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ABSTRACT OF DISSERTATION 

 

 

TARGET VALIDATION OF UK-101 AND FUNCTIONAL STUDIES OF β1i 
 

β1i is a major catalytic subunit of the immunoproteasome, an alternative form of the 
constitutive proteasome, and its upregulation has been demonstrated in a variety of disease 
states including cancer. Our lab has developed a small molecule inhibitor of β1i, dubbed UK-101.  
While UK-101 causes apoptosis in cancer cell lines, it was not clear whether this apoptotic effect 
was directly mediated by its irreversible inhibition of β1i.  Since off-target effects are major 
roadblocks for the development of new and effective pharmaceuticals, target validation studies 
in this system would assist in the further progression of β1i inhibitors towards preclinical trials.  
Our hypothesis was that the expression and catalytic activity of β1i is important for the growth 
and proliferation of the PC-3 prostate cancer cell line, therefore the apoptotic effect seen upon 
treatment of PC-3 cells with UK-101 was due solely to its covalent inhibition of β1i.   

To test this hypothesis, a number of complementary approaches were used.  The 
expression of β1i in PC-3 cells was increased by the treatment of these cells with interferon-
gamma or tumor necrosis factor-alpha, natural inducers of the immunoproteasome.  The 
expression of β1i in PC-3 cells was decreased using small interfering RNA or short hairpin RNA, in 
a transient or stable manner, respectively.  All of these cells were then treated with UK-101.  
The efficacy of UK-101 decreased in the interferon-gamma treated cells but did not change in 
any other the other cell lines, suggesting that UK-101 was not specific for β1i.  This was 
confirmed using a molecular probe of the proteasome and demonstrated that UK-101 bound to 
other proteasome catalytic subunits. 

Additional experiments were performed to determine the effect of β1i on the 
proliferation of PC-3 cells.  Simply removing the β1i using small interfering RNA reduces the 
viability of these cells.  Other studies demonstrated that a mutation of β1i which inhibited its 
catalytic activity reduced the viability of cells when compared to those containing the wild type 
protein.  Overall, our data indicate that β1i is a potential therapeutic target in prostate cancer.  
Further medicinal chemistry efforts will be required develop UK-101 into a truly selective 
proteasome inhibitor. 

 
KEYWORDS: Immunoproteasome, Target Validation, β1i, UK-101, proteasome inhibitor (Include 

exactly 5 keywords or phrases)  
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Chapter 1: Introduction 

A: Intracellular proteolysis and the ubiquitin-proteasome pathway 

Scientists spent much of the 1900s studying the flow of genetic information into proteins, 

building up the evidence for what is now known as the “central dogma of molecular biology.”  

Prior to 1950, few scientists were concerned with the destruction of proteins, as most believed 

intracellular proteins to be extremely stable and resilient.  The lysosome, discovered in the 

1950s, was thought to provide cells with the necessary destructive capacity.  Over the next two 

decades it became increasingly difficult to reconcile the mechanistic understanding of lysosomal 

degradation with the turnover of intracellular proteins, especially those that were short-lived or 

abnormal.  It was also found that much of this intracellular protein turnover required adenosine 

triphosphate (ATP), in direct conflict with the mechanism of action of lysosomes. 

Work done in the early 1980s by Aaron Ciechanover, under the direction of Avram Hershko and 

his collaborator Irwin Rose, led to “the discovery of ubiquitin-mediated protein degradation” for 

which the trio received the 2004 Nobel Prize in Chemistry. [1]  Their work explained the ATP-

dependency of intracellular protein degradation by demonstrating that proteins are degraded 

more effectively when tagged with a protein called ubiquitin.  A three-enzyme cascade was 

discovered which adds ubiquitins to proteins in a specific and ATP-dependent manner (Figure 

1.1).  The ubiquitin-activating enzyme class (E1) uses ATP to charge and transfer ubiquitin to a 

second enzyme class, the ubiquitin carrier proteins (E2).  These E2 enzymes associate with the 

third class of enzymes, the ubiquitin protein ligases (E3), which can add ubiquitin molecules to 

proteins in a substrate-specific manner.  Likewise, later work discovered an additional class of 

enzymes, called deubiquitinases (DUBs), which can remove ubiquitin moieties from proteins and 

thus further regulate the pathway.   

The next critical step was to determine the protease responsible for the eventual degradation of 

these ubiqutinated proteins.  By the end of the 1980s, many of the leaders in this young field of 

protein degradation believed the proteasome might be the ATP-dependent protease which 

recognizes and degrades ubiquitinated proteins.  This complex was first described by S. Wilk and 

M. Orlowski in the early 1980s and was then known as the multicatalytic protease complex 

(Figure 1.1). [2, 3]  The multicatalytic protease complex, or proteasome, was a ~700kDa complex 

found in electron microscopy studies to be a hollow, cylindrical structure composed of four 
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Figure 1.1: The ubiquitin-proteasome pathway.  A protein is tagged by multiple ubiquitin 

molecules (green circles) by a series of enzymes: E1s, E2s, and E3s.  The proteasome recognizes 

these polyubiquitinated substrates, binding, deubiquitinating, unfolding, and degrading the 

proteins.  Short peptide fragments are released by the proteasome to be further degraded by 

intracellular proteases or used in antigen presentation. 
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stacked rings. [4]  It was proposed to have a variety of protease activities: chymotrypsin-like (CT-

L), caspase-like (C-L), trypsin-like (T-L), branched chain amino acid preferring (BrAAP), and small 

neutral amino acid preferring (SNAAP). [3, 5, 6]   

The importance of the proteasome for normal cell survival was indicated by studies in 

Drosophila melanogaster which identified a mutation in a proteasome subunit as a dominant 

temperature-sensitive lethal mutation. [7, 8]  Later studies showed an additional proteasome 

subunit mutation with the same dominant temperature-sensitive lethal effect; both mutations 

function as “poison subunits” which affect the stability and activity of proteasomes at increased 

temperatures. [8, 9]  Additionally, studies in hematopoietic cells from leukemia patients as well 

as malignant hematopoietic cell lines showed increased expression of proteasomes in a variety 

of cancers (acute lymphoblastic leukemia [ALL], adult T-cell leukemia [ATL], acute myeloid 

leukemia [AML], chronic lymphocytic leukemia [CLL], chronic myelogenous leukemia [CML], and 

Burkitt lymphoma). [10]  The authors suggested that, “Thus, abnormally high expression of 

proteasomes may play an important role in transformation and proliferation of blood cells and 

in specific functions of hematopoietic tumor cells.” [10]   

To determine the intrinsic and adaptive function of this complex, probes of its activity would be 

required. Luckily, biochemists that studied the bovine multicatalytic protease complex had 

developed substrates for its main proteolytic activities: CT-L, C-L, and T-L.  The CT-L activity, 

cleaving after large, hydrophobic amino acids, is now most commonly examined using N-

succinyl-leucine-leucine-valine-tyrosine-7-amino-4-methylcoumarin (Suc-LLVY-AMC), where 

cleavage after the tyrosine liberates AMC.  This cleavage can be observed by excitation at 

360nm, allowing for detection of the emission wavelength at 460nM.  Likewise, the C-L activity, 

cleaving after acidic amino acids, is now detected using benzyl-norleucine-proline-norleucine-

aspartame-AMC (Z-nLPnLD-AMC) and the T-L activity, cleaving after basic amino acids, is now 

detected using benzyl-leucine-arginine-arginine-AMC (Z-LRR-AMC).  A number of additional 

substrates have been developed over the years, but these are considered the prototypical 

substrates for proteasomal hydrolysis.   

This method of examining proteasome activity provides a limited amount of useful information.  

As Peter Kloetzel and colleagues noted in 1995: “We conclude that the hydrolysis of short 

fluorogenic peptides does not adequately describe the cleavage of peptide bound in larger 

peptides by the 20S proteasome and that the decision on the cleavage site … is not simply 
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dependent on the residue in the P1 position.” [11] Nevertheless, this technique remains a 

popular one to describe proteasome activity. 

To better understand the role of this protease complex in normal and disease states, inhibitors 

of this complex which could be utilized to conclusively determine its function would be required.  

Marian Orlowski and colleagues produced the first peptide aldehydes (Z-LLF-CHO, Ac-LLnL-CHO, 

and Ac-LLM-CHO) which inhibited the CT-L activity of the bovine multicatalytic protease complex 

as slow-binding, reversible inhibitors. [12]  At higher concentrations, these small molecules were 

also found to inhibit the T-L and C-L activities of the complex, providing biologists with the final 

tools necessary to examine the proteasome hypothesis. [12]  In 1994, Alfred Goldberg’s group 

published a paper in Cell entitled, “Inhibitors of the proteasome block the degradation of most 

cell proteins and the generation of peptides presented on MHC class I molecules.” [13]  For the 

first time, they showed that the majority of cellular proteins were degraded by the proteasome 

and that this pathway was important for the proper functioning of the immune system, as it 

created the peptides necessary for major histocompatibility complex (MHC) class I molecules. 

[13]  Thus began a flurry of work to further define and examine the proteasomal structure, 

assembly, activities, and functions. 

B: Proteasomes and their catalytic beta subunits 

Mammalian proteasomes are now known to contain catalytic beta subunits which degrade 

polypeptides.  Early studies examined these protein sequences and hypothesized that these 

subunits may be synthesized as precursors, and later processed to the active form, likely by 

cleavage at Gly-1/Thr1 leaving an N-terminal threonine to serve as a nucleophile. [14]  At least 

two proteolytically active subunits were known at the beginning of the 1990s, which we now call 

Y/β1 and X/β5.  Around this time, a second set of proteins named low molecular mass proteins 

two and seven (LMP2 and LMP7) were characterized by sequence alignment; they were 

hypothesized to be proteolytic subunits, also synthesized as precursor proteins but present in 

processed forms in intact proteasomes. [14-16] These LMP proteins were found as gene pairs, 

with LMP2 and antigen peptide transporter 1 (TAP1) or LMP7 and TAP2 in close proximity. [17]  

TAPs are ATP-binding cassette (ABC) transporters which take peptides from the endoplasmic 

reticulum (ER) to the cell surface for class I antigen presentation.  By looking at sequence 

homology and exon/intron pairing, the authors concluded that LMP7/TAP2 was the original 

gene pair, duplicated to produce LMP2/TAP1. [17] These genes are well conserved, as the 
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cluster originated prior to the human/mouse/rat species divergence, with LMP2 sharing 84% 

DNA sequence and 88% protein sequence homology between humans and mice. [17]  Both gene 

pairs have putative interferon-stimulated response elements in their promoter regions, and 

their expression is stimulated by interferon experimentally. [11, 16-23] 

Further studies of the LMP proteins found they were able to replace the “constitutive” 

proteasome subunits.  LMP2 replaced β1 and LMP7 replaced β5, thus current nomenclature 

calls them β1i and β5i, respectively. [22] Interestingly, β1 and β1i only share 76% sequence 

similarity, but their expression levels seemed to be inversely correlated. [22, 24]  Experiments 

were undertaken to determine what changes may occur when one set of subunits was replaced 

by the other.  They found that adding β1 to cells increased the C-L activity but did not affect the 

T-L or CT-L activity, while adding β5 decreased the CT-L and T-L activity but had no effect on the 

C-L activity. [24] Conversely, the addition of β5i increased the T-L and CT-L activity, while not 

affecting the C-L activity; the addition of β1i decreased the C-L activity and increased the T-L 

activity, but did not affect the CT-L activity. [21, 24, 25] Notably, adding β5 increased expression 

of β1, and vice versa, suggesting these subunits incorporate into proteasomes cooperatively. 

[24]   

The activity change seen above paired with the proximity to the TAP genes, lead many to 

theorize that these LMP subunits may form a different kind of proteasome, which was dubbed 

an immunoproteasome, to produce antigens for MHC class I presentation.  MHC class I 

molecules are found on all nucleated cells and function to display small, internally produced 

peptides to T cells.  If the peptides presented on the cell surface contain foreign proteins, known 

as antigens, the cell will be attacked by the immune system; otherwise, the cell is ignored.  It 

had been shown that the TAP proteins were required for antigen presentation by MHC class I 

molecules. [26, 27] However, work by a number of researchers quickly showed that these 

alternative catalytic subunits are not obligatory for antigen presentation by MHC class I 

molecules. [19, 21, 26-28]  Still, some suggested that immunoproteasomes may alter the 

spectrum of peptides produced or amplify specific proteolytic activities favorable for antigen 

presentation. [19, 21, 25, 27, 29]  Nevertheless, the vast majority of peptides presented by MHC 

class I molecules are generated by some form of the proteasome. [30] 

Further studies of the LMP subunits found that their expression could be induced by treatment 

with interferon-γ. [22] This work demonstrated that interferon-γ causes the expression of the 
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“inducible” proteasome subunits (β1i and β5i), thus the increase in the inducible subunits led to 

a decrease of proteasomes containing the constitutive subunits. [22]  However, the amount of 

β1i present in a cell after treatment with interferon-γ increases to varying degrees in a cell line-

dependent manner. [28] Transfection of β1i and β5i likewise mimic the changes in proteolytic 

activity and products produced by treatment of cells with interferon-γ, strongly suggesting that 

interferon-γ produces these changes by upregulating these two proteins. [21]  Knocking out 

signal transducer and activator of transcription 1 (Stat1) reduces the constitutive expression of 

immunoproteasome subunits, suggesting it might play a major role in their normal expression. 

[31] Thus, it is important to note that interferon-γ is essential for upregulation of 

immunoproteasome subunits, but not their constitutive expression. [31] 

Not long thereafter, the third pair of exchangeable subunits was identified: β2/Z and β2i/MECl-

1/LMP10. [32-34]  Like the other inducible beta catalytic subunits, β2i can replace β2 in humans 

and mice, the β2i gene shares 89% identity between the species, and β2i is inducible by 

treatment with interferon. [32-37]  Interestingly, the size of the β2i and β2 genes differ 

significantly, although both have eight exons and equivalent exon-intron boundries, suggesting 

they likely arose by duplication from a common ancestor. [36]  Later studies which examined β2 

found that its expression levels, like those of β1, increased upon β5 overexpression. [38]  

Additionally, a mutation of β2i which abrogates its catalytic activity causes loss of T-L activity, 

which is not a required proteasomal activity in rabbit tissues. [39, 40]   

As demonstrated above, the beta subunit genes are scattered throughout the genome, 

suggesting the stabilization of these proteins by incorporation into proteasomes; this would 

permit the rapid turnover of unincorporated subunits and provide a mechanism by which the 

subunits could be regulated in a cooperative manner. [41] In addition, studies show that the 

MHC class I expression deficiencies of a number of tumor cell lines could be overcome by 

treatment with interferon-γ. [42, 43]  This implies that such alterations in the protein expression 

patterns of malignant cells are due to regulatory or epigenetic changes, rather than direct 

genetic mutations.   

Additionally, the net effect of the incorporation of these inducible subunits in proteasomes may 

depend on the overall proteasome beta catalytic subunit composition in a cell or tissue. [44]  

With regard to the these proteins, it has been found that high mRNA levels do not always 

correlate with high protein levels, and the expression of β1i and β5i at the protein level varies 
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substantially between cell lines and tissues. [15, 28, 45, 46]  In mice, the mRNA levels of β1i and 

β5i are high in the thymus, spleen, and lung but absent in the brain and muscle, while protein 

expression is highest in the spleen. [15, 47] Likewise, β1i and β5i are constitutively expressed in 

all thymic antigen presenting cells in perinatal rats. [48] Moderate mRNA and protein levels of 

β1i and β5i are seen in mouse liver, kidney, and heart; in general, β1i and β5i are evenly 

distributed between the cytoplasm and nucleus in mouse liver. [15, 47, 49]  Interestingly, 

treatment with interferon-γ can induce immunoproteasome subunit expression in 

immunoprivileged organs of mice, such as the lens of the eye and the brain. [46, 50] 

In humans, the inducible subunit β1i mRNA levels are undetectable in fibroblasts, as well as 

smooth muscle, colon epithelial, and brain cells. [16]  β1i was not found in fetal livers and β5i 

was seen in only one-third of the samples examined. [51] However, β1i and β5i were seen in all 

adult liver samples at varying intensities. [51] Moreover, β1i, β2i, and β5i are expressed in 

human fetal and adult thymal tissues such as the stroma, epithelium, and macrophages of the 

cortex and medulla, but not in immature thymocytes. [52]  A C-terminal tagged version of β1i 

(LMP2-GFP) was found to be incorporated efficiently in proteasomes located through the 

cytoplasm and nucleus of human fibrosarcoma cells. [53] 

C. Crystallographic and structural studies of proteasomes 

Thermoplasma acidophilum is an archaebacterium which contains a very primitive form of the 

proteasome.  This was ideal for the initial studies of proteasomal crystal structure because of its 

simplicity, yet this archaebacterial proteasome was similar enough to be used to model the 

proteasomes of eukaryotes.  Its proteasome contains two distinct subunits, called alpha and 

beta, which are composed of a core of two five-stranded antiparallel beta sheets with three 

alpha helices above and two below. [54] The alpha and beta subunits have significant sequence 

homology, suggesting they probably evolved from a common gene. [54]  The crystal structure of 

the T. acidophilum proteasome depicts a complex with 72 point symmetry, a molecular weight 

of 673 kDa, and the barrel shape seen in earlier electron microscopy experiments. [54] There are 

four rings, two alpha rings on the ends with seven subunits each and two beta rings in the 

center, also with seven subunits each. [54]   The alpha subunits contain two putative nuclear 

localization sequences which were shown to be accessible to solvent in the crystal structure. 

[54] Additionally, the tight packing of the barrel structure should prevent access to the catalytic 
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core from any location other than the central channel, where the disordered N-termini of the 

alpha subunits could permit the entry of polypeptides. [54]  

Interestingly, the first eleven residues of the beta subunits were not present in the crystal 

structure, but Lys33 and Glu17 create a salt bridge in close proximity to Thr1, which may form a 

catalytic triad. [54]  These first eleven amino acids are known as the propeptide of the beta 

subunit, and their loss is necessary to produce a catalytically active subunit.  Later studies 

indicated that these beta catalytic subunit propeptides are not required for the assembly of the 

T. acidophilum proteasome. [55] Treatment of proteasomes with the aldehyde inhibitor Ac-LLnL-

CHO modified all of the beta subunits by formation of a hemiacetal with Thr1, but did not cause 

a conformational change in the protein. [54]  Mutational studies showed that while Thr1
Ala1 

mutants do not bind the proteasome inhibitor NLVS (4-hydroxyl-5-iodo-3-nitrophenyl acetate-

leucyl-leucyl-leucine vinyl sulfone), Thr1
Ser1 mutants did, suggesting the side chain hydroxyl of 

the first amino acid is important for the proteolytic function of these proteins. [56]   

With this structure in hand, scientists next examined the yeast proteasome crystal structure.  

They found a similar quaternary structure when compared to the T. acidophilum proteasome, 

with four stacked rings but only two-point symmetry. [57]  This reduction in symmetry is due to 

the existence of seven distinct alpha subunits and seven distinct beta subunits in yeast, which 

have the same secondary structure as seen in T. acidophilum, but form rings containing one 

copy of each distinct subunit (α1-7/β1-7/β1-7/α1-7).  [57]  Structurally, these proteasome subunits 

resemble N-terminal nucleophile hydrolases (Ntn-hydrolases). [57]   

In yeast, only three of the subunits in each beta ring have catalytic activity, as demonstrated by 

their binding to Ac-LLnL-CHO at the Thr1 hydroxyl: β1 (Pre3), β2 (Pup1), and β5 (Pre2). *19+ The 

propeptides of these catalytically active subunits are processed between Gly-1 and Thr1, with loss 

of Thr1 abrogating the proteolytic activity of the subunit. [57-60]  Mutation of the Thr1 to Ser1 

can maintain proteolytic activity, but, unlike in T. acidophilum, this decreases the cellular 

viability of yeast. [59] While the propeptides of β1 and β2 are not required for proteasome 

assembly, the propeptide of β5 is necessary for proper incorporation of the subunit, although it 

can function in trans with reduced efficacy to rescue β5 propeptide deletion mutants. [58, 61-

63]  Interestingly, it appears that the propeptides of β1 and β2 protect the N-terminal catalytic 

threonine against acetylation by Nat1-Ard1; acetylation blocks the enzymatic activities of these 

subunits. [62-64]  Next, the proteolytic activity of each of these catalytic beta subunits was 
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examined.  Mutational studies indicated that β1 had C-L activity, β2 had T-L activity, and β5 had 

CT-L (perhaps also some T-L) activity, but only the loss of β5 activity had a significant effect on 

cell viability and increased the levels of proteasomes present in cells. [57-62]  Another group 

suggested that BrAAP activity could be assigned to both β1 and β2. [60]  

Unlike the T. acidophilum proteasome, the other beta subunits in the yeast proteasome are 

catalytically inactive.  β3 and β4 are not processed, while processing of β6 and β7 by their 

catalytically active neighboring subunit leaves an eight to ten amino acid cap at the N-terminus; 

the processing of β1, β2, and β5 occurs via intrasubunit autolysis and only requires dimerization 

of the proteasome halves. [57, 61, 64]  β7 is important for this dimerization process, as its C-

terminal tail interacts with the other half proteasome to bring the two together in the proper 

alignment. [65] Nevertheless, all subunits are important, and mutations in any can be 

detrimental, as failure in assembly or processing is often more harmful to cells than proteolytic 

inhibition. [61]  The makeup of the substrate binding pocket is dependent on residue 45, found 

at the bottom of the binding pocket; however, adjacent subunits of the beta ring also contribute 

to the final binding pocket characteristics. [57] Thus, mutations which impinge upon subunit-

subunit interactions can abolish or decrease proteolytic activity, interfere with autocatalytic 

processing of the beta subunits, or destabilize the fully assembled proteasome. [57, 58, 61, 66]  

The core particle itself is autoinhibited by the alpha subunits, specifically their C-terminal tails, 

which cap the ends of the barrel and can prevent substrate entry. [67] α3 has an especially 

important role in this process, as its tail projects across the axis of symmetry, and this inhibition 

is relieved by the binding of a regulatory particle or treatment with sodium dodecyl sulfate. [67, 

68]  Additionally, hydrophobic peptides have been suggested to stimulate proteolysis by 

opening a channel in these alpha ring tails. [69] Alpha rings are formed with the help of 

dedicated chaperones Poc3/4 (Pba3/4) while proteasomes in general also require the assistance 

of Poc1/2 and Ump1p for normal cooperative assembly. [65, 70-72] 

D. Proteasome structure, assembly, and localization in mammals  

To begin to understand the assembly of human proteasomes, researchers looked to mice for 

detailed mechanistic answers.  Since mouse ubiquitin-proteasome pathway proteins generally 

have high homology with human proteins, and mice express both constitutive and 

immunoproteasome subunits, they are a better model for the human proteasome assembly 
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process than yeast.  From mouse studies it was determined that proteasome assembly is an 

irreversible process which requires continuous protein synthesis. [22, 73, 74]  The first step in 

proteasome assembly is the formation of an alpha ring. [74] Mouse proteasome assembly 

chaperones-3 and -4 (mPAC3/4) are homologous to yeast Poc3/4; they assist in the formation of 

alpha rings and remain as some of the beta subunits are added. [70] Beta subunits are added 

directly to the alpha ring as unprocessed propeptides to form precursor complexes (13S-16S). 

[73, 74] This is the step in which homologous subunit exchange may occur, as inducible 

proteasome subunits replace constitutive ones; proteassemblin, a homologue of yeast Ump1p, 

steps in at this point to help chaperone the assembly process. [22, 73, 75]  

These 13-16S precursor complexes are lost as 20S proteasomes are formed, a process which 

occurs in the cytoplasm and may continue with the association of a 19S regulatory cap to form a 

26S proteasome. [73, 74] It is important to note that processed catalytic subunits are found only 

in 20S proteasomes, as subunit processing and complete proteasome assembly are concurrent 

processes, and it is only after cleavage of the propeptide sequence that beta catalytic subunits 

are proteolytically active. [22, 73, 74] 11S and 19S caps are ATP-dependent enzymes which 

facilitate the deubiqutination and entry of substrates into the 20S catalytic core. [73] The 

amount of these caps is rate limiting, so association with 20S core particles is rapid and leaves 

many 20S proteasomes without a cap. [73, 76]  Fully assembled 26S proteasomes, containing a 

20S core and a 19S cap, can thus begin efficiently degrading proteins. 

In humans, the process of assembling proteasomes proceeds in a similar manner.  Human 

proteasomes are composed of two symmetrical halves, each holding a single copy of each alpha 

and beta subunit in their assigned position within their ring. [77]  A number of chaperones are 

involved in this process.  First, PAC1/2 form a heterodimer to interact with α5 and α7, assisting 

in the formation of an alpha ring. [78] The human analogue of yeast Ump1p and mouse 

proteassemblin (95% identity), POMP (PrOteasome Maturation Protein), interacts with the ER 

membrane and the alpha ring. [75, 79, 80] The levels of POMP mRNA increase upon treatment 

with interferon-γ, likely resulting in increased protein levels which assist with more rapid 

proteasome assembly. [79] POMP and the PAC3/4 dimer (homologues of yeast Poc3/4) then 

assist in the recruitment of beta subunits onto the alpha ring. [70, 80]  Unlike in yeast, human 

proteasome propeptides are not essential for the correct positioning of subunits within the core 

particle. [81]  However, the β5 propeptide directs proteasome assembly to encourage the 
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cooperative assembly of constitutive proteasomes and immunoproteasomes, rather than 

intermediate proteasomes. [79, 82] Additionally, having a propeptide, even one of another 

subunit, is important for the incorporation of the β5 and β5i subunits, which are the rate limiting 

step of proteasome assembly. [82] 

A knockdown experiment undertaken using siRNA in human embryonic kidney cells suggests 

that beta subunit assembly begins with β2 binding to an alpha ring associated with POMP, which 

requires the β2 propeptide and C-terminal tail. [83] This is followed by the addition of β3, which 

is coupled to the loss of PAC3. [83] The addition of β4 creates the 13S half proteasome, a 

commonly seen assembly intermediate. [83] β5 is then added and, assuming its propeptide is 

present, β6 incorporates. [83] Apparently, β1 can incorporate at any time after β2/3, but its 

incorporation is a prerequisite for the addition of β7. [83] Additionally, there is an interesting 

correlation between β1i and β2i incorporation, with some studies suggesting β1i enhances β2i 

incorporation, others suggesting the opposite, and some which postulate that the effect is cell-

type dependent. [35, 84, 85]  Finally, when β7 is added to the ring, which requires the β7 C-

terminal tail, the 16S half proteasome is formed. [83] β1 and β1i lose their propeptides while in 

16S complexes; however, subunit processing and proteolytic activation do not coincide, as the 

processing that occurs in 16S complexes is insufficient to provide proteolytic activity, and may 

require additional factors. [74, 86]  

This propeptide processing is a two-step autocatalytic process, requiring the Gly-1/Thr1 

consensus motif and Lys33. [81, 86, 87]  A key piece of evidence supporting this two-step 

hypothesis is that the β1i mutant, where Ala1 is encoded in place of Thr1, results in an N-

terminal extension of nine to ten amino acids resulting from cleavage between Gly-11/Ser-10 or 

Ser-10/Phe-9, but does not affect subunit incorporation or complex assembly. [25, 81] A similar 

result was seen with the same mutation in β2i. [39]  

Finally, the tail of β7, along with POMP, assists in dimerizing the 16S proteasome halves. [80, 83]  

This process can be disrupted by proteasome inhibitor subunit 31 (PI31), which decreases the 

ability of 16S immunoproteasome to dimerize, although the mechanism for this inhibition is not 

yet clear. [88] POMP then serves as one of the first substrates of the new, catalytically active 

20S proteasome. [80]   
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While many of the initial studies of constitutive and inducible subunits suggested cooperative 

incorporation of all three beta catalytic subunits, other studies contradict these findings. [22, 24, 

35, 36, 38, 44] In support of the cooperative hypothesis, a study found that treatment with 

interferon-γ works quickly to reorganize proteasome types, decreasing the number of 20S cores 

associated with 19S caps and increasing the number of immunoproteasomes, usually within 24 

hours. [89]  One of the first studies to contradict this hypothesis and suggest the existence of 

intermediate proteasomes was a study done in mouse macrophages that found β5i to exist in 

β1i-containing proteasomes as well as in proteasomes depleted of β1i. [28] Another group later 

hypothesized the existence of eight possible half (16S) proteasomes if all catalytic beta subunits 

can incorporate independently, which increases to 36 proteasome types if the composition of 

the two beta rings are independent. [34] This suggests a high level of variability in proteasomes, 

especially if each intermediate proteasome has different functions or expression levels. 

Additionally, an increasing level of complexity is present when considering that the 20S cores 

may associate with regulatory caps.  These 19S and 11S caps assemble to form proteasomes 

containing one, two, both, or no caps. [90]  β1i and β5i are found both with and without caps, 

although more are seen without. [76] 

Studies in rats suggest that at least some of these intermediate proteasome cores exist in vivo, 

as six subtypes of proteasomes were identified from rat muscle. [91] While the most abundant 

type appeared to be constitutive proteasomes, a significant amount was of the intermediate 

type (β1, β2, β5i and β1/β1i, β2, β5i), and a few were immunoproteasomes. [91]  When the 

authors examined rat spleen, the immunoproteasome type was most prevalent, with some 

intermediate proteasomes as well (β1, β2i, β5i and β1/β1i, β2i, β5i). [91] Later work suggested 

the presence of intermediate proteasomes in multiple myeloma (MM), plasmocytoid 

lymphoma, T-cell lymphoma, non-Hodgkin’s lymphoma (NHL), colon adenocarcinoma, and lung 

adenocarcinoma based on quantitation from enzyme-linked immunosorbent assays (ELISA). [92] 

Since then, two major intermediate human proteasome subtypes (β1, β2, β5i and β1i, β2, and 

β5i) have been identified as responsible for the generation of certain clinically-relevant tumor 

antigens. [93] These subtypes are one-third to one-half of the proteasomes found in human 

liver, colon, small intestine, kidney, dendritic cells, and tumor cells. [93] 

These studies seem to also support the hypothesis that the composition of the two beta rings 

which assemble to form 20S proteasomes are independent; both β1 and β1i are found in some 
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subtypes, which was suggested previously in transfected human cells. [53]  Additional work in 

pancreatic cancer cell lines demonstrated high variability of β1i and β2i expression between cell 

lines, suggesting the proteasome likely forms distinct subtypes in each cell line. [94]  Perhaps 

most significantly, the activity of each subtype against fluorogenic peptide substrates varied 

considerably, and thus proteasome characteristics of tissues are an average of the activities of 

the subtypes found in each tissue, even though each type of proteasome may have unique 

activities and/or functions in vivo. [91]   

Conclusive evidence for a different kind of intermediate proteasome came in 2007 with the 

discovery of the thymoproteasome.  A thymoproteasome contains β1i, β2i, and β5t, a novel 

subunit located adjacent to the β5 gene and found exclusively in cortical thymic epithelial cells. 

[95, 96]  β5t has greatly reduced CT-L activity, likely due to its hydrophilic S1 pocket, allowing it 

to produce the peptides necessary for the positive selection of major and diverse MHC class I-

restricted CD8+ T cells. [95, 96]  Studies in knockout mice demonstrated the non-lethality of β5t 

knockouts, but also showed a severely defective response to allogeneic and viral antigens, 

resulting in lethal influenza infection. [96] 

When later studies confirmed the existence of proteasomes containing both constitutive and 

immunoproteasome catalytic beta subunits, they were found in the cytoplasm, nucleoplasm, 

and microsomes of HeLa cells. [97, 98] As Marian Orlowski and colleagues noted in 1999, “There 

is a tendency to assume that substrate binding properties, and therefore specificity of a pair of 

identical catalytically active subunits, are the same.” [99]  As the active sites of the proteasome 

are actually formed by pairs of neighboring beta subunits, one can postulate that intermediate 

proteasomes may have some effect on the function of identical beta catalytic subunits. [77]  

One could also postulate that proteasomal cellular localization may be unique between types or 

have functional consequences. 

Proteasomes are generally found throughout mammalian cells, diffusing rapidly throughout the 

cytoplasm and nucleus, but are absent from the perinuclear region (i.e.: nuclear envelope) and 

nucleoli. [53, 100]  Studies in rodents showed that proteasomes are found in nuclear, cytosolic, 

and microsomal fractions but not always at the same levels. [73, 101]  For example, 

proteasomes levels in rat liver are ten-fold higher in the cytosol than nuclei and six- to seven-

fold higher in the cytosol than the microsomes. [101] Additionally, membrane-bound 
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proteasome have been localized to the exterior membranes of the smooth endoplasmic 

reticulum, cis-Golgi, and mitochondria. [101, 102] 

Interestingly, proteasomes are only able to diffuse slowly and unidirectionally from the 

cytoplasm to the nucleus of interphase cells, although they can move about freely during mitosis 

until the nuclear envelope is restored. [53]  While the nuclear distribution of proteasomes is 

species-specific and varies between higher and lower eukaryotes, human proteasomes are 

found in speckles, nuclear bodies, nucleoplasmic foci, and diffusely throughout the nucleoplasm 

in interphase human epithelial cells. [103] These nuclear proteasomes have significant 

proteolytic activity as they seem to co-localize with and degrade substrate proteins in specific 

subnuclear foci, such as splicing speckles and PML bodies. [100, 103, 104] 

E. Constitutive and immunoproteasome functions 

The proteasome is a proteolytic enzyme complex consisting of Ntn-hydrolases and noncatalytic 

subunits, yet the question of function remains partially unanswered.  Generally speaking, the 

main function of the proteasome is the degradation of proteins.  Its function is both this simple 

and much more complex.  Protein degradation is a method by which cells regulate protein 

function, perhaps best demonstrated by the proteasome-dependency of cell cycle progression.  

Cellular responses to oxidative and other kinds of stress conditions rely on proteasomes, such 

that tissues with higher proteasome activity (such as the liver) cope better with stress than 

those with lower proteasome activity (such as the brain). [105]  Oxidized proteins can be 

degraded without ubiquitin conjugation by any fully assembled form of the proteasome. [106] 

Likewise, in cells with compromised ubiquitin-conjugating activity, proteasomes preferentially 

degrade oxidized proteins at nearly normal rates. [106]  It is important to note that proteasome 

complexes are stable during the degradative process. [107] 

The overall composition of the proteasome complex affects the activity of the proteasome, as 

do levels of detergents, ATP, and cytokines, as well as the substrate being degraded. [30, 90, 99, 

108, 109]  Generally, 26S proteasomes degrade proteins into peptide fragments containing 3-22 

amino acids (mean=8), fitting a log normal distribution; the size of these peptides is similar 

between 26S and 20S rabbit muscle proteasomes as well as T. acidophilum proteasomes. [40, 

110]  However, the 26S and 20S proteasomes from rabbit muscle cleave the same peptides 
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differently, and inhibition of multiple catalytic beta subunits is necessary to substantially 

decrease protein proteolysis. [40, 111]   

Proteasomes are likewise a major player in the production of peptides for antigen presentation.  

While the proteasome determines both the N- and C-termini of peptides during cleavage, it is 

the C-terminus which is more important for antigen presentation. [29, 112]  Prior to 

presentation, however, these peptides may undergo additional processing to produce an 

antigen of the correct size and sequence.  The proteasome is sufficient to generate the correct 

C-termini of epitopes, but another protease is responsible for generating the correct N-

terminus. [29, 112]  As one might expect, proteasome inhibition can modulate antigen 

presentation when the inhibition is partial and selective, or block it completely at high levels. 

[13, 113] 

Additional unorthodox roles for the proteasome have been elucidated in recent years.  

Proteasomes co-precipitate with eukaryotic initiation factor 3 subunits, ribosomal proteins, and 

glutamyl-tRNA synthetase in a supercomplex known as the translasome. [114]  Proteasomes 

also influence the transcriptional machinery as well as histone methyltransferases. [115]  More 

interestingly, unequal partitioning of proteasomes between daughter cells during metaphase in 

T lymphocytes is responsible for the unequal distribution of proteins into daughter cells, 

promoting unique differentiation events in each. [116]  Increased expression of the proteasome 

subunit β5 has been shown to enhance resistance to oxidative stress and increase the number 

of doublings prior to senescence. [38]  Perhaps it is not surprising that increased expression of 

26S proteasome genes is correlated with tumor progression and metastasis, accurately 

predicting clinical outcomes of breast cancer patients. [117] 

The functions of immunoproteasomes, on the other hand, are less well defined.  

Immunoproteasomes are also protective against oxidative stress and degrade oxidized proteins 

efficiently. [118] In a human lymphoblastoid cell line, mutating β5i, and thereby inhibiting its CT-

L activity, has a significant effect on the growth rate of cells, which suggests this activity is 

required for survival. [79] In general, immunoproteasomes seem to degrade substrates more 

rapidly than constitutive proteasomes. [89] 

26S immunoproteasomes produce peptides of 3-22 amino acids (mean=7-8) fitting a log normal 

distribution. [110] Compared to constitutive proteasomes (from rabbit muscle), 



16 

 

immunoproteasomes (from rabbit spleen) cleave a hydrophobic substrate [Z-GGL-AMC] 50% 

faster, a basic substrate [Boc-LRR-AMC] 100% faster, and an acidic substrate [AcYVAD-AMC] at 

20%  of the rate of proteasomes. [110]  This loss of acidic proteasome cleavage can be most 

directly linked to the replacement of β1 by β1i. [21, 24, 25] Homology studies suggest that the 

altered amino acid composition of the S1 pocket of β1i makes it more apolar and constricted 

which should reduce the C-L activity and promote the CT-L activity of this subunit. [57]  

Some more exotic roles for immunoproteasomes have been discovered as well.  They have a 

role in proper retinal function in mice, as retinal function is disturbed in β2i/β5i knockout mice. 

[119] β1i is involved in human trophoblast invasion, the process by which a human embryo 

implants and interacts with the maternal uterus. [120]  Proteasomes containing β1i are also 

recruited by steroid receptor coactivators and enhance estrogen receptor-mediated 

transcription, both at the initiation and elongation steps. [121] 

When it comes to antigen presentation, immunoproteasomes have varying levels of efficacy in 

producing the correct antigenic peptide.  It is well understood that the importance of any 

particular catalytic subunit for antigen presentation is epitope dependent. [25, 85, 109-111, 122, 

123]  Dendritic cells, a set of antigen presenting cells which constitutively express the 

immunoproteasome, are incapable of producing antigenic peptides generated by the 

constitutive proteasome, a finding that has implications for vaccine development. [124] The 

products of insulin-like growth factor 1 cleavage vary significantly when comparing proteasomes 

to immunoproteasomes of rabbits. [110]  An analysis of ten antigens from melanoma shows that 

four were presented more efficiently after immunoproteasome induction while six were 

presented less efficiently. [124]  For example, the immunodominant epitope of the Ova protein 

is produced by immunoproteasome cleavage of Ova 11% of the time, but it is only produced 6% 

of the time when Ova is cleaved by the constitutive proteasomes. [110]  Likewise, 

overexpression of β1i, β2i, and β5i greatly improved the presentation of an immunodominant 

lymphocytic choriomeningitis virus T cell epitope, although neither β1i or β5i was required for 

clearance of this viral infection in mice. [122, 123]  β5i, however, is essential for the survival of 

mice after infection with Toxoplasma gondii. [125]  Addition of catalytically inactive β1i (T21A) 

reduces the processing and production of some antigenic peptides, but may enhance that of 

others. [25]  Similarly, the production of these antigenic peptides, but not other parts of the 

peptide presentation process, can be blocked by inhibiting the immuno/proteasome. [30] 
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Bioinformatics analysis shows that immunoproteasomes cleavage is more amino acid specific 

than constitutive proteasome cleavage, as immunoproteasomes cleave after fewer amino acids 

residues. [126]  Interestingly, the use of the highly abundant amino acid leucine as a 

degradation signal allows the immunoproteasome to degrade proteins with a similar efficiency 

when compared to constitutive proteasomes. [126]  The increase in CT-L activity found in 

immunoproteasomes allows for the generation of significantly more potential MHC class I 

ligands than constitutive proteasomes; however, these changes in proteasome activities do 

destroy some antigenic peptides. [109, 124, 126]   

Interferon-γ also plays a major role in the efficient production of antigens.  It stimulates the 

production of leucine aminopeptidase (LAP) and endoplasmic reticulum associated protein 1 

(ERAP1), proteins which trim the N-termini of peptides. [29, 127]  ERAP1 trims these N-termini 

sequentially, but not processively, and cannot trim peptides shorter than 8 amino acids. [127, 

128]  Additionally, interferon-γ induces the expression of the subunits of the 11S regulatory 

particle, which enhance antigen presentation independently of any changes to the beta catalytic 

subunits. [129] 

A way to begin to examine the possible function of immunoproteasomes and their beta catalytic 

subunits is to knock out these subunits in mice and explore the phenotypic results.  β1i, β2i, and 

β5i knockout mice have been generated and found to be without gross physical abnormalities. 

[44, 47, 130]  β5i knockout mice were the first to be reported; they show reduced MHC class I 

expression on cell surfaces, present some peptides less efficiently, but have normal numbers of 

T and B cells. [44, 131]  The effect of β5i on MHC class I expression is dominant, as seen in the 

case where β5i knockout mice die from T. gondii infections which are not lethal to wild type 

mice. [125, 131]  While loss of β5i is deleterious to the infectious response, it seems to be 

beneficial in a mouse model of colitis, a disease characterized by intestinal inflammation.  β5i 

knockout mice recover more quickly from dextran sulphate sodium-induced colitis and have less 

severe disease, likely due a reduction in the proinflammatory T cell and mucosal immune 

responses in the colon of β5i knockout mice. [132]   

On the other hand, β1i knockout mice were reported to have reduced levels, but not altered 

ratios, of CD8+ T lymphocytes in the blood, spleen, and thymus. [47, 122, 131]  Similarly, their 

ability to present antigens and activate T cells in response to infection was lessened. [47] This 

may be due to the fact that loss of β1i has been shown to alter the overall composition of the 
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proteasome, although β5i incorporation is not significantly affected. [47] These mice are more 

susceptible to T. gondii infection than wild type mice, but less so than β5i knockout mice. [125]  

β1i knockout mice also have smaller hearts and lower heart rates than wild type mice. [49, 133] 

Further studies of the β1i knockout mice showed that their ambulation and cognitive function 

were the same as control mice of the same background, but they had a higher body weight and 

degree of motor function. [49, 133, 134]  One study suggests that the increased motor function 

observed in patients with Parkinson’s and Huntington’s disease may relate to changes in 

proteasome subunit expression in the brains of these patients. [134]  

Proteasome activity in the spleen and liver, but not the muscle and brain, was altered in β1i 

knockout mice. [47]  They thus assemble mixed proteasomes in a tissue specific manner, which 

likely compromises antiviral antibody responses. [135] Moreover, levels of β5i and β2i were 

significantly reduced in β1i knockout hearts, resulting in lower proteasome activities worsened 

by ischemic preconditioning. [133] This lack of cardioprotection in knockout animals can be 

traced to their inability to inactivate phosphatase and tensin homolog (PTEN) by degradation in 

the heart. [49, 133]  The cardiomyopathy seen in the knockout mice is similar to that observed 

in type 2 diabetic hearts, suggesting immunoproteasome subunit expression may be responsive 

to blood insulin levels. [49] Interestingly, female β1i knockout mice develop spontaneous 

uterine neoplasms as they age, while β1i/p53 double knockout mice have a small but significant 

reduction in survival. [136, 137]   

β2i knockout mice have fewer CD8+ splenocytes than wild type mice and show a reduction of 

cytotoxic T lymphocyte response to certain epitopes in response to infection with lymphocytic 

choriomeningitis virus. [130] While β2i knockout mice incorporate β5i efficiently, β1i 

incorporation is reduced, suggesting cooperative assembly of these two subunits. [130]  Double 

knockout mice of β2i and β5i were also created and found to possess fewer CD8+ T cells in the 

spleen. [131]  After subjecting these mice to whole body irradiation and bone marrow 

transplantation, multiorgan autoimmunity develops with the lack of immunoproteasome 

subunits in the target tissues in a causative role. [138] 

F. The ubiquitin-proteasome pathway and immunoproteasomes in disease 

As one might imagine from their important role in normal cellular functions, the ubiquitin-

proteasome pathway and its constituents play distinct and important roles in a variety of 
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disease states.  Pure numbers would suggest these enzymes are important, even excluding their 

function as regulators of cellular proteins.  Current estimates show eight E1 enzymes, 

approximately 40 E2s, and almost 100 DUBs in five families. [139]  A single subtype of E3 ligases 

alone exceeds the total number of kinases in cells. [139]  As the majority of cellular proteins 

proceed through this pathway prior to degradation, the proteasomes control a number of 

important proteins implicated in disease.  Immunoproteasomes specifically have been 

implicated in cancers as well as autoimmune, inflammatory, neurological, and infectious 

diseases. Unfortunately, some of these studies rely on mRNA upregulation to suggest the 

protein is important to the disease process, though studies have clearly shown that upregulation 

of proteasome subunit mRNA does not always translate to increased protein expression. [45, 

46] 

Perhaps the most controversial link between immunoproteasomes and autoimmune disease 

came from Faustman’s group, who suggested that β1i plays a role in the reduction of NF-κB 

activation in a mouse model of diabetes (NOD), a link strongly disputed by the groups of Ploegh 

and Monoco. [140-143]  Resolution of this issue awaits a truly selective β1i inhibitor and a group 

interested in wading into such rough waters.  Other, better accepted links between autoimmune 

diseases and immunoproteasomes are found in the more recent literature.  Circulating 

proteasomes are detected at significantly higher levels in patients with active systemic 

autoimmune diseases (autoimmune myositis, systemic lupus erythematosus (SLE), primary 

Sjögren’s syndrome, rheumatoid arthritis (RA), and autoimmune hepatitis) compared to healthy 

controls and are thought to correlate with other markers of disease severity/activity, possibly 

representing the extent of systemic cellular damage. [144]  Two patients were shown to have 

β5i present in their circulating proteasome samples. [144]  Another study examining primary 

Sjögren’s syndrome found upregulation of β1i, β2i, and an 11S subunit (PA28α) mRNA levels, 

but downregulation of the β1i protein when compared to normal controls. [45]  Interestingly, 

the other autoimmune patient tissues examined in this study had increased β1i subunit 

expression compared to normal controls. [45]  Expression of β1i has also been correlated with 

Hashimoto thyroiditis and psoriasis in patients. [145, 146]  β5i expression is correlated with 

Hashimoto thyroiditis and type I diabetes. [49, 138, 145] 

Due to the role of immunoproteasomes in antigen presentation, research into the effects of the 

immune system and infection on proteasome composition is expanding. In the area of vaccine 
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development, researchers are finding that in those proteins for which the immunodominant 

antigen(s) are not produced by the immunoproteasome (the major proteasome subtype in 

antigen presenting cells), vaccines should contain the immunodominant peptide rather than the 

whole protein. [124] A number of viral infections utilize this weakness of the immune system 

and hijack the cellular processes by which immunoproteasomes are produced to avoid detection 

by the immune system. [147] Specifically, while infection of mice with the lymphocytic 

choriomeningitis virus in the brain leads to upregulation of immunoproteasome catalytic 

subunit mRNA, few active and assembled proteasomes are found there, likely due to post-

translational regulatory mechanisms. [46] Mouse cytomegalovirus actually makes a protein 

(M27) which inhibits Stat2 and disrupts interferon-γ signaling, leading to the blockage of 

immunoproteasome subunit transcription. [147] Human cytomegalovirus can also block the 

production of immunoproteasome subunits. [147] Interestingly, one study suggests that type I 

interferons (alpha and beta, predominately) may actually be more important for the 

upregulation of immunoproteasome subunits in infections than the classically important 

interferon-γ. [148]  Much still remains to be understood about the role of immunoproteasomes, 

constitutive proteasomes, and intermediate proteasomes in the immune response to infection. 

Neurological disorders are perhaps the most surprising pathology for which immunoproteasome 

expression has been indicated, considering the immunoprivileged status of the brain. The link 

between the brain and immunoproteasome subunit expression was first suggested in studies 

with knockout mice, and later examined in other rodents. [134] In a conditional mouse model of 

Huntington’s disease, β1i and β5i but not β2i were upregulated in the cortex and striatum after 

significant neuropathy had occurred. [149]  Further examination found β1i upregulation in all 

cortical neurons displaying the ultrastructural features of degeneration. [149]  A more 

mechanistic study in a rat model of amyotrophic lateral sclerosis (ALS) showed that 

immunoproteasome upregulation was a compensatory response to the disease, such that 

blocking immunoproteasome induction is quite deleterious in this model. [150]  In animal 

models of experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis 

(MS), upregulation of β1i, β2i, β2, and β5 was seen. [151]  Unlike the ALS model, however, 

treatment with a proteasome inhibitor alone, or in combination with lysosomal inhibition, 

seems to be a potential therapeutic strategy. [151] 
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When examining patients with neurodegenerative conditions, links have been found between 

immunoproteasome subunit expression and disease pathology.  For instance, in grade four 

Huntington’s disease patients, β1i and β5i expression increased in the cortex and striatum when 

compared to age-matched controls. [149]  Additionally, β1i expression in the hippocampus and 

cerebellum, specifically in the neurons and astrocytes, was higher in patients with Alzheimer's 

disease compared to non-demented elderly. [152]  The young show no such expression of β1i in 

these parts of the brain. [152]  Another study looking at risk factors for MS in Italians found 

females with a certain allele combined with a β1i polymorphism have a lower risk of developing 

MS, possibly due to fewer autoreactive T cells. [153]  This lends support to further investigations 

of the role of immunoproteasomes in neurological disorders. 

Another group of pathologies which upregulate immunoproteasomes are inflammatory 

diseases.  In general, immunoproteasomes play a role in the cellular damage response to 

stresses such as interferons, lipopolysaccharide, arsenic trioxide, nitric oxide, and heat by 

clearing the cells of damaged proteins. [89]   Immunoproteasomes actually clear oxidatively and 

otherwise damaged proteins more quickly than constitutive proteasomes. [89] Thus, an 

expected effect of diseases associated with inflammatory cytokines is immunoproteasome 

upregulation, although this may not always be beneficial.  In inflammatory bowel disease (IBD), 

immunohistochemistry detected increased β1i expression in diseased and histologically normal 

tissues from IBD patients compared to healthy control patients. [154] The correlation between 

β1i expression and histological grade and/or intestinal pathology of these patients was highly 

significant. [154]  Similar results were found in the livers of patients with chronic alcoholic 

hepatitis and hepatic cirrhosis.  In these patients, β1i and β5i immunohistochemical staining was 

highly significantly increased overall, as well as in the nucleus, when compared to normal 

tissues. [51]  In an inducible model of ulcerative colitis, a type of IBD, β5i knockout mice recover 

more quickly and have less severe disease than control mice, possibly due to a reduction in the 

proinflammatory response of the mucosal immune cells. [132]  Inhibition of the proteasome 

using small molecule drugs gave a similar or better effect than β5i knockout, although high 

doses of proteasome inhibitors produced severe, drug-mediated side effects. [132]   

Some diseases are associated with changes in the amino acid sequence of proteasome catalytic 

beta subunits rather than their expression levels.  For instance, hypersensitivity pneumonitis, an 

inflammation of the lung due to the inhalation of organic particles by a susceptible patient, is 
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very significantly associated with β5i and β1i polymorphisms.  [155]  More recently, single 

polymorphisms in β5i were found in two different inflammatory diseases: JMP, an autosomal-

recessive syndrome presenting with joint contractures, muscle atrophy, microcytic anemia, and 

panniculitis-induced childhood-onset lipodystrophy and Nakajo-Nishimura/JASL, characterized 

by joint contractures, muscle atrophy, fever, rash, and loss of adipose tissues. [156-158]  These 

mutations have been shown to disrupt the tertiary structure of the β5i protein, reducing both its 

incorporation into proteasomes and its catalytic activity. [156-158]  As more groups begin to 

explore this portion of the proteome, additional correlations will likely be discovered. 

Ubiquitin-proteasome pathway dysfunction is observed in most, if not all, cancers. [159]  As the 

components of this pathway are so numerous, it is unlikely that there will be any one target 

which will be generally therapeutic.  However, proteasomes may serve as an indicator of the 

severity or activity of diseases, such as autoimmune myositis, SLE, primary Sjögren’s syndrome, 

RA, autoimmune hepatitis, and cancers. [144, 160]  In case studies, researchers were able to 

correlate the disease process with the levels of circulating proteasomes, which may represent 

the extent of systemic cellular damage. [144, 160]   

Circulating proteasome levels are also important in the case of monoclonal gammopathy of 

undetermined significance (MGUS), a disease that is best described as a milder version of MM.  

Specifically, the levels of circulating proteasomes are higher in MGUS patients compared to 

healthy controls, and are higher in MM patients than MGUS patients. [160]  Additionally, 

increased concentration of circulating proteasomes correlates with advanced MM and is an 

independent prognostic factor for MM. [160]  As proteasome inhibitors are currently indicated 

primarily for MM, this finding represents an interesting and novel way to track progression of 

the disease and also suggests the importance of the proteasome in the disease process. 

As Hanahan and Weinberg note in, “Hallmarks of cancer: the next generation” an update of 

their seminal review article from 2000, two of the emerging hallmarks of cancer are tumor-

promoting inflammation and evading immune destruction. [161, 162]  The regulation of the 

immunoproteasome can be linked to both of these hallmarks.  Immunoproteasome catalytic 

subunit expression is often important for cellular responses to inflammation, due to molecules 

such as interferons, tumor necrosis factor-α, nitric oxide, and lipopolysaccharide promoting 

immunoproteasome formation in cells. [25, 85, 89, 109-111, 122, 123, 148, 163-165] Quite a few 

studies have examined the role of immunoproteasomes in the antigen generation process of 
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cancers.  The vast majority of studies thus far indicate a correlation between downregulation of 

the components of the antigen processing pathway and disease progression.  It is postulated 

that loss of these proteins may assist malignant cells in avoiding immunosurveillance. [166]   

Dendritic cells are antigen presenting cells that play a major role in immunosurveillance by 

activating T cells using antigens recovered from tumor cells.  These activated T cells can then 

destroy any cancerous cells which express this antigen.  A recent study suggests that reducing 

the immunoproteasome levels in dendritic cells may induce an antitumor response to cancers 

containing mainly constitutive proteasomes. [167] Additionally, the expression of β1i and β5i is 

correlated with the presence of tumor-infiltrating lymphocytes and spontaneous regression in 

melanomas. [168] 

The next pressing question is how cancer cells may be able to prevent the expression of 

immunoproteasome beta catalytic subunits.  A study in melanoma cells utilized histone 

deacetylase (HDAC) inhibitors to demonstrate that downregulation of these proteins (including 

β1i and β5i) may occur epigenetically, although changes in mRNA but not protein levels were 

examined. [169]  Additional support for this epigenetic downregulation hypothesis comes from 

another study showing interferon-γ is capable of inducing expression of β1i, β5i, TAP1, and TAP2 

in small cell lung cancer, Whilm’s tumors, prostate cancer cell lines, and a neuroblastoma which 

normally show low to no expression of these proteins. [43]  The downregulation of these same 

four proteins is also seen in the progression of low grade to high grade melanoma as well as in 

two acute myeloid leukemia patients followed from diagnosis to relapse. [166, 170]  

Coordinated downregulation of at least seven of these antigen processing machinery 

components was found in 41% of prostate cancer patients with early recurrence, but only 24% 

of patients without recurrence. [171]   

More specifically, immunoproteasome catalytic subunit expression levels vary in a number of 

malignancies.  β1i, β2i, and β5i expression was significantly lower in high-stage urothelial 

carcinomas than low-stage ones. [172]  In the progression of MGUS to MM, β1i, β2i, and β1 

levels decrease, suggesting changes in expression may be predictive of progression from MGUS 

to MM. [173] The expression of β1i and β5i was reduced or lost in 45% and 48% of esophageal 

squamous cell carcinomas, respectively, and it was strongly correlated with tumor grade and 

lymph node status. [174] In prostate cancer, β1i and β5i expression are lower, as detected by 

immunohistochemistry, compared to normal prostate tissue. [171] β1i and β5i are also 
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expressed in Hürthle cell adenomas and carcinomas, but with great interpatient and intrapatient 

variability. [145] Breast cancer patients with high expression of β5i as detected by microarray 

have significantly shorter survival time. [175] Additionally, knockdown of β5i expression in a 

resistant breast cancer cell line resensitized the cells to doxorubicin. [175] In the brain, 

astrocytomas express less β1i than astrocytes, and this downregulation was correlated with 

grade of the malignancy. [176]   

Interestingly, there are a few reports which suggest β1i expression is important for cancer 

growth and metastasis.  In the case of hydatidiform moles, a nonviable but fertilized egg 

implanted into the uterus, β1i overexpression may play a role in the highly metastatic 

phenotype sometimes seen in these abnormal growths, which can develop into a carcinoma. 

[120]  Additionally, β1i has been shown to be important for the formation of oncocytes, 

hypothyroidism, and interferon-γ-induced thyroid growth defects. [145]  While these studies 

seem to complicate the relationship between immunoproteasomes and cancer cell growth, 

interferon-γ pretreatment was shown to enhance the sensitivity of half of the solid tumor cell 

lines tested to a proteasome inhibitor drug. [177]  This strongly suggests that cells which express 

immunoproteasomes are sensitive to their inhibition, and thus, proteasome inhibitors may be a 

viable therapeutic option for certain solid malignancies. 

G. The development of proteasome inhibitors 

As mentioned above, the first proteasome inhibitors were the peptide aldehydes Z-LLF-CHO, Ac-

LLnL-CHO, and Ac-LLM-CHO. [12]  Through their library-based approach, M. Orlowski and 

colleagues found that aromatic residues in the P1 position increase the affinity of the inhibitor 

for the proteasome’s CT-L activity. [12] Later studies showed that peptide aldehydes with 

leucine as well as phenylalanine in the P1 position were effective inhibitors of bovine pituitary 

proteasome’s CT-L activity. [99] Additionally, the P2 position is often found to be extremely 

accommodating, as it faces away from the catalytic subunit in yeast proteasomes. [57] Ac-LLnL-

CHO was used in crystal studies of the yeast proteasome and found to bind to β1, β2, and β5 at 

the Thr1 side chain hydroxyl, likely as a hemiacetal. [57]  Further medicinal chemistry efforts 

yielded Carbobenzoxyl-LLL (MG132) and carbobenzoxyl-LLnV (MG115), which were found to 

block the degradation of short-lived proteins in yeast (Figure 1.2.A). [178]  Later studies with 

aldehyde inhibitors of specific activities in proteasomes purified from rabbit muscle showed that 

the CT-L activity is responsible for 11-50%, the C-L activity is responsible for 12-22%, and the T-L 
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activity is responsible for 3-35% of the degradation of model proteins. [111]  Thus, to block more 

than 50% of the proteasome’s activity requires the inhibition of multiple types of catalytic sites. 

[111] Perhaps most notably, Goldberg and colleagues remark that, “…the rates of proteolysis 

measured upon inactivation of one site do not simply reflect the contribution of that site but 

also the capacity of the residual sites to catalyze the degradation of the specific substrate.” 

[111]  While the further development of the aldehyde class of proteasome inhibitors has been 

limited by concerns regarding cross reactivity with cysteine and serine proteases, they have 

been utilized in a number of the important studies of the proteasome and assisted in the 

development of selective proteasome inhibitors. 

A natural product, lactacystin, was discovered in 1991 to induce the differentiation of 

neuroblastoma cells (Figure 1.2.B). [179, 180]  Later work by the Stuart Schreiber and EJ Cory 

labs found that lactacystin bound to the catalytic threonine of proteasome catalytic subunits, 

irreversibly inhibiting its T-L and CT-L activities, and its effect on neurite outgrowth was directly 

correlated to the degree of proteasome inhibition. [181]  While lactacystin prefers the CT-L 

activity, it can inhibit all three main proteasome activities and modify all six beta catalytic 

subunits of human proteasomes while not binding reproducibly to other proteins in 

lymphoblastoid cell lines. [30]  Later work showed that the β-lactone of lactacystin was capable 

of blocking the degradation of short lived proteins in yeast, similar to the effects of MG132 and 

MG115. [178] Groll and colleagues’ yeast crystal structure demonstrated that lactacystin bound 

to the β5 subunit, where it acetylates the side chain hydroxyl of Thr1 as a result of the β-lactone 

ring opening. [57]  Additional work that same year showed that lactacystin is a more specific 

inhibitor of the proteasome than the peptide aldehydes and that it also inhibits interferon-γ-

inducible proteasomes. [30] Interestingly, the localization of proteasomes is not affected by 

proteasome inhibitors, but after 24 hours of treatment, proteasome inhibitors induce a 

significant increase in proteasomal staining intensity. [100, 103]  Later work suggested that the 

β-lactone pharmacophore also binds to other proteases. [182-184]  This, combined with the 

highly complex synthesis of β-lactones, discouraged further medicinal chemistry efforts.  Still 

lactacystin remains a popular tool for cell and molecular biologists even today. 

Another early class of proteasome inhibitors was the vinyl sulfones.  The inhibitor N-

carboxybenzyl-leucil-leucil-leucil-vinyl-sulfone (Z-LLL-VS) covalently inhibits all three main 

proteasome activities in purified proteasome as well as in cell lines, although it binds to other 
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Figure 1.2: First generation proteasome inhibitors.  The structures of some early proteasome 

inhibitors are depicted. A. The peptide aldehydes MG115 and MG132.  MG132 is still used today 

as a general proteasome inhibitor. B. The natural product proteasome inhibitor lactacystin and 

synthetic inhibitor Z-LLL-VS. C. Molecular probes of proteasome function. 
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proteases as well (Figure 1.2.B). [56]  This class of molecules has been important in studies to 

understand the binding characteristics of substrates and inhibitors.  For example, vinyl sulfone 

tetrapeptides were used to elucidate the importance of the P4 position for directing binding 

specificity to active sites, providing more subunit selective inhibitors. [185]  In inhibitors with 

tetrapeptide length or longer, there appears to be less sequence specificity for the catalytic 

activities than is typically assumed based on the results from small peptide-based substrates and 

inhibitors. [186] Vinyl sulfones also provided more general proteasome inhibitors, such as 

adamantaneacetyl-(6-aminohexanoyl)3-(leucinyl)3-vinyl-(methyl)-sulfone (Ahx3L3VS), which binds 

all six active sites and can be labeled with radioisotopes, biotin, or fluorescent groups (such as 

MV-151) (Figure 1.2.C). [186]  The popularity of vinyl sulfones is limited by their affinity for 

cysteine proteases, against which they were originally developed, but vinyl sulfones are still 

used today as molecular probes of proteasomes. 

In 1998, dipeptidyl boronic acids were reported to be potent and selective proteasome 

inhibitors. [187]  Boronic ester inhibitors were initially developed to target serine proteases, but 

boronic acids were shown to be highly selective for the proteasomes over other proteases. [187]  

Interestingly, boronic acid proteasome inhibitors interact with the proteasome in a competitive 

but slowly reversible manner. [188]  These inhibitors were initially developed in hopes of 

treating muscle-wasting diseases, but many doctors and biologists were fearful that inhibiting 

the proteasome clinically would be extremely toxic. [189] The researchers at ProScript quickly 

decided using these boronic acid proteasome inhibitors as chemotherapeutic agents would be 

the best way to develop this drug class, as oncology doctors and patients are much more willing 

to tolerate significant side effects if the drug is effective. [189]  Millennium Pharmaceuticals 

acquired ProScript in 1999 and brought the lead boronic acid proteasome inhibitor into clinical 

trials in 2000. 

In the meantime, a final class of natural product proteasome inhibitors, the epoxyketones, was 

described in 1999. [190] Eponemycin was shown to bind β1i, β5i, and β5 as well as inhibiting 

cancer cell growth by causing apoptosis (Figure 1.3.A). [190, 191]  Epoxomicin, on the other 

hand, was shown to bind β2, β2i, β5, and β5i (Figure 1.3.A). [190, 192]  It inhibits primarily the 

CT-L activity of bovine proteasomes at low nanomolar doses, but does not inhibit other 

proteases such as trypsin, chymotrypsin, papain, calpain, and cathepsin B at concentrations up 

to 50µM. [192]  Crystal structure work was able to show that epoxyketones, epoxomicin 
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Figure 1.3: Epoxyketone proteasome inhibitors and their mechanism of action.  A. The 

structure of the natural product proteasome inhibitors eponemycin and epoxomicin, as well as 

the synthetic analogues YU101 and YU102.  B. At top, the pertinent portions of the epoxyketone 

proteasome inhibitor and catalytic beta subunit are shown.  The atoms in red will be part of the 

morpholino ring.  Activation of the threonine by a nucleophile (such as water) allows the 

threonine to attack the ketone, opening the epoxide ring with simultaneous closure of the 

morpholino ring. 
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specifically, form a morpholino ring with Ntn-hydrolases, covalently inhibiting their catalytic 

activity (Figure 1.3.B) [193].  Epoxomicin helped demonstrate the validity of partial and selective 

in vivo proteasome inhibition as an approach to alter antigen presentation, although the effects 

were epitope-dependent. [113]  Medicinal chemistry efforts with epoxyketones led to the 

development of YU101, a very potent and selective CT-L activity inhibitor with good anti-

inflammatory activity; further efforts provided YU102, a C-L selective inhibitor (at least 50-fold 

more potent towards the C-L activity than CT-L activity) which did not inhibit protein 

degradation as a single agent in bovine aortic endothelial cells (Figure 1.3.A). [194, 195]  Later 

medicinal chemistry efforts would be focused on increasing the specificity and potency of these 

diverse classes of proteasome inhibitors. 

H. Proteasome inhibitors as therapeutic agents 

Proteasome inhibitors are now changing people’s lives in the oncology clinic.  In 2000, the first 

MM patient who received a proteasome inhibitor in a Phase I study, designed primarily to 

evaluate safety, had a complete remission. [189] Due to such spectacular results as well as close 

collaboration with the Food and Drug Administration (FDA) and patient groups, bortezomib 

(MG341/PS-341/Velcade™) was approved in 2003, before the final Phase III trial was complete.  

Bortezomib is a boronic acid pharmacophore-based proteasome inhibitor, originally approved 

for relapsed or refractory multiple myeloma (Figure 1.4.A).  At the end of 2006, bortezomib was 

approved for use in mantle cell lymphoma patients who had received at least one prior therapy. 

This indication was extended in 2008 to include all stages of multiple myeloma, allowing for the 

use of bortezomib as a first line treatment.  As of March 2010, over 160,000 patients have been 

treated with bortezomib. [196] 

Bortezomib works in multiple myeloma by inhibiting proteasomal proteolysis.  In primary MM 

cells, proteasome activity is inversely correlated to the apoptotic sensitivity of cells to 

proteasome inhibitors. [197] Interestingly, when looking at MM cell lines, this does not hold 

true.  Altering the proteasome expression or proteasome workload of a cell lines changes its 

sensitivity to proteasome inhibition. [197] When one compares sensitive to resistant cells lines, 

sensitive cells express low levels of proteasomes and have higher levels of proteasome-

mediated turnover. [197] While many researchers use peripheral blood mononuclear cells 

(PMBCs) as surrogate markers for proteasome inhibition in tumor cells, these results suggest 

that PMBCs may not accurately recapitulate the proteasome inhibition seen in tumor cells. [198]   
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Figure 1.4: Proteasome inhibitors (circa 2008). The structures of published proteasome 

inhibitors are depicted. A. Boronic acid pharmacophore containing proteasome inhibitors. B. 

Marizomib, the beta-lactone proteasome inhibitor. C. Epoxyketone proteasome inhibitors, 

including our lead compound, UK-101. 
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Mechanistically, bortezomib targets β5, β5i, β1, and β1i at clinically relevant concentrations; as 

one might expect, the T-L activity is often increased after bortezomib treatment, as it tries to 

make up for loss of the other proteolytic activities. [198, 199] Treatment activates caspase-8- 

and caspase-9-dependent apoptosis. [199]   

Due to the resounding success of bortezomib in MM patients, Millennium quickly began trials of 

bortezomib alone or in combination for other indications, mostly cancers.  These studies have 

indicated that proteasome inhibitors in combination therapy will require optimization of 

treatment sequence and interval in addition to dose. [200] Preclinical evidence in other blood-

borne cancers suggests that bortezomib also causes caspase-4-mediated (ER stress-induced) 

apoptosis. [201]  Likewise, neoplastic B cell lines which overexpress β1i and β2 were most 

sensitive to bortezomib, while treatment of solid tumor cell lines with interferon-γ enhanced 

their sensitivity to bortezomib. [177] There have been 561 clinical trials of bortezomib, Phase I-

IV, and 214 are currently open. [202] 

While the efficacy of bortezomib was well-established in hematological malignancies, its 

potential as a monotherapy in solid tumors, especially those with limited therapeutic options 

and low survival rates, needed to be investigated.  Preclinical studies in non-small cell lung 

cancer (NSCLC) examined mechanistically which characteristics lead to sensitivity to bortezomib 

treatment.  They found that, to cause apoptosis, bortezomib must do two things: inhibit 

proteasomal proteolysis and overcome the cell’s intrinsic resistance to apoptosis. [203]  Using 

apoptosis as an end-point has been suggested to say as much about a cell’s lack of general 

resistance mechanisms, such as efflux pumps or proteasome overexpression, as it does about its 

actual sensitivity to loss of proteasome function. [203]  As Mortenson and colleagues suggest, 

“Therefore, the effect of bortezomib may not be sensitization of cancer cells to the apoptotic 

effect of chemotherapy, but may be modulating the cellular response to the chemotherapeutics 

and thereby accentuating cell death.” [200]  A study in ovarian cancer showed that cancerous 

cells have increased levels of proteasome expression and polyubiquitinated proteins compared 

to immortalized epithelial ovarian tissues, and bortezomib can cause p53-independent 

apoptosis in these cell lines. [204]  The authors conclude the proteasome may be a good target 

in solid epithelial tumors: “In sum, elevated proliferation and metabolic rate resulting from 

malignant transformation of the epithelium stresses the [ubiquitin-proteasome pathway] and 
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renders ovarian carcinoma more sensitive to apoptosis in response to proteasomal inhibition.” 

[204] 

Combination studies with bortezomib are also being explored.  In pancreatic cancer cell lines, 

treatment with bortezomib induced aggresome formation, a cytoprotective response which was 

not seen in immortalized human pancreatic epithelial cells or in vivo in mouse pancreatic 

epithelial cells. [205]  The researchers found that combination therapy with HDAC inhibitors 

could disrupt aggresome formation, leading to greatly potentiated apoptotic effects in 

pancreatic cancer cells. [205]  In prostate cancer patients, researchers used docetaxel and 

bortezomib to treat androgen independent prostate cancer.  While this therapy was feasible, 

tolerable, and showed antitumor activity, it was no more beneficial than monotherapy. [206] 

Overall, bortezomib has been very successful in the clinic, making a difference in the lives of 

patients.  As a first-in-class drug, it has paved the way for the fury of proteasome inhibitors that 

have reached investigational new drug (IND) status in the last eight years.  However, its clinical 

use is strictly limited by dose-dependent severe toxicities, most notably peripheral neuropathy.  

Other serious side effects include neutropenia and thrombocytopenia, as well as 

gastrointestinal, heart, lung, and liver problems. [196] Therefore, further development of INDs 

in this drug class require painstaking safety and efficacy testing in Phase I trials to quantify and 

minimize these side effects. 

The next proteasome inhibitor to be developed for the clinic came right on the heels of 

bortezomib.  In 2003, new life was breathed into the β-lactone class of proteasomes inhibitors 

with the discovery and characterization of the natural product proteasome inhibitor NPI-

0052/Salinosporamide A (now called marizomib) (Figure 1.4.B). [207]  It was shown to inhibit 

the proteasome faster than bortezomib and its inhibition lasted longer as well. [201]  

Mechanistically, it appears to cause caspase-4-mediated apoptosis (induced by ER stress) in CLL 

cells, even with only a 15 minute drug exposure. [201]  Xenograft mouse studies of human 

multiple myeloma cells showed reduced tumor size upon treatment with marizomib but no 

apparent toxicity. [208] Proteasome inhibition was prolonged in tumors and whole blood but 

not in other normal tissues. [208] Additionally, marizomib does not appear to be a substrate of 

the major ABC transporters involved in multidrug resistance. [209]  There are currently four 

open Phase I clinical trials of marizomib. [202] 
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At the same time, Millennium was busy designing better boronic acid proteasome inhibitors.  

Their next inhibitor was a bit of a surprise, as it was a dipeptidyl boronic acid designed to target 

parasitic proteasomes, called MLN-273 (Figure 1.4.A). [210]  Work by Millennium and others 

attempted to take advantage of small structural differences between human proteasomes and 

those from infections organisms to develop a new way to treat these diseases. [210-212]  MLN-

273 preferentially targets Plasmodium species and Mycobacterium tuberculosis proteasomes 

over human proteasomes. [210, 211]  In Plasmodium, ubiquitinated parasitic proteins 

accumulate and cell death occurs, even in species resistant to current therapies, suggesting 

MLN-273 could serve as a novel anti-malarial drug. [210]  Studies of MLN-273 bound to the M. 

tuberculosis proteasome show a unique binding pocket when compared to human proteasomes; 

the M. tuberculosis proteasome is functionally and structurally most similar to the T. 

acidophilum proteasome. [211]  Currently, there are no clinical trials of MLN-273 in the United 

States. [202] 

Cephalon, Inc got into the act in 2008 with the publication of their orally available boronic acid 

proteasome inhibitor, CEP-18770 (Figure 1.4.A).   It preferentially targets the CT-L activity of the 

proteasome, but also inhibits some serine proteases at high concentrations. [213]  While it has a 

similar tissue distribution when compared to bortezomib, it is less cytotoxic to normal human 

epithelial cells, bone marrow progenitors, and bone marrow-derived stem cells. [214] 

Combination treatment of MM cell lines with CEP-18770 and bortezomib or melphalan gave 

synergistic activity and resulted in apoptotic cell death. [215]  However, PBMCs were not 

affected, even at doses 10-fold above those needed to kill MM cell lines. [215]  While CEP-18770 

is orally bioavailable in rodents, oral doses are approximately one-third as efficient as 

intravenous. [213, 215]  Nevertheless, in a MM xenograft model, CEP-18770 gives a higher 

complete response rate when compared to bortezomib while causing minimal changes in body 

mass. [214]  Combination therapy in an in vivo model shows that CEP-18770 chemosensitizes 

tumors to bortezomib or melphalan therapy with little tumor progression, change in body 

weight, or difference in overall survival when compared to monotherapy. [215]  There are 

currently three total clinical trials of CEP-18770 in the United States, 2 open trials and one 

completed trial. [202] 

The next inhibitor developed for the clinic was PR-171 (now called carfilzomib), an epoxyketone 

registered by Proteolix, Inc (Figure 1.4.C).  Carfilzomib works by binding primarily β5 and β5i and 
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inhibiting the CT-L activity of proteasomes in cell lines, patient primary tumor cells (MM, CLL, 

AML, NHL, and Waldenstrom’s Macroglobulinemia (WM)), whole blood, and PBMCs. [216-218] 

Notably, carfilzomib inhibits other proteasome activities and subunits at higher concentrations; 

it may also be a substrate for permeability glycoprotein, a well characterized ABC transporter. 

[217]  In MM cell lines, carfilzomib induces intrinsic and extrinsic apoptosis as a single agent 

while also acting synergistically with dexamethasone. [217] More interestingly, carfilzomib was 

still effective in some cell lines which were resistant to other therapeutics (bortezomib, 

dexamethasone, or melphalan) as well as in bortezomib-resistant primary cells. [217] 

Later studies showed that more specific drugs, which block only β5 or β5i, were not cytotoxic in 

MM, PBMCs, leukemia, or lymphoma cell lines but that inhibiting both results in apoptosis. [92]  

In combination with bortezomib, carfilzomib was additive or synergistic in WM and B cell 

lymphoma (BCL) cell lines, depending on the dose used. [218]  As a single agent, carfilzomib 

caused apoptosis in WM and BCL cell lines in caspase-dependent and –independent manners. 

[218]  More recent studies suggest a role for carfilzomib in the treatment of lupus, as it prevents 

disease progression in a lupus-prone mouse model. [219] 

While there are currently 11 clinical trials of PR-171 open, only one has been published.  This 

Phase I study determined the maximum tolerated dose of carfilzomib in patients as 15mg/m2 

when treated for five consecutive days followed by nine days rest. [216]  Carfilzomib achieved 

wide tissue distribution, but the elimination half-life was less than 30 minutes. [216]  All patients 

reported side effects of therapy, most often Grade I/II gastrointestinal problems. [216]  Of the 

28 patients treated in this study, four were considered responsive (carfilzomib ≥ 11mg/m2) and 

nine had stable disease.  [216] 

Another epoxyketone proteasome inhibitor was reported in 2007 by us, called UK-101 (Figure 

1.4.C). [220]  Since previous work had demonstrated that the P2 serine was not critical for the 

binding of dihydroeponemycin, derivation at the P1’ and P2 positions of this molecule produced 

a library of inhibitors. [220, 221]  UK-101 was selected due to its specificity for the β1i subunit of 

the immunoproteasome, as no immunoproteasome specific inhibitors had thus far been 

developed.  In prostate cancer cell lines, UK-101 was able to induce apoptosis, but it did not 

inhibit angiogenic sprouting of fibroblasts, a process which relies on the constitutive 

proteasome. [220]  Later computational modeling of UK-101 bound to β1i suggested the basis 

for its specificity was a steric clash between the P1’ group and the binding pocket of β5. [222]  
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The work contained within this dissertation builds upon these studies to examine the 

importance of β1i for prostate cancer growth, using the PC-3 cell line as a model, and examines 

in more detail the binding preferences of the lead β1i inhibitor, UK-101. 
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Chapter 2: Specific Aims & Hypotheses 

The overall goal of this research is to develop small molecule modulators to utilize as molecular 

probes of immunoproteasome function and to explore as therapeutic agents for cancer.  

Immunoproteasomes, alternatively composed proteasomes found constitutively in cells of 

hematopoietic origin but inducible in other cells types, are not functionally well understood.  

While their expression is modulated in a number of disease states, the functional consequences 

of these changes in protein levels is not clear.  Some cancer cell lines upregulate the expression 

of the beta catalytic subunits of the immunoproteasome. [223]  In solid tumors, an 

inflammatory microenvironment may induce immunoproteasome expression as well.  Studies 

suggest that cells which express immunoproteasomes are sensitive to their inhibition, and thus, 

immunoproteasome inhibitors could be a viable therapeutic option for certain solid 

malignancies. However, no immunoproteasome-specific small molecules were available at the 

time this research began, so our ability to elucidate the functional importance of 

immunoproteasomes was limited, and inhibiting immunoproteasomes selectively was not 

possible. 

The approval of the proteasome inhibitor bortezomib (Velcade®) by the FDA for the treatment 

of multiple myeloma and refractory mantle cell lymphoma validated the catalytic subunits of the 

proteasome as chemotherapeutic targets.  However, the clinical utility of bortezomib was 

limited by severe systemic toxicity, including dose-limiting peripheral neuropathy, which was 

thought to be a class effect of proteasome inhibition.  Therefore, the development of more 

specific and selective inhibitors gained popularity as a methodology to minimize this toxicity.  

Targeting the immunoproteasome was also an attractive strategy, as this proteasome subtype is 

not expressed in peripheral nerves and thus immunoproteasome inhibitors were expected to 

show milder side effect profiles than bortezomib.  Such efforts led to the development of UK-

101, a β1i-subunit specific inhibitor, in the lab of Dr. Kyung-Bo Kim [220, 223].  UK-101 has 

shown an ability to inhibit the proliferation of cancer cells expressing increased levels of β1i 

while having a minimal effect on “normal” cells. 

The major purpose of the research described herein was to validate the mechanism of action of 

UK-101, proposed to be the inhibition of β1i, while simultaneously validating β1i as a 

chemotherapeutic target in the PC-3 prostate cancer cell line.  Previous work showed that UK-
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101 inhibited β1i via covalent modification, using multiple cancer cells lines, and caused 

apoptosis after 48 hours [223].  However, the effects of UK-101 on other cellular proteins were 

unknown. Our hypothesis was twofold.  First, we hypothesized that the expression and catalytic 

activity of β1i is important for the growth and proliferation of the PC-3 cell line.  Therefore, we 

hypothesized that the apoptotic effect seen upon treatment of PC-3 cells with UK-101 was due 

solely to its covalent inhibition of β1i.   

Using orthogonal tools to modulate the relative abundance and activity of β1i, we attempted to 

validate that the anti-proliferative effects seen upon treatment with UK-101 were due to the 

covalent modification of β1i and not other off-target effects.  In these same systems, we 

examined the effect of modulating the expression of β1i on PC-3 cellular proliferation, to 

determine the general feasibility of a β1i-targeting approach in cancer cell lines.  The 

methodology utilized to achieve these goals is elucidated in the following aims:  

Aim 1: Validate the target of UK-101 in the PC-3 prostate cancer cell line is β1i 

Aim 1.1: Using natural inducers of immunoproteasome subunits, determine the relative 

sensitivity of PC-3 cells to UK-101. 

Aim 1.2: Using RNAi-mediated knock-down of β1i protein levels, determine the relative 

sensitivity of PC-3 cells to UK-101. 

Aim 1.3: Using biotinylated probes of the proteasome, examine the time- and 

concentration-dependent binding pattern of UK-101 in PC-3 cells. 

Aim 2: Investigate the importance of β1i expression and function for proliferation in the PC-3 

prostate cancer cell line 

Aim 2.1: Using a siRNA-mediated knock-down of β1i protein levels, determine the effect 

of loss of β1i on the viability of PC-3 cells. 

 Aim 2.2: Using a plasmid-mediated overexpression of β1i protein levels, determine the 

effect of β1i and catalytically inactive β1i on the viability of PC-3 cells. 
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Chapter 3: Materials and Methods 

A. Cell culture  

The PC-3 prostate cancer cell line was obtained from American Type Culture Collection 

(Rockville, MD) and cultured in F-12K medium with 10% fetal bovine serum (Atlanta Biologicals, 

Lawrenceville, GA) or 10% Tet system approved fetal bovine serum (Clontech Laboratories Inc., 

Mountain View, CA) in tetracycline repressor transfected cell lines.  Antibiotics were used as 

part of selection media only, as noted in 3S. 

B. Compounds  

UK-101 was synthesized following procedures previously reported [220].  Human recombinant 

Tumor Necrosis Factor-α (TNF-α) from Escherichia coli (E. coli) was purchased from Sigma 

Aldrich (St. Louis, MO).  Interferon-gamma was purchased from eBioscience (San Diego, CA). 

Bortezomib was obtained from ChemieTek (Indianapolis, IN).  Epoxomicin, eponemycin, 

epoxomicin-biotin, eponemycin-biotin, carfilzomib, and YU102 were synthesized as previously 

described [191, 194, 221, 224, 225]. Puromycin dihydrochloride was purchased from Sigma 

Aldrich, G418 sulfate was purchased from Enzo Life Sciences Inc. (Farmingdale, NY), and Zeocin 

was purchased from Invitrogen (Carlsbad, CA). 

C. MTS cell viability assay 

PC-3 cells were plated at a density of 7,000-8,000 cells/well in a 96-well plate, and allowed at 

least 24 hours to attach.  The indicated inhibitors were added in increasing concentration and 

cells were treated for 48 hours. The percentage of cell survival was determined using the MTS 

reagent, CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI) 

following the manufacturer’s protocol. Briefly, 20µL of MTS reagent were added to cell samples 

in 100µl of culture media and incubated for one hour at 37°C. Absorbance was recorded at 

490nm wavelength on a microplate reader (FL600; Bio-Tek Instruments, Inc., Winnoski, VT) using 

the software KC4 v.2.5 (Bio-Tek Instruments, Inc.).  Cell proliferation was determined as a 

percentage relative to vehicle treated cells. IC50 values were calculated from sigmoid dose 

response curves by the method of nonlinear regression to a logarithmic function using GraphPad 

PRISM® (GraphPad Software, Inc, La Jolla, CA).  These data represent the average of three or 

more replicates with error bars showing the standard error of the mean. 
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D. Caspase activity assay 

Caspase 3/7, 8, and 9 activities were checked using the appropriate Caspase-Glo® kit for cell-

based assays and following the manufacturer’s instructions.  Briefly, cells were plated in sterile 

white 96 well plates and treated in the same manner as they were for the MTS assay.  At the end 

of the treatment time, 100µL of the room temperature assay dye was added to each well and 

mixed thoroughly (400 rpm for 30 seconds [Caspase 3/7] or two minutes [Caspase 8 & 9]).  After 

an additional 30 minute incubation, luminescence was measured for each sample using a 

Veritas™ Microplate Luminometer (Promega Corp., Sunnyvale CA).  Vehicle control was 

arbitrarily assigned a value of one and the fold increase of relative luminescent units was plotted 

in GraphPad PRISM® (GraphPad Software, Inc).  These data represent the average of three or 

more replicates and error bars show the standard deviation. 

E. Proteasome cell-based activity assay  

PC-3 cells were plated in a white-walled 96-well plate at a density of 8,000 cells per well in 50μL 

of media per well.  Cells were incubated at 37°C and 5% CO2 for 24 hours prior to treatment with 

either vehicle control, inhibitor control (10μM epoxomicin), or increasing concentrations (1μM, 

10μM, and 50μM of UK-101; 5nM, 50nM, 500nM of epoxomicin or bortezomib) of proteasome 

inhibitors for two hours.  Following equilibration to room temperature, 50μL of Proteasome-

Glo™ Cell-Based Reagent (Promega) containing the luminogenic proteasome substrate (CT-L, C-L, 

or T-L) in the appropriate buffer conditions was added to each well, according to the 

manufacturer’s instructions.  Samples were mixed on a plate shaker per the manufacturer’s 

instructions and incubated at room temperature for ten minutes.  Luminescence readings were 

then recorded for each sample using a Veritas™ Microplate Luminometer (Promega Corp.).  After 

subtracting the blank control, values were normalized to vehicle control and graphed in 

Microsoft® Excel™ (Microsoft, Redmond, WA).  Values represent means and error bars display 

standard deviation. 

F. Immunoblotting 

Whole cell lysates were prepared by incubating cells in non-denaturing lysis buffer (50nM Tris-

Cl, 150mM NaCl, 1% NP-40, 1% Triton X-100, and 1% protease inhibitor cocktail (Sigma-Aldrich)) 

on ice for one hour. Cells were then centrifuged at 14,000 rpm for ten min at 4°C (Sorvall 

Biofuge Primo R, Kendro Laboratory Products, Newtown, CT). Supernatants were collected and 
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subjected to protein assay via the method of Bradford using Protein Assay Dye Reagent 

Concentrate (Bio-Rad, Hercules, CA). Protein concentrations were determined by a GENESYS 10 

spectrophotometer and used to ensure equal protein loading (Thermo Spectronic, VWR, 

Arlington Heights, IL).   Alternatively, cells were lysed in 1X Passive Lysis Buffer, according to the 

manufacturer’s instructions (Promega).  Equal volumes were used for blotting, in lieu of protein 

assay.  All lysates were denatured by addition of 2x Laemmli Sample Buffer (Sigma Aldrich) and 

incubation at 100°C for ten minutes.  

Subsequently, the denatured lysates were resolved by 12% SDS-PAGE and transferred to PVDF 

membranes (Bio-Rad). Membranes were blocked with 5% skim milk (Bio-Rad) or 5% bovine 

serum albumin (Sigma-Aldrich) in tris-buffered saline with 0.05% tween-20 (TBST) for one hour 

at room temperature with agitation. Appropriate primary antibodies were used to incubate the 

membranes overnight at 4oC. *β1i, AbCam (ab78336); β-actin, Novis Biologicals (NB600-501); 

GAPDH, Santa Cruz (sc-47724); Ubiquitin, Santa Cruz (sc9133); Myc-Tag (9B11), Cell Signaling 

(2276); Streptavidin-HRP, Pierce (21126)]  Secondary antibody incubation was done using 

agitation for one hour at room temperature in 3% blocking solution. Finally, Pierce ECL Western 

Blotting Detection Reagents (normal or femto) (Thermo Fisher Scientific, Rockford, IL) were used 

to visualize protein of interests on film (Thermo Fisher Scientific).   

G. Interferon-gamma treatment 

PC-3 cells were treated with 100U/mL of IFN-γ or vehicle for 24 hours, then washed and given 

fresh media. Cells were harvested at the indicated time points after removing the treatment 

media, lysed, and blotted as in 3F.  Alternatively, PC-3 cells were treated then subcultured into 

96 well plates and treated as in 3C for the MTS assay. 

H. Tumor necrosis factor-alpha treatment 

PC-3 cells were plated onto p100 dishes and treated continuously with vehicle or 20ng/mL TNF-α 

for 72 hours and then subcultured.  Cells were treated as in 3C for the MTS cell viability assay.  

Cells were also collected from well plates every 24 hours and used for immunoblotting, as in 3F. 

I. Immunofluorescence 

Coverslips were sterilized with ethanol and UV light in a 35mm dish.  For the interferon-gamma 

conditions, cells were plated on the dish after pretreatment as indicated.  At the end of the 
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experiment, cells were fixed with 4% paraformaldehyde in PBS and permeabilized with 0.2% 

Triton-X in PBS.  Coverslips were then blocked with 10% goat serum (Invitrogen) and 1% BSA in 

phosphate buffered saline with 0.05% tween-20 (PBST).  Primary antibody was added in 

DakoCytomation Antibody Dilutant with Background Reducing Components at 1:800 (Dako, 

Carpinteria, CA).  Subsequently, secondary antibodies were added (AF488 (Invitrogen) at 1:1000 

and Rhodamin Phallodin (Invitrogen) at 1:1000) in the same antibody dilutant.  Coverslips were 

washed well in PBST, mounted onto slides with Prolong Gold antifade reagent (Invitrogen), and 

allowed to solidify overnight.  The next day, the coverslips were sealed and visualized using an 

inverted fluorescence microscope (Nikon Ti-U microscope) with NIS Element Research image 

analysis software (Nikon, Melville, NY).   

J. siRNA 

The cells were transfected according to the manufacturer’s instructions using DharmaFECT2® 

siRNA transfection reagent (Thermo Fisher Scientific, Lafayette, CO).  ON-TARGETplus® siRNAs 

were used.  The positive control pool was for human GAPD [D-001830-10], the negative control 

pool was human non-targeting [D-001810-10], and the test pool was for PSMB9 (β1i) *L-006023-

00-0005+.  Additionally, the four individual oligos were tested from the β1i targeting pool *LU-

006023-00-0002].   

Briefly, PC-3 cells were plated at a density of 20,000 cells per well in a 24 well plate and allowed 

24 hours to attach.  The siRNA was diluted separately from the DharmaFECT2® and after a five 

minute incubation at room temperature the two were combined.  They were then allowed to 

incubate for an additional 20 minutes prior to the addition of complete media.  The final solution 

added to the cells contained 100nM siRNA (or 125nM, where indicated) and 0.5µL of 

DharmaFECT2® per well.  24 hours post-transfection, the transfection media was removed and 

fresh media was added.  Media was refreshed every 24 hours thereafter and cells were 

subcultured when the untreated and mock transfected controls reached >70% confluence.  

Samples were collected at the time points indicated and subjected to western blotting analysis as 

detailed in 3F. 

K. Phase contrast microscopy 

siRNA treated cells were grown (as above) in well plates and observed every 24 hours prior to 

the media change.  The cells were visualized using an inverted microscope (Nikon Ti-U 
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microscope) with NIS Element Research image analysis software (Nikon). 

L. Cell counting  

After trypsinization, each well of cells was resuspended in an equal volume of media.  An aliquot 

was taken and mixed one to one with trypan blue.  10µL of this cell solution was then added to a 

TC10 dual-chamber counting slides, in duplicate, and counted on a TC10™ Automated Cell 

Counter (Bio-Rad).  The number of live cells per milliliter was used to determine the total live cell 

population from each well, and this was plotted using GraphPad PRISM® (GraphPad Software, 

Inc).  Bars represent means and error bars show standard deviations. 

M. Site-directed mutagenesis 

Mutagenesis was performed using the Stratagene QuikChange® Site-Directed Mutagenesis Kit 

following the manufacturer’s instructions (Agilent Technologies, Santa Clara, CA).  Briefly, 

polymerase chain reaction was performed with 5ng of DNA for 18 cycles of denaturation for 30 

seconds at 95°C, annealing for 60 seconds at 55°C, and elongation for 300 seconds at 68°C. 

125ng of primer was used of the following sequence: forward 3’-

GAAGTCCACACCGGGGCCACCATCATGGCAGTGG-5’ and reverse 3’-

CCACTGCCATGATGGTGGCCCCGGTGTGGACTTC-5’. After Dpn I digestion, the plasmid DNA was 

transformed into One Shot® TOP10 Competent Cells (Invitrogen) according to the manufacturer’s 

instructions and plated on agar.  After miniprepping (3N) the mutation was confirmed by 

sequencing (Eurofins MWG|Operon, Huntsville, Alabama). 

N. Plasmid DNA preparation (Miniprep) 

Single colonies from agar plates were picked and incubated overnight in LB media with shaking.  

After making glycerol stocks, the media was centrifuged to pellet the bacteria.  Using a 5Prime 

FastPlasmid™ Mini Kit (Gaithersburg, MD), the cells were lysed and transferred onto spin 

columns.  After washing, the DNA was eluted; the concentration and purity were checked via a 

NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific).  

O. Subcloning 

To transfer the β1i gene between plasmids, the enzymes Not I and Kpn I were used to digest the 

plasmid DNA for two hours at 37°C (New England Biolabs, Inc., Ipswich, MA).  To transfer the 5’ 
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end of the gene only, which contained the mutated base, Kpn I and Pst I digestion was performed 

for two hours at 37°C (New England Biolabs, Inc). The digested DNA was purified with either the 

QIAquick PCR purification kit or by running an agarose gel and using the QIAEX II gel extraction 

kit, as detailed in 3P.  Ligation was performed using the Quick Ligation Kit according to the 

manufacturer’s instructions (New England Biolabs, Inc.).  Ligated plasmids were transformed into 

competent cells and plated on agar, as in 3M, and then miniprepped, as in 3N.  To confirm 

insertion of the gene prior to sequencing, the miniprep DNA was digested as before, run on an 

agarose gel, and stained with ethidium bromide to visual the DNA insert.  All DNA plasmids 

positive for the insert were sent for sequencing. 

P. Digest purification 

After digesting DNA without an insert, the QIAquick PCR purification kit was used to purify the 

DNA according to the manufacturer’s instructions (QIAGEN, Inc., Valencia, CA).  To purify all 

other DNA, digestion reactions were separated by agarose gel electrophoresis.  The DNA was 

excised and weighed, then purified using the QIAEX II gel extraction kit following the 

manufacturer’s instructions (QIAGEN, Inc). 

Q. Plasmid DNA preparation (Maxiprep) 

E. coli were grown from glycerol stocks of sequenced DNA as in 3N and then transferred to large 

flasks containing 150mL of LB media to grow with shaking at 37°C overnight.  In the morning, the 

cells were pelleted and either lysed directly or stored at -20°C until lysis.  DNA was purified using 

the GenElute™ HP Endotoxin-Free Plasmid Maxiprep Kit according to the manufacturer’s 

instructions (Sigma Aldrich). After purification, the DNA concentration and purity was 

determined using the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific).  DNA was 

stored at -20°C until transfection. 

R. Plasmid DNA transfection 

PC-3 cells were plated in six well plates at a density of 200,000 cells per well and allowed to 

attach for 24 hours.  For each well to be transfected, 3.75µg of DNA was combined with 3.75µL 

of Plus™ reagent in media, then this solution was mixed with 3.75µL of Lipofectamine™ LTX in 

media according to the manufacturer’s instructions (Invitrogen).  The plating media was 

removed and replaced with two milliliters of OptiMEM® media (Invitrogen).  A 0.5mL final 
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volume of transfection solution was then added to each well, bringing the total volume up to 

2.5mL.  After 24 hours the transfection media was removed and the cells were subcultured into 

p100 dishes with fresh, normal media. 

S. Antibiotic selection and clonal expansion 

The cells in p100 dishes from 3R were allowed to attach for 24 hours.  At 48 hours post-

transfection, antibiotic selection began.  Every three days new media containing antibiotics was 

added to the dishes over a total of two weeks.  Based on data from the parental PC-3 cell line, 

the following doses of antibiotics were used for selection: puromycin, 0.5µg/mL; G418, 

0.5mg/mL; Zeocin, 0.4mg/mL.  Cells were then plated into 96 well plates at ten cells per milliliter 

of media and grown in selection media for two weeks.  Colonies resulting from a single cell were 

then subcultured into progressively larger areas under selective pressure.  Individual clones were 

named and used for tests as described. 

T. Colony Formation Assay 

Transfected PC-3 cells were plated at low density in six well plates and allowed to attach for 24 

hours.  Cells were either selected with the appropriate antibiotics, or induced (or not) with 

doxycycline (1µg/mL) (Sigma Aldrich).  Media was changed every three days, including fresh 

drugs.  Once visible colonies were observed during media change, cells were washed with saline 

and fixed for ten minutes in ice cold methanol.  Cells were then stained for ten minutes with a 

0.5% (w/v) crystal violet solution in 25% (v/v) methanol in water.  Destaining was achieved with 

water washing and plates were allowed to dry overnight.  Images were obtained using a Xerox 

scanner (Xerox Corp., Norwalk, CT) with image refinement in Adobe Photoshop (San Jose, 

California). 

U. General cell viability assay 

PC-3 cells were plated at low density (1,000 cells/well) in a 96-well plate and allowed to attach 

for 24 hours.  Cells were induced or not with doxycycline (1µg/mL) and at appropriate time 

points, the percentage of viable cells was determined using the MTS reagent, CellTiter 96® 

AQueous One Solution Cell Proliferation Assay (Promega) according to the manufacturer’s 

instructions.  Induction media was refreshed every three days.  Curves reflect the absorbance of 
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the dye at 490nM and represent the number of viable cells per well, averaged, with error bars 

representing the standard deviation. 
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Chapter 4: Results 

A. Proteasome inhibitors: 2009 to the present 

In the last three years, a number of new proteasome inhibitors have been developed and many 

new discoveries about older proteasome inhibitors have been published.  Perhaps the most 

significant study in this period was performed by Onyx Pharmaceuticals, the developers of a 

number of epoxyketone-based proteasome inhibitors.  They definitively addressed the issue of 

peripheral neuropathy as a side effect of bortezomib treatment: is it a class effect or a 

pharmacophore effect?  They found that boronic acids inhibit a variety of serine proteases in 

vitro and in vivo (cathepsin G, cathepsin A, chymase, dipeptidyl peptidase II, HtrA2/Omi) at 

concentrations near those utilized for proteasome inhibition. [226]  As they concluded in this 

paper, “Our data are consistent with a model in which bortezomib reduces neurite length by 

dual inhibition of the proteasome (resulting in oxidative and proteotoxic stress) and the 

neuronal prosurvival protease HtrA2/Omi.” [226]  This demonstrates that peripheral 

neuropathy, a side effect seen in approximately 30% of bortezomib patients, is an off-target 

effect of the boronic acid pharmacophore, not purely a target-mediated adverse drug reaction. 

This study also found that aldehyde inhibitors and epoxyketones do not cause detectable 

inhibition of serine proteases. [226]  However, another study found more evidence that vinyl 

sulfone proteasome inhibitors target cysteine proteases. [227]  Kisslev’s group found that 

changing the pharmacophore of proteasome inhibitors alone was sufficient to change their 

binding preferences. [227]  This study and others also demonstrated that, regardless of the 

pharmacophore, inhibiting only the CT-L activity of proteasomes is not sufficient to cause an 

apoptotic response in cancer cell lines, especially MM. [227-229]  Finally, a study in prostate 

cancer cell lines showed that proteasome inhibition stimulates an autophagic response which 

assists cells in clearing protein aggregates to alleviate proteolytic stress. [230] 

A study of bortezomib in breast cancer showed that chronic bortezomib treatment reduces 

estrogen receptor-α levels in breast cancer cell lines. [231] Surprisingly, it uncovered a link 

between bortezomib treatment and estrogen receptor-α-dependent gene transcription, 

whereby bortezomib reduces RNA polymerase II occupancy and reduces the proliferative effects 

of estradiol. [231]  Bortezomib was also suggested to prevent disease progression in lupus-

prone mice. [219]   
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MLN9708, a boronic acid proteasome inhibitor prodrug which is converted to MLN2238 in 

aqueous solution, was the first new proteasome inhibitor reported in the last three years (Figure 

4.1.A). [232]  It is more highly reversible than bortezomib, dissociating from proteasomes six-

fold faster, with greatly improved plasma exposure and tumor distribution in rodent models. 

[232]  It can be formulated for oral, subcutaneous, and intravenous delivery, and is effective in a 

xenograft prostate cancer mouse model. [232] It preferentially inhibits the CT-L activity of 

proteasomes, although it also targets the C-L and T-L activities at higher concentrations. [233] 

Importantly, it is not seen to inhibit the neuronal prosurvival protease HtrA2/Omi, a major 

mediator of bortezomib’s neuropathic side effects. [233] MLN9708 is also able to induce 

apoptosis in cell lines, primary cells, and a xenograft model of MM with little apparent toxicity to 

PBMCs or mice. [233] As a single agent, MLN9708 increases the survival of xenograft mice when 

compared to bortezomib, and it has synergistic effects in combination with lenalidomide, HDAC 

inhibitors, or dexamethasone. [233] There are currently eight clinical trials of MLN9708, all of 

which are open. [202] 

The other important general proteasome inhibitor developed recently is ONX 0912 (PR-047), an 

epoxyketone with improved solubility, metabolic stability, and oral bioavailability when 

compared to carfilzomib (Figure 4.1.B). [234]  Kinetically, administration resulted in rapid 

inactivation of the proteasome systemically, with activity recovering through new proteasome 

synthesis in non-blood tissues within 24-72 hours. [234] It promotes antitumor activity in animal 

models when provided orally at less than the maximum tolerated dose, reducing tumor size and 

improving survival in two mouse models of MM. [234, 235]  ONX 0912 is synergistic in 

combination with bortezomib or a pan-HDAC inhibitor, while it has additive effects with 

dexamethasone or lenalidomide. [235]  There is currently one open Phase I trial of ONX 0912. 

[202] 

Recently, the development of immunoproteasome inhibitors has been fruitful.  Three new 

immunoproteasome-selective inhibitors have been published in the last three years, although 

no immunoproteasome inhibitors are yet in clinical trials. [202]  The first inhibitor is ONX 0914 

(PR-957), a β5i selective inhibitor (Figure 4.1.B).  In the MOLT-4 human leukemia cell line, ONX 

0914 shows a 20- to 40-fold preference for β5i over β1i or β5. [236]  Interestingly, selective β5i 

inhibition was not found to affect proteasome function, although it does block inflammatory 

cytokine production in PBMCs as well as T-cell activation and differentiation. [236]  In mice, only 
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Figure 4.1: Proteasome inhibitors (circa 2011).  The structures of published proteasome 

inhibitors are depicted. A. MLN9708, a prodrug which becomes MLN2238 in solution, is a new 

boronic acid pharmacophore containing proteasome inhibitor. B. Epoxyketone proteasome 

inhibitors, including the β5i-selective inhibitors, ONX 0914 and PR-924. C. An aldehyde-based β1i 

immunoproteasome inhibitor.
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1-10mg/kg of ONX 0914 is necessary to inhibit β5i in the blood and kidney, with good tissue 

penetrance and an anti-inflammatory response at one-tenth of the maximum tolerated dose 

(30mg/kg). [236]   ONX 0914 is also able to protect mice from dextran sulfate sodium-induced 

colitis, while a β5-selective inhibitor could not. [237] This suggests that β5i inhibition may be 

helpful for inflammatory diseases.  Studies found ONX 0914 gave a similar therapeutic response 

as entranercept, an anti-tumor necrosis factor-α therapy, and bortezomib in animal arthritis and 

colitis models, respectively. [236, 237] Additionally, lupus-prone mice responded well to ONX 

0914, showing lesser symptoms due to drug-mediated prevention of disease progression. [219] 

Another immunoproteasome selective inhibitor developed in the last three years was PR-

924/IPSI (Figure 4.1.B).  PR-924 is 130-fold selective for β5i over β5, although it does also inhibit 

β1i in cells. [92] While β5i is inhibited by doses in the nanomolar range, the viability of tumor 

cells and PBMCs is not affected unless micromolar doses are used. [92, 238] MM cells treated ex 

vivo with PR-924 had a significant loss of viability, as did mouse xenograft models. [238]  

The final immunoproteasome inhibitor reported thus far is IPSI-001, a peptide aldehyde which 

inhibits β1i and calpain (Figure 4.1.C). [239] PBMCs and MM cell lines with resistance to 

bortezomib are sensitive to IPSI-001, although human umbilical vein endothelial cells are not, 

suggesting an improved toxicity profile when compared to bortezomib. [239] Although IPSI-001 

lacks the potency necessary for development as a therapeutic agent, it can be used to validate 

an immunoproteasome-targeting approach. [239] 

B. Aim 1: Validate the target of UK-101 in the PC-3 prostate cancer cell line is β1i 

Novel small molecules examined for efficacy as anticancer therapeutics are failing often in 

clinical trials.  The reason for this attrition has changed significantly in the years between 1991 

and 2000.  In 1991, PK/bioavailability (40%), efficacy (30%), clinical safety, and toxicology (30% 

combined) were the top four reasons for attrition of all drugs in clinical trials. [240]  By 2000, the 

problem with PK/bioavailability had declined to less than 10%, while problems with efficacy, 

clinical safety, and toxicology were as bad as or worse. [240]  This strongly suggests that the 

methods by which scientists predict which molecules will have success in humans is quite 

flawed, resulting in huge expenditures on drugs which eventually fail.  A more recent paper on 

Phase III and submission failure in 2007-2010 showed that two-thirds of drug failures at this 

stage were due to efficacy problems. [241]  Additionally, the greatest number of drug failures 
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were due to anticancer drugs (n=23, 28%), and the author suggests that many of the oncology 

failures were due to assuming success in one tumor type would translate to other tumor types. 

[241]  All of this points towards the necessity of additional preclinical work to define the 

mechanisms of action of new small molecules and to determine a compelling clinical rationale 

for their use in any particular type of cancer. 

We have undertaken such studies during the development of our β1i inhibitor, UK-101.  While 

UK-101 causes apoptosis in cancer cell lines, it is not yet clear whether this apoptotic effect is 

directly mediated by its irreversible inhibition of β1i.  By choosing a sensitive cancer cell line and 

conducting all of our experiments within it, we examine the relationship between our drug and 

its target while minimizing other confounds.  Previous work completed in our lab demonstrated 

that treatment of PC-3 cells with UK-101 led to apoptotic cell death at low micromolar 

concentrations. [220]  Additional work showed that UK-101 modified β1i covalently in PC-3 cells, 

and that this covalent modification lasted at least 48 hours. [223]  Thus, we chose the PC-3 

prostate cancer cell line as our model system.  Since off-target effects are major roadblocks for 

the development of new and effective pharmaceuticals, target validation studies in this system 

will assist in the further progression of β1i inhibitors towards preclinical trials.  Our overall 

hypothesis is that the apoptosis seen upon treatment with UK-101 is due to the covalent 

modification of β1i. 

We were interested in examining the sensitivity of the PC-3 cell line to proteasome inhibitors, 

including the new immunoproteasome selective inhibitors IPSI (PR-924) and PR-957 (ONX 0914).  

As shown in Figure 4.2.A, all seven inhibitors tested are capable of reducing the cell viability of 

PC-3 cells.  The β5i-targeting selective inhibitors IPSI and PR-957 had IC50 values around 25µM, 

while UK-101 had an IC50 between one and five micromolar.  This suggests that β1i may be more 

important for the viability of PC-3 cells.  Alternatively, it could suggest that UK-101 is less 

subunit selective than IPSI and PR-957, as it does have a similar IC50 value as eponemycin, from 

which it is derived.  Additionally, we wanted to examine the apoptotic pathway activated by 

treatment with UK-101.  We used epoxomicin, the general epoxyketone proteasome inhibitor, 

as a positive control.  After a 48 hour treatment in PC-3 cells, we found that both proteasome 

inhibitors activated all three caspase-types examined (Figure 4.2.B).  This suggests that 

proteasome inhibition, whether by epoxomicin or UK-101, activates both the intrinsic and 

extrinsic apoptotic pathways. 
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Figure 4.2: The effects of proteasome inhibition on the PC-3 prostate cancer cell lines.  A. Cells 

were treated for 48 hours to determine viability.  General proteasome inhibitors such as 

bortezomib (Btz), carfilzomib (Cfz), and epoxomicin (Epx) have low nanomolar IC50 

concentrations.  Eponemycin (Epn) has IC50 values in the high nanomolar range, while UK-101 

has values in the low micromolar range.  The new immunoproteasome specific inhibitors, IPSI 

and PR-957, also have IC50 values in the micromolar range, although higher than UK-101.  B. 

Caspase activity assays in PC-3 cells after 48 hour incubation with inhibitors.  Treatment of cells 

with concentrations slightly above the IC50 value for epoxomicin and UK-101 results in activation 

of all three caspase activities, confirming the loss of cell viability in A is due to apoptosis. 
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Previous work in the lab also showed that UK-101 could inhibit the CT-L activity of purified 

proteasomes. [223] We were interested to know whether this was also true for the 

proteasomes within the cells.  Additionally, we wanted to explore the effect of UK-101 on the 

other typical proteasome activities, the C-L and T-L activity.  Thus, we treated PC-3 cells with 

inhibitor for two hours and checked proteasome activity using a cell-based system, with high 

dose epoxomicin serving as a positive control.  As expected, bortezomib preferentially targeted 

the CT-L activity in cells, although it inhibited the C-L and T-L activities at higher doses (Figure 

4.3.A). Epoxomicin, on the other hand, targets all three activities, even at low doses, although 

higher doses demonstrate its preference for the CT-L and T-L activities (Figure 4.3.B).  There has 

been some question as to which proteasome activities β1i is responsible for, as some have 

suggested it has C-L activity, similar to its homologue β1, while others have suggested it has 

primarily CT-L activity, based on its altered binding pocket. [21, 24, 25]  In our cell line, low dose 

treatment with UK-101 reduced the CT-L and C-L activities while activating the T-L activity 

somewhat (Figure 4.3.C).  This C-L activity inhibition does not change much as the dose 

increases, although the CT-L activity does decrease somewhat at the higher doses.  If UK-101 is 

truly a β1i subunit selective inhibitor, this suggests that β1i is responsible for a significant 

amount of the CT-L and C-L activity in PC-3 cells, which would explain their sensitivity to 

treatment with this inhibitor.  Surprisingly, when one compares the eventual reduction in cell 

viability caused by extending these two hour treatments over 48 hours, one finds the lowest 

concentration has little to no effect on cell viability, but the next highest concentration affects it 

significantly (Figure 4.3.D).  In the bortezomib and epoxomicin treated cells, one can see a large 

change in the proteasome activity profile between these two treatments.  However, there is 

little change in the proteasome activity profile for the UK-101-treated cells.  The small change 

seen may be enough to induce apoptosis in this cell line.  However, this may suggest additional 

targets for UK-101 which enhance its apoptotic effect. 

C. Aim 1.1: Using natural inducers of immunoproteasome subunits, determine the relative 

sensitivity of PC-3 cells to UK-101. 

Many cytokines, such as tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), are 

known to upregulate the levels of the immunoproteasome catalytic subunits, resulting in the 

cooperative expression of β5i, β1i, and β2i and their subsequent assembly into 

immunoproteasomes [242].  In the case of IFN-γ, this effect is achieved by a type II interferon 



53 

 

 



54 

 

Figure 4.3: The effects of proteasome inhibition on proteasome activity in PC-3 cells.  A-C. Cells 

were treated with proteasome inhibitors for two hours and then the CT-L, C-L, and T-L activity of 

proteasomes from the cells was measured. A. Bortezomib (Btz) treatment decreased all three 

proteasome activities at high doses, but preferentially inhibits the CT-L and C-L activities.  B. 

Epoxomicin (Epx) treatment decreased all three proteasome activities, with little activity 

preference, although it is less effective at blocking the C-L activity. C. UK-101 decreases the CT-L 

and C-L activities, although it never blocks them completely.  It also seems to activate the T-L 

activity. D. Cell viability of PC-3 cells treated with these same proteasome inhibitor 

concentrations over 48 hours.  While partial inhibition of the proteasome is tolerable in these 

cells, more significant inhibition of more than one activity at two hours correlates with greatly 

reduced viability after 48 hours. 
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response utilizing interferon responsive element 1 (IFR1) [243].  For β1i, an additional factor, 

signal transducer and activator of transcription 1 (Stat1), binds to the promoter of β1i to 

upregulate β1i expression levels [244].   

To determine whether IFN-γ could be utilized in this experimental paradigm, PC-3 cells were 

treated with increasing concentrations of IFN-γ over 24 or 48 hours and the expression of β1i 

was monitored via western blotting.  As seen in Figure 4.4.A, a dose of 50U/mL of IFN-γ is 

sufficient to upregulate the expression of β1i.  These results held whether the treatment time 

was 24 or 48 hours.  Importantly, the upregulation of the subunit was shown to be 

predominately of the catalytically active form, suggesting that β1i is incorporated into 

proteasomes and processed to its catalytically active form within 24 hours of treatment.  To 

confirm that this upregulation by IFN-γ did not alter the normal expression pattern of β1i, 

immunofluorescence was performed.  As seen in Figure 4.4.B, even doses of 250U/mL did not 

appear to alter the expression pattern of β1i, but simply intensified the signal otherwise 

observed. 

While these results were greatly encouraging, to perform target validation using the IFN-γ 

paradigm, the PC-3 cell expression of β1i would need to be upregulated for at least 72 hours.  

Thus, a time-dependent experiment was performed to examine the expression level of β1i after 

withdrawal of IFN-γ.  A 24 hour pretreatment of 100U/mL of IFN-γ was chosen based upon the 

results above as it appeared to cause a significant upregulation of β1i at a minimal dose of IFN-γ.  

As seen in Figure 4.4.C, the upregulation of β1i was maintained for at least 96 hours after the 

removal of the IFN-γ from the system.   

Using this overexpression system, a target validation experiment was performed to test the 

effect of IFN-γ-induced β1i overexpression on the sensitivity of PC-3 cells to UK-101.  To 

determine whether this experimental paradigm affects the sensitivity to PC-3 cells to 

proteasome inhibitors in general, epoxomicin was used as a control.  Additionally, eponemycin, 

which binds to proteasome subunits β1i, β5i, and β5, was included as an additional control.  

After pretreatment, cells were placed into 96 well plates and treated with proteasome inhibitors 

for 48 hours.  Those cells pretreated with DMSO showed comparable IC50 values to those 

obtained previously [223].  The cells which had been pretreated with IFN-γ and treated with 

epoxomicin or eponemycin did not have any statistically significant changes in cell viability 

(Figure 4.4.D).  However, those cells pretreated with IFN-γ and then treated with UK-101 



56 

 



57 

 

Figure 4.4: Interferon-γ-induced upregulation of β1i affects the sensitivity of PC-3 cells to UK-

101.  A. Treatment of PC-3 cells with increasing concentrations (50 units(U)/mL to 250U/mL) of 

IFN-γ for 24 or 48 hours induces a large increase in the expression of β1i.  This β1i is found to be 

predominately in the catalytically active form.  B. The upregulation of β1i expression seen via 

western blot is also apparent using immunofluorescence.  There appears to be no change in β1i 

localization upon induction, or any variation in cellular morphology, even with this high dose 

(250U/ml) of IFN-γ. C. Pretreatment with IFN-γ causes a sustained upregulation of β1i protein 

levels, lasting at least 96 hours after IFN-γ is removed from the media. D. Based on the 

information in C, cells were pretreated with IFN-γ and subcultured in to 96 well plates for the 

MTS cell viability assay.  A large right hand curve shift is seen in PC-3 cells pretreated with IFN-γ 

and exposed to UK-101, which represents a six-fold increase in IC50 value (4µM to 24µM).  The 

change seen in the eponemycin treatment group fell within the 95% confidence interval of the 

nonlinear regression curve fit and thus was not deemed significant. 
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showed a six-fold increase in IC50 value (Figure 4.4.D).  This suggests that an increase in the 

amount of β1i in PC-3 cells significantly impacts the ability of UK-101 to decrease the viability of 

these cells.  This result supports the hypothesis that UK-101 causes apoptosis in PC-3 cells via its 

covalent modification of β1i. 

Likewise, TNF-α is also capable of upregulating the expression of β1i, although not as strongly as 

IFN-γ.  A 72 hour pretreatment was required to sustain β1i upregulation after withdrawal of 

TNF-α; expression of β1i decreases over time, nearing basal expression after 72 hours post-

withdrawal (Figure 4.5.A).  When cells pretreated with TNF-α were then exposed to proteasome 

inhibitors, the IC50 values did not change significantly.  However, there were some notable 

effects at certain concentrations of bortezomib and UK-101 (Figure 4.5.B).  TNF-α treatment 

appeared to protect bortezomib treated cells from loss of viability, which may be related to one 

of its mechanisms of action, proposed to be inhibition of NF-κB. [245, 246] Previous work 

showed that TNF-α can induce NF-κB activation in the PC-3 cell line. [223, 247-249]  However, 

the opposite effect is seen in the UK-101 treated cells, where the cells are more sensitive to UK-

101 after pretreatment with TNF-α (Figure 4.5.B).  This is the opposite of the result we would 

expect if the sensitivity to UK-101 was due solely to the expression of β1i.  However, both TNF-α 

and IFN-γ upregulate other cellular pathways and processes in addition to those of the 

immunoproteasome, so further experiments are necessary to definitively address our 

hypothesis. 

D. Aim 1.2: Using a knock-down of β1i protein levels, determine the relative sensitivity of PC-3 

cells to UK-101. 

siRNA has quickly become a popular technique for exploring the effects of removing proteins 

from cells without many of the issues of temporal control associated with DNA knockouts.  Since 

the completion of the human genome, siRNA molecules can be designed to knock down almost 

any protein.  The first group reporting a β1i knock-down, Wang et al, achieved a 70% mRNA 

knock-down and a 65% protein knock-down using vector-based siRNA [250].  siRNA against β1i is 

commercially available, and one company had a guaranteed knock-down pool.  A complete 

knock-down of β1i would allow for the determination of the relative proportion of the 

antiproliferative effects of UK-101 which do not derive from its binding to β1i.   
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Figure 4.5: Tumor Necrosis Factor-α-induced upregulation of β1i affects the sensitivity of PC-3 

cells to UK-101.  A. Treatment of PC-3 cells with 20ng/mL of TNF-α for 72 hours induces a small 

increase in the expression of β1i.  This β1i is predominately the catalytically active form and 

reduces relatively quickly when TNF-α is removed from the media.  B. TNF-α treatment has a 

small affect on the sensitivity of PC-3 cells to proteasome inhibitors.  Bortezomib seems to be 

less effective at 5nM in the TNF-α-treated cells while UK-101 is more effective at 10µM in the 

TNF-α-treated cells.  However, there is no net change in IC50 value under these conditions. 
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We first set out to determine the degree and length of β1i knockdown using pooled siRNA.  We 

found, similar to a GAPDH positive control pool, reduction in the expression of unincorporated 

pre-β1i after 24 hours, suggesting a reduction in newly synthesized β1i protein (Figure 4.6). As 

seen with the positive control, β1i siRNA decreased catalytically active β1i protein levels at 48 

hours post-transfection, with significant knockdown occurring at 72 hours post-transfection.  

This reduction in β1i protein level was maintained up to 168 hours post-transfection.  The 

scrambled control siRNA pool, which served as a negative control, had no effect on the 

expression of β1i or GAPDH.  While the β1i protein level was undetectable by western blotting, 

some residual protein may have still been expressed in the cells.  Nevertheless, this level of 

knockdown should be sufficient to see some effect on the sensitivity of transfected cells to UK-

101. 

To test this, we transfected cells with the scrambled control or β1i siRNA pools and tested their 

sensitivity to the proteasome inhibitors epoxomicin, eponemycin, and UK-101.  The cells were 

treated with inhibitor at 96 to 144 hours post-transfection.  As shown in Figure 4.7.A, there was 

no change in the sensitivity of the transfected cells to any of the inhibitors when comparing the 

scrambled control to β1i siRNA groups.  This suggests that the effect of UK-101 on cell viability is 

not mediated by β1i.  However, western blotting is a non-quantitative technique, so while the 

protein levels were undetectable using our β1i antibody, perhaps the knockdown did not reduce 

the protein levels sufficiently to see an effect.  Thus, we transfected the cells using 125nM of 

siRNA (instead of 100nM) to look for a relationship between siRNA concentration and sensitivity 

to proteasome inhibitors.  However, when we treated these cells we also saw no change in 

sensitivity to any of our proteasome inhibitors (Figure 4.7.B).  This once again suggests an 

alternative target for UK-101 which is capable of inducing its antiproliferative effect.   

To confirm this result, we transfected the PC-3 cell line with plasmid DNA containing a small 

hairpin RNA (shRNA) against β1i and selected for cells which were puromycin resistant.  After 

two weeks, we obtained pooled knockdown clones which were clonally expanded under 

selective pressure from a single cell to create stable cell lines.  As shown in Figure 4.8.A, we 

tested the knockdown efficacy compared to empty vector transfected cells and selected four 

clones of each type to move forward for additional testing.  The knockdown efficacy of each 

clone differs, thus we expected to see differing effects on the sensitivity of the knockdown 

clones to UK-101.  However, there was almost no change in the viability of the cells between 
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Figure 4.6: siRNA-mediated knockdown of β1i results in loss of protein expression. Western 

blotting shows that siRNA-mediated knockdown of the control protein GAPDH and the 

experimental protein β1i begins at 48 hours post-transfection and can be maintained for up to 

168 hours post-transfection. [UTC = untreated control; M = mock transfected; siG = siRNA 

against GAPDH; siC = siRNA scrambled control; siβ = siRNA against β1i+ 
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Figure 4.7: siRNA-mediated knockdown of β1i does not affect the sensitivity of cells to 

proteasome inhibition. MTS cell viability assay between 96 and 144 hours post-transfection.  A. 

MTS assay from cells treated with 100nM siRNA shows no significant difference between 

scrambled control siRNA and β1i siRNA.  B. MTS assay results obtained from cells treated with 

125nM of siRNA show the same results as in A. 
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Figure 4.8: shRNA-mediated knockdown of β1i does not affect the sensitivity of cells to 

proteasome inhibition.  A. Western blot of β1i expression in single cell clones containing either 

the shRNA targeting β1i or the empty vector.  Expression of β1i is reduced to varying degrees in 

the shβ1i clones.  B. MTS assay results obtained from selected clones shows no effect of the 

plasmid DNA (black lines, pLKO empty vector; red lines, shβ1i in pLKO vector) on the sensitivity 

of cells to UK-101 or other proteasome inhibitors. 
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clones (Figure 4.8.B) for any of the proteasome inhibitors examined, including UK-101.  This 

result, akin to the siRNA data, does not support our hypothesis that UK-101 mediates its 

apoptotic effect through the inhibition of β1i. 

However, a major drawback of a RNA knockdown approach is the existence of a homologous 

protein (β1) which can be substituted in the assembly process for the missing β1i, as β1i serves 

as a scaffold protein for the formation of the immunoproteasome complex.  As small molecule 

inhibitors of β1i do not affect the assembly of proteasomes, but siRNA and shRNA do, knocking 

down the protein will not have the same effect as simply inhibiting its catalytic activity.  Still, the 

sensitivity of PC-3 cells to UK-101 regardless of the expression level of β1i strongly suggests that 

the antiproliferative effect mediated by UK-101 is not due solely to its covalent modification of 

β1i.    

E. Aim 1.3: Using biotinylated probes of the proteasome, examine the time- and 

concentration-dependent binding pattern of UK-101 in PC-3 cells. 

Epoxyketones are known to be exceptionally specific for the Ntn-hydrolase class of enzymes. 

[193] Thus, additional targets of these small molecules are likely to be other proteasome 

subunits.  Based on the results detailed above, we hypothesized that UK-101 binds proteasome 

subunits other than β1i.  To test this hypothesis, we utilized a biotinylated probe of the 

proteasome, biotin-epoxomicin (Figure 4.9.A) in a competition assay.  This is a well established 

method of detecting interactions with proteasome subunits by detecting the loss of binding 

between the subunit and the biotinylated probe after pretreatment with the compound of 

interest. 

Using the same two hour treatment as in Figure 4.3, we examined the binding specificity of UK-

101 over a large range of concentrations. Eponemycin and epoxomicin were used as positive 

controls and vehicle was used as a negative control.  As seen in Figure 4.9.B there is no change 

in the binding pattern of epoxomicin-biotin at doses ranging from 0.1-5µM.  However, at 10µM 

the strong band representing β5 and β5i diminishes significantly, suggesting that doses at and 

above this concentration are not specific for β1i.  However, no additional changes in the binding 

pattern are seen between ten and fifty micromolar.  If the cells were treated with compound for 

24 hours, then exposed to biotinylated compound for an additional hour, a different picture 

emerges.  As showed in Figure 4.9.C, UK-101 demonstrates a significant degree 
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Figure 4.9: Competition assay to determine the proteasome binding specificity of UK-101.  A. 

The structure of the probe, epoxomicin-biotin.  B.  The two hour competition experiment shows 

loss of specificity at high doses.  Cells were pretreated with UK-101, DMSO (D), 1µM epoxomicin 

(Epx), or 1µM eponemycin (Epn).  At the end of this treatment time, epoxomicin-biotin was 

added directly to the media and allowed to incubate for an additional hour.  While UK-101 

appears to have no effect on the β2 and β2i binding of epoxomicin binding, there is a reduction 

in the band intensity for β5/β5i at higher concentrations.  C. Cells were treated as in B except 

that the first treatment was for 24 hours and the concentration of epoxomicin was reduced to 

0.1µM.  UK-101 is much less specific after 24 hours of treatment.  At doses greater than one 

micromolar almost complete competition with the epoxomicin-biotin was observed, suggesting 

a significant loss in specificity over time in this continuous treatment paradigm. 
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of binding to other proteasome subunits at concentrations as low as 1.25µM.  This is near the 

IC50 value for UK-101 and suggests that its growth inhibitory effect at 48 hours is likely due to 

the inhibition of multiple proteasome subunits.   

These data, combined with the other studies detailed above, disprove the hypothesis that UK-

101 is specific for β1i in the PC-3 prostate cancer cell line.  Other groups, using β5 and β5i 

selective inhibitors, have recently observed a lack of cytotoxicity at subunit selective 

concentrations [92, 236, 238]. This evidence also suggests that the apoptotic effect of UK-101 

may be due to the inhibition of multiple proteasome subunits.  Thus, we attempted to address 

the question of whether β1i alone is a valid chemotherapeutic target by further studies in the 

PC-3 cell line. 

F. Aim 2: Investigate the importance of β1i expression and function for proliferation in the PC-

3 prostate cancer cell line 

Since our small molecule probe of the β1i subunit is not truly subunit specific, we wanted to use 

alternative approaches to examine the importance of the β1i subunit and its catalytic function 

for the proliferation of the PC-3 prostate cancer cell line.  Thus, we began by examining the 

effects of our siRNA model on PC-3 cell viability.  Moreover, we produced a number of clonal cell 

lines expressing wild type or catalytically inactive β1i to examine its importance for cellular 

growth.  Some of these clones contain the β1i gene under control of the tetracycline repressor, 

allowing us to “turn on” the gene upon addition of tetracycline or doxycycline to the media, 

providing temporal control. 

With further medicinal chemistry efforts it may well be possible to produce a β1i selective, if not 

specific, epoxyketone proteasome inhibitor.  However, examining the biological significance of 

β1i for the survival of PC-3 cells would provide additional information regarding the utility of a 

β1i selective inhibitor and suggest possible screening strategies for use during the validation of 

novel small molecule inhibitors of β1i. 

G. Aim 2.1: Using a siRNA-mediated knock-down of β1i protein levels, determine the effect of 

loss of β1i on the viability of PC-3 cells. 

As seen in Figure 4.6, siRNA treatment caused a significant reduction in β1i protein levels which 

was maintained over time.  During this series of experiments, a difference in the confluence of 
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the cells was seen, as shown in Figure 4.10.  This somewhat surprising result was observed 

repeatedly in a number of independent experiments.  There were no apparent differences in 

cellular morphology, nor any differences in the number of detached cells between the groups.  

Thus, we hypothesized that the expression of catalytically active β1i promotes the proliferation 

of PC-3 cells.   

To test this hypothesis we first did basic cell counting experiments to determine if this apparent 

difference was both real and significant.  The first experiment confirmed that siRNA-transfected 

cells proliferated more slowly than mock-transfected cells, as expected, and the β1i siRNA 

treated cells proliferated more slowly than scrambled control treated cells (Figure 4.11.A).  An 

independent experiment was performed to assess the significance of the difference in cell 

number between the control and knockdown cells, using two-way ANOVA.  As shown in Figure 

4.11.B, this difference was significant at the later time points of the experiment, with very high 

significance at 168 hours post-transfection.   

While this exciting result suggested that β1i may play a role in the normal proliferation of PC-3 

cells, this may also be due to an off-target effect of the siRNA.  The siRNA used in the previous 

experiments was comprised of a pool of four independent oligos which all target different 

portions of the β1i coding sequence.  This is generally accepted as the methodology which 

produces the best reduction in protein expression while minimizing off-target effects. [251] 

However, if one of these four oligos also had another target within the cell, it could be 

responsible for the proliferation change.  Thus, we obtained the four individual oligos and tested 

them as single agents in our cells.  As shown in Figure 4.12.A, all four oligos were able to knock 

down protein expression between 96 and 168 hours post-transfection, as was seen with the 

pool.  When cell counting was performed with these individual oligos, however, none of the 

changes in cell number, when compared to the control siRNA, were shown to be statistically 

significant using two-way ANOVA (Figure 4.12.B).  This suggests that the pooled knockdown 

cells, while indistinguishable from the individual oligos via western blotting, may produce a 

more complete reduction in protein expression, leading to the observed reduction in 

proliferation.  We thus began further testing of this proliferation hypothesis. 
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Figure 4.10: siRNA-mediated knockdown of β1i appears to affect the growth of PC-3 cells. 

Phase microscopy images of PC-3 cells taken at the times indicated post-transfection.  There 

appear to be fewer cells in the scrambled control siRNA-treated cells were compared to β1i 

siRNA-treated cells.  Otherwise, there seem to be no changes in cellular morphology between 

the groups.  
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Figure 4.11: siRNA-mediated knockdown of β1i affects the proliferation of PC-3 cells. Cell 

counting of siRNA treated cells.  A. Initial cell counting data showed a trend of decreasing cell 

number when scrambled control siRNA-treated cells were compared to β1i siRNA-treated cells.  

Both appear to have slower growth than mock-transfected cells.  B. Cell counting data from a 

separate experiment showed that the difference between the scrambled control siRNA-treated 

cells and β1i siRNA-treated cells was significant (two-way ANOVA; * indicates p<0.05; **** 

indicates p<0.0001). 
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Figure 4.12: Individual siRNA oligos knockdown β1i but do not affect the proliferation of PC-3 

cells. The individual oligos which made up the siRNA pool were purchased individually and 

treated to cells.  A. Western blotting showed that the individual oligos were capable of 

significantly decreasing β1i expression over time, similar to the pooled siRNA. B. The individual 

oligos did not affect the growth of PC-3 cells in a significant way, as determined by two-way 

ANOVA, although the pooled knockdown from 4.11.B did (two-way ANOVA; * indicates p<0.05; 

**** indicates p<0.0001). 
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H: Aim 2.2: Using a plasmid-mediated overexpression of β1i protein levels, determine the 

effect of β1i and catalytically inactive β1i on the viability of PC-3 cells. 

Natural inducers, such as IFN-γ and TNF-α, upregulate the expression of many other proteins in 

addition to β1i.  To isolate the effect of upregulating β1i only, we used a plasmid containing pre-

β1i, which should be correctly incorporated and activated by normal cellular processes.  

Transfection of DNA containing the entire protein, including the propeptide, is preferred over 

the mature protein so as to prevent random catalysis reactions and N-terminal acetylation, 

which inactivates the enzymatic function of the protein [63]. 

With this in mind, we utilized a dominant negative construct to replace the normal β1i in 

immunoproteasomes.  This approach is an effective way to mimic the effects of enzymatic 

inhibition by a small molecule. Plasmids which express inactive mutant versions of the 

proteasome subunit β1i have been described in the literature [15, 18, 20, 23].  We created wild 

type and mutant forms of the β1i gene in two distinct constructs: first in a vector containing a 

myc-FLAG tag (Figure 4.13.A) and then in a vector containing the tetracycline operator sequence 

(Figure 4.13.B).  The myc-FLAG system allows for the rapid detection and isolation of the gene of 

interest, although the tag could interfere with the protein’s function.  The tetracycline system 

allows for the induction or repression of gene expression based on the presence of tetracycline 

(or doxycycline) in the media.  This is achieved by transfection with the plasmid (pcDNA6/TR) 

containing the tet repressor which, in this case, binds to the tetracycline operon in the absence 

of tetracycline to repress gene transcription (Figure 4.13.B).  The mutant was created via site-

directed mutagenesis and confirmed via sequencing (Figure 4.13.C), with the resulting mutation 

at amino acid 21 of the protein, which is amino acid one in the mature protein, as shown in 

Figure 4.13.D. 

To first ensure the incorporation and activation of β1i, we utilized the myc-FLAG-tagged β1i 

plasmids.  After transfection and selection with G418 (an aminoglycoside antibiotic similar in 

structure to gentamicin) for two weeks, we examined the expression of the myc tag using 

western blotting.  As shown in Figure 4.14.A, the cells transfected with β1i-myc-FLAG express 

two proteins of the expected molecular weight corresponding to the inactive and active tagged 

form of β1i.  The cells transfected with β1i-T21A-myc-FLAG, however, show a band of 

intermediate size in place of the active tagged form seen with the transfection of the wild type 
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Figure 4.13: Vectors and sequences. A & B. The vectors used in the studies to follow.  C. DNA 

sequencing results showing the correct mutation. D. Translation of the DNA sequence into 

protein shows the point mutation results in the correct amino acid change in β1i. 
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Figure 4.14: Expression the tagged catalytically inactive mutant of β1i appears to affect the 

growth of PC-3 cells. A. Western blot for the myc antibody showing expression of the 

unprocessed form of β1i in both the wild type and mutant transfected cells, but not those 

transfected with empty vector.  The active form of the protein is present in both β1i-transfected 

cell types but at different molecular weights, due to changes in the propeptide cleavage. B. 

Detection of additional proteasome catalytic subunits and ubiquitin in these transfected cells.  

C. Colony formation assay showing a reduction in the ability of the β1i mutant transfected cells 

to grow into colonies when plated as single cells. 
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protein.  This partially processed form should contain approximately nine or ten of the amino 

acids from the propeptide sequence, which are not cleaved due to the mutation of the 

threonine at amino acid 21 to alanine. [25, 81] Thus, our system is working properly, as both 

tagged forms of β1i are being incorporated into proteasomes, as shown by their processing into 

smaller proteins.   

Further examination of these pooled cell populations showed no changes in overall levels of 

ubiquitin (Figure 4.14.B).  However, there was a notable decrease in the expression of β5 in the 

cells transfected with the mutant β1i DNA (Figure 4.14.B).  This may reflect increased 

proteasome turnover in these cells, as they attempt to compensation for the mutation in β1i 

which renders it catalytically inactive.  There appears to be a slight increase of β5i expression in 

the β1i wild type and mutant transfected cells, as would be expected if the expression of β1i in 

the cells was increased (Figure 4.14.B).   

Interestingly, after transfection and selection with antibiotics we found that there were many 

fewer surviving cells of the β1i-T21A-myc-FLAG variety than in the transfection with wild type 

β1i or empty plasmid DNA.  We therefore took these pooled populations of selected cells and 

did a colony formation assay.  As is shown in Figure 4.14.C, fewer colonies were seen in the 

mutant-transfected cell than the wild type or empty vector cells.  These data suggest that 

constitutive expression of the catalytically inactive β1i mutant is detrimental to PC-3 cell 

proliferation.   

To further test this hypothesis, we decided to use an inducible expression system, which would 

allow us to control the expression of the β1i gene using tetracycline or doxycycline.  This would 

allow for the unbiased selection of cells containing the plasmid DNA rather than favoring the 

selection of cells which are resistant to the potential growth inhibitory or dependent on the 

growth stimulatory effects of the expressed gene. After creating stable cell lines expressing the 

tetracycline repressor protein using blasticidin and clonal expansion, we retransfected these 

cells with the β1i plasmids.  We then selected these plasmids using zeocin, which is on its own 

promoter, and concurrently did a colony formation assay (Figure 4.15.A).  This assay showed a 

great reduction in the number of colonies formed in the mutant cells which were induced when 

compared to their uninduced controls.  Prior to clonal expansion, we did additional colony 

formation assays on the pooled cell populations by treating with or without doxycycline 

(compare bottom rows of Figure 4.15.B and 4.15.C).  In this case, the number of colonies formed 
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Figure 4.15: Expression the inducible catalytically inactive mutant of β1i appears to affect the 

growth of PC-3 cells. A. Colony formation assay during antibiotic selection of cells transfected 

with the tetracycline repressor protein and β1i wild type or mutant.  Those cells selected with 

doxycycline in the media and the wild type protein have similar numbers of colonies while those 

with the mutant protein have few to no colonies.  B. Pooled selected cells expressing wild type 

β1i were exposed to doxycycline or not until visible colonies were observed.  The number and 

appearance of the colonies is less in the doxycycline-treated group.  C. Pooled selected cells 

expressing mutant β1i were treated as in B.  They show fewer colonies in the doxycycline 

treated group. 
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was more equal between the uninduced conditions.  However, when the mutant β1i was 

expressed, there were fewer colonies seen and those observed appeared to be smaller than the 

uninduced control cells (Figure 4.15.C).  The induction of wild type β1i also appeared to reduce 

the formation of colonies somewhat, although not as severely as the mutant (Figure 4.15.B).  

Thus, we decided to once again proceed with clonal expansion, so we could test the degree of 

induction with doxycycline against the proliferation rates of the cells. 

Some of the clones generated were then tested for their ability to induce the expression of β1i.  

As shown in Figure 4.16.A, both clones were able to effectively induce expression of β1i after 24 

hours at all doses of doxycycline tested.  Additionally, this change in β1i expression had no effect 

on the levels of polyubiquitinated proteins in the cells.  These two colonies were also tested to 

determine the effects of prolonged β1i induction on cellular proliferation.  As shown in Figure 

4.16.B, wild type β1i promoted the growth of the clone from Figure 4.16.A.  Conversely, the 

mutant β1i did not promote the growth of the second clone from Figure 4.16.A; it actually 

appears to hamper the proliferation of this line somewhat (Figure 4.16.C).  In the other clones 

tested, those which grew well showed similar trends as the clones depicted, although in many 

cases the differences were not significant due to a high level of variability between replicate 

wells. 

Additionally, during this series of experiments we also transfected cells on a β1i-reduced 

background.  However, we observed much more rapid growth in cells expressing β1i and 

transfected with these plasmids than in those that did not express much β1i.  Thus, the data 

depicted here are cells grown on a parental background, which express a moderate level of β1i 

and are responsive to changes in β1i expression levels.  Overall, these results suggest that β1i 

may be important for the proliferation of PC-3 cells.  Further work is warranted to examine the 

generalizability of this response and further characterize the clones reported here. 
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Figure 4.16: Expression of wild type β1i increases cellular proliferation while expression of the 

catalytically inactive mutant of β1i appears to decrease the growth of PC-3 cells. A. Western 

blotting from two clones of the same background, with the blot on the left having wild type β1i 

and the blot on the right having mutant β1i.  The intermediate size of the partially processed 

mutant is shown on the right.  Both clones give high induction of β1i upon addition of 

doxycycline with no change in the levels of polyubiquitinated proteins.  B. Cell viability (MTS) 

assay with the wild type clone from A. Treatment with doxycycline (to induce expression of β1i) 

resulted in higher cell proliferation when compared to vehicle control.  C. Cell viability (MTS) 

assay with the mutant clone from A. Treatment with doxycycline resulted in a slight decrease in 

cellular proliferation when compared to vehicle control. 
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Chapter 5: Conclusions & Discussion 

A: Conclusions 

The data described herein examine the utility of a β1i-targeting approach in prostate cancer.  

Using a small molecule inhibitor of the β1i subunit of the immunoproteasome, we began by 

examining its general effects on the PC-3 prostate cancer cell line.  UK-101 caused apoptotic cell 

death in PC-3 cells after 48 hours (Figure 4.2) and likewise partially inhibited the proteasome 

after two hours (Figure 4.3).  These data are complementary to and in line with previous work 

completed in our lab. [220, 223] They suggest that a β1i-targeting approach using UK-101 is a 

potential therapeutic strategy in prostate cancer.  Since the development of novel 

chemotherapeutics is often hindered by off-target effects, we decided to utilize a target 

validation approach to confirm that UK-101 induces apoptosis through the covalent 

modification and inhibition of β1i.  Thus, we began by examining the effects of modulating the 

expression of β1i on the sensitivity of PC-3 cells to UK-101.   

First we examined natural inducers of the immunoproteasome, INF-γ (Figure 4.4) and TNF-α 

(Figure 4.5).  Utilizing these cytokines is beneficial in that they are physiologically normal ways 

to cooperatively upregulate the expression of immunoproteasome catalytic subunits and ensure 

their maturation into fully functional proteasomes.  However, these cytokines also have other 

cellular targets and effects, so information obtained in these experimental paradigms requires 

additional independent validation.  Surprisingly, these two natural inducers gave opposite 

results, with the IFN-γ treated cells showing less sensitivity to UK-101 and the TNF-α treated 

cells showing more sensitivity to UK-101.  This was our first indication that UK-101 may be acting 

on targets in addition to β1i. 

To investigate this discrepancy, we utilized an opposing approach, reducing β1i expression 

levels.  Then we examined the effect of treating these PC-3 cells with UK-101.  Two 

complementary approaches were employed: a transient knockdown of β1i levels using siRNA 

(Figures 4.6 and 4.7) and a stable knockdown of β1i levels using shRNA (Figure 4.8).  The major 

limitation of this approach was the dual functionality of the β1i protein, since it operates in both 

a proteolytic and scaffolding role for immunoproteasomes.  Nevertheless, reducing the 

expression of β1i using either of these methods had no effect on the sensitivity of cells to UK-

101.  This was in direct conflict with our hypothesis and suggested that we should more directly 
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probe the interaction of this epoxyketone with other proteasome beta catalytic subunits, the 

most probable alternative targets for UK-101.   

Thus, we examined the binding of UK-101 over two hours and 24 hours using the probe 

epoxomicin-biotin and found vastly different results (Figure 4.9).  While the binding of UK-101 at 

two hours is relatively specific when examining physiologically relevant doses, after 24 hours 

this selectivity vanishes and loss of the β5/β5i band is observed.  However, a molecular 

modeling study suggested that the tert-butyldimethylsilyl (TBDMS) group of UK-101 would have 

a strong steric clash with the S1 binding pocket of β5 [222].  This suggests that the molecule 

itself may change under prolonged exposure to aqueous conditions and cellular proteases.   

With the specificity issue resolved, we moved forward to determine whether additional 

medicinal chemistry efforts to improve the stability and selectivity of UK-101 would provide a 

potential therapeutic molecule or simply a good molecular probe.  We began by reexamining 

the siRNA model, in which we had observed an effect of β1i knockdown on cellular proliferation 

(Figure 4.10).  Further experiments determined this effect to be statistically significant (Figure 

4.11) and not due to a single oligo (Figure 4.12).  However, it was impossible to determine using 

this approach whether the effect on cell proliferation was due to loss of the protein’s catalytic 

function or loss of the protein’s scaffolding function.  Thus, we set out to examine the effect of 

introducing a catalytically inactive version of β1i into our cells. 

The initial approach utilized was to transfect a tagged version of the wild type and mutant β1i to 

determine the extent to which β1i would be incorporated into proteasomes in the PC-3 cells.  

Incorporation of these tagged proteins would validate this approach, and lack of incorporation 

would suggest the necessity of removing the endogenous protein prior to replacement with the 

exogenous protein.  Fortunately, the wild type and mutant proteins incorporate well (Figure 

4.14) and we were pleasantly surprised to note the difficulty in culturing cells containing the 

mutant β1i.  This suggested that it was the catalytic activity of β1i, rather than its structural 

function, which was driving the decreased cellular proliferation seen in Figures 4.10 and 4.11.  It 

is difficult to do extensive experiments on cells which do not grow well and doing so is a 

selective process of its own.  Therefore, we decided to place our β1i genes into an inducible 

expression vector, to complete the selection process without the confound of β1i gene 

expression enhancing or repressing cellular proliferation. 
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Once cell lines had been produced which stably expressed the tetracycline repressor, they were 

transfected with the inducible β1i expression plasmids.  Induction of wild type gene expression 

during the selection process was a slight benefit while induction of mutant gene expression was 

detrimental to the cells (Figure 4.15).  After selection, it was interesting to note that the pooled 

mutant cells displayed smaller colony sizes in general when compared to the wild type pooled 

cells, possibly due to leakiness of the repression system.  Stable clones developed from these 

pooled cells were tested and found to rapidly and efficiently induce high levels of β1i expression 

when compared to endogenous β1i (Figure 4.16).  This induction did not affect the overall levels 

of polyubiquitinated proteins.  Clones also showed a similar trend in proliferation with and 

without induction as was seen in the pooled cell lines, with expression of wild type β1i being 

beneficial and expression of mutant β1i being neutral or detrimental (Figure 4.16).   

These studies demonstrate that inhibition of β1i, whether chemically or genetically, has an 

impact on cellular proliferation.  It is important to note this effect on proliferation is only seen 

after prolonged loss of β1i catalytic activity.  Thus, small molecules which selective inhibit β1i 

may not have any effect after the short times normally examined, nor may they actually cause 

apoptotic cell death.  Rather, it appears such molecules may function as growth inhibitory drugs 

for those cells which express β1i, assuming that near continuous inhibition is feasible over such 

long periods of time.  A similar lack of apoptotic response was found when β5 or β5i selective 

inhibitors were tested in MM cell lines [92, 236].  This suggests that subunit specific proteasome 

inhibition may have unique characteristics, such as a lack of general cytotoxicity normally seen 

with less selective proteasome inhibitors.  Future efforts to develop such subunit selective 

inhibitors should take these factors into account and not disregard small molecules which fail to 

quickly induce apoptosis. 

The effects of catalytically inactive β1i are radically different than the characteristic effects of 

general proteasome inhibitors, or even activity-specific inhibitors.  This suggests that, as noted 

above, subunit specific inhibitors will have unique functional effects, both in vitro and in vivo.  

Such a finding is exciting, as much remains to be understood in regards to the complex 

functional roles of individual catalytic beta subunits, but this implies that each catalytic subunit 

may have a distinct and meaningful role in normal and disease states.  Thus, efforts to develop 

more selective and potent inhibitors of single proteasome catalytic subunits will assist in 

addressing such questions and should be encouraged. 
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B: Future Directions 

Taken as a whole this work suggests that it is the catalytic activity of β1i which confers growth 

enhancing effects in PC-3 cells.  It is important that further efforts examine the generalizability 

of this finding, especially between cancer cell lines or types.  Additionally, examining the effects 

of β1i expression in in vivo cancer models would shed additional light on the clinical relevance of 

these findings and speak to β1i inhibition as a potential chemotherapeutic strategy.  One way to 

do this would be by the development of fluorescent, luminescent, or near-infrared probes.  

Work is underway in the lab to do this using our lead compounds, although validation of these 

probes is still in the early stages. 

The limitations of our small molecule inhibitor are not entirely surprising.  Eponemycin, the 

parent compound of UK-101, binds preferentially to β1i, β5, and β5i, as UK-101 appears to do 

after 24 hours (Figure 4.9) [190, 191].  Thus, a simple in vivo deprotection of the P1’ alcohol in 

UK-101 or cleavage of this bond by an esterase may be responsible for the loss of specificity of 

UK-101 over time.  This suggests that derivation at the P1’ position to remove the ester linkage 

while maintaining the overall structural bulk of the TBDMS group may improve the specificity of 

the compound significantly and should be explored in the future.   However, additional 

validation work must be completed with any such new compound to ensure a lack of off-target 

effects. 

Additionally, future medicinal chemistry efforts may benefit from exploring non-peptidic 

inhibitors, to alleviate additional proteolytic mechanisms of inhibitor inactivation. A 

collaboration with Dr. Chang-Guo Zhan has begun with the virtual screening of a library of 

approximately 250,000 small molecules to look for alternative chemical scaffolds which function 

as proteasome inhibitors.  The ~200 lead compounds have already been selected and tested for 

their ability to selectively inhibit the immunoproteasome in the lab, utilizing purified 

proteasomes in an in vitro assay, and future work will involved cellular-based methods to 

confirm efficacy and examine permeability in cell line systems.  Derivations of these novel 

scaffolds to produce selective proteasome inhibitors should improve in vivo stability by 

minimizing or removing the susceptibility of proteasome inhibitors to protease cleavage, an 

issue which currently limits the plasma half-life of carfilzomib to about 30 minutes [216]. 
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Further studies to characterize the clones which express the inducible wild type and mutant β1i 

would allow for the examination of the downstream effects of loss of β1i function.  We currently 

have no information regarding what occurs between proteasome inhibition and apoptosis, and 

this mutant induction system would allow one to address such questions without concerns 

regarding off-target effects of the treatment.  This system can also quickly be utilized in other 

cell lines to examine the effects of inhibiting β1i, at least until a truly selective small molecule 

can be developed.  Overall, these sorts of studies should also provide a more compelling 

rationale for the development of new molecular probes which selectively target β1i.   

This inducible approach could also be used to examine mechanisms of resistance to β1i 

inhibition by comparing those clones which show growth inhibition upon induction of the 

mutant β1i with those that do not.  Additionally, clones have been generated which are resistant 

to the effects of the tagged mutant, and these cells could likewise be compared to the vector 

and wild type clones to examine mechanisms of resistance to proteasome inhibition.  This 

intrinsic resistance to partial inhibition of the proteasome is a problem clinically, and efforts to 

elucidate the mechanisms behind this resistance are underway in our lab and others.  

As one potential mechanism of resistance to proteasome inhibitors is changes in proteasome 

subunit composition, the tagged β1i can also be used to quickly purify proteasomes from cells 

which are sensitive or resistant to partial proteasome inhibition.  Since we have made no 

attempt thus far to determine the composition of the proteasomes in which our exogenous β1i 

is contained, such an approach will provide additional information regarding the cooperative 

assembly hypothesis, and possibly also provide purified intermediate proteasomes to test.  This 

experimental approach could clarify and expand upon the western blotting results in Figure 4.14 

and thus may be of interest for future studies. 

The field of proteasome biology has come a long way from the days in which proteasomes were 

regarded as general garbage disposals, undruggable and uninteresting.  As chemists develop 

more potent and selective inhibitors, biologists will continue to use them to make important 

discoveries which elucidate the functional complexity of the ubiquitin-proteasome pathway.  

Many unique roles of the proteasome and its catalytic subunits remain to be discovered, as we 

have barely begun to take into account the structural and functional intricacies of these 

complexes. Overall, the β1i-targeting approach remains promising, although there is much work 

left to be done to move it forward into preclinical development. 
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