to ROR response 

elements [157]. This is supported by observations from J. Butler in which COUP-TF 

proteins bind to the NR site of E3 by EMSA. Surprisingly, -catenin, another potent 

activator of E3 discussed previously, does not seem to compensate and activate E3 in 

ROR deficient livers. Competition between ROR and Rev-erb proteins is known to 
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occur since they bind the same half site in E3 [149, 151]. It is possible that without 

ROR present there is no competition, thus Rev-erb or Rev-erb bind and repress E3 in 

pericentral hepatocytes. I also found many pericentral genes have reduced expression in 

ROR deficient livers compared to wild-type littermates suggesting ROR plays a positive 

role in zonation. Many of these same enzymes are also decreased in -catenin knockout 

liver suggesting a potential relationship between -catenin and ROR. -catenin has 

recently been found to interact with nuclear receptors [158]. Moreover, a direct 

interaction between these two proteins was found in colon cancer; however, in this case, 

ROR inhibited -catenin activity [159]. I do not believe this occurs in pericentral 

hepatocytes since both proteins are required for full E3 activity. Therefore, it is possible 

that cooperation occurs in pericentral hepatocytes between ROR and -catenin to 

activate pericentral genes as shown in the model (Figure 17).  

This coordination may also not be limited to ROR. HNF4, another orphan 

nuclear receptor, was found to have a zonal pattern in the adult liver [48]. If HNF is 

disrupted, zonal genes GS and PEPCK lose their normal compartmentalization [50]. 

Studies examining GS found HNF4 binding sites in close proximity to TCF/LEF 

binding sites that coordinated to regulate expression of GS [51]. RGSe, the GS enhancer 

which recapitulates zonal activity in vivo, was not examined in these studies. While we 

have not identified any ROR binding site in RGSe, we have found a putative HNF4 

binding site near the 5’ end.  

The NR site in E3 is clearly involved in zonal regulation because when it was 

mutated (SS), E3 repression is lost and was expressed in all hepatocytes (Butler J, 

unpublished data). Using in vitro transient transfections I found that NR mutant E3 (SS) 

still responds to the activator but becomes non-responsive to the repressor. The NR 

within E3 is considered a half-site; mutation of the NR should abolish site recognition 

and binding capability of both Rev-erb proteins and ROR.  SS is linked to E2 for added 

activity, an enhancer which has not been well characterized. Therefore it is possible E2 

may contain a ROR nuclear receptor site. In an attempt to elucidate the role of Rev-erb 

proteins, I performed a circadian rhythm study. Rev-erb and Rev-erb peak in 

expression in the liver approximately 4-6 hours after the light cycle begins. Alternatively, 
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ROR expression peaks a bit sooner around 2-3 hours after beginning of the light cycle 

and begins to decrease while Rev-erb proteins peak [160]. However, E3 transgenes 

showed no change in expression levels during the 24 hour period. This is consistent with 

the fact that expression of pericentral enzymes, for the most part, is static. While ROR 

and Rev-erb participate in zonal regulation, other trans-acting factors could potentially 

overcome circadian rhythm pattern changes of these proteins.  
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Figure 11. Binding sites identified within AFP E3. Early studies with E3 identified three 

important binding sites at the 5’ end of the enhancer depicted in this cartoon. These sites 

include binding sequences for a nuclear receptor (NR), C\EBP and FoxA. From chapter 3 

we also identified a TCF4 binding site at the 3’ end. E3 transgenes mutated at either the 

C\EBP or FoxA binding sites did not alter the zonal activity in adult livers. However, the 

E3 transgene with a mutated NR site (SS) in the adult liver gained non-pericental activity 

demonstrating the importance of the NR site for compartmentalization of E3 activity.   
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Figure 12. E3 is activated by ROR and repressed by Rev-erb/ in HepG2 cells. Cells 

were transfected with 0.5 ug of reporter and 1.0 ug of an expression vector and 12.5 ng of 

Renilla. 48 hours after transfection cells were harvested with Glo Lysis buffer. Luciferase 

was measured from the supernatant and normalized to Renilla levels to account for 

transfection efficiency (y-axis). pGL3 promoter (cntrl) and pGL3 control (pGL3) are 

luciferase constructs were used as negative and positive controls for the assay in the first 

two lanes. The next four lanes are co-transfections of the E3-pGL3 luciferase reporter 

with expression vectors as labeled. A pcDNA empty vector (EV) assesses basal activity 

from E3-pGL3. Addition of ROR to E3 increased luciferase compared to the empty 

vector control. Both Rev-erb and Rev-erb reduced luciferase values as compared to the 

empty vector control. This demonstrates the ability of these orphan nuclear receptors to 

regulate activity of E3. * p<0.00001, + p<0.0005 

pGL3 ctrl ctrl EV RORα Rev-erbα Rev-erbβ 

*

+ +
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Figure 13. E3 activity is regulated by ROR in vivo. E3-gl-Dd transgenic mice were 

crossed to ROR-/- mice to assess hepatic E3 regulation. Livers from four week old 

RORwt/wt or ROR-/- mice were sectioned and immunohistochemically stained for E3 

activity using the anti- Dd antibody. E3 activity in the ROR-/- liver was dramatically 

reduced compared to RORwt/wt liver (Magnification, 20X). Sporadic punctate staining was 

observed in ROR-/- livers but it was strictly in pericentral hepatocytes. These observations 

show ROR is an important positive regulator of E3 in vivo.    

RORwt/wt ROR-/-
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Figure 14. ROR regulates expression of pericentral but not periportal genes. RNA was 

isolated from livers that were RORwt (n=1) or ROR-/- (n=6) genotypes. A. RNA was 

analyzed by real-time RT-PCR for expression of pericentral genes including glutamine 

synthetase (GS), ornithine aminotransferase (OAT) and Rhesus monkey glycoprotein B 

(RhBG). Gene expression was normalized to the ribosomal gene L30. For these 

pericentral genes, lacking ROR decreases expression. B. RNA was analyzed by real-

time RT-PCR for expression of periportal genes including PEPCK, Glutaminase2 and 

GLUT2. Expression levels were normalized to L30. No change in periportal expression is 

observed in ROR-/- livers compared to wildtype livers. This suggests that ROR plays a 

role in regulating zonality in of pericentral gene expression. 

A. 

B. 
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Figure 15. Circadian rhythm of Rev-erb does not affect expression of E3-gl-Dd. 

Livers were dissected from eight week old age matched E3-gl-Dd transgenic mice at 4 

hour intervals, at the indicated times, over a 24 hour time period. From these, RNA was 

analyzed by RT-PCR for gl-Dd (top panel), Rev-erb (middle panel) expression and 

L30 (bottom panel) used as a normalizing control. Rev-erb peaks at the 12p and 4p time 

points. No reduction in gl-Dd expression is observed at these time points. At 8p the third 

animal was a negative transgenic mouse used as a control for genomic contamination. 

This suggests that activity of E3 is static in adult pericentral hepatocytes and does not 

respond to circadian pattern changes.   
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A. 

 
B. 

 

Figure 16. E3 enhancer containing the NR mutation SS is activated by ROR but not 

repressed by Rev-erb or Rev-erb. To see if SS is able to respond to the nuclear 

receptors, Hep3B cells were transfected using the calcium phosphate method. A. WT 

(E3/E2-pGL3) and B. SS (E3NRmut/E2-pGL3) were co-transfected with either an empty 

vector (EV) or increasing concentration of the nuclear receptor expression vectors. 48 

hours post transfection cells were collected in Glo Lysis buffer. Supernatants were 

analyzed for luciferase levels which then normalized to Renilla to account for 

transfection efficiency. ROR activates both WT and SS constructs in a dose dependent 

manner compared to the empty vector control. Rev-erb and Rev-erb decreases 

luciferase levels from the WT construct in a dose dependent manner. Despite the 

presence of the repressor at the highest concentration, SS luciferase levels do not 

decrease, demonstrating repression through the NR site is lost when mutated.   
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Figure 17. Model for zonal E3 regulation by -catenin and nuclear receptors. In the liver 

lobule a gradient exists along the porto-centro axis where APC expression is highest in 

periportal hepatocytes and gradually decreases towards the pericentral hepatocytes. Low 

APC allows for -catenin accumulation and translocation into the nucleus of pericentral 

hepatocytes. -catenin binds to target genes through interaction with TCF4 and ROR to 

activate, in this case, E3. Alternatively, high APC in periportal hepatocytes degrades any 

cytosolic -catenin. Within the nucleus, TCF4, its co-repressors as well as Rev-erb/ 

bind to the TCF4 site within E3. While ROR is still present in these cells, Rev-erb 

proteins out-compete ROR for binding and contribute to E3 repression.  
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CHAPTER 5 

 

Zhx2 protects against liver damage during a high fat diet 
 

Introduction 

 

 High fat and high cholesterol diets found in developed countries are primarily 

responsible for the epidemic rise in obesity rates as well as increased incidence of 

atherosclerosis [161, 162]. Cholesterol, an essential biological compound, is used in cell 

membranes for stability and signaling [163] and as a precursor for steroid hormones, bile 

acids and vitamin D [164-166].  Cholesterol homeostasis is achieved by balancing de 

novo synthesis, ingestion, catabolism and excretion through the feces [167]. Imbalance of 

cholesterol and other lipids such as triglycerides can cause diseases such as 

atherosclerosis, the leading cause of death in the United States [168], and nonalcoholic 

fatty liver disease (NAFLD) [169].  

 Despite the development of various drugs, current treatments for high cholesterol 

are not completely effective.  This in part is due to the fact that cholesterol-initiated 

disease progression is not fully understood.  Due to its essential role, all cells have the 

ability to synthesize cholesterol de novo.  However, dietary cholesterol can be distributed 

to peripheral sites through low density lipoprotein (LDL) packaged in the liver [170].  

Unfortunately, LDL has the ability to deposit cholesterol on arterial walls, increasing the 

likelihood of atherosclerotic plaque formation and giving LDL the reputation of “bad 

cholesterol” [171]. In times of cholesterol excess, high density lipoprotein (HDL) can 

transport cholesterol back to the liver to either be converted to bile acids or incorporated 

in the emulsified material to be excreted in the feces [172]. HDL has the ability to 

remove arterial cholesterol and is therefore thought of as “good cholesterol”. Patients 

with highly elevated LDL, carrying high levels of cholesterol and triglycerides, and low 

HDL, are at high risk of developing atherosclerosis [173].  Drug treatments, including 

statins, which inhibit de novo cholesterol synthesis [174, 175], and bile acid sequestrants 

[175], which increase fecal excretion and processing of cholesterol into bile acids, are 
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effective in lowering cholesterol levels but they are not able to completely prevent 

atherosclerosis.     

 Atherosclerosis is a complex disorder influenced by multiple environmental and 

genetics factors.  Historically, such complex traits have been more difficult to study than 

monogenic traits.  However, the advent of genomic methods have provided new 

approaches to study the genetic basis of complex traits.  One of these strategies is 

Quantitative Trait Locus (QTL) mapping, an unbiased method to identify multiple loci 

that contribute to a particular phenotype [176], including serum hyperlipidemia and 

atherosclerosis.  Several years ago, Jake Lusis (UCLA) carried out a QTL study using 

BALB/cJ and MRL inbred strains of mice that are resistant and susceptible, respectively, 

to diet-induced atherosclerosis. This study identified several QTLs, including one on 

chromosome 15 that was associated with hypertriglyceridemia and was called 

hyperlipidemia 2 (Hyplip2).  The presence of MRL DNA from this region on a BALB/cJ 

background (Congenic15 or Con15) increased incidence of atherosclerotic plaques and 

hyperlipidemia compared to a BALB/cJ mouse when mice were on a high fat diet [121].  

 The chromosome 15 interval containing Hyplip2 includes the gene zinc-finger 

and homeobox2 (Zhx2).  Zhx2 was originally identified in this region by our lab based on 

its ability to control hepatic alpha-fetoprotein (AFP) mRNA levels in the adult liver [96].  

In BALB/cJ mice, an endogenous mouse retroviral (MERV) element inserted in the first 

Zhx2 intron, causing aberrant splicing and dramatically reducing Zhx2 mRNA and 

protein levels [97].  Adult liver AFP levels are elevated in BALB/cJ mice, indicating that 

Zhx2 is a repressor of AFP expression.  Expression of a Zhx2 transgene in the liver of 

BALB/cJ mice results in normal AFP repression, confirming a role for Zhx2 in AFP 

silencing [96].  Based on the physical linkage of Zhx2 and Hyplip2, we collaborated with 

the Lusis lab to determine whether Zhx2 is responsible for the Hyplip2 phenotype.  

Expression of the Zhx2 transgene in BALB/cJ mice led to increased serum triglyceride 

and cholesterol levels, indicating that Zhx2 is Hyplip2 [122].  This data also indicates that 

Zhx2 regulates liver genes involved in lipid homeostasis. 

  

To better understand the role of Zhx2 in hepatic control of lipids, I have analyzed 

the expression of genes in the livers of BALB/cJ, BALB/c and BALB/cJ +/- Zhx2 
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transgenic mice on a high fat diet.  At the beginning of this study, the only known targets 

of Zhx2 were AFP, H19 and Glypican3.  Using microarray data provided by the Lusis lab 

performed between CON15 and BALB/cJ mice, I have used real-time RT-PCR to 

confirm additional Zhx2 targets.  Interestingly, these studies also identified a Zhx2-

dependent hepatic phenotype.   When placed on a high fat diet, mice without Zhx2 

(BALB/cJ) exhibit increased lipid accumulation, AFP mRNA levels and serum ALT 

when compared to mice with Zhx2 (BALB/c and BALB/cJ + Zhx2 transgene).  These 

data indicate that Zhx2 is hepatoprotective in mice on a high fat diet. I examined potential 

inflammatory mediators and stress pathways to explore further the basis of liver damage 

in the absence of Zhx2. 

 

Results 

 

To investigate the role of Zhx2 in diet-induced changes in liver gene expression, two 

comparisons were made.  First, studies were performed in BALB/cJ and BALB/c mice.  

These two substrains are highly related, having separated roughly 60 years ago.  

However, BALB/c mice have the wild-type Zhx2 allele since the MERV element is 

found only in the BALB/cJ substrain.  I also carried out experiments in BALB/cJ mice 

that do or do not contain the TTR-Zhx2 transgene; this construct contains the liver-

specific transthyretin promoter/enhancer linked to a full-length Zhx2 cDNA.  These mice 

will be referred to as BALB/cJ+Zhx2; Zhx2 levels in the livers of these transgenic mice 

are similar to wild-type Zhx2 levels (Morford, L., Turcios, L., Peterson, M., unpubl obs)  

As mentioned earlier, BALB/cJ+Zhx2 exhibited increased serum triglyceride levels 

compared to BALB/cJ mice when placed on a high fat diet.  Age matched female mice 

from each strain (n=5) were placed on either normal chow (LF, 6.8% fat) or a high fat 

(HF) Harlan Teklad chow (15% fat) for eight weeks; previous studies showed that 

atherosclerotic plaque formation occurs during this time period.  Weekly measurements 

indicated weight gain in all cohorts (Figure 18). By week 8, BALB/cJ mice in both 

cohorts on the high fat diet weighed significantly more than their counterparts on normal 

chow.  A significant interaction of strain and diet on weight gain (p=0.046) was observed 

in the BALB/cJ and BALB/c cohort. At the end of 8 weeks, all mice were sacrificed and 
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the dissected livers were weighed prior to processing. Livers of all mice on the high fat 

chow became enlarged and white in color due to lipid accumulation (Figure 19A). Liver 

weight normalized to body weight showed that all cohorts on high fat chow had 

significantly increased liver: body weight ratios compared to littermates on normal chow. 

A significant interaction was found between strain and diet type for both BALB/cJ and 

BALB/cJ+Zhx2 (p=0.018) and BALB/cJ and BALB/c (p=0.012) cohorts.  

 

Zhx2 regulates Cyp8B1, Lpl and Elovl3 in the liver.  Zhx2 is predicted to 

contain two zinc fingers and four homeodomains [99], hallmarks of nucleic acid binding 

proteins.  While other data suggest that Zhx2 functions as a transcription factor, data from 

our lab in collaboration with Dr. Peterson suggest that Zhx2 might also function at the 

posttranscriptional level.  Until recently, the known targets of Zhx2 regulation were AFP, 

H19 and glypican 3 (Gpc3) [177, 178].  Interestingly, all three of these genes are low in 

normal adult liver but are frequently reactivated in liver cancer. I have analyzed other 

candidate targets of Zhx2 based on microarray data between CON15 and BALB/cJ mice 

provided by the Lusis lab.  

Sterol 12-hydroxylase (Cyp8B1) was my first gene of interest due to its 

important role in the synthesis of bile acids, which requires cholesterol as a precursor.  

Cyp8B1 is the key enzyme for cholic acid production, which determines the 

hydrophobicity of bile acid salts [179].  RNA extracted from the livers of each mouse 

was analyzed for Cyp8B1 using standard RT-PCR.  There was no difference observed 

between cohorts on the normal chow (Figure 20A-B).  BALB/cJ mice maintain slightly 

higher levels of Cyp8B1 compared to BALB/c mice on the high fat chow even though 

there is a dramatic reduction in levels compared to the mice on the normal chow (Figure 

20B). This difference was not observed with BALB/cJ +/- Zhx2, while there is a 

reduction in Cyp8B1 in response to the high fat chow there is no strain specific difference 

(Figure 20A).  Cyp8B1 is mainly produced in hepatocytes. However, based on 

immunohistochemical studies, it is also found in cholangiocytes and Kupffer cells [180].  

Since the TTR-Zhx2 transgene is expressed only in hepatocytes, the differences in 

Cyp8B1 between BALB/c and BALB/cJ+Zhx2 might be due to Zhx2 expression in non-

parenchymal liver cells. 
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Another gene of interest from the microarray data was Lipoprotein Lipase (Lpl). 

Lpl is known to clear triglycerides from the serum [181], and previous Hyplip2 studies 

suggested that mice with normal Zhx2 had reduced triglyceride clearance [182].  Lpl also 

has a similar developmental profile to AFP in the liver [183], making Lpl a reasonable 

target of Zhx2.  Real-time RT-PCR analysis of Lpl showed a 2-fold decrease in steady-

state mRNA levels in mice containing wild-type Zhx2 on a normal chow diet. Lpl levels 

increased in all mice on the high fat chow with only a significant difference observed 

between BALB/c and BALB/cJ cohorts (Figure 21) which was also found to have a 

significant interaction of strain and diet type (p=0.033). 

Another interesting target gene based on the microarray was Elongation of very 

long-chain fatty acid-like 3 (Elovl3).  However, whereas other targets are high when 

Zhx2 is low, Elovl3 appeared to be regulated in an opposite manner in that its levels were 

low when Zhx2 was low.  Analysis of Elovl3 mRNA levels by real-time RT-PCR 

confirmed that mice on normal chow with wild-type Zhx2 (BALB/c and BALB/cJ+Zhx2) 

had significantly higher Elovl3 levels compared to BALB/cJ mice.  The high fat diet 

significantly reduced Elovl3 to similar levels in all cohorts (Figure 22A-B). Both 

BALB/cJ and BALB/cJ+Zhx2 as well as BALB/cJ and BALB/c cohorts were found to 

have a significant interaction between strain and diet for Elovl3 expression (p=0.0002 

and p=0.00035, respectively) 

 

Reduced hepatic Zhx2 results in increased liver damage in mice on a high-fat 

diet.  Over the past several years, we have begun to appreciate the implication of 

hyperlipidemia on liver function.  Nonalcoholic fatty liver disease (NAFLD), which 

occurs when lipids accumulate in the liver and is frequently found in obese patients, was 

originally considered a benign side effect [184].  However, continued fat accumulation 

can lead to increasing damage and inflammation and progress to chronic hepatitis and, 

ultimately, HCC [185, 186].  To assess liver damage in my diet study, serum was 

collected over the 8-week period and analyzed for Alanine Aminotransferase (ALT).  

ALT is abundantly produced by the liver; increased serum ALT levels reflect leakage 

from damaged hepatocytes [187].  ALT levels were found to be increased in all groups 

during this eight week study (Figure 23A-B).  As expected, mice on the high fat chow 
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showed a greater ALT increase than those on the normal chow.  However, BALB/cJ 

exhibited the greatest increased ALT on the high fat diet, suggesting that the absence of 

Zhx2 led to increased liver damage.  

AFP, a known target of Zhx2, is induced during the regeneration period and can 

also be used as a marker of liver damage [188].  Real-time RT-PCR analysis of liver AFP 

mRNA from mice on normal chow indicated ~10-fold higher AFP mRNA levels in 

BALB/cJ mice compared to mice expressing Zhx2, as expected.  In addition, BALB/cJ 

on the high fat diet showed a dramatic rise in AFP mRNA levels while BALB/c and 

BALB/cJ+Zhx2 AFP levels remained the same (Figure 24). A significant interaction 

between diet and strain was observed for the BALB/cJ and BALB/cJ+Zhx2 cohort 

(p=0.005)  The AFP induction in BALB/cJ on high fat chow is consistent with the ALT 

data and provides further evidence of increased liver damage in the absence of Zhx2. 

Chronic inflammation, under any circumstance, is detrimental to liver function 

and can cause cell death and fibrosis from collagen deposition.  Inflammation is found in 

NAFLD and is often seen as the “second hit” in disease progression [189].  One pro-

inflammatory cytokine known to be increased in NAFLD patients is Tumor Necrosis 

Factor  (TNF) [190].  Therefore, TNF mRNA levels were analyzed as a measure of 

inflammation between the different groups of mice. In all liver samples from mice on a 

normal chow diet, TNF expression was very low (Figure 25).  All mice on a high fat 

diet showed a significant increase in TNF levels.  However, these levels were the same 

regardless of Zhx2 levels, suggesting that TNF cannot account for the increased liver 

damage found in BALB/cJ mice on the high fat chow.    

 

Lipid accumulation and histological alterations are greater in BALB/cJ mice 

than other groups on high fat chow.  At the time of tissue removal all groups on the 

high fat diet exhibited gross liver phenotypic differences compared to those on normal 

chow. To explore further the liver phenotype, formalin-fixed, paraffin-embedded liver 

sections were stained with H&E and analyzed in a “blinded” manner by Dr. Eun Lee, the 

liver pathologist at UK.  Livers from the different groups on the normal chow had no 

differences identifiable by the pathologist. All livers from mice on the high fat diet 

showed hepatocyte ballooning, hepatic unrest and neutrophil abscesses (Figure 26A-B).  
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However, BALB/c mice exhibited less severe changes than the other groups (Figure 

26B).  BALB/cJ mice on high fat chow was the only group that showed macrovesicular 

lipid droplets, but these were low (<1%).  Oil Red O staining was performed on frozen 

liver sections to evaluate triglycerides and lipid accumulation.  As expected, livers from 

all groups on a normal chow had very little staining.  In contrast, significant Oil Red O 

staining was seen throughout the livers of all mice on the high fat diet. BALB/cJ mice 

had substantially more staining than BALB/c and BALB/cJ+Zhx2, indicating that 

reduced Zhx2 resulted in greater lipid accumulation (Figure 27A-B).  

 

Discussion 

 

 High fat diets in developed countries have resulted in an epidemic rise in obesity 

rates as well as associated complications including atherosclerosis and NAFLD. 

Currently, drug treatments for atherosclerosis target a reduction in cholesterol, but are 

ineffective at a complete reversal of the disease. NAFLD remains under investigation 

since pathophysiology and clinical manifestations are not completely understood. There 

is no known effective drug treatment for NAFLD although changing diet can reverse 

some of the histology of the disease in the liver [191].  These metabolic diseases are 

complex due to multiple parameters that contribute to disease progression.  A better 

understanding of the genetic basis of diet-associated cardiac and liver disease will lead to 

better treatment strategies.  In collaboration with Jake Lusis, our lab previously showed 

that Zhx2 can regulate serum lipid levels and atherosclerosis. 

My studies described in this chapter have confirmed several hepatic targets of 

Zhx2 predicted by microarray analysis, including Cyp8B1, Lpl, and Elovl3.  All of these 

genes could contribute to the control of serum cholesterol levels.   The bile acid synthesis 

gene Cyp8B1 is still expressed in BALB/cJ on high fat chow compared to BALB/c.  

However, hepatic Zhx2 transgene expression is unable to completely repress Cyp8B1, 

suggesting that other liver cells such as Kupffer and cholangiocytes (also known as bile 

duct epithelial cells) may contribute to Cy8B1 expression.  Another target of Zhx2 is Lpl; 

on normal chow, BALB/cJ have higher Lpl mRNA levels compared to BALB/c and 

BALB/cJ+Zhx2.  However, Lpl mRNA levels were similar in all strains on the high fat 
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diet.  A study found an upregulation of Lpl in obese patients and suggest a role in hepatic 

steatosis [192]. It is possible that the upregulation of Lpl during high fat diet is an attempt 

to clear excess serum triglycerides. However, it unfortunately results in hepatic lipid 

accumulation to the detriment of the liver. The final target of Zhx2 described here, 

Elovl3, is particularly interesting in that it appears to be positively regulated by Zhx2. 

Elovl3 is one of seven family members involved elongation of fatty acids up to C24 

[193]. Knockout Elovl3 mice were recently found resistant to diet-induced obesity. 

Moreover, reduction in Elovl3 decreased hepatic lipid droplets and also reduced VLDL-

TG levels in mice fed high fat chow [194]. A combination of elevated Lpl and lower 

Elovl3 is potentially why BALB/cJ mice have lower serum triglyceride levels compared 

to BALB/c mice on normal chow. More detailed analysis of Elovl3 is being carried out 

by another graduate student in the lab (Ren, H. unpublished data). 

 Genetic changes and altered lipid levels are the “first hit” in NAFLD. It is 

inflammation and subsequent liver damage that is the “second hit” to progress the disease 

[184]. Without intervention, inflammation and fibrosis can lead to cirrhosis and possible 

HCC development. Interestingly, this study shows presence of Zhx2 protects from diet-

induced liver damage. Mice expressing Zhx2 had lower serum ALT and no AFP 

induction when on the high fat chow. Inflammation is one possible mechanism for liver 

damage; pro-inflammatory cytokines are elevated in NAFLD patients [195]. Through 

monitoring TNFα mRNA in this study, it increased to similar levels amongst all cohorts 

on a high fat chow which could be produced by the Kupffer cells. Accumulated lipids 

cause inflammation, but can also put stress on cells, ultimately causing death [196]. 

Histology and Oil Red O show that BALB/c mice with wild-type Zhx2 have less severe 

steatosis and decreased lipid accumulation suggesting less lipid related stress. There are 

multiple avenues in which excess lipids cause cell death that will be explored in future 

studies to determine the mechanism of damage occurring in BALB/cJ mice.  
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A. 

 

B. 

 

Figure 18. All cohorts gain body weight on an eight week high fat chow diet study.  

Female mice from the strains A. BALB/cJ and BALB/cJ+Zhx2 or B. BALB/cJ and 

BALB/c were placed on either normal chow (LF) or a high fat chow (HF) for 8 weeks. 

Weekly weight measurements were averaged and are plotted for each cohort as mean +/-

standard deviation. * p<0.05
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Figure continued on next page 
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Figure 19. Liver weight increases with high fat chow feeding. At completion of the eight 

week diet study the livers were collected. A. These are representative pictures for the 

liver phenotype seen in mice of the study. All strains on chow exhibited a normal liver 

phenotype while mice on HF chow had enlarged livers with a white color indicative of 

lipid accumulation. B. All dissected livers were weighed and normalized to body weight 

and calculated as percent. The liver to body weight ratio was averaged for the cohort and 

plotted as mean+standard deviation. All cohorts on HF chow significantly increase 

liver:body weight ratios compared to LF cohort. BALB/cJ on HF in both panels had 

significantly higher ratios as compared to BALB/cJ+Zhx2 (upper panel) and BALB/c 

(lower panel). * p<0.05 
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A. 

 

B. 

 

Figure 20. CYP8B1 levels decrease in mice on HF chow. RNA was extracted from each 

liver and analyzed by RT-PCR for Cyp8B1 expression and L30 as a normalizing gene. A. 

BALB/cJ livers were compared to BALB/cJ+Zhx2 livers on chow or HF. No differences 

are observed in cohorts on chow. While there is a decrease in expression on HF there is 

no obvious difference between these cohorts. B. BALB/cJ livers were compared to 

BALB/c livers on normal chow (chow) or high fat chow (HF). No difference is observed 

between the cohorts on chow. Cyp8B1 levels decrease on HF; for BALB/c it is 

completely shut off, but still remains detectable in BALB/cJ. 
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Figure 21. Lpl increases on a high fat chow. A. RNA collected from BALB/cJ or 

BALB/cJ+Zhx2 livers on chow (LF) or high fat chow (HF) were analyzed through Real-

time RT-PCR for expression of Lipoprotein Lipase (Lpl).  Ribosomal gene L30 was used 

as a normalizing control for all samples. Average from n=5 for each group was calculated 

and plotted as mean+standard deviation. Lpl is significantly higher in BALB/cJ compared 

to BALB/cJ+Zhx2 LF. HF significantly induces Lpl expression; no difference is 

observed between the two strains. B. RNA collected from BALB/cJ or BALB/c livers on 

LF or HF were analyzed similarly for Lpl. BALB/cJ have significantly higher expression 

of Lpl compared to LF BALB/c. While a significant induction of Lpl occurs with HF 

groups, BALB/cJ HF livers have significantly higher expression. This data demonstrates 

Lpl is a target of Zhx2 regulation. * p<0.05 
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Figure 22. Hepatic Elovl3 is positively regulated by Zhx2 in mice on normal chow but 

decreases with high fat chow. A. RNA collected from BALB/cJ or BALB/cJ+Zhx2 livers 

on chow (LF) or high fat chow (HF) were analyzed through Real-time RT-PCR for 

expression of elongation of very long chain fatty acids 3 (Elovl3). Ribosomal gene L30 

was used as a normalizing control for all samples. Average from n=5 for each group was 

calculated and plotted as mean+standard deviation. Presence of Zhx2 in BALB/cJ+Zhx2 

LF results in significantly higher Elovl3 expression. While HF chow causes a reduction 

in Elovl3 expression in BALB/cJ+Zhx2, the resultant levels are significantly more than 

BALB/cJ. No reduction of Elovl3 is observed in BALB/cJ on HF chow. B. RNA 

collected from BALB/cJ or BALB/c livers on chow or HF were analyzed similarly for 

Elovl3. Again, LF BALB/c mice had significantly higher expression of Elovl3 compared 

to BABL/cJ. In BALB/c mice the HF chow dramatically reduced Elovl3 expression 

however this was not different from BALB/cJ levels. No reduction in Elovl3 expression 

is observed in BALB/cJ on HF chow. * p<0.05 
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Figure 23. Serum ALT levels are induced on a high fat diet. Tail vein blood was 

collected from the cohorts A. BALB/cJ and BALB/cJ on either chow (LF) or HF chow 

and B. BALB/cJ and BALB/c on either chow or HF chow at week 0 and at the end of the 

study, week 8. Serum separate from red blood cells was analyzed from each mouse for 

ALT which is an indicator of liver damage. Results were averaged from each mouse in 

the group (n=5) and graphed as mean+standard deviation. Mice on the diet study all had 

ALT increases. BALB/cJ mice on HF had the highest induction by week 8. Although 

levels are higher in BALB/cJ HF they did not reach statistical significance over Zhx2 

expressing mice (BALB/cJ+Zhx2 and BALB/c) on HF.  
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Figure 24. AFP expression is induced in BALB/cJ mice on HF chow. A. RNA collected 

from BALB/cJ or BALB/cJ+Zhx2 livers on chow (LF) or high fat chow (HF) were 

analyzed through Real-time RT-PCR for expression of alpha-fetoprotein (AFP). 

Ribosomal gene L30 was used as a normalizing control for all samples. Average from 

n=5 for each group was calculated and plotted as mean+standard deviation. BALB/cJ 

have significantly higher AFP levels compared to LF BALB/cJ +Zhx2. AFP is 

dramatically induced in BALB/cJ livers on HF which is not observed in BALB/cJ+Zhx2. 

B. RNA was analyzed from BALB/cJ and BALB/c on chow or HF chow similarly for 

AFP. Again, BALB/cJ have significantly higher AFP mRNA levels compared to LF 

BALB/c.  AFP is induced in BALB/cJ on HF chow which does not occur in BALB/c. 

This suggests damage is occurring in BALB/cJ livers on HF chow for there to be this 

AFP induction. Significance levels * p<0.05 
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Figure 25. TNF is induced during HF feeding and is not strain specific. A. RNA 

collected from BALB/cJ or BALB/cJ+Zhx2 livers on chow (LF) or high fat chow (HF) 

and B. BALB/cJ and BALB/c on chow or HF chow were analyzed through real-time RT-

PCR for expression of Tumor Necrosis Factor alpha (TNF). Ribosomal gene L30 was 

used as a normalizing control for all samples. Average from n=5 for each group was 

calculated and plotted as mean+standard deviation. In all cohorts on chow TNF levels 

are very low and no difference is observed between strains. HF chow induces TNF 

expression significantly (p<0.05) however, there again is no strain specific difference 

suggesting inflammation may not be the cause for liver damage. [56] 
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B. 

 

 

Figure 26. Liver Histology. Livers from each mouse in the cohorts A. BALB/cJ and 

BALB/cJ+Zhx2 on chow and HF chow and B. BALB/cJ and BALB/c on chow and HF 

were formalin fixed and paraffin-embedded. Sections from each were stained with H&E 

to examine overall histology. All mice on chow are normal as assessed by a blinded 

analysis by a pathologist. All mice on the high fat diet exhibit steatosis (white arrow) as 

well as hepatocyte ballooning (dashed arrow). Neutrophil abscesses are also present 

(black arrow) in the livers suggesting increased inflammation. BALB/cJ mice in 

particular were found to have <1% macrovesicular. These parameters in BALB/c mice 

were much less severe suggesting Zhx2 protects the liver. Magnification 20X.  
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B. 

 

Figure 27. Oil Red O Staining is less severe in mouse livers expressing Zhx2. Frozen 

livers from the cohorts A. BALB/cJ and BALB/cJ+Zhx2 on chow or HF and B. BALB/cJ 

and BALB/c on chow or HF. Livers were sectioned at 10 um thickness and stained with 

Oil Red O in propylene glycol which stains lipids red. Livers were also counterstained 

with haematoxylin to stain nuclei blue. Images show that all mice on chow have small 

and few lipid droplets. BALB/cJ livers on HF have very dark red and widespread Oil Red 

O staining. Livers expressing Zhx2 (BALB/cJ+Zhx2 and BALB/c) have less robust 

staining suggesting these livers have less lipid accumulation. (Magnification, 20X) 
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Figure 28. Model of Zhx2 and high fat diet-induced liver damage. In mice on a high fat 

chow, lipids including fatty acids, cholesterol and triglycerides are transported to the liver 

from the intestine. In BALB/c mice with normal Zhx2 levels (left panel) these lipids are 

exported out of the liver leading to excess lipids in the serum causing atherosclerotic 

plaque formation. In BALB/cJ mice (right panel), reduced Zhx2 levels lead to 

disregulation of target genes resulting in reduced clearance of lipids from the liver. While 

decreased serum lipid levels reduce atherosclerosis incidence, excess hepatic lipids 

damage the liver and elevate AFP expression and serum ALT levels. 
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CHAPTER 6 

 

Conclusions and Future Directions 
 

The liver is an essential organ needed for maintenance of metabolic homeostasis 

and xenobiotic clearance. Therefore, the liver has become a organ for studying gene 

regulation in development and disease. In our case, we focus on the liver-specific gene 

AFP to understand developmental gene regulation as well as liver cancer gene expression 

changes. Early work with AFP by the Tilghman lab identified three upstream enhancers 

as well as a regulator of AFP postnatal repression [87, 197]. All three enhancers are 

important for the developmental hepatic expression for both AFP and its family member 

Albumin [198]. Characterization of E3 in particular by Peyton and Ramesh found 

pericentral activity in adult livers similar to endogenous pericentral zonal genes providing 

the first evidence of cis-acting elements governing zonal regulation [89]. Zhx2, the 

postnatal repressor of AFP, was identified in linkage mapping and recently implicated in 

other diseases including atherosclerosis. While my work has provided further insights 

into E3 regulation and atherosclerosis associated Zhx2, future studies will build upon 

these observations to better understand these mechanisms of regulation.   

  

E3, RGSe and β-catenin: Liver zonation is poorly understood, however an 

accepted mechanism is that extracellular signals are linked to transcriptional regulation. 

E3 and RGSe are the first known cis-acting elements that exhibit zonality and therefore 

provide a model system for understanding the regulation. AFP is not a zonal gene and 

slight differences between E3 and RGSe activity suggest they might not be regulated in 

exactly the same manner. However, one major similarity is the regulation by -catenin. 

Previous studies showed an association of -catenin activity with overall liver zonal gene 

expression [36, 128]. Utilization of hepatocyte specific -catenin knockout (J. Butler, 

manuscript in preparation) showed both enhancer transgenes lost all activity in -catenin-

/- livers.  

My study presented here identified TCF4 sites at the 3’ end in both enhancers 

through which -catenin activates the enhancers. The degree of evolutionary 
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conservation of this site in both enhancers suggests an important function. This is 

especially evident in E3 since the sequence surrounding the TCF4 site immediately loses 

the high degree of conservation. Mutating the TCF4 site in the enhancers prevents 

increased activity from -catenin; however, basal activities of these mutant enhancers is 

higher compared to wildtype enhancer constructs. In the mouse liver I hypothesize 

mutating this site in E3 and RGSe will increase their activity into non-pericentral 

hepatocytes. Without active Wnt/ -catenin signaling, bound TCF4 acts as a repressor 

through recruitment of co-repressors [61]. If TCF4 is unable to bind to its site, the 

enhancer should become de-repressed.  

One aspect that continues to confound researchers is the mechanism that drives 

the formation of zonality in the liver. While the gradient hypothesis is the most popular, it 

remains difficult to study. Ultimately, oxygen and nutrient concentrations are highest at 

the portal triad and lowest at the central vein creating a gradient of potential signaling 

molecules [44]. Unfortunately, the exact molecules that signal intracellularly to alter gene 

expression remain unknown. -catenin, while known as a regulator of zonation, has 

recently been found to be important in maintaining stem cells in their niches that 

generally have low oxygen concentrations. It was found that hypoxia inducible factor 1 

alpha (HIF-1) activated -catenin needed for maintenance [67]. I hypothesize that lower 

O2 concentrations at the central vein increases -catenin activity in the pericentral 

hepatocytes. To test this hypothesis Hep3B cells, with low endogenous -catenin activity, 

could be transfected with TOP-Flash and treated with cobalt chloride (CoCl2) to mimic a 

hypoxic environment. If hypoxia activates -catenin, I would expect an increase in TOP-

Flash luciferase levels. I would also expect similar results if wildtype E3- or RGSe-pGL3 

plasmids were used as the reporter construct. Mutated TCF4 sites within E3 and RGSe 

enhancer constructs would blunt the activation by -catenin activity.  

   AFP and -catenin have very similar expression profiles throughout 

development of the liver [199]. Developing fetal liver express high levels of AFP and -

catenin until they are repressed around birth. AFP and -catenin are also re-activated 

during liver regeneration for appropriate expansion and repopulation of hepatocytes [71]. 

Mutations in the negative complex or in -catenin causing over-activation are often found 
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in cancers [200]. HCC reactivates AFP and a number of HCC samples harbor these 

activating -catenin mutations [72]. To date, no association has been found between AFP 

and -catenin in HCC [201]. However, in my study, I found that -catenin regulates AFP 

during development since knockout -catenin d1 livers have decreased AFP mRNA 

levels. During development, AFP is methylated until it is activated in hepatoblasts [202]. 

No studies have examined epigenetic changes at the AFP locus after birth.  I hypothesize 

that the AFP gene undergoes epigenetic alterations after birth that contributes to low 

expression in adult liver. DNA methylation could be analyzed through bisulfite 

sequencing at both endogenous E3 and the promoter at time points in the liver beginning 

after birth continuing to adulthood. DNA methylation is typically preceded by other 

chromatin changes including nucleosome positioning. This type of regulation occurs very 

early in development when the stem cell markers OCT4 and Nanog are silenced. When 

the upstream enhancer of OCT4 and proximal Nanog enhancer become occupied with 

nucleosomes the element becomes less accessible to activating proteins [203]. ChIP 

analysis of histones 3 and 4 (H3 and H4) on the regulatory cis-elements of AFP could be 

done pre- and postnatally to determine if nucleosome positioning changes especially at 

the endogenous enhancers. It is possible that other pathways during HCC development 

activate AFP more robustly at earlier time points compared to -catenin and this 

regulation occurs within the other regulatory elements. Ras and myc are oncogenes that 

are often activated in HCC [204]. Tumor suppressor p53 is often found repressed either 

through mutations or hypermethylation which can also occur in HCC [205]. AFP 

upstream region at -3.6kb is found to bind to myc and the AFP promoter has a Foxa/p53 

binding site [206, 207]. Both could therefore be potential sites for AFP activation in HCC 

independent of -catenin status.  

 

E3, RGSe and nuclear receptors. Both the AFP E3 and RGSe enhancers are 

approximately 300-350bp in length which can potentially contain many protein binding 

sites. Besides the TCF4 site at the 3’-end, E3 contains three characterized binding sites at 

the 5’-end. Only the nuclear receptor site is involved in maintaining pericentral activity of 

E3 which binds ROR and Rev-erb proteins [133]. In my study I show ROR is an 

important positive regulator of E3 because ROR null mice have dramatically reduced 
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E3 transgene activity. There is not a complete loss of E3 activity like in -catenin 

knockout livers suggesting that there is possibly another factor that is able to activate the 

enhancer but not to the level of ROR. Based on previous data from the lab as well as 

studies performed in chapter 4, -catenin and ROR are needed for full activity of E3. -

catenin has recently been shown to interact with nuclear receptors [158] so it is 

conceivable that there may be an interaction between -catenin and ROR occurring in 

E3. In EMSA, RORα binds to the E3 NR site probe. Including the active -catenin 

antibody resulted in a supershifted band suggesting an interaction between RORα and -

catenin. These interactions unfortunately were not corroborated utilizing co-

immunoprecipitations (Butler, J. unpublished). One interesting observation made by J. 

Butler was that ROR has a slight zonal pattern of expression where the highest levels of 

proteins, detected by immunofluorescence, are in pericentral hepatocytes. Based on some 

recent data there also may be an indirect interaction between ROR and -catenin via 

HIF-1. As mentioned above, HIF-1 has been shown to activate -catenin, but it can 

also activate ROR[208]. Moreover, ROR is able to activate HIF-1 creating a feed-

forward mechanism of continuous activation [209]. I hypothesize that ROR is able to 

activate HIF-1 which activates -catenin in pericentral hepatocytes. To test this 

hypothesis in vitro, Hep3B cells could be co-transfected with RORα expression plasmid 

and TOP-Flash control plasmid. If β-catenin is activated luciferase from TOP-flash will 

increase. To date no RORα binding site is identified for RGSe so the results should be 

similar to TOP-flash. If this is occurring in the mouse liver then immunohistochemistry 

for active -catenin in ROR-/- mice should also be reduced.   

When Peyton linked E3 to E2 in the reporter transgene the regulation occurring at 

E3 was dominant, and again, only active in pericentral hepatocytes [90]. Mutation of the 

nuclear receptor in the E3-E2-gl-Dd changed the pattern of activity to that of E2 

demonstrating active repression of E3 is occurring in the non-pericentral hepatocytes 

[90]. The proteins Rev-erb and Rev-erb are known repressors and can bind to the NR 

site along with the activator ROR. My data is consistent with SS transgenics in that the 

NR mutation in E3-E2-pGL3 is not responsive to either Rev-erb or Rev-erb but 

surprisingly maintains responsiveness to ROR. This could be due to added activity 
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provided by E2 which is not as well characterized or studied enhancer. To rule out ROR 

binding in E2, binding site analysis with TESS could identify any putative orphan nuclear 

receptor sites. If any exist, EMSA can show whether the ROR protein is capable of 

binding to any putative sites. Transient transfection with E2 alone in pGL3, if activated 

by ROR, would show an increase in acitivity when ROR is co-transfected. I have also 

determined a cloning strategy to place SS mutant E3 alone in pGL3. While it may have 

low baseline activity, if my hypothesis is correct, activity will increase in presense of 

ROR. Our working hypothesis is that in pericentral hepatocytes ROR is bound to the 

nuclear receptor site while Rev-erb or Rev-erb is bound in non-pericentral 

hepatocytes. To test this hypothesis we are currently generating mice that contain the 

MHC Class 1 Ld gene driven by the PEPCK promoter; so transgene expression is only 

detected in periportal hepatocytes [210]. Transgene positive mice will then be bred to E3-

gl-Dd mice to establish mice with reporter genes expressed in periportal (Ld) and 

pericentral (Dd) hepatocytes. One could cell sort these two different subsets of 

hepatocytes and run ChIP analysis on E3 transgene for the presense of ROR or the Rev-

erb proteins. Another approach, using mRNA-seq, could identify differential expression 

of genes between periportal and pericental hepatocytes possibly elucidating novel factors 

involved with zonal regualtion. 

RGSe is not as well characterized compared to E3, but binding site analysis has 

not identified a ROR binding site. Endogenous GS expression is slightly reduced in 

ROR-/- livers suggesting other factors may be involved in its regulation. Based on these 

observations, if RGSe mice were bred to ROR null mice, I would not predict any 

transgene changes in activity with or without ROR. The nuclear receptor HNF4 seems 

to have a greater impact on GS expression compared to data from ROR. HNF4 

knockout livers increase GS expression into non-pericentral hepatocytes detected by 

immunohistochemistry suggesting HNF represses GS in non-pericentral hepatocytes 

[50]. Unfortunately, the binding sites identified and characterized in GS were not located 

within the enhancer [211]. Through similar binding site analysis with TESS I have 

identified a putative HNF4 binding site within RGSe. In vitro tests could be performed 

first, co-transfecting increasing HNF4 with wildtype RGSe-pGL3 and HNF4 mutant 
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RGSe to determine if this site was functional and responsive to HNF4.  I predict, if 

mutated, RGSe activity in vivo would increase into non-pericentral hepatocytes much like 

that of the NR mutation in E3.  

Our model for zonal regulation also includes these different factors, -catenin and 

nuclear receptors exerting their function through an enhancer element. GS is not the only 

zonal genes in which enhancers have been identified. More recently, four putative 

enhancer elements were identified upstream of the OAT transcription start site. Cloning 

each individual enhancer showed activity in the eye, gut, and kidney (J. Butler). 

Unfortunately, the final putative enhancer was not found to have any liver activity (data 

not shown). We are currently exploring other putative enhancer elements found within 

RhBG and I predict one will recapitulate zonal activity. While our focus has been mainly 

on pericental genes, not much is known about the zonal regulation of periportal genes. 

PEPCK, as mentioned before, is regulated by many nutritional and hormonal signals [39], 

but the factor to silence it in pericentral hepatocytes remains unknown. Linking the 

promoter to a heterologous gene drives the expression to a zonal pattern much like that of 

the endogenous gene.  Therefore, I predict periportal genes are zonally regulated 

primarily through the promoter. The PEPCK-Ld transgenic mice could then serve as a 

model system to understanding periportal gene regulation. 

 

Zhx2 and Cholesterol Homeostasis. Overall lipid homeostasis is important since 

imbalance can lead to disease such as obesity, diabetes, atherosclerosis and NAFLD. 

While the QTL study shows presence of Zhx2 causes susceptibility to an atherogenic diet 

due to increased serum cholesterol and triglyceride levels, my data suggests it also 

protects against liver damage. Liver damage introduces additional consequences for if it 

becomes chronic, NAFLD can progress to cirrhosis which is known to promote the 

development of HCC [186]. My data also validates gene expression changes, similar to 

those observed in the Lusis microarray, identifying novel Zhx2 targets. Lpl, Cyp8B1 and 

Elovl3 fall within this category, but have slightly different expression patterns based on 

Zhx2 status and type of diet. While the mechanism for how Zhx2 regulates its target 

genes remains unknown studying additional targets provides new models for 

understanding the mechanism. The postnatal repression of AFP by Zhx2 occurs in the 
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250 proximal promoter therefore, the prediction is these new target genes would also be 

regulated through their promoters. PCR amplified promoters from each of these genes 

could be placed in the pGL3 enhancer construct and co-transfected in hepatoma cell lines 

along with a Zhx2 expression plasmid. I would expect constructs with Lpl and Cyp8B1 

promoters would have reduced luciferase levels with the addition of Zhx2. Transfection 

studies with AFP and Zhx2 have proven difficult since the 10 to 20-fold difference seen 

between BALB/cJ and other strains is not recapitulated with this system. The maximum 

reduction Zhx2 exerts at the 250 bp AFP promoter is 2-fold. Examining the Elovl3 

promoter would provide a better model system since addition of Zhx2 would have an 

opposite effect, causing an increase in luciferase levels. If all of the promoters respond, 

gradual deletions of promoter regions could localize elements responsive to Zhx2 that can 

then be compared amongst all the target genes to determine a consensus sequence. 

Throughout the years no binding of Zhx2 to the AFP promoter has been detected 

suggesting a post-transciptional regulation by Zhx2. Unspliced AFP is found in the 

cytoplasm in the presense of Zhx2 (Turcios, L and Peterson, M. unpub data). To see if 

this occurs in the new targets several primers can be designed to monitor inclusion of 

introns in the mRNA.  

Damage occurs in the liver multiple ways due to its encounter with many 

molecules and substances on a daily basis. Though the mechanisms of hepatocyte stress 

and cell death may differ, HCC development is a common end result of chronic damage. 

For NAFLD, in particular, chronic inflammation is not the only causative source of 

hepatic injury. In my study, I have shown serum ALT and AFP are induced in BALB/cJ 

during a high fat feeding. I predict based on these parameters that there is increased cell 

death during the high fat feeding, the most occurring in BALB/cJ livers, which can be 

quantified using Tunel staining of paraffin embedded sections. Lipids are known to cause 

damage through stress and metabolism. Lipid oxidation of fatty acids can produce 

reactive-oxygen species (ROS) that lead to cell death [212]. Since BALB/cJ mice seem to 

accumulate more lipids based on Oil Red O, I would hypothesize ROS levels are 

dramatically increased compared to BALB/c and BALB/cJ+Zhx2 during high fat feeding. 

Liver damage activates stellate cells which deposit collagen as a regeneration mechanism. 

Years ago QTL mapping of BALB/cJ and A/J mice located a site on mouse chromosome 



 

98 
 

15 associated with fibrosis, a similar region to the location of Zhx2. BALB/cJ mice 

exhibit more severe fibrosis which could be occurring in this diet study [213]. Collagen 

deposition can be easily detected and quantified using staining techniques on paraffin-

embedded sections. I would predict that BALB/cJ hepatic collagen levels would be 

higher than BALB/c livers on the high fat chow. This too may also be due to Zhx2 

expression within stellate cells. Therefore, I would not predict a difference in collagen 

levels between BALB/cJ and BALB/cJ+Zhx2 since the transgene is only expressed in 

hepatocytes.   

The liver is not the only tissue found important for the progression of metabolic 

diseases. Macrophages are a major culprit for they develop into foam cells when 

phagocytosing lipids, which adds to atherosclerotic plaques [214]. Dysregulation of fat 

storage or increased inflammation occurring in the adipose tissue has major implications 

in the metabolic diseases [215]. Due to its ubiquitous expression profile [96] and 

implications in other diseases [101, 106, 216], it is possible the Zhx2 may be playing 

regulatory roles in these other tissues that have not yet been identified. We have recently 

obtained Zhx2 floxed mice from the KnockOut Mouse Project (KOMP) in which their 

targeting vector inserted loxP sites flanking exon 3, the coding region of Zhx2. These 

mice can then breed to mice containing cre-recombinase driven by various promoters to 

delete Zhx2 in a tissue specific manner. Based on our laboratory’s interests we would 

first knock-out Zhx2 in hepatocytes. If these mice are placed on an atherogenic diet I 

would predict a phenotype similar to that of BALB/cJ; lower serum lipid levels compared 

to wildtype animals, low incidence of atherosclerotic plaques, increased serum ALT and 

AFP mRNA levels. Tissue specific Zhx2 deletion could elucidate Zhx2 regulatory roles 

during high fat feeding in other metabolic tissues mentioned above. Zhx2 knockout may 

in fact provide a better model since BALB/cJ mice are a knock-down of Zhx2 in protein 

and mRNA levels compared to either BALB/c or BALB/cJ+Zhx2.   
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