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ABSTRACT OF THESIS 

 

CORRELATION BETWEEN ALTERNANS OF EARLY AND LATE PHASES OF 
VENTRICULAR ACTION POTENTIAL 

 

Several studies suggest that action potential duration (APD) alternans play an important role in 
initiation of arrhythmias, while less is known about the alternans of early phases of action 
potential (AP) and phase relation between the two. Transmembrane potentials recorded from 
swine and canine ventricles were analyzed to determine the correlation and phase relation 
between alternans of early and late phases of an AP. In both species, for activation intervals ≤ 400 
ms, action potential amplitude (APA) alternans occurred≥ 50% of times when APD alternans 
occurred and vice versa, both were mostly in phase. Also, alternans of APA and APD were 
mostly in phase with alternans of maximal rate of depolarization. The correlation between 
alternans in early and later parts of AP, however, was variable between species; APD10 and 
APD90 alternans were out of phase 81 % versus 34 % in canines and swines. These observations 
suggest that ionic mechanisms underlying alternans of depolarization and early repolarization 
phases may be distinct from those underlying later phases of repolarization. Simulations 
conducted to see the spatiotemporal effect of phase behavior between these alternans show that 
out of phase behavior suppresses oscillations in wavelength and minimizes the chances of spatial 
discordance. 

 

KEYWORDS: Alternans of depolarization, alternans of repolarization, maximum rate of 
depolarization, arrhythmia, alternans 
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CHAPTER 1: INTRODUCTION 

 

Sudden Cardiac Death (SCD) is the leading cause of death in the United States with the death rate 

of 600,000 per year [1]. Ventricular tachycardia (VT), when electric impulse becomes faster, or 

ventricular fibrillation (VF), when impulse becomes chaotic, leads to cardiac arrest [1], has been 

reported as the major cause of SCD. Beat to beat changes in myocyte excitability such as 

variation in action potential duration (APD) and action potential amplitude (APA) is often 

correlated and is thought to cause electrical instability, an important precursor to VF. The 

oscillation in APD or APA is termed as alternans and the behavior is also known as period 

doubling bifurcation. Alternans of repolarization has been established as an important factor in 

genesis of ventricular fibrillation (VF) [2-4] however not many studies have focused on alternans 

of depolarization phase. 

1.1 CONCORDANT AND DISCORDANT ALTERNANS 

Alternans of APD are also known to exhibit spatial patterns. When alternans occur in long-short-

long or short-long-short pattern for the entire region of tissue it signifies that they are spatially 

concordant. However, sometimes alternans may show different patterns in different regions 

which is the case when the long-short-long pattern in APDs in one area is accompanied by short-

long-short pattern in another known as discordant alternans. Spatial variation in conduction 

governs transition of concordant to discordant alternans [5]. The non-homogenous conduction 

which leads to discord in alternans of APD is a possible mechanism that can cause VF [6]. 

1.2 CONDUCTION 

Conduction, regulated by autonomic nerve activity, depends on initial rate of depolarization of 

action potential. Sympathetic nerve activity increases rate of depolarization of action potential 

and thus increases the conduction through the heart.  
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Hormone regulation and drugs are the other extrinsic factors affecting conduction. The slope of 

the phase 0 (depolarization phase) of action potential defines the rate of depolarization and is an 

important intrinsic factor governing conduction. Availability of fast sodium channels describes 

the nature of AP in the depolarization phase. The rate of depolarization increases when more 

sodium channels are open allowing rapid depolarization of a cell and leading to higher conduction 

velocity [7].  
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CHAPTER 2: OBJECTIVE 

 

It is believed that spatial discordance in alternans is a precursor to reentrant arrhythmia [8], where 

transition to discord is to a greater extent dependent on conduction and thus influenced by 

changes in depolarization phase of an action potential.  There are few studies on alternans of APA 

which suggests their role in prediction of ventricular fibrillation [9, 10]. Our purpose was to study 

alternans of early phase of depolarization and find whether they are correlated with alternans of 

repolarization in early and late phase. This was done to see if the mechanism underlying alternans 

of different phases is distinct or not. We proposed that if the mechanism was the same, then any 

factor modifying repolarization alternans would also affect alternans in depolarization phase and 

conduction which in turn can affect discord and dispersion of repolarization. However, if the 

mechanisms were distinct then the two phenomena could occur independent of other and any 

alteration in one may not affect the other. A secondary, and minor, objective was to provide 

evidence that alternans of repolarization are observed in the swine. Since swine happens to be a 

widely used model to study repolarization dynamics and its link to arrhythmogenesis. 
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CHAPTER 3: BACKGROUND 

 

As it is known, the mechanical and electrical events in harmony govern the functioning of the 

heart. The mechanical event causing the heart to pump blood is divided into two phases systole 

(when myocardium contracts) and diastole (when myocardium relaxes). The atrial systole causes 

blood to enter ventricles (ventricle diastole) followed by ventricular systole, when the blood is 

pumped to all parts of body. 

3.1 ELECTRICAL ACTIVITY OF HEART 

The electrical event governs the mechanical event periodically causing heart to continuously 

pump blood. It begins at sino atrial (SA) node and spreads through both atria there after a brief 

delay at atrio ventricular (AV) node travels through bundle of His to Purkinje fibers and 

stimulates the two ventricles. Electrocardiogram (ECG) measures this electrical activity of heart 

as P wave representing atrial depolarization (contraction), QRS complex representing 

depolarization of ventricles and T wave showing repolarization (relaxation) of ventricles. 

3.2 PHASES OF ACTION POTENTIAL MORPHOLOGY 

At cellular level this phenomenon occurs periodically in the form of Action Potential (AP). The 

depolarization occurs when the cell is excited by an electrical signal triggering rapid upstroke of 

transmembrane potential followed by repolarization of AP back to its resting potential. 

Generation of AP occurs due to inward and outward flux of positive and negative ions. The 

morphological changes of an AP can be described in the following phases: 

Phase 4 or the electrical diastolic interval (DI) is defined as the state when the inside of the cell 

becomes negative with respect to outside, also known as resting potential of the cell, and the 

potential gradient across the cell approximates 90 mV [11] .  
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The resting potential depends upon the conductance and concentration of potassium ions and is 

determined by equilibrium potential of potassium.  

Phase 0 refers to depolarization of AP when the cell encounters a stimulus from nearby cell 

causing a transmembrane potential change, from around – 90 mV, of an amplitude of near 120 

mV (APA) [12]. A rapid depolarization occurs due to the transient opening of fast sodium 

channel which results in an inward sodium current (INa)  and trans membrane potential (TMP) 

reaches a value near equilibrium potential of sodium.  

Phase 1 occurs due to closing of fast sodium channels. The transient opening of hyperpolarizing 

potassium channels results in outward flow of potassium current,Ito1 and movement of Cl- ions 

(Ito2) inside the cell.  

Phase 2 occurs due to the balance between inward L-type calcium current and outward potassium 

current also known as slow delayed rectifier potassium current(IKs). Phase 2 happens for longer 

duration in contracting myocytes due to calcium current regulation. Other currents active during 

this phase are sodium-calcium exchanger current (INaCa) and sodium potassium pump current 

(INaK).  

In phase 3 the calcium channels start closing while slow rectifier component of potassium 

channels remain open resulting in opening of other potassium channels known as rapid delayed 

rectifier current (IKr) and inward rectifier current (IK1). In the later part of phase 3 IKrchannels 

close while IK1 remain open till phase 4. 

3.3 IRREGULAR CARDIAC RHYTHMS 

Irregular rhythms also known as arrhythmia occur due to disturbances in the normal rhythm. 

Tachycardia is the state when heart rate accelerates over 100 beats/minute while bradycardia is 

the state with heart rate less than 60 beats/minute.  
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However, tachycardia is not always irregular, it can be due to stress or exercise in normal 

conditions. Irregular tachycardia can occur commonly due to formation of reentry circuits [13-15] 

or due to ectopic beats [16, 17] , which can occur when myocytes other than nodal cells fire 

impulses by themselves. In few cases ectopic beats can also result in lethal re-entry [18].  

Mechanisms possibly governing reentry are the occurrence of a premature beat [19][20] or 

conduction block, event when two wavefronts interact [14, 21]. Reentry mostly occurs due to the 

presence of unidirectional block in which case APs are blocked in one direction while conducted 

in other direction. Depending upon whether those cells in the blocked tissue segment are in 

excitable state or not and the conduction velocity of AP wavefront, AP can also travel in the 

retrograde direction and return back through previous pathway. The reentry circuit may repeat 

itself and result in arrhythmias.  

3.4 ALTERNANS OF REPOLARIZATION AND DEPOLARIZATION 

Alternans of both repolarization and depolarization are purported to predict VF [22]. A study in 

1988 [23] found strong correlation between alternans of QRS wave and ST segment alternans 

during electrical instability. Later, studies showed alternans of T wave as an important precursor 

in genesis of arrhythmia [24]. Many studies also hypothesized restitution of AP, a function 

defining dependence of APD on previous DI [2, 25], and cardiac memory, dependence of APD on 

previous APDs or DIs for several seconds [26], as important factors in predicting VF.  

Moreover, it has been investigated that at higher pacing rates, alternans of APD form discord in 

space, the situation when long-short-long pattern alternates adjacent to short-long-short pattern 

[27], resulting in wave breaks and reentrant circuits. Conduction velocity largely determines 

whether wave breaks can result in reentry, since propagation through nearby cell can occur only 

when it is not in its refractory period [25]. Conduction velocity is the rate at which AP travels 

from one cell to other thus depends on how quick depolarization occurs.  
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In performing data analysis for one of our previous studies we also found alternans of APA 

significantly occurring at shorter cycle length. The purpose of our study therefore was also to 

identify the mechanisms that underlie alternans of early phases of AP and are responsible for the 

phase relations (in or out of phase) with alternans of APD as observed in our study. We further 

investigated the consequences hase behavior on spatial dynamics of conduction by performing 

simulation study. 
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CHAPTER 4: METHODS 

 

This study is based on experiments and simulations we performed. The experimental study 

includes: data recording, data acquisition and data analysis of the signals obtained from single 

cell of the swine and canine ventricular tissue. Data was acquired from swines for further 

analysis. However, data acquired previously from a canine study was used for similar analysis 

[28]. 

4.1 DATA ACQUISITION 

4.1.1 Swine 

The experiments conducted were approved by Institutional Animal Care and Use Committee 

(IACUC) at the University of Kentucky. Eight farm pigs (susscrofa) weighing 18- 20 kg  were  

sedated  with  a telazol/ketamine/xylazine  mixture  (4−8  mg/kg,  2−4  mg/kg,  2−4  mg/kg)  and  

were anesthetized with thiopental sodium (10–30 mg/kg, IV).After anesthesia, the heart was 

excised and kept in chilled Tyrode’s solution. Small strip of ventricular tissue from endocardium 

of right ventricle, endocardium or epicardium of left ventricle was cut with an approximate size 

of 20×10×5 mm and placed in the Plexiglass chamber. Experimental setup used for data 

recording and acquisition is shown in figure 1. The tissue strips were superfused continuously 

with the Tyrode’s solution bubbled with a mixture of 95% oxygen and 5% carbon dioxide. 

Composition of the Tyrode’s solution was (in mmol/L): 0.5 MgCl2, 0.9 NaH2PO4, 2.0 CaCl2, 

137.0 NaCl, 4.0 KCl and 5.5 glucose. To this solution, NaHCO3 (in mmol/L) was added until the 

pH was obtained to be between 7.3±0.05. The temperature of the circulating solution was 

maintained at 36 ±1°C. Initially the tissue sample was paced at 500 ms cycle length for the 
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duration of 60 minutes. The pacing stimulus was bipolar with 3 ms width and delivered using 

platinum-iridium electrodes. Stimulus intensities were 3 to 4 times the diastolic threshold.  

Figure 1: Schematic diagram showing experimental set used for Data recording and acquisition 
from swines. 
 

 

 

Stimulation in real time was done using a feedback based controlled DI (diastolic interval) or CL 

(cycle length) protocol discussed previously [28]. Machine pulled glass micropipette electrodes, 

filled with 3M KCl solution, were used to record TMPs.  

Also, the data collected in the similar way by my co-authors for one of our previous swine studies 

was also analyzed for the purpose of this study [29]. 
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4.1.2 Canine 

Experimental procedure similar to swine study was followed to acquire data from canines where 

dogs (beagles) weighing 10-25 kgs were used [28]. All canine studies were approved by IACUC 

at University of Kentucky. The tissue samples were similarly superfused, and were paced at the 

CL of 500 ms for 60 minutes at the beginning before engaging any protocols. The TMPs were 

recorded using glass microelectrodes similar to swine study, however, recordings were taken only 

from right ventricular endocardial site. Additionally, the recordings that were analyzed for the 

purpose of this study were not all used in the previous study. 

In both swines and canines the TMPs recorded were digitized at the sample rate of 10000 samples 

per second using a commercial data acquisition system. In order to record signals free from 

external noise i.e. disturbances due to the presence of electromagnetic fields, we used Faraday’s 

cage made of copper wire mesh.  

4.2 DATA ANALYSIS 

The TMPs obtained were analyzed offline using custom developed code in Matlab (Mathworks, 

Natick MA). TMPs obtained from both animal models were either stimulated with controlled CL 

or DI, however in this study control of DI is not necessary. 

The TMPs were filtered using low pass filter at a cut off frequency 1000 Hz for computing APD 

and amplitude alternans. The durations were computed at all repolarization levels from 10-90% in 

step of 10% for each filtered action potential as shown in figure 2.   



11 
 

Figure 2:  Example of AP recorded from swine. Figure shows the start and end points of an AP 
along with measurement of APA and APD10-90. 

 

These computed durations were reported as APD10-90 where subscript signifies respective 

repolarization level. For example, APD10 was calculated as the duration from the beginning of an 

AP to the time instant when the TMP had repolarized back to 10 % the total amplitude of action 

potential. Change in APD90 in either long-short-long or short-long-short pattern with difference 

between each successive APD of ≥ 4 ms was considered as alternans of APD90 or APD when they 

occurred for a minimum of 10 successive beats. The threshold of 4 ms change is consistent with 

that used previously by others [28, 30].The alternans of APD10 to APD80 were computed when 

alternans of APD90 occurred and analysis of their occurrence was done with respect to APD90 

alternans.  
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Alternans of APD10-80 were considered to occur when alternation in duration as long-short-long or 

short-long-short pattern were observed for a minimum of 3 beats irrespective of the magnitude of 

alternation. 

The amplitude of each TMP was computed as the difference between beginning of the upstroke 

of the AP to the maximum value it reaches before repolarization (peak of the AP). The alternans 

of APA was quantified as change in the amplitude ≥ 2% for sequential beats computed as the 

average value of each pair of tall and short APA. Since our goal in the present study was to 

quantify frequency of occurrence of APA independently or with APD alternans two different 

criterions were formulated for these cases.  To find whether APA alternans occurred independent 

of APD alternans the criteria was to look for at least 10 consecutive beats of APA alternans 

(short-long-short or long-short-long) in each trial However, when computing the occurrence of 

APA alternans along with APD alternans the criteria was to look for at least 3 consecutive beats 

of APA alternans.  

The alternans of |dv/dt|max was also computed when alternans of APA or APD occurred either 

independently or together. We considered alternans of |dv/dt|max to occur when alternation in rate 

of depolarization as fast-slow-fast or slow-fast-slow were seen for at least 3 consecutive beats 

irrespective of the magnitude of change of alternans. 

4.3 SIMULATIONS 

 To interpret the effect of phase relation between alternans of APD and |dv/dt|max on conduction 

my colleague, Linyuan Jing, performed simulations for both in and out of phase behavior. Canine 

Ventricular Model (CVM), developed by Fox et al [31], implemented, in house, in Fortran was 

used for this simulation study where the ionic currents were computed individually for each cell 

and the cells were coupled using a diffusion equation[32].  



13 
 

Linear strand of 1000 cells was simulated with no flux boundary conditions [33, 34].  The strand 

was paced from one end with a CL of 200 ms for 60 beats to obtain steady state results for the 

simulations. 

4.3.1 Simulation Protocols 

To further confirm and analyze the results computed from the above simulation study, we used 

following protocols with CVM model and previously defined parameters. 

1) The model was paced at 200 ms cycle length for 30 beats to achieve a steady state. Once 

steady state was reached the phase for cell number 400 to 500 were induced with out of phase 

behavior (as discussed in the following part) for the next 20 beats and then changed to in phase 

(default) for the next 30 beats. Thus the total simulation duration was 80 beats. 

2) As above, after pacing the strand at 200 ms CL for 30 beats, out of phase behavior was induced 

only for cell 1 to 100, in this protocol, for 20 beats, and then changed to in phase (default) for the 

next 30 beats.  

The out of phase behavior was simulated in consistence with previously done simulation study, 

however, sodium current was changed only for particular beats and cells discussed above. Before 

changing sodium current for a beat two previous APs were used to predict whether the upcoming 

AP was relatively long or short, ‘one step ahead’ prediction. Depending upon which behavior to 

be simulated sodium current was decreased for long or short beat. In phase behavior in previous 

simulation was induced by reducing sodium current for shorter beats by 30 % (this way rate of 

depolarization slows down for shorter beats) while for out of phase behavior current was reduced 

by 30 % for longer beats. The reduction in sodium current of this magnitude was chosen to match 

the magnitude of change in |dv/dt|max alternans obtained from experimental results in our study. 

The APD and |dv/dt|max obtained from simulations were computed in similar way as per the 

procedure used for experimentally obtained data. 
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CHAPTER 5: RESULTS 

 

5.1 EXPERIMENTAL STUDY 

5.1.1 Occurrence and phase relation in swine 

5.1.1a Alternans of APD90 and APA 

For all action potentials recorded (51 trials, N=8) with cycle lengths ≤ 400 ms we found that 

occurrence of APD alternans was 33 % and of APA was 28 %. To further look into the 

correlation between APA and APD alternans we obtained the occurrence of each with respect to 

the other. It was found that for all those beats when APD alternans occurred they were 

accompanied with alternans of APA 74 % times of which 98 % were in phase. Figure 3a shows 

an example of the trial where alternans of APD occur along with alternans of APA and were in 

phase. The rare case where APD alternans occur independent of APA alternans is shown in figure 

3c. 

To find whether occurrence of APA alternans is always dependent on APD alternans or if APA 

can occur independently we calculated percentage occurrence of APD alternans for all those beats 

when APA alternans occurred. It was found that when APA alternans occurred, APD alternans 

occurred 86 % times and 96 % of them were in phase. For these APs taller APAs occurred along 

with longer APDs. Figure 3b shows one of the recordings when APA alternans occurred 

independent of APD alternans. Figure 3a also exemplifies in phase occurrence of APA and APD.  

Those APs where APA alternans occur out of phase with APD alternans are shown in figure 3d. 

These data showing the occurrence and phase relation of alternans of APD and APA as a fraction 

of total number of APs (with cycle length ≤ 400 ms) are summarized in table 1.  
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Figure 3: The figure shows examples of action potential recordings from swines. a) Alternans of 
APD occurring along with alternans of APA. Thick and thin lines represent long and short APDs. 
Tall APAs are represented by an asterisk. b) APA alternans occurring without APD alternans. 
Tall APAs are marked by an asterisk. c) APD alternans occurring without APA alternans. Thick 
and thin lines represent long and short APDs. d) Discord between APA and APD alternans which 
shows that short APDs are associated with tall APAs as opposed to the more frequent 
phenomenon shown in figure 3a. Thick lines represent long APDs and asterisks denote tall APAs. 
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Table 1: Percentage occurrence of APD and APA alternans with each other along with the out of 
phase alternans present in swine. The percentage out of phase (when long-short-long APDswere 
associated with tall-short-tall APAs) and in phase were calculated as a part of total percentage of 
occurrence of alternans. 

 

 % 
Occurrence 

% Out of phase 
Alternans 

% In phase Alternans 

APA alternans when APD 
alternates 

74% 2% 98% 

APD alternans when APA 
alternates 

86% 4% 96% 

5.1.1b APD10-80 and APD90 

The relative occurrence and phase relation of alternans of early phase and of phase 2 and phase 3 

were also computed with alternans of APD90. The computations were done to explore potential 

mechanisms other than widely known calcium regulation, responsible for alternans of AP in its 

earlier phases at fast pacing rates. It was observed that in the swine APD90 alternans was 

accompanied with alternans at all repolarization levels. Their respective occurrences were APD80 

– 100 %, APD70 ~100 %, APD60 ~100 %, APD50 ~100 %, APD40 ~100 %, APD30 - 94%, APD20 - 

83% and APD10 - 92% as shown by the bar graph in figure 4a,b. Results showing relative 

occurrence and phase relations are summarized in table 2. 
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Figure 4: a) Percent occurrence of alternans at each level of repolarization (APD80 to APD10) 
when APD90 alternans occurs in the swines (N=8). b) Percent out of phase of alternans at each 
level of repolarization with respect to APD90, also in swine, as a part of total occurrence of 
alternans. c) Percent occurrence of alternans at each level of repolarization (APD80 to APD10) 
when APD90 alternans occurs in the canines (N=3). d) Percent out of phase of alternans at each 
level of repolarization with respect to APD90, also in swine, as a part of total occurrence of 
alternans. 
 

 

Table 2: Summary showing percentage occurrence of alternans of APD80 to APD10 alternans 
along with their in or out of phase behavior with respect to APD90 alternans in swine. The 
percentage in and out of phase shown were calculated out of total percentage of occurrence of 
alternans. 

 

 APD80 APD70 APD60 APD50 APD40 APD30 APD20 APD10 

% occurrence of alternans 100% 100% 100% 99% 99% 94% 83% 92% 

         

% of out of phase alternans <1% <1% <1% <1% 1% 1% 13% 34% 

         

% of in phase alternans 100% 100% 100% 100% 99% 99% 87% 66% 
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One of the interesting results seen in figure 4b is that one-third (34 %) of the alternating APD10 

was out of phase with APD90 alternans and only rest of the two-third was in phase with APD90 

alternans. Similarly APD20 alternans was out of phase with APD90 alternans few times (13 %) and 

was in phase for rest of the 87 % times. APD40 and APD30 alternans were rarely out of phase (1 

%) while APD80, APD70, APD60 and APD50were never out of phase. Table 2 represents the 

summary of the results discussed above. We also verified whether the phase relation is consistent 

within a trial, for example APD10 when alternates along with APD90 is in phase/ out of phase 

throughout the trial or not. It was found that there were only 8 trials exhibiting both in phase and 

out of phase APD10 alternans and 3 trials for APD20 alternans. Moreover, there were 2 trials where 

APD30 to APD60 were out of phase and as discussed earlier APD70 and APD80 were always in 

phase with APD90 alternans.  

 

5.1.1c Alternans of |dv/dt|max 

Rate of depolarization illustrates how fast an AP is travelling across the cell and is governed by 

sodium regulation. Since the results show occurrence of alternans at all morphological levels in 

an AP, we computed alternans of |dv/dt|max for the trials when APD, APA or both alternans 

occurred.  

It was found that when APD90 alternans occurred along with APA alternans, |dv/dt|max alternans 

occurred 90 % times. Out of these 90 % occurred at faster rate for longer APDs and slower rate 

for shorter APDs implying that |dv/dt|max and APD alternans were in phase most of the times. For 

the rest 10 % beats |dv/dt|max and APD alternans were out of phase.  When APD alternans 

occurred independent of APA alternans |dv/dt|max occurred 86 % times of which 83 % were in 

phase and were out of phase for rest 17 % alternating beats.  
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These results are summarized in table 3. Moreover when APA alternans occurred alone, the rate 

of depolarization occurred 75 % times and they were never out of phase.  The average amplitude 

of alternans of |dv/dt|max was 9 %. 

Table 3: Percentage occurrence of |dv/dt|max alternans is shown when computed along with APD 
and APA alternans (occurring alone or together) in swine . Percentage occurrence was calculated 
with respect to total number of alternating beats of APD or APA in respective cases. 

 

 % Occurrence % Out of phase 
Alternans % In phase Alternans 

Alternans of APA and APD 90% 10% 90% 

occuring together    

APD alternans occuring 
alone 

86% 17% 83% 

APA alternans occuring 
alone 

75% < 1% 100% 

 

5.1.2 Occurrence and Phase Relation in Canine 

Data collected from previous canine study (52 trials, n=3) were analyzed for the purpose of this 

study [28]. Procedure for calculating occurrence of alternans and their phase relations is similar to 

that used for the swine study. 

5.1.2a Alternans of APD90 and APA 

For all the APs recorded with cycle lengths ≤ 400 ms, occurrence of APD alternans was found to 

be 73% while that of APA alternans was 65%. When APD alternans occurred it was associated 

with APA alternans for 50% times and was 66 % times in phase. Moreover, when APA alternans 

occurred it was associated with APD alternans for 96% times and was in phase 68 % times. Table 

4 includes the summary of results discussed above. 
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Table 4: Percentage occurrence of APD and APA alternans with each other along with the out of 
phase alternans present in canines. The percentage in and out of phase shown were calculated as a 
part of total percentage of occurrence of alternans. 

 

5.1.2b APD10-80 and APD90 

Similar to swine study, alternans at repolarization levels from 10 % to 80 % were computed for 

the alternans of APD90 and their relative occurrence as a fraction of total number of APs (with 

cycle lengths≤ 400 ms) was calculated.  

It was observed that almost always APD90 alternans occurred along with APD80 alternans (99% 

times), APD70 alternans (97% times), APD60 (93%), APD50 (83%), APD40 (93%) and APD30 (87 

%). Also quite frequently APD20 (75%) alternans was seen and more than half of the times APD10 

(62%) alternans was seen to occur along with APD90 alternans. The results are also represented by 

the bar graphs in figure 4c, d and summarized in table 5. 

 

 

 

 

 

 

 

 % 
Occurrence 

% Out of phase 
Alternans 

% In phase Alternans 

APA alternans when APD 
alternates 50% 44% 66% 

APD alternans when APA 
alternates 96% 32% 68% 
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Table 5: Summary showing percentage occurrence of alternans of APD80 to APD10 alternans 
along with their in or out of phase behavior with respect to APD90 alternans in swine. The 
percentage in and out of phase shown were calculated out of total percentage of occurrence of 
alternans. 

 APD80 APD70 APD60 APD50 APD40 APD30 APD20 APD10 

% occurrence of alternans 99% 97% 93% 83% 93% 87% 75% 62% 

         

% out of phase alternans <1% <1% 6% 17% 41% 55% 65% 81% 

         

% of in phase alternans 100% 100% 94% 83% 59% 45% 35% 19% 

 

In contrast to the phase relation obtained in swine study, interestingly, it was found that most of 

the times APD10 alternans was out of phase with APD90 alternans i.e. for the relative occurrence 

of 62% (with respect to APD90 alternans), 81 % times it had alternans in opposite phase (long 

APD90 associated short APD10) and only for rest of the 19 % times it was in phase (long APD90 

associated long APD10). Similarly APD20, APD30 and APD40 alternans were mostly out of phase 

with APD90 alternans (65 %, 55 % and 41 % times) and were in phase only for rest of the 35 %, 

45 % and 59 % times when their relative occurrence was 75 %, 87 % and 93 % respectively. 

APD60 and APD50 out of phase behavior were low i.e. 6% (out of 93% relative occurrence) and 

17% times (out of 93% relative occurrence) respectively. In agreement with the swine study 

APD80 and APD70 alternans were never out of phase. The TMPs in Figure 5a show an example of 

in phase behavior between APD10-30 and APD90 alternans while those in 5b show an example of 

out of phase behavior between these alternans. Also Table 5 includes the summary of these 

results. Moreover, similar to that in the swine, the trials which had both in phase and out of phase 

alternans were few, 8 trials for APD10 , 11 trials for APD20, 7 trials for APD30, 5 trials for APD40, 

9 trials for APD50, 7 trials for APD60 and none for APD70 and APD80.  
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Figure 5: Examples of TMP recordings from canines. a) An example of in phase alternans is 
shown with respect to APD90 alternans. In this figure only APD10, APD20, APD30 are shown 
although in phase behavior occurs at all levels of AP i.e. from APD10 to APD80. Thick lines 
represent long APDs and thin lines represent short APDs. b) An example of out of phase 
alternans is shown with respect to APD90 alternans. Similar to the figure 5a only APD10, APD20, 
APD30 are shown although out of phase behavior also occurs at other levels of AP i.e. from 
APD40 to APD60. 
 

 

 

5.1.2c Alternans of |dv/dt|max 

The trials in which APD alternans occurred along with APA alternans, the incidence of|dv/dt|max 

alternans was 79 %, out of these, 80 % was in phase that is long APD associated with faster rate 

of depolarization and short APD associated with slower rate of depolarization and for rest 20 % 

times it was out of phase with APD alternans. Figure 6a and figure 6b represent an example from 

one of the trials where APD and APA alternans were in phase with |dv/dt|max. Figures 6c and 6d 

show examples, from one trial, of the relationship between |dv/dt|max and APD or APA when 

APD90 or APA alternans were out of phase with |dv/dt|max alternans. Furthermore, when APA 

alternans occurred independent of APD alternans, |dv/dt|max alternated 84% times and was always 

(100 %) in phase, as shown by an example in figure 6e.  



23 
 

For those cases when APD90 alternans occurred independent of APA alternans incidence of 

alternans of |dv/dt|max was 81 % and was in phase for 88 % times. The average amplitude of 

alternans of |dv/dt|max was 7 %.Table 6 summarizes the results. 
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Figure 6: Examples of data from a trial in canines. a) Relationship between |dv/dt|max (mV/ms) 
and APD (ms). The figure shows for each pair of alternating APDs, AP associated with slower 
maximum rate of depolarization had shorter duration (APD) while those having faster maximum 
rate of depolarization had longer duration. b) Relationship between |dv/dt|max (mV/ms) and APA 
(mV). Figure shows that short APA was associated with slower rate of depolarization while tall 
APA was associated with faster rate of depolarization for those trials where APD and |dv/dt|max 
were in phase. c) The figure shows that APs associated with slower rate of depolarization had 
longer APDs while those having faster rate of depolarization had shorter APDs. d) Out of phase 
behavior between APA and |dv/dt|max alternans for the trials when alternans of APD were out of 
phase with alternans of |dv/dt|max. e) In phase behavior between APA alternans and alternans of 
|dv/dt|max when they occurred independent of APD alternans. 
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Table 6: Percentage occurrence of |dv/dt|max alternans is shown when computed along with APD 
and APA alternans (occurring alone or together) in canine. Percentage occurrence was calculated 
with respect to total number of alternating beats of APD or APA in respective cases. 

 

 % Occurrence % Out of phase 
Alternans % In phase Alternans 

Alternans of APA and APD 79% 20% 80% 

occuring together    

APD alternans occuring alone 81% 12% 88% 

    

APA alternans occuring alone 84% < 1% 100% 

 

5.2 SIMULATION STUDY 

The simulation results were consistent with those done by my colleague, shown in figure 7, to 

study the phase behavior in a linear strand of tissue. Figure 8i. and ii. show skewed oscillations of 

wavelength (which is product of APD and conduction velocity) during out of phase simulation in 

a patch of linear strand of 1000 cells, when longer APDs were forced to occur along with slower 

rate of depolarization (|dv/dt|max). Moreover the oscillations of wavelength were not observed in 

the cells following those with out of phase behavior. 
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Figure 7. Time-space plots of the simulation results from co-author to study effects of phase 
relationship between APD alternans and alternans of |dv/dt|max in linear strand of 1000 cells. a) 
Shows in phase simulation between alternans of APD and |dv/dt|max and also shows the 
transition between concordant and discordant alternans occurring several times. The vertical 
white lines (solid and dashed) show wavelengths (long and short, respectively) at different time 
instances. b) Shows out of phase relationship between alternans of APD and |dv/dt|max and also 
shows that concordant alternans persisted along the tissue length with minimized oscillation of 
wavelength as compared to figure 7a. The TMP traces below each time space plot are those 
recoded from first cell in each case. The pairs of lines on the right are drawn for comparison of 
respective wavelengths. 
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Figure 8i.) Figure shows the time-space plot for the simulation study conducted on linear strand 
of 1000 cells where cells 400 to 500 were induced with out of phase behavior for 20 beats 
preceded and followed by 30 beats of 200 ms cycle length a.) Shows the plot of first 11th to 30th 
beats b.) Shows plot from 31st to 50th beat c.) Shows plot of 41st to 60th beats for entire tissue 
length. 
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Figure 8 ii.) Figure shows the time-space plot for the simulation study conducted on linear strand 
of 1000 cells where cell number 1 to 100 were induced with out of phase behavior for the 20 
beats preceded and followed by 30 beats of 200 ms cycle length respectively. a.) Shows the plot 
of first 11th to 30th beats b.) Shows plot from 31st to 50th beat c.) Shows plot of 41st to 60th 
beats for entire tissue length. 
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CHAPTER 6: DISCUSSION 

 

The primary objective was to find the correlation between alternans of morphology of early and 

late phase of AP. We focused on finding the frequency of occurrence of alternans of APD10-80, 

|dv/dt| max, APA and APD90 and their phase relation with APD (APD90) or APA alternans. Our 

results show that the phase relation among these alternans can change and the correlation is not 

invariant. Secondary purpose of this study, though not unimportant, was also to show that the 

APD alternans are seen quite frequently in a swine model. Although it is less widely known that 

occurrence of APD alternans in swine model is not rare, the results of our study suggest that for 

cycle lengths ≤ 400 ms, APD alternans occur 33% times when calculated as a fraction of total 

number of APs recoded in 51 trials (n=8). 

6.1 ALTERNANS OF DEPOLARIZATION PHASE AND THEIR CORRELATION WITH 

APD ALTERNANS 

It is widely known that alternans of repolarization, also known as T wave alternans is the most 

important factor in determining the risk of VF [24, 35].Increase in the magnitude of oscillation of 

APD alternans is theorized to cause unidirectional block and result in reentrant arrhythmias which 

is a precursor to VF [36, 37]. Moreover few studies focusing on mechanisms of arrhythmia show 

very little or no evidence of alternations of amplitude of AP [38, 39]. Our results indicate 

significant occurrence of APA alternans along with APD alternans. In addition, we found that, 

though infrequent, at a few shorter cycle lengths APA alternans occur independent of APD 

alternans as seen in both swine and canine model. Also, the alternans of APA when occurring 

independently were mostly seen to occur along with alternans of |dv/dt|max.  
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In the present study a high positive correlation between APD and APA alternans was seen i.e. 

they mostly occurred together and longer APD was associated with taller APA.  

Similar to these results, study by Gordon et al [22]in ischemic canine model established 

importance of depolarization alternans along with repolarization alternans in prediction of VF, 

they found restitution of conduction velocity as the possible factor governing the correlation 

between these alternans. Also, in our study the APD and APA alternans, when occurring together 

or fewer times independent of each other, were mostly accompanied with |dv/dt|max alternans. 

Consistent with the results of the study conducted by Huang et al. we observed a positive 

correlation between |dv/dt|max and APD and |dv/dt|max and APA most of the times [40]. The study 

by Huang et al [40] found |dv/dt|maxas a governing predictor of APD and focused on determining 

correlations between |dv/dt|max and APD during VF, however their findings were restricted to VF 

settings and not during or before arrhythmogenesis . The study also did not investigate the 

relationship between occurrence of APA and APD alternans. The frequent occurrence of APA 

and |dv/dt|max alternans and observed correlation between APA, APD and |dv/dt|max alternans, in 

our study, suggests that depolarization phase may play an important role in causing electrical 

instability along with the repolarization phase. 

6.2 MECHANISM UNDERLYING CORRELATION OF EARLY AND LATE PHASE 

ALTERNANS 

We further computed the alternans at each level of AP to investigate the mechanisms that 

correlate APD and APA alternans and possibly underlie arrhythmogenesis. APA and |dv/dt|max 

alternans were computed as the indexes of depolarization phase while APD10-90 were computed as 

indexes of early and late repolarization of AP.  

Interestingly our analysis show alternans of AP at all levels of repolarization including those at 

10% and 20% repolarization which occur during early repolarization phase just before phase 2 of 
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AP as also shown in figure 9. Also significant alternation in APA and |dv/dt|max along with APD 

alternans and times even without APD alternans were observed.  

Figure 9: An example of average of 5 consecutive long and short APs from a single trial. a) The 
figure shows an example of APD10 alternans being in phase with APD90 alternans in swine. b) 
The figure shows an example of APD10 alternans being out of phase with APD90 alternans in a 
canine. 
 

 

 

 

 

 

The magnitude of sodium current entering a cell dictates the amplitude of phase 0 of AP, indexed 

as APA, and governs the speed of conduction of AP reflected in rate of depolarization of AP or 

|dv/dt|max[40]. The influx and rapid efflux of potassium current occurs during initial rapid 

repolarization phase via Ito, where the AP repolarizes to about 20% of its peak value. The strength 

of this current can modulate refractoriness and thus the duration of AP [41, 42]. Existence of 

alternans in early phases, where sodium and potassium current majorly operate, followed by the 

alternans in later phases and their correlation suggests the contribution of mechanisms other than 

conventional calcium current in causing electrical instability. In support of this hypothesis, a 

study conducted by Sah et al. [43]  suggests that Ito governs the morphology of early 

repolarization phase and regulates ICa,L and INaCa, thus effecting magnitude and duration of 

calcium current in the cell. It also advocates that there is difference in distribution of Ito 

magnitude through different regions of heart, which is greatly reduced under diseased heart state 
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and result in shortening of duration of AP at 90 % repolarization by slowing the rate of 

repolarization. This mechanistic approach also explains the presence of out of phase behavior 

between APD10 and APD90 in canine study most of the times and also more than one third times 

in swine study. Consistent with the results of our study Hopenfeld et al. [44] reported that the 

decrease in the INa strength decreases the maximum rate of depolarization and leads to reduced Ito.  

This explains the reason behind slower rate of depolarization, driven by INa, leading to shorter 

APA while longer APD10 due to decreased Ito in our study most of the times. The mechanism 

responsible for in phase behavior between APD10 and APD90 however, is still ambiguous. While 

there was a correlation between alternans in morphology of early and late phases of an AP, there 

were differences between the two, even within a species and also between the two species in 

terms of the frequency of out of phase between APD10 and APD90 alternans. This difference, as 

shown by some studies, can be attributed to difference in Ito regulation in the two species which 

is shown to be absent in pigs [45] while prominent in dogs [46] at higher pacing rates.  

In summary, the above results show that alternans of early and late phases of AP are correlated, 

however, the nature of this correlation is variant. These observations also suggest that, at higher 

activation rates, mechanisms that govern the morphology of early part of an AP may also 

contribute to electrical instability and that the mechanisms affecting early and later parts of 

repolarization may work independent of each other. 

6.3 SIMULATION OF PHASE BEHAVIOR 

The experimental study led us to determine the phase relation between alternans of early and late 

phase of action potentials at pacing rate faster than the normal heart rhythm. However, as 

discussed earlier, other indexes of AP morphology such as |dv/dt|max and APA also govern 

conduction velocity and thus change in these parameter leads to variation in conduction of AP 

spatially, further influencing transformation from concordant to discordant alternans in heart [5, 

47]. Simulations were thus  performed in a linear strand of tissue of around 10 cm (1000 cells) in 
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length to see what effects does in (out of) phase behavior between these two parameters has on 

spatiotemporal gradient of conduction.  

Results from colleague’s simulation study show that there were alternans of wavelength with 

greater amplitude during in phase alternans of |dv/dt|max and APD as compared to out of phase 

behavior, which lowered the wavelength oscillations as seen in figure 7a, b.  Wavelength 

oscillations, determined as product of APD and conduction velocity [48] harbingers wave break 

[47, 49]. The in phase behavior, seen quite frequently in experimental study, where faster rate of 

depolarization of TMP resulted in longer repolarization duration also led to faster conduction and 

thus smaller DI for next beat. The functional dependence of APD on previous DI, APD restitution 

[50, 51], thus results in a smaller APD and slower depolarization rate following smaller DI. The 

in phase alternans thus spatially results in alternation of wavelength. The out of phase behavior, 

in contrast, negates the effect diminishing the oscillations of wavelength and thus lessening the 

probability of formation of discordant alternans and wavebreak.  

We further simulated out of phase behavior in a defined patch of cells for a certain time interval 

and not for the entire duration of trial, to see whether the change in phase has any effect on the 

dynamics of AP propagation. Figure 8i.) andii.) show the results obtained from the above 

simulations. Similar to previous simulation result we observed minimized oscillations of 

wavelength during out of phase behavior. Also there was no impact of induced out of phase 

behavior on following beats in the simulated patch of cells or in the cells adjacent to that patch 

and they acquired regular AP conduction with no signs of oscillation of wavelength. This further 

led to an indication that out of phase alternans of |dv/dt|max and APD as compared to in phase is 

less susceptible to forming discordant alternans.  
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CHAPTER 7: LIMITATIONS 

 

For data from swine, we included TMPs collected from the right and the left ventricles, while in 

the canines all TMPs were obtained only from the right ventricle. While the main objective of our 

study was to investigate the relationship between alternans of the early and the late phases of an 

AP in a global sense, we acknowledge that the differences in spatial expression of ionic currents 

may affect the subtle changes in relationship between these alternans. However, the degree to 

which there were differences within the swine and canines was less compared to the degree to 

which there were differences between swines and canines, suggesting that at the global level, 

spatial variation may have affected our observations in swine to a lesser extent. The effect of this 

difference, nevertheless, is possible. Our results suggest that elucidation of these may require a 

much larger sample size. 
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