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ABSTRACT OF DISSERTATION

PARAMETRIC ESTIMATION IN COMPETING RISKS AND MULTI-STATE
MODELS

The typical research of Alzheimer’s disease includes a series of cognitive states. Multi-
state models are often used to describe the history of disease evolvement. Competing
risks models are a sub-category of multi-state models with one starting state and
several absorbing states.

Analyses for competing risks data in medical papers frequently assume independen-
t risks and evaluate covariate effects on these events by modeling distinct propor-
tional hazards regression models for each event. Jeong and Fine (2007) proposed
a parametric proportional sub-distribution hazard (SH) model for cumulative inci-
dence functions (CIF) without assumptions about the dependence among the risks.
We modified their model to assure that the sum of the underlying CIFs never exceeds
one, by assuming a proportional SH model for dementia only in the Nun study. To
accommodate left censored data, we computed non-parametric MLE of CIF based on
Expectation-Maximization algorithm. Our proposed parametric model was applied
to the Nun Study to investigate the effect of genetics and education on the occur-
rence of dementia. After including left censored dementia subjects, the incidence rate
of dementia becomes larger than that of death for age < 90, education becomes sig-
nificant factor for incidence of dementia and standard errors for estimates are smaller.

Multi-state Markov model is often used to analyze the evolution of cognitive states
by assuming time independent transition intensities. We consider both constant and
duration time dependent transition intensities in BRAiNS data, leading to a mixture
of Markov and semi-Markov processes. The joint probability of observing a sequence
of same state until transition in a semi-Markov process was expressed as a product of
the overall transition probability and survival probability, which were simultaneous-
ly modeled. Such modeling leads to different interpretations in BRAiNS study, i.e.,
family history, APOE4,and sex by head injury interaction are significant factors for
transition intensities in traditional Markov model. While in our semi-Markov model,
these factors are significant in predicting the overall transition probabilities, but none
of these factors are significant for duration time distribution.
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Chapter 1 Introduction

1.1 Overview

Many research investigations (e.g. Tsiatis et al., 1995; Henderson et al., 2000; Hen-

nerfeind et al., 2006) generate both longitudinal failure time data, with repeated

measurements at a number of time points, and event history data, in which time to

events of interest are recorded. In such longitudinal failure time data, types of events,

corresponding incomplete failure time for each event, and associated covariates are

collected from a large number of independent individuals. For example, in the NUN

study, 678 subjects were measured annually with the response variable being type

of events – “clinical diagnosis”: normal health, mild cognitive impairment (MCI),

global impairment, dementia, or death. The other variables include time to first been

diagnosed as MCI (or dementia), education, APOE-4 allele (APOE4), family history,

etc. The interest of this kind of study is focused primary on the following:

(a) the distribution of time to competing events;

(b) the rate and intensity at which each event happens;

(c) the effects of covariates on conversion and time to events;

(d) the probability of conversion to dementia before death;

(e) the effects of the covariates on the above probability.

The event types and event times are our primary response variables. It is common to

have incomplete event times, i.e., times are subject to left or/and right censoring, and

unknown event types. For example, in the NUN study, some subjects were already

demented at the beginning of the study, resulting in left censoring; most event times

are only known to be between two consecutive visits, resulting in interval censoring.

When the whole longitudinal failure time data is considered, multi-state modeling

best describes the problem. On the other hand, classical survival model or compet-
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ing risks model work well when only time to events is considered. Survival model is

applicable for one event and competing risks model is designed for multiple events.

Competing risks models are a sub-category of multi-state models with one starting

state, corresponding to one initial state and several absorbing states (e.g. dementia

and Death in the NUN study) without any intermediate states. The more general

multi-state model is an extension of hazards modeling in survival. For example, the

modeling intensities in multi-state is primary based on hazards modeling.

Depending on the questions of interest, either a competing risks model or a more gen-

eral multi-state model can be constructed. In the following sections, we will introduce

competing risks modeling and multi-state modeling, review the previous research on

these, present our specific aims, introduce the estimation methods, and finally outline

this dissertation.

1.2 Competing Risks Models

Time-to-event data with the presence of censored observations arise in studies when

there is only one certain event of interest. Kaplan Meier curve, the log rank test, and

the Cox proportional hazard model (Cox, 1972) are standard statistical methods for

analyzing these kind of data. However, in many situations, there are several distinct

events of interest which leads to the competing risks framework. Assume there are J

event types and J failure times, Y1, ..., YJ , one for each event. The T = min(Y1, ...,

YJ) is observed and a variable ε = j tells which event corresponded to the observed

time. So basically, (T, ε) is observed.

The Cause-specific hazard (CSH) rate for cause j, is defined by

λj(t) = lim
∆→0

P [t ≤ T ≤ t+ ∆, ε = j|T ≥ t]

∆

2



and the cumulative incidence function (CIF) for jth competing risk is defined as the

following probability

Fj(t) = P [T ≤ t, J = j] =

∫ t

0

λj(µ)exp

{
−
∫ µ

0

J∑
i=1

λi(v)dv

}
dµ.

Although the fundamental methods for analyzing such data were already developed in

the 1970s, researchers are still looking for new methods to approach this type of data.

One of the biggest concerns about the competing risk problem is that the associations

of dependence among different risks, cannot be identified. As Tsiatis (1975) pointed

out, suppose that the set of marginal survival functions are given for some model

with dependent risks. Then there exists a unique proxy model with independent

risks yielding identical marginal survival functions. There is no way to distinguish

the dependent-risk model from the independent risk model when relying solely on the

observed data. Thus, it is an important practical aspect that, one can use standard

survival methods to analyze cause specific hazard functions, assuming independent

risks and regarding all failures due to other causes as additional censoring events.

More specifically, suppose we have n observations and J risks with (ti, di, ji, xi),

where i indexes subject, xi represents covariate(s) for subject i,di is the censoring

indicator regarding all risks, and λji(ti, xi) is the covariate dependent CSH for event

ji. Under non-informative censoring from competing risks, the likelihood function

can be constructed as

L =
n∏
i=1

[λji(ti, xi)]
diS(ti, xi).

where S(ti, xi) is the probability of experiencing no events at time ti. In terms of

hazards,

L =
n∏
i=1

[λji(ti, xi)]
di

k∏
j=1

exp

{
−
∫ ti

0

λj(µ, xi)dµ

}
.

Let dji be the indicator for subject i experiencing risk j, then

L =
n∏
i=1

k∏
j=1

[λj(ti, xi)]
djiexp

{
−
∫ ti

0

λj(µ, xi)dµ

}
.

3



The likelihood factors as a product of k likelihoods, one for each type of risk. The

likelihood for each type of risk is exactly the same as the one we would obtain by

treating all other competing events as censored observations. Therefore, under the

assumption of independent risks, the usual Nelson-Aalen estimator can be applied to

estimate the cumulative cause-specific hazard. Log rank tests can be used to compare

two or more groups. Cox proportional hazard model can be performed for regression

analysis. Standard software works sufficiently for these methods, as the competing

risks formulation does not add any additional complexity to the analysis. The analysis

is valid and useful, but it does not address any correlations among risks, for exam-

ple, some risks may prevent the subsequent occurrence of others. These methods are

limited to CSH functions only and quantities of direct interest may not be included.

Kaplan-Meier estimate is another important quantity in survival analysis, which is 1

minus CIF. However, this generally doesn’t hold for the cause specific Kaplan-Meier

estimate in the competing risks framework. CIF is the more interesting quantity in

competing risks.

Competing risks data are typically summarized either by an estimate of hazard func-

tion or by direct estimation of an appropriate competing risks probability. Similarly

the regression study of the competing risks data falls into two broad categories, mod-

eling the hazard function and direct modeling of the CIF. Compared to the CSH

functions, CIFs are considered to be user unfriendly due to a lack of standard statis-

tical software. However, They are straight forward to interpret if we are interested

in survival probabilities (or how many subjects fail) for any particular failure type at

some time points. Besides this, a CIF is easier to visualize (i.e. graphical display)

while a CSH function requires smoothing techniques to achieve better visualization.

With these considerations, CIFs should be accompanied by CSH functions in order

to better study the competing risks data. The choice is determined by the research

question of interest.

4



It is possible to calculate the CIF from Cox regression by combining estimates from a

regression model of all the CSHs (use baseline hazards to calculate a product limit es-

timate and then CIF). However, the resulting CIF is a complicated nonlinear function

of the covariates and difficult to interpret. Also many authors have noted that for a

particular failure type, the effects of covariates on the CIF may be very different from

those on the corresponding CSH function (Gray 1988, Pepe 1991). Thus, modeling

CIF becomes essential in studying competing risks data.

Notice also that the non-identifiability aspect of competing risks models is overturned

when covariates are involved, which secures identification of general non-independent

competing risks models (Heckman and Honore, 1989). Fine and Gray (1999) intro-

duced direct regression modeling of the CIF, without assuming dependence among

risks. In this work, they also describe how the cause-specific regression formulation

can be turned into a regression model for CIF via a complimentary log-log transforma-

tion. However, most of this work assumes semi-parametric models with one baseline

for each risk, which leads to difficulty in the presence of the right censoring. Also, the

partial likelihood principle (for one event) no longer works in this case (more than

one event). Fine and Gray (1999) and Fine (2001) adapt the inverse probability of

censoring weighting (IPCW) technique (Robins and Rotnitzky 1992) to construct the

unbiased estimating function from the complete data partial likelihood. Klein and

Andersen (2005) and Andersen et al (2003) proposed an alternative method to handle

the censored data, based on pseudovalues from a jackknife statistic constructed from

the CIF. These pseudovalues are then used in a generalized estimating equation to

obtain estimates of model parameters.

When it comes to inference, the log rank test lacks power if the assumption of pro-

portional hazards among the groups is heavily violated. Therefore, Gray (1988) and

Pepe (1991) developed tests for equality of the CIFs across treatment groups. Their

methods are useful but restricted to data with grouped variables. In order to quantify

5



the difference between CIFs, Fine and Gray (1999) suggest to attach to the CIF a

kind of hazard function, in the same way we can attach a hazard function to a survival

function, which allows us to formulate a proportional hazards model. However, the

hazard function defined in this way is different from the usual hazards and lacks an

easy interpretation.

Keiding and Andersen (1989) gave explicit formula for computing pointwise confi-

dence intervals for CIFs. A method for simultaneous confidence bands of hazards

functions has been suggested by Gilbert et al (2002) with one event and they stated

it can be extended to competing risks data. Fine and Gray (1999) also provided a

procedure for calculating pointwise confidence intervals and simultaneous confidence

intervals (confidence band).

Alternatively, one can try to transform the CIF to another scale and use some type

of more generalized linear models on the transformed scale. Jeong and Fine (2006)

introduce parametric modeling of CIFs. The parametric method is valuable because

compared to nonparametric procedures, it (1) provides better graphical display, even

CSH functions have good visualizations; (2) predicts future behavior, assuming the

model fits reasonably well; and (3) can assume a specific dependence structure among

different event times (Jeong and Fine, 2006).

Typically, in competing risks data, the measurement for a subject who already ex-

perienced the first event is stopped (or not included), although some of the other

events may still happen afterwards. If this is the case and the follow-up events are

also recorded, it causes a problem (Klein,2010) related to the competing risks which

is the so-called semi-competing risks problem when the event time for one of the

competing risks is known regardless of whether the other risks has occurred or not.

In the NUN study, the death time is known for demented subjects but clearly for

subjects who died before dementia no dementia time is known. In this case, treating

time to dementia as right censored observation when time to death is of interest, as

6



in CSH modeling, clearly introduces bias and it underestimates the time to death.

This problem is more severe when death and MCI are the risks since the time from

MCI to death is not ignorable.

Left and interval censoring in competing risks is a more complicated form of the usual

competing risks data, which includes only right-censored data. Various estimation

methods have been proposed to handle such problem in survival analysis (single even-

t), however, to our knowledge, no prior work has been done on this issue in competing

risks data. The fundamental methods to analyze competing risks data in the presence

of right censored observations were already developed. However, it is very likely that

some subjects encounter an event before registering in the study. For example, in the

NUN study, there are more than 100 demented subjects at baseline visit. In order

to include these data in the analysis, in this study, we consider the situation where

event times are censored also from the left.

In the analysis of competing risks data, it is very often useful to summarize base-

line estimates by using a non-parametric likelihood function. Suppose there are N

subjects, J event types and k distinct event times: t1 < t2 < ... < tk. Suppose eji

subjects fail from event type j at time ti, ci subjects are right censored in the interval

[ti, ti+1) at times ti1, ...tici , and mi subjects (with known event type) are left censored

in the interval [ti, ti+1) at times xi1, ...ximi
(See Figure 1.1). Some basic quantities,

which will be used in constructing the likelihood function, are defined in appendix I.

The contributions to the likelihood consist of three types for terms: Fj(t) − Fj(t−)

Figure 1.1: Observed times
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for observed event type j, S(til) for right censored, and Fj(xil) for left censored event

type j. Thus, the likelihood function can be written as

L =
k∏
i=1

{ J∏
j=1

[Fj(ti)− Fj(ti−)]eji
ci∏
l=1

[S(til)]

mi∏
l=1

J∏
j=1

[Fj(xil)]
ejil

}
Note that since S(til) ≤ S(ti) and Fj(xil) ≤ Fj(ti+1), the likelihood takes partially

maximized values when S(til) = S(ti) and Fj(xil) = Fj(ti+1), where S(t) is right

continuous and Fj(t) is left continuous. The partially maximized likelihood can be

written as

L =
k∏
i=1

{ J∏
j=1

[Fj(ti)− Fj(ti−)]eji [S(ti)]
ci

J∏
j=1

[Fj(ti+1)]mi(j)

}
,

where mi(j) is the number of left censored observation in the interval [ti, ti+1) for

event type j. In terms of CSH, as defined earlier,

L =
k∏
i=1

{ J∏
j=1

(λji

i−1∏
l=1

(1− λi))eji(
i∏
l=1

(1− λi))ci
J∏
j=1

[
i+1∑
l=1

λjl

l∏
q=1

(1− λq)]mi(j)

}

where λi =
∑J

j=1 λji

or

L =
k∏
i=1

{ J∏
j=1

(λji)
eji(

i−1∏
l=1

(1− λi))di(
i∏
l=1

(1− λi))ci
J∏
j=1

[
i+1∑
l=1

λjl

l∏
q=1

(1− λq)]mi(j)

}

where di =
∑J

j=1 eji

There is no direct solution to maximize the above likelihood function. However, under

right censoring only, the likelihood simplifies to

L∗ =
k∏
i=1

{ J∏
j=1

(λji)
eji(

i−1∏
l=1

(1− λi))di(
i∏
l=1

(1− λi))ci
}

Let ni denote the number of items at risk at a time just prior to ti. L∗ can be

rewritten as

L∗ =
k∏
i=1

{ J∏
j=1

(λji)
eji(1− λi))ni−di

}

8



Maximization of the above multinomial likelihood gives the non-parametric maxi-

mum likelihood estimates: λ̂i =
∑J

j=1
eji
ni

and λ̂ji =
eji
ni

, ˆFj(t) =
∑

ti≤t
eji
ni

ˆF (ti−),

where ˆS(t) =
∏

ti≤t(1− λ̂i).

Since the number of subjects at risk at time ti is unknown in the presence of the left

censored data, the above maximization is no longer working. In survival analysis,

Turnbull(1976) proposed a computationally based method to find the nonparametric

survival function (known as Kaplan-Meier estimator, which can be explicitly formu-

lated for complete or right censored data) for the incomplete data with both left and

right censoring. The method is really based on an Expectation-Maximization (EM)

algorithm. Similarly, in order to take the left censored data into account in competing

risks framework, the iterative EM algorithm will be used in Chapter 2 to obtain the

estimates of CIFs.

Investigating covariate effects is our focus as well. Large amounts of left censored ob-

servations should be included to increase the sample size and improve the estimation.

We modify Jeong and Fine’s proportional SH parametric model such that the sum of

marginal probabilities (of events) never exceed 1, conditional on any covariates. The

left censored data will be accommodated easily using a parametric method. Poten-

tial candidates for the parametric probability distribution, which determines the log

baseline cumulative SH function, will be examined as well. Simulation studies will

be used to investigate the effect of including the left censoring data on the estimates,

i.e. variance of estimates etc. Application to investigate the effect of genetics and

education on the occurrence of dementia before death in the Nun Study is used to

illustrate these results in Chapter 2.

1.3 Multi-state Models

A multi-state process is defined as a stochastic process (X(t), t ∈ T ) with a finite

state space S = {0, 1, . . . , s }. Here T is time interval [0, τ ], τ < ∞, and X(t)
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takes the value of the state occupied at time t. The states are either transient or

absorbing. An absorbing state is a state from which further transitions cannot occur

while a transient state is a state that is not an absorbing state. The multi-state

process evolves over time.

Multi-state models are the most common models for describing the longitudinal failure

time data. The simplest multi-state model is a two-state model for survival data

with states alive (transient) and dead (absorbing). Note that a multi-state with one

transient state and multiple absorbing states corresponds to a competing risks model.

The illness-death model, with two transient states and one absorbing state, is one

of the most important and studied multi-state models. In more complicated models,

there can be multiple transient states and multiple absorbing states.

The multi-state process is fully described by transition intensities

αhj(t) = lim
∆t→0

Phj(t, t+ ∆t)

∆t

where h, j ∈ S, t ∈ T , and

Phj(s, t) = pr{X(t) = j|X(s) = h,Fs−}

are the transition probabilities. Here s ≤ t with s, t ∈ T and Ft− is a σ-algebra

generated by history of process over [0,t), including state visited, time of transitions,

etc.

The full statistical model includes the state structure, which specifies the states and

possible transitions and the form of the intensity function for each possible transi-

tion. It can be graphically displayed. Figure 2 shows the structure of the illness-death

model with transition intensities. Different model assumptions can be made about

the dependence of the transition rates on time, resulting in different types of models:

(1). Markov models: the transition intensities at time t do not depend on other

aspects of the past history, than the state occupied at t- (and time-fixed covariates).

If the intensities are constant over time, the models are called time homogeneous
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Figure 1.2: Illness model

Markov models. However, often transition probabilities do no just depend on the

time between observations, but also on the time origin, resulting in a nonhomoge-

neous Markov process.

(2). Non-Markov models: besides the state occupied at t- (and time-fixed covariates),

the transition intensities at time t depend on other aspects of the past history. If

the future evolution depends on the current state and the duration time at current

state, the model is called semi-Markov model. If there is only duration dependence,

the process is called homogeneous semi-Markov.

Transition intensities, transition probabilities, and state occupation probabilities are

the most important quantities in multi-state models. Similar to CSH and CIF in

competing risks, both inferences for intensities and probabilities have their advan-

tages. Inference for intensities is simpler and has many standard statistical software

support. An attractive feature of multi-state models based on intensities is that al-

l hazard-based models known from survival analysis apply (Andersen et al. 1993).

However, it is also of considerable interest to model and to conduct inference for

transition probabilities and state occupation probabilities since:

(1) The interpretation of probabilities is simpler and more direct than that of inten-

sities. (For Markov processes, explicit formulas relate such probabilities to transition

intensities, thereby allowing for simple plug-in probability estimation once intensity

models are established.)

(2) For regression situations, however, plug-in methods do not provide us with simple
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parameters describing the association between covariates and outcome probabilities.

This is because of the non-linearity of the relation between intensities and probabil-

ities and, hence, even intensity models with a simple link function (such as the Cox

model or the additive hazard model), lead to complicated relations between covari-

ates and outcome probabilities. The effect of a covariate on the intensities may be

very different from the effect of the covariate on occupation probabilities. For these

reasons, both approaches are studied in the literature.

Modeling intensities

Most regression models for intensities relate to the semi-parametric Cox regression

model

α(t|Zi) = α0(t)exp(βTZi)

Here α0(t) is the baseline hazard function and is left unspecified while the β coef-

ficient are constant, leading to a proportional hazards model. When α0(t) is also

parametrical modeled, e.g. constant or piecewise constant, the above model turns

into parametric hazard model. If the baseline hazard is a function of t and no other

functions of the past is included as a time dependent covariate, the regression leads to

a Markov process. The covariates, however, may be time dependent, and the model

becomes a non-Markov process.

The Markov assumption has been made in many earlier applications. If time homo-

geneity is also assumed, the inferences for transition intensities when transition times

are known are well studied. Both maximum likelihood estimators and the large sam-

ple properties for these estimators have been developed (Albert, 1962). However, the

problem with the longitudinal failure time data is that the process is often observed

intermittently, which means exact transition times are unknown. The Maximum

likelihood estimates (MLEs) can still be evaluated based on numerical maximization

(Kalbfleisch and Lawless, 1985). R. C. Gentleman et al. (1993) applied general esti-

mation methods of Kalbfleisch and Lawless, which was for fitting time homogeneous
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Markov models originally, to incomplete data due to (i) only a portion of a subject’s

disease history is observed, (ii) interval censored times because of intermittent vis-

its, (iii) unknown disease onset time, with arbitrary transition structure. They also

provided methods for assessing the modeling of incomplete data. The large sample

properties for these MLEs have been developed by Bladt and Sorensen (2005).

Non-homogeneous Markov models are studied when the time homogeneity assump-

tion is violated. Joly at el. (2002) show that in a nonhomogeneous Markov model for

an illness-death model with interval-censored data, estimating the transition intensity

from health to illness by survival analysis (treating death as a censored event) is bi-

ased downwards. They proposed a method to get smooth estimates of the transition

intensities, α̂01, α̂12 and α̂02, by maximizing a penalized likelihood.

pl(α01, α12, α02) = l(α01, α12, α02)−k01

∫
α′′01(µ)dµ−k12

∫
α′′12(µ)dµ−k02

∫
α′′02(µ)dµ

where l is the full log-likelihood, αhj(µ) are intensities and khj are three positive

smoothing parameters. Joly and Commenges (1999) suggested that the penalized

likelihood can be used in a regression model, with regression parameters and baseline

transition intensities being estimated simultaneously.

Alternatively, Hubbard et al. (2008) decomposed the nonhomogeneous transition

intensity matrix into the product of a baseline transition intensity matrix and a

scalar function of time, and proposed to deal with nonhomogeneous Markov process

via a time transformation. The time scale of the nonhomogeneous Markov process is

transformed to an operational time scale on which the process is homogeneous. Time

transformation and parameters for homogeneous Markov process were then jointly

modeled.

The most important deviation from the Markov property in practice is duration

dependence, resulting in a Semi-Markov model. Semi-Markov models have been

considered in some other applications. Foucher et al. (2010) present a flexible semi-

Markov model for interval censored data. The model is a combination of Markov chain
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and distribution of durations. The explanatory variables were introduced through

Markov chain and through probability density functions of durations (generalized

Weibull distribution).

Modeling probabilities

In Markov models,

Phj(s, t) = pr{X(t) = j|X(s) = h},

combines both direct and indirect transitions from state h to state j. And the transi-

tion probability matrix can be calculated from transition intensity matrix by means

of a product integral (Aalen and Johansen, 1978)

P (s, t) =
∏
(s,t]

(I + dA(µ))

More generally, for Markov models with time-fixed covariates, Z0, Phj(s, t|Z0) can

be estimated completely analogously by the product integral. Variance estimates

may be obtained from those of intensities via delta-method (Shu and Klein, 2005).

Explicit expressions for transition probabilities in an integral form are available for

semi-Markov processes without loops (or non-reversible paths) (Andersen and Perme,

2008). However, again, the relations between covariates and transition probabilities

are complicated and there emerges modeling probabilities directly.

Andersen at el. (2003) present a technique which models the state probability

Qhi(tk) = P (Xi(tk) = h) directly through a link function g():

g(Qhi(tk)) = αt + βTZi

where Z are the covariates.

The link function g() can be logit, probit or complementary log-log function. The

regression was based on state probabilities obtained from Aalen-Johansen estimator.

The method uses the pseudo-observations from a jackknife statistic constructed from

simple summary statistic estimates of the state probabilities,

Q̂hi(t) = Q̂h(t)− (n− 1)Q̂h

−i
(t)
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where Q̂h(t) is based on the entire sample and Q̂h
−i

(t) is the same estimator but elim-

inating subject i, the idea being that the leave-one-out diagnostics for the summary

statistic contain information about the way in which covariates for each individual

affect the estimator.

These pseudo-values are then used in a generalized estimating equation to obtain

estimates of the model parameters.

U(β) =
∑
i

Ui(β) =
∑
i

(
∂

∂β
g−1(βTZi))

TVi
−1(θ̂i − g−1(βTZi)) = 0.

Where θi = (Q̂hi(t)). The questions left open are the choice of time points and work-

ing covariance matrix in the generalized estimating equation.

The subject specific random effects models, in particular, generalized linear mixed

model (GLMM), take the heterogeneity across subjects into account, in addition

to the fixed effects. Salazar (2004) and Salazar et al. (2007) proposed a discrete-

time multi-state Markov model with shared random effects, which assumes that the

follow-up response component and drop-out response component are sharing the same

random parameters and are conditionally independent given these random effects, for

longitudinal data with categorical responses. The transition probabilities were mod-

eled through GLMM structure (multinomial logistic model). The great advantage

of the GLMM structure is that inference and regression can be done through stan-

dard statistical software. However, the joint distribution of the response variable

was a conditional distribution given the baseline information, resulting in possibly

a so-called “baseline confounding” problem, especially when the baseline (or initial)

states are different for different subjects. Yu et al. (2009) continued to model using

shared random effects approaches by incorporating the baseline distribution into the

followup likelihood. All these studies applied the models to the NUN study with

three transient states (intact cognition, mild cognitive impairment(MCI), and global

impairment) and two competing absorbing states (death and dementia). However,
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the parameters resulting from these models on transition probabilities do not have

straightforward interpretation.

Time-homogeneous Markov process is not appropriate in many real data, for exam-

ple, the transition intensity of death from health is clearly age dependent. Thus a

model with time dependent transition intensities is usually required. We consider

both constant transition intensities and duration time dependent transition intensi-

ties, leading to a mixture of Markov and semi-Markov processes, and model both

transition intensities,and transition probabilities. The model allows interval censored

data and could incorporate the random effects, accounting for the unobserved sub-

ject heterogeneity. The likelihood for the multi-state model is constructed through a

multinomial distribution. In Chapter 3, we show the covariate effects on transition

intensities, overall transition probabilities, and duration times in the BRAiNS data.

1.4 Estimation Methods

1.4.1 Maximum likelihood estimation (MLE)

Based on the data, a model is defined as the family of probability distribution-

s indexed by unknown parameters p(x|Θ). Assuming independent observations,

p(x|Θ) = p(x1, ..., xn|Θ) =
∏n

i=1 p(xi|Θ) and the likelihood has the same expres-

sion but written as L(Θ|x). Given that different parameter values index different

probability distributions, our desired probability distribution is the one that makes

the observed data most likely: the one maximize the likelihood function L(Θ|x), re-

sulting in MLE. MLE is a standard approach that can be developed for a large variety

of parameter estimation and inference situations. MLE has many optimal properties,

such as sufficiency, consistency, efficiency, and invariance.

Usually the MLE is maximizing the log-likelihood function (or minimizing the nega-
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tive log-likelihood function) and obtained by solving the likelihood equation:

∂logL(Θ|x)

∂θi
= 0

and checking the following:

∂2logL(Θ|x)

∂θ2
i

< 0.

However, in practice, it is usually difficult to obtain such an analytic solution, espe-

cially when non-linear equations needed to solved. There are numerical optimization

algorithms sough to maximize the log-likelihood: Newton-Raphson Method, Quasi-

Newton Methods, Conjugate Gradient Methods, and so on. They differ in how the

updating routine for searching improved parameters is conducted. We take Newton-

Ralphson algorithm for example. The basic Newton-Ralphson algorithm can be de-

scribed as:

Suppose f(x) is the function to be maximized, one starts with a starting value x0

which is reasonably close to maximize the function. Then the function is approx-

imated by a “quadratic approximation” based on a Taylor series expansion of the

function.

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2

To maximize a quadratic function, take derivative and set equal to zero, and then

solve the linear equation we get

x = x0 −
f ′(x0)

f ′′(x0)

This new x will typically be a better approximation than the starting value, and the

method can be iterated.

The R package ’optim’ can be used to find the minimum of the negative log-likelihood,

in which an approximate covariance matrix for the parameters is obtained by inverting

the Hessian matrix at the optimum. Alternatively, The NLP procedure (NonLinear

Programming) in SAS offers a set of optimization techniques for minimizing or max-

imizing a continuous nonlinear function subject to linear and nonlinear, equality and
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inequality, and lower and upper bound constraints. Problems of this type are found

in many settings ranging from optimal control to maximum likelihood estimation

(SAS online documentation). PROC NLP implements many opmization algorithm-

s. These optimization techniques require a continuous objective function and some

of them also require continuous second-order derivatives. There are three ways to

compute derivatives in PROC NLP: analytically (using a special derivative compil-

er), finite difference approximations, or user-supplied exact or approximate numerical

functions. The factors that go into choosing a particular optimizer for a particular

problem are complex, but SAS documentation provides some guidance for this.

MLE by these optimization algorithms can be sensitive to the choice of starting values

and it is worth noting that the optimization algorithm does not necessarily guarantee

that true maximization will be achieved. Finding optimum parameters is essentially a

heuristic process in which the optimization algorithm tries to improve upon an initial

set of parameters that is supplied by the user. One way to verify a global maximum

is choosing different starting values over multiple runs of the iteration procedure and

examining the results to see whether the same solution is obtained repeatedly. Since

the parameters for SH are comparable with those obtained by Cox PH models, pa-

rameter estimates resulting from Cox models will be used as intial values to obtain

estimates in our model.

1.4.2 Bayesian inference

Typical statistical inferences involve estimating parameters, given the available data.

The classical frequentist approach assumes that parameters are fixed and data are

a repeatable random sample. MLE generally provides the solution in this approach.

The Bayesian approach assumes that data are fixed and parameters have an unknown

joint distribution. This method begins with some prior distribution and updates pos-
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terior distribution based on the observed data. Unfortunately, most realistic posterior

distributions are high dimensional, especially when a random effect is considered, and

analytic solutions are hard to obtain. Point estimates and uncertainty intervals are

often used for inference.

Bayesian approach requires both a likelihood function based on data X and parame-

ters Θ, and a prior probability distribution for these parameters. With the likelihood

and the prior, Bayes’ formula

p(Θ|X) =
p(X|Θ) ∗ p(Θ)∫

Θ
p(X|Θ) ∗ p(Θ)dΘ

gives a posterior distribution for the parameters, and all Bayesian inferences are based

on this.

There are three basic terms in Bayesian inference: point estimation, interval esti-

mation, and hypothesis testing. The simplest is point estimation which is usually

estimated by the posterior mean or mode. A Bayesian interval estimate is called a

credible interval. The hypothesis testing in the Bayesian approach is based on cal-

culating the posterior probability that the null hypothesis is true and the decision is

made depending on the value of this posterior probability.

After subjectively specifying the prior distribution, which draws criticism of the

Bayesian approach, the critical step in Bayesian approaches is computing the posteri-

or distribution. This often requires the integration of high-dimensional functions and

the solutions are obtained through numerical techniques. The most widely applicable

numerical technique for sampling from the posterior is Markov Chain Monte Car-

lo(MCMC) using the Gibbs sampler. It consists of Monte Carlo integration, Markov

chain and Gibbs sampler.

Monte Carlo integration

The original Monte Carlo approach was a method developed by physicists to use

random number generation to compute integrals. Suppose we want to compute the
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integral ∫
f(x)dx =

∫
g(x) ∗ p(x)dx,

where p(x) is a density function and the integral becomes the expectation of g(x).

Consider N random points from p(x) distribution: x1, ..., xN , evaluate the function

g(x) at each point and take the average to obtain the expectation and thus the

integral. ∫
f(x)dx ≈ 1

N

N∑
1

g(xi)

Markov Chain

In MCMC, the current sample values are always based on the previous sample values

and transition probabilities between sample values are only a function of the most

recent sample value, resulting in a Markov chain.

Let X(t) ∈ S denote the value of a random variable at time t, where S is the state

space. Suppose the process is a Markov process and P is the transition matrix, then

we have

πt+1 = πtP,

where π(t) is the distribution of X at time t.

Under some conditions, i.e., the chain is irreducible and aperiodic, there exists a

stationary distribution π? such that

π? = π?P.

The above basic idea of discrete-state Markov chain can be generalized to a continuous

state Markov process by having a probability kernel P (x; y) satisfying∫
P (x; y)dy = 1.

The Chapman-Kolmogorov equation in this continuous case becomes

πt(y) =

∫
πt−1(x)P (x; y)dy,
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where πt(y) is the distribution at time t. The stationary distribution π(y) satisfies

π(y) =

∫
π(x)P (x; y)dy.

Gibbs sampling

The remaining part comes to random sampling from a complex probability distribu-

tion p(x). One of the important approaches is Metropolis-Hastings sampling. Suppose

our goal is to generate samples from some distribution p(θ). The Metropolis-Hastings

algorithm proceeds as follows:

1. Start with an initial value of θ0.

2. Using the current state value θt, draw a candidate state value θcan ∼ q(θt, θ), a

proposed density which gives the probability of returning a value θ given a previous

value of θt. Note the original Metropolis algorithm requires q(θt, θ) = q(θ, θt) and

Hastings lifts the restriction, allowing the proposed density to be independent of the

current state value.

3. Let θt+1 = θcan with probability

α = min(
p(θcan)q(θcan, θt)

p(θt)q(θt, θcan)
, 1).

4. Repeat steps 2 and 3.

It was proved that the Metropolis-Hasting sampling generates a Markov chain whose

stationary distribution is the candidate density p(θ).

Gibbs sampling is a special case of the Metropolis-Hastings sampling with α = 1.

It is applicable when the joint distribution is not known explicitly or is difficult to

sample from directly, but the conditional distribution of each variable is known or

is easier to sample from. The Gibbs sampling algorithm generates an instance from

the distribution of each variable in turn, conditional on the current values of the

other variables. Thus, one simulates k random variables sequentially from the k

conditionals rather than generating a single k-dimensional vector using the full joint

distribution. More specifically, let (θ1, ..., θk) denote the parameters. The sampler
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works as follows:

1. Start with initial values (θ
(0)
1 , ..., θ

(0)
k ).

2. Given the current state value of the chain (θ
(t)
1 , ..., θ

(t)
k ), generate the next state

according to:

θ
(t+1)
1 ∼ p(θ1|θ(t)

2 , ..., θ
(t)
k )

θ
(t+1)
2 ∼ p(θ2|θ(t+1)

1 , θ
(t)
3 , ..., θ

(t)
k )

. .

. .

. .

θ
(t+1)
k ∼ p(θk|θ(t+1)

1 , ..., θ
(t+1)
k−1 ).

Again the theory implies that the Markov chain is guaranteed to converge to the

appropriate stationary distribution.

Bayesian inference is able to handle missing data, especially when the response vari-

able is missing. The method is promising since it avoids the computation of the exact

likelihood. For example, let Θ denote all regression coefficients and Σ the vector of

all variance parameters, then the full Bayesian inference is based on the posterior

distribution

f(Θ,Σ|data) ∝ L(Θ,Σ)f0(Θ,Σ),

where L is the likelihood and f0 is the prior distribution. By MCMC using the Gibbs

sampler, we generate a sequence of N samples, i.e.

(θ(1), σ(1)), (θ(2), σ(2)), ..., (θ(N), σ(N)).

Now suppose T is our response variable and T is missing for some observations. The

Bayesian inference with data augmentation basically adds in one more step for each

scan and it includes the following two steps:

1. Augmentation (or imputation) step:
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With a current regression coefficients θ(m) and variance parameters σ(m), simulates the

missing values for each observation independently, i.e. draw values from a conditional

distribution

p(Tmissing|θ(m), σ(m)),

where Tmissing denotes the missing observations for the response variable.

2. Posterior sampling step:

With the complete sample data, the new posterior regression coefficients θ(m+1) and

variance parameters σ(m+1) were simulated.

The two steps are iterated long enough for the results to be reliable for a multiply

imputed dataset. Let m range from 1 to N. The following Markov chain will be

created:

(θ(1), σ(1), T
(1)
missing), (θ

(2), σ(2), T
(2)
missing), ..., (θ

(N), σ(N), T
(N)
missing),

which converges to p(Tmissing,Θ,Σ) as N →∞.

The application of Bayesian inference has been greatly facilitated by MCMC, which

constructs a Markov chain with stationary distribution equal to the posterior dis-

tribution of interest. Once the chain has converged, realizations are considered as

dependent samples from the distribution and thinned realizations are considered to

be approximate independent samples.

As for applying these algorithms to generate samples, there are many programs avail-

able for such computations. We will focus on OpenBUGS(Lunn. 2009),a free software

package (http://www.openbugs.info/w/), that is the most popular and has good doc-

umentation. With BUGS, one simply needs to make some general specifications about

the model and provide some initial values. A typical OpenBUGS proceeds as follows:

(a).Specify the model to run and prior distributions for all parameters to be estimat-

ed. This step basically constructs the likelihood.

(b).Provide data and initial values.

23



(c).Generate the MCMC simulations after checking the model, data, and initial val-

ues.

There is a list of standard distributions and therefore a list of standard models provid-

ed by OpenBUGS. However, we may use the “zeros trick” (OpenBUGS User Manual)

for non-standard distributions. Suppose we wish to use a sampling distribution that

is not included in the list of standard distributions provided by OpenBUGS, in which

an observation xi contributes a likelihood term Li. Recall a Poisson(φ) with observa-

tion of zero has likelihood exp(-φ), so if our observed data is a set of 0’s, and φi is set

to - log(Li), we will obtain the correct likelihood contribution. (Note that φi should

always be > 0 as it is a Poisson mean, and so we may need to add a large enough

positive constant to ensure that it is positive.) This trick allows arbitrary sampling

distributions to be used, and is particularly suitable when dealing with interval cen-

sored observations. The trick is illustrated in the following example.

C <- 10000

for (i in 1:N) {

zeros[i] <- 0

phi[i] <- -log(L[i]) + C

zeros[i] ~ dpois(phi[i])

}

Note that initial samples from each run are not valid because the Markov chain has

not stabilized yet. The “burn in samples” strategy is often used, which discards some

initial samples. Highly correlated parameters cause high autocorrelation, which is

important since high autocorrelation will take a very long time for the simulated

samples to explore the entire posterior distribution. Typically, the level of auto-

correlation declines with an increasing number of lags in the chain. Therefore, the

strategy to reduce the autocorrelation is to “thin” the chain by taking every ith sam-
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ple. However, we need to identify when the stationary distribution is achieved?. One

way is to carry out multiple independent runs to see how stable the estimates are.

Trace plot, autocorrelation, and Gelman-Rubin are common tools used to diagnose

the convergence of the MCMC samples after excluding the initial burn in samples and

after thinning. The Gelman-Rubin diagnostics rely on parallel chains to test whether

they all converge to the same posterior distribution. The “potential scale reduction

factor” is calculated for each variable in x, together with upper and lower confidence

limits. Approximate convergence is diagnosed when the upper limit of “potential

scale reduction factor” is close to 1.

In order to accommodate the missing data in MCMC simulation, missing values are

treated as unknown parameters and are provided with some initial values. During

each step of sample updating in MCMC simulation, these missing values can be

imputed based on some proposed models, or even the EM algorithm. OpenBUGS

automatically imputed missing response values. Missing covariate values needs to be

imputed by specifying models for them. OpenBUGS is incredibly flexible to deal with

the missing data issue. Enter an ’NA’ in the appropriate matrix cell in OpenBUGS

for a data point that is missing. The program will treat all of the missing elements of

the data matrix as if they were unknown model parameters. Specify the probability

model to those parameters and the program will run the sampling.

1.5 Outline of the Dissertation

The remainder of this dissertation is divided into two major parts: competing risks

modeling and multi-state modeling, and a summarization is made over these two. It

is organized as follows:

In Chapter 2, we consider Jeong and Fine (2007)’s proportional SH model. We mod-

ify their model to assure that the sum of the underlying CIFs never exceeds one.
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Simulation studies were conducted to investigate the effect of left censored data on

the parametric estimation. Then, the proposed model was applied to investigate the

effect of genetics and education on the occurrence of dementia before death in the

Nun Study.

In Chapter 3, We propose a model with a mixture of Markov and semi-Markov pro-

cess, where both transition intensities and transition probabilities are modeled. The

likelihood for the multi-state model is constructed through a multinomial distribu-

tion. The model allows interval censored data and could incorporate the random

effects. The estimation are obtained through Bayesian approach using OpenBUGS.

As an application, we show the covariate effects on transition intensities, overall tran-

sition probabilities, and duration times in the BRAiNS data.

Finally, Chapter 4 summarizes our work. A discussion of findings is presented along

with the conclusions derived. Moreover, potential areas for further study are briefly

discussed.

Copyright c© Yushun Lin, 2011.
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Chapter 2 Competing Risks Modeling

In the Nun study, death is a competing risk encountered when following a cohort

of elderly subjects to dementia. Analyses in medical papers frequently assume in-

dependent risks for competing events and evaluate covariate effects on these events

by modeling distinct proportional hazards regression models for each event. Jeong

and Fine (2007) proposed parametric modeling of CIF without assumptions about

dependence among events. We modified their model to assure that the sum of the un-

derlying CIFs never exceeds one, by assuming a proportional SH model for dementia

only. 106 out of 268 demented subjects are demented at baseline, which introduces

the left censoring data. To our knowledge, no prior work has been done on this issue

in competing risks data. We computed non-parametric MLE of CIF based on EM

algorithm and investigated the covariate effects by applying our proposed paramet-

ric model after including left censored data. After including left censored data, the

incidence rate of dementia becomes larger than that of death for age < 90, education

becomes significant factor for incidence of dementia and standard errors for estimates

are smaller.

2.1 Introduction

Competing risks problems (Klein, 2010) are common in medical studies. For exam-

ple, in Alzheimer disease research, an elderly person is at risk for multiple events,

including dementia and death. In the competing risks problem, the basic quantities

are cause specific hazard (CSH) functions and cumulative incidence functions (CIFs),

whose value at time t is the probability of failure by time t for a particular type of

failure in the presence of other risks.

Analyses in medical papers (Lunn and McNeil, 1995) frequently assume independent
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risks for competing events and evaluate covariate effects on these events by modeling

distinct proportional hazards regression models for each event. Fine and Gray (2001)

recommended an improved semi-parametric method for analyzing competing risks

data based on CIF without assuming independence. The non-parametric maximum

likelihood estimators (MLEs) of CIFs can be analytically calculated and graphical-

ly plotted. Covariate effects on CIFs can be estimated and inferred through their

semi-parametric regression. Alternatively, Jeong and Fine (2006) shown that one

can transform the CIF to another scale using a link function, i.e. complementary

log-log function. They then apply a parametric modeling approach which provides

better graphical display, predicts future behavior, and does not assume independence

among different event times. However, the improper baseline sub-distribution func-

tion is critical to the success of this parametric modeling. Jeong and Fine (2007)

found that an improper Gompertz distribution is a good approximation to the CIF

in their data.

The problem with Fine and Gray’s semi-parametric proportional SH model and Jeong

and Fine’s parametric model on CIFs is that the overall probability of any event oc-

curring could exceed one. To address this problem, we assume a proportional SH

model for the event of interest through a complementary log-log link function and

assume a similar link function for the other events. This modification ensures the

overall probability of any event occurring is one. Such an asymmetric model is useful

when we are interested in one specific event. For example, in the Nun Study, we focus

on the event of dementia before death and covariate effects on it. We compute MLEs

of the covariate effects by assuming the baseline sub-distribution as the product of a

Weibull distribution and an unknown constant. The goodness-of-fit of this solution

is examined in comparison to non-parametric MLEs of CIFs.

Left censoring is a second and more complicated issue since the non-parametric MLEs

can no longer be analytically computed. Instead, the non-parametric MLEs of the
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survival function, hazard rates, and CIF are computed based on competing risks data

with only right censoring using the Expectation-Maximization (EM) algorithm. The

regression analysis of the left censored data will be studied using the same parametric

method as described above. Simulation studies will be used to investigate the effect

of the left censored observations on the estimates, i.e. bias, standard deviation, and

confidence interval coverage.

We apply our proposed methods to analyze data on dementia and death as competing

events in the Nun Study, a population based cohort study of aging and Alzheimer’s

disease. The dataset consists of a cohort of 678 members of the school sisters of Notre

Dame religious congregation (Snowdon et al., 1997). Each participant agrees to allow

investigators complete access to their convent archives, participate in near-annual

assessments of cognitive and physical function, and donate their brain at death. Of

these, 72 participants are excluded from the analysis because of missing covariates

or consent withdrawal. Final events (first dementia, death, or censored) and covari-

ates form a competing risks data set. Subjects were classified as demented if they

met clinical criteria for dementia: impaired on Delayed Word Recall and at least one

other cognitive test and impaired on Activities of Daily Living. Among these 606

observations, 74 are right censored, 268 are demented, and 264 experienced death

before dementia. Also, 106 out of 268 demented subjects are demented at baseline,

resulting in left censored data. Since this is an observational study, we don’t account

for the potential left truncated data, i.e. individuals who died before being able to

register for the study.

In Section 2, we introduce notation and formulas on the proposed models for CIF. In

Section 3, the results of several simulation studies are reported. In Section 4, we ap-

ply our methods to the Nun Study data. These models are further compared to Fine

and Gray’s semi-parametric proportional SH model and the naive Cox proportional

hazards model. Finally, Section 5 contains a discussion and some conclusions.
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2.2 Model Setup

Assume there are k event types and k failure times, Y1,..., Yk, one for each event. Then

T = min(Y1, ..., Yk) is observed and a variable ε = j tells which event corresponds

to the observed time. Some observations are subject to right censoring by follow-up

time, indicated by d, and some observations are left censored by registration time,

indicated by l. Event types are known for left censored observations. Also observed

are covariates X. So basically, (T, ε, d, l, X) is observed. Instead of hazard rate and

survival function, CSH rate and CIF are the two basic quantities in the competing

risks framework (Fine, 2001; Klein and Andersen, 2005; Klein, 2006). The CSH rate

for cause j is defined as λj(t) = lim∆→0
P (t≤T≤t+∆,ε=j|T≥t)

∆
, and CIF for j event is

Fj(t) = P [T ≤ t, ε = j] =
∫ t

0
λj(µ) exp(−

∫ µ
0

∑k
i=1 λi(ν)dν)dµ.

2.2.1 Non-parametric MLEs

Suppose there are N observations and n distinct observed event times: t1 < t2 < ... <

tn. Suppose dji subjects fail from event type j at time ti. Let ni denote the number

of subjects at risk at a time just prior to time ti, λi denote overall hazard rate and

λji denote CSH rate for event j at time ti. Suppose we have no left censored observa-

tions. Then according to Kalbfleisch and Prentice (2002), the non-parametric MLEs

are given by: λ̂i =
∑k

j=1
dji
ni

, λ̂ji =
dji
ni

, and CIF for event j: F̂j =
∑

ti≤t
dji
ni
F̂ (ti−),

where overall survival function F̂ (t) =
∏

ti≤t(1− λ̂i).

In the presence of left censored observations, the number of subjects at risk at time ti

and the number of subjects experiencing event j are unknown. As a result, CSH rates

and CIF at time ti can not be analytically computed. So the above maximization is

no longer applicable. We propose an iterative EM algorithm which was first discussed

in Turnbull (1974) for estimating survivorship function. Let lji be the number of left
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censored observations (event j) between observed event times ti−1 and ti. We use

self-consistent estimators (Turnbull, 1974) to estimate the probability that this event

occurred at each observed event time, less than ti, based on initial estimates of CIFs.

Using this estimation, we compute an expected number for each type of event at each

observed time ti and an expected number of subjects at risk at each observed time

ti, which are then used to update the estimates of CIFs. This procedure is repeated

until CIFs are stabilized.

Given updated event number d∗ji and updated number of subjects at risk n∗i , it is

straightforward to compute λ̂∗ji , λ̂∗i , F̂ ∗(t) , and F̂ ∗j (t), i.e. λ̂∗ji = (d∗ji)/(n
∗
i ). This

fact is important in computing the CIF in the presence of left censoring using the

EM iterative algorithm as follows.

Step 1. Choose initial estimates of CIFs at each observed time ti , Fj(ti). Any legit-

imate estimates will work and good initial estimates are CIFs obtained by ignoring

the left censored observations.

Step 2 (E-step). Using the current estimates of CIFs, compute the expected number

of events (for each type of event) and expected number of subjects at risk, d∗ji and

n∗i , note these numbers can be non-integer.

Step 3 (M-step). With the results from previous step, maximization is performed as if

there is only right censoring, yielding λ̂∗ji =
d∗ji
n∗i

, λ̂∗i =
∑k

j=1

d∗ji
n∗i

,F̂ ∗(t) =
∏

ti≤t(1− λ̂
∗
i ),

and F̂ ∗j (t) =
∑

ti≤t
dji
ni
F̂ ∗(ti−).

Step 4. Return to step 2 and proceed iteratively until convergence.

2.2.2 Semi-parametric models

The regression model for CSH is based on the Cox proportional hazards model (Cox,

1972) and assumes non-informative censoring from competing risks. The CSH for

event type j is a multiplicative function of the baseline hazard λj0(t), given a single
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covariate X:

λj(t;X) = λj0(t) exp(γjX) (2.1)

where exp(γjX) is the hazard ratio for event type j. A similar form of regression mod-

el was proposed by Fine and Gray (1999) by assuming a proportional sub-distribution

hazard (SH, α) model with

αj(t;X) = αj0(t) exp(βjX) (2.2)

where exp(βjX) is the sub-distribution hazard ratio for event type j, and SH is

associated with the CIF: αj(t;X) =
dFj(t;X)

1−Fj(t;X)
. The major difference between CSH

and SH is that SH is directly related to the CIF.

2.2.3 Parametric model

The proportional SH model corresponds to a direct transformation modeling of CIF

defined by an invertible and monotonically increasing non-parametric function, µj(t),

which determines the baseline CIF for event j when X = 0:

gj(Fj) = µj(t) + βjX (2.3)

where gj(Fj) = log{−log(1 − Fj)} and exp(βj) is the sub-distribution hazard ratio

for event type j. Equivalently, the CIF for event j is given by

Fj(t;X) = 1− exp(− exp(βjX) ∗ exp(µj(t))) (2.4)

The direct parametric modeling of CIF was proposed by Jeong and Fine (2007) by

specifying a parametric form for µj(t). Based on their transformation models, for

example with complementary log-log link function, the probability of experiencing a

type j event is

Fj(∞;X) = 1− exp(− exp(βjX) ∗ exp(µj(∞))) = 1− [exp(− exp(µj(∞)))]exp(βjX)

(2.5)
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where Pj0 ≤ 1. Now suppose there are two competing events and the largest times

are not subject to censoring, i.e. P10 + P20 = 1. For X 6= 0, F1(∞;X) + F2(∞;X) =

1− [exp(− exp(µ1(∞)))]exp(β1X) + 1− [exp(− exp(µ2(∞)))]exp(β2X), which generally is

not equal to P10 + P20 and could possibly be greater than 1, resulting in a problem-

atic modeling. The same problem exists in Fine’s semi-parametric proportional SH

model, as shown in the following:

Based on the definition for SH, we have

αj(t;X) =
dFj(t;X)

1− Fj(t;X)∫ t

0

αj(µ;X)dµ = −log(1− Fj(t;X)).

Assume there are only two events, then we have

F1(∞;X) = 1− exp(−
∫ ∞

0

α1(µ)exp(β1X)dµ) = 1− Aexp(β1X)

and

F2(∞;X) = 1− exp(−
∫ ∞

0

α2(µ)exp(β2X)dµ) = 1−Bexp(β2X)

where A = exp(−
∫∞

0
α1(µ)dµ) and B = exp(−

∫∞
0
α2(µ)dµ.

Thus,

F1(∞;X) + F2(∞;X) = 1− Aexp(β1X) + 1−Bexp(β2X).

We know that F1(∞;X = 0) + F2(∞;X = 0) = (1 − A) + (1 − B) = 1, However,

F1(∞;X) + F2(∞;X) 6= 1 generally. It turns out that F1(∞;X) + F2(∞;X) > 1 for

some X, which can also be seen in real data (Nun Study in Section 4) analysis.

This indicates that proportional SH model doesn’t hold for all competing events si-

multaneously.

To overcome this problem, we propose two similar but different link functions with

g1(F1) = log{−log(1 − F1)} and g2(F2) = log{−log(1 − F2

1−P1(X)
}, where P1 =

F1(∞;X). Since F2(∞;X) = 1− P1(X) , it follows that F1(∞;X) + F2(∞;X) = 1.
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Notice that the first link function results in a proportional SH model, which will be

applied to the event of interest. An alternative way is to decompose CIF Fj(t;X) =

P (T ≤ t|ε = j)P (ε = j), and model P (T ≤ t|ε = j) by using a proper distribution

and P (ε = j) with a binary data model (Larson and Dinse, 1985).

In the parametric modeling of CIF, the parametric form of µj(t) needs to be specified.

We found that µj(t) = log(−log(1 − C0F0j(t))), where F0j(t) = 1 − exp(−(
t−cj
bj

)aj)

is Weibull distribution function and C0 is an unknown constant (≤ 1) fits the Nun

Study data quite well.

The MLEs of parametric models are obtained by maximizing the log likelihood func-

tion:

N∑
i=1

[
|li − 1|

k∑
j=1

δjilog{fj(ti, φj;Xi)}+ li

k∑
j=1

δjilog{Fj(ti, φj;Xi)}

+(1−
k∑
j=1

δji)log
{

1−
k∑
j=1

Fj(ti, φj;Xi)
}]

(2.6)

Here for subject i, Xi refers to a vector of covariates, li is an indicator for a left

censored event, δji is an indicator for event type j, φj is an unknown parameter vec-

tor which includes Weibull parameters and regression weights for the vector Xi, and

fj(t, φj;Xi) =
dFj(t,φj ;Xi)

dt
. The observed information matrix can be used to evalu-

ate the variances. The numerical computations can be done by using the nonlinear

programming (NLP) procedure of SAS (see Appendix III for SAS Codes). The Hes-

sian matrix from this computational procedure is an approximation to the Fisher

Information matrix.

2.3 Simulation Studies

In this section we use simulations to investigate if including left censored observations

improves the CIF estimation in the nonparametric case. We use additional simula-

tions to assess the numerically computed MLEs in the parametric case. In these
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simulation studies, the degree of bias and coverage probability will be assessed for

each estimated parameter.

2.3.1 Non-parametric estimation

We generated 1000 data sets (each with sample size 1000) for 2 competing events

with known failure time distribution and pre-specified censoring (both left and right

levels). The first 450 observations are generated from the Weibull distribution

P (T ≤ t|ε = 1)P (ε = 1) = 1− exp(−(
t− c1

b1

)a1)

with a1 = 2.7, b1 = 16.5, and c1 = 75. The remaining 550 observations are generated

according to the Weibull distribution

P (T ≤ t|ε = 2)P (ε = 2) = 1− exp(−(
t− c2

b2

)a2)

with a2 = 3.3, b2 = 19, and c2 = 74. Then, to specify the desired left and right censor-

ing proportions, generate 1000 observations of R and L, from uniform distributions

on intervals (0, Rmax) and (0, Lmax), where Rmax and Lmax are chosen to guarantee

the desired proportions of censoring. If Ri < Ti, set Ti = Ri and the failure time

is right censored. If Ri ≥ Ti, then if Li > Ti, set Ti = Li and the failure time is

left censored. The choice of the Weibull parameters is motivated by the CIFs of the

Nun Study data. In that data some of the event times to dementia are left censored,

but no deaths are left censored. More generally, since the times to two events are

different, i.e. the mean time to death and the mean time to dementia are different;

the left censoring levels are likely to be different for different events. To take this

fact into account, we specify different Lmax values for event types 1 and 2 to have left

censored proportion of event type 1 about twice as much as that of event type 2.

Two estimated CIFs for event 1 are computed for each dataset, one based on all the

data and one based on ignoring left censored observations. Since we generate 1000

sets, the 95% point-wise confidence interval (CI) is formed by taking the range of
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central 950 CIF values at each time point. As shown in Figure 2.1, 95% point-wise

CI obtained by using all the data always encloses the true CIF for all left censoring

levels. However, 95% point-wise CI obtained by ignoring left censored observations

doesn’t enclose the true CIF even in the presence of only 5% left censoring. This is

due to different proportions of left censored observations was assumed for two events.

Also, the width of CI obtained by using all the data is clearly smaller than those ig-

noring left censored data, when the left censoring level exceeds 10%, in this simulation

study.

2.3.2 Parametric estimation

We generated 1000 data sets (each with sample size 1000) for 2 competing events

with known failure time distribution, known parameters and pre-specified censoring

(both left and right levels) using the probability integral transform method.

Assume the parametric form of Fj with gj(Fj) = µ0j(t) + Xβj, where j = 1 and 2,

g1(F1) = log{−log(1 − F1)} and g2(F2) = log{−log(1 − F2

1−P1(X)
}, where P1(X) =

F1(t = ∞, X). Also, µ01(t) = C1F01(t) and µ02(t) = F02(t), where F01(t) and F02(t)

are Weibull distribution functions. Specifically,

F1(t,X) = 1− {1− C1 + C1 exp(− t

b1

)a1}exp(Xβ1)

and

F2(t,X) = (1− C1)exp(Xβ1)[1− {exp(− t

b2

)a2}exp(Xβ2)].

Note P1(X) = F1(∞, X) = 1−(1−C1)exp(Xβ1), P2(X) = F2(∞, X) = (1−C1)exp(Xβ1),

and thus F1(∞, X) + F2(∞, X) = 1.

First, covariates X are simulated. Then, event indicator is created according to

the marginal probabilities (P1(X) and P2(X) = 1 − P1(X)) and failure times are

generated according to the following conditional probabilities using the probability

36



Figure 2.1: 95% Point-wise confidence interval of CIFs and true CIF for event 1
for data consisting of: (a) 20% right censoring and 5% left censoring; (b) 20% right
censoring and 10% left censoring; (c) 20% right censoring and 20% left censoring. In
each plot, the dash CI are obtained using all the data, the star CI are obtained by
ignoring left censored observations, and the smooth curve is the true CIF used to
generate the data for event 1.
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integral transform method.

P (T ≤ t|ε = 1) =
P (T ≤ t, ε = 1)

P1(X)
=

F1(t,X)

1− (1− C1)exp(Xβ1)
,

and

P (T ≤ t|ε = 2) =
P (T ≤ t, ε = 2)

P2(X)
=

F2(t,X)

(1− C1)exp(Xβ1)
= 1− {exp(− t

b2

)a2}exp(Xβ2),

where a1 = 2.6, b1 = 16.5, a2 = 3, and b2 = 17.

Finally, to specify the desired left and right censoring proportions, generate 1000 ob-

servations of R and L, from uniform distributions on intervals (0, Rmax) and (0, Lmax),

where Rmax and Lmax are chosen to guarantee the desired proportions. If R < T , set

T = R and the failure time is right censored. If L > T , set T = L and the failure

time is left censored.

There are 3 covariates, i.e. Xi = (xi1, xi2, xi3),i = 1 to 1000, and βj = (βj1, βj2, βj3),j =

1 or 2. xi1 takes value from Bernoulli random variable with p = 0.3, xi2 takes values

from discrete uniform random number (1, 2, 3, 4), and xi3 are drawn from normal ran-

dom variable with mean 5 and standard deviation 3. The parameters are as follows:

β11 = 0.4,β12 = −0.2,β13 = 0.05, β21 = 0.2, β22 = 0,β23 = 0.04.

To address the computational accuracy, we first study the ordinary failure time data,

which doesnt́ have any left censored observations: 5% to 35% right censoring levels

are studied. The coverage probabilities for 95%, 90% and 80% CIs are summarized

in Table 2.1. All the coverage probabilities match very well (within 0.01 difference)

with the corresponding nominal levels, except the coverage probability of β12 (0.820)

when nominal level is 0.80, under 35% right censoring. The results show that the

MLEs obtained by maximization using SAS procedure NLP cover the true values

very well. We also study the effect of left censored observations on the estimates.

20% left censoring and 5% to 35% right censoring levels are studied. The average

bias, average standard deviation (STD), and coverage probability for 95% CI are

summarized in Tables 2.2. All the coverage probabilities match very well with the
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corresponding nominal level (0.95) under all right censoring levels, when estimation

uses all the data. Ignoring the left censored observations, the coverage probabilities

are very low for most estimates of Weibull parameters, although the coverage proba-

bilities for estimates of covariates effects are close to 0.95. The biases of the estimates

obtained by using all the data are less than those obtained by ignoring left censored

data, except bias of β12, in which case, ignoring left censored data provides a little

smaller bias, though both are small. Recall the true value for β12 is a negative value

(-0.2), while all the others are positive or 0. All average STD based on all the data are

smaller than those estimated by ignoring left censored data, under all right censoring

levels. The coverage probabilities for Weibull parameters are very low due to the

fact that there is slightly different proportions of left censoring for two events. This

suggests that all observations, including left censored and left truncated observations

if there is any, should be used in order to obtain the correct baseline Weibull param-

eter estimates. However, the coverage probabilities for covariate effects are close to

nominal value, even when left censored observations are excluded. This is due to the

non-informative censoring, i.e., random censoring. The results show that the MLEs

obtained by maximizing the likelihood based on all the data, including left censored

data, are less biased, more precise, and have better coverage probabilities.

2.4 Application To The Nun Study

In the Nun Study, dementia and death are two competing events. The covariates in-

clude presence or absence of any copies of the APOE-4 allele(APOE4) and education.

The focus of this analysis is the probability of dementia before death and the covariate

effects on CIF of dementia. To look at the subgroup effect, covariate education was

further divided into three groups: High, Middle, and Low, and two indicators for High

and Low are used in analysis. High and Low are created according to the education

level. The functions cuminc and crr in the package “cmprsk” from R software, which
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can be downloaded from the CRAN site, were used to test equality across groups and

to fit this proportional SH semi-parametric model respectively. The SAS procedure

phreg was used to perform Cox proportional hazards modeling of each event. These

methods ignore the left censoring. Results from using these methods are included

here for comparison purposes and serve as starting values in obtaining MLEs using

NLP procedure. We begin by examing the non-parametric MLEs of the CIFs.

2.4.1 Non-parametric estimates and tests of CIFs

The non-parametric MLEs of CIFs are computed and plotted in Figure 2.2. Recall

that 106 out of 606 observations are left censored observations (baseline dementias)

in this study. Ignoring the left censored observations, both the incidence rate and

cumulative incidence of death before dementia are higher than that of dementia, as

shown in Figure 2.2(a). The estimated CIFs under both left and right censoring are

obtained using 4-step iterative EM algorithm (cf. R code in Appendix II). Including

the left censored data changes the relative rank of these two competing events, with

incidence rate of dementia higher at younger ages (i.e. age less than 88) and lower at

older ages, as shown in Figure 2.2(b). This indicates that the covariate effects might

be changed after including left censored data. The data was also modeled using

Weibull distributions, one for each event. These Weibull distribution functions were

added into the plots with smooth curves, which fit reasonably well the non-parametric

MLEs for both events, with/without left censored data. This suggests that a Weibull

distribution is a good candidate as baseline distribution for parametric modeling of

CIF.

The non-parametric test was performed based on Gray’s test (Gray, 1988). The

cumulative incidence curves of dementia and death are plotted by APOE carrier

status in Figure 2.3. The tests are summarized in Table 2.3. Notice that APOE

carrier status affects only the probability of a dementia before death with APOE
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Figure 2.2: Cumulative incidence curves of dementia (solid) and death before de-
mentia (dashed): (a) ignoring left censored observations; (b) including left censored
dementia cases. The step functions are estimated CIFs using EM algorithm, while
the smooth curves are fitted using Weibull distribution functions.

carrier having a significantly larger incidence for the disease.

Table 2.3: P values from Gray’s tests to compare CIFs among group variables

Event APOE4 High Low

Dementia 0.02 0.47 0.77
Death 0.62 0.02 0.83

2.4.2 Semi-parametric inferences

The crr function in the R package cmprsk fits a proportional SH semi-parametric

model by maximizing the partial likelihood. The results for proportional SH model

and Cox proportional hazards model are summarized in Table 2.4. Note that Cox

proportional hazards model was applied to each individual event, assuming inde-

pendent risks. In Cox proportional hazards model, APOE status is significant for

dementia and subject with APOE carrier has significantly larger hazard (hazard ra-
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Figure 2.3: Cumulative incidence function by event and by APOE4 value

tio = exp(0.75) = 2.12) of experiencing dementia. Higher education is significant for

death and subjects with higher education have higher hazard of death. In propor-

tional SH model, only APOE carrier status is significant for dementia, which agrees

with Gray’s tests; none of the covariates are significant for death. By definition,

sub-distributional hazard rate is smaller than hazard rate. Because of this, the coef-

ficients obtained in proportional SH model are normally smaller than those obtained

from Cox model, assuming the coefficients are present, i.e., significant in both mod-

els. High education is significant for death in Cox model, but not in proportional SH

model. This is partly due to the fact that death times are biased down by dementia

times and relative higher portions of demented subjects have higher education. Usu-
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ally the estimates from both methods are comparable because the proportional SH

model does not take into account of the constraint we discussed before.

Table 2.4: Regression parameter estimates (standard errors) from Cox proportional
hazards (Cox) and Fine and Gray’s proportional SH semi-parametric models. (num-
ber of dementia: 162; number of death before dementia: 264)

Model Event APOE4 High Low

Cox Dementia 0.751 (0.18) 0.02 (0.17) 0.20 (0.32)
Death 0.29 (0.16) 0.322 (0.13) 0.21 (0.26)

F - G Dementia 0.492 (0.18) -0.21 (0.16) 0.01 (0.33)
Death -0.08 (0.17) 0.22 (0.13) 0.05 (0.25)

1P-value less than 0.001
2P-value less than 0.01

2.4.3 Parametric modeling of CIF

However, neither of these two semi-parametric models can accommodate left censored

data. The left censoring is well handled in the parametric models with Fj0(t) =

1 − exp(− t−cj
bj

)aj). Proportional SH model subject to the constraint is of another

interest. Being aware that the dementia times are relatively smaller than death times

since the death times of dementia subjects are obviously larger than their dementia

times. Besides this dementia is our focus event. With these considerations, we always

assume proportional SH for dementia after taking into account of the constraint that

overall probability of any event is 1. The fit of three different parametric models

are summarized in Table 2.5. In model (1), which assumes proportional SH for both

events (Jeong and Fine’s parametric model), APOE status is highly significant for

the SH of dementia and higher education is significant for the SH of death. All

the others are not significant. As the same problem which appears in Fine’s semi-

parametric proportional SH model, probability of experiencing any event might be

greater than 1 in this model. According to the estimated parameters and assuming

a subject with APOE carrier and low education, Fdementia(∞;Apoe4 = 1, low =
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1) = 1 − [1 − 0.402]exp(0.85∗1+0.48∗1) = 0.857 and Fdeath(∞;Apoe4 = 1, low = 1) =

1− [1− 0.598]exp(0.044∗1+0.304∗1) = 0.725. These lead to

P (T <∞) = 0.857 + 0.725 = 1.582 > 1,

which makes the proportional SH model a problematic model. The modified models

assume proportional SH for only the event of interest. When assuming proportional

SH for dementia and ignoring the left censored data (model (2)), APOE status is

still significant, which agrees with Fine’s semi-parametric model on dementia, but at

a much reduced risk. Note that in models (2), only the event dementia for which

proportional SH was assumed is comparable to Fine’s semi-parametric proportional

SH model. Thus the coefficients for death do not have the same meaning as those

in proportional SH model. When assuming proportional SH for dementia only and

including the left censored data (model (3)), besides APOE status, both high and

low educations are significant. Considering three education groups, the higher the

education the less the risk for dementia. The effect of APOE becomes much larger.

Again, due to the consideration of the constraint, the coefficients for death are not

meaningful in model (3). Standard error estimates for all covariates from model (3)

are smaller comparing to those from model (1), model (2), Fine’s semi-parametric

model, or Cox model, which did not include left censored data. Therefore, including

left censored data into the analysis, parameter estimates are more precise.

2.5 Discussion

In this Chapter, we proposed a strategy for analyzing competing risks data in the

presence of left censoring. Parametric modeling on CIF was first proposed by Jeong

and Fine (2006) by specifying complementary log-log link function for CIF, which

is linked to Fine’s semi-parametric proportional SH model and recognized also as a

proportional SH model. However, allowing proportional SH for all competing events
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leads to a problem, i.e. P (T <∞) > 1. Our modified parametric model assumes pro-

portional SH for the event of interest and solves the above problem. The disadvantage

of such modeling is that the interpretation for the other events is not straightforward.

Both simulation studies, with/without covariates, show that including left censored

data improves the estimates, resulting in less bias, better coverage probability and

more preciseness. The iterative EM algorithm can be used to obtain the non-

parametric MLEs of CIFs when the competing risks data is also subject to left cen-

soring. Neither Fine’s semi-parametric model nor Cox proportional hazards model

can accommodate left censored data. This is not the case for parametric models since

estimates are obtained by maximizing a likelihood, which is always defined even in

the presence of left censoring.

We then applied the above models to Nun’s data in the presence of left censoring.

Figure 2.4: Cumulative incidence curves of death (black) and MCI (red). The
smooth curves are fitted curves using Weibull distribution function. (the top graph
excludes left and interval censored data, while the bottom graph includes those. )

The baseline sub-distribution was modeled using the product of an unknown constant

and a Weibull distribution, which accommodates improper distributions of CIFs and

gives the marginal probability of event of interest as a by-product. We found both

APOE carrier status and education are significant for incidence of dementia, with
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education being protective.

Parametric analysis handles left censored data and enables estimation of the long-

term proportion of individuals experiencing a particular event type using a simplified

parametric distribution. Weibull distribution was used to parameterize the baseline

distribution. It is worth noting that Weibull distribution could fit CIF with or with-

out a plateau. Such flexibility enables it to be applied for other types of competing

risks data. The figure 2.4 shows how well Weibull distributions fit to the baseline

CIFs of BRAiNS data with MCI and death as competing events. The goodness-of-fit

of baseline distribution was examined by simple plots. It will be of great interest to

propose a more specific goodness-of-fit test.

Copyright c© Yushun Lin, 2011.
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Chapter 3 Multi-state Modeling

Multi-state Markov model is often used to analyze the evolution of cognitive states.

However, the Markovian assumption is violated in BRAiNS data since some transi-

tions are likely time and duration dependent while the others are time homogeneous,

leading to a mixture of semi-Markov and Markov processes. We adopted Larson and

Dinse (1985) competing risks mixture model and broke the joint probability of ob-

serving a sequence of same state until transition into two components: one for the

overall transition probability and the other for survival probability. These two quan-

tities were simultaneously modeled for semi-Markov process. Such modeling leads

to different interpretations in BRAiNS study, i.e., family history, APOE4,and sex by

head injury interaction are significant factors for transition intensities in traditional

Markov model. While in our semi-Markov model, these factors are significant in pre-

dicting the overall transition probabilities, but none of these factors are significant

for duration time distribution.

3.1 Introduction

The typical research of Alzheimer’s disease, a chronic disease, includes a series of

cognitive assessments of subjects over a period of years which are observed at certain

time points, for example, every 2 years. The cognitive assessment evaluates memory,

language, ability to recognize and other cognitive abilities. Such longitudinal studies

record the progression of healthy individuals to chronic diseases, such as cognitive

impairment or dementia. Continuous-time, multi-state process are often used to de-

scribe the history of disease evolvement. In this chapter we consider not only the

absorbing states, but also transient and initial states. Panel data are realizations of a

continuous-time process at arbitrary times. One particular example is homogeneous
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Markov multi-state model which characterizes transition intensities between states

by a set of time-constant.

However, the state structure is not unique and even the state definitions are different

across different centers. Choosing the the appropriate state structure will simplify

the calculation and provide useful information. In the Biologically Resilient Adults in

Neurological Studies (BRAiNS) at the University of Kentucky’s Alzheimer’s Disease

Center (UK ADC), a longitudinal cohort of 1,030 individuals established in 1989 with

ongoing recruitment. Participants consent to extensive annual cognitive and clinical

examinations as well as brain donation upon death. Exclusion criteria include age less

than 60 years, active infectious diseases, neurological disorders, psychiatric disorders,

disabling medical disorders, and dementing illness.

Annual cognitive assessments taken on a cohort of initially cognitively intact subjects

participating in the BRAiNS project are used to classify subjects into one of three

states: normal healthy, Clinical MCI, or dementia. Between assessments subjects

may die or become demented, and these states are treated as completely absorbing

competing states. Clinical MCI is treated as a quasi-absorbing state, as subjects

do not move backward to normal healthy, but they may become demented or die.

Classification into clinical MCI results from a diagnosis of MCI, which is determined

according to the consensus guidelines on MCI developed by the Second International

Working Group on MCI (Winblad, et al, 2004). A dementia classification also re-

sults from a clinical consensus diagnosis of dementia (most often AD). Schmitt, et al

(2001) and Abner, et al (2011) described more details of the BRAiNS project. In this

study, the following four states are used to describe the disease process through the

graphical model, as shown in Figure 3.1.

1. Healthy normal.

2. Clinical mild cognitive impairment(MCI): Diagnosis of clinical MCI is based on

a consensus team review by the examining physicians, neuropsychologists, and the
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clinical research assistant who administered the testing protocol (Jicha, et al, 2008).

3. Dementia: which is based on the criteria of the Joint Working Group of the Na-

tional Institute of the Neurologic and Communication Disorders and Stroke-AD and

Related Disorders (NINCDS-ARDA) (McKhann, et al, 1984).

4. Death.

Health is the initial state for every subject, MCI is the transient state, death

Figure 3.1: Four-state graphical model of BRAiNS study

and dementia are absorbing states. None of these events are recurrent. As intro-

duced in Chapter 1, there is considerable interest to model and inference transition

probabilities and state occupation probabilities, since probabilities are simple to in-

terpret. Such models are usually done by assuming a Markov process and there

are corresponding transition intensity models. However, transition intensities may

vary between individuals. They could be time-dependent which gives an inhomoge-

neous Markov model or non-Markov model, but there is no easy solution to prob-

abilities. Modeling transition intensity is more flexible since the multi-state models

based on intensities can borrow the models known from survival analysis. Our data

can be fully described by transition intensities. The most simple model assumes a

time-homogeneous Markov process, where each transition is characterized by a time-
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constant transition intensity. Such a simple model is not appropriate because clearly,

the hazard rate (or transition intensity) of death from health is age dependent. Thus

a model with time dependent transition intensities is required.

Models fully based on transition intensities have the underlying assumption that all

subjects have the same hazard rate of each event, if no covariate is considered. This

might not be the case in the BRAiNS data, since we think there is a group of subjects

with particular genotype who are likely to convert to MCI from health and another

group who will never convert to MCI. Distinguishing these two will help us better

understand the true hazard rates for those who will develop MCI, i.e. the time to

MCI. Therefore we propose a mixture model with logistic model for probabilities and

survival model for time to events, leading to a semi-Markov process.

In this chapter, we apply Bayesian mixture models to longitudinal failure time da-

ta with the consideration of following issues: (1) missing data, subjects who are

alive and healthy have unknown event type; (2) interval censoring, because of the

yearly visits, event times are subject to interval censoring; (3) random effect, subject-

specific random effect will account for unobserved heterogeneity. Notice that the

likelihood function for multi-state models are usually constructed based on transition

probabilities. Therefore, direct modeling of transition probabilities avoids compute

transition probabilities from transition intensities. The likelihood for the multi-state

model is constructed through a multinomial distribution. The estimation are obtained

through Bayesian approach based on Markov chain Monte Carlo(MCMC) simulation

technique using OpenBUGS. As an application, we show the covariate effects on tran-

sition intensities, overall transition probabilities, and duration times in the BRAiNS

data. We then apply our models to BRAiNS data and compare with the results ob-

tained from traditional intensity-only model.

The structure of this chapter is as follows: Section 2 describes the statistical models

specification and likelihood construction. In Section 3 we explain the Bayesian esti-
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mation method and model selection criteria. In Section 4, we apply these methods to

the BRAiNS data, where we first use a homogeneous Markov process without covari-

ates and compare it to a piecewise homogeneous Markov model. Then parametric

baseline transition intensities, the effects of certain covariates and random effect are

introduced into the model. Finally a discussion is given in Section 5.

3.2 Model Specification

The multi-state process is fully described by transition intensities, the matrix of which

Q(t) is expressed as follows:

Q(t) =



1 2 3 4

1 α11(t) α12(t) α13(t) α14(t)

2 0 α22(t) α23(t) α24(t)

3 0 0 0 0

4 0 0 0 0


where αhj(t) is defined by

αhj(t) = lim
∆t→0

Phj(t, t+ ∆t)

∆t
= lim

∆t→0

pr{X(t+ ∆t) = j|X(t) = h}
∆t

for h, j ∈ {1, 2, 3, 4}. The corresponding transition probability matrix is

P (t) =



1 2 3 4

1 P11(t) P12(t) P13(t) P14(t)

2 0 P22(t) P23(t) P24(t)

3 0 0 1 0

4 0 0 0 1


Within a given time interval t, let njj′ represent the observed number of subjects who

moved from state j to j′, Pjj′ represent the probability of transition from state j to
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j′, also the trial number nj = 1 and number of states k = 4. Then

(nj1, ..., nj4) ∼Multinomial(Pj1, ..., Pj4; 1).

The overall likelihood is:

L =
N∏
i=1

vi∏
l=1

[
4∏
j=1

4∏
j′=1

Pjj′(ti,l)
njj′

]

The remaining work is to specify a model for each transition probability. Depending

on the assumption of Markov or semi-Markov process, the transition probability can

be expressed differently. The following table shows observations from one subject.

The joint probability of observing such a sequence of states for the subject can be

Table 3.1: A simple example of record of states: 1(health), 2(MCI), 3(dementia)

Visit # 1 2 3 4 5 6 7 8
State 1 1 1 1 2 2 2 3
Age 68 70 72 74 76 78 80 82

expressed in a sequence of conditional probabilities:

P (s8 = 3, t8 = 82, s7 = 2, t7 = 80, ..., s1 = 1, t1 = 68)

= P (s8 = 3, t8 = 82|s7 = 2, t7 = 80, s6 = 2, t6 = 78, ..., s1 = 1, t1 = 68)

∗P (s7 = 2, t7 = 80|s6 = 2, t6 = 78, s4 = 1, ..., s1 = 1, t1 = 68)

∗... ∗ P (s2 = 1, t2 = 70|s1 = 1, t1 = 68) ∗ P (s1 = 1, t1 = 68)

Under Markov assumption, the transition probability depends on only the current

state, thus, the above joint probability becomes

P (s8 = 3, t8 = 82|s7 = 2, t7 = 80) ∗ P (s7 = 2, t7 = 80|s6 = 2, t6 = 78)

∗... ∗ P (s2 = 1, t2 = 70|s1 = 1, t68) ∗ P (s1 = 1, t1 = 68)

The above joint probability is constructed under the Markovian assumption. Howev-

er, it is very likely that the transition probabilities depend on the duration time of the
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previous state. To relax the assumption but not lose any information is to consider

only those times when state changes, resulting in a data consisting of time to events

(change of states). In our case, the data consists of two sets of competing risks data.

MCI, dementia, and death are competing risks for healthy normals, dementia and

death are competing risks for subjects who have converted to MCI. Similar to the

models discussed in Chapter 2, assume independent risks and apply survival model

for each event, or apply our proposed competing risks model on joint probability with-

out assuming such independence. But clearly, MCI and death form a semi-competing

risks data. Therefore, we adopt Larson and Dinse’s model and divide the joint density

into the product of marginal density for event probability and conditional density for

event times. The transition probability can be broken into two components: one for

overall transition probability and the other for survival probability conditional on the

specified transition, leading to a a semi-Markov process. Then, the joint probability

can be written as

P (T23 ≤ 82|T23 ≥ 80) ∗ P (T23 ≥ 80|T23 ≥ 78) ∗ P (T23 ≥ 78|T23 ≥ 76)

∗p(2→ 3)

∗P (T12 ≤ 76|T12 ≥ 74) ∗ ... ∗ P (T12 ≥ 70|T12 ≥ 68)

∗p(1→ 2)

= P (80 ≤ T23 ≤ 82) ∗ p(2→ 3) ∗ P (74 ≤ T12 ≤ 76) ∗ p(1→ 2)

The survival model works for each event time and multinomial logistic model work-

s for the overall transition probability. The exact transition times sometimes are

known, for example, the time of death is known in the observational studies of chron-

ic diseases. If this is the case, the corresponding transition probability is replaced

by transition intensity. The transition intensity by definition is very similar to the

hazard rate in a survival model. When exact transition times are known, the likeli-

hood constructed based on transition matrix is the same as that constructed based
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on counting process theory assuming independent risks (Kneib, 2008).

These two methods construct likelihoods differently, especially when covariate effects

are taken into account. We think the second method is more appropriate for the

BRAiNS study with the following considerations: 1. The transitions might be dura-

tion dependent; 2. Covariate effects on probability of being demented and on time to

dementia are different.

Both methods require specifying the model for transition intensity or hazard rate.

Let h = 1, ..., H index the type of transition and i = 1, ...N index the individual

subjects. We adopt a proportional hazards specification. The model specification

for the conditional hazards on event is given by a generalized Cox proportional haz-

ards models. Another regression model for survival data that extends to multi-state

models is the non-parametric (or parametric) additive model (Buckley, 1984). Zi is

a vector that contains explanatory variables (covariates); α(h) is the hazard rate for

transition type h; t is the time from the beginning of last event; β is a vector of un-

known parameters representing fixed effects. For the sake of simplicity, we will drop

the transition index and α(t|Zi) represents the hazard rate for subject i. In order

to investigate the baseline hazard rates, we examine time homogeneous, piecewise

constant, and parametric baseline hazard rate. Furthermore, we add the frailty term

to account for the possible heterogeneity.

Time homogeneous hazard rate

α(t|Zi) = α0exp(β
TZi)

where α0 is an unknown constant.

Piecewise constant hazard rate

α(t|Zi) = α0(t)exp(βTZi)
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where α0(t) is a step function of time t.

Parametric hazard rate

α(t|Zi) = α0(t)exp(βTZi)

where α0(t) = a ∗ ( t−c
b

)a−1, where a > 1, b > 0, and c > 0. This is obtained from

assuming a Weibull distribution function for survival probability F (t). Note that

H0(t) is cumulative baseline hazard function.

F (t) = 1− exp(−(
t− c
b

)a)

S(t) = exp(−(
t− c
b

)a)

H(t) = (
t− c
b

)a

α0(t) =
a

b
∗ (
t− c
b

)a−1.

Parametric hazard rate with shared random effect

α(t|Zi) = α0(t)exp(βTZi + bi)

where α0(t) = a ∗ ( t−c
b

)a−1 and bi is the subject-specific random effect.

These specifications encompass, for example, the homogeneous Markov chain model

that is frequently used. These models can be extended to model duration dependence

transitions, resulting in a semi-Markov model.

Multinomial logistic model for the overall transition probabilities

p(j → j′|Z∗i ) =
exp(γTjj′Z

∗
i )∑

j′ 6=j exp(γ
T
jj′Z

∗
i )
,

where j′ 6= j, γ is a vector of unknown parameters representing fixed effects, including

intercept, and Z∗i is a vector of selected covariates, which can be different from the

covariate vector Zi used in hazard modeling.

3.3 Estimation and Model Selction

Usually the death times are observed exactly, however, the times to MCI and demen-

tia are interval censored. The interval censored times to MCI cause the the time from
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MCI to death to be interval censored as well. For the subjects who are still alive and

MCI free currently or the subjects who have experienced MCI but are alive and de-

mentia free, the type of event is unknown and the time is right censored. Besides this

missing information, the subject-specific random effect will also introduce a number

of parameters. With the consideration of event type imputation for those unknown

event types, the MCMC method is used to obtain the parameter estimates (Chen,

Shao, and Ibrahim, 2000).

OpenBUGS is used for generating samples. The post-process of the simulation results

is tedious since the user needs to specify all the parameters to be monitored in each

run, one by one. It is thus quite useful to call OpenBUGS from R, which is used

to input data and initial values, specify the parameters to be monitored (only once),

and perform other post process. The R package “BRugs”(R development Core Team,

2007) does the work, together with the other package “arm”. (See Appendix V for

OpenBUGS program codes.)

The common approach of obtaining “noninformative” prior is assuming the unknown

parameters are independent of each other and the joint prior can be specified as the

product of individual priors. We assign weakly informative priors to make sure that

estimations are driven by the observed data. In particular, univariate normal priors

with large variation are assigned for covariate effects, uniform priors are assigned for

Weibull parameters, gamma priors are assigned for piecewise hazard rate and random

effect.

Deviance is defined as D(θ) = −2 log(p(y|θ)) + C, where y are the data, θ are the

unknown parameters of the model and p(y|θ) is the likelihood function. Note C is

a constant that will be canceled out in model comparisons. Deviance Information

Criterion(DIC)(Spiegelhalter, et al., 2002), which is intended as a generalization of

Akaike’s Information Criterion (AIC), is a Bayesian method for model comparison

that OpenBUGS can easily calculate from the samples generated by a MCMC simu-
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lation for many models. DIC is given by

DIC = D̄ + pD,

where D̄ is the posterior mean of the deviance, pD is ’the effective number of pa-

rameters’ with pD = D̄ − D̂. D̂ is a point estimate of the deviance obtained by

substituting in the posterior means θ̄ thus D̂ = −2 ∗ log(p(y|θ̄)). For simple models

with little prior information, pD should be approximately the number of parameters.

The model with the smallest DIC is estimated to be the model that would best fit

the dataset that is currently observed.

3.4 Application to the BRAiNS Study

543 Subjects with non-missing covariates of interest in the BRAiNS study are includ-

ed in this analysis. Besides cognitive state, the times to MCI, dementia, or death are

our interested response variables too. The covariates of interest include sex, presence

or absence of any copies of the APOE-4 allele(APOE4), presence or absence of family

history of dementing illness among first degree relatives (family history), and pres-

ence or absence of history of hypertension or head injury at entry (head injury). The

interaction between history of head injury and sex was also tested, as a head injury

of men and women are possibly different.

3.4.1 Markov model using “msm” package

The main focus of this study is to identify risk factors. But we will start by looking

at time-homogeneous and piecewise Markov models without covariates. Comparing

these two models will tell us whether assuming time-homogeneous transition intensi-

ties is realistic. The Markov modeling of panel data can be performed by R package
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“msm” (Jackson, 2011). A sample R code of fitting Markov model using “msm” is

attached in Appendix IV. Table 3.2 shows the frequency counts for each transition.

Based on this table, we specify the possible transitions by assigning non-zero initials.

Table 3.2: Transition numbers for BRAiNS data

Current state
Prior state Healthy MCI Dementia Death

Healthy 4000 97 51 194
MCI 0 100 31 15

The resulting homogeneous transition intensity matrix is shown in Table 3.3. Healthy

normals have about the same risks of converting to MCI (hazard rate = 0.034) and

death before MCI (hazard rate = 0.039). But individuals who already converted to

MCI are more likely to get demented before death. The hazard rate of converting to

dementia is about 3 times as that of death.

Table 3.3: Transition intensity matrix (enclosed in parentheses are 95% confidence
interval). Not-observed transitions have zero intensities

1 2 3 4

1 -0.07(-0.08,-0.06) 0.03(0.03,0.04) 0 0.04(0.03,0.05)
2 0 -0.39(-0.48,-0.32) 0.30(0.24,0.37) 0.09(0.06,0.16)
3 0 0 0 0
4 0 0 0 0

As the transition intensity matrix (Q) is constant over time in the homogeneous pro-

cess, the transition probability matrix at time t (P (t)) can be easily obtained by

solving the equation: P (t) = exp(tQ). For example P (5) is computed and shown in

Table 3.4. Five years after first visit, the probability of being MCI is 5.9%, dementia

6.3%, and death 18%. the probability of converting to dementia after being in MCI

is 65%.

Instead of assuming time homogeneous transition intensities, piecewise constant in-
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Table 3.4: Transition probability matrix 5 years after first visit

1 2 3 4

1 0.70(0.67,0.72) 0.059(0.048,0.071) 0.063(0.051,0.077) 0.18(0.16,0.21)
2 0 0.14(0.093,0.20) 0.65(0.55,0.73) 0.21(0.13,0.31)
3 0 0 1(1,1) 0
4 0 0 0 1(1,1)

tensities were fit to the data as well. It turns our that model fit by piecewise constant

intensities results in much larger likelihood (-2 log LR = 91.1 with 8 degree of free-

dom, p-value<0.00001, compared with time homogeneous intensities). This indicates

that transition intensities are significantly time dependent.

The covariate effects were then investigated. For easy understanding, time homo-

geneous Markov model was used and again, the analysis was done by using “msm”

package. Age at baseline was also included as a covariate. The results for hazard

ratios are summarized in Table 3.5

Note that there are quite a few transitions from MCI to dementia or death and the

variation for covariate effects is quite large. Age at baseline is significant for all

transitions except MCI to death, the hazard increases as the baseline age increases.

Family history is only significant for the transtion from MCI to dementia, subjects

with family history have higher hazard (ratio=1.7). APOE4 is only significant for

the transition from healthy to MCI (hazard ratio=1.7). Females have high hazard

of dementia after experiencing MCI (hazard ratio=1.8). Also, females who had head

injury are at higher risk of MCI.

3.4.2 Time homogeneous hazard rates

Considering that the transitions from health to dementia experiences MCI before

converting to dementia, the transitions from health to MCI and dementia are com-

bined and the transition times to dementia are considered as left censored times for

transition to MCI. The models are set-up by assuming logistic models for event prob-

62



Table 3.5: The hazard ratio of each factor for each transition, resulting from time-
homogeneous Markov model fit by R package “msm”

Covariate Transition type Hazard ratio 95% Lower 95% upper

Age at baseline Health - MCI 1.049 1.025 1.073
Health - Death 1.103 1.080 1.126
MCI - Dementia 1.053 1.016 1.091
MCI - Death 0.937 0.856 1.025

Family history Health - MCI 1.091 0.762 1.561
Health - Death 0.719 0.495 1.044
MCI - Dementia 1.669 1.017 2.740
MCI - Death 0.905 0.279 2.934

APOE4 Health - MCI 1.730 1.225 2.443
Health - Death 0.819 0.555 1.208
MCI - Dementia 0.808 0.491 1.330
MCI - Death 1.173 0.362 3.801

Sex Health - MCI 0.776 0.530 1.135
Health - Death 0.769 0.534 1.107
MCI - Dementia 1.771 1.005 3.119
MCI - Death 0.588 0.177 1.960

Head injury Health - MCI 0.542 0.270 1.086
Health - Death 1.279 0.801 2.044
MCI - Dementia 0.999 0.331 3.014
MCI - Death 0.516 0.0652 4.083

Sex* Health - MCI 3.925 1.631 9.445
Head injury Health - Death 0.699 0.282 1.734

MCI - Dementia 1.137 0.312 4.150
MCI - Death 12.925 0.965 173

abilities and survival models for event times. Note that treating time to death from

healthy as right censored observations when time to MCI is our primary interest will

under-estimate the hazard of converting to MCI. i.e. over-estimate the time to MCI,

for those who will experience MCI before death. On the other hand, treating time to

MCI as right censored observations when time to death (from healthy) under-estimate

the survival times. Thus it is important to use time to MCI survival model for only

those who will convert to MCI and time to death survival model for only those who

will die without converting to MCI.

63



Four binary covariates, i.e., Family history, APOE4, Sex, Head injury, and interaction

between Sex and Head injury are included in both logistic models of probabilities and

survival models. The baseline hazards for survival models are unknown constant. For

ith subject, D1i and D2i indicate the event types.

D1i =


1 , MCI (from Health)

2 , Death (from Health)

NA, Alive and Healthy

and

D2i =


1 , Dementia (from MCI)

2 , Death (from MCI)

NA, otherwise

The logistic model for probability of converting to MCI from healthy state is given

by

logit(P (D1i = 1)) = int[1] + ap[5] ∗ apoe4i + fa[5] ∗ famhxi + se[5] ∗ sexi

+hd[5] ∗ headinji + sh[5] ∗ sexi ∗ headinji (3.1)

The logistic model for probability of converting to dementia from MCI is given by

logit(P (D2i = 1)) = int[2] + ap[6] ∗ apoe4i + fa[6] ∗ famhxi + se[6] ∗ sexi

+hd[6] ∗ headinji + sh[6] ∗ sexi ∗ headinji (3.2)

Note P (D1i = 2) = 1− P (D1i = 1) and P (D2i = 2) = 1− P (D2i = 1).

The survival model for time to events are constructed based on hazard function, as

shown in the following equations. The likelihood construction takes into account of

right censoring and interval censoring.
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Hk0,i = αk0,i ∗ tk,i

Hk0,i = αk0,i ∗ tk,i

Hk,i = Hk0,i ∗ exp(ap[k] ∗ apoe4i + fa[k] ∗ famhxi + se[k] ∗ sexi

+hd[k] ∗ headinji + sh[k] ∗ sexi ∗ headinji)

Fk,i = 1− exp(−Hk,i)

fk,i = exp(−Hk,i) ∗ exp(ap[k] ∗ apoe4i + fa[k] ∗ famhxi + se[k] ∗ sexi

+hd[k] ∗ headinji + sh[k] ∗ sexi ∗ headinji)

loglk,i = (1− dk,i) ∗HU
k,i + dk,i ∗ log((1− Ik,i) ∗ fUk,i + Ik,i ∗ (FU

k,i − FL
k,i))

Where k = 1, 2, 3, 4. tk,i(t
L
k,i,t

U
k,i) is the time to event k, which is subject to interval

censoring. The overall likelihood for survival models is the sum of likelihood for expe-

rienced event types. For example, a subject whose cognitive process follows “Health

to Health to MCI to MCI to Dementia” experiences event type 1 (healthy to MCI)

and 3 (MCI to dementia). If a subject doesn’t experience any event, for example, is

healthy and alive at the end of study, then this subject could experience event type 1

or 2 (healthy to death), depending on the imputed event type which is done through

data augmentation in MCMC data updating. Data augmentation for response vari-

ables is automatically performed in OpenBUGS.

Table 3.6 shows the parameter estimates and their SDs and 95% confidence intervals

for logistic models and survival models. APOE4 and family history are significant for

predicting the probability of converting to MCI from normal healthy, with APOE-4

allele present having higher hazard rate (hazard ratio = exp(0.74)=2.10) and family

history present having higher hazard rate (hazard ratio = exp(0.53)=1.70). However,

none of the covariates included are significant for any survival models. The SDs are

large in survival models for time to death or dementia from MCI, this is due to the

very limited cases of transitions from MCI to death or dementia observed in the study
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Table 3.6: Parameter estimates under time homogeneous hazard rates

Parameter Transition type Mean SD 95% Lower 95% upper

Logistic modeling of probability of MCI
Family history 0.53 0.27 0.01 1.05
APOE4 0.74 0.27 0.22 1.27
Sex 0.08 0.29 -0.49 0.64
Head injury -0.8 0.45 -1.69 0.06
Sex*Head injury 1.03 0.58 -0.1 2.2

Logistic modeling of probability of Dementia
Family history 0.67 0.82 -0.94 2.30
APOE4 -1.05 0.72 -2.54 0.31
Sex 0.07 0.79 -1.47 1.64
Head injury -0.79 1.85 -4.3 3.0
Sex*Head injury 1.15 2.11 -2.96 5.24

Time to event survival model
α0 Health - MCI 0.010 0.002 0.007 0.014

Health - Death 0.009 0.002 0.007 0.013
MCI - Dementia 0.346 0.181 0.110 0.795
MCI - Death 1.86 4.43 1.01 16.9

Family history Health - MCI -0.30 0.19 -0.68 0.08
Health - Death -0.32 0.19 -0.68 0.05
MCI - Dementia 0.68 0.57 -0.45 1.78
MCI - Death -5.34 7.39 -21.5 7.89

APOE4 Health - MCI 0.069 0.190 -0.306 0.437
Health - Death 0.049 0.190 -0.326 0.423
MCI - Dementia -0.084 0.555 -1.187 0.981
MCI - Death -8.27 6.55 -23.2 2.01

Sex Health - MCI -0.235 0.210 -0.652 0.168
Health - Death -0.229 0.187 -0.590 0.133
MCI - Dementia 0.303 0.556 -0.770 1.411
MCI - Death -8.62 6.42 -23.17 1.43

Head injury Health - MCI -0.138 0.396 -0.956 0.601
Health - Death -0.006 0.241 -0.482 0.466
MCI - Dementia -1.12 1.48 -4.35 1.47
MCI - Death -6.92 7.53 -22.8 8.78

Sex* Health - MCI 0.371 0.475 -0.555 1.306
Head injury Health - Death 0.368 0.357 -0.325 1.039

MCI - Dementia 1.322 1.610 -1.570 4.790
MCI - Death -0.327 9.896 -19.99 19.00
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currently.

3.4.3 Piecewise constant hazard rates

Considering that time homogeneous assumption on hazard rate might be too restric-

tive, we divide the time into pieces by a set of pre-specified points, τ0, ..., τJ , and

assume constant intensity within each piece. Otherwise the model keeps the same as

that in the last subsection. For simplicity, we assume the number of pieces J are the

same for all transitions. So αk0 = (αk0[1], ..., αk0[J ]), and

Hk0,i =
∑
j<jk,i

αk0[j] ∗ (τj − τj−1]) + αk0[jk,i] ∗ (tk,i − τji−1)

where k = 1, 2, 3, 4 and jk,i tells which piece tk,i falls in. The estimated values of

intensities by piece are summarized in Table 3.7. Not surprisingly, both hazards

of converting to MCI and death increase as age increases, and almost within every

piece, the hazard rate of converting to MCI is higher than that of death. However, the

hazard rate of death from MCI is almost zero, this could be due to the very limited

follow-up years after converting to MCI. The other possibility is that subjects who

converted to MCI convert to dementia before death, and dementia is a competing

risk of death in this case.

3.4.4 Parametric hazard rates

Based on the piecewise hazard rates, the Weibull distributions were assumed for

baseline survival functions. Thus, the cumulative hazard function has the form:

Hk0,i = (
tk,i − ck
bk

)ak ,

where k = 1, 2, 3, 4 and ak, bk, and ck are Weibull parameters. ck are set to be the

smallest times observed for each transition, i.e., c1 = c2 = 61, c3 = c4 = 0. Table 3.8
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Table 3.7: Baseline hazard rates

Health - MCI Health - Death
Time Mean hazard Mean hazard

0-60 0 0
60-65 0.00654 0.00009459
65-70 0.003649 0.002731
70-73 0.01288 0.009866
73-75 0.02548 0.01165
75-78 0.02312 0.01252
78-80 0.0307 0.03303
80-83 0.08775 0.04802
83-85 0.09602 0.05178
85-88 0.1781 0.09791
88-90 0.2919 0.1516
90-93 0.2361 0.2287
93-95 0.331 0.17
95-105 0.9607 0.3219

MCI - Dementia MCI - Death
0 0 0
0-2 0.1649 0
2-3 0.8257 0
3-9 3.549 0

shows the parameter estimates and their SDs and 95% confidence intervals for logistic

models and survival models. Similar to the results from homogeneous intensities,

APOE4 and family history are significant for predicting probability of converting to

MCI from normal healthy, with APOE-4 allele present having higher hazard rate

(hazard ratio = exp(0.772)=2.16) and family history present having higher hazard

rate (hazard ratio = exp(0.495)=1.64). Besides these, the interaction between sex

and head injury is also significant, notice that the head injury is almost significant,

and these two factors have opposite effect. So the combination of two factors tells that

head injury in males somehow is protective against converting to MCI. The hazard

of converting to MCI for females with head injury history is about 3 times that of

males with head injury history. None of the covariates included are significant for

any survival models, although family history is close to being a significant factor for
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time to dementia from MCI and sex is close to being a significant for time to MCI

or death from health. Again, the large SDs in survival models for time to death or

dementia from MCI is due to the very limited cases of transitions from MCI to death

or dementia observed in the study currently.

In Figure 3.2, the black circles represent the hazard rates over time, resulting from

piecewise transition intensity modeling, and the red curve represents the parametric

hazard rate after assuming Weibull distribution survival function whose parameters

are estimated from parametric transition intensity modeling. As we can see from the

figure, the parametric hazard rate functions for MCI and death (from health) fit the

piecewise hazards reasonably well.

Figure 3.2: Baseline hazards

The random effect was further introduced into the parametric model with cumulative

hazard function

Hk,i = Hk0,iexp(β
TZi + bi)

where Hk0,i is baseline cumulative hazard and bi is the subject-specific random effect.

As discussed in the next section, including such random effect doesn’t fit the model

any better.
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Table 3.8: Parameter estimates under parametric hazard rates

Parameter Transition type Mean SD 95% Lower 95% upper

Logistic modeling of probability of MCI
Family history 0.495 0.245 0.015 0.985
APOE4 0.772 0.247 0.285 1.263
Sex 0.077 0.268 -0.453 0.615
Head injury -0.819 0.439 -1.706 0.009
Sex*Head injury 1.099 0.563 0.008 2.208

Logistic modeling of probability of Dementia
Family history 0.778 0.672 -0.493 2.183
APOE4 -1.016 0.662 -2.362 0.251
Sex 0.217 0.661 -1.12 1.517
Head injury -0.703 1.800 -4.338 2.914
Sex*Head injury 1.279 2.047 -2.773 5.318

Time to event survival model
a Health - MCI 3.97 0.26 3.47 4.48

Health - Death 4.11 0.23 3.65 4.57
MCI - Dementia 1.99 0.45 1.20 2.96
MCI - Death 6.69 2.26 2.00 9.86

b Health - MCI 25.8 1.36 23.2 28.6
Health - Death 29.4 1.15 27.2 31.7
MCI - Dementia 3.27 0.95 2.00 5.69
MCI - Death 31.7 11.8 8.50 49.2

Family history Health - MCI 0.126 0.192 -0.245 0.490
Health - Death 0.140 0.175 -0.207 0.471
MCI - Dementia 1.086 0.590 -0.084 2.241
MCI - Death -3.342 8.583 -21.19 12.08

APOE4 Health - MCI 0.150 0.190 -0.227 0.524
Health - Death 0.223 0.183 -0.134 0.586
MCI - Dementia 0.084 0.575 -1.120 1.175
MCI - Death -4.324 8.047 -21.09 10.45

Sex Health - MCI -0.330 0.211 -0.763 0.091
Health - Death -0.237 0.180 -0.587 0.114
MCI - Dementia 0.566 0.543 -0.455 1.642
MCI - Death -4.142 8.094 -20.99 10.44

Head injury Health - MCI 0.010 0.393 -0.793 0.759
Health - Death 0.132 0.240 -0.363 0.589
MCI - Dementia -1.161 1.594 -4.484 1.668
MCI - Death -2.545 8.642 -20.26 13.43

Sex* Health - MCI 0.115 0.484 -0.832 1.076
Head injury Health - Death 0.381 0.339 -0.298 1.030

MCI - Dementia 1.163 1.740 -2.061 4.725
MCI - Death -0.307 9.716 -19.649 18.74
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We then separate the transitions from health to MCI and the transitions from health

to dementia. Instead of imputing transition types, we construct the likelihood through

a multinomial distribution. More specifically, for each subject, (S1, S2, S3, S4) ∼

Multinomial(Pjj′ , 1), where Si is indicator for state i and Pjj′ is element of the tran-

sition matrix. Table 3.9 summarizes the estimates and standard errors. APOE4

and head injury are significant for overall transition probability from health state

to MCI. APOE4 and family history are significant for overall transition probability

from health state to dementia. Only family history is significant for the duration

time at MCI before converting to dementia. Weibull shape parameters for transition-

s from health(1) are significantly larger than 1, suggesting time dependent hazard

rates. However, the Weibull shape parameters for transitions from MCI(2) are not

significantly different from 1, indicating time homogeneous hazard rates. Therefore,

we apply a semi-Markov and Markov mixture model to the BRAiNS data, assum-

ing a semi-Markov process from transitions from health state and a Markov process

for transitions from MCI. The corresponding estimates are included in Table 3.10.

The parameter estimates are similar to those obtained from pure semi-Markov mod-

el except that family history is not significant for transition intensity from MCI to

dementia.

3.4.5 Model comparison

The Markov model estimated using “msm” package and the other models estimated

by assuming a mixture modeling of transition probabilities and hazard rates provide

different interpretations. In intensity only Markov model, family history, APOE4,

and sex by head injury interaction are significant factors affecting some transition

intensities. However, none of these factors are significant for any hazards in the mix-

ture models. But these factors are significant in predicting transition probabilities in

the mixture models.
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These two types of models used different likelihood functions as discussed in Section

1, so there is no test available to compare them. As stated earlier, we think in the

BRAiNS data, the latter is likely a better choice. We therefore focus now on com-

paring models within the Bayesian method.

The estimated DIC values for the fitted models, where conversions to MCI and de-

mentia from health, are combined are summarized in Table 3.11. Clearly, the model

with time-homogeneous transition intensities has the largest DIC, which indicates

the transition intensities are time-dependent. The time here is actually duration in

previous state. The model with parametric intensities fit the data well. However, the

parametric model that includes random effect doesn’t fit the model any better.

Table 3.11: Model comparison using DIC

Model DIC

Time homogeneous transition intensities 4976.4
Piecewise constant transition intensities NA
Parametric transition intensities 3423.7
Parametric transition intensities with shared random effect 3444.4

A couple of independent runs were carried for each Bayesian model. Every 50th sam-

ples were collected after discarding first 10000 sample in each chain with total number

of samples collected about 3600. The upper limits for ’potential scale reduction fac-

tor’, calculated by Gelman and Rubin method, are close to 1 for all parameters,

which means the approximate convergence is achieved. The sampling history and

auto-correlation for each parameter are used to check the sampling efficiency. Since

all parameters show similar pattern, we only show the plots for coefficients of fam-

ily history here (Figure 3.3 and Figure 3.4). The sampling history (time series)

plots look like white noise, and the chain is well mixing. The auto-correlation plot

show the correlations are close to 0 after lag number ≥ 2 and thus the samples are

approximately independent.
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Figure 3.3: Sampling history of coefficient for family history. Indices 1-4 represent 4
transition types and indices 5-6 represent probability models
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Figure 3.4: Autocorrelation of coefficient for family history. Indices 1-4 represent 4
transition types and indices 5-6 represent probability models

3.5 Discussion

In this Chapter, we introduced two methods of likelihood function construction for

panel data. One based on transition intensity matrix and assumed a Markovian pro-

cess, and the other based on mixture modeling of transition probabilities and hazard

rates with semi-Markov assumption. In BRAiNS study, we think that some healthy

subjects with particular covariates are more likely to develop MCI before death, while

some may be very unlikely to develop MCI. Thus, it is more appropriate to distin-

guish these two groups before investigating their hazards of converting to MCI. We
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have proposed a competing risks type Bayesian mixture model with some complexity,

i.e. many unknown parameters especially piecewise hazard rates were assumed, and

data imputation, but simple implementation with the help of OpenBUGS, especially

R package ’BRugs’ in R. This model has several advantages.

First, compared to the traditional Markov models which are totally transition inten-

sities specified, our model takes the mixture structure of probability and hazards,

this takes into account the following fact: When we are investigating the hazard of

converting to MCI from normal health, basically we are looking at the ages when

subjects become MCI, and treating death from health as right censored observations.

If subjects who died before converting to MCI are those who will never experience

MCI, then the death times tend to over-estimate the times to MCI. Distinguishing

these two events will eliminate such bias.

Second, Bayesian modeling allows the inclusion of additional terms, for example, ran-

dom effects. Although including random effects in our proposed model doesn’t fit the

data any better. This may be due to that we specify the same random effect for all

transition intensity regressions. The drawback with including additional parameters

is more computation time is needed in MCMC simulation. The model with non-

parametric (or piecewise) baseline transition intensities requires specification of most

parameters and takes much longer time. However, we found that Weibull distribu-

tion is a good fit to the baseline survival function and this reduces a large amount of

unknown parameters to save time in computation.

Third, the mixture model facilitate the data augmentation. In a Bayesian approach,

data augmentation is performed through data imputation in each MCMC simulation

step and thus makes data complete. In our modeling of BRAiNS study, for subjects

who are alive and healthy, the types of event from normal health are unknown, but in

each step of MCMC simulation, types will be imputed based on the logistic model we

specified for probability of converting to MCI, and further be used in the likelihood
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computation in the survival part of the model.

Fourth, with OpenBUGS’s zero trick, any model will work as long as there is a like-

lihood specified. This allows us to incorporate the interval censored data. We could

specify the contributed likelihood for exact observed times, right censored or interval

censored observations.

The model seems to work better only when there is an adequate number of transi-

tions happening. Since the large number of events fits the probability model better

which in turn will impute the unknown event types more close to the real data. In

the current BRAiNS dataset, there are quite limited cases of converting from MCI to

dementia or to death. However, this won’t be an issue once more years of follow-up

are realized for those subjects who converted to MCI from health.

In summary, we found that APOE4, family history, and sex by head injury inter-

action are significant factors for predicting probability of converting to MCI from

normal healthy, with APOE-4 allele present, family history present, and females who

had head injury having higher hazard rate. But none of the covariates interested are

significant for any survival models.

Although it is reasonable to utilize a mixture model for the transitions from normal

health state, with multinomial logistic model for the overall transition probabilities

and survival models for time to events given specific transitions. It might not be good

idea to apply the mixture model for the transitions from MCI state. Since clinical

MCI behaves as biomarker for dementia, so eventually all clinical MCI will convert

to dementia and the probability model does not work in this case. Instead, treating

death from MCI as right censored observations when times to dementia (from MCI)

is our interest. Alternatively, we assumed a Markov process for the transitions from

MCI. The resulting model is a mixture of semi-Markov and Markov processes. The

likelihood was constructed through a multinomial distribution.

Copyright c© Yushun Lin, 2011.

78



Chapter 4 Discussions and Future Research

In summary, we proposed a direct modeling of CIF for competing risks data without

assuming dependence among risks. The model accommodates the left censored data

and ensure that the sum of the CIFs never exceeds one. We also proposed a semi-

Markov multi-state model by modeling the overall transition probability and duration

time distribution. The model allows interval censored data and could incorporate the

random effects.

Since under non-informative censoring, the likelihood function for competing risks

data factors as a product of individual likelihoods, one for each event. Thus the basic

simple models of competing risks data based on the CSHs could be analyzed by a

series of standard survival analyses, one risk at a time, treating failures from other

risks as right censored observations. These simple models have no common param-

eters for any two or more CSH functions, i.e., there are no covariates for which the

effect is assumed to be the same on several CSHs. Notice also as in Cox regression

models, some parameters may be forced to be common for several risks.

However, there is a key difference between such analyses on CSHs and a standard

survival analysis. The simple relation of survival probability and hazard function in

standard sruvival analysis no longer holds in the competing risks framework. The

transformation of the CSH through 1-exp(-cumulative CSH) does not have a proba-

bility interpretation. Although under an assumption of independent competing risks,

the CIF, which is well defined and has probability interpretation, can be obtained by

the above transformation. So basically in competing risks analyses, CSHs model are

assumed and estimated cumulative incidence functions are computed based on these

CSHs. A drawback to this approach, as pointed out by Gray (1988) and Pepe (1991),

is that CIFs do not depend on the covariates in the same way as CSHs do. Because
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of these concerns, Fine and Gray (1999) introduced a new semi-parametric compet-

ing risks regression model where the CIFs are directly regressed on the covariates of

interest. Jeong and Fine (2006) proposed parametric modeling of CIFs and found

that using an improper Gompertz distribution as baseline distribution is a good fit

to their data. Such parametric model is able to handle censoring data.

Both CSH regression models and CIF regression models are created based on the

same likelihood function. The difference is that the likelihood expressed in terms of

CIFs does not factor into separate pieces, one for each risk. Under this formulation,

specification of one CIF might affect the other CIFs. It acts like introducing depen-

dence among risks. We have applied such parametric modeling of CIFs to the Nun

study. The link function, log{−log(1 − F )}, where F represents a CIF, was used s-

ince it corresponds to a proportional SH model (Jeong and Fine, 2007). The resulting

parameters are comparable to those obtained by CSH modeling. The reason is that

their likelihood functions are the same.

These direct models of CIFs used improper distributions, either parametric form or

non-parametric form, to model the CIFs. However, Jeong and Fine did not consider

the constraint that all marginal risk probabilities add to 1 under any covariate config-

urations in their models and the resulting CIFs could sum to a number, greater than

1, which is an error. In our proposed parametric model, we took such a constraint

into account, assuming a proportional SH for the risk of interest and another similar

but no longer proportional SH model for other risks. The marginal probability of risk

of interest is also a parameter in the model.

As mentioned above, the mis-specification of one risk might effect others, the correct

improper baseline parametric distribution should be used to capture the features of

the data. Weibull distribution, which graphically fits the non-parametric MLEs of

CIFs quite well in the Nun study, was used to parameterize the baseline distribution.

Note also that Weibull distribution could well fit a CIF with or without a plateau,
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which enables it to be applied for other types of competing risks data. It turned

out that the parameters for the risks of interest are similar to those that would be

obtained from Jeong’s proportional SH model, but the parameters corresponding to

other risks are not comparable to those obtained from Jeong’s model. The disadvan-

tage of our proposed model is that the interpretation of the parameters for the other

risks is not straightforward. The fit of Weibull distribution the CIF is examined by

comparing the two graphically. It is also interesting to know whether the CSH model

or direct model of CIF fits the data better. One possible future work in this area is

to propose a more specific goodness-of-fit test.

Considering that dementia and death are actually forming a semi-competing risks da-

ta, i.e., the subject who converted to dementia will further experience death, but the

subjects who died will never encounter dementia. In such situation, the death times

are relatively larger than times to dementia, hence treating death times as censored

when dementia is the risk of interest will overestimate the survival times to dementia

(or underestimate the hazard rate of dementia). This is more obvious, when clini-

cal MCI, a phase before dementia, together with death are the two competing risks,

as discussed in Chapter 3. Another fact is that some subjects who are more likely

to convert to MCI converted at relatively older ages. With these considerations, a

mixture model, as first introduced by Larson and Dinse (1985) is more promising in

semi-competing risks data. Mixture models which jointly model event probabilities

and survival times were utilized in multi-state modeling in Chapter 3.

Transition intensities and probabilities are the most important quantities in multi-

state models. Simple models assume a Markov model by characterizing the transition

probabilities, for example, through a multinomial logistic regression (Salazar, et al.,

2007). More general models are based on transition intensities. The Bayesian version

of modeling transition probabilities is assuming a multinomial distribution. Each

transition probability is expressed in terms of transition intensity using the Kol-
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mogorov equation (Pan, et al., 2007), and covariate effects can be specified through

the regression models for transition intensities. The advantage of the Bayesian ap-

proach in this situation is to take the time intervals into account. Such Markov

modeling of probability with the consideration of visit times, as well as other covari-

ates might be worth further investigation.

The likelihood function is always constructed based on transition probabilities. Mod-

eling transition intensities become difficult when the process is non-homogeneous

Markov or non-Markov because transition probabilities are no longer easy to obtain

from the transition intensities. Therefore, modeling transition probabilities directly is

good alternative since it avoids calculating transition probability from the intensities.

We proposed a semi-Markov multi-state model by directly modeling transition prob-

ability through a multinomial distribution. The transition probability consists two

components: one for overall transition probability, the other for conditional survival

probability. The computations were done with the help of OpenBUGS software and

R package “BRugs”. The Bayesian model allows complex structure, i.e., hierarchical

models. The model will work if random effects are included. It is easy to obtain

both point estimate and uncertainty of specified function using Bayesian approach.

The other advantages of Bayesian modeling through MCMC simulation technique is

handling missing values through data augmentation.

It turns out that cumulative hazard functions resulting from Weibull distribution with

three parameters fit the cumulative hazard functions obtained from piecewise hazard

quite well. The Weibull shape parameter is close to 1 for transitions from MCI to

dementia or to death, suggesting a Markov process. Thus, We consider both constant

transition intensities and duration time dependent transition intensities, leading to a

mixture of Markov and semi-Markov processes, and model both transition intensities

and transition probabilities. Including the shared random effect in the model did

not improve the fitting, based on DIC. As a future work, we may specify different
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magnitudes of random effects for different types of transitions, but these effects are

correlated. As a Bayesian model, it is always of interest to know the effect of priors

on the estimation. The missing transition times can be imputed through data aug-

mentation in Bayesian approach.

As discussed in Chapter 3, the four-state model of BRAiNS data consists of two

sets of (semi-)competing risks data. However, these two are different because of the

following: clinical MCI behaves as biomarker for dementia, so eventually all clinical

MCI will convert to dementia if they would live long enough. By this we mean for

those who died before converting to dementia from MCI are going to convert to de-

mentia if they would live longer. If this is the case, treating death from MCI as right

censored observations when times to dementia (from MCI) is our interest might be

more appropriate.

Multi-state model is the most general way describing longitudinal failure time data.

Depending on the research question, sometimes maybe a portion of the whole data is

considered, for example, competing risks data. Another question of interest is “does

converting to MCI shorten the life expectancy?”. In this case, there is only one risk,

which is death. The data becomes standard survival data and the effect of convert-

ing to MCI acts as an effect of a time-dependent covariate. Similar effects can be

introduced into our proposed multi-state models through modeling overall transition

probabilities and through modeling conditional survival probability.

Copyright c© Yushun Lin, 2011.
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Appendices

I. Basic quantities in competing risks modeling

a. Overall hazard rate λ(t)

λ(t) = lim
∆→0

P [t ≤ T ≤ t+ ∆|T ≥ t]

∆

b. Cause-specific hazard rate λj(t)

λj(t) = lim
∆→0

P [t ≤ T ≤ t+ ∆, J = j|T ≥ t]

∆

Thus,

λ(t) =
J∑
j=1

λj(t)

c. Overall cumulative hazard Λ(t)

Λ(t) =


∫ t

0
λ(s)ds, continuous∑
s≤t λ(s), discrete

d. Empirical survivor function F(t)

F (t) = P [T > t] =


exp(−Λ(t)), continuous∏

ti≤t(1− dΛ(t)), discrete

e. Cumulative incidence function Fj(t)

Fj(t) = P [T ≤ t, J = j]

For discrete models, the jump values of the sub-distribution is

pj(t) = P [T = t, J = j] = Fj(t)− Fj(t−)
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II. A preliminary draft of R code for computing NPMLEs

To use this code, input the variables T (time), DELTA (1 for observed events; 0 for

right censored, -1 for left censored) D1(indicator for experiencing event 1), and D2

(indicator for experiencing event 2). CIF <- function (data0, iternum, eps) {

t.min <- min( data0$T[data0$DELTA==1] )

data0 <- data0[which(data0$T>=t.min),]

#sort the data by t

data1 <- data0[order(data0$T, na.last=NA) , ] #NA are removed.

t <- data1$T

delta <- data1$DELTA

d1 <- data1$D1

d2 <- data1$D2

type <- d1+2*d2

#calculate the followings: e1, e2, te, tl, tc, c, nt, nc, ne, nr

Nobs <- length(t) #Nobs:number of total subjects

n0 <- length(t[delta==1]) #n0:number of events

te <- unique(t[delta==1]) #distinct event times

ne <- length(te) #ne:number of distinct event times

tl <- t[delta==-1] #vector recording left-censored times for type 1 event

nl <- length(tl) #nl:number of left times

lt <- type[delta==-1] #lt: left-censored type indicator

tc <- t[delta==0]

nc <- length(tc)

nr <- vector(length=ne) #vector of number at risk

c <- vector(length=ne) #vector of right censored obs

e1 0 <- tapply(d1[delta==1],t[delta==1],sum)

e2 0 <- tapply(d2[delta==1],t[delta==1],sum)
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nt 0 <- e1 0 + e2 0 #number of events at each time point (complete data)

for (i in 1:ne) { c[i] <- 0

for (j in 1:nc) { if( (i<ne & (te[i]<=tc[j] & tc[j]<te[i+1]))

— (i==ne & te[i]<=tc[j]) ) c[i]<- c[i]+1 }}

nr[1] <- Nobs - nl

for (i in 2:ne) { nr[i] <- nr[i-1] - nt 0[i-1] - c[i-1] }

#cause-specific hazard rate

lam1 <- e1 0/nr

lam2 <- e2 0/nr

lam <- lam1 + lam2

p <- vector(length=ne)

p1 <- vector(length=ne)

p2 <- vector(length=ne) #point mass (p1,p2,p)

F <- vector(length=ne)

F1 <- vector(length=ne)

F2 <- vector(length=ne)

LAM <- vector(length=ne)

LAM1 <- vector(length=ne)

LAM2 <- vector(length=ne)

F new <- vector(length=ne)

F1 new <- vector(length=ne)

F2 new <- vector(length=ne)

F[1] <- 1-lam[1]

p[1] <- lam[1]

p1[1] <- lam1[1]

p2[1] <- lam2[1]

for (k in 1:ne) {
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LAM1[k] <- sum(lam1[1:k])

LAM2[k] <- sum(lam2[1:k])

LAM[k] <- LAM1[k] + LAM2[k]

if (k>1) {F[k] <- F[k-1] * (1-lam[k])

p[k] <- F[k-1] - F[k]

p1[k] <- lam1[k] * F[k-1]

p2[k] <- lam2[k] * F[k-1]} }

for (k in 1:ne) { F1[k] <- sum(p1[1:k])

F2[k] <- sum(p2[1:k])}

plot(te,F2,lty=1, type=”s”)

lines(te,F1,lty=1, type=”s”)

for (iter in 1:iternum) {

#update e1, e2 and nt

d1 delta <- matrix(rep(0,ne*nl), nrow=ne, ncol=nl)

d2 delta <- matrix(rep(0,ne*nl), nrow=ne, ncol=nl)

for (j in 1:nl) {

if ( max(F1[te<=tl[j]]) >0 )

d1 delta[,j] <- (p1/max(F1[te<=tl[j]])) * ( as.numeric(te<=tl[j]))

* ( as.numeric(lt[j]==1))

if ( max(F2[te<=tl[j]]) >0 )

d2 delta[,j] <- (p2/max(F2[te<=tl[j]])) * ( as.numeric(te<=tl[j]))

* ( as.numeric(lt[j]==2))

}

e1 <- e1 0 + apply(d1 delta,1,sum)

e2 <- e2 0 + apply(d2 delta,1,sum)

nt <- e1+e2 #number of events including left censoring contributions

#update nr
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nr[1] <- Nobs

for (i in 2:ne) { nr[i] <- nr[i-1] - nt[i-1] - c[i-1] }

#update cause-specific hazard rate

lam1 <- e1/nr

lam2 <- e2/nr

lam <- lam1 + lam2

#update F, F1 and F2

F new[1] <- 1-lam[1]

p[1] <- lam[1]

p1[1] <- lam1[1]

p2[1] <- lam2[1]

for (k in 1:ne) {

LAM1[k] <- sum(lam1[1:k])

LAM2[k] <- sum(lam2[1:k])

LAM[k] <- LAM1[k] + LAM2[k]

if (k>1) {F new[k] <- F new[k-1] * (1-lam[k])

p[k] <- F new[k-1] - F new[k]

p1[k] <- lam1[k] * F new[k-1]

p2[k] <- lam2[k] * F new[k-1]} }

for (k in 1:ne) { F1 new[k] <- sum(p1[1:k])

F2 new[k] <- sum(p2[1:k])}

if (sum(abs(F1 new-F1))<eps & sum(abs(F2 new-F2))<eps)

break

F =F new

F1=F1 new

F2=F2 new }

list(te, F1, F2, F, iternum=iter)
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plot(te,F2,lty=1, type=”s”)

lines(te,F1,lty=1, type=”s”)

}

test <- CIF(nun, iternum=100, eps=1e-10)

III. SAS Code for parametric competing risks modeling

PROC nlp DATA=nun tech=newrap outest=parms COV=2 PCOV;

eps=0.001;

MAX LogLik;

PARMS lam 1=16.3, alpha 1=2.65, c dem=0.5, c 1=75.52, c 2=74.90,

lam 2=16.97, alpha 2=3.08, beta1 apoe4=0.2, beta2 apoe4=0.1,

beta1 high=-0.05, beta2 high=0.2, beta1 low=0.05, beta2 low=0.1;

BOUNDS c dem<1;

exp beta1=exp(beta1 apoe4*apoe4+beta1 high*high+beta1 low*low);

exp beta2=exp(beta2 apoe4*apoe4+beta2 high*high+beta2 low*low);

shift1=(t>c 1)*(t-c 1)+(t<c 1)*eps;

shift2=(t>c 2)*(t-c 2)+(t<c 2)*eps;

F1=1-exp( -(shift1/lam 1)**alpha 1 );

F2=1-exp( -(shift2/lam 2)**alpha 2 );

CDF1=1-( 1 - c dem + c dem*exp( -(shift1/lam 1)**alpha 1 ) )**exp beta1;

pdf1=(1-c dem*F1)**exp beta1*(exp beta1)*(1/(1-c dem*F1))*c dem

*(alpha 1/lam 1)*((shift1/lam 1)**(alpha 1-1))*exp(-(shift1/lam 1)**alpha 1);
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CDF2=(1-c dem)**exp beta1*(1-exp(-exp beta2*(shift2/lam 2)**alpha 2));

pdf2=(1-c dem)**exp beta1*exp(-exp beta2*(shift2/lam 2)**alpha 2)*exp beta2

*alpha 2/lam 2*(shift2/lam 2)**(alpha 2-1);

if 1-CDF1-CDF2¿0 then log surv=log(1-CDF1-CDF2); else log surv=log(eps) - 1.5

+ 2*(1-CDF1-CDF2)/eps - 0.5*(((1-CDF1-CDF2)/eps)**2);

LogLik = (left=0)*( (delta=1)*log(pdf1)+(delta=2)*log(pdf2)

+(delta=0)*log surv ) + (left=1)*log(CDF1);

RUN;

IV. R code for Markov model using “msm” package

library(msm)

library(foreign)

brains <- read.xport(”brains msm.xpt”)

sink(”stat.txt”, append=FALSE, split=FALSE) #output directed to stat.txt

statetable.msm(STATE, PTID, data = brains) #transition numbers

#assign initial transition intenities

twoway4.q <- rbind(c(0,0.034,0,0.04),c(0,0,0.3,0.09),c(0,0,0,0),c(0,0,0,0))

#1. Panel data without covariates

msm0<- msm(STATE∼T,subject=PTID,data=brains,qmatrix=twoway4.q,death=4)

pmatrix.msm(msm0, t = 5, ci = ”normal”)

msm <- msm(STATE ∼ T, subject = PTID, data = brains, qmatrix = twoway4.q,

pci=c(5, 8, 10, 15), death = 4)
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lrtest.msm(msm0, msm)

#2. Panel data with covariate, including baseline age

cov.msm <- msm(STATE ∼ T, subject = PTID, data = brains, covariates = ∼ T0 +

FAMHX + APOE4 + SEX I+HEADINJ+SEXHEAD, qmatrix = twoway4.q, death

= 4, method = ”BFGS”, control = list(fnscale = 4000, maxit = 10000))

hazard.msm(cov.msm) #hazard ratios

lrtest.msm(msm0, cov.msm)

V. R code for running Bayesian inference through MCMC using Open-

BUGS

model

{

C <- 100

# Model

for(i in 1:N) {

zeros[i] <- 0

# Survival densities

xbeta1 <- ap[1]*apoe[i]+fa[1]*famhx[i]+se[1]*sex[i]

+hd[1]*headinj[i]+sh[1]*sexhead[i]

H10 l[i] <- pow((t1L[i]-c[1]+eps)/b[1],a[1])

H10 u[i] <- pow((t1U[i]-c[1]+eps)/b[1],a[1])

H1 l[i] <- H10 l[i] * exp(xbeta1)

H1 u[i] <- H10 u[i] * exp(xbeta1)

F1 l[i] <- 1 - exp(-H1 l[i])

F1 u[i] <- 1 - exp(-H1 u[i])

f1 u[i] <- exp(-H1 u[i])*exp(xbeta1) *a[1]/b[1]*pow((t1U[i]-c[1]+eps)/b[1],(a[1]-1))

91



xbeta2 <- ap[2]*apoe[i]+fa[2]*famhx[i]+se[2]*sex[i]

+hd[2]*headinj[i]+sh[2]*sexhead[i]

H20 l[i] <- pow((t2L[i]-c[2]+eps)/b[2],a[2])

H20 u[i] <- pow((t2U[i]-c[2]+eps)/b[2],a[2])

H2 l[i] <- H20 l[i] * exp(xbeta2)

H2 u[i] <- H20 u[i] * exp(xbeta2)

F2 l[i] <- 1 - exp(-H2 l[i])

F2 u[i] <- 1 - exp(-H2 u[i])

f2 u[i] <- exp(-H2 u[i])*exp(xbeta2) *a[2]/b[2]*pow((t2U[i]-c[2]+eps)/b[2],(a[2]-1))

xbeta3 <- ap[3]*apoe[i]+fa[3]*famhx[i]+se[3]*sex[i]

+hd[3]*headinj[i]+sh[3]*sexhead[i]

H30 l[i] <- pow((t3L[i]-c[3]+eps)/b[3],a[3])

H30 u[i] <- pow((t3U[i]-c[3]+eps)/b[3],a[3])

H3 l[i] <- H30 l[i] * exp(xbeta3)

H3 u[i] <- H30 u[i] * exp(xbeta3)

F3 l[i] <- 1 - exp(-H3 l[i])

F3 u[i] <- 1 - exp(-H3 u[i])

f3 u[i] <- exp(-H3 u[i])*exp(xbeta3) *a[3]/b[3]*pow((t3U[i]-c[3]+eps)/b[3],(a[3]-1))

xbeta4 <- ap[4]*apoe[i]+fa[4]*famhx[i]+se[4]*sex[i]

+hd[4]*headinj[i]+sh[4]*sexhead[i]

H40 l[i] <- pow((t4L[i]-c[4]+eps)/b[4],a[4])

H40 u[i] <- pow((t4U[i]-c[4]+eps)/b[4],a[4])

H4 l[i] <- H40 l[i] * exp(xbeta4)

H4 u[i] <- H40 u[i] * exp(xbeta4)
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F4 l[i] <- 1 - exp(-H4 l[i])

F4 u[i] <- 1 - exp(-H4 u[i])

f4 u[i] <- exp(-H4 u[i])*exp(xbeta4) *a[4]/b[4]*pow((t4U[i]-c[4]+eps)/b[4],(a[4]-1))

# event probabilities D1[i]=1 or 2

# D1[i]=1 for MCI to Dementia, D2[i]=2 for MCI to Death

D1[i] ∼ dcat(P1[i,])

P1[i,1] <- p1[i]

P1[i,2] <- 1-p1[i]

logit(p1[i]) <- int[1] + ap[5]*apoe[i] + fa[5]*famhx[i] + se[5]*sex[i]

D2[i] ∼ dcat(P2[i,])

P2[i,1] <- p2[i]

P2[i,2] <- 1-p2[i]

logit(p2[i]) <- int[2] + ap[6]*apoe[i] + fa[6]*famhx[i] + se[6]*sex[i]

logl1[i,1] <- ((1-d1[i])*(-H1 u[i])

+d1[i]*log((1-I1[i])*f1 u[i]+I1[i]*(F1 u[i]-F1 l[i])+eps))

logl1[i,2] <- ((1-d2[i])*(-H2 u[i])

+d2[i]*log((1-I2[i])*f2 u[i]+I2[i]*(F2 u[i]-F2 l[i])+eps))

logl2[i,1] <- ((1-d3[i])*(-H3 u[i])

+d3[i]*log((1-I3[i])*f3 u[i]+I3[i]*(F3 u[i]-F3 l[i])+eps))*Tr3[i]

logl2[i,2] <- ((1-d4[i])*(-H4 u[i])

+d4[i]*log((1-I4[i])*f4 u[i]+I4[i]*(F4 u[i]-F4 l[i])+eps))*Tr4[i]

# Log Likelihood

logl[i] <- logl1[i,D1[i]]+logl2[i,D2[i]]
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# zeros trick of sampling

phi[i] <- C-logl[i]

zeros[i] ∼ dpois(phi[i])

}

c[1] <- c1

c[2] <- c2

c[3] <- c3

c[4] <- c4

int[1] ∼ dnorm(0.0,0.001)

int[2] ∼ dnorm(0.0,0.001)

for (j in 1:4) {

a[j] ∼ dunif(1,10)

b[j] ∼ dunif(1,50)

hd[j] ∼ dnorm(0.0,0.01)

sh[j] ∼ dnorm(0.0,0.01)

}

for (j in 1:6) {

ap[j] ∼ dnorm(0.0,0.01)

fa[j] ∼ dnorm(0.0,0.01)

se[j] ∼ dnorm(0.0,0.01)

}

}

Copyright c© Yushun Lin, 2011.
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