
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Animal and Food 
Sciences Animal and Food Sciences 

2011 

FACTORS AFFECTING SKELETAL MUSCLE PROTEIN SYNTHESIS FACTORS AFFECTING SKELETAL MUSCLE PROTEIN SYNTHESIS 

IN THE HORSE IN THE HORSE 

Ashley Leigh Wagner 
University of Kentucky, ashleylwagner@uky.edu 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Wagner, Ashley Leigh, "FACTORS AFFECTING SKELETAL MUSCLE PROTEIN SYNTHESIS IN THE HORSE" 
(2011). Theses and Dissertations--Animal and Food Sciences. 1. 
https://uknowledge.uky.edu/animalsci_etds/1 

This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at 
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an 
authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/animalsci_etds
https://uknowledge.uky.edu/animalsci_etds
https://uknowledge.uky.edu/animalsci
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained and attached hereto needed written 

permission statements(s) from the owner(s) of each third-party copyrighted matter to be 

included in my work, allowing electronic distribution (if such use is not permitted by the fair use 

doctrine). 

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive 

and make accessible my work in whole or in part in all forms of media, now or hereafter known. 

I agree that the document mentioned above may be made available immediately for worldwide 

access unless a preapproved embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s dissertation 

including all changes required by the advisory committee. The undersigned agree to abide by 

the statements above. 

Ashley Leigh Wagner, Student 

Dr. Kristine L. Urschel, Major Professor 

David Harmon, Ph.D., Director of Graduate Studies 



 

 

 

 

FACTORS AFFECTING SKELETAL MUSCLE PROTEIN SYNTHESIS IN THE 
HORSE 

 

 

DISSERTATION 

A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy in the College of Agriculture at the University of Kentucky 

 

By 

Ashley Leigh Wagner 

 

Lexington, Kentucky 

Director: Dr. Kristine L. Urschel, Assistant Professor of Animal and Food Sciences 

Lexington, Kentucky 

2011 

 

 

Copyright © Ashley L. Wagner 2011 



 

 

 

 

ABSTRACT OF DISSERTATION 

 

FACTORS AFFECTING SKELETAL MUSCLE PROTEIN SYNTHESIS IN THE 

HORSE 

Skeletal muscle protein synthesis is regulated by the mammalian target of 
rapamycin (mTOR) signaling pathway.  The first objective was to optimize the 
methodological procedures for assessing mTOR signaling in horses.  The response of 
mTOR signaling (P-Akt Ser473, P-S6K1 Thr389, P-rpS6 Ser235/26 & 240/244, and P-4EBP1 
Thr37/46 by Western blotting techniques) to meal consumption was determined at three 
gluteal muscle biopsy depths (6, 8, and 10 cm), and the repeatability of the contralateral 
side at 8 cm during 5 days of repeated biopsies.  There was no effect (P > 0.05) of 
sampling side or biopsy depth on mTOR signaling in mature horses.  During repeated 
biopsies there was an increase (P < 0.05) in downstream (P-S6K1 Thr389, P-rpS6 Ser235/236 

& 240/244 and P-4EBP1 Thr389) mTOR signaling in response to feeding.  The second 
objective was to characterize alterations in mTOR signaling throughout the equid 
lifespan.  Adolescent horses (yearlings and two year olds) studied in the postprandial had 
a lowered (P < 0.05) activation of downstream mTOR signaling with aging.  There was a 
lower (P < 0.05) abundance of P-S6K1 Thr389 in aged horses (23.5 years old) than in 
mature horses (11 years old) during the post-absorptive state.  The final objective was to 
assess mTOR signaling during acute and chronic inflammation.  Acute inflammation 
occurred during 5 days of repeated biopsies, and chronic inflammation is characteristic of 
the aged.  During acute inflammation, characterized by increased muscle mRNA 
expression of inflammatory cytokines, there was an increase (P < 0.05) in downstream 
mTOR signaling.  Chronic inflammation resulted in a decrease (P < 0.05) in the 
abundance of P-S6K1 Thr389.  Phenylbutazone was administered to reduce (P < 0.05) 
acute and chronic inflammation in muscle.  Phenylbutazone administration during acute 
inflammation reduced (P < 0.05) the activation of downstream mTOR signaling and 
trended to increase (P = 0.09) P-S6K1 Thr389 abundance during chronic inflammation. 
Whole-body protein synthesis determined using isotope infusion techniques increased (P 
< 0.05) when chronic inflammation was reduced due to phenylbutazone administration.  
This research provides new standards for muscle biopsy collection when examining 



 

mTOR signaling, and insight into management and feeding practices for adolescent and 
aging horses. 
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CHAPTER I. 

The literature review 

1.1.  INTRODUCTION 

 The horse is a highly athletic animal that excels in a wide variety of sports that 

require targeted training of specific muscle groups with the intent of muscle accretion.  

Skeletal muscle is a unique tissue with a high degree of plasticity in its ability to increase 

and decrease in size, which is dictated by protein content, and in the horse comprises 

50% of body mass (1).  However, the horse has received little research attention with 

regards to protein metabolism and accretion.  Rather, the research in the horse has 

focused on N balance studies, and assessment of ADG during development in order to 

determine protein and lysine requirements, and characterization of skeletal muscle 

physiology, specifically fiber types, during exercise and development. 

 The molecular signaling pathway that regulates protein synthesis has been 

extensively studied in cell culture, rodents, neonatal piglets, and humans.  The 

mammalian target of rapamycin signaling (mTOR) pathway regulates protein synthesis 

and has been examined in a single study in the mature horse, where it was demonstrated 

that the anabolic stimulus of meal consumption increases mTOR signaling (2).  These 

results were in agreement with the numerous studies examining mTOR signaling in 

response to meal consumption in other mammalian species.  The end point of the mTOR 

signaling pathway is protein synthesis and has been examined in the mature horse 

following the anabolic stimuli of exercise using isotope techniques, where it was 

demonstrated that muscle protein synthesis increased to the greatest extent when an 



2 
 

amino acid-glucose mixture was infused in the jugular vein during the recovery period 

(3).  Although the studies examining mTOR signaling and muscle protein fractional 

synthesis rates have examined the response to anabolic stimuli in various ages of animals, 

including neonates, adults, and the aged, there has not been a single study in any 

mammalian species to examine mTOR signaling in response to anabolic stimuli during 

adolescent development. 

 The focus of this review is to examine the literature pertaining to the current 

knowledge of the mTOR signaling pathway, the pathways involved in protein 

breakdown, whole-body and muscle protein synthesis, acute and chronic inflammation, 

and to provide a review of the relevant equine literature.  Specifically, the upstream and 

downstream factors involved in the mTOR signaling pathway, and a review of the 

literature examining the effects of anabolic stimuli throughout the lifespan will be 

discussed.  The methodologies used to examine whole-body and muscle protein synthesis 

and the literature regarding whole-body and muscle protein synthesis in response to 

anabolic stimuli throughout the lifespan will also be discussed.  Next, there will be a brief 

discussion of inflammatory signaling, followed by a description of the inflammatory 

response to both acute and chronic stimuli.  The literature review will end with an 

overview of the equine literature, including an overview of the research pertaining to 

protein nutrition (digestion and absorption, digestibility, and requirements), 

characterization of how muscle physiology, specifically fiber typing, changes with 

development and exercise, and the inflammatory response to acute and chronic 

inflammation. 
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1.2.  THE MAMMALIAN TARGET OF RAPAMYCIN SIGNALING PATHWAY 

 The mTOR signaling pathway was initially discovered in yeast in 1991 by 

Heitman and colleagues (4).  In yeast, mTOR is referred to simply as TOR and received 

its name because it was demonstrated that the protein was inhibited by rapamycin (4).  In 

mammals the mTOR signaling pathway proteins are ubiquitous (5), but the focus of this 

literature review will focus on mTOR signaling in skeletal muscle (Figure 1.1). 

Protein synthesis is limited by both the abundance and efficiency of ribosomes to 

translate mRNA into protein and the availability of amino acids to form a protein.  The 

efficiency of ribosomes to translate mRNA into a protein is modulated by a series of 

intracellular signaling cascades that are associated with the mTOR pathway. 

1.2.1.  The mammalian target of rapamycin complexes 

mTOR and the complexes it forms are predominately localized to the cytoplasm 

during inactivated states, but shuttling to the nucleus and lysosomes occurs during 

various activated states (6), which will be discussed further below.  mTOR behaves as the 

catalytic subunit in 2 complexes: the mTOR complex 1 and 2 (mTORC1 and mTORC2).  

mTORC1 (Figure 1.2A) consists of 5 proteins: mTOR, mammalian lethal with SEC13 

protein 8 (mLST8; also known as GβL), DEP domain-containing mTOR-interacting 

protein (DEPTOR), regulatory-associated protein of mTOR (RAPTOR), and 40 kDa pro-

rich Akt substrate (PRAS40; also known as AKT1S1).  GβL acts as a stabilizer for the 

mTOR-RAPTOR association, and RAPTOR serves to recruit mTOR substrates (7).  GβL 

is also thought to act as a positive regulator for mTORC1 function (8), whereas DEPTOR 

(9) and PRAS40 (10) may have an inhibitory role; all of which will be further described 
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below (Section 1.2.2).  mTORC2 (Figure 1.2B) is comprised of six proteins, three of 

which are also found in mTORC1: mTOR, GβL, and DEPTOR.  The three remaining 

proteins that are unique to mTORC2 are rapamycin-insensitive companion of mTOR 

(RICTOR), mammalian stress-activated map kinase-interacting protein 1 (mSIN1; also 

known as MAPKAP1), and protein observed with RICTOR (PROTOR).  RICTOR and 

PROTOR aid in the assembly of the mTORC2 complex (11).  mSIN1 appears to function 

in the relocalization of the mTORC2 complex towards the cell membrane where it can 

interact with Akt, a signaling factor within the mTOR signaling pathway (12, 13).  The 

two complexes of mTOR have varied functions and contributions to the mTOR signaling 

pathway which will be discussed further below (Section 1.2.2).  Regardless of complex, 

the activated form of mTOR is phosphorylated at sites Ser2448 and Ser2481 (14, 15).  From 

this point on mTOR signaling will refer to mTORC1 signaling. 

1.2.2.  Upstream inputs of the mTOR signaling pathway 

 Upstream input into the mTOR signaling pathway comes from a variety of 

sources including: metabolites, hormones, mechanical stimulation, and physiological 

states.  This section of the literature review will be subdivided by these inputs. 

1.2.2.1.  Insulin and Insulin like growth factor 

The insulin and mTOR signaling pathways are joined through protein kinase B 

(PKB; also known as Akt).  Insulin and insulin like growth factor (IGF) bind with their 

respective receptors, resulting in the autophosphorylation of tyrosine residues.  The 

activation of this insulin receptor tyrosine kinase complex results in the phosphorylation 

of the insulin receptor substrates (IRS-1, IRS-2, and IRS-3) (16).  The IRS act as docking 
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units for the regulatory subunit of phosphoinositide 3-kinase (PI3K) (16, 17), and 

together the activated subunit phosphorylates PtdIns(3,4)P2 / PtdIns(3,4,5)P3-dependent 

kinase 1 (PDK1) on the serine residues.  PDK1 then phosphorylates Akt at Thr308 (18).  

An additional phosphorylation site (Ser473) must also be phosphorylated for Akt to be 

activated (18).  Akt is phosphorylated at Ser473 by the mTORC2 (19, 20).  Although the 

upstream substrates resulting in mTORC2 activation have not been fully elucidated, Akt 

is phosphorylated at Ser473 in response to insulin and IGF-1(18).  Researchers currently 

theorize that phosphorylation of Ser473 primes Akt for further phosphorylation at Thr308 

(21); however, additional research is necessary to confirm this.  In summary, insulin and 

IGF act through the insulin signaling pathway to activate Akt, linking the insulin and 

mTOR signaling pathways. 

There are also several negative effectors that can inhibit activation in the insulin 

signaling pathway which include protein tyrosine phosphatase-1β (PTP1β), phosphatase 

and tensin homolog deleted on chromosome 10 (PTEN), and protein phosphatase 

2A(PP2A) (22-24).  PTP1β dephosphorylates both the insulin receptor and IRS, and thus, 

deactivating the insulin receptor and IRS, which inhibits signaling through the pathway 

(22, 24).  PTEN prevents PI3K from phosphorylating PDK1, inhibiting further signaling 

in the insulin pathway (22, 24).  PP2A dephosphorylates the upstream effector Akt, and 

the downstream effector, 70 kDa S6 Kinase 1 (S6K1) (22, 24), which will be discussed in 

detail below (Section 1.2.3.1).  Ultimately, for Akt activation to occur through the insulin 

signaling pathway the activity of these negative effectors must be suppressed. 

Akt activation leads to mTOR activation through the inhibition of PRAS40 and 

tuberous sclerosis 2 (TSC2).  PRAS40 interacts with RAPTOR as a component of 
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mTORC1 and behaves as a negative regulator, inhibiting mTORC1 activity (25).  Akt 

phoshphorylation of PRAS40 at Thr246 inhibits PRAS40 activity (10), allowing mTORC1 

activation which results in the activation of PRAS40 at Ser183 and Ser221 and subsequent 

disassociation from mTOR (26, 27).  Disassociated PRAS40 then binds to the scaffolding 

protein 14-3-3 (27).  Activated Akt phosphorylates TSC2 at four residues (Ser939, 

Ser1086/1088, Thr1462, and Thr1422) (28, 29).  TSC2 is a component of the TSC1/2 complex, 

which acts as a GTPase activating protein (GAP) for the G protein, Ras homologue 

enriched in brain (RHEB) (30, 31).  Because GDP loaded RHEB cannot activate mTOR, 

the TSC1/2 complex acts as an upstream inhibitor of mTOR.  Akt inhibition of TSC2 

inhibits the TSC1/2 complex resulting in the inhibition of GAP activity.  This keeps 

RHEB bound to GTP, allowing for the activation of mTOR.  PRAS40 and TSC1/2 

complex are inactivated by Akt through phosphorylation and mediate the activity of the 

mTORC1 complex. 

Akt influences other cell mediators not involved in the mTOR signaling pathway.  

Although a detailed description of this is beyond the scope of this literature review, a 

discussion of Akt would not be complete without it.  Activation of Akt results in the 

translocation of glucose transporter 4 (GLUT4) to the cell membrane (16), and 

phosphorylates the transcription factors, forkhead box protein O1 (FoxO1) and O3 

(FoxO3) (32).  The translocation of the 12-transmembrane domain protein, GLUT4, 

results in the transport of glucose into the cell (33, 34).  Alternatively, the FoxO proteins 

are involved in the molecular signaling pathway regulating protein breakdown (Section 

1.3) (35), and in activating the expression of genes regulating apoptosis (36).  Thus, Akt 

influences protein synthesis, protein breakdown, glucose metabolism, and the cell cycle. 
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1.2.2.2. Glucose 

 Although glucose does not directly influence mTOR signaling, cellular energy, 

which is partly derived from glucose, mediates mTOR signaling.  Glucose is transported 

into the cell by GLUT4, which is translocated to the cell membrane by Akt (16).  Briefly, 

ATP is produced from glucose through glycolysis in the cytoplasm, and the Krebs cycle 

and electron chain transport in the mitochondria.  The ratio of AMP to ATP, an indicator 

of cellular energy status, is allosterically monitored by AMPK.  AMPK activity is 

inhibited when there are elevated levels of ATP because the AMP/ATP ratio is reduced.  

During times of low energy status, AMP/ATP ratio is increased, activating AMPK.  

Therefore, any physiological state altering ATP status can affect mTOR signaling, 

because activated AMPK phosphorylates TSC2 at Thr1227 and Ser1345, causing activation 

of TSC2 and forms the TSC1/2 complex (37).  As previously mentioned, the TSC1/2 

complex acts as a GAP for RHEB (30, 31).  Activation of the TSC1/2 complex stimulates 

GAP activity toward RHEB inhibiting mTOR.  AMPK can also inhibit mTORC1 through 

phosphorylating RAPTOR at Ser722 and Ser792 inducing the association of RAPTOR and 

scaffold protein 14-3-3 (38).  Any physiological state affecting AMPK status, such as 

stress and DNA damage, will alter mTOR signaling.  DNA damage upregulates AMPK 

in a p53 dependent manner (39), resulting in inhibition of mTOR signaling.  Because 

AMPK can directly and indirectly inhibit mTORC1, any physiological state affecting 

ATP status can alter mTOR signaling; therefore, in a glucose rich environment, for 

example following a meal, AMPK is reduced allowing mTOR signaling. 
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1.2.2.3  Amino Acids 

 Intracellular amino acids stimulate mTOR signaling (40), and this stimulation 

requires a system of amino acid transporters in order to transport extracellular amino 

acids from blood into the muscle.  Although there is not a full understanding of how 

amino acids stimulate mTORC1 activation, potential mediators have been recognized 

including mitogen-activated protein 4 kinase kinase kinase kinase (MAP4K3) (41, 42) 

and PI3K catalytic subunit type 3 (VPS34) (43).  MAP4K3 is stimulated by amino acids 

independent of insulin and is not suppressed by rapamycin, and results in the activation 

of S6K1, a downstream signaling factor in the mTOR signaling pathway, which will be 

discussed in detail below (Section 1.2.3.1) (42).  Therefore, it is thought that amino acid 

stimulation of MAP4K3 activates S6K1 independent of mTOR, but this requires further 

elucidation.  Although the mechanistic action of VPS34 on downstream mTOR signaling 

factors is not fully understood, VPS34 may be the primary modulator of mTOR signaling 

in response to amino acids (44), and it has been suggested that VPS34 is required for 

leucine stimulation of S6K1 (45).  Another potential mediator is the Rag family of 

GTPases (46).  In the absence of amino acids, the Rag GTPases maintain an inactive 

conformation, but in the presence of amino acids the Rag GTPases become activated and 

interact with RAPTOR resulting in mTORC1 relocalization onto the surface of 

endosomes and lysosomes.  This may enable mTORC1 interaction with RHEB and 

mTORC1 activation (46); however, this requires further elucidation.  Even though a 

mixture of amino acids stimulate mTOR signaling, arginine and leucine have been shown 

to directly stimulate mTOR signaling.  Although the mechanism requires further 

elucidation, arginine stimulated mTOR signaling in a nitric oxide independent manner 
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(47).  Leucine has been identified as a key amino acid in mTORC1 activation (48-50).  

The stimulation of the mTOR signaling pathway by amino acids is pivitol area of 

research and may provide insight to more effective diet formulation. 

1.2.2.4.  Growth factors 

 Growth factors, such as IGF, epidermal growth factor (EGF), platelet derived 

growth factor (PDGF), and vascular endothelial growth factor (VEGF) can also stimulate 

mTOR through Akt-independent mechanism (51-53).  Stimulation of the extracellular 

regulated kinase (MEK/ERK) axis through growth factor activation of a small GTPase in 

the RAt Sarcoma protein subfamily (Ras) and subsequently mitogen activated protein 

kinase kinase kinase (MAP3K) stimulates MEK and then ERK1/2 to inactivate TSC2 

through phosphoryaltion at Ser664 (52).  Additionally, Wingless-Type MMTV Integration 

site family (Wnt) inhibits glycogen synthase kinase 3β (GSK3β) through the β-catenin 

pathway, allowing mTOR activation; however, β-catenin, itself, does not affect mTOR 

activation (51).  The activated form of GSK3β phosphorylates TSC2 at Thr1329, Ser1333, 

Ser1337, and Ser1341 resulting in mTOR inhibition (51).  Growth factors, specifically IGF, 

can also stimulate mTOR signaling in an Akt-dependent manner, which was previously 

discussed above (Section 1.2.2.1). 

1.2.2.5.  Other physiological states 

 Regulated in development and DNA damage response 1 (REDD1; also known as 

RTP801/DDIT4) is a hypoxia induced gene, and can alter mTOR signaling through 

several mechanisms including stress (54-56), glucocorticoid treatment (57), and exercise 

(58).  Hypoxia induces REDD1 expression causing TSC2 to dissociate from scaffolding 
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protein 14-3-3, and allowing TSC1/2 complex activation (55, 56).  Energy stress can also 

act through AMPK dependent and independent mechanisms similar to what is seen 

during hypoxia, with induced expression REDD1 and subsequent TSC1/2 complex 

activation (54).  Additionally, REDD1 expression is induced following glucocorticoid 

treatment with dexamethasone leading to mTOR inhibition through TSC1/2 complex 

activation (59).  Immediately following endurance exercise REDD1 expression is 

elevated (58) and may be responsible for the inhibition of mTOR during exercise; 

however, these mechanisms have not been fully elucidated. 

Another hypoxia induced gene, REDD2 (also known as RTP801L/DDIT4L), also 

acts as an mTOR signaling inhibitor; however, much less is known about REDD2.  

Similar to REDD1, REDD2 does not inhibit mTOR signaling through TSC2 activation 

directly, but through interactions with the scaffolding protein 14-3-3, which results in 

activation of the TSC1/2 complex.  REDD2 expression is stimulated by leucine and 

mechanical stretch (60), demonstrating that positive and negative signaling components 

influence the activation of mTOR simultaneously.  As a result, in order for mTOR 

activation to occur, the positive signaling must be greater than the negative signaling. 

1.2.2.6.  Summary of the upstream activators of mTOR 

 In conclusion, physiological states such as stress, hypoxia, and exercise, growth 

factors, and metabolites are all upstream effectors of the mTOR signaling pathway.  With 

the exception of amino acids, all other effectors work through either activating (negative 

effectors: low energy status, DNA damage, hypoxia) or inhibiting (positive effectors: 

high energy status, insulin, amino acids, and growth factors) the TSC1/2 complex which 
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allows for the inhibition or activation of the mTORC1, respectively.  Upstream of 

mTORC1 the insulin and mTOR signaling pathways converge at Akt (Figure 1.3).  

Additionally, the MEK/ERK axis feeds into the mTOR signaling pathway through the 

TSC1/2 complex.  This series of events leads to the activation of mTORC1. 

1.2.3.  Downstream effectors of the mTOR signaling pathway 

Following mTORC1 activation by RHEB, a series of cell signaling events occurs 

leading to the formation of the ribosome and the initiation of the translation of mRNA 

into a protein.  Activated mTORC1 causes the phosphorylation of S6K1 at Thr389, Thr229, 

Ser404, and Thr412 and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1) at 

Thr 36/47 Ser65, and Thr70 through RAPTOR recruitment (61).  The function of RAPTOR 

in mTORC1 is to recruit substrates in order for these substrates to be in close enough 

proximity for the catalytic activity of mTOR to phosphorylate the substrates (7).  This 

section of the literature review will be subdivided by the downstream effectors. 

1.2.3.1. S6K1 

The activation of S6K1 through phosphorylation is required for RNA processing 

and mRNA translation initiation.  S6K1 mediates several downstream proteins including: 

the transcription factor CREMτ (62), the 80 kDa RNA splicing export factor nuclear cap-

binding protein (CBP80; also known as NCBP1) (63), Aly/REF-like target (SKAR; also 

known as POLDIP3) (64), ribosomal protein S6 (rpS6) (65, 66), and eIF4B (67, 68).  Of 

the targets of S6K1, only SKAR, rpS6, and eIF4B have been extensively studied.  SKAR 

is a scaffolding protein that recruits S6K1 to newly synthesized mRNAs and interacts 

with the exon junction complex that is involved in splicing pre-mRNA (64).  S6K1 
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influence on both CBP80 and SKAR demonstrates the contribution of S6K1 in enhancing 

translational efficiency gained from splicing of pre-mRNA (63, 64).  Translation 

efficiency is the effectiveness of the ribosome to form a protein from the mRNA and 

depends on the availability of amino acids.  rpS6 is activated through phosphorylation at 

Ser235, Ser236, Ser240, Ser244, and Ser247 by S6K1, and was once suggested to increase 

translational efficiency of 5’terminal oligopyrimidine (TOP) mRNAs, which encode 

components of the translation machinery, through ribosomal recruitment (65, 66); 

however, this theory has been disproven (69).  rpS6 activation is necessary for increased 

protein synthesis, but the mechanism is still unclear (69).  rpS6 is also involved in cell 

proliferation (70) and determining cell growth (69).  rpS6 knockout mouse embryo 

fibroblasts have accelerated cell division due to a shortened G1 phase (70).  rpS6 aids in 

the determination of cell growth through controlling protein synthesis and cell division 

(69).  S6K1 activates the RNA-binding protein, eIF4B, through phosphorylation at Ser422, 

and is required for ribosomal recruitment to mRNA (68).  Activated eIF4B stimulates the 

ATPase and helicase activities of eIF4A (67), which enhances the translation of mRNAs 

with some secondary structure because the helicase function can unwind the mRNA 

secondary structure (71).  Overall, S6K1 is thought to increase translational capacity of 

the cell through translation component enhancement (also known as ribosome biogenesis) 

(72), and through ribosomal recruitment to mRNA. 

1.2.3.2.  4EBP1 

mTORC1 activation leads to the phosphorylation of 4EBP1at Thr37and Thr46, 

which is thought to prime 4EBP1 for the subsequent phosphorylation at Ser65 and Thr70 

(73).  4EBP1 acts as a regulator for the formation of the eIF4F complex that is required in 
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the initiation of cap-dependent mRNA translation.  The phosphorylation of 4EBP1 causes 

its dissociation from eIF4E, which allows eIF4E and eIF4G to associate.  eIF4E is the 

rate-limiting translation initiation factor that initiates cap-dependent translation through 

binding to the Cap structure (m7GpppN) at the 5’ end of mRNA transcripts (74); 

therefore, the phosphorylation of 4EBP1 and subsequent dissociation from eIF4E is a key 

step in translation initiation.  The eIF4E/G complex behaves as a scaffolding protein and 

recruits eIF4A and eIF3; together forming the eIF4F complex (75) that is bound to 

m7GpppN.  This complex acts as a mediator of mRNA binding to the 40S ribosomal 

subunit.  Next, eIF4B associates with the eIF4F complex, facilitating mRNA and 

ribosome association (76).  Prior to mRNA recruitment to the 40S subunit, GTP loaded 

eIF2 bound to Met-tRNAi is recruited to the 40S subunit (77).  This entire complex is 

referred to as the 43S pre-initiation complex.  At this point, the 43S complex scans the 

mRNA, once the AUG start codon is reached, the GTPase, eIF5, binds to the complex 

and hydrolyzes eIF2 loaded with GTP to GDP allowing eIF5B to bind to the complex.  

This series of events causes displacement of the eIF2 and recruitment of the 60S 

ribosomal subunit, and relocalizes the 60S ribosomal subunit to the 43S complex (77, 

78).  

1.2.3.3.  Elongation of the polypeptide chain 

The initiation complex then begins elongating the peptide chain with the 

association of eukaryotic elongation factor (eEF) 2 (79).  eEF2 mediates the translocation 

step from the “P” to the “A” site of the peptidyl-tRNA, facilitating ribosome movement 

along the mRNA (53).  The “P” and “A” sites are named because they are the sites where 

the peptidyl-tRNA and the aminoacyl-tRNA bind, respectively.  eEF1A bound to GTP 
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delivers the next aminoacyl-tRNA to the ribosome at the “A” site (80).  A second GTP is 

then needed to remove eEF1A following correct codon, anti-codon recognition (80).  

Finally, eEF1B assists in the regeneration of eEF1A to its active form, where it can 

collect another aminoacyl-tRNA (80).  This process requires metabolic energy in the 

form of GTP, where two molecules of GTP are cleaved for every amino acid added to the 

polypeptide chain. 

1.2.3.4.  Termination of the elongation of the polypeptide chain 

The last step in translation is termination which occurs when the ribosome reaches 

the stop codon.  The eukaryotic releasing factor 1 (eRF1) is activated by eRF3 in a GTP-

dependent manner, which results in eRF1 binding to the ribosome and cleaving the bond 

between the peptide chain and the tRNA (80).  This also requires the hydrolysis of GTP 

(80).  The net result is an increase in protein synthesis. 

1.2.3.5.  Summary of the downstream effectors of mTOR 

 In conclusion, the activation of mTORC1 results in the downstream activation of 

S6K1 and 4EBP1 (Figure 1.3).  Each of these proteins are key players in forming the 

initiation complex.  S6K1 activates rpS6 and eIF4B.  The phosphorylation of 4EBP1 

causes it to dissociate from eIF4E, allowing for the association of eIF4E and eIF4G.  This 

series of events initiates the formation of the initiation complex along the mRNA.  

Initiation is followed by elongation and, once the polypeptide chain is formed, 

termination.  The net result is protein synthesis. 
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1.2.4.  Feedback mechanisms within the mTOR signaling pathway 

 The interaction of the insulin and mTOR signaling pathways has been previously 

discussed in regards to activation through these pathways toward translation initiation.  

These pathways also interact in a negative feedback manner.  Hyperactivation of 

mTORC1 triggers activated S6K1 to inhibit IRS1, resulting in decreased Akt activation 

and subsequently mTORC1 (81).  This negative feedback loop also has consequences for 

insulin signaling, such as reduced insulin sensitivity and glucose uptake, which may have 

implications for horses with metabolic syndrome. 

1.2.5.  Effects of anabolic stimuli on mTOR signaling in mature mammals 

  Anabolic stimuli such as meal consumption (82-84), amino acid administration 

(85, 86), insulin (85, 86), or exercise (87-91) increases the activation of translation 

initiation factors in the mTOR signaling pathway and increases muscle protein fractional 

synthesis rates.  In mature sedentary animals, skeletal muscle protein turnover occurs at a 

fairly slow rate with slight variations occurring during fasting and feeding, where the net 

breakdown and synthesis are greater at these times, respectively (92).  Fasting has a 

greater effect of reducing mTOR signaling in muscles primarily composed of fast twitch 

fibers compared to slow twitch fibers (93).  Specifically, during times of short term 

fasting (18-24 hours) and long term (2-3 days), phosphorylation of Akt and mTOR, 

respectively, are greater in muscle primarily composed of slow twitch fibers than fast 

twitch fibers (93).  The absence of insulin, glucose, and amino acids during fasting 

activates AMPK which subsequently activates the TSC1/2 complex which inhibits 

mTOR activation (Section 1.2.2.2), ultimately suppressing protein synthesis (37, 56, 94).  
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The difference in mTOR signaling during short and long term fasting where there is an 

increase in the phosphorylation of Akt and mTOR, respectively, is due to the pro-survival 

role of autophagy.  Upregulation of autophagy in liver, white adipose tissue, and muscle 

recycles protein, glycogen and lipid stores and releases them as amino acids, glucose, and 

free fatty acids into the blood stream.  These metabolites can then be used by skeletal 

muscle to cause partial reactivation of mTOR signaling (95), which suppresses autophagy 

during long term fasting (96). A recent study showed that Gadd34, a protein that is 

traditionally upregulated during growth arrest and DNA damage, binds to and 

dephosphorylates TSC2 at Thr1462 during fasting, leading to mTOR suppression (97). 

Meal consumption results in the stimulation of the mTOR signaling pathway (82-

84).  Following meal consumption, there is an elevation in amino acids, free fatty acids, 

glucose, and insulin concentrations in the blood stream.  As mentioned above (Section 

1.2.2), amino acids and insulin stimulate mTOR signaling.  Therefore, many studies have 

been performed using clamps to stimulate a fed state (98) which have demonstrated 

increased mTOR signaling.  Intravenous clamps maintain circulating levels of a desired 

metabolite or hormone at a set state.  Regardless of nutrient content, ingestion of any type 

of meal will increase circulating insulin.  Therefore, in order to determine if both amino 

acids and insulin are required to stimulate mTOR leading to protein synthesis, reduced 

amino acid hyperglycemic hyperinsulinemic hyperlipidemic clamp studies were 

performed, which demonstrated that insulin alone does not sufficiently stimulate mTOR 

to lead to increased protein synthesis (85, 86), but Akt is activated (86).  This 

phenomenon may be explained due to a lack of available amino acids to form a protein or 

due to insufficient translation initiation.  Additionally, insulin stimulates vasodilation 
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which promotes protein synthesis through increasing the flow of available nutrients, such 

as amino acids, to the muscle (99).  This mechanism has not been fully elucidated, but 

does not appear to require Akt activation (99). 

 Amino acids alone can stimulate the mTOR signaling pathway and subsequently 

protein synthesis.  The increase in protein synthesis due to amino acids is not affected by 

the method of delivery of amino acids (oral or infusion) (100).  Because leucine has been 

demonstrated as the key amino acid in regulating mTOR signaling, many studies have 

focused on supplementing leucine.  Even though elevating leucine ingestion past 

0.14g/kg in mature rodents resulted in a near maximal stimulation of protein synthesis, 

the activation of mTOR signaling factors appears to be dose dependent (101).  

Additionally, the ingestion of carbohydrate and amino acid mixture enriched in leucine 

seems to stimulate mTOR signaling through AMPK-TSC1/2 complex axis, likely from 

the carbohydrate portion of the mixture (102), and S6K1 and 4EBP1 due to the amino 

acid and leucine component in resting humans (103).  This study also demonstrated that 

this leucine enriched mixture decreased the phosphorylation of eEF2 which promotes 

elongation and stimulated muscle protein fractional synthesis rates (103).  Regardless of 

delivery method, amino acids stimulate protein synthesis at the molecular points of 

translation and elongation. 

 During exercise, skeletal muscle contractile activity, which can also be thought of 

as mechanical stimulation, increases.  Mechanical stimulation of skeletal muscle fiber 

(104) can occur through the stimulation of muscle fibers in the laboratory, or subjects 

performing aerobic or resistance exercise, the result is still some form of mechanical 

stimulation.  Mechanical stimulation increases the activity of the mTOR signaling 



18 
 

pathway.  Elevated protein synthesis through activation of the mTOR signaling pathway 

can lead to an enlargement in muscle fibers (105).  Following acute resistance exercise in 

rodents, there is almost an immediate (5-10 min post exercise bout) increase in mTOR 

signaling factors: phosphorylation of Akt, 4EBP1, and rpS6 and the association of eIF4E 

to eIF4G (87).  The activation of mTOR itself has had mixed reports in response to 

mechanical stimulation, where there are reports of no affect on the phosphorylation of 

mTOR at Ser2481 (88, 89), an increase in the phosphorylation of mTOR at Ser2448 (91), or 

no affect on the phosphorylation of mTOR at Ser2448 (87).  However, the downstream 

effectors have been shown to increase in phosphorylation (61, 65, 67), and these proteins 

are associated with an increase in the rate of muscle protein synthesis (81).  Although the 

mechanism still requires elucidation, it is currently accepted that there is an increase in 

the downstream effectors (90, 106, 107) and subsequent protein synthesis (108) following 

the mechanical stimulation of skeletal muscle.  It has been demonstrated that activation of 

the downstream effectors due to mechanical stimulation is independent of PI3K/Akt 

signaling (90).  However, it appears that mechanical stimulation activates the 

downstream effector, rpS6 through an mTORC1 independent mechanism.  Following 

mechanical stimulation there is an increase in MEK/ERK signaling (90), which activates 

p 90 ribosomal S6 kinases (RSK).  RSK activate rpS6 through phosphorylation of Ser235 

and Ser236 (90, 107).  Because mTORC1 inhibitor rapamycin can inhibit S6K1 

phosphorylation following mechanical stimulation, and not rpS6 phosphorylation, it 

appears that protein synthesis due to mechanical stimulation is regulated by both the 

MEK/ERK signaling pathway and the mTOR signaling pathway (90). 
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  The adaptation of skeletal muscle to hypertrophy following exercise has been 

shown to be fiber type dependent, where fast twitch fibers (Type II) are more susceptible 

to adaptation than slow twitch fibers (Type I) (109).  This can be partly explained by the 

fact that muscle groups containing greater proportion of Type II compared to Type I 

fibers have a greater phosphorylation of S6K1 in response to resistance exercise (110).  

Additionally, maximal lengthening contraction stimulates S6K1, rpS6, and MAP3K 

greater in Type II fibers compared to Type I, which not only further demonstrates fiber 

type differences, but also indicates the role of MEK/ERK in contraction driven protein 

synthesis (111).  Another explanation may be that the majority of muscle groups that are 

predominately slow twitch fibers are mainly used in posture and this continuous 

mechanical stimulation is less effective than intermittent mechanical stimulation at 

activating the mTOR pathway (112, 113). 

Both aerobic (endurance) and resistance exercise increase mTOR pathway 

signaling and subsequent protein synthesis (106, 108).  However, following resistance 

exercise the phosphorylation of S6K1, rpS6, and myofibrillar muscle fraction synthesis 

rates were higher than following endurance exercise in untrained humans (108).  Humans 

who have been trained for resistance exercise have elevated phosphorylation of Akt and 

eIF4E, and increased myofibrillar protein fractional synthesis rates following a bout of 

resistance exercise compared to following a bout of endurance exercise in endurance-

trained individuals (108).  Additionally, mitochondrial protein fractional synthesis rates 

in the muscle are elevated to the same extent following a bout of endurance or resistance 

exercise in untrained individuals; however, in trained individuals muscle mitochondrial 

protein fractional synthesis rates are greater following endurance exercise (108).  The 
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mechanistic differences in which endurance and resistance exercise stimulate the mTOR 

signaling pathway may explain the differences demonstrated by Wilkinson and 

colleagues (108).  Endurance exercise results in AMPK inhibition of TSC2, while 

resistance exercise elevates phosphorylation of Akt and subsequent TSC2 

phosphorylation (114).  A recent study in untrained subjects, following a bout of aerobic 

exercise the phosphorylated forms of Akt, TSC2, and 4EBP1 were greater in the skeletal 

muscle of these subjects than in those subjects performing the resistance exercise (106).  

However, a few studies (115, 116) in humans have indicated an additional upstream 

mechanism (MEK/ERK) that results in the stimulation of mTOR during resistance 

exercise, but this has yet to be demonstrated under endurance exercise conditions. 

The combination of consuming a high protein meal either before (117) or after 

(118) an endurance exercise bout has been demonstrated to have greater activation of 

mTOR signaling than either stimulus alone.  However, the effect of resistance exercise on 

the activation of mTOR signaling appears to be benefitted from the ingestion of a high 

protein meal following exercise, but not prior to exercise (82, 119, 120).  In addition to 

activating mTOR signaling, elevated MAPK signaling occurs when a high protein meal is 

consumed following resistance exercise (82).  Thus, combining anabolic stimuli (exercise 

and feeding) results in a further increase in mTOR signaling. 

Both amino acid supplementation and exercise have been demonstrated to 

increase the mRNA expression of several amino acid transporters in skeletal muscle 

(121-123).  One hour following ingestion of essential amino acids, mRNA expressions of 

the amino acid transporters LAT1/SLC7A5, CD98/SLC3A2, SNAT2/SLC38A2, and 

PAT1/SLC36A1 were elevated (121).  This led to increased protein abundance of 
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LAT1/SLC7A5 and SNAT2/SLC38A2 3 hours following the ingestion of essential amino 

acids (121).  Resistance exercise had similar effects on amino acid transporters, but the 

time course was delayed.  The mRNA expression of the amino acid transporters 

CD98/SLC3A2, PAT1/SLC36A1, and CAT1/SLC7A1 increased 6 hours following 

resistance exercise (122), and the mRNA expression of LAT1/SLC7A5 increased 3 hours 

following resistance exercise (122).  This led to increased protein abundance of 

LAT1/SLC7A5 and CD98/SLC3A2 at 6 and 24 hours post-resistance exercise, 

respectively (122).  These studies (121-123) also examined VPS34, mTOR, S6K1, rpS6, 

and eIF4G markers of mTOR signaling, which were elevated following the respective 

anabolic stimulus used in each study indicating that the elevated expression of amino acid 

transporters may be dependent on mTOR signaling; however, this requires further 

elucidation. 

1.2.6.  mTOR signaling response to anabolic stimuli throughout the life span 

As previously mentioned (Section 1.2.2.4), growth factors affect the activation of 

translation initiation, and thus, during the life stage where there are increased (neonatal 

and development) or decreased (aging) circulating growth factors (124), there are 

alterations in the response of mTOR signaling and subsequently protein synthesis to 

anabolic stimuli.  The neonatal period is characterized by the highest growth rate during 

the lifespan with skeletal muscle showing the largest increase in mass (125).  Elevated 

growth rate in the neonate is a result of protein synthesis rates being higher than protein 

degradation rates. However, with post-natal maturation, protein synthesis rates gradually 

decrease (125-127) until both synthesis and degradation are equal in non-growing adult 

muscle (128). 
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The activation of translation initiation factors (129-131) and protein synthesis 

(132, 133) in skeletal muscle are more responsive to feeding during early postnatal life 

and declines with development.  Insulin infusion can stimulate muscle protein synthesis 

and whole-body protein synthesis during a period of fasting in weaned rats (134) and 

fetal sheep (135), respectively.  However, insulin alone does not stimulate protein 

synthesis in adult animals or humans (85, 86, 136), which indicates that muscle protein 

synthesis response may be developmentally regulated.  This was further demonstrated by 

examining the insulin signaling pathway activation in response to feeding where the 

activation of insulin receptor, IRS-1, IRS-2, PI3K (137) and Akt (23) are greater in the 7 

day old neonatal pig compared to the 26 day old.  Additionally, increasing insulin 

elevates protein synthesis and the activation of insulin and mTOR signaling factors in a 

dose-dependent manner, even when amino acid concentrations are low (138-140). 

Elevated rates of protein synthesis during the neonatal period are a result of an 

increased efficiency of dietary amino acids used for protein accretion (141).  Activated 

mTOR signaling and protein synthesis due to amino acid supplementation decreases with 

development, similar to the response of insulin and feeding (138, 142).  Of all of the 

essential amino acids, leucine, has received the most attention, because leucine alone has 

been shown to stimulate mTOR signaling (143), while the other branched chain amino 

acids cannot stimulate mTOR signaling alone (49).  Leucine, individually, does not elicit 

the same increase in mTOR signaling activation as when it is given with a balanced 

amino acid mixture (48), which may be partly attributed to the fact that the ability of 

leucine or any other anabolic stimuli to stimulate protein synthesis is dependent on the 

availability of amino acids needed for synthesis of a protein (50). 
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The negative regulators of insulin and mTOR signaling, PTP1B, PTEN, PP2A, 

and TSC2, are less active in the skeletal muscle of neonates, but the activity of these 

negative regulators increases with age (23, 144).  However, the inhibition of mTOR 

signaling due to AMPK did not appear to be developmentally regulated when the 

stimulation was feeding (23).  Feeding also inhibits TSC2 activation in the skeletal 

muscle of neonates, and this is attenuated with age (23).  

Not only are the positive factors of the insulin and mTOR signaling pathways 

more active during neonatal development, but there is also a greater total abundance of 

these factors in skeletal muscle.  The abundance of the insulin receptor, PDK-1, and Akt 

in skeletal muscle decreases with development (131, 137).  The abundance of mTOR and 

RAPTOR also decreases with postnatal development, which results in a decreased 

association of the two proteins (23, 129, 145)  However, the abundance of downstream 

signaling factors such as S6K1, rpS6, and 4EBP1 do not change with development (146).  

In addition to the highly responsive mTOR signaling pathway, skeletal muscle of 

neonates has been reported to have a higher concentration of ribosomes which decreases 

with age (127, 147), and may also contribute to the elevated protein synthetic rates 

because of a higher efficiency to synthesize proteins.  Overall, the skeletal muscle of the 

rapidly growing neonate is physiologically adept to synthesize protein efficiently and 

thus accrete muscle mass. 

Aging is characterized by the involuntary loss of muscle mass and strength which 

is referred to as sarcopenia.  Sarcopenia has been partially attributed to a multitude of 

factors which include a decline in physical activity and a less than optimal diet in the 

aging human population (148-150).  Sarcopenia is a result of an imbalance of protein 
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synthesis and breakdown.  The increase in muscle protein fractional synthesis rates in 

response to anabolic stimuli such as exercise (149, 151, 152), amino acids (149, 153), 

insulin (154), or meal consumption (152, 153) is decreased in the aged compared to the 

younger adult, and may be due to dysregulation of signaling factors in the insulin and 

mTOR signaling pathways (155, 156).  Meal consumption in the aged does not increase 

protein synthesis or activate the mTOR signaling pathway to the same magnitude as in 

the young adult (155-157); however, when the meal is supplemented with leucine there is 

a restoration in the anabolic effect of feeding (158).  This may indicate that amino acid 

supplementation, specifically leucine, plays a larger role in stimulating protein synthesis 

than insulin in the aged.  Physiological hyperinsulinemia does not stimulate mTOR 

signaling in aging skeletal muscle as it does in young adult skeletal muscle (159, 160); 

however, at supraphysiological levels of hyperinsulinemia mTOR signaling in the aging 

skeletal muscle is restored (159).  This may indicate that insulin resistance with aging 

may at least partially be responsible for sarcopenia (161).  Additionally, aerobic exercise 

(162, 163), amino acid supplementation (164), and vaso-dilation (165) can improve the 

anabolic response of mTOR signaling to hyperinsulinemia.  Thus, activation of the 

mTOR signaling pathway in aging skeletal muscle appears to behave similar to young 

adult skeletal muscle when stimulated by multiple anabolic stimuli rather than just one.  

This also holds true for resistance exercise, which more effectively stimulates mTOR 

signaling in the elderly if amino acids are supplemented following the exercise bout 

(166).  However, amino acid supplementation prior to a bout of resistance exercise does 

not enhance muscle protein synthesis relative to resistance exercise alone (120).  Similar 

to the young adult, aging skeletal muscle has increased mRNA expression of several 
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amino acid transporters (LAT1/SLC7A5, CD98/SLC3A2, PAT1/SLC36A1, 

CAT1/SLC7A1) following resistance exercise; however, the expression of these amino 

acid transporters remain elevated for a longer period of time in the aged skeletal muscle 

(122).  This may mechanistically explain how adding amino acid supplementation to 

resistance exercise stimulates the activation of mTOR signaling pathway to the same 

extent as in the young adult skeletal muscle. 

 It has been stated that mTOR signaling and protein synthesis decrease with aging; 

however, the signaling factor that appears to be the most influenced by aging is S6K1.  

The activation of S6K1 in response to various anabolic stimuli such as meal consumption 

(129, 145, 156), amino acids (142, 155-157), insulin (142, 156, 162), and exercise (157, 

162) consistently decreases throughout development and into aging.  Additionally, the 

activation of S6K1 in the post-absorptive state declines during development (142, 145) 

and from mature to aging adults (155).  The influence on aging is also demonstrated in 

the time course response of S6K1 compared to the other mTOR signaling factors.  With 

aging, the activation of the mTOR signaling factors to exercise and amino acids is 

delayed except for the activation of S6K1, even though the abundance is still lowered in 

the aged (157).  It has also been demonstrated that the total abundance of S6K1 declines 

during aging (155).  The response of S6K1 to various anabolic stimuli during aging 

indicates that it may be the most influenced by aging. 

 Even though it is currently accepted that there is an overall decline with aging in 

the activation of mTOR signaling and protein synthesis in response to anabolic stimuli, 

the research that supports this only examines the neonatal phase and post-adulthood 

aging.  This leaves a hole in the literature for the peri-pubertal, and post-pubertal slow 
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growth phase occasionally referred to as adolescence.  In order to be sure that mTOR 

signaling and protein synthesis decline throughout the lifespan this life phase must not be 

ignored.  Unfortunately, due to the restrictions of common research models, this phase 

has been overlooked.  In the humans there are regulations making it difficult to collect 

muscle tissue from healthy children under the age of 18 years; whereas, the time of the 

adolescent phase is extremely brief in both rodents and pigs, making it difficult to 

implement experimental conditions.  As a result, this phase has received little to no 

research attention. 

1.3.  THE MOLECULAR MARKERS OF PROTEIN BREAKDOWN AND THE 

INTERACTION WITH mTOR SIGNALING 

A review of the literature pertaining to muscle mass accretion would not be 

complete without mentioning protein breakdown.  Although the focus of this dissertation 

has been on protein synthesis, muscle mass cannot be accreted without the rates of 

muscle protein synthesis being greater than the rates of muscle protein breakdown.  

Protein breakdown, similar to protein synthesis, has associated pathways that can be 

studied to improve our understanding of the process.  The main pathways involved in 

protein breakdown are the lysosome, ubiquitin-proteasome, and calcium dependent 

pathways, and apoptosis (167); however, skeletal muscle contains a limited number of 

lysosomes, and the contribution of lysosomal proteases and cathepsins to proteolysis or 

myofibrillar protein degradation is limited (168).  The lysosomal system is mainly 

responsible for the degradation of organelles and membrane proteins.  The ubiquitin-

proteasome pathway is responsible for the degradation of most of the skeletal muscle 

proteins (169), and requires muscle specific ubiquitin ligases, such as muscle-RING-
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finger protein 1(MuRF1) and atrogin-1/MAFbx (169-171).  There are three ubiquitin 

ligases involved in the addition of ubiquitin to a protein substrate: E1 ubiquitin-activating 

enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin –ligating enzyme (172).  The 

E3 ubiquitin ligases confer substrate specificity (172), and muscle has the specific 

ubiquitin ligases (169-171), mentioned earlier.  Many sarcomeric proteins are degraded 

through the calcium dependent pathway due to ubiquitous calpains 1 and 2, and muscle 

specific calpain 3 (168, 173).  Within skeletal muscle, satellite cells, which are muscle 

stem cells, are the most susceptible to apoptosis, which activates the caspases (174) and is 

regulated by the transcription factor, forkead box proteins (FoxO) (175).  Caspase-3 may 

be involved in the initiation of the degradation of actin (176).  FoxO also regulates the 

expression of atrogin-1 (177), which is a muscle specific E3 ubiquitin ligase (171).  The 

molecular components of these pathways such as MuRF1, atrogin-1, calpain 3, and FoxO 

can be studied as indicators of protein degradation. 

 Many of the mTOR signaling proteins interact with the main molecular 

components of protein degradation.  The active form of Akt inhibits FoxO through 

phosphorylation, which recruits 14-3-3 proteins preventing relocalization to the nucleus 

(175).  Additionally, FoxO is inhibited by the phosphorylation of serum- and 

glucocorticoid regulated kinase by mTORC2 and PDK1 (21).  Caspase 3 may also be 

inhibited by the activated form of Akt (177), but further elucidation is required.  Nuclear 

factor κ B (NF-κB) is stimulated by inflammatory cytokines, and may play a role in 

inactivating Akt and increasing the expression of MuRF-1 (177); however further 

research is warranted.  Additionally, activation of mTOR inhibits atrogin-1,  
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independently of FoxO (178); however this mechanism requires further elucidation.  

Therefore, Akt and mTOR play a pivotal role in both protein synthesis and degradation. 

Similar to protein synthesis, protein breakdown is altered during various 

physiological states such as aging (35, 179), and during postprandial and post-absorptive 

states (180).  During development, muscle protein metabolism is elevated, and rates of 

both muscle protein synthesis and breakdown are increased, with a net result of protein 

synthesis (181).  Research examining the molecular markers of protein degradation is 

limited; however, it has been determined that caspase-3 and caspase-9 are downregulated 

during development in the skeletal muscle of rodents (182).  This is an area that requires 

further elucidation during development; however, aging rodents have elevated 

proteasome content and activity and free ubiquitin and ubiquitylated protein 

concentrations in skeletal muscle compared to younger mature rodents (179).  The aged 

also have higher abundance of FoxO than the mature counterparts (35).  Additionally, 

ubiquitination rate is greater in the post-absorptive state than the postprandial state in the 

aged rodent whereas the mature rodents are not affected by physiological state (180).  

Overall, it appears that there is an increase in the molecular markers of protein 

degradation throughout the lifespan. 

Although there is much work still to be done examining these interactions 

between the molecular markers of protein synthesis and breakdown, it appears that 

protein breakdown and protein synthesis are both regulated by the activation of Akt (175, 

177) and mTOR (178).  Additionally, with aging there is an elevation in the molecular 

markers of protein degradation (179-181), which is pronounced during the post-
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absorptive state (180).  Ultimately, in order to study protein accretion effectively, both 

protein synthesis and degradation need to be examined. 

1.4.  WHOLE-BODY AND MUSCLE PROTEIN SYNTHESIS: 

METHODOLOGIES AND THE EFFECT OF ANABOLIC STIMULI 

1.4.1.   Isotope methodologies 

Up to this point the literature review has focused on the mTOR signaling pathway 

and how it results in protein synthesis.  Studying the mTOR signaling pathway provides 

insight to researchers as to whether or not a potential exists for an increase in the rate of 

muscle protein synthesis.  Isotopic measurements are used to quantify rates of protein 

synthesis.  Both whole-body and muscle protein synthesis rates are typically measured 

using the infusion of a stable amino acid isotope, for example [1-13C]phenylalanine.  By 

measuring phenylalanine flux and rates of phenylalanine oxidation to carbon dioxide 

(CO2) during [1-13C]phenylalanine infusion, researchers can estimate the rate of whole-

body protein synthesis using a stochastic approach (Figure 1.4).  This estimate of whole-

body protein synthesis is based on the principle that phenylalanine flux is equal to the 

rate that phenylalanine enters (from the diet and protein breakdown) and exits (through 

oxidation to CO2, use in protein synthesis and conversion to tyrosine) the free amino acid 

pool, and is calculated from the dilution of the isotope by unlabeled phenylalanine in the 

plasma (183).  The calculated difference of measured phenylalanine converted to CO2 

and flux results in non-oxidative disposal, which is an indirect measure of whole-body 

protein synthesis, because non-oxidative disposal includes the rate of phenylalanine used 

for protein synthesis and phenylalanine conversion to tyrosine.  If researchers supply both 

phenylalanine and tyrosine at equal levels to the different treatment groups, then it is 
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generally assumed that the phenylalanine conversion to tyrosine should also be equal 

among treatment groups; therefore, an increase in phenylalanine oxidation indicates a 

decrease in whole-body protein synthesis.  During these infusion procedures, the rate of 

muscle protein synthesis can also be measured, through the collection of muscle biopsies, 

during and at the end of the isotope infusion and measuring the rate of [1-

13C]phenylalanine incorporation into muscle protein (184).  Although phenylalanine was 

used during this explanation of isotope methodologies, researchers can use any stable 

indispensable amino acid isotope, as long as the carboxyl group is released as 13CO2 in 

the breath as the amino acids are catabolized. 

1.4.2.  Alterations in whole-body protein metabolism in response to anabolic stimuli 

 Whole-body protein synthesis is the sum of all of the individual tissue rates of 

protein synthesis and reflects the overall change in protein synthesis occurring during the 

physiological state that is being studied.  This makes it a useful tool to understand what is 

occurring on a large scale basis. 

 Whole-body protein metabolism is affected by anabolic stimuli such as meal 

consumption (185, 186) and exercise (187).  During the post-absorptive state, isotope 

tracer oxidation is less than following the consumption of a high protein meal (186), 

indicating that feeding increases the amino acid flux.  The additional amino acids that 

enter the free amino acid pool following meal consumption (dietary intake) that are not 

utilized for protein synthesis or conversion to other metabolites are oxidized; therefore, 

during the postprandial state amino acid isotope tracer oxidation is elevated because there 

is an excess of free amino acids in the plasma pool.  However, during the post-absorptive 

state the opposite is true, there is a reduction in free amino acids in the plasma pool 
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because amino acid entry is coming entirely from protein degradation rather than dietary 

intake, as is the case of the postprandial state.  Because there is a reduction in the free 

amino acid pool, there is not an excess of free amino acids, which results in a decrease in 

amino acid oxidation.  If flux is unchanged then, the increase in amino acid oxidation 

typically results in a decrease in protein synthesis; however, during the post-absorptive 

and postprandial periods, flux is not equal.  Non oxidative disposal can then be derived 

from the difference in flux and oxidation (Section 1.4.1).  In addition to a reduction in 

amino acid oxidation during the post-absorptive state, there is a reduction in protein 

synthesis in comparison to protein breakdown (186, 188, 189).  As a result, protein 

balance is in a negative state, where protein degradation is occurring at a higher rate than 

protein synthesis.  However, the opposite is true during the postprandial state, where non-

oxidative disposal is greater than release from protein breakdown (186, 188, 189), which 

results in a positive protein balance, because there is a greater rate of protein synthesis 

than protein degradation.  Overall, during the postprandial state there is a net increase in 

whole-body protein synthesis leading to protein accretion, and a net loss of whole-body 

protein during the post-absorptive period.  In a mature, sedentary, individual this cyclical 

balance of protein gain and loss during the postprandial and post-absorptive states 

throughout the day is equal, resulting in no accretion of protein. 

Whole-body protein metabolism is altered both during and following an exercise 

bout.  Because most exercise bouts last only a short period of time (minutes to hours), 

many researchers hypothesize that post-exercise changes in whole-body protein 

metabolism are of greater physiological relevance than changes occurring during the 

exercise state.  As a result, there is an abundance of literature examining the post-exercise 
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effects on whole-body protein metabolism, whereas studies of whole-body protein 

metabolism during exercise are limited and typically examine endurance or aerobic type 

exercise.  There are conflicting reports regarding changes in whole-body protein 

breakdown during aerobic exercise, where it has been demonstrated to be elevated (190-

192) or remain unchanged (193, 194).  However, all of these reports are in agreement that 

there is an increase in amino acid tracer oxidation (190, 192, 194), which may be derived 

from an increase in protein degradation.  The majority of these studies used leucine as the 

amino acid tracer, which is extensively catabolized in skeletal muscle.  Additionally, 

whole-body protein synthesis has been demonstrated to both decrease (190, 192) and 

remain unchanged (193) during aerobic exercise.  This provides supporting evidence for 

a negative protein balance during exercise, where there is an overall loss in whole-body 

protein.  The authors of these reports attribute two possible tissue systems for the increase 

in whole-body protein breakdown during aerobic exercise: the gastrointestinal tract (191), 

and skeletal muscle (190).  Reports on post-exercise alterations in whole-body protein 

metabolism are also conflicting; however, this may be primarily due to differences in the 

types of exercise.  Whole-body protein synthesis is elevated and unchanged following 

aerobic (190, 195) and resistance (196) type exercise, respectively.  Whole-body protein 

breakdown has been demonstrated to decrease (190) or remain unchanged (195) from 

pre-exercise resting rates following aerobic exercise.  Additionally, whole-body protein 

breakdown is unchanged from resting rates following resistance type exercise (196, 197).  

Thus, it appears that following resistance exercise there is no change in whole-body 

protein metabolism, whereas, following endurance exercise there appears to be an 

increase in protein accretion.  The majority of these studies, regardless of exercise type, 
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examine individuals exercising during the post-absorptive period, which may attribute to 

a negative protein balance and may not be physiologically relevant to the common 

practices of athletic humans or horses.  Therefore, additional research is warranted 

examining the effects of exercise on whole-body protein metabolism during the 

postprandial state. 

Skeletal muscle is responsible for 25% of whole-body protein synthesis (198, 

199), and fat free mass plays a key role in whole-body protein synthesis (187, 200, 201).  

Specifically, differences in the fat free mass of human subjects accounts for up to 87% of 

the variation seen in whole-body protein kinetics (187).  For this reason, some 

researchers theorize that the reduction in whole-body protein synthesis during the 

postprandial state seen in the aged may not be due to aging specifically, but rather due to 

a reduction in the fat free mass in this population (185).  Regardless of whether the 

reduction in whole-body protein synthesis in the aged population in response to the 

anabolic stimuli of meal consumption is actually due to aging or a product of the increase 

in fat mass, it is certain that there are differences in whole-body protein metabolism in the 

frail aged population and younger mature adults, which may suggest a higher protein 

requirement (202).  However, there is no effect of age on whole-body protein synthesis 

during the post-absorptive state (186).  Unfortunately, studies examining whole-body 

protein metabolism in children and adolescents are limited, due to the ethical constraints 

in studying this population (203), compared to healthy children of the same age.  It has 

been determined that children with diabetes have elevated whole-body protein 

degradation and amino acid oxidation (203).  Further research is warranted to examine 
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whole-body protein metabolism in a research model for healthy human children and 

adolescents. 

1.4.3.  Alterations in muscle protein fractional synthesis rates in response to anabolic 

stimuli 

Skeletal muscle comprises approximately 50% of body weight, but only 

contributes to 25% of whole-body protein synthesis (198, 199).  As a result, changes in 

muscle protein synthesis may only be detected at the whole-body level if they are 

dramatic.  Furthermore, if another tissue decreases its rate of protein synthesis and the 

muscle increases its rate of protein synthesis, then there would be no net effect measured 

at the whole-body level.  Because of this, it is useful to measure skeletal muscle protein 

synthesis directly.  In Section 1.2, the anabolic stimuli that increase muscle protein 

fractional synthesis rates were discussed.  There have been numerous studies (103, 204-

206) examining feeding-induced changes in muscle protein synthesis and breakdown, 

which highlight the more dramatic elevation in muscle protein synthesis compared to 

muscle protein breakdown (Section 1.3).  Because of the alterations in protein synthesis 

and breakdown in response to anabolic stimuli, it can be stated that within protein 

metabolism the overall limitation is within the regulation of protein synthesis.  Muscle 

protein synthesis increases following meal consumption in adult humans (103, 204-206) 

and neonatal pigs (133, 207), but eventually slows and returns to basal levels 

approximately 240 min post meal consumption, as demonstrated in the neonatal piglet 

(207).  Muscle protein synthesis is greatly affected by extracellular levels of amino acids 

following meal consumption; however, the effects of amino acids on muscle protein 

synthesis is graded until saturation (208).  Regardless of age, the muscle protein synthesis 
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response to graded intakes of amino acids has been demonstrated to be curvilinear, with a 

plateau at 0.13 g/kg body weight of indispensable amino acids in humans (155).  

However, it is important to note that the postprandial rates of muscle protein synthesis at 

any given concentration of amino acids for younger adults (~28 years old) was greater 

than for older humans (~70 years old) (155).  There are no age related differences 

between adults and aged humans in muscle protein synthesis during the post-absorptive 

state (155-157).  It was previously mentioned that whole-body protein synthesis is 

affected by fat free mass and this also holds true for muscle protein synthesis, where 

muscle protein fractional synthesis rates in lean young adult (20 years old) and aged lean 

men (75 years old) following the co-ingestion of a protein and leucine supplement are not 

different (209). 

Exercise may influence protein metabolism to a greater extent in muscle than in 

any other tissue in the body.  However, similar to whole-body protein metabolism, 

different types of exercise affect muscle protein fractional synthesis rates differently.  

Myofibrillar protein fractional synthesis rates are elevated and remain unchanged from 

pre-exercise resting rates following a bout of resistance and aerobic type exercise, 

respectively, in previously untrained muscle (108).  However, mitochondrial protein 

fractional synthesis rates were elevated from pre-exercise resting rates following a bout 

of exercise, regardless of exercise type, in previously untrained muscle (108).  Other 

reports (210, 211) examining mixed muscle protein fractional synthesis rates immediately 

following aerobic type exercise are conflicting with reports of no change (210) and 

increases (211) compared to pre-exercise rates.  Wilkinson and colleagues (108) suggest 

that these conflicts are due to differences in exercise intensity, increased AMPK (Section 



36 
 

1.2.2), time of sampling, and only examining mixed muscle rather than mitochondrial and 

myofibrillar fractional synthesis rates, which may have concealed the changes in 

mitochondrial fractional synthesis rates.  Additionally, the increased mitochondrial 

fractional synthesis rates following aerobic exercise (108) correspond to increased 

mitochondrial content with aerobic training (212, 213).   

In addition to the bout of exercise, the training status of an individual can alter 

both resting and post-exercise muscle protein fractional synthesis rates.  Resting 

myofibrillar fractional synthesis rates were elevated following 10 weeks of resistance 

training (108).  However, a single bout of resistance exercise increased myofibrillar 

fractional synthesis rates to the same extent in trained and untrained individuals (108).  

Resistance training did alter resting mitochondrial fractional synthesis rates, and the 

increase in mitochondrial fractional synthesis rates seen with a single bout of resistance 

exercise in untrained individuals was not present when trained individuals performed a 

single bout of resistance exercise (108).  Ten weeks of aerobic exercise training did not 

alter myofibrillar or mitochondrial fractional synthesis rates at rest or following a bout of 

aerobic exercise, compared to pre-training rates (108).  The authors hypothesized that the 

untrained individual may be in a heightened state of responsiveness to the anabolic 

stimuli of exercise (108). 

As with other anabolic stimuli, such as feeding, the response of muscle protein 

fractional synthesis rates to an exercise bout is altered with aging.  Reports have indicated 

a delayed response of mixed muscle protein fractional synthesis rates in aged subjects (3-

6 hours following an exercise bout) compared to adults (1-3 hours following an exercise 

bout) (157).  However, the use of resistance exercise to increase muscle mass and 
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strength is recommended in older individuals for the prevention or delay of sarcopenia 

(214-216).  Furthermore, combining anabolic stimuli, specifically consuming amino acids 

following a bout of resistance exercise increases mixed muscle protein fractional 

synthesis rates beyond the effects of amino acid supplementation or exercise alone (119, 

217, 218), and may prove to be useful in reducing sarcopenia in the aging population; 

however, further research is warranted. 

1.4.4.  Summary of the alterations in whole-body and muscle protein metabolism in 

response to anabolic stimuli 

 The use of isotope infusion protocols is a useful and commonly practiced 

technique in human research examining both whole-body and muscle protein synthesis.  

Both whole-body and muscle protein synthesis in response to anabolic stimuli such as 

meal consumption (103, 157, 202) and exercise (157, 211), declines with age.  However, 

aging does not alter whole-body and muscle protein synthesis during the post-absorptive 

state (122, 155, 186).  Additionally, at least a portion of the variation in both whole-body 

and muscle protein synthesis are attributed to differences in fat free mass of the subjects 

(187).  Overall, using isotope infusion protocols to study whole-body and muscle protein 

synthesis allows researchers to examine protein metabolism of the entire subject and at 

the tissue level.  When these techniques are used in addition to molecular tools to 

determine mTOR signaling, then information about the whole system can be studied from 

the cellular to the whole-body level. 
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1.5.  AN OVERVIEW OF THE LITERATURE ON INFLAMMATION 

RELATING TO THE RESEARCH IN THIS DISSERTATION: 

MECHANISMS OF INFLAMMATORY SIGNALING, THE EFFECTS OF 

ACUTE AND CHRONIC INFLAMMATION IN CIRCULATION AND 

SKELETAL MUSCLE, AND THE REDUCTION OF ACUTE AND CHRONIC 

INFLAMMATION THROUGH NON-STEROIDAL ANTI-INFLAMMATORY 

DRUGS 

1.5.1.  Inflammatory signaling 

 Inflammation is a physiological response to a variety of stimuli such as infection, 

tissue damage, exercise, and aging.  Inflammation can occur as an acute or chronic 

process depending on the stimulation.  For example, the inflammatory response to a 

disease or aging can be chronic, whereas the response to infection, exercise and tissue 

damage from a muscle biopsy is typically acute.  Both acute and chronic inflammation 

will be discussed below (Section1.5.3-1.5.4), but first, this review of inflammation will 

examine inflammatory cytokine production (Figure 1.5). 

 There are a number of inflammatory cytokines that play a pivotal role in the 

development of both chronic and acute inflammation.  A cytokine is a small (molecular 

weights range from 8 to 40,000 d) nonstructural signaling protein, and an inflammatory 

cytokine is a cytokine that mediates inflammation.  Examples of cytokines include the 

interleukins (-1,-6,-8, -10, -12,-18), tumor necrosis factor−α (TNF−α), and interferon γ 

(IFN−γ).  When tissue damage (which we will define as anything that elicits an 

inflammatory response such as exercise, infection or a muscle biopsy) occurs, mast cells 

that are located in the damaged tissue degranulate, resulting in the release of pro-
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inflammatory cytokines, histamine, and eicosanoids (219).  Histamine, eicosanoids, and 

the initial pro-inflammatory cytokines move from the damaged tissue into circulation, 

resulting in neutrophil migration from bone marrow to circulation.  Full infiltration of 

neutrophils into the damaged tissue occurs within 6 hours (219).  Neutrophil migration to 

the damaged tissue occurs as a result of mediators of acute inflammation from the 

vascular endothelial cell release of E- and P-selectin which are endothelial adhesion 

molecules (219, 220).  Once at the site of damage, neutrophils begin to tether to the 

vascular endothelium and release macrophage inflammatory proteins.  These macrophage 

inflammatory proteins attract and activate macrophages to the site of damage (219, 220).  

Macrophages arrive at the site of tissue damage 5-6 hours later.  Activated macrophages 

secrete IL-1, IL-6, and TNF−α (221, 222).  The effects of these inflammatory cytokines 

are similar: induction of localized fever, synthesis of acute phase inflammatory proteins 

in the liver, increased vascular permeability, and T and B cell activation (219, 221, 222).  

Both IL-1 and TNF−α also increase adhesion molecules on vascular epithelium, 

fibroblast proliferation, and induce IL-6 and IL-8 secretion, which are potent 

chemoattractors of neutrophils and can be produced by almost all cell types (219, 221, 

222).  The stimulation of platelet production and immunoglobin synthesis are unique 

effects of the interleukins and IL-6, respectively (219, 221, 222).  IFN−γ also activates 

macrophage and monocyte secretion of inflammatory cytokines, and is produced by 

activated CD4+, CD8+, and natural killer cells (223).  The overall response of 

inflammatory cytokines to tissue damage in circulation is to draw attention to the site of 

tissue damage, and stimulate macrophage migration into the damaged tissue. 
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Inflammatory cytokines and macrophages migrate into the damaged tissue, where 

activated macrophages secrete IL-1, IL-6 and TNF−α.  These inflammatory cytokines 

then activate IκB kinase complex (IκKB), which phosphorylates NF−κB (224).  Even 

though IL-1, IL-6, and TNF−α are secreted together in the body, cell culture work with 

C2C12 myocytes treated with TNF−α indicates that IκKB activation is very susceptible 

to TNF−α alone (225).  Although NF−κB is phosphorylated, activation does not occur 

until IκB is ubiquitinated and targeted to the proteasome for degradation (224).  

Activated NF−κB interferes with mTOR signaling and stimulates further production of 

inflammatory cytokines, as described in Section 1.3.  Overall this entire inflammatory 

response typically results in the involvement of the components of the adaptive immune 

response (T and B cells), although it can occur without it (as described above).  For the 

purposes of this literature review, where the focus of inflammation is due to exercise and 

aging, the involvement of the adaptive immune response is limited and therefore will not 

be discussed. 

 Until this point, the focus has been on the pro-inflammatory response; however, 

some of the pro-inflammatory cytokines also have anti-inflammatory properties.  

Additionally, there are many cytokines that function in suppressing the inflammatory 

response, and are appropriately referred to as anti-inflammatory cytokines.  The role of 

anti-inflammatory cytokines is to regulate the pro-inflammatory response so that healing 

can occur without resulting in further tissue damage.  The role of IFN−γ as a pro-

inflammatory cytokine was discussed above; however, IFN−γ suppresses the production 

of IL-1 in macrophages (226), and inhibits IL-1 activity through stimulating the 

production of IL-1 receptor antagonist (227) and type II IL-1 receptors (222, 228), which 
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binds the receptors of IL-1, inhibiting interaction of IL-1 and its receptor.  IFN−γ also 

inhibits IL-18 function through the stimulation of IL-18 binding protein gene induction 

(229, 230).  This may serve as a negative feedback loop because IL-18 induces IFN−γ 

production (231).  Additionally, IFN−γ disrupts the stimulation of IL-8 production by 

TNF−α (232) and IL-1 (233), and reduced IL-8 expression has been associated with 

impaired TNF−α induced NF−κB activation (234).  Because of the involvement of 

NF−κB in potentially reducing protein synthesis through interactions with mTOR 

signaling (Section 1.3), this may be a regulatory mechanism in the protection of protein 

loss; however, further research is necessary.  Other major anti-inflammatory cytokines 

include transforming growth factor−β (TGF−β) and IL-10.  TGF−β inhibits NF−κB 

activation through the decreased production of IL-8, IL-1 and TNF−α.  Additionally, 

TGF−β blocks differentiation of naive CD4+and CD8+ cells (235), which when activated 

secrete IFN−γ, a pro-inflammatory cytokine that stimulates the macrophage secretion of 

IL-1 and TNF−α.  IL-10 is secreted by anti-inflammatory macrophages, T, B, dendritic, 

and mast cells, and neutrophils and eosinophils (236) in response to IL-12 (237), IL-6 

(238), Il-27 (239), and TGF−β (240).  IL-10 acts in a negative feedback loop inhibiting 

the secretion of IFN−γ, TNF−α, IL-1 and IL-2 (241-243).  Therefore, following a pro-

inflammatory response, IL-10 secretion is induced and serves to mitigate inflammation, 

possibly inhibiting potentially harmful effects of inflammation (protein loss) on tissue. 

1.5.2.  Summary of inflammatory signaling 

 There are two types of inflammatory cytokines, pro-and anti-inflammatory 

cytokines, which stimulate and suppress inflammation, respectively.  Some of the main 
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pro-inflammatory cytokines include: IL-1, IL-2, IL-6, IL-8, IL-12, IL-18, TNF−α, and 

IFN−γ.  The major anti-inflammatory cytokines include: IL-10, TGF−β, and IFN−γ.  

IFN−γ is a unique cytokine with both pro- and anti-inflammatory properties.  When tissue 

is damaged, there is a rise in circulating pro-inflammatory cytokines which results in the 

migration of macrophages into the damaged tissue, resulting in the production of more 

pro-inflammatory cytokines.  In relation to protein metabolism, the increase in pro-

inflammatory cytokines in the damaged tissue activates NF−κB, which interacts with 

mTOR signaling and may reduce protein synthesis in the damaged tissue.  Anti-

inflammatory cytokines regulate this process and are secreted in response to elevated 

circulating pro-inflammatory cytokines.  The purpose of anti-inflammatory cytokines is 

to protect the tissue from potentially harmful effects that may be induced by prolonged 

inflammation. 

1.5.3.  Factors affecting acute inflammation 

 In addition to acute illness, acute inflammation can occur following muscle 

biopsy collection or a bout of exercise.  Acute inflammation is characterized by a local 

increase in inflammatory cytokines that persists for no longer than 24 hours (244, 245).  

There may also be an increase in systemic inflammatory cytokines which does persist 

longer than 24 hours (244, 245). 

 The effect of percutaneous muscle biopsy collection on muscle and circulating 

inflammatory cytokines has been examined.  From a methodological standpoint, the use 

of a single incision for the collection of repeated biopsies separated by 30 min is not 

advised because of alterations in the stress related ERK1/2 signaling pathway (246), 
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which is affected by inflammatory cytokines (247).  Unfortunately, research examining 

the effects of using of a single incision site for the collection of repeated biopsies on 

muscle inflammatory cytokines is limited, but previous work (246) demonstrating an 

increase in the activation of the ERK1/2 pathway, suggests that there may be an increase 

in muscle inflammatory cytokines, even though muscle inflammatory cytokines were not 

examined.  Thus, there is a need to study the effects of the collection of repeated biopsies 

from a single incision site on muscle inflammatory cytokines.  Further research is also 

necessary to determine if the use of single incision site for multiple biopsies induces a 

greater inflammatory response than the use of multiple incision sites for additional 

biopsies.  In humans, the collection of two percutaneous muscle biopsies from separate 

incision sites on the right leg immediately and 30 minutes following the collection of the 

first biopsy did not result in differences in IL-6 mRNA expression (248).  An additional 

biopsy was collected from the left leg 31 minutes following the incision on the right leg 

of the subjects in this study and again no differences in IL-6 mRNA expression were  

reported (248).  However, in a biopsy collected from the right leg 123 minutes after the 

initial biopsy, from a new incision site, there was a 1.8 fold increase in IL-6 mRNA 

expression (248).  The results from this study indicate that the collection of multiple 

biopsies from the separate incision sites can be performed within a 30 minute period 

without altering IL-6 expression.  Additionally, the collection of repeated biopsies using a 

new incision site for each consecutive biopsy in humans has demonstrated an increase in 

the percentage of neutrophils in circulation at 30 minutes and up to 24 hours following 

the initial biopsy from the percentage of circulating neutrophils at the time of the initial 

biopsy (245).  It was also determined that the expression of IL−1β was elevated in the 
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muscle 30 minutes after the collection of the initial muscle biopsy, and IL−1α expression 

in skeletal muscle was elevated at 30 minutes and up 6 hours following the initial biopsy 

(245).  However, in horses there was no change in muscle or circulating inflammatory 

cytokine mRNA expression (IFN−γ, IL-1, IL-6, and TNF−α) for 24 hours following the 

initial biopsy when a separate incision site was used for each biopsy (244).  This apparent 

disconnect between human and equine skeletal muscle requires further investigation to 

determine whether it is a result of different research protocols or due to different 

physiological mechanisms in the two species.  

The vast research examining the effects of aerobic exercise on inflammation 

varies in both tissue collection methods and in the inflammatory markers studied; 

however, it is clear that a bout of aerobic exercise elicits an acute inflammatory response.  

The percentage of neutrophils and monocytes in circulation were elevated at 6 hours and 

on the fourth day following a bout of aerobic exercise (245).  Circulating levels of IL-6 

are elevated for 24 hours following a plyometric exercise (249), which is aerobic exercise 

that involves rapid deceleration followed by rapid acceleration in the opposite direction, 

and for at least 4 hours (last sampling point) following an incremental aerobic exercise 

test (250).  Other pro-inflammatory cytokines, TNF−α and IL−1β, were also elevated in 

circulation for 3 hours and 30 minutes, respectively, following aerobic exercise (250).  In 

addition, the anti-inflammatory cytokine, IL-10, and the functional blocker of IL-1, IL-1 

receptor antagonist, are elevated in circulation following aerobic exercise for at least 4 

hours, which was the last sampling point in that study (250).  Unfortunately, the literature 

examining exercise induced skeletal muscle inflammation is limited; however, IL−1β has 

been demonstrated to increase in skeletal muscle 30 minutes following an aerobic 
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exercise bout (245).  Although the majority of this work has been performed in humans, 

performance of an incremental exercise test in horses increased IFN−γ, IL-6, and TNF−α 

in skeletal muscle 1 hour, 30 minutes, and immediately following exercise, respectively, 

whereas skeletal muscle IL-1 mRNA expression remained unchanged from pre-exercise 

values (244).  The authors of this study also examined circulating inflammatory cytokines 

and demonstrated an increase in IL-1, TNF−α, and IFN−γ from 2 to 6 hours, at 6 hours, 

and immediately following exercise, respectively; however, there was no change in the 

mRNA expression of circulating IL-6 following exercise (244).  Although species may 

play a role in the time course elevations of the respective inflammatory cytokines, which 

needs further investigation, it is certain that a bout of aerobic exercise induces an acute 

inflammatory response. 

The role of exercise induced inflammation is currently thought to be a result of 

muscle damage in the form of disrupted contractile structures (251, 252) and 

permeabilization of the sarcolemma (253, 254).  Thus, the body of literature has been 

focused on bouts of strenuous aerobic exercise with limited investigation of resistance 

exercise, which has been the focus of the majority of exercise studies on mTOR signaling 

and protein synthesis.  As a result of the interaction of downstream inflammatory 

signaling components (Section 1.5.1) and mTOR signaling factors (Section 1.2) needs to 

be studied in response to resistance exercise.  However, it has been determined that 3 

hours after a bout of resistance exercise, circulating mRNA expression of TNF−α, IL−1β, 

IL-6, and IL-8 were elevated from pre-exercise levels, despite no change in the mRNA 

expression in skeletal muscle of these inflammatory cytokines (255). 
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1.5.4.  Factors affecting low grade chronic inflammation 

Aging is characterized by chronic low grade inflammation which has been coined 

“inflamm-aging” (256).  Low grade chronic inflammation results from increased 

concentrations of circulating inflammatory cytokines (257-259) and a prolonged acute 

inflammatory response to infections and tissue damage in the aged, compared to their 

younger counterparts  (260-262).  Compared to the healthy, mature population, there is an 

elevated expression of pro-inflammatory cytokines, such as TNF−α (263−265) and IL-6 

(263, 266, 267), increased concentration of acute phase proteins, for example, C-reactive 

protein, which is associated with the acute inflammatory response (268), and high 

neutrophil count (269) in the circulation of the human aging population.  Additionally, 

there is an increase in anti-inflammatory cytokine, IL-10, and anti-inflammatory 

mediator, IL-1 receptor antagonist, in human aging circulation (270).  There is an overall 

increase in circulating inflammatory cytokines with aging. 

Low grade chronic inflammation has been associated with the loss of skeletal 

muscle mass, referred to as sarcopenia, in the aging population (271-273).   The mRNA 

expression of circulating TNF−α and the concentration of circulating soluble TNF−α 

receptor have been inversely correlated with hand grip (274) and muscular strength (275), 

respectively, in aged humans (older than 85 years of age).  Elevated serum IL-6 

concentrations have been correlated with decreased muscle strength in the aged (271).  

Additionally, reduced muscle strength that has been attributed to increased circulating IL-

6 and TNF−α has also been correlated with decreased muscle mass in the aged (273).  As 

a result, low grade chronic inflammation is thought to be a partial cause of reduced 

skeletal muscle mass in the elderly. 
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The alterations in skeletal muscle inflammatory cytokines and their relationship to 

sarcopenia have not been as well characterized as the elevations in the circulating 

inflammatory cytokines in the aged population.  Current research on the role of IL−1β 

and TNF−α mRNA expression in skeletal muscle in the aged is inconclusive (276-278), 

and there is no difference in skeletal muscle mRNA expression of IL-6 and TGF−β 

between young and aging humans (276, 278, 279).  However, the skeletal muscle mRNA 

expression of IL-6 receptor has been demonstrated to increase with aging (280), which 

may indicate that cells are more sensitive to IL-6.  TNF−α has been demonstrated to be a 

greater stimulus of satellite cell apoptosis in aged compared to young rodents (174, 281).  

Although the expression of muscle inflammatory cytokines in the aged varies, it appears 

that there may be an increased sensitivity to muscle inflammatory cytokines in aged 

skeletal muscle fibers and satellite cells. 

The association of skeletal muscle inflammatory cytokines with sarcopenia has 

primarily been studied using cell culture techniques.   C2C12 myotube cell culture studies 

have shown that IL−1β stimulates IL-6 mRNA expression, resulting in the activation of 

p38 MAPK, NF−κB, atrogen-1 and MuRF-1, leading to proteolysis (282, 283).  TNF−α 

reduces mTOR signaling in human myoblast (284) and C2C12 myoblasts (285-287).  

Although human studies in this area are limited, it has been demonstrated that increased 

TNF−α  mRNA expression in the skeletal muscle is inversely correlated with muscle 

protein synthesis following resistance exercise in the aged (288).  These studies indicate 

that sarcopenia may be a result of increased inflammatory cytokines interfering with the 

signaling pathways for muscle protein synthesis, while stimulating the pathways of 

muscle protein degradation. 



48 
 

In addition to the increase in pro-inflammatory cytokines with aging, there is also 

an increase in anti-inflammatory cytokines.  The skeletal muscle of aged men shows 

increased mRNA expression of both IL-10 and IL-1 receptor antagonist, compared to 

younger men.  These anti-inflammatory cytokines may be produced in the circulation and 

then migrate to skeletal muscle, because the number of anti-inflammatory macrophages 

in skeletal muscle is less in the aged compared to younger adult humans; however, 

further research is needed to determine this.  Alternatively, it is possible that the 

increased skeletal muscle anti-inflammatory cytokines in the aged are due to elevations in 

the activity of anti-inflammatory macrophages in skeletal muscle.  The elevated 

expression of anti-inflammatory cytokines in skeletal muscle is thought to be a 

physiological attempt to reduce pro-inflammatory cytokines in the aged. 

Low grade chronic inflammation in the aged is thought to contribute to delayed 

skeletal muscle regeneration following injury (289-291).  Skeletal muscle damage can 

occur after a bout of exercise (Section 1.5.3), and because the aged are in a state of 

chronic inflammation, it is possible that the capacity of the immune cells to respond to 

additional inflammatory stimuli is limited.  The reported changes in inflammation that 

occur following a bout of exercise in the aged are conflicting due to differences in the age 

and physical condition of the elderly subjects studied.  This results in differences in the 

extent of chronic inflammation, and differences in the mode and intensity of the aerobic 

exercise bout, which may lead to differences in the acute inflammatory response.  It has 

been demonstrated that 4-6 hours following a bout of aerobic exercise, there is a decrease 

in circulating neutrophils (292, 293) and IL-6 (294) concentration in aged humans 

compared to their mature counterparts.  In contrast, no difference in the post-aerobic 
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exercise (6 hour) circulating neutrophil count and an increase in IL-6 concentration were 

found when comparing aged and mature humans (295).  The conflicting results of these 

studies may be a result of the intensity of aerobic exercise.  Additionally, circulating IL-1 

receptor antagonist and TGF−β protein concentrations increased similarly in both age 

groups following a bout of aerobic exercise (294, 295), indicating that the anti-

inflammatory response to acute inflammatory stimuli is not altered with low grade 

chronic inflammation in the aged. 

 Another characteristic of low grade chronic inflammation in the aged is an 

increase in the time it takes for skeletal muscle regeneration to occur following tissue 

damage.  This prolongs the muscle damage associated with exercise in the aged 

compared to their younger counterparts.  Reduced macrophage infiltration of skeletal 

muscle in aged compared to younger mature men following exercise (276, 278) may play 

a pivitol role in inhibiting muscle regeneration.  Reports of the effects of aging on the 

muscle inflammatory cytokine response to acute inflammatory stimuli of exercise vary.  

Skeletal muscle TNF−α mRNA expression increases similarly in both mature and aged 

humans (276) or remains unchanged (296).  mRNA expression of IL-6 in aged skeletal 

muscle is increased (297), decreased (276), or is similar to mature counterparts (278), 

following exercise.  There is either a decrease (278, 298) or similar increase as seen in 

mature adult skeletal muscle (276) in the mRNA expression of IL−1β in aged skeletal 

muscle following exercise.  There has been less examination of aged skeletal muscle anti-

inflammatory cytokine response to exercise, but it has been determined that IL-1 receptor 

antagonist mRNA is unchanged following exercise regardless of age, and IL-10 is lower 

in skeletal muscle of aged compared to mature men following exercise (278).  In order to 
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improve our understanding of the response of aged skeletal muscle to acute inflammation 

cause by exercise, additional research is necessary which should attempt to standardize 

for the degree of pre-study low grade chronic inflammation in the aged subjects and 

standardize the experimental exercise tests. 

1.5.5.  Summary of acute and chronic Inflammation 

 Acute inflammation is a response to inflammatory stimuli such as an infection, 

tissue damage, or exercise and typically persists for a 24 hour period.  Chronic 

inflammation can be a result of a disease state or aging.  Following exercise, there is an 

increase in circulating and skeletal muscle inflammatory cytokines which is thought as a 

necessary step for satellite cell proliferation and regeneration of damaged skeletal muscle, 

and will be discussed in detail below (Section 1.5.6).  Inflamm-aging occurs in the 

elderly, where there are persisting increased levels of both circulating and skeletal muscle 

inflammatory cytokines.  This is thought to be at least partially responsible for 

sarcopenia, through the increased activation of NF−κΒ and the signaling pathways of 

protein degradation (Section 1.3) and reduction in the activation of the protein synthesis 

pathways.  Additionally, chronic inflammation alters the acute inflammatory response 

and affects the muscle’s ability to recover from acute tissue damage, such as exercise.  

This is thought to be a result of a decreased capacity of immune cells to increase 

inflammatory cytokines in both circulation and skeletal muscle in response to exercise; 

however, the results from these studies are extremely variable and require further 

research.  Ultimately, the interaction of inflammation and protein synthesis is 

complicated, where the effects of acute and chronic inflammation on protein synthesis 

appear beneficial and deleterious, respectively, and require further elucidation. 
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1.5.6.  Effect of acute and chronic inflammation on satellite cells 

 Satellite cells have been mentioned throughout this dissertation, but to this point 

have not been fully explained.  Satellite cells are undifferentiated myogenic stem cells 

that have the ability to re-enter the cell cycle, generating new muscle fibers or providing 

new myonuclei during postnatal growth (299, 300).  Additionally, satellite cells have the 

ability to generate daughter cells that can become new satellite cells (301).  Satellite cells 

are located outside of the sarcolemma, under the basal lamina of the muscle, laying 

parallel or obliquely to the long axis of the fiber (302).  A number of molecular markers 

have been proposed to identify satellite cells have been the topic of recent review (303), 

and are an alternate method to the more classical method of using toluidine blue staining 

and a light microscope to examine the high heterochromatin myonuclei (304).  Some of 

these molecular markers include: the membrane-bound neural cell adhesion molecule (N-

CAM/CD56/Leu-19), which is a cell-surface glycoprotein localized to satellite cells, the 

Ca++-dependent muscle specific cadherin (M-cadherin), the myocyte nuclear factor 

(MNF), the receptor for the hepatocyte growth factor (HGF), and the paired box protein 7 

(PAX7), a transcription factor that plays a role in embryonic patterning and 

organogenesis (303).  However, many of these molecular markers are expressed during 

both the quiescent and activated state and there is currently no consensus on the best 

marker to label activated versus quiescent satellite cells. 

Satellite cell content in humans varies between muscle groups (305-308), the 

amount of physical activity (305-307) and the age (307, 308) of the individual.  Satellite 

cells are activated (proliferated) following a single bout of exercise, regardless of 

exercise type, for up to 8 days (309).  Typically activated satellite cells will proliferate 
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following exercise, but terminal differentiation does not always occur (309).  Satellite 

cells are also altered following exercise training where, regardless of exercise type, 

training enhances the satellite cell content in the skeletal muscle of human athletes (306, 

307, 310, 311).  However, the satellite cell response to low intensity aerobic exercise 

training is greater than for high intensity resistance training (307).  Overall, a single bout 

of exercise increases satellite cell proliferation and exercise training increases satellite 

cell content in skeletal muscle. 

The alterations in satellite cell activity following exercise are thought to be a 

result of tissue damage, and the release of inflammatory cytokines and growth factors 

following exercise.  Section 1.5.3 discussed the changes in inflammatory cytokines 

following exercise as a result of exercise induced tissue damage.  It has been 

demonstrated that IL-6 and TNF−α are involved in the regulation of satellite cell 

proliferation in rodent skeletal muscle (312, 313).  Additionally, the administration of 

non-steroidal anti-inflammatory drugs (NSAID) to humans and animal models negatively 

affects satellite cell proliferation, differentiation and fusion (314-318).  Thus, the increase 

in inflammatory cytokines during acute inflammation is a beneficial process enhancing 

skeletal muscle repair, and in the case of exercise this process coincides with elevated 

mTOR signaling and subsequent protein synthesis. 

The alterations in circulating and muscle inflammatory cytokines during low 

grade chronic inflammation that is associated with aging have been discussed in detail in 

Section 1.5.4.  In that section, it was briefly mentioned that in aging rodents, the increase 

in TNF−α stimulates satellite cell apoptosis (174, 281).  As a result, the number of 

satellite cells is lowered in the elderly compared to the younger mature rodents (307, 
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319).  Additionally, in humans the proliferative capacity of the satellite cells of the aged 

is decreased compared to the mature counterparts (320).  Together these studies indicate 

that low grade chronic inflammation reduces the number and activity of satellite cells in 

the aging population.  Non-damaging exercise (aerobic and resistance) has been shown to 

increase satellite cell proliferation in the aged (305, 309, 311), and if a training regimen is 

implemented, the satellite cell pool can be replenished in this population (310). 

1.5.7.   Summary of the effects of acute and chronic inflammation on satellite cells 

Satellite cells are myogenic stem cells that are activated by inflammatory 

cytokines.  During an acute inflammatory response, there is an increase in satellite cell 

proliferation indicating a beneficial effect of inflammation.  However, during low grade 

chronic inflammation there is a reduction in both satellite cell content and activity, which 

can be combated by non-damaging exercise training. 

1.5.8.   Reducing inflammation with non-steroidal anti-inflammatory drugs 

1.5.8.1.  Mechanism of action of non-steroidal anti-inflammatory drugs 

NSAID include a range of drugs that inhibit prostaglandin formation, for example 

aspirin, ibuprofen, mefenamic acid, and phenylbutazone (321).  Although the entire 

mechanism in which NSAID reduce inflammatory cytokines has not been elucidated, it 

has been the topic of several reviews (321-323).  Briefly, NSAID reduce inflammation by 

blocking cyclo-oxygenase (COX) enzymatic activity.  As a result, the production of 

prostaglandin E2 (PGE2) from arachadonic acid is nearly ceased (321, 323).  Both COX-2 

and PGE2 regulate the activation of NF−κB (322, 323); however this mechanism is still 

unclear.  Because NF−κB is also a regulator of inflammatory cytokine release (Section 
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1.5.1) (322, 323), the reduction in COX activity is believed to be the mechanism whereby 

NSAID reduce inflammatory cytokines.  There are two different isoforms of the COX: 

COX-1 and COX-2.  Both forms of COX are expressed in the majority of tissues in the 

body, including skeletal and cardiac muscle, gastrointestinal tissue, kidney, brain and 

epithelial cells.  COX-2 expression in these tissues is minimal unless activated by 

inflammatory cytokines (324), whereas, COX-1 is highly expressed in gastrointestinal 

tissue.  As previously mentioned, both COX-1 and -2 are involved in the formation of 

PGE2 from arachadonic acid.  PGE2 has a physiological protective role in gastrointestinal 

tissue, behaves as a vaso-dilator, and contributes to erythema, and hyperalgesia (321, 

323).  Because of the role of PGE2 in gastrointestinal tissue, when PGE2 production is 

ceased in the presence of NSAID, gastric ulcer formation may occur. 

Prolonged NSAID administration has been implicated in the development of 

gastric ulcers in several species (323, 325), including horses (326).  In the stomach, the 

COX-1 enzyme is generally expressed at a higher level than the COX-2 enzyme, and the 

resulting PGE2 plays an important protective role.  PGE2 in the stomach suppresses 

TNF−α expression, neutrophil adherence, and epithelial cell apoptosis (323).  As a result 

the overall function of PGE2 in the stomach is to prevent the formation of gastric ulcers.  

However, when COX-1 is inhibited or in the presence of gastric ulcers, COX-2 becomes 

upregulated (327), due to an increase in inflammatory cytokines to the tissue.  The 

increase in COX-2 activity results in an increase in PGE2 formation, which is an attempt 

to suppress further tissue damage.  Unfortunately, most NSAID do not selectively inhibit 

the activity of COX-2 and as a result, both COX-1 and COX-2 in the stomach are 

inhibited (323), reducing  PGE2 production.  The COX enzymes also regulate the 
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formation of other prostaglandins from arachadonic acid.  These prostaglandin are 

involved in the regulation of bicarbonate, mucous, and acid secretion, and accelerate 

ulcer healing (323).  As a result, extended NSAID administration can result in gastric 

ulcers in many mammalian species. 

1.5.8.2.  Reducing acute inflammation with NSAID 

NSAID are commonly used to reduce the discomfort associated with muscle 

damage caused by strenuous exercise.  NSAID administration post-exercise has been 

extensively studied to characterize post-exercise physiology and as a mechanism to 

eliminate inflammatory effects on physiological responses to exercise. Following any 

type of exercise, skeletal muscle COX-2 mRNA expression and protein content are 

elevated (255, 328, 329) compared to at rest, and post-exercise NSAID administration 

reduced the elevated levels of COX-2 mRNA expression and protein content (329, 330).  

Oral administration of a NSAID during 12 weeks of resistance exercise training resulted 

in skeletal muscle COX-1 protein abundance that was lower than in an exercised group 

that received a placebo in place of NSAID (331).  Furthermore, oral administration of a 

herbal supplement (curcumin), with properties functionally similar to a NSAID, reduced 

muscle IL-1β, IL-6, and TNF-α mRNA expression in rodents following exercise (332).  

The local infusion of a NSAID post-exercise in humans reduced the skeletal muscle 

mRNA expression of TNF-α, but did not alter the skeletal muscle mRNA expression of 

TGF−β and IL−1β (333), nor was there an increase in macrophage or neutrophil 

infiltration (316).  Because the increase in inflammatory cytokines following exercise 

may be necessary for muscle repair post-exercise (334), and inflammatory cytokines play 

a regulatory role in satellite cell proliferation (312, 313), the administration of NSAID 
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with the goal of reducing inflammation may be preventing muscle recovery by reducing 

satellite cell proliferation (316).  Further research is required in this area to determine if 

the benefits of NSAID during an acute inflammatory response outweigh the possible 

consequences. 

1.5.8.3.  Reducing chronic inflammation with NSAID 

The study of the use of NSAID to reduce circulating and skeletal muscle 

inflammatory cytokines in the aged has been limited because of the long term harmful 

effects of NSAID use, such as gastric ulcers (323).  However, the use of NSAID 

administration as a tool to study the association behind aging related inflammatory 

cytokines and the development of sarcopenia has been investigated.  In aged rodents, 5 

months of oral NSAID administration (ibuprofen) reduced circulating levels of IL-6 and 

IL−1β, while increasing skeletal muscle mass and muscle protein fractional synthesis 

rates (335).  Therefore, future research is needed to fully elucidate these mechanisms and 

then develop strategies to reduce both circulating and skeletal muscle inflammatory 

cytokines in order to promote the maintenance of muscle mass with old age. 

1.5.8.4.  Summary of reducing inflammation with NSAID 

 NSAID reduce inflammatory cytokines through the inhibition of the enzymatic 

activity of COX, which suppresses the activation of NF−κB and inhibits the release of 

inflammatory cytokines.  Although the prostaglandins produced by COX mediate 

inflammatory cytokines through NF−κB, there are also many beneficial physiological 

effects of these prostaglandins throughout the body.  In the stomach, the prostaglandins 

produced by COX-1 play an important role in protecting the stomach from the 
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development of gastric ulcers.  However, because most NSAID do not inhibit a specific 

COX isoform, the beneficial effects of prostaglandins are also affected by NSAID 

administration and prolonged NSAID administration has been associated with the 

development of gastric ulcers (323).  The administration of NSAID during acute 

inflammation reduces circulating and muscle inflammatory cytokines, which coincides 

with a reduction in satellite cell proliferation.  The latter may impair the recovery of 

skeletal muscle during acute inflammation (Section 1.5.6).  The literature examining 

NSAID reduction of inflammatory cytokines during chronic inflammation is limited due 

to the side effects of extended NSAID use; however, NSAID administration has been 

demonstrated to reduce circulating inflammatory cytokines in the aged.  Ultimately, 

further research is warranted to determine whether there are other methods that can be 

used over a longer period to reduce chronic inflammation without causing side effects 

such as gastric ulcers.  

1.6.  AN OVERVIEW OF THE EQUINE LITERATURE RELATING TO THE 

RESEARCH IN THIS DISSERTATION: PROTEIN NUTRITION AND 

METABOLISM, AND MUSCLE PHYSIOLOGY THAT MAY ALTER 

PROTEIN METABOLISM 

 In comparison to cell culture models, rodents, neonatal piglets, and humans, there 

is only limited data regarding muscle protein metabolism in the horse.  However, there is 

considerable research in horses concerning protein digestibility and utilization, crude 

protein requirements, muscle biology and development, and inflammation and the review 

of the literature in horses will focus on these areas. 
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1.6.1.  Protein nutrition in the horse 

1.6.1.1.  Dietary indispensable and dispensable amino acids in the horse 

 Although the protein requirement as reported by the NRC (336) is written for 

crude protein (CP), the horse actually has requirements for individual amino acids, the 

building blocks of protein.  CP is a calculation of total nitrogen (N) in the feed, where CP 

is equal to N times 6.25 (336).  This calculation is derived from the fact that, by weight, 

protein is 16% N.  Horses, like other mammals, are believed to require 9 dietary 

indispensable amino acids (histidine, isoleucine, leucine, lysine, methionine, 

phenylalanine, threonine, tryptophan, and valine) and, under certain physiological states, 

an additional 6 conditionally indispensable amino acids (arginine, cysteine, glutamine, 

glycine, proline, and tyrosine) may be required.  Arginine is a conditionally indispensable 

amino acid because the rate of arginine synthesis in many growing mammals is 

insufficient to meet its needs, and is indispensable during illness or injury due to the role 

of arginine in immune function as a precursor to nitric oxide.  Cysteine and tyrosine can 

be synthesized from dietary methionine and phenylalanine, respectively, if supplied in 

sufficient quantities.  During times of illness or physiological stress, glutamine becomes 

indispensable, and glycine and proline are also indispensable during the growth period.  

The remaining amino acids are considered dietary dispensable amino acids because of 

their ability to be synthesized in sufficient enough quantities to meet the body’s needs 

(alanine, asparagine, aspartate, glutamate, and serine). 
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1.6.1.2.  Protein digestion in the horse 

For the most part, amino acids are consumed in the equine diet as part of whole 

proteins, which must be broken down to individual amino acids or small peptides for 

absorption.  In the horse, dietary protein is digested in the foregut, similar to other 

nonruminant species, and this process has been the topic of several chapters and entire 

books (337-339).  In short, prior to consumption of a meal, the vagal release of 

acetylcholine stimulates the upper gastro-intestinal tract, initiating saliva secretion in the 

mouth, and hydrochloric acid, pepsinogen, and sodium bicarbonate secretion from the 

stomach.  The equine stomach is unique in that it has a section referred to as the margo 

plicatus where the squamous epithelial mucosa lacks the mucous-sodium bicarbonate 

barrier to buffer the high acidity.  This is the area where gastric ulcers and erosion tends 

to occur (340), and gastric ulcers do occur at a higher rate in horses compared to other 

nonruminants.  The stomach has four main secretions, hydrochloric acid, pepsinogen, 

sodium bicarbonate, and mucus, which begin enzymatic digestion of proteins.  

Hydrochloric acid is secreted from the parietal cells resulting in an increase in the acidity 

of the stomach.  The reduced pH denatures dietary protein, unfolding it to a linear 

polypeptide chain, and at pH 4 causes pepsinogen, the zymogen (inactive enzyme) of 

pepsin, to become pepsin.  This mechanism protects the cells of the stomach from pepsin 

trying to break the peptide bonds involving aromatic amino acids (phenylalanine, 

tryptophan, and tyrosine) of proteins bound to cell membranes: pepsin is only in its active 

form when there is protein from feedstuffs available for enzymatic digestion.  Pepsinogen 

is secreted from chief cells, and once it is in the active form it begins cleaving the peptide 

bonds involving aromatic amino acids, resulting in some oligopeptides and short 
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polypeptide chains which will be further enzymatically digested in the small intestine.  

As previously mentioned, sodium bicarbonate is also secreted in the stomach from 

epithelial mucous cells and acts to buffer the stomach from the acidic pH. 

 During the initial digestion of dietary proteins in the stomach, the vagal release of 

cholecystokinin in the exocrine pancreas stimulates release of other zymogens.  Although 

this causes the release of a number of enzymes from the pancreas, the ones involved in 

protein digestion (trypsinogen, chymotrypsinogen, and procarboxypeptidase A and B) are 

secreted from the acinar cells.  These zymogens and sodium bicarbonate, produced by the 

duct cells, enter the duodenum, the first section of the small intestine, where 

enteropeptidase, secreted from the duodenal crypts of Lieberkühn, converts trypsinogen 

into the active form, trypsin.  Together enteropeptidase and trypsin convert 

chymotrypsinogen, and procarboxypeptidase A and B to chymotrypsin and 

carboxypeptidase A and B, respectively.  Trypsin is a serine protease that cleaves at the 

carboxyl side of lysine and arginine, except when followed by proline.  Chymotrypsin is 

an endopeptidase that cleaves peptide amide bonds where the carboxyl side of the bond is 

an aromatic amino acid.  Carboxypeptidase A and B are exopeptidases, cleaving peptide 

bonds at either the C- or N-terminus of the oligopeptides and short polypeptide chains 

that have entered the duodenum from the stomach.  As a result, oligopeptides, di- and tri- 

peptides, and free amino acids enter the jejunum, the second section of the small 

intestine. 

The di-, tri-peptides are absorbed via peptide transporter 1 (PepT1) located on the 

apical side of the enterocytes in the jejunum (341).  It is important to note that PepT1 

transporters are also located in the enterocytes of the ileum, resulting in some di-, tri-
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peptide absorption; however, the majority of PepT1 transporter expression is in the 

jejunum, and therefore, most di-, tri-peptide absorption occurs in the jejunum (341).  

Some of these di-, tri-peptides are broken down to free amino acids in the cytosol of the 

enterocyte cells, while others remain intact.  For the oligopeptides and di-, tri-peptides 

that do not get transported into the enterocytes by PepT1, further digestion occurs at the 

enterocytes brush border membrane, by aminopeptidases and endopeptidases.  Although 

these peptidases are located throughout the entire length of the small intestine, the 

jejunum and ileum posses the highest activities (342).  PepT1 has not yet been 

characterized in the equine gastrointestinal tract, but the mRNA expression of PepT1 was 

high in the small intestine, decreased in the colon, and not detectable in the cecum of 

another hind-gut fermenter, the rabbit (343).  Additionally, PepT1 activity has been 

suggested in equine jejunum through increased current flow through equine jejunal 

membrane when incubated with a dipeptide (344). 

For the di-, tri-peptides not transported into the enterocytes by PepT1 and 

oligopeptides, further digestion occurs at the brush border membrane, resulting in free 

amino acids.  Free amino acids are transported into the enterocytes by a variety of apical 

transporters, specific for certain types of AA.  The free amino acids transported into the 

cytosol of the enterocyte cells can be further metabolized by the enterocytes, used for 

enterocyte protein synthesis, or transported across the basolateral membrane and into 

portal vein.  Both apical and basolateral membrane amino acid transporters are specific to 

the amino acids transported, based on the amino acid properties such as size, polarity, and 

charge (345).  The majority of amino acid transporters do not require energy; however, 

sodium dependent transporters require ATP because the co-transport of sodium and 
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amino acid requires the removal of sodium out of the enterocyte via a sodium/potassium-

ATPase (345).  Some amino acid transporters are unique to the apical (system names: 

ASC, B0, B0,+, b0,+, IMINO, X-
AG) or basolateral membrane (system names: A, L, y+, y+L) 

while others can be found on both membranes of the enterocyte (system name: T) (345, 

346).  The study of amino acid transporters in the equine gastrointestinal tract has been 

limited.  However, glutamine transport has been demonstrated across the basolateral 

membrane from the bloodstream to the enterocytes where it is proposed to be used as a 

key energy substrate in the equine enterocyte (347).  This study was useful in that it 

examined the amino acid flow, so although Duckworth and colleagues (347) did not 

determine the amino acid transport system, their study indicated that there is a glutamine 

transporter on the basolateral membrane of the enterocyte transporting from the 

bloodstream into the enterocyte.  More recently, Woodward and colleagues (348) have 

examined the distribution of the mRNA of specific amino acid transporters along the 

intestinal tract of mature horses, where the mRNA expression of the apical b0,+ system 

was expressed similarly throughout the jejunum, ileum, cecum and colon.  The mRNA 

expressions of the basolateral y+ and basolateral medium affinity L transport systems 

were higher in the small intestine than in the large intestine, while the low affinity L 

transport system mRNA expression was greater in the cecum than the jejunum (348).  

These results indicate that, at least for the b0,+ system, there may be similar absorption 

throughout the jejunum, ileum, cecum and colon; however, because the basolateral y+ and 

basolateral medium affinity L transport were greater in the small intestine, this indicates 

that the greatest absorption of amino acids that contributes to whole-body protein 

metabolism occurs in the small intestine due to the greater mRNA expression of 
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basolateral amino acid transporters and therefore, a greater ability to transport the 

absorbed amino acids from the enterocytes into circulation.  Because there was 

expression of some transport systems in the cecum and colon, this study (348) also 

indicates that there may be some amino acid absorption in the large intestine; providing a 

mechanism for the absorption of microbial amino acids.  However, additional research is 

needed to characterize the presence and function of amino acid transport systems in the 

cecum and colon. 

Not all of the dietary protein that is consumed is completely digested and then 

absorbed in the small intestine.  The dietary protein that bypasses digestion and/or 

absorption in the small intestine and reaches the cecum and large intestine can be 

metabolized by the residing microbial population.  Although little is known of the 

microbial protein metabolism in the equine hindgut, it has been demonstrated that the 

microbial population of the equine hindgut can degrade and utilize dietary protein, 

partially degraded protein and ammonia and urea that have bypassed small intestine 

absorption (349).  Once absorbed by the microbe, peptides are cleaved into free amino 

acids for microbial protein synthesis or degraded to the carbon skeleton and ammonia.  

The carbon skeleton can be utilized for energy while the ammonia can be used to 

synthesize amino acids or secreted by the microbe (350).  Because microbial digestion 

occurs proximal to digestion and absorption in the ruminant, microbial protein can be 

digested and absorbed similar to dietary protein in nonruminants.  However, microbial 

digestion occurs distal to digestion and absorption in the horse, and therefore microbial 

proteins cannot be absorbed similarly to dietary proteins due to anatomical constraints.  

As a result, researchers have attempted to increase the understanding of the physiological 
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mechanisms contributing to possible amino acid absorption and quantify the microbial 

amino acid contribution to whole-body amino acid metabolism in the horse. 

The use of isotope tracers has led researchers to believe that some microbially 

synthesized amino acids may end up in circulation.  Infusing 15N labeled cecal bacterial 

protein into the cecum of an anaesthetized pony, resulted in 15N labeled amino acids in 

circulation (351).  There was less than 10% labeled amino acid recovery in the tissues of 

ponies fed 15N urea (352).  However, the infusion of 14C labeled bacteria or protein into 

the cecum of ponies showed no 14C labeled amino acids in the circulation (353).  These 

studies show that a small amount of N is being absorbed in the large intestine; however, 

the fact that the carbon backbone of these amino acids was not absorbed may indicate 

that microbial amino acids are not being absorbed, but rather a N compound such as 

ammonia is (352, 354, 355).  Once ammonia is absorbed, it can be used to form 

dispensable amino acids.  However, urea supplementation to horses has not been found to 

be beneficial if the indispensable amino acid requirements are not met (355).  

Even though amino acid transport systems have been found on the apical 

membrane of the large intestine of horses (348), the isotope tracer work (mentioned 

above) and ex vivo studies do not currently support the idea of large amounts of 

indispensable dietary amino acids being absorbed in the large intestine and contributing 

to whole-body protein metabolism.  Minimal amounts of alanine (356), arginine (357), 

histadine (357), leucine (358), and lysine (357) have been demonstrated to cross the 

equine colonic mucosa in ex vivo experiments.  However, a great deal of ammonia is 

transported across the mucosal membrane of the equine colon (357).  As a result, it is 

generally accepted that ammonia that is transported across the apical membrane of the 
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equine large intestine contributes to protein metabolism; however, this is an area where 

additional research is needed. 

1.6.1.3.  Protein digestibility in the horse 

 It was mentioned above (Section 1.6.1.1) that horses actually require amino acids, 

but the current requirements according the NRC (336) are for crude protein and lysine.  

Unfortunately, not all protein is created equal with regards to digestibility and quality.  

Quality refers to the amino acid composition of the protein in relation to the animal’s 

amino acid requirements, whereas digestibility refers to the amount of dietary protein that 

disappears, and is presumably absorbed, along the gastrointestinal tract. 

 Studies in horses examining protein digestibility vary extensively in the method 

of measuring digestibility, age of horse, and feedstuffs examined.  The method of 

measuring digestibility is crucial when comparing these studies, because it accounts for 

how much protein has been digested at which point along the gastrointestinal tract (337).  

The simplest measurement is apparent total tract digestibility and is determined by the 

difference of the N intake (feed) and N output (feces) divided by the N intake (337).  This 

does not correct for endogenous losses such as sloughed cells, microbes and microbial 

protein, and typically underestimates protein absorption.  Correction factors that have 

been determined for endogenous losses range from 0.72 - 0.91 mg endogenous 

nitrogen/kg dry matter consumed, due to differences in total intake and diet composition 

(359-362).  When endogenous losses are accounted for in the calculation of protein 

digestibility, it is no longer coined apparent digestibility, but rather true digestibility 

(337).  Because it is believed that the majority of protein is digested and amino acids are 
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absorbed proximal to the cecum, pre-cecal digestibility has been a tool used by 

researchers in an attempt to more accurately determine protein absorbed as amino acids 

(337).  Again, the endogenous losses must be accounted for, and the correction factors for 

pre-cecal endogenous N losses that have been reported to range from 1.8 - 5.8 mg 

endogenous nitrogen/kg dry matter consumed (359-362). 

 Diet composition and intake affect endogenous losses and protein digestibility.  

The NRC (336) has reported estimates of total tract apparent nitrogen digestibility and 

pre-cecal apparent nitrogen digestibilities of 79 and 51%, respectively.  Concentrates tend 

to have higher pre-cecal digestibility than forages (360-365).  The differences in protein 

digestibility and endogenous losses between diets high in forage or concentrate are 

thought to be a factor of the bulkiness and slow rate of movement through the 

gastrointestinal tract of diets primarily composed of forage, where there are higher 

endogenous losses than diets that have a greater proportion of concentrate.  Specifically, 

pre-cecal apparent digestibilities of concentrates range from 48 - 72% depending on the 

type of concentrate (360, 362) and pre-cecal apparent digestibilities of forages range from 

1.3 - 21% (361).  The pre-cecal true digestibilities of concentrates and forages range 59 - 

62% (364) and 27 - 42% (361), respectively.  Additionally, protein intake also affects 

digestibility and endogenous losses.  As CP intake increases, there is a reduction in 

endogenous N losses relative to intake,  resulting in greater apparent nitrogen digestibility  

(365).  However, increasing CP intake from low to moderate does not alter true CP 

digestibility, but increasing CP intake to high levels reduces true and apparent pre-cecal 

digestibility (360).  Others claim that regardless of dietary N concentration, true total 

tract digestibility ranges between 0.7 - 0.9 (337).  Overall, compared to forage-based 
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diets, endogenous losses and protein digestibility, regardless of type (true or apparent), 

appear to be reduced and elevated, respectively, in diets that are primarily composed of 

concentrates in mature horses. 

 The discussion of protein digestibility has focused on CP digestibility; however, it 

was previously mentioned that horses actually have requirements for amino acids.  It has 

been determined that the majority of amino acids have pre-cecal apparent digestibilities 

that range from 0.3 - 0.6 (366).  Similar to what was seen with increasing CP intake, 

apparent amino acid digestibility is increased with increasing amino acid intake (367).  

True and apparent amino acid  digestibilities range for the individual amino acids from 

52.8 - 86.3% for glycine and leucine, respectively (367).  Additionally, physiological 

state may alter amino acid digestibilities, gestating mares were reported to have higher 

amino acid digestibilities (368) than those reported in foals (367).  This is an area where 

additional research is warranted. 

 The growing horse has received less attention in the area of protein digestibility 

than the mature horse, and it appears that the growing (~6 months old) horse may have a 

decreased capacity to digest and absorb protein than their mature counterparts.  Weaned 

foals (3 - 7 months old)  and yearlings consuming a primarily concentrate diet (<60%) 

had apparent total tract N digestibilities of 35 - 45% (369) and 80% (370), respectively.  

The apparent total tract N digestibility reported in the weaned foals is lower than the 

estimate for mature horses by the NRC (336); however, the apparent total tract N 

digestibility reported in the yearlings was comparable to that of mature horse.  This may 

indicate that there are developmental limitations in protein digestibility; however, it is 
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necessary to elucidate the time course changes in protein digestibility that occur during 

development. 

1.6.1.4.  Protein and amino acid requirements in the horse 

 There are several methods for expressing protein requirements of horses, which 

are used in various locations across the world.  In the United States, protein requirements 

are expressed as amounts of CP and lysine required, and have been detailed in the recent 

NRC (336).  CP and digestible CP are used to express the protein requirements of horses 

in Japan and Germany, respectively.  In France, protein requirements of horses are 

expressed in “horse digestible crude protein” or “Matieres Azotees Digestibles Cheval” 

(MADC).  A detailed examination of all of these systems is beyond the scope of this 

dissertation.  However, this section will provide a brief overview of the US system, 

including a discussion of the research that was used to determine the requirements, and a 

short comparison of the US to the French system. 

1.6.1.4.1.  Protein and amino acid requirements based on physiological status in the 

horse 

 Nutrient requirements are specific to the physiological state of the animal.  The 

NRC (336) separates these physiological states into: Maintenance, Growth, Pregnancy, 

Lactation, and Exercise.  Examples of the protein and lysine requirements of a 600 kg 

mare at various physiological states according to the NRC (336) are provided in Table 

1.1.  The focus of this section will be to discuss the factors affecting protein requirements 

in the various physiological states and some of the research that led to the development of 

those requirements. 
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Maintenance requirements for protein are generally the amount of protein 

consumption needed by the animal in order to support the daily processes of life.  

Although animals at maintenance are making and degrading protein at the same rate and 

for this reason should be able to “recycle” amino acids released from protein degradation 

for use in protein synthesis, this system is not perfectly matched and even at maintenance 

dietary amino acids are needed.  “Losses” of amino acids in animals in the maintenance 

state include endogenous losses in the gastrointestinal tract, cutaneous losses, and amino 

acids from proteins that have been post translationally modified (for example: amino 

acids that are methylated) and can no longer interact with their respective tRNA to be 

used for protein synthesis.  The maintenance requirements have been calculated from 

linear regression and broken line analysis of means from the numerous N balance studies 

that have been conducted in mature horses, receiving a variety of feedstuffs.  The CP 

requirement has been identified based on the N intake where N retention is zero.  

However, the minimum CP requirement was actually set slightly higher than zero 

because the majority of N balance studies do not account for endogenous losses of hair, 

skin and sweat; thus overestimating N retention (336).  As a result, the CP of average 

maintenance has been derived as: BW × 1.26g CP/kg BW/d (336).  The requirements of 

amino acids during maintenance have not been determined due to lack of data; however, 

based on the amino acid content of common feedstuffs fed to horses and the limiting 

amino acids of other nonruminants, mainly swine (371), it is thought that the first three 

limiting amino acids may be lysine, threonine, and methionine.  The lysine requirement 

during maintenance has been calculated as 4.3% of CP requirement (336).  Linear 

regression of N balance studies that reported the diet composition were used to determine 
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the lysine intake required to obtain zero N retention.  Then, broken-line analysis was used 

to determine the lysine intake at which N retention plateaued (336).  Additionally, in 

horses receiving diets supplemented with lysine and threonine, the amino acid 

supplementation resulted in lower plasma urea N concentrations in mature and aged 

horses, compared to horses receiving the unsupplemented diet (372), providing additional 

support that lysine and/or threonine are likely candidates for limiting amino acids in the 

mature horse.  

During growth, the maintenance requirements must initially be met in order to 

sustain the physiological processes and maintain the current weight.  Then, the growing 

horse requires additional amino acids (protein) to support the tissue (for example, 

muscle) accretion that occurs when an animal is growing.  The protein requirements of 

growing horses have been derived from N balance studies (369, 373) and the use of ADG 

measurements (369, 374, 375) with varying protein or amino acids intakes provided by 

the diet.  The latter has been a classical tool to study protein requirements extensively 

used in growing horse.  When the protein or amino acid intake provided by the diet is 

below requirements, increases in intake will result in an increased ADG.  Once the 

required level has been met, ADG will not increase with increasing intake of the amino 

acid or protein.  The means of data collected in these studies were fitted to broken-line 

analysis and then extrapolated to a mature body weight to incorporate the changes in 

body weight with age (336).  This provided a total CP requirement for a certain aged 

horse at a specific weight.  In order to determine the separate requirements of 

maintenance and growth, the maintenance requirements must be subtracted from the total 

requirements (336).  The CP requirement of growing horses has been determined using a 
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factorial approach and based on the assumption that gain is 20% protein: (BW × 1.44 g 

CP/kg BW) + ((ADG × 0.20)/Efficiency of use of dietary protein)/0.79 (336).  The 

efficiency of use of DP is estimated from 50% in 4-6 month old horses to 30% in 

yearlings and older growing horses (336). 

There have also been some studies examining the effects of amino acid 

supplementation, mainly lysine, on ADG in growing horses (369, 375-378), where it has 

been concluded that lysine is vital for growth.  When lysine is supplemented to poor 

quality protein diets of linseed meal (369) and brewer’s dried grains (376), the ADG was 

equivalent to high protein quality diets of milk and soy bean meal, respectively.  

Additionally, ADG was not altered in horses fed low CP diets that were supplemented 

with lysine compared to higher CP diets (375).  Using linear regression and broken-line 

analysis from the means of the previously mentioned studies, the NRC determined that 

the lysine requirement of growing horses was 4.3% of CP requirements (336).  

Additionally, supplementing low protein diets with lysine and threonine resulted in lower 

plasma urea N concentrations, indicating threonine may be the second limiting amino 

acid in growing horse diets (374). 

There is minimal research regarding protein requirements during gestation in 

horses due to the possible unwanted effects, such as fetal loss or stunted growth of the 

foal, of consuming a protein (or amino acid) deficient diet during pregnancy.  From the 

minimal research in this field, there have been more studies examining protein 

requirements during mid to late compared to early gestation.  Similar to the growing 

animal, the maintenance requirements must be met and there are additional protein 

requirements for increased protein synthesis to support fetal and placental growth, as well 
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as for the production and secretion of placental fluids.  However, because there is not a 

large ADG during early pregnancy, the NRC (336) has concluded that protein 

requirements are only slightly higher than maintenance: BW × 1.26 g CP/kg BW/d.  

Linear regression of fetal weight gain was performed in horses (379) and ponies (380), 

which in addition to cow data, were used in non-linear regression analysis to determine 

fetal growth rates.  The NRC (336) then assumed that fetal composition is equivalent to 

neonatal composition.  From this, the NRC (336), could calculate the amount of CP 

deposited per day in horses and ponies.  Using a factorial approach of protein efficiency 

the CP requirements were determined for gestating mares from 5 months through 

parturition: (BW × 1.26 g CP/kg BW/d) + (fetal gain in kg/0.5)/0.79 (336).  The 0.5 

comes from the estimation of 50% efficiency of use of dietary protein in pregnancy, and 

0.79 is representative of the 79% digestibility of the protein (336).  It is also important to 

note that the calculated CP of fetal gain does not account for protein needs of the uterus 

(336).  Additionally, due to the lack of data on amino acid requirements, the NRC 

suggests that the same estimation of lysine requirements during pregnancy as 

maintenance (336). 

Rather than the ADG studies that were used to estimate protein requirements in 

the growing horse, milk production was used for the determination of protein 

requirements beyond maintenance during lactation.  In addition to the maintenance 

protein requirements, lactating mares require additional dietary protein to support the 

synthesis of milk protein.  Broken-line analysis of the CP content of milk produced 

throughout gestation found that milk protein concentration plateaus at day 22 of gestation 

(336).  This led the NRC (336) to determine the CP requirement during the first month of 
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lactation to be greater than the rest of lactation.  Again, the NRC (336) used a factorial 

approach incorporating 50% efficiency of utilization and 79% protein digestibility to 

determine the lactating mare CP requirement: (BW × 1.44 g CP/kg BW/d) + (milk 

production kg/d ×50 g CP/kg milk).  The amino acid requirements during lactation have 

been suggested by Wickens and colleagues (381) and are based on the amino acid to 

lysine ratio in milk.  The NRC (336) accepts this suggestion (kg milk/d multiplied by 

3.3.g lysine per kg milk), but adds the maintenance requirement for lysine. 

Additionally, if any of these physiological classes (adult maintenance, gestating, 

lactating, or growing) of horses undergo exercise, there will be an additional requirement 

above what has already been discussed.  The NRC (336) has classified exercise 

requirements by intensity (light, moderate, heavy, and very heavy), which have been 

classified based on heart rate and oxygen utilization above rest.  Correction factors have 

been developed from the literature to account for protein synthesis for muscle growth and 

to repair damaged muscle following exercise (336).  Additional correction factors have 

also been determined based on the percentage of body weight lost in sweat at each 

intensity of exercise (336).  Again, the NRC (336) used a factorial approach to determine 

the CP requirement of exercising horses based on the 50% efficiency of utilization and 

79% protein digestibility: (BW × muscle gain) + (((BW × sweat loss × 7.8 

g/kg)/0.50)/0.79) + the maintenance requirement for protein (336).  It is also important to 

note that at very high intensities of exercise, a substantial increase in lean gain may also 

increase the maintenance protein requirements.  The lysine requirement of exercising 

horses has been determined using broken-line analysis of the means of data from N 
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retention studies that reported diet composition and intake and lysine intake and was 

determined as 4.3% CP requirement (336). 

1.6.1.4.2.  Protein requirement systems 

The French system expresses protein requirements in MADC, which has some 

similarities to digestible CP, the method used by the Germans.  MADC is based on the 

assumptions that protein quality in terms of amino acid composition and site of digestion 

(pre- versus post- cecal) affect the availability of the amino acids to the animal.  The 

advantage of this system compared to the US and German systems is that differences in 

small intestinal availability of amino acids in various feeds are accounted for.  

Additionally, this system more accurately estimates forage amino acid availability than 

digestible CP because the physical bulkiness of forages result in a decrease in the amino 

acids available for small intestinal absorption from the forage (382, 383).  From a 

scientific perspective, this system has many advantages to the US system because it more 

accurately assesses the availability of amino acids for absorption; however, the lack of 

knowledge of digestible CP and amino acid availability in many of the common 

feedstuffs fed to horses make it difficult to use this system. 

1.6.1.5.  Summary of protein nutrition in the horse 

 Although there is still a vast amount of research to be performed in the horse, 

regarding protein nutrition (digestion, digestibility, and requirements), the scientific 

knowledge base has improved substantially from the previous (384) to the current (336) 

NRC which were published 18 years apart.  The majority of protein digestion and 

absorption occurs in the small intestine of horses.  The primary contribution of the 
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hindgut to protein metabolism is through the absorption of ammonia produced by the 

hindgut microbes.  The NRC (336) provides both CP and lysine requirements for horses 

at the various physiological states, which have been derived using linear regression and 

broken-line analysis from the means of the available studies, followed by a factorial 

approach considering efficiency of utilization and protein digestibility.  Ultimately, there 

is still a lot left to elucidate and further research is necessary in all of these areas of 

protein nutrition in order to better feed and manage these animals. 

1.6.2.  Muscle biology and development in the horse 

The horse is an athletic animal with nearly 50% of body mass composed of 

skeletal muscle (1).  Thus, there is a considerable amount of research over the past 

century that has focused on equine skeletal muscle.  The majority of equine skeletal 

muscle research has focused around the characterization and possible treatments of 

disease related states, such as metabolic syndrome (385-387), pituitary pars intermedia 

dysfunction also referred to as Cushing’s disease (388, 388, 389, 389), exertional 

rhabdomyolysis also referred to as tying-up (390-394), hyperkalaemic periodic paralysis 

also referred to as HYPP (395-398), neuromuscular disorders (399-402), polysaccharide 

storage myopathy also referred to as PSM (403-405) and the combination of these 

disorders (406-408).  However, a detailed examination of the alterations of skeletal 

muscle physiology and metabolism during these disease states is beyond the scope of this 

literature review.  Rather, this section will focus on the sizeable body of literature 

examining the characterization of skeletal muscle fiber type, the alterations of skeletal 

muscle physiology and metabolism during development, exercise (409-414), and exercise 

during development (411, 415-419). 
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1.6.2.1.  Characterization of skeletal muscle fiber types 

1.6.2.1.1.   A historical introduction 

 Researchers have been examining skeletal muscle fiber types for well over a 

century.  The characterization of fiber types began in 1865 with the correlation of a 

greater blood supply to red muscle compared to white muscle, and was followed by the 

demonstration that contraction velocity was faster in the white muscle compared to the 

red muscle (420).  With advances in technology in the mid 1880s to the late 1910s, 

researchers began histological studies of skeletal muscle demonstrating a greater number 

of mitochondria in red compared to white muscle fibers (420). 

 The development of a correlation between velocity of muscle shortening to 

ATPase activity when the muscle was with or without load in both vertebrates and 

invertebrates (421) led to the discovery of a link between morphological and 

histochemical characteristics to physiological properties of the fiber.  This link was 

displayed in the motor units of the cat gastrocnemius (422).  Burke and colleagues (422) 

categorized fibers as fast twitch fatigue sensitive (FF), fast twitch fatigue resistant (FR), 

and slow twitch fatigue resistant (S).  Higher glycogen concentrations, lactate 

dehydrogenase activity, and myofibrillar ATPase activity were seen in FF and FR 

compared to S fibers.  This connection opened the door to the current thought of fiber 

types characterized as slow twitch being primarily oxidative, and fast twitch fibers being 

primarily glycolytic.   
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1.6.2.1.2.   Description of the fiber types 

Most mammalian twitch muscles can be divided into two categories: slow (Type 

I) and fast (Type II) twitch.  Fast twitch fibers can be further subdivided into three 

subcategories: fast oxidative-glycolytic (FOG; Type IIA), fast-glycolytic (FG; Type IIB), 

and an intermediate fiber (Type IIX, Type IIC, or Type IID). 

Slow twitch fibers are characterized with a red color, slow contraction speed and 

duration of contraction, and a high oxidative capacity.  Type I fibers are well vascularized 

providing increased blood flow for the delivery of O2 which increases the oxidative 

capacity.  To further aid in their oxidative capacity, slow twitch fibers contain high 

concentrations of mitochondria and myoglobin.  An increased number of mitochondria 

are present to allow for higher capacity to efficiently operate the Krebs cycle and electron 

chain transport to produce ATP for work.  The high concentration of myoglobin provides 

O2 storage for increased production of ATP. Slow twitch fibers also have a decreased 

glycolytic capacity and glycogen content. 

Fast twitch Type IIA fibers are also described as red in color, but are faster in 

contraction speed and duration of contraction than slow twitch fibers.  Type IIA fibers 

have both oxidative and glycolytic capacities.  As a result, these fibers have many of the 

same properties as both slow twitch Type I and fast twitch Type IIB fibers. 

Fast twitch Type IIB fibers are characterized as a white colored muscle fiber with 

the fastest contraction speed.  These fibers utilize glycolytic metabolism for the 

production of energy for work.  As a result, they are poorly vascularized with a decreased 

need for O2 because of their reliance on anaerobic metabolism.  In addition, Type IIB 
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fibers have low concentrations of myoglobin and mitochondria.  Glycolytic metabolism, 

unlike oxidative phosphorylation, takes place in the sarcoplasm not the mitochondria; 

hence a decreased need for mitochondria in Type IIB fibers. 

Fast twitch Type IIX, or occasionally referred to as IIC or IID, fibers are 

considered an intermediate fiber between the fast twitch types IIA and IIB.  Type IIX 

fibers have both glycolytic and oxidative capabilities, but are faster in speed of 

contraction than Type IIA fibers.  As a result, this fiber type has been poorly 

distinguished until the use of myosin heavy chain isoforms as a tool to differentiate 

between the various fiber types. 

1.6.2.1.3.   Fiber Type Differentiation as a Result of Myosin Heavy Chain Isoforms 

Myosin is one of the most prominent proteins in the muscle and comprises the 

majority of the thick filament.  The myosin molecule is composed of six different 

proteins: two heavy chains (myosin heavy chains; MHC) and four light chains (myosin 

light chains; MLC; (423).  Both MHC and MLC components of myosin occur as several 

uniquely distinct isoforms; all of which are coded by different genes (424).  In fact, there 

are eight different MHC isoforms found in skeletal and cardiac mammalian muscle (425).  

It has been shown that slow and fast twitch fibers contain different isoforms of MHC 

(426).  The MHC-I isoform is expressed in slow fibers, and hydrolyzes ATP slowly.  As 

a result, the cross bridge cycle is slow which leads to a slow velocity of contraction.  

Within the last 25 to 30 years, it has been shown that there are three myosin 

isoforms found in Type II fibers:  MHC-IIA, MHC-IIB, and MHC-IIX or -IID.  

Traditionally, it was thought that there were only two fast twitch fiber types (IIA and 
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IIB), and the IIX fibers were being mistakenly categorized as IIB.  The mistaken identity 

of the IIX fiber was a result of the experimental methods of the time.  The use of methods 

such as ATPase histochemical reactions resulted in the distinction between slow and fast 

twitch fibers in the middle gluteus muscle of horses (411).  On the basis of oxidative 

capacity, a reflection of NADH-diaphorase staining (427) equine skeletal muscle fibers 

have been classified as slow twitch (comparable to Type I), fast twitch with high 

oxidative capacity (comparable to Type IIA), and fast twitch with low oxidative capacity 

(comparable to Type IIB) (411).  This disconnect in nomenclature between and among 

species continued until modern day techniques, such as gel electrophoresis and 

immunoblotting became regularly available, which provided a greater distinction in these 

fiber types (428-430).  Definitive evidence that MHC-IIX was a separate protein and not 

a product of post-translational modification of MHC-IIB was realized when the cDNA of 

MHC-IIX mRNA was isolated.  All three Type II MHC isoform cDNAs display different 

restriction endonuclease maps, indicating their derivation from three separate genes.  In 

addition, each isoform contains a unique 3’ untranslated sequence which has been used to 

develop specific probes for the use in in situ hybridization studies (424).   

1.6.2.1.4.   Classical methods of equine fiber typing 

Traditional methods of fiber typing that have been used in rodents and humans 

have been utilized in horses for nearly 50 years (411).  Generally, the study of equine 

skeletal muscle requires muscle biopsies in order to obtain muscle samples, and these are 

most commonly collected from the gluteus medius muscle using the percutaneous needle 

biopsy technique (411).  The gluteus medius muscle is commonly used due to the role of 

this muscle in both locomotion and posture (411).  The use of myofibrillar ATPase, 
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NADH-diaphorase, and periodic acid-Schiff (PAS) as a marker of contraction speed 

correlation, oxidative capacity, and glycogen distribution, respectively, provided a basis 

for the determination of slow twitch, fast twitch high oxidative, and fast twitch slow 

oxidative.  Other traditional determinates are the use of biochemical analyses of 

metabolites in the muscle: glycogen, pyruvate, lactate, ATP, creatine phosphate, glucose 

and glucose-6-phosphate.  Lastly, the use of enzyme activities as a marker of glycolytic 

and oxidative capacities can aid in the determination of fiber type.   These techniques 

have provided the evidence for delineation of equine skeletal muscle into three major 

fiber types (I, IIA, and IIB (431)). 

1.6.2.1.5.   Electrophoretic and immunohistochemical methods for equine fiber typing 

 After the identification of the myosin heavy chain isoforms (I, IIA, IIB, and IIX) 

in rodents and humans, gel electrophoresis was then used to examine equine skeletal 

muscle (413).  The rat costal diaphragm was used as a control because it contains all four 

of the myosin heavy chain isoforms (432).  Gel electrophoresis revealed three MHC 

isoforms; two of which co-migrated with the Type I and IIA isoforms of the rat.  The 

third equine isoform migrated between the IIX and IIB rat isoforms; but showed a 

mobility closer to that of the IIX.  These results provided a new question to be solved: 

were the fast oxidative fibers previously classified as Type IIB in horses actually Type 

IIB or IIX fibers containing MHC-IIB or -IIX with a different molecular weight due to 

post-translational modifications or were they some newly discovered fiber type 

containing a unique MHC isoform?  Further examination of the MHC isoform at the 

protein level revealed that the rat and equine MHC-IIX isoform has identical antigenic 

and mATPase determinants (412).  This evidence suggests that the MHC-IIB protein is 
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not functional at the protein level in horses.  Additional evidence of the absence of the 

MHC-IIB isoform in equine skeletal muscle was provided with the use of PCR and in situ 

hybridization techniques, which allowed researchers to isolate both mRNA and cDNA for 

MHC-I, -IIA, and -IIX isoforms (433).  The mRNA isolation was performed based on the 

conserved sequences of exon 40 in both fast and slow isoforms (424). 

 Additional proof for the absence of the Type IIB fiber Type In horses came with 

nucleotide sequencing of the equine diaphragm, semitendinosus and longissimus thoracis 

muscles (409).  It could be speculated that if there was an expression of a IIB fiber in the 

horse it would be seen in the diaphragm because it has been shown that in rat and mice all 

four MHC isoforms are expressed in the diaphragm (432).  cDNA synthesis and 

sequencing and PCR analysis was done on all of the MHC genes.  The equine MHC 

isoforms were found to contain 5980, 5982, and 5984 base pairs for IIA, IIX, and I, 

respectively.  These identified sequences coded for MHC isoforms that contain 1937, 

1938, and 1935 amino acids for the IIA, IIX, and I proteins, respectively.  The MHC-IIA 

and -IIX isoforms are similar both in the number of amino acids and in the overall 

structure; however, there are differences in the functional regions of the two proteins.  

Within the functional region of the MHC-IIA protein there are two amino acid deletions 

compared to the functional region of the MHC-IIX protein.  Overall, this study 

demonstrated that there are three functional MHC proteins, -I, -IIA, and –IIX. 

During the examination of the equine diaphragm, semitendinosus and longissimus 

thoracis muscles, Chikuni and his colleagues (409) amplified a 596 base pair fragment of 

the MHC 3’ region using MHC-IIB amplification primers.  This fragment contained a 

similar sequence to the other MHC isoforms, but differed in an additional adenine 
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nucleotide.  This additional nucleotide resulted in a frame shift, and thus, a shortened 

translation.  Chikuni and his colleagues (409) referred to this MHC-IIB fragment as the 

equine MHC-IIB pseudogene because the gene exists, but cannot be translated into a 

functional protein.   

1.6.2.1.6.   The large animal theory and the implications of an absent functional MHC-

IIB isoform 

The absence of the MHC-IIB isoform in horses is thought to be due to the large 

animal theory, which explains the absence of a functional MHC-IIB isoform because of 

differences in velocity of shortening, metabolic energy consumption, and the ability of 

bones to resist force in large animals compared to small on the basis of body size.  For 

example, smaller animals must take a larger number of steps in order to cover the same 

distance as larger animals due to their shorter stride length.  An animal’s force-velocity 

curve must be appropriate for the speed at which they move: larger animals having a 

slower velocity of shortening than their smaller counterparts (434).  In addition, with the 

decreased stride length of smaller animals, more energy must be consumed in order to 

meet their increased velocity of shortening in comparison to the large animal (435).   

 The final component of the large animal theory is that with increases in body size, 

there are added stresses on bone due to increased muscle size.  The ability of bones to 

resist force depends on the ratio of bone to muscle cross sectional area, which decreases 

in proportion to animal weight.  In an effort to adjust for this, the limbs of large animals 

vary in size, and are more closely aligned with the ground reaction force in a size-

dependent manner (436). 
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The lack of the MHC-IIB isoform in horses may indicate an evolutionary 

elimination due to components of the large animal theory.  The entire sequence of the 

MHC-I, -IIA, and -IIX isoforms are highly conserved in mammals; therefore, the equine 

MHC isoform sequences showed high identities to the porcine, bovine and human MHC 

isoforms (409).  The fact that horses contain a “gene” for MHC-IIB isoform that lacks 

expression due to an early termination as a result of a frame shift from the additional 

adenine may further indicate the evolution of the species. 

During the course of history, the modern horse has evolved from a small (0.4m) 

4-toed Hyracotherium to the large (1.6m) hooved animal seen today.  This small equine 

ancestor and its progeny (3-toed, 0.6m Mesohippus and 3-toed, 1m Merychippus) may 

have contained the functional MHC-IIB isoform.  These ancestral precursors to the 

modern horse are related to the pig and other ungulates who express the MHC-IIB 

isoform (409).  This would indicate that ancestral animals of the orders Perissodactyla 

and Artiodactyla may have kept all four MHC isoforms, and the horse and cattle (others 

are still to be determined) lost the functionality of the MHC-IIB isoform.  The absence of 

the MHC-IIB isoform in horses may be a result of an evolutionary need to decrease bone 

stress due to velocity of contraction as the animal evolved to have an increased body size. 

1.6.2.2.  Implications of breed and sampling depth on equine skeletal muscle fiber type 

Fiber type distribution in an individual muscle within a horse is extremely 

variable, and is greatly influenced by breed of horse.  The percentage of Type I fibers in 

the middle gluteus muscle is the highest in Warmblood type horses, and decreases in 

ponies, Arabians, Thoroughbreds, and Quarter Horses (414).  Alternatively, 
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Thoroughbreds express the greatest percentage of Type II fibers, followed by Quarter 

Horses, Arabians, ponies, and Warmbood type horses (414).  Of the Type II fibers, 

Thoroughbreds have the greatest percentage of IIA type fibers, followed by Arabians, 

Quarter Horses, ponies and Warmblood type horses (414).  The Quarter Horse possesses 

the greatest percentage of IIX type fibers and the proportion is lower in Arabians, 

Thoroughbreds, ponies and Warmblood type horses.  Although variation exists, these 

differences are narrow with the range of Type I fibers in the above breeds from 7 - 31%, 

Type IIA from 37 - 51%, and Type IIX from 32 - 45% (414).  Additionally, breed related 

differences are detectable as early as the first day of life (437, 438).  It is also important 

to note, that these studies did not use modern methodologies of immunohistochemistry or 

MHC isoform separation through electrophoresis. 

 Regardless of fiber typing method, age and breed of the horse, variation exists 

within a single skeletal muscle.  Because the gluteal muscle is the most commonly 

sampled, the majority of data is from this muscle and has shown to vary with depth.  The 

proportion of Type IIX fibers decreases and Type I fibers increases with depth in mature 

horses (413, 439-442) and foals (439) in the gluteal muscle.  This is merely a function of 

the muscle; the gluteus muscle is used in both locomotion and posture.  The deeper 

portion of the muscle is used more for posture than the shallower portion of the muscle. 

1.6.2.3.  Changes in skeletal muscle physiology during development and aging 

 The proportion of muscle fiber type shifts during development.  During neonatal 

growth in humans and rodents, there are shifts in the relative proportions of MHC-

neonate, MHC-I, MHC-IIA and MHC-IIX in skeletal muscle, with increases in all forms, 
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except MHC-neonate which vanishes with time.  However, the appearance of MHC-II 

isoforms is delayed in comparison to MHC-I (432, 443-445).  Similar shifts occur in 

MHC protein concentration and mRNA expression during the first year of life in Dutch 

Warmbloods (410, 446-448) and Thoroughbreds (449).  The proportions of MHC-I and 

MHC-IIA are increased and MHC-IIX is decreased at 24 months of age, compared to 12 

months of age in Dutch Warmblood horses (448, 450).  Correlation coefficient analysis 

was performed on MHC isoforms throughout the equine lifespan (from birth to 30 years 

of age), where it was determined that MHC-I dramatically decreases, MHC-IIA slightly 

increases, and MHC-IIX remains unchanged (451).  However, further research is 

warranted to determine the specific time course for these shifts in MHC fiber type 

expression. 

Because fiber type is associated with glycolytic and oxidative capacity, alterations 

in fiber type during development and aging also lead to alterations in glycolytic and 

oxidative capacity.  Glycolytic and oxidative capacity are measured through the 

expression and activity of enzymes involved in the anaerobic (glycolysis) and aerobic 

(Kreb’s cycle and oxidative phosphorylation) production of ATP, respectively (448).  

Markers of oxidative capacity are the enzymes succinate dehydrogenase (SDH) and 

citrate synthase (CS) and the mitochondrial complexes involved in oxidative 

phosphorylation.  The enzymes phosphofructokinase (PFK) and lactate dehydrogenase 

(LDH) are involved in the glycolytic production of ATP, which may also result in the 

production of lactic acid.  There is an increase in the activities of several of the oxidative 

enzymes during growth (452-454), with subsequent declines in oxidative capacity with 

old age in humans and rodents (455, 456).  In horses, SDH activity does increase during 
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the first 2 years of life (446, 448, 449); however, the effects of maturation on CS activity 

appears to be dependent on breed (438, 448).  CS activity in Standardbreds and Quarter 

horses ceases to decrease earlier in development (~14 weeks) (438) than Dutch 

Warmbloods (~22 weeks) (448).  Correlation coefficient analysis has been performed on 

the enzymes involved in oxidative capacity throughout the equine lifespan (birth to 30 

years of age), where it was determined that CS decreases (451), while LDH increases 

(438, 451).  This data indicates that shifts in MHC throughout the lifespan coincide with 

shifts in oxidative capacity. 

The gluteal muscle amino acid profile has been examined during the first year of 

life in horses, where it was demonstrated that glutamine was the most abundant free α-

amino acid in the muscle up to 3 months of age (457).  As foals grow from 3 to 12 

months of age, the concentrations of alanine, glutamate and glycine were greater than that 

of glutamine in the skeletal muscle of mature Standardbreds (457).  Additionally, the β-

amino acid, taurine is extremely abundant in equine skeletal muscle (2, 458) and has been 

shown to decrease with from 6 to 12 months of foal development (457).  However, 

mature equine skeletal muscle has taurine concentrations that compare to 6 month old 

foal (2, 458).  In rodents, taurine protects skeletal muscle from reactive oxygen species 

post-exercise (459), and has been demonstrated to increase skeletal muscle force when 

taurine is supplemented to the diet (460).  Glutamate is the most abundant free α amino 

acid in mature skeletal muscle, followed by alanine, glutamine and glycine (2, 458).  

Carnosine, the di-peptide of histidine and β-alanine, is present in extremely high 

quantities in adult equine skeletal muscle (458, 461), where it buffers lactic acid buildup; 

however, it has not been examined in developing equine skeletal muscle.  The amino acid 
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composition of aged equine skeletal muscle is also limited; therefore, further examination 

of the amino acid profile throughout the lifespan is necessary.  The elevated abundance of 

free α-amino acids in the rapidly growing skeletal muscle of the foal compared to the 

mature horse indicates the increased amino acid availability for protein synthesis in order 

to accrete muscle during this rapidly growing life stage. 

1.6.2.4.  Changes in skeletal muscle physiology following exercise 

 Because of the athletic ability of the horse, there is a considerable amount of 

literature regarding the physiological changes to skeletal muscle following a bout of 

exercise (415, 462-464) and exercise training (416-419, 465, 466).  However, these 

studies vary in the age of horses used, and the intensity of exercise and duration of 

training.  This subsection of the literature review will focus on the alterations in MHC 

content, oxidative and glycolytic capacity, and free amino acid content. 

The recruitment pattern of muscle fiber types in mammals has been well 

characterized, with prolonged exercise there is a shift in the fibers used from Type I to 

Type IIX fibers; however this recruitment does not hold true during short high intensity 

exercise bouts common in racehorses.  Following an 800 and 1200 m race, the 

recruitment of Type IIA and IIX fibers were reduced in the equine gluteal muscle based 

on myosin ATPase activity, and glycogen depletion did not occur in Type I fibers (464).  

An exercise bout, regardless of intensity (462, 463) or track slope (462) will recruit all 

MHC fibers to a similar extent if the exercise bout is a minimum of 8 minutes long.  

However, during shorter bouts of exercise (4 minutes), there is a higher recruitment of all 

MHC fibers in moderate (60% VO2max) to high (80% VO2max) intensity workouts than 
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extremely high intensity (100% VO2max) workouts (463).  Glycogen can be stored in all 

fiber types (Section 1.6.2.1.2), and is typically not depleted in Type I fibers during short 

duration high intensity exercise (464).  Glycogen depletion following a bout of exercise is 

affected by intensity (462, 463), but not track slope (462), where the intensity of the 

exercise coincides with the degree of glycogen depletion.  Overall, these results indicate 

that during short duration high intensity workouts similar to that seen in horse racing 

there is a similar recruitment of fiber type which is not what is characteristic of prolonged 

exercise. 

Duration and intensity alters fiber type recruitment during an exercise bout, but 

also alters the MHC protein content following prolonged training.  Duration of exercise, 

regardless of intensity, there is altered MHC protein composition following exercise, 

where MHC-I, -IIA, and –IIX were greatest with 15, 25, and 5 minute exercise bouts, 

respectively, after 22 days of training (418).  Additionally, following 22 days of training 

at moderate (velocity at which blood lactate concentration is 2.5 mmol/L (V2.5)), and high 

(V4) intensities, regardless of the duration of each training bout, MHC-I, -IIA, and –IIX 

content was higher following the V4, V4, and V2.5 intensity bout, respectively (418).  

Overall, 22 days of training, regardless of bout duration or intensity caused MHC-I, -IIA, 

and –IIX content to remain unchanged, increase, and decrease, respectively (418).  Short 

duration high intensity training for 8 months has been reported to have no effect on MHC 

content, which the authors’ attributed to the superficial sampling site of 2 cm within the 

gluteal muscle (417), which was confirmed when the authors’ performed another short 

duration high intensity training for 22 days and alterations in MHC content were detected 

at a sampling depth of 6 cm within the gluteal muscle (418).  Incline training does not 
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appear to alter MHC content or oxidative capacity: 16 weeks of sloped track training 

increased SDH activity and MHC-IIA content to a similar extent as 16 weeks of flat track 

training (415).  Ultimately, with moderate to high intensity short term training protocols, 

there is a shift in the proportion of fast twitch fibers mainly towards MHC-IIA and an 

increase in glycolytic and oxidative capacities compared to pre-training. 

Endurance type racing is another sport that horses commonly participate in.  As a 

result, this type of exercise training has been examined, where following 90 days of 

endurance type training there was a shift in MHC content towards a greater percentage of 

MHC-I fibers at the expense of –IIX fibers (466).  Similar results were seen following 

endurance training by Rivero and colleagues (416) and Serrano and colleagues (419).  

Additionally, capillarity associated with Type I and IIA fibers has been demonstrated to 

increase following endurance type training (416, 419).  Following endurance type 

training, oxidative capacity is increased (CS activity and glycogen storage as markers), 

and glycolytic capacity is decreased (LDH and PFK activities as markers) (419).  

Endurance type training results in increased MHC content of Type I fibers and oxidative 

capacity. 

Breed has been determined to greatly affect MHC content and also plays a role in 

the susceptibility of MHC recruitment to training.  For example, the Arabian, who were 

breed for endurance type exercise, are more predisposed to MHC conversion toward 

MHC-I following endurance type training (416).  However, additional research is needed 

to examine the susceptibility of MHC recruitment of a breed like the Thoroughbred, 

which was bred for high intensity short duration exercise, following endurance type 

exercise training. 
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Intramuscular amino acid concentrations are altered by exercise.  When muscle 

biopsies were collected 30 minutes following a maximal exercise test, alanine, leucine 

and lysine concentrations increased from pre-exercise values; however, glutamate and 

taurine concentrations decreased (458).  Following a submaximal exercise test, alanine 

concentrations increased immediately and returned to pre-exercise levels 18 hours later 

(467).  The authors did not detect differences in any other amino acid due to the high 

degree of variability, which they attributed to the wide age range of 2.5 to 6 years (467).  

The younger horses may have been growing at a slow rate, whereas the older horses were 

probably not still developing.  Additionally, the increases in alanine post-exercise is most 

likely due to the involvement in the Cori cycle (339), and the decrease in taurine indicates 

that the exercise protocol used in this study created reactive oxygen species, which 

through the indirect measurement of taurine concentration implies that taurine was used 

to suppress these reactive oxygen species (459).  Additional research is necessary to 

determine if alterations in intramuscular amino acids following exercise are influenced by 

duration and intensity. 

1.6.2.5.  Changes in skeletal muscle physiology following exercise during development 

and aging 

 The desire to prepare young prospects for show or race has led horse owners to 

place yearlings in training in order to prepare them for the 2 year old races and in hand 

futurity events for show horses.  As previously discussed (Section 1.6.2.3), there are 

many physiological alterations occurring in skeletal muscle of horses during this stage of 

rapid growth and development.  These normal physiological changes can also be 

influenced by exercise.  Developmental alterations during the first year of life (increase in 
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Type I and IIA and decrease in Type IIX) are less substantial in foals that were housed in 

the pasture (receiving ad libitum exercise) compared to those housed in a stall (receiving 

no exercise) (448).  However, there was no effect of the differences in housing induced 

exercise on capillarity CS or SDH activity (448).  Dingboom and colleagues (446) found 

that the developmental change in fiber type was not altered throughout the first year of 

life in foals that were housed in a stall (receiving no exercise), or those housed in a stall 

but forced to exercise.  The differences in these studies may be a factor of the intensity 

and duration of exercise involved.  However, growing horses in a moderate exercise 

training program that included 6 trips over a 3 fence combination 2 days/week from 

weaning to 3 years of age, had a higher percentage of MHC-I and –IIA at 2 and 3 years of 

age compared to non-exercising 2 and 3 year old horses (450).  This coincided with a 

greater developmental increase in CS activity in the training group compared to the non-

exercising control group (450).  However, short duration high intensity exercise training 

for 16 weeks in 2 year old Thoroughbreds did not alter MHC content, SDH or PFK 

activities (468).  These studies indicate that there is an effect of exercise duration, 

intensity and training period on the developmental changes in muscle biology; however, 

further research is needed to examine the effects of exercise training on the alterations in 

MHC content that occur during development. 

The beneficial effects of exercise in the aged have been demonstrated in humans; 

however, there is limited data on the effects of exercise in the aging horse.  Exercise 

training over a period of 10 weeks in aged horses improved VO2max and plasma lactate 

concentrations (469).  This training period also increased MHC-IIA and –IIX content in 

the semimembranosus and triceps muscles, respectively (469).  Additionally, CS activity 
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was increased in the triceps muscle (469).  Implementation of an exercise protocol during 

aging appears to improve oxidative capacity, and potentially strengthen muscles which 

may prevent injury; however additional research is needed. 

1.6.2.6.  mTOR related signaling in equine skeletal muscle 

 Currently there are only two studies in horses to examine mTOR signaling (2) or 

other signaling pathways that may directly influence mTOR signaling (470).  The first 

study examined the effect of exercise on the mitogen activated protein kinase (MAPK) 

family, which has three subdivisions: the ERK1/2, MAPK, and c-Jun NH2
 terminal kinase 

(JNK).  The effects of ERK1/2 and MAPK on mTOR signaling have been discussed in 

detail above (Section 1.2.2.4).  JNK is also a stress-activated MAPK cascade that is 

activated during oxidative stress, and by inflammatory cytokines and growth factors.  Ten 

minutes following a submaximal exercise test, the phosphorylation of p38 MAPK was 

elevated in both the vastus lateralis and pectoralis descendens muscles (470).  The 

authors of that study (470) chose the vastus lateralis because of the involvement of this 

hind limb muscle in forward movement and the pectoralis descendens because of the role 

in posture (470).  The phosphorylation of MAP3K, MAPK activated protein kinase 2 (an 

intermediate signaling factor in the MAPK signaling cascade), and JNK were elevated 10 

minutes following a submaximal exercise test in the vastus lateralis (470).  However, the 

phosphorylation of ERK was not affected by exercise in either muscle examined (470).  

Activation of these signaling factors following exercise could potentially lead to 

increased protein synthesis through inhibiting TSC1/2 complex (Section 1.2.2.4).  

Following the consumption 4g/kg of a high protein pelleted feed (90 minutes), there was 

a greater abundance of the phosphorylated forms of both 4EBP1 and rpS6 in the gluteal 
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muscle of mature horses than during the post-absorptive state (2).  However, feeding 

status did not alter the phosphorylation of Akt (2).  This data indicates that following the 

anabolic stimulus of meal consumption muscle protein synthesis may increase. 

1.6.2.7.  Muscle protein turnover 

To date, only a single study has examined skeletal muscle protein synthesis in the 

horse using isotopes.  Skeletal muscle protein synthesis was examined after a single bout 

of high intensity exercise in long 2 year old Thoroughbreds that had been in short 

duration high intensity training once a week for 3 months (3).  Matsui and colleagues (3) 

found that muscle protein synthesis across the hind leg increased to the greatest extent 

following exercise when an amino acid-glucose mixture was infused in the jugular vein 

during the recovery period compared to the recovery period of the individual infusion of 

saline, amino acids, and glucose.  Infusion of amino acids alone also increased muscle 

protein synthesis (3).  However, infusion of glucose alone or saline did not increase 

protein synthesis during the 120 minutes recovery period.  Skeletal muscle protein 

degradation across the hind leg was also measured in this study, were there was an initial 

decrease in muscle degradation rates during the first hour following exercise in the amino 

acid and amino acid-glucose mixture infused horses (3).  During the second hour of 

recovery there was no difference in rates of muscle protein degradation in any of the 

infused groups; however, during hours 3 and 4 of recovery the rate of muscle protein 

degradation in the amino acid-glucose mixture group was elevated (3).  This study was a 

great step forward in understanding muscle protein metabolism in the exercising horse.  

However, the author’s did not examine the effects of pre- to post-exercise on skeletal 

muscle protein synthesis, and the exercise bout that was used during the experimental 
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period was less intense than the weekly training exercise protocol, which was not typical 

of a competition situation.  Further research is necessary to determine the effects of a 

more intense exercise protocol, similar to that seen in the industry. 

1.6.2.8.  Summary of muscle biology and development 

 Because the horse is a highly athletic animal, there is an extensive amount of 

research pertaining to skeletal muscle development and exercise.  The developmental 

changes in MHC content throughout development are similar to other species; however 

the recruitment of fibers during and following exercise differs from other species mainly 

due to the duration and intensity of the exercise bout.  Additional factors that influence 

fiber type recruitment and content include duration and intensity of exercise training and 

breed and age of the horse.  To date a single study has examined the anabolic stimulus of 

exercise on skeletal muscle protein synthesis, and another study that characterized mTOR 

signaling in response to feeding.  This area of research requires further examination, 

which will be addressed in subsequent chapters of this dissertation.   

1.6.3.  Acute and chronic inflammation in the horse 

 Inflammatory signaling in response to diseases and laminitis has been the focus of 

much of the equine work in this area.  Although the studies are limited, this subsection of 

the literature review will focus in the areas of exercise induced inflammation and 

inflamm-aging in the horse. 

 

 



95 
 

1.6.3.1.  Characterization of the acute inflammatory response to exercise in the horse 

 Exercise induced inflammation was briefly discussed in (Section 1.5.3), but the 

focus of this section will be on the literature in the horse.  There have been reports 

detailing the increased susceptibility of viral infection following exercise (471, 472); 

however, the reports detailing the inflammatory response following a bout of exercise or 

exercise training will be discussed here. 

Reports of exercise induced inflammation in horses vary due to sampling methods 

and times, exercise protocols and assay methods.  Following prolonged acute exercise, 

leukocyte expression of TNF−α and IL−1β are elevated at 23 and 30 days of-high 

intensity exercise training, but IL-2, -4, -6, or -10 mRNA expression was not affected 

(473).  However, immediately following a maximal exercise test, serum concentrations of 

TNF−α and PGF2α were elevated and returned to pre-exercise levels at 2 hours (474).  In 

circulating leukocytes, IL-6 and TNF−α expression was greatest 2 hours following 

maximal exercise test with no alterations in leukocyte IL−1β expression (474).  

Neutrophil counts have also been demonstrated to be elevated in the blood immediately 

following maximal exercise and remain elevated for 6 hours following exercise (475).  

However, 24 hours post-maximal exercise test, the mononuclear cells obtained from 

circulation did not have differences in the mRNA expression of IL-12, -4, and 

IFN−γ (476).  Although sampling times and exercise protocols differ, it is certain that 

there is an acute increase in circulating inflammatory cytokines following exercise. 

 This led to a valuable study to determine the 24 hour time course response of 

inflammatory cytokines in circulation to a maximal exercise test in horses.  This study 
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reported increased mRNA expression of IL-1 from 2 to 6 hours, TNF−α at 6 hours, and 

IFN−γ immediately following the maximal exercise test (244).  However, there were no 

alterations in the circulating mRNA expression of IL-6 over the 24 hour period (244).  

Because samples were only collected prior to, immediately following, 30 minutes, 1, 2, 6, 

and 24 hours following exercise, any alterations in circulating mRNA expression of IL-6 

may have been missed. 

 There has been minimal investigation in the inflammatory response to exercise in 

equine skeletal muscle.  The 24 hour time course inflammatory response has been 

examined following a maximal exercise test, demonstrated an increase in the mRNA 

expression of IFN−γ at 1 hour, IL-6 at 30 minutes, and TNF−α immediately following 

the maximal exercise test (244).  However, the authors did not report any alterations in 

the skeletal muscle mRNA expression of IL-1 during the 24 hour period following the 

maximal exercise test (244).  One implication of this study is that the overall increases in 

skeletal muscle mRNA expression of inflammatory cytokines to maximal exercise test 

appear to occur more rapidly than increases in circulating inflammatory cytokines. 

1.6.3.2.  Characterization of chronic inflammation in the aging horse 

 Throughout the lifespan, horses exhibit changes in circulating inflammatory 

cytokines as a result of growth, obesity and aging.  Serum C-reactive protein, an acute 

inflammatory phase protein, increases from birth to 12 months of age, but then decreases 

when the horses reach maturity, around 4 to 5 years of age (477).  However, research 

examining inflammatory cytokines in circulation of growing horses is limited.  Similar to 

humans (478-480), obesity in horses is characterized by a mild state of chronic 
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inflammation, and elevations in mRNA expression of TNF−α, IL-1, and IL-6 may play a 

role in the development of insulin resistance (481).  Additionally, aging in horses is 

characterized as inflamm-aging, where there is an increase in circulating inflammatory 

cytokines.  The relative expression of IL-6 to IL-10 and TNF−α to IL-10 is elevated in 

peripheral blood mononuclear cells of aged horses compared to adult horses (482).  Not 

only is there an increase in circulating inflammatory cytokines in aging horses (IL−1β, 

IL-15, IL-18, and TNF−α), the number of actively secreting IFN−γ labeled lymphocytes 

and TNF−α labeled lymphocytes are also elevated (483).  There is also an increase in the 

number of circulating CD5 and CD4 T cell subsets in the aged horse (483).  Obesity in 

the aged horse further alters circulating cytokines; however, diet restriction which led to a 

decrease in bodyweight did lower circulating inflammatory cytokines (484).  Overall, it 

appears that there may be an increase in inflammation or inflammatory mediators in 

circulation during development which decreases during the adult phase of life and then 

increases with post-maturity aging.  However, there has not been a specific study aimed 

at examining inflammatory changes throughout the life span in equine skeletal muscle. 

1.6.3.3.  Exercise induced inflammation in aged horses 

 The response of circulating inflammatory cytokines to an acute inflammatory 

stimuli, exercise, during a state of chronic inflammation, aging, has been examined in 

circulation in the horse.  Horohov and colleagues (485) demonstrated that IL-2 stimulated 

peripheral blood mononuclear cells cultured from pre- and post- exercise samples 

collected in young (~8 years old) and aged (~25 years old) horses (485).  However, the 

post-exercise response to IL-2 in the cultured peripheral blood mononuclear cells was 
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greater in the young horses compared to the aged horses (485).  This study indicates that 

following exercise, older horses are less responsive to an infection than young horses, 

which may be due to the increased production of inflammatory cytokines; therefore the 

response is already saturated. However, the acute inflammatory response during low 

grade chronic inflammation in the aged horse requires additional research. 

1.6.3.4.  Summary of inflammation in the horse 

 Horses respond similarly to other mammals to acute and chronic inflammation.  

Although there is still much work to be done, following exercise there is an increase in 

circulating and muscle inflammatory cytokines, which differs if the horses have been in a 

training program or if untrained horses perform a single bout of high intensity exercise.  

Additionally, horses exhibit inflamm-aging which can be exacerbated by obesity.  The 

effects that these inflammatory states may have on skeletal muscle have not been 

examined and will be partially addressed in subsequent chapters of this dissertation.
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1.7. TABLES 

Table 1.1.  Requirements of various physiological classes of an estimated mature 
weight 600 kg mare according to the NRC1 

Physiological 
State 

ADG or Milk 
produced in 

kg/d 

Crude Protein 
Requirement 

Lysine Requirement 

  g g/kg 
BW/d 

g g/kg 
BW/d 

Maintenance  756 1.26 32.5 0.05 
      
Weanling 
Growth  
(4-6 months old) 

0.94 807 1.35 34.7 0.06 

Yearling Growth 
(12-18 months 
old) 

0.44 987 1.65 42.4 0.07 

      
Early Pregnancy 
(≤ 5 months) 

0.09 789 1.32 33.9 0.06 

Mid-Pregnancy 
(6-8 months) 

0.30 877 1.46 37.7 0.06 

Late Pregnancy 
(9-10 months) 

0.63 1012 1.69 43.5 0.07 

      
Early Lactation 
(1 month) 

19.6 1842 3.07 101.7 0.17 

Mid Lactation 
(2-3months) 

18.7 1799 3.00 98.9 0.16 

Late Lactation 
(4-6 months) 

14.7 1597 3.66 85.5 0.14 

      
Light Exercise  839 1.40 36.1 0.06 
Moderate 
Exercise 

 921 1.54 39.6 0.07 

Heavy Exercise  1034 1.72 44.5 0.07 
      
Growth and 
Exercise 
(18 month old in 
light exercise) 

0.34 1023 1.71 44 0.07 

1Adapted from the NRC 2007 (342)  
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1.8.  FIGURES
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Figure 1.1.  Schematic drawing of the mTOR signaling pathway. 
Abbreviations: P; phosphorylated; IRS1, insulin receptor substrate 1; PTP1β, protein 
tyrosine phosphatase 1β; PI3K, phosphoinositide 3-kinase; PtdIns(3,4)P2/PtdIns(3,4,5)P3 
PDK1, PtdIns(3,4)P2 / PtdIns(3,4,5)P3-dependent kinase 1; PTEN, phosphatase and 
tensin homolog deleted on chromosome 10; SGK, serine/threonine protein kinase; Akt, 
protein kinase B; PP2A, protein phosphatase 2A; GLUT4, glucose transporter 4; AMPK, 
adenosine monophosphate kinase; p53, protein 53; GDP, guanosine diphosphate; GTP, 
guanosine triphosphate; MAP3K, mitogen activated protein kinase kinase kinase; MEK, 
mitogen extracellular kinase (sometimes referred to as MAPK); ERK1,2, extracellular 
regulated kinase 1,2; Wnt, Wingless-Type MMTV Integration; GSK3β, glycogen 
synthase kinase 3β; REDD1,2, Regulated in development and DNA damage response 
1,2; TSC1,2, tuberous sclerosis 1,2; 14-3-3, scaffolding protein 14-3-3; VPS34, PI3K 
catalytic subunit type 3; MAP4K3, mitogen activated protein 4 kinase kinase kinase; 
Rheb, Ras homologue enriched in brain; Ras, RAt Sarcoma protein subfamily; 
mTORC1,2, mammalian target of rapamycin complexes 1 and 2; S6K1, 70kDa S6 kinase 
1; rpS6, ribosomal protein S6; eIF, eukaryotic initiation factors (2, 3, 4A, 4B, 4E, 4G, 5); 
SKAR, Aly/REF-like target; CBP80, 80 kDa RNA splicing export factor nuclear cap-
binding protein; 4EBP1, eukaryotic initiation factor 4 eukaryotic binding protein 1; 40S, 
40S ribosomal subunit; 60S, 60S ribosomal subunit; m7GpppN, Cap structure; an arrow 
indicates an activation; and a perpendicular line indicates inhibition. 
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Figure 1.3.  Schematic drawing of an abridged version of the mTOR pathway. 
Abbreviations: IRS1, insulin receptor substrate 1; PI3K, phosphoinositide 3-kinase; 
PDK1, PtdIns(3,4)P2 / PtdIns(3,4,5)P3-dependent kinase 1; Akt, protein kinase B; 
TSC1/2, tuberous sclerosis 1,2; Rheb, Ras homologue enriched in brain; mTORC1,2, 
mammalian target of rapamycin complexes (1,2); S6K1, 70kDa S6 Kinase 1; rpS6, 
ribosomal protein S6; 4EBP1, eukaryotic initiation factor 4 eukaryotic binding 
protein 1; eIF4, eukaryotic initiation factor 4 (E, G). 
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Figure 1.4.  Schematic drawing of whole-body phenylalanine kinetics. 
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Figure 1.5.  Schematic drawing of the inflammatory signaling in circulation and 
skeletal muscle. 
Abbreviations: TGF−β, transforming growth factor−β; IFN−γ, interferon γ; TNF−α, 
tumor necrosis factor−α; IL, interleukins (-1,-6,-8, -10, -12,-18), IκKB, IκB kinase 
complex; NF-κB, Nuclear factor κ B. 
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Chapter II 

Rationale and Objectives 

2.1.  SCOPE OF DISSERTATION 

 The aims of the research presented in this dissertation were to examine the 

regulation of protein synthesis through the mTOR signaling pathway in the horse during 

various physiological states.  The horses used in this dissertation varied in age from 

growing adolescents to aging horses and were studied in the post-absorptive and 

postprandial states and in states of acute and chronic inflammation.  Muscle biopsies 

were collected in all the studies to examine mTOR signaling responses to growth, aging, 

acute and chronic inflammation, as well as in the postprandial and post-absorptive states.  

Additionally, stable isotopes were infused intravenously to study whole-body protein 

metabolism. 

2.2.  RATIONALE 

As athletic animals, horses’ body mass is nearly 50% skeletal muscle (1).  Horses 

rely on skeletal muscle for mechanical and metabolic functions during exercise and as a 

source of stored protein and amino acids during periods of long term fasting.  Although 

measurements have not been made in the horse, in other mammals skeletal muscle 

accounts for ~25% of whole body protein synthesis (198, 199), indicating that it is a 

major site of protein synthesis.  In horses, there is an increase in skeletal muscle mass 

during growth and development, followed by a decrease during post-adulthood aging 

(486).  In other species, these age-related shifts in muscle mass are accompanied by 

alterations in the response of muscle protein fractional synthesis rates (125-127, 149, 151, 
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154) and whole body protein metabolism (185, 202, 487) to anabolic stimuli.  

Furthermore, age-related changes are present in the activity of the cell signaling pathway 

referred to as the mammalian target of rapamycin (mTOR) pathway, which is responsible 

for regulating protein synthesis in response to anabolic stimuli (23, 50, 129, 139, 155-

157).  Despite the age-related examination of whole body and muscle protein synthesis 

and the mTOR signaling pathway in other species, there has not been a single study in the 

horse to quantify these aging-related changes.  

There have been three studies (2, 3, 470) in horses to examine muscle protein 

synthesis, mTOR signaling and another cell signaling pathway that can affect 

downstream mTOR signaling.  However, all of these studies have been performed in the 

mature horse under various physiological states including postprandial, post-absorptive 

and post-exercise.  Because of the limited number of studies in this area, the optimum 

methods for muscle biopsy collection, for example the muscle and depth from which the 

biopsy is collected, and the lag time between biopsies, have not been determined.  

Currently, there is no standardized method, nor do we know how measurements may be 

influenced by differences in any of these parameters.  Despite the fact that mTOR 

signaling in various muscles respond differently to anabolic stimuli, there are currently 

no studies to determine the best sample collection methodology to study mTOR signaling 

in the horse. 

 By determining the optimum methods to study mTOR signaling in the horse, and 

the age-related changes that occur, insight into protein requirements during these life 

stages may be provided, and allow for the development of better dietary and management 
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strategies for these animals in the future.  This will be extremely important in trying to 

optimize growth and delay the loss of muscle mass accompanied with aging. 

2.3.  SPECIFIC HYPOTHESES AND OBJECTIVES 

2.3.1.  Hypothesis 1. 

Hypothesis 1a:  mTOR signaling will not be altered by gluteal muscle biopsy 

collection depth in mature horses in response to feeding.  Hypothesis 1b: The percentage 

of myosin heavy chain isoforms will be altered by gluteal muscle biopsy collection depth 

in mature horses.  Hypothesis 1c:  There will be no variation in the amino acid 

concentrations due to gluteal muscle biopsy collection depth in mature horses in response 

to feeding. 

 The objective of the first study in this dissertation was to determine whether 

biopsy depth related changes in MHC isoforms were associated with differences in the 

feeding-induced activation of mTOR signaling in the gluteal muscle of mature horses.  

Gluteal muscle biopsies were collected 60 minutes following the consumption of 3g/kg of 

a high protein pellet at 6, 8, and 10 cm below the surface of the skin in mature horses.  

The gluteal muscle biopsies were then prepared and analyzed for the following: Western 

blot analysis for mTOR signaling factors (Hypothesis 1a), myosin heavy chain separation 

analysis (Hypothesis 1b), and reverse phase HPLC for muscle free amino acid 

concentrations (Hypothesis 1c). 
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2.3.2.  Hypothesis 2. 

 Hypothesis 2a:  The collection of gluteal muscle biopsy samples every 24 hours 

for 5 consecutive days will reduce mTOR signaling in response to feeding.  Hypothesis 

2b:  Administration of a non steroidal anti-inflammatory drug (NSAID) will blunt the 

effects of gluteal muscle biopsies repeated every 24 hours over the course of 5 days on 

mTOR signaling.  Hypothesis 2c:  The collection of gluteal muscle biopsy samples every 

24 hours for 5 consecutive days will increase mRNA expression of inflammatory 

cytokines (IL−1β, IL-6, IL-10, TNF−α, IFN−γ) in skeletal muscle.  Hypothesis 2d:  

Administration of a NSAID will reduce mRNA expression of inflammatory cytokines in 

skeletal muscle during consecutive gluteal muscle biopsies repeated every 24 hours over 

the course of 5 days. 

 The objective of the second study of this dissertation was to determine the effects 

of collecting gluteal muscle biopsies every 24 hours for 5 consecutive days on muscle 

inflammatory cytokine expression and the activation of mTOR signaling in response to a 

high protein meal.  Gluteal muscle biopsies were collected 60 minutes following 

consumption of 3g/kg of high protein pellet from 12 mature horses.  This process was 

repeated every 24 hours for the following 4 days.  After the initial biopsy was collected 6 

of the mature horses were randomly assigned to begin receiving the NSAID drug 

treatment (1 g of phenylbutazone every 12 hours), and the other 6 horses did not receive 

any NSAID treatment until the end of the day 5 biopsy.  Muscle tissue samples were 

prepared and analyzed using Western blotting analysis for mTOR signaling (Hypothesis 

2a, 2b) and real time PCR analysis to determine the mRNA expression of the 

inflammatory cytokines (Hypothesis 2c, 2d). 
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2.3.3.  Hypothesis 3. 

 Hypothesis 3a:  There will be an increase in mTOR signaling in the postprandial 

state of compared to the post-absorptive state in yearlings, two year olds and mature 

horses.  Hypothesis 3b:  The responsiveness of mTOR signaling to feeding will be 

greatest in the muscle of yearlings, followed by 2 year olds and will be lowest in mature 

horses.  Hypothesis 3c:  There will be no differences in mTOR signaling in the post-

absorptive state between yearlings, two year olds and mature horses. 

The objective of the third study in this dissertation was to determine the effects of 

feeding following an 18 hour period of feed withholding on the activation of mTOR 

signaling factors in yearling, two year old and mature horses.  Following an 18 hour 

period feed withholding in yearlings, two year olds, and mature horses, gluteal muscle 

biopsies were collected 90 minutes following either the consumption of 4g/kg (2g/kg at 

t=0 min and 2g/kg at t=30 min) of a high protein pellet or after 90 minutes of continued 

feed withholding (Hypotheses 3a, 3b and 3c). All muscle biopsies were prepared and 

analyzed for the activation of mTOR signaling using Western blotting procedures. 

2.3.4.  Hypothesis 4. 

Hypothesis 4a:  Aged horses (23.5 ± 2.6 y old) will have lower rates of whole-

body protein synthesis compared to mature horses (11 ± 2.6 y old).  Hypothesis 4b:  

Aged horses will have decreased gluteal muscle mTOR signaling compared to mature 

horses.  Hypothesis 4c:  Aged horses will have increased gluteal muscle mRNA 

expression of inflammatory cytokines compared to mature horses.  Hypothesis 4d:  Aged 
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horses will have higher mRNA expression of inflammatory cytokines in circulation than 

mature horses. 

The objective of the fourth study in this dissertation was to determine the effects 

of old age on mTOR signaling and whole-body protein synthesis in mature and aged 

horses, and to further characterize the inflammatory state of the aged horses.  Mature and 

aged horses were studied using a 2 hour primed (14.4 μmol/kg), constant (12 μmol/kg/h) 

intravenous infusion of [13C] sodium bicarbonate solution to measure total CO2 

production.  Horses then received a 4 hour primed (8.4 μmol/kg), constant (6 μmol/kg/h) 

intravenous infusion of [1-13C]phenylalanine, with blood and breath sampled every 30 

minutes, to measure whole-body phenylalanine kinetics (Hypothesis 4a).  A gluteal 

muscle biopsy was collected at the end of the infusion period to determine mTOR 

signaling (Hypothesis 4b) and the mRNA expression of inflammatory cytokines 

(Hypothesis 4c) in skeletal muscle.  The day before the infusion procedures, a blood 

sample was collected into a PAXgene tube via venopuncture for the determination of 

circulating inflammatory cytokine mRNA expression (Hypothesis 4d).  mTOR signaling 

and mRNA expression of inflammatory cytokines were determined using Western 

blotting and real time PCR techniques, respectively. 

2.3.5.  Hypothesis 5. 

Hypothesis 5a:  Whole-body protein synthesis will increase in aged (23.5 ± 2.6 y 

old) horses following 4 weeks of NSAID administration.  Hypothesis 5b:  Gluteal 

muscle mTOR signaling will increase following 4 weeks of NSAID administration.  

Hypothesis 5c:  Gluteal muscle mRNA expression of inflammatory cytokines will be 
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reduced in aged horses following 4 weeks of NSAID administration.  Hypothesis 5d:  

Circulating inflammatory cytokine mRNA expression will be reduced in aged horses 

following 4 weeks of NSAID administration. 

The objective of the final study in this dissertation was to determine the effects of 

NSAID (phenylbutazone at 2 g/d) administration over 4 weeks on the activation of 

mTOR signaling and whole-body protein synthesis and skeletal muscle and circulating 

inflammatory cytokines in aged horses.  Aged horses were studied prior to and following 

2 and 4 weeks of NSAID administration.  Horses were studied using a 2 hour primed 

(14.4 μmol/kg), constant (12 μmol/kg/h) intravenous infusion of [13C]sodium bicarbonate 

solution in order to determine total CO2 production, followed by a 4 hour primed (8.4 

μmol/kg), constant (6 μmol/kg/h) intravenous infusion of [1-13C]phenylalanine, with 

blood and breath sampled every 30 minutes, to measure whole-body phenylalanine 

kinetics (Hypothesis 5a).  A gluteal muscle biopsy was collected at the end of the 

infusion period to determine the mTOR signaling (Hypothesis 5b) and the mRNA 

expression of inflammatory cytokines (Hypothesis 5c) in skeletal muscle.  On the day 

before infusion procedures, prior to and following 4 weeks of NSAID administration, a 

blood sample was collected via venopunctiure into a PAXgene tube for the determination 

of circulating inflammatory cytokine mRNA expression (Hypothesis 5d).  mTOR 

signaling and mRNA expression of inflammatory cytokines were determined using 

Western blotting and real time PCR techniques, respectively. 
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Chapter III1 

Gluteal muscle sampling depth does not affect mTOR signaling in response to feeding 

in mature Thoroughbred mares. 

1At the time of the defense (November 21, 2011), a version of this chapter is currently 
under review for publication in the Equine Veterinary Journal. 

3.1.  INTRODUCTION 

The collection of percutaneous muscle biopsy samples from the gluteal muscle is 

commonly used to investigate equine skeletal muscle physiology and metabolism (411); 

however, there is no standardized depth from which samples are collected.  Studies have 

demonstrated variation in MHC isoform expression across depth in the gluteal muscle of 

horses (413) and MHC content reflects the metabolic properties of the muscle fiber (425). 

Protein synthesis is regulated through the mammalian target of rapamycin 

(mTOR/mTORC1) signaling pathway.  The regulation of mTOR signaling has been the 

topic of recent review (488).  Our laboratory has examined the activation of factors along 

the mTOR pathway, Akt, rpS6 and 4EBP1, in response to meal consumption in mature 

horses (2), where it was demonstrated that the anabolic stimulus of meal consumption 

activates mTOR signaling in the mature horse.  In rodents, muscle groups with a greater 

proportion of type II versus I fibers have a greater abundance of the phosphorylated form 

of S6K1 in response to resistance exercise (110).  However, the effects of MHC 

proportion on the activation of mTOR signaling factors in response to feeding have not 

yet been determined. 
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The objective of this study was to determine whether biopsy depth related 

changes in MHC isoforms were associated with differences in the feeding-induced 

activation of mTOR signaling in the gluteal muscle of mature horses. 

3.2.  MATERIALS AND METHODS 

3.2.1.  Animals and housing 

All procedures used in this study were approved by the University of Kentucky 

Institutional Animal Care and Use Committee (2009-0442).  Six Thoroughbred mares 

(13.4 ± 3.4yrs; 536 ± 45 kg BW) of moderate body condition (5-7 on a 1-9 scale (489)) 

and clinically healthy were used in this study.  Mares were housed in 3×15 m partially 

covered dry lot pens with crushed limestone footing, with ad libitum access to both water 

and salt.  Horses were adapted to diet and housing procedures for 1 week prior to 

sampling. 

3.2.2.  Experimental procedures 

Individual meals were provided twice daily (at 800 and 1500).  Diets consisted of 

alfalfa hay cubes [mean ±SD; 0.48 ±0.01Mcal/kg DE, 17.0 ±0.2% CP, 35.2 ±0.8% ADF, 

44.9 ±1.3% NDF, 2.3 ±0.1% crude fat, and 9.5 ±0.2% ash] and a ration balancer (mean 

±SD; 0.49 ±0.01Mcal/kg DE, 14.9 ±0.2% CP, 22.5 ±0.8% ADF, 43.2 ±0.4% NDF, 3.6 

±0.1% crude fat, and 12.9 ±0.1% ash), provided at a rate of 1.75% and 0.2% of BW/d, 

respectively. 

On the morning of the muscle biopsy, horses were weighed on an electronic scale 

(TI-500, Transcell Technology Inc., Buffalo Grove, IL) and then fed 3 g/kg BW of a high 

protein pellet (mean ±SD; 0.57 ±0.01Mcal/kg DE, 36.3 ±0.7% CP, 6.8 ±0.3% ADF, 13.8 
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±0.8% NDF, 3.9 ±0.1% crude fat, and 17.2 ±0.3% ash) at t = 0 min.  This high protein 

pellet is a commercially available feed that was used in a previous study examining 

mTOR signaling in the horse where the amino acid concentrations of the feed were 

provided (2).  At t = 60 min, horses were lightly sedated with xylazine hydrochloride 

(0.3mg/kg, intravenous [100 mg/mL]), the biopsy site was aseptically scrubbed and and 

anesthetized with a local anesthetic (12mL of 2% lidocaine).  Muscle biopsies (~500 mg) 

were collected from a single incision in the middle gluteal muscle at depths of 6, 8 and 10 

cm below the surface of the skin, using the percutaneous needle biopsy technique (411).  

Samples were immediately processed for Western blot analysis (~100 mg) and the 

remaining muscle was frozen in liquid nitrogen, and stored at -80ºC until analysis for 

amino acid concentration determination and myofibrillar protein preparation. 

3.2.3.  Sample analysis. 

3.2.3.1.  Amino acids:  Muscle free amino acid concentrations were measured using 

reverse-phase HPLC (3.9 × 300 mm PICO-TAG reverse phase column; Waters, Milford, 

MA) of phenylisothiocyanate derivatives as previously described (2). 

3.2.3.2.  Muscle homogenate preparation for Western blot analysis:  Muscle homogenates 

were prepared as previously described (2).  Briefly, freshly collected muscle (~ 100 mg) 

was weighed and homogenized over ice in 7 µL/mg tissue wet weight of a buffer solution 

(20 mM HEPES, 2 mM EGTA, 50 mM sodium fluoride, 100 mM potassium chloride, 0.2 

mM EDTA and 50 mM β-glycerophosphate; pH 7.4) that contained 20 µL/mL of a 

protease inhibitor (Sigma P8340; Sigma Aldrich, Saint Louis, MO).  Homogenized 

samples were centrifuged at 10,000 x g for 10 min at 4 ºC and the supernatant was 
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aliquoted then stored at -80 ºC until further analysis.  After protein concentrations were 

determined using a Bradford assay kit (Thermo Scientific, Rockford, IL) modified for a 

96 well plate, 50 µL of supernant was added to 25 µL of a 3X Laemmli buffer (125 mM 

Trizma® hydrochloride pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol, 100 mM 

dithiothreitol, 0.01% (w/v) bromophenol blue).  Then, varying amounts of 1X Laemmli 

buffer were added to each sample/Laemmli buffer mixture to reach a final protein 

concentration of 2 µg/µL.  The sample/Laemmli buffer mixture was boiled for 5 min, and 

immediately placed on ice prior to gel electrophoresis. 

3.2.3.3.  Western blot analysis of muscle:  The abundance and phosphorylation of 4E-

BP1, Akt, S6K1, and rpS6 in the gluteal muscle were determined using Western blot 

analysis similar to those previously described (2).  Proteins in the muscle samples 

processed and stored in Laemmli buffer were separated in polyacylamide gels using 

electrophoresis and then transferred to 0.45 µm PVDF membranes (BioRad, Hercules, 

CA).  Samples were standardized by the amount of protein loaded per well for 

electrophoresis (20 µg protein was loaded for Akt, rpS6, and 4E-BP1; 30 µg protein was 

loaded for S6K1).  The membranes were blocked in a 5% fat-free milk solution and were 

then incubated with the appropriate primary antibodies for either 16 h at 4 ºC 

(phosphorylated and total forms of Akt, S6K1, and rpS6, and phosphorylated form of 4E-

BP1) or 1 h at room temperature (total form of 4E-BP1). 

Individual rabbit polyclonal antibodies (Cell Signaling Technology®, Inc., 

Boston, MA) were used that recognized total, Ser473, and Thr308 Akt (1:2000 dilution for 

each); total and Thr389 S6K1 (1:1000 and 1:500 dilutions, respectively); and Ser235/236, and 

Ser240/244 rpS6 (1:2000 dilutions for each).  Rabbit monoclonal antibodies (Cell Signaling 
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Technology®, Inc., Boston, MA) specific to total and Thr37/46 4E-BP1 (1:1000 dilution); 

and total rpS6 (1:10,000 dilution) were also used.  Following washing, membranes were 

incubated with a goat anti-rabbit IgG (H+L) with conjugated horseradish peroxidase 

(1:10,000 dilution) (BioRad, Hercules, CA) for 1 h at room temperature.  Membranes 

were developed using a chemiluminescence kit (Amersham ECL Plus Western Blotting 

Detection Reagents; GE healthcare, Piscataway, NJ) and visualized on x-ray film using a 

film processor (Kodak X-OMAT film processor, Kodak Health Imaging Division, 

Rochester, NY).  Band densities were quantified as the mean*pixels in a photo editing 

computer software program (Adobe Photoshop Elements™ Version 8.0; Alpha Innotech, 

San Leandro, CA). 

Gels were run in duplicate, and the average band densities were used to calculate 

the ratio of phosphorylated to total abundance (Section 3.4.4).  In order, to probe for the 

total versus phosphorylated forms using different primary antibodies, the PVDF 

membranes were first blotted for the phosphorylated protein abundance and were then 

stripped for 10 minutes (62.5 mM Trizma® hydrochloride, 2% (w/v) SDS, 0.1 M β-

mercaptoethanol, boiling), re-blocked with 5% fat-free milk solution and re-probed for 

the total protein abundance.  Membrane stripping and re-probing served to minimize the 

inter-assay error that would have resulted if the total and phosphorylated protein 

abundances had been quantified from different membranes. 

Although total Akt and Akt-Ser473, and total and Ser235/236 and Ser240/244 rpS6 have 

been previously evaluated in equine skeletal muscle using the rabbit antibodies (2), to the 

best of the authors’ knowledge, the other antibodies used in this study had not been 

previously validated for horse samples.  Therefore, positive control samples (Cell 
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Signaling Technology®, Inc., Boston, MA) with known reactivity to the antibodies, were 

loaded and run with all gels (Appendix 2).  In addition, prior to performing the western 

blot analysis for the samples in this study, we confirmed that all antibodies were cross-

species specific to these proteins in horses through the use of blocking peptides (Cell 

Signaling Technology®, Inc., Boston, MA).  Primary antibody was mixed with blocking 

peptide in decreasing ratios of 1:4, 1:1, 1:1/4, and 1:1/16 (antibody volume to blocking 

peptide volume) to determine the competition of blocking peptide to equine protein for 

the given antibody.  In all cases, we were able to verify that the primary antibodies were 

reacting with the equine forms of the proteins of interest, because there was a reduced 

chemiluminescent signal for the protein of interest as increased amounts of the blocking 

peptide were added to the reaction mixture. 

3.2.3.4.  Myofibrillar protein preparation:  Flash frozen muscle was removed from the -

80ºC freezer, and allowed to thaw on dry ice.  Tissue was then divided into (~50 mg) 

portions and homogenized with a manual dounce homogenizer over dry ice in 9 µL/mg 

tissue wet weight of a buffer solution (250mM Sucrose, 25mM NaCl, 20mM Tris; pH 

7.4).  Homogenized samples were centrifuged at 20,000 x g for 30 min at 4 ºC and the 

supernatant was removed.  The pellet was then resuspended in homogenizing buffer (250 

µL).  After protein concentrations were determined using a Bradford assay kit (Thermo 

Scientific, Rockford, IL) modified for a 96 well plate, 40 µL of sample was added to 20 

µL of a 3X Laemmli buffer (0.15 M Tris, pH 6.8, 6% (w/v) SDS, 75 mM dithiothreitol, 

0.06% (w/v) bromophenol blue, 40% (w/v) glycerol).  Then, varying amounts of 1X 

Laemmli buffer were added to each sample/Laemmli buffer mixture to reach a final 
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protein concentration of 0.2 µg/µL.  The sample/Laemmli buffer mixture was boiled for 2 

min, and immediately placed on ice prior to gel electrophoresis. 

3.2.3.5.  Separation of MHC Isoforms via electrophoresis:  The percentage of MHC 

isoform in the gluteal muscle was determined using electrophoresis followed by silver 

staining similar to the methods previously described (490).  In short, myofibrillar proteins 

in the muscle samples processed and stored in Laemmli buffer were separated in 

polyacrylamide gels using electrophoresis.  Samples were standardized by the amount of 

protein loaded per well for electrophoresis (2 µg of myofibrillar proteins was loaded), 

and mouse gastrocnemius muscle served as a control on each gel.  The electrophoresis 

ran at 4ºC for 40 hours with constant voltage of 70 V using a BioRad Power PAC3000 

power supply (Hercules, CA).  Membranes were stained using a silver staining kit (Silver 

Stain Plus Kit; BioRad, Hercules, CA) following manufacturer’s directions (Appendix 3).  

Band densities were quantified as the mean*pixels using a photo editing computer 

software program (Adobe Photoshop Elements™ Version 8.0; Alpha Innotech, San 

Leandro, CA). 

3.2.4.  Calculations and statistics. 

Individual band densities were corrected for the band density of the positive 

control (Akt Control Cell Extracts treated with Calyculin A, Cell Signaling Technology 

®, Inc., Boston, MA) run on each gel.  The averages of the corrected band densities from 

duplicate gels were averaged, and then expressed as a ratio of the phosphorylated to total 

forms for each protein.  Protein abundance of the mTOR signaling factors was expressed 
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in arbitrary units, with the ratio of the phosphorylated to total forms of each protein at the 

6 cm depth set to 1.  MHC isoforms are expressed as a percentage of total MHC. 

All data were analyzed using the MIXED procedure of SAS Version 9.2 (SAS 

Institute Inc., Cary, NC), with statistical significance at P < 0.05.  When the fixed effects 

were significant, pre-planned comparisons of least squares means were made using the 

pdiff test.  The dependent variables were analyzed using repeated measures analysis, with 

depth and block as the fixed effects and horse nested in block as the subject.  The 

variance-covariance matrix was chosen for each analysis based on the lowest value for 

Schwarz’s Bayesian Criterion.  Data are presented as means ± pooled standard error. 

3.3.  RESULTS 

There was a significant effect (P < 0.05; Table 3.1) of sampling depth on the 

muscle concentrations of free alanine, aspartate, glutamate, isoleucine, leucine, 

methionine, proline and valine. 

 The phosphorylation of Akt at Ser473 (P = 0.06; Figure 3.1), S6K1 at Thr389 (P = 

0.66; Figure 3.1), rpS6 at Ser235/236 & 240/244 (P = 0.21; Figure 3.1), and 4EBP1 at Thr37/46 

(P = 0.62; Figure 3.1) was not affected by sampling depth within the gluteal muscle of 

mature mares 60 min following the consumption of a high protein pellet. 

 There was a significant effect of sampling depth on the percentage of MHC IIA (P 

= 0.03; Figure 3.2) and IIX (P = 0.02; Figure 3.2) in the gluteal muscle of mature mares; 

however there was no effect (P = 0.42; Figure 3.2) of sampling depth on the percentage 

of MHC I.  The percentage of MHC IIA and IIX increased by 27% and decreased by 

15%, respectively, from 6 to 10 cm. 
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3.4.  DISCUSSION 

This is the first study to examine the effects of gluteal muscle biopsy sampling 

depth on the activation of mTOR signaling in response to feeding.  The results showed no 

effect of sampling depth on the activation of mTOR signaling, despite changes in the 

proportion of MHC isoforms.  Thus, it appears that if percutaneous muscle biopsy 

sampling occurs within a 6 to 10 cm range then mTOR signaling in response to feeding 

can be compared between mature horses. 

The collection of gluteal muscle biopsies at 6, 8, and 10 cm below the surface of 

the skin showed that the proportion of MHC IIA, IIX and I isoforms increased, decreased 

and remained unchanged, respectively.  The changes seen in the proportion of MHC IIA 

and IIX are consistent with previous reports (413), where the percentage of MHC IIA and 

IIX isoforms increase and decrease, respectively, from 2 cm to 8 cm in the gluteus 

muscle (413).  However, in the present study we did not see a change in the percentage of 

MHC I isoforms which has been previously demonstrated to increase with depth (413), 

and may be due to the sampling protocol in the present study: we collected biopsies at 6, 

8 and 10 cm below the surface of the skin rather than a more shallow collection 

beginning at 2 cm (413).  We also did not account for the variation in subcutaneous fat 

which we have demonstrated to be up to 2 cm in some mature horses (Section 8.1).  

Additionally, it is has been previously demonstrated that extensive variation in fiber type 

exists between breeds (414), and the present results in Thoroughbreds are consistent with 

what has been previously measurements of 10-15% of Type I fibers in this breed (414). 

The activation of the mTOR signaling in response to feeding was not affected by 

sampling depth.  Although this is the first study to examine biopsy sampling depth in 
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horses, it is not the first study to look at the association between of MHC isoform content 

of muscle with mTOR signaling response to anabolic stimuli.  In rodents, 

phosphorylation of mTOR (491) and S6K1 (110) was shown to vary across different 

muscles in response to contractile activity and the authors suggested that different fiber 

types (Type II vs. Type I) maybe exhibiting a greater mTOR signaling response. 

However, the variation in the activation of mTOR signaling factors due to MHC isoforms 

remains unclear (104), and fiber type is not associated with different rates of protein 

synthesis in humans (492).  Horses, like humans, possess a single MHC I and 2 MHC II 

isoforms (409), and do not possess a MHC IIB isoform which is present in rodent skeletal 

muscle (409).  It may be that the increased responsiveness to anabolic stimuli is a 

property that is specific to Type IIB fibers seen in rodents; however, this requires 

additional research.  Additionally, the minimal change in MHC isoforms with depth may 

explain the lack of an effect of depth on mTOR signaling in response to feeding. 

Although sampling depth did not affect the activation of mTOR signaling, the 

gluteal muscle concentrations of branched chain amino acids (BCAA), alanine, aspartate, 

glutamate, methionine, and proline were greatest at the 8 cm sampling depth.  With 

elevated concentrations of BCAA, we expected to see greater mTOR signaling (48) at the 

8 cm depth, but this was not the case, and these depth-related differences remain unclear.  

However, from a methodological perspective, these results indicate that when comparing 

gluteal muscle amino acids of mature horses, researchers need to standardize their biopsy 

collection procedures by depth. 

Conducting muscle biopsies at a depth range of 6 to 10 cm below the surface of 

the skin did not affect the activation of mTOR signaling in response to consumption of a 
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high protein pelleted meal, despite differences in the distribution of the MHC isoforms 

present.  Therefore, the activation of mTOR signaling can be compared across this range 

of depths in mature horses.  
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3.5.  TABLES 

Table 3.1: Muscle amino acid concentrations of the gluteus muscle at 6, 8 and 10 cm 

below the skin in mature mares. 

Amino Acid 6 cm 8 cm 10 cm Pooled 
SEM 

p-Value 

Alanine1 697a 944b 744a 102 0.05 

Asparagine 60 60 59 6 0.97 

Aspartate 70a 94b 68a 9 0.02 

Citrulline 41 50 46 6 0.48 

Glutamate 305a 442b 390b 49 0.03 

Glutamine 246 303 257 35 0.46 

Glycine 664 471 664 133 0.50 

Histidine 58 68 53 8 0.24 

Isoleucine 55a 69b 56a 4 0.004 

Leucine 105a 135b 111a 10 0.007 

Lysine 296 189 267 128 0.67 

Methionine 36a 50b 39a 4 0.004 

Ornithine 15 26 17 9 0.59 

Phenylalanine 48 64 104 29 0.39 

Proline 94a 122b 100a 9 0.004 

Serine 144 150 137 12 0.45 

Threonine 170 207 173 34 0.69 

Tryptophan 18 20 18 2 0.56 

Tyrosine 61 104 62 24 0.36 
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Table 3.1 continued: Muscle amino acid concentrations of the gluteus muscle at 6, 8 

and 10 cm below the skin in mature mares. 

Valine 111a 148b 119a 9 0.005 

 

1 Plasma amino acids concentrations are reported as least square means in μmol/g of wet 
muscle. 
abc Differing letters indicate that values are significantly (P < 0.05) different from each 
other. 
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3.6.  FIGURES 

 

Figure 3.1.  Gluteal muscle phosphorylation of Akt at Ser473, S6K1 at Thr389, rpS6 at 

Ser235/236 & 240/244, and 4EBP1 at Thr 37/46 at 6, 8, and 10 cm below the surface of the 

skin within the gluteus medius muscle of mature mares 60 min after consuming 

3g/kg of a high protein pelleted feed.  The phosphorylated forms of the translation 

initiation factors was corrected by the respective total form abundance, with the value for 

mature horses set at 1.0 AU.  Values are least square means ± pooled SE, n=6 per depth.  

Representative images of the immunoblots are shown above. 
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Figure 3.2.  Percentage of MHC isoforms at 6, 8, and 10 cm below the surface of the 

skin within the gluteus medius muscle of mature mares 60 min after consuming 

3g/kg of a high protein pelleted feed.  Values are least square means ± pooled SE, n=6 

per depth. 

abDifferent letters indicate a significant depth effect (P < 0.05). 
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Chapter IV 

Repeated muscle biopsies over a 5 day period increases mTOR signaling in equine 

skeletal muscle 

4.1.  INTRODUCTION 

Repeated percutaneous needle muscle biopsies, over the span of hours or days, are 

a common practice in human and equine studies examining various factors affecting 

muscle metabolism and physiology.  However, the literature examining the effects of 

repeated biopsies on muscle metabolism and physiology is limited.  Inflammatory 

changes in the muscle are induced by aging (493-495), exercise (244, 245, 255), and 

muscle biopsy collection (248).  In many studies, the effects of repeated biopsies on 

muscle inflammation has been confounded by the inclusion of a simultaneous exercise 

treatment (244, 245, 255, 332).  Multiple biopsies have been reported to increase both 

systemic and muscle inflammatory cytokines 30 (245) and 126 minutes (248) following 

an initial biopsy.  However, repeated biopsies over a 24 hour period in equine skeletal 

muscle did not affect systemic or muscle inflammatory cytokines.  This disconnect 

between human and equine skeletal muscle, in addition to the absence of non-exercise 

related studies, necessitated further investigation. 

Protein synthesis is regulated through the mammalian target of rapamycin 

(mTOR) signaling pathway.  There are numerous reviews (21, 488, 496) examining the 

regulation of this pathway by anabolic stimuli.  Briefly, insulin stimulates the mTOR 

signaling pathway through the phosphorylation of Akt (18, 19, 21), which inhibits the 

activation of several mTOR inhibitors (18, 19, 21).  Amino acids also stimulate the 



129 
 

mTOR signaling pathway through the activation of a series of signaling proteins which 

subsequently activate mTOR (45, 46, 497).  mTOR activation results in the 

phosphorylation of two downstream signaling proteins, ribosomal S6 Kinase 1 (S6K1) 

and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) (146, 496).  

Phosphorylation of S6K1 activates ribosomal protein S6 (rpS6) (498), a component of the 

40S ribosomal subunit (498).  Phosphorylation of rpS6 and 4EBP1 result in the activation 

of the translational equipment, allowing for protein synthesis to occur (146, 496).  

Numerous studies have shown that the activation of these key proteins in the mTOR 

signaling pathway in rodents (499-501), humans (99, 502, 503), and pigs (504-506) 

correlate with an increase in the fractional muscle protein synthesis rates. 

The use of multiple biopsies to examine protein synthesis rates and the mTOR 

signaling pathway typically coincide with an exercise treatment, making it impossible to 

separate the effects of exercise from repeated biopsy.  These studies typically occurred 

during approximately a 24 hour period where the initial biopsy was collected and then 

subsequent biopsies are obtained following an exercise regimen or during isotope 

infusion techniques over a several hour period.  Protein synthesis rates do not change 

with multiple muscle biopsies collected between 60, 210 and 240 minutes of a 4 hour 

period (507) and during hourly biopsies over a 6 hour period (508).  However, no study 

has examined the effects of repeated muscle biopsies on muscle protein synthesis rates 

after 6 hour, and there has been no study to examine the effects of repeated biopsies on 

the activation of mTOR signaling factors.  It is crucial to study protein synthesis and 

mTOR signaling during a longer period following inflammatory stimuli because in 

humans inflammation has shown to remain elevated up to 72 hours following exercise 
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(509).  Inflammation may impact the responsiveness of the mTOR signaling pathway and 

subsequently protein synthesis rates in response to anabolic stimuli.  In aged rodents with 

systemic inflammation, the administration of a NSAID was able to increase muscle 

protein synthesis (335).  Therefore, it may be possible to mitigate changes in 

inflammation and mTOR signaling due to repeated biopsies using NSAID administration.  

The objective of this study was to determine the effects of multiple biopsies over the 

course of 5 consecutive days on muscle inflammatory cytokine expression and the 

activation of mTOR signaling in response to a high protein meal. 

4.2.  MATERIALS AND METHODS 

4.2.1.  Animals and housing. 

All procedures used in this study were approved by the University of Kentucky 

Institutional Animal Care and Use Committee (2009-0442).  Twelve Thoroughbred 

mares were obtained from the University of Kentucky Animal and Food Sciences’ Maine 

Chance Farm.  All mares were classified as mature (average age 13.4 ± 3.4; range 10-19 

y old), of a moderate body condition (body condition score 5-7, scale 1-9 (489)), and 

clinically healthy.  Mares were on a regular vaccination, anthelmintic, and farrier 

schedule prior to inclusion on this study.  For the duration of the study mares were 

housed in 3×15 m partially covered dry lot pens with crushed limestone footing.  Ad 

libitum access to both water and salt was provided throughout the study.  Horses were 

adapted to diet and housing procedures for 1 week prior to the initiation of study 

procedures. 
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4.4.2.  Feeding procedures. 

Individual meals were provided twice daily (at 800 and 1500).  Diets consisted of 

alfalfa hay cubes and a ration balancer; and were designed to meet the NRC (336) 

requirements for mature horses with an approximate body weight (BW) of 600 kg and 

average maintenance needs.  The alfalfa hay cubes [mean ±SD; 0.48 ±0.01Mcal/kg DE, 

17.0 ±0.2% crude protein (CP), 35.2 ±0.8% acid detergent fiber (ADF), 44.9 ±1.3% 

neutral detergent fiber (NDF), 2.3 ±0.1% crude fat, and 9.5 ±0.2% ash] and ration 

balancer (mean ±SD; 0.49 ±0.01Mcal/kg DE, 14.9 ±0.2% CP, 22.5 ±0.8% ADF, 43.2 

±0.4% NDF, 3.6 ±0.1% crude fat, and 12.9 ±0.1% ash) were provided at a rate of 1.75% 

and 0.2% of BW/d, respectively,  for the duration of the study.  Samples of the alfalfa hay 

cubes, ration balancer, and high protein pellet, which was offered on sampling days, were 

collected and sent to Dairy One Forage Laboratory (Ithaca, NY) for nutrient analysis. 

4.2.3.  Experimental design and procedures. 

The current study was executed as a 2-way factorial design with day (1-5) and 

NSAID administration (+NSAID or -NSAID) as the fixed effects.  The twelve mares 

were divided into two blocks of 6 horses, with 3 horses on each treatment in each block 

to ease sampling procedures. 

On the morning of day 1, following the adaptation period, horses were weighed 

on an electronic scale (TI-500, Transcell Technology Inc., Buffalo Grove, IL) and fed a 

high protein pellet (mean ±SD; 0.57 ±0.01Mcal/kg DE, 36.3 ±0.7% CP, 6.8 ±0.3% ADF, 

13.8 ±0.8% NDF, 3.9 ±0.1% crude fat, and 17.2 ±0.3% ash) at 3g/kg.  This high protein 

pellet is a commercially available feed that was used in a previous study examining 
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mTOR signaling in the horse where the amino acid concentrations of the feed were 

provided (2).  Pre-feeding (t = -15 min) and post-feeding (t = 60 minute after feed was 

offered) jugular vein blood samples were collected via venapuncture into evacuated glass 

tubes (Vacutainer; Becton-Dickinson, Franklin Lakes NJ) containing sodium heparin.  

Blood samples were immediately centrifuged at 1,500 x g for 10 minutes at 4ºC.  

Aliquots of plasma samples were frozen at -20ºC until the time of analysis.  At t = 60 

min, horses were placed in equine stocks (Priefert® Rodeo & Ranch Equipment, Mount 

Pleasant TX), and were lightly sedated with xylazine hydrochloride (0.3mg/kg, 

intravenous [100mg/mL]).  Muscle biopsies (~500 mg) were collected from both the right 

and left gluteal muscles, at a standardized site from a depth of 8cm (Chapter III) in the 

middle gluteal muscle by use of the percutaneous needle biopsy technique (411).  

Biopsies on day 2 – 5 were collected using separate incisions at least 1 cm apart from all 

previous biopsy sites.  Samples were immediately processed for Western blot analysis 

(~100 mg) and quantitative real time (qRT)-PCR (~80 mg), as described below, and the 

remaining muscle was frozen in liquid nitrogen, and stored at -80ºC until analysis.  

Phenylbutazone (NSAID) was administered orally after the initial biopsy at 1 g every 12 

hours for the next consecutive 5 day in the +NSAID group, and was not administered in 

the -NSAID group.  This procedure was repeated every 24 hr for the next 4 d.  At the end 

of the sampling period on day 5, all horses received phenylbutazone (2g/day) for the next 

3 days to alleviate any discomfort or inflammation that may have been associated with 

the procedures.  All mares were then returned to the Department of Animal and Food 

Sciences Maine Chance Farm Research herd at the end of the study procedures. 
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4.2.4.  Sample analysis. 

4.2.4.1.  Plasma glucose and insulin: Plasma glucose concentrations were determined 

enzymatically using a YSI 2300 STAT Plus™ Glucose and Lactate Analyzer (YSI Inc., 

Life Sciences, Yellow Springs OH) (Appendix 4.1).  A Coat-A-Coat RIA® kit (Siemens 

Healthcare Diagnostics Inc., Deerfield IL) was used to determine plasma insulin 

concentrations (Appendix 4.2). 

4.2.4.2.  Amino acids:  Both plasma free amino acid concentrations (Appendix 1.1 – 1.2) 

and total feed amino acid (Appendix 1.4 – 1.5) content were measured using reverse-

phase HPLC (3.9 × 300 mm PICO-TAG reverse phase column; Waters, Milford MA) of 

phenylisothiocyanate derivatives as previously described (2). 

4.2.4.3.  Western blot analysis of muscle samples:  The abundance of the total and 

phosphorylated forms of Akt, S6K1, rpS6, and 4E-BP1 in the gluteal muscle 

homogenates were determined using electrophoresis followed by Western blotting 

techniques (Chapter III) 

4.2.4.4.  RNA isolation and qRT-PCR.  Freshly collected muscle (~ 80 mg) was weighed, 

submerged in RNAlater (Qiagen Inc., Valencia, CA), and stored at -20oC until further 

analysis.  At time of analysis, muscle was homogenized into the RNA-Stat60 solution 

(Tel- Test, Friendswood, TX) using the bead beating technique (510).  Total RNA was 

then isolated and quantified using phenol-chloroform extraction and quantified using 

spectrophotometer (BioPhotometer, Eppendorf, Hamburg, Germany).  Finally, reverse 

transcription reactions were performed as previously described (244, 484), using 0.5 μg 

of each RNA sample and reverse transcription master mix (Promega, Madison, WI).  
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These reactions were incubated at 42oC for 15 minutes and 95oC for 5 minutes.  cDNA 

samples were stored at -20oC until analyzed by qRT-PCR. 

The mRNA expression of pro -inflammatory cytokines, IFN−γ, IL−1β, IL-6 and 

TNF−α, and the anti-inflammatory cytokine IL-10 were measured in cDNA samples 

using equine specific intron-spanning primer/probe sets (244).  A gene expression master 

mix solution containing: 6.25 μL nuclease-free water (Qiagen), 1.25 μL 20 × assay mix 

for primer/probe set of interest (Applied Biosystems, Foster City, CA), and 12.5 μL 

Taqman™ (Applied Biosystems, Foster City, CA) reacted in 384 well plates with 5 μL of 

cDNA.  All reactions were run in duplicate under the following PCR conditions: 95oC for 

10 minute followed by 45 cycles of 95oC for 15s and 60oC for 60s in an Applied 

Biosystems 7500 sequence detection system (Appendix 5).  Differences in RNA isolation 

and cDNA construction between samples were corrected with the use of an internal 

control, β-glucorindase, for each sample (244, 484). 

4.2.5.  Calculations and statistical analysis. 

Protein abundance of the mTOR signaling factors is expressed in arbitrary units, 

which is the ratio of the phosphorylated to total forms for each protein (Chapter III).  The 

ΔΔCT method (484) was used to calculate relative changes in mRNA expression from the 

initial biopsy.  The calibrator for individual cytokines was set as the mean ΔCT averaged 

for all horses at day 1.  These results are expressed as the relative quantity (RQ), which is 

calculated as 2-ΔΔCT. 
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All data were analyzed using the mixed procedure of SAS Version 9.2 (SAS 

Institute Inc., Cary, NC), with statistical significance and trends considered if P < 0.05 

and 0.05 < P < 0.10, respectively.  When the fixed effects were significant, pre-planned 

comparisons of least squares means were made using the pdiff test. 

The dependent variables plasma glucose, insulin, and amino acid concentrations 

were analyzed using repeated measures analysis, with day, NSAID treatment, 

day*NSAID treatment interaction, and block as the fixed effects and horse nested within 

treatment*block as the random subject.  Baseline concentration was also included in the 

model as a covariate because it significantly (P < 0.05) influenced the post-meal sample.  

Biopsy side (left or right) was initially included in the model for each of the mTOR 

signaling proteins, but was not significant (P > 0.05) and was removed from the model.  

Each of the mTOR signaling proteins and the expression of individual inflammatory 

cytokines were analyzed using repeated measures analysis, with day, NSAID treatment, 

day*NSAID treatment interaction, and block as the fixed effects with horse nested within 

treatment*block set as the random subject.  For all repeated measures analysis, the 

variance-covariance matrix was chosen for each analysis based on the lowest value for 

Schwarz’s Bayesian Criterion.  Data are presented as means ± pooled standard error 

unless otherwise noted. 

4.3.  RESULTS 

4.3.1.  Plasma glucose, insulin, and amino acid concentrations 

Plasma glucose concentrations were significantly affected by the interaction of 

NSAID treatment*day (P = 0.05; Table 4.1), where at 60 minutes following the 
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consumption of a high protein pelleted meal the plasma glucose concentrations decreased 

over the course of the 5 day sampling period in the +NSAID treatment group (P < 0.05), 

and did not change in the -NSAID group (P > 0.10).  Plasma insulin concentrations were 

not affected (P > 0.10; Table 4.1) by day, NSAID treatment, or day*NSAID treatment 

interaction. 

There was a significant effect (P < 0.05; Table 4.1) of treatment on plasma 

concentrations of isoleucine, and proline.  There was a statistical trend for an effect of 

treatment on the plasma concentrations of leucine (P = 0.10), and valine (P = 0.10; Table 

4.1).  Day of sampling significantly affected (P < 0.05; Table 4.1) plasma concentrations 

of alanine, and threonine.  There was a significant (P = 0.04; Table 4.1) day*NSAID 

treatment interaction on the plasma concentrations of asparagine.  

4.3.2.  Muscle mTOR signaling factors 

The phosphorylation of Akt at Ser473 decreased significantly with day of biopsy (P 

< 0.0001; Figure 4.1), regardless of treatment; however, the +NSAID group decreased 

from day 1 to 2, and the –NSAID group decreased from day 1 to 3.  Akt P-Ser473 was not 

affected by treatment or treatment*day interaction (P > 0.10).  There was a significant 

treatment*day interaction on the phosphorylation of S6K1 at Thr389 (P = 0.003; Figure 

4.2), where the +NSAID group had a transient increase from day1 during days 2 and 3 

and returned to baseline by day 4, and the –NSAID group had a greater Thr389 S6K1 on 

day 5 than on day 1.  The phosphorylation of S6K1 at Thr389 was significantly affected by 

day of sampling (P = 0.02), but not treatment (P > 0.10).  There was a significant 

interaction of treatment*day on the phosphorylation of rpS6 at Ser235/236 & 240/244 (P < 
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0.001; Figure 4.3) with a transient decrease from day 1 in the +NSAID group on days 4 

and 5, and an increase from day 1 with collection of each subsequent biopsy in the –

NSAID group.  The phosphorylation of rpS6 at Ser235/236 & 240/244 was significantly 

affected by both day of sampling (P = 0.005) and treatment (P = 0.05).  There was a 

time*treatment interaction on 4EBP1 at Thr37/46 (P = 0.02; Figure 4.4) with no change 

due to day in the +NSAID group and a gradual increase at day 5 from day 1 in the –

NSAID group.  There was a trend (P = 0.06) for an effect of sampling day on the 

phosphorylation of 4EBP1 at Thr37/46 by sampling day, and no effect of treatment (P > 

0.10). 

4.3.3.  Muscle inflammatory cytokines 

IL-1β mRNA expression was significantly affected by sampling day (P = 0.01) 

and there was a trend (P = 0.05) for an effect of the treatment*day of sampling interaction 

(Table 4.2).  IL-1β mRNA expression did not change (P > 0.10) in the +NSAID group 

with day, but dramatically increased (P = 0.001) in the –NSAID group on day 5.  IFN−γ 

mRNA expression was significantly affected (P = 0.003; Table 4.2) by day, with no 

change (P > 0.10) in the +NSAID group, and a decrease (P = 0.006) with day in the –

NSAID group.  However, there was no effect of the treatment*day of sampling 

interaction (P > 0.10) on the expression of IFN−γ mRNA, indicating the main effect of 

sampling day was primarily due to changes in the –NSAID group.  There was a trend for 

an effect of day on IL-10 mRNA with a transient increase in the +NSAID group; 

however, there was no effect of treatment, or the interaction of treatment*day of 
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sampling (P > 0.10).  There was no effect (P > 0.05) of day, treatment, or treatment*day 

of sampling interaction for IL-6 (Table 4.2) and TNF−α (Table 4.2). 

4.4.  DISCUSSION 

To the best of our knowledge, this is the first study to examine the effects of 

multiple gluteal muscle biopsies over 5 consecutive days on local inflammation and on 

the activation of mTOR signaling in response to a high protein meal.  The primary 

finding of this research was that repeated biopsies over 5 consecutive days may be 

obtained without eliciting changes in downstream mTOR signaling response to feeding 

due to increases in inflammation when NSAID are administered.  However, when 

NSAID are not administered, 5 days of consecutive biopsies altered muscle IL−1β and 

IFN−γ and elevated the activation of the downstream mTOR signaling proteins in 

response to feeding.  Thus, the administration of NSAID appeared to reduce the local 

inflammation induced by the collection of repeated biopsies and prevented changes in the 

downstream mTOR signaling response to feeding. 

Reports are varied on the effects of repeated biopsies on local inflammation due 

to the frequency and number of biopsies collected, the method of biopsy collection, and 

the site of biopsy.  In the current study, IFN−γ  and IL−1β skeletal muscle mRNA 

expression decreased and increased, respectively, from the initial to the fifth biopsy in the 

–NSAID group.  However, a previous study in horses found no change in the mRNA 

expression of IFN−γ or IL−1β with repeated biopsies over a 24 hour period (244), 

consistent with our results.  In human, there was an initial elevation in the protein 

expression of IL−1β 30 minute following the first biopsy, but this increase did not persist 
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over the next 7 days (245).  The biopsy sites in the present study were more closely 

spaced (1 cm) than the previous study (2 cm) (245); therefore, our finding of elevated 

IL−1β by day 5 may have been due to the closer spatial arrangement to the previous 

biopsy sites.  Although IFNγ mRNA expression was elevated on days 1 and 2, it then 

decreased on day 3, remaining constant until day 5 in the –NSAID group.  IFN−γ 

functions as a key regulator of other pro-inflammatory parameters, causing an up 

regulation of TNF−α (511) and NF−κB (512), and inhibiting IL−1β (513).  Therefore, the 

increase in IL−1β seen on day 5 in the -NSAID group may be regulated by the decrease 

in IFN−γ expression observed in the current study.  The mechanisms surrounding the 

decrease in IFN−γ expression in the –NSAID group requires further elucidation.  

In the current study, TNF−α mRNA expression was not altered with the 

collection of biopsies over 5 consecutive days in the –NSAID group, which is in 

agreement with previous work in horses over a 24 hour period (244) and humans over a 7 

day period (245).  IL-6 mRNA expression has been shown to increase during 7 days of 

repeated biopsies (245) and with acute repeated biopsies through separate incision sites 

(248) in humans, but this was not seen in the present study or in previous studies in 

horses (244).  IL-6 production may be more responsive in human skeletal muscle than 

equine skeletal muscle; however, this requires further investigation.  In the present study, 

the absence of an effect of repeated biopsies on the mRNA expression of IL-6 and 

TNF−α may have been due to the decline in IFN−γ mRNA expression by day 5 because 

IFN−γ plays a crucial role in the stimulation of the production of IL-6 and TNF−α from 

monocytes and macrophages (511, 513). 
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Although other studies have looked at the effectiveness of NSAID at reducing the 

inflammatory response caused by exercise, this is the first study to determine the effects 

of NSAID administration on inflammatory cytokines using repeated biopsies to elicit 

inflammation.  Oral administration of a herbal supplement with NSAID properties in 

rodents reduced muscle IL−1β, IL-6, and TNF−α mRNA expression following exercise 

(332), although in humans only TNF−α mRNA expression is reduced following post-

exercise NSAID infusion (333).  Intravenous NSAID infusion in horses appeared to 

reduce the systemic inflammatory response of lipopolysaccharide (LPS) infusion; 

however, TNF−α was the only inflammatory cytokine examined (514).  Although the 

methods of NSAID administration, cause of inflammatory response, site of inflammation, 

and inflammatory cytokine examined were different between the three studies, the current 

study also showed that NSAID administration ameliorates the effects of repeated biopsies 

over 5 consecutive days on inflammatory cytokines in the gluteal muscle of mature 

horses through the absence of a change in mRNA expression of the interleukins (-6, -1β, 

and -10), TNF−α, and IFN−γ in the skeletal muscle of the +NSAID group during 5 days 

of biopsies. 

 All animals studied were mature, sedentary and consuming the same meal for 5 

consecutive days; therefore, we did not expect a change in the activation of downstream 

effectors or protein synthesis, as long as the repeated biopsies and/or NSAID 

administration were not influencing muscle metabolism.  There were no differences in 

the downstream mTOR signaling factors in the +NSAID group showing that any changes 

in muscle inflammation or metabolism caused by the repeated biopsies were mitigated by 

the NSAID.  However, in the absence of NSAID administration, the daily collection of 
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muscle biopsies for 5 days increased the activation of the downstream mTOR signaling 

proteins, S6K1, rpS6, and 4EBP1, by 22, 73, and 117%, respectively.  The increase in 

mTOR signaling is suggestive of an increase in rates of muscle protein synthesis in the –

NSAID group (500, 502, 505), although isotopic confirmation is necessary. 

  Following a bout of exercise there is an increase in muscle inflammatory cytokine 

gene expression (244, 255, 509) and the activation of mTOR signaling proteins (515) for 

up to 72 hours.  It is thought that the increase in inflammatory cytokines following 

exercise is necessary for muscle repair post-exercise (334) because inflammatory 

cytokines are regulators of satellite cell proliferation (312, 313).  A similar phenomenon 

may have occurred during the current study, where there was an increase in the activation 

of 4EBP1, S6K1, and rpS6 and the pro-inflammatory cytokine, IL−1β, in the –NSAID 

group after 5 days of biopsy collection.  Additionally, when a NSAID was administered 

locally following eccentric exercise there was a reduction in satellite cell proliferation 

(316), but protein synthesis was unaltered (333).  However, when NSAID are 

administered orally there is a reduction in post-exercise protein synthesis (516).  

Therefore, the increase in IL−1β mRNA expression in the –NSAID group in the current 

study which coincided with an increase in all of the downstream mTOR signaling factors 

may be necessary for muscle to repair; however, further research is needed to confirm 

this.  Overall the findings from the –NSAID group may indicate that future experiments 

using repeated biopsies over the course of several days to examine the activation of 

mTOR signaling proteins in response to anabolic stimuli may require a control group or 

NSAID treatment to account for changes in mTOR signaling not related to the 

experimental treatments. 
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Regardless of treatment, the activation of Akt over the course of 5 days of 

repeated biopsies was reduced.  Akt is activated through insulin signaling (18, 19), and 

circulating insulin levels were variable in the present study regardless of treatment group, 

which may indicate that the phenylbutazone dose (1g every 12 hours) was not sufficient 

to elicit treatment differences.  Hepatic activation of NF−κB, an inhibitor of Akt 

phosphorylation (517), has been associated with systemic insulin resistance in mice 

(518).  Although we did not examine NF−κB in the present study, Akt activation may 

have been inhibited through NF−κB due to insufficient inhibition by phenylbutazone 

(519), or through NF−κB altered insulin sensitivity.  Additionally, the reduction in Akt 

activation could indicate a reduction in insulin sensitivity associated with the repeated 

biopsies that could not be mediated by the administration of an NSAID. 

Although there was a reduction in the activation of Akt with repeated biopsies, 

there was an increase in the activation of all of the downstream mTOR signaling factors 

in the –NSAID group.  This may indicate that although Akt was inhibited and perhaps 

insulin signaling, other factors such as amino acids were sufficiently stimulating the 

activation of mTOR and subsequently S6K1, rpS6 and 4EBP1, which is consistent with 

the results of a previous study (2) performed by our lab. 

The reduced activation of NF−κB by phenylbutazone (519) may allow for an 

increase in the activation of downstream effectors.  Administration of ibuprofen during 

low grade chronic inflammation in aging rodents ameliorated the reduction in muscle 

protein synthesis normally associated with the aging population (335), however, there 

was no affect on mTOR signaling factors.  During an acute inflammatory response 
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following exercise, the administration of local (333) and oral (516) NSAID following 

exercise did not alter and reduced protein synthesis, respectively.  In the present study, 

there was no difference in the activation of the downstream signaling factors between day 

1 and day 5 in the +NSAID group and an elevation in the –NSAID group indicating that 

NSAID ameliorated the effect of repeated biopsies.  This is consistent with the response 

following exercise.  Overall, our results indicate that the administration of a NSAID 

during an acute inflammatory response due to the collection of multiple biopsies 

maintained protein synthesis at levels equal to rates prior to the collection of the initial 

biopsy. 

Conducting muscle biopsy procedures every 24 hours for up to 5 days increases 

muscle inflammatory cytokine gene expression, specifically IL−1β, and increases the 

activation of S6K1, rpS6, and 4EBP1 in response to a meal when NSAID are not 

administered.  However, if repeated biopsies are collected over 5 days with oral 

administration of a NSAID, then the increase in inflammatory cytokines is ameliorated 

and the activation of the downstream effectors of the mTOR signaling factors are not 

different over the 5 day period.  Additionally, repeated biopsy collection every 24 hours 

over the course of 5 days resulted in a reduction in the activation of Akt regardless of 

NSAID. Therefore, a control group may be a useful tool when studying animals using 

repeated percutaneous needle muscle biopsies. 
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Table 4.1 continued: Plasma metabolite concentrations 60 minutes after consuming 
a high protein pelleted meal during 5 days of consecutive NSAID administration in 
mature Thoroughbred horses. 
 

*Within a day, values are significantly (P < 0.05) different from the –NSAID group. 
1Glucose values are reported as least square means in mmol/L. 
2Insulin values are reported as least square means in μIU/mL 
3Amino acids values are reported as least square means in μmol/L 
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4.6.  FIGURES 

 

Figure 4.1.  Gluteal muscle phosphorylation of Akt at Ser473 in mature 
Thoroughbred horses either receiving NSAID administration (1g/12 hours; 
+NSAID) or not receiving NSAID administration (-NSAID) for 5 days 60 minutes 
following consumption of a 3g/kg of a high protein pelleted meal.  Muscle biopsies 
were taken at 60 min after t = 0 min.  Akt phosphorylation at Ser473 was corrected by total 
Akt abundance, with the value for the left side at day 1set at 1.0 AU.  Values are pooled 
least square means ± pooled SE of both gluteal muscle sides because side was not 
significant (P > 0.05), n=6 per treatment group.  Representative images of the 
immunoblots are shown above. 
abcdDifferent letters indicate a significant day effect (P < 0.05) within a treatment group. 

  

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

1.25
-NSAID
+NSAIDa

b b b b

a
b

d
bc

cd

Akt P-Ser 473

Akt Total

Day

A
kt

Se
r 

47
3 , A

rb
itr

ar
y 

U
ni

ts



149 
 

 

Figure 4.2.  Gluteal muscle phosphorylation of S6K1 at Thr389 Ser473 in mature 
Thoroughbred horses either receiving NSAID administration (1g/12 hours; 
+NSAID) or not receiving NSAID administration (-NSAID) for 5 days 60 minutes 
following consumption of a 3g/kg of a high protein pelleted meal.  Muscle biopsies 
were taken at 60 min after t = 0 min.  S6K1 phosphorylation at Thr389 was corrected by 
total S6K1 abundance, with the value for the left side at day 1set at 1.0 AU.  Values are 
pooled least square means ± pooled SE of both gluteal muscle sides because side was not 
significant (P > 0.05), n=6 per treatment group.  Representative images of the 
immunoblots are shown above. 
*Indicates that, within a day, the value is significantly different (P < 0.05) from the –
NSAID group value. 
abDifferent letters indicate a significant day effect (P < 0.05) within a treatment group. 

  

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0
-NSAID
+NSAID

a

b

b

a

b

*aa
a a a

S6K1 P-Thr 389

S6K1 Total

Day

S6
K

1 
Th

r38
9 , A

rb
itr

ar
y 

U
ni

ts



150 
 

 

Figure 4.3.  Gluteal muscle phosphorylation of rpS6 at Ser235/236 & 240/244 in mature 
Thoroughbred horses either receiving NSAID administration (1g/12 hours; 
+NSAID) or not receiving NSAID administration (-NSAID) for 5 days 60 minutes 
following consumption of a 3g/kg of a high protein pelleted meal.  Muscle biopsies 
were taken at 60 min after t = 0 min.  rpS6 phosphorylation at Ser235/236 & 240/244 was 
corrected by total rpS6 abundance, with the value for the left side at day 1set at 1.0 AU.  
Values are pooled least square means ± pooled SE of both gluteal muscle sides because 
side was not significant (P > 0.05), n=6 per treatment group.  Representative images of 
the immunoblots are shown above. 
*Indicates that, within a day, the value is significantly different (P < 0.05) from the –
NSAID group value. 
abc Different letters indicate a significant day effect (P < 0.05) within a treatment group. 
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Figure 4.4.  Gluteal muscle phosphorylation of 4EBP1 at Thr36/47 in mature 
Thoroughbred horses either receiving NSAID administration (1g/12 hours; 
+NSAID) or not receiving NSAID administration (-NSAID) for 5 days 60 minutes 
following consumption of a 3g/kg of a high protein pelleted meal.  Muscle biopsies 
were taken at 60 min after t = 0 min.  4EBP1 phosphorylation at Thr36/47 was corrected by 
total rpS6 abundance, with the value for the left side at day 1set at 1.0 AU.  Values are 
pooled least square means ± pooled SE of both gluteal muscle sides because side was not 
significant (P > 0.05), n=6 per treatment group.  Representative images of the 
immunoblots are shown above. 
*Indicates that, within a day, the value is significantly different (P < 0.05) from the –
NSAID group value. 
abc Different letters indicate a significant day effect (P < 0.05) within a treatment group. 
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Chapter V1 

Developmental regulation of the activation of translation initiation factors in response 

to feeding in the skeletal muscle of horses 

1 A version of this chapter has been accepted for publication in the American Journal of 
Veterinary Research at the time of the defense (November 21, 2011). 

5.1.  INTRODUCTION 

The neonatal period is characterized by the highest growth rate during the lifespan 

with skeletal muscle showing the largest increase in mass (125).  Elevated growth rate in 

the neonate is a result of protein synthesis rates being higher than protein degradation 

rates. However, with post-natal maturation, protein synthesis rates gradually decrease 

(125-127) until both synthesis and degradation are equal in non-growing adult muscle.  

To date, the life stage following the neonatal period, but before maturity, which is often 

characterized by slow growth and is often referred to as the adolescent phase in human 

development, has not been investigated with regards to protein synthesis. 

Protein synthesis is limited by both the abundance and efficiency of ribosomes to 

translate mRNA into protein and the availability of amino acids to form a protein (128).  

The skeletal muscle of neonates has been reported to have a higher concentration of 

ribosomes which decreases with age (127, 147); this may also contribute to the elevated 

protein synthetic rates. The efficiency of ribosomes to translate mRNA into a protein is 

modulated by a series of intracellular signaling cascades that are associated with the 

mammalian target of rapamycin (mTOR) pathway.  The mTOR pathway regulates 

translation initiation and has been the subject of numerous recent reviews (21, 146, 488, 

496).  Briefly, insulin and insulin like growth factor 1 bind to their respective receptors 
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activating protein kinase B (PKB or Akt) through the activation of several intermediate 

signaling proteins (16, 18, 19, 21).  Akt activation occurs when both the Thr308 and Ser473 

sites are phosphorylated, and both sites are activated in association with insulin receptor 

signaling (18, 19, 21).  Activation of Akt inactivates the mTOR inhibitor tuberous 

sclerosis complex 2 through phosphorylation (19, 21); thus, allowing activation of mTOR 

through phosphorylation.  Amino acids, specifically Leu, have also been demonstrated to 

phosphorylate mTOR through the activation of several signaling proteins (45, 46, 497).  

mTOR is recognized in skeletal muscle as the key regulator of translation initiation and 

subsequent protein synthesis through the phosphorylation of two downstream signaling 

proteins: ribosomal S6 Kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding 

protein-1 (4EBP1). Phosphorylation of S6K1 results in the activation of ribosomal 

protein S6 (rpS6), a component of the 40S ribosomal subunit (498).  Phosphorylation of 

rpS6 and 4EBP1 result in the activation of the translational equipment; thus, allowing the 

synthesis of a protein (146, 496). 

Examination of protein synthesis in response to anabolic stimuli during the 

neonatal period has been demonstrated using both translation initiation factor activation 

and isotope infusion techniques to measure protein synthesis (125, 126, 520).  Anabolic 

stimuli such as feeding a meal (521), amino acid administration (520, 522), or insulin 

infusion (522) increases the activation of translation initiation factors in the mTOR 

signaling pathway and fractional muscle protein synthesis rates (133, 140).  As with 

protein synthesis, the responsiveness of the activation of translation initiation factors to 

anabolic stimuli is blunted with post-natal age (133, 140), and is lowered in the adult 

(149); however, the adolescent period of slowed growth has yet to be examined.  
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Furthermore, the activation of translation initiation factors and subsequent protein 

synthesis in response to an anabolic stimuli has been demonstrated to decline from the 

mature to aged individual in rodents (133, 140) and humans (149, 155).  The activation of 

translation initiation factors has been examined in equine skeletal muscle tissue in only a 

single study (2), where the response to meal feeding increased the activation of 

translation initiation factors in the mature horse, but age-related effects have not been 

studied. 

The objective of this study was to determine the effects of feeding following an 

18 hour period of feed withholding on the activation of translation initiation factors, 

specifically Akt, S6K1, rpS6, and 4EBP1 in yearling, two year old and mature horses.  

We chose an adolescent age group, consisting of yearlings and two year olds, because to 

the best of our knowledge, there has not yet been a single study in any species to examine 

the activation of translation initiation factors in response to an anabolic stimulus in 

adolescents.  The translation initiation factors studied were chosen as a representation of 

both up- and down-stream factors in the mTOR signaling pathway. 

5.2.  MATERIALS AND METHODS 

5.2.1.  Animals and housing. 

 The University of Kentucky Institutional Animal Care and Use Committee 

approved all procedures used in this study (2009-0442).  Fifteen Thoroughbred mares, 

two Thoroughbred/Quarter Horse cross mares, and one Quarter Horse mare were 

obtained from the University of Kentucky Animal and Food Sciences’ Maine Chance 

Farm.  Of these 18 mares, 6 were yearlings (15.8±0.8 mo old; 395±12 kg BW), 6 were 2 
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years olds (27.4±1.0 mo old; 484±28 kg BW), 6 were mature (13.8±2.9 years old; 

549±59 kg BW) mares.  All horses were of moderate body condition for their age group 

(body condition score: yearlings: 4-5, two year olds and mature horses: 5-7; scale 1-9 

(489)), and clinically healthy.  The group of mature mares were selected from a candidate 

pool of mares which were no longer growing, but had not yet been defined as 

chronologically old (ie. greater than 20 years) (523).  For the duration of the study, horses 

were housed in 3.7×3.7 m stalls bedded with pine shavings overnight, with daily turn out 

into drylots, and  ad libitum access to water and salt at all times.  Horses were adapted to 

diet and housing procedures for 2 weeks prior to any experimental or sampling 

procedures.  During the 18 hour period of feed withholding, and during the sampling 

procedures, horses remained in the stalls bedded with pine shavings. 

5.2.2.  Feeding procedures. 

 All animals were individually fed in stalls two meals daily (at 0800 and 1500).  

Diets were designed to meet the National Research Council (336) requirements for 

mature horses with average maintenance needs and a BW of 600 kg, two year old horses 

with a targeted average daily gain (ADG) of 0.22 kg/d, and yearling horses with a 

targeted ADG of 0.54 kg/d.  The meals consisted of alfalfa cubes, a ration balancer, and a 

protein/mineral supplement.  The alfalfa cubes [mean ±SD; 0.49 ±0.01Mcal/kg digestible 

energy (DE), 16.95 ±0.24% crude protein (CP), 35.2 ±0.82% acid detergent fiber (ADF), 

44.88 ±1.31% neutral detergent fiber (NDF), 2.28 ±0.05% crude fat, and 9.5 ±0.22% ash] 

were fed at a rate of 1.75% of body weight per day to all age groups.  The ration balancer 

pellet (mean ±SD; 0.48 ±0.01Mcal/kg DE, 14.93 ±0.15% CP, 22.53 ±0.81% ADF, 43.2 

±0.36% NDF, 3.57 ±0.06% crude fat, and 12.9 ±0.1% ash) was fed at a rate of 0.15, 0.25, 
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and 0.40% of body weight per day to mature, 2 years old, and yearlings, respectively.  

The protein/mineral supplement (mean ±SD; 0.57 ±0.01Mcal/kg DE, 36.3 ±0.72% CP, 

6.77 ±0.25% ADF, 13.8 ±0.8% NDF, 3.87 ±0.06% crude fat, and 17.2 ±0.3% ash) was 

fed at a rate of 0, 0.15, and 0.20% of body weight per day to mature, 2 year olds, and 

yearlings, respectively.  Samples of the alfalfa cubes, ration balancer pellet, and 

protein/mineral supplement were collected throughout the experimental period and sent 

to Dairy One Forage Laboratory (Ithaca, NY) for nutrient analysis. 

5.2.3.  Experimental design and procedures. 

 This study was conducted as a 3×2-factorial crossover design with age and 

feeding state (post-absorptive versus postprandial) as the fixed effects, with each horse 

being studied in both feeding states.  To facilitate sampling procedures, the eighteen 

horses were divided into three blocks, with 2 horses from each age group in each block.  

Each horse was studied under both feeding states in a randomly determined order, such 

that within each block there were an equal number of horses (n = 3) receiving each 

treatment during each period.  There was a minimum of 1week between the sampling 

periods for each horse. 

The experimental procedures used in this study were similar to those previously 

reported (2).  Briefly, on the day prior to sampling procedures, horses were weighed and 

a jugular vein catheter (14 gauge X 14.0 cm, Abbocath; Abbott Laboratories, North 

Chicago, IL) was placed.  The gluteus medius muscle was ultrasounded to determine 

subcutaneous fat and gluteal muscle depth (524).  This allowed for the accurate 

determination of 50% of gluteal muscle depth, in order to standardize biopsy collection 
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depth between the different ages of horses; which was determined to be 6.0±0.4, 7.4±0.3, 

and 8.1±0.3 cm for yearlings, two year olds, and mature horses, respectively (Appendix 

6).  Horses were then placed into individual stalls and provided a high crude protein 

pelleted feed meal (Table 5.1), at 2 g/kg BW on an as-fed basis.  The purpose of this meal 

was to standardize the duration of feed withholding prior to the sampling procedures for 

all horses.  Horses were kept in stalls overnight (18 hour), with ad libitum access to 

water, but feed and hay were withheld. 

 At t = 0 minute, 18 hours following the previous meal, horses either remained in 

the post-absorptive state for an additional 90 minutes (post-absorptive treatment) or 

received a 2 g/kg BW meal of the aforementioned pelleted feed at t = 0 minute and again 

at t = 30 minutes, for a total targeted intake of 4 g/kg BW of pelleted feed during the 

postprandial period (postprandial treatment).  This feeding regimen has been previously 

shown to result in differences in plasma glucose, insulin and amino acid concentration 

and in the activation of mTOR-related signaling factors in the gluteal muscle in mature 

horses (2).  Feed intake was monitored and any feed refusals were removed at the end of 

the postprandial period and weighed. 

Two baseline blood samples (10 mL), separated by a minimum of 15 minutes, 

were collected prior to t = 0 minute.  Subsequent blood samples were taken every 10 

minutes until t = 80 minutes.  All samples were collected into evacuated tubes containing 

sodium heparin (Vacutainer; Becton-Dickinson, Franklin Lakes, NJ) and were 

immediately centrifuged at 3,000 x g for 10 minutes at 4ºC.  Aliquots of the plasma 

samples were frozen at -20ºC until the time of analysis. 
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 At t = 80 minutes, horses were placed in equine stocks (HS Equine Stocks; 

Priefert® Rodeo & Ranch Equipment, Mount Pleasant, TX), and lightly sedated with 

xylazine hydrochloride (0.3 mg/kg, intravenous [100 mg/mL]).  The area over the middle 

gluteal muscle (~100 cm2) was shaved, aseptically prepared, and desensitized with a local 

anesthetic (12 mL of 2% lidocaine).  At t = 90 minutes, approximately 500 mg of muscle 

biopsy specimen was obtained at a standardized site and depth (50% of gluteal muscle 

depth) in the middle gluteal muscle by use of the percutaneous needle biopsy technique 

(411).  Approximately 400 mg of the sample was flash frozen in liquid nitrogen, and 

stored at -80ºC until analysis.  The remaining 100 mg was processed in preparation for 

Western blot analysis, as described below.  Phenylbutazone was administered after the 

biopsy (1g every 12 hours for 48 hours post-biopsy) to alleviate any potential discomfort 

associated with the procedure. 

During the second treatment period, horses underwent the same experimental 

procedures as during the first period, but received the alternate treatment.  In the second 

treatment period, the jugular vein catheter was inserted into the vein not used for the 

previous period and the muscle biopsy specimen was taken from the contralateral side.  

Following the second muscle biopsy, horses returned to drylots during the day and were 

stalled overnight and were then returned to the Department of Animal and Food 

Sciences’ Maine Chance Farm Research herd. 

5.2.4.  Sample analysis procedures. 

5.2.4.1.  Plasma Glucose and Insulin: Plasma glucose concentrations were assayed 

enzymatically using a glucose analyzer (YSI 2300 STAT Plus™ Glucose and Lactate 
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Analyzer, YSI Inc., Life Sciences, Yellow Springs, OH).  Plasma insulin concentrations 

were determined using a commercially available kit (Coat-A-Coat RIA®kitSiemens, 

Healthcare Diagnostics Inc., Deerfield, IL). 

5.2.4.2.  Amino Acids:  The plasma free amino acid concentrations and feed amino acid 

content were measured using reverse-phase HPLC (3.9 x 300 mm PICO-TAG reverse 

phase column; Waters, Milford, MA) of phenylisothiocyanate derivatives as previously 

described (2). 

5.2.4.3.  Western blot analysis of muscle samples:  Electrophoresis of the gluteal muscle 

homogenates was followed by Western blotting techniques to determine the abundance of 

the total and phosphorylated forms of Akt, S6K1, rpS6, and 4E-BP1 (Chapter III). 

5.2.5.  Statistical analysis. 

 All data were analyzed using the mixed procedure of SAS Version 9.1 (SAS 

Institute Inc., Cary NC), and data were considered statistically significant if P < 0.05, and 

considered a statistical trend if 0.05 < P < 0.10.  When the fixed effects were significant, 

pre-planned comparisons of least squares means were made using the pdiff test. 

The dependent variables plasma glucose, insulin, and amino acid concentrations 

were analyzed using a repeated measures analysis, with age, treatment, time, 

age*treatment, time*treatment, age*time, age*time*treatment interaction as the fixed 

effects and horse nested in treatment and block as the random effects.  The two baseline 

sample values were averaged for each of the dependent variables, and the resulting 

baseline concentration was included in the model as a covariate if its effect was 

determined to be significant (P < 0.05).  Baseline was significant (P < 0.05) for plasma 
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glucose, insulin, and each amino acid and was therefore included in each of the respective 

models.  Each of the translation initiation factors were analyzed using a repeated 

measures analysis, with treatment, age, treatment*age interaction, treatment period, and 

block as the fixed effects and horse nested with in age*block as the subject.  For all 

repeated measures analysis, the variance-covariance matrix was chosen for each analysis 

based on the lowest value for Schwarz’s Bayesian Criterion. Data are presented as means 

± pooled standard error unless otherwise noted. 

5.3.  RESULTS 

All horses remained healthy and maintained normal growth rates according to the 

recommendations of the NRC (336) throughout the course of the experimental period.  

The yearlings and two year olds maintained an ADG of 0.94±0.67 and 0.18±0.38 kg/d, 

respectively.  The mature mares did not gain weight over the course of the experimental 

period with an ADG of 0.00±0.25 kg/d. 

5.3.1.  Plasma Glucose 

There was a significant effect of treatment (P = 0.0002), time (P < 0.0001), and 

treatment*time interaction (P < 0.0001) on plasma glucose concentration (Figure 5.1); 

where, the yearlings had higher (P < 0.05) plasma glucose concentrations at 30 minutes 

following the meal stimulus than the two year old and mature horses.  Regardless of age, 

the horses in the postprandial state had higher glucose concentrations at 60 and 80 

minutes than those in the post-absorptive state.  During the postprandial phase, plasma 

glucose concentration increased from baseline with time in all age groups.  There was 

also a trend for decreased glucose concentrations with age (P = 0.08).  However, there 
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was no effect of treatment*age interaction (P = 0.53), age*time interaction (P = 0.26), or 

treatment*age*time interaction (P = 0.36) on plasma glucose concentration. 

5.3.2.  Plasma Insulin 

Plasma insulin was significantly affected by treatment (P < 0.0001), time (P < 

0.0001), treatment*time (P < 0.0001), treatment*age (P = 0.003), and 

treatment*age*time interaction (P = 0.032; Figure 5.2).  Circulating insulin was higher in 

the postprandial phase (P < 0.05) compared to the post-absorptive phase beginning at 30 

minutes in the mature horses.  However, the yearlings and the two year olds did not show 

differences between the postprandial and post-absorptive phase until 80 minutes when 

insulin was greater in the postprandial phase.  During the postprandial phase, insulin 

concentrations increased with time across all age groups.  At both 0 and 30 minutes 

following a meal stimulus there was no difference (P > 0.05) between the age groups for 

circulating insulin in the postprandial group.  However, at both 60 and 80 minutes post 

consumption of a high protein pelleted meal the mature horses had significantly greater 

(P < 0.05) circulating insulin than either the yearlings or two year olds.  There was no 

effect of age (P = 0.53), but there was an age*time interaction (P = 0.07) on plasma 

insulin concentration. 

5.3.3.  Plasma Amino Acids 

There was a significant effect of treatment, time, and treatment*time interaction 

(P < 0.05; Table 5.2) on all plasma amino acids examined, except glycine, where its 

concentration was only affected by time (P < 0.05).  For the essential amino acids, plasma 

concentrations were increased at t = 80 minutes by an average of 48% in the postprandial 
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phase, while the plasma amino acid concentrations in the post-absorptive phase remained 

unchanged (P < 0.05) compared to the baseline values.  With the exception of glutamate 

and aspartate, there was no effect of age on any plasma amino acid concentrations (P > 

0.05; Table 5.2).  There was no interaction of treatment*time*age (P > 0.05) for any of 

the plasma amino acids examined. 

5.3.4.  Muscle Translation Initiation Factors 

The phosphorylation of Akt at Ser473 was significantly greater in the postprandial 

period (P < 0.0001; Figure 5.3) in all ages of horses; however, there was no effect of age 

(P = 0.24) or the treatment*age interaction (P = 0.51).  The abundance of Akt 

phosphorylation at Thr308 trended to increase in the postprandial period compared to the 

post-absorptive period.  However, there was no effect of age (P = 0.90) or treatment*age 

interaction (P = 0.48) on Akt phosphorylation at Thr308.  There was a significantly greater 

phosphorylation of S6K1 at Thr389 from the post-absorptive to postprandial period (P = 

0.0001; Figure 5).  There was also a significantly higher phosphorylation of S6K1 at 

Thr389 with age (P = 0.0079), and a significant treatment*age interaction (P = 0.0027).  

Postprandial phosphorylation of S6K1 at Thr389 was greater (P < 0.05) in the mature 

horses than the yearlings or two year olds, and the yearlings had a higher (P = 0.008) 

abundance than the two year olds.  The phosphorylation of rpS6 at Ser235/236 was 

significantly greater in the postprandial period compared to the post-absorptive period (P 

< 0.0001; Figure 6), and a significant treatment*age interaction (P= 0.03) was present; 

where, the yearlings (P = 0.009; 3.3±0.3 arbitrary units) and mature horses (P = 0.002; 

3.6±0.3 arbitrary units) were greater in the postprandial phase compared to the two year 

olds (2.0±0.3 arbitrary units).  There was no difference in the postprandial phase between 
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the yearlings and mature horses (P = 0.42).  However, there was a trend for the main 

effect of age (P = 0.07).  There was a significantly higher phosphorylation of rpS6 at 

Ser240/244 rpS6 in the postprandial period (P < 0.0001; Figure 7); however, there was no 

effect of age (P = 0.35) or treatment*age interaction (P = 0.27).  The phosphorylation of 

4EBP1 at Thr37/46 was significantly greater in the postprandial period (P = 0.003; Figure 

8), and a significant treatment*age interaction (P = 0.04) was present.  The yearlings had 

an increase (P = 0.0007) in the postprandial phase compared to the post-absorptive, with 

no effects of feeding seen in the other ages of horses.  There was no effect of age (P = 

0.68) on the phosphorylation of 4EBP1 at Thr36/47. 

5.4.  DISCUSSION 

To the best of our knowledge, this is the first study to examine S6K1 in the 

skeletal muscle of horses of any age, and the first study to examine the activation of 

translation initiation factors in response to anabolic stimuli in the skeletal muscle of 

adolescent animals of any species.  There was a marked increase in the phosphorylation 

of both up and downstream mTOR signaling factors during the postprandial state 

compared to the post-absorptive state in the gluteal muscle of yearling, two year old and 

mature horses, with the higher degree of sensitivity to anabolic stimuli exhibited by the 

yearlings. 

Following mTOR activation, S6K1 and subsequently rpS6 are phosphorylated 

(21).  Previous work in our lab (2) has shown that the protein abundance of the 

phosphorylated form of rpS6 was higher in the postprandial state in mature horses.  This 

is in agreement with the current study, where protein abundance of the phosphorylated 
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forms of S6K1 and rpS6 were elevated in the postprandial state.  There is an absence of 

comparable literature on the adolescent, therefore, we examined previous work in the 

swine neonate (521, 525) to determine if similar developmental trends continued during 

adolescence.  In the present study, we have demonstrated that there is a decrease in the 

activation of translation initiation factors to a meal stimulus with adolescent development 

which is a trend that appears to continue from neonatal development (521, 525).  There 

was a 158, -7, and 109% percent change in the phosphorylation of S6K1 from the post-

absorptive to postprandial states in yearlings, two year olds and mature horses, 

respectively.  Not only was there a difference in the abundance of S6K1 P-Thr389 in the 

postprandial state between the age groups, but there were also differences in the post-

absorptive state where the yearling had a lower expression than either the mature or two 

year olds, allowing for a more pronounced postprandial response in the younger horses.  

Research in developmental changes of skeletal muscle protein abundance of S6K1-Thr389 

during the post-absorptive state in the neonatal pig vary with reports of no difference 

(521, 525) and increases (526) from 7 to 26d of age, respectively.  Although we 

examined adolescent horses, we demonstrated a similar phenomenon as previously 

described in the swine neonate (526), indicating the horse is not unique in the activation 

of translation initiation in skeletal muscle during development.  Additionally, there were 

increases in the protein abundance of rpS6 phosphorylation at Ser235/236 and Ser240/244.  

rpS6 P-Ser235/236 increased 147, 73, and 228% in yearlings, two year olds, and mature 

horses, respectively, from the post-absorptive to postprandial periods.  Increases of 144, 

76, and 167% in the protein abundance of rpS6 P-Ser240/244 from the post-absorptive to 

postprandial state were exhibited in yearlings, two year olds and mature horses, 
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respectively.  Thus, the S6K1 portion of the signaling pathway following mTOR 

phosphorylation was activated in all age groups in the postprandial period indicating a 

potential increase in translation initiation.  Our results of the downstream effectors 

indicate that there is a decrease in the response to a meal-feeding stimuli in the adolescent 

horse from year one to year two of life, which may be continuation of the development 

decline demonstrated in the neonate (521, 522, 525).  However, further research is 

warranted to elucidate this in the equine neonate. 

The other side of the downstream pathway following mTOR activation is the 

phosphorylation of 4EBP1 at Thr37/46.  Our laboratory has previously shown (2) that 

protein abundance of the phosphorylated form of 4EBP1 was higher in the postprandial 

state in mature horses; however, in the current study, the yearlings were the only age 

group that responded to the anabolic stimuli with a higher protein abundance of the 

phosphorylated form of 4EBP1 in the postprandial state.  This discrepancy may be at 

least partially attributable to the differences in the antibodies used during the Western 

blotting procedure.  In the previous study (2), the 4EBP1 antibody was specific for all 

forms of 4EBP1 (α, β and γ) and then expressed as the percentage of γ; however, in this 

study two antibodies were used: one specific for phosphorylated Thr37/46 4EBP1 and the 

other recognized total 4EBP1.  Activation of 4EBP1 during the postprandial state was 50, 

4, and 15% greater in yearlings, two year olds, and mature horses, respectively, than the 

post-absorptive state; with only a significant activation over post-absorptive abundance in 

the yearlings.  This may indicate that the yearlings were more sensitive to the anabolic 

stimuli of a meal than the two year olds or mature horses, which is in agreement with the 



166 
 

previous work in the swine neonate (521, 525) demonstrating a decrease in the activation 

of translation initiation factors to a meal stimulus with development. 

Based on previous research we hypothesized that the anabolic stimuli of 

consuming a meal would cause a greater activation of translation initiation factors in the 

yearlings than the two year olds, who we expected to be more responsive than the mature 

horses; however, this was not observed.  In the adolescent age groups examined in the 

current study the downstream effectors were more responsive to a meal stimulus in the 

yearling group of horses in comparison to the two year olds.  This is comparable to the 

results of previous studies performed in the swine neonate which show a decrease in the 

responsiveness of downstream effectors in the 26 compared to the 7 days old pig to a 

meal stimulus (521, 525, 526), amino acid supplementation (520, 522) or insulin infusion 

(522).  However, postprandial protein abundance of the phosphorylated forms of rpS6 

and 4EBP1 were not different between the yearlings and the mature horses, with the 

lowest abundance seen in the two year old horses.  This may be partially attributed to the 

feeding protocol utilized.  In the current study we fed all age groups a total of 4 g/kg of 

feed in the postprandial treatment in an effort to standardize the protein intake between 

the age groups.  This standardization was intended to meet the protein requirements of a 

mature sedentary horse with an average body weight of 600 kg; as a result, this meal did 

not meet the requirements of the adolescent horses.  This meal only supplied 54 and 80% 

of the daily requirements of the yearlings and two year olds, respectively.  The increased 

responsiveness seen in the yearlings, who were consuming only 54% of their daily 

protein intake, indicates that if this study were repeated standardizing the meal by 

meeting 100% of daily protein requirements, would likely be sufficient anabolic stimuli 
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to elucidate a potential step wise decrease in the activation of translation initiation factors 

with age.  

Although we saw increases in the downstream effectors following a meal stimulus 

across the age groups, future research is needed to examine if this indeed lead to 

increased protein synthesis using isotopic techniques.  It is also necessary to determine if 

there are age related differences in the adolescent equine in whole body and muscle 

fractional protein synthetic rates following a meal stimulus.  Accretion of skeletal muscle 

occurs when protein synthesis is greater than protein degradation.  In mature sedentary 

animals, there should be a balance between protein synthesis and degradation resulting in 

maintenance of skeletal muscle, but no accretion.  Similar to the mTOR signaling 

pathway for protein synthesis, there are signaling pathways in skeletal muscle that are 

associated with protein degradation which include the ubiquitin and proteosomal 

pathways.  In the present study, we did not measure any molecular indicators of protein 

breakdown such as muscle-RING-finger protein 1 or forkhead box proteins.  Previous 

research has demonstrated that there is an increase in the abundance of the factors 

associated with protein degradation with aging in other mammals (179, 180, 296) and in 

the post-absorptive versus postprandial state (180).  Although we saw lower activation of 

the downstream mTOR signaling effectors following a meal stimulus in the two year old 

horses in comparison to the mature horses, we expect that the mature horses would also 

have elevated rates of muscle protein breakdown, as is seen in other mature species (179, 

180, 296); therefore, it is likely that the 2 year old horses were accreting more muscle 

protein than the mature horses, despite having a lower activation of the mTOR related 

signaling factors. 
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Exercise, amino acid, and insulin dependent mechanisms can all stimulate mTOR 

phosphorylation (21, 521, 522).  In the current study, mTOR may have been 

phosphorylated in an insulin- and amino acid-dependent manner because both up- and 

down- stream effectors were activated.  Although Akt phosphorylation at Thr308 only 

showed a trend to increase between the post-absorptive and postprandial states, Akt 

phosphorylation at Ser473 was elevated approximately 86% across the age groups with no 

difference seen between the age groups.  It has been shown that although Akt activation 

requires both sites to be phosphorylated, the contribution of each site is not equal (18, 

19).  Akt P-Thr308 can sufficiently stimulate Akt activation without the phosphorylation 

of Ser473; however, the reverse is not true (18, 19).  Our results may indicate that Akt may 

have already been sufficiently phosphorylated at Thr308 in the post-absorptive state 

resulting in a lack of difference at the postprandial state.  In agreement with the present 

study, Akt P-Ser473 in human skeletal muscle is more responsive to postprandial insulin 

concentrations than phosphorylation at the Thr308 site (527); however, further research is 

needed to confirm this in horses using a hyperinsulinemic-euglycemic isoaminoacidemic 

clamp technique.  The use of the hyperinsulinemic-euglycemic isoaminoacidemic clamp 

technique would allow for the determination of the responsiveness of skeletal muscle Akt 

to administered insulin concentrations independent of other changes that occur in 

response to a meal.  The phosphorylation of Ser473 Akt results in the mature horses during 

the postprandial period are in disagreement with previous results from our lab (2), where 

there was no difference from the post-absorptive to postprandial state in the gluteal 

muscle of mature horses.  The same feed and feeding practices were used in mares of a 

similar age in both studies; however, a different population of horses was used.  Despite 
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the similar postprandial insulin concentrations at the time of biopsy in both groups, the 

horses in the previous study (2) may have been more insulin resistant; explaining the 

absent change in Akt P-Ser473 with feeding.  In future studies, all horses should be 

screened for insulin sensitivity prior to being included in the study population. 

The absence of an age effect on Akt may be attributed to differences in insulin 

sensitivity between the three ages of horses studied.  Postprandial insulin concentrations 

were higher in the mature horses than the yearlings or two year olds at the time of biopsy; 

therefore, we expected the phosphorylation of Akt to be greater in the mature horses than 

the yearlings or two year olds, but this was not the case.  This may indicate that the 

younger age groups had higher insulin sensitivity than the mature horses, which 

corresponds with epidemiological studies on the prevalence of obesity and 

hyperinsulinemia (528).  Furthermore, the majority of obese and hyperinsulinemic horses 

are between the ages of 5 and 15 years (528), which is substantially older than a yearling 

or a two year old, and similar to the mature horses used in the current study whose 

average age was 13.8±2.9 years old.  The response of Akt phosphorylation may have also 

been maximized at the lower insulin concentrations in the yearlings and two year olds; 

however, this requires further investigation. 

Insulin alone cannot sufficiently simulate protein synthesis in adults (529, 530); 

and because the downstream effectors were significantly elevated in the postprandial 

state, it is more likely that the increase in translation initiation was the result of a 

combination of increased amino acids and insulin following the high crude protein pellet.  

There was no difference in the majority of the circulating plasma indispensable amino 

acids at the time of biopsy across the ages; however, the mature horses had an elevated 
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S6K1 response compared to the yearlings or two year olds.  This may indicate an increase 

in amino acid sensitivity with age.  However, amino acid sensitivity decreases with 

neonatal development in pigs (531), and has been shown to decline from maturity to old 

age in humans (155).  Therefore, further research is needed using amino acid clamp 

techniques, which would allow for a controlled dosage of amino acids, in the horse to 

determine if the mature horse truly has increased amino acid sensitivity. 

The current study revealed that feeding a high protein diet after an 18 hours 

period of feed withholding resulted in an increase in the activation of translation initiation 

factors, Akt, S6K1, rpS6 and 4EBP1 in mature, two year old, and yearling horses.  This 

would suggest that regardless of age there is a postprandial increase in rates of muscle 

protein synthesis.  The effect of age on the activation of the downstream effectors with a 

greater postprandial increase in the yearlings compared to the two year olds may indicate 

developmental differences in the responsiveness of muscle protein synthesis to insulin 

and amino acids.  The mature horses appeared to have a greater postprandial 

responsiveness to amino acids and were less sensitive to insulin than the yearlings or two 

year old in the activation of translation initiation factors.  This finding warrants further 

investigation, and it may have implications for designing feeding and management 

strategies specific to young adolescent versus mature horses. 
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5.5.  TABLES 

Table 5.1: As-fed nutrient composition of a high crude protein pelleted diet and 

nutrient intake from the pelleted diet during the postprandial period in horses that 

had feed withheld for 18 hours (mean ± SD values). 

 

Nutrient Pellet composition*  Nutrient intake†

(mg/kg of bodyweight) 

Moisture 9.07 ± 0.31%  

  

Crude protein 33.0 ± 0.53% 1,320 ± 21 

Alanine 1.05 ± 0.01% 42 ± 1 

Arginine 1.79 ± 0.06% 71 ± 2 

Aspartate+asparagine 1.76 ± 0.08% 71 ± 3 

Glutamate+glutamine 4.32 ± 0.07% 173 ± 3 

Glycine 0.91 ± 0.01% 37 ± 1 

Histidine 0.58 ± 0.02% 23 ± 1 

Isoleucine 0.90 ± 0.03% 36 ± 2 

Leucine 1.96 ± 0.15% 78 ± 6 

Lysine 1.36 ± 0.01% 54 ± 1 

Methionine 0.32 ± 0.01% 13 ± 1 

Proline 1.93 ± 0.09% 77 ± 4 

Phenylalanine 1.22 ± 0.01% 49 ± 1 

Serine 1.28 ± 0.02% 51 ± 1 
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Table 5.1 continued: As-fed nutrient composition of a high crude protein pelleted 

diet and nutrient intake from the pelleted diet during the postprandial period in 

horses that had feed withheld for 18 hours (mean ± SD values). 

Threonine 0.93 ± 0.04% 37 ± 2 

Tyrosine 0.85 ± 0.10% 34 ± 1 

Valine 0.92 ± 0.01% 37 ± 2 

  

Acid detergent fiber 6.17 ± 0.25% 247 ± 10 

Neutral detergent fiber 12.56 ± 0.75% 503 ± 30 

Non-fiber carbohydrates 26.2 ± 0.36% 1048 ± 14 

Starch 4.67 ± 0.06% 191 ± 2 

Water-soluble carbohydrates 8.43 ± 0.15% 337 ± 6 

   

Crude fat 3.47 ± 0.07% 139 ± 2 

   

Ash 15.6 ± 0.26% 624 ± 11 

Calcium 3.34 ± 0.13% 134 ± 5 

Phosphorus 2.05 ± 0.09% 82 ± 4 

Potassium 1.44 ± 0.01% 58 ± 0.2 

Sodium 0.682 ± 0.01% 27 ± 0.4 

Iron 1263 ± 32 mg/kg 5.05 ± 0.13 

Zinc 548 ± 40 mg/kg 2.19 ± 0.16 
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Table 5.1 continued: As-fed nutrient composition of a high crude protein pelleted 

diet and nutrient intake from the pelleted diet during the postprandial period in 

horses that had feed withheld for 18 hours (mean ± SD values). 

*Values represent the amount of the nutrient present as a portion of the total diet on an as-

fed basis. †During the postprandial period, following an 18-hour feed withholding period, 

horses were given 2 equal meals of the pelleted feed (targeted total intake of 4 g of 

feed/kg of bodyweight), separated by 30 minutes .   
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Table 5.2: The effect of an 18 hour feed withholding period followed by either 

continued feed withholding (post-absorptive) or subsequent re-feeding of a high 

protein pellet (postprandial) on plasma amino acid concentrations at time of biopsy 

(80 minutes) in yearling, two year old and mature horses1 

Amino Acids Post-absorptive Postprandial  
 Yearling Two 

Year 
Old 

Mature Yearling Two 
Year 
Old 

Mature Pooled
SE 

Alanine 157 163 163 245* 259* 236* 12.3 

Arginine 73 70 71 156* 143* 153* 8.3 

Asparagine 47 43 43 80* 70* 73* 5.4 

Aspartate 4.2a 3.8ab 3.6b 5.7a* 5.7a* 4.8b 0.2 

Citrulline 70 65 66 83* 89* 94* 3.8 

Glutamate 22ab 24a 19b 26ab* 28a* 23b* 1.5 

Glutamine 442 443 420 580* 540* 531* 26 

Glycine 579 569 562 610 629 555 23 

Histidine 60 57 56 72* 68* 68* 3.2 

Isoleucine 67 69 61 97* 102* 88* 4.3 

Leucine 120 124 117 161* 170* 152* 6.7 

Lysine 107 108 102 197* 200* 196* 11 

Methionine 27 28 29 34* 40* 37* 2.5 

Ornithine 35 35 33 56* 56* 57* 2.7 

Phenylalanine 56 56 52 71* 72* 62* 2.8 

Proline 74 70 61 121* 112* 102* 5.2 

Serine 186 184 171 245* 234* 231* 11 
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Table 5.2 continued: The effect of an 18 hour feed withholding period followed by 

either continued feed withholding (post-absorptive) or subsequent re-feeding of a 

high protein pellet (postprandial) on plasma amino acid concentrations at time of 

biopsy (80 minutes) in yearling, two year old and mature horses1 

Taurine 34 35 34 48* 46* 39* 2.1 

Threonine 102 102 94 140* 139* 132* 6.7 

Tryptophan 10 9.3 9.1 14* 12 11 1.3 

Tyrosine 56 49 51 90* 78* 77* 4.4 

Valine 205 204 196 258* 259* 251* 8.3 

1 Plasma amino acid concentrations are presented as least squares mean values in μmol/L. 

a,bWithin a treatment, values with different superscript letters are significantly (P < 0.05) 

different. 

*Within an age, value is significantly (P < 0.05) different from the value post-absorptive 

value. 
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5.6.  FIGURES 

 

Figure 5.1.  Plasma glucose concentrations (mmol/L) in yearling, two year old, and 

mature horses that were fed 2g/kg of a high protein pellet at t = 0 and t = 30 minutes 

following an 18 hour period of feed withholding.  Values are least square means ± 

pooled SE, n=6 per age group. 

*Indicates that, within an age group, the value is significantly different (P < 0.05) from 

the baseline value. 

abDifferent letters indicate a significant age effect (P < 0.05) within a time period. 
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Figure 5.2.  Plasma insulin concentrations (mIU/L) in yearling, two year old, and 

mature horses that were fed 2g/kg of a high protein pellet at t = 0 and t = 30 minutes 

following an 18 hour period of feed withholding.  Values are least square means ± 

pooled SE, n=6 per age group. 

*Indicates that, within an age group, the value is significantly different (P < 0.05) from 

the baseline value. 

abDifferent letters indicate a significant age effect (P < 0.05) within a time period. 
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Figure 5.3.  Gluteal muscle phosphorylation of Akt at Ser473 in yearling, two year 

old, and mature horses that were either fed 2g/kg of a high protein pellet at t = 0 and 

t = 30 minutes (postprandial) or had feed withheld for an additional 90 minutes 

(post-absorptive) following an 18 hour period of feed withholding.  Muscle biopsies 

were taken at 90 minutes after t = 0 minutes.  Akt phosphorylation at Ser473 was corrected 

by total Akt abundance, with the value for the post-absorptive mature horse set at 1.0 AU.  

Values are least square means ± pooled SE, n=6 per age group.  Representative images of 

the immunoblots are shown above. 

*Indicates that, within an age group, the value is significantly different (P < 0.05) from 

the postprandial value. 
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Figure 5.4.  Gluteal muscle phosphorylation of Akt at Thr308 in yearling, two year 

old, and mature horses that were either fed 2g/kg of a high protein pellet at t = 0 and 

t = 30 minutes (postprandial) or had feed withheld for an additional 90 minutes 

(post-absorptive) following an 18 hour period of feed withholding.  Muscle biopsies 

were taken at 90 minutes after t = 0 minutes.  Akt phosphorylation at Thr308 was 

corrected by total Akt abundance, with the value for the post-absorptive mature horse set 

at 1.0 AU.  Values are least square means ± pooled SE, n=6 per age group.  

Representative images of the immunoblots are shown above. 
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Figure 5.5.  Gluteal muscle phosphorylation of S6K1 at Thr389 in yearling, two year 

old, and mature horses that were either fed 2g/kg of a high protein pellet at t = 0 and 

t = 30 minutes (postprandial) or had feed withheld for an additional 90 minutes 

(post-absorptive) following an 18 hour period of feed withholding.  Muscle biopsies 

were taken at 90 minutes after t = 0 minutes.  S6K1 phosphorylation at Thr389 was 

corrected by total S6K1 abundance, with the value for the post-absorptive mature horse 

set at 1.0 AU.  Values are least square means ± pooled SE, n=6 per age group.  

Representative images of the immunoblots are shown above. 

*Indicates that, within an age group, the value is significantly different (P < 0.05) from 

the postprandial value. 

abcDifferent letters indicate a significant age effect (P < 0.05) within a treatment group. 
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Figure 5.6. Gluteal muscle phosphorylation of rpS6 at Ser235/236 in yearling, two year 

old, and mature horses that were either fed 2g/kg of a high protein pellet at t = 0 and 

t = 30 minutes (postprandial) or had feed withheld for an additional 90 minutes 

(post-absorptive) following an 18 hour period of feed withholding.  Muscle biopsies 

were taken at 90 minutes after t = 0 minutes.  rpS6 phosphorylation at Ser235/236 was 

corrected by total rpS6 abundance, with the value for the post-absorptive mature horse set 

at 1.0 AU.  Values are least square means ± pooled SE, n=6 per age group.  

Representative images of the immunoblots are shown above. 

*Indicates that, within an age group, the value is significantly different (P < 0.05) from 

the postprandial value. 

abcDifferent letters indicate a significant age effect (P < 0.05) within a treatment group. 
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Figure 5.7.  Gluteal muscle phosphorylation of rpS6 at Ser240/244 in yearling, two 

year old, and mature horses that were either fed 2g/kg of a high protein pellet at t = 

0 and t = 30 minutes (postprandial) or had feed withheld for an additional 90 

minutes (post-absorptive) following an 18 hour period of feed withholding.  Muscle 

biopsies were taken at 90 minutes after t = 0 minutes.  rpS6 phosphorylation at Ser240/244 

was corrected by total rpS6 abundance, with the value for the post-absorptive mature 

horse set at 1.0 AU.  Values are least square means ± pooled SE, n=6 per age group.  

Representative images of the immunoblots are shown above. 

*Indicates that, within an age group, the value is significantly different (P < 0.05) from 

the postprandial value. 
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Figure 5.8.  Gluteal muscle phosphorylation of 4EBP1 at Thr36/47 in yearling, two 

year old, and mature horses that were either fed 2g/kg of a high protein pellet at t = 

0 and t = 30 minutes (postprandial) or had feed withheld for an additional 90 

minutes (post-absorptive) following an 18 hour period of feed withholding.  Muscle 

biopsies were taken at 90 minutes after t = 0 minutes.  4EBP1 phosphorylation at Thr36/47 

was corrected by total rpS6 abundance, with the value for the post-absorptive mature 

horse set at 1.0 AU.  Values are least square means ± pooled SE, n=6 per age group.  

Representative images of the immunoblots are shown above. 

*Indicates that, within an age group, the value is significantly different (P < 0.05) from 

the postprandial value. 

 

 

Copyright © Ashley L. Wagner 2011  
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Chapter VI 

Whole body protein metabolism is not different between healthy aging and older 

mature horses 

6.1.  INTRODUCTION 

Sarcopenia is the involuntary loss of muscle mass and strength, and has been 

partially attributed to a multitude of factors which include a decline in physical activity 

and a less than optimal diet in the aging human population (148-150).  Similar to aging 

humans, horses have also shown a decrease in muscle mass (532).  Furthermore, the 

number of horses over the age of 20 years old is approximately 7.6% of the equine 

population and approaches 20% in some areas (523, 533).  Horses over the age of 20 

years old typically exhibit visible signs of aging (533).  Although there is anecdotal 

evidence to suggest that the aging equine population exhibits a decline in physical 

activity similar to what is seen in aging humans, there has been limited research 

regarding protein requirements.  From the few studies that have examined protein 

nutrition in the aging equine population, it appears that old horses may have lower 

protein digestibility than their mature counterparts (534); however, when studies were 

repeated with a different cohort of old horses the results were conflicting (535).  As a 

result, it is necessary to determine if protein metabolism of the aging horse varies from 

the mature counterparts which would be the first step in determining if protein 

requirements differ between these groups of horses. 

Sarcopenia is a result of an imbalance of protein synthesis and breakdown.  The 

increase in muscle protein fractional synthesis rates in response to anabolic stimuli such 

as exercise (149, 151, 152), amino acids (149, 153), insulin (154), or meal consumption 
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(152, 153) is decreased in the aged compared to the younger adult.  Additionally, 

differences in whole-body protein metabolism suggest that a greater protein requirement 

is necessary for the aging human population (487).  Systemic inflammation associated 

with aging has been associated with lowered rates of muscle protein synthesis (493).  

Although the effects of aging on whole-body or muscle protein metabolism have not been 

elucidated in the horse, there has been a single study to determine whole-body protein 

synthesis rates using stable isotope infusion techniques in the mature horses (Urschel et 

al., University of Kentucky, submitted).  The most effective way to measure whole-body 

protein synthesis is through the use of isotope infusion and stochastic analysis to 

calculate parameters of whole-body protein synthesis and breakdown and these methods 

have been extensively used in a variety of physiological states in humans (151, 487, 536).  

The use of these methodologies may be the first step in determining if the aging equine 

has different protein requirements than their mature counterparts. 

Protein synthesis is modulated by a series of intracellular signaling cascades that 

are associated with the mammalian target of rapamycin (mTOR) pathway.  The mTOR 

pathway regulates translation initiation and has been the subject of numerous recent 

reviews (21, 488, 537).  In short, insulin activates Akt (also referred to as PKB) through 

the activation of several intermediate signaling proteins (16, 18, 19, 21).  Akt activation 

occurs when both the Thr308 and Ser473 sites are phosphorylated, and both sites are 

activated in association with insulin receptor signaling (18, 19, 21).  Activation of Akt 

inactivates the mTOR inhibitor tuberous sclerosis complex 2 through phosphorylation 

(19, 21); thus, allowing activation of mTOR through phosphorylation.  Amino acids (45, 

46, 497) and exercise (149, 488, 538) also phosphorylate mTOR through Akt-
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independent mechanisms.  The activation of mTOR allows for the phosphorylation of 

two downstream signaling proteins: ribosomal S6 Kinase 1 (S6K1) and eukaryotic 

initiation factor 4E-binding protein-1 (4EBP1). Phosphorylation of S6K1 results in the 

activation of ribosomal protein S6 (rpS6) (498), a component of the 40S ribosomal 

subunit (498).  The phosphorylation of rpS6 and 4EBP1 result in the activation of the 

translational equipment and subsequently protein synthesis (21, 537).  The activation of 

translation initiation factors in the mTOR signaling pathway in response to anabolic 

stimuli is reduced with aging (155-157).  Although the activation of translation initiation 

factors in response to a meal have been examined in adolescent (Chapter V) and mature 

(2) equine skeletal muscle, this has not been studied in the aging equine population.  The 

objective of this study was to determine the effects of aging on the activation of 

translation initiation factors, specifically Akt, S6K1, rpS6, and 4EBP1, and whole-body 

protein synthesis in mature and aged horses. 

6.2.  MATERIALS AND METHODS 

6.2.1.  Animals and housing 

The University of Kentucky Institutional Animal Care and Use Committee (2009-

0562) approved all procedures used in this study.  Twelve mixed breed horses were 

obtained from the University of Kentucky Veterinary Sciences’ Farm: 6 aged (23.5 ± 2.6 

y old; 3 geldings and 3 mares) and 6 mature (11 ± 2.6 y old; 3 geldings and 3 mares) 

horses.  To facilitate sampling procedures, the twelve horses were divided into three 

blocks, with 2 horses from each age group (1 mare and 1 gelding) in each block.  All 

horses were of a moderate body condition (body condition score 5-7, scale 1-9 (489)), 
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were clinically healthy with all of their teeth and were able to live outdoors in a group 

housing environment, and on a regular farrier, anthelmintic, dental, and vaccination 

regimen.  Additionally, the pool of candidate horses were screened for plasma α-

melanocyte stimulating hormone (α-MSH) concentration, a marker of pituitary pars 

intermedia dysfunction (PPID; Equine Cushing’s Disease) (539).  Selected horses were 

well below the normal cut-off value of < 35 pmol/L (539).  Horses were group housed on 

dry lots with ad libitum acess to salt and water, and grass hay (mean ± SD; 0.91 ± 0.02 

Mcal/kg DE, 8.2 ± 0.8% CP; 48.3 ± 0.3% ADF; 76.5 ± 1.4% NDF; 2.0 ± 0.5% crude 

fat;and 7.0 ± 0.5% ash) was provided to the group at 2% of body weight per day.  Horses 

were brought into 3.7×3.7 m stalls and individually fed the concentrate ration twice daily 

at 0800 and 1500.  The concentrate ration consisted of a 50:50 mixture of a ration 

balancer pelleted feed (Table 6.1) and oats (Table 6.1) at 0.2% of body weight per day.  

Horses were adapted to diet and housing protocols for 2 weeks prior to the initiation of 

experimental procedures.  During the isotope infusion procedures horses were housed in 

3.7×3.7 m stalls bedded with pine shavings with ad libitum access to water and salt. 

6.2.2.  Experimental design and procedures 

Following the 2 week adaptation period, horses were removed from the group 

housed dry lot at 0800 on day 0, weighed on a portable electronic scale (model 700, Tru 

Test Inc., Mineral Wells, TX), put into individual stalls and fed the morning concentrate 

meal of 0.1% of body weight and their individual portion of hay at 2% of body weight 

per day.  Following consumption of the morning concentrate meal, a blood sample was 

collected into PAXgene™ Blood RNA tubes (Quiagen, Inc., Santa Clarita, CA) via 

jugular vein venipuncture to measure circulating inflammatory cytokines gene 
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expression.  At 1500, horses were fed their afternoon concentrate meal.  Horses remained 

in their individual stall during day 1 and were fed in the same manner as on day 0. 

On day 2, following consumption of the morning concentrate meal which was 

given as previously described, and 2 indwelling jugular vein catheters (14 gauge X 14.0 

cm, Abbocath; Abbott Laboratories, North Chicago IL) were placed using aseptic 

techniques as previously described (2): one for isotope infusion and one for blood 

sampling.  Fat thickness on the croup near the site of biopsy was ultrasounded in order to 

calculate percent body fat (481).  After these procedures were completed, horses were 

returned to their stalls and fed their afternoon meal as previously described. 

On day 3, the whole-body phenylalanine kinetics were measured using primed, 

constant stable isotope infusions.  During the course of the whole-body phenylalanine 

kinetic measurements, horses were fed the morning concentrate divided into 24 equal 

portions, with 1 portion fed every 30 minutes for 7.5 h, with the initial portion was 

provided 1.5 h prior to the start of isotope administration.  This feeding regimen was used 

in order to bring all of the horses to a steady state, which is necessary when using steady-

state isotope kinetics.  In order to accurately quantify feed intake during the isotope 

infusions, hay was removed from the stall during these procedures.  Each horse received 

a 14.4 μmol/kg priming dose of [13C] sodium bicarbonate solution (Isotec™, 

Miamisburg, OH), followed by a 2-h constant infusion at 12 μmol/kg/h in order to 

determine total CO2 production(540).  This was followed by a 4-h primed (8.4 μmol/kg), 

constant (6 μmol/kg/h) infusion of [1-13C]phenylalanine solution (Isotec™, Miamisburg, 

OH) to measure whole-body phenylalanine oxidation and flux(541).  The primed to 



189 
 

constant ratio for both [13C] sodium bicarbonate (542) and [1-13C]phenylalanine were 

previously determined (Urschel et al., Univerity of Kentucky, submitted).  The [13C] 

sodium bicarbonate and [1-13C]phenylalanine solutions were individually prepared by 

dissolving the isotope into 0.9% sterile saline (Butler Animal Health Supply, Dublin, 

OH) and filtering the solution through 0.22 μm sterile filters (Millipore, Billerica, MA) 

into empty sterile ethylene vinyl acetate bags (Baxter Healthcare Corporation, Deerfield, 

IL).  The isotope filled ethylene vinyl acetate bags were attached to a surcingle and 

connected to the catheter using a primary IV set (Baxter Healthcare Corporation, 

Deerfield, IL).  Isotope was delivered into the catheter using pressure sensitive, cordless 

intravenous infusion pumps (J-1097 VetPro Infusion Pump, Jorgensen Laboratories Inc., 

Loveland, CO) which was also attached to the surcingle on each horse.  This cordless 

pump-surcingle system permitted the horses to remain in individual stalls during the 

infusion period without restraint. 

Two baseline breath samples were collected prior to the [13C] sodium bicarbonate 

infusion (-30 min and 0 min), and subsequent breath samples were collected every 30 

min throughout the infusion procedures of both [13C] sodium bicarbonate and [1-

13C]phenylalanine.  Breath samples were collected using a modified Equine Aeromask® 

(Trudell Medical International, London ON, Canada) enabling the collection of air 

through a 1-way valve into impermeable gas bags (Wagner Analysen Technik Vetriebs 

GmbH, Bremen, Germany). During breath collection, horses wore the Aeromask® for 

approximately 1 minute to allow time for the air in the mask to equilibrate, and then bags 

were attached to the 1-way valve and remained there until full (approximately 1 min).  

Immediately following each sample collection, another 1/24 meal was provided.  Blood 
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sampling commenced at t = 90 min into the [13C] sodium bicarbonate infusion, and 

continued every 30 min until the end of the [1-13C]phenylalanine infusion.  All blood 

samples were collected into evacuated vacutainers (Vacutainer; Becton-Dickinson, 

Franklin Lakes NJ) containing sodium heparin.  The 90 min [13C] sodium bicarbonate 

and 0 min [1-13C]phenylalanine blood samples provided 2 baseline samples to measure 

the background enrichments of [1-13C] phenylalanine in the blood prior to isotope 

infusion. 

At the end of the [1-13C]phenylalanine infusion, the infusion pumps were turned 

off and the horses were led to a set of equine stocks.  Horses were lightly sedated with 

xylazine hydrochloride (0.3mg/kg, IV [100mg/mL]; Butler Animal Health Supply, 

Dublin, OH), and a gluteal muscle biopsy was collected as previously described (2).  

Briefly, the area over the middle gluteal muscle (~100-cm2) was shaved, aseptically 

prepared, and desensitized with a local anesthetic (12 mL of 2% lidocaine; Butler Animal 

Health Supply, Dublin, OH).  Approximately 500 mg of muscle biopsy specimen was 

collected at approximately 50% (~8 cm; Chapter III; ChapterV) depth of the middle 

gluteal muscle using the percutaneous needle biopsy technique(411).  Of this, ~100 mg 

was processed in preparation for Western blot analysis, as described below, and ~ 80 mg 

was stored in RNAlater (Quiagen, Inc., Santa Clarita, CA) for qRT-PCR analysis of 

inflammatory cytokines as described below.  The remainder was flash frozen in liquid 

nitrogen, and stored at -80ºC until analysis.  Catheters were removed following muscle 

biopsy collection. 

At the end of the sampling period, horses were given the remaining portions of 

concentrate and their daily allotment of hay as a single meal, and then returned to the 



191 
 

drylot. Samples of the grass hay, ration balancer pellet, and oats were collected 

throughout the experimental period and sent to Dairy One Forage Laboratory (Ithaca, 

NY) for nutrient analysis.  For the next 3 days, 2g/d of phenylbutazone was administered 

to alleviate any discomfort associated with the sampling procedures. 

6.2.3.  Sample analysis procedures 

6.2.3.1.  Blood sample collection and storage:  Blood samples collected for qRT-PCR in 

PAXgene™ Blood RNA tubes (Quiagen, Inc., Santa Clarita, CA) were gradually frozen 

to -80oC per manufacturer instructions and remained at -80oC until analysis.  The 

remaining blood samples were immediately centrifuged at 1,500 x g for 10 minutes at 

4ºC, and aliquots of plasma samples were frozen at -20ºC until the time of analysis.   

6.2.3.2.  Plasma glucose and insulin:  Plasma glucose concentrations were assayed 

enzymatically using a YSI 2700 SELECT™ Biochemistry Analyzer (YSI Inc., Life 

Sciences, Yellow Springs, Ohio).  Plasma insulin concentrations were determined using 

Coat-A-Coat RIA®kit (Siemens Healthcare Diagnostics Inc., Deerfield, IL). 

6.2.3.3.  Amino acids:  The plasma free amino acid concentrations were measured using 

reverse-phase HPLC (3.9 x 300 mm PICO-TAG reverse phase column; Waters, Milford 

MA) of phenylisothiocyanate derivatives as previously described (2).  Total amino acid 

concentrations of the concentrate, oats, and grass hay were also measured using reverse-

phase HPLC (3.9 x 300 mm PICO-TAG reverse phase column; Waters, Milford MA) of 

phenylisothiocyanate derivatives as previously described (2), following 24 hour acid 

hydrolysis in 6N HCl at 110oC. 
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6.2.3.4.  Plasma phenylalanine enrichment:  The isotopic enrichment of phenylalanine 

(the amount of [1-13C]phenylalanine relative to unlabeled phenylalanine) in the plasma 

samples collected on day 3 was determined by Metabolic Solutions, Inc. (Nashua, NH) 

using a previously described method (543) which was modified by Matthews, Persola 

and Campbell (544).  Briefly, the isotopic enrichment of plasma samples were 

determined by negative chemical ionization GC-MS analysis of a heptafluorobutyric, n-

propyl derivative. 1-13C-phenylalanine enrichment was measured using methane negative 

chemical ionization GC-MS (Agilent 5973 EI/CI MSD with a Agilent 6890 GC). A 

Phenomenex ZB-1MS capillary column was used to separate the derivative of 

phenylalanine. Selected ion chromatograms were obtained by monitoring ions m/z 383 

and 384 for L-phenylalanine and L-[1-13C]phenylalanine, respectively. 

6.2.3.5.  Muscle phenylalanine enrichment:  Approximately 25-30 mg of flash frozen 

muscle tissue was sent to Metabolic Solutions, Inc. (Nashua, NH) for the determination 

of mixed-muscle protein and intracellular 1-13C-phenylalanine enrichment (545).  Muscle 

was homogenized twice in 10% trichloroacetic acid.  The protein-free solution was 

treated as described above for plasma 1-13C-phenylalanine.  The muscle proteins were 

hydrolyzed in 6N HCl for 24 h at 110°C.  Amino acids were isolated using cation-

exchange chromatography (50W-x8 resin, Sigma-Aldrich®, St. Louis, MO).  Amino 

acids were eluted from the resin using 2 ml of 4N NH4OH.  Eluates were evaporated to 

dryness with nitrogen gas.  The heptafluorobutyric, n-propyl derivative of phenylalanine 

was prepared as described above. 

6.2.3.6.  Breath sample analysis:  The ratio of 13CO2:12CO2 in the breath samples 

(Appendix 7) was determined using an isotope selective non-dispersive infrared 
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absorption (NDIR) analyzer (IRIS-2; Wagner Analysen Technik Vetriebs GmbH, 

Bremen, Germany). 

6.2.3.7.  Western blot analysis of muscle samples:  The abundance of the total and 

phosphorylated forms of Akt, S6K1, rpS6, and 4E-BP1 in the gluteal muscle 

homogenates were determined using electrophoresis followed by Western blotting 

techniques (Chapter III) 

6.2.3.8.  RNA isolation:  Total RNA was isolated from PAXgene™ tubes using the 

PAXgene™ RNA Blood Kit (Quiagen, Inc., Santa Clarita, CA).  Muscle samples that had 

been stored in RNAlater (Quiagen, Inc., Santa Clarita, CA) were homogenized using the 

bead beating technique (510) into the RNA-Stat60 solution (Tel- Test, Friendswood, TX). 

Total RNA was then isolated and quantified from both types of samples as previously 

described (Chapter IV).  Reverse transcription reactions were performed as previously 

described (Chapter IV). 

6.2.3.9.  Real time polymerase chain reaction:  The mRNA expressions of pro -

inflammatory cytokines, IFN-γ, IL-1β, IL-6 and TNFα, and the anti-inflammatory 

cytokine IL-10 were measured in cDNA samples using equine specific intron-spanning 

primer/probe sets (Chapter IV).  Differences in RNA isolation and cDNA construction 

between samples were corrected with the use of an internal control β-glucorindase for 

each sample ((244, 484); ChapterIV). 
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6.2.4.  Calculations and statistical analysis 

6.2.4.1.  Fat free mass:  Body fat percentage was determined using the following 

equation: 

Fat (%) = [5.4 × ultrasonic fat depth in cm) + 2.47] (546). 

Once determined, body fat percentage was used to calculate fat mass from total body 

mass: 

Fat mass (kg) = Fat (%) × body mass (kg). 

Fat-free mass was determined by difference of body mass and fat mass. 

6.2.4.2.  Plasma phenylalanine enrichment:  Isotope enrichment in mol percent excess 

was calculated from peak area ratios at isotopic steady state and baseline.  The final value 

for all determinations was corrected using an enrichment calibration curve (Appendix 7). 

6.2.4.3.  Breath CO2 enrichment:  The δ enrichment value obtained from the NDIR 

analyzer for each sample was converted to a % enrichment: 

Enrichment (%) = [0.0112372δ/(0.0112372δ + 1000)] × 100% ((547); Urschel et al., 

University of Kentucky, submitted). 

Then, total CO2 production (FCO2) was calculated based on breath CO2 enrichment using 

the following equation: 

FCO2 = i × [(Ei/Eb) – 1] (Appendix 7). 
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Where, i was the rate of isotope administration in μmol/kg/min, Ei was the enrichment of 

the isotope in the solution and Eb was the enrichment of the breath samples at plateau, 

corrected for baseline enrichment ((540, 542, 547); Urschel et al., University of 

Kentucky, submitted) 

6.2.4.4.  Whole-body phenylalanine kinetics:  The average plasma enrichment at isotopic 

steady state (plateau) was used to calculate whole-body phenylalanine kinetics.  This 

plateau in phenylalanine enrichment included at least 3 values and was defined as not 

having a slope statistically different from 0 (P > 0.05), determined single linear 

regression analysis (GraphPad Prism 4; GraphPad Software, La Jolla CA).  These plateau 

enrichment values were then used to calculate the whole-body phenylalanine flux: 

Flux (Q; μmol/kg/h) = i × [(Ei/Ep) – 1 (Appendix 7), 

where I was the rate of isotope infusion (in μmol/kg/h), Ei was the enrichment of infused 

isotope, and Ep was the plateau plasma enrichment.  Flux includes the amount of amino 

acids entering the pool through dietary intake (I), de novo synthesis (N), and protein 

breakdown (B), or leaving the pool through protein synthesis (Z), oxidation (E), or the 

conversion to other metabolites: 

Q = I + N B = Z + E + M. 

In order to account for the ~50% of dietary phenylalanine that is extracted during first-

pass splanchnic metabolism in other monogastric species ((548, 549); Urschel et al., 

Univeristy of Kentucky, submitted), the amount of phenylalanine entering the plasma free 

amino acid pool from dietary intake was estimated by multiplying dietary intake by 0.5.  
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De novo synthesis of phenylalanine does not occur in horses because it is a dietary 

indespensible amino acid; therefore, phenylalanine released into the free amino acid pool 

as a result of protein breakdown can be estimated using the following equation: 

B = Q – I,  

where I is phenylalanine intake corrected for first-pass splanchnic extraction. 

 The rate of [1-13C]phenylalanine oxidation to 13CO2 (F13CO2) was calculated: 

F13CO2 = FCO2 × ECO2 ((550); Urschel et al., University of Kentucky, submitted) 

(Appendix 7), 

where ECO2 was the average enrichment of the breath samples at isotopic steady state 

(minimum of 3 points, with a slope not different from zero), corrected for baseline 

enrichment, during the [1-13C]phenylalanine infusion.  Then, whole-body phenylalanine 

oxidation was calculated using the following equation: 

O = F13CO2 × (1/Ep – 1/Ei) × 100 ((550); Urschel et al., University of Kentucky, 

submitted) (Appendix 7). 

 Non-oxidative phenylalanine metabolism can be calculated through the difference 

between phenylalanine flux and oxidation, and this can be used as an indicator of whole-

body phenylalanine use for protein synthesis.  The major non-CO2 product of 

phenylalanine is tyrosine, and since all horses were consuming the same diet, and 

tyrosine is not generally considered to be a limiting amino acid in any other monogastric 

species, it was assumed that phenylalanine conversion to tyrosine was minimal.  
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Therefore, any change in non-oxidative phenylalanine disposal was assumed to signify 

changes in phenylalanine use for whole-body protein synthesis. 

6.2.4.5.  Relative quantity of inflammatory cytokines:  Changes in mRNA expression 

were calculated using the ΔΔCT method (484), with the mean ΔCT averaged for mature 

horses set as the calibrator for each individual cytokine.  Results are expressed as relative 

quantity (RQ) calculated as 2-ΔΔCT (Chapter IV). 

6.2.4.6.  Statistics:  All data were analyzed using the mixed procedure of SAS Version 

9.2 (SAS Institute Inc., Cary, NC), with statistical significance and trends considered if P 

< 0.05 and 0.05 < P < 0.10, respectively.  When the fixed effects were significant, pre-

planned comparisons of least squares means were made using the pdiff test.  All of the 

dependent variables were analyzed using an ANOVA with the fixed effect of age and 

horse nested in age and block as the random subject.  Data are presented as means ± 

pooled standard error, unless otherwise noted. 

6.3.  RESULTS 

6.3.1.  Equine demographics 

 The two age groups were only statistically different in age.  There was no effect 

of age (P > 0.05) on body weight (mature: 469±30 kg; aged 499±30 kg) or fat free mass 

(mature: 421±26 kg; aged 448±26 kg).  The measurement of fat free mass indicates that 

the mature and aged animals used in this study were moderately lean.  α-MSH 

concentrations were well below (mature:10.1± 1.8 pmol/L; aged: 9.5 ± 1.8 pmol/L) the < 

35 pmol/L cut-off value to exclude potentially PPID horses(539). 
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6.3.2.  Plasma insulin, glucose, and amino acids 

 Plasma insulin, glucose, and amino acid concentrations were measured in the final 

blood sample of the [1-13C] phenylalanine infusion, immediately prior to biopsy.  Plasma 

insulin (P = 0.53; Table 6.2) and glucose (P = 0.43; Table 6.2) concentrations at the time 

of biopsy were not affected by age.  However, there was a significant effect of age on the 

plasma concentrations of isoleucine (P = 0.05; Table 6.2) and lysine (P = 0.04; Table 

6.2), where both were elevated in the aged compared to the mature group.  Additionally, 

there was a trend for elevated plasma concentrations of asparagine (P = 0.08; Table 6.2) 

and phenylalanine (P = 0.08; Table 6.2) in the aged horses.  The remainder of the amino 

acids were not affected by age (P > 0.05; Table 6.2). 

6.3.3.  Inflammatory cytokines 

 Age did not affect mRNA expression of the circulating inflammatory cytokines 

IL-1β (P = 0.92; Table 6.3), IL-6 (P = 0.90; Table 6.3), IL-10 (P = 0.20; Table 6.3), IFNγ 

(P = 0.30; Table 6.3), and TNFα (P = 0.38; Table 6.3).  Additionally, there was no effect 

of age on the mRNA expression of muscle IL-1β (P = 0.53; Table 6.3), IL-10 (P = 0.23; 

Table 6.3), IFNγ (P = 0.49; Table 6.3), and TNFα (P = 0.58; Table 6.3).  There was 

limited detection of muscle IL-6 mRNA expression where expression was detected in 

only 3 mature horses and a single aged animal. 

6.3.4.  Activation of translation initiation factors 

There was no effect of age on the activation of Akt at Ser473 (P = 0.33; Figure 6.1) 

and Thr308 (P = 0.83; Figure 6.1), rpS6 at Ser235/236 & 240/244 (P = 0.48; Figure 6.1), or 
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4EBP1 at Thr37/46 (P = 0.13; Figure 6.1).  However, the activation of S6K1 at Thr389 was 

significantly lower (P = 0.03; Figure 6.1) in the aged compared to the mature horses. 

6.3.5.  Whole-body protein synthesis 

There was no effect of age on whole-body CO2 production (P = 0.51; Table 6.4), 

phenylalanine flux (P = 0.84; Table 6.4), phenylalanine oxidation (P = 0.15; Table 6.4), 

phenylalanine release from protein breakdown (P = 0.99; Table 6.4) or non-oxidative 

phenylalanine disposal (P = 0.48; Table 6.4). 

 

6.3.6.  Muscle phenylalanine enrichments 

There was no effect of age on the free (P = 0.53; mature: 11.1±0.8%; aged: 

10.3±0.8%) or protein bound (P = 0.62; mature: 0.3±0.1%; aged: 0.4±0.1%) enrichment 

of [1-13C] phenylalanine in the gluteal muscle.  Because we only collected a single biopsy 

at the end of the isotope infusion period, we could not calculate the change in the protein 

bound phenylalanine enrichment, which is necessary to calculate muscle protein 

fractional synthesis rates.  However, if we assume that there were no initial differences in 

muscle bound enrichments of [1-13C] phenylalanine between the age groups, the lack of a 

difference between the ages in both free and protein bound muscle enrichment of [1-13C] 

phenylalanine indicates no difference in muscle protein fractional synthesis rates between 

the age groups. 
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6.4.  DISCUSSION 

To the best of the authors’ knowledge this is the first time that whole-body protein 

kinetics and mTOR signaling have been examined in the aging horse.  There were no 

differences in the whole-body protein kinetics of the mature and aged horses; however 

the phosphorylation of the downstream mTOR signaling factor, S6K1, was lower in the 

gluteal muscle of the aged compared to the mature horses following 7.5 hours of steady 

state feeding. 

Numerous studies of the effects of aging in humans have studied aging 

populations with different demographics than the mature population.  Body fat mass and 

weight were elevated in the aging populations of these previous studies (156, 185, 204); 

however, in the present study there were no differences in the aged compared to the 

mature group for any measurement of body mass.  Additionally, all of the aged horses in 

the current study were clinically normal with no signs of PPID, as plasma α-MSH 

concentrations were within the clinically normal reference range (539).  Although aging 

is typically characterized by low grade chronic inflammation, specifically elevations in 

the mRNA expression of circulating IL-1, IL-6, and TNFα (483, 493, 495), there were no 

differences in the mRNA expression of circulating or muscle inflammatory cytokines 

between the mature and aged horses in the current study.  Previous studies (483) in horses 

have demonstrated age related differences in circulating inflammatory cytokine 

expression; however the mature population in the previous study (483) was younger (4.5 

years old) than the mature group in the current study (11 years old).  Furthermore, the 

aged horses were mobile, had all of their teeth, and were thriving in an outdoor group 
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housing environment, indicating that the aging population in the current study was in a 

healthy aging state. 

The similar demographics and health status of the mature and aged groups used in 

the present study may explain the unexpected result of no significant difference in any of 

the markers of whole-body protein kinetics.  It has been previously demonstrated that up 

to 87% of the variance seen in whole-body protein kinetics can be attributed to fat free 

mass(151).  Further, muscle protein fractional synthesis rates in lean young adult (20 

years old) and aged lean men (75 years old) following the co-ingestion of a protein and 

leucine supplement are not different (209).  Leucine oxidation and fractional synthesis 

rates of sarcoplasmic proteins do not differ between middle aged (52 years old) and aged 

(77 years old) humans (200).  The results from previous studies (200, 201) support the 

present findings that the narrow age range, and similar physical characteristics of the 

subjects were likely a cause of no significant difference in phenylalanine kinetics. 

Of all of the translation initiation factors studied, S6K1 appears to be the most 

influenced by aging.  The phosphorylation of S6K1 at Thr389 was reduced by 42% in the 

aged horses compared to the mature horses, which has also been demonstrated in aged 

(30 mo) and very aged (36 mo) male rodent soleus muscle (551).  Additionally, the 

phosphorylation of S6K1 in response to amino acids and insulin does not increase from 

the basal state in aging humans (156), or following a meal in aged rats with and without 

low grade chronic inflammation (493).  The significant reduction in the abundance of 

S6K1 P-Thr389 without an increase in inflammatory cytokines in the aged horse may 

indicate that the effect of aging on S6K1 occurs through some other mechanism; 

however, this requires further elucidation. 
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The effect of aging on S6K1 phosphorylation in the absence of an effect on 

whole-body protein synthesis may indicate that examining protein synthesis at the whole 

body level masked the possible changes occurring in skeletal muscle.  Although skeletal 

muscle comprises approximately 50% of body weight, there is only about a 25% 

contribution to whole-body protein synthesis (198, 199); therefore, without drastic 

changes at the skeletal muscle level there will not be alterations at the whole-body level 

or if another tissue decreases its rate of protein synthesis and the muscle increases its rate 

of protein synthesis then there would be no net effect at the whole-body level.  The 

significant reduction in the abundance of S6K1 P-Thr389, without similar indications of 

change in muscle fractional synthesis rates or whole-body protein synthesis, requires 

further elucidation. 

No age differences were detected in the activation of Akt, rpS6, and 4EBP1.  The 

lack of an effect of age on Akt, rpS6, and 4EBP1 may be attributed to the narrow age 

range between the mature and aged horses in the current study, which has also been 

demonstrated in middle aged and aged rodents (551).  Additionally, the lack of elevated 

circulating and muscle inflammatory cytokines in the aged group compared to the mature 

group may also explain the absence of an age effect on the activation of Akt, rpS6, and 

4EBP1 because inflammatory cytokines stimulate NF-κB activation which inhibits the 

phosphorylation of Akt (517).  Although NF-κB was not examined in this study, the lack 

of an age effect on inflammatory cytokines may explain the absence of an age effect on 

Akt, rpS6, and 4EBP1 activation. 

The experimental protocol used in the current study may have concealed any 

differences in the activation of translation initiation factors and whole-body protein 
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synthesis that were possibly present.  For 7.5 hours prior to biopsy collection, horses 

received half of their daily concentrate allocation (0.1% BW) divided into 1/24 portions 

every 30 minutes.  Because the whole diet was primarily hay based (2% BW), each of 

these small concentrate meals only met 0.5% and 0.37% of the daily CP and digestible 

energy requirement, respectively.  Feeding small meals throughout the isotope infusion 

procedures may at least partially explain the lack of an age effect on the phosphorylation 

of Akt, rpS6, and 4EBP1, or whole-body protein synthesis rates as it may not have been a 

strong enough anabolic stimulus.  In mature horses, the consumption of a larger high 

protein meal (4g/kg) did result in the activation of translation initiation factors in the 

skeletal muscle of mature horses (2) and it is unknown whether the magnitude of this 

activation may have been lower in the old horses of the present study.  This phenomenon 

is seen during development when yearlings and two year olds consumed 4 g/kg of a high 

protein meal the activation of translation initiation factors was greater in the yearling 

horses compared to two year olds (Chapter V).  The plasma glucose (mature: 5.5 ± 0.28 

mmol/L, aged: 5.3 ± 0.28 mmol/L), insulin (mature: 5.8 ± 0.8 μIU/mL; aged: 6.1 ± 0.8 

μIU/mL), and total indispensable amino acid (mature: 543 ± 40 μmol/L; aged: 670 ± 40 

μmol/L) concentrations at the time of biopsy more closely resembled concentrations of 

mature horses in the post-absorptive state (glucose: 5.5 mmol/L; insulin: 5 mU/L; total 

indispensable amino acids: 898 μmol/L) (2) rather than the postprandial state (glucose: 

6.5 mmol/L; insulin: 36 mU/L; total indispensable amino acids: 1245 μmol/L) (2).  

Additionally, non-oxidative disposal, the indirect measure of protein synthesis, was less 

than phenylalanine release from protein breakdown which is characteristic of the post-

absorptive state (185).  Because the horses were in a physiological state more similar to 
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the post-absorptive state, then our results are consistent with previous findings that there 

are no age-related differences in the activation of translation initiation factors or protein 

synthesis during the post-absorptive state (156, 157, 204).  Further research is necessary 

to determine if age related changes in the activation of translation initiation factors or 

whole-body protein synthesis exist in horses during a true postprandial state. 

Although we did not see differences in whole-body protein synthesis or 

breakdown, there may have been differences in the molecular markers of muscle protein 

degradation, which we did not measure.  Muscle loss traditionally associated with aging 

occurs when there is an imbalance in muscle protein synthesis and breakdown, and 

because there was no difference in the activation of translation initiation factors with the 

exception of S6K1, which may be enough to reduce skeletal muscle protein synthesis, 

differences in the molecular markers of muscle protein degradation (muscle-RING-finger 

protein 1 or forkhead box proteins) may also contribute for the loss of muscle seen with 

aging.  Aging rodents have elevated proteasome content and activity and free ubiquitin 

and ubiquitylated protein concentrations in skeletal muscle than mature rodents (179).  

The aged also have higher abundance of forkhead box proteins than the mature 

counterparts (35).  Additionally, ubiquitination rate is greater in the post-absorptive state 

than the postprandial state in the aged rodent whereas the mature rodents are not affected 

by physiological state (180).  Because our horses were in a state more similar to the post-

absorptive state is possible that our aging may have had elevated molecular markers of 

muscle protein breakdown.  The lack of a difference in body composition between the 

mature and aging horses in the current study may indicate that over the course of an 

entire day protein synthesis is equal to protein degradation because our horses were 
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clinically healthy; however, this requires further investigation.  Additionally, further 

investigation is warranted to determine if aging horses have increased skeletal muscle 

proteolysis which may account for reduced muscle mass traditionally seen in this 

population. 

The implications of the current findings are that clinically healthy aging horses 

may not require different management practices than their mature counterparts.  Previous 

research (534) has indicated that aged horses have lowered protein digestibility than 

mature horses.  However, when the same research group repeated the study 12 years 

later, there was no difference in protein digestibility between the two age groups (535).  

The authors attributed the differences in the results to the fact that the aged horses in the 

initial study may have endured intestinal damage during their youth, growing up prior to 

the use of regular anthelmintics.  As a result, the most recent edition of the NRC (336) 

does not indicate differing requirements between mature and aged horses.  Our results 

show that there are no differences in whole-body protein metabolism, which may imply 

that the protein requirements do not differ between healthy aging and mature horses; 

however, further research is needed to specifically determine individual amino acid 

requirements during aging. 

The clinically healthy aging horses in the current study were similar to their 

mature counterparts; however, the growing aging equine population contains horses with 

PPID at a rate of 15 to 30% (552).  PPID horses are typically insulin resistant, 

hyperglycemic, have abnormal fat deposits, are susceptible to laminitis, and have 

elevated cortisol levels and muscle atrophy (552).  To the best of the authors’ knowledge, 

there is currently no literature pertaining to the activation of translation initiation factors 



206 
 

or protein synthesis in this population.  Although clinically healthy aging horses did not 

differ from mature horses and thus may not require different management practices, 

symptoms of the aging horse with PPID may affect Akt and mTOR signaling and whole-

body protein metabolism.  Protein metabolism in the less healthy aged horse is an area 

where additional research is warranted. 

Aging appears to affect equine skeletal muscle similar to both humans and rodents 

in that S6K1 activation is lowered, which could impair muscle protein synthesis, although 

there was not evidence of this in the present study.  Additionally, healthy aging horses do 

not have differences in circulating or muscle inflammatory cytokine mRNA expression 

compared to older mature counterparts (~13 years old) which may have resulted in 

similar whole-body protein synthesis rates.  Although additional research is needed to 

determine age-related differences in muscle protein metabolism in response to a larger 

anabolic stimuli, these findings indicate that healthy older horses have similar whole-

body protein metabolism and requirements to the mature horse. 
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6.5.  TABLES 

Table 6.1: As-fed nutrient composition of ration balancer pellet and oat diet fed to 

the horses during the 7.5 hours of steady state feeding prior to muscle biopsy 

collection 

 

Nutrient Ration balancer pellet 

composition,1 

(mean ± SD) 

Oat composition,1

(mean ± SD values) 

Moisturea 9.5 ± 0.2% 11.2 ± 0.3% 

  

Digestible energya 2.76 ± 0.01 Mcal/kg 3.15 ± 0.06 Mcal/kg 

   

Crude proteina 17.0 ± 0.3% 13.4 ± 1.9% 

Alanineb 0.51 ± 0.03% 0.35 ± 0.04% 

Arginineb 0.56 ± 0.03% 0.49 ± 0.07% 

Aspartate+asparagineb 0.81 ± 0.04% 0.58 ± 0.04% 

Glutamate+glutamineb 1.50 ± 0.06% 1.43 ± 0.14% 

Glycineb 0.44 ± 0.02% 0.35 ± 0.05% 

Histidineb 0.24 ± 0.01% 0.16 ± 0.03% 

Isoleucineb 0.37 ± 0.02% 0.25 ± 0.04% 

Leucineb 0.75 ± 0.02% 0.54 ± 0.08% 

Lysineb 0.41 ± 0.02% 0.27 ± 0.04% 

Methionineb 0.09 ± 0.01% 0.09 ± 0.01% 
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Table 6.1 continued: As-fed nutrient composition of ration balancer pellet and oat 

diet fed to the horses during the 7.5 hours of steady state feeding prior to muscle 

biopsy collection 

Prolineb 0.71 ± 0.04% 0.40 ± 0.06% 

Phenylalanineb 0.47 ± 0.02% 0.37 ± 0.06% 

Serineb 0.47 ± 0.01% 0.37 ± 0.05% 

Threonineb 0.35 ± 0.02% 0.23 ± 0.05% 

Tyrosineb 0.29 ± 0.02% 0.21 ± 0.04% 

Valineb 0.47 ± 0.03% 0.32 ± 0.05% 

  

Acid detergent fibera 18.4 ± 1.1% 11.0 ± 0.9% 

Neutral detergent fibera 32.5 ± 2.8% 23.3 ± 2.2% 

Non-fiber carbohydratesa 45.1 ± 2.4% 63.8 ± 2.7% 

Starcha 29.7 ± 3.0% 56.0 ± 3.8% 

Water-soluble carbohydratesa 7.1 ± 0.5% 4.2 ± 0.8% 

   

Crude fata 6.2 ± 0.2% 8.4 ± 0.7% 

   

Asha 9.6 ± 0.1% 3.6 ± 0.9% 

Calciuma 1.15 ± 0.03% 0.24 ± 0.20% 

Phosphorusa 0.64 ± 0.04% 0.32 ± 0.06% 

Potassiuma 1.81 ± 0.01% 0.62 ± 0.06% 

Sodiuma 0.33 ± 0.04% 0.12 ± 0.15% 
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Table 6.1 continued: As-fed nutrient composition of ration balancer pellet and oat 

diet fed to the horses during the 7.5 hours of steady state feeding prior to muscle 

biopsy collection 

Irona 509 ± 13 mg/kg 157 ± 47 mg/kg 

Zinca 62 ± 5 mg/kg 35 ± 5 mg/kg 

1Values represent the amount of the nutrient present as a portion of the total diet on an as-

fed basis.  Horses received 0.1% of body weight/day of the ration balancer pellet and the 

oats, individually, which resulted in a total of 0.2% of body weight/day. 

aProximate analysis of the feed was conducted by Dairy One Forage Laboratory (Ithaca, 

NY). 

bAmino acid content of the feed was determined using high performance liquid 

chromatography analysis following an acid hydrolysis of the feed sample, as described in 

Materials and Methods. 
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Table 6.2: Plasma metabolite concentration at the time of biopsy in mature and aged 

horses 

Metabolite Mature Aged Pooled 
SEM 

Insulin1 5.8 6.1 0.8 

Glucose2 5.5 5.3 0.28 

Alanine3 203 218 24 

Arginine 69 74 5.8 

Asparagine 38 52† 4.9 

Aspartate 19 14 2.4 

Citrulline 83 91 8.3 

Glutamate 54 49 6.3 

Glutamine 273 306 27 

Glycine 352 441 39 

Histidine 58 64 2.8 

Isoleucine 33 46* 3.9 

Leucine 68 87 7.4 

Lysine 69 92* 6.9 

Methionine 26 32 2.8 

Ornithine 34 44 4.8 

Phenylalanine 68 83† 5.4 

Proline 90 97 7.6 

Serine 232 288 23 

Taurine 21 28 3.4 
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Table 6.2 continued: Plasma metabolite concentration at the time of biopsy in 

mature and aged horses 

Threonine 94 112 11 

Tryptophan 4.7 5.3 0.4 

Tyrosine 50 55 5.0 

Valine 121 148 12 

1 Plasma insulin concentrations are reported as least square means in μIU/mL. 
2 Plasma glucose concentrations are reported as least square means in mmol/L. 
3 Plasma amino acids concentrations are reported as least square means in μmol/L. 

*Indicates the aged horse value is significantly (P < 0.05) different from the mature horse 
value. 
†Indicates the values in the aged horses showed a trend (P < 0.10) to be different from the 
mature horse values. 
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Table 6.3:  Relative quantities of circulating and gluteal muscle inflammatory 

cytokines of mature and aged horses1 

 

1Values are least squares means ± SEM. 

  

Inflammatory Cytokine Mature Aged Pooled SEM 

Circulation 

IFNγ 1.23 1.58 0.22 

TNFα 1.11 1.35 0.18 

IL-6 1.63 1.71 0.77 

IL-1β 1.16 1.14 0.13 

IL-10 1.21 0.72 0.22 

Muscle 

IFNγ 1.02 1.5 0.43 

TNFα 0.43 0.64 0.23 

IL-1β 2.61 5.06 2.53 

IL-10 0.24 0.52 0.17 
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Table 6.4: Whole-body phenylalanine kinetics in mature and aged horses1. 

Mature Aged Pooled SEM 

Phenylalanine flux [μmol/(kg·h)] 

 41.5 42.2 2.3 

Carbon dioxide production [μmol/(kg·h)] 

 16977 15080 1410 

Phenylalanine entering the free phenylalanine pool [μmol/(kg·h)]2 

Phenylalanine from dietary intake 4.0 3.9 0.08 

Phenylalanine from protein 

breakdown 

37.5 37.5 2.2 

Phenylalanine leaving the free phenylalanine pool [μmol/(kg·h)]2 

Phenylalanine oxidation 13.2 16.7 1.6 

Non-oxidative phenylalanine 

disposal 

28.3 25.5 2.7 

1Values are least squares means ± SEM. 

2The following stochastic model of phenylalanine kinetics was used: flux = rate of 

phenylalanine entry = rate of phenylalanine leaving; rate of phenylalanine entry = 

phenylalanine intake + phenylalanine release from protein breakdown; rate of 

phenylalanine leaving = phenylalanine oxidation + non-oxidative phenylalanine disposal. 
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6.6.  FIGURES 

 

Figure 6.1.  Gluteal muscle phosphorylation of Akt at Ser473, Akt at Thr308, S6K1 at 

Thr389, rpS6 at Ser235/236 & 240/244, and 4EBP1 at Thr 37/46 in mature and aged horses 

following 7.5-hours of steady state feeding.  The phosphorylated forms of the 

translation initiation factors was corrected by the respective total form abundance, with 

the value for mature horses set at 1.0 AU.  Values are least square means ± pooled SE, 

n=6 per age group.  Representative images of the immunoblots are shown above. 

*Indicates that, within a translation initiation factor, the value is significantly different (P 

< 0.05) from the mature horse value. 
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Chapter VII 

Whole body protein synthesis is improved following non-steroidal anti-inflammatory 

drug administration to aging horses 

7.1.  INTRODUCTION 

Aging has been associated with low grade chronic inflammation in humans (495), 

rodents (493), and horses (483) and is referred to as “inflamm-aging”.  Chronic 

inflammation is characterized by elevated levels of circulating inflammatory cytokines, 

which have been linked with decreased physical performance and increased incidence of 

injury (553, 554), as well as with the development of sarcopenia in the elderly (553) and 

in aged horses (532).  Additionally, the population of aging horses has been estimated at 

7.6% and in some regions over 20% of all horses (523, 533).  Older horses may 

demonstrate visible signs of aging such as loss of muscle mass and are usually horses 

over the age of 20 years old (523).  Sarcopenia is the involuntary loss of muscle mass and 

strength, and has been partially attributed to a multitude of factors which include a 

decline in physical activity and a less than optimal diet (149, 150, 553), and results from 

a shift in the balance between protein synthesis and breakdown.  Sarcopenia has been 

partly attributed to reduced protein synthesis and activation of translation initiation 

factors in response to anabolic stimuli such as amino acid administration (149, 155), 

insulin (165), or exercise (149, 538).  Further, systemic inflammation in the aged has also 

been associated with decreased activation of translation initiation factors in response to 

various anabolic stimuli (155) and with lower rates of muscle protein synthesis (493); 
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however, the effects of aging on muscle protein metabolism have not been fully 

elucidated in the horse. 

Protein synthesis is limited by both the abundance and efficiency of ribosomes to 

translate mRNA into protein and the availability of amino acids to form a protein (128), 

which is regulated by a series of intracellular signaling cascades associated with the 

mammalian target of rapamycin (mTOR) pathway.  Insulin and insulin like growth factor 

phosphorylate Akt through the activation of several intermediate signaling proteins (16, 

18, 19, 21).  Activation of Akt inactivates the mTOR inhibitor tuberous sclerosis complex 

2 through phosphorylation (19, 21), allowing for the phosphorylation of mTOR.  The 

phosphorylation of mTOR can also be stimulated by amino acids (45, 46, 497) and 

exercise (149, 488, 538), through separate Akt-independent mechanisms.  Phosphorylated 

mTOR phosphorylates and activates two downstream signaling proteins: ribosomal S6 

Kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1). 

Phosphorylation of S6K1 results in the activation of ribosomal protein S6 (rpS6) (498), a 

component of the 40S ribosomal subunit (498).  Therefore, the phosphorylation of rpS6 

and 4EBP1 result in the activation of the translational equipment, allowing protein 

synthesis (21, 537). 

The decline in the responsiveness of translation initiation factors and subsequent 

protein synthesis to various anabolic stimuli with aging in rodents (538) and humans 

(149, 155) has been associated with elevated systemic inflammation (155, 493).  In aged 

rodents with systemic inflammation, the administration of a NSAID was able to increase 

muscle protein synthesis (335), but to the best of our knowledge, this has not been 

studied at the whole-body level in any species.  We hypothesized that daily NSAID 
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administration would reduce systemic and muscle inflammation in aged horses and 

increase whole-body and muscle protein synthesis.  The objective of this study was to 

determine the effects of NSAID administration over 4 weeks on the activation of mTOR 

signaling and whole-body protein synthesis in aged horses. 

7.2.  MATERIALS AND METHODS 

7.2.1.  Animals, housing, and feeding 

The University of Kentucky Institutional Animal Care and Use Committee (2009-

0562) approved all procedures used in this study.  Six mixed breed aged (23.5 ± 2.6 y 

old; 3 geldings and 3 mares) horses were obtained from the University of Kentucky 

Veterinary Sciences’ Maine Chance Farm.  Prior to selection, the pool of candidate 

horses were screened for plasma α-melanocyte stimulating hormone concentration, a 

marker of pituitary pars intermedia dysfunction (PPID; Equine Cushing’s Disease) (539, 

555), and horses below the normal cut-off value of < 35 pmol/L  were selected (539, 

555).  Selected horses were of a moderate body condition (body condition score 5-7, 

scale 1-9 (489)), were clinically healthy with all of their teeth and the ability to live 

outdoors in a group housing environment, and on a regular farrier, anthelmintic, dental, 

and vaccination regiment.  Horses were group housed on dry lots with ad libitum acess to 

salt and water.  Grass hay (mean ± SD; 0.91 ± 0.02 Mcal/kg DE, 8.2 ± 0.8% CP; 48.3 ± 

0.3% ADF; 76.5 ± 1.4% NDF; 2.0 ± 0.5% crude fat; and 7.0 ± 0.5% ash) was provided to 

the group at 2% of body weight per day and omeprazole (Gastroguard® Merial Limited, 

Duluth, GA) was administered at preventative dose rate of 1.2 mg/horse/d.  Horses were 

brought into 3.7×3.7 m stalls and individually fed the concentrate ration twice daily at 
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0800 and 1500.  The concentrate ration consisted of a 50:50 mixture of a ration balancer 

pelleted feed (Chapter VI) and oats (Chapter VI) at 0.2% of body weight per day.  Horses 

were adapted to diet, omeprazole administration and housing protocols for 2 weeks prior 

to the initiation of experimental procedures.  During the isotope infusion procedures 

horses were housed in 3.7×3.7 m stalls bedded with pine shavings with ad libitum access 

to water and salt. 

7.2.2.  Experimental procedures 

There were 3 sampling periods before NSAID administration commenced (0 

week of NSAID administration), and then following 2 and 4 weeks of NSAID 

administration.  The following sampling procedures which were described in detail 

(Chapter VI) were repeated during each of the sampling periods.  Briefly, at 0800 on day 

0, following the two week adaptation, horses were weighed fed the morning concentrate 

meal at 0.1% of body weight and their individual portion of hay at 2% of body weight per 

day in individual stalls.  Horses remained in stalls throughout the sampling period.  At 

this time a blood sample was collected into PAXgene™ Blood RNA tubes (Quiagen, 

Inc., Santa Clarita, CA) via jugular vein venipuncture to measure circulating 

inflammatory cytokines via qRT-PCR analysis, described below.  Horses were fed their 

afternoon concentrate meal at 1500.  On d1, horses remained in the individual stalls and 

received feed as described above. 

On day 2, horses were individually fed the morning concentrate meal as described 

above.  Following morning meal consumption, two indwelling jugular vein catheters (14 

gauge X 14.0 cm, Abbocath; Abbott Laboratories, North Chicago IL) were placed using 
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aseptic techniques as previously described (2): one for isotope infusion and one for blood 

sampling.  At this time, fat thickness on the croup near the site of biopsy was 

ultrasounded in order to calculate percent body fat (481).  At 1100 all forage, water and 

salt were removed, and 2 hours later a baseline blood sample (10 mL) was collected into 

an evacuated vacutainer (Vacutainer; Becton-Dickinson, Franklin Lakes NJ) containing 

sodium heparin prior to the bolus intravenous administration of deuterium oxide (Sigma-

Aldrich, St. Louis, MO) at 0.15 g/kg BW.  Three hours following deuterium oxide 

infusion a second blood sample was collected, in order to determine changes in total body 

water, as an indicator of body composition alterations, during the 4 weeks of NSAID 

administration.  Deuterium oxide infusion measurements were performed during the 0 

and 4 week sampling period.  Salt, water and forage were returned at 1630 with the 

addition of the evening concentrate meal.  The removal of all feed and water was 

necessary for the measurement of body water using deuterium oxide isotope techniques. 

On day 3, whole-body phenylalanine kinetics were measured using primed, 

constant stable isotope infusions as previously described (Chapter VI).  During the 

whole-body phenylalanine kinetic measurements, horses were fed half of the daily 

concentrate allocation divided into 24 equal portions, with 1 portion fed every 30 minutes 

for 7.5 h, with the initial portion provided 1.5 h prior to the start of isotope 

administration.  Each horse received a 14.4 μmol/kg primed dose of [13C] sodium 

bicarbonate solution (Isotec™, Miamisburg, OH), followed by a 2-h constant infusion at 

12 μmol/kg/h in order to measure total CO2 production (540).  This was followed by a 4-

h primed (8.4 μmol/kg), constant (6 μmol/kg/h) infusion of [1-13C]phenylalanine solution 

(Isotec™, Miamisburg, OH) in order to measure whole-body phenylalanine oxidation and 
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flux (541).  The isotope filled ethylene vinyl acetate bags were attached to a surcingle and 

connected to the catheter using a primary IV set (Baxter Healthcare Corporation, 

Deerfield, IL).  Isotope was delivered into the catheter using a pressure sensitive, cordless 

intravenous infusion pump (J-1097 VetPro Infusion Pump, Jorgensen Laboratories Inc., 

Loveland, CO) which was also attached to the surcingle on each horse. 

Two baseline breath samples were collected prior to the [13C] sodium bicarbonate 

infusion (-30 min and 0 min), and subsequent breath samples were collected every 30 

min throughout the infusion procedures of both [13C] sodium bicarbonate and [1-

13C]phenylalanine for a total of 6.5 h.  Breath samples were collected using a modified 

Equine Aeromask® (Trudell Medical International, London ON, Canada) enabling the 

collection of air through a 1-way valve into gas impermeable bags (Wagner Analysen 

Technik Vetriebs GmbH, Bremen, Germany).  Immediately following each sample 

collection, another 1/24 meal was provided.  Blood sampling commenced at 90 min into 

the [13C]sodium bicarbonate infusion, and continued every 30 min until the end of the [1-

13C]phenylalanine infusion.  All blood samples were collected into evacuated vacutainers 

(Vacutainer; Becton-Dickinson, Franklin Lakes NJ) containing sodium heparin.  The t= 

90 min [13C]sodium bicarbonate and t= 0 min [1-13C]phenylalanine blood samples were 

used to measure the background amounts of [1-13C] phenylalanine in the blood, prior to 

isotope infusion. 

At the end of the [1-13C]phenylalanine infusion, the infusion pumps were turned 

off and the horses were led to a set of equine stocks.  Horses were lightly sedated with 

xylazine hydrochloride (0.3mg/kg, IV [100mg/mL]; Butler Animal Health Supply, 

Dublin, OH), and a gluteal muscle biopsy was collected as previously described (2).  
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Briefly, the area over the middle gluteal muscle (~100-cm2) was shaved, aseptically 

prepared, and desensitized with a local anesthetic (12 mL of 2% lidocaine; Butler Animal 

Health Supply, Dublin, OH).  Approximately 500 mg of muscle biopsy specimen was 

obtained at a depth of approximately 50% (~8 cm; Chapter III; Chapter V) of the depth of 

the middle gluteal muscle, by use of the percutaneous needle biopsy technique (411).  Of 

this, ~100 mg was processed in preparation for Western blot analysis, as described below, 

and ~ 80 mg was stored in RNAlater (Quiagen, Inc., Santa Clarita, CA) for qRT-PCR 

analysis of inflammatory cytokines as described below.  The remainder was flash frozen 

in liquid nitrogen, and stored at -80ºC until analysis.  Catheters were removed and 1 g of 

phenylbutazone was administered following muscle biopsy collection.  At this time, 

horses were given the remaining portions of concentrate and their daily allotment of hay 

as a single meal.  Following consumption of the evening meal, horses were returned to 

the drylot.  For the next 4 weeks, 2g/d of phenylbutazone paste (Butler Animal Health 

Supply, Dublin, OH) was administered to the horses; 1g was given orally prior to each 

meal.  The experimental procedures were repeated following 2 weeks and 4 weeks of 

phenylbutazone administration.  Samples of the grass hay, ration balancer pellet, and oats 

were collected throughout the experimental period and sent to Dairy One Forage 

Laboratory (Ithaca, NY) for nutrient analysis.  

7.2.3.  Sample analysis procedures 

7.2.3.1.  Blood sample collection and storage:  Blood samples collected for qRT-PCR in 

PAXgene™ Blood RNA tubes (Quiagen, Inc., Santa Clarita, CA) were gradually frozen 

to -80oC per manufacturer instructions and remained at -80oC until analysis.  The 
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remaining blood samples were immediately centrifuged at 1,500 x g for 10 minutes at 

4ºC, and aliquots of plasma samples were frozen at -20ºC until the time of analysis.   

7.2.3.2.  Plasma glucose and insulin:  Plasma glucose concentrations were assayed 

enzymatically using a YSI 2700 SELECT™ Biochemistry Analyzer (YSI Inc., Life 

Sciences, Yellow Springs, Ohio).  Plasma insulin concentrations were determined using 

Coat-A-Coat RIA®kit (Siemens Healthcare Diagnostics Inc., Deerfield, IL). 

7.2.3.3.  Amino acids:  Samples of grass hay, pelleted concentrate, and oats were 

hydrolyzed for 24 hours at 110oC in 6N HCl.  Total amino acid concentrations of the 

hydrolysates were then measured using reverse-phase HPLC (3.9 x 300 mm PICO-TAG 

reverse phase column; Waters, Milford MA) of phenylisothiocyanate derivatives as 

previously described (2).  The plasma free amino acid concentrations were also measured 

using reverse-phase HPLC (3.9 x 300 mm PICO-TAG reverse phase column; Waters, 

Milford MA) of phenylisothiocyanate derivatives as previously described (2). 

7.2.3.4.  Plasma phenylalanine enrichment:  The isotopic enrichment of phenylalanine 

(the amount of [1-13C]phenylalanine relative to unlabeled phenylalanine) in the plasma 

samples collected on day 3 was determined by Metabolic Solutions, Inc. (Nashua, NH) 

using a previously described method (543) which was modified by Matthews, Persola 

and Campbell (544) (Chapter VI). 

7.2.3.5.  Muscle phenylalanine enrichment:  Approximately 25-30 mg of flash frozen 

muscle tissue was sent to Metabolic Solutions, Inc. (Nashua, NH) for the determination 

of mixed-muscle protein and intracellular 1-13C-phenylalanine enrichment ((545); 

Chapter VI). 
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7.2.3.6.  Breath sample analysis:  The ratio of 13CO2:12CO2 in the breath samples was 

determined using an isotope selective non-dispersive infrared absorption (NDIR) 

analyzer (IRIS-2; Wagner Analysen Technik Vetriebs GmbH, Bremen, Germany) 

(Chapter VI). 

7.2.3.7.  Western blot analysis of muscle samples:  The abundance of the total and 

phosphorylated forms of Akt, S6K1, rpS6, and 4E-BP1 in the gluteal muscle 

homogenates were determined using electrophoresis followed by Western blotting 

techniques (Chapter III). 

7.2.3.8.  Real time polymerase chain reaction.  Pro -inflammatory cytokines, IFN-γ, IL-

1β, IL-6 and TNFα, and the anti-inflammatory cytokine IL-10 mRNA expressions were 

measured in cDNA samples using equine specific intron-spanning primer/probe sets 

((244, 484); Chapter IV). 

7.2.4.  Calculations and statistical analysis 

7.2.4.1.  Fat free mass.  Fat free mass was calculated from ultrasonic fat depth as 

previously described (Chapter VI). 

7.2.4.2.  Plasma phenylalanine enrichment.  Isotope enrichment in mol % excess was 

calculated from peak area ratios at isotopic steady state and baseline (Chapter VI).  The 

final value for all determinations was corrected using an enrichment calibration curve 

(Chapter VI). 
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7.2.4.3.  Breath CO2 enrichment.  The equation used to convert the δ enrichment value 

obtained from the NDIR analyzer for each sample to a % enrichment was described in 

Chapter VI. 

7.2.4.4.  Whole-body phenylalanine kinetics.  The average plasma enrichment at isotopic 

steady state (plateau) was used to calculate whole-body phenylalanine kinetics, and was 

described in Chapter VI. 

7.2.4.5.  Relative quantity of inflammatory cytokines.  Changes in mRNA expression 

were calculated using the ΔΔCT method ((244, 484); Chapter IV), with the mean ΔCT 

averaged for all horses during the week 0 sampling period set as the calibrator for each 

individual cytokine.  Results are expressed as relative quantity (RQ) calculated as 2-ΔΔCT 

(Chapter IV). 

7.2.4.6.  Statistics.  All data were analyzed using in the PROC MIXED procedure of SAS 

Version 9.2 (SAS Institute Inc., Cary, NC), with statistical significance and trends 

considered if P < 0.05 and 0.05 < P < 0.10, respectively.  When the fixed effect was 

significant, pre-planned comparisons of least squares means were made using the pdiff 

test.  All of the dependent variables were analyzed using repeated measures with the 

fixed effect of time on NSAID and horse nested in block as the random subject.  For all 

repeated measures analysis, the variance-covariance matrix was chosen for each analysis 

based on the lowest value for Schwarz’s Bayesian Criterion.  Data are presented as means 

± pooled standard error unless otherwise noted. 
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7.3.  RESULTS 

7.3.1.  Equine demographics 

 All horses remained healthy and maintained their body weight (P = 0.87; 0 weeks 

on NSAID: 499±35 kg; 4 weeks on NSAID: 500±35 kg) throughout the experimental 

period.  Additionally, there was no change in fat free mass calculated from ultrasounded 

rump fat thickness (481) (P = 0.75; 0 weeks on NSAID: 448±30 kg; 4 weeks on NSAID: 

451±30 kg).  The measurements of fat free mass that these horses maintained 

approximately 10% body fat throughout the study procedures. 

7.3.2.  Plasma metabolites 

There was no effect of time on NSAID on the plasma insulin (P = 0.37; Table 7.1) 

or glucose (P = 0.12; Table 7.1) concentrations at the time of biopsy.  Plasma 

concentrations of Ala, Asp, Glu, Ile, Leu, Lys, and Thr decreased with time on NSAID (P 

< 0.05; Table 7.1) at the time of biopsy.  Arg, Gln, and Gly plasma concentrations at the 

time of biopsy increased with time on NSAID (P < 0.05; Table 7.1).  Plasma 

concentrations of Phe and Trp at the time of biopsy decreased at week 2 of NSAID 

administration, and then returned to baseline concentrations by week 4 of NSAID 

administration (P < 0.05; Table 7.1).  There was no effect of time on NSAID (P > 0.05) at 

the time of biopsy on plasma concentrations of Asn, His, Met, Pro, Ser, Tyr, and Val. 

7.3.3.  Inflammatory cytokines 

 Time on NSAID did not affect mRNA expression of the circulating inflammatory 

cytokines: IL-1β (P = 0.22; Figure 7.1), IL-6 (P = 0.20; Figure 7.1); IL-10 (P = 0.42; 
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Figure 7.1); IFNγ (P = 0.40; Figure 7.1), and TNFα (P = 0.72; Figure 7.1).  The muscle 

mRNA expression of IL-1β decreased with time on NSAID (P = 0.02; Figure 7.2).  

However, there was no effect of time on NSAID on the mRNA expression of muscle IL-

10 (P = 0.86; Figure 7.2), IFNγ (P = 0.15; Figure 7.2), or TNFα (P = 0.15; Figure 7.2).  

There was limited detection of muscle IL-6 mRNA expression; where expression was 

only detected in 1 horse prior to NSAID administration, 2 horses following 2 weeks of 

NSAID administration, and 1 horse following 4 weeks of NSAID administration. 

7.3.4.  Activation of translation initiation factors 

 There was no effect of time on NSAID on the activation of Akt at Ser473 (P = 

0.14; Figure 7.3) and Thr308 (P = 0.52; Figure 7.3), rpS6 at Ser235/236 & 240/244 (P = 0.14; 

Figure 7.3), or 4EBP1 at Thr37/46 (P = 0.53; Figure 7.3).  However, the activation of S6K1 

at Thr389 showed a trend to increase following 2 weeks of NSAID administration and then 

returned to baseline following 4 weeks of NSAID administration (P =0.09; Figure 7.3). 

7.3.5.  Whole-body protein synthesis 

 Although there was no effect of time on NSAID on whole-body CO2 production 

(P = 0.41; Table 7.2), phenylalanine flux (P = 0.55; Table 7.2), phenylalanine oxidation 

(P = 0.28; Table 7.2), or phenylalanine release from protein breakdown (P = 0.53; Table 

7.2), there was an increase in non-oxidative phenylalanine disposal (P = 0.02; Table 7.2).  

An increase in non-oxidative phenylalanine disposal with time on NSAID is indicative of 

an increase in phenylalanine used for whole-body protein synthesis with time on NSAID. 
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7.3.6.  Muscle phenylalanine enrichment 

 There was no effect of time on NSAID on free (P = 0.64; Table 7.3) or protein 

bound (P = 0.18; Table 7.3) enrichment of [1-13C] phenylalanine in the gluteal muscle.  

Because we only collected a single biopsy at the end of the isotope infusion period, we 

could not measure the changes in [1-13C] phenylalanine incorporation into protein over 

time and could not calculate muscle fractional synthesis rates.  However, if the 

assumption is made that there were no initial differences in muscle bound enrichments of 

[1-13C] phenylalanine on each sampling day, then no change with time on NSAID at the 

end of the isotope infusion periods in both free and protein bound fractional muscle 

enrichment of [1-13C] phenylalanine implies no effect of NSAID administration on 

muscle protein fractional synthesis rates. 

7.4.  DISCUSSION 

This is the first time whole-body protein kinetics and mTOR signaling have been 

examined in the aging horse during NSAID administration.  The oral administration of a 

NSAID, phenylbutazone, at a rate of 2g/day reduced the mRNA expression of IL-1β in 

skeletal muscle, increased whole-body protein synthesis, and tended to increase the 

phosphorylation of S6K1 following 7.5 hours of steady state feeding.  The results of the 

present study indicate that NSAID administration in aged horses may ameliorate the 

blunted response of protein synthesis to anabolic stimuli that is seen in aging mammals. 

The horses used in this study were also used in the companion study (Chapter VI), 

and were characterized as healthy aging horses.  We previously (Chapter VI) determined 

this group of aging horses to be similar to mature horses in body fat mass and weight, 
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circulating and muscle inflammatory cytokines, and to be clinically normal with no signs 

of PPID, as plasma α-MSH concentrations were within the clinically normal reference 

range (539, 555). 

 The reduction in the muscle mRNA expression of IL−1β indicates the 

effectiveness of the phenylbutazone administration of 2 g per day at reducing 

inflammation in the current study.  We have previously (Chapter IV) demonstrated that 

this dose of phenylbutazone was effective at preventing the increase in the mRNA 

expression of IL−1β in skeletal muscle following the collection of 5 days of repeated 

biopsies.  Collectively, these studies may indicate that IL−1β mRNA expression in 

skeletal muscle is responsive to phenylbutazone treatment.  However, there was no effect 

of phenylbutazone administration on the mRNA expression of IFNγ, IL-6, TNFα, and IL-

10 in skeletal muscle or IL−1β, IFNγ, IL-6, TNFα, and IL-10 in circulation in the present 

study.  The lack of an effect of NSAID administration on circulating inflammatory 

cytokines may be due to the fact that the aged horses (23.5 ± 2.6 y old) used in the 

present study did not have elevated levels of circulating inflammatory cytokines 

compared to older (11 ± 2.6 y old) mature horses (Chapter VI).  Additionally, this study 

was designed to determine differences in protein metabolism, where a sample size of 6 is 

large enough to detect statistical differences (Urschel et al., University of Kentucky, 

submitted; Chapter VI); however, previous studies used a minimum of 8 horses (484) 

when studying changes in circulating inflammatory cytokines in response to experimental 

treatments.  As a result, there may not have been enough statistical power to detect 

differences in inflammatory cytokine production in response to NSAID treatment.  The 

extended use (5 months) of oral NSAID administration has been shown to reduce 
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circulating inflammatory cytokines (IL−1β, and IL-6),in the aged rodent (335).  The 

reduction in circulating inflammatory cytokines may occur after prolonged NSAID 

administration, which would explain the lack of an effect of a short term (4 weeks) of 

oral NSAID administration on circulating inflammatory cytokines in the present study.  

The studies examining the effect of NSAID administration on muscle inflammatory 

cytokines in the aged are limited; however, there is an abundance of literature examining 

the reduction of post-exercise skeletal muscle inflammation by NSAID, where NSAID 

administration reduced post-exercise inflammatory cytokines (332, 333).  It is important 

to recognize that post-exercise inflammation is an acute inflammatory response, whereas 

aging is characterized as low grade chronic inflammation; therefore, further research is 

needed to examine the effects of oral NSAID administration on skeletal muscle 

inflammatory cytokine production during chronic inflammation.  Although 

phenylbutazone administration has been implicated with the development of gastric 

ulcers in horses (323, 556) we do not believe there were any adverse effects in the horses 

in the present study.  All horses maintained an appetite, body weight and lean mass 

throughout the four week study period, which may be partly attributed to the 

administration of omeprazole for the prevention of gastric ulcers (557).  Ultimately, we 

believe the dose of phenylbutazone in the present study was effective at reducing some of 

the chronic inflammation associated with aging, because of the reduction of muscle 

IL−1β. 

Variations in whole-body protein metabolism between mature and aged humans, 

suggest that the aged population may have a higher protein requirement (202).  Within 

the aged population, presence of low grade inflammation in circulation may be partially 
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responsible for to the reduced muscle protein fractional synthesis rates in the postprandial 

state (493).  However, both whole-body protein synthesis and muscle protein fractional 

synthesis do not vary between these age groups during the post-absorptive state (186, 

493).  In the present study, there was a 77% increase in whole-body non-oxidative 

phenylalanine disposal, which is an indirect measure of protein synthesis, with the 

administration of oral NSAID for 4 weeks.  This is consistent with the results of a 

previous study (335), where oral administration of ibuprofen reduced in circulating levels 

of inflammatory cytokines and increased muscle fractional synthesis rates in aged 

rodents.  Additionally, the present study demonstrated a reduction in the plasma 

concentrations of the indispensable amino acids, Ile, Leu, Lys, Phe, Thr, and Trp with 

time on NSAID, which is suggestive of an increase in the incorporation of these amino 

acids to support the synthesis of new proteins.  Together the decreased plasma amino 

acids and increased whole-body protein synthesis indicates that oral administration of a 

NSAID may reduce inflammation and increase whole-body protein synthesis.  Studying 

whole-body protein metabolism is a useful tool to examine the subject in its entirety; 

however, it does not allow researchers to isolate the tissues that are responsible for the 

alterations seen at the whole-body level.  Because skeletal muscle comprises 

approximately 25% of whole-body protein synthesis (198, 199), it is possible that 

alterations seen at the whole-body level are due to changes in protein metabolism in 

skeletal muscle, although additional research is necessary to identify the specific tissues 

most affected by NSAID administration.  

Our original hypothesis was that protein synthesis in the skeletal muscle would 

increase following NSAID treatment; however, there was only limited evidence that 
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muscle protein metabolism was altered by NSAID treatment.  Of the translation initiation 

factors studied, S6K1 appears to be the most affected by aging (Chapter VI) and NSAID 

administration.  The phosphorylation of S6K1 at Thr389 tended to be elevated 118% 

following 2 weeks of NSAID administration and then returned to baseline following 4 

weeks of NSAID administration.  The increase in the phosphorylation of S6K1 following 

2 weeks of NSAID administration coincided with a 59% reduction in skeletal muscle 

IL−1β mRNA expression which remained reduced by week 4, and no change in whole-

body protein synthesis or breakdown.  Oral administration of ibuprofen for 5 months to 

rodents resulted in a postprandial elevation in muscle protein fractional synthesis rates 

and reduced circulating inflammatory cytokines, but there were no differences in the 

activation of any of the mTOR signaling factors studied (335), which is in agreement 

with the results from the present study.  However, there were no differences in muscle 

protein fractional synthesis rates or mTOR signaling with 5 months of oral administration 

of ibuprofen to aging rodents in the post-absorptive state (335). 

One of the aims of the experimental protocol was to measure whole-body protein 

kinetics, which necessitated keeping all of the horses in a steady state during the infusion 

procedures.  This was achieved through the consumption of small meals every 30 minutes 

which consisted of half of their daily concentrate allocation (0.1% BW) divided into 1/24 

portions.  This feeding protocol placed plasma glucose (0 week: 5.3 ± 0.2 mmol/L; 2 

weeks: 5.5 ± 0.2 mmol/L; 4 weeks: 5.1 ± 0.2 mmol/L), insulin (0 week: 6.1 ± 0.8 

μIU/mL; 2 weeks: 10.1 ± 0.8 μIU/mL; 4 weeks: 7.9  ± 0.8 μIU/mL), and total 

indispensable amino acid (0 week: 670 ± 40 μmol/L; 2 weeks: 607 ± 40 μmol/L; 4 

weeks: 571  ± 40 μmol/L) concentrations of these horses at the time of biopsy in a 
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physiological state that more closely resembled a post-absorptive state (glucose: 5.5 

mmol/L; insulin: 5 mU/L; total indispensable amino acids: 898 μmol/L) (2) rather than 

the postprandial state (glucose: 6.5 mmol/L; insulin: 36 mU/L; total indispensable amino 

acids: 1245 μmol/L) (2).  In addition, the whole-body protein metabolism data indicated 

that these horses were in a post-absorptive state, because the indirect measure of protein 

synthesis, non-oxidative disposal, was less than phenylalanine from protein breakdown 

(185).  Since our horses were in a post-absorptive state, the lack of an effect of NSAID 

administration on mTOR signaling factors is consistent with previous findings (335). 

Because this is the first study to examine the effects of oral administration of a 

NSAID with the aim of reducing inflammation and examining whole-body protein 

metabolism, there is ample room for additional research.  In the present study, horses 

received a short course (4 weeks) of oral NSAID, which proved to reduce muscle 

inflammation and increase whole-body protein synthesis; however, administration of oral 

NSAID over a longer course may be necessary to examine mechanistic changes in 

skeletal muscle.  Additionally, in the present study horses were examined in a post-

absorptive state, and although we saw an increase in whole-body protein synthesis, 

examining horses in the postprandial state during oral NSAID administration will be 

useful in determining if these alterations seen at the whole-body level will translate to 

skeletal muscle. 

The use of daily administration of a NSAID for 4 weeks to horses in the present 

study was a tool to aid in the elucidation of the mechanism behind reductions in protein 

synthesis with aging.  Although the results of the present study show promise, that with 

reduced inflammation there was an increase in whole-body protein synthesis, it would not 
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be practical or acceptable to horse owner to advocate the daily administration of an 

NSAID for an extended period of time to aging horses.  Rather, the objectives of the 

present study were to examine from a mechanistic standpoint whether the reduction in 

chronic inflammation would have beneficial effects on whole-body and muscle protein 

metabolism.  We chose to use phenylbutuzane as our anti-inflammatory agent because of 

its known anti-inflammatory properties (321) and because it is structurally related to 

ibuprofen, which has previously been shown to increase rates of muscle protein synthesis 

in aged rodents (335).  This study provides initial insight the potential impact of chronic 

inflammation on protein metabolism in the aged horse and is the first step towards 

investigating other means of reducing inflammation in the aged population through 

alterations in the diet or by other strategies.  For example, resveratrol supplemented to the 

diet has showed promise in reducing inflammation in horses through inhibiting the 

formation of reactive oxygen species (558).  Ultimately, there is a need to examine the 

diet of the aging equine population and discover practical methods of reducing 

inflammation which will allow for an increase in whole-body, and hopefully muscle, 

protein synthesis. 

NSAID administration affects aging equine skeletal muscle by tending to elevate 

S6K1 activation after 2 weeks, which coincided with a reduction in mRNA expression of 

IL−1β, and was followed by an increase in whole-body protein synthesis.  Although 

additional research is needed to further elucidate the mechanistic effect that inflammation 

has on both whole-body and muscle protein fractional synthesis, these findings indicate 

that management strategies targeted at reducing inflammation result in  elevations in 

whole-body protein synthesis.  
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7.5.  TABLES 

Table 7.1: Plasma metabolite concentrations at the time of biopsy before NSAID 

administration and following 2 and 4 weeks of NSAID administration in aging 

horses. 

Metabolite 0 weeks 
on 
NSAID 

2 weeks 
on 
NSAID 

4 weeks 
on 
NSAID 

Poole
d 
SEM 

p-Value 

Insulin1 6.1 10.1 7.9 2.0 0.37 

Glucose2 5.3 5.5 5.1 0.2 0.12 

Alanine3 218a 170b 185b 12 0.05 

Arginine 74b 90a 88a 4.9 0.007 

Asparagine 52 54 52 5.8 0.83 

Aspartate 15a 11b 6.7c 1.2 0.002 

Glutamate 49a 35b 28c 2.4 0.0001 

Glutamine 306b 358a 349a 9.3 0.004 

Glycine 441b 467b 520a 54 0.02 

Histidine 64 63 65 3.1 0.75 

Isoleucine 46a 45a 39b 2.6 0.05 

Leucine 87a 79ab 70b 4.3 0.01 

Lysine 92a 86a 69b 5.3 0.01 

Methionine 32 30 29 1.8 0.63 

Phenylalanine 83a 75b 80ab 2.2 0.05 

Proline 97 91 86 5.7 0.24 

Serine 288 277 281 8.3 0.66 
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Table 7.1 continued: Plasma metabolite concentration at the time of biopsy before 

NSAID administration and following 2 and 4 weeks of NSAID administration in 

aging horses. 

Threonine 112a 87b 75c 5.3 0.0001 

Tryptophan 5.3ab 4.3b 6.2a 0.4 0.03 

Tyrosine 55 53 53 2.1 0.63 

Valine 148 138 138 7.1 0.16 

1 Plasma insulin concentrations are reported as least square means in μIU/mL. 
2 Plasma glucose concentrations are reported as least square means in mmol/L. 
3 Plasma amino acids concentrations are reported as least square means in μmol/L. 
abc Differing letters indicate that values are significantly (P < 0.05) different from each 
other. 
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Table 7.2: Whole-body phenylalanine kinetics in aged horses over 4 weeks of NSAID 
administration1. 

 0 weeks of 
NSAID 
administration 

2 weeks of 
NSAID 
administration 

4 weeks of 
NSAID 
administration 

Pooled 
SEM 

p-
value 

Phenylalanine flux [μmol/(kg·h)]  
 42.1 47.7 44.0 3.5 0.55 
Carbon dioxide production [μmol/(kg·h)]  
 15080 16658 14164 1387 0.41 
Phenylalanine entering the free phenylalanine pool [μmol/(kg·h)]2  
Phenylalanine 
from dietary 
intake 

3.9 3.9 3.8 0.06 0.53 

Phenylalanine 
from protein 
breakdown 

37.5 43.2 39.4 3.5 0.53 

Phenylalanine leaving the free phenylalanine pool [μmol/(kg·h)]2  
Phenylalanine 
oxidation 

16.7 17.3 9.4 3.9 0.28 

Non-oxidative 
phenylalanine 
disposal 

25.5a 19.6a 34.6b 3.0 0.02 

1Values are least squares means ± SEM. 

2The following stochastic model of phenylalanine kinetics was used: flux = rate of 
phenylalanine entry = rate of phenylalanine leaving; rate of phenylalanine entry = 
phenylalanine intake + phenylalanine release from protein breakdown; rate of 
phenylalanine leaving = phenylalanine oxidation + non-oxidative phenylalanine disposal 

abValues with different superscript letters are significantly (P < 0.05) different. 
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Table 7.3: Muscle phenylalanine enrichments in aged horses over 4 weeks of NSAID 
administration1. 

 0 weeks of 
NSAID 
administration 

2 weeks of 
NSAID 
administration

4 weeks of 
NSAID 
administration 

Pooled 
SEM 

p-value 

Muscle free enrichments (%)   
 10.1 10.4 11.2 0.8 0.64 
Muscle protein bound enrichments (%)   
 0.41 0.56 0.50 0.08 0.18 
1Values are least squares means ± SEM. 
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7.6.  FIGURES 

 

Figure 7.1.  Circulating inflammatory cytokines (RQ) in aged horses following 0 

weeks, 2 weeks, and 4 weeks of NSAID administration.  Values are least square means 

± pooled SE, n=6 per treatment group. 
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Figure 7.2.  Muscle inflammatory cytokines (RQ) in aged horses following 0 weeks, 2 

weeks, and 4 weeks of NSAID administration.  Values are least square means ± pooled 

SE, n=6 per treatment group. 

abDiffering letters indicate, within an inflammatory cytokine, the values are significantly 

different (P < 0.05). 
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Figure 7.3.  Gluteal muscle phosphorylation of Akt at Ser473, Akt at Thr308, S6K1 at 

Thr389, rpS6 at Ser235/236 & 240/244, and 4EBP1 at Thr 37/46 in aged horses following 0 

weeks, 2 weeks, and 4 weeks of NSAID administration after 7.5-hour of steady state 

feeding.  The phosphorylated forms of the translation initiation factors was corrected by 

the respective total form abundance, with the value for mature horses set at 1.0 AU.  

Values are least square means ± pooled SE, n=6 per treatment group.  Representative 

images of the immunoblots are shown above. 
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Chapter VIII 

Summary, General Discussion and Future Directions 

8.1.  OPTIMIZING METHODOLOGICAL PROCEDURES FOR ASSESSING 

mTOR SIGNALING IN THE HORSE 

 One of the primary objectives of this dissertation was to determine the optimum 

methodological procedures for assessing mTOR signaling in the horse.  Because there 

has only been a single previous study examining mTOR signaling in horses (2), the 

optimum methodological procedures have not been assessed.  The first study in this 

dissertation (Chapter III) examined the effect of sampling depth in the gluteus medius 

muscle on the activation of mTOR signaling in response to feeding and showed that there 

was no effect of sampling depth (6, 8 or 10 cm below the surface of the skin) on the 

activation of any of the mTOR signaling factors in response to feeding in mature horses.  

The focus of the second study in this dissertation (Chapter IV) was to determine the 

effects of conducting percutaneous gluteal muscle biopsy procedures every 24 hours for 5 

days on mTOR signaling in response to feeding in mature horses, both with and without 

NSAID administration.  These results showed that in the absence of NSAID 

administration, obtaining gluteal muscle biopsies every 24 hours for 5 days resulted in the 

decreased activation of Akt and increased the activation of the downstream signaling 

factors (S6K1, rpS6, and 4EBP1) in response to feeding.  On the other hand, there was no 

effect of sampling day on the activation of the downstream mTOR signaling factors in the 

presence of NSAID administration.  A secondary objective this study (Chapter IV) was to 

determine whether there would be differences in mTOR signaling in response to feeding 
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in samples collected from the right and left gluteal muscles at the same time.  The results 

showed that there was no difference in mTOR signaling based on the side of gluteal 

muscle sample.  These initial studies in this dissertation were designed to determine 

optimum sampling methods for assessing mTOR signaling in the horse. 

The results of the first two studies in this dissertation suggest that: 

1. The activation of mTOR signaling in response to feeding in mature horses is 

not affected by biopsy sampling depth as long as samples are collected from 6 

to10 cm below the surface of the skin (Chapter III). 

2. NSAID administration was able to prevent changes in the activation of 

downstream mTOR signaling in response to feeding during 5 days of repeated 

biopsy collection.  Therefore, if study design requires repeated biopsy 

procedures over the course of 24 hours to up to 5 days, NSAID administration 

is recommended to prevent sampling-related changes in mTOR activation 

(Chapter IV). 

3. mTOR signaling in response to feeding from biopsies collected at the same 

time from the same site in the right and left side of the gluteal muscle can be 

compared (Chapter IV). 

These studies were only an initial attempt to determine the optimum 

methodological procedures for assessing mTOR signaling in horses and led to 

several further directions for method development.  Although there was no 

alteration in mTOR signaling in response to feeding in mature horses when 

biopsies were collected at depths ranging from 6 to 10 cm below the surface of 
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the skin (Chapter III), there may have been alterations in mTOR signaling if a 

wider range of depths had been examined, for example, if gluteal muscle depth 

ranged from 2 to 12 cm.  The rodent data has shown that the phosphorylation of 

mTOR (491) and S6K1 (559) in response to contractile activity appears greater in 

Type II than Type I fibers.  The proportion of the different fiber types in the 

gluteal muscle in horses changes with muscle depth, and there is an increase in 

Type I fibers with gluteal muscle depth in the horse (560).  However, the greatest 

changes in fiber type proportions seem to occur between 2 and 6 cm depth, with a 

140% increase in Type I fibers, whereas, changes from 6 to 10 cm in depth 

resulted in no change in Type I fibers (Chapter III).  Therefore, there may be a 

greater activation of downstream mTOR signaling in response to anabolic stimuli 

at a shallower depth of 2 cm than at a deeper depth of 12 cm.  Not only does 

mTOR signaling need to be examined at a wider range of depths, but the different 

types of anabolic stimulus used to activate mTOR signaling must also be 

examined.  Because the anabolic stimuli used in the rodent studies (491, 559) was 

contraction as opposed to feeding, there may have been differences in the 

activation of downstream signaling in response to sampling depth if exercise had 

been used as the anabolic stimuli.  Although contraction and feeding both 

stimulate mTOR signaling, these stimuli act through different upstream factors 

(Section 1.2).  Additionally, in all of the studies in this dissertation muscle 

biopsies were collected from the gluteus medius muscle due to the role of this 

muscle in both locomotion and posture and because external landmarks for 

identifying this muscle have been well described (411).  However, differences in 
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the mitogen activated protein kinase (MAPK) family, a pathway  upstream of 

mTOR signaling (Section 1.2), in response to exercise in mature horses were 

determined when biopsies were obtained from the vastus lateralis and pectoralis 

descendens muscles (470).  The authors chose the vastus lateralis because of the 

involvement of this hind limb muscle in forward movement and the pectoralis 

descendens because of the role in posture, and the MAPK family signaling in 

response to exercise was greater in the vastus lateralis then the pectoralic 

descendens (470).  Additionally, the response of mTOR signaling to contraction 

has been reported to vary due to muscle group in rodents, with greatest activity in 

the tibialis anterior followed by the plantaris and then the soleus (491).  The fiber 

type composition of these muscles in the rodent is tibialis anterior: 3% Type I, 

61% Type IIA, 36% Type IIB; plantaris: 7% Type I, 52% Type IIA, 41% Type 

IIB; and soleus:83% Type I, 17% Type IIA, 0% Type IIB (561).  Therefore, it is 

necessary to determine the response of mTOR signaling in various muscle groups 

to both feeding and exercise because the effect of exercise will likely be greater in 

muscle groups used primarily for locomotion rather than for posture.   

Another important factor to consider in optimizing procedures to study mTOR 

signaling is determining the best time following the anabolic stimuli to obtain the muscle 

biopsy samples.  Previous research (562) has demonstrated that in the gastrocnemius and 

soleus of neonatal piglets 60 and 90 minutes following feeding, there was no difference 

in the abundance of the phosphorylated forms of mTOR, 4EBP1, and S6K1.  As a result, 

in the first study to examine mTOR signaling in horses, Urschel and collegues (2) chose 

to collect gluteal muscle biopsies 90 minutes following feeding in horses.  Their study (2) 
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determined that there was no change in plasma amino acids, insulin and glucose 

concentrations from 60 to 80 minutes post-feeding, indicating that any feed induced 

changes in mTOR signaling due to increased plasma metabolites should not differ 

between 60 and 80 minutes.  Thus, muscle biopsy samples were obtained 60 – 90 minutes 

following the consumption of a high protein meal in the research described in this 

dissertation (Chapters III, IV and V).  However, in order to confirm that the muscle 

samples were obtained at the peak of post-stimuli mTOR signaling, it is necessary to 

determine the time course changes in mTOR signaling in response to feeding in horses. 

The second study of this dissertation (Chapter IV) looked at the effects of 

repeated gluteal muscle biopsies, with biopsies collected every 24 hours for 5 days.  This 

study did not characterize the acute time course changes in mTOR signaling for the first 

24 hours following the initial biopsy.  Although muscle protein fractional synthesis rates 

do not change with multiple muscle biopsies collected between 60, 210 and 240 minutes 

of a 4 hour period (507) or during hourly biopsies over a 6 hour period (508), there has 

not been a single study to examine the effects of repeated multiple biopsy collection 

within a 24 hour period on mTOR signaling.  However, others (248, 563) have examined 

the activation of stress related signaling factors including ERK1/2 and MAPK, which 

influence mTOR signaling (Section 1.2), in response to multiple biopsies.  There is an 

increase in ERK1/2 and MAPK with repeated biopsies collected 30 and 60 minutes 

following the initial biopsy from the same incision site (564).  However, there were no 

alterations in MAPK signaling when repeated biopsies were collected within 126 minute 

period from separate incision sites (248).  Unfortunately, there has not been a study to 

examine the time course changes in MAPK signaling following the collection of a muscle 
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biopsy; however the previous studies (248, 565) have demonstrated that repeated biopsies 

if collected within 2 hours of the initial biopsy from separate incision sites do not alter 

stress related MAPK signaling.  Thus, mTOR signaling should not be altered through this 

mechanism; however, additional research is necessary to elucidate this.  Additional 

research is also necessary to examine the collection of repeated biopsies over a 24-72 

hour period, because the results of the Chapter IV show a greater increase in the 

activation of mTOR signaling in response to feeding 24 hours after the collection of the 

initial biopsy.  The first two studies of this dissertation led to many other areas where the 

knowledge base is lacking and the methods may be improved. 

Although the goal of the last three studies (Chapters V – VII) in this dissertation 

was not to further methodological development, there are methodological lessons that are 

learned from every study.  The goal of the third study in this dissertation (Chapter V) was 

to determine to activation of mTOR signaling in response to feeding in yearlings, two 

year olds and mature horses.  Although the first study in this dissertation (Chapter III) 

showed that sampling depth (6 to 10 cm below the surface of the skin) did not alter 

mTOR signaling in response to feeding in mature horses, there was no way to be sure this 

would hold true in yearlings and two years olds.  Therefore, the decision was made to 

ultrasound the rump fat and gluteal muscle to determine their depths, so that muscle 

biopsy collection could be standardized to 50% of the gluteal muscle depth (Chapter V).  

In this study,  we determined that there was considerable variation in subcutaneous fat 

within and across the age groups (mature horses: 2.07 ± 0.30 cm, 1.7-2.7 cm range; two 

year olds: 1.29 ± 0.49 cm, 0.9-2.1 cm range; yearlings: 1.05 ± 0.18 cm, 0.9 – 1.4 cm 

range), which led to 2 additional considerations.  First, in the initial study (Chapter III) 
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biopsies were collected 6, 8, and 10 cm below the surface of the skin; however, if 

subcutaneous fat in mature horses can vary by a cm, then biopsies were actually being 

collected 4-5 cm, 6-7 cm, and 8-9 cm within the gluteal muscle for the 6, 8 and 10 cm 

depths below the surface of the skin, respectively.  So this variation in collection sites 

may have led to the absence of alterations in mTOR related signaling because there is a 

170% increase in Type I fibers from 4 to 8 cm (560).  The second consideration was that 

because there are alterations in fiber type with development in horses (410, 446-450), it is 

unknown whether 50% of the gluteal muscle is optimum depth for collecting muscle 

biopsies for assessment of differences in mTOR signaling across different ages of horses.  

Therefore, it is also necessary to study mTOR signaling in response to various anabolic 

stimuli at a wide range of gluteal muscle biopsy depths throughout development.   

Another methodological consideration in this study (Chapter V), is that regardless 

of age group, all horses were fed 4g/kg of body weight of high protein pelleted feed 

following an 18 hour period of feed withholding in order to standardize protein intake.  

This standardization met the protein requirement of a mature sedentary horse; however, 

the protein requirements of the yearlings and two year olds differ greatly from that of a 

mature sedentary horse (336).  As a result, this meal only supplied 50 and 72% of the 

daily requirements of the yearlings and two year olds, respectively, and so there was a 

different magnitude of anabolic stimuli used in each of the three ages of horses studied.  

This difference in anabolic stimuli may partly explain why we did not see the 

hypothesized decrease in responsiveness to anabolic stimuli between the adolescent and 

mature horses (Chapter V).  Perhaps rather than examining the response of mTOR 

signaling to a particular protein intake, it may be more valuable for comparison purposes 
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to focus on the response of mTOR signaling to a percentage of protein requirements.  

Because the effects of amino acid concentration on the activation of mTOR signaling is 

dose dependent (101), a potentially graded response of mTOR signaling may exist with 

graded protein requirements (50, 75, 100, 150% of protein requirements) and this should 

be examined in the horse.  Overall, from a methodological perspective Chapter V 

suggests that: 

1. When examining mTOR signaling response to feeding across various age 

groups to standardize feeding by a percentage of protein requirements may be 

more appropriate than standardizing by absolute protein intake. 

Because the samples from the studies described in Chapters VI and VII were 

analyzed at the same time, the methodological lessons for the assessment of mTOR 

signaling in the horse are the same for both studies.  In these studies mTOR signaling was 

examined from gluteal muscle biopsies collected following whole-body protein kinetics 

measurements.  In order to maintain study horses at steady state for the measurement of 

whole-body protein metabolism, horses received half of the daily allocation of 

concentrate divided into 1/24 portions served every 30 minutes for 7.5 hours.  Because 

the whole diet was primarily hay based (2% body weight), each of these small 

concentrate meals only met 0.5% and 0.37% of the daily CP and digestible energy 

requirement, respectively.  The feeding protocol used in this study did not result in 

differences between mature and aged horses in the activation of Akt, rpS6, and 4EBP1, 

and it is unknown whether this was because there were no differences in mTOR signaling 

between these ages of horses or because the small meals did not provide sufficient 

anabolic stimuli to elicit a postprandial mTOR signaling response.  This raises an 
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additional question: at what level of intake (or percent of protein requirements) does 

mTOR signaling increase from the post-absorptive level?  Additionally, it is necessary to 

determine if mTOR signaling is altered by the consumption of a large meal to a similar 

extent as same percent of protein requirements offered as small over a period of time in 

the horse, because feeding a large meal activates mTOR signaling to a greater extent than 

the consumption of the same amount of nutrients through small meals over a period of 

time in neonatal pigs (566).  Therefore, if feeding is to be used as the anabolic stimulus 

for activating mTOR signaling then it may be necessary to administer it as a large meal in 

order for it to be a large enough anabolic stimulus to elicit alterations in mTOR signaling. 

Overall, from a methodological perspective Chapters VI and VII suggest that: 

1. When examining mTOR signaling response to feeding, the feeding stimuli 

must be strong enough to elicit changes in mTOR signaling. 

The focus of the studies of this dissertation were to examine mTOR signaling; 

however, in Chapters VI and VII isotopes were infused with the intention of 

characterizing whole-body protein synthesis and the end point of mTOR signaling, 

muscle protein synthesis.  Although muscle samples were collected following the isotope 

infusion procedures in the studies described in Chapter VI and VII, because only a single 

muscle biopsy was obtained, it was not possible to measure how the amount of isotope 

incorporated in the muscle protein changed over time and so we could not calculate the 

fractional synthesis rates of muscle protein in the horses studied.  Future studies will need 

to collect muscle biopsies during and following isotope infusions in order to calculate 

muscle protein fractional synthesis rates. 
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8.1.1.  Summary of the optimum methodological procedures for assessing mTOR 

signaling in the horse 

 The studies in this dissertation have 5 lessons that should be considered by future 

researchers intending to study mTOR signaling in the horse.  In mature horses, mTOR 

signaling in response to feeding from the right or left side of the gluteal muscle biopsies 

from a depth of 6 to 10 cm below the surface of the skin can be compared; however if 

these biopsies are repeated then a NSAID should be administered in order to avoid the 

confounding effect of biopsy.  Additionally, when examining mTOR signaling in 

response to feeding, the meal should be standardized by a percentage of the animal’s 

protein or amino acid requirement and the researcher must ensure that the level of feeding 

provides a strong enough anabolic stimuli to elicit alterations in mTOR signaling 

compared to the post-absorptive state. 

8.2.  ALTERATIONS IN mTOR SIGNALING THROUGHOUT THE LIFESPAN 

IN HORSES 

 The second major objective of this dissertation was to examine the alterations in 

the activation of mTOR signaling throughout the lifespan in the horse.  mTOR signaling 

in response to feeding in various life stages, including the neonatal period, adulthood, and 

post-adulthood aging, has been characterized in other species.  However, there are no 

studies in any species examining mTOR signaling in the slower growing pre- and post-

pubertal adolescent and relatively few studies examining mTOR signaling and protein 

synthesis in healthy aging animals or humans.  Furthermore, the only studies to examine 

mTOR signaling (2) and protein synthesis (3) in response to anabolic stimuli in the horse 
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have been in mature horses.  As a result, the third study in this dissertation (Chapter V) 

examined developmental changes in the activation of mTOR signaling in response to 

feeding, and the fourth and fifth studies (Chapter VI and VII) examined mTOR signaling 

during post-adulthood aging.  The research described in Chapter V showed that there was 

an increase in mTOR signaling during the postprandial state, compared to the post-

absorptive state, in the gluteal muscle of yearling, two year old and mature horses, and 

the yearlings exhibited a higher degree of sensitivity to anabolic stimuli than the other 

two ages of horses studied.  Specifically, the activation of mTOR signaling factors in 

yearlings appeared to be more sensitive to insulin than for the two year olds and mature 

horses, because there was no difference in the activation of Akt between the age groups 

even though there was an increase in insulin in circulation with development.  The results 

of Chapter VI demonstrated that whole-body protein synthesis and the activation of Akt, 

rpS6 and 4EBP1 did not differ between mature (11 ± 2.6 year old) and healthy aging 

(23.5 ± 2.6 year old) horses.  If taken together, the results of Chapters V and VI may 

suggest that post-natal development alters mTOR signaling to a greater extent than aging; 

however, the magnitude of anabolic stimulus was different in the two studies and 

therefore an additional study examining all of these age groups in response to the same 

anabolic stimuli is necessary.  

 The previous literature examining mTOR signaling throughout the lifespan of 

other mammalian species has focused on alterations in mTOR signaling during the 

postprandial state; however, as discussed earlier (Section 8.1), a true postprandial state 

was not obtained in the horses used for Chapter VI, and therefore, comments on the 

postprandial changes in mTOR signaling throughout lifespan cannot be made.  
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Alternatively, the changes in mTOR signaling during the post-absorptive period 

throughout the lifespan can be commented on.  From the results in the post-absorptive 

state, it appears that mTOR signaling is altered to a greater extent by aging than during 

development.  The evidence of this was shown by the lowered abundance of the 

phosphorylated form of S6K1 in the aging horses compared to the mature horses in 

Chapter VI and no difference in the abundance of the phosphorylated form of S6K1 

during the post-absorptive state between yearlings, two year olds and mature horses in 

Chapter V.  Examination of mTOR signaling during the post-absorptive period in the 

neonatal piglet demonstrated no change in mTOR signaling with neonatal development in 

skeletal muscle (129).  Additionally, in humans there is no change in mTOR signaling 

during the post-absorptive period during post-adulthood aging (157).  Muscle protein 

fractional synthesis rates are also not altered by development (157) or aging (157) during 

the post-absorptive state.  Thus, the results of our studies uniquely indicate that aging in 

horses may have a greater influence on mTOR signaling during the post-absorptive 

period than it does during adolescent development.  This requires further examination 

during the post-absorptive state in the equine neonate to determine if mTOR signaling is 

regulated more during aging than during any other life stage in the horse.  Although the 

results of these studies Chapter V and VI indicate the post-absorptive alteration in mTOR 

signaling throughout the lifespan, even more valuable information could be obtained by 

studying the equine neonate, mature and aging horse using similar methodologies to that 

used in Chapter V in order to study all horses in a postprandial state.  Not only is there 

more available literature to compare postprandial results to, but in the literature the 
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postprandial state shows differences in the increase in mTOR signaling and subsequently 

protein synthesis across different ages of research subjects. 

 As mentioned in the (Section 8.1), in order to accurately compare mTOR 

signaling in skeletal muscle in response to feeding in different age groups, the meal 

should meet an equal percentage of protein requirements for these animals (i.e. 100% for 

each animal).  However, during the research described in Chapter V, horses consumed an 

equal protein intake which met 100, 72, and 50% of the daily requirements of the mature 

horses, two year olds and yearlings, respectively.  Regardless of the varied requirements, 

the yearlings, who were consuming only 50% of their daily protein intake, had an 

increase in mTOR signaling.  This indicates that if this study were repeated standardizing 

the meal by meeting 100% of daily protein requirements, the anabolic stimuli may likely 

be strong enough to elucidate a potential step wise decrease in mTOR signaling with age, 

with mTOR signaling being the greatest in the yearlings, followed by the two year olds, 

then the mature horses, and possibly the aged horse.  This pattern has been described in 

neonatal piglets and mature and aging humans (129, 157). 

The possible mechanisms of amino acids on mTOR signaling were discussed in 

detail in Section 1.2.2.3.  Briefly, amino acids cause the phosphorylation of S6K1 

through mechanisms that are both dependent and independent on mTOR activation, 

although in both cases amino acids phosphorylate S6K1 independently of Akt.  Of all of 

the amino acids, leucine has the greatest influence of mTOR signaling.  Because the 

greatest postprandial rise in the phosphorylated form of S6K1 occurred in the yearlings 

compared to the two year olds or the mature horses (Chapter V), the yearlings may have a 

greater sensitivity to amino acids than the two year olds or mature horses.  Therefore, the 
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results of this study may indicate that younger horses are more sensitive to amino acids, 

which could be confirmed through examining the responsiveness of mTOR signaling in 

growing, mature and aging horses to different levels of amino acid, or specifically 

leucine, intake.  

 The research described in Chapters V and VI found no developmental (during the 

postprandial and post-absorptive states) or aging (during the post-absorptive state) effects 

on the activation of Akt, regardless of the fact that postprandial circulating insulin 

concentrations increased with age in Chapter V.  As previously mentioned, the mature 

and aging horses in studied in Chapter VI were in a post-absorptive state, and there were 

no alterations in circulating insulin concentrations due to age during this physiological 

state.  However, insulin sensitivity in regards to carbohydrate metabolism has been 

demonstrated to decrease with the age of the horse (481).  The effects of insulin 

sensitivity on protein metabolism has been examined in humans, where young humans 

had a greater increase in muscle protein fractional synthesis rates at the same dose of 

insulin than older humans (161), and only supraphysiological doses of insulin were able 

to improve muscle protein fractional synthesis rates and the activation of Akt and mTOR 

signaling in the aged (159).  Thus, the lack of an increase in Akt activation with increased 

concentration of insulin in the mature horse in Chapter V may be a result of a greater 

degree of insulin resistance in the mature horses.  Therefore, the equal activation of Akt 

in adolescent horses and mature horses (regardless of physiological state; Chapter V) and 

mature horses and aging horses (in the post-absorptive state; Chapter VI) indicates that 

Akt activation is more responsive to insulin in the adolescent horses, or that the Akt 

activation response is maximized at the lowest plasma concentrations of insulin (yearling 
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horses).  However, the latter is unlikely, because unpublished data by Urschel and 

colleagues found that mature horses subjected to a wide range of insulin infusion rates (0, 

1.2, 3, 6 mU/kg/min), resulting in plasma insulin concentrations ranging from 10 – 1000 

mU/L, had a dose dependent increase in Akt activation.  This requires further 

examination across the lifespan with controlled levels of insulin using a 

hyperinsulinemic-euglycemic isoaminoacidemic clamp technique, which would allow for 

the determination of the responsiveness of skeletal muscle Akt to administered insulin 

concentrations, independent of other changes that occur in response to a meal. 

 In addition to advancing the physiological understanding of how stage of 

development and aging alter mTOR signaling in response to feeding, the research 

described Chapters V and VI of this dissertation also have several implications specific to 

the horse.  Based on the results discussed in Chapter V, the mTOR signaling in the 

muscle of young growing horses was more sensitive to feeding stimuli than 2 year old 

horses, which coincides with the fact that the greatest rate of average daily gain occurs in 

the yearlings compared to the 2 year olds (336).  This also indicates that the muscle of 

this age of horse may be more sensitive to other anabolic stimuli such as exercise, 

although this requires confirmation.  A related implication is that if the skeletal muscle of 

younger growing horses is more responsive than that of older growing horses to anabolic 

stimuli, then if some factor, such as illness or poor nutrition, impairs growth and muscle 

accretion during the more responsive younger stages of development, could have lasting 

effects on muscle mass throughout the rest of the lifespan.  Additionally, prolonged 

periods of inactivity or stall rest may be more deleterious in the mature horse compared 

to the growing horse, because the muscle lost during this period would be more difficult 
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to recover due to decreased responsiveness to anabolic stimuli.   In order to slow the loss 

of muscle mass associated with post-adulthood aging, it may be necessary to gain a better 

understanding of the factors regulating muscle protein metabolism the mature horse first, 

especially in response to exercise.  Reducing both insulin resistance and inflammation 

will improve protein synthesis in response to feeding; this may reduce the loss of muscle 

mass associated with post-adulthood aging.  A related implication is that if the skeletal 

muscle of aging horses is less responsive than that of mature horses to anabolic stimuli, 

then if some factor, such as illness or poor nutrition, increases age associated muscle loss, 

then muscle recovery will be extremely difficult.  Ultimately, more research is needed but 

the results of the studies in this dissertation provide insight to alternatives in management 

practices that may improve skeletal muscle accretion and maintenance throughout the 

lifespan. 

8.2.1.  Summary of the alterations in mTOR signaling throughout the lifespan in horses 

 A substantial amount of work is still required to examine the effects of aging 

throughout the lifespan on mTOR signaling in the skeletal muscle of horses; however, it 

is also imperative to examine the physiological endpoint of the mTOR signaling pathway 

which is protein synthesis in the muscle.  The studies in this dissertation have provided 

the initial insight to the alterations in mTOR signaling throughout the lifespan in horses 

and are the first to examine changes in mTOR signaling during the adolescent phase in 

any species.  These works indicate that in the post-absorptive state, in post-adulthood 

aging may cause the reduction in mTOR signaling, where there were no differences in 

post-absorptive mTOR signaling during growth.  However, during the postprandial state, 

it appears that mTOR signaling is more responsive in the faster growing young animals.  
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These studies open up many possible future directions for additional research, and imply 

that muscle accretion is more responsive to feeding in growing compared to mature 

horses. 

8.3.  THE INFLUENCE OF INFLAMMATION ON mTOR SIGNALING IN 

HORSES 

 The final key objective of this dissertation was to examine the influence of 

inflammation on mTOR signaling horses.  Models of acute (Chapter IV) and chronic 

(Chapter VI and VII) inflammation were studied through the collection of repeated 

muscle biopsies and aging, respectively.  In both series of studies, the administration of a 

NSAID, phenylbutazone, was administered to determine whether the reduction in 

inflammation would result in changes in the responsiveness of mTOR signaling.   Acute 

inflammation reduced the activation of upstream mTOR signaling and increased the 

activation of downstream mTOR signaling in response to meal consumption.  However, 

when a NSAID was administered, inflammation was reduced and the increase in mTOR 

signaling due to acute inflammation was mediated.  However, during chronic 

inflammation in a relatively post-absorptive state, only the activation of S6K1 was 

reduced.  Because both states of inflammation were studied under different physiological 

states they cannot be compared in the sense of which type of inflammation alters mTOR 

signaling to a greater extent, although they can be discussed from a mechanistic 

perspective.  However, future research is warranted to examine the effects of both types 

of inflammation (acute and chronic) on mTOR signaling under equal physiological states 

(both postprandial and post-absorptive).  For example, aging horses with confirmed low 

grade chronic inflammation could be studied in an experimental design similar to that of 
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Chapter IV: this would allow for the examination of the effect of acute inflammatory 

stimuli in a state of chronic inflammation during the postprandial state on mTOR 

signaling. 

 The activation of NF−κΒ by inflammatory cytokines was discussed in the 

inflammatory signaling Section 1.5.1.  Briefly, inflammatory cytokines activate IκKB 

which phosphorylates NF−κΒ.  Once activated, NF−κΒ inhibits the activation of Akt 

(Section 1.3).  Therefore the reduction in the activation of Akt in response to a meal 

during acute inflammation may be a result of the increase in inflammatory cytokines 

stimulating NF−κΒ activation.  However, the administration of NSAID did not 

ameliorate this reduction in Akt activation, even though there was a decrease in the 

mRNA expression of IL−1β.  Because the mRNA expression of TNF−α was not altered 

in skeletal muscle due to NSAID administration and TNF−α has been demonstrated to 

influence IκKB activation to a greater extent than any other inflammatory cytokine, then 

it is possible that NSAID administration did not alter NF−κB activity which would 

explain the absence of an effect of NSAID on Akt activation.  Either the NSAID used 

(phenylbutazone) did not target TNF−α expression or was not a large enough dose (1g 

every 12 hours) to reduce TNF−α mRNA expression in skeletal muscle.  Therefore, the 

activation of IκKB may not have been altered and subsequently neither was NF−κΒ 

phosphorylation.  Unfortunately, the activation of IκKB and NF−κΒ were not examined, 

which is needed in order to have a clearer perspective of this pathway.  However, acute 

inflammation increased the activation of downstream signaling factors in response to 

meal consumption.  In horses, MAPK signaling in skeletal muscle (470) and 
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inflammatory cytokines in circulation and skeletal muscle (244) are increased following 

exercise.  MAPK signaling reduces the phosphorylation of the TSC1/2 complex 

independent of Akt (Section 1.2), and would be expected to increase mTOR signaling in 

cases of acute inflammation.  The MAPK pathways may be an additional mechanism in 

which inflammatory cytokines alter mTOR signaling. 

 During the post-absorptive state, low grade chronic inflammation has not been 

shown to alter mTOR signaling in humans.  However, Chapter VII showed that reducing 

low grade chronic inflammation by administering 2g/day of phenylbutazone increased the 

activation of S6K1.  This may be due to an increase in MAPK signaling as mentioned 

above; however, further research is warranted to fully elucidate this mechanism during 

both the post-absorptive and postprandial states, and during both acute and chronic 

inflammation. 

 The effect of NSAID administration on whole-body protein synthesis during low 

grade chronic inflammation was also examined in Chapter VII.  The results demonstrated 

an increase in non-oxidative phenylalanine disposal, which is an indicator of protein 

synthesis (Section 1.4.1), following 4 weeks of NSAID administration (2g/day of 

phenylbutazone).  The increase in protein synthesis coincided with a decrease in skeletal 

muscle mRNA expression of IL−1β.  The examination of the effects of NSAID in 

reducing low grade chronic inflammation on protein synthesis are limited; however, it 

has been demonstrated that 5 months of ibuprofen administration to aged rodents reduced 

IL-6 and −1β and increased muscle protein fractional synthesis rates during the 

postprandial state, with no change in muscle protein fractional synthesis rates during the 

post-absorptive state (567).  Thus, if age-related sarcopenia is to be controlled, a 
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reduction in low grade chronic inflammation may be necessary.  It is not practical or 

healthy to recommend the daily administration of an NSAID, such as phenylbutazone, to 

horses because of the possible damage to the gastrointestinal tract (323).  Therefore, 

investigations in reducing low grade chronic inflammation through dietary alterations are 

necessary.  Resveratrol may be a possible alternative because supplementation has 

showed promise in reducing inflammation in horses through inhibiting the formation of 

reactive oxygen species (558).  Ultimately, there is a need to examine the diet of horses 

with low grade chronic inflammation, most commonly the aged, in order to discover 

practical methods of reducing inflammation which may allow for increased whole-body 

and muscle protein synthesis and support the maintenance of muscle mass with 

advancing age. 

 The studies in this dissertation did not examine the effects of altered mTOR 

signaling on satellite cell proliferation during acute and chronic inflammation.  This is an 

area that requires examination because acute inflammation may be beneficial during post- 

exercise or biopsy recovery.  In humans, the reports of the effects of NSAID 

administration during post-exercise recovery on protein synthesis are mixed due to the 

NSAID drug administered, the dose of the drug administered, the method of 

administration, the intensity of the exercise and the time post-exercise that muscle protein 

fractional synthesis rates were examined.  Reports indicate that oral NSAID 

administration inhibits (568) the increase in muscle protein fractional synthesis rates from 

pre- to post exercise, and localized NSAID administration does not alter (333) post-

exercise increase in the NSAID leg compared to the opposite leg.  The increase in 

inflammatory cytokines following exercise may be necessary for muscle repair post-
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exercise (334) because inflammatory cytokines are regulators of satellite cell proliferation 

(312, 313).  However, local NSAID administration reduces satellite cell proliferation 

(316) without altering muscle protein fractional synthesis rates (333) following exercise.  

Therefore, it remains to be determined if a connection between mTOR signaling and 

subsequent protein synthesis and satellite cell proliferation following exercise exists.  

Additionally, low grade chronic inflammation has been demonstrated to increase 

apoptosis of satellite cells (174, 281) which may influence the loss of muscle mass seen 

with aging; however, further research is required to examine this. 

 In addition to advancing the physiological understanding of how acute and 

chronic inflammation alter mTOR signaling in response to feeding, the research 

described in Chapters IV and VII of this dissertation also have several implications 

specific to the horse.  First, the use of NSAID following acute inflammation in the 

muscle may impair tissue regeneration and protein synthesis, and should be avoided in 

cases where muscle growth or regeneration is desired.  For example, horses in active 

training, where the goal is to develop muscle needed for a particular discipline, the 

beneficial effects of the exercise on muscle growth may be counteracted by NSAID 

administration.  The use of NSAID in reducing low grade chronic inflammation in the 

aged showed that from mechanistic standpoint, the reduction of inflammation may have 

beneficial effects on whole-body and muscle protein metabolism in horses.  However, 

daily NSAID administration would not likely be a practical part of a management plan 

for the older horses, rather alternative strategies should be studied in an attempt to 

mitigate the chronic inflammation that occurs in old horses (483, 484) and control muscle 

loss in the aged. 
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8.3.1.  Summary of the influence of inflammation on mTOR signaling in horses 

 Although a substantial amount of work is required to elucidate the mechanisms 

through which inflammatory cytokines alter mTOR signaling, the studies in this 

dissertation provide insight into the effects of both acute and chronic inflammation on 

mTOR signaling.  Acute and chronic inflammation increased and decreased downstream 

mTOR signaling, respectively, under the experimental conditions used in this research.  

The use of phenylbutazone provided a mechanistic tool to reduce acute and chronic 

inflammation and indicated that inflammatory cytokines may alter mTOR signaling 

through Akt dependent and independent mechanisms.  Ultimately, acute inflammation 

may be beneficial for tissue repair, whereas chronic inflammation reduces mTOR 

signaling and subsequent protein synthesis, likely resulting in a loss of skeletal muscle 

mass over time. 

8.4.  CONCLUSION 

 In conclusion, the series of studies described in this dissertation have provided 

initial knowledge in mTOR signaling in the adolescent and during acute inflammation 

resulting from repeated biopsies.  These studies were also the first examination of mTOR 

signaling and whole-body protein synthesis in the aged horse.  Methodologically, the 

examination of mTOR signaling in mature horses can be compared from right and left 

gluteal muscles at a depth of 6 to 10 cm below the surface of the skin, but if biopsies are 

repeated administration of a NSAID is suggested in order to avoid the confounding effect 

of biopsy.  When examining mTOR signaling in response to feeding stimuli in different 

ages of horses, the protein intake should be standardized by a percentage of the animal’s 

protein requirement and the researcher must ensure that this is a strong enough anabolic 
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stimuli to elicit alterations in mTOR signaling.  Aging appeared to have a greater 

influence on mTOR signaling during the post-absorptive state compared to any other life 

stage; however, mTOR signaling during development appeared to be more responsive to 

anabolic stimuli than any other life stage.  Acute and chronic inflammation altered mTOR 

signaling differently, where acute inflammation may be increase to mTOR signaling and 

aid with muscle recovery from the inflammatory challenge.  The results from this 

dissertation are an important contribution to our knowledge of mTOR signaling, 

regardless of the species studied, but particularly in the horse where the current 

knowledge about muscle protein metabolism is extremely limited.  This dissertation also 

revealed the many potential areas for future research with regards to mTOR signaling in 

horses.  
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Appendix 

A.1.  HPLC CHROMATOGRAM EXAMPLES 

 

A.1.1.  An example of a physiological free amino acid standard chromatogram.  The 

free amino acid standard was used in the calculations of free plasma amino acid samples 

and free muscle amino acid samples.  The injected standard had a concentration of 0.5 

nmol/μL of each amino acid and 500 pmol of each amino acid was injected onto the 

column.  Since all of the amino acids had the same concentration, the purpose of running 

the standard was to determine amino acid differences in peak area relative to Norleucine 

(the internal standard run with every sample and standard) to correct peak area to correct 
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sample amino acid peak areas.  The interassay C.V. expressed as standard AA relative to 

Norleucine ranged from as low as 0.07 ± 0.08% for Asp and as high as 1.42 ± 0.10% for 

Lys. 
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A.1.2.  An example of a plasma free amino acid chromatogram.  This is an example 

of a horse from Chapter V at the 15 minute sampling period of the post-absorptive state.  

The calculation used for determining free plasma amino acid concentrations is as follows: 

pmol = [(sample AA peak area)/(standard AA peak area/standard internal standard peak 

area)]*(pmol of internal standard injected with sample/peak area of internal standard in 

sample)  

Then pmol must be converted to μmol/L plasma using the following equation: 
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μmol/L plasma = (pmol of AA/ μL of reconstituted sample injected)*( μL of diluents 

used to reconstitute derivatized sample/ μL of ultrafiltrate that was derivatized)*dilution 

of plasma prior to ultrafiltration*((106 μL/L)/(109 pmol/μmol)). 
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A.1.3.  An example of a muscle free amino acid chromatogram.  This is an example of 

a horse from Chapter III at a sampling depth of 6 cm below the surface of the skin.  The 

calculation used for determining free muscle amino acid concentrations is as follows: 

pmol = [(sample AA peak area)/(standard AA peak area/standard internal standard peak 

area)]*(pmol of internal standard injected with sample/peak area of internal standard in 

sample)  

Then pmol must be converted to μmol/g of wet weight muscle using the following 

equation: 
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nmol/g of wet weight muscle = (pmol of AA/ μL of reconstituted sample injected)*( μL 

of diluents used to reconstitute derivatized sample/ μL of ultrafiltrate that was 

derivatized)* (extraction volume/tissue extracted)*(10-9 μmol/pmol). 
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A.1.4.  An example of a total hydralysate amino acid standard chromatogram.  The 

total hydralysate amino acid standard was used in the calculations of total hydralysate 

amino acid samples for example feed samples.  The injected standard had a concentration 

of 6.25 nmol/μL, and 6250 pmol of each amino acid was injected onto the column.  Since 

all of the amino acids had the same concentration, the purpose of running the standard 

was to determine amino acid differences in peak area relative to Norleucine (the internal 

standard run with every sample and standard) to correct peak area to correct sample 

amino acid peak areas.  The interassay C.V. expressed as standard AA relative to 
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Norleucine ranged from as low as 0.86 ± 0.05% for Thr and as high as 1.76 ± 0.08% for 

Lys. 
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A.1.5.  An example of a total hydralysate amino acid chromatogram from a feed 

sample.  This is an example of the total hydralysate amino acid chromatogram from the 

high protein pellet fed in Chapters III – V.  The calculation used for determining total 

hydralysate amino acid concentrations is as follows: 

pmol = pmol of AA in injected from the standard *[AA peak area in sample/(internal 

standard pear area in the sample/internal standard peak area in the standarad)]/AA peak 

area in the standard. 

Then pmol must be converted to pmol/g of feed using the following equation: 
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pmol/g of feed = (pmol of AA in the injected sample/injection volume, μL)*(volume of 

diluent to reconstitute sample, μL/amount of HCl filtrate derivatized, μL) * (amount of 

HCl used, mL/feed sample weight, g) * (10-3). 

Then to convert pmol of AA/g of feed to g of AA/100g of feed: 

g of AA/100g of feed = (pmol of AA/g feed)* (1 mol/1012 pmol) * (MW of AA residue 

in g/mol) *100. 
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contained 0.002 μg of antigen; the “1:1 antibody to antigen mixture” contained 0.2 μg of 

antigen; and the “1:4 antibody to antigen mixture contained 2 μg of antigen.  These 

mixtures were allowed to incubate at room temperature for 30 minutes, which was the 

manufacturer’s suggested time allotment for the reaction between the antibody and 

antigen to occur.  The mixtures were then placed on the membrane and allowed to react 

with the proteins bound to the membrane for 18 hours at 4oC.  Then, all sections of the 

membrane were washed and treated with secondary antibody which was a goat anti-rabbit 

IgG (H+L) with conjugated horseradish peroxidase (1:10,000 dilution in 5% fat-free milk 

solution; BioRad, Hercules, CA) for 1 hour at room temperature.  Membranes were 

developed using a chemiluminescence kit (Amersham ECL Plus Western Blotting 

Detection Reagents; GE Healthcare, Piscataway, NJ) and visualized on x-ray film using a 

film processor (Kodak X-OMAT film processor, Kodak Health Imaging Division, 

Rochester, NY).  In the wells of the above figure: (1) a molecular marker (MagicMark™, 

Invitrogen, Carlsbad, CA) (2) a positive control (Akt Control Cell Extracts from Jurkat 

cells treated with Calyculin A, Cell Signaling Technology ®, Inc., Boston, MA), (3) a 

negative control (Akt Control Cell Extracts from Jurkat cells treated with LY294002, 

Cell Signaling Technology ®, Inc., Boston, MA), (4) mature equine gluteal muscle in the 

postprandial state, (5) mature equine gluteal muscle in the postprandial state, (6) mature 

equine gluteal muscle in the postprandial state, (7) a positive control (Akt Control Cell 

Extracts from Jurkat cells treated with Calyculin A, Cell Signaling Technology ®, Inc., 

Boston, MA), (8) a negative control (Akt Control Cell Extracts from Jurkat cells treated 

with LY294002, Cell Signaling Technology ®, Inc., Boston, MA), (9) mature equine 

gluteal muscle in the postprandial state, (10) mature equine gluteal muscle in the 
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postprandial state, and (11) mature equine gluteal muscle in the postprandial state.  Wells 

1-4 were treated with 100% primary antibody.  Well 5 was treated with 0% primary 

antibody.  Well 6 was treated with a primary antibody to antigen (P-Akt Ser473 Blocking 

Peptide, Cell Signaling Technology ®, Inc., Boston, MA) at a ratio of 1:1/16.  Wells 7-9 

were treated with a primary antibody to antigen ratio of 1:1/4.  Well 10 was treated with a 

primary antibody to antigen ratio of 1:1, and well 11 was treated with a primary antibody 

to antigen ratio of 1:4.  This validated the use of this primary antibody in the horse, 

because when an antigen was applied there was inhibition of the antibody to bind with 

the mature equine gluteal muscle in the postprandial state.  Additionally, the “0% primary 

antibody” validated the use of this secondary antibody, because in the absence of a 

primary antibody there was total inhibition of binding.  
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the manufacturer’s suggested time allotment for the reaction between the antibody and 

antigen to occur.  The mixtures were then placed on the membrane and allowed to react 

with the proteins bound to the membrane for 18 hours at 4oC.  Then, all sections of the 

membrane were washed and treated with secondary antibody which was a goat anti-rabbit 

IgG (H+L) with conjugated horseradish peroxidase (1:10,000 dilution in 5% fat-free milk 

solution; BioRad, Hercules, CA) for 1 hour at room temperature.  Membranes were 

developed using a chemiluminescence kit (Amersham ECL Plus Western Blotting 

Detection Reagents; GE Healthcare, Piscataway, NJ) and visualized on x-ray film using a 

film processor (Kodak X-OMAT film processor, Kodak Health Imaging Division, 

Rochester, NY).  In the wells of the above figure: (1) a molecular marker (MagicMark™, 

Invitrogen, Carlsbad, CA) (2) a positive control (Akt Control Cell Extracts from Jurkat 

cells treated with Calyculin A, Cell Signaling Technology ®, Inc., Boston, MA), (3) a 

negative control (Akt Control Cell Extracts from Jurkat cells treated with LY294002, 

Cell Signaling Technology ®, Inc., Boston, MA), (4) mature equine gluteal muscle in the 

postprandial state, (5) a positive control (Akt Control Cell Extracts from Jurkat cells 

treated with Calyculin A, Cell Signaling Technology ®, Inc., Boston, MA), (6) a negative 

control (Akt Control Cell Extracts from Jurkat cells treated with LY294002, Cell 

Signaling Technology ®, Inc., Boston, MA), (7) mature equine gluteal muscle in the 

postprandial state, (8) mature equine gluteal muscle in the postprandial state, (9) mature 

equine gluteal muscle in the postprandial state, (10) a positive control (Akt Control Cell 

Extracts from Jurkat cells treated with Calyculin A, Cell Signaling Technology ®, Inc., 

Boston, MA), (11) a negative control (Akt Control Cell Extracts from Jurkat cells treated 

with LY294002, Cell Signaling Technology ®, Inc., Boston, MA), and (12) mature 
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equine gluteal muscle in the postprandial state.  Wells 1-4 were treated with 100% 

primary antibody.  Well 5-7 were treated with a primary antibody to antigen (P-Akt 

Thr308 Blocking Peptide, Cell Signaling Technology ®, Inc., Boston, MA) at a ratio of 

1:4.  Well 8 was treated with a primary antibody to antigen ratio of 1:1.  Well 9 was 

treated with a primary antibody to antigen ratio of 1:1/4, and wells 10-12 were treated 

with a primary antibody to antigen ratio of 1:1/16.  This validated the use of this primary 

antibody in the horse, because when an antigen was applied there was inhibition of the 

antibody to bind with the mature equine gluteal muscle in the postprandial state. 
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antigen; and the “1:4 antibody to antigen mixture” contained 5 μg of antigen.  These 

mixtures were allowed to incubate at room temperature for 30 minutes, which was the 

manufacturer’s suggested time allotment for the reaction between the antibody and 

antigen to occur.  The mixtures were then placed on the membrane and allowed to react 

with the proteins bound to the membrane for 18 hours at 4oC.  Then, all sections of the 

membrane were washed and treated with secondary antibody which was a goat anti-rabbit 

IgG (H+L) with conjugated horseradish peroxidase (1:10,000 dilution in 5% fat-free milk 

solution; BioRad, Hercules, CA) for 1 hour at room temperature.  Membranes were 

developed using a chemiluminescence kit (Amersham ECL Plus Western Blotting 

Detection Reagents; GE Healthcare, Piscataway, NJ) and visualized on x-ray film using a 

film processor (Kodak X-OMAT film processor, Kodak Health Imaging Division, 

Rochester, NY).  In the wells of the above figure: (1) a negative control (Akt Control Cell 

Extracts from Jurkat cells treated with LY294002, Cell Signaling Technology ®, Inc., 

Boston, MA), (2) a positive control (Akt Control Cell Extracts from Jurkat cells treated 

with Calyculin ,A Cell Signaling Technology ®, Inc., Boston, MA), (3) mature equine 

gluteal muscle in the postprandial state, (4) mature equine gluteal muscle in the 

postprandial state, (5) mature equine gluteal muscle in the postprandial state, (6) a 

positive control (Akt Control Cell Extracts from Jurkat cells treated with Calyculin A, 

Cell Signaling Technology ®, Inc., Boston, MA), (7) a negative control (Akt Control Cell 

Extracts from Jurkat cells treated with LY294002, Cell Signaling Technology ®, Inc., 

Boston, MA), (8) mature equine gluteal muscle in the postprandial state, (9) mature 

equine gluteal muscle in the postprandial state, and (10) mature equine gluteal muscle in 

the postprandial state.  Wells 1-3 were treated with 100% primary antibody.  Well 4 was 
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treated with 0% primary antibody.  Wells 5-7 were treated with a primary antibody to 

antigen (Akt pan Blocking Peptide, Cell Signaling Technology ®, Inc., Boston, MA) at a 

ratio of 1:4.  Well 8 was treated with a primary antibody to antigen ratio of 1:1.  Well 9 

was treated with a primary antibody to antigen ratio of 1:1/4, and well 10 was treated 

with a primary antibody to antigen ratio of 1:1/16.  This validated the use of this primary 

antibody in the horse, because when an antigen was applied there was inhibition of the 

antibody to bind with the mature equine gluteal muscle in the postprandial state.  

However, it is important to note that the presence of Akt total in the negative control was 

expected.  Because this protein is ubiquitous, the negative controls serve a greater 

purpose in the validation of the phosphorylated forms.  Additionally, the “0% primary 

antibody” validated the use of this secondary antibody, because in the absence of a 

primary antibody there was total inhibition of binding. 
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side.  The abundance of this protein is reported as a ratio of the phosphorylated to total 

form.  The positive control was used to account for interassay variability.  The C.V. of 

the phosphorylated to total ratio of the positive control for P-Akt Ser473 and P-Akt Thr308 

are 0.22 ± 0.13 and 0.12 ± 0.12, respectively.  The right to left side phosphorylated to 

total ratio of for P-Akt Ser473 was 0.16 ± 0.12.  P-Akt Thr308  was not examined in 

Chapter IV.  These were from Chapter IV for P-Akt Ser473 and Chapter V for P-Akt 

Thr308.  In Chapter IV side was tested in the statistical model and found to not be 

significant (P < 0.05). 
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0.002 μg of antigen.  These mixtures were allowed to incubate at room temperature for 

30 minutes, which was the manufacturer’s suggested time allotment for the reaction 

between the antibody and antigen to occur.  The mixtures were then placed on the 

membrane and allowed to react with the proteins bound to the membrane for 18 hours at 

4oC.  Then, all sections of the membrane were washed and treated with secondary 

antibody which was a goat anti-rabbit IgG (H+L) with conjugated horseradish peroxidase 

(1:10,000 dilution in 5% fat-free milk solution; BioRad, Hercules, CA) for 1 hour at 

room temperature.  Membranes were developed using a chemiluminescence kit 

(Amersham ECL Plus Western Blotting Detection Reagents; GE Healthcare, Piscataway, 

NJ) and visualized on x-ray film using a film processor (Kodak X-OMAT film processor, 

Kodak Health Imaging Division, Rochester, NY).  In the wells of the above figure: (1) a 

molecular marker (MagicMark™, Invitrogen, Carlsbad, CA), (2) a positive control (p70 

S6 Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (3) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(4) mature equine gluteal muscle in the postprandial state, (5) a positive control (p70 S6 

Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (6) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(7) mature equine gluteal muscle in the postprandial state, (8) mature equine gluteal 

muscle in the postprandial state, (9) mature equine gluteal muscle in the postprandial 

state, (10) a positive control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells 

treated with insulin, Cell Signaling Technology ®, Inc., Boston, MA), (11) a negative 
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control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells untreated, Cell Signaling 

Technology ®, Inc., Boston, MA), and (12) mature equine gluteal muscle in the 

postprandial state.  Wells 1-4 were treated with 100% primary antibody.  Wells 5-7 were 

treated with a primary antibody to antigen (P-S6K1 Thr389 Blocking Peptide, Cell 

Signaling Technology ®, Inc., Boston, MA) at a ratio of 1:1.  Well 8 was treated with a 

primary antibody to antigen ratio of 1:1/4.  Well 9 was treated with a primary antibody to 

antigen ratio of 1:1/16, and wells 10-12 were treated with a primary antibody to antigen 

ratio of 1:1/32.  This validated the use of this primary antibody in the horse, because 

when an antigen was applied there was inhibition of the antibody to bind with the mature 

equine gluteal muscle in the postprandial state.  However, it is important to note that the 

presence of both the 85 kDa and 70 kDa S6K1 total in the negative and positive controls 

was expected.  The use of the molecular weight marker allowed us to determine the 70 

kDa from the 85 kDa S6K1 bands, our interest was in the 70 kDa S6K1.  Because S6K1 

is phosphorylated following mTORC1 activation, which can be activated by both insulin 

and amino acids, the negative controls were untreated with insulin but remained in a 

media that contained amino acids resulting in a diminished response than the positive 

controls. 
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0.002 μg of antigen.  These mixtures were allowed to incubate at room temperature for 

30 minutes, which was the manufacturer’s suggested time allotment for the reaction 

between the antibody and antigen to occur.  The mixtures were then placed on the 

membrane and allowed to react with the proteins bound to the membrane for 18 hours at 

4oC.  Then, all sections of the membrane were washed and treated with secondary 

antibody which was a goat anti-rabbit IgG (H+L) with conjugated horseradish peroxidase 

(1:10,000 dilution in 5% fat-free milk solution; BioRad, Hercules, CA) for 1 hour at 

room temperature.  Membranes were developed using a chemiluminescence kit 

(Amersham ECL Plus Western Blotting Detection Reagents; GE Healthcare, Piscataway, 

NJ) and visualized on x-ray film using a film processor (Kodak X-OMAT film processor, 

Kodak Health Imaging Division, Rochester, NY).  In the wells of the above figure: (1) a 

molecular marker (MagicMark™, Invitrogen, Carlsbad, CA), (2) a positive control (p70 

S6 Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (3) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(4) mature equine gluteal muscle in the postprandial state, (5) a positive control (p70 S6 

Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (6) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(7) mature equine gluteal muscle in the postprandial state, (8) mature equine gluteal 

muscle in the postprandial state, (9) mature equine gluteal muscle in the postprandial 

state, (10) a positive control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells 

treated with insulin, Cell Signaling Technology ®, Inc., Boston, MA), (11) a negative 
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control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells untreated, Cell Signaling 

Technology ®, Inc., Boston, MA), and (12) mature equine gluteal muscle in the 

postprandial state.  Wells 1-4 were treated with 100% primary antibody.  Wells 5-7 were 

treated with a primary antibody to antigen (S6K1 Blocking Peptide, Cell Signaling 

Technology ®, Inc., Boston, MA) at a ratio of 1:1.  Well 8 was treated with a primary 

antibody to antigen ratio of 1:1/4.  Well 9 was treated with a primary antibody to antigen 

ratio of 1:1/16, and wells 10-12 were treated with a primary antibody to antigen ratio of 

1:1/32.  This validated the use of this primary antibody in the horse, because when an 

antigen was applied there was inhibition of the antibody to bind with the mature equine 

gluteal muscle in the postprandial state.  However, it is important to note that the 

presence of both the 85 kDa and 70 kDa S6K1 total in the negative and positive controls 

swas expected.  The use of the molecular weight marker allowed us to determine the 70 

kDa from the 85 kDa S6K1 bands, our interest was in the 70 kDa S6K1.  Because this 

protein is ubiquitous, the negative controls serve a greater purpose in the validation of the 

phosphorylated forms. 
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ratio of the phosphorylated to total form.  The positive control was used to account for 

interassay variability.  The C.V. of the phosphorylated to total ratio of the positive control 

for P-S6K1 Thr389 was 0.14 ± 0.13.  The right to left side phosphorylated to total ratio of 

for P-S6K1 Thr389 was 0.18 ± 0.16.  These were obtained from Chapter IV.  In Chapter 

IV side was tested in the statistical model and found to not be significant (P < 0.05). 
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temperature for 30 minutes, which was the manufacturer’s suggested time allotment for 

the reaction between the antibody and antigen to occur.  The mixtures were then placed 

on the membrane and allowed to react with the proteins bound to the membrane for 18 

hours at 4oC.  Then, all sections of the membrane were washed and treated with 

secondary antibody which was a goat anti-rabbit IgG (H+L) with conjugated horseradish 

peroxidase (1:10,000 dilution in 5% fat-free milk solution; BioRad, Hercules, CA) for 1 

hour at room temperature.  Membranes were developed using a chemiluminescence kit 

(Amersham ECL Plus Western Blotting Detection Reagents; GE Healthcare, Piscataway, 

NJ) and visualized on x-ray film using a film processor (Kodak X-OMAT film processor, 

Kodak Health Imaging Division, Rochester, NY).  In the wells of the above figure: (1) a 

molecular marker (MagicMark™, Invitrogen, Carlsbad, CA), (2) a positive control (p70 

S6 Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (3) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(4) mature equine gluteal muscle in the postprandial state, (5) a positive control (p70 S6 

Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (6) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(7) mature equine gluteal muscle in the postprandial state, (8) mature equine gluteal 

muscle in the postprandial state, (9) mature equine gluteal muscle in the postprandial 

state, (10) a positive control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells 

treated with insulin, Cell Signaling Technology ®, Inc., Boston, MA), (11) a negative 

control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells untreated, Cell Signaling 
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Technology ®, Inc., Boston, MA), and (12) mature equine gluteal muscle in the 

postprandial state.  Wells 1-4 were treated with 100% primary antibody.  Wells 5-7 were 

treated with a primary antibody to antigen (P-rpS6 Ser235/236 Blocking Peptide, Cell 

Signaling Technology ®, Inc., Boston, MA) at a ratio of 1:1.  Well 8 was treated with a 

primary antibody to antigen ratio of 1:1/4.  Well 9 was treated with a primary antibody to 

antigen ratio of 1:1/16, and wells 10-12 were treated with a primary antibody to antigen 

ratio of 1:1/32.  This validated the use of this primary antibody in the horse, because 

when an antigen was applied there was inhibition of the antibody to bind with the mature 

equine gluteal muscle in the postprandial state.  However, it is important to note that the 

presence P-rpS6-Ser235/236 in the negative and positive controls was expected, because 

rpS6 is phosphorylated following S6K1 phosphorylation which is activated by the active 

from of mTORC1.  mTORC1 is activated due to both insulin and amino acids, the 

negative controls were untreated with insulin and the positive controls were treated with 

insulin, but both were in media containing amino acids.  As a result, P-rpS6 Ser235/236 is 

present in the negative control, but diminished in comparison to the positive control. 
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temperature for 30 minutes, which was the manufacturer’s suggested time allotment for 

the reaction between the antibody and antigen to occur.  The mixtures were then placed 

on the membrane and allowed to react with the proteins bound to the membrane for 18 

hours at 4oC.  Then, all sections of the membrane were washed and treated with 

secondary antibody which was a goat anti-rabbit IgG (H+L) with conjugated horseradish 

peroxidase (1:10,000 dilution in 5% fat-free milk solution; BioRad, Hercules, CA) for 1 

hour at room temperature.  Membranes were developed using a chemiluminescence kit 

(Amersham ECL Plus Western Blotting Detection Reagents; GE Healthcare, Piscataway, 

NJ) and visualized on x-ray film using a film processor (Kodak X-OMAT film processor, 

Kodak Health Imaging Division, Rochester, NY).  In the wells of the above figure: (1) a 

molecular marker (MagicMark™, Invitrogen, Carlsbad, CA), (2) a positive control (p70 

S6 Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (3) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(4) mature equine gluteal muscle in the postprandial state, (5) a positive control (p70 S6 

Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (6) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(7) mature equine gluteal muscle in the postprandial state, (8) mature equine gluteal 

muscle in the postprandial state, (9) mature equine gluteal muscle in the postprandial 

state, (10) a positive control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells 

treated with insulin, Cell Signaling Technology ®, Inc., Boston, MA), (11) a negative 

control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells untreated, Cell Signaling 
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Technology ®, Inc., Boston, MA), and (12) mature equine gluteal muscle in the 

postprandial state.  Wells 1-4 were treated with 100% primary antibody.  Wells 5-7 were 

treated with a primary antibody to antigen (P-rpS6 Ser240/244 Blocking Peptide, Cell 

Signaling Technology ®, Inc., Boston, MA) at a ratio of 1:1.  Well 8 was treated with a 

primary antibody to antigen ratio of 1:1/4.  Well 9 was treated with a primary antibody to 

antigen ratio of 1:1/16, and wells 10-12 were treated with a primary antibody to antigen 

ratio of 1:1/32.  This validated the use of this primary antibody in the horse, because 

when an antigen was applied there was inhibition of the antibody to bind with the mature 

equine gluteal muscle in the postprandial state.  However, it is important to note that the 

presence P-rpS6-Ser240/244 in the negative and positive controls was expected, because 

rpS6 is phosphorylated following S6K1 phosphorylation which is activated by the active 

from of mTORC1.  mTORC1 is activated due to both insulin and amino acids, the 

negative controls were untreated with insulin and the positive controls were treated with 

insulin, but both were in media containing amino acids.  As a result, P-rpS6 Ser240/244 is 

present in the negative control, but diminished in comparison to the positive control. 
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antigen mixture” contained 6.3*10-12 μg antigen; and the “1:1 antibody to antigen 

mixture” contained 0.0002 μg of antigen.  These mixtures were allowed to incubate at 

room temperature for 30 minutes, which was the manufacturer’s suggested time allotment 

for the reaction between the antibody and antigen to occur.  The mixtures were then 

placed on the membrane and allowed to react with the proteins bound to the membrane 

for 18 hours at 4oC.  Then, all sections of the membrane were washed and treated with 

secondary antibody which was a goat anti-rabbit IgG (H+L) with conjugated horseradish 

peroxidase (1:10,000 dilution in 5% fat-free milk solution; BioRad, Hercules, CA) for 1 

hour at room temperature.  Membranes were developed using a chemiluminescence kit 

(Amersham ECL Plus Western Blotting Detection Reagents; GE Healthcare, Piscataway, 

NJ) and visualized on x-ray film using a film processor (Kodak X-OMAT film processor, 

Kodak Health Imaging Division, Rochester, NY).  In the wells of the above figure: (1) a 

molecular marker (MagicMark™, Invitrogen, Carlsbad, CA), (2) a positive control (p70 

S6 Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (3) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(4) mature equine gluteal muscle in the postprandial state, (5) a positive control (p70 S6 

Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (6) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(7) mature equine gluteal muscle in the postprandial state, (8) mature equine gluteal 

muscle in the postprandial state, (9) mature equine gluteal muscle in the postprandial 

state, (10) a positive control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells 
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treated with insulin, Cell Signaling Technology ®, Inc., Boston, MA), (11) a negative 

control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells untreated, Cell Signaling 

Technology ®, Inc., Boston, MA), and (12) mature equine gluteal muscle in the 

postprandial state.  Wells 1-4 were treated with 100% primary antibody.  Wells 5-7 were 

treated with a primary antibody to antigen (rpS6 Blocking Peptide, Cell Signaling 

Technology ®, Inc., Boston, MA) at a ratio of 1:1.  Well 8 was treated with a primary 

antibody to antigen ratio of 1:1/4.  Well 9 was treated with a primary antibody to antigen 

ratio of 1:1/16, and wells 10-12 were treated with a primary antibody to antigen ratio of 

1:1/32.  This validated the use of this primary antibody in the horse, because when an 

antigen was applied there was inhibition of the antibody to bind with the mature equine 

gluteal muscle in the postprandial state.  However, it is important to note that the 

presence of rpS6 Total in both positive and negative controls was expected.  Because this 

protein is ubiquitous, the negative controls serve a greater purpose in the validation of the 

phosphorylated forms. 
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form.  The positive control was used to account for interassay variability.  The C.V. of 

the phosphorylated to total ratio of the positive control for P-rpS6 Ser235/236 & 240/244 was 

0.14 ± 0.14.  The right to left side phosphorylated to total ratio of for P-rpS6235/236 & 240/244 

was 0.19 ± 0.13.  These were obtained from Chapter IV.  In Chapter IV side was tested in 

the statistical model and found to not be significant (P < 0.05). 
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room temperature for 30 minutes, which was the manufacturer’s suggested time allotment 

for the reaction between the antibody and antigen to occur.  The mixtures were then 

placed on the membrane and allowed to react with the proteins bound to the membrane 

for 18 hours at 4oC.  Then, all sections of the membrane were washed and treated with 

secondary antibody which was a goat anti-rabbit IgG (H+L) with conjugated horseradish 

peroxidase (1:10,000 dilution in 5% fat-free milk solution; BioRad, Hercules, CA) for 1 

hour at room temperature.  Membranes were developed using a chemiluminescence kit 

(Amersham ECL Plus Western Blotting Detection Reagents; GE Healthcare, Piscataway, 

NJ) and visualized on x-ray film using a film processor (Kodak X-OMAT film processor, 

Kodak Health Imaging Division, Rochester, NY).  In the wells of the above figure: (1) a 

molecular marker (MagicMark™, Invitrogen, Carlsbad, CA), (2) a positive control (p70 

S6 Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (3) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(4) mature equine gluteal muscle in the postprandial state, (5) a positive control (p70 S6 

Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (6) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(7) mature equine gluteal muscle in the postprandial state, (8) mature equine gluteal 

muscle in the postprandial state, (9) mature equine gluteal muscle in the postprandial 

state, (10) a positive control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells 

treated with insulin, Cell Signaling Technology ®, Inc., Boston, MA), (11) a negative 

control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells untreated, Cell Signaling 
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Technology ®, Inc., Boston, MA), and (12) mature equine gluteal muscle in the 

postprandial state.  Wells 1-4 were treated with 100% primary antibody.  Wells 5-7 were 

treated with a primary antibody to antigen (P-4EBP1 Thr37/46 Blocking Peptide, Cell 

Signaling Technology ®, Inc., Boston, MA) at a ratio of 1:1.  Well 8 was treated with a 

primary antibody to antigen ratio of 1:1/4.  Well 9 was treated with a primary antibody to 

antigen ratio of 1:1/16, and wells 10-12 were treated with a primary antibody to antigen 

ratio of 1:1/32.  This validated the use of this primary antibody in the horse, because 

when an antigen was applied there was inhibition of the antibody to bind with the mature 

equine gluteal muscle in the postprandial state.  However, it is important to note that the 

presence P-4EBP1 Thr37/46 in the negative and positive controls was expected, because 

4EBP1 is phosphorylated following activation of mTORC1.  mTORC1 is activated due to 

both insulin and amino acids, the negative controls were untreated with insulin and the 

positive controls were treated with insulin, but both were in media containing amino 

acids.  As a result, P-4EBP1 Thr37/46 is present in the negative control, but diminished in 

comparison to the positive control.  Also, 4EBP1 has a large band that represents the 

three isoforms (α, β, and γ).  
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30 minutes, which was the manufacturer’s suggested time allotment for the reaction 

between the antibody and antigen to occur.  The mixtures were then placed on the 

membrane and allowed to react with the proteins bound to the membrane for 1 hour at 

room temperature.  Then, all sections of the membrane were washed and treated with 

secondary antibody which was a goat anti-rabbit IgG (H+L) with conjugated horseradish 

peroxidase (1:10,000 dilution in 5% fat-free milk solution; BioRad, Hercules, CA) for 1 

hour at room temperature.  Membranes were developed using a chemiluminescence kit 

(Amersham ECL Plus Western Blotting Detection Reagents; GE Healthcare, Piscataway, 

NJ) and visualized on x-ray film using a film processor (Kodak X-OMAT film processor, 

Kodak Health Imaging Division, Rochester, NY).  In the wells of the above figure: (1) a 

molecular marker (MagicMark™, Invitrogen, Carlsbad, CA), (2) a positive control (p70 

S6 Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (3) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(4) mature equine gluteal muscle in the postprandial state, (5) a positive control (p70 S6 

Kinase Control Cell Extracts from MCF-7 cells treated with insulin, Cell Signaling 

Technology ®, Inc., Boston, MA), (6) a negative control (p70 S6 Kinase Control Cell 

Extracts from MCF-7 cells untreated, Cell Signaling Technology ®, Inc., Boston, MA), 

(7) mature equine gluteal muscle in the postprandial state, (8) mature equine gluteal 

muscle in the postprandial state, (9) mature equine gluteal muscle in the postprandial 

state, (10) a positive control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells 

treated with insulin, Cell Signaling Technology ®, Inc., Boston, MA), (11) a negative 

control (p70 S6 Kinase Control Cell Extracts from MCF-7 cells untreated, Cell Signaling 
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Technology ®, Inc., Boston, MA), and (12) mature equine gluteal muscle in the 

postprandial state.  Wells 1-4 were treated with 100% primary antibody.  Wells 5-7 were 

treated with a primary antibody to antigen (4EBP1 Total Blocking Peptide, Cell 

Signaling Technology ®, Inc., Boston, MA) at a ratio of 1:1.  Well 8 was treated with a 

primary antibody to antigen ratio of 1:1/4.  Well 9 was treated with a primary antibody to 

antigen ratio of 1:1/16, and wells 10-12 were treated with a primary antibody to antigen 

ratio of 1:1/32.  This validated the use of this primary antibody in the horse, because 

when an antigen was applied there was inhibition of the antibody to bind with the mature 

equine gluteal muscle in the postprandial state.  However, it is important to note that the 

presence P-4EBP1 Thr37/46 in the negative and positive controls was expected, because 

4EBP1 is a ubiquitous protein.  The negative control has a greater role in phosphorylated 

forms.  Also, 4EBP1 has a large band that represents the three isoforms (α, β, and γ). 
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protein is reported as a ratio of the phosphorylated to total form.  The positive control 

was used to account for interassay variability.  The C.V. of the phosphorylated to total 

ratio of the positive control for P-4EBP1 Thr37/46 was 0.10 ± 0.07.  The right to left side 

phosphorylated to total ratio of for P-4EBP1 Thr37/46 was 0.13 ± 0.10.  These were 

obtained from Chapter IV.  In Chapter IV side was tested in the statistical model and 

found to not be significant (P < 0.05). 
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A.4.  STANDARD CURVES 

 

A.4.1.  An example of a glucose standard curve used in the YSI 2700 SELECT™ 

Biochemistry Analyzer.  The YSI 2700 SELECT™ Biochemistry Analyzer determines 

glucose concentration enzymatically.  This is an example of the standard curve of glucose 

from Chapter VI.  The r2 is 0.99 and the standard C.V. is 0.004 ± 0.003.  
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A.4.2.  An example of the standard curve used in the Coat-A-Count RIA® kit.  

Along the y axis is %B: percent of radioactive binding, and along the x axis is the 

concentration of insulin in μIU/mL.  The linear range of this graph is from 6 μIU/mL to 

103 6 μIU/mL with a %B of 80.17 and 31.6%, respectively.   

 

  



320 
 

A.5.  qRT-PCR AMPLIFICATION PLOTS 

 

A.5.1.  An example of β-glucoronidase amplification plot from a negative control.  

This is an example of an amplification plot of the housekeeping gene, β-glucoronidase, 

from a negative control (RNA free water) in Chapter IV.  As expected, there was a lack 

of amplification. 

  



321 
 

 

A.5.2.  An example of β-glucoronidase amplification plot from a positive control.  

This is an example of an amplification plot of the housekeeping gene, β-glucoronidase, 

from a postivie control (pooled equine tissues post infection challenge) in Chapter IV.  

The linear portion of the amplification curve begins following 20 cycles and ends at 26 

cycles.  The linear portion has an r2 of no less than 0.95, and the amplification efficiency 

must be between 0.8 and 1. 
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A.5.3.  An example of an IFN−γ amplification plot from a negative control.  This is 

an example of an amplification plot of the pro-inflammatory cytokine, IFN−γ, from a 

negative control (RNA free water) in Chapter IV.  As expected, there was a lack of 

amplification. 
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A.5.4.  An example of an IFN−γ amplification plot from a positive control.  This is an 

example of an amplification plot of the pro-inflammatory cytokine, IFN−γ, from a 

positive control (pooled equine tissues post infection challenge) in Chapter IV.  The 

linear portion of the amplification curve begins following 27 cycles and ends at 33 

cycles.  The linear portion has an r2 of no less than 0.95, and the amplification efficiency 

must be between 0.8 and 1. 
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A.5.5.  An example of a TNF−α amplification plot from a negative control.  This is 

an example of an amplification plot of the pro-inflammatory cytokine, TNF−α, from a 

negative control (RNA free water) in Chapter IV.  As expected, there was a lack of 

amplification. 
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A.5.6.  An example of a TNF−α amplification plot from a positive control.  This is an 

example of an amplification plot of the pro-inflammatory cytokine, TNF−α, from a 

positive control (pooled equine tissues post infection challenge) in Chapter IV.  The 

linear portion of the amplification curve begins following 25 cycles and ends at 29 

cycles.  The linear portion has an r2 of no less than 0.95, and the amplification efficiency 

must be between 0.8 and 1. 
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A.5.7.  An example of an IL−1β amplification plot from a negative control.  This is 

an example of an amplification plot of the pro-inflammatory cytokine, IL−1β, from a 

negative control (RNA free water) in Chapter IV.  As expected, there was a lack of 

amplification. 
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A.5.8.  An example of an IL−1β amplification plot from a positive control.  This is an 

example of an amplification plot of the pro-inflammatory cytokine, IL−1β, from a 

positive control (pooled equine tissues post infection challenge) in Chapter IV.  The 

linear portion of the amplification curve begins following 20 cycles and ends at 26 

cycles.  The linear portion has an r2 of no less than 0.95, and the amplification efficiency 

must be between 0.8 and 1. 
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A.5.9.  An example of an IL−6 amplification plot from a negative control.  This is an 

example of an amplification plot of the pro-inflammatory cytokine, IL−6, from a negative 

control (RNA free water) in Chapter IV.  As expected, there was a lack of amplification. 
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A.5.10.  An example of an IL−6 amplification plot from a positive control.  This is an 

example of an amplification plot of the pro-inflammatory cytokine, IL−6, from a positive 

control (pooled equine tissues post infection challenge) in Chapter IV.  The linear portion 

of the amplification curve begins following 24 cycles and ends at 30 cycles.  The linear 

portion has an r2 of no less than 0.95, and the amplification efficiency must be between 

0.8 and 1. 
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A.5.11.  An example of an IL−10 amplification plot from a negative control.  This is 

an example of an amplification plot of the anti-inflammatory cytokine, IL−10, from a 

negative control (RNA free water) in Chapter IV.  As expected, there was a lack of 

amplification. 
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A.5.12.  An example of an IL−10 amplification plot from a positive control.  This is 

an example of an amplification plot of the anti-inflammatory cytokine, IL−10, from a 

positive control (pooled equine tissues post infection challenge) in Chapter IV.  The 

linear portion of the amplification curve begins following 27 cycles and ends at 32 

cycles.  The linear portion has an r2 of no less than 0.95, and the amplification efficiency 

must be between 0.8 and 1. 
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A.5.13.  The amplification plots for β-gus, IFN−γ, TNF−α, IL−1β, IL-6, and IL-10 in 

various equine gluteal muscle samples collected in Chapter IV.  
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A.6.2.  Gluteal muscle biopsy collection depths from yearlings, two year olds and 

mature horses in Chapter V.  The gluteal muscle biopsy collection depths were 

determined following the performance of ultrasound measurements on gluteal muscle 

depth and subcutaneous fat.  Gluteal muscle biopsy collection depth was determined as 

(50% of the gluteal muscle depth) + subcutaneous fat depth. 
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A.7.  WHOLE-BODY PROTEIN METABOLISM 

 

A.7.1.  An example of the percent isotope enrichment over baseline in the breath 

from a mature horse during the [13C] sodium bicarbonate infusion period in 

Chapter VI.  The ratio of 13CO2:12CO2 in the breath samples was determined using an 

isotope selective non-dispersive infrared absorption (NDIR) analyzer (IRIS-2; Wagner 

Analysen Technik Vetriebs GmbH, Breman, Germany).  This ratio is given in δ units, 

which is the ratio in the sample – the average ratio at baseline.  This δ enrichment value 

can then be converted into a percent enrichment using the following equation: 

Enrichment (%) = [0.0112372δ/(0.0112372δ + 1000)] × 100%.  The red box indicates a 

plateau in the percent enrichment over baseline, which can be used to calculate total CO2 

production.  The average number of points used to determine plateau were 3.2 ± 0.5.  The 

average C.V. of the plateau percent enrichment was 2.4 ± 1.8%.  Total production of CO2 

can be calculated using the following equation: 
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FCO2 = i × [(Ei/Eb) – 1].  Where, i is the rate of isotope administration in μmol/kg/min, Ei 

is the enrichment of the isotope in the solution and Eb is the enrichment of the breath 

samples at plateau, corrected for baseline enrichment (average of the red box points). 
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A.7.2.  An example of the percent isotope enrichment over baseline in the breath 

from an aged horse during the [1-13C] phenylalanine infusion period in Chapter VII.  

The ratio of 13CO2:12CO2 in the breath samples was determined using an isotope selective 

non-dispersive infrared absorption (NDIR) analyzer (IRIS-2; Wagner Analysen Technik 

Vetriebs GmbH, Breman, Germany).  This ratio is given in δ units, which is the ratio in 

the sample – the average ratio at baseline.  This δ enrichment value can then be converted 

into a percent enrichment using the following equation: 

Enrichment (%) = [0.0112372δ/(0.0112372δ + 1000)] × 100%. 

The red box indicates a plateau in the percent enrichment over baseline.  This plateau can 

be used to calculate the rate of [1-13C]phenylalanine oxidation to 13CO2 (F13CO2): F13CO2 

= FCO2 × ECO2, where ECO2 is the average enrichment of the breath samples at isotopic 

steady state (average of the 3 points in the red box), corrected for baseline enrichment, 

during the [1-13C]phenylalanine infusion.  The average number of points used for the 
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plateau were 3.1 ± 0.5.  The average C.V. for the plateau percent enrichments was 1.1 ± 

1.3%. 
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A.7.3.  An example of the percent isotope enrichment in the plasma from an aged 

horse during the [1-13C] phenylalanine infusion period in Chapter VII.  This is the 

percent enrichment corrected for the baseline enrichment.  The red box indicates a 

plateau in the percent enrichment over baseline.  The average number of points used in 

the plateau were 4.8 ± 1, and the average C.V. of the enrichment values used in the 

plateau was 3.7 ±1.3%.  This plateau can be used to calculate whole-body phenylalanine 

flux:  

Flux (Q; μmol/kg/h) = i × [(Ei/Ep) – 1, where I is the rate of isotope infusion (in 

μmol/kg/h), Ei is the enrichment of infused isotope, and Ep is the plateau plasma 

enrichment (average of the red box points).  Flux includes the amount of amino acids 

entering the pool through dietary intake (I), de novo synthesis (N), and protein 

breakdown (B), or leaving the pool through protein synthesis (Z), oxidation (E), or the 

conversion to other metabolites: Q = I + N B = Z + E + M.  Because phenylalanine is a 

dietary indispensable amino acid, N is negligible; thus B = Q – I.  Then, whole-body 

phenylalanine oxidation can be calculated using the following equation: O = F13CO2 × 
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(1/Ep – 1/Ei) × 100, where Ei is the enrichment of infused isotope, and Ep is the plateau 

plasma enrichment (average of 3 points in the red box).  If tyrosine is balanced in the diet 

and is not generally considered to be a limiting amino acid in nonruminant, the 

assumption can be made that phenylalanine conversion to tyrosine is minimal.  As a 

result, non-oxidative phenylalanine metabolism can be calculated through the difference 

of Q – O, which can be used to indicate changes in phenylalanine used for whole-body 

protein synthesis. 
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A.8.  SAS EXAMPLES 

A.8.1.  Repeated measures input example. 

 
data rpS6_Density; 
input horse depth$ block$ PrpS6; 
cards; 

1  6cm  A  1.027141
1  8cm  A  1.048161
1  10cm  A  1.068832
2  6cm  B  1.034807
2  8cm  B  1.172738
2  10cm  B  0.942196
3  6cm  A  . 
3  8cm  A  1.285698
3  10cm  A  1.122919
4  6cm  B  0.938052
4  8cm  B  0.958085
4  10cm  B  1.121907
5  6cm  B  0.520908
5  8cm  B  0.958247
5  10cm  B  0.867442
6  6cm  A  1.479092
6  8cm  A  1.48873
6  10cm  A  1.571769

; 
run; 
PROC mixed data= rpS6_Density; 
class horse depth block; 
model PrpS6 = depth block/ddfm=kr;  
random horse (block); 
repeated depth/type=un r rcorr sub=horse(block); 
lsmeans depth/pdiff; 
run; 
PROC mixed data= rpS6_Density; 
class horse depth block; 
model PrpS6 = depth block/ddfm=kr;  
random horse (block); 
repeated depth/type=ante(1) r rcorr 
sub=horse(block); 
lsmeans depth/pdiff; 
run; 
PROC mixed data= rpS6_Density; 
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class horse depth block; 
model PrpS6 = depth block/ddfm=kr;  
random horse (block); 
repeated depth/type=simple r rcorr 
sub=horse(block); 
lsmeans depth/pdiff; 
run; 
PROC mixed data= rpS6_Density; 
class horse depth block; 
model PrpS6 = depth block/ddfm=kr;  
random horse (block); 
repeated depth/type=toep r rcorr sub=horse(block); 
lsmeans depth/pdiff; 
run; 
PROC mixed data= rpS6_Density; 
class horse depth block; 
model PrpS6 = depth block/ddfm=kr;  
random horse (block); 
repeated depth/type=arh(1) r rcorr 
sub=horse(block); 
lsmeans depth/pdiff; 
run; 
PROC mixed data= rpS6_Density; 
class horse depth block; 
model PrpS6 = depth block/ddfm=kr;  
random horse (block); 
repeated depth/type=ar(1) r rcorr sub=horse(block); 
lsmeans depth/pdiff; 
run; 
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A.8.2.  Repeated measures output example. 

The variance-covariance matrix was chosen for each analysis based on the lowest value 

for Schwarz’s Bayesian Criterion, which is highlighted in this example. 

                                       The Mixed Procedure 
 
                                        Model Information 
 
                      Data Set                     WORK.RPS6_DENSITY 
                      Dependent Variable           PrpS6 
                      Covariance Structures        Variance Components, 
                                                   Unstructured 
                      Subject Effect               horse(block) 
                      Estimation Method            REML 
                      Residual Variance Method     None 
                      Fixed Effects SE Method      Kenward-Roger 
                      Degrees of Freedom Method    Kenward-Roger 

                                         Fit Statistics 
 
                              -2 Res Log Likelihood            -5.6 
                              AIC (smaller is better)           8.4 
                              AICC (smaller is better)         30.8 
                              BIC (smaller is better)           6.9 
 
 
                                  Type 3 Tests of Fixed Effects 
 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
 
                          depth           2    3.65       1.19    0.4005 
                          block           1    4.08       1.45    0.2932 

 
                                       The Mixed Procedure 
 
                                        Model Information 
 
                      Data Set                     WORK.RPS6_DENSITY 
                      Dependent Variable           PrpS6 
                      Covariance Structures        Variance Components, 
                                                   Ante-dependence 
                      Subject Effect               horse(block) 
                      Estimation Method            REML 
                      Residual Variance Method     None 
                      Fixed Effects SE Method      Kenward-Roger 
                      Degrees of Freedom Method    Kenward-Roger 

                                         Fit Statistics 
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                              -2 Res Log Likelihood            -5.6 
                              AIC (smaller is better)           6.4 
                              AICC (smaller is better)         20.4 
                              BIC (smaller is better)           5.1 

                                  Type 3 Tests of Fixed Effects 
 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
 
                          depth           2    3.65       0.83    0.5035 
                          block           1    4.08       1.49    0.2873 

 

                                       The Mixed Procedure 
 
                                        Model Information 
 
                      Data Set                     WORK.RPS6_DENSITY 
                      Dependent Variable           PrpS6 
                      Covariance Structure         Variance Components 
                      Subject Effect               horse(block) 
                      Estimation Method            REML 
                      Residual Variance Method     Parameter 
                      Fixed Effects SE Method      Kenward-Roger 
                      Degrees of Freedom Method    Kenward-Roger 

                                         Fit Statistics 
 
                              -2 Res Log Likelihood            -4.1 
                              AIC (smaller is better)          -0.1 
                              AICC (smaller is better)          1.1 
                              BIC (smaller is better)          -0.5 
 
 
                                  Type 3 Tests of Fixed Effects 
 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
 
                          depth           2    9.13       1.85    0.2117 
                          block           1    4.06       3.29    0.1426 

 

                                       The Mixed Procedure 
 
                                        Model Information 
 
                      Data Set                     WORK.RPS6_DENSITY 
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                      Dependent Variable           PrpS6 
                      Covariance Structures        Variance Components, 
                                                   Toeplitz 
                      Subject Effect               horse(block) 
                      Estimation Method            REML 
                      Residual Variance Method     Profile 
                      Fixed Effects SE Method      Kenward-Roger 
                      Degrees of Freedom Method    Kenward-Roger 

                                         Fit Statistics 
 
                              -2 Res Log Likelihood            -4.1 
                              AIC (smaller is better)           1.9 
                              AICC (smaller is better)          4.6 
                              BIC (smaller is better)           1.3 

                                  Type 3 Tests of Fixed Effects 
 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
 
                          depth           2    4.98       1.51    0.3073 
                          block           1    3.93       3.22    0.1485 

 

                                       The Mixed Procedure 
 
                                        Model Information 
 
                      Data Set                     WORK.RPS6_DENSITY 
                      Dependent Variable           PrpS6 
                      Covariance Structures        Variance Components, 
                                                   Heterogeneous 
                                                   Autoregressive 
                      Subject Effect               horse(block) 
                      Estimation Method            REML 
                      Residual Variance Method     None 
                      Fixed Effects SE Method      Kenward-Roger 
                      Degrees of Freedom Method    Kenward-Roger 

                                         Fit Statistics 
 
                              -2 Res Log Likelihood            -5.6 
                              AIC (smaller is better)           4.4 
                              AICC (smaller is better)         13.0 
                              BIC (smaller is better)           3.4 

                                  Type 3 Tests of Fixed Effects 
 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
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                          depth           2    5.03       1.09    0.4034 
                          block           1    4.07       1.44    0.2949 

 

                                       The Mixed Procedure 
 
                                        Model Information 
 
                      Data Set                     WORK.RPS6_DENSITY 
                      Dependent Variable           PrpS6 
                      Covariance Structures        Variance Components, 
                                                   Autoregressive 
                      Subject Effect               horse(block) 
                      Estimation Method            REML 
                      Residual Variance Method     Profile 
                      Fixed Effects SE Method      Kenward-Roger 
                      Degrees of Freedom Method    Kenward-Roger 

                                         Fit Statistics 
 
                              -2 Res Log Likelihood            -4.1 
                              AIC (smaller is better)           1.9 
                              AICC (smaller is better)          4.6 
                              BIC (smaller is better)           1.3 
 
 
                                  Type 3 Tests of Fixed Effects 
 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
 
                          depth           2    4.98       1.25    0.3625 
                          block           1    3.93       3.46    0.1377 
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A.8.3.  One Way ANOVA input example. 

data Akt_Density; 
input horse age$ block$ PSerAkt; 
cards; 

2  Mature  A  0.808913
4  Mature  A  1.191087
8  Old  A  0.775572

10  Old  A  0.987907
3  Old  B  0.670911
6  Mature  B  1.082008

11  Old  B  0.271198
12  Mature  B  0.917992
1  Mature  C  1.288538
5  Mature  C  0.711462
7  Old  C  1.165816
9  Old  C  1.15654

; 
run; 
PROC mixed data= 
Akt_Density; 
class horse age block; 
model PSerAkt = age block/ddfm=kr;  
random horse (age block); 
lsmeans age/pdiff; 
run; 

 

  



348 
 

A.8.4.  One Way ANOVA output example. 

                                       The Mixed Procedure 
 
                                        Model Information 
 
                      Data Set                     WORK.AKT_DENSITY 
                      Dependent Variable           PSerAkt 
                      Covariance Structure         Variance Components 
                      Estimation Method            REML 
                      Residual Variance Method     Profile 
                      Fixed Effects SE Method      Kenward-Roger 
                      Degrees of Freedom Method    Kenward-Roger 

                                  Type 3 Tests of Fixed Effects 
 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
 
                          age             1       8       1.06    0.3342 
                          block           2       8       1.62    0.2573 
 
 
                                       Least Squares Means 
 
                                             Standard 
             Effect    age       Estimate       Error      DF    t Value    Pr > |t| 
 
             age       Mature      1.0000      0.1115       8       8.97      <.0001 
             age       Old         0.8380      0.1115       8       7.52      <.0001 

 
 

 

 

 

 

 

Copyright © Ashley L. Wagner 2011  
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