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ABSTRACT OF DISSERTATION 
 

 
 

PRECLINICAL EVALUATION OF LOBELINE FOR THE TREATMENT OF 
ADHD: COMPARISON WITH PSYCHOSTIMULANT THERAPIES 

 
 This dissertation work investigated the effect of acute and repeated in vivo 
administration of lobeline on dopamine transporter (DAT) and vesicular 
monoamine transporter (VMAT2) function. The effects of lobeline were then 
compared to the effects of acute and repeated in vivo administration of 
methylphenidate and amphetamine to determine if lobeline produced similar 
effects compared to these Attention Deficit Hyperactivity Disorder (ADHD) 
medications. These medications are considered the first line of pharmacotherapy 
for ADHD, although there is a growing concern associated with their potential for 
abuse and other side effects. This merits the need for novel ADHD treatments 
that have a safer side effect profile. If lobeline alters DAT and VMAT2 function in 
the same way as methylphenidate or amphetamine, further investigation may be 
necessary to evaluate lobeline as a potential treatment for ADHD. Kinetic 
analysis of [3H]dopamine (DA) was utilized to determine the effect on DAT and 
VMAT2 function in rat striatum. Results from the DAT experiments, revealed that 
lobeline as well as amphetamine had no effect on DAT function. However, 
methylphenidate increased DAT function after acute and 7-day treatment. None 
of the drug treatment regimens altered Km. To determine if the methylphenidate-
induced increase in DAT function was due to DAT trafficking, biotinylation and 
Western blot analyses were performed. Acute administration of methylphenidate 
did not alter surface DAT, however repeated administration of methylphenidate 
for 7 days decreased intracellular DAT, suggesting that methylphenidate 
redistributes DAT in a time-dependent manner. Similar results were found in the 
VMAT2 experiments. Lobeline and amphetamine had no effect on VMAT2 
function after acute or repeated administration. Amphetamine decreased the Km 
after repeated administration for 7 days. Methylphenidate increased VMAT2 
function after acute and repeated administration for 7 days. The overall results of 
these experiments suggest that methylphenidate interacts with DAT and VMAT2 
in a different manner than amphetamine and lobeline. In addition, since lobeline 
and amphetamine had no effect on DAT and VMAT2 function, further 
investigation is warranted to elucidate the underlying mechanisms of the 
therapeutic actions of these agents. This additional information will aid in the 
development of novel treatments for ADHD. 

 
Keywords:  lobeline, methylphenidate, amphetamine, striatum, ADHD, dopamine 
transporter, vesicular monoamine transporter 
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Chapter One 
 

 Introduction and Background 
 
A. Attention-Deficit Hyperactivity Disorder  

Attention-Deficit Hyperactivity Disorder (ADHD) is defined in the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) as primarily 

a childhood psychiatric disorder; however, 30-60% of childhood cases continue 

into adulthood (American Psychiatric Association, 2000; Himelstein & Halperin;  

2000). Historically, this disease was labeled a “mental restlessness or a disease 

of attention”, specifically in 1798 by Sir Alexander Crichton, a Scottish author and 

physician (Palmer & Finger, 2001).  However, Sir George Fredrick Still, a British 

pediatrician, is most well-known for describing in 1902 the clinical manifestations 

of ADHD, based on his observations of over 40 children with serious problems of 

sustained attention and self-control. Sir Still described the behavior of these 

children as a “quite abnormal incapacity for sustained attention” (Still, 1902).  

Over the years, the classification of this condition has evolved from hyperkinetic 

reaction of childhood disorder  to attention deficit disorder in 1980 to ADHD, 

which includes the hyperactivity component of the behavior (American 

Psychiatric Association, 1987).   

1. Prevalence 
ADHD is a major clinical and public health problem due to its disruptive 

nature in school-age children, and rising prevalence and impact on the economy 

(Meijer et al., 2009). Research has shown that boys are 3 times more likely to 

have ADHD compared to girls (Barkley et al., 1990; Faraone et al., 2003). The 

world-wide prevalence of ADHD is 5-12% and 3-5% in children and adults, 

respectively, in the United States, depending on the diagnostic criteria utilized 

(Brown et al., 2001b; Faraone et al., 2003; Kessler et al., 2005; Kessler et al., 

2006; Polanczyk et al., 2007). The estimated mean annual cost for a 

child/adolescent with ADHD in the United States is $14,576 which includes 

health and mental healthcare costs ($2,636), education ($4,900), and crime and 
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delinquency ($7,040) with a range of $12,005 to $17,458 (Pelham et al., 2007).  

The overall cost of illness based on the 2000 census of 60 million school-aged 

children was estimated to be $42.5 billion annually, of which $7.9 billion is health 

and mental healthcare costs, $13.6 billion is educational cost, and $21.1 billion is 

crime and delinquency costs (Pelham et al., 2007).  Based on the prevalence in 

adults, the estimated cost of ADHD is between $36-77 billion, which is close to 

the costs associated with alcohol abuse ($85 billion); greater than the costs 

associated with drugs of abuse such as cocaine and marijuana ($58 billion);and 

greater than costs associated with depression ($43 billion) (Pelham et al., 2007; 

Reinberg, 2004). Furthermore, the National Health Statistics Report estimated 

that there were as many as 7 million ambulatory care visits for ADHD in 2006 

(Schappert, 2008). In addition, a study that included 10 countries concluded that 

adult ADHD was associated with 143.8 million lost days of productivity each year 

(de Graaf et al., 2008) and another study reported a work loss cost of adults with 

ADHD that is approximately $3.7 billion in the US (Birnbaum et al., 2005). Taken 

together, it is clear that ADHD has a huge economic impact on the health and 

economy for the US, as well as the world. 

2. Etiology 
The etiology of ADHD is unknown; however, there has been an enormous 

amount of research conducted on this topic. Generally, the overall conclusion is 

that the etiology of ADHD is complex and involves a combination of factors. 

These factors include genetics, prenatal exposure to tobacco smoking, or 

alcohol, or to both tobacco smoking and alcohol simultaneously (Betel, 1995; 

Dawson, 2000; Mayfield, 2008). 

As stated above, an important factor is genetic predisposition. Twin and 

adoption studies show that genes play a vital role in the familial transmission of 

ADHD (Biederman & Faraone, 2005).  For example, adoptive relatives are less 

likely than biological relatives to have the disorder or associated symptoms 

(Sprich et al., 2000). Numerous family studies have shown that there is a genetic 

link to ADHD, such that 25-33% of parents of ADHD children have ADHD 

themselves (Cormier, 2008). Specifically, variants of genes associated with 
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dopamine (DA) neurotransmission have been investigated most commonly with 

respect to the etiology of ADHD (Faraone & Khan, 2006).  These polymorphic 

genes include the DA D4 receptor gene (DRD4) (Benjamin et al., 1996; Gabriela 

et al., 2009; Rubinstein et al., 1997; Tahir et al., 2000), the DA D5 receptor gene 

(DRD5) (Hawi et al., 2005; Manor et al., 2004; Mill et al., 2004; Tahir et al., 

2000), and the DA transporter gene (Barr et al., 2001; Cook et al., 1995; Giros et 

al., 1996; Hawi et al., 2009; Henriquez et al., 2008; Hiongwa et al., 2004).   

Research has been conducted on ADHD using D4 knock-out (D4KO) 

mice. D4KO mice are genetically altered mice that have had the D4 receptor 

gene deleted. D4KO mice were found to have a 32% decreased basal locomotor 

activity compared to wild-type (Rubinstein et al., 1997). In addition, this study 

revealed that the D4KO mice were more sensitive to cocaine (15 and 30 mg/kg) 

and methamphetamine (1 and 2 mg/kg) administration, as demonstrated by a 

two-fold increase in stimulant response in D4KO mice compared to WT. These 

results suggest that the DRD4 gene is involved in hyperactivity, an ADHD 

hallmark symptom, as well as response to psychostimulants that are used as 

treatments for ADHD.    

 To follow up on the results of this preclinical study employing D4KO mice, 

relationships between the DRD4 exon III sequence variants and personality test 

scores were evaluated in 315 mostly male siblings and other family members of 

individuals with ADHD (Benjamin et al., 1996).  An association was found 

between the DRD4 variants and the novelty seeking personality trait in relatives 

of the ADHD individuals. Another study examined the association of the DRD4-7 

repeat (DRD4-7r) allele with novelty seeking in a sample of 303 15-year old 

adolescents (144 males and 159 females) using data from a high-risk community 

sample (Becker et al., 2005).  Males with the DRD4-7r allele polymorphism 

scored significantly higher with respect to the novelty seeking personality trait 

(p=0.002) of the Junior Temperament and Character Inventory and no 

association was found in females. However, a meta-analysis of 20 studies 

conducted by Kluger et. al., 2002, found no association between the DRD4 

polymorphism and novelty seeking. A meta-analysis combines the results of 
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several studies that address a set of related research hypotheses. In its simplest 

form, this is normally by identification of a common measure of effect size, for 

which a weighted average might be the output of a meta-analyses. Here the 

weighting might be related to sample sizes within the individual studies. More 

generally there are other differences between the studies that need to be allowed 

for, but the general aim of a meta-analysis is to more powerfully estimate the true 

"effect size" as opposed to a smaller "effect size" derived in a single study under 

a given single set of assumptions and conditions. It is only a statistical 

examination of scientific studies, not an actual scientific study, itself. 

  Nevertheless, the presence of high variability of the association between 

DRD4 polymorphism and novelty seeking suggests that there are unknown 

causes for observing weak to moderate positive effects in some studies. This 

issue could be addressed more fully by utilizing more advanced statistical 

techniques, high-through output genotyping and large numbers of polymorphoric 

markers such as single nucleotide polymorphisms. 

With respect to the DRD5 gene polymorphism, a transmission 

disequilibrium test (TDT) was used to evaluate the linkage of the DRD5 gene 

variant and ADHD (Hawi et al., 2005). ADHD was associated with over 

transmission of the variant paternal alleles of both DRD5 and DRD4 genes. 

Another study using TDT found only a trend for an association with the DRD5 

gene, but a significant increase in transmission of the DRD4-7r allele in ADHD 

individuals (Tahir et al., 2000).  Also, the role of DRD5 gene in ADHD individuals 

was studied by genotyping ADHD families and searching for the 148 base pair 

allele of DRD5 (Manor et al., 2004). A preferential transmission of this variant 

DRD5 gene was confirmed using TDT with the Family Based Association Test, 

suggesting that the DRD5 repeat polymorphism confers a small, but significant 

(p=0.037) risk for ADHD (Manor et al., 2004). Taken together, the results of these 

studies suggest that the DRD5 gene also plays a role as a genetic factor 

contributing to ADHD, which needs to be further evaluated. 

The DAT1 gene is another gene that has been found to be associated with 

ADHD. The  association between the presence of ADHD and the 480-bp DAT1 
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allele was determined in 49 subjects with ADHD based on DSM-IV criteria using 

the haplotype-based haplotype relative risk (HHRR) method to avoid effects 

associated with the small sample of subjects with regards to  population 

stratification (Cook et al., 1995).  This study found a significant association 

between the 480-bp DAT1 allele and ADHD. As a preclinical correlate, a 

disruption by homologous recombination of the mouse DAT gene knock-out 

(DAT-KO) resulted in 3-fold greater spontaneous hyperactivity, demonstrated as 

immediate hyperactivity when placed in a chamber with no treatment given, 

compared to heterozygotes and WT mice. Since hyperactivity is a hallmark 

symptom of ADHD, the DAT gene was suggested to be involved in the etiology of 

ADHD (Giros et al., 1996). Another study investigated the variable number 

tandem repeats (VNTR) polymorphism of DAT1, which is a location on the 

genome where a short nucleotide sequence is organized as a tandem repeat, 

where a pattern of 2 or more nucleotides is repeated and the repetitions are 

directly adjacent to one another (Barr et al., 2001). To determine if the VNTR was 

associated with ADHD; 333 subjects from 102 nuclear families were genotyped. 

A linkage of the 480-bp allele of the DAT1 gene with ADHD was found, 

suggesting that molecular analysis of the DAT gene may identify mutations that 

increase the risk for ADHD.   

The utilization of pharmacogenomics, which is a branch of pharmacology 

involving the influence of genetic variation on drug response by relating gene 

expression or polymorphisms with a drug’s efficacy or toxicity, may be a potential 

method in developing a gene therapy for ADHD. For example, 

pharmacogenomics is used in cancer research to determine which patient will 

have the best response to a certain treatment. Hopefully, in the same way 

biochemical analysis of these mutations in specific patients could lead to the 

development of more efficacious therapeutic treatment options for individuals 

with ADHD. 

In addition to DAT, the norepinephrine transporter (NET) gene is of 

interest due to the efficacy of atomoxetine, a selective norepinephrine uptake 

inhibitor, as a treatment for ADHD. In addition, NET is primarily responsible for 
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the reuptake of DA in the frontal cortex due to the low density of DAT in this brain 

region. In one study, 184 unrelated males (mean age 34.1 yrs) with adult ADHD 

were assessed according to the International Classification of Diseases (ICD-10), 

10th revision: Clinical Modifications, 6th (Greydanus et al., 2007), criteria for 

ADHD (Retz et al., 2008).  The results of this study found negative evidence of 

an association between the NET gene and ADHD. However, this result could be 

due to the fact that this was a study of adults in Germany with ADHD who may 

have less severe ADHD symptoms compared to adolescents; such that the age 

of the subjects and location of the study could play a role in the results. In 

contrast, Kim et al., (2006, 2008) observed in two separate studies a significant 

association between the polymorphism of the NET gene and ADHD, suggesting 

that anomalous transcription factor-based repression of NET may increase risk 

for the development of ADHD (Kim et al., 2006; Kim et al., 2008). Given the 

controversial results found in the investigation of the NET gene in regards to the 

etiology of ADHD, it is difficult to draw any conclusions as to its association with 

ADHD.  

Based on the evidence provided, genetics may play a vital role in the 

etiology of ADHD. There is still much to be determined in regards to which 

specific polymorphisms are more responsible for the development of ADHD, 

however, future advances that will be made in this area will help gain a better 

understanding of the role that genetics play in the etiology of ADHD. 

Other studies have shown that environmental conditions such as prenatal 

exposure to alcohol and tobacco smoking may be associated with the 

development of ADHD in childhood (Linnet et al., 2003; Mick et al., 2002; 

Milberger et al., 1996; Milberger et al., 1998). One study assessed 1,452 twin 

pairs and found that maternal smoking shows an association with ADHD 

symptoms in the offspring (Thapar et al., 2003). A meta-analysis on literature 

published before 2005 revealed a pooled odds ratio indicating more than a 2-fold 

increase in the risk for ADHD in individuals whose mothers smoked tobacco 

during pregnancy (Langley et al., 2005), suggesting that maternal smoking during 

pregnancy is a risk factor for ADHD.   With respect to alcohol exposure, one 
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study assessed 68 children who were born into three separate groups, women 

who reported not drinking during pregnancy, women who reported drinking 

during pregnancy, and women who reported drinking an equivalent amount, but 

who stopped after an educational intervention during the second trimester 

(Brown et al., 1991).  The results showed those children who were exposed to 

alcohol throughout pregnancy showed deficits in the ability to sustain attention. 

Another study analyzed a twin cohort consisting of 922 children with a history of 

maternal alcohol use (Knopik et al., 2006). The study used a children-of-twins 

design, which is a design that incorporates twins in order to explore the effects of 

genetics and environmental variance on a phenotype. In addition, diagnostic 

telephone interview data from high-risk families and control families targeted from 

a large Australian twin cohort were employed. The calculated odds ratio 

(OR=2.53) suggested that children exposed to prenatal alcohol were two-times 

more likely to exhibit ADHD compared to those not exposed to prenatal alcohol. 

The findings from the aforementioned studies imply that maternal alcohol and 

tobacco use may play a key role in the etiology of ADHD.  

 Evidence has shown that these risk factors of maternal tobacco and 

alcohol use may be important etiologies of ADHD. These risk factors may work in 

concert with genetic factors, in that the exposure to nicotine and alcohol may 

interact with genetic polymorphisms, making these children more at risk for 

ADHD. In contrast, there are children who were not exposed prenatally to 

nicotine or alcohol that have ADHD. With that in mind, further research is 

necessary to fully address the complexity of the etiology of ADHD. 

3. Symptomology and Diagnosis  
ADHD presents as a myriad of symptoms including the hallmarks, 

hyperactivity, impulsivity and inattention, with 30-60% of childhood cases 

extending into adulthood (American Psychiatric Association, 2000; Himelstein & 

Halperin, 2000).  The specific symptoms listed as diagnostic criteria for ADHD in 

the DSM-IV-TR include: 
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1) Six or more of the following symptoms of inattention have 

persisted for at least 6 months to a degree that is maladaptive and 

inconsistent with the developmental level:  

a) Often fails to pay close attention to details or makes 

careless mistakes in schoolwork, work, or other 

activities 

b) Often has difficulty sustaining attention in tasks or 

play activities.  

c) Often does not seem to listen when spoken to directly 

d) Often does not follow through on instructions and fails 

to finish schoolwork, chores, or duties in the 

workplace (not due oppositional behavior or failure to 

understand instructions) 

e) Often has difficulty organizing tasks and activities  

f) Often avoids, dislikes, or is reluctant to engage in 

tasks that require sustained mental effort (such as 

schoolwork or homework) 

g) Often loses things necessary for tasks or activities 

(i.e., toys, school assignments, pencils, books, or 

tools) 

h) Is often easily distracted by extraneous stimuli 

i) Is often forgetful in daily activities 

2)  Six or more of the following symptoms of 

hyperactivity/impulsivity have persisted for at least 6 months to a degree 

that is maladaptive and inconsistent with the developmental level:  

a) Often fidgets with hands or feet or squirms in seat 

b) Often leaves seat in classroom or in other situations 

in which remaining seated is required 

c) Often runs about or climbs excessively in situations in 

which it is inappropriate (in adolescents or adults, 

may be limited to subjective feelings of restlessness) 
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d) Often has difficulty playing or engaging in leisure 

activities quietly 

e) Is often “on the go” or often acts as if “driven by a 

motor” 

f) Often talks excessively 

g) Often blurts out answers before questions have been 

completed 

h) Often has difficulty waiting 

i) Often interrupts or intrudes on others (butts into 

conversations or games) 

(American Psychiatric Association, 2000; Greydanus et al., 2007) 

Some of the hyperactive-impulsive or inattentive symptoms that cause 

impairment were present before 7 years of age. In addition, some impairment 

from the symptoms is observed in 2 or more settings (i.e., at school, work, or at 

home). Due to the complex symptomology, ADHD has been divided into three 

subtypes: a) predominantly inattentive (known as Attention-Deficit Disorder 

(ADD), b) predominantly hyperactive/impulsive, and c) combined 

hyperactive/impulsive and inattentive subtypes, to help obtain a more accurate 

diagnosis and treatment of the disorder (American Psychiatric Association, 

2000). The inattentive subtype is characterized by inattention, distractibility, 

disorganization, forgetfulness, and lethargy. The hyperactive-impulsive subtype 

includes symptoms of interrupting, impatience, and fidgetiness. The combined 

subtype is a combination of both the inattentive and hyperactive-impulsive 

subtypes (Tamm et al., 2001). Dividing ADHD into these subtypes is helpful with 

respect to treatment, because ADHD symptoms are unique to each patient 

depending on their specific subtype and their individual response to the 

medication. Russell Barkley, a renowned ADHD researcher believes that 

methylphenidate is more effective in treating ADHD and that amphetamine is 

better suited for the treatment of ADD. This is based on the mechanism of action 

of amphetamine causing it to have a greater effect on norepinephrine than 
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dopamine, therefore, having more of an effect on the inattentive symptom 

(Barkley, 2001). 

Impulsivity and sensation seeking are personality traits that have been 

linked together for various reasons (Nower & Blaszczynski, 2006). Impulsivity is 

defined as “the failure to resist an impulse, drive, or temptation to perform an act 

that is harmful to the person or others” (American Psychiatric Association, 2000). 

Sensation seeking is defined as “the seeking of varied, novel, complex and 

intense sensations and experiences, and the willingness to take physical, social, 

legal, and financial risks for the sake of such experiences (Zuckerman, 1994).  

Adolescence appears to be a critical period of development for these traits. Two 

systems that are involved in the development of adolescent behavior are the 

subcortical socioemotional system and the cognitive control system (Nower & 

Blaszczynski, 2006). The subcortical socioemotional system includes the ventral 

striatum and the amygdala, which is responsible for emotion, novelty, and 

reward. The cognitive control system includes the prefrontal cortex, which is 

crucial for impulse control, emotion regulation, and decision-making. These 

systems mature at different time points throughout the course of development. 

For example, the socio-emotional system appears to become more sensitive in 

early adolescence, during the same time of the onset of puberty.  However, the 

cognitive control system develops more gradually during the end of early 

adulthood (Casey et al., 2005).  Therefore, adolescents may experience an 

increased responsiveness to rewards, affective cues, and novelty while still 

having immature capacities for impulse control and inhibition. A recent report 

conducted in humans found that mean levels of impulsivity were found to decline 

through adolescence and then plateau as youth reached their mid-20s; however, 

mean levels of sensation seeking were found to increase profoundly until mid-

adolescence, peaking around the age of 16 and then slowly decreasing through 

the mid-20s. Various experimental methods have been developed to examine 

impulsivity and sensation seeking in an animal model; however, most of these 

methods have only used a single task as the predictor variable. A novel study 

determined if measuring multiple behavioral tasks simultaneously would be 
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useful for characterizing aspects of sensation seeking and impulsivity as 

predictor variables for amphetamine self-administration (Marusich et al., 2011a).  

This study found that combining these predictor variables into a multivariate 

approached failed to produce any significant correlations among predictor and 

outcome measures. The results imply that multivariate tests are possibly 

insensitive as reliable predictors of drug self-administration, which could 

represent a limitation of animal models for assessing drug abuse vulnerability, at 

least for this particular study.   

 In conclusion, impulsivity and sensation seeking are human traits that are 

multifaceted and require a great deal of skill to evaluate. Furthermore, assessing 

these traits in an animal model is even more of a challenge based on the 

difference in life span between and human and a rat. In addition, impulsivity and 

sensation seeking are human traits that may not be fully modeled in laboratory 

animals. Studies have shown a relationship between impulsivity and sensation 

seeking, however more research is warranted to determine the extent of this 

relationship. 

Evaluation and diagnosis of ADHD are subjective because there are no 

objective diagnostic measurements to test for ADHD. However, there are 

numerous specific diagnostic criteria of ADHD available to assist clinicians in the 

diagnosis. The overall desired outcome of assessment criteria is to determine if a 

child or adult meets the qualifications for ADHD, which may rule out other 

conditions (Liu & Leslie, 2003). Other medical, psychiatric, or developmental 

disorders must be ruled out before the presence of developmentally 

inappropriate levels of inattention and/or hyperactivity/impulsivity can be 

diagnosed as ADHD (American Psychiatric Association, 2000). There are three 

commonly used diagnostic tools, including the DSM-IV-TR, Classification of Child 

an Adolescent Mental Diagnosis in Primary Care: Diagnosis and Statistical 

Manual for Primary Care (DSM-PC), and the ICD-10 (Greydanus et al., 2007). 

The American Psychiatric Association (APA) publishes the DSM-IV-TR and gives 

the most detailed list of symptoms by classification with diagnostic codes and 

criteria used to evaluate the disorder as stated previously. These methods for 
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diagnosis were developed based on different settings that patients are evaluated 

in, and generally are similar. Therefore, the most appropriate assessment 

method is chosen based on setting. The DSM-PC, intended for primary care 

environments, uses a developmental approach to diagnosis, and distinguishes 

between variations, problems, and disorders. The ICD-10 uses the term 

attention-deficit/hyperkinetic disorder, which is commonly used by insurance 

companies (Greydanus et al., 2007).  Questionnaires and rating scales, such as 

the Connors ADHD Index and the DSM-IV Symptoms scales have been 

suggested by the American Academy of Pediatrics (Forsback et al., 2004) as 

guidelines to ensure accurate diagnosis (Tripp et al., 2006). The Connors ADHD 

Index has various different versions based on who is taking the assessment 

(Conners, 1999).  For example, there is the Conners’ Parenting Rating Scale 

Revised-Long Version (CPRS-R:L). This version contains 80 items with 10 

different scales for the parents or caregivers to complete. The short version 

(CPRS-R:S) contains only 27 items and 4 scales. There is also the Conners-

Well’s Adolescent Self-Report Scale-Long Form (CASS:L). This self-report scale, 

which is ideal for adolescents between the ages of 12 and 17, contains 87 items 

and 8 scales.  There is also an assessment for adults called the Conner’s Adult 

ADHD Rating Scale-Self Report: Short Version (CAARS-S:S). It contains 26 

items that quantitatively measure ADHD symptoms while looking at the 

manifestations of ADHD in adults. Subjects read descriptive statements that they 

may, or may not, be presently experiencing (i.e., I have trouble sitting still). 

Subjects rate each statement on a four-point Likert scale ranging from “Not at all” 

to “Very much”. CAARS subscales include: A = Inattention/Memory Problems, B 

= Hyperactivity/Restlessness, C = Impulsivity/Emotional Reliability, D = Problems 

with Self-Concept and E = Total ADHD Index. In summary, there are several 

tools that clinicians can utilize to ensure accurate evaluation and diagnosis of 

ADHD. 
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4. Neuroanatomical and Neurochemical Basis of ADHD  
a. Neuroanatomy 

The neuroanatomical and neurochemical basis of ADHD is based on the 

general consensus that there is a dysregulation of the catecholaminergic 

neurotransmitter systems (Heal et al., 2008). Neuroimaging studies have 

suggested that brain regions, including the prefrontal cortex (PFC) and the basal 

ganglia (striatum, caudate nucleus and putamen)  are the regions with 

dysregulation of neurotransmission in ADHD (Casey et al., 2007).  The PFC and 

striatum are the most widely studied regions regarding ADHD, because these 

regions are involved in behavior, attention, motor control and cognition (Arnsten, 

2006; Kieling et al., 2008). Specifically, motor control is modulated by the 

nigrostriatal DA pathway projecting from the substania nigra to the basal ganglia 

(Stanwood & Zigmond, 2000).  The mesolimbic pathway, projecting from the 

ventral tegmental area (VTA) to the subcortical limbic regions (nucleus 

accumbens, olfactory tubercle and amygdala) is associated with motivated 

behavior (Ikemoto & Panksepp, 1999) and reinforcement (Schultz et al., 2000).  

The mesocortical DA pathway projects from the VTA to the PFC and is involved 

in cognitive function (Floresco & Magyar, 2006). 

Noradrenergic neurons originate both in the locus coeruleus and the 

lateral tegmental area. Norepinephrine containing cell bodies are only found in 

the pons and medulla. However, the pontine norepinephrine-containing cells 

which terminate in the nucleus locus coeruleus, give rise to extensive projections 

to the hypothalamus, thalamus, limbic regions, and cortex. Medullary 

norepinephrine cells project to the hypothalamus, locus coeruleus, and spinal 

cord (Rinaman, 2011). 

b. Neurochemistry 
i. DA synthesis and metabolism 

Research on the neurochemical basis of ADHD has focused primarily on 

dopaminergic neurotransmission and function (Figure 1). DA is transported by 

DAT and pharmacological agents that influence the DA system via DAT have 

been the most effective treatments for ADHD (Zhu & Reith, 2008). DA is a 
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catecholamine involved in behavior and cognition; voluntary movement, 

motivation and reward (Jaber et al., 1996).  The synthesis of DA takes place in 

DA neurons, starting with L-tyrosine which comes from the essential amino acid, 

phenylalanine, which is derived from food. L-Tyrosine is converted to L-

dihydroxyphenylalanie (L-DOPA) via an  enzyme located in the cytosol called 

tyrosine hydroxylase (TH), which is the rate limiting step in the synthesis of DA 

(Cooper et al., 2003). The co-factors for tyrosine hydroxylase include 

tetrahydrobiopterin, O2, and Fe2+ (Cooper et al., 2003). Enzyme activity is 

regulated by phosphorylation at four different serine sites at the N-terminus and 

through the end-product inhibition and through competition for the required 

cofactors for the enzyme (Cooper et al., 2003). L-DOPA is then decarboxylated 

by aromatic L-amino acid decarboxylase (also located in the cytosol), which 

produces DA. The co-factor for this enzyme is pyridoxal 5-phosphate and is 

regulated by induction of synthesis of new protein rather than changes in activity 

(Squire LR, 1999).  After DA is synthesized, it is stored in synaptic vesicles for 

future release from the terminal into the synapse. An action potential causes 

depolarization of the nerve terminal, which in turn causes the synaptic vesicles to 

fuse to the synaptic membrane and release DA into the synaptic cleft (Cooper et 

al., 2003; Squire LR, 1999).  Specifically, Na+ ions flow into the cell and K+ 

channels open allowing the flow of K+across the membrane causing the 

membrane to become depolarized. There is a rise in Ca2+ concentration that 

triggers the fusion of the vesicles with the plasma membrane and the release of 

their contents into the synaptic cleft. This is the physiological process  known as 

exocytosis (Squire LR, 1999).   

DA is inactivated by two enzymes, catechol-O-methyltransferase (COMT) 

and monoamine oxidase (MAO) that are located in the postsynaptic neuron and 

outer mitochrondrial membrane, respectfully. The pathway for the metabolism of 

DA by MAO involves the conversion of DA to 3, 4-dihydroxyphenylacetaldehyde. 

Then, this product is converted to dihydroxyphenylacetic acid (DOPAC) by 

aldehyde dehydrogenase. Subsequently, DOPAC is converted by COMT to form 

homovanillic acid (HVA). Another possible pathway is for DA to be converted to 
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3-methoxytyramine (3-MT) by COMT. 3-MT is then converted to 3-methoxy-4-

hydroxyphenylacetaldehyde, which is then converted to homovanillic acid (HVA) 

by aldehyde dehydrogenase. 

ii. DA receptors  
In the synapse, DA has access to both presynaptic and postsynaptic DA 

receptors to which it binds. DA acts at both the D1-like (D1 and D5) and D2-like 

(D2, D3, D4) receptor families (Arnsten, 2006).  The amino acid (AA) sequence 

for the entire family ranges from 387 AA (D4) – 477 AA (D5). The main structural 

differences between the D1-like and D2-like receptors are the intracellular loop 

between the 6th and 7th transmembrane domain (TMD) segments which are 

larger in the D2-like receptors. D2 receptors have a smaller C-terminal in the 

intracellular segments after the 7th TMD segment. There are two isoforms of the 

D2 receptor, D2-long and D2-short. The D2-long receptor has 444 AA in rats and 

443 AA in humans (Cooper et al., 2003). The D2-short has 415 AA in rats and 

414 AA in humans. D1 receptors have a high density in striatum and nucleus 

accumbens and their activation stimulates adenylate cyclase to produce cyclic 

adenosine monophosphate (cAMP). D5 receptors are mostly located in 

hippocampus and  hypothalamus, but are found also in striatum and nucleus 

accumbens to a lesser extent. The D5 receptor, which also stimulates adenylate 

cyclase, is only located in the hippocampus, thalamus, and hypothalamus. D5 

receptors have a 10-fold higher affinity for DA compared to D1 receptors (Cooper 

et al., 2003).  

The D2 receptor family includes the D2 subtype, which are both an 

autoreceptor located presynaptically and a postsynaptic receptor. The release of 

DA regulates the synthesis of DA by stimulating the DA receptors which can 

modulate the synthesis of DA via a negative feedback, such that when there is a 

decrease in DA, the DA receptors are stimulated to produce more DA (Cooper et 

al., 2003).  A greater number of D2 receptors are located on the postsynaptic 

membranes, compared to presynaptic D2 receptors. Postsynaptic D2 receptors 

are located in striatum, nucleus accumbens, olfactory tubercle, and neuron cell 

bodies in substantia nigra and VTA D1 and D2 receptors have opposite effects 



16 

on adenylate cyclase activity. Adenylate cyclase catalyzes the conversion of ATP 

to c-AMP and pyrophosphate via a G-protein, which signals a downstream 

cascade of events, including the activation of protein kinase A (PKA). 

Recently,methylphenidate was suggested to modulate D2 receptors, thus 

indicating the involvement of this receptor in the mechanism of action of 

methlyphenidate (Volz et al., 2008). D3 receptors are localized in the nucleus 

accumbens, olfactory tubercle, and hypothalamus. The D4 receptors are found in 

frontal cortex, midbrain, and amygdala.   

iii. DAT 
After DA binds to its receptors, it is then transported back into the terminal 

by DAT and is transported into vesicles by the vesicular monoamine transporter 

(VMAT2) for repackaging and future exocytotic release (Hiongwa, 2004). DAT 

plays a vital role in the function of DA. DAT is among the family of 12 

transmembrane  domain (TMD; Figure 2) neurotransmitter transporter sodium 

symporter class (Saier, 1999), which also includes the norepinephrine transporter 

(NET) and the serotonin transporter (SERT).  DAT is a Na+/Cl- dependent 

transmembrane transporter protein also called the neurotransmitter sodium 

symporter (NSS) that regulates the extracellular DA concentration (Amara & 

Sonders 1998; Krause et al., 2003). DAT contains 620 amino acid residues, and 

currently, there is no X-ray crystal structure of DAT. However, the recently 

published crystal structure of Aquifex aedicus leucine transporter (LeuTAa), allows 

researchers to have a suitable template for DAT because this prokaryotic 

organism processes a NSS that is homologous to the human NSS (Yamashita et 

al., 2005).  LeuTAa produced crystals which were determined by multi-wavelength 

anomalous dispersion (MAD), using crystals grown from selemethionine-labeled 

protein and diffraction data measured to Bragg spacings of 1.9A°. A more recent 

study employed a novel computational modeling approach, the Molecular 

Operating Environment program MOE 2005.06 and to two other modeling 

servers, using LeuT-Aa as a template, to expand upon the proposed molecular 

structure of DAT. As shown in Figure 2, the DAT model that was developed 

suggests, like the LeuTAa, that TMDs 3 and 8 combine with TMDs 1 and 6 to form 
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the substrate binding pocket. In addition, this model implies favorable interactions 

for substrate recognition between the 3rdTMD, and the valine amino acid, number 

152 side chain and either the aromatic ring or the lipophilic hydrocarbon portion 

of both DA and amphetamine (Indarte et al., 2008).   

DAT antibodies, which were all used for immunolocalization of DAT in rat 

brain at the light microscopic level, were characterized and developed by 

immunoblot analysis, immunoprecipitation, and immunocytochemistry to 

specifically detect DAT proteins. DAT is mainly expressed in the striatum and 

nucleus accumbens, but can also be found in the globus pallidus, cingulated 

cortex, olfactory tubercle, amygdala, and midbrain (Ciliax et al., 1995).    

DAT-like immunoreactivity has been detected in striatum, nucleus 

accumbens, olfactory tuberacle, nigrostriatal bundle, which is a group of nerve 

fibers and lateral habenula (Hersch et al., 1997). The specific localization of 

DAT on the synaptic terminal has been studied using dual localization of DAT 

and TH with electron microscopic immunocytochemistry in the rat ventral 

pallidum (Pickel et al., 2004).  Electron microscopy confirmed that the majority 

of DAT and TH were located in axonal profiles in the ventral pallidum. These 

findings were the first to provide structural evidence showing that DAT is 

localized to the axonal profiles with a significantly higher mean area density in 

the dorsolateral ventral pallidum than the ventromedial ventral pallidum. The 

pallidum is important because it is a major element of basal ganglia, which 

includes the striatum, which is also the region used in the studies of this 

dissertation research. 

There has been a wealth of research performed on DAT knock-out (KO) 

mice as well (Fauchey et al., 2000; Gainetdinov & Caron, 2003; Giros et al., 

1996; Hall et al., 2009; Jones et al., 1999; Jones et al., 1998a; Rocha et al., 

1998).  This research was performed in order to gain a better understanding of 

the function of DAT and to determine how the dopaminergic system acts in the 

absence of DAT.  One report found that despite the decreased amount of DA in 

tissue, DAT KO mice have more than normal levels of extracellular DA and 

spontaneous hyperlocomotor activity (Rocha et al., 1998).  One study reported 
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that DAT KO mice display a 300-fold increase in extracellular lifetime of DA and 

a 5-fold elevation in steady-state extracellular DA levels in striatum (Gainetdinov 

& Caron, 2003).  In addition, these mice do not display an increase in locomotor 

activity typically seen upon administration of high doses of cocaine (Giros et al., 

1996).   

D1 and D2 receptor levels have also been investigated in DAT KO mice. 

Jones and colleagues found that in striatum, the D1 and D2 receptors were 

decreased by approximately 50%; TH levels were increased even though 

protein levels were down nearly 90%; and total tissue DA levels were only 5% of 

normal, whereas extracellular DA was increased by at least 5-fold in striatum 

(Jones et al., 1998a).  Another study found that D1R mRNAs coding decreased 

for D1R and D2R by 34% and 36%, respectively in caudate putamen of DAT 

KO mice, which suggest that there are fewer D1R and D2R receptors in DAT 

KO mice (Fauchey et al., 2000). DAT KO mice have several characteristics 

found in individuals that have ADHD including hyperactivity, cognitive 

impairment, and a calming response to psychostimulants (Jones et al., 1999).   

A more recent study further explored the effect of DAT KO by investigating 

the rewarding effects of cocaine and the ability of repeated cocaine 

administration to induce conditioned locomotion (Hall et al., 2009).  Conditioned 

locomotion is the process by exposing animals to drug or stimuli over a period 

of time and then comparing those animals with control animals to determine if 

the drug or stimuli caused neurochemical changes, which are reflected by a 

change in locomotor activity. DAT KO mice were significantly more active 

compared to WT; however they did not have increased locomotion after acute 

cocaine administration. NET and SERT affect the ability of cocaine to produce 

conditioned locomotion. These results suggest that the ability of cocaine to 

produce conditioned locomotion is dependent on NET or SERT, but not DAT. 

In summary, the research on DAT KO mice has illuminated the 

mechanisms by which DAT acts and its importance to the overall dopaminergic 

system. This work may also have implications for the development of certain 
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pharmacological agents for disorders that involve DAT, such as drug abuse and 

ADHD. 

Numerous studies suggest that DAT is regulated by several mechanisms 

including, but not limited to internalization and recycling, also known as 

trafficking, which involves phosphorylation and protein-protein interactions 

(Kahlig & Galli, 2003; Loder & Melikian, 2003; Melikian, 2004; Torres et al., 

2003; Zahniser & Doolen, 2001).  Great efforts have been made towards 

elucidating the molecular and cellular mechanisms involved in the trafficking of 

DAT. Many different kinases, receptors and scaffolding proteins interact with 

DAT and regulate its activity or modulate its trafficking and degradation. Second 

messenger systems, such as protein kinase C (Boudanova et al., 2008), protein 

kinase A (PKA), and calcium-calmodulin kinase II alter DAT function, 

phosphorylation, and trafficking. Furthermore, DAT endocytosis is suggested to 

be the cause of the sustained DAT down-regulation in response to PKC 

activation (Eriksen, 2010). Another post-translational modification that may be 

involved in PKC activation is ubiquitination, a post-translational enzymatic 

modification that involves the ε-amino moiety of lysine residues in target cellular 

proteins (Miranda & Sorkin, 2007; Miranda et al., 2005; Sorkina et al., 2006). 

Although the underlying mechanisms of DAT trafficking are still not fully 

understood, new technical methodologies such as fluorescently tagged 

inhibitors and substrates have advanced our understanding of DAT trafficking. 

For example, fluorescence resonance energy transfer (FRET) experiments with 

cyan fluorescent protein-tagged DAT and yellow fluorescent protein tagged 

ubiquitin demonstrated that ubiquitination was most abundant in endosomes 

supporting that ubiquitination is a signal for endocytosis (Miranda et al., 2005). 

Other kinase pathways including downstream effectors of insulin signaling such 

as phosphatidylinositol-3-kinase and serine/threonine protein kinase, Akt have 

been shown to also affect DAT surface expression (Carvelli et al., 2002).  

In addition, [3H]DA uptake kinetics was assessed and the cellular 

localization profiles of the hDAT expressed in both Sf9 and COS-7 cells via 

immunofluorescent confocal microscopy following modulation of PKC and 
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protein PKA-dependent pathways were evaluated (Pristupa et al., 1998). Acute 

exposure of hDAT expressing Sf9 cells to the PKC activator PMA (1 µM), 

reduced the Vmax (approximately 1 pmol/min/105 cells) for [3H]DA uptake by 

approximately 40%, an effect which was blocked by the protein kinase inhibitor, 

staurosporine. Vmax is defined as the maximal velocity of uptake. Pretreatment 

of cells with staurosporine (500 nM) alone, however, increased [3H]DA uptake 

by approximately 30%, an effect mimicked by the potent PKA inhibitor 

Rp-cAMPS. Immunofluorescent confocal microscopy showed that PKC 

activation rapidly internalized the hDAT from plasmalemmal membrane, but 

PKC inhibition led to trafficking of hDAT to the cell surface. These results 

suggest that the differential regulation of DAT transport capacity by both PKC- 

and PKA-dependent pathways are not a result of modifications in DAT kinetics 

and that DAT function may be regulated by second messenger systems, 

possibly following activation of presynaptic DA receptors (Pristupa et al., 1998). 

A recent report has also suggested that the PKC-induced DAT regulation 

may depend on the membrane localization of the transporter in reference to raft 

and non-raft DATs (Foster et al., 2008). Lipid rafts contain 3 to 5 times more 

cholesterol than the surrounding bilayer. They are heterogeneous, dynamic 

membrane microdomains enriched in cholesterol and glycosphingolipids, which 

are wider than non-raft regions and resistant to solubilization by detergents. 

Lipid rafts are associated with internalization and endocytic cargo delivery.  

DATs are located between raft and non-raft microdomains in rat striatal tissue 

and have the potential to effect dopaminergic neuronal activity (Foster et al., 

2008). Decrease of surface DAT was only found in non-raft DAT populations. 

These results suggest that trafficking events regulate non-raft DATs and non-

trafficking regulatory mechanisms occurs in raft DATs. These authors identified 

the presence of DAT in cholesterol-rich membrane raft domains, which could 

possibly serve as a platform for regulatory DAT activity, phosphorylation, and 

subcellular interactions. Thus, DAT is distributed between membrane raft and 

non-raft populations, where it is subject to specific regulatory controls that could 

provide distinct modulation of DA clearance and efflux. More recently, Sorkina 
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et al., (2009) found that the intracellular N-terminal tail of DAT has an inhibitory 

influence on internalization, by promoting the presence of DAT on the cell 

surface. In addition, DAT-mediated uptake activity is increased by replacing the 

first 65 amino acids of the N-terminal tail of DAT with a DAT mutant. This was 

shown by visual examination of human epithelial cervical cancer cells (HeLA) 

and porcine aortic endothelial cells (PAE). A significant accumulation of the DAT 

mutant was found in intracellular compartments (Sorkina et al., 2009).  Another 

study used the fluorescent DAT substrate ASP+ and live cell imaging 

techniques, such as bioluminescence resonance energy transfer (Brett) to 

identify the role of two D2R-linked signaling pathways, extracellular signal-

regulated kinases 1 and 2 (ERK1/2) and phosphodinositide 3 kinase (P13K).  

These pathways mediate D2R activation and up-regulate DAT function based 

on the observations that ASP+ rapidly accumulated in the cytoplasm of EM 

(embryonic) cells (Bolan et al., 2007). This accumulation was intensified by the 

D2R agonist quinpirole. In addition, eticlopride a D2R antagonist blocked 

quinpirole-evoked increase in ASP+ accumulation. Furthermore, the MEK 

inhibitor PD98059 prevented quinopirole-evoked ERK1/2 phosphorylation, but 

the PI3K inhibitor LY294002 had no effect. These results suggest that D2SR 

regulation of DAT requires coupling to Gi/G0 proteins and ERK1/2 activation.   

DAT has also been reported to generate detectable currents during the 

process of substrate transport (DeFelice & Blakely, 1996; Lester et al., 1994; 

Sonders & Amara, 1996). One study used two-electrode clamp techniques with 

hDAT expressed in  Xenopus laevis oocytes to examine the electrophysiological 

and pharmacological characteristics of DAT (Sonders et al., 1997). Oocytes 

expressing hDAT were voltage-clamped at -60 mV and were superfused with 20 

µM DA, which produced a downward displacement in the current trace 

consistent with a net inward current. The inward current was suggested to be 

the result of the translocation of DA+ and Na+ ions. However, 10-µM cocaine 

produced an outward current, both on initial application and reapplication of 

cocaine after DA superfusion of the same oocyte. These findings suggest that 
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hDAT mediates at least two distinct steady-state ionic conductances that result 

from transport-associated currents (Sonders et al., 1997).   

A more recent study combined confocal imaging, whole-cell steady-state 

and transient current recordings with HEK-293 cells transfected with a yellow 

fluorescent protein-tagged hDAT to monitor DAT cell surface expression and 

activity (Kahlig et al., 2004).  At -160 mV, amphetamine decreased hDAT-

mediated transient currents, and these currents were dependent upon 

extracellular Na+. In addition, these currents corresponded to the amphetamine 

decrease in DAT expression at the cell surface, measured by cell-surface 

biotinylation. These findings suggest that DAT transient charge movements can 

be used to evaluate relative changes in DAT cell surface expression.  

DAT is considered the main target for stimulant action, and stimulants 

interact directly with DAT (Gainetdinov & Caron, 2003; Krause et al., 2003; 

Volkow et al., 2007). A plethora of research has been conducted on the 

mechanisms by which DAT is regulated and expressed. The studies discussed 

here have shown how DAT may be regulated by a number of different pathways 

and signaling messengers. Some of these pathways include PKA and PKC, 

which are involved in the internalization of DAT. Others have investigated DAT 

structure and how its conformation plays a role in the regulation of DAT. In 

addition, studies were performed to determine how trafficking plays a role in DAT 

expression and function. Furthermore, others have investigated how ion currents 

involved in the electrophysiological and pharmacological characteristics of DAT. 

Collectively, these studies have provided a better understanding of how DAT is 

regulated and expressed. Hopefully the knowledge gained from this research will 

lead to pharmacological agents that can be used in the treatment of diseases 

that involve DAT, such as ADHD. 

iv. NET 
The norepinephrine transporter (NET) is the primary target for the first and 

only non-stimulant medication, atomoxetine, Strattera® approved by the U.S. 

Food and Drug Administration (FDA) to treat ADHD (Wilens, 2006).  In addition, 

methylphenidate and amphetamine, the gold standard ADHD treatments, inhibit 
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NET function in addition to inhibiting DAT function (Bymaster et al., 2002; Han & 

Gu, 2006). The major function of NET is to translocate norepinephrine, a 

neurotransmitter involved in mood regulation, behavior, alertness and arousal, 

from the extracellular space to within the noradrenergic presynaptic terminals 

(Barker & Blakely, 1995; Pacholczyk et al., 1991; Zavosh et al., 1999; Zhou, 

2004).  NET is a member of the same family of transporters as DAT and is also a 

Na+/Cl- dependent transmembrane transporter protein (Hu et al., 2009; Zhou, 

2004).   

NET contains 617 amino acid residues (Torres et al., 2003).  Human NET 

(hNET) has 10 cysteine residues, and two of these which are located in the 

second intracellular loop are linked by a disulfide bond (Sucic & Bryan-Lluka, 

2005). TMD 2 and the first intracellular loop are important in determining cell 

surface expression of the transporter (Sucic & Bryan-Lluka, 2005). Residues 94-

111 of NET appear to not be involved in substrate interactions; however, these 

residues are associated with interactions with various inhibitors (Sucic & Bryan-

Lluka, 2005). The regulation of NET involves extracellular and intracellular 

signaling pathways including several associated proteins such as SNARE protein 

syntaxin 1A, protein phosphatase 2A (PP2A), catalytic sub unit (PP2A-C), and 

PP2A anchoring subunit (PP2A-Ar) (Miner et al., 2006; Sung & Blakely, 2007; 

Sung et al., 2005).   

Xu and colleagues found that NET knockout mice have reduced body 

temperature and body weight and are supersensitive to psychostimulants;  

however, they have reduced intracellular norepinephrine, increased 

norepinephrine synthesis and elevated extracellular norepinephrine (Xu et al., 

2000). These findings suggests that NET plays a role in regulating body 

temperature and body weight, and that the mechanism of action of the stimulant 

class of drugs involves NET, since in its absence supersensitivity to stimulants 

occurs. Focus on the development of selective NET inhibitors as a treatment for 

ADHD has increased, because of the potential abuse liability of stimulant 

medications, whereas NET inhibitors do not appear to have this side effect (Seu 

et al., 2009).   
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v. VMAT2 
Another important transporter for DA function is VMAT2, which is the only 

transporter that translocates cytoplasmic DA from the cytosol into synaptic 

vesicles for storage, providing availability for future exocytotic release (Yelin & 

Schuldiner, 2002).   VMAT2 and VMAT1 are members of the solute carrier (SLC) 

protein family encoded by separate genes VMAT1 (SLC18A1) located on 

chromosome 8p21 and VMAT2 (SLC18A2) located on chromosome 10q25 

(Adam et al., 2008; Eiden et al., 2004). VMAT2 is an integral membrane protein 

with 12 putative transmembrane domains containing a large, hydrophobic, N-

glycosylated loop between TMD1 and 2 facing the vesicle cytosol (Yao & Hersh, 

2007; Yelin & Schuldiner, 2002). During embryonic development, both VMAT1 

and VMAT2 are widely expressed in the CNS; however, by adulthood, VMAT2 

predominates (Hansson et al., 1998). The decrease in VMAT1 expression has 

been suggested to be due to the absence of VMAT1 gene expression. In 

adulthood, VMAT1 is primarily expressed in neuroendocrine cells such as 

chromaffin cells found in the adrenal medulla and enterochromaffin cells located 

in the intestinal tract (Erickson et al., 1996; Peter et al., 1995; Weihe et al., 1994). 

VMAT2 is expressed in at least 2 endocrine cell populations, and moreover, in 

neurons. Adult mammalian monoaminergic neurons of the central nervous 

system and sympathetic postganglionic neurons express VMAT2, not VMAT1 

(Erickson et al., 1996; Peter et al., 1995; Weihe et al., 1994). 

The pharmacology of VMAT1 and VMAT2 is distinct. Although they both 

transport monoamines such as serotonin, DA, epinephrine and norepinephrine, 

VMAT1 transports histamine, whereas VMAT2 transports histamine (Km~ 24 µM; 

(Erickson et al., 1996; Merickel & Edwards, 1995). Km is defined as the 

concentration of substrate at half of maximal velocity. In addition, VMAT1 has a 

higher affinity for serotonin compared to VMAT2 (Brunk et al., 2006). VMAT2 is 

responsible for the transport of neurotransmitters such as DA, serotonin, 

norepinephrine, epinephrine, and histamine from the cytosol into synaptic 

vesicles (Schuldiner et al., 1995). VMAT2 is an essential protein as indicated by 

the finding that homozygous VMAT2 knockout mice do not survive after birth 
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(Fon et al., 1997; Takahashi et al., 1997; Wang et al., 1997). Tetrabenazine, a 

benzoquinolizine compound (Zheng et al., 2006), and reserpine, an alkaloid, are 

considered classical VMAT2 inhibitors (Pletscher, 1977).  Studies have shown 

that VMAT2 binding is altered by psychostimulants (Brown et al., 2001a; 

Fleckenstein & Hanson, 2003). For instance, methamphetamine administration 

(15 mg/kg; 4 ip injections at 2 hr intervals) decreases (22%) striatal VMAT2 

binding of [3H]dihydrotetrabenazine, assessed 14 days after treatment (Guilarte 

et al., 2003). Also, methylphenidate (40 mg/kg, sc) redistributes VMAT2 within 

the nerve terminals an hour after treatment, distributing VMAT2 between the 

cytoplasmic and membrane-associated vesicle fractions. In contrast, 

methylphenidate did not cause redistribution since a majority of DAT was present 

in just the membrane-associated vesicle fraction, not the cytoplasm (Volz et al., 

2007).  In addition, lobeline, a novel alkaloid, inhibits [3H]DA uptake into rat 

striatal vesicle preparations with an IC50of 0.88 ± 0.001 µM and  displaces 

dihydrotetrabenazine binding with an IC50 of 0.90 ± 0.02 µM (Teng et al., 1998; 

Teng et al., 1997). VMAT2 plays an important role in protecting the neurons 

against damage from toxins, such as hydrogen peroxide, by maintaining a low 

cytoplasmic concentrations of neurotransmitter via translocating the 

neurotransmitters into synaptic storage vesicles (Liu & Edwards, 1997).  In 

addition, GBR 12935, a potent DAT inhibitor, also blocks uptake into brain 

synaptic vesicles (IC50 between 34-45 µM) compared to synaptosomes 

(IC50between1-6µM) (Reith et al, 1994) .   

5.  Pharmacotherapies for ADHD 
Once the diagnosis of ADHD has been established, the next step is to 

choose the most appropriate treatment for the patient. Stimulants are considered 

the first-line pharmacological treatment option for ADHD. These include various 

dosage forms and formulations of methylphenidate and amphetamine, (Meijer et 

al., 2009; Spencer et al., 1996). However, there are potential side effects 

associated with these stimulants that can limit their use. These agents, along 

with their side effects are discussed below in more detail.  
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Pemoline, approved in 1975, was another stimulant used to treat ADHD 

that increases DA transmission in the central nervous system (Zaczek et al., 

1989). However due to liver toxicity, pemoline was removed from the market in 

2005 (Greydanus et al., 2007; Olfson, 2004). The most recent medication 

approved for ADHD is a long-acting form of guanfacine (Intuniv®; Figure 3), a 

non-stimulant, approved in September, 2009.  Another non-stimulant approved to 

treat ADHD is atomoxetine (Strattera®; Figure 3). Atomoxetine is considered a 

second-line therapeutic agent since it is not as effective as stimulants (Michelson 

et al., 2003; Michelson et al., 2002; Michelson et al., 2001; Newcorn et al., 2008). 

These non-stimulant medications are a good alternative for parents with 

concerns about giving their children stimulants and for those patients that cannot 

tolerate or do not respond to stimulants. There are also drugs that are used off-

label to treat ADHD for the reasons stated above. These agents include tricyclic 

antidepressants, bupropion, clonidine, and modafinil. 

Stimulants produce pharmacological effects by inhibiting DAT and/or NET, 

which results in an increase in the amount of DA and norepinephrine in the 

synaptic cleft, which enhances neurotransmission in these systems (Greydanus 

et al., 2007). Additionally, stimulants are associated with untoward effects that 

include, but are not limited to insomnia, cardiac events, decreased appetite, 

abdominal pain, headache, weight loss, tics, depression, and growth delays 

(Bymaster et al., 2002; Cormier, 2008; Greydanus et al., 2007). Furthermore, the 

possibility of abuse and diversion have become major concerns with the use of 

stimulant medications (Bymaster et al., 2002; Cormier, 2008; Greydanus et al., 

2007; Holman, 1994; Olfson, 2004), even though the AAP guidelines recommend 

a trial of at least three types or formulations of stimulant medication before 

considering different agents (Cormier, 2008).  This recommendation is to ensure 

that each patient is treated as an individual, because there is such a high degree 

of variability of response to these medications. Thus, the issue with stimulants is 

apparent because they are considered the first line therapy for ADHD, even 

though the possibility of abuse is present. 
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a. Methylphenidate 
i. Historical Background 

Originally, methylphenidate was approved to treat chronic fatigue, 

lethargy, depressive states, disturbed senile behavior, psychosis associated with 

depression, and narcolepsy. In 1968, methylphenidate was approved to treat 

ADHD, and is a gold standard treatment for ADHD (Folsom et al., 1956; Leonard 

et al., 2004). The landmark study, conducted in the early 1990s, by the National 

Institute on Mental Health Multimodal Treatment study of children with ADHD 

(MTA), which found that methylphenidate treatment was superior to behavioral 

therapy for children with ADHD, which led to its widespread use (Heal et al., 

2008; National Institute, 2001). Thus, the pharmacotherapeutic use of stimulants 

became the first line pharmacological therapy for ADHD.   

ii.  Formulations 
Methylphenidate, a piperazine substituted phenylisopropylamine (Figure 

3), was first synthesized in 1944 by Dr. Leandro Panizzon and marketed by Ciba-

Geigy pharmaceutical company as Ritalin (Leonard et al., 2004). There are 

various trade names for methylphenidate depending on the formulation and 

dosage form. For instance, dl-threo-methylphenidate has the following trade 

names; Ritalin®, RitalinSR ®, MetadateCD ®, Concerta® and Daytrana®. The initial 

formulations were short-acting (3-4 hrs), which was a limitation for school-aged 

children, who would need medication administered multiple times per day 

(Greydanus et al., 2007).  Ritalin SR® and Concerta® were developed to 

overcome this pharmacokinetics problem, since they have similar duration of 

actions, with Ritalin SR® being 8-9 hours and Concerta® being 10-12 hours 

(Biederman & Faraone, 2005). Daytrana®, which was approved in 2006, is a 

transdermal methylphenidate preparation and has a  9-12 hour duration of action 

(Greydanus et al, 2007).  D-threo-Methylphenidate (dexmethylphenidate) has a 

higher affinity for DAT than l-threo-methylphenidate (Heal & Pierce, 2006; Patrick 

et al., 1987). Thus, dexmethylphenidate was developed as an immediate release 

formulation and as an extended release formulation (Focalin® and Focalin XR®).  
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iii. Pharmacokinetics and mechanism of action 
The half-life of methylphenidate is 2-4 hours depending on the formulation. 

Its bioavailability is between 11-53% (Chan et al., 1983).  Its onset of action is 

approximately 2 hours after administration (May & Kratochvil, 2010).  

Furthermore, a clinical study in which healthy subjects were given 

[11C]methylphenidate intravenously (iv), found that the peak concentration of 

methylphenidate in the brain was achieved in 4-10 minutes and peak 

concentration of oral methylphenidate did not occur until 60 minutes after 

administration (Volkow et al., 1995). Methylphenidate is metabolized primarily 

through deesterification in humans to ritalinic acid, which is inactive. 

The mechanism of action of methylphenidate involves binding to DAT and 

inhibiting its function, which leads to a greater concentration of DA in the 

synaptic cleft to bind to both postsynaptic and presynaptic DA receptors, thus 

augmenting dopaminergic neurotransmission. Surgical lesions of the medial 

forebrain bundle or intracerebroventricular administration of 6-hydroxydopamine 

(6-OHDA) were utilized to determine effects on [3H]threo-(+/-)-methylphenidate 

and [3H]DA uptake. After both of these procedures a reduction in the specific 

binding of [3H]threo-(+/-)-methylphenidate to membranes of rat striatum was 

observed, which was highly correlated with the decrease in [3H]DA uptake. 

However, intracerebroventricular administration of 5, 7-hydroxytryptamine, 

AF64A, or chronic parenteral administration of reserpine did not alter the 

number of [3H]threo-(+/-)-methylphenidate binding sites. These results suggest 

that localization of the specific [3H]threo-(+/-)-methylphenidate sites in striatum 

is on dopaminergic nerve terminals (Janowsky et al., 1985).  Another report 

found that the highest specific [3H]methylphenidate binding was in caudate 

putamen, olfactory tubercle, nucleus accumbens, bed nucleus of the stria 

terminalis, and median eminence; in contrast to [3H]amphetamine, 

[3H]methylphenidate binding was not high in brainstem; however, the Bmax was 

not included in this report (Unis et al., 1985). Although methylphenidate has 

high affinity for DAT (Ki = 160-340 nM), it also has high affinity for NET (Ki = 40-

238 nM) and a lower affinity for serotonin transporter (SERT;Ki= 1000-22,000 
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nM) (Andersen, 1989; Easton et al., 2007; Kuczenski & Segal, 1997; Richelson 

& Pfenning, 1984).   

Inhibition of DAT function leads to concerns regarding the use and 

diversion of methylphenidate for recreational purposes. In fact, methylphenidate 

and cocaine have similar affinity for DAT, with cocaine having a Ki of 555-640 

nM for DAT (Gatley et al., 1996; Schweri et al.,1985; Ukairo et al., 2005). 

Methylphenidate is prescribed for ADHD and has a high potential for being 

diverted for recreational use (Klein-Schwartz, 2002; Kollins et al., 2001; McCabe 

et al., 2005; McCabe et al., 2006; Parran & Jasinski, 1991; Setlik et al., 2009; 

Sussman et al., 2006; Teter et al., 2003; Weyandt et al., 2009; Wilens et al., 

2008).  However, methylphenidate may have a lower abuse potential than 

cocaine due to its pharmacokinetics, such that methylphenidate has a longer 

half-life than cocaine, 90 minutes and 20 minutes, respectively (Volkow et al., 

1999). Cocaine has a faster onset of action than methylphenidate, which likely 

attributes to the euphoric feeling of “high”. An animal study using rats, 

(Izenwasser et al., 1990) examined the pharmacological effects of cocaine and 

methylphenidate and other monoamine uptake inhibitors on DA uptake. This 

study showed that methylphenidate and cocaine had similar Km values (100 

nM) in striatum, nucleus accumbens, olfactory tubercle, and medial prefrontal 

cortex; however, cocaine inhibited [3H]DA uptake to a lesser extent than 

methylphenidate. This suggests that there is a possible additional effect of 

cocaine that contributes to the potent reinforcing characteristics of this drug. 

Another study found that cocaine and methylphenidate have similar potency in 

the septum-caudate synaptosomes for inhibiting serotonin uptake based on the 

IC50 values of 70 µM and 118 µM, respectively. These results imply that the 

effect of cocaine on serotonin uptake may play a role in its increased abuse 

liability, compared to methlyphenidate (Taylor & Ho, 1978).                                                     

Positron emission tomography (PET) studies utilizing 

[11C]methylphenidate in human subjects showed that occupation of 50% of DAT 

sites by [11C]methylphenidate in striatum is required to elicit a therapeutic effect, 

and that the estimated oral dose of methylphenidate required to occupy 50% of 
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DAT sites corresponded to 0.25 mg/kg (Volkow et al., 1998). In other work, the 

temporal and spatial distribution of [11C]methylphenidate was determined, and 

the result compared to those obtained previously with [11C]cocaine (Volkow et 

al., 1999). DAT occupancies were measured with PET using [11C]cocaine, as 

the DAT ligand, in 8 healthy subjects (average age of 32, 4 men and 4 women) 

for the methylphenidate study and 17 active cocaine abusers for the cocaine 

study (average age of 35, 12 men and 5 women). The 8 healthy subjects were 

injected with 4-8 mCi of [11C]cocaine and then scanned four times over a 3 day 

period. The first scan was the placebo scan to establish a baseline and the 

other three scans were performed after intravenous methylphenidate doses 

(0.025, 0.1, 0.25, and 0.5 mg/kg). The subjects for the cocaine studies were 

scanned four times over a 2-day period, with the first scan being a placebo to 

achieve a baseline and the second scan was done 2 hours after the first, and 

the rest were performed after a range of intravenous doses of cocaine (0.05, 

0.1,0.3, and 0.6 mg/kg). Cocaine was co-administered with [11C]cocaine, while 

methylphenidate was given 5-8 minutes prior to [11C]cocaine. The results from 

this study showed that methylphenidate has a slightly higher potency at DAT 

than cocaine in the human brain, based on the ED50 of 0.07 mg/kg and 0.13 

mg/kg, respectively. Also, a double dose of cocaine was required to induce DA 

increases equivalent to those induced by methylphenidate utilizing PET and 

[11C]raclopride, which is a D2R antagonist. The potencies of methylphenidate 

and cocaine were compared to other DAT blockers, including but not limited to 

norcocaine, mazindol, lidocaine, procaine, and WIN 35,065-3. These DAT 

blockers have 50-100 fold higher affinities than cocaine. These results show 

that the potencies of methylphenidate and cocaine are similar. Based on these 

observations, the difference in the abuse liability of these agents is not solely 

based on the pharmacological potencies at DAT. Pharmacokinetics may also 

play an important role in the abuse potential of these two drugs (Volkow et al., 

1999). In another study by some of the same authors, PET was used to 

measure temporal and spacial distribution of [11C]methylphenidate and 

[11C]cocaine (Volkow et al., 1995). Eight healthy male subjects between the 
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ages of 20 and 51 years of age were scanned with [11C]methylphenidate. The 

scans were done two hours apart. Three subjects underwent two repeated 

scans to test for re-test reproducibility. Four subjects underwent a baseline scan 

and a second scan 10 minutes after administration of methylphenidate (0.5 

mg/kg, iv) to assess specific to nonspecific binding. One subject was scanned 

with both [11C]methylphenidate and [11C]cocaine  to compare the distribution 

and kinetics of these two compounds in the same individual. The authors did not 

mention how they were able to tell the difference between the compounds, 

however based on their different pharmacokinetics; it may have been possible 

to distinguish the two compounds. In the same study, two baboons were 

scanned to evaluate if methylphenidate and cocaine compete for the same 

binding sites in brain. One animal underwent a baseline scan with [11C]cocaine  

and a second scan with [11C]cocaine 5 minutes after administration of cold 

methylphenidate (0.5 mg/kg, iv). The other animal underwent a baseline scan 

with [11C]methylphenidate and a second scan with [11C]methylphenidate 5 

minutes after administration of cold cocaine (0.2 mg/kg, iv). In the human 

studies, the uptake of [11C]methylphenidate into brain was 7.5 ± 1.5% (mean ± 

SD) of the injected dose, and  was comparable to the uptake of cocaine, which 

was 7.5 ± 3.0% (mean ± SD) of the injected dose. Maximal concentrations of 

methylphenidate were observed in striatum, however low levels were detected 

in the cortex and cerebellum. Furthermore, pretreatment with cold 

methylphenidate 5 minutes prior to the administration of [11C]cocaine and 

pretreatment with cold cocaine 5 minutes prior to administration of 

[11C]methylphenidate significantly decreased binding of the corresponding 

tracer, but only in striatum, not in cerebellum. These results indicate that 

methylphenidate and cocaine compete for the same binding sites in the 

striatum. 

The distribution of methylphenidate was very similar to that of cocaine. 

Although the brain regional distribution of [11C]methylphenidate was identical to 

that of [11C]cocaine, and these drugs competed for the same binding sites, they 

differed markedly in their pharmacokinetics. Clearance of [11C]methylphenidate 
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from striatum (90 minutes) was significantly slower than clearance of 

[11C]cocaine (20 minutes). For both drugs, fast uptake, 4-10 minutes for 

[11C]methylphenidate and 2-4 minutes for [11C]cocaine in striatum paralleled the 

experience of the "high” reported by the subjects. For methylphenidate, the 

“high” decreased rapidly despite that a significant amount of drug was still 

bound in striatum. In contrast, for cocaine, the decline in the feeling of “high” 

paralleled its fast rate of clearance from striatum. Therefore, the “high” appears 

to be associated with the fast uptake of methylphenidate and cocaine into brain, 

and the slow clearance of methylphenidate from brain may serve as a limiting 

factor in promoting its frequent self-administration (Gatley et al., 1996; Volkow 

et al., 1999). Thus, the pharmacokinetics alter the pharmacology, specifically 

the abuse liability of methylphenidate. 

A recent study found that methylphenidate (0.3 mg/kg/infusion) is a 

relatively robust reinforcer for all strains, SHR, WKY, and SD based on the 

results that these strains acquired methylphenidate self-administration 

(Marusich et al., 2011b).  Another study also conducted in the SHR strain found 

the same result in regards to methylphenidate self-administration, such that this 

strain acquired methylphenidate (0.25 mg/0.1ml infusion) self-administration as 

well (Pena et al., 2001).  In addition, this study also showed that 

methylphenidate induced conditioned place preference (CPP) in SHR, however 

there was no difference found between the SHR and WKY in regards to CPP, 

suggesting that SHR may not be more sensitive to the rewarding effects of 

methylphenidate. These studies provide evidence that methylphenidate has the 

potential to be abused.  

Evidence has been provided that methylphenidate also interacts with 

VMAT2, the only transporter that translocates cytoplasmic DA from the cytosol 

into synaptic vesicles for storage, providing availability for future exocytotic 

release (Yelin & Schuldiner, 2002). Pre-clinical studies have demonstrated that 

unlike amphetamine, the effects of methylphenidate on brain catecholamines 

were completely inhibited by reserpine, suggesting that methylphenidate 

interacts with a reserpine-sensitive pool of DA (Scheel-Kruger, 1971). 
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Methylphenidate rapidly and reversibly increases VMAT2 binding and vesicular 

uptake of DA (Sandoval et al., 2003).  Rotating disk electrode (RDE) methods 

were utilized to measure the initial velocities of inwardly directed vesicular DA 

transport in vesicles purified from rat striata. VMAT2 immunoreactivity was used 

to measure the amount of VMAT2 protein. Methylphenidate (40 mg/kg, s.c.), 

which is considered a high dose for this animal model, was found to decrease 

VMAT2 immunoreactivity in membrane-associated vesicle fraction and increase 

VMAT2 immunoreactivity in the cytoplasmic vesicle fraction in nerve terminals 

by a 2-fold difference compared to control. In addition, membrane-associated 

vesicles were able to sequester 5-9 fold more DA than cytoplasmic vesicular 

associated vesicles (Volz et al., 2007).  In another study using RDE, both 

eticlopride, the D2 receptor antagonist, and scopolamine, the muscarinic 

receptor antagonist, blocked methylphenidate-induced K+ stimulated DA 

release (Volz et al., 2008). These results suggest that effects of 

methylphenidate are mediated by both D2 and muscarinic receptors. 

In addition to the effects of methylphenidate on the neurotransmitter 

transporters, PET studies using human subjects have investigated the effects of 

methylphenidate on DA release and how it relates to appetitive stimuli in the 

response. DA neurons fire in response to salient events. Salient events are 

defined as relevant events that require a response from the subject. Salient 

events have been hypothesized to contribute to the therapeutic effects of 

methylphenidate. Subjects were given methylphenidate (20 mg/kg, po) or 

placebo and then shown a salient stimuli (visual and olfactory presentation of 

food) or neutral stimuli, which was the description of family genealogy. No 

increase in DA was found in the placebo group shown the salient stimuli, 

demonstrating that the salient stimulus alone does not increase DA. Moreover, 

methylphenidate increased DA in striatum in response to the salient stimuli, but 

not to the neutral stimuli,  suggesting that the methylphenidate-induced increase 

of DA in the striatum was dependent upon stimulus context (Volkow et al., 

2005).  This could impact therapy because the increase in the amount of DA in 
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the striatum is, in part, based on the stimulus a patient reacts to, which may be 

lead to an increase in the abuse liability of methylphenidate.  

In conclusion, a wealth of research has been performed on 

methylphenidate and the mechanism by which it produces its pharmacological 

effect.  Research, thus far, has found that methylphenidate inhibits DAT function, 

thereby causing an increase in extracellular DA. However, methylphenidate 

interacts with other systems within the brain, which may also contribute to its 

pharmacological effect. Additional work is needed to further study the effects 

methylphenidate to obtain a more comprehensive understanding of its underlying 

mechanisms.  

b. Amphetamine 
i. Historical background 

Lazar Edeleano, a Romanian chemist studying in Germany, was the first to 

synthesize amphetamine (Figure 3) in 1887 (Edeleanu, 1887).  In 1927, Gordon 

Alles first reported the stimulant effects of sympathomimetics. In 1937, Charles 

Bradley, reported the therapeutic effects of dl-amphetamine in children with 

neurological and behavioral problems (Alles, 1933; Bradley, 1937). The 

pharmaceutical company, Smith, Kline, and French, marketed amphetamine as 

Benzedrine® in 1932, and this drug was used for decongestion as an inhaled 

dosage form (Rasmussen, 2006).  Benzedrine® was sold without a prescription, 

and over 50 million Benzedrine® tablets were sold during the initial 3 years of 

availability as an oral dosage form (Sulzer et al., 2005). The Spanish Civil War 

marked the beginning of the military using amphetamine to promote alertness in 

the troops (Sulzer et al., 2005). Also, the alerting properties of amphetamine 

were exploited by American troops during World War II, especially those in the 

air force during extended bombing missions. Today, amphetamine is still used by 

the air force in some cases in which prolonged attention is required (Caldwell et 

al., 2003).   

The escalation in the use of amphetamine abuse during the early periods 

of its over the counter availability, led to the decision in 1939 to make it only 

available by prescription (Sulzer et al., 2005). During the subsequent period of 
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time, the recognized therapeutic uses of amphetamine increased, such that by 

1946, it had more than 30 indications, including the treatment of schizophrenia, 

opiate addiction, sea sickness, and radiation sickness (Brett, 1946; Miller & 

Hughes, 1994).  Even though amphetamine was considered a prescription-only 

drug, its diversion for recreational use continued. In 1972, in an attempt to 

discourage its diversion, the United States Justice Department enforced legal 

quotas of amphetamine production (Sulzer et al., 2005). D-amphetamine 

appears to have a similar dose-related profile of effects in humans to 

methamphetamine, which suggest their equivalence for abuse (Kirkpatrick et al., 

2011). 

ii. Formulations 
There are various dosage forms of amphetamine available today. The 

most prescribed is Adderall®, which is a complex formulation of mixed-

amphetamine salts consisting of ¼ dextroamphetamine saccharate, ¼ 

dextroamphetamine sulfate, ¼ racemic dextro/levo amphetamine aspartate 

monohydrate, and ¼ racemic dextro/levo amphetamine sulfate, resulting in a 

3:1 ratio of d-amphetamine to l-amphetamine. Adderall®is available as 

immediate-release and extended-release formations (Adderall XR®).  

Dextroamphetamine (Dexedrine®) is an immediate release formulation and is 

marketed also in a capsule formulation for controlled release called Dexedrine 

SR®. The most recent development in the amphetamine series for the treatment 

of ADHD is lisdexamfetamine (Vyvanse®) and was FDA-approved in 2007 for 

the treatment of ADHD in children, and subsequently approved in 2008, for 

ADHD treatment in adults (Cowles, 2009).  Lisdexamfetamine, a prodrug, is a 

novel agent designed to lower the potential for abuse, since it must be 

catabolized to the active compound dextroamphetamine which provides the 

pharmacological effect.  

iii. Pharmacokinetics and mechanism of action 
The pharmacokinetics of amphetamine is similar to that of 

methylphenidate. The onset of action is 30-60 minutes and the duration of 

action for immediate release is 4-6 hours and 10-12 hours for extended release 
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mixed-amphetamine salts (MAS-XR). An even longer duration of 16 hours is 

seen with the MAS-triple-bead formulation (Greydanus et al., 2007).  

The mechanism of action of amphetamine is complex. Amphetamine 

produces a redistribution of DA from synaptic vesicles to the cytoplasm by 

reducing the vesicular pH gradient. VMAT2 mediated transport involves a 

vacuolar-type H+ pumping, which creates a pH gradient across the vesicle 

membrane. When amphetamine is transported into the vesicle, it reduces the 

synaptic vesicle pH gradient required for monoamine storage, thus reducing 

concentration of monoamines inside the vesicle (Sulzer & Rayport, 1990). In 

addition, amphetamine inhibits DA uptake at DAT and reverses the transport of 

DA causing its release into perisynaptic area and into the extracellular space, 

whereas cocaine and methylphenidate bind to DAT and only inhibit DA uptake 

at DAT, i.e., do not release DA (Bannon et al., 2000; Seiden et al., 1993; 

Solanto, 2002; Sonders et al., 1997). The mechanism of action of amphetamine 

is dependent on the amphetamine concentration, whereby at lower 

concentrations amphetamine is exchanged for DA via DAT, but at higher 

concentrations amphetamine can diffuse across the plasmalemmal membrane 

independently of DAT (Mack & Bonisch, 1979).   Amphetamine is widely 

accepted to elicit its pharmacological effect by: 1) binding to neurotransmitter 

transporters and reversing the transport of  neurotransmitters such as DA, 

norepinephrine, and serotonin from inside the presynaptic terminal to the 

extracellular space which facilitates their release and 2) inhibiting monoamine 

oxidase (MAO) (Seiden et al., 1993).  

With respect to the effect on the plasmalemmal transporters, 

amphetamine has affinity (Ki) for NET (30 - 100 nM), followed by DAT (30 - 600 

nM), and lastly SERT (1000 - 40,000 nM; (Easton et al., 2007; Han & Gu, 2006; 

Heal et al., 1998; Kula & Baldessarini, 1991; Richelson & Pfenning, 1984; 

Rothman et al., 2001).  Extensive research has been conducted on the 

interaction of amphetamine with these transporters; however, most of the focus 

has been on the interaction with DAT. Amphetamine binds to the extracellular 

surface of DAT, competing with  its substrate (e.g., DA), thus decreasing DA 
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uptake into the neuron (Seiden et al., 1993).  Once inside the neuron, 

amphetamine is released from DAT, leaving DAT unoccupied. DA binds to the 

internally facing DAT protein and is reverse transported to the outside or 

extracellular space, where it is released, and the result is an increase in the 

extracellular concentration of DA (Levi & Raiteri, 1993; Sulzer et al., 1995).   

A study by Cass and colleagues used in vivo electrochemistry to 

determine the effects of locally applied raclopride, a D2 receptor antagonist, and 

SCH-23390, a D1 receptor antagonist, on the clearance of locally applied DA in 

the striatum, nucleus accumbens, and medial prefrontal cortex of rats. Raclopride 

or SCH-23390 was applied locally prior to the pressure injection of DA. 

Raclopride increased the amplitude and time course of DA signals, suggesting 

significant inhibition of DAT. However, SCH-23390 had no effect of DA signals. 

These results were interpreted to indicate that D2, not D1 receptors, modulate 

the activity of DAT (Cass & Gerhardt, 1994).  Another study confirmed these 

results by employing continuous amperometry and cyclic voltammetry and 

determined that amphetamine (10µM)-induced stimulation of DA overflow from 

striatal slices was inhibited (47%) by sulpiride, a D2 receptor antagonist (Schmitz 

et al., 2001), suggesting that the response to amphetamine may be indirect and 

involve D2 autoreceptor activation following DA release.   

Amphetamine is a substrate for DAT.  Amphetamine accumulation into 

striatal synaptosomes is saturable, temperature-dependent, and ouabain-

sensitve, indicating that it is a substrate for transport (Zaczek et al., 1991).  

Similarly,  a study investigating the effects of uptake blockers and substrates on 

transporter-associated ion currents found that amphetamine induced currents, 

whereas methylphenidate blocked transporter-associated current, indicating that 

amphetamine is a substrate for DAT (Sonders et al., 1997).  More recently, 

studies using neuronal cultures and heterogeneous cells stably expressing hDAT 

showed that amphetamine produces DA efflux via two mechanisms that involve a 

rapid channel-like configuration with a millisecond firing rate of DA neurons and 

the other consisting of a slower, exchange-like mechanism of DA release (Kahlig 
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et al., 2005). Thus, results from these studies provide evidence that 

amphetamine is a substrate for DAT. 

Amphetamine also modulates DAT cellular expression. The role of PKC 

in DAT modulation has been widely investigated because DAT is regulated by 

activation of protein kinase, which decreases DAT cell surface expression after 

amphetamine administration (Pristupa et al., 1998; Vaughan et al., 1997; Zhang 

et al., 1997). This stems from findings that phosphorylation of the N-terminus of 

DAT, which may be PKC dependent, causes an amphetamine-induced DA efflux 

(Khoshbouei et al., 2004). If phosphorylation is needed for internalization and 

PKC causes phosphorylation, then PKC may play a vital role in the regulation of 

DAT (Copeland et al., 1996; Huff et al., 1997; Vaughan et al., 1997; Zhang et al., 

1997). 

Specifically, amphetamine has been shown to increase striatal PKC and 

PKC activation stimulates DAT-mediated release of DA and triggers rapid 

internalization of DAT from the plasmalemmal membrane (Giambalvo, 1992; 

Kantor & Gnegy, 1998). For example, amphetamine acutely decreased cell 

surface expression of human DAT (hDAT) in cell lines, which was concomitant 

with a loss of DAT function (Saunders et al., 2000). In addition, HEK-293 cells 

transfected with a yellow fluorescent protein-tagged hDAT were employed to 

determine if loss of transporter activity was due to a modification in DAT function 

independent of cell surface redistribution or due to a reduction in the number of 

active transporters at the plasma membrane resulting from DAT trafficking 

(Kahlig et al., 2004).  Confocal imaging combined with electrophysiology of the 

HEK cells revealed that after 1 hr exposure to 10 µM amphetamine, a reduction 

in hDAT function resulted and was directly related to the redistribution of hDAT 

from the plasma membrane. Thus, the decrease in DA uptake was associated 

with an increase in intracellular hDAT.  

In other work, Gnegy and coworkers investigated the effects of 

amphetamine on DAT expression at very early time points using biotinylation in 

rat striatal synaptosomes. Within 3 seconds of application of 3 µM amphetamine, 

there was an increase in synaptosomal DAT surface expression was observed 
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lasting less than 2.5 min, which was prevented by cocaine pretreatment and 

associated with increased delivery of DAT to the plasmalemmal membrane 

(Johnson et al., 2005a).   

The innovative work of Zahniser and colleagues showed that the hDAT 

oligomerizes (Sorkina et al., 2003). hDAT was fused with yellow or cyan 

fluorescent protein and transfected and expressed in PAE, human embryonic 

kidney (HEK) 293 cells, and an immortalized dopaminergic cell line 1RB3AN27 to 

examine the oligomeric state and trafficking of DAT in different compartments of 

different types of living cells (Sorkina et al., 2003). Fluorescence resonance 

energy transfer (FRET) was used to determine the location of these specific 

compartments. FRET involves a donor chromophore in its electronic excited 

state that transfers energy to an acceptor chromophore through nonradiative 

dipole-dipole coupling in near field region. The excited chromophore emits a 

virtual photon that is instantly absorbed by a receiving chromophore. The FRET 

signals were strongest in the endosomes, which provides evidence of the 

involvement of vesicles, where amphetamine caused the intracellular 

accumulation of hDAT on endosomal vesicles. Based on the results that a DAT 

mutant was retained in the endoplasmic reticulum after biosynthesis, suggests 

that DAT oligomers are formed in the endoplasmic reticulum and are maintained 

both at the cell surface and during trafficking between the plasma membrane and 

endosomes.  

Another target for amphetamine action is VMAT2. An early study used 

isolated chromaffin granules and [3H]reserpine-binding measurements to 

determine amphetamine interaction with VMAT2 (Rudnick & Wall, 1992). 

Amphetamine analogs such as 3,4-methylenedioxymethamphetamine (235 µM) 

and fenfluramine (30 µM) inhibited 50% of maximal binding; but 

parachloroamphetamine (800 µM) inhibited less than 10% of [3H]reserpine 

binding. These results were interpreted to suggest that parachloroamphetamine 

effects on isolated chromaffin granules were only due to an alteration in pH, 

whereas methamphetamine and fenfluramine exerted effects both by altering the 

pH gradient and vesicular transport, which was also measured (Rudnick & Wall, 
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1992). This study demonstrates that there is a way to determine if a compound 

solely changes the pH versus directly interacts with the transporter.  

Although, amphetamine interacts with VMAT2 (Brown et al., 2002; 

Gonzalez et al., 1994; Johnson, 1988; Mosharov et al., 2003); at this point in 

time, the focus in the literature has switched from amphetamine to 

methamphetamine, coinciding with the more wide spread abuse of the latter.  

One study found that 10-15 min of application of 10 µM amphetamine induced a 

15-fold increase in cystosolic DA in synaptosomes, strongly suggesting 

redistribution of vesicular storage from the vesicle to the cytosol  (Mosharov et 

al., 2003). Amphetamine displaced [3H]tetrabenazine binding, a VMAT2 ligand 

with a nM affinity (Teng et al., 1998), which suggests amphetamine may increase 

cytoplasmic DA concentrations by inhibiting vesicular DA uptake (Ary & 

Komiskey, 1980; Gonzalez et al., 1994; Philippu & Beyer, 1973).   

Yet, another target of amphetamine action is MAO. Thus, amphetamine 

also alters DA intracellular and extracellular concentrations by inhibiting MAO.  

MAO is one of the enzymes which metabolize catecholamines in brain. Thus, by 

inhibiting MAO, amphetamine increases the amount of cystolic DA available for 

reverse transport by DAT (Sulzer et al., 2005).  

An alternative hypothesis regarding amphetamine-evoked DA release 

involves the physicochemical properties of amphetamine, as alluded to above. 

Amphetamine is a weak base, with apKa of 9.9. This has been suggested also to 

play a role in the release of dopamine from the terminal into the extracellular 

space (Sulzer & Rayport, 1990).  The weak base theory suggests that 

amphetamine enters the cell through both transport and diffusion, diffuses across 

the vesicular membrane, accumulates in vesicles, disrupts the proton gradient by 

binding to free protons, and thereby, increases the pH inside the vesicles, which 

is normally around 5.5 (Johnson, 1988).  This disruption in pH decreases the 

driving force that provides energy for the accumulation of DA in the vesicle, 

causing the vesicle to release the stored DA. This DA release from the vesicle 

results in an increase of cytoplasmic DA available for reverse transport by DAT, 
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ultimately producing an increase in DA in the extracellular space (Sulzer et al., 

1993; Sulzer & Rayport, 1990).   

In summary, there has been a plethora of work conducted on amphetamine 

and its underlying multi-faceted mechanisms of action, which likely work in 

concert to ultimately increase the extracellular concentrations of DA and other 

neurotransmitters to produce its pharmacological effects including its therapeutic 

effects on ADHD. Despite the tremendous efforts to understand how 

amphetamine works in brain, further studies are needed to gain additional insight 

into the action of this very complicated pharmacotherapy.  This dissertation work 

will compare the effects of amphetamine and methylphenidate, two gold standard 

treatments for ADHD, on DAT and VMAT2 function in rat striatum. 

6. Alternative Therapies 
Alternative therapies for ADHD include tricyclic antidepressants (TCA), such 

as desipramine and nortriptyline (Biederman & Spencer, 1999; Spencer et al., 

1996; Wilens et al., 1996; Wood et al., 2007). These agents are somewhat 

effective in the treatment of ADHD, because they have affinity for NET, DAT and 

SERT (Wong et al., 1995).  Desipramine has been reported to have a Ki of 3.8 

nM for NET, 179 nM for SERT, but over 10,000 nM for DAT (Bymaster et al., 

2002).  Nortriptyline has been reported to have a Ki of 4.4 nM for NET, 18.5 nM 

for SERT, and 1140 nM for DAT (Owens et al., 1997). Unfortunately, these 

antidepressants have considerable side effects. For example, nortriptyline is 

associated with dry mouth (19% of subjects), constipation (11% of subjects), and 

headache (9% of subjects). Desipramine produces loss of appetite (25% of 

subjects), insomnia (19% of subjects), and dry mouth (10% of subjects), all of 

which have deterred the wide spread use of TCAs for ADHD (Prince et al., 2000; 

Spencer et al., 2002).   

Another antidepressant, which is not a TCA, but is used in the treatment of 

ADHD is bupropion (Wellbutrin®). Bupropion is also used as smoking cessation 

agent (Zyban®).This is of interest because lobeline has been investigated as a 

smoking cessation aid. Both bupropion and lobeline interact with nicotinic 

systems (Damaj et al., 1997; Dwoskin & Crooks, 2002; Yamada et al., 1985). 
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Bupropion is an aminoketone antidepressant (Figure 3), that interacts with 

noradrenergic, dopaminergic, and nicotinic systems. Bupropion is thought to 

inhibit DA uptake in the mesolimbic DA system thereby, aiding in smoking 

cessation (Jorenby et al., 2006). However, bupropion is considered an adjunctive 

treatment for ADHD, because it is less effective than stimulants in eliminating 

symptoms of ADHD when used alone (Greydanus et al., 2007; Olfson, 2004; 

Wilens, 2006; Wilens et al., 2005; Wilens et al., 2001).   

In addition, the antihypertensive medications, clonidine (Figure 3) and 

guanfacine (Figure 3), have been shown to be effective in the treatment of 

ADHD. A number of studies have shown that clonidine improved the hyperactivity 

and impulsivity symptoms, but not the inattention symptoms associated with 

ADHD (Connor et al., 1999; Heal et al., 2008; Nair & Mahadevan, 2009; Rains et 

al., 2006; Scahill et al., 2001).  With respect to guanfacine, one study employing 

25 children between the ages of 7-16 years with ADHD found that this 

therapeutic agent improved hyperactivity by 27%, improved teacher ratings on 

the hyperactivity/impulsivity scale by 36% and the teacher ratings on the ADHD 

scale by 32%, as well as the total tic severity scale by 39% (Boon-yasidhi et al 

2005).  Compared to clonidine, guanfacine may be more beneficial clinically 

because it has a longer duration of action (Greydanus et al., 2007). The major 

side effects of clonidine are sedation and hypotension (Greydanus et al., 2007; 

Olfson, 2004). In addition, comparisons of clonidine and guanfacine revealed that 

that guanfacine caused less somnolence than clonidine (21% vs. 35%, 

respectively; (Wilson et al., 1986). 

With respect to the mechanism of action, clonidine acts centrally as an 

agonist at both α1 and α2 adrenergic receptors (Wilens, 2006).  Clonidine is 

thought to improve neuropsychological function associated with the PFC by 

inhibiting norepinephrine release through stimulation of α2 autoreceptors that are 

located presynaptically on noradrenergic neurons. This action is suggested to 

explain the effect of clonidine on impulsivity and cognition in ADHD (Arnsten & 

Dudley, 2005; Arnsten & Li, 2005).   
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Guanfacine is thought to act similar to clonidine, however, this drug is 

actually more selective for a subtype of α2 adrenergic receptors. There are 2 

main subtypes of adrenergic receptors, which are α and β. Both of these 

subtypes have several subtypes. Theα-receptors have the subtypes α1 and α2. 

The α2-receptors have three highly homologous subtypes, which are α2A, α2B and 

α2C-receptors. Theα2A-receptors inhibit norepinephrine uptake in the PFC, which 

produces improvements in working memory, attention, and enhancement of 

impulse control. There is a high density of norepinephrine in PFC and locus 

coeruleus. Since guanfacine is a selective agonist of theα2A subtype of 

norepinephrine receptor, with a reported wide range of Kd (0.1-100 nM), it effects 

the neural transmission of norepinephrine (Greydanus et al., 2007; Khalid et al., 

2002; Wilens, 2006). Guanfacine inhibits norepinephrine release in this area, 

thereby increasing the blood flow to PFC. This effect is thought to improve the 

attention deficits associated with ADHD (Kolar et al., 2008).  A preclinical study 

employing nonhuman primates revealed that guanfacine (0.2 mg/kg, im) 

increased blood flow in the PFC as determined by single photon emission 

computed tomography (Loo et al., 2003; Avery et al., 2000). Specifically, a 

significant 5.8% increase in the mid-dorsolateral PCF and an 8.5% increase in 

the caudal dorsolateral PFC were found. Cognitive function was evaluated using 

the delayed response task and three of the four subjects demonstrated 18% 

improvement in the task. Therefore, guanfacine may be an acceptable treatment 

for ADHD, without the adverse side effects associated with stimulants. 

Another therapeutic agent that has been investigated for the treatment of 

ADHD is modafinil, an analeptic medication approved for the treatment of 

narcolepsy (Boellner et al., 2006; Greenhill et al., 2006; Hou et al., 2005; 

Swanson et al., 2006; Wilens, 2006).  Modafinil is structurally different from 

methylphenidate and amphetamine (Figure 3). In a discrimination study using 

rhesus monkeys, modafinil dose-dependently substituted for cocaine in 6 out of 7 

monkeys. These results suggest that modafinil shares discriminative stimulus 

effects with cocaine which alludes to the abuse potential of modafinil (Newman et 

al., 2010). One of the most recent clinical studies was a six week double-blind, 
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randomized trial that included 46 children between the ages of 6-15, who were 

given  200-300 mg/day of modafinil (depending on weight-200 if < 30kg and 300 

if > 30kg) (Kahbazi et al., 2009).  Modafinil significantly reduced parent ADHD 

rating scores, which was the primary outcome measure compared to baseline 

being -22 ± 8.9 (mean ± SD) and -8.2 ± 6.2 for modafinil and placebo, 

respectively.  Modafinil significantly reduced the secondary outcome measure 

(teacher ADHD rating scores) compared to baseline being -23 ± 8.2 (mean ± SD) 

and -7.7 ± 5.0 for modafinil and placebo, respectively. No subjects discontinued 

treatment with modafinil during the study due to side effects. Side effects 

associated with modafinil include dry mouth (8.7%), insomnia (8.7%), and 

decreased appetite (15%) being most common. Limitations of this trial included a 

small n and no reasons were given as to why one subject dropped out of the 

modafinil group and 2 subjects dropped out of the placebo group.   

With respect to mechanism of action, modafinil alters the balance of 

GABA and glutamate in brain, resulting in activation of hypothalamus, which is 

thought to improve the symptoms of narcolepsy (Ferraro et al., 1996; Kahbazi et 

al., 2009; Keating & Raffin, 2005; Lin et al., 1996; Wilens, 2006). The complex 

mechanism of action of modafinil has not been fully elucidated. Modafinil has at 

least four possible targets in the treatment of narcolepsy that are components of 

the wakefulness-promoting orexin-containing neurons of the lateral 

hypothalamic/perifornical area, the histamine-containing neurons of the 

tuberomammillary nucleus of the posterior hypothalamus, the noradrenergic 

neurons of the pontine locus coeruleus (LC), the mesencephalic dopaminergic 

neurons, and a group of sleep-promoting GABA and galanin-containing neurons 

of the ventrolateral preoptic nucleus of the hypothalamus (Hou et al., 2005).  

Cocaine and amphetamine-regulated transcript (CART) is also a potential 

modulator for alertness, which is found in the hypothalamus as well (Keating et 

al., 2010).  In addition, it is localized in neurons of the nucleus accumbens, 

synaptic terminals of the ventral tegmental area and the substantia nigra, partially 

engaging the mesolimbic DA circuits. This involvement may have influence upon 

reward/motivation and locomotion. One of the targets of modafinil is the lateral 
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hypothalamic/perifornical area, where CART is expressed. This interaction 

between modafinil and CART suggests that modafinil may improve ADHD 

symptoms, especially those related to alertness and hyperactivity, which is the 

pathway that involves CART.   

With regards to ADHD, modafinil elevates DA and norepinephrine levels in 

PFC and in rostromedial hypothalamus (de Saint Hilaire et al., 2001). Modafinil 

may activate noradrenergic neurons in the LC associated with the arousal 

without affecting the extra LC noradrenergic neurons involved in cardiovascular 

regulation (Hou et al., 2005).  The papillary control of modafinil is of interesting 

because it is comparable with LC phasic responses to task relevant events 

(Beatty, 1982; Richer & Beatty, 1987), suggesting the potential for 

LC/norepinephrine  system involvement in optimizing cognitive task performance 

(Aston-Jones & Cohen, 2005).  Furthermore, a study demonstrated that a low 

dose of yohimbine, an α-2 antagonist, potentiated the modafinil-induced 

wakefulness and activity (Lin et al., 1992).  However, at high doses yohimbine 

attenuated the modafinil-mediated effects on activity (Duteil et al., 1979).  These 

findings suggest that there is evidence that the adrenergic system may play a 

role in the mechanism of action of modafinil.    

In addition, modafinil effects have been evaluated in ADHD. Contrasting 

results from various studies have been reported when investigating if modafinil 

improves the symptoms of ADHD. However, the variables of these studies such 

as dose, length of administration, age of subjects, and test measurements need 

to be taken into consideration. For example, a study including 20 adult ADHD 

subjects were given a single dose of 200 mg modafinil, which was associated 

with significant improvements in performance on digit span, visual recognition 

memory, spatial planning, and Stop-Signal Reaction Time (SSRT; (Turner et al., 

2004).  Conversely, a two-week study including 22 adult ADHD patients in which 

the modafinil-treated group was given a titrated dose over 4-7 days that 

averaged dose of 207 mg/day, found no treatment effects of modafinil on the 

Stroop or Digit Span tests (Taylor & Russo, 2000).  Nevertheless, the majority of 

the modafinil studies have shown that modafinil is effective in treating the 
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symptoms of ADHD in children, adolescents and adults. In addition, modafinil is 

well tolerated at the dosages used (Biederman et al., 2006; Biederman et al., 

2005; Greenhill et al., 2006;, Rugino & Copley, 2001; Rugino & Samsock, 2003).      

The only FDA-approved (in 2002) non-stimulant medication for ADHD is 

the selective NET inhibitor, atomoxetine (Cormier, 2008; Heal et al., 2008; 

Olfson, 2004; Wilens, 2006). Atomoxetine has been shown to be effective in 

children, adolescents and adults with ADHD. Atomoxetine may not be as 

effective as the gold standard stimulants, as indicated by a study showing 

improvement of only 45% in ADHD ratings compared to a 56% improvement with 

methylphenidate (Michelson et al., 2003; Michelson et al., 2002; Michelson et al., 

2001; Newcorn et al., 2008).  Due to the untoward side effects of atomoxetine, 

the FDA requires a black box warning which states the potential for suicidal 

ideation (0.4%). In addition, the atomoxetine black box label was updated in 2004 

to include information about the cases of serious liver injury. From January 2005 

to March 2008, six post market cases of serious liver injury with atomoxetine 

were reported to the FDA (Diak & Senior, 2009).  Furthermore, based on the 

FDA receiving six additional reports of serious liver injury in patients taking 

atomoxetine, the label was revised again in 2007. The Warnings and Precautions 

section of the label advises prescribers about the risk of severe liver injury with 

this drug (Diak & Senior, 2009; Lim et al., 2006). Thus, the use of atomoxetine 

has its own unique concerns to be aware of when employed as a treatment for 

ADHD that must be balanced with therapeutic benefit (Cormier, 2008; Greydanus 

et al., 2007). The most common side effects of atomoxetine are sedation (6% of 

subjects), abdominal pain (11% of subjects), decreased appetite (14% of 

subjects), and headache (18% of subjects; (Newcorn et al., 2008). Although, 

atomoxetine is not considered to be a first line agent, it is still a treatment option 

for ADHD, particularly in patients who do not tolerate or respond to stimulants. 

Between 2002 and 2007, 3.3 million patients received a prescription for 

atomoxetine in the US (Diak & Senior, 2009). 
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 With regards to mechanism of action, atomoxetine has a high affinity for 

NET (Ki value of 2-5 nM) and lower affinity for other neurotransmitter transporters 

(Gehlert et al., 1995; Tatsumi et al., 1997; Wong et al., 1982). One study 

reported a Ki value of 1.9 nM for atomoxetine for NET (Wong et al., 1982). 

Another study extended that finding by determining that a tomoxetine inhibited 

binding of radioligands ([3H]paroxetine, [3H]nisoxetine, [3H]WIN 35,428) to clonal 

cell lines transfected with human NET, SERT or DAT with Ki values of 5.0, 77 

and 1450 nM, respectively, thus demonstrating over a 10-fold selectivity for NET 

over SERT and DAT (Bymaster et al., 2002). In the same study, microdialysis in 

male Sprague Dawley rats showed that local perfusion of 0.34 µM atomoxetine 

via dialysis probe into PFC significantly increased extracellular norepinephrine 

and DA to a maximum effect of 175 ± 33 and 190 ± 15% of basal concentration, 

respectively. In addition, atomoxetine (0.3, 1, 3 mg/kg, ip) produced a 3-fold 

increase in extracellular levels of norepinephrine in PFC, but did not alter 

extracellular serotonin levels. Atomoxetine also produced a 3-fold increase in 

extracellular DA in PFC, but no changes in striatum or nucleus accumbens 

(Bymaster et al., 2002), suggesting that it will not have drug abuse liability. In 

contrast, methylphenidate (3 mg/kg, ip) increased extracellular DA in striatum 

and nucleus accumbens to the same degree, whereas atomoxetine did not alter 

the amount of DA in these regions of the brain. However, methylphenidate 

increased extracellular norepinephrine and DA equally in PFC compared with 

atomoxetine. Furthermore, the latter study found that the expression of neuronal 

activity marker Fos was increased 3.7-fold in PFC by atomoxetine administration, 

but was not increased in striatum or nucleus accumbens, consistent with the 

regional distribution of increased extracellular DA. This study did not evaluate 

methylphenidate’s effect on Fos expression. However, a previous study found 

that an oral administration of methylphenidate (2.5 mg/kg) given to cats 

increased Fos expression in striatum (Lin et al., 1996). The atomoxetine-induced 

increase of catecholamines in PFC, a region involved in attention and memory, 

may mediate the therapeutic effects of atomoxetine in ADHD and may be 
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associated with the improvements in executive function and other cognitive 

functions (Wilens, 2006). 

7. Investigational Treatments 
The current treatment options for ADHD have been discussed, however 

due to the adverse side effects of some of these medications, along with the lack 

of effectiveness of others, has spurred the development of novel therapeutic 

options for ADHD. According to the National Institute of Mental Health, there are 

clinical trials underway to investigate new candidate pharmacotherapies.   

One particular clinical trial is entitled Betahistine: Novel Therapeutic in 

Attention Deficit Hyperactivity Disorder.  Betahistine is an antivertigo drug, which 

was first registered in Europe in 1970 for the treatment of Méniére’s disease. 

Betahistine has a high affinity for H3 receptors and a low affinity for H1 receptors. 

However, the mechanism of action of Betahistine is related to its ability to 

increase the levels of neurotransmitters in the brainstem (Barak, 2008).  This 

study started in January of 2009 with an estimated completion date of December 

of 2009 (NIH, 2010).   

Another ongoing clinical trial is an open-label multicenter sequential group, 

phase 1 study in 6-11 year old patients with ADHD (NIH, 2010).  The agent being 

investigated is JNJ-310001074. However, there was no available literature on the 

pharmacology of this compound and how it relates to ADHD. An additional trial 

on this compound is ongoing in Wisconsin, where the investigators are 

evaluating the efficacy and safety/tolerability of 3 different doses of JNJ-

310001074 compared to placebo. 

There is one clinical trial investigating a medication that has already 

received approval from the FDA for another condition. This medication, called 

varenicline (Chantix®), was approved for the treatment of smoking cessation in 

May of 2006 (NIH, 2010).  Varenicline interacts with specific nicotinic receptors. 

Nicotinic receptors are a complex system of different subunits that are a part of 

the super-family of ligand-gated ion channels (Xiong et al., 2007). These 

complexes are incorporated within the cell membrane and are composed of 

pentameric groups of α (α2-10) and β (β2-4) subunits. The subtypes contain only 
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one subunit type and are therefore called homomeric. Most of the subtypes are 

heteromeric, i.e., containing both an α (α2-10) and β (β2-4) subunit (Symons et 

al., 2010).  The most common subtypes in the brain include the homo-oligomeric 

α7 and the heteromeric α4β2. The composition of the subtype can determine its 

sensitivity of a receptor for nicotine. Varenicline binds more potently to the α4β2 

subtype of the nicotinic acetylcholine receptor compared to α7subunit>3500 fold; 

(Mihalak et al., 2006), without producing a full nicotinic effect on dopamine 

release. Therefore, it is considered a partial agonist of the α4β2 subtype. In 

addition, varenicline inhibits the ability of nicotine to stimulate the central nervous 

mesolimbic DA system. The purpose of this clinical trial is to determine if 

varenicline can improve the symptoms of ADHD and also decrease the amount 

of smoking in this population. A secondary outcome is to assess the tolerability 

and response to varenicline more fully in this population. 

The most promising candidate for the treatment of ADHD is a new 

chemical entity, called AZT3480 (TC-1734; (NIH 2010).  This compound, which 

is a partial agonist for the nicotinic acetylcholine receptor, is selective for the 

α4β2 subtype of the nicotinic acetylcholine receptor. As of May 2009, it has 

been evaluated in six Phase 2 clinical trials in various neurocognitive disorders, 

including ADHD. It has been evaluated in about 1,350 subjects from Phase 1 

and Phase 2 trials and has exhibited consistently a favorable tolerability profile 

(Dunbar et al., 2007). Preliminary results show that AZT3480 met the primary 

outcome measure in a Phase 2 clinical trial in adult ADHD. The most common 

side effects that have been reported include dizziness and headache (Gatto et 

al., 2004). As of July of 2009, there were plans to conduct a vigorous drug 

development program for AZT3480.  
One novel clinical candidate for the treatment of ADHD and the focus of 

our research is the alkaloid lobeline. The rationale for the potential utility of 

lobeline as a treatment option for ADHD is that it interacts with the same 

transporter proteins, DAT and VMAT2, as methylphenidate and amphetamine, 

which are the gold standard treatments for ADHD. In addition, it also has a high 
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affinity (Ki of 4-30 nM) for central nicotinic receptors as well (Broussolle et al., 

1989; Damaj et al., 1997; Lippiello & Fernandes, 1986; Yamada et al., 1985).   

8. Lobeline as a Candidate for ADHD Pharmacotherapy 
a. Historical background and clinical uses: 

Lobeline (Lob; Figure 3), an alkaloidal component of Lobelia inflata, is a 

novel compound that has been investigated in the treatment of drug abuse, 

including but not limited to, methamphetamine, nicotine, cocaine, opioid, and 

alcohol abuse (Dwoskin & Crooks, 2002; Farook et al., 2009; Miller et al., 2007; 

Polston et al., 2006).  The first report of Lobelia inflata being used for medicinal 

purposes occurred in 1813, when Reverend D. Cutler referred to the alkaloid as 

a effective remedy for asthma (Millspaugh, 1974).  In 1938, Proctor was the first 

to document the pharmacological effects of an alkaloid extract of the plant and 

reported on its use as an expectorant, asthma treatment, anti-spasmodic, emetic, 

diuretic, respiratory stimulant, and for narcotic overdose. The seeds of the plant 

contain the highest amount of lobeline, the principal alkaloid. Lobeline was 

named after Matthias de Lobel who was a French botanist and physician 

(Dwoskin & Crooks, 2002).  Wieland identified the chemical structure of lobeline 

and subsequently synthesized it in 1925 (Wieland H, 1925).   

Lobeline has also been considered as a therapeutic agent for smoking 

cessation dating back to 60 years ago (Dwoskin & Crooks, 2002). Lobeline was 

first reported by Dorsey, in 1936 as a smoking cessation agent (Dwoskin & 

Crooks, 2002). Although a review on the clinical studies using lobeline stated 

that lobeline had no effect on smoking (Stead & Hughes, 2001), others believe 

that if a new dosage form of lobeline was developed with improved 

bioavailability, lobeline would be an efficacious smoking cessation agent 

(Schneider & Olsson, 1996).  Poor compliance due to the multiple dosing and 

side affects such as nausea, dizziness, vomiting, and hypertension could have 

contributed to the lack of efficacy.  The evidence supporting the utility of lobeline 

as a smoking cessation agent may be inconclusive, but nevertheless, the 

interest in lobeline to reduce smoking is ongoing (Buchhalter et al., 2008). Due 

to this interest, a recent study was published in 2010 that had an objective of 
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evaluating the safety and efficacy of sublingual lobeline on smoking cessation 

(Glover et al., 2010). This was a multicenter Phase 3 trial involving 3 separate 

sites and a total of 750 smokers (250 from each site). The results of this study 

showed that the efficacy for lobeline was not significant (p= 0.62) compared to 

placebo. Based on these results, the authors concluded that lobeline does not 

appear to be an efficacious smoking cessation aid. It would be interesting to 

learn if another dosage form of lobeline would be more effective in smoking 

cessation by reducing the adverse effects, since the sublingual tablet does not 

seem to have any significant effect.      

b. Pharmacokinetics and Mechanism of action 
Research examining the pharmacokinetics of lobeline is very scarce. In a 

previous study in rats (Reavill et al., 1990), lobeline (4mg/kg, sc) had a reported 

lipophilicity of 1.68 at a ph of 7.4. The plasma concentration at this dose was 

74.3 ng/ml and the brain concentration was 237 ng/ml. These results imply that 

lobeline has the ability to penetrate the blood-brain barrier by both carrier and 

lipid mediation. In addition, the authors suggest that based on the behavioral 

data demonstrating that lobeline did not produce a nicotine-like effect in doses 

as large as 6.4 mg/kg, that other receptors other than nAChRs may mediate the 

effects of lobeline (Reavill et al., 1990a).  However, previous research has 

revealed similarities in the pharmacology of nicotine and lobeline, which resulted 

in lobeline being classified as a nicotinic agonist. Lobeline may have the similar 

effects of nicotine on cognition, based on studies utilizing radial-arm maze and 

spatial discrimination water maze, which showed that lobeline improved 

performance and learning in rats (Decker et al., 1993; Levin & Christopher,  

2003). However, there is no common pharmacophore or apparent structural 

likeness of lobeline to nicotine (Dwoskin & Crooks, 2002).  Some of the reasons 

why lobeline was considered a nicotinic receptor agonist were because lobeline 

caused tachycardia, hypertension, hyperalgesia, improvement of learning and 

memory, and in anesthetized rats it causes bradycardia and hypotension; which 

are all pharmacological effects of nicotine (Decker et al., 1993; Hamann & 

Martin, 1994; Olin et al., 1995; Sloan et al., 1988).  In addition, studies have 
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shown that nicotine improves cognition. One study involved 62 male non-

smokers, who were randomized into two groups, a low attention group and a 

high attention group (Poltavski & Petros, 2006). Based on the results from the 

Wisconsin Card Sorting Test, classic Stroop Test and the Conner’s Continuous 

Performance Test (CPT), transdermal nicotine improved attention in the low 

attention group and decrease working memory in the high attention group. This 

suggests that nicotine optimizes rather than just improving cognitive function. 

Another study investigated transdermal nicotine in healthy non-smoking adults 

with no attentional deficits (Levin & Simon, 1998).  Based on the results from the 

Profile of Mood States Test, nicotine significantly improved self-perceived vigor. 

Using the CPT, it was found that nicotine significantly reduced the number of 

errors of omission. Taken together, these results suggest that nicotine not only 

reduces attentional impairment, it also can improve attentiveness in normal adult 

non-smokers. A more recent study (Potter & Newhouse, 2008) used the Stop 

Signal Reaction Time to measure the effect of nicotine on cognition. The results 

showed that nicotine had a significant positive effect on this task without 

changes in the Go reaction time or accuracy. These data suggest that 

cholinergic agents like nicotine, may be potential pharmacotherapies for the 

cognitive deficits associated with ADHD. 

However, lobeline also has effects that are different from nicotine. For 

instance, nicotine is reported to be self-administered by rats (Corrigall & Coen,  

1989; Goldberg et al., 1981; Rasmussen & Swedberg, 1998; Sorge & Clarke,  

2009); however lobeline is self-administered in mice and is not self-administered 

by rats (Harrod et al., 2003; Rasmussen & Swedberg, 1998).  Chronic nicotine 

treatment results in an increase in locomotor activity (Clarke, 1990; Clarke & 

Kumar, 1983; Fung & Lau, 1988) and produces conditioned place preference 

(Fudala et al., 1985; Risinger & Oakes, 1995; Shoaib et al., 1994), but lobeline 

does not produce these effects (Dwoskin & Crooks, 2002).  Even though one 

study reported that lobeline generalized to nicotine in a drug discrimination assay 

(Geller et al., 1971),  additional studies have not been able to reproduce this 

finding (Reavill et al., 1990b; Romano & Goldstein, 1980; Schechter & 
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Rosecrans, 1972). Lobeline also produces transient, small cardiovascular effects, 

such as increase in heart rate, and with chronic use, it acts as a depressant of 

the sympathetic and parasympathetic ganglia as well as the adrenal medulla 

(Sloan et al., 1988), with side effects including decreased breathing rate and 

hypothermia.   

Due to the complexity of the pharmacological actions of lobeline, further 

investigation is necessary to evaluate other potential effects of lobeline in 

addition to its nicotinic receptor agonist effects. Lobeline has high affinity for the 

nAChR (Ki = 4-30 nM; (Broussolle et al., 1989; Damaj et al., 1997; Lippiello & 

Fernandes, 1986; Reavill et al.,1990b; Yamada et al., 1985). Furthermore, in a 

study using in vitro [3H]nicotine binding assays in rat brain, lobeline displaced 

binding of [3H]nicotine with a Ki value of 4.4 ± 2.2 nM (Damaj et al., 1997). This 

finding confirms that lobeline has a high affinity for nicotinic receptors, but does 

not indicate if lobeline is an agonist or antagonist at these sites. However, using 

a frog oocyte expression system with a two-electrode voltage-clamp, 0.1 and 1 

mM lobeline produced only a small current when applied for 10 sec to oocytes 

expressing the α4β2 subtype, suggesting that lobeline is  not acting as an 

agonist at this subtype of nAChR (Damaj et al., 1997).   Moreover, 10 µM 

lobeline antagonized 50% of the current-induced by 3 µM nicotine, although 

antagonism is not observed in vivo in mice (Damaj et al., 1997).  Also, 

pretreatment with mecamylamine and dihydro-β-erythroidine at a dose of 10 

µg/mouse, sc, 5 min before lobeline (40µg/mouse) did not decrease lobeline-

induced motor impairment, but these compounds did inhibit effects of nicotine, 

including lethality, seizures, and cardiovascular effects. Taken together, the 

results of this study suggest that lobeline interacts with a different mechanism 

than nicotine. Furthermore, the interaction of ligands with their receptors depends 

on a number of factors including receptor localization, subtype specificity, and 

potency of antagonist (Damaj et al., 1997).   

A series of studies investigated the action of lobeline as a nicotinic 

antagonist. The subsequent studies that investigated the action of lobeline, 

concluded that lobeline is a nicotinic antagonist (Clarke & Reuben, 1996;. Teng 
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et, al 1998; Teng et al., 1997; Terry et al., 1998). Specifically, lobeline evokes 
86Rb+ efflux from striatal synaptosomes with low efficacy (Terry et al., 1998). This 
86Rb+ efflux assay is a chemical method of investigating ion flux, whereby the 
86Rb+ acts like K+. If there is an increase in 86Rb+ efflux, then the compound in 

question acts as an agonist. In this case, lobeline produced low 86Rb+ efflux, 

suggesting that it acts as an antagonist instead of an agonist.  

In addition, lobeline-induced [3H]DA release is independent of extracellular 

calcium concentration and is not sensitive to mecamylamine, which indicates that 

the lobeline-evoked DA release is not mediated by nAChRs, and that lobeline 

does not act as an agonist nAChRs (Clarke & Reuben, 1996; Teng et al., 1998; 

Teng et al., 1997).  Importantly, a study using in vivo brain microdialysis was 

used to investigate the influence of lobeline on DA and DOPAC overflow in the 

core of nucleus accumbens in freely-moving rats pretreated with nicotine (0.4 

mg/kg, sc) once daily for 5 days. Lobeline (4.0 and 10 mg/kg) inhibited nicotine-

evoked [3H]DA overflow when administered 10 minbefore nicotine, but not after 

60 min (Benwell & Balfour, 1998). In addition, the low dose of lobeline had no 

effect at either time point in this study. The effect of lobeline on nicotine-evoked 

[3H]DA overflow was investigated using striatal slices (Miller, 2000). Striatal slices 

were superfused with lobeline for 30 min and 1 of 4 concentrations of nicotine 

was added to the buffer containing lobeline and superfusion continued for an 

additional 60 minutes. The results showed that lobeline blocked nicotine-evoked 

[3H]DA overflow from rat striatal slices (Benwell & Balfour, 1998; Miller et al., 

2000), which suggests that lobeline is an nicotinic antagonist.   

In addition, lobeline interacts with the same transporter proteins, DAT and 

VMAT2, at which psychostimulant drugs of abuse  and treatments for ADHD 

interact (Miller et al., 2003).  Lobeline inhibits [3H]DA uptake into vesicles with 

an IC50 of 0.88 µM and inhibits the binding of [3H]dihydrotetrabenazine, a 

VMAT2 ligand, to vesicular membranes with an IC50 of 0.90 µM (Teng et al., 

1998; Teng et al., 1997). Lobeline inhibits [3H]DA uptake into synaptosomes 

with an IC50 value of 80 µM (Teng et al., 1997). Results from this same study 

also demonstrated that lobeline increased DOPAC efflux, and did not increase 
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endogenous DA release (Teng et al., 1997). The increase in DOPAC suggests 

that lobeline does not inhibit MAO like amphetamine does. In addition, lobeline 

is more potent inhibiting DA uptake in vesicles (IC50= 0.88 µM) than releasing 

DA, whereas amphetamine is equipotent in inhibiting and promoting DA release 

(EC50~2.22 µM;(Teng et al., 1998). Both of these effects of lobeline may explain 

at least in part why lobeline is not self-administered.  

Taken together, the evidence from the above studies indicates that the 

overall mechanism of action of lobeline is a combination of interactions with 

different targets, the outcome of which is a diminished extracellular concentration 

of DA. Specifically, lobeline inhibits nAChR, DAT and VMAT2 function. The 

outcome of the interaction with VMAT2 would be expected to decrease the 

vesicular DA pool and increases the cystosolic DA, although this has not been 

determined directly. The proposed increase in cryptozoic DA would be expected 

to be metabolized by MAO, leading to an increase in extracellular DOPAC, which 

has been observed (Teng et al., 1997).   

9. Animal Models for ADHD 
The development of an appropriate animal model to evaluate potential 

new agents for ADHD is based on the behavioral, neurochemical, and 

neuroanatomical profile of ADHD individuals. A valid ADHD animal model should: 

1) mimic the clinical symptoms and presentation of individuals with ADHD (face 

validity), 2) show the underlying neurochemical changes in ADHD,  thus 

confirming the theoretical underlying etiology for ADHD (construct validity) and 3) 

predict an appropriate response to the effective, currently available, ADHD 

treatments (van der Kooij & Glennon, 2007).  Another factor to consider is the 

age of the rats in the animal models, since ADHD is primarily found in children 

and adolescents (American Psychiatric Association, 2000), but also persists into 

adulthood (Kessler et al., 2006). There are many ADHD animal models; however 

no one model satisfies all the criteria of an animal model for ADHD. Current 

models have been developed by either creating a lesion in the brain or by 

manipulation of the genome.   
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a. Neonatal 6-OHDA  
The first studies to model ADHD used 6-hydroxydopamine (6-OHDA) 

administered to neonatal rats to produce hyperactivity, which was expressed 

temporarily from postnatal day  (PND) 12-22 (Shaywitz et al., 1976).  6-OHDA 

(20 µg/µl; intracereoventricularly) is toxic to dopaminergic and noradrenergic 

neurons, decreasing DA and norepinephrine content and neurotransmission in 

brain. DA decreased in the frontal cortex by 76%, in striatum by 96%, and in 

nucleus accumbens by 84%.  Norepinephrine levels decreased by 13% in frontal 

cortex and by 39% in nucleus accumbens (Archer et al., 1988). This model 

resulted in learning and memory deficits, which are consistent with ADHD 

symptoms (Archer et al., 1988). Autoradiographic studies have demon strated 

the involvement of the DA D4 receptor in the effects of neonatal 6-OHDA in this 

model of ADHD (Avale et al., 2004; Zhang et al., 2002; Zhang et al., 2001). 

These latter findings are consistent with clinical observations that there is a 

higher incidence of ADHD when a polymorphism, in which a direct repeat in the 

48-base-pair sequence in the DA D4 receptor gene exists (Benjamin et al., 1996; 

Van Tol et al., 1992). Additional research has shown that the indolamine in 

addition to the noradrenergic neurotransmitter systems appear to be involved  in 

the pathology of ADHD due to the observations that NET inhibitors, such as 

desipramine and nisoxetine and 5-HT inhibitors citalopram and fluvoxamine 

reduced hyperactivity in 6-OHDA (100 µg) lesioned juvenile male rats, but the DA 

inhibitors had no effect on hyperactivity in  6-OHDA (100 µg) lesioned juvenile 

male rats (Davids et al., 2002).  These results suggest that the neonatal 6-OHDA 

rat is not a good model for ADHD. The neonatal 6-OHDA lesion model using rats 

also has excellent predictive validity because in one study methylphenidate (0.25 

mg/kg, sc) reduced hyperactivity in 6-OHDA lesioned rats (Shaywitz et al., 1978).  

However, it takes more than predictive validity for an animal model to be 

considered a good model for ADHD. In another study, methylphenidate (1 and 4 

mg/kg, sc) and amphetamine (0.25 and 1 mg/kg, sc) both decreased 

hyperactivity in neonatal 6-OHDA lesioned rats (Luthman et al., 1989).  

Moreover, a study evaluating the effect of atomoxetine (1 mg/kg) on neonatal 6-
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OHDA lesioned rats found that this non-stimulant also was effective in reducing 

motor hyperactivity in this animal model (Moran-Gates et al., 2005). Taken 

together, these studies provide evidence that the neonatal 6-OHDA lesioned rat 

model is not the best animal model for ADHD. Furthermore, this model has 

limitations because there is a lack of evidence showing that ADHD medications 

improve learning and memory deficits, not just hyperactivity. 

b. Neonatal alternative models 
Alternative ADHD animal models include the neonatal hypoxia rat model 

and the neonatal bromodeoxyuridine (BrdU) rat model. The neonatal hypoxia rat 

model was developed by immersion of rats in 100% nitrogen for 25 min at 

various stages of development ranging from 30 min after birth (Davids et al., 

2002), PND 2 (Dell'Anna et al., 1991), PND 4 (Shimomura & Ohta, 1988), or at 

PND 10 (Decker et al., 2003).  This animal model also produces permanent 

deficits in learning and memory (Gramatte & Schmidt, 1986).  Although 

amphetamine decreased hyperactivity, stimulants have not been thoroughly 

investigated for effects on improving learning and memory (Speiser et al., 1983). 

However, based on the limited research of this model, its predictive validity as a 

ADHD model is not clear (van der Kooij & Glennon, 2007).   

The neonatal BrdU rat model incorporates BrdU administration (50 mg/kg 

body weight, ip, every 12 hours for 2.5 days) to dams during gestational days 

between 9 and 15 (van der Kooij & Glennon, 2007). This treatment produces 

behavioral problems, impaired sexual behavior, deficits in learning and memory, 

and hyperlocomotion in the male offspring of these dams (van der Kooij & 

Glennon, 2007).  Nevertheless, no construct validity has been examined in this 

model and research has shown that methylphenidate (1 or 4 mg/kg, s.c.) has no 

effect in the BrdU rat model (Muneoka et al., 2006), which also questions the 

predictive validity of this model. In addition, this model also has a hyposexuality 

aspect that is not associated with ADHD. In conclusion, the overall validity of the 

neonatal BrdU rat model for ADHD remains questionable based on the above 

evidence. 
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c. Genetic models 
 There are also established genetic rat models of ADHD. These models 

include the spontaneously hypertensive rat (Schmitt et al., 2008), the Wistar-

Kyoto derived hyperactive rat (WKHA), and the Naples high (and low) excitability 

rat (Krause et al) models. The SHR model, the most commonly studied animal 

model of ADHD, was developed in the 1960’s by inbreeding individuals in the 

WKY strain that showed high systolic blood pressure, which resulted in 

hypertension in subsequent generations (Okamoto & Aoki, 1963).  The SHR 

model satisfies many of the criteria for a valid model of ADHD because these rats 

display hyperactivity, impulsivity, poor performance stability, poor sustained 

attention, and spatial working memory deficits (De Bruin et al., 2003; Hernandez 

et al., 2003; Ueno et al., 2002) when compared to WKY (Tsai & Lin, 1988; van 

den Bergh et al., 2006).   

However, hypertension is not associated with ADHD patients, leading to 

potentially confounding interpretations as to the results obtained with this model, 

i.e., the role that hypertension plays in contributing to the effects. In addition, the 

predictive validity of this model in identifying novel treatments is questionable 

because amphetamine and methylphenidate have been shown to increase 

hyperactivity in this rat model, which is the opposite result that is observed 

clinically (Amini et al., 2004; McCarty et al., 1980; Wultz et al., 1990).  The age of 

these rats in this model may also be a concern to some investigators, because 

the rats between 10-12 months old, which is considered an adult rat (Spear, 

2000), yet ADHD is diagnosed in adults and is an ongoing issue in the adult 

population as well.  Conversely, a more current study found that methylphenidate 

(1.5 mg/kg, po) lowered the amount of errors in the attentional set-shifting task in 

the SHR rat model using 9 week old rats  (Kantak et al., 2008). This same  study 

sought to advance the SHR animal model of ADHD toward medication 

development by utilizing 3 behavioral tests to assess the validity of this model 

with respect to the deficiency in learning and memory associated with ADHD, 

using 9 week old rats versus adult rats (Kantak et al., 2008).  Specifically, the 

function of the orbitofrontal cortex, the dorsal striatum, and the prelimbic cortex 
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were evaluated using the odor-delayed win-shift task (Di Pietro et al., 2004), the 

win-stay task (Kantak et al., 2001), and the attentional set-shift task (Birrell & 

Brown, 2000). The odor-delayed win-shift task training phase involves the rats 

discriminating among four odors in four arms and keeping online the memory of 

the odors for which the reinforcer was already received. The rats were given 

eight training trials per day for 4 days to learn to dig in an unscented sand cup for 

a hidden fruit loop reinforcer. The turn bias used a T-configuration for the maze 

and the rats were started from the less familiar stem arm and had to choose the 

correct strategy to advance to the extradimensional set-shifting trials conducted 

the following day. The food well of each choice arm was baited with a single 

pellet and a visual cue was randomly placed on the left wall of the one of the 

choice arms before each trial. If a rat made an incorrect choice, the 

discrimination trials continued until it was able to reach five consecutive correct 

reinforced choices.        

         In addition, Kantak and colleagues included a genetic control in this latter 

study, the WKHT strain, which is a Wistar-Kyoto-derived strain of rat inbred for 

hypertension, but not exhibiting the hyperactivity. This important aspect provided 

the first direct test of the impact of hypertension in these ADHD-relevant learning 

paradigms. Furthermore, in the experiments the authors used 9-week old rats, an 

age which is considered more comparable with adolescence. The results from 

the odor-delayed win-shift task revealed that the over the entire task there was 

no strain differences in the cumulative number of working memory errors or 

reference memory errors made over the 20 test phase sessions. However, the 

methylphenidate-treated SHR strain completed the test phase 78% faster than 

the vehicle-treated WKY strain. This suggests that methylphenidate elevates 

some of the working memory deficits. The SHR strain latencies to traverse the 

arm and recover a food pellet in the win-stay task were 42% faster than the WKY 

strain and the WKHT strain was 20% faster than the WKY strain. This indicates 

that the learning deficits of the SHR strain are not associated with a lower 

motivation level compared to the other two control strains. The model was 

validated by the findings that methylphenidate(1.5 mg/kg, po, 30 min 
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pretreatment) significantly improved latencies in the win-stay task, where the 

methylphenidate-treated SHR finished the task 66% faster than the vehicle-

treated WKY strain. These results demonstrate that methylphenidate treatment 

was effective in enhancing the performance of the SHR, thus allowing them to 

complete the task faster than the vehicle-treated WKY. With the attentional set-

shifting task, the vehicle-treated SHR strain had 23% more errors compared with 

the vehicle-treated WKY. Methylphenidate-treated WKY strain had 30% less 

errors compared to the methylphenidate-treated SHR strain. These findings 

demonstrate that methylphenidate eliminates strain differences in attention. The 

WKHT strain performed similarly to the WKY, suggesting that the hypertension is 

not associated with the hyperactivity found in the SHR rat model. The overall 

results of this study support the use of the SHR as a valid model for ADHD, 

particularly with respect to the neurocognitive deficits associated with this 

disease, and that the WKY is an appropriate control strain to compare with the 

SHR when neurocognitive endpoints are evaluated. 

 The SHR strain and the WKY strain were crossbred in order to develop a 

strain without the hypertension associated with the SHR model. This led to the 

development of the WKHT rat having hypertension but no hyperactivity and the 

WKHA rat model, which had no hypertension but had hyperactivity (Hendley & 

Ohlsson, 1991).  In regards to face validity, in the absence of hypertension, this 

model has abnormal attentional processing, impulsivity, and learning deficits. The 

WKHA model also had a low predictive validity. This conclusion was 

demonstrated by the results of a study that administered methylphenidate (5 

mg/kg) to WKHA rats and found that their locomotor activity increased by 200% 

(Drolet et al., 2002). Based on these results, the increase in locomotor activity 

decreases the predictive validity because methylphenidate should not increase 

locomotor activity, but decrease it. Furthermore, more research is needed to 

investigate the construct validity of this model because the role of the DA 

receptors and DAT is still unclear. In conclusion, these observations limit the 

usefulness of the WKHA model as an ADHD animal model.  
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The Napel High Excitability (NHE) rat model has been investigated as an 

ADHD model because of the different exploratory activity in the Làt maze, a 

commonly used method of testing locomotor activity and habituation in a novel 

situation. This model was based on reactivity to novelty, not baseline activity 

level (Sadile et al., 1993). NHE rat model has an advantage over the SHR model, 

because the NHE strain does not have hypertension (Cerbone et al., 1993), and 

does not have the limitation of evaluating the effect of hypertension. The face 

validity of this model needs to be improved because even though it demonstrates 

hyperactivity and attention deficits, no impulsivity has been observed. In addition, 

the predictive validity of this model still needs to be investigated. In reference to 

construct validity, one study evaluated mesencephalic TH expression in coronal 

sections as determined by immunohistochemistry in the NHE rat model (Viggiano 

et al., 2003). Results showed a larger neuron size in the VTA. These results 

suggest that the mesolimbic and nigrostriatal DA pathway are normal, but the 

mesocortical DA pathway is hyperfunctional and hyperinnervated.  However, a 

larger VTA neuron size in ADHD has not been reported, thus limiting its construct 

validity. In addition, the size of the neuron can not be the only factor involved in 

the functional of the pathway. The NHE could be potential ADHD animal model 

because it demonstrates the aspects of ADHD including hyperactivity and deficits 

in tasks requiring visuospatial attention (Aspide et al., 1998; Papa et al., 2000). 

Nevertheless, further study is necessary to determine how ADHD medications 

affect this rat model and if this model demonstrates the other symptoms of 

ADHD, such as impulsivity. The age of the animal is not a limitation because this 

model used adult rats and as stated earlier, adults suffer with ADHD as well. In 

conclusion, this model should not be considered a suitable model for ADHD until 

additional research is performed such as investigating the construct validity in 

more detail in order to validate the model more appropriately.  

There are also models of ADHD which employ mice, rather than rats. 

Some of these models include the hyperactive-wheel turning mice, the coloboma 

mutant mice, and the DAT-KO mice. The hyperactive wheel-running mouse only 

demonstrates hyperactivity in regards to face validity (Rhodes et al., 2001). As 
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far as construct validity, altered dopaminergic function regarding the D1 and DAT 

may be involved in producing the hyperactivity (Rhodes et al., 2001). The 

predictive validity is weak because only amphetamine has been shown to 

attenuate the hyperactivity (Rhodes et al., 2001). The coloboma mutant mice 

model was developed by neuron irradiation in mice (Searle, 1966).  This model 

has been used as a ADHD model because it possesses a weak face validity in 

that it displays spontaneous hyperactivity (Hess et al., 1992) and delayed 

development (Heyser et al., 1995).  However, impulsivity has not been observed. 

It is suggested that the neurochemical basis of this model is produced by 

elevated noradrenaline levels in striatum and nucleus accumbens of the 

coloboma mouse (Jones et al., 2001). The predictive validity is questionable 

because amphetamine blocks the hyperactivity, however methylphenidate 

increases hyperactivity (Hess et al., 1996).  Based on the lack of validity of these 

two models, they are not recommended as suitable ADHD models. Due to the 

lack of research of these models, a greater focus has been placed on DAT-KO 

mice.   

Since DAT is the major regulator of DA clearance and DAT-gene 

alterations have been associated with ADHD, DAT-KO mice were developed 

(Cook et al., 1995; Gill et al., 1997). In support of the validity of this model, DAT-

KO mice have been found to display hyperactivity and spatial learning deficits 

(Gainetdinov & Caron, 2001; Gainetdinov et al., 1999). Methylphenidate and 

amphetamine attenuate the hyperactivity observed in the DAT-KO mice, also in 

support of the validity of the model. However, a disadvantage of this model is that 

the target of psychostimulants, DAT is missing, which makes it more difficult to 

assess the predictive validity. There is the possibility that not all the DAT has 

been knocked out which depends on the process used to develop the DAT-KO 

mice (NIH, 2010).  The pups born from the embryos that had the altered 

embryonic stem cells injected into them do not have the DAT completely knocked 

out because there is also normal tissue present as well. In order to produce a 

homozygous line of knockout, crossbreeding is required where each copy from 

respective chromosomes is knocked out in the present tissue (NIH, 2010).  
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Nevertheless, a study utilizing fast scan cyclic voltammetry of extracellular striatal 

DA levels, show impaired DA clearance in DAT-KO mice x 300 times compared 

to controls. These results demonstrate that the DAT gene was knocked-out. A 

more logical explanation is that these psychostimulants are interacting with other 

neurotransporters, such as NET and 5-HT, to elicit their effects. This leaves open 

the question of the involvement of other targets for the action of effective 

pharmacotherapies for ADHD. 

In order to eliminate some of the disadvantages associated with the DAT-

KO mice mode, such as premature death, growth retardation, and the absence of 

DAT, the DAT-knock-down (DAT-KD) mouse model was created. This line was 

developed by breeding heterozygous mutants in a 129 Su/J genetic background 

(Zhuang et al., 2001). Both the DAT-KO/KD models respond to amphetamine 

and methylphenidate, thus supporting the predicative validity of the models for 

ADHD. However, more research is needed to find the construct validity marker 

such as D4 receptor involvement. In reference to the face validity, both models 

possess hyperactivity, impulsivity, and attention deficits. Another advantage of 

the DAT-KD model is that it expresses a small percentage of DAT, thus allowing 

it to have a more acceptable predictive validity because pharmacotherapies 

targeting DAT can be evaluated. The age of the mice used in these models is not 

clear, however the model suggest that the mice are adolescents since some do 

not live to adulthood. 

 In conclusion, there are several potential ADHD animal models from which 

to choose. Nonetheless, ADHD animal model needs to demonstrate the 

symptoms associated with ADHD (face validity), confirm an underlying theory of 

ADHD (construct validity), and possess the appropriate response to ADHD 

treatments (predictive validity). There is no perfect animal model for ADHD, but 

the most promising models include the neonatal 6-OHDA lesion model and the 

DAT/KO-KD mice model based on their ability to meet the aforementioned 

criteria.  
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10.  Specific Aims and Hypotheses 
The work discussed in this dissertation was based on the hypothesis that 

DAT and VMAT2 are the primary targets for the pharmacological effects of 

ADHD psychostimulants, methylphenidate, and amphetamine. DAT is generally 

thought to be a major target for these agents; however, it may not be the only 

target. In addition, these pharmacotherapies have untoward effects such as 

abuse liability, which limits their use and demonstrates the need for additional 

ADHD treatment options. Lobeline may be a potential treatment option for 

ADHD because it interacts with the same transporters as methylphenidate and 

amphetamine, but does not have abuse liability.  

The specific hypotheses for this project were:  

1) Lobeline will decrease DAT function after acute and repeated in 

vivo administration, as shown by a decrease in Vmax, based on results 

from previous in vitro studies performed in our lab 

2) Lobeline will have a greater effect on VMAT2 function after acute 

and repeated in vivo administration as shown by the parameters of Vmax 

and Km, based on results from previous in vitro studies 

3) DAT trafficking is the underlying mechanism behind the 

modulation of DAT function as shown by an increase of DAT to the 

neuronal cell surface of the striatum. 

 a. Specific Aims 
 Specific Aim 1) Determine the effect of lobeline after acute and repeated 

in vivo administration on DAT function using [3H]DA uptake assay.  

 Specific Aim 2) Determine the effect of lobeline after acute and repeated 

in vivo administration on VMAT2 function using [3H]DA uptake assay.   

 Specific Aim 3) Determine if the underlying mechanism of modulation of 

DAT function is due to DAT trafficking, using biotinylation and western blot 

analysis.  

 The effects of lobeline were compared to the effects of methylphenidate 

and amphetamine for all experiments. 
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Figure 1. Schematic of a DA nerve terminal. 
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Figure 2.  3D-Image of a DA transporter. Used with permission by Dr. Zhan. 
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Figure 3. Structures 
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Figure 3. Structures (Continued) 
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Chapter Two 
 

Effect of Acute and Repeated In Vivo Administration of Lobeline, 
Methylphenidate, and Amphetamine on Dopamine Transporter Function 

A. Introduction 
 ADHD is a childhood disorder that can, in some cases, persist into 

adulthood (Madras et al., 2005) and is associated with behavioral dysfunctions 

including three major components, hyperactivity, impulsivity, and inattention.  

Estimations are that ~15% of school age children (Scahill et al., 1999) and 5-10% 

of adults have ADHD, which translates into at least 8 million adults having ADHD. 

(Swanson et al., 1998a). This suggests that ADHD is not just a childhood 

disorder, but a disorder of all ages. The striatum, which contains high 

concentrations of DA, is suggested to be involved in executive function and 

motor response associated with ADHD (Dinn et al., 2001; Volkow et al., 2001; 

Wilens, 2008).  

The etiology of ADHD is unknown; however DAT, which is located on the 

DA nerve cell membrane, is believed to play a major role in the pathophysiology 

of ADHD (Easton et al., 2007). DAT is the primary regulator of extracellular DA 

concentration (Gainetdinov & Caron, 2003). DAT is thought to be involved in the 

mechanism of action of stimulants, which are the gold standard options to treat 

ADHD (i.e., methylphenidate and amphetamine). This is supported by work that 

shows that stimulants that block DAT are effective treatments for ADHD (Volkow 

et al., 2002); thus, DAT is a pharmacological target for ADHD therapeutic agents.   

Methylphenidate inhibits the reuptake of DA into the synaptic terminal, 

thus increasing the amount of DA in the synaptic cleft (See Introduction; 

(Greydanus et al., 2007).  Amphetamine increases the amount of DA via a 

different mechanism, whereby it releases DA from the terminals by causing a 

reversal of DAT (Jones et al., 1998b). Due to the potential for abuse associated 

with these stimulants, there are concerns about the use of these agents. 

Additional concerns include cardiovascular effects, abnormal growth, and 

suppressed appetite (Gibson et al., 2006). 
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Lobeline may be a suitable candidate for the treatment of ADHD. When 

lobeline was evaluated in behavioral studies, lobeline was not self-administered 

by rats, nor did it substitute for d-methamphetamine, which suggest that it has no 

abuse liability (Harrod et al., 2003).  Lobeline is the major alkaloidal component 

of the Indian tobacco plant, Lobelia inflata, and is similar to nicotine in some 

ways.  For example, both have a high affinity for the nicotinic receptor despite the 

structural differences of nicotine and lobeline (Dwoskin & Crooks, 2002). Based 

on in vivo studies, lobeline does not stimulate locomotor activity (Miller et al., 

2003) and acts as a nicotinic antagonist, in vitro, (Miller et al., 2001) and in vivo 

(Miller et al., 2003).  Lobeline binds to and inhibits (IC50 value ≈ 40-100 µM) DAT, 

inhibiting DA uptake in vitro (Miller et al., 2004; 1998, Teng et al., 1997). 

The concerns of the use of stimulant medications clearly indicates that 

more effective treatment options with less side effects are needed for ADHD. 

Based on in vitro experiments where lobeline inhibited DAT function, lobeline 

may be an option (1998, Teng et al., 1997). However, the effect of in vivo 

administration of lobeline needs to be determined. In order to determine if the 

mechanism of action of lobeline on DAT function is similar to either 

methylphenidate or amphetamine, the effects of methylphenidate and 

amphetamine on DAT function were also investigated after in vivo administration. 

Therefore, the goal of the present study was to elucidate the effect of acute and 

repeated in vivo administration of lobeline and to determine if this effect was 

observed in a dose-dependent manner. In addition, the effect of lobeline on DAT 

function was compared to the effect of methylphenidate and amphetamine 

administered in vivo. Such experiments are helpful in providing more insight into 

the mechanism of action of all these agents. 

B.  Methods 
Materials.  

[3H]DA (3,4-ethyl-2[N-[3H]dihydroxyphenylethylamine Specific Activity 28 

Ci/mmol) was purchased from PerkinElmer Life Sciences Inc. (Boston, MA). L-

Ascorbic acid, bovine serum albumin (BSA), catechol, α-D-glucose, N-(2-

hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) (HEPES), nomifensine 
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maleate, pargyline hydrochloride, sucrose, methylphenidate hydrochloride, 

amphetamine hydrochloride, and 3-hydroxytyramine hydrochloride DA were 

obtained from Sigma Chemical Co. (St. Louis, MO). Lobeline was purchased 

from ICN Biomedicals (Costa Mesa, CA). All other chemicals used in the in vitro 

assay buffers were purchased from Fisher Scientific (Pittsburgh, PA).   
Subjects. 

Adult male Sprague-Dawley rats (200-220g body weight upon arrival) 

were obtained from Harlan Inc. (Indianapolis, IN). Adult male rats were used 

because as stated earlier, ADHD is found in adult humans as well as adolescents 

(Swanson et al., 1998b). Animals were housed two per cage with free access to 

food and water in the Division of Lab Animal Resources, University of Kentucky. 

Experimental protocols were in concordance with the NIH 1996 Guide for the 

Care and Use of Laboratory Animals and were approved by the Institutional 

Animal Care and Use Committee at the University of Kentucky.   
Drug Administration. 

Lobeline, methylphenidate, and amphetamine were administered by 

subcutaneous (sc) injection in a volume of 1 ml/kg body weight and expressed as 

the salt weights. In order to remain consistent with previous studies, the 

subcutaneous route was selected. Groups of rats were injected acutely with 

either saline (control), lobeline (1, 3, and 10 mg/kg), methylphenidate (2.5, 5, 20, 

and 40 mg/kg), or amphetamine (0.1, 0.25, 1, and 5 mg/kg). The striatum was 

obtained 20 min after the last injection for the lobeline group, 60 min for the 

methylphenidate group and 30 min for the amphetamine group. Separate groups 

of rats were injected repeatedly for either 7 or 14 days once daily with saline, 

lobeline (3.0 mg/kg), methylphenidate (2.5, 5, and 20 mg/kg), or amphetamine 

(0.25 and 5 mg/kg). The doses for the repeated experiments were chosen based 

on the effect observed during the acute experiments. If no effect was observed in 

the acute experiments, doses were chosen based on results of previously 

reported behavioral studies (Harrod, 2003; Miller, 2001).   
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Lobeline dose range and time point after injection was chosen based on 

previous behavioral studies in which the effect of lobeline (1, 3, and 10 mg/kg) on 

methamphetamine self-administration was determined. Results showed that 

lobeline (3 mg/kg) inhibited methamphetamine self-administration 20 min after 

administration (Harrod et al., 2001).  Methylphenidate dose range and time point 

were chosen based on experiments assessing [3H]DA uptake, 60 min after 

administration and behavioral studies which concluded that doses of 2.5 and 5.0 

of methylphenidate were more clinically relevant (Kuczenski & Segal, 2001; 

Wooters et al., 2006). Amphetamine dose range and time point were based on 

behavioral studies showing that low doses of amphetamine (0.25-0.75 mg/kg) 

improved stimulus detection performance in rats  30 min after injection (Grilly, 

2000).   

Striatal Synaptosomal Preparation and [3H]DA Uptake Assay (DAT 
Function).  

[3H]DA uptake assays were conducted using previously published 

methods (Zhu et al., 2004).  Briefly, striata were dissected and homogenized with 

10-12 passes of a Teflon pestle homogenizer in 20 mL of ice cold 0.32 M 

sucrose buffer containing 5 mM sodium bicarbonate (pH 7.4). Homogenates 

were centrifuged at 2000 g for 10 min (4°C). Supernatants were centrifuged at 

20,000 g for 15 min (4°C). Pellets were resuspended in 2.4 ml of ice-cold assay 

buffer (125 mM NaCl, 5 mM KCl, 1.5 mM MgSO4, 1.25 mM CaCl2, 1.5 mM 

KH2PO4, 10 mM glucose, 25 mM HEPES, 0.1 mM ethylenediaminetetraacetic 

acid (EDTA), 0.1 mM pargyline and 0.1 mM L-ascorbic acid, saturated with 95% 

O2/5% CO2, pH 7.4). Protein concentrations were determined using the Bradford 

assay (Bradford, 1976).  Striatal synaptosomes (20 µg protein in 50 µl) were 

incubated in an oxygenated environment for 5 min at 34°C. [3H]DA (1 nM - 5µM) 

was added to the samples. Total assay volume was 500 µl. Nonspecific uptake 

was determined in the presence of 10 µM nomifensine. Incubation continued for 

10 min at 34°C and was terminated by the addition of 3 ml ice-cold assay buffer 

containing 1 mM pyrocatechol. Samples were filtered through Whatman GF/B 

glass fiber filters (presoaked with  1 mM pyrocatechol  for at least 3 h) and 
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washed three times with ice-cold assay buffer containing 1 mM pyrocatechol, 

using a Brandel cell harvester (Model MP-43RS; Biochemical Research and 

Development Laboratories Inc., Gaithersburg, MD). Radioactivity was determined 

using a liquid scintillation spectrometer (Model B1600TR, Perkin-Elmer Life 

Sciences, Downers Grove, IL).     

C. Data Analysis.  
A one-way ANOVA with each dose of drug serving as an independent 

group revealed that [3H]DA uptake was not different among the saline groups 

across the dose range for each drug (Table 1, 2, and 3). Therefore, the data for 

the saline-control groups were pooled for statistical analysis and graphical 

presentation, which also explains the wide range of n. 

Kinetic parameters Vmax(pmol/min/mg) and Km(µM)) for [3H]DA uptake 

were determined using GraphPad Prism software (GraphPad Prism,  version 

5.02; GraphPad Software, San Diego, CA). Vmax is the maximum velocity at 

which the substrate is 100% bound and Km is the concentration of the substrate 

at half of the Vmax. Data are expressed as mean values ± S.E.M. To analyze the 

kinetic parameters, separate unpaired Student t-tests were performed on the 

Vmax and Km for [3H]DA uptake of the drug-treated group  for each drug at each 

dose and saline-control groups. Log transformed Km values were used for 

statistical analyses using the SPSS (Statistical Packages for the Social Sciences; 

standard version 17, SPSS Inc., Chicago, IL). To determine the methylphenidate 

(20 mg/kg) response on DAT cell surface expression, separate student t-tests 

were conducted on DAT immunoreactivity from each of the cell fractions (total, 

non-biotinylated and biotinylated) between methylphenidate-treated and saline 

control groups. Differences were considered significant at p< 0.05.  

D. Results 
Effects of Acute and Repeated In Vivo Methylphenidate Administration on 
DA Transporter Function 

Kinetic analysis of [3H]DA uptake was performed on synaptosomes after 

acute in vivo administration of methylphenidate. Specific [3H]DA uptake for the 

saline-control groups for methylphenidate 2.5, 5.0, 20.0, and 40.0 mg/kg doses 



74 

were 16.7 ± 1.5, 12.8 ± 2.1, 17.4 ± 3.9, and 10.8 ± 2.5 pmol/mg/min, respectively. 

Methylphenidate (5.0, and 20 mg/kg) increased (~60%) Vmax (23.5 ± 1.6 and 23.3 

± 2.7 pmol/mg/min) for [3H]DA uptake compared to pooled saline-control (14.5 ± 

1.3 pmol/mg/min, Table 1), respectively. The current results show an increase 

(~60%) of DAT function, with acute methylphenidate (5.0 and 20 mg/kg) having a 

significantly higher Vmax compared to control (Fig. 4A). Acute in vivo 

administration of methylphenidate had no effect on Km values (Table 6). 

  Repeated methylphenidate administration for 7 days at 2.5 and 20 mg/kg 

doses had a Vmax of 25.1 ± 0.9 and 27.3 ± 2.0 pmol/mg/min, respectively, which 

increased (36% and 48%, respectively) DAT function compared to pooled saline-

control with a Vmax of 18.5 ± 1.3 pmol/mg/min (Fig. 5A). No significant effect was 

observed for the 5.0 mg/kg dose after 7 days or after 14 days (Fig. 5A). 

Repeated methylphenidate in vivo administration had no effect on Km values 

(Table 6). 

Effects of Acute and Repeated In Vivo Amphetamine Administration on DA 
Transporter Function 
 Acute in vivo administration of amphetamine had no effect on DAT 

function (Fig. 7). Seven-day repeated in vivo administration of amphetamine had 

no effect on DAT function (Fig. 8). Fourteen-day-repeated in vivo administration 

of amphetamine had no effect on DAT function (Fig. 9). Specific [3H]DA uptake 

for the saline-control groups for acute amphetamine 0.1, 0.25, 1.0, and 5.0 mg/kg 

doses were 18.6 ± 1.0, 27.0 ± 4.9, 15.3 ± 1.1, and 14.6 ± 0.7 pmol/mg/min, 

respectively, with no effect onKm  (Table 7). Specific [3H]DA uptake for repeated 

amphetamine 0.1, 0.25, 1.0, and 5.0 mg/kg doses were 15.9 ± 2.2, 17.7 ± 1.4, 

14.3 ± 1.1, and 15.9 ± 0.9 pmol/mg/min, respectively, compared to the pooled 

saline-control group with a Vmax of 19.1 ± 1.7 pmol/mg/min (Table 2).  

Effects of Acute and Repeated In Vivo Lobeline Administration on DA 
Transporter Function 
 Kinetic analysis of synaptosomal [3H]DA uptake after acute and repeated 

(7 or 14 days) in vivo administration of lobeline showed no effect on Vmax or  Km 

values (Fig. 10-12;Table 8). Specific [3H]DA uptake for the saline-control groups 
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for lobeline 1.0, 3.0, and 10.0 mg/kg doses were 16.4 ± 2.3, 20.8 ± 2.3, and 13.1 

± 1.8 pmol/mg/min, respectively. Specific [3H]DA uptake for acute lobeline 1.0, 

3.0, and 10.0 mg/kg doses were 13.3 ± 0.9, 20.3 ± 1.5, and 13.3 ± 1.7 

pmol/mg/min, respectively, compared to16.3 ± 1.3 pmol/mg/min for the pooled 

saline-control group (Table 3). The 3 mg/kg dose had the highest effect of all the 

doses with a Vmax of20.3 ± 1.5 pmol/mg/min; however, this effect was not 

significant. 

E. Discussion 
 In the present study, the effects of in vivo administration of lobeline were 

determined and compared to the effects of methylphenidate and amphetamine 

using kinetic analysis of [3H]DA uptake into striatal synaptosomes. This work 

investigating in vivo drug administration, extends previous work in our laboratory 

demonstrating that in vitro lobeline inhibits DAT function (Teng et al., 1997). 

However, the results from these studies show that lobeline (1, 3, and 10 mg/kg) 

has no effect on DAT function 20 min after in vivo administration. There are a 

number of possible explanations for this observation.  

First, the concentration of lobeline after in vitro administration may be 

higher than the final concentration after in vivo administration. In vitro 

experiments involve the direct application of the drug in question to the striatal 

slice of tissue or synaptosomes; however with in vivo administration that is not 

the case because the drug is injected into the whole animal. Furthermore, when 

a drug is given in vivo, the drug is exposed to various processes that could 

decrease the amount of drug available to elicit its pharmacological effect such as 

absorption, distribution, metabolism, and elimination. Previous research has 

provided evidence that the ability of any compound to alter monoamine uptake in 

vitro does not necessarily predict its ability to modulate monoamine transporters 

after in vivo administration (Fleckenstein et al., 1999).   

Another plausible explanation for the lack of effect with lobeline could be 

that the time point may not have been appropriate. The time point of 20 minutes 

post injection, was based on behavioral effects, such as the lobeline-induced 

decrease in methamphetamine self administration in rats, observed after in vivo 
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administration. A way to address this issue would be to conduct a time-course 

curve to determine if the effect of lobeline is seen at any other time point besides 

20 min post injection, such as every 5-10 minutes.   

A third possible explanation for not observing an effect with lobeline, may 

be that the brain region examined was not the region where the effect was taking 

place. Even though the striatum is very dense in DA, the PFC is an important 

region also involved in ADHD, where DA is present to a lesser degree (Arnsten, 

2006; Casey et al., 2007; Kieling et al., 2008).   

Acute in vivo administration of methylphenidate showed an increase in 

DAT function at 5 and 20 mg/kg, but showed no effect with the 40 mg/kg dose. 

While surprising, this result is consistent with previous results showing that a 

single 40 mg/kg s.c. injection of methylphenidate caused little or no change in 

synaptosomal DA uptake (Fleckenstein et al., 1999; Sandoval et al., 2002). This 

present study also extends the work of Fleckenstein by including a dose-

response curve as well as 7 and 14 day repeated daily injections. The 7-day 

response curve showed an increase of 36% by the 2.5 mg/kg methylphenidate 

dose and the 20 mg/kg dose showed an increase of 48%. It has been shown that 

methylphenidate indirectly acts as a DA agonist (Wilens, 2008).  This may 

explain the increase of DAT function because if methylphenidate acts as a DA 

agonist, it could activate both presynaptic and postsynaptic D2 DA receptors. 

This action could indirectly cause an increase in DAT function that removes the 

DA in the synaptic cleft, which would decrease the activation of the D2 DA 

receptors. Furthermore, methylphenidate has a more direct and less complicated 

mechanism of action when compared to amphetamine and lobeline, which could 

also explain the increase of DAT function compared to lobeline and 

amphetamine, whereas both have a more complex mechanism of action.   

After 7 days of repeated in vivo methylphenidate administration, the 2.5 

and 20 mg/kg doses showed a significant increase in Vmax, while the 5.0 mg/kg 

dose had no effect. However, after 14-days of repeated in vivo administration of 

methylphenidate (2.5, 5.0 or 20 mg/kg) the effect was no longer present. 

Methylphenidate administration did not alter the Km, which suggests that 
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methylphenidate competes with DA at DAT in a noncompetitive manner.  It could 

also be possible that methylphenidate increased the number of receptors in order 

to enhance DAT function.  

 Acute and repeated in vivo administration of amphetamine did not alter 

DAT function in these studies. Previous investigations have shown that 

amphetamine causes a biphasic effect on DAT trafficking and acts rapidly to 

control DAT in the plasmalemmal membrane (Johnson et al., 2005a). 

Intracellular amphetamine produces DAT trafficking (Kahlig et al., 2003). Since 

amphetamine causes DAT trafficking, one would expect to see a difference in 

DAT function after in vivo administration of amphetamine. However, consistent 

with our results, Johnson et al.,  found that amphetamine did not alter [3H]DA 

uptake following a 1-min incubation (Johnson et al., 2005b).  This suggests that 

the chosen time point plays a critical role when determining if an effect is present. 

It is possible that the DAT response was not observed with the time point that 

was chosen. In addition, DAT may not be the primary target responsible for 

pharmacological actions of amphetamine based on its complex mechanism of 

action, which includes acting as a DAT substrate. The results also showed the 

amphetamine did not alter Km, which may imply that amphetamine also competes 

with DA at DAT in a noncompetitive manner.   

The current results suggest that lobeline acts more similar to 

amphetamine compared to methylphenidate, with respect to the effects observed 

on DAT function. Since there was no effect of amphetamine at DAT, we 

reevaluated the doses used in these experiments by searching the literature. 

Amphetamine administered at 0.25 mg/kg appears to be an adequate dose to 

observe a behavioral effect since it increased choice accuracy in rats (Grilly et 

al., 1998).  Another study of  amphetamine administration (0.25, 0.75, and 1.25 

mg/kg, s.c.) prior to behavioral testing, observed an increase in accuracy at 0.25 

mg/kg however, a decrease in accuracy at 1.25 mg/kg (Grilly et al., 1989).  

Based on a recent review by Grilly and Loveland, 0.1-0.4 mg/kg of amphetamine 

was considered a low dose, 0.4-1.0 mg/kg a moderate dose, 1.0-3.0 mg/kg a 

high dose, and ≤3.0 mg/kg was considered a very high dose (Grilly & Loveland, 
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2001).  Furthermore, Kuczenski and colleagues have done extensive research 

with amphetamine and found using microdialysis, the maximal concentration of 

amphetamine was achieved 30 minutes after administration (Kuczenski et al., 

1997). Thus, the dose range of 0.1-5.0 mg/kg of amphetamine, which was used 

in the current studies, offers a complete dose-response.   

The results of this study suggest  that amphetamine, lobeline and 

methylphenidate influence DAT differently at the time points and doses used in 

this study, since the drugs have been shown to target DAT (Greydanus et al., 

2007; Thanos et al., 2007). However, there are limitations to this current study 

that need to be addressed. The first limitation is the choice of the time point. The 

time points were based on behavioral observations, and may not be the optimal 

time points to observe the pharmacological effects ex vivo. A complete time-

course of the pharmacological effect is necessary to determine the best time 

point for each drug after in vivo administration. However, the data in these 

studies could be a result of the difference in their mechanisms of action. The 

interaction of methylphenidate at DAT may depend on the release of DA in the 

synaptic cleft, whereas amphetamine induces release of vesicular DA from the 

synaptic terminal (Schiffer et al., 2006).  This could possibly explain our 

observations of an increase in Vmax by methylphenidate and no effect by 

amphetamine. Another limitation is the fact that we are evaluating the effect on 

DAT using synaptosomes. This limits the findings to only effects found in the 

synaptosomes, while other effects may be present in other areas, such as in 

vesicles as well.   

 The common lack of effect with in vivo administration of lobeline and 

amphetamine on DAT function is consistent with the fact that both are weak 

bases and very lipophilic compounds (Teng et al., 1997). The IC50 value 

determined in previous studies suggest that the synaptic vesicular DA transporter 

is significantly more sensitive to lobeline versus the plasma membrane DA 

transporter, which provides additional evidence as to why in vivo VMAT2 

experiments need to be conducted (Teng et al., 1997). 
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Overall, the results of the present study, present evidence that 

methylphenidate effects DAT function after in vivo administration in a different 

manner than that of lobeline and amphetamine, suggesting that more research is 

necessary to further understand the mechanisms of actions of these agents.   

In conclusion, there is evidence to warrant more investigation of lobeline 

to determine its effects on VMAT2, due to the lack of effect on DAT function after 

in vivo administration of amphetamine and lobeline. This may propose that 

another target may be involved in the mechanisms of actions of these drugs, 

such as VMAT2. Lobeline binds to and inhibits (IC50 value ≈ 1 µM) the function of 

the VMAT2, which is the only transporter protein that transports DA from the 

cytoplasm into the vesicle (Eyerman & Yamamoto, 2005; Teng et al., 1998; 

Wilhelm et al., 2004; Zheng et al., 2006). Therefore, additional experiments need 

to be conducted to determine the effects of in vivo administration of lobeline, 

methylphenidate, and amphetamine on VMAT2 function. Ultimately, studies of 

this nature may aid in the discovery of new treatment options for ADHD that 

improve behavioral symptoms while reducing detrimental drug side-effects by 

providing more information as to how certain compounds interact with the targets 

in question. 



80 

TABLE 1. Acute saline-treated control groups did not differ between MPD 
doses for DAT experiments.  Acute independent saline-treated controls did not 
vary between MPD doses during DAT experiments based on results of a one-
way ANOVA (F3,21 = 1.110, p>0.05), with the Vmax as the dependent variable. 
This demonstrates that the saline-treated control groups did not differ over time 
or between treatment groups. aData are presented as mean ± S.E.M for n = 4-8 
rats/group. 
 

ACUTE 
MPD (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

MPD 2.5 (n= 7) 17 ± 1.5 

MPD 5 (n= 8) 13 ± 2.1 

MPD 20 (n= 6) 17 ± 3.9 

MPD 40 (n= 4) 11 ± 2.5 

POOLED MEAN 15 ± 1.3a 
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TABLE 2. Acute saline-treated control groups did not differ between AMPH 
doses for DAT experiments.  Acute independent saline-treated controls did not 
vary between AMPH doses during DAT experiments based on results of a one-
way ANOVA (F3,12 = 3.010, p>0.05), with the Vmax as the dependent variable. 
This demonstrates that the saline-treated control groups did not differ over time 
or between treatment groups. aData are presented as mean ± S.E.M for n = 4-5 
rats/group. 
 
 
 

ACUTE 
AMPH (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

AMPH 0.1 (n= 5) 19 ± 1.0 

AMPH 0.25 (n= 5) 27 ± 5.0 

AMPH 1.0 (n= 5) 15 ± 1.1 

AMPH 5.0 (n= 4) 15 ± 0.7 

POOLED MEAN 19 ± 1.7a 
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TABLE 3. Acute saline-treated control groups did not differ between LOB 
doses for DAT experiments.  Acute independent saline-treated controls did not 
vary between LOB doses during DAT experiments based on results of a one-way 
ANOVA (F2,16 = 2.221, p>0.05), with the Vmax as the dependent variable. This 
demonstrates that the saline-treated control groups did not differ over time or 
between treatment groups. aData are presented as mean ± S.E.M for n = 3-8 
rats/group. 
 
 

ACUTE 
LOB (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

LOB 1 (n= 8) 16 ± 2.3 

LOB 3 (n= 3) 21 ± 2.3 

LOB 10 (n= 8) 13 ± 1.8 

POOLED MEAN 16 ± 1.9a 
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TABLE 4. Repeated 7-day saline-treated control groups did not differ 
between drug treatments for DAT experiments.  Repeated 7-day independent 
saline-treated controls did not vary between drug treatments during DAT 
experiments based on results of a one-way ANOVA (F3,17 = 0.5413, p>0.05), with 
the Vmax as the dependent variable. This demonstrates that the saline-treated 
control groups did not differ over time or between treatment groups. aData are 
presented as mean ± S.E.M for n =4-6 rats/group. 
 
 
 

 7-Day  
Drug Treatment 

 

 
Vmax 

pmol/min/mg 
 

MPD (n=4-6) 18 ± 1.9 

AMPH (n=6) 20 ± 2.3 

LOB (n=5) 18 ± 1.8 

POOLED MEAN 18 ± 1.8a 
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TABLE 5. Repeated 14-day saline-treated control groups did not differ 
between drug treatments for DAT experiments. Repeated 14-day 
independent saline-treated controls did not vary between drug treatments during 
DAT experiments based on results of a one-way ANOVA (F2,10 = 3.021, p>0.05), 
with the Vmax as the dependent variable. This demonstrates that the saline-
treated control groups did not differ between treatment groups. aData are 
presented as mean ± S.E.M for n = 5-6 rats/group. 
 

14-Day  
MPD (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

MPD (n=6) 22 ± 3.3 

AMPH (n=6) 19± 3.0 

LOB (n=5) 12 ± 0.7 

POOLED MEAN 23 ± 3.3a 
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Figure 4. A. Acute MPD increased DAT function in striatal synaptosomes. 
Rats were injected acutely once daily with MPD (0 (n = 24), 2.5 (n = 7), 5.0 (n = 
7), 20 (n = 8), and 40 (n = 6) mg/kg, s.c.; open bars). Synaptosomes were 
prepared 60 min post-injection. Control (0; black bar) represents saline-treated 
control group. Acute MPD (5 and 20 mg/kg) increased striatal [3H]DA uptake 60 
min after administration (*p<0.05 for the 5 mg/kg group and **p<0.01 for the 20 
mg/kg group compared to control).Vmax is represented in pmol/min/mg. Data are 
presented as mean ±S.E.M for n = 6-25 rats/group. Data were pooled for control 
groups, Figure 4. B. Comparison of saturation analysis of control and acute 
MPD (5 and 20 mg/kg). Specific uptake for MPD (0, 5 and 20 mg/kg) increased 
by ~60% compared to control. 
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Figure 5. A. Repeated 7-day MPD increased DAT function. Rats were injected 
repeatedly once daily for 7 days MPD (0 (n = 10), 2.5 (n = 4), 5.0 (n = 5), and 20 
(n = 5) mg/kg, s.c.; open bars). Synaptosomes were prepared 60 min post-
injection. Control (0; black bar) represents saline-treated control group. Repeated 
MPD (2.5 and 20 mg/kg for 7 days) increased [3H]DA uptake (*p<0.05 for 5 and 
20.0 mg/kg group compared to control).Vmax is represented in pmol/min/mg. 
Data are presented as mean ±S.E.M for n = 4-10 rats/group. Data were pooled 
for control group, Figure 5. B.  Comparison of saturation analysis of control 
and acute MPD (2.5 and 20 mg/kg). Specific uptake for MPD (0, 2.5 and 20 
mg/kg) increased by 36% and 48%, respectively, compared to control.   
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Figure 6. Repeated 14-day MPD did not alter DAT function. Rats were 
injected repeatedly once daily for 14 days MPD (0 (n = 9), 2.5 (n = 3), 5.0 (n =3), 
and 20 (n = 5) mg/kg, s.c.; open bars). Synaptosomes were prepared 60 min 
post-injection. Control (0; black bar) represents saline-treated control group. 
Repeated MPD (2.5, 5.0, or 20 mg/kg for 14 days) did not alter [3H]DA uptake. 
Vmax is represented in pmol/min/mg. Data are presented as mean ±S.E.M for n 
= 3-9 rats/group. Data were pooled for control group, Table 5. 
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Figure 7. Acute AMPH did not alter DAT function. Rats were injected acutely 
once daily with AMPH (0 (n = 19), 0.1 (n = 4), 0.25 (n = 5), 1.0 (n = 5), 5.0 (n = 5) 
mg/kg, s.c.; open bars). Synaptosomes were prepared 30 min post-injection. 
Control (0; black bar) represents saline-treated control group. Acute AMPH had 
no effect on striatal [3H]DA uptake 30 min after administration. Vmax is 
represented in pmol/min/mg. Data are presented as mean ±S.E.M for n = 5-19 
rats/group. Data were pooled for control group, Table 2. 
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Figure 8. Repeated 7-day AMPH did not alter DAT function. Rats were 
injected repeatedly once daily for 7 days AMPH (0 (n = 6), 0.25 (n = 5) and 5.0 (n 
= 5) mg/kg, s.c.; open bars). Control (0; black bar) represents saline-treated 
control group. Repeated AMPH (7 days) did not alter striatal [3H]DA uptake. 
Vmax is represented in pmol/min/mg. Data are presented as mean ±S.E.M for n 
= 5-6 rats/group. Data were pooled for control group, Table 4). 
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Figure 9. Repeated 14-day AMPH did not alter DAT function. Rats were 
injected repeatedly once daily for 14 days AMPH (0 (n = 6), 0.25 (n = 6) and 5.0 
(n =4) mg/kg, s.c.; open bars). Control (0; black bar) represents saline-treated 
control group.  Repeated AMPH (14 days) did not alter striatal [3H]DA uptake. 
Vmax is represented in pmol/min/mg. Data are presented as mean ± S.E.M for n 
= 4-6 rats/group. Data were pooled for control group, Table 5. 
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Figure 10. Acute LOB did not alter DAT function. Rats were injected acutely 
once daily with LOB (0 (n = 19), 1.0 (n = 7), 3.0 (n = 3), and 10.0 (n = 6) mg/kg, 
s.c.; open bars). Synaptosomes were prepared 20 min post-injection. Control (0; 
black bar) represents saline-treated control group. Acute LOB did not alter 
[3H]DA uptake 20 min after injection. Vmax is represented in pmol/min/mg. Data 
are presented as mean ± S.E.M for n=3-19 rats/group. Data were pooled for 
control group, Table 3.  
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Figure 11. Repeated 7-day LOB did not alter DAT function. Rats were 
injected repeatedly once daily for 7 days with LOB (0 (n = 5), 3.0 (n = 5) mg/kg, 
s.c.; open bars) Synaptosomes were prepared 20 min post-injection. Control (0; 
black bar) represents saline-treated control group. Repeated LOB for 7 days did 
not alter [3H]DA uptake 20 min after injection. Vmax is represented in 
pmol/min/mg.  Data are presented as mean ± S.E.M for n = 5 rats/group. Data 
were pooled for control group, Table 4. 
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Figure 12. Repeated 14-day LOB did not alter DAT function. Rats were 
injected repeatedly once daily for 14 days with LOB (0 (n = 5), 3.0 (n = 5) mg/kg, 
s.c.; open bars). Synaptosomes were prepared 20 min post-injection. Control (0; 
black bar) represents saline-treated control group.  Repeated LOB for 14 days 
did not alter [3H]DA uptake. Vmax is represented in pmol/min/mg. Data are 
presented as mean ± S.E.M for n = 5 rats/group. Data were pooled for control 
group, Table 5. 
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Table 6. Km values for [3H]DA uptake at DAT were not altered by 
acute, 7-day, or 14-day MPD treatment regimens. 
 
 

 

 

 

 

 

aData are presented as mean ± S.E.M for n= 4-25 rats/treatment group. ANOVA 
(F4,47 = 2.67, p>0.05) revealed that Km values were not different among 
independent control groups across the given treatments, and thus, these data for 
the saline-treated groups for each treatment group were pooled for statistical 
analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ACUTE 7-DAY  14-DAY  
MPD 

(mg/kg) 

Km 
(Mick et 

al) 
MPD 

(mg/kg) 

Km 
(Mick et 

al) 
MPD 

(mg/kg) 

Km  
(Mick et 

al) 
0 16±3.7 0 21±1.8 0 14±1.0a 

2.5 14±2.1 2.5 24±1.1 2.5 11±2.4 
5 25±3.5 5 12±2.4 5 14±5.4 
20 22±2.9 20 27±1.2 20 11±2.1 
40 22±4.8       
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Table 7. Km values for [3H]DA uptake at DAT were not altered by 
the acute, 7-day, or 14-day AMPH treatment regimens. 
 
 

ACUTE 
AMPH  

7-DAY 
AMPH  

14-DAY 
AMPH  

(mg/kg) 

Km 
(Mick et 

al) (mg/kg) 

Km 
(Mick et 

al) (mg/kg) 

Km  
(Mick et 

al) 
0 18±2.9 0 16±1.4 0 13±1.9a 

0.1 16±3.7 0.25 10±1.7 0.25 12±2.3 
0.25 10± 0.9 5 14±1.9 5 10±2.3 

1 9.0±1.2       
5 16±2.2       

 
 
aData are presented as mean ± S.E.M for n= 4-19 rats/treatment group. ANOVA 
(F4,32 = 1.67,p>0.05 revealed that Km values were not different among 
independent control groups across the given treatments, and thus, these data for 
the saline-treated groups for each treatment group were pooled for statistical 
analysis. 
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Table 8. Km values for [3H]DA uptake at DAT were not altered by 
the acute, 7-day, or 14-day LOB treatment regimens. 
 
 

ACUTE 
Lobeline  

7-DAY 
Lobeline 

14-DAY 
Lobeline  

(mg/kg) 

Km 
(Mick et 

al)  (mg/kg)

Km 
(Mick et 

al) (mg/kg) 
Km (Mick 

et al) 
0 19±2.5 0 19±1.9 0 20±3.4a 
1 16±4.6 3 20±1.5 3 22±4.7 
3 24±2.8       
10 12±3.7         

 
 
aData are presented as mean ± S.E.M for n= 3-19 rats/treatment group. ANOVA 
(F3,32 = 1.80, p>0.05) revealed that Km values were not different among 
independent control groups across the given treatments, and thus, these data for 
the saline-treated groups for each treatment group were pooled for statistical 
analysis. 
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III. Chapter Three 
Effect of Acute and Repeated In Vivo Administration of Methylphenidate on 

Dopamine Transporter Trafficking 
 

A. Introduction 
DAT plays a vital role in regulating the dopaminergic signaling in the 

synaptic cleft and in maintaining a releasable storage of DA (Eriksen et al., 2010; 

O'Malley et al., 2010). Numerous studies have shown that various factors such 

as kinase activators, phosphatase inhibitors, and transported substrates are 

involved in regulating DAT trafficking between the plasma membrane and 

endosomal compartments (Eriksen et al., 2010; Kahlig & Galli, 2003; Loder & 

Melikian, 2003; Merickel & Edwards, 1995; O'Malley et al., 2010; Torres et al., 

2003).  DAT is the primary target for certain psychostimulants which are 

commonly abused (Thomsen et al., 2009). Second messenger systems and 

psychostimulants can alter function, phosphorylation, and trafficking of DAT.  For 

example, protein kinase C beta, which is a kinase important for DAT trafficking, 

was found to co-localize with DAT in mesencephalic neurons (O'Malley et al., 

2010).  Methylphenidate which is a psychostimulant as well, was the only drug to 

alter DAT function after acute and repeated in vivo administration in the present 

studies. Based on these results, we investigated if the effect of methylphenidate 

involved DAT trafficking.   

B.  Methods 
Materials   

Methylphenidate hydrochloride was obtained from Sigma Chemical Co. 

(St. Louis, MO). All other chemicals used in the in vitro assay buffers were 

purchased from Fisher Scientific (Pittsburgh, PA).   
Subjects 

Adult male Sprague-Dawley rats (200-220g body weight upon arrival) 

were obtained from Harlan Inc. (Indianapolis, IN). Adult male rats were used 

because as stated earlier, ADHD is found in adult humans as well as adolescents 

(Swanson et al., 1998b). Animals were housed two per cage with free access to 
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food and water in the Division of Lab Animal Resources, University of Kentucky. 

Experimental protocols were in concordance with the NIH 1996 Guide for the 

Care and Use of Laboratory Animals and were approved by the Institutional 

Animal Care and Use Committee at the University of Kentucky.   
Drug Administration 

Methylphenidate (20 mg/kg) was administered by subcutaneous (sc) 

injection in a volume of 1 ml/kg body weight and expressed as the salt weights. 

Groups of rats were injected acutely with either saline (control) or 

methylphenidate (20 mg/kg). The striatum was obtained 60 min for the 

methylphenidate group.  Separate groups of rats were injected repeatedly 7 days 

once daily with saline or methylphenidate (20 mg/kg).  

Biotinylation and Western Blot Assay (DAT Cellular Localization) 
 Cell surface biotinylation experiments were performed as described 

previously (Zhu et al., 2005). Synaptosomes from striatum (500 µg 

protein/sample) were incubated for 1 h at 4°C with sulfo-NHS-biotin, a 

biotinylation reagent, and continual shaking in 500 µl of 1.5 mg/ml sulfo-NHS-

biotin in PBS/Ca/Mg buffer (138 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 9.6 mM 

Na2HPO4, 1 mM MgCl2, 0.1 mM CaCl2, pH 7.3). After incubation, samples were 

centrifuged at 8,000 g for 4 min at 4°C. To remove the free biotinylation reagent, 

the resulting pellet was resuspended 3 times with 1 ml of ice-cold 100 mM 

glycine in PBS/Ca/Mg buffer, and centrifuged at 8,000 g for 4 min at 4°C. 

Resuspension and centrifugation steps were repeated using the same 

parameters. Final pellets were resuspended in 1 ml of ice-cold 100 mM glycine in 

PBS/Ca/Mg buffer and incubated with continual shaking for 30 min at 4°C. 

Subsequently, samples were centrifuged at 8,000 g for 4 min at 4°C, and the 

resulting pellets were resuspended in 1 ml ice-cold PBS/Ca/Mg buffer and 

centrifuged again. Resuspension and centrifugation steps were repeated twice 

more using the latter parameters.  Final pellet was lysed by sonication for 2-4 s in 

300 µl Triton X-100 buffer (10 mM Tris, 150 mM NaCl, 1 mM EDTA, 1.0% Triton 

X-100, 1 µg/ml aprotinin (protease inhibitor), 1 µg/ml leupeptin (protease 

inhibitor), 1 µM pepstatin (protease inhibitor), 250 µM phenylmethysulfonyl 
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fluoride (serine protease inhibitor), pH 7.4) followed by incubation and continual 

shaking for 20 min at 4°C.  Lysates (300 µl) were centrifuged at 21,000 g for 20 

min at 4°C.  Pellets were discarded, and 100 µl of the supernatants were stored 

at -20°C for determination of total immunoreactive DAT. Remaining supernatant 

was incubated with continuous shaking in the presence of monomeric avidin 

beads (Pierce Biotechnology, Inc, Rockford, IL) in Triton-X100 buffer (100 

µl/tube) for 1 h at room temperature. Subsequently, samples were centrifuged at 

17,000 g for 4 min at 4°C, and supernatants (containing non-biotinylated, 

intracellular protein) were stored at -20°C. Resulting pellets containing the avidin-

absorbed biotinylated proteins (cell-surface) were resuspended in 1 ml of 1.0% 

Triton X-100 buffer and centrifuged at 17,000 g for 4 min at 4°C, and the pellet 

was resuspended and centrifuged twice. Final pellets consisted of the 

biotinylated proteins adsorbed to monomeric avidin beads. The biotinylated 

proteins were eluted by incubating with 50 µl Laemmli buffer (62.5 mM Tris-HCl, 

20% glycerol, 2% sodium dodecyl sulfate (SDS), 0.05% β-mercaptoethanol and 

0.05% bromophenol blue (Bio-Rad Hercules, CA), pH 6.8) for 20 min at room 

temperature. The samples were stored at -20°C.  

To obtain the immunoreactive DAT protein in the three separate fractions:  

total, intracellular and cell surface, samples were thawed and subjected to gel 

electrophoresis and Western blotting.  Briefly, proteins were separated by 10% 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) for 90 min at 150 V, and 

subsequently, transferred to Immobilon-P transfer membranes (Cat # 

IPVH00010, 0.45 µm pore size; Millipore Co., Bedford, MA) in transfer buffer (50 

mM Tris, 250 mM glycine, 3.5 mM SDS) using a Mini Trans-Blot Electrophoretic 

Transfer Cell (Bio-Rad Laboratories Ltd., Hercules, CA) for 110 min at 72 V.  The 

transfer membranes were incubated with blocking buffer (5% dry milk powder in 

PBS containing 0.5% Tween 20) for 1 h at room temperature, followed by 

incubation with goat polyclonal DAT antibody (sc-1433; 1:1000 dilution in 

blocking buffer) overnight at 4 ºC. All specific antibodies were purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA). Transfer membranes were washed 

5 times with washing buffer (PBS containing 0.5% Tween 20) at room 
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temperature, and then incubated with rabbit anti-goat DAT antibody (sc-7210; 

1:4000 dilution in blocking buffer) for 1 h at 22°C. Bands were detected using 

enhanced chemiluminescence and developed on Hyperfilm (ECL-plus; 

Amersham Biosciences UK Ltd., Little Chalfont Buckinghamshire, UK). After 

detection and quantification of DAT protein, each membrane was stripped in 10% 

of Re-blot plus mild antibody stripping solution (Chemicon, Temecula, CA) for 20 

min at room temperature and reprobed for detection of PP2A (FL-309) and β-

actin. PP2A and β-actin were used as control proteins for monitoring biotinylation 

and protein loading between methylphenidate- and saline-treated samples. 

C. Data Analysis 
Multiple autoradiographs were obtained using different exposure times, 

and immunoreactive bands within the linear range of detection were quantified by 

densitometric scanning using Kodak Image Station software (Carestream Health, 

New Haven, CT). Band density measurements, expressed as relative optical 

density, were used to calculate levels of DAT in total, non-biotinylated and 

biotinylated fractions. The net density measurements were calculated by 

substracting the background from the raw density value. Specifically, total DAT 

levels in the biotinylated and non-biotinylated fractions were calculated based on 

the density of DAT-immunoreactive bands in an aliquot of synaptosomal extract 

multiplied by total volume of extract and divided by the total volume of 

synaptosomal extract subjected to SDS-PAGE. To determine the 

methylphenidate (20 mg/kg) response on DAT cell surface expression, separate 

student t-tests were conducted on DAT immunoreactivity from each of the cell 

fractions (total, non-biotinylated and biotinylated) between methylphenidate-

treated and saline control groups. Differences were considered significant at p< 

0.05.  

D.  Results 

Effects of Acute and Repeated In Vivo Methylphenidate Administration on 
DA Transporter Trafficking  

The biotinylation and western blot assay revealed that methylphenidate 

(20 mg/kg)given acutely, decreased intracellular DAT expression with no change 
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in total or surface DAT expression (Fig. 13B), although not significantly. 

However, in vivo administration of methylphenidate (20 mg/kg) after 7 days 

significantly decreased intracellular DAT expression, leaving only 20% of 

intracellular DAT (19.8 ± 3.3%) compared  to control without changing the total or 

surface DAT expression (Fig. 14B). PP2A, an intracellular protein, was the 

control for monitoring biotinylation during experiments. One would expect to find 

more PP2A in the intracellular section, which is the non-biotinylated section, than 

in the biotinylated section since the biotinylated section is the section on the 

surface of the membrane. If more PP2A was found in the biotinylated section, 

this would suggest that cell leakage has occurred, thus implying that the 

biotinylation inefficient. However, these present results show that there is more 

PP2A in the non-biotinylated section, therefore indicating that there was very little 

cell leakage during the biotinylation experiment. β-actin was the control for 

protein loading for the samples used in the biotinylation experiments. The level of 

β-actin should remain consistent through all the samples to ensure that the same 

amount of protein was added to each sample. Our results showed that the levels 

of β-actin were constant throughout the samples, thus confirming that the level of 

protein used in the biotinylation experiments did not vary between samples. 

E. Discussion 
The results from this experiment suggest that the methylphenidate induced-

increase in DAT function was not independent of trafficking, since a significant 

decrease in intracellular DAT was observed. However, this phenomenon where 

methylphenidate did not alter total DAT expression has been observed previously 

with other compounds. For example, one report found that nicotine increased 

Vmax for [3H]DA uptake, however no increase in cell surface DAT expression was 

seen (Middleton et al., 2007). Furthermore, another study reported that insulin 

increased NET function without a change in transport cellular localization 

(Apparsundaram et al., 2001). Methylphenidate may have caused the 

phosphorylation of DAT, thus making DAT unrecognizable to the DAT antibodies 

used in the western blot analysis. Ubiquitination, another enzymatic process that 

involves the ε-amino moiety of lysine residues in target cellular proteins, has the 
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ability to affect DAT cell surface expression and membrane trafficking of 

transporters (Schmitt and Reith, 2010).  

Another possible explanation could be the involvement of PKA and PKC. 

Activation or inhibition of PKC, PI3K, and members of the MAPK family can 

cause transport membrane redistribution, although specific kinases responsible 

for direct phosphorylation are still unknown. One report found that 

methylphenidate had no effect on PKC activator-induced down-regulation of DAT 

function (Gorentla & Vaughan, 2005), however results from a previous study 

showed that methylphenidate decreased PKA levels when given repeatedly for 

five days (Crawford et al., 1998). These results demonstrate that the mechanism 

behind the regulation of DAT by methylphenidate is still under debate and further 

investigation is needed to gain a clearer picture of how methylphenidate 

regulates DAT. In addition, Wagner et al observed a significant increase in Vmax 

in rats with a controlled cortical impact (CCI) that received a daily injection of 

methylphenidate (5 mg/kg) for 14 days, but there was no change in total tissue or 

membrane bound DAT expression compared to the CCI rats that received saline 

(Wagner et al., 2009). These findings demonstrate that methylphenidate has the 

ability to increase the Vmax without altering total of surface DAT expression, which 

is consistent with the results of this current study.     

To our knowledge, no work has been conducted on how methylphenidate 

alters DAT expression. However, Fleckenstein’s group examined the effect of 

methylphenidate on VMAT2 immunoreactivity (Sandoval et al., 2003). They 

found that a single injection of methylphenidate (40 mg/kg, sc) redistributes 

VMAT2 immunoreactivity. Specifically, methylphenidate increased VMAT2 

expression in the vesicular subcellular fraction, but a decrease was found in the 

plasmelemmal membrane fraction, with no change in the whole synaptosomal 

fraction, which included the vesicular subcellular fraction and the plasmelemmal 

membrane fraction. Our current findings demonstrating that methylphenidate did 

not alter total surface DAT coincides with this report where methylphenidate had 

no effect on the whole synaptosomal fraction, but altered the vesicular 

subcellular fraction and the plasmalemmal membrane fraction. Even though this 
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study was done with VMAT2, it provides support that methylphenidate can 

redistribute transporter expression. In summary, there is evidence that 

collectively suggests that multiple pathways exist to regulate neurotransmitter 

transport function (Jayanthi et al., 2005) and our results indicate that 

methylphenidate may regulate transporter function by altering transporter 

expression. 
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Figure 13. Acute MPD did not alter intracellular DAT expression. Rats were 
injected acutely with MPD (20 mg/kg; open bar) and fractions of striatal 
synaptosomes were obtained 60 min after MPD (Clarke & Kumar, 1983).  Control 
(Sal; black bar) represents saline-treated control group. A) Representative 
immunoblots of total synaptosomal fraction (Total), intracellular fraction (non-
biotinylated, Non-biot), and cell surface fraction (biotinylated, Biot) for DA, β-actin 
and PP2A. β –actin was used as a control for protein loading and PP2A was 
used to assess efficiency of biotinylation.  B) DAT immunoreactivity is presented 
as percentage of the saline-treated control. DAT immunoactivity for saline 
controls for total, non-biot, and biot were 3.5 ± 1.04, 6.3 ± 2.79, and 73.0 ± 61.53, 
respectively. Data expressed as mean ±S.E.M of densitometry values of DAT 
immunoreactivity plotted as arbitrary units for n = 5 rats/group. Acute MPD 20 
mg/kg did not alter DAT expression.  
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Figure 14. Repeated 7-day MPD decreased intracellular DAT expression. 
Rats were injected once daily with MPD (20 mg/kg; open bar) for 7 days and 
fractions of striatal synaptosomes were obtained 60 min after MPD (20 mg/kg) 
injection (s.c.). Control (Sal; black bar) represents saline-treated control group. 
A) Representative immunoblots of total synaptosomal fraction (Total), 
intracellular fraction (non-biotinylated, Non-biot), and cell surface fraction 
(biotinylated, Biot) for DAT and β-actin. β –actin was used as a control for protein 
loading and PP2A was used to assess efficiency of biotinylation. B) DAT 
immunoreactivity is presented as percentage of the saline-treated control. DAT 
immunoactivity for saline controls for total, non-biot, and biot were 3.2 ± 0.91, 
16.0 ± 1.79, and 24.2 ± 5.87, respectively. Data expressed as mean ±S.E.M of 
densitometry values of DAT immunoreactivity plotted as arbitrary units for n = 5 
rats/group.  Repeated MPD 20 mg/kg for 7 days decreased intracellular fraction 
(non-biotinylated). * indicates difference from saline-treated control group, 
p<0.001. 
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IV. Chapter Four 
 

Effect of Acute and Repeated In Vivo Administration of Lobeline, 
Methylphenidate, and Amphetamine on Vesicular Monoamine Transporter 

Function 
 

A. Introduction 
Even though the etiology of ADHD is unknown, DAT has become the major 

target of interest for pharmacotherapies to treat ADHD (Easton et al., 2007). The 

striatum, which contains high dopamine concentrations, is suggested to be 

involved in executive function and motor response associated with ADHD (Dinn 

et al, 2001; Volkow et al., 2001; Wilens et al., 2008). Stimulants used to treat 

ADHD (i.e., methylphenidate and amphetamine) interact with DAT (Volkow et al., 

2002).  But they also interact with VMAT2, which is also an important transporter 

protein that is responsible for transporting cytoplasmic DA into vesicles for 

storage and release into the synaptic cleft (Schuldiner, 1994). VMAT2 plays a 

vital role in protecting the cells against damage from toxins, such as hydrogen 

peroxide, by maintaining the low cytoplasmic concentrations of neurotransmitters 

via initiating their reuptake into storage vesicles (Liu & Edwards, 1997). Recent 

studies have shown that VMAT2 function is altered by psychostimulants (Brown 

et al., 2001a; Fleckenstein & Hanson, 2003). 

Methylphenidate inhibits the reuptake of dopamine (DA) into the synaptic 

terminal, thus increasing the amount of DA in the synaptic cleft (Greydanus et al., 

2007).  Recent studies have found that methylphenidate alters VMAT2 transport 

and rapidly and reversibly increases VMAT2 binding and vesicular uptake of 

dopamine (Sandoval et al., 2003; Sandoval et al., 2001). Amphetamine elicits its 

pharmacological effect in three ways: 1) by binding to and reversing the transport 

of neurotransmitters such as dopamine, norepinephrine, and serotonin, 2) by 

facilitating release of neurotransmitters of these same neurotransmitters, and 3) 

by inhibiting MAO (Jones et al., 1998b; Seiden et al., 1993). One study found that 

10 µM amphetamine induced a 15-fold increase in cystosolic dopamine with 10-
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15 min of application, strongly suggesting redistribution of vesicular 

catecholamine (Mosharov et al., 2003). An experiment by Gonzalez and others, 

revealed that amphetamine displaced the VMAT2 ligand tetrabenazine with a 

relatively low (µM) affinity for VMAT2, which suggest amphetamine may be a 

substrate of VMAT2 as well (Gonzalez et al., 1994).  Another study suggests that 

the response to amphetamine is indirect and the apparent inhibition of VMAT2 

involves D2 autoreceptor activation following dopamine release (Brown et al., 

2002). Due to the potential for abuse (Bymaster et al., 2002; Cormier, 2008; 

Greydanus et al., 2007; Holman, 1994; Olfson, 2004) and other additional side 

effects including cardiovascular effects, abnormal growth, and suppressed 

appetite (Gibson et al., 2006) associated with these stimulants, there are 

concerns about the use of these agents.  There is an obvious need for additional 

treatment options that possess a less unfavorable side effect profile. 

However, lobeline, evaluated in behavioral studies, was not self-

administered by rats, nor did it substitute for d-methamphetamine, which suggest 

that it has no abuse liability, (Harrod et al., 2003).  Lobeline is the major 

alkaloidal component of the Indian tobacco plant, Lobelia inflata and is similar to 

nicotine in some ways. For example, both have a high affinity for the nicotinic 

receptor despite their structural differences (Dwoskin & Crooks, 2002). Lobeline 

does not stimulate locomotor activity (Miller et al., 2000) and acts as a nicotinic 

antagonist (Miller et al., 2001).  Lobeline, in addition to, methylphenidate and 

amphetamine also interacts with DAT. Lobeline also binds to and inhibits (IC50 

value ≈ 40-100 µM) DAT, inhibiting DA uptake (Miller et al., 2004; Teng et al., 

1997). In vitro studies, have found that lobeline inhibits [3H]DA uptake into 

vesicles with an IC50 value of 0.88 µM and inhibits the binding of 

[3H]dihydrotetrabenazine, a VMAT2 ligand, to the vesicular membrane with an 

IC50 value of 0.90 µM (Teng et al., 1998; Teng et al., 1997). 

The concern of the use of stimulant medications clearly indicates that 

more treatment options are necessary for ADHD. Based on in vitro experiments, 

lobeline may be an option (Teng et al., 1998; Teng et al., 1997). However, the 

effect of in vivo administration of lobeline on VMAT2 function needs to be 
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examined. In order to determine if the mechanism of lobeline on VMAT2 function 

is similar to methylphenidate and amphetamine, the effects of methylphenidate 

and amphetamine on VMAT2 function were also investigated. Previous research 

in our lab found that after in vivo administration of lobeline, methylphenidate, and 

amphetamine, only methylphenidate altered DAT function. This led us to believe 

that VMAT2 may possibly be the primary target involved in the mechanism of 

action of these agents. Therefore, the goal of the present study was to elucidate 

the effect of acute and repeated in vivo administration of lobeline on VMAT2 

function and compare its effect to the effects of methylphenidate and 

amphetamine. Such experiments are helpful in providing more insight into the 

mechanism of action of all these agents. 

 B.  Methods 
Materials.  

[3H]DA (3,4-ethyl-2[N-[3H]dihydroxyphenylethylamine; Specific Activity 28 

Ci/mmol) was purchased from PerkinElmer Life Sciences Inc. (Boston, MA). L-

Ascorbic acid, bovine serum albumin (BSA), catechol, α-D-glucose, N-(2-

hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) (HEPES), nomifensine 

maleate, pargyline hydrochloride, sucrose, methylphenidate hydrochloride, 

amphetamine hydrochloride, and 3-hydroxytyramine hydrochloride DA were 

obtained from Sigma Chemical Co. (St. Louis, MO). Lobeline was purchased 

from ICN Biomedicals (Costa Mesa, CA). All other chemicals used in the in vitro 

assay buffers were purchased from Fisher Scientific (Pittsburgh, PA).   
Subjects. 
 Adult male Sprague-Dawley rats (200-220g body weight upon arrival) 

were obtained from Harlan Inc. (Indianapolis, IN).  Animals were housed two per 

cage with free access to food and water in the Division of Lab Animal Resources, 

University of Kentucky. Experimental protocols were in concordance with the NIH 

1996 Guide for the Care and Use of Laboratory Animals and were approved by 

the Institutional Animal Care and Use Committee at the University of Kentucky.   
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Drug Administration. 
In the current study, rats were randomly assigned to 3 treatment groups 

(lobeline, methylphenidate, and amphetamine) for acute and repeated 

administration. Lobeline, methylphenidate, and amphetamine were administered 

by subcutaneous (sc) injection in a volume of 1 ml/kg body weight and expressed 

as the salt weights. The rats in the lobeline treatment group were injected acutely 

with lobeline (1, 3, and 10 mg/kg) and repeatedly for 7 days with lobeline (3 

mg/kg). The rats in the methylphenidate treatment group were injected acutely (n 

= 4-18) with methylphenidate (2.5, 10, and 20 mg/kg) and repeatedly for 7 days 

with methylphenidate (2.5 and 10 mg/kg). The rats in the amphetamine treatment 

group were injected acutely with amphetamine (0.25, 1.0, and 5.0 mg/kg) and 

repeatedly for 7 days with amphetamine (0.25 and 5 mg/kg). Control groups for 

the lobeline treatment group were administered saline contemporaneously for all 

doses and the methylphenidate and amphetamine treatment groups had 

independent saline groups for the individual doses.  

Lobeline dose range and time point after injection were chosen based on 

previous behavioral studies in which lobeline (1, 3, and 10 mg/kg) were used and  

lobeline (3 mg/kg) significantly inhibited methamphetamine self-administration 20 

min after injection (Harrod et al., 2001).  Methylphenidate dose range and time 

point were chosen based on experiments assessing [3H]DA uptake, 60 min after 

administration and behavioral studies which concluded that doses of 2.5 and 5.0 

of methylphenidate were more clinically relevant (Kuczenski & Segal, 2001; 

Wooters et al., 2006). Amphetamine doses range and time point were based on 

behavioral studies showing that the low doses of amphetamine (0.25-0.75 mg/kg) 

improved stimulus detection performance in rats 30 minutes after injection. 

(Grilly, 2000). The doses for the repeated experiments were chosen based on 

the effect observed during the acute experiments. If no effect was observed 

during the acute experiments, doses were chosen based on previous behavioral 

and in vitro studies. 
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Vesicle Preparation and [3H]DA Uptake Assay.   
The uptake of [3H]DA into striatal synaptic vesicles were determined by 

using a previously published method (Erickson et al., 1990). Striata from the rats 

were homogenized over a 2-min period in 14ml of 0.32 M sucrose (pH 7.5) with 

10 up and down strokes of a Teflon pestle (clearance ~0.009 inches). The 

homogenate was centrifuged at 2000 g for 10 min at 4°C, and the resulting 

supernatant will be centrifuged at 10,000 g for 30 min at 4°C. Synaptosomes 

(buffy coat) were separated from the underlying mitochondria and cellular debris 

(reddish pellet) by gentle swirling in 2 ml of 0.32 M sucrose. The enriched 

synaptosome fraction (2.0 ml) was subjected to osmotic shock by the addition of 

7 ml distilled H2O and homogenized with 5 up and down strokes of the Teflon 

pestle. The osmolarity was restored by the addition of 900 µl of 0.25 M HEPES 

and 900 µl of 1.0 M neutral potassium-tartrate buffer (pH 7.5) followed by a 20-

min centrifugation (20,000 g at 4°C). The supernatant was centrifuged for 60 min 

(55,000 g at 4°C). Then 1 ml of solution containing 10 mM MgSO4, 0.25 M 

HEPES and 1.0 M potassium-tartrate buffer was added to the supernatant and 

the suspension was centrifuged (100,000 g for 45 min at 4°C). Immediately 

before use, the final pellet was resuspended in the assay buffer (in mM: 25 

HEPES, 100 potassium tartrate, 0.05 EGTA, 0.10 EDTA, 2 ATP-Mg++ and 1.7 

ascorbic acid, pH 7.4). Aliquots (160 µl containing 8-10 µg protein) of the 

resuspension were incubated with 20 µl of drug (final concentrations: nicotine, 

0.001-100 µM; lobeline, 0.001-100 µM; tetrabenazine, 0.001-100 µM) and 20 µl 

of [3H]DA (final concentration 0.3 µM) for 8 min at 37°C in a total volume of 200 

µl. The reaction was terminated by the addition of 2.5 ml of ice-cold assay buffer 

containing 2 mM MgSO4. Samples were rapidly filtered through Whatman GF/F 

filters using the Brandel cell harvester (Model MP-43RS; Biochemical Research 

and Development Laboratories Inc., Gaithersburg, MD). The filters were washed 

three times with 4 ml of ice-cold assay buffer containing 2 mM MgSO4. Filters 

were previously soaked in 0.5% polyethylenimine (Speiser et al., 1983) solution 

for 2 hr at 4 °C. Nonspecific uptake was determined by incubation of duplicate 

samples in the presence of R0412-84 (10 µM), a VMAT2 inhibitor. Filters were 
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placed into scintillation vials, 10 ml scintillation cocktail were added, and 

radioactivity was determined by scintillation spectrometry (Model B1600TR, 

Perkin-Elmer Life Sciences, Downers Grove, IL).     

C. Data Analysis. 
Kinetic parameters (Vmax and Km) for [3H]DA uptake were determined using 

GraphPad Prism software (GraphPad Prism,  version 5.02; GraphPad Software, 

San Diego, CA). Data are represented as mean values ± S.E.M. To analyze the 

kinetic parameters, Vmax and Km for [3H]DA uptake in drug-treated for each drug 

at each dose and saline-control groups, separate unpaired Student t-tests were 

performed. Log transformed Km values were used for statistical analyses using 

the Statistical Packages for the Social Sciences (SPSS; standard version 17, 

SPSS Inc., Chicago, IL). Differences were considered significant at p< 0.05. An 

individual one-way ANOVA  with each dose of methylphenidate, amphetamine 

and lobeline serving as an independent group revealed that [3H]DA uptake was 

not different among the saline groups across the dose range for each drug 

(Tables 9-11). Therefore, the data for the saline-control groups were pooled for 

statistical analysis and graphical presentation, which also explains the wide 

range of n.Specific [3H]DA uptake for the saline-control groups for acute 

methylphenidate 2.5, 10, and 20 mg/kg doses were 19.1 ± 3.6, 23.0 ± 2.7, and 

28.0 ± 4.1 pmol/mg/min, respectively, with a pooled mean of 23.8 ± 2.0 

pmol/mg/min. Specific [3H]DA uptake for the saline-control groups for  acute 

amphetamine  0.25, 1.0, and 5.0 mg/kg doses were 35.3 ± 3.0, 43.1 ± 5.8, and 

31.0 ± 3.2 pmol/mg/min, respectively with a pooled mean of 36.0 ± 3.3 

pmol/mg/min. 

 D.  Results 
Effects of Acute and Repeated In Vivo Methylphenidate Administration on 
Vesicular Monoamine Transporter Function 

Kinetic analysis of [3H]DA uptake was performed on synaptosomes after 

acute in vivo administration of methylphenidate. Methylphenidate (10, and 20 

mg/kg) increased Vmax (53.4 ± 5.0 and 43.4 ± 4.7 pmol/mg/min) for [3H]DA uptake 

compared to pooled saline-control (23.8 ± 2.0 pmol/mg/min), respectively. The 
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current results show an increase (84-124%) of VMAT2 function, with acute 

methylphenidate (10 and 20 mg/kg) having a significantly higher Vmax compared 

to control (Fig. 15). Repeated methylphenidate in vivo administration for 7 days 

at 2.5 and 10 mg/kg doses had a Vmax of 33.0 ± 1.1 and 52.7 ± 4.0 pmol/mg/min, 

respectively, which increased (53% and 145%) VMAT2 function compared to 

pooled saline-control with a Vmax of 21.5 ± 1.4 pmol/mg/min (Fig.16).  Neither 

acute nor repeated methylphenidate in vivo administration had an effect on Km 

values (Table 15).   

Effects of Acute and Repeated In Vivo Amphetamine Administration on 
Vesicular Monoamine Transporter Function 
 Acute, as well as 7 day-repeated in vivo administration of amphetamine 

had no effect on VMAT2 function, (Figs. 17, 18). Specific [3H]DA uptake for 

amphetamine 0.25, 1.0, and 5.0 mg/kg doses were 35.3 ± 3.0, 43.1 ± 5.8, and 

31.0 ± 3.2 pmol/mg/min, respectively, compared to the pooled saline-control 

group with a Vmax of 36.0 ± 3.3 pmol/mg/min.  Amphetamine had no effect on Km 

values following acute in vivo administration (Table 15); however, repeated in 

vivo administration significantly decreased the Km after 7 days (Fig. 19;Table 15). 

Effects of Acute and Repeated In Vivo Lobeline Administration on Vesicular 
Monoamine Transporter Function 
 Kinetic analysis of vesicular [3H]DA uptake after acute (Fig. 20) and 

repeated (Fig. 20) in vivo administration of lobeline for 7 days showed no effect 

on Vmax or  Km values (Tables 11 and 15). Specific [3H]DA uptake at VMAT2 for 

acute lobeline 1.0, 3.0, and 10.0 mg/kg doses were 29.7 ± 4.5, 33.9 ± 6.9, and 

33.7 ± 7.4 pmol/mg/min, respectively, compared to 29.7 ± 5.0 pmol/mg/min for 

the pooled saline-control group.  

E. Discussion 
 In the present study, the effects of acute and repeated in vivo 

administration of lobeline on VMAT2 function were determined and compared to 

the effects of methylphenidate and amphetamine using kinetic analysis of [3H]DA 

uptake into striatal vesicles. This work investigating in vivo drug administration, 

extends previous work in our laboratory demonstrating that in vitro, lobeline 
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inhibits VMAT2 function (Teng et al., 1997). However, the results from these 

studies show that lobeline (1, 3, and 10 mg/kg) has no effect on VMAT2 function 

20 min after in vivo administration. Previous research using striatal vesicles has 

provided evidence that the ability of a compound to alter monoamine uptake in 

vitro does not necessarily predict its ability to modulate monoamine transporters 

after in vivo administration (Fleckenstein et al., 1999).  This may be the case with 

in vesicles as well. Thus, it is necessary to conduct in vivo experiments as well 

as in vitro experiments.   

Another plausible explanation for the lack of effect with lobeline could be 

that the time of the effect was not in the timeframe that was used in this study. 

The time point was based on behavioral effects observed after in vivo 

administration. The pharmacological effect may not coincide with the behavioral 

effect, thus no pharmacological effect was seen at the time point in question.   

Acute in vivo administration of methylphenidate showed an increase in 

VMAT2 function at 10 and 20 mg/kg, but showed no effect with the 2.5 mg/kg 

dose. These results suggest that there is a specific range of doses of 

methylphenidate that elicit an effect on VMAT2 function. If the dose is too high or 

too low, the effect could be lost. This result is consistent with previous results 

showing that a single high dose (40 mg/kg s.c.) of methylphenidate increased 

vesicular DA uptake accessed 60 minutes after in vivo administration 

(Fleckenstein et al., 1999; Sandoval et al., 2002).  After 7 days of repeated in 

vivo methylphenidate administration, the 2.5 and 20 mg/kg doses showed a 

significant increase in Vmax. No tolerance developed with repeated administration 

of methylphenidate after 7 days. Methylphenidate administration did not alter the 

Km, which suggests that methylphenidate competes with dopamine at VMAT2 in 

a noncompetitive manner. Very little is known about VMAT2 regulation and only 

the Fleckstein lab to our knowledge has conducted research on how 

methylphenidate interacts with VMAT2. However, the interest in VMAT2 as a 

target for drugs of abuse is growing based on a current review by Eden and 

Weihe (Eiden, 2011).  
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 Acute and repeated in vivo administration of amphetamine did not alter 

VMAT2 function in these studies. The time points chosen in this current study 

were based on behavioral observations of amphetamine and the time course of 

the neurochemical effects may not correspond with the behavioral effects of 

amphetamine on VMAT2 function. A complete time course would allow more 

insight as to what the optimal time point should be in order to observe the 

maximal pharmacological effect of amphetamine. However, Fon and colleagues 

found that VMAT2 was not required for amphetamine to cause DA release in an 

in vitro measure of amphetamine in VMAT2 knock-out mice with an absence of 

vesicular monoamine stores (Fon et al., 1997). This finding may be difficult to 

relate to methylphenidate, since methylphenidate does not release DA. Based on 

this evidence and what is already known about amphetamine, the current results 

of this study showing amphetamine did not alter VMAT2 function are intriguing to 

say the least.   

The current results suggest that methylphenidate acts differently than 

lobeline and amphetamine, in reference to the effects observed on VMAT2 

function. The observation that amphetamine and methylphenidate influence 

VMAT2 differently at the time point and doses used in this study may be rather 

surprising since both drugs have been shown to target VMAT2 (Greydanus et al., 

2007; Thanos et al., 2007). However, the data in these studies could be a result 

of the difference in their mechanisms of action.   

Overall, the results of the present study, have demonstrated that 

methylphenidate affects VMAT2 function differently than amphetamine and 

lobeline after in vivo administration. These changes in VMAT2 function are 

interesting considering that little is known as to how methylphenidate interacts 

with VMAT2. These findings suggest that methylphenidate increases VMAT2 

function, which decreases the amount of DA in the cytosol. These results also 

imply the VMAT2 is a target of methylphenidate and that VMAT2 could be 

involved in the etiology of ADHD.     
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 Although lobeline did not alter VMAT2 function in the present study, 

additional evidence suggests that lobeline could still be evaluated as a potential 

treatment option for ADHD. Lobeline has been found to improve retention 

performance 24 hours after injection in spatial discrimination water maze (Decker 

et al., 1993). Furthermore, Levin et al. showed lobeline enhanced learning on the 

post-acquisition working memory performance in the radial-arm maze (Levin et 

al., 2003). Previous work has also demonstrated that lobeline may be an 

effective smoking cessation agent by showing that lobeline acts as a nicotinic 

antagonist by inhibiting nicotine-evoked DA release and nicotine-evoked 86 Rb+ 

efflux (Miller et al., 2000). Lobeline has been used as an over-the-counter 

smoking cessation agent in the past in the US (Nunn-Thompson & Simon, 1989; 

Prignot, 1989) and numerous human studies have been conducted to determine 

efficacy of lobeline as a smoking cessation agent, although its use is still 

debatable (Dwoskin & Crooks, 2002). This characteristic gives lobeline an added 

benefit to the currently used ADHD treatments because it has been shown that 

there is a higher rate of smoking in people who have ADHD compared to those 

who do not (Milberger et al., 1997).  Furthermore, lobeline does not have typical 

stimulant side-effects such as abuse liability. 

In conclusion, there is evidence to warrant more investigation into the 

mechanism of action of these agents because it is still unclear as to how they 

elicit their pharmacological effects. Therefore, additional experiments need to be 

conducted to elucidate the pharmacological effects of lobeline, methylphenidate, 

and amphetamine. Ultimately, studies of this nature may help in the discovery of 

new treatment options for ADHD that improve behavioral symptoms while 

reducing detrimental drug side-effects. 
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TABLE 9. Acute saline-treated control groups did not differ between MPD 
doses for VMAT2 experiments. Acute independent saline-treated controls did 
not vary between MPD doses during VMAT2 experiments based on results of a 
one-way ANOVA (F2,15 = 1.428, p>0.05), with the Vmax as the dependent 
variable. This demonstrates that the saline-treated control groups did not differ 
over time or between treatment groups. aData are presented as mean ± S.E.M 
for n = 4-8 rats/group. 
 
 
 

ACUTE 
MPD (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

MPD 2.5 (n= 4) 19 ± 3.6 

MPD 10 (n= 8) 23 ± 2.7 

MPD 20 (n= 6) 28 ± 4.1 

POOLED MEAN 24 ± 1.8a 
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TABLE 10. Acute saline-treated control groups did not differ between 
AMPH doses for VMAT2 experiments. Acute independent saline-treated 
controls did not vary between AMPH doses during VMAT2 experiments based on 
results of a one-way ANOVA (F2,13 = 3.076, p>0.05), with the Vmax as the 
dependent variable. This demonstrates that the saline-treated control groups did 
not differ over time or between treatment groups. aData are presented as mean ± 
S.E.M for n = 5-6 rats/group. 
 
 
 

ACUTE 
AMPH (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

AMPH 0.25 (n= 5) 35 ± 3.0 

AMPH 1.0 (n= 5) 43 ± 5.8 

AMPH 5.0 (n= 6) 29 ± 3.3 

POOLED MEAN 36 ± 3.3a 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



118 

TABLE 11. Acute saline-treated control groups did not differ between LOB 
doses for VMAT2 experiments. Acute independent saline-treated controls did 
not vary between LOB doses (1, 3, and 10 mg/kg) during VMAT2 experiments 
based on results of a one-way ANOVA (F3,27 = 0.1494, p>0.05), with the Vmax as 
the dependent variable. This demonstrates that the saline-treated control groups 
did not differ over time or between treatment groups. aData are presented as 
mean ± S.E.M for n = 7 rats/group. 
 
 
 

ACUTE 
LOB (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

POOLED MEAN 30 ± 5.0a 
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TABLE 12. Repeated 7-day saline-treated control groups did not differ 
between MPD doses for VMAT2 experiments. The 7-day independent saline-
treated controls were used for both MPD doses during VMAT2 experiments. 
Therefore, no ANOVA was performed. aData are presented as mean ± S.E.M for 
n = 8 rats/group. 
 
 
 

7-day 
MPD (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

POOLED MEAN 22 ± 1.4a 
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TABLE 13. Repeated 7-day saline-treated control groups did not differ 
between AMPH doses for VMAT2 experiments. The 7-day independent saline-
treated controls were used for both AMPH doses during VMAT2 experiments. 
Therefore, no ANOVA was performed. aData are presented as mean ± S.E.M for 
n = 5 rats/group. 
 
 
 

7-day 
AMPH (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

POOLED MEAN 30 ± 5.3a 
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TABLE 14. Repeated 7-day saline-treated control groups did not differ 
between LOB doses for VMAT2 experiments. The 7-day independent saline-
treated controls were used for both LOB doses during VMAT2 experiments. 
Therefore, no ANOVA was performed. aData are presented as mean ± S.E.M for 
n = 5 rats/group. 
 
 

7-day 
LOB (mg/kg) 

 

 
Vmax 

pmol/min/mg 
 

POOLED MEAN 24 ± 2.5a 
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Figure 15. Acute MPD increased VMAT2 function. Rats were injected acutely 
once daily with MPD (0, 2.5, 10.0, and 20 mg/kg; open bars). Control (0; black 
bar) represents saline-treated control group. An independent control group was 
administered saline contemporaneously with each MPD dose (open bars) for the 
acute treatment group. Vmax is represented in pmol/min/mg. Data are presented 
as mean ± S.E.M for n = 4 -18 rats/group (Data were pooled for control groups).  
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Figure 16. Repeated 7-day MPD increased VMAT2 function. Rats were 
injected repeatedly once daily with MPD (0; black bar; 2.5, and 10.0   mg/kg; 
open bars). Repeated MPD (2.5and 10 mg/kg for 7 days) increased [3H]DA 
uptake (***p<0.001 for 2.5 and 10.0 mg/kg group compared to control). Vmax is 
represented in pmol/min/mg. Data are presented as mean ± S.E.M for n = 6-8 
rats/group. 
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Figure 17. Acute AMPH did not alter VMAT2 function. Rats were injected 
acutely once daily with AMPH (0, 0.25, 1.0, and 5.0 mg/kg). Control (0; black bar) 
represents saline-treated control group. An independent control group was 
administered saline contemporaneously with each AMPH dose (open bars) for 
the acute treatment group. Vmax is represented in pmol/min/mg. Acute AMPH 
had no effect on striatal [3H]DA uptake 30 min after administration. Data are 
presented as mean ± S.E.M for n=4-12 rats/group (Data were pooled for control 
groups).  
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Figure 18. Repeated 7-day AMPH did not alter VMAT2 function. Rats were 
injected repeatedly once daily for 7 days AMPH (0, 0.25, and 5.0 mg/kg; open 
bar). Control (0; black bar) represents saline-treated control group. Vmax is 
represented in pmol/min/mg. Repeated AMPH (7 days) did not alter striatal 
[3H]DA uptake. Data are presented as mean ± S.E.M for n = 5 rats/group. 
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Figure 19. Repeated 7-day AMPH decreased Km for VMAT2. Rats were 
injected repeatedly once daily with AMPH (0, 0.25, and 5.0 mg/kg; open bars) for 
7 days.  Control (0; black bar) represents saline-treated control group. Repeated 
AMPH (5 mg/kg) decreased Km (0.12 ± 0.01) compared to control (0.24 ± 0.05). 
Data are presented as mean ± S.E.M of the log transform of Km for n = 5 
rats/group.  
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Figure 20. Acute LOB did not alter VMAT2 function. Rats were injected 
acutely once daily with LOB (0, 1.0, 3.0, and 10.0 mg/kg) Control (0; black bar) 
represents saline-treated control group. A control group was administered saline 
contemporaneously for all LOB doses (open bars) for the acute treatment group. 
Vmax is represented in pmol/min/mg. Acute LOB did not alter striatal [3H]DA 
uptake 20 min after injection. Data are presented as mean ± S.E.M for n = 7-8 
rats/group.).  
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Figure 21. Repeated LOB did not alter VMAT2 function. Rats were injected 
repeatedly once daily for 7 days LOB (0 and 3.0 mg/kg). Vesicles were prepared 
20 min post-injection. Control (0; black bar) represents saline-treated control 
group. A control group was administered saline contemporaneously for LOB 3 
mg/kg dose (open bar) for the7-day treatment group. Vmax is represented in 
pmol/min/mg. Repeated LOB for 7 days did not alter [3H]DA uptake. Data are 
presented as mean ± S.E.M for n=5-7 rats/group.).  
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Table 15. Km values for [3H]DA uptake at VMAT2 were only 
altered by  the AMPH (7-day treatment) regimen. 
 

 

ACUTE 7-DAY  
MPD 

(mg/kg) 

Km 
(Mick et 

al) 
MPD 

(mg/kg) 
Km ((Mick 

et al) 
0 11 ± 1.0 0 13 ± 1.0 

2.5 12 ± 3.0 2.5 10 ± 1.0 
10 12 ± 3.0 10 12 ± 1.0 
20 9.0 ± 0.4    

ACUTE 
AMPH  

7-DAY 
AMPH  

(mg/kg) 

Km 
(Mick et 

al) (mg/kg) 
Km (Mick et 

al) 
0 11 ± 3.0 0 24 ± 5.0 

0.25 9.0 ± 2.0 0.25 18 ± 4.0 

1 10 ± 1.0 5 12 ± 1.0 
5 10 ± 2.0    

ACUTE 
Lobeline  

7-DAY 
Lobeline 

(mg/kg) 

Km 
(Mick et 

al)  (mg/kg)
Km (Mick et 

al) 
0 20 ± 4.0 0 15 ± 3.0 
1 21 ± 4.0 3 11 ± 2.0 
3 13 ± 1.0    

10 13 ± 3.0     
 

aData are presented as mean ± S.E.M for n = 4-18 rats/treatment group. ANOVA 
(F(6,48) = 3.21, p> 0.05 revealed that Km values were not different among 
independent control groups across the given treatments, and thus, these data for 
the saline-treated groups for each treatment group were pooled for statistical 
analysis. 
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V. Chapter Five 
 

Discussion and Conclusions 
A. Summary 
 ADHD is a psychiatric disorder that has a worldwide impact. ADHD has 

become more of a focus in research due to the increasing number of children 

and adults being diagnosed with ADHD and there is still much to be learned 

about the safety issues of ADHD medications (Meijer et al., 2009). This increase 

in ADHD research, has also led to a need to develop novel agents without the 

harmful side effects associated with the current therapies used to treat ADHD. 

The first line therapy for ADHD consists of stimulants, namely methylphenidate 

and amphetamine. Amphetamine is a DAT substrate, which competes with DA 

for DAT and also reverses the transport of dopamine causing release of 

dopamine, where as methylphenidate binds to DAT and inhibits DAT function, 

without releasing DA (Bannon et al., 2000; Seiden et al., 1993; Solanto, 2002; 

Sonders et al., 1997).  These agents also interact with VMAT2, which is the 

transporter responsible for moving  cytoplasmic dopamine into the synaptic 

vesicles for storage and future release (Yelin & Schuldiner, 2002).  

Methylphenidate has been shown to rapidly and reversibly increase VMAT2 

binding and vesicular uptake of dopamine (Sandoval et al., 2001). Amphetamine 

has been found to  displace the VMAT2 ligand tetrabenazine with a relatively low 

(µM) affinity for VMAT2, which suggest amphetamine may be a substrate of 

VMAT2  (Gonzalez et al., 1994).  

Lobeline, a major alkaloidal component of the Indian tobacco plant, has 

been shown in previous in vitro studies performed in our laboratory, to interact 

with DAT and VMAT2.  For instance, lobeline binds to and inhibits (IC50 value ≈ 

40-100 µM) DAT, inhibiting DA uptake (Miller et al., 2004; Teng et al., 1997). 

Lobeline  also inhibits [3H]DA uptake into vesicles with an IC50 value of 0.88 µM 

and inhibits the binding of [3H]dihydrotetrabenazine, a VMAT2 ligand, to the 

vesicular membrane with an IC50 value of 0.90 µM (Teng et al., 1998; Teng et al., 

1997). However, lobeline may not have any abuse liability based on results from 
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behavioral studies, that showed lobeline was not self-administered by rats, nor 

did it substitute for d-methamphetamine (Harrod et al., 2003). 

The purpose of this dissertation research was to examine the effects of 

acute and repeated in vivo administration of a compound called lobeline on 

dopamine and vesicular monoamine transporter functions and compare those 

effects with the effects of methylphenidate and amphetamine to warrant further 

investigation of lobeline as a potential treatment option for ADHD. The 

experiments for this dissertation research were conducted in the striatum, a 

region of the brain rich in dopamine and is also suggested to be involved in 

executive function and motor response associated with ADHD (Dinn et al., 2001; 

Volkow et al., 2001; Wilens, 2008).  

The first aim of this dissertation research was to determine the effect of 

lobeline on DAT function after acute and repeated in vivo administration using 

[3H]DA uptake assay and compare its effects with the effects of methylphenidate 

and amphetamine. The novel findings from these experiments showed an 

increase of DAT function (~60%), with acute methylphenidate (5 and 20 mg/kg) 

having a significantly higher Vmax compared to control. Repeated 

methylphenidate administration for 7 days at 2.5 and 20 mg/kg doses also 

increased DAT function (36% and 48%) compared to pooled saline-control. 

Neither acute nor repeated methylphenidate in vivo administration had an effect 

on Km values. Acute, as well as repeated (7 or 14 days) in vivo administration of 

amphetamine and lobeline had no effect on DAT function. Amphetamine and 

lobeline had no effect on Km values following acute or repeated in vivo 

administration. The results of these experiments do not support the hypothesis 

that lobeline would decrease DAT function in vivo as observed in the in vitro 

experiments. To our knowledge, this is the first report of the effects of DAT and 

VMAT2 function after acute and repeated in vivo administration of 

methylphenidate, amphetamine, and lobeline.  

 The second aim was to determine the effect of lobeline on VMAT2 

function after acute and repeated in vivo administration and compared its effects 

to methylphenidate and amphetamine. Acute in vivo administration of 
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methylphenidate showed an increase in VMAT2 function at 10 and 20 mg/kg.  

After 7 days of repeated in vivo methylphenidate administration, the 2.5 and 20 

mg/kg doses showed a significant increase in Vmax. Methylphenidate 

administration did not alter the Km.  Acute and repeated in vivo administration of 

amphetamine did not alter VMAT2 function in these studies. Amphetamine had 

no effect on Km values following acute in vivo administration; however, repeated 

in vivo administration significantly decreased the Km after 7 days. Acute and 

repeated in vivo administration of lobeline did not alter VMAT2 function or Km in 

these studies.  In summary, all three compounds act differently at this site. The 

results of these experiments did not support the hypothesis that lobeline would 

decrease VMAT2 function as seen in the previous in vitro studies. 

The third aim was to determine if the underlying mechanism of the 

methylphenidate-induced increase of DAT function was due to DAT trafficking 

using biotinylation and western blot analysis. The biotinylation and western blot 

assay revealed that methylphenidate given acutely, slightly but not significantly 

decreased intracellular DAT expression with no change in total or surface DAT 

expression. However, in vivo administration of methylphenidate after 7 days 

significantly decreased intracellular DAT expression, where only ~ 20 %   of 

intracellular DAT was found compared to control, without a change  in the total or 

surface DAT expression. These results agree with the hypothesis that DAT 

trafficking was responsible for the methylphenidate-induced increase in DAT 

function, but in a different manner since there was no increase in surface DAT 

expression. Nevertheless, the significant decrease in intracellular DAT caused by 

methylphenidate administration for 7 days does suggest that methylphenidate 

redistributes DAT, which means that some type of trafficking is involved and that 

this effect is time-dependent. 

B. Potential Mechanism for the Methylphenidate-Induced Increase in 
DAT  Function 

  Methylphenidate is a potent DAT inhibitor, which results in an increase in 

extracellular dopamine (Easton et al., 2007; Ferris et al., 1972; Richelson & 

Pfenning, 1984). Other studies have investigated the effect methylphenidate has 
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on DAT density and occupancy (Muneoka et al., 2006; Spencer et al., 2006; 

Volkow et al., 1998; Volkow et al., 2007; Wilcox et al., 2008). The results from the 

current work revealed that methylphenidate increased DAT function rather than 

inhibited DAT function. Specifically, acute methylphenidate (5.0 and 20 mg/kg) 

increased DAT function by ~60% and repeated methylphenidate (2.5 and 20 

mg/kg) increased DAT function by 36% and 48% respectively. However, 

repeated in vivo administration of methylphenidate (2.5, 5.0, or 20 mg/kg) after 

14 days did not alter DAT function. These findings suggest that the effect of 

methylphenidate is lost between 7 and 14 days and is time-dependent. This 

observation may be due to the compensatory effect of the potent inhibition of 

methylphenidate on DAT function. As methylphenidate inhibits DAT function, the 

system may respond by upregulating the existing DAT in order to compensate for 

the lack of DAT function. Overtime the compensatory effect could become less, 

thus causing methylphenidate to have no effect on DAT function, which was 

observed in the 14-day experiments. 

  Another potential explanation could be the involvement dopamine 

transporter phosphorylation and protein-protein interactions. A study investigating 

the effect of methylphenidate on dopamine-and cAMP-regulated phosphoprotein, 

Mr 32kDa (DARPP-32) phosphorylation using neostriatal slices found that 

methylphenidate increased (DARPP-32) phosphorylation in adult (6-8-week old) 

slices but not young (14-15-and 21-22-day old) slices (Fukui, 2003).  The 

phosphorylation state of DARPP-32 is involved in the mechanism for integrating 

information coming from dopamine neurons, multiple brain regions, utilizing 

various neurotransmitters, neuromodulators, neuropides and steroid hormones 

(Svenningsson et al., 2004). This finding suggests that age is an important factor 

to consider when determining the effect of methylphenidate on phosphorylation.  

Vaughan’s group conducted a more recent study to determine if certain DAT 

blockers, including methylphenidate, had an effect on basal and phorbol 12 

myristate 13 acetate (PMA) (Li et al)-stimulated DAT phosphorylation (Gorentla & 

Vaughan, 2005). PMA is a PKC activator and PKC regulates DAT activity and 

phosphorylation. The authors exposed rDAT LLC-PK1 cells to methylphenidate 
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(10 µM) for 30 minutes and found that methylphenidate had no effect on basal or 

PMA-stimulated phosphorylation.  This evidence suggests that methylphenidate 

does not cause DAT phosphorylation, thus no decrease in DAT function with 

methylphenidate was observed. Taken together, these data imply that DAT 

function can be regulated by various mechanisms and more work is required to 

elucidate the intricacies of these mechanisms. 

1. Methylphenidate increase in DAT Function is trafficking 
dependent  

 Several lines of evidence suggest that psychostimulants are involved in 

the regulation of DAT at the level of surface expression (Zhu & Reith, 2008).  In 

the current study, methylphenidate decreased intracellular DAT without altering 

total or surface DAT.  DAT function is regulated by numerous cellular signaling 

pathways, including PKC, tyrosine kinases, phosphatases, calcium and 

calmodulin-dependent kinases, and protein kinase A (PKA), which strongly 

modulate DAT expression on the plasma membrane (Melikian, 2004; Robinson, 

2002; Vaughan, 2004; Zahniser & Doolen, 2001).  G protein-coupled receptors 

(GPCRs), enzymatic modification such as phosphorylation or ubiquitination, and 

protein-protein interactions between DAT and other scaffolding proteins have 

also been found to be involved in the regulation of DAT (Schmitt et al., 2010). 

Methylphenidate may have caused the phosphorylation of DAT, thus making 

DAT unrecognizable to the DAT antibodies used in the western blot analysis. 

Ubiquitination is the covalent attachment of the small soluble protein ubiquitin to 

the ε-amino moiety of lysine residues in target cellular proteins. This process 

affects DAT cell surface expression and membrane trafficking of transporter 

(Schmitt et al., 2010). A possible mechanism mediating the methylphenidate-

induced decrease in intracellular DAT could be D3 receptor activation. Zapata et 

al conducted an experiment using hEK and neuro2A  cells, found a significant 

increase in cell surface DAT parallel to a significant increase in DAT function 

after brief D3 receptor stimulation (Zapata et al., 2007). This result suggests D3 

activation increases DAT redistribution from the intracellular compartment to the 

cell surface. This finding is consistent with our results where methylphenidate 
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caused the same DAT redistribution from the intracellular compartment based on 

the significant decrease in intracellular DAT that was observed. However, 

prolonged D3 receptor activation had the opposite effect, causing a decrease in 

cell surface DAT. In addition, this study also found that the D3 activation requires 

mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) 

activation. This suggests that there are multiple mechanisms and pathways that 

may be involved in the methylphenidate-induced decrease of intracellular DAT.  

Another possible explanation could be the involvement of PKA and PKC.  

Activation or inhibition of PKC, PI3K, and members of the MAPK family can 

cause transport membrane redistribution, although specific kinases responsible 

for direct phosphorylation are still unknown. One report found that 

methylphenidate had no effect on PKC activator-induced down-regulation of DAT 

function (Gorentla & Vaughan, 2005), however results from a previous study 

showed that methylphenidate decreased PKA levels when given repeatedly for 

five days (Crawford et al., 1998). These results demonstrate that the mechanism 

behind the regulation of DAT by methylphenidate is still under debate and further 

investigation is needed to gain a clearer picture of how methylphenidate 

regulates DAT. In addition, Wagner et al., observed a significant increase in Vmax 

in rats with a controlled cortical impact (CCI) that received a daily injection of 

methylphenidate (5 mg/kg) for 14 days, but there was no change in total tissue or 

membrane bound DAT expression compared to the CCI rats that received saline 

(Wagner et al., 2009). These findings demonstrate that methylphenidate has the 

ability to increase the Vmax without altering total of surface DAT expression, which 

is consistent with the results of this current study. A more recent study examined 

the long-term effects on striatal DAT density of a 2-week methylphenidate 

treatment given to SHR rats and WKY rats (Roessner et al., 2010). 

Methylphenidate was given through drinking water and was adjusted to about 2 

mg/kg/day based on daily monitoring of amounts consumed by the two rats per 

cage and their body weight. Methylphenidate significantly decreased [3H]GBR 

binding in SHR and WKY models at post-natal day 90 when compared to 

controls. This study demonstrates that long-term administration of 
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methylphenidate reduced the striatal DAT density in both rat strains. However, 

this finding reveals that methylphenidate caused a decrease in the amount of 

DAT, but the effect on DAT function after in vivo administration of 

methylphenidate was not assessed. Due to a time constraint, the 14-day 

experiment on DAT trafficking could not be performed, however based on the 

results from the 7-day experiment, it is speculated that methylphenidate may 

cause  a decrease in surface DAT in regards to DAT trafficking because the 

effect of methylphenidate on DAT function was no longer observed after 14 days. 

One study found that prolonged D3 receptor stimulation can cause a decrease in 

DAT function and a decrease in DAT cell surface expression (Zapata et al., 

2007). In addition, a study has shown that methylphenidate interacts with the D3 

receptors (Andersen et al., 2008), adding credence to the theorized results for 

the 14-day experiment. 

This current work, to our knowledge, is the first to report the effect of acute 

and repeated in vivo administration of methylphenidate on DAT function.  In 

summary, with DAT being a part of such a dynamic system, there is evidence 

that collectively suggests that multiple pathways exist to regulate 

neurotransmitter transport function (Samuel et al., 2005). 

There have also been other examples where there was an increase in DAT 

function, but no change in DAT expression. For instance, one report found that 

nicotine increased Vmax for [3H]DA uptake, however no increase in cell surface 

DAT expression was seen (Middleton et al., 2007). In addition, subfractionation 

experiments revealed no difference in dopamine transporter levels in total and 

plasma membrane fractions. Furthermore, another study reported that insulin 

increased NET function without a change in transport cellular localization 

(Apparsundaram et al., 2001).  Taken together, these results suggest that it is 

possible to have an increase in DAT function with no change in total DAT 

expression, which is what the present study found. 
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C. Potential Mechanism for the Methylphenidate-Induced 
Increase in VMAT2 Function 

The results of the VMAT2 experiments with methylphenidate are 

consistent with previous results showing that a single 40 mg/kg s.c. injection of 

methylphenidate increased vesicular DA uptake (Fleckenstein et al., 1999; 

Sandoval et al., 2002). The latter study also revealed that D1 and D2 receptor 

activity may also by involved in the increase in VMAT2 function by 

methylphenidate, since pretreatment with SCH23390, a D1 receptor antagonist 

and eticlopride, a D2 receptor antagonist both, completely inhibited 

methylphenidate-induced increases in VMAT2 function. Furthermore, 

methylphenidate may indirectly act as a DA agonist (Wilens, 2008).  This may 

also explain the increase of VMAT2 function because if methylphenidate acts as 

a DA agonist, it could activate both pre and post synaptic D2 DA receptors, thus 

indirectly causing an increase in VMAT2 function in order to remove the DA in 

the cytosol, which would increase the activation of the D2 DA receptors.  
Previous reports have shown that methylphenidate (40 mg/kg) can 

increase VMAT2 function accessed 60 minutes after in vivo administration 

(Sandoval et al., 2002). Based on the present results, it is very likely that 

methylphenidate may be interacting with vesicles in the same way as its 

interactions with synaptosomes, since methylphenidate increased both VMAT2 

and DAT function. Methylphenidate administration did not alter the Km, which 

suggests that methylphenidate competes with dopamine at VMAT2 in a 

noncompetitive manner. The current results suggest that methylphenidate acts 

differently than lobeline and amphetamine, in reference to the effects observed 

on VMAT2 function. The observation that amphetamine and methylphenidate 

influence VMAT2 differently at the time point and doses used in this study maybe 

rather surprising since both drugs have been shown to target VMAT2  

(Greydanus et al., 2007; Thanos et al., 2007).  However, the data in these 

studies could be a result of the difference in their mechanisms of action. This 

could possibly explain our observations of an increase in DAT and VMAT2 

function by methylphenidate and no effect by amphetamine. The data produced 
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from this dissertation research are the first to show that in vivo administration of 

methylphenidate increased DAT and VMAT2 function. A recent review on 

VMAT2 regulation suggest that the altered sensitivity to the locomotor activity 

effects of cocaine, amphetamine, and alcohol in VMAT2-knockout mice is tied 

closely to the expression of VMAT2 (Takahashi et al., 1997). This review also 

states that by gaining a better understanding of VMAT2 dynamics may open the 

door to improved pharmacotherapies used to treat psychiatric disorders and 

addiction. In addition, methylphenidate was shown to decrease the intracellular 

DAT expression, implying that methylphenidate does redistribute DAT. Initially, 

methylphenidate was thought to have a more direct and less complicated 

mechanism of action based on previous studies. However, the novel results from 

this research demonstrate that the mechanism of action of methylphenidate may 

be more complicated than previously thought.   

D. Implications 
 The results of this dissertation work imply that methylphenidate interacts 

with DAT in a different manner than amphetamine and lobeline. Based on the 

current results showing that lobeline had no effect on DAT and VMAT2 function, 

lobeline does not appear to be a plausible treatment option for ADHD. The lack 

of effect on DAT and VMAT2 function observed with lobeline could be that the 

behavioral effect, which was the decreased self-administration of 

methamphetamine observed in the behavioral study, may involve an interaction 

with the α4β2 nAChR and not due to DAT or VMAT2 involvement. However, 

lobeline, an analogue of lobeline, causes this same behavioral effect and has 

little or no affinity for α4β2* or α7* nAChRs (Miller et al., 2004; Zheng et al., 

2005). Therefore, the cause of the behavioral effect of lobeline requires 

additional research to determine what receptors and transporter proteins are 

involved in eliciting the behavioral effect of lobeline. 

However, amphetamine, an effective treatment for ADHD, had no effect 

either. Therefore, additional information is needed to determine if lobeline is 

actually a potential treatment option for ADHD. Furthermore, Levin et al. showed 

lobeline enhanced learning on the post-acquisition working memory performance 
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in the radial-arm maze (Levin et al., 2003). In addition, lobeline has been found to 

improve retention performance 24 hours after injection in spatial discrimination 

water maze (Decker et al., 1993). Previous work has also demonstrated that 

lobeline may be an effective smoking cessation agent by showing that lobeline 

acts as a nicotinic antagonist by inhibiting nicotine-evoked DA release and 

nicotine-evoked 86 Rb+ efflux (Miller et al., 2000). Lobeline has been used as an 

over-the-counter smoking cessation agent in the past in the US (Nunn-Thompson 

& Simon, 1989; Prignot, 1989) and numerous human studies have been 

conducted to determine efficacy of lobeline as a smoking cessation agent, 

although its use is still debatable (Dwoskin & Crooks, 2002). This characteristic 

gives lobeline an additional advantage to the currently used ADHD treatments 

because it has been shown that there is a higher rate of smoking in people who 

have ADHD compared to those who do not (Milberger et al., 1997).  Another 

benefit of lobeline is that it does not have typical stimulant side-effects such as 

abuse liability (Harrod et al., 2003). 

  In addition, this study unexpectedly found that amphetamine had no effect 

on DAT function. However, there have been behavioral reports that have 

demonstrated a difference in effect between methylphenidate and amphetamine. 

For example, a previous study discovered that 5 mg/kg of amphetamine 

produced more sniffing over a 2-hour observation period than rats receiving 

either saline or 30 mg/kg of methylphenidate (Roffman & Raskin, 1997).  In 

addition, methylphenidate-treated rats exhibited significantly higher total gnawing 

than saline or amphetamine-treated rats. Moreover, another study found that 

amphetamine and methylphenidate had differential effects on enriched 

environmental condition (EC) and impoverished condition (IC) rats. Amphetamine 

increased impulsivity choice in EC rats, however methylphenidate had no 

significant effect in EC rats (Perry et al., 2008).  The authors hypothesized that 

the differences in DAT function in mPFC may be associated with these results 

because EC rats show a decreased DAT function in mPFC, but not in striatum or 

nucleus accumbens, implying that EC rats could have higher levels of 

extracellular DA in the mPFC than IC rats (Zhu et al., 2004; Zhu et al., 2005).     
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  Biochemical studies have also obtained similar results. For instance, one 

study found that methylphenidate may interact with a domain on DAT that is 

distinct from that of amphetamine due to their different affinities observed with 

mutant DAT (Dar et al., 2005).  In addition, Schiffer et al., found that 

amphetamine increased extracellular DA more than methylphenidate using 

microdialysis, suggesting that the differences between these agents in 

modulating extracellular DA may be based on their differences in their molecular 

mechanisms, i.e., amphetamine also causes release of DA and methylphenidate 

does not (Schiffer et al., 2006).  The differential effects of amphetamine and 

methylphenidate have been recorded in the clinical setting as well. Borcherding 

conducted a study with 45 hyperactive boys and found that subjects taking 

amphetamine had increased cleaning and checking behaviors similar to 

childhood-onset Obsessive-Compulsive Disorder (OCD). On the other hand, the 

subjects that were given methylphenidate displayed perfectionistic and detail-

oriented behavior, as well as abnormal movements and compulsive behavior 

(Borcherding et al., 1990). Taken together, the results of the preclinical 

behavioral and biochemical studies, as well as the clinical findings, suggest that 

methylphenidate and amphetamine may interact at DAT in different manners to 

cause these differential effects.  

This research has also led to clinical implications. Based on the preclinical 

data of lobeline, a clinical trial was conducted using lobeline. The clinical trial was 

a single small-N pilot study to determine the ability of lobeline to decrease ADHD 

symptoms in adults. The study was a double-blind, double-dummy, placebo-

controlled, within-subject design. Inclusion criteria for the study included being 

healthy individuals between 21 and 45 yrs old, with childhood histories and 

current symptoms of ADHD (meet diagnostic criteria on the clinical interview and 

CAARS) and able to stop current medications for 7 days prior to the clinical trial. 

Females were either nonchildbearing (tubal ligation or total hysterectomy) or of 

childbearing potential using one or more of the following barrier methods of 

contraception: male or female condoms (with spermicide), diaphragm (with 

spermicide) and/or intrauterine device (with/without spermicide). No other 
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contraceptives were acceptable. Subjects must have a body mass index (BMI) 

between 18 and 30 and be willing and able to give written consent. Subjects must 

have no medical contraindications determined by the following: an adequate 

medical history, a physical examination including vital signs, 12-lead ECG, CBC 

with differential and liver functions and urinalysis and a negative drug test 

(barbiturates, benzodiazepines, amphetamines, opiates, cocaine, cannabinoids, 

ethanol) at screening and at the time of each admission to the GCRC and CO ≤ 8. 

Salivary cotinine was collected and assessed at baseline to determine whether or 

not the subject was using smokeless tobacco included being a non-smoker 

between the ages of 21-45, in good general health, no current drug use, and 

having a history of childhood ADHD symptoms and current ADHD symptoms. 

Medical and psychiatric evaluations were conducted. The medical evaluation 

consisted of a physical examination (conducted by the PI) and an EKG reviewed 

by an Internist/pediatrician (Dr. C. Feddock) with particular attention to 

arrhythmias, prolonged QT or heart block. Subjects provided a urine sample for 

drug screening, standard urinalysis and βHCG pregnancy tests (for female 

subjects).  A blood sample was drawn for a complete blood count with differential 

and liver function tests. Subjects will undergo breath sample analysis on-site with 

an Alco-Sensor Intoximeter and an Innovative Medical CO Monitor. To qualify for 

the study, subjects must be non-smokers and CO must be ≤ 8 ppm.  

The psychiatric assessment included a structured clinical interview based on 

the DSM-IV (SCID) supplemented with ADHD symptoms from the KSADS-E 

(Wilens et al, 2003). In addition, the Conners Adult Rating Scale (CAARS) will be 

completed. These measures assessed the presence of ADHD and degree of 

symptomatology. The Shipley Institute of Living Test was obtained to determine 

an estimate of intellectual functioning.   

 Exclusion criteria included regular use of drugs of abuse, current use of 

psychiatric medications other than short acting medications for ADHD, having an 

abnormal EKG or hypertension (blood pressure over 150/90 on two consecutive 

measures over 15 min when the subject is at rest), being pregnancy, having 

current medical difficulties or legal problems, regular use of prescription medicine 
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that cannot be discontinued and current use of nicotine and active suicidal 

behaviors. 

 The acute effects of LOB on indices of attention, impulsivity and working 

memory were the primary outcomes measures to be assessed; outcomes will be 

compared to results obtained with placebo and with the positive control 

comparator, methylphenidate, a medication with efficacy for this disorder. 

Secondary outcome measures will include physiological and subjective drug effect 

reports to provide additional information on safety, abuse liability and tolerability 

(e.g., appetite, sleep, side effects).  

 The first subject was consented on July 30, 2008 and the final subject 

consented on October 8, 2009. A total of 42 subjects were enrolled in the study 

and screened at intake (18 females and 24 males). Out of the 42 subjects, only 13 

were randomized into the protocol because 29 did not meet the inclusion criteria. 

Some of the screening failures included elevated BMI, elevated scores on the 

Beck Depression Inventory, a CAARS score of >65, 2 positive drug screens, 

failure to meet the demands of the protocol (i.e., scheduling conflicts), and family 

history of early cardiac death. Out of the 13 subjects that were randomized 4 

withdrew, leaving a total of 9 subjects that completed the study. In regards to 

demographics of the 13 subjects, 1 was an African American female, 5 were 

White females, and 7 were White males. The subjects that withdrew were the 

African American female, 1 White female, and 2 White males. 

 The results of the study showed that lobeline did not have a significant 

effect on reducing ADHD symptoms using the outcomes assessed in this trial. 

However, it was also difficult to observe a significant effect with methylphenidate, 

suggesting that the testing parameters may not have been most appropriate to 

use. In addition, various subjects complained of a bitter taste and a burning 

sensation with the administration of lobeline sublingual tablet. This adverse effect 

could have played a role in the lack of effect observed with lobeline, causing the 

subjects to become distracted by the bitter taste or burning sensation. Therefore, 

if the subjects were distracted, they might have performed worse on the tests 

used to assess for improved attention after administration of lobeline. To 
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determine if the adverse effects affected the results of the study, another study 

should be conducted with a different dosage form of lobeline, such as a 

transdermal patch to alleviate the adverse effect of the bitter taste and burning 

sensation. This additional study would confirm if lobeline is able to reduce ADHD 

symptoms and provide an overall perspective of the clinical implications of 

lobeline as a treatment option for ADHD. 

E. Limitations 
One limitation was the choice of using adult rats for the study rather than 

adolescent rats, since ADHD is known to be a childhood disorder. However, adult 

rats were used to obtain preliminary results as to how lobeline interacts with DAT 

and VMAT2 in normal adult rats. Just as clinical studies use healthy subjects to 

investigate the characteristics of an investigational drug, such as 

pharmacokinetics and side effects, we used normal adult rats to gain knowledge 

as to how lobeline interacts with DAT and VMAT2. In fact, using adults rats may 

not be an actual limitation since ADHD has been shown to persist into adulthood 

and more cases of adult ADHD are being diagnosed (American Psychiatric 

Association, 2000; de Graaf et al., 2008). 

Another limitation was only examining one region of the brain. The 

striatum was initially chosen based on the support that DAT is highly expressed 

in the striatum (Ciliax et al., 1999). However, recent research focused on the 

PFC and reports that it is an essential region of the brain that governs and 

maintains attention (Arnsten et al., 2009). For example, improved PFC cognitive 

function, i.e., spatial working memory, in monkeys was observed with the optimal 

dose of methylphenidate and amphetamine (Gamo et al., 2010). This same study 

also stated that PFC function is vastly controlled by DA and NE. In addition, the 

authors found that the regulation of the PFC is altered in many ADHD patients.  

Based on this increasing amount of evidence,   it is necessary to conduct studies 

in the PFC to gain a better understanding of the mechanisms of actions of 

lobeline, methylphenidate, and amphetamine in this brain region. 

The use of individual doses for the chronic studies could be a limitation as 

well. The chronic doses were to be based on the effective acute doses. However, 
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amphetamine and lobeline did not have an effect in the actue experiments. 

Therefore, the doses chosen for the chronic studies for these compounds were 

based on behavioral studies. Since a complete dose-response was used for 

acute studies, it would be more beneficial to also conduct a complete dose-

response with the chronic studies as well. This would ensure a more complete 

picture as to how the compounds interact with the various targets. Determining 

the dose-response relationship is imperative when studying different compounds 

and their effects on certain targets because it provides vital information as to how 

the dose affects the primary outcome measure. Therefore, to address this 

limitation it would be prudent to include a dose-response for the chronic studies 

as well.   

F. Future Directions 
The experiments completed in this dissertation examined the effects of 

acute and repeated in vivo administration of lobeline, methylphenidate, and 

amphetamine on DAT function in the striatum. Further studies are needed to 

investigate the effects of acute and repeated in vivo administration of lobeline, 

methylphenidate, and amphetamine on DAT function in the PFC since the PFC is 

also widely studied because of its involvement in the regulation of behavior, 

attention, affect, motor and cognitive control (Arnsten, 2006; Kieling et al., 2008). 

Numerous studies have considered the PFC as a region of interest in examining 

the pathophysiology of ADHD (Barkley et al., 1992; Goldman-Rakic, 1996; 

Robbins, 1996).   

  Due to the recent addition of atomoxetine, a selective NET inhibitor, as a 

treatment option for ADHD, it is important to determine the effects lobeline has 

on this transporter function as well. Impaired regulation of NE neurotransmission 

is suggested to contribute to ADHD (Beane & Marrocco, 2004).  Studies have 

shown, using microdialysis that methylphenidate and amphetamine substantially 

increased NE and DA efflux within the PFC to enhance cognitive function 

(Berridge et al., 2006; Berridge & Stalnaker, 2002). Methylphenidate also has an 

affinity for NET (Andersen, 1989; Easton et al., 2007; Kuczenski & Segal, 1997; 

Richelson & Pfenning, 1984). One report even suggests that methylphenidate 
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has a higher affinity for NET than DAT (Eshleman et al., 1999). Moreover, a 

preclinical study found that methylphenidate-treated rats (0.5 mg/kg, ip) produced 

a maximal increase in NE levels significantly larger than the increase of DA in the 

PFC (Berridge et al., 2006). Furthermore, the first in vivo study in humans 

showed that clinically relevant doses of methylphenidate occupy significant levels 

of NET. The results from this study imply that the therapeutic effect of 

methylphenidate in ADHD may be modulated via NET inhibition as well as DAT 

(Hannestad et al., 2010). A recent review also stated that the majority of drugs 

shown to be effective in treating ADHD have important effects on NE 

transmission (Del Campo et al., 2011). Thus, there is overwhelming evidence 

that NET is an important target that needs to be investigated to determine the 

effect lobeline may have on it.   

Another suggested future study involves investigating the effects of acute 

and repeated in vivo administration of lobeline, methylphenidate, and 

amphetamine on DAT and VMAT2 function in adolescent rats as well. Studies 

have indicated that age plays a major role in response to ADHD medications due 

to the fact that the adolescent brain is still undergoing development, which makes 

it more sensitive to the effects of these medications (Canese et al., 2009; Yang et 

al., 2003; Yang et al., 2006).   

Furthermore, in order to validate the use of lobeline for the treatment of 

ADHD, it would be useful to determine if lobeline is effective in reducing the 

symptoms of ADHD found in an ADHD rat model. Based on the review of the 

literature, convergent evidence suggests that the SHR is one of the best animal 

ADHD models (Heal et al., 2008; McCarty et al., 1980; Sagvolden, 2000). Thus, it 

would be worthwhile to investigate the effect lobeline has on SHR rats and to 

compare its effect to the effects of methylphenidate and amphetamine.   

In conclusion, this dissertation research has provided new insights into the 

mechanism of action of lobeline and how it interacts with DAT and VMAT2. This 

work also extended previous findings as to how methylphenidate interacts with 

DAT and VMAT2. Further studies are needed to gain a better understanding of 

the exact mechanism responsible for the increase in DAT function caused by 
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methylphenidate. Based on the current results showing that lobeline had no 

effect on DAT and VMAT2 function, lobeline does not appear to be a plausible 

treatment option for ADHD. However, amphetamine, an effective treatment for 

ADHD, had no effect either. Therefore, more experiments are warranted in order 

to elucidate the mechanism of lobeline and the other compounds. Ultimately, 

these additional studies may offer leads for developing related novel and more 

effective neuropharmacologic therapeutic agents for ADHD and other psychiatric 

disorders. Furthermore, we did find exciting new data that showed that acute and 

repeated methylphenidate increased DAT and VMAT2 function after in vivo 

administration. These data provide evidence that VMAT2 is also an important 

target worthy of further research for additional novel therapeutic compounds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Yolanda D. Williams 2011 



147 

References 
 
Adam Y, Edwards RH, Schuldiner S. 2008. Expression and function of the rat 

vesicular monoamine transporter 2. Am J Physiol Cell Physiol 294: 
C1004-11 

Alles G. 1933. The comparative physiological actions of DL-beta-
phenylisopropylamines. I. Pressor effect and toxicity. J Pharmacol Exp 
Ther 47: 339-54 

Amara SG, Sonders MS. 1998. Neurotransmitter transporters as molecular 
targets for addictive drugs. Drug and alcohol dependence 51: 87-96 

American Psychiatric Association A. 1987. Diagnostic and Statistical Manual of 
Mental Disorders. Washington, DC:Author.  

American Psychiatric Association A. 2000. Diagnostic and Statistical Manual of 
Mental Disorders. Washington, DC:Author: American Psychiatric 
Association.  

Amini B, Yang PB, Swann AC, Dafny N. 2004. Differential locomotor responses 
in male rats from three strains to acute methylphenidate. Int J Neurosci 
114: 1063-84 

Andersen PH. 1989. The dopamine inhibitor GBR 12909: selectivity and 
molecular mechanism of action. Eur J Pharmacol 166: 493-504 

Andersen SL, Napierata L, Brenhouse HC, Sonntag KC. 2008. Juvenile 
methylphenidate modulates reward-related behaviors and cerebral blood 
flow by decreasing cortical D3 receptors. The European journal of 
neuroscience 27: 2962-72 

Apparsundaram S, Sung U, Price R, Blakely R. 2001. Trafficking-dependent and 
-independent pathways of neurotransmitter transporter regulation 
differentially involving p38 mitogen-activated protein kinase revealed in 
studies of insulin modulation of norepinephrine transport in SK-N-SH cells. 
J Pharmacol Exp Ther 299: 666-77 

Archer T, Danysz W, Fredriksson A, Jonsson G, Luthman J, et al. 1988. 
Neonatal 6-hydroxydopamine-induced dopamine depletions: motor activity 
and performance in maze learning. Pharmacol Biochem Behav 31: 357-64 

Arnsten AF. 2006. Fundamentals of attention-deficit/hyperactivity disorder: 
circuits and pathways. J Clin Psychiatry 67 Suppl 8: 7-12 

Arnsten AF, Dudley AG. 2005. Methylphenidate improves prefrontal cortical 
cognitive function through alpha2 adrenoceptor and dopamine D1 receptor 
actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity 
Disorder. Behav Brain Funct 1: 2 

Arnsten AF, Li BM. 2005. Neurobiology of executive functions: catecholamine 
influences on prefrontal cortical functions. Biol Psychiatry 57: 1377-84 

Ary TE, Komiskey HL. 1980. Phencyclidine: effect on the accumulation of 3H-
dopamine in synaptic vesicles. Life Sci 26: 575-8 

Aspide R, Gironi Carnevale UA, Sergeant JA, Sadile AG. 1998. Non-selective 
attention and nitric oxide in putative animal models of Attention-Deficit 
Hyperactivity Disorder. Behav Brain Res 95: 123-33 



148 

Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-
norepinephrine function: adaptive gain and optimal performance. Annu 
Rev Neurosci 28: 403-50 

Avale ME, Falzone TL, Gelman DM, Low MJ, Grandy DK, Rubinstein M. 2004. 
The dopamine D4 receptor is essential for hyperactivity and impaired 
behavioral inhibition in a mouse model of attention deficit/hyperactivity 
disorder. Mol Psychiatry 9: 718-26 

Avery RA, Franowicz JS, Studholme C, van Dyck CH, Arnsten AF. 2000. The 
alpha-2A-adrenoceptor agonist, guanfacine, increases regional cerebral 
blood flow in dorsolateral prefrontal cortex of monkeys performing a 
spatial working memory task. Neuropsychopharmacology 23: 240-9 

Bannon M, Sacchetti P, Granneman J. 2000. The dopamine transporter:potential 
involvement in neuropyschiatric disorders  In Psychopharmacology, ed. S 
Watson. Philadelphia, PA: Lippincott 

Barak N. 2008. Betahistine: what's new on the agenda? Expert Opin Investig 
Drugs 17: 795-804 

Barker E, Blakely RD. 1995. Norepinephrine and serotonin transporters: 
Molecular targets of antidepressant drugs.  In Psychopharmacology. A 4th 
Generation of Progress, ed. F Bloom, D Kupfer, pp. 321-33. New York: 
Raven Press 

Barkley RA, Fischer M, Edelbrock CS, Smallish L. 1990. The adolescent 
outcome of hyperactive children diagnosed by research criteria: I. An 8-
year prospective follow-up study. J Am Acad Child Adolesc Psychiatry 29: 
546-57 

Barkley RA, Grodzinsky G, DuPaul GJ. 1992. Frontal lobe functions in attention 
deficit disorder with and without hyperactivity: a review and research 
report. J Abnorm Child Psychol 20: 163-88 

Barr CL, Xu C, Kroft J, Feng Y, Wigg K, et al. 2001. Haplotype study of three 
polymorphisms at the dopamine transporter locus confirm linkage to 
attention-deficit/hyperactivity disorder. Biol Psychiatry 49: 333-9 

Beane M, Marrocco RT. 2004. Norepinephrine and acetylcholine mediation of the 
components of reflexive attention: implications for attention deficit 
disorders. Prog Neurobiol 74: 167-81 

Beatty J. 1982. Phasic not tonic pupillary responses vary with auditory vigilance 
performance. Psychophysiology 19: 167-72 

Becker K, Laucht M, El-Faddagh M, Schmidt MH. 2005. The dopamine D4 
receptor gene exon III polymorphism is associated with novelty seeking in 
15-year-old males from a high-risk community sample. J Neural Transm 
112: 847-58 

Benjamin J, Li L, Patterson C, Greenberg BD, Murphy DL, Hamer DH. 1996. 
Population and familial association between the D4 dopamine receptor 
gene and measures of Novelty Seeking. Nat Genet 12: 81-4 

Benwell ME, Balfour DJ. 1998. The influence of lobeline on nucleus accumbens 
dopamine and locomotor responses to nicotine in nicotine-pretreated rats. 
British journal of pharmacology 125: 1115-9 



149 

Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, et al. 
2006. Methylphenidate preferentially increases catecholamine 
neurotransmission within the prefrontal cortex at low doses that enhance 
cognitive function. Biol Psychiatry 60: 1111-20 

Berridge CW, Stalnaker TA. 2002. Relationship between low-dose amphetamine-
induced arousal and extracellular norepinephrine and dopamine levels 
within prefrontal cortex. Synapse 46: 140-9 

Biederman J, Faraone SV. 2005. Attention-deficit hyperactivity disorder. Lancet 
366: 237-48 

Biederman J, Spencer T. 1999. Attention-deficit/hyperactivity disorder (ADHD) as 
a noradrenergic disorder. Biol Psychiatry 46: 1234-42 

Biederman J, Swanson JM, Wigal SB, Boellner SW, Earl CQ, Lopez FA. 2006. A 
comparison of once-daily and divided doses of modafinil in children with 
attention-deficit/hyperactivity disorder: a randomized, double-blind, and 
placebo-controlled study. J Clin Psychiatry 67: 727-35 

Biederman J, Swanson JM, Wigal SB, Kratochvil CJ, Boellner SW, et al. 2005. 
Efficacy and safety of modafinil film-coated tablets in children and 
adolescents with attention-deficit/hyperactivity disorder: results of a 
randomized, double-blind, placebo-controlled, flexible-dose study. 
Pediatrics 116: e777-84 

Birnbaum HG, Kessler RC, Lowe SW, Secnik K, Greenberg PE, et al. 2005. 
Costs of attention deficit-hyperactivity disorder (ADHD) in the US: excess 
costs of persons with ADHD and their family members in 2000. Curr Med 
Res Opin 21: 195-206 

Birrell JM, Brown VJ. 2000. Medial frontal cortex mediates perceptual attentional 
set shifting in the rat. J Neurosci 20: 4320-4 

Boellner SW, Earl CQ, Arora S. 2006. Modafinil in children and adolescents with 
attention-deficit/hyperactivity disorder: a preliminary 8-week, open-label 
study. Curr Med Res Opin 22: 2457-65 

Bolan EA, Kivell B, Jaligam V, Oz M, Jayanthi LD, et al. 2007. D2 receptors 
regulate dopamine transporter function via an extracellular signal-
regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-
independent mechanism. Mol Pharmacol 71: 1222-32 

Boon-yasidhi V, Kim YS, Scahill L. 2005. An open-label, prospective study of 
guanfacine in children with ADHD and tic disorders. J Med Assoc Thai 88 
Suppl 8: S156-62 

Borcherding BG, Keysor CS, Rapoport JL, Elia J, Amass J. 1990. Motor/vocal 
tics and compulsive behaviors on stimulant drugs: is there a common 
vulnerability? Psychiatry Res 33: 83-94 

Boudanova E, Navaroli DM, Melikian HE. 2008. Amphetamine-induced 
decreases in dopamine transporter surface expression are protein kinase 
C-independent. Neuropharmacology 54: 605-12 

Bradford MM. 1976. A rapid and sensitive method for the quantitation of 
microgram quantities of protein utilizing the principle of protein-dye 
binding. Analytical biochemistry 72: 248-54 



150 

Bradley C. 1937. Behaviour of children receiving benzedrine. Am J Psychiatry 
94: 577-85 

Brett W. 1946. Benzedrine sulfate in clinical medicine: a survey of the literature. 
Postgrad. Med. J. 22: 205-18 

Broussolle EP, Wong DF, Fanelli RJ, London ED. 1989. In vivo specific binding 
of [3H]1-nicotine in the mouse brain. Life Sci 44: 1123-32 

Brown JM, Hanson GR, Fleckenstein AE. 2001a. Regulation of the vesicular 
monoamine transporter-2: a novel mechanism for cocaine and other 
psychostimulants. J Pharmacol Exp Ther 296: 762-7 

Brown JM, Riddle EL, Sandoval V, Weston RK, Hanson JE, et al. 2002. A single 
methamphetamine administration rapidly decreases vesicular dopamine 
uptake. J Pharmacol Exp Ther 302: 497-501 

Brown RT, Coles CD, Smith IE, Platzman KA, Silverstein J, et al. 1991. Effects of 
prenatal alcohol exposure at school age. II. Attention and behavior. 
Neurotoxicol Teratol 13: 369-76 

Brown RT, Freeman WS, Perrin JM, Stein MT, Amler RW, et al. 2001b. 
Prevalence and assessment of attention-deficit/hyperactivity disorder in 
primary care settings. Pediatrics 107: E43 

Brunk I, Holtje M, von Jagow B, Winter S, Sternberg J, et al. 2006. Regulation of 
vesicular monoamine and glutamate transporters by vesicle-associated 
trimeric G proteins: new jobs for long-known signal transduction 
molecules. Handb Exp Pharmacol: 305-25 

Buchhalter AR, Fant RV, Henningfield JE. 2008. Novel pharmacological 
approaches for treating tobacco dependence and withdrawal: current 
status. Drugs 68: 1067-88 

Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, et al. 
2002. Atomoxetine increases extracellular levels of norepinephrine and 
dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in 
attention deficit/hyperactivity disorder. Neuropsychopharmacology 27: 
699-711 

Caldwell JA, Caldwell JL, Darlington KK. 2003. Utility of dextroamphetamine for 
attenuating the impact of sleep deprivation in pilots. Aviat Space Environ 
Med 74: 1125-34 

Canese R, Adriani W, Marco EM, De Pasquale F, Lorenzini P, et al. 2009. 
Peculiar response to methylphenidate in adolescent compared to adult 
rats: a phMRI study. Psychopharmacology (Berl) 203: 143-53 

Carvelli L, Moron JA, Kahlig KM, Ferrer JV, Sen N, et al. 2002. PI 3-kinase 
regulation of dopamine uptake. J Neurochem 81: 859-69 

Casey BJ, Galvan A, Hare TA. 2005. Changes in cerebral functional organization 
during cognitive development. Current opinion in neurobiology 15: 239-44 

Casey BJ, Nigg JT, Durston S. 2007. New potential leads in the biology and 
treatment of attention deficit-hyperactivity disorder. Curr Opin Neurol 20: 
119-24 

Cass WA, Gerhardt GA. 1994. Direct in vivo evidence that D2 dopamine 
receptors can modulate dopamine uptake. Neurosci Lett 176: 259-63 



151 

Cerbone A, Pellicano MP, Sadile AG. 1993. Evidence for and against the Naples 
high- and low-excitability rats as genetic model to study hippocampal 
functions. Neurosci Biobehav Rev 17: 295-303 

Chan YP, Swanson JM, Soldin SS, Thiessen JJ, Macleod SM, Logan W. 1983. 
Methylphenidate hydrochloride given with or before breakfast: II. Effects 
on plasma concentration of methylphenidate and ritalinic acid. Pediatrics 
72: 56-9 

Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, et al. 1999. 
Immunocytochemical localization of the dopamine transporter in human 
brain. J Comp Neurol 409: 38-56 

Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, et al. 1995. The 
dopamine transporter: immunochemical characterization and localization 
in brain. J Neurosci 15: 1714-23 

Clarke PB. 1990. Dopaminergic mechanisms in the locomotor stimulant effects of 
nicotine. Biochem Pharmacol 40: 1427-32 

Clarke PB, Kumar R. 1983. The effects of nicotine on locomotor activity in non-
tolerant and tolerant rats. British journal of pharmacology 78: 329-37 

Clarke PB, Reuben M. 1996. Release of [3H]-noradrenaline from rat 
hippocampal synaptosomes by nicotine: mediation by different nicotinic 
receptor subtypes from striatal [3H]-dopamine release. British journal of 
pharmacology 117: 595-606 

Conners CK. 1999. Clinical use of rating scales in diagnosis and treatment of 
attention-deficit/hyperactivity disorder. Pediatr Clin North Am 46: 857-70, 
vi 

Connor DF, Fletcher KE, Swanson JM. 1999. A meta-analysis of clonidine for 
symptoms of attention-deficit hyperactivity disorder. J Am Acad Child 
Adolesc Psychiatry 38: 1551-9 

Cook EH, Jr., Stein MA, Krasowski MD, Cox NJ, Olkon DM, et al. 1995. 
Association of attention-deficit disorder and the dopamine transporter 
gene. Am J Hum Genet 56: 993-8 

Cooper JR, Bloom F, Roth R. 2003. The Biochemical Basis of 
Neuropharmacology. New York: Oxford University Press. 239-31 pp. 

Copeland BJ, Vogelsberg V, Neff NH, Hadjiconstantinou M. 1996. Protein kinase 
C activators decrease dopamine uptake into striatal synaptosomes. J 
Pharmacol Exp Ther 277: 1527-32 

Cormier E. 2008. Attention deficit/hyperactivity disorder: a review and update. J 
Pediatr Nurs 23: 345-57 

Corrigall WA, Coen KM. 1989. Nicotine maintains robust self-administration in 
rats on a limited-access schedule. Psychopharmacology (Berl) 99: 473-8 

Cowles BJ. 2009. Lisdexamfetamine for treatment of attention-
deficit/hyperactivity disorder. Ann Pharmacother 43: 669-76 

Crawford CA, McDougall SA, Meier TL, Collins RL, Watson JB. 1998. Repeated 
methylphenidate treatment induces behavioral sensitization and 
decreases protein kinase A and dopamine-stimulated adenylyl cyclase 
activity in the dorsal striatum. Psychopharmacology (Berl) 136: 34-43 



152 

Damaj MI, Patrick GS, Creasy KR, Martin BR. 1997. Pharmacology of lobeline, a 
nicotinic receptor ligand. 282: 410-9 

Dar DE, Mayo C, Uhl GR. 2005. The interaction of methylphenidate and 
benztropine with the dopamine transporter is different than other 
substrates and ligands. Biochem Pharmacol 70: 461-9 

Davids E, Zhang K, Kula NS, Tarazi FI, Baldessarini RJ. 2002. Effects of 
norepinephrine and serotonin transporter inhibitors on hyperactivity 
induced by neonatal 6-hydroxydopamine lesioning in rats. J Pharmacol 
Exp Ther 301: 1097-102 

De Bruin NM, Kiliaan AJ, De Wilde MC, Broersen LM. 2003. Combined uridine 
and choline administration improves cognitive deficits in spontaneously 
hypertensive rats. Neurobiol Learn Mem 80: 63-79 

de Graaf R, Kessler RC, Fayyad J, ten Have M, Alonso J, et al. 2008. The 
prevalence and effects of adult attention-deficit/hyperactivity disorder 
(ADHD) on the performance of workers: results from the WHO World 
Mental Health Survey Initiative. Occup Environ Med 65: 835-42 

de Saint Hilaire Z, Orosco M, Rouch C, Blanc G, Nicolaidis S. 2001. Variations in 
extracellular monoamines in the prefrontal cortex and medial 
hypothalamus after modafinil administration: a microdialysis study in rats. 
Neuroreport 12: 3533-7 

Decker MJ, Hue GE, Caudle WM, Miller GW, Keating GL, Rye DB. 2003. 
Episodic neonatal hypoxia evokes executive dysfunction and regionally 
specific alterations in markers of dopamine signaling. Neuroscience 117: 
417-25 

Decker MW, Majchrzak MJ, Arneric SP. 1993. Effects of lobeline, a nicotinic 
receptor agonist, on learning and memory. Pharmacol Biochem Behav 45: 
571-6 

DeFelice LJ, Blakely RD. 1996. Pore models for transporters? Biophys J 70: 579-
80 

Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW. 2011. The Roles of 
Dopamine and Noradrenaline in the Pathophysiology and Treatment of 
Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 

Dell'Anna ME, Calzolari S, Molinari M, Iuvone L, Calimici R. 1991. Neonatal 
anoxia induces transitory hyperactivity, permanent spatial memory deficits 
and CA1 cell density reduction in developing rats. Behav Brain Res 45: 
125-34 

Di Pietro NC, Black YD, Green-Jordan K, Eichenbaum HB, Kantak KM. 2004. 
Complementary tasks to measure working memory in distinct prefrontal 
cortex subregions in rats. Behav Neurosci 118: 1042-51 

Diak I-L, Senior J. 2009. Postmarketing Reviews. FDA Drug and Safety 
Newsletter 2 

Dinn WM, Robbins NC, Harris CL. 2001. Adult attention-deficit/hyperactivity 
disorder: neuropsychological correlates and clinical presentation. Brain 
and cognition 46: 114-21 



153 

Drolet G, Proulx K, Pearson D, Rochford J, Deschepper CF. 2002. Comparisons 
of behavioral and neurochemical characteristics between WKY, WKHA, 
and Wistar rat strains. Neuropsychopharmacology 27: 400-9 

Duteil J, Rambert FA, Pessonnier J, Gombert R, Assous E. 1979. A possibe 
alpha-adrenergic mechanism for drug (CRL 40028)-induced hyperactivity. 
Eur J Pharmacol 59: 121-3 

Dwoskin LP, Crooks PA. 2002. A novel mechanism of action and potential use 
for lobeline as a treatment for psychostimulant abuse. Biochem Pharmacol 
63: 89-98 

Easton N, Steward C, Marshall F, Fone K, Marsden C. 2007. Effects of 
amphetamine isomers, methylphenidate and atomoxetine on 
synaptosomal and synaptic vesicle accumulation and release of dopamine 
and noradrenaline in vitro in the rat brain. Neuropharmacology 52: 405-14 

Edeleanu L. 1887. Uber einige derivate der Phenmethascrylsaure und der 
Phenylisobuttsaure. Berl. Dtsch. Chem. Gen 20: 616-22 

Eiden LaWE. 2011. VMAT2: a dynamic regulator of brain monoaminergic 
neuronal function interacting with drugs of abuse. Ann N Y Acad Sci Jan: 
86-98 

Eiden LE, Schafer MK, Weihe E, Schutz B. 2004. The vesicular amine 
transporter family (SLC18): amine/proton antiporters required for vesicular 
accumulation and regulated exocytotic secretion of monoamines and 
acetylcholine. Pflugers Arch 447: 636-40 

Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E. 1996. Distinct 
pharmacological properties and distribution in neurons and endocrine cells 
of two isoforms of the human vesicular monoamine transporter. Proc Natl 
Acad Sci U S A 93: 5166-71 

Eriksen J, Jorgensen TN, Gether U. 2010. Regulation of dopamine transporter 
function by protein-protein interactions: new discoveries and 
methodological challenges. J Neurochem 

Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A. 1999. 
Characteristics of drug interactions with recombinant biogenic amine 
transporters expressed in the same cell type. J Pharmacol Exp Ther 289: 
877-85 

Eyerman DJ, Yamamoto BK. 2005. Lobeline attenuates methamphetamine-
induced changes in vesicular monoamine transporter 2 immunoreactivity 
and monoamine depletions in the striatum. J Pharmacol Exp Ther 312: 
160-9 

Faraone SV, Khan SA. 2006. Candidate gene studies of attention-
deficit/hyperactivity disorder. J Clin Psychiatry 67 Suppl 8: 13-20 

Faraone SV, Sergeant J, Gillberg C, Biederman J. 2003. The worldwide 
prevalence of ADHD: is it an American condition? World Psychiatry 2: 
104-13 

Farook JM, Lewis B, Gaddis JG, Littleton JM, Barron S. 2009. Lobeline, a 
nicotinic partial agonist attenuates alcohol consumption and preference in 
male C57BL/6J mice. Physiol Behav 97: 503-6 



154 

Fauchey V, Jaber M, Caron MG, Bloch B, Le Moine C. 2000. Differential 
regulation of the dopamine D1, D2 and D3 receptor gene expression and 
changes in the phenotype of the striatal neurons in mice lacking the 
dopamine transporter. Eur J Neurosci 12: 19-26 

Ferraro L, Tanganelli S, O'Connor WT, Antonelli T, Rambert F, Fuxe K. 1996. 
The vigilance promoting drug modafinil decreases GABA release in the 
medial preoptic area and in the posterior hypothalamus of the awake rat: 
possible involvement of the serotonergic 5-HT3 receptor. Neurosci Lett 
220: 5-8 

Ferris RM, Tang FL, Maxwell RA. 1972. A comparison of the capacities of 
isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit 
the uptake of tritiated catecholamines into rat cerebral cortex slices, 
synaptosomal preparations of rat cerebral cortex, hypothalamus and 
striatum and into adrenergic nerves of rabbit aorta. J Pharmacol Exp Ther 
181: 407-16 

Fleckenstein AE, Hanson GR. 2003. Impact of psychostimulants on vesicular 
monoamine transporter function. Eur J Pharmacol 479: 283-9 

Fleckenstein AE, Haughey HM, Metzger RR, Kokoshka JM, Riddle EL, et al. 
1999. Differential effects of psychostimulants and related agents on 
dopaminergic and serotonergic transporter function. Eur J Pharmacol 382: 
45-9 

Floresco SB, Magyar O. 2006. Mesocortical dopamine modulation of executive 
functions: beyond working memory. Psychopharmacology (Berl) 188: 567-
85 

Folsom JP, Bull H, Van Hoven JE, Batterman RC. 1956. Ritalin 
(methylphenidate)  In Physicians' Desk reference, pp. 441-42. Oradell, 
New Jersey: Medical Economics, Inc. 

Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH. 1997. Vesicular 
transport regulates monoamine storage and release but is not essential for 
amphetamine action. Neuron 19: 1271-83 

Forsback S, Niemi R, Marjamaki P, Eskola O, Bergman J, et al. 2004. Uptake of 
6-[18F]fluoro-L-dopa and [18F]CFT reflect nigral neuronal loss in a rat 
model of Parkinson's disease. Synapse 51: 119-27 

Foster JD, Adkins SD, Lever JR, Vaughan RA. 2008. Phorbol ester induced 
trafficking-independent regulation and enhanced phosphorylation of the 
dopamine transporter associated with membrane rafts and cholesterol. 
Journal of neurochemistry 105: 1683-99 

Fudala PJ, Teoh KW, Iwamoto ET. 1985. Pharmacologic characterization of 
nicotine-induced conditioned place preference. Pharmacol Biochem 
Behav 22: 237-41 

Fukui R, Svenningsson,P,Matuishi,T,Higashi,H,Nairn,AC,Greengard,P,Nishi,A. 
2003. Effect of methylphenidate on dopamine/DARPP signalling in adult, 
but not young, mice. Journal of Neurochemistry 87: 1391-401 

Fung YK, Lau YS. 1988. Receptor mechanisms of nicotine-induced locomotor 
hyperactivity in chronic nicotine-treated rats. Eur J Pharmacol 152: 263-71 



155 

Gabriela ML, John DG, Magdalena BV, Ariadna GS, Francisco de LP, et al. 
2009. Genetic interaction analysis for DRD4 and DAT1 genes in a group 
of Mexican ADHD patients. Neurosci Lett 451: 257-60 

Gainetdinov RR, Caron MG. 2001. Genetics of childhood disorders: XXIV. 
ADHD, part 8: hyperdopaminergic mice as an animal model of ADHD. J 
Am Acad Child Adolesc Psychiatry 40: 380-2 

Gainetdinov RR, Caron MG. 2003. Monoamine transporters: from genes to 
behavior. Annu Rev Pharmacol Toxicol 43: 261-84 

Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG. 1999. 
Role of serotonin in the paradoxical calming effect of psychostimulants on 
hyperactivity. Science 283: 397-401 

Galvan A, Hare TA, Parra CE, Penn J, Voss H, et al. 2006. Earlier development 
of the accumbens relative to orbitofrontal cortex might underlie risk-taking 
behavior in adolescents. The Journal of neuroscience : the official journal 
of the Society for Neuroscience 26: 6885-92 

Gamo NJ, Wang M, Arnsten AF. 2010. Methylphenidate and atomoxetine 
enhance prefrontal function through alpha2-adrenergic and dopamine D1 
receptors. J Am Acad Child Adolesc Psychiatry 49: 1011-23 

Gatley SJ, Pan D, Chen R, Chaturvedi G, Ding YS. 1996. Affinities of 
methylphenidate derivatives for dopamine, norepinephrine and serotonin 
transporters. Life Sci 58: 231-9 

Gehlert DR, Schober DA, Hemrick-Luecke SK, Krushinski J, Howbert JJ, et al. 
1995. Novel halogenated analogs of tomoxetine that are potent and 
selective inhibitors of norepinephrine uptake in brain. Neurochem Int 26: 
47-52 

Geller I, Hartmann R, Blum K. 1971. Effects of nicotine, nicotine 
monomethiodide, lobeline, chlordiazepoxide, meprobamate and caffeine 
on a discrimination task in laboratory rats. Psychopharmacologia 20: 355-
65 

Giambalvo CT. 1992. Protein kinase C and dopamine transport--1. Effects of 
amphetamine in vivo. Neuropharmacology 31: 1201-10 

Gibson AP, Bettinger TL, Patel NC, Crismon ML. 2006. Atomoxetine versus 
stimulants for treatment of attention deficit/hyperactivity disorder. Ann 
Pharmacother 40: 1134-42 

Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M. 1997. Confirmation of association 
between attention deficit hyperactivity disorder and a dopamine 
transporter polymorphism. Mol Psychiatry 2: 311-3 

Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. 1996. Hyperlocomotion 
and indifference to cocaine and amphetamine in mice lacking the 
dopamine transporter. Nature 379: 606-12 

Glover ED, Rath JM, Sharma E, Glover PN, Laflin M, et al. 2010. A multicenter 
phase 3 trial of lobeline sulfate for smoking cessation. Am J Health Behav 
34: 101-9 

Goldberg SR, Spealman RD, Goldberg DM. 1981. Persistent behavior at high 
rates maintained by intravenous self-administration of nicotine. Science 
214: 573-5 



156 

Goldman-Rakic PS. 1996. The prefrontal landscape: implications of functional 
architecture for understanding human mentation and the central executive. 
Philos Trans R Soc Lond B Biol Sci 351: 1445-53 

Gonzalez AM, Walther D, Pazos A, Uhl GR. 1994. Synaptic vesicular 
monoamine transporter expression: distribution and pharmacologic profile. 
Brain Res Mol Brain Res 22: 219-26 

Gorentla BK, Vaughan RA. 2005. Differential effects of dopamine and 
psychoactive drugs on dopamine transporter phosphorylation and 
regulation. Neuropharmacology 49: 759-68 

Gramatte T, Schmidt J. 1986. The effect of early postnatal hypoxia on the 
effectiveness of drugs influencing motor behaviour in adult rats. Biomed 
Biochim Acta 45: 1069-74 

Greenhill LL, Biederman J, Boellner SW, Rugino TA, Sangal RB, et al. 2006. A 
randomized, double-blind, placebo-controlled study of modafinil film-
coated tablets in children and adolescents with attention-
deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 45: 503-
11 

Greydanus DE, Pratt HD, Patel DR. 2007. Attention deficit hyperactivity disorder 
across the lifespan: the child, adolescent, and adult. Dis Mon 53: 70-131 

Grilly DM. 2000. A verification of psychostimulant-induced improvement in 
sustained attention in rats: effects of d-amphetamine, nicotine, and 
pemoline. Experimental and clinical psychopharmacology 8: 14-21 

Grilly DM, Gowans GC, McCann DS, Grogan TW. 1989. Effects of cocaine and 
d-amphetamine on sustained and selective attention in rats. 
Pharmacology, biochemistry, and behavior 33: 733-9 

Grilly DM, Loveland A. 2001. What is a "low dose" of d-amphetamine for inducing 
behavioral effects in laboratory rats? Psychopharmacology (Berl) 153: 
155-69 

Grilly DM, Pistell PJ, Simon BB. 1998. Facilitation of stimulus detection 
performance of rats with d-amphetamine: a function of dose and level of 
training. Psychopharmacology (Berl) 140: 272-8 

Guilarte TR, Nihei MK, McGlothan JL, Howard AS. 2003. Methamphetamine-
induced deficits of brain monoaminergic neuronal markers: distal axotomy 
or neuronal plasticity. Neuroscience 122: 499-513 

Hall FS, Li XF, Randall-Thompson J, Sora I, Murphy DL, et al. 2009. Cocaine-
conditioned locomotion in dopamine transporter, norepinephrine 
transporter and 5-HT transporter knockout mice. Neuroscience 162: 870-
80 

Hamann SR, Martin WR. 1994. Hyperalgesic and analgesic actions of morphine, 
U50-488, naltrexone, and (-)-lobeline in the rat brainstem. Pharmacol 
Biochem Behav 47: 197-201 

Han DD, Gu HH. 2006. Comparison of the monoamine transporters from human 
and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 
6: 6 



157 

Hannestad J, Gallezot JD, Planeta-Wilson B, Lin SF, Williams WA, et al. 2010. 
Clinically relevant doses of methylphenidate significantly occupy 
norepinephrine transporters in humans in vivo. Biol Psychiatry 68: 854-60 

Harden KP, Tucker-Drob EM. 2011. Individual differences in the development of 
sensation seeking and impulsivity during adolescence: further evidence for 
a dual systems model. Developmental psychology 47: 739-46 

Harrod SB, Dwoskin LP, Crooks PA, Klebaur JE, Bardo MT. 2001. Lobeline 
attenuates d-methamphetamine self-administration in rats. J Pharmacol 
Exp Ther 298: 172-9 

Harrod SB, Dwoskin LP, Green TA, Gehrke BJ, Bardo MT. 2003. Lobeline does 
not serve as a reinforcer in rats. Psychopharmacology (Berl) 165: 397-404 

Hawi Z, Kent L, Hill M, Anney RJ, Brookes KJ, et al. 2009. ADHD and DAT1: 
Further evidence of paternal over-transmission of risk alleles and 
haplotype. Am J Med Genet B Neuropsychiatr Genet 

Hawi Z, Segurado R, Conroy J, Sheehan K, Lowe N, et al. 2005. Preferential 
transmission of paternal alleles at risk genes in attention-
deficit/hyperactivity disorder. Am J Hum Genet 77: 958-65 

Heal DJ, Cheetham SC, Prow MR, Martin KF, Buckett WR. 1998. A comparison 
of the effects on central 5-HT function of sibutramine hydrochloride and 
other weight-modifying agents. British journal of pharmacology 125: 301-8 

Heal DJ, Pierce DM. 2006. Methylphenidate and its isomers: their role in the 
treatment of attention-deficit hyperactivity disorder using a transdermal 
delivery system. CNS Drugs 20: 713-38 

Heal DJ, Smith SL, Kulkarni RS, Rowley HL. 2008. New perspectives from 
microdialysis studies in freely-moving, spontaneously hypertensive rats on 
the pharmacology of drugs for the treatment of ADHD. Pharmacol 
Biochem Behav 90: 184-97 

Hendley ED, Ohlsson WG. 1991. Two new inbred rat strains derived from SHR: 
WKHA, hyperactive, and WKHT, hypertensive, rats. Am J Physiol 261: 
H583-9 

Henriquez BH, Henriquez HM, Carrasco Ch X, Rothhammer AP, Llop RE, et al. 
2008. [Combination of DRD4 and DAT1 genotypes is an important risk 
factor for attention deficit disorder with hyperactivity families living in 
Santiago, Chile]. Rev Med Chil 136: 719-24 

Hernandez CM, Hoifodt H, Terry AV, Jr. 2003. Spontaneously hypertensive rats: 
further evaluation of age-related memory performance and cholinergic 
marker expression. J Psychiatry Neurosci 28: 197-209 

Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI. 1997. Subcellular 
localization and molecular topology of the dopamine transporter in the 
striatum and substantia nigra. J Comp Neurol 388: 211-27 

Hess EJ, Collins KA, Wilson MC. 1996. Mouse model of hyperkinesis implicates 
SNAP-25 in behavioral regulation. J Neurosci 16: 3104-11 

Hess EJ, Jinnah HA, Kozak CA, Wilson MC. 1992. Spontaneous locomotor 
hyperactivity in a mouse mutant with a deletion including the Snap gene 
on chromosome 2. J Neurosci 12: 2865-74 



158 

Heyser CJ, Wilson MC, Gold LH. 1995. Coloboma hyperactive mutant exhibits 
delayed neurobehavioral developmental milestones. Brain Res Dev Brain 
Res 89: 264-9 

Himelstein J, Halperin JM. 2000. Neurocognitive functioning in adults with 
attention-deficit/hyperactivity disorder. CNS Spectr 5: 58-64 

Hiongwa P, Beane RA, Seedat AK, Owen CP. 2004. Orthodontic treatment 
needs: comparison of two indices. SADJ 59: 421-4 

Holman RB. 1994. Biological effects of central nervous system stimulants. 
Addiction 89: 1435-41 

Hou RH, Freeman C, Langley RW, Szabadi E, Bradshaw CM. 2005. Does 
modafinil activate the locus coeruleus in man? Comparison of modafinil 
and clonidine on arousal and autonomic functions in human volunteers. 
Psychopharmacology (Berl) 181: 537-49 

Hu YF, Caron MG, Sieber-Blum M. 2009. Norepinephrine transport-mediated 
gene expression in noradrenergic neurogenesis. BMC Genomics 10: 151 

Huff RA, Vaughan RA, Kuhar MJ, Uhl GR. 1997. Phorbol esters increase 
dopamine transporter phosphorylation and decrease transport Vmax. J 
Neurochem 68: 225-32 

Ikemoto S, Panksepp J. 1999. The role of nucleus accumbens dopamine in 
motivated behavior: a unifying interpretation with special reference to 
reward-seeking. Brain Res Brain Res Rev 31: 6-41 

Indarte M, Madura JD, Surratt CK. 2008. Dopamine transporter comparative 
molecular modeling and binding site prediction using the LeuT(Aa) leucine 
transporter as a template. Proteins 70: 1033-46 

Izenwasser S, Werling LL, Cox BM. 1990. Comparison of the effects of cocaine 
and other inhibitors of dopamine uptake in rat striatum, nucleus 
accumbens, olfactory tubercle, and medial prefrontal cortex. Brain Res 
520: 303-9 

Jaber M, Robinson SW, Missale C, Caron MG. 1996. Dopamine receptors and 
brain function. Neuropharmacology 35: 1503-19 

Janowsky A, Schweri MM, Berger P, Long R, Skolnick P, Paul SM. 1985. The 
effects of surgical and chemical lesions on striatal [3H]threo-(+/-)-
methylphenidate binding: correlation with [3H]dopamine uptake. Eur J 
Pharmacol 108: 187-91 

Jayanthi LD, Samuvel DJ, Blakely RD, Ramamoorthy S. 2005. Evidence for 
biphasic effects of protein kinase C on serotonin transporter function, 
endocytosis, and phosphorylation. Mol Pharmacol 67: 2077-87 

Johnson LA, Furman CA, Zhang M, Guptaroy B, Gnegy ME. 2005a. Rapid 
delivery of the dopamine transporter to the plasmalemmal membrane 
upon amphetamine stimulation. Neuropharmacology 49: 750-8 

Johnson LA, Guptaroy B, Lund D, Shamban S, Gnegy ME. 2005b. Regulation of 
amphetamine-stimulated dopamine efflux by protein kinase C beta. J Biol 
Chem 280: 10914-9 

Johnson RG, Jr. 1988. Accumulation of biological amines into chromaffin 
granules: a model for hormone and neurotransmitter transport. Physiol 
Rev 68: 232-307 



159 

Jones MD, Williams ME, Hess EJ. 2001. Abnormal presynaptic catecholamine 
regulation in a hyperactive SNAP-25-deficient mouse mutant. Pharmacol 
Biochem Behav 68: 669-76 

Jones SR, Gainetdinov RR, Hu XT, Cooper DC, Wightman RM, et al. 1999. Loss 
of autoreceptor functions in mice lacking the dopamine transporter. Nat 
Neurosci 2: 649-55 

Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG. 1998a. 
Profound neuronal plasticity in response to inactivation of the dopamine 
transporter. Proc Natl Acad Sci U S A 95: 4029-34 

Jones SR, Gainetdinov RR, Wightman RM, Caron MG. 1998b. Mechanisms of 
amphetamine action revealed in mice lacking the dopamine transporter. J 
Neurosci 18: 1979-86 

Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, et al. 2006. Efficacy of 
varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, 
vs placebo or sustained-release bupropion for smoking cessation: a 
randomized controlled trial. Jama 296: 56-63 

Kahbazi M, Ghoreishi A, Rahiminejad F, Mohammadi MR, Kamalipour A, 
Akhondzadeh S. 2009. A randomized, double-blind and placebo-controlled 
trial of modafinil in children and adolescents with attention deficit and 
hyperactivity disorder. Psychiatry Res 

Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, et al. 2005. 
Amphetamine induces dopamine efflux through a dopamine transporter 
channel. Proc Natl Acad Sci U S A 102: 3495-500 

Kahlig KM, Galli A. 2003. Regulation of dopamine transporter function and 
plasma membrane expression by dopamine, amphetamine, and cocaine. 
Eur J Pharmacol 479: 153-8 

Kahlig KM, Javitch JA, Galli A. 2004. Amphetamine regulation of dopamine 
transport. Combined measurements of transporter currents and 
transporter imaging support the endocytosis of an active carrier. J Biol 
Chem 279: 8966-75 

Kantak KM, Green-Jordan K, Valencia E, Kremin T, Eichenbaum HB. 2001. 
Cognitive task performance after lidocaine-induced inactivation of different 
sites within the basolateral amygdala and dorsal striatum. Behav Neurosci 
115: 589-601 

Kantak KM, Singh T, Kerstetter KA, Dembro KA, Mutebi MM, et al. 2008. 
Advancing the spontaneous hypertensive rat model of attention 
deficit/hyperactivity disorder. Behav Neurosci 122: 340-57 

Kantor L, Gnegy ME. 1998. Protein kinase C inhibitors block amphetamine-
mediated dopamine release in rat striatal slices. J Pharmacol Exp Ther 
284: 592-8 

Keating GL, Kuhar MJ, Bliwise DL, Rye DB. 2010. Wake promoting effects of 
cocaine and amphetamine-regulated transcript (CART). Neuropeptides 
44: 241-6 

Keating GM, Raffin MJ. 2005. Modafinil : a review of its use in excessive 
sleepiness associated with obstructive sleep apnoea/hypopnoea 
syndrome and shift work sleep disorder. CNS Drugs 19: 785-803 



160 

Kessler RC, Adler L, Ames M, Barkley RA, Birnbaum H, et al. 2005. The 
prevalence and effects of adult attention deficit/hyperactivity disorder on 
work performance in a nationally representative sample of workers. J 
Occup Environ Med 47: 565-72 

Kessler RC, Adler L, Barkley R, Biederman J, Conners CK, et al. 2006. The 
prevalence and correlates of adult ADHD in the United States: results from 
the National Comorbidity Survey Replication. Am J Psychiatry 163: 716-23 

Khalid M, Ilhami N, Giudicelli Y, Dausse JP. 2002. Testosterone dependence of 
salt-induced hypertension in Sabra rats and role of renal alpha(2)-
adrenoceptor subtypes. J Pharmacol Exp Ther 300: 43-9 

Khoshbouei H, Sen N, Guptaroy B, Johnson L, Lund D, et al. 2004. N-terminal 
phosphorylation of the dopamine transporter is required for amphetamine-
induced efflux. PLoS Biol 2: E78 

Kieling C, Goncalves RR, Tannock R, Castellanos FX. 2008. Neurobiology of 
attention deficit hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 
17: 285-307, viii 

Kim CH, Hahn MK, Joung Y, Anderson SL, Steele AH, et al. 2006. A 
polymorphism in the norepinephrine transporter gene alters promoter 
activity and is associated with attention-deficit hyperactivity disorder. Proc 
Natl Acad Sci U S A 103: 19164-9 

Kim CH, Waldman ID, Blakely RD, Kim KS. 2008. Functional gene variation in 
the human norepinephrine transporter: association with attention deficit 
hyperactivity disorder. Ann N Y Acad Sci 1129: 256-60 

Klein-Schwartz W. 2002. Abuse and toxicity of methylphenidate. Curr Opin 
Pediatr 14: 219-23 

Knopik VS, Heath AC, Jacob T, Slutske WS, Bucholz KK, et al. 2006. Maternal 
alcohol use disorder and offspring ADHD: disentangling genetic and 
environmental effects using a children-of-twins design. Psychol Med 36: 
1461-71 

Kolar D, Keller A, Golfinopoulos M, Cumyn L, Syer C, Hechtman L. 2008. 
Treatment of adults with attention-deficit/hyperactivity disorder. 
Neuropsychiatr Dis Treat 4: 389-403 

Kollins SH, MacDonald EK, Rush CR. 2001. Assessing the abuse potential of 
methylphenidate in nonhuman and human subjects: a review. Pharmacol 
Biochem Behav 68: 611-27 

Krause KH, Dresel SH, Krause J, la Fougere C, Ackenheil M. 2003. The 
dopamine transporter and neuroimaging in attention deficit hyperactivity 
disorder. Neurosci Biobehav Rev 27: 605-13 

Kuczenski R, Melega WP, Cho AK, Segal DS. 1997. Extracellular dopamine and 
amphetamine after systemic amphetamine administration: comparison to 
the behavioral response. J Pharmacol Exp Ther 282: 591-6 

Kuczenski R, Segal DS. 1997. Effects of methylphenidate on extracellular 
dopamine, serotonin, and norepinephrine: comparison with amphetamine. 
J Neurochem 68: 2032-7 



161 

Kuczenski R, Segal DS. 2001. Locomotor effects of acute and repeated 
threshold doses of amphetamine and methylphenidate: relative roles of 
dopamine and norepinephrine. J Pharmacol Exp Ther 296: 876-83 

Kula NS, Baldessarini RJ. 1991. Lack of increase in dopamine transporter 
binding or function in rat brain tissue after treatment with blockers of 
neuronal uptake of dopamine. Neuropharmacology 30: 89-92 

Langley K, Rice F, van den Bree MB, Thapar A. 2005. Maternal smoking during 
pregnancy as an environmental risk factor for attention deficit hyperactivity 
disorder behaviour. A review. Minerva Pediatr 57: 359-71 

Leonard BE, McCartan D, White J, King DJ. 2004. Methylphenidate: a review of 
its neuropharmacological, neuropsychological and adverse clinical effects. 
Hum Psychopharmacol 19: 151-80 

Lester HA, Mager S, Quick MW, Corey JL. 1994. Permeation properties of 
neurotransmitter transporters. Annu Rev Pharmacol Toxicol 34: 219-49 

Levi G, Raiteri M. 1993. Carrier-mediated release of neurotransmitters. Trends 
Neurosci 16: 415-9 

Levin ED, Christopher CN. 2003. Lobeline-induced learning improvement of rats 
in the radial-arm maze. Pharmacol Biochem Behav 76: 133-9 

Levin ED, Simon BB. 1998. Nicotinic acetylcholine involvement in cognitive 
function in animals. Psychopharmacology (Berl) 138: 217-30 

Li H, Wetten S, Li L, St Jean PL, Upmanyu R, et al. 2008. Candidate single-
nucleotide polymorphisms from a genomewide association study of 
Alzheimer disease. Arch Neurol 65: 45-53 

Lim JR, Faught PR, Chalasani NP, Molleston JP. 2006. Severe liver injury after 
initiating therapy with atomoxetine in two children. J Pediatr 148: 831-4 

Lin JS, Hou Y, Jouvet M. 1996. Potential brain neuronal targets for 
amphetamine-, methylphenidate-, and modafinil-induced wakefulness, 
evidenced by c-fos immunocytochemistry in the cat. Proc Natl Acad Sci U 
S A 93: 14128-33 

Lin JS, Roussel B, Akaoka H, Fort P, Debilly G, Jouvet M. 1992. Role of 
catecholamines in the modafinil and amphetamine induced wakefulness, a 
comparative pharmacological study in the cat. Brain Res 591: 319-26 

Linnet KM, Dalsgaard S, Obel C, Wisborg K, Henriksen TB, et al. 2003. Maternal 
lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder 
and associated behaviors: review of the current evidence. Am J Psychiatry 
160: 1028-40 

Lippiello PM, Fernandes KG. 1986. The binding of L-[3H]nicotine to a single 
class of high affinity sites in rat brain membranes. Mol Pharmacol 29: 448-
54 

Liu Y, Edwards RH. 1997. The role of vesicular transport proteins in synaptic 
transmission and neural degeneration. Annu Rev Neurosci 20: 125-56 

Liu Y, Leslie L. 2003. Diagnosing ADHD: Putting AAP guidelines to the test and 
into practice. Comtemporary Pediatrics 20: 51-73 

Loder MK, Melikian HE. 2003. The dopamine transporter constitutively 
internalizes and recycles in a protein kinase C-regulated manner in stably 
transfected PC12 cell lines. J Biol Chem 278: 22168-74 



162 

Loo SK, Specter E, Smolen A, Hopfer C, Teale PD, Reite ML. 2003. Functional 
effects of the DAT1 polymorphism on EEG measures in ADHD. J Am 
Acad Child Adolesc Psychiatry 42: 986-93 

Luthman J, Fredriksson A, Lewander T, Jonsson G, Archer T. 1989. Effects of d-
amphetamine and methylphenidate on hyperactivity produced by neonatal 
6-hydroxydopamine treatment. Psychopharmacology (Berl) 99: 550-7 

Mack F, Bonisch H. 1979. Dissociation constants and lipophilicity of 
catecholamines and related compounds. Naunyn Schmiedebergs Arch 
Pharmacol 310: 1-9 

Madras BK, Miller GM, Fischman AJ. 2005. The dopamine transporter and 
attention-deficit/hyperactivity disorder. Biol Psychiatry 57: 1397-409 

Manor I, Corbex M, Eisenberg J, Gritsenkso I, Bachner-Melman R, et al. 2004. 
Association of the dopamine D5 receptor with attention deficit hyperactivity 
disorder (ADHD) and scores on a continuous performance test (TOVA). 
Am J Med Genet B Neuropsychiatr Genet 127B: 73-7 

Marusich JA, Darna M, Charnigo RJ, Dwoskin LP, Bardo MT. 2011a. A 
Multivariate Assessment of Individual Differences in Sensation Seeking 
and Impulsivity as Predictors of Amphetamine Self-Administration and 
Prefrontal Dopamine Function in Rats. Experimental and clinical 
psychopharmacology 19: 275-84 

Marusich JA, McCuddy WT, Beckmann JS, Gipson CD, Bardo MT. 2011b. Strain 
differences in self-administration of methylphenidate and sucrose pellets 
in a rat model of attention-deficit hyperactivity disorder. Behavioural 
pharmacology 22: 794-804 

May DE, Kratochvil CJ. 2010. Attention-deficit hyperactivity disorder: recent 
advances in paediatric pharmacotherapy. Drugs 70: 15-40 

McCabe SE, Knight JR, Teter CJ, Wechsler H. 2005. Non-medical use of 
prescription stimulants among US college students: prevalence and 
correlates from a national survey. Addiction 100: 96-106 

McCabe SE, Teter CJ, Boyd CJ. 2006. Medical use, illicit use and diversion of 
prescription stimulant medication. J Psychoactive Drugs 38: 43-56 

McCarty R, Chiueh CC, Kopin IJ. 1980. Differential behavioral responses of 
spontaneously hypertensive (SHR) and normotensive (WKY) rats to d-
amphetamine. Pharmacol Biochem Behav 12: 53-9 

Meijer WM, Faber A, van den Ban E, Tobi H. 2009. Current issues around the 
pharmacotherapy of ADHD in children and adults. Pharm World Sci 

Melikian HE. 2004. Neurotransmitter transporter trafficking: endocytosis, 
recycling, and regulation. Pharmacol Ther 104: 17-27 

Merickel A, Edwards RH. 1995. Transport of histamine by vesicular monoamine 
transporter-2. Neuropharmacology 34: 1543-7 

Michelson D, Adler L, Spencer T, Reimherr FW, West SA, et al. 2003. 
Atomoxetine in adults with ADHD: two randomized, placebo-controlled 
studies. Biol Psychiatry 53: 112-20 

Michelson D, Allen AJ, Busner J, Casat C, Dunn D, et al. 2002. Once-daily 
atomoxetine treatment for children and adolescents with attention deficit 



163 

hyperactivity disorder: a randomized, placebo-controlled study. Am J 
Psychiatry 159: 1896-901 

Michelson D, Faries D, Wernicke J, Kelsey D, Kendrick K, et al. 2001. 
Atomoxetine in the treatment of children and adolescents with attention-
deficit/hyperactivity disorder: a randomized, placebo-controlled, dose-
response study. Pediatrics 108: E83 

Mick E, Biederman J, Faraone SV, Sayer J, Kleinman S. 2002. Case-control 
study of attention-deficit hyperactivity disorder and maternal smoking, 
alcohol use, and drug use during pregnancy. J Am Acad Child Adolesc 
Psychiatry 41: 378-85 

Middleton LS, Apparsundaram S, King-Pospisil KA, Dwoskin LP. 2007. Nicotine 
increases dopamine transporter function in rat striatum through a 
trafficking-independent mechanism. Eur J Pharmacol 554: 128-36 

Milberger S, Biederman J, Faraone SV, Chen L, Jones J. 1996. Is maternal 
smoking during pregnancy a risk factor for attention deficit hyperactivity 
disorder in children? Am J Psychiatry 153: 1138-42 

Milberger S, Biederman J, Faraone SV, Chen L, Jones J. 1997. ADHD is 
associated with early initiation of cigarette smoking in children and 
adolescents. J Am Acad Child Adolesc Psychiatry 36: 37-44 

Milberger S, Biederman J, Faraone SV, Jones J. 1998. Further evidence of an 
association between maternal smoking during pregnancy and attention 
deficit hyperactivity disorder: findings from a high-risk sample of siblings. J 
Clin Child Psychol 27: 352-8 

Mill J, Curran S, Richards S, Taylor E, Asherson P. 2004. Polymorphisms in the 
dopamine D5 receptor (DRD5) gene and ADHD. Am J Med Genet B 
Neuropsychiatr Genet 125B: 38-42 

Miller DK, Crooks PA, Dwoskin LP. 2000. Lobeline inhibits nicotine-evoked 
[(3)H]dopamine overflow from rat striatal slices and nicotine-evoked 
(86)Rb(+) efflux from thalamic synaptosomes. Neuropharmacology 39: 
2654-62 

Miller DK, Crooks PA, Teng L, Witkin JM, Munzar P, et al. 2001. Lobeline inhibits 
the neurochemical and behavioral effects of amphetamine. J Pharmacol 
Exp Ther 296: 1023-34 

Miller DK, Crooks PA, Zheng G, Grinevich VP, Norrholm SD, Dwoskin LP. 2004. 
Lobeline analogs with enhanced affinity and selectivity for plasmalemma 
and vesicular monoamine transporters. The Journal of pharmacology and 
experimental therapeutics 310: 1035-45 

Miller DK, Harrod SB, Green TA, Wong MY, Bardo MT, Dwoskin LP. 2003. 
Lobeline attenuates locomotor stimulation induced by repeated nicotine 
administration in rats. Pharmacol Biochem Behav 74: 279-86 

Miller DK, Lever JR, Rodvelt KR, Baskett JA, Will MJ, Kracke GR. 2007. 
Lobeline, a potential pharmacotherapy for drug addiction, binds to mu 
opioid receptors and diminishes the effects of opioid receptor agonists. 
Drug and alcohol dependence 89: 282-91 



164 

Miller M, Hughes A. 1994. Epidemiology of amphetamine use in the United 
States  In Amphetamine and its analogs, ed. A Cho, DS Segal, pp. 503. 
San Diego: Academic Press 

Millspaugh C. 1974. Lobelia inflata  In American medicinal plants: an illustrated 
and descriptive guide to plants indigenous to and naturalized in the United 
States which are used in medicine pp. 385-8. New York: Dover 

Miner LH, Jedema HP, Moore FW, Blakely RD, Grace AA, Sesack SR. 2006. 
Chronic stress increases the plasmalemmal distribution of the 
norepinephrine transporter and the coexpression of tyrosine hydroxylase 
in norepinephrine axons in the prefrontal cortex. J Neurosci 26: 1571-8 

Miranda M, Sorkin A. 2007. Regulation of receptors and transporters by 
ubiquitination: new insights into surprisingly similar mechanisms. Mol 
Interv 7: 157-67 

Miranda M, Wu CC, Sorkina T, Korstjens DR, Sorkin A. 2005. Enhanced 
ubiquitylation and accelerated degradation of the dopamine transporter 
mediated by protein kinase C. J Biol Chem 280: 35617-24 

Moran-Gates T, Zhang K, Baldessarini RJ, Tarazi FI. 2005. Atomoxetine blocks 
motor hyperactivity in neonatal 6-hydroxydopamine-lesioned rats: 
implications for treatment of attention-deficit hyperactivity disorder. Int J 
Neuropsychopharmacol 8: 439-44 

Mosharov EV, Gong LW, Khanna B, Sulzer D, Lindau M. 2003. Intracellular 
patch electrochemistry: regulation of cytosolic catecholamines in 
chromaffin cells. J Neurosci 23: 5835-45 

Muneoka K, Kuwagata M, Iwata M, Shirayama Y, Ogawa T, Takigawa M. 2006. 
Dopamine transporter density and behavioral response to 
methylphenidate in a hyperlocomotor rat model. Congenit Anom (Kyoto) 
46: 155-9 

Nair V, Mahadevan S. 2009. Randomised controlled study-efficacy of clonidine 
versus carbamazepine in children with ADHD. J Trop Pediatr 55: 116-21 

National Institute oMH. 2001. Attention Deficit Hyperactivity Disorder. NIMH, NIH 
Publication No. 01-4589 

Newcorn JH, Kratochvil CJ, Allen AJ, Casat CD, Ruff DD, et al. 2008. 
Atomoxetine and osmotically released methylphenidate for the treatment 
of attention deficit hyperactivity disorder: acute comparison and differential 
response. Am J Psychiatry 165: 721-30 

NIH. 2010. http://www.nimh.nih.nih.gov/trials/attention-deficit-hyperactivity-
disorder-adhd-add.shtml.  

Nower L, Blaszczynski A. 2006. Characteristics and gender differences among 
self-excluded casino problem gamblers: Missouri data. Journal of 
gambling studies / co-sponsored by the National Council on Problem 
Gambling and Institute for the Study of Gambling and Commercial Gaming 
22: 81-99 

Nunn-Thompson CL, Simon PA. 1989. Pharmacotherapy for smoking cessation. 
Clin Pharm 8: 710-20 



165 

O'Malley HA, Park Y, Isom LL, Gnegy ME. 2010. PKCbeta co-localizes with the 
dopamine transporter in mesencephalic neurons. Neuroscience letters 
480: 40-3 

Okamoto K, Aoki K. 1963. Development of a strain of spontaneously 
hypertensive rats. Jpn Circ J 27: 282-93 

Olfson M. 2004. New options in the pharmacological management of attention-
deficit/hyperactivity disorder. Am J Manag Care 10: S117-24 

Olin B, Hebel S, Gremp J, Hulbertt M. 1995. Smoking deterrents  In Drug Facts 
and Comparisons, ed. S Hebel, J Gremp, M Hulbertt, pp. 3087-95. St. 
Louis 

Owens MJ, Morgan WN, Plott SJ, Nemeroff CB. 1997. Neurotransmitter receptor 
and transporter binding profile of antidepressants and their metabolites. J 
Pharmacol Exp Ther 283: 1305-22 

Pacholczyk T, Blakely RD, Amara SG. 1991. Expression cloning of a cocaine- 
and antidepressant-sensitive human noradrenaline transporter. Nature 
350: 350-4 

Palmer E, Finger S. 2001. An Early Description of ADHD (Inattentive Subtype): 
Dr. Alexander Crichton and Mental Restlessness (1798). Child and 
Adolescent Mental Health 6: 66-73 

Papa M, Sellitti S, Sadile AG. 2000. Remodeling of neural networks in the 
anterior forebrain of an animal model of hyperactivity and attention deficits 
as monitored by molecular imaging probes. Neurosci Biobehav Rev 24: 
149-56 

Parran TV, Jr., Jasinski DR. 1991. Intravenous methylphenidate abuse. 
Prototype for prescription drug abuse. Arch Intern Med 151: 781-3 

Patrick KS, Caldwell RW, Ferris RM, Breese GR. 1987. Pharmacology of the 
enantiomers of threo-methylphenidate. J Pharmacol Exp Ther 241: 152-8 

Pelham WE, Foster EM, Robb JA. 2007. The economic impact of attention-
deficit/hyperactivity disorder in children and adolescents. J Pediatr 
Psychol 32: 711-27 

Pena ICd, Ahn HS, Choi JY, Shin CY, Ryu JH, Cheong JH. 2001. 
Methylphenidate self-administration and conditioned place preference in 
an animal model of attention-deficit hyperactivity disorder: the 
spontaneously hypertensive rat. Behavioural pharmacology 22: 31-39 

Perry JL, Stairs DJ, Bardo MT. 2008. Impulsive choice and environmental 
enrichment: effects of d-amphetamine and methylphenidate. Behav Brain 
Res 193: 48-54 

Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH. 1995. 
Differential expression of two vesicular monoamine transporters. J 
Neurosci 15: 6179-88 

Philippu A, Beyer J. 1973. Dopamine and noradrenaline transport into subcellular 
vesicles of the striatum. Naunyn Schmiedebergs Arch Pharmacol 278: 
387-402 

Pickel VM, Chan J, Kash TL, Rodriguez JJ, MacKie K. 2004. Compartment-
specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat 
nucleus accumbens. Neuroscience 127: 101-12 



166 

Pletscher A. 1977. Effect of neuroleptics and other drugs on monoamine uptake 
by membranes of adrenal chromaffin granules. British journal of 
pharmacology 59: 419-24 

Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. 2007. The 
worldwide prevalence of ADHD: a systematic review and metaregression 
analysis. Am J Psychiatry 164: 942-8 

Polston JE, Cunningham CS, Rodvelt KR, Miller DK. 2006. Lobeline augments 
and inhibits cocaine-induced hyperactivity in rats. Life Sci 79: 981-90 

Poltavski DV, Petros T. 2006. Effects of transdermal nicotine on attention in adult 
non-smokers with and without attentional deficits. Physiol Behav 87: 614-
24 

Potter AS, Newhouse PA. 2008. Acute nicotine improves cognitive deficits in 
young adults with attention-deficit/hyperactivity disorder. Pharmacol 
Biochem Behav 88: 407-17 

Prignot J. 1989. Pharmacological approach to smoking cessation. Eur Respir J 2: 
550-60 

Prince JB, Wilens TE, Biederman J, Spencer TJ, Millstein R, et al. 2000. A 
controlled study of nortriptyline in children and adolescents with attention 
deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 10: 193-
204 

Pristupa ZB, McConkey F, Liu F, Man HY, Lee FJ, et al. 1998. Protein kinase-
mediated bidirectional trafficking and functional regulation of the human 
dopamine transporter. Synapse 30: 79-87 

Rains A, Scahill L, Hamrin V. 2006. Nonstimulant medications for the treatment 
of ADHD. J Child Adolesc Psychiatr Nurs 19: 44-7 

Rasmussen N. 2006. Making the first anti-depressant: amphetamine in American 
medicine, 1929-1950. J Hist Med Allied Sci 61: 288-323 

Rasmussen T, Swedberg MD. 1998. Reinforcing effects of nicotinic compounds: 
intravenous self-administration in drug-naive mice. Pharmacol Biochem 
Behav 60: 567-73 

Reavill C, Walther B, Stolerman I, Testa B. 1990a. Behavioural and 
pharmacokinetic studies on nicotine, cystine, and lobeline. 
Neuropharmacology 29: 619-24 

Reavill C, Walther B, Stolerman IP, Testa B. 1990b. Behavioural and 
pharmacokinetic studies on nicotine, cytisine and lobeline. 
Neuropharmacology 29: 619-24 

Reinberg S. 2004. Adult ADHD costs billions in lost income. In HealthDay News 
Reith ME, Coffey LL, Xu C, Chen NH. 1994. GBR 12909 and 12935 block 

dopamine uptake into brain synaptic vesicles as well as nerve endings. 
Eur J Pharmacol 253: 175-8 

Retz W, Rosler M, Kissling C, Wiemann S, Hunnerkopf R, et al. 2008. 
Norepinephrine transporter and catecholamine-O-methyltransferase gene 
variants and attention-deficit/hyperactivity disorder symptoms in adults. J 
Neural Transm 115: 323-9 

Rhodes JS, Hosack GR, Girard I, Kelley AE, Mitchell GS, Garland T, Jr. 2001. 
Differential sensitivity to acute administration of cocaine, GBR 12909, and 



167 

fluoxetine in mice selectively bred for hyperactive wheel-running behavior. 
Psychopharmacology (Berl) 158: 120-31 

Richelson E, Pfenning M. 1984. Blockade by antidepressants and related 
compounds of biogenic amine uptake into rat brain synaptosomes: most 
antidepressants selectively block norepinephrine uptake. Eur J Pharmacol 
104: 277-86 

Richer F, Beatty J. 1987. Contrasting effects of response uncertainty on the task-
evoked pupillary response and reaction time. Psychophysiology 24: 258-
62 

Risinger FO, Oakes RA. 1995. Nicotine-induced conditioned place preference 
and conditioned place aversion in mice. Pharmacol Biochem Behav 51: 
457-61 

Robbins TW. 1996. Dissociating executive functions of the prefrontal cortex. 
Philos Trans R Soc Lond B Biol Sci 351: 1463-70; discussion 70-1 

Robinson MB. 2002. Regulated trafficking of neurotransmitter transporters: 
common notes but different melodies. J Neurochem 80: 1-11 

Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, et al. 1998. Cocaine 
self-administration in dopamine-transporter knockout mice. Nat Neurosci 
1: 132-7 

Roffman JL, Raskin LA. 1997. Stereotyped behavior: effects of d-amphetamine 
and methylphenidate in the young rat. Pharmacol Biochem Behav 58: 
1095-102 

Romano C, Goldstein A. 1980. Stereospecific nicotine receptors on rat brain 
membranes. Science 210: 647-50 

Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, et al. 2001. 
Amphetamine-type central nervous system stimulants release 
norepinephrine more potently than they release dopamine and serotonin. 
Synapse 39: 32-41 

Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, et al. 
1997. Mice lacking dopamine D4 receptors are supersensitive to ethanol, 
cocaine, and methamphetamine. Cell 90: 991-1001 

Rudnick G, Wall SC. 1992. The molecular mechanism of "ecstasy" [3,4-
methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are 
targets for MDMA-induced serotonin release. Proc Natl Acad Sci U S A 
89: 1817-21 

Rugino TA, Copley TC. 2001. Effects of modafinil in children with attention-
deficit/hyperactivity disorder: an open-label study. J Am Acad Child 
Adolesc Psychiatry 40: 230-5 

Rugino TA, Samsock TC. 2003. Modafinil in children with attention-deficit 
hyperactivity disorder. Pediatr Neurol 29: 136-42 

Sadile AG, Lamberti C, Siegfried B, Welzl H. 1993. Circadian activity, nociceptive 
thresholds, nigrostriatal and mesolimbic dopaminergic activity in the 
Naples High- and Low-Excitability rat lines. Behav Brain Res 55: 17-27 

Sagvolden T. 2000. Behavioral validation of the spontaneously hypertensive rat 
(SHR) as an animal model of attention-deficit/hyperactivity disorder 
(AD/HD). Neurosci Biobehav Rev 24: 31-9 



168 

Saier MH, Jr. 1999. A functional-phylogenetic system for the classification of 
transport proteins. J Cell Biochem Suppl 32-33: 84-94 

Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. 2002. Methylphenidate 
redistributes vesicular monoamine transporter-2: role of dopamine 
receptors. J Neurosci 22: 8705-10 

Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. 2003. Methylphenidate 
alters vesicular monoamine transport and prevents methamphetamine-
induced dopaminergic deficits. J Pharmacol Exp Ther 304: 1181-7 

Sandoval V, Riddle EL, Ugarte YV, Hanson GR, Fleckenstein AE. 2001. 
Methamphetamine-induced rapid and reversible changes in dopamine 
transporter function: an in vitro model. J Neurosci 21: 1413-9 

Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, et al. 2000. Amphetamine-
induced loss of human dopamine transporter activity: an internalization-
dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci U S A 
97: 6850-5 

Scahill L, Chappell PB, Kim YS, Schultz RT, Katsovich L, et al. 2001. A placebo-
controlled study of guanfacine in the treatment of children with tic 
disorders and attention deficit hyperactivity disorder. Am J Psychiatry 158: 
1067-74 

Scahill L, Schwab-Stone M, Merikangas KR, Leckman JF, Zhang H, Kasl S. 
1999. Psychosocial and clinical correlates of ADHD in a community 
sample of school-age children. J Am Acad Child Adolesc Psychiatry 38: 
976-84 

Schappert SaR, MS. 2008. Ambulatory Medical Care Utilization Estimates 2006, 
Division of Health Care Statistics 

Schechter MD, Rosecrans JA. 1972. Nicotine as a discriminative cue in rats: 
inability of related drugs to produce a nicotine-like cueing effect. 
Psychopharmacologia 27: 379-87 

Scheel-Kruger J. 1971. Comparative studies of various amphetamine analogues 
demonstrating different interactions with the metabolism of the 
catecholamines in the brain. Eur J Pharmacol 14: 47-59 

Schiffer WK, Volkow ND, Fowler JS, Alexoff DL, Logan J, Dewey SL. 2006. 
Therapeutic doses of amphetamine or methylphenidate differentially 
increase synaptic and extracellular dopamine. Synapse 59: 243-51 

Schmitt KC, Zhen J, Kharkar P, Mishra M, Chen N, et al. 2008. Interaction of 
cocaine-, benztropine-, and GBR12909-like compounds with wild-type and 
mutant human dopamine transporters: molecular features that 
differentially determine antagonist-binding properties. J Neurochem 107: 
928-40 

Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D. 2001. Amphetamine 
distorts stimulation-dependent dopamine overflow: effects on D2 
autoreceptors, transporters, and synaptic vesicle stores. J Neurosci 21: 
5916-24 

Schneider F, Olsson T. 1996. Clinical-experience with lobeline as a smoking 
cessation agent. Med Chem Res 6: 562-70 



169 

Schuldiner S. 1994. A molecular glimpse of vesicular monoamine transporters. J 
Neurochem 62: 2067-78 

Schuldiner S, Shirvan A, Linial M. 1995. Vesicular neurotransmitter transporters: 
from bacteria to humans. Physiol Rev 75: 369-92 

Schultz W, Tremblay L, Hollerman JR. 2000. Reward processing in primate 
orbitofrontal cortex and basal ganglia. Cereb Cortex 10: 272-84 

Schweri MM, Skolnick P, Rafferty MF, Rice KC, Janowsky AJ, Paul SM. 1985. 
[3H]Threo-(+/-)-methylphenidate binding to 3,4-dihydroxyphenylethylamine 
uptake sites in corpus striatum: correlation with the stimulant properties of 
ritalinic acid esters. J Neurochem 45: 1062-70 

Searle A. 1966. New Mutants:Coloboma. Mouse News Letters 2: 27 
Seiden LS, Sabol KE, Ricaurte GA. 1993. Amphetamine: effects on 

catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33: 
639-77 

Setlik J, Bond GR, Ho M. 2009. Adolescent Prescription ADHD Medication 
Abuse Is Rising Along With Prescriptions for These Medications. 
Pediatrics 

Seu E, Lang A, Rivera RJ, Jentsch JD. 2009. Inhibition of the norepinephrine 
transporter improves behavioral flexibility in rats and monkeys. 
Psychopharmacology (Berl) 202: 505-19 

Shaywitz BA, Klopper JH, Gordon JW. 1978. Methylphenidate in 6-
hydroxydopamine-treated developing rat pups. Effects on activity and 
maze performance. Arch Neurol 35: 463-9 

Shaywitz BA, Yager RD, Klopper JH. 1976. Selective brain dopamine depletion 
in developing rats: an experimental model of minimal brain dysfunction. 
Science 191: 305-8 

Shimomura C, Ohta H. 1988. Behavioral abnormalities and seizure susceptibility 
in rat after neonatal anoxia. Brain Dev 10: 160-3 

Shoaib M, Stolerman IP, Kumar RC. 1994. Nicotine-induced place preferences 
following prior nicotine exposure in rats. Psychopharmacology (Berl) 113: 
445-52 

Sloan JW, Martin WR, Bostwick M, Hook R, Wala E. 1988. The comparative 
binding characteristics of nicotinic ligands and their pharmacology. 
Pharmacol Biochem Behav 30: 255-67 

Solanto MV. 2002. Dopamine dysfunction in AD/HD: integrating clinical and basic 
neuroscience research. Behav Brain Res 130: 65-71 

Sonders MS, Amara SG. 1996. Channels in transporters. Curr Opin Neurobiol 6: 
294-302 

Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG. 1997. Multiple 
ionic conductances of the human dopamine transporter: the actions of 
dopamine and psychostimulants. J Neurosci 17: 960-74 

Sorge RE, Clarke PB. 2009. Rats self-administer intravenous nicotine delivered 
in a novel smoking-relevant procedure: effects of dopamine antagonists. J 
Pharmacol Exp Ther 330: 633-40 



170 

Sorkina T, Doolen S, Galperin E, Zahniser NR, Sorkin A. 2003. Oligomerization 
of dopamine transporters visualized in living cells by fluorescence 
resonance energy transfer microscopy. J Biol Chem 278: 28274-83 

Sorkina T, Miranda M, Dionne KR, Hoover BR, Zahniser NR, Sorkin A. 2006. 
RNA interference screen reveals an essential role of Nedd4-2 in dopamine 
transporter ubiquitination and endocytosis. J Neurosci 26: 8195-205 

Sorkina T, Richards TL, Rao A, Zahniser NR, Sorkin A. 2009. Negative 
regulation of dopamine transporter endocytosis by membrane-proximal N-
terminal residues. J Neurosci 29: 1361-74 

Spear LP. 2000. The adolescent brain and age-related behavioral 
manifestations. Neurosci Biobehav Rev 24: 417-63 

Speiser Z, Korczyn AD, Teplitzky I, Gitter S. 1983. Hyperactivity in rats following 
postnatal anoxia. Behav Brain Res 7: 379-82 

Spencer T, Biederman J, Coffey B, Geller D, Crawford M, et al. 2002. A double-
blind comparison of desipramine and placebo in children and adolescents 
with chronic tic disorder and comorbid attention-deficit/hyperactivity 
disorder. Arch Gen Psychiatry 59: 649-56 

Spencer T, Biederman J, Wilens T, Harding M, O'Donnell D, Griffin S. 1996. 
Pharmacotherapy of attention-deficit hyperactivity disorder across the life 
cycle. J Am Acad Child Adolesc Psychiatry 35: 409-32 

Spencer TJ, Biederman J, Ciccone PE, Madras BK, Dougherty DD, et al. 2006. 
PET study examining pharmacokinetics, detection and likeability, and 
dopamine transporter receptor occupancy of short- and long-acting oral 
methylphenidate. Am J Psychiatry 163: 387-95 

Sprich S, Biederman J, Crawford MH, Mundy E, Faraone SV. 2000. Adoptive and 
biological families of children and adolescents with ADHD. J Am Acad 
Child Adolesc Psychiatry 39: 1432-7 

Squire LR B, F, Zigmond MJ, Roberts JL, Landis SC, ed. 1999. Fundamental 
Neuroscience. San Diego: Academic Press. 

Stanwood G, Zigmond M. 2000. Dopamine, Central  In Encyclopedia of stress, 
ed. G Fink, pp. 739-46. San Diego: Academic Press 

Stead L, Hughes J. 2001. Lobeline for smoking cessation (Cochrane Review)  In 
The Cochrane Library. Oxford: Update Software 

Still G. 1902. Some abnormal psychical conditions in children:the Gouistonian 
lectures. Lancet 1: 1008-12 

Sucic S, Bryan-Lluka LJ. 2005. Roles of transmembrane domain 2 and the first 
intracellular loop in human noradrenaline transporter function: 
pharmacological and SCAM analysis. J Neurochem 94: 1620-30 

Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. 1995. 
Amphetamine redistributes dopamine from synaptic vesicles to the cytosol 
and promotes reverse transport. J Neurosci 15: 4102-8 

Sulzer D, Maidment NT, Rayport S. 1993. Amphetamine and other weak bases 
act to promote reverse transport of dopamine in ventral midbrain neurons. 
J Neurochem 60: 527-35 



171 

Sulzer D, Rayport S. 1990. Amphetamine and other psychostimulants reduce pH 
gradients in midbrain dopaminergic neurons and chromaffin granules: a 
mechanism of action. Neuron 5: 797-808 

Sulzer D, Sonders MS, Poulsen NW, Galli A. 2005. Mechanisms of 
neurotransmitter release by amphetamines: a review. Prog Neurobiol 75: 
406-33 

Sung U, Blakely RD. 2007. Calcium-dependent interactions of the human 
norepinephrine transporter with syntaxin 1A. Mol Cell Neurosci 34: 251-60 

Sung U, Jennings JL, Link AJ, Blakely RD. 2005. Proteomic analysis of human 
norepinephrine transporter complexes reveals associations with protein 
phosphatase 2A anchoring subunit and 14-3-3 proteins. Biochem Biophys 
Res Commun 333: 671-8 

Sussman S, Pentz MA, Spruijt-Metz D, Miller T. 2006. Misuse of "study drugs:" 
prevalence, consequences, and implications for policy. Subst Abuse Treat 
Prev Policy 1: 15 

Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P. 2004. 
DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol 
Toxicol 44: 269-96 

Swanson J, Castellanos FX, Murias M, LaHoste G, Kennedy J. 1998a. Cognitive 
neuroscience of attention deficit hyperactivity disorder and hyperkinetic 
disorder. Curr Opin Neurobiol 8: 263-71 

Swanson JM, Greenhill LL, Lopez FA, Sedillo A, Earl CQ, et al. 2006. Modafinil 
film-coated tablets in children and adolescents with attention-
deficit/hyperactivity disorder: results of a randomized, double-blind, 
placebo-controlled, fixed-dose study followed by abrupt discontinuation. J 
Clin Psychiatry 67: 137-47 

Swanson JM, Sunohara GA, Kennedy JL, Regino R, Fineberg E, et al. 1998b. 
Association of the dopamine receptor D4 (DRD4) gene with a refined 
phenotype of attention deficit hyperactivity disorder (ADHD): a family-
based approach. Mol Psychiatry 3: 38-41 

Tahir E, Yazgan Y, Cirakoglu B, Ozbay F, Waldman I, Asherson PJ. 2000. 
Association and linkage of DRD4 and DRD5 with attention deficit 
hyperactivity disorder (ADHD) in a sample of Turkish children. Mol 
Psychiatry 5: 396-404 

Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, et al. 1997. VMAT2 knockout 
mice: heterozygotes display reduced amphetamine-conditioned reward, 
enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc 
Natl Acad Sci U S A 94: 9938-43 

Tatsumi M, Groshan K, Blakely RD, Richelson E. 1997. Pharmacological profile 
of antidepressants and related compounds at human monoamine 
transporters. Eur J Pharmacol 340: 249-58 

Taylor D, Ho BT. 1978. Comparison of inhibition of monoamine uptake by 
cocaine, methylphenidate and amphetamine. Res Commun Chem Pathol 
Pharmacol 21: 67-75 



172 

Taylor FB, Russo J. 2000. Efficacy of modafinil compared to dextroamphetamine 
for the treatment of attention deficit hyperactivity disorder in adults. J Child 
Adolesc Psychopharmacol 10: 311-20 

Teng L, Crooks PA, Dwoskin LP. 1998. Lobeline displaces 
[3H]dihydrotetrabenazine binding and releases [3H]dopamine from rat 
striatal synaptic vesicles: comparison with d-amphetamine. J Neurochem 
71: 258-65 

Teng L, Crooks PA, Sonsalla PK, Dwoskin LP. 1997. Lobeline and nicotine 
evoke [3H]overflow from rat striatal slices preloaded with [3H]dopamine: 
differential inhibition of synaptosomal and vesicular [3H]dopamine uptake. 
J Pharmacol Exp Ther 280: 1432-44 

Terry AV, Jr., Williamson R, Gattu M, Beach JW, McCurdy CR, et al. 1998. 
Lobeline and structurally simplified analogs exhibit differential agonist 
activity and sensitivity to antagonist blockade when compared to nicotine. 
Neuropharmacology 37: 93-102 

Teter CJ, McCabe SE, Boyd CJ, Guthrie SK. 2003. Illicit methylphenidate use in 
an undergraduate student sample: prevalence and risk factors. 
Pharmacotherapy 23: 609-17 

Thanos PK, Michaelides M, Benveniste H, Wang GJ, Volkow ND. 2007. Effects 
of chronic oral methylphenidate on cocaine self-administration and striatal 
dopamine D2 receptors in rodents. Pharmacol Biochem Behav 87: 426-33 

Thapar A, Fowler T, Rice F, Scourfield J, van den Bree M, et al. 2003. Maternal 
smoking during pregnancy and attention deficit hyperactivity disorder 
symptoms in offspring. Am J Psychiatry 160: 1985-9 

Thomsen M, Han DD, Gu HH, Caine SB. 2009. Lack of cocaine self-
administration in mice expressing a cocaine-insensitive dopamine 
transporter. The Journal of pharmacology and experimental therapeutics 
331: 204-11 

Torres GE, Gainetdinov RR, Caron MG. 2003. Plasma membrane monoamine 
transporters: structure, regulation and function. Nat Rev Neurosci 4: 13-25 

Tripp G, Schaughency EA, Clarke B. 2006. Parent and teacher rating scales in 
the evaluation of attention-deficit hyperactivity disorder: contribution to 
diagnosis and differential diagnosis in clinically referred children. J Dev 
Behav Pediatr 27: 209-18 

Tsai CF, Lin MT. 1988. Locomotor hyperactivity in hypertensive rats. 
Pharmacology 36: 27-34 

Turner DC, Clark L, Dowson J, Robbins TW, Sahakian BJ. 2004. Modafinil 
improves cognition and response inhibition in adult attention-
deficit/hyperactivity disorder. Biol Psychiatry 55: 1031-40 

Ueno K, Togashi H, Matsumoto M, Ohashi S, Saito H, Yoshioka M. 2002. 
Alpha4beta2 nicotinic acetylcholine receptor activation ameliorates 
impairment of spontaneous alternation behavior in stroke-prone 
spontaneously hypertensive rats, an animal model of attention deficit 
hyperactivity disorder. J Pharmacol Exp Ther 302: 95-100 

Ukairo OT, Bondi CD, Newman AH, Kulkarni SS, Kozikowski AP, et al. 2005. 
Recognition of benztropine by the dopamine transporter (DAT) differs from 



173 

that of the classical dopamine uptake inhibitors cocaine, methylphenidate, 
and mazindol as a function of a DAT transmembrane 1 aspartic acid 
residue. J Pharmacol Exp Ther 314: 575-83 

Unis AS, Dawson TM, Gehlert DR, Wamsley JK. 1985. Autoradiographic 
localization of [3H]methylphenidate binding sites in rat brain. Eur J 
Pharmacol 113: 155-7 

van den Bergh FS, Bloemarts E, Chan JS, Groenink L, Olivier B, Oosting RS. 
2006. Spontaneously hypertensive rats do not predict symptoms of 
attention-deficit hyperactivity disorder. Pharmacol Biochem Behav 83: 
380-90 

van der Kooij MA, Glennon JC. 2007. Animal models concerning the role of 
dopamine in attention-deficit hyperactivity disorder. Neurosci Biobehav 
Rev 31: 597-618 

Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, et al. 1992. Multiple 
dopamine D4 receptor variants in the human population. Nature 358: 149-
52 

Vaughan RA. 2004. Phosphorylation and regulation of psychostimulant-sensitive 
neurotransmitter transporters. J Pharmacol Exp Ther 310: 1-7 

Vaughan RA, Huff RA, Uhl GR, Kuhar MJ. 1997. Protein kinase C-mediated 
phosphorylation and functional regulation of dopamine transporters in 
striatal synaptosomes. J Biol Chem 272: 15541-6 

Viggiano D, Ruocco LA, Sadile AG. 2003. Dopamine phenotype and behaviour in 
animal models: in relation to attention deficit hyperactivity disorder. 
Neurosci Biobehav Rev 27: 623-37 

Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, et al. 1995. Is 
methylphenidate like cocaine? Studies on their pharmacokinetics and 
distribution in the human brain. Arch Gen Psychiatry 52: 456-63 

Volkow ND, Fowler JS, Wang GJ, Ding YS, Gatley SJ. 2002. Role of dopamine 
in the therapeutic and reinforcing effects of methylphenidate in humans: 
results from imaging studies. Eur Neuropsychopharmacol 12: 557-66 

Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, et al. 2001. Therapeutic 
doses of oral methylphenidate significantly increase extracellular 
dopamine in the human brain. J Neurosci 21: RC121 

Volkow ND, Wang GJ, Fowler JS, Ding YS. 2005. Imaging the effects of 
methylphenidate on brain dopamine: new model on its therapeutic actions 
for attention-deficit/hyperactivity disorder. Biol Psychiatry 57: 1410-5 

Volkow ND, Wang GJ, Fowler JS, Fischman M, Foltin R, et al. 1999. 
Methylphenidate and cocaine have a similar in vivo potency to block 
dopamine transporters in the human brain. Life Sci 65: PL7-12 

Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, et al. 1998. Dopamine 
transporter occupancies in the human brain induced by therapeutic doses 
of oral methylphenidate. Am J Psychiatry 155: 1325-31 

Volkow ND, Wang GJ, Newcorn J, Fowler JS, Telang F, et al. 2007. Brain 
dopamine transporter levels in treatment and drug naive adults with 
ADHD. Neuroimage 34: 1182-90 



174 

Volz TJ, Farnsworth SJ, King JL, Riddle EL, Hanson GR, Fleckenstein AE. 2007. 
Methylphenidate administration alters vesicular monoamine transporter-2 
function in cytoplasmic and membrane-associated vesicles. J Pharmacol 
Exp Ther 323: 738-45 

Volz TJ, Farnsworth SJ, Rowley SD, Hanson GR, Fleckenstein AE. 2008. 
Methylphenidate-induced increases in vesicular dopamine sequestration 
and dopamine release in the striatum: the role of muscarinic and 
dopamine D2 receptors. J Pharmacol Exp Ther 327: 161-7 

Wagner AK, Drewencki LL, Chen X, Santos FR, Khan AS, et al. 2009. Chronic 
methylphenidate treatment enhances striatal dopamine neurotransmission 
after experimental traumatic brain injury. J Neurochem 108: 986-97 

Wang YM, Gainetdinov RR, Fumagalli F, Xu F, Jones SR, et al. 1997. Knockout 
of the vesicular monoamine transporter 2 gene results in neonatal death 
and supersensitivity to cocaine and amphetamine. Neuron 19: 1285-96 

Weihe E, Schafer MK, Erickson JD, Eiden LE. 1994. Localization of vesicular 
monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells 
and neurons in rat. J Mol Neurosci 5: 149-64 

Weyandt LL, Janusis G, Wilson KG, Verdi G, Paquin G, et al. 2009. Nonmedical 
prescription stimulant use among a sample of college students: 
relationship with psychological variables. J Atten Disord 13: 284-96 

Wieland H SC, Hermsen W, . 1925. Die lobelia-alkaloide II. Justus Liebigs Ann 
Chem 444: 40-68 

Wilcox KM, Zhou Y, Wong DF, Alexander M, Rahmim A, et al. 2008. Blood levels 
and DA transporter occupancy of orally administered methylphenidate in 
juvenile rhesus monkeys measured by high resolution PET. Synapse 62: 
950-2 

Wilens TE. 2006. Mechanism of action of agents used in attention-
deficit/hyperactivity disorder. J Clin Psychiatry 67 Suppl 8: 32-8 

Wilens TE. 2008. Effects of methylphenidate on the catecholaminergic system in 
attention-deficit/hyperactivity disorder. Journal of clinical 
psychopharmacology 28: S46-53 

Wilens TE, Adler LA, Adams J, Sgambati S, Rotrosen J, et al. 2008. Misuse and 
diversion of stimulants prescribed for ADHD: a systematic review of the 
literature. J Am Acad Child Adolesc Psychiatry 47: 21-31 

Wilens TE, Biederman J, Prince J, Spencer TJ, Faraone SV, et al. 1996. Six-
week, double-blind, placebo-controlled study of desipramine for adult 
attention deficit hyperactivity disorder. Am J Psychiatry 153: 1147-53 

Wilens TE, Haight BR, Horrigan JP, Hudziak JJ, Rosenthal NE, et al. 2005. 
Bupropion XL in adults with attention-deficit/hyperactivity disorder: a 
randomized, placebo-controlled study. Biol Psychiatry 57: 793-801 

Wilens TE, Spencer TJ, Biederman J, Girard K, Doyle R, et al. 2001. A controlled 
clinical trial of bupropion for attention deficit hyperactivity disorder in 
adults. Am J Psychiatry 158: 282-8 

Wilhelm M, Ewers U, Schulz C. 2004. Revised and new reference values for 
some trace elements in blood and urine for human biomonitoring in 
environmental medicine. Int J Hyg Environ Health 207: 69-73 



175 

Wilson MF, Haring O, Lewin A, Bedsole G, Stepansky W, et al. 1986. 
Comparison of guanfacine versus clonidine for efficacy, safety and 
occurrence of withdrawal syndrome in step-2 treatment of mild to 
moderate essential hypertension. Am J Cardiol 57: 43E-49E 

Wong DT, Bymaster FP, Engleman EA. 1995. Prozac (fluoxetine, Lilly 110140), 
the first selective serotonin uptake inhibitor and an antidepressant drug: 
twenty years since its first publication. Life Sci 57: 411-41 

Wong DT, Threlkeld PG, Best KL, Bymaster FP. 1982. A new inhibitor of 
norepinephrine uptake devoid of affinity for receptors in rat brain. J 
Pharmacol Exp Ther 222: 61-5 

Wood JG, Crager JL, Delap CM, Heiskell KD. 2007. Beyond methylphenidate: 
nonstimulant medications for youth with ADHD. J Atten Disord 11: 341-50 

Wooters TE, Dwoskin LP, Bardo MT. 2006. Age and sex differences in the 
locomotor effect of repeated methylphenidate in rats classified as high or 
low novelty responders. Psychopharmacology 188: 18-27 

Wultz B, Sagvolden T, Moser EI, Moser MB. 1990. The spontaneously 
hypertensive rat as an animal model of attention-deficit hyperactivity 
disorder: effects of methylphenidate on exploratory behavior. Behav 
Neural Biol 53: 88-102 

Xiong T, Daniels J, Middleton L, Champaneria R, Khan KS, et al. 2007. Meta-
analysis using individual patient data from randomised trials to assess the 
effectiveness of laparoscopic uterosacral nerve ablation in the treatment of 
chronic pelvic pain: a proposed protocol. BJOG 114: 1580, e1-7 

Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, et al. 2000. Mice 
lacking the norepinephrine transporter are supersensitive to 
psychostimulants. Nat Neurosci 3: 465-71 

Yamada S, Isogai M, Kagawa Y, Takayanagi N, Hayashi E, et al. 1985. Brain 
nicotinic acetylcholine receptors. Biochemical characterization by 
neosurugatoxin. Mol Pharmacol 28: 120-7 

Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. 2005. Crystal structure of a 
bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. 
Nature 437: 215-23 

Yang PB, Amini B, Swann AC, Dafny N. 2003. Strain differences in the 
behavioral responses of male rats to chronically administered 
methylphenidate. Brain Res 971: 139-52 

Yang PB, Swann AC, Dafny N. 2006. Acute and chronic methylphenidate dose-
response assessment on three adolescent male rat strains. Brain Res Bull 
71: 301-10 

Yao J, Hersh LB. 2007. The vesicular monoamine transporter 2 contains 
trafficking signals in both its N-glycosylation and C-terminal domains. J 
Neurochem 100: 1387-96 

Yelin R, Schuldiner S. 2002. Vesicular neurotransmitter 
transporters:pharmacology, biochemistry, and molecular analysis  In 
Neurotransmitter Transporters: Structure, Function, and Regulation, ed. 
ME Reith, pp. 313-54. Totowa, NJ: Humana Press 



176 

Zaczek R, Battaglia G, Contrera JF, Culp S, De Souza EB. 1989. 
Methylphenidate and pemoline do not cause depletion of rat brain 
monoamine markers similar to that observed with methamphetamine. 
Toxicol Appl Pharmacol 100: 227-33 

Zaczek R, Culp S, De Souza EB. 1991. Interactions of [3H]amphetamine with rat 
brain synaptosomes. II. Active transport. J Pharmacol Exp Ther 257: 830-
5 

Zahniser NR, Doolen S. 2001. Chronic and acute regulation of Na+/Cl- -
dependent neurotransmitter transporters: drugs, substrates, presynaptic 
receptors, and signaling systems. Pharmacol Ther 92: 21-55 

Zapata A, Kivell B, Han Y, Javitch JA, Bolan EA, et al. 2007. Regulation of 
dopamine transporter function and cell surface expression by D3 
dopamine receptors. The Journal of biological chemistry 282: 35842-54 

Zavosh A, Schaefer J, Ferrel A, Figlewicz DP. 1999. Desipramine treatment 
decreases 3H-nisoxetine binding and norepinephrine transporter mRNA in 
SK-N-SHSY5Y cells. Brain Res Bull 49: 291-5 

Zhang K, Davids E, Tarazi FI, Baldessarini RJ. 2002. Effects of dopamine D4 
receptor-selective antagonists on motor hyperactivity in rats with neonatal 
6-hydroxydopamine lesions. Psychopharmacology (Berl) 161: 100-6 

Zhang K, Tarazi FI, Baldessarini RJ. 2001. Role of dopamine D(4) receptors in 
motor hyperactivity induced by neonatal 6-hydroxydopamine lesions in 
rats. Neuropsychopharmacology 25: 624-32 

Zhang L, Coffey LL, Reith ME. 1997. Regulation of the functional activity of the 
human dopamine transporter by protein kinase C. Biochem Pharmacol 53: 
677-88 

Zheng G, Dwoskin LP, Crooks PA. 2006. Vesicular monoamine transporter 2: 
role as a novel target for drug development. Aaps J 8: E682-92 

Zheng G, Dwoskin LP, Deaciuc AG, Norrholm SD, Crooks PA. 2005. 
Defunctionalized lobeline analogues: structure-activity of novel ligands for 
the vesicular monoamine transporter. Journal of medicinal chemistry 48: 
5551-60 

Zhou J. 2004. Norepinephrine transporter inhibitors and their therapeutic 
potential. Drugs Future 29: 1235-44 

Zhu J, Green T, Bardo MT, Dwoskin LP. 2004. Environmental enrichment 
enhances sensitization to GBR 12935-induced activity and decreases 
dopamine transporter function in the medial prefrontal cortex. Behav Brain 
Res 148: 107-17 

Zhu J, Reith ME. 2008. Role of the dopamine transporter in the action of 
psychostimulants, nicotine, and other drugs of abuse. CNS Neurol Disord 
Drug Targets 7: 393-409 

Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, et al. 2001. 
Hyperactivity and impaired response habituation in hyperdopaminergic 
mice. Proc Natl Acad Sci U S A 98: 1982-7 

Zuckerman M. 1994. Behavioral expressions and biosocial bases of sensation 
seeking. pp. 27. New York: Cambridge University Press.  



177 

 
 

 
VITA 

 
YOLANDA D. WILLIAMS 
 
PERSONAL INFORMATION 
Date of Birth: December 18, 1972 
Birthplace: Washington, DC 
 
 
EDUCATION  
University of Kentucky 
Lexington, Kentucky 
Clinical Pharmaceutical Sciences, 2003 - 2011 
 
 
Hampton University,  
Hampton, Virginia 
Doctor of Pharmacy, May 2003 
 
Spelman College,  
Atlanta, Georgia 
Bachelor of Science in Chemistry, December 1995 
 
 
RESEARCH EXPERIENCE 
University of Kentucky, Department of Clinical Pharmaceutical Sciences (2003-present) 
Thesis Title: Preclinical Evaluation of Lobeline for the Treatment of ADHD: Comparison 
with Psychostimulant Therapies 
Advisor: Dr. Linda Dwoskin 
 
TEACHING EXPERIENCE 
Teaching Assistant for the following courses: 

Patient Care Laboratory V (PHR 959 (2006), 

Patient Care Laboratory V (PHR 959, 966/967 (2005), 

Patient Care Laboratory VI (PHR 969, 956/957 (2004),  

Patient Care Laboratory III (PHR 939 (2003) 

Responsibilities included distributing lecture materials, grading of quizzes and 
examinations offered in the course including case based questions and pharmacokinetic 
homework. Posting information and grades on Blackboard® course shell and excel 
sheets, leading small group discussions, demonstrating clinical techniques, and proctoring 
examinations. 



178 

 

WORK EXPERIENCE 
   
Licensure: North Carolina (2003-present) and Kentucky (2003-2011) 
Certification: Immunizations, March 18, 2006 
 
Part-time Pharmacist, Target Pharmacy, Louisville, Kentucky 
February 2010-May 2011  
 
Part-time Pharmacist, Rite Aid Pharmacy, Lexington, Kentucky 
April 2007-September 2009  
 
Part-time Pharmacist, Toyota Family Pharmacy, Georgetown, Kentucky 
September 2007-December 2008 
 
Pfizer Intern, Pfizer, Inc., La Jolla, CA 
June-August 2007 
 
Part-time Pharmacist, Kroger Pharmacy, Lexington, Kentucky 
February 2004- December 2004    
 
Pharmacy Intern, Wal-Mart Pharmacy, Newport News, Virginia 
May 2002- June 2003      
 
Pharmacy Intern, Eckerd Pharmacy, Hampton, Virginia 
September 2000- May 2002     
 
Pharmacy Intern, Target Pharmacy, Newport News, Virginia 
May 2000       
 
Pharmacy Intern, Big K-Mart, Hampton, Virginia 
October 1999- March 2000     
Responsibilities included assisting pharmacist in prescription processing preparation, 
distribution, maintenance of physical inventory, performance of register operations and 
providing customer service to customers in the pharmacy and on the floor. 
 
Forensic Chemist, Office of the Chief Medical Examiner, Chapel Hill, North Carolina 
September 1997- July 1999                   
Responsibilities included using a variety of wet laboratory techniques to extract drugs 
and other substances from biological specimens such as blood, urine, and liver to 
determine the cause of death. 
 
GRANTS AND FELLOWSHIPS 
NIH-funded Career Training in Therapeutics and Translational Research (K-30)Seed 

Grant Recipient, University of Kentucky   (7/2006) 
NIDA Training Grant (Training in Drug Abuse Related Research (5 T32 DA016176)) 

Recipient (2004-2006) 
Petite Grant Recipient from the Center on Drug and Alcohol Research, University of 

Kentucky   (2004) 



179 

 
PUBLICATIONS 
Douglas YA, Guilford A, Bleidt B, Coleman CA, Jenkins TM. "Evaluation  
Of Blood Pressure on the Hampton University Campus," Clinical Research and 
Regulatory Affairs, Vol. 20(1):27-33, 2003. 
Williams YD, Ansong MA, and Landers MW. “Forteo (Teriparatide)”.  Advance for 
Physicians Assistants. Vol. 11(9):18, 2003. 
Bardo MT, Williams Y, Dwoskin LP, Moynahan SE, Perry IB, and Martin CA. “The 
Sensation Seeking Trait and Substance Use: Research Findings and Clinical 
Implications”. Current Psychiatry Review, Vol. 3(1): 3-13, 2007. 
 
Williams YD, Darna M, Dwoskin LP.  Effect of acute and repeated in vivo administration 
of methylphenidate on DAT and VMAT2 function. (In progress) 
 
ABSTRACTS 
Williams, Y.D., Dwoskin, L.P.Effect of acute and repeated administration of lobeline, 

methylphenidate or amphetamine on dopamine and vesicular monoamine 
transporter function. University of Kentucky,Center for Clinical and Translational 
Science Spring Conference, Lexington, KY, April 23, 2009.  

Williams, Y.D., Dwoskin, L.P.Effect of acute and repeated administration of lobeline, 
methylphenidate or amphetamine on dopamine and vesicular monoamine 
transporter function. 38th Annual Society for Neuroscience meeting,Washington, 
DC, November 17, 2008. 

Williams, Y.D., Dwoskin, L.P.Effect of acute and repeated administration of lobeline, 
methylphenidate or amphetamine on dopamine and vesicular monoamine 
transporter function. Frontiers in Addiction Research: NIDA Mini-Convention, 
Washington, DC, November 14, 2008. 

Williams, Y.D., Dwoskin, L.P.Effect of acute and repeated administration of lobeline, 
methylphenidate or amphetamine on dopamine and vesicular monoamine 
transporter function.  University of Kentucky 2nd Annual Graduate Student 
Interdisciplinary Conference, Lexington, KY, March 28, 2008. 

Williams, Y.D., Dwoskin, L.P.Effect of acute and repeated administration of lobeline, 
methylphenidate or amphetamine on dopamine and vesicular monoamine 
transporter function.  Bluegrass Neuroscience Chapter, Spring Neuroscience 
Day, Lexington, KY, March 12, 2008. 

Williams, Y.D., Dwoskin, L.P.Effect of acute and chronically administered lobeline or 
methylphenidate on dopamine transporter function.  37th Annual Society for 
Neuroscience meeting, San Diego, CA, November 6, 2007. 

Williams, Y.D., Dwoskin, L.P.Effect of acute and chronically administered lobeline, 
methylphenidate or amphetamine on dopamine transporter function.  Rho Chi 
Society Research Day, Lexington, KY, April 12, 2007. Received a 3rd place 
award. 

Williams, Y.D., Dwoskin, L.P.Effect of acute and chronically administered lobeline, 
methylphenidate or amphetamine on dopamine transporter function.  Bluegrass 
Neuroscience Chapter, Spring Neuroscience Day, Lexington, KY, March 12, 
2007. 

Williams, Y.D., Dwoskin, L.P.Effect of acute and chronically administered lobeline or 
methylphenidate on dopamine transporter function.  Center for Clinical and 
Translational Science Spring Conference, Lexington, KY, June 6, 2006. 



180 

Williams, Y.D., Dwoskin, L.P.Effect of acute and chronically administered lobeline or 
methylphenidate on dopamine transporter function.  67th Annual CPDD meeting, 
Orlando, FL, June 22, 2005. 

Williams, Y.D., Dwoskin, L.P.Effect of acute and chronically administered lobeline or 
methylphenidate on dopamine transporter function.  Bluegrass Neuroscience 
Chapter, Spring Neuroscience Day, Lexington, KY, March 15, 2005.  

Douglas, Y., Guilford, A., Bleidt, B. Coleman, C., & Jenkins, T.Evaluation of Blood 
Pressure Measurements on The Hampton University Campus. 36th  Annual 
American Society of Health-System Pharmacists (ASHP) Midyear Clinical Meeting, 
New Orleans, LA, December 1- 4, 2001. 

Douglas, Y., Jenkins, T, MS, Pharm.D, & Bleidt, B. PhD., Pharm.D. Expanding the 
Possibilities: The Dr. James A. Ferguson Emerging Infectious Diseases Fellowship 
Program. 35th Annual American Society of Health-System Pharmacists (ASHP) 
Midyear Clinical Meeting, Las Vegas, NV, December 3-7, 2000.  

Douglas, Y. In Vitro Testing of Candidate Microbicides for Toxicity and Antiviral Activity 
Against Human Immunodefiency Virus Type-1.Dr. James A. Ferguson Infectious 
Diseases Fellowship Program, Sponsored by the Minority Health Professions 
Foundation, Altanta, GA, July 28, 2000.   

Douglas, Y,Gonzales, M., & George, A.How Pharmacists Can Eliminate Racial and 
Ethnic Disparities.  The 22nd  Annual Black Family Conference, Hampton University, 
Hampton, VA, March 15-17, 2000.  

ORAL PRESENTATIONS 
“Effect of Acute and Repeated in vivo Administration of Lobeline, 

Methylphenidate, and Amphetamine on Striatal Dopamine Transporter and 
Vesicular Monoamine Transporter Function”. University of Kentucky, CDART 
Research Forum, Lexington, KY, February 16, 2009.  

“Effect of Acute and Repeated in vivo Administration of Lobeline, 
Methylphenidate, and Amphetamine on Striatal Dopamine Transporter and 
Vesicular Monoamine Transporter Function”. University of Kentucky, School of 
Pharmacy, Department of Pharmaceutical Sciences Seminar, KY, December 19, 
2008.  

“Effect of Acute and Repeated in vivo Administration of Lobeline, 
Methylphenidate, and Amphetamine on Striatal Dopamine Transporter and 
Vesicular Monoamine Transporter Function”. University of Kentucky, CCTS 
Spring Conference Lexington, KY, June 3, 2008.  

“Effect of Acute and Chronically Administered Lobeline or Methylphenidate on 
Dopamine Transporter Function”. University of Kentucky, NIDA Training Grant 
Symposium. Lexington, KY, October 6, 2005.  

“Effect of Acute and Chronically Administered Lobeline or Methylphenidate on 
Dopamine Transporter Function”. University of Kentucky, School of Pharmacy, 
Department of Pharmaceutical Sciences. AGS Seminar. Lexington, KY, February 8, 
2005.  

“Lobeline as a Potential Treatment for ADHD”. University of Kentucky, School of 
Pharmacy, Department of Pharmaceutical Sciences. AGS Seminar. Lexington, KY, 
April 20, 2004.  

“Advances in the Treatment of Trachoma”. Hampton University, School of Pharmacy, 
Hampton, VA, January 2003.  



181 

“Comparison of Cycle Control with a Combined Contraceptive Ring and Oral 
Levonorgestrel/Ethinyl Estradiol”. Hampton University, School of Pharmacy, 
Hampton, VA, January 2003.  

 “Assessing the Cost-Effectiveness of Schizophrenia Treatment”. Hampton 
University, School of Pharmacy, Hampton, VA, September 2002.  

“Sertraline and Fluoxetine Treatment of Obsessive Compulsive Disorder: Results of 
a Double-Blind, 6-Month Trial.”Journal Club Presentation. Hampton University, 
School of Pharmacy, Hampton, VA, September 2002.  

“Gout” Hampton University, School of Pharmacy, Hampton, Virginia, August 2002.  
“Comparison of Salmeterol and Formoterol in Patients with Severe Asthma” Journal 

Club Presentation. Hampton University, School of Pharmacy, Hampton, VA, July 2002.  
“Top Drug Interactions” Virginia Beach Health Clinic, Virginia Beach, VA, July 2002.  
“Nexium”, Wal-Mart Pharmacy, Hampton, VA, July 2001. Wal-Mart Pharmacy  
“GlucoWatch”, Hampton University, Hampton, VA, June 2001.   
“Crohn’s Disease”, DePaul Hospital, Norfolk, VA, May 2001. 
 
HONORS AND AWARDS 
Clinical Translational Science Program Scholar (2009) 
University of Kentucky, Graduate Student Travel Award Recipient   (11/2008) 
Peter G. Glavinos Jr., Ph.D., Fall Travel Award Recipient   (10/2008) 
Frontiers in Addiction Research:2008 NIDA Mini-Convention Travel Award Recipient 

(4/2008) 
Member, Alpha Xi Chapter of Rho Chi Honor Society, University of Kentucky (2008) 
Poster Presentation for Rho Chi Research Day (Placed 3rd) (4/2007) 
S. Elizabeth Helton Spring Graduate Student Travel Award Recipient (4/2007) 
  Pfizer Summer Intern in La Jolla, CA. (6/2007 thru 8/2007): 370 applicants 2 accepted 
Lyman T. Johnson Award Recipient, University of Kentucky (2003-2006)  
Research Challenge Trust Fund Scholar, University of Kentucky (2003, 2005, 2006) 
Kappa Alpha Mu Honor Society (1999-2003) 
Kellogg Scholarship Recipient (1999-2000, 2000-2001) 
Kroger Scholarship Recipient (2001)  
UNCF Rite Aid Scholarship Recipient (2000-2001, 2001-2002) 

 
 
 
 
 
 
 

 
Yolanda D. Williams 

 
October 25, 2011 

 
 
 


	PRECLINICAL EVALUATION OF LOBELINE FOR THE TREATMENT OF ADHD: COMPARISON WITH PSYCHOSTIMULANT THERAPIES
	Recommended Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter One
	A. Attention-Deficit Hyperactivity Disorder

	Chapter Two
	A. Introduction
	B. Methods
	C. Data Analysis
	D. Results
	E. Discussion

	Chapter Three
	A. Introduction
	B. Methods
	C. Data Analysis
	D. Results
	E. Discussion

	Chapter Four
	A. Introduction
	B. Methods
	C. Data Analysis.
	D. Results
	E. Discussion

	Chapter Five
	A. Summary
	B. Potential Mechanism for the Methylphenidate-Induced Increase inDAT Function
	C. Potential Mechanism for the Methylphenidate-InducedIncrease in VMAT2 Function
	D. Implications
	E. Limitations
	F. Future Directions

	References
	Vita

