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ABSTRACT OF DISSERTATION

PRICE LEVELS AND DISPERSION WITH ASYMMETRIC INFORMATION

In the extensive literature on price dispersions that exists to date, there is a gap in 
the analysis of how market structure affects prices as well as the degree of dispersion in 
prices. Specifically, the literature is deficient in analyzing how price levels and price 
dispersion are affected by the number of firms operating in a market. I use secondary data 
to look at the prices of prescription drugs at the retail level in nine hundred and seventy 
pharmacies across one hundred and sixty five markets in Maryland and compare price 
dispersion across these brick and mortar pharmacies as well as across a separate set of 
pharmacies that only operate online. I compare online versus offline price dispersion, as 
well as price dispersion in purely offline markets from the structure of the market’s 
context.

Stahl’s (1989) theoretical model is used to formulate and test the hypotheses that 
an increase in the proportion of positive search cost consumers in a market will cause 
price levels to rise and price dispersion to initially increase and then decrease. 
Furthermore, in markets with the proportion of positive search cost consumers above a 
threshold level, an increase in the number of firms will also lead price levels to rise and 
price dispersion to initially increase and then decrease. Conversely, in markets with 
positive search cost consumers below the threshold level, an increase in the number of 
firms will lead to lower price levels, i.e. the competitive outcome. 

For the analysis, I look at prices at the pharmacy level and price dispersion at the 
market level and determine the proportion of high search cost consumers for a specific 
pharmacy or a specific market relative to the other pharmacies and markets in the dataset. 
I find that a significant part of the differences in prices for a homogeneous prescription 
drug can be attributed to asymmetric information and that price dispersion is higher in 
markets with a greater number of firms, and price levels are higher in low income 
neighborhoods.

KEYWORDS: Asymmetric Information and Market Failure, Price Dispersion, Search 
Costs, Prescription Drug Prices, Market Structure and Prices
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1. Introduction

With his lemons model, Akerloff (1970) showed how asymmetric information can 

lead to a lower average quality in the market for used goods. Research on market 

failures due to asymmetric information has advanced significantly in the last four 

decades. We see that car dealerships have taken notice and addressed the lemons 

problem via warranties for used automobiles. This is a market based solution to a failure 

in a market for a private good, and one preferred by most economists over government 

rules or regulations. 

There are a number of states that have started to post retail prices of prescription 

drugs on a website typically maintained by the department of health or the state attorney 

general. New York originally passed legislation that required pharmacies to post the 

prices of a number of the most common drugs on a board at the pharmacy itself. The

implementation of this type of policy in a number of states suggests that price shopping 

for prescription drugs may be warranted. This type of information asymmetry leads to 

distorted outcomes in what would otherwise be a competitive market. With an eye on 

Pareto efficiency, I look at prescription drug prices at the retail level, and observe high 

variance in these drug prices. I find that a significant amount of the variance can be 

attributed to information asymmetries and prescribe a highly publicized policy that makes 

prescription drug prices transparent to consumers, thereby promoting competition.  

Despite an extensive literature on price dispersion, there has been little research  

on how market structure affects price levels as well as the degree of dispersion in prices. 

Specifically, the literature is deficient in analyzing how price levels and price dispersion 

are affected by the number of firms operating in that market. I use secondary data to look 
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at the prices of prescription drugs at the retail level in 970 pharmacies across 160 towns 

in Maryland and compare price dispersion across these brick and mortar pharmacies as 

well as across a separate set of pharmacies that only operate online.1 Testing hypotheses 

based on the theoretical predictions by the Stahl (1989) model, I find that price levels as 

well as price dispersion are higher in markets with a higher proportion of positive search 

cost consumers. I also find that as the number of firms in a market increases, the 

minimum price decreases. Surprisingly, I also find that price dispersion as well as the 

maximum price increases with a higher number of firms in the market. 

There is a growing field of research examining dispersion in the prices of 

homogenous goods. Price dispersion observed in the prescription drug market has been a 

source of considerable interest as has been studying price dispersion of various goods 

sold online. However, the studies that look at pricing of prescription drugs focus almost 

exclusively on manufacturer or wholesale level price data (Danzon and Furukawa, 2004), 

or aggregate data when comparing across countries (Buzzelli, et al, 2006). Few studies 

look at actual retail prescription drug prices. For instance, Sorensen (2000) does so for 

only a few pharmacies in two small towns in the state of New York.  Retail prescription 

drug prices are extremely time-consuming to gather and consequently, analysis of the 

pricing of the retail prescription drug industry is cost prohibitive. Average wholesale 

prices (AWP), on the other hand, are relatively easy to gather since The Redbook 

published by Thomson Reuters is available for purchase at a reasonable price and 

publishes AWP for all prescription and over the counter drugs.2 However, this measure of 

“wholesale” prices is flawed due to manufacturers and wholesalers drastically marking 

                                                
1 The online data is primary.
2 The electronic version, on the other hand, is quite expensive. 
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up this price. According to a 2005 report published by the Department of Health and 

Human Services (Levinson, 2005), the difference between the average wholesale price 

and the average sale price (which is defined as the actual sale price to retailers net of all 

discounts) for 2077 national drug codes is forty-nine percent i.e. AWPs are listed at 49% 

above the average sale price. A lot of states base their Medicaid payments on the AWP,

and so marking up these prices results in a higher payout for the drug industry.    

In the data used in this study, it is possible to pay several times as much for the 

same identical prescription drug at one pharmacy as opposed to another.3 However, the 

mean of the coefficient of variation for all drugs is a more reasonable 14.38% (the mean 

of the coefficient of variation for all drugs was calculated by computing the coefficients

of variation for each individual drug and then finding the average of this measure). I also 

look at prices online as well as prices offline and compare the spread in prices across 

online retailers as opposed to offline retailers. The intuition behind this analysis is that 

search cost for goods shopped online are close to zero whereas search costs for goods in 

traditional brick and mortar stores are relatively high. Therefore, consumers are more 

likely to search across various retailers online than they are offline. I test the hypothesis 

that prices across brick and mortar stores should be more dispersed than prices across 

online stores. The driving force behind the relatively higher observed price dispersion 

across offline retailers is the asymmetric nature of the information about prices that are 

available to consumers. Consumers shopping for prescription drugs online are better 

informed about the distribution of prices than are consumers shopping offline. 

                                                
3 I took the maximum price of each drug across all pharmacies in Maryland and divided it by the minimum 
price of the same drug across the entire state. This maximum to minimum ratio for each drug is discussed 
in greater detail in chapter 4. The average for this ratio across all drugs was an astounding 3.45 i.e. a 
consumer unlucky enough to walk into the highest priced drug store for each drug would pay an average of 
345% the price that they would if they walked into the lowest priced store instead.
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In a separate analysis, I look at prices and price dispersion for pharmaceuticals in 

each of the one hundred and sixty municipalities in Maryland and look at market-specific 

as well as drug-specific characteristics to see if they have any impact on the level of price 

dispersion observed. I compare prices at brick and mortar pharmacies with a larger 

proportion of Medicaid patients to prices at brick and mortar pharmacies with a relatively 

smaller proportion of Medicaid patients. This measure is computed by constructing a 

simple index in which the number of the type of prescription drugs sold by each 

pharmacy is weighed by the popularity of the prescription itself. The intuition behind this 

measure is in that pharmacies selling to relatively more Medicaid patients would also be 

selling to more consumers who do not qualify for Medicaid but are also unable to afford 

prescription drug coverage.4 These consumers have high search costs relative to 

consumers with prescription drug coverage who are essentially zero search cost 

consumers.

Based on Stahl (1989), I expect prices to be higher in markets with a higher 

proportion of positive search cost consumers, and price dispersion to be either higher or 

lower, depending on the number of pharmacies in the market. Perhaps the most 

interesting prediction of this model is that given a threshold proportion of positive search 

cost consumers, as the number of stores increase, the expected prices increase. The 

intuition is that as the number of stores increases, the probability of being the low price 

store that positive search cost consumers stumble upon declines. Therefore, in a 

population with a sufficiently low proportion of zero search cost consumers, an 

increasing number of stores can actually lead to higher prices. This result is particularly 

                                                
4 To qualify for Medicaid in Maryland, income for the individual has to be less than $350 per month and
assets cannot be worth more than $2500.
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interesting since it runs counter to the standard result in microeconomic theory whereby 

an increase in the increase in the number of sellers will result in greater competition in 

the market, which should lead to lower prices. The underlying assumption of perfect

information, i.e. all consumers have zero search costs, is the key difference that drives the 

divergent results in the competitive outcome as opposed to the Stahl model.

Furthermore, pricing of pharmaceuticals at the retail level seems to be driven

largely by demand side factors. For example, 30 tablets of Lipitor 10 milligram (mg) in 

July 2010 on drugstore.com cost $95.99. When I look at the 20 mg version, the price 

increases to $135.99. This could be due to various production issues like active ingredient 

costs, etc. However, 30 tablets of 40 mg as well as 80 mg strength Lipitor also cost 

$135.99. It appears to be the case that a fairly significant part of the pricing strategy is 

more consistent with addressing informed consumer behavior such as pill-cutting5 as 

opposed to active ingredient cost. Since the 10 mg dosage is the most common form 

prescribed, individuals willing to buy a higher dosage and cutting the pill, pay the same 

price for all the higher dosage forms. Although I use Lipitor as an example since it is the 

number one selling prescription drug in the country,6 this pricing strategy of equal prices 

for higher dosages is the norm as opposed to the exception.

The rest of the dissertation is organized as follows. Chapter Two reviews the 

literature in the area while Chapter Three presents the theoretical framework based on 

Stahl (1989). Chapter Four describes the data, Chapter Five presents the empirical model 

                                                
5 Pill-cutting is a growing trend to the extent that there are pill cutters now available for specific drugs to 
conform to the shape of the pill i.e. drug specific pill cutters are widely available at retail outlets as well as 
web sites such as pillcutter.com. 
6 Table A.1 in Appendix.
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and some econometric issues, Chapter Six states the results and follows up with some 

extensions to the baseline model, and Chapter Seven concludes this dissertation.
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2. Literature Review

The literature on price dispersion is well established and in the last few years 

there has been considerable interest in search theory due to the proliferation as well as the 

use of the internet to conduct searches for price and product information. Although there 

are quite a few studies on the impact that online shopping has had on price dispersion of 

products, there are a limited number of studies on price dispersion observed in the retail 

prescription drug market. Even a Congressional Research Service Report by Austin and 

Gravell (April 2008), points out the necessity for research in this area.  A number of well 

thought out studies have paved the way for the analysis conducted in this dissertation and 

are summarized below.

2.1 Theoretical Literature

A lot of work has been done explaining price dispersion from a theoretical 

context. I observe models explaining dispersion for both homogeneous as well as 

heterogeneous goods. I focus on price dispersion in homogeneous goods since this 

particular phenomenon must be the result of some friction in the marketplace. Retailers 

selling homogeneous goods in competitive markets are able to sell these goods at varying 

prices. In spite of many sellers and many buyers, I don't observe the Bertrand result. 

There is a great deal of price dispersion discernible for homogeneous goods that are sold 

offline as well as online. This is somewhat puzzling since basic principles of 

microeconomics dictate that in competitive markets, prices will converge toward 

marginal cost. I summarize below some of the theoretical models that explain how it is 

possible to observe persistent price dispersion in the type of market outlined above.
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Search theory, first developed in Stigler (1961), has grown considerably over the 

decades. Stigler observed that prices for homogeneous goods exhibited considerable and 

persistent dispersion and was astute in making the distinction with price discrimination. 

While search theory is based on imperfect information, price discrimination results due to 

heterogeneous consumer preferences or characteristics. Since Stigler, a number of other 

researchers have advanced the theoretical literature in this area and shown why prices for 

homogenous goods can be dispersed across extended periods of time. Salop and Stiglitz 

(1977) show that with two sets of consumers, those who are perfectly informed about 

prices and those who are not at all informed about prices, it is possible for some stores to 

charge a low price and for other firms to charge a high price over the long run. Varian 

(1980) began his paper with the now well-known statement “the law of one price is no 

law at all,” and went on to show that stores would randomize their prices so that they 

could keep consumers from learning about the price distribution i.e. which stores charged 

low prices persistently. Carlson and McAfee (1983) show that while consumers have 

differing search costs, firms have differing production costs and thus, firms with lower 

marginal costs will charge a lower price. Burdett and Judd (1983) show that theoretically, 

price dispersion in the equilibrium is possible in spite of identical and rational buyers and 

sellers. The driving force behind their results is that search is "noisy" i.e. consumers may 

learn of two or more prices when they search but search is costly. 

Some of the online retailers selling books have customized newsletters that a 

consumer who has made a purchase at their web sites can subscribe to. The consumer has 

to fill out demographic information and also the type of books that they are generally 

interested in. The newsletter then is sent to the consumer with offers of discounted prices 
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on the types of books the consumer specified. These discounts are however, not available 

to someone who visits one of these web sites for the first time. Milgrom and Roberts 

(1986) point out that consumers who are interested in certain types of products are likely 

to be more informed about them, and thus have a better idea of what kind of prices they 

can get on these products. On the other hand, consumers who are purchasing this type of 

book for the first time may be doing so for the purpose of giving it as a gift and so are 

unlikely to have as much information on the price of the book. This type of third degree 

price discrimination allows the supplier to extract some consumer surplus. 

Baye and Morgan (1) (2001) show that price dispersion will persist despite zero 

search costs brought about by the Internet because comparison-shopping agents will 

charge fees to both consumers and suppliers. The authors conclude that social welfare is 

maximized when there is competitive pricing in the market. However, this does not result 

in maximizing the gatekeeper's profits. In equilibrium, the gatekeeper's profits are 

maximized when fees charged to firms are set low enough so that all consumers 

subscribe, fees charged to firms are set high enough so that only some of the firms 

subscribe, and firms that subscribe to the gatekeeper's services set lower prices for the 

actual product than firm's that don't subscribe. In an extension to their own work, Baye 

and Morgan (2) (2001) show that when online retailers are able to distinguish between 

consumers in terms of who is accessing a shop-bot and who is accessing the retailers of 

the web-site directly, they price discriminate. Consumers who access the retailer's web-

site directly are charged more than those who access through a shop-bot because the 

shop-bot makes available prices from the online retailer's competitors. 
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Lal and Sarvary (1999) develop a theoretical model to analyze markets for 

differentiated goods. They conclude that the Internet may lead to monopoly pricing if 

there is a large number of Internet users, physical attributes of the good which are non-

communicable over the Internet are somewhat important, consumers are favorably 

inclined towards the brand they currently use, and when the fixed cost of a shopping trip 

is higher than the marginal cost of visiting additional stores. The results are driven by the 

key assumption that certain attributes of a product are only known to a consumer through 

physical inspection. As a result, consumers tend to exhibit loyalty to brands that they are 

familiar with rather than risk buying an unknown brand over the Internet. This increase in 

loyalty due to shopping over the Internet allows firms to behave as monopolies.  

Developing a similar model, Janssen and Noll (2002) analyze markets where 

firms sell online and offline. The authors offer several interesting insights including 

showing that not all consumers who search buy because of certain uncertainties 

associated with carrying out a transaction online. Unless prices are low enough to 

compensate for these uncertainties, consumers will not purchase online. The model also 

shows that prices will be dispersed in the equilibrium. This is because certain stores 

charge a high price to profit from consumers who don't use the Internet and thus for 

whom it is costly to conduct search. Other stores charge a low price to attract consumers 

who do use the Internet. The authors show that marginal cost pricing never occurs in the 

equilibrium price distribution.  

Arbatskaya (2000) conducts a theoretical analysis of consumers undertaking 

sequential search in a market where sellers are located in order. Thus to search a seller 

located at the bottom of the order, consumers have to pass all the sellers located above 
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this particular seller. The order could be in the form of recommendations from a referral 

service such as a shopping agent. The model shows that higher prices are charged by 

sellers located at the entrance of the market. Therefore, consumers with lower reservation 

prices search longer and pay less for a homogeneous product than the consumers with 

higher reservation prices.

Greenwald and Kephart (1999) develop a theoretical model that establishes that 

increased usage of shopbots by consumers lead to a decrease in the average price of a 

commodity, as well as a decrease in the average profit earned by sellers. The authors 

predict that in the future, sellers may employ pricebots - adaptive, price-setting agents, in 

an attempt to gain an edge in the intensely competitive world of Internet commerce. The 

authors show that although pricebots might lead to price wars, its still possible for sellers 

to earn profits above the game-theoretic equilibrium levels. 

Morgan and Sefton (2001) extend the Varian (1980) model of sales to show that 

prices are less competitive when the number of uninformed consumers are large, thus, 

even informed consumers end up paying more. Chen and Sudhir (2001) argue that 

"competition may be reduced and prices rise as consumer search costs for prices fall," 

due to the Internet. The authors show that this is theoretically possible and provide the 

intuition that while the Internet facilitates consumer search, it also enables firms to keep 

track of consumer behavior. In a brick and mortar type setting, firms are unable to 

distinguish between consumers who buy after conducting search and those who buy 

because of loyalty to the firm (or because they have high opportunity costs). However, 

online firms can track consumers and send them e-mails with special offers if they find 

that these consumers are price elastic. On the other hand if consumers are price inelastic, 
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then they can be charged a higher price. This then leads to increased price dispersion in 

the equilibrium in spite of reduced search costs. 

Carlson and McAfee (1983) show in a theoretical setting the existence of 

equilibrium price dispersion for a homogeneous good. The driving force in obtaining the 

results are the assumptions that firms have varying production costs and consumers have 

differing search costs. The main predictions of this model are that:

(a) firms with lower costs of production will charge lower prices and have higher demand 

for their product, (b) consumer search may result in demand being a linear function of 

the difference between the firm's prices and the average price set by all firms, (c) profits 

will be proportional to the square of quantity demanded, (d) cost functions of potential 

firms will determine the number of firms in equilibrium and the larger the range of 

consumer search costs, the greater the number of firms in the market, (e) the variance of a 

firm's costs results in directly influencing the variance of prices offered by firms, (f) an 

increase in the number of firms, decrease in the slope of the marginal cost functions, or 

decrease in the density of distribution of consumer search costs will result in an increase 

in the variance of prices, and (g) a proportional tax will also increase the variance of 

prices because it will not be completely passed on to the consumer.    

Burdett and Judd (1983) show that theoretically price dispersion in the 

equilibrium is possible in spite of identical and rational buyers and sellers. The driving 

force behind their results is that search is "noisy" i.e. consumers may learn of two or 

more prices when they search but search is costly. Fishman (1992) analyzes a theoretical 

model to show that when buyers are imperfectly informed and it is costly for sellers to 
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change prices, staggered price-adjusting will emerge. Thus, the author suggests that price 

dispersion is a real effect resulting from inflation. 

Keller and Rady (2003) show that when consumers sometimes view the product 

as similar and sometimes as differentiated, there is an opportunity for a duopoly to 

acquire information on consumer behavior. The authors develop a theoretical model that 

shows that when information is of low value to firms, they charge the same price. 

However, if information has high value, then firms learn by creating price dispersion. 

Macminn (1980) extends Stigler's (1961) and McCall's (1970) search models to 

show that it is possible for a price distribution to exist in the equilibrium. The author 

shows that in the Stigler model, the variance of the price distribution is a "monotonic 

increasing function of nonsequential search intensity," whereas in the McCall model, the 

variance of the price distribution is an eventually decreasing function of sequential search 

intensity. 

Reinganum (1979) assumes that firms have heterogeneous marginal costs, which 

results in equilibrium price dispersion. However, in the book industry, a number of 

lawsuits have resulted in publishers being unable to price-discriminate between retailers –

even volume discounts are not legal. Salop and Stiglitz (1976) use an overlapping 

generations model and heterogeneous consumer search costs to show equilibrium price 

dispersion. Salop's (1979) circular city model shows that even if products are 

homogeneous, positive consumer search costs will lead to higher than marginal cost 

pricing. 

Stahl (1989) developed a model in which some consumers have zero search costs 

while others have positive search costs. He assumes that there are N identical stores 
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selling a homogeneous product with constant marginal costs. Stahl shows that if all 

consumers have zero search costs then prices converge to marginal cost i.e. the Bertrand 

result, since all consumers will purchase from the lowest-priced store. Conversely, when 

all consumers have positive search costs, the price distribution converges to the 

monopoly price i.e. the Diamond result. This result holds under the assumption that the 

reservation price for all consumers is unique and the cost for additional search outweighs 

the benefits to be gained from the search.

Furthermore, the model shows that as the proportion of consumers with zero 

search costs goes from 0 to 1, the Nash Equilibrium price distribution changes 

continuously from the degenerate distribution at the monopoly price to the degenerate 

distribution at the competitive price. An interesting prediction of this model is that as the 

number of stores that offer the product increases, the NE becomes more monopolistic. 

This is obviously contrary to expectations in that we would expect the competitive 

market outcome but that would only hold with the presence of a sufficiently high 

proportion of consumes with zero search costs. The intuition is that as the number of 

stores in the market increases, the probability of being the lowest priced store decreases 

dramatically. Thus, the expected payoff is higher for charging captive high search cost 

consumers high prices, than it is for attracting zero search cost consumers by charging 

low prices. Given a market with a low proportion of zero search cost consumers, it will 

be more profitable to cater to the positive search cost consumers and charge higher 

prices.  



15

2.2 Empirical Literature

2.2 (a) Price Dispersion in General

Brown and Goolsbee (2002) find that lower search cost through the Internet allow 

consumers to engage in low-cost price comparisons. Empirical work in their paper shows 

the impact of the rise of Internet comparison-shopping sites on the prices of new term life 

insurance policies. They observe that the growth of the Internet has reduced term life 

prices by 8 to 15 percent and increased consumer surplus by $115-215 million per year. 

They conclude that with the introduction of shop-bots, price dispersion initially increases, 

but as the share of people using this technology rises further, price dispersion falls. 

Chandra and Tappata (2010) look at retail gasoline markets and find that price 

dispersion increases with search costs and also increases with the number of firms in a 

market. Anania and Nistico (2004) look at homogeneous food products across a number 

of retailers and observe that heterogeneity in retailer services as well as consumer search 

costs lead to sustained price dispersion.  Nelson, Cohen and Rasmussen (2007) use data 

for books, computers and electronics and find that the level of price dispersion is 

positively correlated to the price of the product and the number of sellers, and lower for 

goods that would be bought repeatedly. They also find that sellers who offer low prices in 

one product, also typically offer low prices on all products.

Sorensen (2000) looks at two small towns in the state of New York and finds that 

in the market for prescription drugs, posted prices vary significantly across pharmacies in 

the same geographic market and pharmacy heterogeneity accounts for little of the price 

dispersion. He uses purchase frequency as a proxy for consumer search and finds that 

price dispersion of retail prescription drugs are lower when search intensity is higher and 
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drugs for which consumers conduct more search have the lowest markup over cost. Our 

work is primarily different from Sorensen’s in that while Sorensen used purchase 

frequency, a drug characteristic, to determine search outcomes, we use market 

characteristics – a significantly different approach. Furthermore, we take an in-depth look 

at price levels across geographic markets and analyze the impact of greater competition 

on prices of prescription drugs.

In a related study, Sorensen (2001) examines data from traditional brick and 

mortar pharmacies to infer that prices for prescription drugs vary widely across stores and 

while some stores may offer a particular drug at a low price, others offer a different drug 

at the low price – thus, one store does not consistently offer the low price for all drugs. 

On an average, the author estimates only 10 percent of consumers search for prices of 

prescription drugs and search is more intensive for a maintenance prescription drug i.e. 

one that is used repeatedly over time, than it is for a one-time purchase prescription drug. 

The returns to search would be higher for a prescription drug used repeatedly so this 

finding is consistent with theoretical expectations. Furthermore, the author estimates the 

cost of an exhaustive search for a particular drug to be $15 for the average consumer and 

also finds that females have substantially lower search costs than males.

A lot of the recent work on price dispersion focuses on goods sold online. 

Surprisingly, a good deal of the evidence shows that even for undifferentiated products 

such as books and CDs, price dispersion between online retailers is actually greater than 

traditional retailers (Brynjolfsson and Smith, 1999). This seems to be contrary to the 

perfect information assumption and the resulting implication that price dispersion among 

undifferentiated products should vanish. Additionally, menu costs, which are the costs of 
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changing prices on products, are nearly zero for Internet retailers. This should further 

dissipate any price dispersions since price stickiness will be less of an issue.

Furthermore, Amazon.com, which has the biggest share of all books sold online 

(screen share of 80% - reported by Web21), practices price discrimination by giving 

special offers to consumers who have bought books from them before. New consumers 

who get on their web site for the first time to buy a book do not have access to this same 

offer. This type of pricing strategy implies mark-up pricing on the part of the suppliers. 

How this strategy is viable in spite of almost zero information costs and will it persist in 

the future are questions of interest to this author. 

Brynjolfsson et al. (2006) estimate the benefits of searching lower screens for the 

median consumer to be $2.24 and the cost to be $2.03. An interesting result that they find 

is that consumers who are less price sensitive actually search more. They attribute this 

find to consumers placing greater importance on delivery time and reliability of the 

online retailer. They sum up that substantial price dispersion can exist in equilibrium in 

online markets because of heterogeneity in consumer preferences for price and non-price 

attributes of a product.

Gatti and Kattuman (2003) use data obtained from a major European price 

comparison web site to compare prices of products in five different categories across 

seven European countries. They find significant levels of price dispersion within 

countries as well as across product categories. Brynjolfsson et al (2007) find that by 

reducing search costs, online markets have enhanced consumer welfare in many ways 

including increasing the variety of products available. In particular, obscure products are 



18

more easily available to consumers and more people are buying these types of products 

online as opposed to through traditional channels.

Bayliss and Perloff (2002), analyze the online markets for cameras and scanners 

and find that there are "good firms" that charge a lower price and provide superior service 

while "bad firms" charge a higher price and a lower level of service. They imply that their 

findings are consistent with the Salop and Stiglitz model (1977), where firms with a 

bigger market share are able to provide better service and a lower price because of 

economies of scale.  

Pan, Ratchford and Shankar (2002) analyze several markets of goods sold online 

to determine that price dispersion is significant even after controlling for web-site 

characteristics. They find that market characteristics, as opposed to firm characteristics, 

are major determinants of online price dispersion. They also find that price dispersion 

increases with an increase in the average level of prices but decreases with an increase in 

the number of competitors. Furthermore, the authors find that web-sites that offer better 

quality services do not necessarily charge a higher price. On a similar vein, Pan et al 

(2003) look at how prices online have evolved since the bursting of the Internet bubble in 

the early 2000's. They find that prices in online markets have been persistent over the 

period of their study from 2001 to 2003 and in some markets, it actually increased. In 

further research in this area Pan et al (2004) also show that in equilibrium, consumer 

heterogeneity in willingness to pay for retail service results in higher prices for brick and 

mortar as opposed to internet retailers. They find that brick and mortar retailers provide 

better service and charge higher prices which enables them to make greater profits. 
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Zettelmeyer, Scott Morton and Silvo-Risso (2006) conclude that online 

consumers pay an average of 1.2% less for a new car than consumers shopping through 

traditional channels. Furthermore, it is determined that after controlling for selection, 

consumers who use the online referral service, Autobytel.com, pay 2.2 % less. The 

authors estimate consumer surplus from the use of this one referral service alone to be 

$240 million per year. On the other hand, Clay, Krishnan and Wolf (2001) use data on 

prices of books sold online to empirically analyze price dispersion on the Internet. They 

find that there is no change in prices or price dispersion over the period of their study. 

They also find that advertised or popular items, such as best sellers on the New York 

Times bestseller list, have the lowest price relative to the publisher's suggested price. 

However, price dispersion for these items are high which is inconsistent with search 

theory. The authors suggest that the reason they don't observe a convergence in the price 

for what is essentially a homogeneous good is because online stores have succeeded in 

differentiating themselves. 

In a similar paper, Clay et al. (2002) use data collected from online as well as 

brick and mortar book stores to determine that average prices for online as well as brick 

and mortar stores are similar. However, online stores exhibit significant price dispersion. 

They suggest that firms are trying to differentiate themselves in terms of non-price 

attributes such as providing reviews, recommendations, loyalty programs, etc. They also 

found that Amazon.com was charging a premium over rivals such as 

Barnesandnobles.com and Borders.com which implied that Amazon.com had succeeded 

in differentiating themselves from their rivals. 
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Cheng, June and Nault (2006) find that electronic markets have matured and if in 

a market with a number of existing retailers, there is a potential new entrant, then one of 

the existing retailers exist first when costs faced are similar. However, if the market is not 

covered by existing retailers, then the new entrant will enter the market if they have a 

slight Internet channel entry cost advantage. If the market is covered by existing retailers, 

then the cost advantage has to be larger for the potential new entrant to enter the market.

Ellison and Ellison (2006) find that electronic market purchases strongly correlate 

to the state and the state tax rate where the purchase is being made. They find that 

avoiding sales tax may be an important contributor towards consumer purchasing 

decisions between online and offline channels. They also find that consumers prefer 

buying from firms located in nearby states so that they can benefit from faster shipping 

times. Goldmanis, Hortacsu, Syverson and Emre (2008) look at travel agencies, 

bookstores, and new auto dealers to determine what industries are better off as an 

increasing number of consumers use the internet for shopping. They assume that 

consumers have lower search costs as a result of e-commerce and find that there is a 

reduction in the number of smaller business within this industry as market share is 

redistributed to bigger firms from these smaller firms.

Baye, Morgan and Scholten (2001) examine the market for electronic goods sold 

on the Internet and find that when fewer firms offer the same product for sale, price 

dispersion is greater whereas when a large number of firms offer the same product for 

sale, price dispersion is much smaller. They also find that prices on the Internet are not 

converging to the "law of one price." Clemons, Hann and Hitt (2000) find that online 

travel agents offer tickets with significantly different prices and characteristics when one 
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unique customer request is submitted. After controlling for product differentiation, the 

authors determine that ticket prices differ by as much as 18% across online travel agents. 

The authors conclude that for the online market for travel agents, product differentiation 

is an important part of the pricing strategy, but there also appears to be a certain amount 

of random inefficiency. 

Lehmann (2001) also analyzes the online travel agency market and determines 

that on an average, prices tend to be lower and more dispersed on the Internet. However, 

when the author controls for higher quality and lower quality products, he finds that 

goods of a lower quality tend to have a higher price and higher price dispersion on the 

Internet whereas goods of a higher quality have a lower price and lower price dispersion 

on the Internet. The author conjectures that this may be because there is greater incentive 

for consumers to search for higher priced items online since expected returns to search 

will be greater whereas for the lower priced items, consumers will tend to be less 

informed since expected returns to search will be lower. 

Scott Morton, Zettelmeyer and Silvo-Risso (2001) analyze the market for new 

cars to determine that in traditional dealerships, African-American and Hispanic 

consumers pay around 2% more than other consumers. However, this premium, in part is 

explained by the differences in income, education and search costs. The authors also find 

that minority consumers buying new cars using an online referral service pay nearly the 

same prices as white consumers regardless of their income, education and search costs. In 

a related study, Zettelmeyer, Scott Morton and Silvo-Risso (2001) conclude that online 

consumers pay an average of 1.2% less for a new car than consumers shopping through 

traditional channels. Furthermore, it is determined that after controlling for selection, 
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consumers who use the online referral service, Autobytel.com, pay 2.2 % less. The 

authors estimate consumer surplus from the use of this one referral service alone to be 

$240 million per year. 

  Smith and Brynjolffson (2001) find that online consumers are loyal to the 

retailers they purchase from and use the reputation of a retailer as a proxy for non 

tangible aspects such as shipping on time. They also determine that consumers respond to 

the allocation of the total price of a product between the item price, shipping costs and 

tax. The authors are able to identify each consumer with a cookie number. This enables 

them to conclude that certain consumers are more sensitive to changes in sales tax and 

shipping costs than they are to changes in the item price. In a closely related study, 

Brynjolffson and Smith (2001) find that besides price, brand name retailers and retailers 

from whom the consumer has purchased previously are important factors in determining 

the consumer's choice. Furthermore, allocation of total price among item price, shipping 

and tax is also important to consumers. Finally, the authors determine that consumers use 

the reputation of an online seller as a proxy for non-tangible aspects of the product such 

as shipping. 

Ariely and Lynch (2001) set up an experiment in a laboratory type setting and 

show that for differentiated products like wines, consumer demand became more inelastic 

when information about quality was made available. On the other hand, consumers 

became more price sensitive when the search process was facilitated. Lowering search 

costs resulted in welfare gains for consumers. Furthermore, when search was hard, 

market share for common wines was proportional to their share of the distribution of all 
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wines sold, but when search was made easy, the market shares returns to distribution 

declined. 

Cason and Friedman (2000) simulate markets with varying search costs in a 

laboratory setting. Buyers observe either one or two of the posted prices at zero search 

cost. Buyers then either accept that price or search again but this time at a cost, or drop 

out of the market. Consistent with equilibrium theory, the authors determine that 

transaction prices converge to a “very low price” when search costs are zero and 

converge to a “very high price” when search costs are very high. Specific price 

distributions are also found to exist when search costs are positive but not prohibitive.   

Carlton and Chevalier (2001) analyze data on sales of fragrances, DVD players 

and side-by-side refrigerators both from traditional outlets as well as online. They find 

that manufacturers who limit distribution of their products to traditional brick and mortar 

retailers also limit distribution to online retailers, particularly to online retailers who sell 

products at a high discount. Interestingly, the authors also find manufacturer websites

charge high prices and don’t appear to be undercutting the prices offered by Internet 

retailers. Ping, Lee and Yan (2000) show that online markets for books are more 

competitive than brick and mortar markets using an indirect approach. They hypothesize 

and provide empirical evidence to show that switching costs are lower for online 

consumers as a result of which discounts on bestsellers are relatively smaller than they 

are at brick and mortar stores. 

Kauffman and Wood (2000) find that prices for goods sold online don’t converge 

to marginal cost because the Internet enables competitors to tacitly collude by keeping 

tabs on their rival’s price changes instantaneously. A reaction by competitors in lowering 
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their price immediately in response to a firm lowering its price negates any profits that 

could be obtained from increased market share. Thus, firms don’t have any incentive to 

lower their prices and this keeps prices from converging to marginal cost. In a similar 

study, Kauffman and Wood (2001) hypothesize that electronic commerce technology 

enhances the ability of firms to keep prices higher by tacit collusion in spite of a highly 

competitive environment. The empirical results show that firms may either tacitly collude 

or compete depending on characteristics of the industry and the firm. 

Anand and Shachar (2000) estimate how much information consumers have about 

product attributes and the impact it has on brand loyalty. They determine that when 

consumers don’t have complete information about a product’s attributes, an individual’s 

choice for a product is a function of the attributes of other products offered by the same 

brand. They also determine that the influence of brand image is lower for informed 

consumers and greater when brand image increases. Finally, the authors find that lack of 

information contributes to brand loyalty as opposed to “emotional attachment” to various 

brands. 

Zettelmeyer, Scott Morton and Silvo-Risso (2006) conclude that online 

consumers pay an average of 1.2% less for a new car than consumers shopping through 

traditional channels. Furthermore, it is determined that after controlling for selection, 

consumers who use the online referral service, Autobytel.com, pay 2.2 % less. The 

authors estimate consumer surplus from the use of this one referral service alone to be 

$240 million per year. According to Srinivasan and Ratchford (1991), consumers will 

weigh cost and benefits of search for prices and this will effect their price elasticity. The 

benefits of search may include economic as well as psychological factors such as the 
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enjoyment derived from shopping. The cost of search will include cost of searching for 

price as well as non-price attributes of a product. According to information search theory, 

the lower the expected benefits of information search, the lower is the price elasticity.  

Conversely, the higher the expected benefits of information search, the higher the price 

elasticity. 

Cheng, June and Nault (2006) find that electronic markets have matured and if in 

a market with a number of existing retailers, there is a potential new entrant, then one of 

the existing retailers exit first when costs faced are similar. However, if the market is not 

covered by existing retailers, then the new entrant will enter the market if they have a 

slight Internet channel entry cost advantage. If the market is covered by existing retailers, 

then the cost advantage has to be larger for the potential new entrant to enter the market.

Ellison and Ellison (2006) find that electronic market purchases strongly correlate 

to the state and the state tax rate where the purchase is being made. They find that 

avoiding sales tax may be an important contributor towards consumer purchasing 

decisions between online and offline channels. They also find that consumers prefer 

buying from firms located in nearby states so that they can benefit from faster shipping 

times. Bailey (1998) found that prices on the Internet were typically higher than prices in 

traditional retail outlets. 

Alba, et al (1997) suggest that the Internet could actually diminish price elasticity 

by allowing consumers to find products that best suit their needs. They find that when 

information about quality is important to consumers, interactive retailing lessens price 

sensitivity. Degeratu, Rangaswamy, and Wu(1999) used panel data from online grocery 

stores and found lower price elasticity for certain categories of products when 
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information about these products were accessible for consumers. Choudhury, et al (1998) 

found that although the Internet can help consumers find better prices, it can also help 

producers extract consumer surplus. Lee (1998) found that a Japanese online auto auction 

service repeatedly realized higher prices than traditional auto auctions. Cortese and 

Stepaneck (1998) found several online markets that realize higher prices than their 

traditional counterparts. 

2.2 (b) Prescription Drug Price Related Literature

Aronsson, Bergmann and Rudholm (2001) investigate the Swedish market for 12 

brand name drugs to determine how market share for the brand name drugs are affected 

by the difference between the price of the brand name drug and the price for its generic 

substitute. They find that for 5 of the 12 brand name drugs, the average price of the 

generic substitute significantly affects the market share for the brand name drug. The 

larger the ratio of the brand name drugs price to the price of its generic substitute, the 

smaller the market share of the brand name drug. 

Grabowski and Vernon (1992) determine that the difference in the prices of brand 

name drugs and their generic substitutes is the cause for the generics to capture a 

relatively large market share as soon as they are introduced to the market i.e. after the 

patent for the brand name drug expires.  Caves, et al (1991) find that when generic 

substitutes enter the market, price for the brand name drugs decline significantly. 

Costello (2000) looks at the reference price system which is in existence in most 

of Europe and designed to cut back on national pharmaceutical expenditure by replacing 

brand name drugs with their generic substitutes. The author develops a theoretical model 

for a duopoly to show that brand-name sellers will offset lower profits by selling higher 
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quantities instead of charging a higher price. The driving force behind these results are 

the assumptions made about the introduction of the reference price system and a 

vertically differentiated model.   

2.3 Government, News and Private Entity Reports

I further look at whether or not price dispersion for prescription drugs for the 

elderly have changed since the implementation of Medicare Part D prescription drug 

benefit plans. Medicare Part D plans are private plans that allow beneficiaries to enroll on 

a voluntary basis in these subsidized plans that cover prescription drug costs. According 

to The Medicare Factsheet (January 2010) published by the Kaiser Family Foundation, 

Medicare Part D accounts for 11% of benefits spending and has over 27 million 

enrollees. While not all pharmaceuticals are prescribed only to specific age groups, 

certainly drugs for Alzheimer’s or Osteoporosis are highly likely to be used by the elderly 

as opposed to birth-control, which are not. I have looked at data collected in 2008 and 

2009 for various “demographic specific drugs” and compared price markups to data 

collected in 2002. Medicare Part D was passed in 2003 and began in 2006. I am

essentially looking at a market with a proportion of consumers with positive search cost 

evolving into a market where most consumers have zero search costs. This implication 

derives from the fact that a greater proportion of the elderly, without incurring any search 

costs, now enjoy the benefits of complete search since the insurance companies are now 

negotiating the prices for them. In 2002, roughly a third of all elderly were without any 

coverage for prescription drugs. That percentage, as of February 2010, stands at about 

ten. Coverage for prescription drugs here is defined as coverage by all plans under 
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Medicare Part C and D, and including the Department of Veterans Affair, the Federal 

Employees Health Benefits Program, Tricare, the Retiree Drug Subsidy.7

While research in the past (Buzzelli, et al, 2006) has considered the impact of the 

existence of generics on pricing of pharmaceuticals, I look at a bigger class of possible 

substitutes by looking at Therapeutic Equivalents. All generic drugs are therapeutically 

equivalent to their brand name counterpart. However, the converse is not true i.e. all 

therapeutically equivalent drugs are not just the generic version of the brand names. 

According to the FDA web site, all therapeutically equivalent drugs when administered 

under the conditions specified in the labeling are expected to have the same clinical effect 

and safety profile. Lipitor, a brand name drug and a statin for controlling cholesterol, 

does not have any generic substitutes but has a therapeutic equivalent in Zocor, also a 

brand name drug and a statin. Zocor does have a generic version in existence and 

physicians are substituting between Lipitor and the generic version of Zocor to the extent 

that Pfizer, the maker of Lipitor, has been heavily advertising and informing consumers 

that they should not switch if Lipitor works for them and the generic that they are 

switching to is not a generic version of Lipitor.8

It is important to note that we are looking at retail prices and not manufacturer or 

wholesale prices. Therefore, any of the standard arguments of higher pricing and higher 

profits leading to greater investments in research and development, which further lead to 

innovation are moot. Higher prices charged by pharmacies, however, may indeed lead to 

                                                
7 Data for proportion of elderly covered by insurance for prescription drugs in 2002 and in 2009 were 
compiled from the Kaiser and Centers for Medicare and Medicaid web-sites.

8 http://www.lipitor.com/patients/generics.aspx and http://davisliumd.blogspot.com/2009/04/generic-
lipitor-not-yet-other-excellent.html
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a smiling pharmacist as opposed to a frowning one. One would further conjecture that the 

smile on the pharmacist charging over a thousand  percent of the price the lowest priced 

pharmacy is charging would have to be fairly… dazzling.9 I think the timing of this 

particular dissertation would be difficult to beat. Health care costs are in the news to the 

extent that someone writing a dissertation in a related area needs write very little to 

justify why it would be a meaningful dissertation. Nevertheless, in the course of 

providing rationale for this research, it would be a disservice not to present the following 

facts pertinent to justifying the dissertation topic.

A Congressional Research Service Report called “Does Price Transparency 

Improve Market Efficiency? Implications of Empirical Evidence in Other Markets for the 

Health Sector” (Austin and Gravell, 2008) looks at a number of studies including a 

couple summarized in this outline and concludes that reforms that increase price 

transparency would reduce prices. They find that in the healthcare sector, there is a strong 

need for greater price transparency and consumers have difficulty finding useful price 

data. In the empirical studies that the report looks at, the two main avenues through

which price transparency is attained are a) increasing price information in advertising and 

b) Internet comparison shopping sites. The study concludes that in spite of the healthcare 

sector being somewhat complicated due to characteristics such as qualitative differences 

in complicated products, payments made by some form of insurance, etc, greater price 

transparency could lead to more efficient outcomes and lower prices for consumers.

                                                
9 As pointed out in footnote 3, the maximum to minimum ratios are presented in Table 4.2. The highest of 
these ratios are for Ortho Evra which sells at the highest priced pharmacy (priced at $357.90 at Ritchie 
Pharmacy in Brooklyn Park)  at 10.26 multiple of the price at the lowest priced one (priced at $35.00 at 
The Homecare Pharmacy Fennel in Hagerstown).
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"Prices will decline and brand loyalty will be threatened as both Internet startups 

and traditional retailers try to acquire and retain customers in a rapidly expanding 

medium of commerce. At the limit, prices will be driven down to marginal cost as a result 

of intense competition and perfectly informed consumers." (Saloner, et al, 2000). 

However, if one accesses an online comparison-shopping agent such as Pricescan.com, 

MySimon.com, Bizrate.com, deals4u.com, etc., one is confronted with a fairly wide array 

of prices for the exact same product such as a book or a CD or a DVD player or 

prescription drugs. These products are not identical in the sense that all medications are 

the same but rather in the sense that if one wanted to purchase a bottle of Centrum 

vitamins of a certain size, then that bottle of Centrum would take on the properties of a 

commodity product, being offered by various sellers. Furthermore, ISBN numbers for 

books, manufacturing numbers for electronics and computers, package size and strength 

of a prescription drug, etc, ensure that distinctions are made for different attributes and 

that the products being compared are indeed homogeneous. Thus, it is surprising indeed 

that with perfect information, many suppliers, and homogeneous products - all 

trademarks of a perfectly competitive market - price dispersion should exist. The purpose 

of this paper is to see if systemic price dispersion does indeed exist among on-line as well 

as traditional brick and mortar retailers and what reasons there could be for its existence.  

The GAO (2009) looks at Average Wholesale Prices for prescription drugs 

between the years 2000 and 2008 and finds that a lack of competition mainly due to lack 

of therapeutic equivalents which could serve as substitutes was a consistent characteristic 

in 416 brand name prescription drug products  which exhibit an “extraordinary price 

increase”.  An “extraordinary price increase” is defined as an increase of one hundred 
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percent or more at any one point in time across the period of the study. In over 90% of the 

cases, they found this increase to persist either at the increased price levels or bolstered 

by further increases. The GAO then proceeds to pick 6 drugs for a more detailed look. 

They state that corporate consolidations led to fewer choices through less competition 

and found four of the six drugs had their rights acquired by a new firm. Two of these 

drugs had an extraordinary price increase shortly thereafter. 

According to the Congressional Budget Office, medical costs in the U.S. will 

increase from the current 16 percent to 25 percent of the nation’s GDP by the year 2025, 

if they continue growing at their current rate of growth. That is quite the attention-getting 

statistic. However, with the health care insurance reform having just being signed into 

law, it will be interesting to see the actual outcome over the years. According to IMS, the 

World’s largest pharmaceutical market, the U.S. grew by 1 to 2 percent in 2009, reaching 

$300.3 billion.10 In comparison, Japan, the second largest pharmaceutical market in the 

World, grew by 4 to 5 percent and reached $84 to $88 billion. The U.S. is obviously a 

major player when it comes to the pharmaceutical market and the pricing of 

pharmaceutical drugs has been and will continue to be an important issue in this country 

for some time to come. 

According to a New York Times article from December 3, 2008, about rising 

healthcare costs, "Celgene initially spent very little on research and priced each pill (of 

thalidomide) in 1998 at $6. As the drug's popularity against cancer grew, the company 

raised the price 30-fold to about $180 per pill, or $66,000 per year. The price increases 

                                                
10 Table A.1 in the appendix gives a breakdown of the pharmaceutical market over the last five years and 
includes the revenues generated by the top five selling drugs across those five years.
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reflected the medicine's value, company executives said." The GAO report (2009) cited 

earlier states that this is a common reason stated by pharmaceutical firms as justification 

for an “extraordinary price increase.” 

Furthermore, due to a provision in the Medicare Part D prescription drug program 

signed into law in 2003, the federal government cannot negotiate with pharmaceutical 

companies for lower drug prices for Medicare. It is left up to the private insurance 

companies who provide coverage for those on Medicare prescription plans to negotiate 

with the pharmaceutical companies. While that may seem fair on the surface, private 

insurance companies lack the clout that a federal government agency could wield in 

terms of getting better prices for Medicare recipients since the Federal government would 

negotiate for all the private insurance companies. Additionally, Families USA, a 

consumer healthcare advocacy group, conducted a study in 2005 comparing drug prices 

under Medicare to those negotiated by the federal government for the Veterans Affairs 

(V.A.). Nineteen of the top twenty drugs prescribed were priced higher under the lowest 

drug price through any Medicare prescription plan. The median price difference for the 

top 20 drugs prescribed were 48.2% higher under the lowest drug price through any 

Medicare prescription plan as opposed to the V.A. plans i.e. 10 of the top 20 drugs 

prescribed had Medicare paying greater than 148.2% of what V.A. was paying. It is also 

important to note that while out of pocket expenses have decreased substantially over the 

years, they are still roughly a fifth of overall expenditures on prescription drugs. One 

must bear in mind that individuals without any kind of coverage have even less clout 

when it comes to negotiating healthcare costs and have traditionally paid a higher price 

for healthcare than any other group.
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3. Theoretical Underpinning

3.1 Model

  I use predictions from Stahl (1989) to formulate hypotheses for the purposes of 

empirical testing. To be clear, all of the theoretical implications presented in this chapter 

are borrowed directly from Stahl’s model and adapted for the special case of shopping for 

pharmaceuticals and determining heterogeneous search costs via the measures defined in 

chapter 5. The model predicts that in a market for homogenous goods such as 

prescription drugs, as long as some proportion of consumers have positive search costs,

some pharmacies will charge a low price while some will charge a high price. The model 

assumes that all pharmacies have identical costs and predicts that if all consumers have 

zero search costs, because, for instance, they all search using the internet, then prices 

converge to marginal cost since all consumers will purchase from the lowest-priced 

pharmacy. Conversely, when consumers have positive search costs that are prohibitive,

because, for instance, all consumers have to physically visit the pharmacies to acquire 

price information, the price distribution converges to the monopoly price i.e. the 

Diamond result. This result holds under the assumption that the reservation price for all 

consumers is unique and the cost for additional search outweighs the expected benefits to 

be gained from search.

Suppose that all consumers have positive search costs, c, such that the c is greater 

than the expected benefits from search, i.e. the expected savings generated from search. I

begin with a model in which there are two pharmacies located at opposite ends of a town.

The model is similar to Hotelling’s (1929) linear city model in that pharmacies are 

making location choices. However, while Hotelling addresses product differentiation 
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with his model and hypothesizes that the firms will end up locating next to each other to 

minimize loss of market share, I look at heterogeneous consumer search costs and the 

impact it has on pricing decisions made by firms. If all consumers have prohibitively 

high search costs (they can observe the first price for free but incur a cost, c, if they wish 

to search for a second price), then the two pharmacies are effectively monopolies and 

consumers closer to pharmacy 1 will buy from it 1 while the consumers located closer to 

pharmacy 2 will buy from it. The firms will charge monopoly prices and maximize 

profits. Due to advances in technology, now suppose some proportion of consumers, μ ϵ

[0, 1], who are able to acquire this technology can now search at zero cost i.e. they do not 

incur any cost when searching for the price of goods. When Stahl wrote this paper in 

1989, the key justification for this assumption was that some shoppers actually enjoy 

shopping. Based on this intuition, the cost of search is effectively zero for them. We can 

expand upon this definition of zero search-cost consumers and consider, for example,

those using the internet as zero search-cost consumers whereas those who are not using 

the internet as positive search-cost consumers.

In terms of collecting information, the internet has greatly reduced the cost of 

gathering information on just about anything including the price of various goods and 

services. There are price-comparison web sites such as Pricescan.com, Bizrate.com, 

Shoppers.com, etc where one can, at the click of a button, compare the prices of a 

specific item from many different sellers. Those with access to this information could 

then be accurately referred to as zero-search cost consumers. As enumerated in the 

empirical section, there are also other proxies that one can use to divide a population into 

those with positive search costs and those with zero or at least near-zero search costs. 
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This then helps me look at the price distribution that results due to the information 

asymmetry observable, as well as the prices paid by a zero search cost consumer as 

opposed to the prices paid by a positive search cost consumer.     

While the model assumes that there are two pharmacies to begin with, the results 

can be extrapolated to show that they are true in a market with N pharmacies, without any 

loss in generality.  It is assumed that the pharmacies are identical and selling a 

homogeneous product which is produced at a constant marginal costs. The model further 

shows that if all consumers have zero search costs then prices converge to marginal cost 

i.e. the Bertrand result, since all consumers will purchase from the lowest-priced store. 

Conversely, when all consumers have positive search costs, the price distribution 

converges to the monopoly price i.e. the Diamond result. Therefore, as figure 3.1 

illustrates, the price distribution degenerates to monopoly prices when we have no zero 

search cost consumers, has positive mass when there is a mix of positive and zero search 

cost consumers, and then degenerates to marginal cost when all of the consumers have 

zero search costs.

Furthermore, the model shows that as the proportion of consumers with zero 

search costs goes from 0 to 1, the Nash Equilibrium price distribution changes 

continuously from the degenerate distribution at the monopoly price to the degenerate 

distribution at the competitive price.11 An interesting prediction of this model is that as 

the number of pharmacies increases, the NE becomes more monopolistic. This is 

obviously contrary to expectations. The intuition is that in a market with a high 

proportion of positive search cost consumers, as the number of pharmacies in the market 

increases, the probability of being the lowest priced pharmacy decreases considerably. At 
                                                
11 This is stated in page 701 of the Stahl paper and the proof is presented in page 705.
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this point, the expected payoff is higher for charging captive high search cost consumers 

high prices, than it is for attracting zero search cost consumers by charging low prices. 

Thus, pharmacies will carve out niche markets for themselves as long as there are some 

consumers who have zero search costs and some who have positive search costs.  

However, in a market with a sufficiently high proportion of zero search cost consumers, 

the competitive outcome will hold and we would expect prices to decrease as the number 

of stores increased.

Pharmacies serving the positive search cost consumers will charge higher prices 

since the positive search cost consumers are essentially captive. F(p) is the Nash 

Equilibrium cumulative probability distribution of prices charged by all the pharmacies. 

The Stahl model is a two-stage model, where sellers decide whether they want to cater to 

informed consumers or uninformed consumers in stage one. Based upon this decision, 

they pick the appropriate price for the good. 

There are a large number of buyers and sellers in the market. Pharmacies have 

identical marginal costs of production which is assumed to be zero. While differing 

marginal costs have been shown to be sufficient to lead to price dispersion in the 

equilibrium (Reinganum, 1979), it is differing search costs that leads to price dispersion 

in the equilibrium in this model. The revenue function is R(p) = (p) D(p), where p is the 

price of the product, and D is the demand at that particular price. The revenue function is 

continuous, has a unique maximum and is strictly increasing for all prices below the price 

at which it is at the maximum. A certain proportion of the consumers, , have zero search 

costs while the rest (1-) have a common, positive search cost, c.12

                                                
12 This is shown in the Stahl paper on page 701.
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Consumer Surplus

For consumers with positive search costs, it makes sense to search as long as the 

expected benefits from search are higher than the search cost. Therefore, for a consumer 

who observes the price z, the expected benefit of observing a lower price, p would be 

given by

;݌)	ܵܥ (ݖ = 	 ∫ ௭௣ݔ݀(ݔ)ܦ                                         (3.1)13

The equation gives us the area under the demand curve between the prices of p and z. In 

other words, the expected benefit from search is computed via the increase in consumer 

surplus generated from the lower price located as a result of search.

We extrapolate this intuition to find the ex ante expected benefits given that there exists 

in the equilibrium a price distribution F(p).14

(ݖ)	ܵܥܧ = 	 ∫ ;݌)	ܵܥ ௭௕(݌)ܨ݀(ݖ                              (3.2)

Integrating by parts, we get 

(ݖ)	ܵܥܧ = ,݌)	ܵܥ] ௕௭[(݌)ܨ(ݖ + න ௭(݌)݀(݌)ܨ(݌)ܦ
௕

(ݖ)	ܵܥܧ = න (݌)݀(݌)ܨ(݌)ܦ + ,ݖ)ܵܥ	 −(ݖ)ܨ(ݖ ,ܾ)	ܵܥ	 ௭(ܾ)ܨ(ݖ
௕

Since CS (z,z) = 0 by definition and F(b) = 0 because it is the lower bound of the 

cumulative distribution, we end up with

(ݖ)	ܵܥܧ = ∫ ௭௕(݌)݀(݌)ܨ(݌)ܦ                             (3.3)

                                                
13 The equation numbers in this chapter are consistent with those in the Stahl paper without the chapter 
prefix i.e. equation 3.1 here is equation 1 in the Stahl paper.
14  All the equations for expected consumer surplus are obtained from the Stahl paper from pages 702 and 
709.
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This equation gives us the expected value of gains from search by taking the difference 

between the original price observed and each lower price that exists in the equilibrium 

and multiplying it by the corresponding probability, in short, giving us the mean of the 

truncated distribution. Consumers should continue to search as long as ECS(z) > c. We 

can also state the optimal search rule at this juncture and it sums up as: continue 

searching if the observed price, z, is greater than the reservation price, rF. Buy the good, if 

the observed price, z, is lower than the reservation price, rF. Since ECS(z) is strictly 

increasing for all prices above the lower bound of the support, b for any price at which 

there is positive demand, we conclude that, if one exists, it is the unique solution for rF,. 

Pharmacy Price-Setting

Stahl’s Lemma 1: Given μ ϵ (0,1), if F(p;r) is an NE-distribution conditional on 

reservation price r, then it is atomless.

Stahl presents no formal proof. The intuition lies in that if the distribution was atomistic, 

then undercutting prices by a small amount would lead to higher expected profits since 

the pharmacy will increase its share of shoppers. An atomless distribution overcomes this 

problem.

Stahl’s Lemma 2: If F( p; r) is an NE-distribution conditional on reservation price r, then 

Pr= min{r,ṕ}.

This is fairly intuitive in presentation. No pharmacy will charge more than r, the 

reservation price, or ṕ, the monopoly price. Therefore, Pr, the upper bound of the support 

for F(p;r) will be the lower of the reservation price or the monopoly price.

The expected profit functions of the jth pharmacy is as follows,15

E πj (pj, F) ={ μ[1 – F(pj; r)]
N - 1 + (1 – μ)/N }* R(pj)                    (3.4)

                                                
15 From page 703 of the Stahl paper. 
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Where, 0 <  < 1 and is the proportion of individuals with zero search costs, r is the 

unique consumer reservation price, and R(p) is the revenue function defined as R(p) = (p) 

D(p); D is demand for the good at price, p. The first part of the equation represents zero 

search cost consumers. [1-F(p)]N-1 is the probability that all other pharmacies in the 

market are higher priced. Thus, if this is the lowest priced pharmacy, then it sells to all 

shoppers with zero search costs. The second part of the equation represents positive 

search cost consumers and they are equally divided up among the N pharmacies. When 

 =0, i.e., all consumers have positive search costs, the first part of equation (4) is zero 

whereas the second part reduces to (1/N)R(pj). Thus, since all pharmacies will get a fixed 

proportion of consumers, monopoly pricing will be the outcome. When  =1, i.e. all 

consumers have zero search costs, the second part of equation (4) is zero. In the first part 

of the equation, [1-F(p)]N-1 also goes to zero since any pharmacy that charges higher than 

the lowest price in the market will not get any consumers at all. Thus, the expected profits 

for the pharmacy equals zero, which is the outcome with marginal cost pricing. 

For the high price pharmacy:16

π = E π (Pr, F) = R(Pr) * (1 – μ)/N
                                  

Thus, all the pharmacies (including the high-priced ones) will get an equal proportion of 

the positive search cost consumers. For Nash Equilibrium, the expected profits for both 

types of pharmacies have to be equal, otherwise pharmacies will have incentive to 

deviate. So setting the above two equations equal, and solving for F(p,r), we get,17  

                                                
16 From page 703 of the Stahl paper.
17 Equations 3.5 and 3.6 are from pages 703 and 704 of the Stahl paper.
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;݌)ܨ (ݎ = 	1 − [ቀ	ଵି	ఓேఓ ቁ (	ோ(௉௥)
ோ(௣) − 	1)] భಿషభ                                (3.5)

Taking the derivative of F(p;r) with respect to p gives us the density function f(p;r) as 

follows:

;݌)݂ (ݎ = ቀ ଵିఓ
ே(ேିଵ)ఓቁ [ቀଵିఓேఓ ቁ ቀோ(௉ೝ)

ோ(௣) − 	1ቁ]ିಿషమಿషభ	[ቀோ(௉ೝ)ோ(௣) ቁ ቀோ′(௣)
ோ(௣)ቁ]                  (3. 6)     

                                                                                                 

which is non-negative for p ϵ [0, Pr] since R(Pr) > R(p) for all p < ṕ.

Next, we want to solve for the lower bound for the support for F(p;r). We know that at 

lower bound the distribution degenerates to marginal cost, so F[b(r);r] = 0. Using this 

information and solving for (5), we get,18

[(ݎ)ܾ]ܴ = ቂ ଵି	ఓ
ଵା(ேିଵ)ఓቃܴ( ௥ܲ)                             (3.7)

Given this lower bound of the support for the price distribution, and the upper bound, 

which is defined as the minimum of the monopoly price or the reservation price, we can 

state that F(p;r) is a NE distribution of prices conditional on r. The following three facts 

demonstrate that.

(a) No pharmacy will charge higher than the reservation price, since it will fail to sell 

anything, or higher than the monopoly price, since that can never be optimal from 

a profit-maximizing standpoint. 

(b) No pharmacy will charge less than b(r) since they would not gain any additional 

consumers i.e. they would still only sell to all the zero cost consumers and a fixed 

proportion of positive cost consumers. While b(r) is defined as the lower bound of 

                                                
18 Page 704 of the Stahl paper.
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F(p;r), given the intuition presented here and in Lemma 1, it would equal the 

marginal cost.

(c) By construction of F(p;r) the profits for all pharmacies would be equal, so none 

have incentive to deviate.

3.2 Propositions

We explore the following two main propositions from the Stahl model:

1) In markets where all consumers have positive search costs, we get the Diamond 

result i.e. all pharmacies charge the monopoly price and in markets with all zero 

search cost consumers, we get the Bertrand result i.e. all pharmacies price at 

marginal cost. The Stahl model predicts that as the proportion of positive search 

cost consumers increases from zero up to a certain threshold, price dispersion will 

increase. Beyond that threshold, price dispersion will decrease. Price levels will, 

however, increase continuously as the proportion of positive search cost 

consumers go from zero to one.

2) In markets with a sufficient proportion of high search cost consumers, an increase 

in the number of pharmacies will result in an increase in prices to the point that 

the price distribution degenerates to the monopoly price. The intuition is that the 

only purpose in being the low priced pharmacy would be to capture all the zero 

search cost consumers, along with a fixed proportion of positive search cost 

consumers. As the number of pharmacies increases, the probability of being the 

low priced pharmacy decreases exponentially and therefore there is greater 

incentive in charging a high price.19 Conversely, in markets with a proportion of 

zero search cost consumers above a certain threshold, we expect the competitive 
                                                
19 This result is presented in proposition 4 on page 706 of the Stahl paper.



42

market outcome i.e. price levels will decline with an increase in the number of 

stores.   

3.3 Comparative Statics

Table 3.1 summarizes the comparative statics discussed next. E(p) is the expected 

price level, F is the cumulative price distribution, μ is the proportion of consumers with 

zero search costs and N is the number of pharmacies in the market. For the comparative 

statics shown in Table 3.1, for the case of the number of pharmacies increasing leading to 

an increase in the price levels, we assume that the proportion of zero search cost 

consumers is below a certain threshold. Conversely, if the proportion of zero search cost 

consumers is above a certain threshold, an increase in the number of pharmacies will lead 

to a decrease in price levels i.e. the competitive outcome.

Therefore, 

ఋா(௣)
ఋఓ < 0, and 

∂E(p)/∂N < 0 for μ > μ*
∂E(p)/∂N > 0 for μ < μ*

We see that, holding all other things constant, as the proportion of consumers with zero 

search costs increases in a market, the expected price levels decline. We also see that, 

once again holding all other things constant, as the number of pharmacies in a market 

increases, the expected price levels increase.

ߤߜ(݌)ܨߜ 	൜> 0, ߤ	݂݅ < >′ߤ 0, ߤ	݂݅ > ′ߤ
�

ܰߜ(݌)ܨߜ 	൜> 0, ݂݅	ܰ < ܰ′< 0, ݂݅	ܰ > ܰ′
�
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where μ’ and N’ are threshold values for the respective parameters above which the price 

distribution converges, to the competitive market outcome in the case of the proportion of 

zero search cost consumers, and to the monopoly outcome in the case of the number of 

pharmacies in the market with a high proportion of high search cost consumers, and to 

the competitive outcome in the case of the number of pharmacies in the market with a 

high proportion of zero search cost consumers, respectively.
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Table 3.1 Comparative Statics

E(p) F(p;r)

μ↑ ↓ Initially ↑, then ↓

N ↑ ( for μ > μ*) ↓ Initially ↑, then ↓

N ↑ ( for μ < μ*) ↑ Initially ↑, then ↓
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Figure 3.1: Price dispersion and Zero Search Cost Consumers 
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4. Data 

4.1 Brick and Mortar and Online/Mail-Order

The brick and mortar data set is from the Maryland State Attorney General’s (SAG) 

web site, which posts the prices of the twenty six most popular drugs in the state 

Medicaid program. Every pharmacy in Maryland that was reimbursed through Medicaid 

reports the cash price for the drug, i.e. the price that a consumer paying out-of-pocket 

would pay. Along with these prices, I was also able to obtain the addresses of each 

pharmacy that posted the prices of the drugs from the same source. I look at 970 

pharmacies located in 160 towns in the state of Maryland, and specifically look at how 

competition within the township affects pricing strategies. I also collected data on various 

characteristics of the twenty six drugs from a number of sources including the FDA web-

site. 

Prices of the same twenty six drugs were also collected in December 2009 from a 

total of thirteen online and mail-order companies. These data were merged with the 

Maryland data described above. Since the two sets of prices were collected about a year 

apart, I do not do any direct price level comparisons. I do, however, look at relative prices 

and price dispersion.

The broad scope of the data – twenty six different products in the prescription 

drugs category across 165 markets with distinctions made between online and brick and 

mortar channels - gives me the ability to test my hypotheses with considerable 

confidence. The data for the brick and mortar pharmacies20 were obtained in January 

                                                
20 I collected data from 13 online and mail-order pharmacies for the prices of the same 26 prescription 
drugs. These data were collected from BidRx for the mail-order pharmacy prices and from Drugstore.com, 
Familymeds.com and Costco Online. All of these pharmacies are accredited by the National Association of 
Pharmacy Boards.
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2009 from the SAG web-site and the data are for prices from June of 2008, i.e. the State 

Attorney General’s office posted prices with a lag of about six months. The prices are 

from nine hundred and seventy pharmacies statewide. The data were collected when the 

pharmacies submitted paperwork for Medicaid payments for prescriptions filled. If a 

pharmacy did not fill a prescription for an individual on Medicaid for a specific drug in 

the period in which the data were collected, then the price of that drug from that 

pharmacy is not included in the data set. The prices listed were the posted retail prices by 

the pharmacies (one that an out-of-pocket consumer would pay) and not the amount that 

was reimbursed to the pharmacy by Medicaid. According to the SAG’s web-site, the 

purpose of the web-site was to make prices of prescription drugs more transparent for 

consumers, particularly those who were paying out-of-pocket. Thus, the prices listed are 

the actual retail price that the pharmacy would charge a consumer who was paying cash 

for the pharmaceutical drug. 

The SAG’s website also has a database that listed all the pharmacies in the state. 

There are exactly one thousand and twenty pharmacies listed in this database. Upon 

further research, I found that thirteen of the pharmacies had shut down. It is unknown 

why the remaining thirty seven did not fill any prescriptions for Medicaid. It is possible 

that they did not carry these specific drugs or that they did not cater to a Medicaid patient 

in that time period. Furthermore, in the process of cleaning the data, I found that there 

were a number of stores that had changed names, including a couple of chains that had 

been acquired by CVS.21 The cleaned data set reflects those changes. 

                                                
21 CVS went on a big acquisition spree over the last few years. Although they had acquired Revco in 1997, 
a lot of the pharmacies continued operating under the Revco name. They also merged with Caremark in 
2006.
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The pharmacy industry can be sub-categorized in three different groups - big 

chains, small, independent pharmacies, and supermarket pharmacies such as Target, 

Walmart, etc. The big chains and the supermarket pharmacies negotiate wholesale prices 

with the manufacturers individually while the small, independent pharmacies are able to

form coalitions that give them greater negotiating power than they would have if they 

were to negotiate individually.  A thorough inspection of the data was necessary to 

identify stores by whether they were part of a chain as opposed to independently owned. 

Furthermore, this task was made more difficult as most stores did not have a singular 

system in reporting their names. Neighborcare pharmacies, for instance, reported its name 

as “Neighborcare,” “NEIGHBORCARE” and “Neighborcare Pharmacy,” so it was 

necessary to change them to a uniform format. For a lot of names that reflected some 

heterogeneity, it was necessary to go to the corporate web-site and track down each store 

by location to ensure that they were indeed part of the same chain. However, it was not 

deemed necessary to ascertain this information in all cases. For instance, I was able to 

determine from my own knowledge base that Walmart, Wal-mart and WALMART were 

in fact all part of Walmart.

Furthermore, there is some ambiguity in terms of how a pharmacy company may 

identify itself and what category it actually falls into. The Medicine Shoppe International 

Inc, for instance, considers itself as an independent pharmacy group and since it is based 

on the franchise model, as opposed to corporate ownership, it is true via that definition. 

However, as they have over 850 locations in the U.S. and over 400 more internationally, 

they might also be considered a chain and in 1998 were, in fact, named the Pharmacy 

Chain of the Year by Drug Topics magazine. The Medicine Shop has 27 locations in 
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Maryland, and I categorize it as a chain store for my analysis. For all pharmacies with 

more than one location in the state, I individually scrutinized the pharmacy to categorize 

it as either an independent pharmacy or part of a chain. Two hundred and twenty six out 

of the two hundred and fifty two unique pharmacy names in Maryland have only one 

location. All this work in identifying pharmacies by chain or independent ownership 

might seem a bit unnecessary at first glance. However, bear in mind that I am interested 

in price dispersion in the retail prescription drug market and I am looking at individual 

geographic markets by township for my empirical analysis. I consider it highly likely, 

particularly after a cursory glance at the data, that some of these pharmacies have 

uniform pricing policies, at least at the state level. I saw consistencies in the pricing 

across a specific drug across a specific chain when cleaning the data. For example, 

Flonase is sold at ninety nine Rite-Aids for a total of fifteen different prices across 

Maryland. Two of these fifteen prices appear roughly half the time. Therefore, a pricing 

policy that perhaps addresses the characteristics of a market at the state or even national 

level will not reflect the idiosyncrasies of a market at a much more local level. In short, 

company-wide pricing policies will work against the predictions of the theoretical model 

given that we are defining markets at a more granular level.

Although I am interested in the nature of prices and price dispersion due to 

consumer heterogeneity, I considered it necessary to collect drug-specific information as 

well to avoid omitted variable bias in my empirical analysis. It is unlikely that consumers 

will change search behavior because a drug is a new molecular entity implying that a new 

active ingredient was used in this drug to treat this illness/condition. However, it is 

entirely possible that manufacturers have a different pricing strategy for this type of drug 
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and it follows that the prices observed at the retail level reflect prices set at the 

manufacturer level.

A number of pharmaceutical drugs are reformulations of existing drugs either 

with an additional compound or through changing the ratios of existing compounds for 

“cocktail drugs.” For instance, Prilosec, a gastrointestinal agent, added Magnesium to 

Omeprazole to make their existing formulation more effective in combating chronic 

heartburn. Reformulations of this type are commonplace and also allow the drug-maker 

to extend their existing patent.

Information on each of the drugs was collected from the FDA web site and cross-

checked with information from drugstore.com and drugs.com – an excellent and credible 

resource for any questions on any prescription drug. This information was then further 

cross-checked with The Physician’s Desk Reference (PDR 63rd Edition) (2009).  

Data were collected on whether the drug was a brand name drug or a generic, 

whether it had therapeutic equivalents, the drug class as well as the symptom/illness it 

was used for, whether the drug was a new molecular entity or a new salt/ether entity, and 

whether the review classification for the drug by the FDA was standard or priority. A 

drug with a priority classification by the FDA is considered to be, potentially, highly 

beneficial from a societal point in that it shows significant promise to treat, prevent, or 

diagnose a specific condition or illness. As a result, considerable resources are devoted 

by the FDA to approve this drug in the fastest time possible. Drugs with this special 

status, once approved, could reflect considerably different pricing patterns than drugs 

with a standard review classification. 
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A good deal of effort went into classifying each of these drugs by the 

demographic group that consumes them as well as whether they are used on an ongoing 

basis or if they are a one-time use only pharmaceutical. For instance, Lipitor is used on an 

ongoing basis since it is consumed for the purposes of lowering or maintaining a specific 

level of blood cholesterol. Consumers are more likely to be familiar with the price 

distribution as they shop around for repeat purchases than they would be if it was a one 

shot deal. Concerta, on the other hand, is a Central Nervous System stimulant and used to 

treat Attention Deficit Hyperactive Disorder (ADHD). It is of a highly addictive nature 

and according to the PDR guide capable of causing “severe mental changes.” Given these 

characteristics, it is unlikely that Concerta would be prescribed for an extended period. 

Similarly, a great deal of care was put into deciphering whether or not the use of a 

pharmaceutical could be narrowed down to a specific demographic group. All the drugs 

fell into one of five groups for the demographic variable: (1) general; (2) men; (3) 

women; (4) young; and (5) elderly. Flonase, for example, is used to treat allergies and is 

used by all groups and therefore falls into the general category. Ortho-Evra is a birth 

control drug making it easy to assign to women. Celebrex, however, is a Non Steroidal 

Anti-Inflammatory (NSAID) used to treat pain and inflammation. Upon closer inspection, 

I found that it is typically prescribed to treat Osteoarthritis. Thus, it is more likely that 

Celebrex is used by the elderly as opposed to any of the other listed demographic groups. 

All twenty six of the drugs were thoroughly researched for clarification purposes.22

I split the pharmacies by individual municipalities in the state of Maryland. The 

purpose was to break the state up into individual geographic markets where consumers 

                                                
22 Professor Karen Blumenschein’s assistance in working through this aspect of the data was invaluable and 
I am indebted to her for helping with this work.
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might price shop and purchase their prescription needs. However, Baltimore has 175 

pharmacies located in the Metropolitan Statistical Area and it seems unlikely that 

consumers would travel across a city so large to price shop for pharmaceuticals. I split the 

MSA up into five distinct districts23 – Baltimore downtown, Baltimore East, Baltimore 

North, Baltimore South and Baltimore West. We then matched the zip codes of each 

individual pharmacy to the zip codes within these five districts by using a map provided 

by the Maryland Department of Planning. I felt that this step would better reflect

economic markets, provide a better test of my hypothesis and reconcile the theory with 

the empirical analysis.24

Prices of the same twenty six drugs were also collected in December 2009 from a 

total of thirteen online and mail-order companies. These data were merged with the 

Maryland data described above. Since the two sets of prices were collected about a year 

apart, I do not do any direct price level comparisons. I do, however, look at relative prices 

and price dispersion. Table 4.1 lists each of the drugs in this data set along with the 

number of observations of each drug and the illness or symptom the drug is used to treat.

In the Maryland data set, all the package sizes for any specific drug were the 

same, i.e. the price quoted from every pharmacy in Maryland for Adderall XR 20 mg is 

for a quantity of 30 capsules. All the drugs were for a one month supply. However, I

adjust for a per unit (per pill) price in anticipation of the desire to compare absolute 

measures across the two data sets. 

                                                
23 This was based on how various businesses including the Baltimore Restaurant Association splits the city 
into five business regions based on geography. 
24 However, I acknowledge that I do not have a perfect delineation of markets. While I consider each 
municipality a market, there will instances where the municipalities are adjoining and any delineation will 
be arbitrary. 
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One of the measures I use to analyze price levels is markup over minimum price

in a given market.25 This is the measure I use to compare online price mark-ups to offline 

price-markups. By markup, I mean that I am measuring the percentage that customers

pay over the minimum price that they could pay for that particular drug. Thus, if the 

lowest price observed in the marker for a specific drug is $10 and consumers are paying 

$15 on an average, then they are paying 50% over the lowest price they could pay for the 

drug. So, it is in effect the proportion above the lowest price that is being charged by 

various retailers. I think that this is an appropriate variable since the minimum price 

charged could serve as a proxy for the marginal cost of the product. I realize that this 

measure is sensitive to outliers. However, I have a total of 14,783 price observations and 

2,151 minimum prices for the ith drug in the kth town.26 For price dispersion, I use range 

and coefficient of variation, which are the standard measures used in price dispersion 

literature.

Therefore,

Price	Markup୧୨୩ = (୔୰୧ୡୣ	୕୳୭୲ୣୢ౟ౠౡି		୑୧୬୧୫୳୫	୔୰୧ୡୣ౟ౡ)
୑୧୬୧୫୳୫	୔୰୧ୡୣ౟ౡ ,

where i is the ith drug, j is the jth store and k is the kth market.

Thus, I looked at the difference between the price quoted and the minimum price 

and normalized this difference by the minimum price of that pharmaceutical. This makes 

for a more valid comparison across drugs. Figure 4.1 shows a plot of markup over 

minimum price by individual drugs. It can be seen that drugs like Adderall XR and 

Advair Diskus are competitively priced with a high density of observations close to the 

                                                
25 Markets are defined as 160 individual municipalities in Maryland along with the city of Baltimore, which 
is divided into five individual markets as explained earlier in this chapter.
26 There are 14,487 observations from brick and mortar pharmacies. I also collected 296 observations on 
the same 26 drugs from online pharmacies for a total of 14,783 observations.
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minimum price. As shown in Table 4.2, the range for Adderall XR, for example, extends 

from a minimum of $3.73 to a maximum of $7.87 with a mean of $5.67 and a coefficient 

of variation of 0.133.  In contrast, when I look at Ortho Evra, I observe a much wider 

range in the observations. The range for Ortho Evra extends from $11.67 to $119.30 with 

the mean at $19.49 and a coefficient of variation of 0.313. (The second highest price for 

Ortho Evra at a different pharmacy in a different town was $115.30). The average of the 

markup over the minimum price by each town and as defined above for the entire set of 

14,783 observations on all drugs is an astounding 34.43%. In other words, one could 

walk in to a pharmacy at random and expect to pay 34.43% above what one would pay 

for that specific drug in that specific town if one were informed and purchased it from the 

lowest cost seller.

Figure 4.1shows density plots for each of the drugs by markup over the minimum 

price. This particular measure gives us the advantage of scaling the drug prices to the 

same level i.e. proportion by which the observed price is above the minimum price of that 

specific drug. We also looked at the density plots for the natural logarithm of the unit 

prices. These plots were practically identical to the ones presented for the markup with 

the major difference being that the scale was different.27

4.2 Summary Statistics and Overview of the Data

I present several tables to illustrate the distribution of drug prices. Table 4.2 and 

Table 4.3 present the summary statistics for each individual drug. In Table 4.2, I present 

the mean, the standard deviation, the minimum, the maximum, the ratio of the maximum 

to the minimum, and the coefficient of variation of price per unit. The price per unit was 

                                                
27 I do not include these plots in the appendix since they do not add very much information, however, they 
are available upon request.
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computed as price per tablet or as in the case of Ortho Evra, the price per patch. Since all 

the prices for each specific drug were for the same package size, my results would not be 

any different if I were to look at the total price as opposed to the unit price other than a 

scalar change for absolute measures. The prescription drug package sizes were all for a 

typical one month supply. While we use all the other statistics shown in Table 4.2 for 

inferential work presented later, the purpose of the Max/Min ratio is just to serve as a 

descriptive measure with the sole purpose of emphasizing the marked differences in 

prices observed. 

Table 4.3 presents observations at the 10th, 25th, 50th, 75th and 90th percentile as 

well as the third and the fourth moments about the mean, the skewness and kurtosis, 

respectively. I also present the ratios for the 10th and the 90th percentile and found that the 

average across all drugs was 1.4. In other words, even after dropping the 10 percent of 

the most extreme observations on both tails of the distribution, the maximum (90th

percentile) price was still, on an average, 40 percent above the minimum (10th percentile) 

price. The skewness measure gives us an idea of the symmetric (or asymmetric) nature of 

the distribution. The distribution of prices for Adderall XR, for instance, with skewness 

of 0.13 is pretty close to normal whereas Lexapro with a skewness of 6.642 is skewed 

heavily to the right. A value of zero indicates a symmetric distribution whereas positive 

or negative values indicate right and left skewness respectively. 

The kurtosis measure tells us how flat or peaked the distributions are and for a 

normal distribution we should have a value of 3. Heavy tailed or peaked distributions will 

have kurtosis above 3 whereas light tailed or flat distributions have a value of less than 3 

for kurtosis. Once again, Adderall XR has a value of 3.061 whereas Ortho Evra has a 
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value of 206.867, indicating observations with significant deviations from the center of 

the distribution. For the purposes of later empirical analysis, I am not worried about 

normality since my sample size is over fourteen thousand values in prices and over two 

thousand values in summary statistics.

Table 4.4 lists and describes the variables I use in my analysis. The two dependent 

variables I use are LN(price) the natural log of price of prescription drugs to measure 

price levels, while Variation, the coefficient of variation of drug prices, is used to 

measure dispersion in the price distribution. I also use Minimum Wholesale Price, which 

is the minimum average wholesale price of drugs, Minimum Price, which is the minimum 

price of the ith drug in the kth town, and Mean Price, which is the average price of the ith 

drug in the kth town, as a control of the price level of the drug itself. As discussed earlier, 

I want to control for the propensity to search, which may be higher for drugs that are 

higher prices, as opposed to drugs that are lower priced. There are also a number of other 

independent variables described in the table and discussed in length in chapter 5, as well 

as chapter 6.
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Table 4.1: List of prescription drugs along with symptoms/illnesses the drugs are used 
to treat

N
Name and Dosage of 

Pharmaceutical Treatment  
543 Adderall XR 20mg ADHD
656 Advair Discus 250-50mcg disk Asthma and chronic lung disease
654 Albuterol 90mcg Asthma, emphesyma, chronic bronchitis
397 Celebrex 200mg Pain and inflammation
634 Combivent 103-18mcg Asthma, emphesyma, chronic bronchitis
612 Concerta 36mg ADHD

434 Depakote 500mg
Seizures, migraine headaches, manic 

episodes
759 Flonase 50mcg Allergies
733 Fosamax 70mg Osteoporosis

353 Furosemide 40mg
High blood pressure, congestive heart 

failure
722 Lexapro 10mg Depression and anxiety disorder
813 Lipitor 10mg Control cholestrol
276 Lotrel 10-20mg Blood pressure
382 Nexium 40mg Gastroesophageal reflux disease (GERD)
674 Norvasc 10mg High blood pressure
658 Ortho Evra 20-150/24h Birth control
457 Plavix 75mg Reduce risk of stroke or heart attack
576 Pravachol 40mg Control cholestrol
844 Prevacid 30mg Ulcers and GERD
459 Risperdal 1mg Emotional and mood disorders
523 Seroquel 100mg Schizophrenia and bipolar disorder
487 Singulair 10mg Treatment of asthma

557 Toprol XL 50mg
High blood pressure and congestive heart 

failure

544 Wellbutrin XL 300mg
Depression and seasonal affective 

disorder
361 Zetia 10mg Lowers cholestrol
675 Zoloft 100mg Depression, panic disorder, OCD, PTSD

Source: Drugs.com, FDA website and PDR 63rd edition.
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Table 4.2: Summary statistics of the Maryland Drug Price data set

Obs Mean Std.Dev. Min Max Max/Min CV
Adderall XR 

20mg 543 5.675 0.757 3.733 7.866 2.107 0.133
Advair Discus 
250-50mcg 656 3.671 0.407 2.515 6.628 2.636 0.111

Albuterol 90mcg 654 1.562 0.325 0.362 3.409 9.407 0.208
Celebrex 200mg 397 2.203 0.587 1.425 4.171 2.927 0.266
Combivent 103-

18mcg 634 7.588 1.423 3.974 21.673 5.454 0.188
Concerta 36mg 612 5.196 0.626 3.189 6.833 2.142 0.120

Depakote 500mg 428 3.512 0.614 1.973 6.680 3.385 0.175
Flonase 50mcg 753 6.230 0.794 3.743 10.979 2.934 0.127
Fosamax 70mg 727 22.754 2.726 16.680 47.615 2.855 0.120

Furosemide 
40mg 353 0.322 0.072 0.130 0.580 4.473 0.224

Lexapro 10mg 722 3.459 0.428 2.466 10.609 4.303 0.124
Lipitor 10mg 813 3.150 0.386 2.256 6.648 2.946 0.123

Lotrel 10-20mg 276 3.773 0.397 2.845 5.466 1.921 0.105
Nexium 40mg 382 5.742 0.609 4.128 7.428 1.799 0.106
Norvasc 10mg 668 2.614 0.248 1.975 5.196 2.631 0.095
Ortho Evra 20-

150/24h 658 19.494 6.108 11.667 119.300 10.226 0.313
Plavix 75mg 457 5.059 0.763 3.979 15.045 3.781 0.151

Pravachol 40mg 570 5.392 0.538 4.036 8.400 2.081 0.100
Prevacid 30mg 844 5.939 0.695 4.002 10.883 2.720 0.117
Risperdal 1mg 459 5.477 0.623 3.932 9.115 2.318 0.114

Seroquel 100mg 523 4.780 0.536 3.200 7.582 2.369 0.112
Singulair 10mg 487 4.129 0.522 2.911 11.662 4.007 0.126

Toprol XL 50mg 557 1.223 0.162 0.785 2.179 2.775 0.132
Wellbutrin XL 

300mg 538 5.711 0.742 3.657 9.990 2.732 0.130
Zetia 10mg 361 3.250 0.392 2.472 5.508 2.228 0.121

Zoloft 100mg 669 3.358 0.335 2.418 6.312 2.610 0.100
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Table 4.3: Percentile distribution of unit prices in the Maryland Drugs data set

p10 p25 p50 p75 p90 skewness kurtosis
Adderall XR 

20mg 4.608 5.262 5.800 6.100 6.739 0.130 3.061
Advair Discus 
250-50mcg 3.166 3.391 3.661 4.006 4.150 0.535 6.567

Albuterol 90mcg 1.164 1.440 1.626 1.705 1.941 0.383 7.309
Celebrex 200mg 1.654 1.815 2.033 2.383 3.217 1.494 4.663
Combivent 103-

18mcg 6.102 6.524 7.271 8.412 9.222 2.684 23.311
Concerta 36mg 4.503 4.864 5.197 5.500 6.066 0.632 4.051

Depakote 500mg 2.630 3.012 3.646 4.000 4.217 -0.428 4.056
Flonase 50mcg 5.264 5.674 6.156 6.749 7.437 -1.116 10.601
Fosamax 70mg 19.460 20.743 22.663 24.398 25.998 -1.115 18.243

Furosemide 
40mg 0.237 0.300 0.330 0.366 0.366 -0.277 5.365

Lexapro 10mg 3.050 3.233 3.466 3.632 3.866 6.642 111.594
Lipitor 10mg 2.739 2.871 3.066 3.433 3.633 1.740 15.884

Lotrel 10-20mg 3.338 3.510 3.690 4.000 4.366 0.844 3.734
Nexium 40mg 4.916 5.319 5.766 6.166 6.600 -0.139 2.534
Norvasc 10mg 2.291 2.462 2.556 2.800 2.859 -2.076 28.369
Ortho Evra 20-

150/24h 16.030 17.663 19.197 20.663 21.597 13.134 206.867
Plavix 75mg 4.381 4.663 5.000 5.366 5.698 5.994 71.829

Pravachol 40mg 4.800 5.000 5.276 5.782 6.133 -2.484 20.812
Prevacid 30mg 5.063 5.450 6.000 6.443 6.833 0.560 5.702
Risperdal 1mg 4.616 5.066 5.423 5.866 6.400 0.180 4.601

Seroquel 100mg 3.962 4.454 4.766 5.233 5.433 -0.246 3.882
Singulair 10mg 3.566 3.816 4.177 4.433 4.600 5.937 90.311

Toprol XL 50mg 1.023 1.107 1.202 1.333 1.466 0.359 4.429
Wellbutrin XL 

300mg 4.833 5.218 5.666 6.266 6.428 0.024 8.399
Zetia 10mg 2.698 2.988 3.172 3.533 3.696 1.057 6.426

Zoloft 100mg 2.895 3.157 3.300 3.633 3.712 -2.126 22.836
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Table 4.4: Description of variables included in analysis.

Average Wholesale 
Minimum Price Minimum average wholesale price for the drug

Average Markup
the average of the markup (as defined in section 5.2) for the ith

drug in the oth market.

Brand Name Dummy 1 if drug is a brand name and 0 if generic

Chain Store Dummy 1 if store is part of any chain; 0 if independent

Pharmacy Medicaid
a relative measure of the percent of consumers at a pharmacy on 

Medicaid 

Coefficient of Variation
the coefficient of variation in the prices of the ith drug in the kth 

town

LN(price) The natural log of price

Mean Price The average price of the iith drug in the kth town

Minimum Price the minimum price of the ith drug in the kth town 

Online Pharmacy
Dummy

1 if sold by an online pharmacy; 0 if it's a brick and mortar 
pharmacy

Number of Pharmacies
Number of Pharmacies in town that sold that drug to folks on 

Medicaid 

Pharmacy Chain
Dummy

1 if price from a pharmacy chain, 0 if from an independent 
pharmacy

Number of Pharmacies
* Search Cost

interaction term that captures whether the impact of a higher 
proportion of positive search cost consumers causes price levels 
for the ith drug at the jth pharmacy to increase as the number of 

stores in the market increases

Town Medicaid
a relative measure of the percent of consumers in a town  on 

Medicaid

Unit Price Unit price of prescription drugs

Value of Search

equal to the difference between the expected price and the 
minimum price of the drug normalized by the minimum price in 

that market
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Figure 4.1: Mark Up over the Lowest Price of Each Prescription Drug
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Figure 4.1(continued): Mark Up over the Lowest Price of Each Prescription Drug
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Figure 4.1(continued): Mark Up over the Lowest Price of Each Prescription Drug
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5. Empirical Model and Econometric Issues

For most of my analysis I employ a drug fixed-effect model since the focus of this 

dissertation is to explain the effect of various market characteristics on observed price 

levels as well as price dispersion. I use the number of pharmacies in the market as a 

measure of market concentration and various measures of search cost defined below. 

Since the Stahl model predicts that price distribution is a non-monotonic function of each 

of these two parameters, I included quadratic terms for both in my regression 

specifications. I also include an interaction term between the proportion of positive 

search cost consumers and the number of pharmacies in the market. The intuition for

including this interaction term is that the effect of the proportion of positive search cost 

consumers on price dispersion may vary as the number of pharmacies in the market 

changes.

5.1 Search Cost Measures

I propose the following ways to identify low (zero or near zero) search cost 

individuals and differentiate them from high search cost individuals. 

a) Pharmacy Medicaid and Town Medicaid: I identify pharmacies serving a 

relatively higher proportion of low-income groups, as well as towns with a 

higher proportion of low income individuals. Contrary to markets for other 

goods, low income consumers of prescription drugs are typically the high 

search cost consumers. The intuition is as follows - in other markets, search 

cost incorporates the opportunity cost of the time of an individual. Therefore 

higher income individuals have a higher search cost. For prescription drugs 

(or most healthcare related services), a greater proportion of high income 
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individuals have health insurance coverage relative to low income 

individuals.28 As a result, low income individuals are more likely to pay cash 

prices for prescription drugs, the same prices that we are analyzing, as 

opposed to high income individuals. I do not know of any other work that has 

presented this intuition and conducted a formal analysis of it.

b) Online versus Brick and Mortar: Online consumers have lower search costs 

relative to offline consumers. It is significantly less costly to search for prices 

online than it is for brick and mortar stores. I am not aware of any formal 

studies of the online prescription drug market in spite of the existence of 

numerous online pharmacies. As established in the pricing literature, the 

prices offered by online sellers reflects competition among them for 

consumers, all of whom have relatively low search costs compared to offline 

consumers.   

5.2 Price Levels

As discussed earlier, to measure the impact of various search cost measures as 

well as market level characteristics on price levels, I use the natural log of price. 

However, when I compare across online and offline markets, given that I obtained the 

two sets of data about a year apart, I use price mark-up as the measure of price levels. 

The price markup is defined as the difference between the observed price for the ith drug 

at the jth pharmacy in the kth market and the minimum price for the ith drug in the kth

market, normalized by the minimum price as well. This measure negates the impact of 

                                                
28 According to surveys by the Center for Studying Health System Change, in 2007, 27.1% of low income 
nonelderly individuals did not have any health insurance coverage as opposed to 11.9% and 5% for middle 
and high income individuals, respectively.     
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any temporal changes in prices since I consider online and offline markets separately in 

computing this measure. 

Markupijk  = (୔୰୧ୡୣ	୕୳୭୲ୣୢ౟ౠౡି		୑୧୬୧୫୳୫	୔୰୧ୡୣ౟ౡ)
୑୧୬୧୫୳୫	୔୰୧ୡୣ౟ౡ

The predictions from search models in general and Stahl’s model in particular are 

that, holding all other things constant, greater search will lead to lower price levels.29

Additionally, while search cost itself is independent of price, the propensity to search is 

not, i.e. if one spends a whole day searching, then in terms of opportunity cost, one will

incur equal costs in searching for a book or a house. However, we are more likely to 

actually undertake search before buying a house than we are before buying a book. 

Furthermore, Stahl’s model predicts that with a sufficiently high proportion of positive 

search cost consumers, as the number of firms increases, price levels will increase. This 

is completely counter to expectations based on traditional microeconomic theory, where 

the key driving force for a competitive outcome is based on the assumption of perfect 

information.  

5.3 Price Dispersion

I use the coefficient of variation in prices as the dependent variable to measure 

dispersion in prices. This is the appropriate measure to use since I am testing hypotheses 

on whether the price distribution is expanding or contracting. Furthermore, this relative 

measure of dispersion better preserves the integrity of the work over absolute measures. 

Measures such as the range or the standard deviation are more likely to show spurious 

correlation with the independent variables. I look at the CV for each drug in each town 

                                                
29 I recognize that there is an endogeneity problem since higher price levels increase the propensity to 
search. However, I address the issue by including fixed effects for each drug, which should in theory 
absorb drug-specific (i.e. price-level specific) search behavior. 
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since each town constitutes an individual market in my framework. Recall that there are 

14,783 individual price observations in the Maryland data set for pharmaceutical prices 

(combined with the online/mail-order pharmacies). I compute the coefficient of variation 

for the jth drug in the ith town for each of the 26 drugs in the 165 markets: 160 towns 

(with Baltimore City split up into five regions) and 13 internet/mail-order pharmacies, 

which are defined as the one online market. Each of these markets has between 1 and 50 

pharmacies located within the market and I measured the dispersion in the prices of a 

specific drug across pharmacies within individual markets.  Therefore, I should have 

4,290 observations of dispersion (26 drugs multiplied by 165 markets) but because 

certain drug prices are not observed at any of the pharmacies in some markets, we 

actually have 3,439 observations on dispersion. A further 1,279 observations were 

dropped because the drug price was available from only one pharmacy in that specific 

market. In such cases, the observed dispersion of zero was due to not observing a second 

price, as opposed to the fact that the prices were equal. Out of the remaining 2,160 

observations, there are a total of 9 observations of CV with a value of zero in instances 

where at least two pharmacies (and in some cases, as many as 12 pharmacies) offered a 

prescription in a specific market. For the number of stores in town, I consistently use the 

number of stores that actually sold that specific drug for which the price is recorded. In 

other words, if in the town of Aberdeen, pharmacy A did not get reimbursed for Adderall 

through Medicaid, then they are not counted in this measure. I do not know if, for some 

unobservable reason, pharmacy A does not stock Adderall or would discourage Medicaid 

patients from buying Adderall, etc. However, the correlation coefficient for the stores in a 
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town that sold a specific drug in the given time period and for total stores in that town is 

a strong 0.923 and the results reported are robust to either measure.

Figure 5.1 contains four graphs that give a sense of the variation in these drug 

prices. Recall that I have a total of 2,160 coefficients of variation in prices from 26 drugs 

across 165 markets. Not all drugs were sold in all markets and in some markets there was 

only one pharmacy that sold a specific drug, therefore it is not the entire set of 4,290 

observations possible. The top left panel in Figure 5.1 contains a kernel density estimate 

which shows that the coefficient of variation is heavily skewed to the right. The 

remaining three graphs, in clockwise order, show the CV plotted against the mean, the 

maximum, and the minimum. In all three of these cases it appears that there are some 

outliers, but the vast majority of the observations indicate that the coefficient of variation 

is negatively related to the price levels. This is as expected and particularly obvious in the 

plots of the CV against the mean and the minimum price respectively. Higher price levels 

should lead to higher propensity to search, which in turn should lead to a convergence in 

the distribution.

5.4 Econometric Issues

5.4 (a) Heteroscedasticity

A preliminary Ordinary Least Squares regression on the unit price with drug fixed-

effects and performing a Breusch-Pagan / Cook-Weisberg test for heteroscedasticity

rejects the null hypothesis that the errors have a constant variance (the chi-square statistic 

for this test was 42.09). A plot of the residuals confirms heteroskedasticity. I now regress 

the natural log of unit prices on drug fixed effects with drug-clustered robust standard 

errors, which are an extension to the Huber-White standard errors, and plot the residuals 



69

from this regression. Both the residual plot and the Breusch-Pagan test (chi-squared 

statistic of 1.55), indicate homoscedastic variance in the residuals.30

5.4 (b) Intra Class Correlation

According to the literature on intra-class correlation, picking the correct level of 

clustering needs to be considered. The errors could be correlated across drugs sold at 

various pharmacies in various towns or correlated across the various pharmacies (i.e. at 

the pharmacy level instead of drug level, since some might choose to be high priced and 

therefore all drugs sold at these pharmacies would be higher priced) or they could even 

be correlated across various towns. In general, not correcting for clustering can lead to a 

downward bias in the computed standard errors of the regression coefficients.  To be 

prudent, I use both robust standard errors and cluster-robust standard errors allowing for 

clustering at the drug level for all our regressions. 

I expect E[( i,j ) ( i,j+1 )] ≠ 0, where i is the ith drug, j is the jth town, and j+1 is a 

different town i.e. I expect the errors in the data to be correlated since I am looking at the 

same prescription drugs across a number of different towns. In other words, there may be 

an unobservable reason that affects the pricing of a specific prescription that is not 

captured by including a control for the drug itself. Although autocorrelation and serial 

correlation are used interchangeably in current literature, technically, autocorrelation 

exists in data when the errors in one series are correlated within themselves. This could 

happen in two different ways – across periods in time series data and across space, 

groups, or classes in cross sectional data. Intra class correlation is essentially 

autocorrelation in cross sectional data. Serial correlation, on the other hand, occurs when 

                                                
30 Table A.2 in the appendix shows a comparison of standard errors using unit price versus the natural log 
of prices as the dependent variable regressed on market characteristics. 
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the errors from one series are related to errors in a different series. In the recent past, a lot 

of cross sectional studies tended to ignore autocorrelation mainly because it is difficult to 

model in a spatial sense.31 With time series data, it is relatively easy to address with an 

auto-regressive model since intuitively it seems likely that the errors in the current period 

are most probably related to the errors in the preceding period. Thus, taking first 

differences is a practical solution for this problem in time series data. 

There are a couple of ways that there could be clustering present in the data. The 

most obvious is for the pricing of the drugs to be correlated across the pharmacies in 

various towns as discussed before. However, it is also likely that pharmacy chains 

themselves adhere to specific pricing strategies and therefore there may be correlation in 

pharmacy-specific prices for the drugs. In other words, it is entirely possible that Rite-

Aid is one of the highest priced sellers across all towns whereas Target positions 

themselves at the low end of the price distribution of prescription drugs in each town.32

Furthermore, it is also possible that clustering occurs at the town level.

As expected, I find a high degree of intra class correlation (ICC), at 0.917 across 

drugs when defined by unit price and 0.954 when defined by the natural log of unit 

prices. Next, I split the pharmacies up into two broad groups – those that operated 

independently and those that were part of a chain. I looked for clustering in the drug unit 

prices across the independently operated pharmacies and then across the chains. I find 

that the correlation across the independent pharmacies is pretty hefty at 0.806 but even 

                                                
31 Rey and Montourri (1999), in a study of U.S. regional income convergence across several decades, reveal 
strong evidence of misspecification if spatial error dependence is ignored.
32 Rite Aid and Target are indeed at the high and low end of the price distribution across towns and a result 
discussed shortly. The fact that Rite Aid is consistently one of the highest priced stores is consistent with 
the findings of Sorensen (2000) and the data he collected in the state of New York.
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higher across the chains. I looked at each chain individually but am only reporting the 

statistic for all the chains as a group – the ICC was 0.957.33

5.5 Empirical Model

5.5 (a) Clustering

The following is a drug fixed effects model I estimate and has as the dependent 

variable the natural log of price. Explanatory variables include Number of Pharmacies,

Pharmacy Medicaid, and Minimum Price. The purpose of this exploratory regression is 

to determine the appropriate level of clustering for the standard errors, which are adjusted 

for clustering at different levels. The results are discussed in section 6.1.

LN(PRICEijk) = β0 + β1Number of Pharmaciesik+ β2Pharmacy Medicaidj +

β3Minimum Priceik +  β4∑ ଶହ௜ୀଵߛ Iܩܷܴܦ +  ijk (5.1)

5.5 (b) Pharmacy Chains

To see if pharmacy chains follow specific pricing strategies, I run the following 

regression:

LN(PRICE) = β0 + β1∑ ଶ଺௜ୀଵߙ ∑i  + β2ݕ݉݉ݑܦ݊݅ܽܪܥݕܿܽ݉ݎܽܪܲ ଶହ௜ୀଵߛ ݅ܩܷܴܦ +   (5.2)

The results are discussed in section 6.2. The dependent variable is the natural 

logarithm of unit prices. The coefficients can therefore be interpreted as semi-elasticities. 

In other words, a one unit change in the independent variable leads to the estimated 

                                                
33 I ran a regression on the fixed effects of the drugs on the unit prices of drugs as well as the natural log of 
the unit prices. I took the residuals from each specification, squared them (since Stata was otherwise 
truncating them at zero when I used loneway) and looked at the intra class correlation in all the cases 
mentioned. The intra class correlation for unit prices, as well as the natural log of prices, across drugs was 
reduced to 0.05 or less, implying that the fixed effects is actually capturing most of the correlation.  
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coefficient percentage change in the dependent variable, holding all other things constant. 

Since I only have dummy variables in this specification, the interpretation would be 

relative to the base case. Given that I have two qualitative regressors, the implicit 

assumption is that the differential effect of the pharmacy dummy is constant across all 

drugs and the differential effect of the drug dummy is constant across all pharmacies. 

While I could use an interaction term to address this limitation, this particular regression 

is just an exploratory one and does not have any theoretical basis. Thus, it would be 

beside the point since the main purpose of this dissertation is to determine whether

pricing is affected by market characteristics. However, if a lot of pharmacies have 

specific pricing strategies which are implemented at the chain level, this would work 

against pricing strategies implemented at the market level and the point of this regression 

is in making exactly that observation. 

5.5 (c) The General Baseline Specifications for Price Levels and Dispersion

I use a drug fixed effects model and from the comparative statics presented in the 

theoretical section, I get the following. 

Price- Levelijk = β0 + β1, Number of Pharmacies ik + β2 Search Cost

Measure At Pharmacy Level + β3 , Number of Pharmacies * Search Cost

Measure At Pharmacy Levelijk + ijk

(5.3)

For the equation presented above for price levels, I control for individual Pharmacy 

Chains but suppress the coefficients in the output. 



73

For price dispersion,

Price-Dispersionik = β0 + β1 Pharmaciesik + β2Search Cost Measure At 

Town Level + β3 , Number of Pharmacies * Search Cost Measure At 

Town Level ik + β4(Search Cost Measure At Town Level)2 +  β5 (Number 

of Pharmacies ik) 
2+ ik (5.4)

Where, Number of Pharmacies is the number of pharmacies in the kth town that sold the 

ith drug.  Search Cost Measure At Pharmacy Level and Search Cost Measure At Town 

Level are measures of the proportion of individuals with either relatively high search 

costs or low search costs, depending on the measure, as defined in section 5.1 (Pharmacy 

Medicaid, Town Medicaid and then Online versus Brick and Mortar), used. Number of

Pharmacies * Search Cost Measure At Pharmacy Level is the interaction term that 

captures whether the impact of a higher proportion of positive search cost consumers at a 

specific pharmacy causes price levels for the ith drug at the jth pharmacy to increase or 

decrease, as the number of stores in the market increases. A positive coefficient would 

imply that the marginal effect of a higher proportion of positive search cost consumers at 

a pharmacy would lead to increased price levels when the number of pharmacies in a 

market is higher. Number of Pharmacies * Search Cost Measure At Town Level is the 

interaction term that captures whether the impact of a higher proportion of positive search 

cost consumers in a specific market causes price dispersion for the ith drug in the kth

market to change, as the number of stores in the market increases. Here, a positive 

coefficient would imply that the marginal effect of a higher proportion of positive search 

cost consumers in a market would lead to increased price dispersion when the number of 
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pharmacies in a market is higher.  The squared term for the Search Cost Measure variable 

is included to test for the non-linear, non-monotonic relationship between the price 

distribution and proportion of individuals with positive search costs. Similarly, the 

squared term for the Number of Pharmacies variable is also included to test for the non-

linear, non-monotonic relationship between the price distribution and the number of 

pharmacies in the market. Regression equations using the specific search cost measures 

described in section 5.1 are discussed next.

5.5 (d) Using the Medicaid Measures as Proxies for Search Cost
Price Level

LN(Price)ijk = β0 + β1Number of Pharmaciesik + β2 Pharmacy Medicaid +

β3Number of Pharmacies * Pharmacy Medicaid ijk +  
(5.5)

Pharmacy Medicaid is a measure of positive search cost consumers that the jth 

pharmacy serves. It is a relative measure (relative to other pharmacies in the data set) of 

the number of drugs that the jth pharmacy sold to Medicaid patients, and is weighted by 

the popularity of the drug itself. This measure is a proxy for selling prescription drugs in 

low income neighborhoods since individuals with low income are less likely to have 

insurance and as a result have high search costs relative to those who have insurance.

Thus, we are capturing the Medicaid-neighboring population i.e. people who have a high 

enough income that disqualifies them from Medicaid but live in the same neighborhood 

as Medicaid beneficiaries.34 I also include controls for the various pharmacy chains but 

the coefficients are suppressed. 

                                                
34

While the poverty level for the 48 contiguous states is at over $900 a month for a household of 
one individual, an income of over $350 per month disqualifies the same household from Medicaid in 
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From equation 5.5,

ப(௅ே(௣௥௜௖௘))
ப(ே௨௠௕௘௥	௢௙	௉௛௔௥௠௔௖௜௘௦) =	 β1 + β3Pharmacy Medicaid and,

ப(௅ே(௣௥௜௖௘))
ப(௉௛௔௥௠௔௖௬ெ௘ௗ௜௖௔௜ௗ) =		 β2 + β3Number of Pharmacies 

Based on the theory, I expect β1 to be negative, β2 to be positive and β3 to be 

positive in both cases. In other words, a larger number of pharmacies will have a negative 

effect with a small proportion of consumers with high search costs, and a positive effect 

with a high proportion of high search cost consumers, on price levels. Similarly, a larger 

proportion of high search cost consumers will have a positive impact on price levels with 

a low number of stores, as well as with a higher number of stores. Furthermore, if we find 

β1 to be negative and β2 to be positive, it will be possible for us to set ∂ln(p)/∂(Number of 

Pharmacies) = 0, and solve for the value of the search cost variable, Pharmacy Medicaid, 

when prices are at their lowest levels due to the number of pharmacies in the market. The 

results are discussed in section 6.3(a).

Price Dispersion

Coefficient of Variationik = β0 + β1 (Town Medicaid * Number of 

Pharmacies) ik + β2 Town Medicaidk + β3 Number of Pharmaciesik + 

β4(Town Medicaidk)
2 +  β5(Number of Pharmaciesik) 

2+ 
(5.6)

Coefficient of Variation is the coefficient of variation in the prices of the ith drug 

in the kth town. The results are discussed in section 6.3(b). Number of Pharmacies is again 

                                                                                                                                                
Maryland. In all of the counties in Maryland, the county with highest percentage of households with an 
income at half the poverty level or less was Balimore City at a little over 12 percent. Furthermore, note that 
it would make little sense for pharmacies to charge higher prices if no one was paying for it. 
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the number of pharmacies in the kth town that sold the ith drug. I also include the quadratic 

terms to capture the hypothesized non-linear, non-monotonic relationship between the 

price dispersion and the respective independent variables in this specification. Town

Medicaid, which is similar to the search measure Pharmacy Medicaid, is now at the town 

level i.e. it captures the average number of prescription drugs sold to Medicaid 

beneficiaries in a town and serves as a proxy for low income towns (relative to high 

income towns in the data set). 

Based on theory, I expect β1 to be positive or negative, β2 and β3 to be positive, 

and β4 and β5 to be negative.

From equation 3.6, I get,

ப(஼௢௘௙௙௜௖௜௘௡௧	௢௙	௏௔௥௜௔௧௜௢௡)
ப(ே௨௠௕௘௥	௢௙	௉௛௔௥௠௔௖௜௘௦) = β1Town Medicaid + β3 + 2 β5 Number of Pharmacies 

and

ப(஼௢௘௙௙௜௖௜௘௡௧	௢௙	௏௔௥௜௔௧௜௢௡)
ப(்௢௪௡	ெ௘ௗ௜௖௔௜ௗ) = β1 Number of Pharmacies + β2 + 2 β4Town Medicaid

5.5 (e) Online versus Offline as Proxies of Search Cost

Price Level

Average Markupio = β0 + β1 Online Pharmacy Dummy o + β2Maximum 

Priceio + e
(5.7)

Average Markup is the average of the markup (as defined in section 5.2) for the ith

drug in the oth market. Markets here are defined as online and offline (traditional or brick 

and mortar). Recall that the online prices and the brick and mortar prices were collected a 

year apart. Therefore, a direct price comparison is not possible, however, a relative price 
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level comparison using the average markup is valid analysis. I use the maximum price of 

the ith drug in the oth market, the Maximum Price variable, as a control for price levels. 

The results are discussed in section 6.4(a).

The expected sign for the Online Pharmacy Dummy (= 1 means the pharmacy sells 

online) is negative regardless of how we define the brick and mortar market. There are 

two possible ways to consider the brick and mortar market. The first is to consider each 

individual brick and mortar market separately as has been done in the prior sections. The 

other is to aggregate all the prices for the ith drug from brick and mortar pharmacies and 

consider all brick and mortar pharmacies as one market.

I do not include the number of pharmacies in this specification since the number of 

firms (as long as it is greater than one) in an online environment is irrelevant due to zero 

search costs. This variable is only relevant in a brick and mortar setting where the number 

of firms is positively correlated to the cost of learning the price distribution. Thus, with 

geographic location being irrelevant on the internet, there is only one online market. 

Price Dispersion

Coefficient of Variationio = β0 + β1 Online Pharmacy Dummyo + 

β2Maximum Priceio + e
(5.8)

The results are discussed in section 6.4(b). Here also, both definitions of the brick 

and mortar are considered - the first for each individual brick and mortar market and the 

second for all the brick and mortar pharmacies aggregated into one offline market. The 

expected sign for Online Pharmacy Dummy (= 1 means the pharmacy sells online) is 

negative. The Maximum Price variable is once again used to control for price levels. 
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5.5 (f) The Price Distribution and the Number of Pharmacies

I construct a couple of quantile regression plots using the CV and the average 

markup on the y axis, respectively, and the quantiles of the number of firms on the x-axis. 

This is to ensure that the results are not driven by a few outliers.

Furthermore, I regressed the maximum and minimum prices on the drug fixed 

effects model and then plotted the residuals from these regressions against the quantiles 

of the number of firms. The objective is to observe what happens to the maximum and 

the minimum price as the number of firms in a market increases. These plots are 

discussed in section 6.5.

5.5 (g) Value of Search

Finally, I look at the benefits of searching for the price of prescription drugs 

before making a purchase. I define the value of search, via Stahl, as equal to the 

difference between the expected price i.e. the mean, and the minimum price of the drug 

normalized by the minimum price in that market.35 I run the following regression:

ValueofSearchik = β0 + β1Pharmaciesik + β2Onlinedummyo +             (5.9)

The value of searching for the ith drug in the kth town is the difference between the 

expected price and the minimum price as a proportion of the minimum price. I expect the 

value of search to increase as number of pharmacies increases, and be lower online. The 

results are discussed in section 6.6.

                                                
35 Although similar, this measure is not the same as the mark up which uses the difference between the 
observed price and the minimum price in the numerator.
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Figure 5.1: Coefficient of Variation for the Price of Each Drug by Market. 

Top Left Panel – A kernel density plot shows that the distribution of the CV of drug 
prices are heavily skewed to the right
Top Right Panel – Scatter plot of the coefficient of variation against the mean price
Bottom Left Panel - Scatter plot of the coefficient of variation against the minimum price 
Bottom Right Panel – Scatter plot of the coefficient of variation against the maximum 
price
All summary statistics here are computed for each drug in each market.
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6. Results

In this chapter, I present the results from the empirical analysis and the equations 

presented in section 5.5. We begin with regression results showing the varying levels of 

clustering, next show that pharmacy chains do implement pricing strategies at the chain 

level, and then present results based on predictions of the theoretical model.

6.1 Level of Clustering

To determine the appropriate level of clustering, the results from regression 

equation 5.1 are presented in Table 6.1. The independent variables are Number of 

Pharmacies, the number of pharmacies selling that drug in that town, Pharmacy 

Medicaid, which is a crude relative measure of the Medicaid business that the pharmacy 

gets, Minimum Price which is the minimum price of the ith drug in the kth town, and fixed 

effects for drugs. The robust standard errors (column 2) are only about 15% larger, on 

average, than the non-robust standard errors (column 1). The standard errors allowing for 

clustering on drugs (column 3) as well as the ones allowing for clustering on pharmacies 

(column 4) are much larger at about four times as large as the ones in column 1. Finally, 

the ones allowing for clustering at the town (column 5) level are about twice as big as the 

ones in column 1. However, even with the most conservative standard errors, all 

coefficients are significant at the 1% level. Once again, I observe that the number of 

stores in a town, ceteris paribus, has a positive impact on the price of the drug. The 

Minimum Price variable is for the minimum price of drug i in town k and is used as a 

control for price levels of prescription drugs across towns.
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6.2 Pharmacy Chain Pricing

The results for regression equation 5.2 are presented in table 6.2. The first column 

presents a drug and pharmacy chain fixed effects model. I also present estimates using a 

fixed effects model with robust standard errors, a fixed effects model allowing for 

clustering across drugs in generating standard errors, a robust regression model and a 

reproduction of the first specification, i.e. a fixed effects model but with forty two 

observations dropped (and as explained shortly). I see considerable differences in the 

standard errors in the three models, with the most conservative ones being generated by 

the fixed effects with cluster-robust standard errors (column 3). In fact, the robust 

standard errors (column 2) are, on average, about the same size as the regular, non-robust 

standard errors (column 1) but only about half as big as the cluster-robust standard errors 

(column 3). In spite of these large differences in the computed standard errors, there is 

not a considerable impact on the statistical significance of the estimated coefficients. For 

example, the coefficient for the Giant Foods Supermarket chain was statistically 

significant at the 1% level with the first two specifications but with clustered standard 

errors almost five times larger, fails to remain so. I observe this same phenomenon for 

Walgreens as well.

The fourth column in the table presents estimates using a “robust” regression 

technique. As explained earlier, this method uses iteratively reweighted least squares with 

higher weight given to better behaved observations and little weight given to outlying

observations. For my data set, this is an excellent technique, particularly since some of 

the prices might be skewing the results. However, I find that most of the estimates do not 

change significantly other than the coefficient for Costco, which now implies that prices, 
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on an average, are lower than prices at independent pharmacies by about 9.49% instead 

of 71.6%. I also see the coefficient for Target decrease in magnitude, implying that prices 

are lower on average by 12.8% rather than 15.2%, relative to prices at independent 

pharmacies. Prices of some drugs were well below the average, especially at Costco, thus 

driving this result.36 However, overall, the estimates appear to be quite robust given the 

econometric rigor.37

The fifth column gives estimates with forty two observations dropped. These 

observations were for the seven drugs – Depakote, Flonase, Fosamax, Norvasc, 

Pravachol, Wellbutrin and Zoloft. The prices were from six Costco locations in Beltville, 

Hanover, Frederick, Gaithersburg, Glen Burnie and Chestertown. I dropped these prices 

because all of these prices were about 10% to 20% of the mean price for the drug in that 

town. In other words, the average prices of these drugs, in those specific towns, were at 

least a multiple of five times the price listed at Costco. However, as stated in footnote 27, 

this does not seem accurate. I do not drop the other observations from Costco since they 

are all within two standard deviations of the mean. 

The model presented explains 96.6% (98.3% and 97.6% according to the Robust 

Regression and the Costco adjusted specifications, respectively) of the variation in the 

natural log of the prices of prescription drugs. I have dummy variables for the pharmacy 

                                                
36 I take a close look at the Costco prices and find that for some drugs Costco’s price seemed unreasonably
low. For Pravachol, for example, Costco was charging $18 at all six locations in Maryland that sold this 
drug. However, the average price of this drug across all pharmacies is $162. It is possible that Costco is 
reporting the price of a generic equivalent. However, I keep these observations in the first four 
specifications with the caveat that the coefficients from the robust regression may be more believable for 
this particular pharmacy chain.
37 Note that I am only looking at brick and mortar pharmacies here and not any of the online sellers. I also 
ran a set of the same regressions but now included dummy variables for the online firms. The estimated 
coefficients as well as standard errors from the results presented were practically identical. Recall that the 
key reason I wanted to run this regression was to see if pharmacy chains had any chain-wide pricing 
policies since this would then affect dispersion measures at the town-level. This precludes the need for 
online sellers to be included in these estimates. 
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chains and for each individual drug in estimating this equation. For the pharmacy chain 

dummies, I lumped all the independent pharmacies into one category and made that the 

base case. The remaining twenty six dummy variables are for each actual pharmacy chain 

such as CVS, Walgreens, etc. A lot of the pharmacy chains have significantly higher or 

lower pricing strategies than the independent stores. As mentioned, of the major chains, 

Target and Costco appear to be the lowest priced with prices an average of 15% and 13% 

lower than the independent pharmacies, respectively. Rite Aid  on the other hand, appears 

to be one of the highest priced major chains with prices on an average about 9% above 

the independent stores. There are significantly different prices for the prescription drugs 

as well. Adderall was dropped due to collinearity issues. I had specified Prevacid as the

base case justified strictly on the fact that I had the most observations for this drug. 

If a lot of pharmacies have specific pricing strategies which are implemented at 

the chain level, this could work against pricing strategies implemented at the market level 

and the point of this regression is in making exactly this observation.38 I find this to be 

largely true for the various pharmacy chains i.e. Rite-Aid is one of the highest priced 

chains whereas Target is one of the lowest-priced.

6.3 Using the Crudeaid Measures as Proxies for Search Cost

6.3 (a) Price Level

The results from equation 5.5 are presented in Table 6.3(a). I use robust standard 

errors as well as drug clustered standard errors. While the drug clustered standard errors 

are slightly more conservative, the changes in the sizes of the standard errors are not 

                                                
38 A frequency distribution of the prices of the drug Flonase at ninety nine Rite-Aids in Maryland is 
presented in table A.3 in the appendix. I observe a total of fifteen prices, with two of these prices 
accounting for half the occurrences in this sample. This is a typical pricing pattern for the chain 
pharmacies.
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enough to affect the levels of statistical significance for any of the coefficients. While the 

interaction term is not significant, the search cost variable, Pharmacy Medicaid, and the 

Number of Pharmacies in the market are both significant at 0.01 and 0.10 levels, 

respectively. All three of the terms are positive. I also run the regression without five 

drugs that were in non-pill forms of delivery i.e. inhalers, liquid drops, etc. The 

consideration was that since all the drugs are supposed to be for a 30 day period, the non-

pill forms might lead to some ambiguity in the quantity prescribed and consumed over 

this specific period.  Pharmacy Medicaid continues to be significant at the 0.01 level, but

the Number of Pharmacies is no longer significant.

From equation 5.5, I get,

ఋ(௅ே(௣௥௜௖௘))
ఋ(ே௨௠௕௘௥	௢௙	௉௛௔௥௠௔௖௜௘௦) =	 β1 + β3 Pharmacy Medicaid = 0.00048 + .0026 (Pharmacy

Medicaid).                         (6.1)

The search cost variable, Pharmacy Medicaid, ranges in the data from 0.015 to 0.87. 

Recall that this measure is an index, so they only convey meaning when compared within 

the index. The mean of this measure is 0.416 and the standard deviation is 0.146. Using 

equation 6.1, I compute the marginal effects. These are presented in table 6.3(b). Based 

on the table (or equation 6.1), given the range in this data for Pharmacy Medicaid, an 

increase in the number of pharmacies will lead to an increase in price level, although the 

magnitude of the increase will depend on the proportion of positive search cost 

consumers in the market.

Also from equation 5.5, we get,

ப(௅ே(௣௥௜௖௘))
ப(௉௛௔௥௠௔௖௬ெ௘ௗ௜௖௔௜ௗ) =		 β2 + β3Number of Pharmacies = 1.564 + .0026(Number 

of Pharmacies) (6.2)



85

β2 and β3 are positive as expected. The Number of Pharmacies in this data set ranges from 

1 to 49 in a given market. The mean for this variable is 11.595 and the standard deviation 

is 10.9 implying a distribution skewed heavily to the right. Thus, I use values of 2, 5, 10, 

20, 30, and 40 for Number of Pharmacies and using equation 6.2, I compute the marginal 

effects. These are presented in Table 6.3(c). An increase in the proportion of consumers 

with positive search costs would lead to an increase in price levels. Pharmacy Medicaidj

is a measure of positive search cost consumers that the jth pharmacy serves. It is a relative 

measure (relative to other pharmacies in the data set) of the number of drugs that the jth

pharmacy sold to Medicaid patients. This measure is a proxy for selling prescription 

drugs in low income neighborhoods since individuals with low income are less likely to 

have insurance and as a result have high search costs relative to those who have 

insurance.39

6.3 (b) Price Dispersion

The results from equation 5.4 are presented in Table 6.4. The first column shows 

the estimates with just the independent variables Number of Pharmacies and Town

Medicaid. The second column adds in the interaction variable, Town Medicaid * Number 

of Pharmacies, and the third column further adds in the squared terms to show the 

estimates for the complete specification presented in equation 5.4. I note that the r-

squared does not change across the three columns and due to the highly correlated nature 

of the interaction and squared terms with the independent variables, multicollinearity 

appears to be causing problems with the estimates. The relationship between price 

dispersion and the number of pharmacies in the market may be monotonic, as opposed to 

                                                
39 This result is not driven by the 340B program which reimburses contracting pharmacies via dispensing 
fees and does not allow pharmacies to mark-up prices to generate revenue. 
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non-monotonic, as predicted by the theoretical model. I explore this implication further in 

section 6.4. Number of Pharmacies is not statistically significant. However, when the 

regression was run without the interaction term or the squared term, it was significant at 

the 0.01 level. Town Medicaid, which is similar to the search measure Pharmacy

Medicaid, is now at the town level i.e. it captures the average number of prescription 

drugs sold to Medicaid beneficiaries in a town and serves as a proxy for low income 

towns (relative to high income towns in the data set). The Town Medicaid variable is 

statistically insignificant. However, when the regression was run without the interaction 

term or the squared term, it was significant at the 0.01 level.

From regression equation 6.4, we get, 

ఋ(஼௢௘௙௙௜௖௜௘௡௧	௢௙	௏௔௥௜௔௧௜௢௡)
ఋ(ே௨௠௕௘௥	௢௙	௉௛௔௥௠௔௖௜௘௦) = β1Town Medicaid + β3 + 2 β5 Number of Pharmacies = 

0.00387(Town Medicaid) -0.00151 – (2)(0.00000672)(Number of Pharmacies)

and

ఋ(஼௢௘௙௙௜௖௜௘௡௧	௢௙	௏௔௥௜௔௧௜௢௡)
ఋ(்௢௪௡	ெ௘ௗ௜௖௔௜ௗ) = β1 Number of Pharmacies + β2 + 2 β4Town Medicaid = 

0.00387 (Number of Pharmacies) -0.622 – (2)(30.62)(Town Medicaid)

We do not compute marginal effects because introducing the squared and interaction 

terms is leading to severe multicollinearity issues. 

6.4 Online versus Offline as Proxies of Search Cost

6.4 (a) Price Level

The results are presented in Table 6.5. I present two sets of results. The first column 

presents results with each individual brick and mortar market being treated as such and 

comparing these individual brick and mortar markets to the online market. The second 
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column aggregates all offline pharmacies into one brick and mortar market and then 

compares this sole brick and mortar market to the online market. The expected sign for 

Online Pharmacy Dummy (= 1 means the pharmacy sells online) is negative and it is so 

and statistically significant at the 1% level regardless of how I define the brick and 

mortar market. However, the r-squared is much higher in the case where I aggregated the 

brick and mortar pharmacies into one market.

I do not include the number of pharmacies in this specification since the number of 

firms (as long as it is greater than one) in an online environment is irrelevant due to zero 

search costs. This variable is only relevant in a brick and mortar setting where the number 

of firms is positively correlated to the cost of learning the price distribution. Thus, with 

geographic location being irrelevant on the internet, there is only one online market. 

6.4 (b) Price Dispersion

CVio = β0 + β1 DOnlinePharmacyo + β2MaxPriceio + 

The results are presented in Table 6.6. Once again, I present two sets of results, 

one for each individual brick and mortar market and one for all the brick and mortar 

pharmacies aggregated into one offline market. Here also, the expected sign for 

DOnlinePharmacy (= 1 means the pharmacy sells online) is negative and it is so and 

statistically significant at the 1% level regardless of how I define the brick and mortar 

market. The Maximum Price variable is once again used to control for price levels.

6.5 The Price Distribution and the Number of Pharmacies

In Figure 6.1 and 6.2, I construct a couple of quantile regression plots using the 

Coefficient of Variation and the Average Markup on the y axis, respectively, and the 

quantiles of the Number of Pharmacies on the x-axis. I am able to observe the clear trend 
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that both Coefficient of Variation as well as the Average Markup increase as the number 

of firms in a market increases. This further confirms that these results are not driven by a 

few outliers.

Furthermore, I regressed the Maximum Price and the Minimum Price on 

the drug fixed effects model and then used the residuals from these regressions in Figure 

6.3 and Figure 6.4, on the y-axis respectively, and the quantiles of the Number of 

Pharmacies on the x-axis. The distinctive trend in both cases is for Maximum Price to 

increase and Minimum Price to decrease as the Number of Pharmacies in a market 

increases. 

Not only does the Coefficient of Variation increase as the Number of Pharmacies

increases, I also observe the upper support of the distribution increasing and the lower 

support of the distribution decreasing. This is a more complete visual of the evolving 

price distribution than just looking at any individual measure of dispersion. Thus, not 

only do I observe Stahl’s prediction, given positive search cost consumers, come true, I

also observe the competitive outcome hold. It seems feasible that with a large number of 

firms in a particular market, some may adopt a different strategy than others.  
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6.6 Value of Search

Finally, I look at the benefits of searching for the price of prescription drugs before 

making a purchase. I define the value of search, via Stahl, as equal to the difference 

between the expected price i.e. the mean, and the minimum price of the drug normalized 

by the minimum price in that market.40 I run the following regression:

ValueofSearchik = β0 + β1Pharmaciesik + β3Onlinedummyo +

The value of searching for the ith drug in the kth town is the difference between the 

expected price and the minimum price as a proportion of the minimum price. I expect the 

value of search to increase as number of pharmacies increases. The results are presented 

in table 6.7. The coefficient is indeed positive and significant at the 0.01 level. I expect 

the value of search to be lower for those searching online when compared to those 

searching offline. The coefficient is indeed negative and significant at the 0.01 level. The 

R-squared for this regression is 0.3022, therefore, about thirty percent of the variation in 

the dependent variable is explained by the variation in the independent variables.

                                                
40 Although similar, this measure is not the same as the mark up which uses the difference between the 
observed price and the minimum price in the numerator.



90

Table 6.1: LN(Unit price) on Market Characteristics

Dependent Variable Ln(price) Ln(price) Ln(price) Ln(price)
(1) (2) (3) (4)

Number of Pharmacies 0.00206*** 0.00206*** 0.00206*** 0.00206***
(0.000112) (0.000230) (0.000419) (0.000235)

Pharmacy Medicaid 2.359*** 2.359*** 2.359*** 2.359***
(0.144) (0.475) (0.459) (0.295)

Minimum Price 0.0494*** 0.0494*** 0.0494*** 0.0494***
(0.00188) (0.0137) (0.00807) (0.00404)

Fixed Effects Yes Yes Yes Yes
Clustered Standard Errors No Yes (Drug) Yes (Pharmacy) Yes (Town)

Observations 14,741 14,741 14,741 14,741
R-squared 0.972 0.972 0.972 0.972

1.Robust Standard errors in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1
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Table 6.2: LN(Unitprice) on pharmacy and drug fixed effects.41

Dependent 
Variable

Ln(price) Ln(price) Ln(price) Ln(price) Ln(price)

(1) (2) (3) (4) (5)

BJ'S WHOLESALE -0.249*** -0.249*** -0.249*** -0.247*** -0.253***

(0.0547) (0.0249) (0.0250) (0.0383) (0.0460)

CVS INC 0.0318*** 0.0318*** 0.0318*** 0.0403*** 0.0321***

(0.00381) (0.00329) (0.0105) (0.00267) (0.00320)

COSTCO -0.716*** -0.716*** -0.716*** -0.0949*** -0.131***

(0.0134) (0.0793) (0.200) (0.00940) (0.0139)

ECKERD DRUG 0.0291*** 0.0291*** 0.0291** 0.0344*** 0.0294***

(0.00896) (0.00665) (0.0120) (0.00626) (0.00752)

ENSIGN 
PHARMACIES

0.0726*** 0.0726*** 0.0726*** 0.0671*** 0.0725***

(0.0173) (0.0163) (0.0204) (0.0121) (0.0146)

FELDMAN'S -0.00925 -0.00925 -0.00925 0.0183 -0.00998

(0.0257) (0.0230) (0.0236) (0.0180) (0.0216)

FOOD LION -0.152*** -0.152*** -0.152*** -0.149*** -0.154***

(0.0374) (0.0200) (0.0247) (0.0262) (0.0314)

GIANT FOOD -0.0128*** -0.0128*** -0.0128 -0.0228*** -0.0123***

(0.00426) (0.00412) (0.0242) (0.00298) (0.00357)

HAPPY HARRYS -0.000300 -0.000300 -0.000300 0.0122 0.000754

(0.0130) (0.00893) (0.0173) (0.00907) (0.0109)

HOME CARE -0.0374** -0.0374*** -0.0374*** -0.0218** -0.0365***

(0.0156) (0.00940) (0.0121) (0.0109) (0.0131)

                                                
41 Coefficient for drug fixed effects are suppressed in columns 1, 2 and 5. We presented these coefficients 
in columns 3 and 4 simply to show that there are no extreme observations that are driving the results, as 
was the case with the Costco prices. Also, the highlighted coefficients within the table show a change in 
statistical significance. 



92

Table 6.2(continued): LN(Unitprice) on pharmacy and drug fixed effects.

Dependent 
Variable

Ln(price) Ln(price) Ln(price) Ln(price) Ln(price)

(1) (2) (3) (4) (5)

K MART -0.0828*** -0.0828*** -0.0828*** -0.0737*** -0.0821***

(0.00994) (0.00760) (0.0125) (0.00695) (0.00835)

KLEINS PHARM -0.0541*** -0.0541*** -0.0541*** -0.0389*** -0.0543***

(0.0156) (0.0111) (0.0185) (0.0109) (0.0131)

MARTINS 
PHARMACY

-0.0562*** -0.0562*** -0.0562*** -0.0501*** -0.0546***

(0.0160) (0.00871) (0.0102) (0.0112) (0.0134)

METRO PHARMACY -0.0937*** -0.0937*** -0.0937*** -0.0835*** -0.0940***

(0.0143) (0.0102) (0.0138) (0.0100) (0.0120)

NEIGHBORCARE 
PHARMACIES

0.0673*** 0.0673*** 0.0673*** 0.0782*** 0.0678***

(0.00772) (0.00560) (0.0106) (0.00540) (0.00649)

RITE AID 0.0915*** 0.0915*** 0.0915*** 0.0981*** 0.0912***

(0.00407) (0.00335) (0.0112) (0.00284) (0.00342)

SAFEWAY INC -0.0445*** -0.0445*** -0.0445*** -0.0334*** -0.0446***

(0.00562) (0.00391) (0.00718) (0.00393) (0.00472)

SHOPPERS 
PHARMACY

-0.0880*** -0.0880*** -0.0880*** -0.0742*** -0.0884***

(0.0122) (0.00816) (0.0109) (0.00855) (0.0103)

SUPER FRESH -0.0717*** -0.0717*** -0.0717*** -0.0571*** -0.0720***

(0.0120) (0.0108) (0.0147) (0.00841) (0.0101)

SAMS EAST -0.361*** -0.361*** -0.361*** -0.294*** -0.361***

(0.0215) (0.0349) (0.0481) (0.0150) (0.0180)
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Table 6.2(continued): LN(Unitprice) on pharmacy and drug fixed effects.

Dependent 
Variable

Ln(price) Ln(price) Ln(price) Ln(price) Ln(price)

(1) (2) (3) (4) (5)

TARGET DRUG -0.152*** -0.152*** -0.152*** -0.128*** -0.152***

(0.00900) (0.00857) (0.0229) (0.00629) (0.00756)

THE MEDICINE 0.0379*** 0.0379*** 0.0379*** 0.0226*** 0.0381***

(0.00773) (0.00835) (0.00898) (0.00540) (0.00649)

TWIN KNOLLS -0.126*** -0.126*** -0.126** -0.0444*** -0.125***

(0.0242) (0.0392) (0.0638) (0.0169) (0.0203)

WAL-MART 
PHARMACY

-0.131*** -0.131*** -0.131*** -0.0980*** -0.131***

(0.00622) (0.00644) (0.0243) (0.00435) (0.00522)

WALGREENS 0.0199** 0.0199*** 0.0199 0.0258*** 0.0206***

(0.00838) (0.00504) (0.0154) (0.00586) (0.00704)

WEIS PHARMACY -0.0653*** -0.0653*** -0.0653*** -0.0613*** -0.0647***

BJ'S WHOLESALE (0.00984) (0.00768) (0.0149) (0.00688) (0.00826)

Adderall XR -0.0547*** -0.0597***

(0.00158) (0.00560)

Advair Discus -0.477*** -0.479***

(0.000579) (0.00531)

Albuterol -1.357*** -1.342***

(0.00178) (0.00529)

Celebrex -1.046*** -1.105***

(0.00187) (0.00624)

Combivent 0.232*** 0.219***

(0.000577) (0.00536)
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Table 6.2(continued): LN(Unitprice) on pharmacy and drug fixed effects.

Dependent 
Variable

Ln(price) Ln(price) Ln(price) Ln(price) Ln(price)

(1) (2) (3) (4) (5)

Concerta -0.139*** -0.153***

(0.00157) (0.00541)

Depakote -0.551*** -0.490***

(0.00185) (0.00605)

Flonase 0.0346*** 0.0455***

(0.000513) (0.00510)

Fosamax 1.323*** 1.336***

(0.000334) (0.00515)

Furosemide -2.909*** -2.889***

(0.00354) (0.00651)

Lexapro -0.540*** -0.540***

(0.000426) (0.00517)

Lipitor -0.635*** -0.640***

(0.000293) (0.00500)

Lotrel -0.469*** -0.468***

(0.00156) (0.00715)

Nexium -0.0278*** -0.0318***

(0.00198) (0.00627)

Norvasc -0.844*** -0.831***

(0.000638) (0.00527)

Ortho Evra 1.175*** 1.164***

(0.00114) (0.00531)
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Table 6.2(continued): LN(Unitprice) on pharmacy and drug fixed effects.

Dependent 
Variable

Ln(price) Ln(price) Ln(price) Ln(price) Ln(price)

(1) (2) (3) (4) (5)
Plavix -0.142*** -0.153***

(0.00345) (0.00598)

Pravachol -0.123*** -0.105***

(0.000869) (0.00551)

Risperdal -0.0902*** -0.0832***

(0.00150) (0.00593)

Seroquel -0.218*** -0.212***

(0.00112) (0.00568)

Singulair -0.369*** -0.373***

(0.00204) (0.00582)

Toprol XL -1.587*** -1.589***

(0.00106) (0.00557)

Wellbutrin XL -0.0571*** -0.0531***

(0.000900) (0.00562)

Zetia -0.604*** -0.619***

(0.00241) (0.00646)

Zoloft -0.590*** -0.577***

(0.000543) (0.00526)

Standard Errors Robust Drug 
Clustered 

Special Case Robust 
Regression

Costco 
Adjusted

Observations 14,487 14,487 14,487 14,487 14,445
R-squared 0.966 0.966 0.966 0.983 0.976

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 6.3(a): LN(Unit Price) on positive search cost consumers 

Dependent Variable ln(Price) ln(Price) ln(Price)
(1) (2) (3)

(Pharmacy Medicaid)  
X(Number of Pharmacies)

0.0026 0.0026 0.0045

(0.00838) (0.0084) (0.00916)
Pharmacy Medicaid 1.564*** 1.564*** 0.0914***

(0.169) (0.495) (0.186)
Number of Pharmacies 0.00048* 0.00048* 0.00029

(0.00028) (0.00026) (0.00032)
Fixed Effects Yes Yes Yes
Clustered No Yes (Drug) Yes(Drug)
Special Case No No Dropped 5 

Drugs
Observations 14,741 14,741 11,386
R-squared 0.975 0.975 0.9761

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 6.3(b): Marginal Effects of Number of Pharmacies on Price Levels

Values for 
Pharmacy 
Medicaid

Marginal Effects for 
∂ln(p)/∂(Number of 

Pharmacies)
3 Standard deviations below mean 0.0151467 0.000519381
2 Standard deviations below mean 0.1188639 0.000789046
1 Standard deviations below mean 0.2674252 0.001175306
At the mean 0.4159865 0.001561565
1 Standard deviations above mean 0.5645478 0.001947824
2 Standard deviations above mean 0.7131091 0.002334084
3 Standard deviations above mean 0.8616704 0.002720343
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Table 6.3(c): Marginal Effects of Pharmacy Medicaid on Price Levels 

Values for Number of Pharmacies
Marginal Effects for ∂ln(p)/∂(Pharmacy 

Medicaid)
2 1.5692
5 1.577

10 1.59
20 1.616
30 1.642
40 1.668



99

Table 6.4: Coefficient of Variation with Positive Search Cost Consumers 

Dependent Variable Coefficient of 
Variation

Coefficient 
of Variation

Coefficient of 
Variation

(1) (2) (3)

Number of Pharmacies 0.000818*** -0.000930 -0.00151
(0.000290) (0.000842) (0.00113)

Town Medicaid 2.011*** 1.949*** -0.622
(0.432) (0.421) (1.259)

(Town Medicaid) X
(Number of Pharmacies)

0.00264** 0.00387***

(0.00122) (0.00133)
(Pharmacies)2 -6.72e-06

(1.68e-05)
(Town Medicaid)2 30.62*

(15.33)

Observations 2,160 2,160 2,160
R-squared 0.176 0.177 0.179
Robust Standard errors in parentheses.  All specifications are estimated using 
fixed effects and clustering by drug.

*** p<0.01, ** p<0.05, * p<0.1
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Table 6.5: Online versus Offline Price Markup 

Dependent Variable Average 
Markup

Average 
Markup

Observational Unit Individual 
Brick and 

Mortar

Online Sites 
& Single 
Offline 
Market

Online Pharmacy 
Dummy

-0.0733*** -0.434***

(0.0103) (0.0773)
Maximum Price 0.0103*** 0.000724

(0.00329) (0.00157)

Observations 2,160 5042

R-squared 0.200 0.830

Standard errors in parentheses.  All specifications are estimated using fixed 
effects and clustering by drug.

*** p<0.01, ** p<0.05, * p<0.1

                                                
42 Albuterol was not available at any of the online pharmacies. Including the observation does not change 
the results in any meaningful way and the estimates are available upon request.
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Table 6.6: Online versus Offline Price Dispersion 

VARIABLES Coefficient of 
Variation

Coefficient of 
Variation

Observational Unit Individual 
Brick and 

Mortar

Online Sites & 
Single Offline 

Market

Online Pharmacy 
Dummy

-0.0679*** -0.0799***

(0.00679) (0.0129)
Maximum Price 0.0103*** 0.00198***

(0.00164) (0.000248)

Observations 2,160 50
R-squared 0.353 0.908

Standard errors in parentheses. All specifications are estimated using fixed effects 
and clustering by drug.

*** p<0.01, ** p<0.05, * p<0.1
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Table 6.7: Value of search as the dependent variable  

VARIABLES Value of search

Number of 
Pharmacies

0.00984***

(0.00147)
Online Pharmacy 
Dummy

-0.129***

(0.0151)

Observations 2,160
R-squared 0.302

Robust standard errors in parentheses. All specifications are estimated using fixed 
effects and clustering by drug.

*** p<0.01, ** p<0.05, * p<0.1
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Figure 6.1: Quantile Regression Plot of the Coefficient of Variation on Number of 
Pharmacies 
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Figure 6.2:  Quantile Regression Plot of the Average Markup on Number of 
Pharmacies 
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Figure 6.3: Quantile Regression Plot of Residuals from Maximum Price on Number 
of Pharmacies 
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Figure 6.4: Quantile Regression Plot of Residuals from the Minimum Price on 
Number of Pharmacies
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7. Conclusion

For retail prescription drugs, I look at online versus offline price levels and 

dispersion, as well as price levels and dispersion in purely offline markets from the 

structure of the market context. I use Stahl (1989) to formulate the testable hypotheses 

that as the proportion of positive search cost consumers increases from zero up to a 

certain threshold, price dispersion will increase. Beyond that threshold, price dispersion 

will decrease. Price levels will, however, increase continuously as the proportion of 

positive search cost consumers goes from zero to one. Furthermore, in markets with a 

sufficient proportion of high search cost consumers, an increase in the number of 

pharmacies will result in an increase in prices to the point that the price distribution 

degenerates to the monopoly price. This is contradictory to the competitive outcome, 

where consumers are assumed to have perfect information, and an increase in the number 

of pharmacies leads to marginal cost pricing. 

I look at specific drugs that are of the same strength and package size. Thus the 

physical product itself is homogeneous. This allows for a more consistent comparison of 

prices across various retailers. It also allows for a more powerful cost benefit analysis 

since the benefit from the drug itself is identical whereas the cost is a function of where 

the drug is bought. In short, it would be difficult to dispute that a tablet of Lipitor 20 mg 

will provide the same benefit, regardless of whether it is bought at Walgreens or Wal-

Mart, while at the same time, the difference in prices paid by the consumer is perfectly 

observable and can be quite considerable. 

For analysis, I use two different measures to proxy for heterogeneous search 

costs. In one, I look at prices at online pharmacies and compare those to prices at brick 
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and mortar pharmacies. The intuition behind this comparison is that it is much easier and 

thus less costly to search online than it is to search at brick and mortar stores. As 

expected, I find more competitive price levels as well as lower price dispersion in the 

online pharmacies relative to the brick and mortar pharmacies. 

The other measure that proxies heterogeneous search costs is the Medicaid 

measure. This measure captures pharmacies that are serving a relatively higher proportion 

of Medicaid beneficiaries. The point of this measure is that a pharmacy serving a higher 

number of Medicaid beneficiaries would also be serving those living in the same

neighborhood and who make more than $350 a month and thus do not qualify for 

Medicaid in Maryland. These consumers are also less likely to have prescription drug 

coverage, which makes them consumers with high search costs. As expected, I observe

higher prices in pharmacies serving a greater proportion of high search cost consumers. I

also find that price dispersion increases in markets with a greater number of pharmacies. 

This is contrary to expectations based on the theoretical model which predicts a non-

monotonic relationship between the number of firms and the observable dispersion in 

prices. 

The major conclusion of this work is that given the degree of dispersion 

observable in prescription drug prices, making price information more transparent will 

result in a more competitive outcome. The posting of prescription drug prices needs to be 

consistent and the availability of this information needs to be marketed so that consumers 

are aware of the resources available to help them make informed choices. From a policy 

perspective, greater emphasis should be placed in making markets more competitive 

where feasible. 
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APPENDIX
Table A.1: Top 5 U.S Pharmaceutical Products by Sales in billions of dollars

2009 2008 2007 2006 2005

Total US 
Prescription 

Market Drug Name 300.3 285.7 280.5 270.3 247.3
1 LIPITOR 7.5 7.8 8.1 8.6 8.2
2 NEXIUM 6.3 5.9 5.4 5.1 4.3
3 PLAVIX 5.6 4.8 3.9 2.9 3.5

4
ADVAIR 
DISKUS 4.7 4.4 4.2 3.9 3.5

5 SEROQUEL 4.2 3.8 3.4 3.0 2.5
Source: IMS National Sales Perspectives
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Table A.2: Unit price and LN( price) on Number of Pharmacies

Dependent Variables unitprice lnprice lnprice lnprice

Number of Pharmacies 0.00929*** 0.00138*** 0.000495*** 0.00124***
(0.00262) (0.000157) (0.000107) (9.23e-05)

Fixed Effects Yes Yes Yes Yes
Clustered Standard 
Errors

Yes (Drug) Yes (Drug) Yes 
(Pharmacy)

No

Special Case Robust 
Regression

Observations 14,741 14,741 14,741 14,741
R-squared 0.921 0.969 0.978 0.976

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A.3: Price and Price Frequencies of Flonase 50 mcg at various Rite-Aid 
Pharmacies in Maryland. 

Price Frequency
5.874375 1
6.186875 3
6.311875 7
6.436875 1
6.499375 4
6.561875 11
6.686875 22
6.811875 1
6.936875 3
7.061875 3
7.186875 1
7.436875 4
7.499375 8
7.624375 27
7.749375 3
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Figure A.1: Residuals from Drug Fixed Effects on Unit Price.
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Figure A.2: Residuals from Drug Fixed Effects on the LN(Unit price)
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Figure A.3: Residual diagnostics for price levels

Top Left Panel – Scatter plot of residuals from regression of the unit price on drug fixed 
effects on y axis, and on the x-axis, the number of pharmacies in each town 

Top Middle Panel – Quantile Plot of residuals shows larger errors for higher values  

Top Right Panel – A kernel density plot shows that the distribution of the residuals are 
skewed to the right

Bottom Left Panel – Scatter plot of residuals from regression of the natural log of unit 
price on drug fixed effects on y axis, and on the x-axis, the number of pharmacies in each 
town 

Top Middle Panel – Quantile Plot of residuals shows a much more symmetrical 
distribution  

Top Right Panel – A kernel density plot shows the same thing as the quantile plot
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Figure A.4: Residual diagnostics for price dispersion  

Top Left Panel – Scatter plot of coefficient of variation of drug prices (on y axis) against 
number of pharmacies in each town that sold the drug (on x axis). These measures of CV 
are at the town level.
Top Right Panel – Scatter plot of residuals from log linear model. Residuals from 
regression of the natural log of the coefficient of variation of price on drug fixed effects 
on y axis and the natural log of number of pharmacies in each town on the x-axis.
Bottom Left Panel - A kernel density plot shows that the distribution of the residuals 
from the semi-log model are somewhat skewed to the left
Bottom Right Panel – A quantile plot showing larger errors for lower values of residuals 
from
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