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ABSTRACT OF THESIS 

 

 

INVESTIGATIONS OF CuInTe2 / CdS & CdTe / CdS HETEROJUNCTION SOLAR CELLS 

 

 Thin film solar cells of Copper Indium Telluride and Cadmium Sulfide junctions 
were fabricated on plain ITO glass slides and also on those coated with intrinsic Tin 
Oxide. CdS was deposited through chemical bath deposition and CIT by 
electrodeposition. Both compounds were subjected to annealing at temperatures 
between 350°C and 500°C which produced more uniform film thicknesses and larger 
grain sizes. The CIT/ CdS junction was characterized after performing XRD and spectral 
absorption of individual compounds.  

 

 Studies were also made on CdS / CdTe solar cells with respect to effect of 
annealing temperatures on open circuit voltages. NP acid etch, the most important 
process to make the surface of CdTe tellurium rich, was also studied in terms of open 
circuit voltages. Thermally evaporated CdS of four different thicknesses was deposited 
on Tin Oxide coated ITO and inferences were drawn as to what thickness of CdS yields 
better results. 

  

KEYWORDS:  Copper Indium Telluride (CIT), Electrodeposition, Chemical Bath 
Deposition, Cadmium Sulfide, Cadmium Telluride, Thermal Evaporation 
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Chapter 1 Introduction 

1.1 Introduction 

Global energy production levels are falling short of demand. The situation is 

worse in many third-world countries. The abundance and quality of electricity and its 

perennial supply are the most important factors contributing to the growth of a 

country’s economy. As per U.S. Energy and Information Administration’s data [1], the 

world energy consumption shall rise drastically in countries outside the Organization for 

Economic Cooperation and Development (non-OECD nations).  

 

Figure 1.1: World Energy Consumption 1990-2035 in Quadrillion Btu units 

forecasted by U.S. Energy and Information Administration (EIA) in report 

DOE/EIA-0484 (2011) [Ref. 1] 

The increasing gap in demand and supply of electricity can be shortened if 

electricity production from non-conventional sources is encouraged. Traditionally, 

electricity production is done through coal, oil or natural gas [2]. The overwhelming 

demand for these fuel sources combined with the inability to produce from or restore 
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the depleted layers of rock which are the main source of these traditional fuels has had 

a great impact on every country’s economy. Here comes the need for non-traditional 

energy sources or the so called renewable energy sources like water, wind, biomass, 

solar, tides, geothermal and nuclear power [2]. Renewable energy sources contribute 

towards more than 16% of world’s energy supply. 

Renewable energy sources are those available in nature free-hand. If used 

wisely, these sources can completely eliminate the dependence on traditional energy 

sources. Currently, electricity is being produced in various countries by water and wind. 

Electricity from water is produced at a hydro-power station from water falling on 

turbines and that from wind is produced at a wind-mill where the wind rotates rotor 

blades. As per 2010 data, hydro-power has a worldwide capacity of 1,010 GW. This 

makes up to 21% of electricity from renewable sources [3]. Wind power of 197 GW has 

been reported in 2010 world energy census [4]. 

Nuclear fission and fusion reactions are the sources of nuclear power [5]. A 

controlled fission or fusion reaction can produce quantifiable heat which produces 

steam and in-turn steam rotates the turbines to produce electricity. Nuclear power has 

a world share of 14% with a majority of that share being generated in first-world 

countries. Uncontrolled nuclear fission and fusion reactions pose a risk to the 

environment. If these reactions are not properly controlled they may lead to a nuclear 

disaster which can destroy a city or a country including all life and property in that area. 

These potential risks from nuclear energy ask for high end nuclear reactors with up-to-

date security features. Such a project would take a large amount of public money and 

the cost of such power is higher than that produced from other traditional and non-

traditional energy sources. 

Solar power is generated from the solar radiation incident on our planet [6]. The 

abundance of such an energy source combined with its availability at various regions on 

the planet has proved to be a boon for mankind. Most ancient users of solar radiation 

are plants and trees as they use the radiation from the Sun during the process of 
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photosynthesis to convert water and carbon dioxide to carbohydrates in presence of 

Chlorophyll. The photoelectric effect [7] was first observed by Heinrich Hertz and is 

described as a process by which electrons can be emitted from a metal or a non-metallic 

solid by exposing them to radiation. This was later verified by Albert Einstein and a 

series of papers published by him on the photoelectric effect has brought him a Nobel 

Prize in 1921. 

 

Figure 1.2: Illustration of Photoelectric effect [Ref 7] 

 

Solar energy has been used by many ancient civilizations for a variety of works 

[6]. The most important of all those uses is heating materials with the help of solar 

energy. Solar radiation consists of UV, Visible and IR wavelengths. IR wavelength 

radiation is responsible for heating of materials. Solar water heaters and cookers are 

most prominent in different third-world economies. Solar water heaters installed over 

house roofs are perfect examples for heating property of Sun’s radiation. 
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Figure 1.3: Illustration of Solar energy utilization for heating purposes [Ref 6] 

Solar power generation is the process of converting solar energy into electricity. 

This is done using Photovoltaic materials. Photovoltaic materials are those in which 

electron-hole pairs are generated as a result of incident solar radiation. These electron-

hole pairs are separated inside the solar cell by the presence of an electric field. The 

electrons then travel through the external circuit before they recombine with the holes.  

Shockley-Queisser Theory: 

 

Figure 1.4: Shockley-Queisser depiction of light energy used against               

band-gap of material [Ref 8] 
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Figure 1.5: Shockley-Queisser depiction of open circuit voltage against          

band-gap of material [Ref 8] 

 

Figure 1.6: Shockley-Queisser depiction of short circuit current against          

band-gap of material [Ref 8] 
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Figure 1.7: Shockley-Queisser depiction of maximum possible efficiency     

against band-gap of material [Ref 8] 

Ideally, the open circuit voltage seen on the solar cell should be equal to the 

built-in potential difference at the junction in the solar cell. But the recombination 

process and other factors decrease the open circuit voltage seen across the device. This 

has been studied by William Shockley and Hans Queisser [8]. They’ve also studied the 

factors that contribute toward short-circuit current losses. The major factors are 

reflection, glass absorption, TCO absorption, window layer absorption, and deep-

penetration losses. 

Solar cells can be made by a p-n homo-junction or hetero-junction based device. 

Solar cells based on multi-junction concentrators have also been studied by various 

groups and they do not follow the limits set forth by Shockley and Queisser. A homo-

junction based solar cell is made from a single crystal in which n-type and p-type 

dopants are induced from either side. These can be abrupt junctions or graded 

junctions. A hetero-junction based device on the other hand is made by bringing 
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together two completely different crystals one each doped with n-type and p-type 

materials. 

 

Figure 1.8: Illustration of homo-junction solar cell 

 

Figure 1.9: Illustration of hetero-junction solar cell 

 

Solar cells can be fabricated using Silicon or Thin Film technology. Silicon based 

solar cells have been researched for a long time and provide the maximum efficiencies 

known to date with respect to regular solar cells [9]. Thin Film technologies have been 

investigated in the past couple of decades as a means to overcome the increasing costs 

of silicon solar cell fabrication. Thin Film technologies can be based over the following – 

• Cadmium Telluride 

• Copper Indium Gallium Selenide (CIGS) 

• Gallium Arsenide 

• Light Absorbing Dyes (DSSC) 

• Organic / Polymer materials 
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Thin Film solar cells are being preferred to Silicon solar cells because Silicon is an 

indirect band-gap semiconductor. Silicon solar cell fabrication costs are rising too 

leaving the market open for Thin Film Solar cells. 

The high cost of photovoltaic (PV) solar panels remains a major obstacle for rapid 

market penetration. There is a considerable amount of worldwide research to develop a 

low-cost device with an adequate efficiency for solar energy conversion [10]. Among the 

most promising materials suitable for the fabrication of low-cost thin film solar cells, 

ternary I-III-VI2 semiconductors with chalcopyrite structure are considered as leading 

candidates. The most studied member of the family CuInGaSe2 (CIGS) has a direct band 

gap of about 1.20 eV and a high absorption coefficient (1*105 cm-1). Interest in these 

materials has increased since 19.7% efficiency was reported by the NREL group [11], 

while in the superstate mode, Solar cells of 12.8% efficiency under normal operation 

have also been reported [12]. However, the efficiency of CIGS seems to saturate and 

further improvements require a deeper understanding of the underlying physics of the 

device, in addition to optimization of material growth and post-deposition processing 

steps. One of the challenges with this alloy material is the high volatility of selenium. 

This problem should be alleviated by substituting the selenium by the less volatile 

element tellurium.  

The present research project is aimed at exploring the growth of CuInTe2 (CIT) 

using a low-cost electrodeposition technique, characterizing the material in order to 

establish required properties for solar cells, and fabrication of devices from the resulting 

layers. The advantages of electrodeposition as a method of preparing thin films for 

photovoltaic applications are well-known [13], and include - the low capital cost of the 

equipment required, the adaptability to large area growth and the use of normal 

laboratory conditions for growing materials, without the requirement of vacuum 

systems.  

CdTe based solar cells, on the other hand, are the most researched after Silicon 

solar cells. To date solar cells of 17.3% efficiency [14] have been reported and panels of 
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12% efficiency and more have also been reported. CdTe has a direct band gap of 1.44eV 

which is ideal for a photo semiconductor application as per Shockley-Queisser theory. 

Also the ease and effectiveness of Chemical Bath Deposition of CdS is a reason behind 

the great success of these solar cells [15]. CdTe is a direct band-gap material unlike 

Silicon which is an indirect band-gap material. Indirect band-gap materials are not 

efficient in terms of energy conversion. From Shockley Queisser Theory [15], it is evident 

that CdTe has a theoretical maximum efficiency of around 34%. CdTe for CdTe based 

solar cells can be deposited through Thermal Evaporation or Closed Space Sublimation 

(CSS) techniques. From many studies it was concluded that Closed Space Sublimation 

produces better results when compared to Thermal Evaporation. CdS for CdTe based 

solar cells can be made by Chemical Bath Deposition (CBD) or Thermal Evaporation. CBD 

is by far the most fruitful method of CdS deposition. 

Let us now dive into the theory of solar cells, principles of operation of CIT-CdS 

and CdTe-CdS solar cells and their fabrication techniques. 
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Chapter 2 Theory 

2.1 Semiconductor device structure and p-n junction formation 

 Semiconductors are solid state materials whose conductivity can be changed 

very low (insulators) or very high (as in the case of metals). Electric current in both 

metals and semiconductors is closely related to the flow of electrons. Many electrons 

are tied to the parent atom and are unable to contribute to the electric current. 

However, the regular placement of atoms in metals and semiconductors provides the 

conditions for some electrons to be shared between the atoms in the crystal. It is these 

electrons that contribute to the electric current [16]. 

Semiconductors as we know are materials whose characteristics can be modified 

by doping. Doping with n-type material gives the semiconductor properties with 

predominantly electron-based conduction while that with a p-type material gives the 

semiconductor a hole dominant conduction property. 

 

Figure 2.1: Two dimensional model of Silicon with dopants of a) n-type b) p-type 

[Ref.42] 

 



11 
 

2.1.1 p-n Junction 

When a p-type semiconductor and an n-type semiconductor are fabricated in the 

same material they form what is called a p-n junction. The energy band diagrams related 

to the p-n junction formation are shown below –  

 

Figure 2.2: Energy band diagrams of n-type (left) and p-type (right) semiconductors 

[Ref.16] 

 

 

Figure 2.3: p-n junction energy band diagram [Ref. 16] 
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During this process Fermi levels are aligned, Ec and Ev energy levels bend which 

creates an energy difference, qVbi and leads to a built in potential, Vbi.  

The junction then undergoes diffusion of charge carriers from both the sides 

which forms the depletion region. This diffusion creates an electric field in the depletion 

region which in turn stops the flow of excess charge carriers. 

 

 

Figure 2.4: Illustration of (a) energy bands and (b) depletion region and immobile charge 

carriers in p-n junction under no bias [Ref. 16] 
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Reverse biased p-n junction: 

 

Figure 2.5: Illustration of (a) energy bands and (b) depletion region and immobile charge 

carriers in   p-n junction under reverse bias [Ref. 16] 

A negative voltage on the p-side reverse biases a pn-junction. 

• The separation in bands changes by the applied voltage (in an ideal diode). 

• A large barrier exists at the junction and essentially no electrons and holes can 

diffuse across. 

• A few electrons and holes can drift across, but there are few minority carriers 

available for this process. Thus, we get a constant small current, IS, in reverse 

bias. 
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Forward biased p-n junction: 

 

Figure 2.6: Illustration of (a) energy bands and (b) depletion region and immobile charge 

carriers in   p-n junction under forward bias [Ref. 16] 

• A positive voltage on the p-side forward biases a pn-junction. 

• The separation in bands is reduced by the applied voltage (in an ideal diode). 

• A small barrier exists at the junction and many electrons and holes can diffuse 

across. 

• A few electrons and holes can still drift across the other direction, but this is 

usually negligible. Thus, we get an exponentially increasing current in forward 

bias. 
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The diode equation can be written as –  

𝐼𝐷 =  𝐼𝑆 �𝑒
𝑉𝐷
𝜂𝑉𝑡 − 1� 

 

2.1.2 Metal – Semiconductor Junction: 

A metal – semiconductor junction can be illustrated as follows – 

 

Figure 2.7: Metal – Semiconductor contact [Ref. 17] 

Metal – semiconductor contact can be of two types –  

• Ohmic contacts:   

– behave like resistors. 

– connect semiconductor materials to the outside world. 

• Schottky  diodes:   

– pn junctions (rectifying). 

– low “turn-on” voltage, high speed, sometimes used for high-power 

devices. 
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Band diagram for a Metal – Semiconductor contact:  

 

Figure 2.8: Illustration of bands in a metal and a semiconductor [Ref. 16] 

 

• Fermi level, EFM, is positioned inside the conduction band for a metal. 

• Almost all states are filled up to EF. 
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Band diagram for Metal – Semiconductor contact: 

 

Figure 2.9: Metal – Semiconductor contact formation and energy band changes [Ref. 16] 

 

Energy band offset is given by    

Built-in potential is given by  

 

 

 

 

( )B m sq q qφ φ χ= −

( )
where  is the metal semiconductor
work function difference

bi m s ms

ms

qV q q qφ φ φ

φ

= − =
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 Schottky diode in Forward Bias: 

 

Figure 2.10: Schottky diode in Forward bias with change in energy band structure 

[Ref. 16] 

 

• In forward bias the barrier is lowered and electrons move from the 

semiconductor to the metal. 

• This gives an IV characteristic essentially identical to the pn-junction.  However, 

the current mechanism is different. 
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Schottky diode in Reverse Bias: 

 

Figure 2.11: Schottky diode in Forward bias with change in energy band structure      

[Ref. 16] 

 

• In reverse bias the barrier increases and no electrons can move from 

semiconductor to metal. 

• A few electrons move from the metal to the semiconductor and we get a small 

reverse current. 
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Ohmic Contacts: 

Often we do not want a metal-semiconductor contact to act like a diode. If we 

need to connect a device to another device, or to the outside world, we need a 

linear, low-resistance contact. In practice we heavily dope the region 

immediately adjacent to the contact and rely on tunneling between the 

semiconductor and the metal. Doping can be performed directly or by depositing 

the dopant along with the contact material and alloying at elevated 

temperatures. 

 

Figure 2.12: Ohmic contacts and band energy diagrams for both positive and negative 

voltages applied on metal [Ref. 16] 
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2.2 Device Structures and Principles of Operation 

 The device structure worked upon for CdS / CIT solar cells is shown below – 

 

 

Figure 2.13: Device Structure Illustration CdS / CIT solar cell 

 

ITO/ Tin Oxide interface forms the negative electrode contact. CdS thin films were 

deposited through chemical bath deposition over the RF sputtered Tin Oxide. CdS films 

were then annealed and CIT was electrodeposited over the annealed CdS. The samples 

were re-annealed in order for the CIT to yield better grain size. Finally contacts were 

made on the CIT films. 

 

 



22 
 

The device structure for CdS / CdTe solar cells is shown below – 

 

 

Figure 2.14: Device Structure Illustration CdS / CdTe solar cell 

 

Again ITO/ Tin Oxide interface forms the negative electrode contact. Intrinsic Tin Oxide 

is deposited on ITO by RF Sputtering. CdS thin films were deposited through chemical 

bath deposition and also through Thermal Evaporation. CdS films were then subjected 

to a CdCl2 dip and annealed in inert ambient. CdTe was deposited through Closed Space 

Sublimation technique. After in-situ annealing and CdCl2 treatment samples were re-

annealed. Contacts were made by Graphite and Silver paste after thin Cu sputter and NP 

etch. 
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Copper Indium Telluride 

 Copper Indium Telluride falls in the group of I-III-VI2 compounds. These 

compounds are also referred to as the chalcopyrite compounds. They are a group of 

semiconducting materials with diverse optical, electrical, and structural properties [19-

26]. Ternary chalcopyrite compounds appear to be promising candidates for solar-cells 

applications [31-34], light-emitting diodes, nonlinear optics, and optical frequency 

conversion applications in solid state based tunable laser systems. These have 

potentially significant advantages over dye lasers because of their easier operation and 

the potential for more compact devices. Tunable frequency conversion in the mid-

infrared (IR) is based on optical parametric oscillators (OPO’s) using pump lasers in the 

near IR. On the other hand frequency doubling devices also allow one to expand the 

range of powerful lasers in the far infrared such as the CO2 lasers to the mid-infrared 

[27-30]. 

 The chalcopyrite model structure is shown below: 

 

Figure 2.15: Model of Chalcopyrite Crystal Structure [Ref. 18] 
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 At high temperature there is phase transition to a disordered zinc blende-like 

structure, whereas at high pressures a transition to a NaCl like structure is common, 

such as also occurs in zincblende compounds [35]. 

 Copper Indium Telluride (CIT) is the least researched compound in the group. 

Lately it was found that CIT could be used in solar cell applications. Various groups have 

illustrated the deposition of CIT through vacuum evaporation, microware irradiation, 

electrodeposition and flash evaporation but the most promising method seems to be via 

electrodeposition. It has been shown by Dharmadasa and group that CIT could be 

electrodeposited for thin film applications as in solar cells [10]. The group has not 

discussed the fabrication of the solar cell but given the conditions and procedures for 

the electrodeposition of CIT as a thin film. This electrodeposition method for CIT has 

been followed in this research work with a few changes made in the process. 

 

Cadmium Sulfide 

 Cadmium Sulfide is a compound that has high potential to act as a window 

compound for solar cell applications. Its importance has well been established by 

various groups and various deposition methods. Chemical bath deposition, however, is 

the method by which a majority of research groups deposit the compound. It is known 

to be cheap and yielding good films compared to other deposition techniques. The high 

band-gap of CdS 2.4eV is the main reason for its characteristics as a window material 

[36]. Most of the light incident on CdS passes through as the band-gap is high and thus 

its property. In order for the solar cell to work in heterojunction combination it is also 

necessary that one material forming the junction acts like a mobile charge carrier 

separator. At the CIT/ CdS junction charge carriers get separated and thus electricity is 

produced by flow of these carriers through the ITO / Graphite contacts. CdS films of 

various thicknesses have been made and characterized to yield better results with CIT 

films. 
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Cadmium Telluride 

 Cadmium Telluride is an interesting compound with an ideal direct band-gap of 

1.5eV. The effectiveness of CdTe in a solar cell can be measured by the efficiencies it has 

produced. There is undoubtedly great potential for CdS / CdTe solar cells to become the 

most researched and most efficient. CdTe layer in CdS / CdTe solar cells is the part 

where light gets absorbed. Electrons and holes are produced by photon absorption and 

they contribute towards the current produced. CdTe layer has to be sufficiently thick so 

that all light gets absorbed [37]. Typical thickness is 5µm. 

 

ITO / SnO2 

 ITO glass has been the most widely used substrate for solar cell research in labs. 

It provides the flexibility to work on and the mechanical strength to the solar cell.  ITO 

glass serves as one of the electrode for the solar cell. ITO is the bottom negative 

electrode in many solar cell applications. ITO serves as a conductor because of its low 

sheet resistance usually in the order of 5 - 20 Ω. In order that the compounds deposited 

do not shunt off with the ITO it is customary to pre-deposit the ITO glass substrates with 

Tin Oxide (ITO / Tin Oxide mixture) after cleaning and etching the ITO glass surface. This 

not only reduces the chance of shunts but also reduces the resistance that the charge 

carriers have to encounter [38]. It is usually seen that RF sputtered Tin Oxide on ITO 

glass reduces the sheet resistance to just a few ohms. Tin Oxide of various thicknesses 

has been RF sputtered to obtain optimum performance in the solar cell. 

 

Contacts 

 As previously discussed, ITO forms the negative electrode contact and the 

positive electrode contact is usually graphite paste - silver paste mixture or a high work 

function metal. Commercially available Colloidal Graphite is also often to make contacts. 
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It is most widely used because of ease of use and being cheap. For metals to be used as 

contacts they either have to be RF sputtered or deposited with e-beam evaporation 

techniques. The right choice of contacts is the key to high efficiencies. In this research 

work Graphite paste, Silver paste and metals have been tested as contacts. 

 

Three-electrode Potentiostat sytem 

 CIT was electrodeposited using a 3-electrode potentiostat. First, to know the 

correct deposition potential a cyclic voltagram test is performed during which voltages 

ranging from a given lower and upper bound were applied at the working electrode with 

respect to the counter electrode. During this process the compound to be deposited 

from the electrolyte forms at its deposition potential. Any other compounds being 

formed within the lower and upper bounds will also be formed. The plot of applied 

voltage on X-axis and deposition current on Y-axis is drawn. The potential at which there 

is a loop on the graph is chosen as the deposition voltage. The compounds formed at 

various such potentials can only be characterized by other methods like XRD and UV-Vis 

Absorption spectra techniques. Once the deposition potential is known, then a Chrono- 

Amperometry is performed during which a constant voltage is applied for a specified 

time period in between the working and counter electrodes. Deposition happens at the 

working electrode. The function of the reference electrode during the whole process is 

to maintain a stable potential during the redox reaction. 
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Chapter 3 Experimental Procedures 

 The fabrication procedures for the device structures illustrated in section 2.2 are 

given below -  

3.1: Pre-Sputtering of Tin Oxide 

 Tin Oxide (99.99% pure, RF Sputter target) was deposited on commercially 

available ITO glass slides. Commercially available ITO glass slides were first cleaned in 

Methanol, Acetone, Isopropyl Alcohol and Deionized water after cutting them to pieces. 

Organic contaminants and other particle contaminants were then etched off using 

Microwave Induced Plasma etch for about 10 – 30 seconds. This ensures removal of any 

particles sticking onto the slides that would interfere with the normal operation of the 

solar cell. RF Sputtering of Tin Oxide on ITO glass was carried out in an evacuated 

chamber. After evacuating the contents of the chamber Argon was introduced at a flow 

rate of 15 sccm until steady gas pressure was attained in the chamber. Then the Tin 

Oxide target was subjected to excitation by a RF gun at a power of 75 watts and it 

produced a uniform film of Tin Oxide on the ITO glass. For uniform deposition on all 

corners of the slides it is recommended to rotate the slide at a fixed rate while the 

deposition is taking place. Thickness monitoring was done by a precise calibrated Gold 

crystal thickness monitor available in the laboratory. 

 

3.2 Deposition of CdS by CBD 

 As previously mentioned CdS films were produced by chemical bath deposition 

technique. Chemical bath deposition is known to produce good films. Thickness of CdS 

films at some places on the glass slide is not uniform if the solution is being stirred 

during deposition. The solution to deposit CdS is made by mixing 2.025mL of 

Ammonium Hydroxide, 0.2738g of Cadmium Chloride and 0.27g of Ammonium Chloride 

in 72.975mL of DI water to form a 75mL solution. This solution is then heated to 70°C 

which mobilizes the ions in the solution and paves way for the formation of CdS. The RF 
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Sputtered ITO glass samples are immersed during heating of the solution. This makes 

sure that there is no temperature gradient which in any way affects the mobility of ions 

in the solution. Thiourea is then added to the hot solution which initiates the bonding 

between mobile cadmium ions in the solution and the sulfur ions from the thiourea. It is 

seen that there is a delay in the appearance of CdS color (orange-yellow) inside the 

solution due to the fact that thiourea slowly dissosciates into ions. The mobile Cadmium 

and Sulfur ions form Cadmium Sulfide and deposit on both sides of the suspended glass 

slide. It is observed that the deposition of a fair amount of CdS usually occurs after 8 

minutes. This has also been exemplified in research papers of various other research 

groups. The usual time taken for the deposition is around 10 - 15 minutes. CdS 

deposition through CBD is a self-limiting process which has been shown to deposit 

about 80 – 120 nm of CdS 

 After deposition of CdS the slides were subjected to ultra-sonication for 2 

minutes to remove the CdS that hasn’t stuck to the glass slide quite well. This is the first 

step in attaining uniform thickness of CdS films. Then the backside of the glass was 

etched off with dilute HCl to remove CdS and the slides were subject to ultra-sonication 

once again. This made sure that there was no CdS on the backside that would interfere 

with the properties or working of the solar cells. 

 

3.2.1 Cadmium Chloride dip  

  It is a custom in CdS thin film fabrication to perform a Cadmium Chloride 

dip. This process produces good films because it improves the grains of CdS at the 

boundary on the top. This is usually a wet process although dry CdCl2 annealing 

treatments have also been studied by other research groups. The wet process is done by 

mixing 1.125g of 5N CdCl2 powder in 75mL of industrial grade Methanol. The solution is 

then heated to 59°C until 75% saturation is attained and then the CdS coated glass slides 

are suspended in the solution for 15 minutes. It is very important that the temperature 

be kept constant and less than 60°C because Methanol begins to boil at 60°C. The slides 
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are then immediately rinsed in DI water and dried in dry-N2 gas to remove any 

remaining CdCl2 and moisture. 

 

Figure 3.1: SEM image of sample showing residual CdCl2 

The clogs on the sample appear due to improper finishing of CdCl2 dip. After CdCl2 dip 

the samples have to be washed in DI water to remove any residual CdCl2. Streaks of 

CdCl2 appear as clogs as shown above. 

 

3.2.2 Annealing of CdS films 

  The CdS films were then subject to a high temperature anneal in an inert 

Argon ambience at 450C for 30 minutes. Other anneal temperatures have been 

studied in our investigations of CdS / CdTe solar cells. It is mandatory to have an inert 

ambient in the annealing chamber prior to starting the heating of the slides. This 

makes sure that there are no unwanted substances or particles in the chamber that 
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may interfere with the CdS films. Formation of other compounds was seen in samples 

which were subject to annealing without prior evacuation of air in the chamber. For 

example, a CdO peak was observed in the XRD analysis of such samples. 

 

3.3 Electrodeposition of Copper Indium Telluride 

 Copper Indium Telluride electrodeposition was done through a standard three 

electrode cell potentiostat. Gamry potentiostat was used for the process with saturated 

calomel electrode as the reference electrode. Dharmadasa and group have reported 

electrodeposition of CIT using a similar process but with an Ag/AgCl electrode. 

Dharmadasa’s group has not investigated the use of CIT on solar cells. In this document 

we also investigate on how to use CIT for solar cell applications. 

 

 

Figure 3.2: Model 3-electrode Potentiostat system [Ref 31] 

 Cyclic Voltagram of CdS / SnO2 / ITO films was done in solution used for CIT 

deposition to find the deposition potential for CIT. The solution for electrodeposition 

was made from indusrial grade 1mM CuSO4, 10mM In2(SO4)3 and 0.5M TeO2. These 
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commercially available products were mixed in DI water and stirred using a magnetic 

stirrer on commercially available magnetic hot plate stirrers. TeO2 is a substance with 

low solubility at room temperature. It has been reported by various groups that heating 

the solution to about 100°C increases the solubility of TeO2. Solubility of TeO2 can also 

be increased by adding weak acids to the solution. Citric acid has been used in this 

research work. After the solution was stirred for an extended period of time of at least 4 

hours, it was used for electrodeposition using the three electrode potentiostat. The pH 

of the solution was maintained at 1.5. 

 Typical deposition potentials of CIT were between 750mV and 1100mV as seen 

in cyclic voltagrams when different concentrations of precursors were used under 

varying pH conditions. It has been observed that at approximately 800mV and 1000mV, 

CIT deposition is faster and yielded better results. Many of the samples were deposited 

at voltages of 800mV because they gave better open circuit voltages than those 

deposited at 1000mV. Depositions were usually carried out for an hour before 

subjecting to annealing at temperatures between 350 and 400 C in Argon / atmospheric 

conditions. 

 

3.4 Thermal Deposition of CdS 

 CdS for CdTe / CdS solar cells can only be deposited by other methods like 

Thermal Evaporation. In this method, industrial grade pure CdS powder is taken in a 

boat placed between two conductors. When current is passed through the conductors 

the material in the boat begins to vaporize and deposit all above. So, the process is 

carried in an evacuated bell-jar shaped chamber where the sample is placed above the 

boat at a certain height depending on size of the chamber, placement of thickness 

monitor and other factors. To evacuate the chamber a powerful two-stage rotary pump 

is used to create a vacuum in the range of micro Torr.  

 



32 
 

 

Figure 3.3: Model of Thermal Evaporator 

 

3.5 CdTe deposition by CSS 

 CdTe deposition by Closed Space Sublimation method is very well known and has 

yielded high efficiencies. This method employs a quartz tube from which gas can be 

evacuated using a rotary pump. There are inlets on the quartz tube for the entry of 

Argon or (Helium + Oxygen) or (Argon + Oxygen) gas mixtures. The sample is placed 

inside a graphite block above CdTe powder or a prior CdTe-deposited metal film that 

can withstand high temperatures and can be used as a source of CdTe. Deposition 

happens after sublimation of CdTe starts from the source. CdTe sublimation occurs at 

460°C. Deposition of CdTe from the source occurs if the source is at a higher 

temperature than the sample, which is referred to as substrate during the CSS. After 

reaching the desired temperatures CdTe starts to sublime from the source and deposit 

on the substrate. Deposition in CSS can be controlled by a number of parameters 

including source and substrate temperatures and gas ambient inside the quartz tube. 
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After depositing the required thickness of CdTe the temperature is brought down to 

400°C and the substrate undergoes in-situ annealing for 10 minutes. Then the tube is 

allowed to cool down before removing the substrate and source.  

  

3.5.1 Annealing of CdTe films 

 After removing the substrate from the CSS chamber, it is subjected to a 

CdCl2 treatment and annealed at 400°C in an annealing furnace for 30 minutes in an 

inert ambient. Annealing of CdTe in other gas ambients at various pressures are being 

studied by other members of Dr.Vijay Singh’s group. 

 

3.5.2 NP etch of CdTe films 

  NP etch is an acid dip used mainly for CdS / CdTe solar cells. Formation of 

a low-resistance contact to CdTe is essential for commercialization of CdTe based 

photovoltaic devices. Various methods have been studied by other groups for surface 

pretreatment before contact formation like Bromine in Methanol solution, Potassium 

Dichromate – Sulfuric acid mixture and Nitric Phosphoric (NP) acid mixtures. NP etch 

process has been used for this research.  0.176mL of Nitric acid and 14.164mL of 

Phosphoric acid is mixed with 5.66mL of DI water. CdTe deposited samples are then 

immersed into this solution one at a time and removed once bubbles are seen emerging 

from the solution. The bubble formation is an indication that the surface has been 

oxidized and ready to be used for contact formation. If samples have been left in the 

acid after bubble formation they got over-etched forming deep trenches at the grain 

boundaries. Typical dip time is between 5 – 30 seconds. The effects of NP etch over 

open circuit voltages on CdS / CdTe solar cells are discussed in the results section. 
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3.6 Contacts 

 Contacts were made on the top of electrodeposited CIT films using graphite 

paste, silver paste or high work function metals. It is seen that high work function 

metals gave better efficiencies than others due to increased carrier collection.  Graphite 

paste is also seen as a cheap, viable option. Contacts made using Graphite paste made it 

necessary that the sample dry first before testing or usage whereas high work function 

metals that were deposited using RF sputter or electron beam evaporation could be 

used immediately for testing. RF sputtered Nickel has been used for CdS / CIT solar cell. 

 However for CdS / CdTe solar cells after the NP etch, a thin Copper layer needs 

to be sputtered to increase the surface conductivity of CdTe. Typically 5nm of Copper is 

sputtered using a RF Sputter process as discussed in the pre-sputtering of Tin Oxide 

section. Graphite paste is then applied through a mask and allowed to dry before 

applying a small amount of Silver paste over the Graphite paste which is the final step in 

the fabrication process for CdS / CdTe solar cells. 
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Chapter 4 Characterization and Analysis 

X-ray Diffraction pattern data was taken using a Bruker-AXS D8 DISCOVER 

Diffractometer. UV-Vis Absorption data was taken using Cary 50 Probe UV-Visible 

Spectrophotometer. 

4.1 CdS / CIT solar cell: Characterization for CdS and CIT were done separately and as a 

junction using XRD, UV-Vis Absorption spectra and open circuit voltage test techniques. 

Samples have been made with deposition potential obtained from Cyclic Voltagram and 

under different annealing conditions. 

 XRD pattern for chemical bath deposited CdS is shown below -   

 

Figure 4.1:  XRD pattern of CdS deposited by CBD 

From the XRD pattern peaks at 27°, 44° and 52° can be seen which correspond to 

planes (1 1 1) , (2 2 0) and (3 1 1) respectively. XRD pattern indicates a cubic 

phase of CdS. This has been confirmed with theoretical values. 
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 UV-Vis Absorption data for chemical bath deposited CdS over ITO is 

shown below -   

 

Figure 4.2: UV-Vis absorption for CBD - CdS 

The absorption curve above indicates that the CdS had been deposited and confirms it. 

This is because it has been verified from various other sources that chemical bath 

deposited CdS shows a kink at 515 nm. The band-gap for CdS is 2.4eV which 

corresponds to 515nm in the wavelength spectra. 
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XRD pattern for electrodeposited CIT deposited over ITO is shown below -   

 

Figure 4.3: XRD data on electrodeposited CIT 

From the XRD pattern above, it can be seen that the deposited material is CIT. As 

per JCPDS data CIT should have peaks at 2θ= 25°, 41° and 49° [43]. The peak at 30.5 is 

that of ITO / Tin Oxide. ITO being more crystalline then Tin Oxide has a high intensity 

peak compared to CIT.  
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UV-Vis Absorption data for electrodeposited CIT deposited over ITO is shown 

below -   

 

Figure 4.4: UV-Vis absorption for electrodeposited CIT 

Figure 4.4 shows the absorption of a CIT film in arbitrary units in the wavelength 

range of 300nm – 1100nm. The energy band gap of CIT is in the range of 0.95eV to 

1.1eV range which corresponds to 1127nm – 1305nm in the terms of wavelength. This 

range of wavelengths cannot be seen over the absorption meter used. 

Figures 4.5 and 4.6 show the cyclic voltagram curves of CIT deposited over plain 

ITO and on CdS deposited ITO glass slides. Formation of a loop in the cyclic voltagram 

indicates the deposition of a compound and the voltage value where the oxidation and 

reduction half cycles cut is the electrodeposition voltage for that compound. For CIT 

deposition in both cases, the deposition potential is around 784mV. 
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 Cyclic Voltagram of CIT electrodeposited on ITO is shown below -  

 

Figure 4.5: Cyclic Voltagram of electrodeposited CIT over SnO2-ITO 

 

 Cyclic Voltagram of CIT on CdS deposited ITO is shown below –  

 

 Figure 4.6: Cyclic Voltagram of electrodeposited CIT over CdS-SnO2-ITO 
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4.2 CdS / CdTe solar cell: 

 The XRD and UV-Vis absorption data for CdS in CdS / CdTe solar cells that were 

used to investigate the effect of anneal temperatures on open circuit voltages is the 

same as those shown for the CdS / CIT solar cell in section 4.1. CdS was deposited using 

the same process of chemical bath deposition. 

 

 
Figure 4.7: XRD pattern of CdTe  

 

The peaks at approximately 24°, 39°, 46°, 62° and 71° correspond to cubic Cadmium 

Telluride. Thus from Fig. 4.7 it can be inferred that the compound is indeed Cadmium 

Telluride. 
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UV-Vis absorption measurements of CdTe film showed an absorption edge 

around 823nm. The edge in absorption spectra indicates high crystallinity of compounds 

whereas a kink indicates less crystalline structure. CdS produced by CBD is cubic but less 

crystalline whereas CdTe deposited by CSS has a high degree of crystallinity. The edge of 

823nm for CdTe samples translated to 1.5eV in terms of band-gap which is its 

theoretical value. 

 

 
Figure 4.8: UV-Vis absorption for CdTe deposited by CSS 

 

SEM images are taken for CdTe films deposited in vacuum using the CSS 

technique at 100 mTorr vacuum (∆T=1000C). Figure 4.9 shows the images at different 

magnifications using Hitachi S-900 instrument available in our laboratory. It can be 

verified that the film being deposited is highly crystalline and has a cubic structure. 
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(a) 

 

                

              (b) 

Figure 4.9: SEM images for CdTe deposited by CSS at magnifications of (a) 5K and (b) 10K 
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Chapter 5 Results and Discussion 

5.1 CdS / CIT solar cell: 

CdCl2 dip for CdS / CIT solar cell:  

CdS films of CdS /CIT solar cell were subject to the regular CdCl2 

treatment as discussed in section 3.2.1. Samples that were subject to CdCl2 treatment 

have not shown much performance degradation over those that were not subject to the 

treatment. Performance degradation was measured in terms of open circuit voltage.  

CIT electroeposition:  

It was seen during electrodeposition that CIT sticks to the CdS / ITO 

substrate if the deposition time was less than 1.5hrs. For samples on which multi-hour 

deposition was done, the CIT film peeled off during deposition and remained as a sheet 

in the electrolyte. 

Formation of CIT: 

 As discussed in section 3.3, CuSO4, In2(SO4)3 and TeO2 have been used 

for electrodeposition. It is important to know the kinetics of the reactions that lead to 

the formation of CIT. At -600mV, Te reduces to form H2Te 

Te + 2H+ +2e- = H2Te 

 In addition to the reaction above, other reactions taking place at anode 

are –  

2H2Te + HTeO2
+ = 3Te + 2H2O + H+                                         (1) 

2H2Te + Cu2+ + In3+ + 5e- = CuInTe2 + 2H2                                                 (2) 

2H2Te + 2Cu2+ + 4e- = 2CuxTe + 2H2                           (3) 
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The main reaction taking place at cathode is  

2Cu2+ + 2In3+ + 4HTeO2
+ + 14e- = 2CuInTe2 + 2H2O + 3O2                          (4) 

The competition to consume H2Te by reactions 1 and 2 could lead to precipitation of 

elemental Te or CIT at the cathode. If such precipitation occurs stoichiometric CuInTe2 

formation gets harder. 

 

CIT annealing:  

CIT annealing was done at temperatures of 350,400 and 450°C. It was 

however noted that at 450°C annealing causes the film to lose a small portion of the 

electrodeposited film. Effect of annealing was also compared between Argon and 

Oxygen gas ambients. It was seen that the annealing in Oxygen led to formation of TeO2 

on the electrodeposited film. This was confirmed by XRD. Also the change was drastic if 

anneal time was more than 10 minutes. More insight is needed into the solubility of 

TeO2 in the electrolyte solution at this point. Thus, annealing in Argon was performed at 

400°C for 30minutes which effectively strengthened the peaks in X-ray data from the 

film by atleast 100units. 

 

Open Circuit Voltages for CdS / CIT solar cells:  

Table 5.1 below shows the variation of open circuit voltages for different 

annealing temperatures used for CIT annealing for two deposition durations namely 30 

minutes and 60 minutes. For these samples CdS was annealed at 400°C for 30 minutes 

to maintain coherence in the experiment. From Table 5.1 it can be inferred that the best 

annealing temperature for CIT is 400°C and better open circuit voltages are seen on 

those samples that had undergone CIT electrodeposition for 60 minutes. CIT 

electrodeposition at 30 minutes and 60 minutes can be compared and said that at 60 
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minutes there is more material that gets deposited on the sample than in the case of 30 

minutes thus covering all of the CdS without leaving pin holes or other defects. 

 

Table 5.1: Open circuit voltages for CdS / CIT solar cells at different anneal temperatures 

and deposition times 

Deposition Time 
Anneal Temperatures for CIT 

350°C 400°C 450°C 

30 minutes 57.4mV 121.6mV 100.2mV  

60 minutes 98mV 183mV 167mV 

 

 

Figure 5.1: J-V curve for CdS/CIT solar cell CIT 60min deposition and 350°C anneal in Ar 

 

-0.03

-0.01

0.01

0.03

0.05

-1 -0.5 0 0.5 1

Current (A) 

Voltage (V) 

J-V curve CdS/CIT solar cell  
CIT 60min deposition and 350°C anneal in Ar 

Voc = 98mV 
 Jsc = 2.15mA/cm2 

 FF = 29.22% 



46 
 

 

Figure 5.2: J-V curve for CdS/CIT solar cell CIT 60min deposition and 400°C anneal in Ar 

 

Figure 5.3: J-V curve for CdS/CIT solar cell CIT 60min deposition and 450°C anneal in Ar 
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Table 5.2: Open circuit voltages for CdS /CIT solar cells for different anneal ambients and 

deposition times 

Deposition Time 
Anneal Ambients for CIT 

Ar only @ 400°C O2 only@ 400°C 

30 minutes 121.6mV 90.9mV 

60 minutes 183mV 110mV 

 

Table 5.2 shows the variation of open circuit voltages for Ar and O2 

annealing ambients at 400°C for 30 and 60 minutes deposition times. The benefit of 

higher deposition time is explained in the paragraph above. Low open circuit voltages 

were observed when CIT was annealed in O2 because of the formation of oxides of 

tellurium thus disturbing the stoichiometry of the compound CuInTe2. Loss of the 

compound starts at the surface and goes deeper. Ample presence of O2 and lack of 

protection from the top layer makes the sample prone to further deterioration. 

These low open circuit voltages could be attributed to the fact that 

recombination centers at the CdS / CIT interface are too high in number. More insight is 

needed into the working of the junction at this time. Absorption of CdS has been 

characterized and studied by other groups. From the UV-Vis absorption for CdS one can 

deduce that the band-gap of 2.4eV. That means all light photons having energy more 

than 2.4eV are absorbed in the CdS thin film. Photons with energy less than 2.4eV pass 

through the CdS film. CIT has a band-gap of 0.95eV – 1.1eV. This means that the only 

available photons that could be absorbed are those with energies between 1.1eV and 

2.4eV (1127nm – 517 nm in terms of wavelengths which is approximately half of the 

visible light spectrum). If doping levels, recombination centers & states and the CdS /CIT 

junction in particular have been characterized, it would lead to development of high 
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efficiencies for the CdS / CuInTe2 solar cells. At this juncture a need of more precise 

monitoring and equipment is necessary for high efficiency CdS / CIT solar cells. But this 

research has shown that a junction could be formed with these materials, which has 

never been done to date. 

 

5.2 CdS / CdTe solar cell: 

5.2.1 Effect of CdS annealing temperatures on Open Circuit voltages: 

 The effect of CdS annealing temperatures on open circuit voltages of CdS / CdTe 

solar cells has been studied on Chemical bath deposited CdS and CSS deposited CdTe 

samples. The deposition and fabrication processes have been discussed in section3. 

Data for this experiment was obtained from samples deposited using a standard set of 

conditions listed below –  

1) Clean all ITO samples as discussed in section 3.1. 

2) Expose the cleaned samples to a microwave induced plasma etch for 30 

seconds at RF power rating of 60% and Oxygen gas flow rate at 4 sccm. 

3) RF Sputtering of intrinsic Tin Oxide performed at 75 W power and Argon gas 

flow rate of 15 sccm in an evacuated chamber to deposit 100nm of the 

material. 

4) Chemical bath deposition as discussed in section 3.2. 

5) CdCl2 treatment as illustrated in section 3.2.1 followed by annealing at 

temperatures of 350, 400, 450 and 500°C. 

6) CSS was performed as illustrated in section 3.5 to deposit CdTe of desired 

thickness after annealing of CdS films. 

7) CdCl2 treatment on CdTe film as discussed in section 3.2.1. 

8) NP wet acid etch is performed by the method given in section 3.5.2. 

9) Thin Cu sputter of 5nm thickness to protect CdTe film from exposure to 

moisture. 
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10) Contacts with graphite paste and silver paint. 

It is observed that CdS anneal temperature has a major effect on the open circuit 

voltages which are defined by the junction between CdS and CdTe. The table below 

gives insight into the change anneal temperature has on the open circuit voltage. 

Table 5.3 summarizes the measured open circuit voltages for different annealing 

temperatures of CdS. The temperatures chosen are close to those that other 

researchers have been using. It can be seen that for 400°C and 450°C the voltages are 

higher. This is because CdS deposited through CBD crystallizes better at those 

temperatures. While at 500°C, there is loss of CdS at those places where the thickness 

was less when CBD was done. This would leave pin holes and if they’re big enough for 

CdTe grains to touch the Tin Oxide coated ITO, there would be a loss of open circuit 

voltage. 

 

Table 5.3: Open circuit voltages for CdS / CdTe solar cells as a function of anneal 

temperatures of CdS 

Anneal Temperature of CBD-CdS Open Circuit Voltage (mV) 

350°C 230 

400°C 415 

450°C 505 

500°C 210 
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Figure 5.4: Open circuit voltages as a function of annealing temperatures for CdS / CdTe 

solar cells 

5.2.2 Effect of NP etch on Open Circuit voltage of CdS / CdTe solar cells 

 NP etch process as described in section 3.5.2 is vital for the activation of CdTe 

film after CSS deposition. If the film is under etched the CdTe film remains unactivated 

resulting in low open circuit voltages. And if the film is over etched deep trenches are 

formed between CdTe grain boundaries resulting in drastic reduction in open circuit 

voltages. It has been studied by various groups that formation of bubbles during NP etch 

indicates when the etch process should be stopped. 

 The acid etch helps make the surface Te-rich that makes a better ohmic contact. 

Otherwise a diode is formed at the contact – CdTe interface. 
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The images below show those samples that underwent 15 and 30 seconds of NP 

etch respectively. It can be seen that the grain boundaries are reduced as etch time 

increases resulting in deep trenches. 

 

(a)                                                                                     (b) 

Figure 5.5: SEM images of CdTe film that underwent (a) 15 s etch and (b) 30 s etch 

It has been observed during NP etch of all CdS / CdTe solar cells that the duration of acid 

contact must be 10 seconds. Once the sample is taken out of the solution it has to be 

rinsed in DI water to remove any remaining acid and then dried with nitrogen gas. 

For the present study we’ve used the etch process described in section 3.5.2. 

The open circuit voltages have increased after the NP etch process. The increase in open 

circuit voltages from before and after NP etch is shown in the table below –  
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Table 5.4: Open circuit voltages as a function of annealing temperatures for CdS / CdTe 

solar cells after NP etch and net increase in open circuit voltages 

Anneal Temperature of 

CBD-CdS 

Open Circuit Voltage (mV) 

after NP etch 

Net Increase in average 

value 

350°C 310 80 

400°C 555 140 

450°C 568 63 

500°C 385 175 

 

 From Table 5.4 it can be inferred that correct NP etch does have a positive effect 

on the open circuit voltages. A higher increase is seen in the 400°C and 500°C sample. 

And since the currents for the 450°C were about 18mA/cm2 and that for the 400°C 

sample were about 21mA/cm2, it can be said that 400°C is the better anneal 

temperature for CdS as it yields a good open circuit voltage and current after the NP 

etch. Other researchers have also found 410°C and 420°C to be useful to anneal CdS and 

also yield good results. 
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Figure 5.6: Open circuit voltages as a function of annealing temperatures for CdS / CdTe 

solar cells after NP etch 

 

Table 5.5: Open circuit voltages and currents as a function of annealing temperatures 

for CdS / CdTe solar cells after NP etch 

Anneal Temperature of 

CBD-CdS 

Open Circuit Voltage (mV) 

after NP etch 

Short Circuit Curent  

mA/cm2 

350°C 310 12.5 

400°C 555 21 

450°C 568 18 

500°C 210 14.2 
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Figure 5.7: Open circuit voltages as a function of annealing temperatures for CdS / CdTe 

solar cells before and after NP etch 

 

Various researchers have shown that NP etch would result in better open circuit 

voltage and current. The positive effect of NP etch is illustrated in Figure 5.4 for the 

experiment performed. It has been verified experimentally that the open circuit voltages 

and currents get better after NP etch. 

 

 

 

0

100

200

300

400

500

600

700

300 350 400 450 500 550

O
pe

n 
Ci

rc
ui

t V
ol

ta
ge

 (m
V)

 

Temperature (°C) 

Effect of CdS Anneal Temperature on Open 
Circuit Voltage for CdS / CdTe solar cells 

before and after NP etch 

before NP etch (avg.) after NP etch (avg.)



55 
 

5.2.3 Effect of Thickness of Thermal Evaporated CdS on Open Circuit Voltages 

 CdS can be deposited by various methods and Thermal Evaporation is one of 

them. Four different thicknesses of CdS have been chosen to investigate the effect of 

thickness of CdS on open circuit voltage. While Chemical Bath deposition technique 

deposits a fixed amount of CdS on Tin Oxide coated ITO, one can control the thickness of 

CdS deposited through Thermal Evaporation. Chemical bath deposition is self-limiting 

depositon process governed by the adhesion factor of CdS on Tin Oxide coated ITO. 

 Gold crystal thickness monitor was used with the process discussed in section 3.4 

to precisely control the thickness of the material being deposited. After deposition the 

CdS samples were subject to the regular CdCl2 treatment before moving to CSS process 

for CdTe deposition. Table 5.6 below shows the variation of open circuit voltages and 

short circuit currents as a function of thickness of thermal evaporated CdS. It is seen 

that higher thicknesses led to low open circuit voltage and current. This can be 

attributed to the fact that higher thickness of CdS would mean increased photon 

absorption in the CdS layer and decrease in the amount of photons available for 

electron-hole pair generation in CdTe layer. 

Table 5.6: Open circuit voltage and short circuit currents as a function of thickness of 

thermal evaporated CdS in CdS / CdTe solar cells 

Thickness of Thermal 

Evaporated CdS (nm) 

Open Circuit Voltage (Voc) 

(mV) 

Short Circuit Current ( Jsc ) 

(mA/cm2) 

100  550 16 

200  550 18 

300  450 6.5 

500  400 5 
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Figure 5.8: J-V characteristics of Thermal evaporated CdS thickness 100 nm 

 

Figure 5.9: J-V characteristics of Thermal evaporated CdS thickness 200 nm 
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Figure 5.10: J-V characteristics of Thermal evaporated CdS thickness 300 nm 

 

Figure 5.11: J-V characteristics of Thermal evaporated CdS thickness 500 nm 
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From figures 5.8, 5.9, 5.10 and 5.11, we can deduce the thickness of Thermal 

Evaporated CdS required for better Voc and Jsc on a CdTe / CdS solar cell. From the 

figures one can say the Voc is the maximum for CdS thicknesses of 100nm and 200nm. 

But looking at the currents one can be sure that 200nm of Thermal Evaporated CdS 

gives the best results (Open Circuit Voltage and Short Circuit Current). At increasing 

thickness of CdS the Open Circuit Voltage, Short Circuit Current and also the Fill Factor 

are decreasing. Another sample of thickness 1000nm of Thermal Evaporated CdS was 

made but the CdS peeled off as soon as it came out of the deposition chamber. It thus 

can be inferred that higher thicknesses of CdS do not adhere well onto Tin Oxide coated 

ITO glass. It is also a good point to remember here that the CdS layer does not have zero 

absorption. It has a finite absorption which changes with change in wavelength of 

incident radiation. So, as we deposit higher thicknesses of CdS we are just not risking the 

adherence of CdS onto the substrate but also increasing the total absorption by CdS 

layer. This will reduce the light available for CdTe layer thus limiting the number of 

photons available for absorption and carrier generation. 
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Chapter 6 Conclusions and Future prospects 

 CdS / CIT solar cells have been investigated for the first time and marginal 

success has been achieved in terms of open circuit voltages. CIT is a promising 

compound for solar cell applications provided the flexibility and the ease of fabrication. 

It has been noted that CIT has a direct band-gap of 0.95 – 1.1 eV. With a band-gap of  

0.9 - 1 eV, CIT absorbs the Ultraviolet, Visible and Near-InfraRed portion of the incident 

light. But research has to be done on the boundaries of CdS-CIT and CIT-Metal contact 

(carrier collection process). If these boundaries were mastered then CIT solar cells have 

a great chance to become good solar cells and match efficiencies with other inorganic 

solar cells.  

 

The effects of CdS anneal temperature and NP etch process on the chemical bath 

deposited CdS / CdTe solar cells have been characterized in terms of open circuit 

voltages. It is also seen that NP etch has a positive effect on solar cells if less acid is 

used. The increase in open circuit voltage is about 175mV after NP etches. If careful 

processing and fabrication is done, open circuit voltages could break the 1000mV 

barrier.  

  

 The effect of thickness of thermally evaporated CdS on the open circuit voltages 

and short circuit currents was also investigated. Thermally evaporated CdS has always 

had stiff competition from Chemcial bath deposited CdS. As seen in this experiment and 

in the literature Chemical bath deposited CdS has been given better results compared to 

thermally evaporated CdS. 
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