1 i
UK University of Kentucky

UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2005

Study and Design of an Intelligent Preconditioner
Recommendation System

Shuting Xu
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Xu, Shuting, "Study and Design of an Intelligent Preconditioner Recommendation System" (2005).
University of Kentucky Doctoral Dissertations. 327.
https://uknowledge.uky.edu/gradschool_diss/327

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Shuting Xu

The Graduate School
University of Kentucky
2005

STUDY AND DESIGN OF AN INTELLIGENT PRECONDITIONER
RECOMMENDATION SYSTEM

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the
College of Engineering
at the University of Kentucky

By
Shuting Xu
Lexington, Kentucky
Director: Dr. Jun Zhang, Associate Professor of Computer Science
Lexington, Kentucky
2005
Copyright © Shuting Xu 2005

ABSTRACT OF DISSERTATION

STUDY AND DESIGN OF AN INTELLIGENT PRECONDITIONER
RECOMMENDATION SYSTEM

There are many scientific applications in which there is a need to solve very large
sparse linear systems. The preconditioned Krylov subspace methods are considered
the preferred methods in this field. The preconditioners employed in the precon-
ditioned iterative solvers usually determine the overall convergence rate. However,
choosing a good preconditioner for a specific sparse linear system arising from a par-
ticular application is the combination of art and science, and presents a formidable
challenge for many design engineers and application scientists who do not have much
knowledge of preconditioned iterative methods.

We tackled the problem of choosing suitable preconditioners for particular appli-
cations from a nontraditional point of view. We used the techniques and ideas in
knowledge discovery and data mining to extract useful information and special fea-
tures from unstructured sparse matrices and analyze the relationship between these
features and the solving status of the sparse linear systems generated from these
sparse matrices. We have designed an Intelligent Preconditioner Recommendation

System, which can provide advice on choosing a high performance preconditioner as

well as suitable parameters for a given sparse linear system. This work opened a new
research direction for a very important topic in large scale high performance scientific
computing.

The performance of the various data mining algorithms applied in the recommen-
dation system is directly related to the set of matrix features used in the system. We
have extracted more than 60 features to represent a sparse matrix. We have proposed
to use data mining techniques to predict some expensive matrix features like the con-
dition number. We have also proposed to use the combination of the clustering and
classification methods to predict the solving status of a sparse linear system. For
the preconditioners with multiple parameters, we may predict the possible combina-
tions of the values of the parameters with which a given sparse linear system may be
successfully solved. Furthermore, we have proposed an algorithm to find out which

preconditioners work best for a certain sparse linear system with what parameters.

KEYWORDS: Sparse Matrix, Preconditioning, Data Mining, Classification, Clus-

tering.

Shuting Xu

7/31/05

STUDY AND DESIGN OF AN INTELLIGENT PRECONDITIONER
RECOMMENDATION SYSTEM

By

Shuting Xu

Dr. Jun Zhang
Director of Dissertation

Dr. Grzegorz W. Wasilkowski
Director of Graduate Studies

7/31/05

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may
be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgements.

Extensive copying or publication of the dissertation in whole or in part also requires
the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure
the signature of each user.

DISSERTATION

Shuting Xu

The Graduate School
University of Kentucky
2005

STUDY AND DESIGN OF AN INTELLIGENT PRECONDITIONER
RECOMMENDATION SYSTEM

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the
College of Engineering
at the University of Kentucky

By
Shuting Xu
Lexington, Kentucky
Director: Dr. Jun Zhang, Associate Professor of Computer Science
Lexington, Kentucky
2005
Copyright © Shuting Xu 2005

To my parents and Shuhua.

ACKNOWLEDGEMENTS

The work with this dissertation has been extensive and trying, but in the first place
it is exciting, instructive, and fun. Without help, support, and encouragement from
other people, I would have never been able to finish this work. Here is my pleasure
to express my gratitude to all of them.

First of all, I would like to thank my supervisor, Dr. Jun Zhang, for his inspiring
and encouraging way to guide me to a deeper understanding of knowledge, and his
invaluable comments during the whole work with this dissertation.

Besides my advisor, I would like to thank the rest of my Advisory Committee: Dr.
Jerzy W. Jaromczyk, Dr. Alexander Dekhtyar and Dr. Qiang Ye who always give
insightful comments and useful suggestions on my work. I would also like to thank
the outside examiner Dr. Cai-Cheng Lu for his helpful comments on my dissertation.

Thanks also to all the friendly members in our lab who made the lab a great
place to work. Let me say “thank you” to the following people: Dr. Chi Shen, Dr.
Jeonghwa Lee, Dr. Kai Wang, Dr. Haiwei Sun, Dr. Samir Karaa, Mr. Ning Kang,
Ms. Eun-Joo Lee, Mr. Wensheng Shen, Mr. Ning Cao, Mr. Hao Ji, Ms. Jie Wang,
Mr. Yin Wang, Mr. Dianwei Han and other group members in our lab. Working
together with all of you has been not only a unforgettable experience, but a great
pleasure as well.

Last, but not least, I would like to thank my parents, for giving me life in the
first place, for educating me, for unconditionally supporting and encouraging me to
pursue my interests. Specially, I also would like to thank my husband for his love and

support.

iii

The research work with this dissertation was supported in part by:

e U.S. National Science Foundation (NSF) under grants ACR-0202934, ACR-
0234270.

e Kentucky New Economy Safety and Security Initiative (NESSI) Consortium.

e Kentucky Science and Engineering Foundation.

v

Table of Contents

Acknowledgements. oL
List of Tables
List of Figures.
1 Introduction
1ol MOGIVATIDD ot 5 8 & 207 % 0 % 5 5 % % & 5 % SRR W P B E R R b
1.2 Preconditioned Krylov Methods
1.2.1 The Solver PGMRES
1.2.2 The Preconditioners
1.3 Sparse Linear Systems it
1.4 Structure of the Intelligent Preconditioner Recommendation System .
1.5 Contributions of the Dissertation

2 Matrix Feature Extraction

2.1 Examples of Special Matrix Features
2.1.1 Small Magnitude Pivots
2.1.2 Zero Diagonals in Matrices from 3D Coupled Navier-Stokes

Simulations.
2.1.3 Dense Blocks in Matrices from Semiconductor Diffusion Simu-
Tations: oo o & & v i 05 n G G h e he b e D e w

2.2 Maitrix Features Extracted«
Z2] BIFHELNIE: ¢ 2t i L it S L e L s %
222 Value s i L r i h it L e LG LA et e
223 Bandwidth.,
224 Diagonal
225 Others e

3 Solving Status of the Sparse Linear Systems

3.1 ILUOD . . o e e e e

3.2 MILUO e e e e e

3.3 ILUD . . . e e e e
331 a=1 . . e

332 a=0 ...
3.4 TLUDP e
341 a=1 . ..
342 a=0 e
3.5 ILUT o e
3.6 ILUTP e
3.7 Comprehensive Results
3.7.1 Symmetric Matrices o000,
3.7.2 Diagonally Dominant Matrices
3.7.3 The Case ncol=nnzdiag
3.7.4 Solving Status of the Sparse Linear Systems
Matrix Condition Number Prediction
4.1 Matrix Condition Number
4.2 SVM Regression L e
4.3 Feature Selectiono
4.3.1 Correlation
4.3.2 Weights from SVR o000
4.3.3 Combinational Method
4.4 Experiments and Results
4.4.1 Accuracy
4.4.2 Response Time L.
4.5 Conclusion L e

ILUO and ILUK Prediction

5.1 Clustering and Classification
5.1.1 K-means Clustering,
5.1.2 SVM Classification

5.2 Prediction Method

5.3 Experiments and Results
5.3.1 Solving Status Prediction
5.3.2 Choiceof w
5.3.3 Cluster Analysis.
5.3.4 Stable Clusters

54 Conclusion e

ILUT Prediction

6.1 Introduction
6.2 SVD and Sparsified SVD oo
6.2.1 Singular Value Decomposition
6.2.2 Sparsified SVD o
6.3 Experiments and Results 0oL,
6.3.1 Prediction with SVM Classification
6.3.2 Applying SVD.

vi

6.3.3 Applying Sparsified SVD 0oL,
6.4 Conclusion e

7 Best Preconditioner Selection

7.1 Best Preconditioner Selection Algorithm
7.2 Memory Cost Analysis,
7.3 Experiments and Results
7.3.1 ILUK Memory Cost Prediction
7.3.2 ILUT Memory Cost Prediction

7.3.3 Results of the Best Preconditioner Selection Algorithm .
. CONGHiBIen : & & & & & w8 R B B G E R 2R S G kAR B

8 Conclusion and Future Work
8.1 Conclusion e e,

8.2 Future Work
Appendix L

Hibliographiy: » @ = = & & 2 & wamominmse & o o 5 &0 @ 5 S s E R G b i - &

vii

List of Tables

3.1
3.2
3.3
3.4

3.5
3.6
3.7

3.8
3.9
3.10

3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

3.20
3.21
3.22

4.1

4.2
4.3
4.4

5.1

Number of matrices in each category with respect to ILUO. 37
Number of matrices in each category with respect to MILUO. 38
Number of matrices in each class in testing ILUD withaa=1. 39
Average attributes of the sparse linear systems solved by ILUD with

a=1. . . . 40
Number of matrices in each category with respect to ILUD with v = 1. 40
Number of matrices in each class in testing ILUD with o =0. 41
Average attributes of the sparse linear systems solved by ILUD with

a=0. . . . 42
Number of matrices in each category with respect to ILUD with o = 0. 45
Number of matrices in each class in testing ILUDP with a=1. . .. 45
Average attributes of the sparse linear systems solved by ILUDP with

a=1. . . . 46
Number of matrices in each category with respect to ILUDP with v = 1. 47
Number of matrices in each class in testing ILUDP with « =0. . .. 47
Number of matrices in each category with respect to ILUDP with o = 0. 47
Number of matrices in each category with respect to ILUT.. 49
Number of matrices in each category with respect to ILUTP. 50
Attributes of the matrices that can be successfully solved. 52
Solving result of BCSSTM13 using different preconditioners. 52
Solving result of ZENIOS using different preconditioners. 53
Percentage of matrices with the property ncol=nnzdiag that can be

solved. e 54
Chances of each of the preconditioners to be the best. 54
Return status of the unsolved matrices. 5}
Return status of constructing the preconditioners for the unsolved ma-

Trices. o e 56
The first 50% of the features chosen by the combinational method with

aRBF kernel. 70
Average response time (in seconds). L 70
Average response time for larger size matrices (in seconds). 71
Performance comparison for some large size matrices (in seconds). . . 72
Solving status (SS) and the meanings. 79

viii

5.2
9.3
5.4
3.5
2.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3

7.4
7.5
7.6
7.7
7.8
7.9

Predicted solving status related to ILUO. 80

Predicted solving status related to ILUK. 81
Cluster statistics. 84
Matrix composition of the pure stable clusters. 85
Prediction accuracy using pure stable cluster centers. 86
Total prediction accuracy of SVM Classification with different 95
Prediction accuracy after applying SVD with k. =60. 96
Prediction accuracy after applying SVD with £k =50. 96
Prediction accuracy after applying SVD with £k =40. 97
Prediction accuracy after applying SVD with £k =30. 97
Prediction accuracy after applying SVD with £k =20. 97
Total prediction accuracy after applying SVD with different rank. . . 98
Prediction accuracy after applying SSVD with e =0.01. 99
Prediction accuracy after applying SSVD with e =0.001. 99
Prediction accuracy after applying SSVD with e = 0.0001. 100
Total prediction accuracy after applying SSVD with different dropping

threshold. 100
Average absolute prediction error (in KB) for ILUK with different 0. 106
Relative prediction error for ILUK with different 106
The comparison of total average prediction errors for ILUT with dif-

ferent 0. 108
Absolute prediction errors for ILUT with o =0.1. 108
Relative prediction errors for ILUT withc =0.1. 109
Predicted best preconditioner selection for matrix CAVITY09. 110
Actual best preconditioner selection for matrix CAVITY09. 110
Predicted best preconditioner selection for matrix FIDAP036. 111
Actual best preconditioner selection for matrix FIDAP036. 111

X

List of Figures

1.1

2.1

3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8

4.1
4.2
4.3
4.4

4.5

4.6

5.1

6.1
6.2
6.3
6.4
6.5
6.6

Structure of the Intelligent Preconditioner Recommendation System
(IPRS). . . 17

Illustration of different sparsity patterns of two different sparse matrices. 35

The trend of the values of AVNNZPCOL in ILUD and ILUDA. . .. 43
The trend of the values of AVBAND in ILUD and ILUDA. 43
The trend of the values of AVDIAG in ILUD and ILUDA. 44
The trend of the values of NZDIAGS in ILUD and ILUDA. 44
The number of sparse linear systems solved by ILUT with different tol

values. L e 48
The number of sparse linear systems solved by ILUT with different

filrvalue. 49
The number of sparse linear systems solved by ILUTP with different

tol value. L e 50
The number of sparse linear systems solved by ILUTP with different

filr value. 51
Comparison of accuracy with a RBF kernel. 66
Comparison of accuracy with a linear kernel. 67
Comparison of accuracy with a polynomial kernel. 68
Comparison of accuracy with a RBF kernel with different percentage

of features selected. L 69
Comparison of accuracy with a linear kernel with different percentage

of features selected.o 71
Comparison of accuracy with a polynomial kernel with different per-

centage of features selected. 72
Relation of w and the total correct rate. 83
Parameter space of ILUT. 89
Singular value decomposition and reduced dimension. 91
Prediction accuracy of SVM Classification (o =0.1). 93
Prediction accuracy of SVM Classification (¢ = 0.01). 94
Prediction accuracy of SVM Classification (¢ = 0.001). 94
Prediction accuracy of SVM Classification (¢ = 0.0001). 95

X

7.1 ILUT prediction results of solving status and memory cost of a matrix. 107
7.2 Actual results of solving status and memory cost of a matrix.. 107

xi

Chapter 1

Introduction

For many scientific applications there is a need to solve large sparse linear systems. For
example, the applications to develop the next generation electromagnetics simulators
[34], to track nerve fibers in human brains [31], or to simulate laminar diffusion flames
[32], are just a few of them. The systems of large sparse linear equations arising from

many of these applications can be written abstractly as:
Az =0b, (1.1)

where A is a real (or complex) valued sparse coefficient matrix of order n, x is the
unknown vector and b is the known right-hand side vector. Generally there are two
classes of methods available to solve this matrix equation. The first class is the direct
sparse solution methods, represented by the Gauss elimination method. The second
class is the iterative solution methods, of which the Krylov subspace methods are
considered to be the most effective ones currently available [48]. For large sparse linear
systems, direct methods are usually avoided due to their potentially large memory
requirements and CPU consumption. Thus iterative methods become more and more
attractive as the size of the coefficient matrices to be solved becomes larger and larger.

In a preconditioned iterative solver, which consists of an iterative method and a
preconditioner, the quality of the preconditioner is of the most importance. Precon-

1

ditioning is a technique that transforms the original linear system into an equivalent
one that is easier to solve with an iterative solver. If chosen properly and implemented
properly, a preconditioning technique could improve the efficiency and robustness of
the iterative methods, by reducing the number of overall iterations and the overall
CPU time.

Choosing a good preconditioner for a specific sparse linear system is considered
to be a combination of art and science. Some preconditioning techniques, such as the
ILUO, rely on a fixed sparsity pattern, obtained from the original sparse matrix, or
from a sparsified coefficient matrix by dropping small magnitude entries in certain
applications [48]. Therefore the structural and numerical features of the matrix will
greatly influence the performance of the preconditioned solvers. There are also other
circumstances where a certain kind of preconditioners are only efficient in solving ma-
trices from certain application domains with certain characteristics. For most people
who are the end users of the preconditioned iterative methods, a good choice of suit-
able preconditioners for their particular application problems is difficult. If the matrix
is large, it is very time-consuming and impractical to try all the preconditioners with
all the possible parameter sets to find out which preconditioner with what parameters
works best for the matrix. That is the reason why we proposed to build an Intelligent
Preconditioner Recommendation System (IPRS). The system could recommend one
or more suitable preconditioners for solving a given sparse linear system. After a
matrix is submitted, the recommendations can be given in a short period of time.
Such a system should be very useful in helping engineers and application scientists
to choose suitable preconditioners for their particular applications [63].

The design and implementation of IPRS is very challenging as it requires knowl-
edge and techniques from scientific computing, data mining, and knowledge discovery.

First, we need to extract special features and structures of general sparse matrices

2

that may contribute positively or negatively to the performance of the preconditioned
iterative solvers. Some matrix features like symmetry or diagonal dominance are pos-
itive features. A sparse linear system is easier to be solved if its coefficient matrix has
such features. Some other features like the low diagonal sparsity rate are negative
features. A sparse linear system usually may not be solved successfully by a certain
preconditioner if its coefficient matrix has such negative features. Such features and
structures may also provide us with some inspirations to construct better precondi-
tioners. For example, we may design certain techniques to transform the negative
features into positive features. Second, we will find out the relationships between
these matrix features and the performance of various preconditioned iterative solvers,
and set up models and/or patterns to represent these relationships. Finally, given
a sparse matrix, the system should be able to recommend efficient preconditioned
iterative solver(s) with appropriate parameters.

This chapter is organized as follows: The motivation of this dissertation research
is explained in Section 1.1. We introduce the preconditioned Krylov methods in
Section 1.2, including the solver and the preconditioners used in the experiments. An
outline of the sparse matrices from which the sparse linear systems were generated is
given in Section 1.3. The structure of the Intelligent Preconditioner Recommendation
System is described in Section 1.4. Finally, the contributions and organization of the

dissertation are listed in Section 1.5.

1.1 Motivation

Computational science and engineering (CSE) has been emerging as a new means of
scientific research that utilizes the ever increasing power of computers to investigate
and to understand the mysteries of science and engineering, that are very complex

and are beyond the reach of traditional analytic and experimental methodologies.

3

Barring from revolutionary breakthroughs in fundamental computing technologies,
the incremental advance in computing power alone is not sufficient to meet the need
of very large scale high performance computer simulations. Use of better and smarter
algorithms to reduce CPU time in computer simulations can be of considerable im-
portance.

The innermost computational kernel of many scientific and engineering simula-
tions is the solution of some large sparse linear systems of equations. The sparse
linear systems arise frequently from discretized governing systems of partial differ-
ential equations in many computer simulation applications. The solution process of
large sparse linear systems typically consumes a large fraction of the overall compu-
tational time in large scale high performance computer simulations.

Iterative solution techniques are often considered as the only viable means of deal-
ing with large sparse linear systems [48]. Various such methods have been proposed
in the past 50 years [21]. However, the sheer size of the coefficient matrices encoun-
tered in practical applications as well as their extreme ill-conditioning make current
iterative solution methods unreliable and difficult to use. Unreliability is associated
with the convergence of a given iterative method, which may fail for certain practical
problems. Difficulty of use can be attributed to the fact that there are so many itera-
tive methods to choose from, and some of the preconditioned iterative methods have
many parameters to set. In fact, the traditional problem that an application scientist
dealing with solving system (1.1) encounters is the selection of an appropriate method
(and finding appropriate parameters) for solving a particular sparse matrix system.
This problem is exacerbated by the fact that many of the engineers and research
scientists who have to deal with solving sparse matrix systems are not familiar with
the details of different iterative methods, and therefore, cannot even approach the

selection problem.

There is an enlarging gap between the development of more and more sophisti-
cated preconditioned iterative solvers by the computational linear algebra community
and the ability to understand and to properly use these solvers by the application
scientists and engineers to solve their more and more complex modeling and simu-
lation problems. High performance computers and numerical algorithms will be less
useful if they are not matched with the intended application problems. Our work will
fill this gap and establish an information-based interface between the matrix solver
developers and the application scientists and engineers.

Current approaches to recommending iterative solvers and preconditioners are
qualitative and categorical. Although mathematical theorems can be proved to guar-
antee the convergence of certain preconditioned iterative methods for a given model
problem [2, 22, 30], they are not very useful for solving problems encountered in prac-
tical applications. Thus a recommendation approach that permits tradeoffs and that
can be built and modified incrementally, based on increased knowledge, is potentially
useful. The success of the software environment approach for other problems in sci-
entific computing [26] suggests that it can be very useful when applied to the problem
of finding the right path to solve a sparse matrix.

There has been a considerable effort made by several researchers and organizations
to collect various sparse matrices in order to use them for test purposes. The National
Institute of Standard and Technology (NIST) has been playing a leading role in this
endeavor and currently hosts one of the largest such repositories: MatrixMarket [38].
Several other collections have been contributed by engineers, scientists and numerical
analysts, e.g., the well known Harwell-Boeing sparse matrix collection and the Uni-
versity of Florida Sparse matrix collections [12]. NIST has done some categorization
work and published some preliminary information on these matrices. For each matrix

this information includes its type, dimensions, condition number, nonzero structure,

5

etc. MatrixMarket is becoming a standard source of sparse test matrices for testing
various direct and iterative solution methods.

However, there is no information regarding which matrix can be solved by what
method using what parameters. Such information would be extremely helpful for
application scientists as it would enable them to choose suitable sparse linear system
solvers for certain class of applications. Furthermore, solving some of the matrices in
the MatrixMarket does not provide much information to help an application scientist
or engineer whose matrix in question may not match any of the matrices in the
MatrixMarket ezactly.

Knowing which matrices from a sparse matrix repository can be solved by what
methods solves only part of the general problem, as this information alone is clearly
insufficient for determining the appropriate solver and its parameters for an arbitrary
new sparse matriz. QOur proposed solution to this general problem lies in relating
the new matrix to one or more matrices from the repository and using information
about the solving status of these matrices to decide which solver to choose and how
to configure it (selecting parameters).

In our point of view, the applicability of particular solvers to sparse matrices
is guided for a large part by various properties/features of the matrices. We are
not interested in solving some randomly generated sparse matrices. Sparse matrices
that do require solution usually come from computer simulation applications. Such
matrices should have certain properties/features unique to particular applications.
Thus, information about presence or absence of some such features in a sparse matrix
may suggest that a particular solver has a high chance of success (or failure) in solving
the matrix. Both positive and negative information is equally important here.

Some of the features that may affect the applicability of different solvers are fairly

intricate and complex (see Chapter 2.1 for a few such examples). To our knowledge,

6

no information on the presence/absence of these features (except for the most obvious
information) in the matrices from the MatrixMarket repository is available. In fact, it
is not even clear what features to look for in the matrices. This data repository could
be much more useful if some intrinsic information about the matrix solving status
can be made known to scientists and engineers.

Thus, our objective is to fill these information gaps, and to apply the information
acquired to the general problem of finding an appropriate solver for an arbitrary sparse
matrix. That is the motivation to build the Intelligent Preconditioner Recommenda-
tion System (IPRS). In the IPRS, given a sparse matrix, the recommendation about
which preconditioners are the best to choose as well as the appropriate parameters

will be suggested in a short period of time.

1.2 Preconditioned Krylov Methods

Many iterative linear system solvers are published in literature and used in prac-
tice, like Jacobi method, Gauss-Seidel method, Successive Overrelaxation method
and Krylov Subspace methods [48]. Among them, the class of Krylov Subspace meth-
ods are the most promising general purpose iterative methods. The solver that we
use in the experiments is PGMRES (Preconditioned Generalized Minimum Residual
Method), which is one of the widely used Krylov Subspace methods.

There are also a variety of preconditioners, such as Jacobi, Successive Overre-
laxation, and Symmetric Successive Overrelaxation preconditioners, Incomplete LU
Factorization Preconditioners, Approximate Inverse Preconditioners, block precondi-
tioners, and so on [48]. In our experiments, we choose some variants of Incomplete
LU Factorization Preconditioners: 1LUO, MILU, ILUK, ILUT, ILUTP, ILUD, and
ILUDP. They are all constructed as a lower triangular matrix (L) and an upper tri-

angular matrix (U), and the product matrix LU is used to approximate the original

7

matrix A. The code for the preconditioned solver and the preconditioners is taken

from the SPARSKIT package [51].

1.2.1 The Solver PGMRES

Generalized Minimum Residual Method (GMRES) belongs to the group of Krylov
subspace methods. Krylov subspace methods are based on some projection processes,
both orthogonal and oblique, onto the Krylov subspaces [48].

A Krylov subspace is in the form
Kn(A,v) = span{v, Av, A%v, ..., A"y}, (1.2)

for some nonzero vector v. Projection techniques are to extract an approximate solu-
tion x,, to the linear equation (1.1) from an affine subspace (%) + KC,, of dimension
m, such that

b— Az L Lo, (1.3)

where L, is another subspace of dimension m. In a Krylov subspace method, we
may choose v = (¥, where 7 = b — A2 with 2(%) being the initial guess to the
solution. Different Krylov subspace method uses different choices of £,,.

GMRES constructs two subspaces K, and £,, = AK,, by using v = 7O /||r@]|,.
Such choices result in a technique that minimizes residual norm over all vectors in
2O + IC,n.

If we apply GMRES to a preconditioned system, this yields preconditioned GM-
RES (PGMRES). In the case of GMRES, three options for applying the precondi-
tioning operation, namely left, split, and right preconditioning, are available. Assume
M is a preconditioner, the left-preconditioned GMRES algorithm is defined as the

GMRES algorithm applied to the equivalent system:

M7"Az =M,
8

if M is the result of a factorization of the form
M = LU,
then there is the option of using GMRES on the split-preconditioned system:
L7'AU Yy =L %, 2 =U""u.
The right-preconditioned GMRES algorithm is based on solving:
AM™'u=b, with u= Mz.

In our numerical experiments in this dissertation, right preconditioner and the
right preconditioned GMRES are used. In this case, the Arnoldi loop builds an

orthogonal basis of the right-preconditioned Krylov subspace:
span{ro, AM_ITO, (AM_l)zTo, ey (AM_I)m_lTo}. (14)

Algorithm 1.2.1 describes the GMRES algorithm with right preconditioning [48]. The
right preconditioned GMRES gives rise to what is called a flexible variant, that is, a
variant in which the preconditioner can change at each step. This capability can be

very useful in some applications [48], but is not utilized in our current study.

AvcoriTeM 1.2.1. GMRES with right preconditioning.

1. Compute ro = b — Axg, 8 =|| 7o ||2, and vy = 1o/

2. Forj=1,...,m, Do:

3. Compute w = AM 1,
4. Fori=1,...,7, Do:
5. hij = (w,v;)

6. w=w — h; v,

7. EndDo

8. Compute hji1; =|| w ||z and vj41 = w/hjt1
9. Deﬁne Vm = [Ul, ceey Um]; ﬁm = {hi,j}lgigj—l—l;lgjgm
10. EndDo

11. Compute yy, = argmin, || ey — Hpy [|2, and 2, = o + M Vi

12. If convergence criteria satisfied, Stop, else set xq = x,,, and goto 1.

1.2.2 The Preconditioners

Roughly speaking, a preconditioner is any form of implicit or explicit modification of
the original coefficient matrix of a linear system which makes it “easier” to solve by

a given iterative method [48, 1]. Consider a linear equation,
M~ YAz = M~ ', (1.5)

in which M is a nonsingular matrix of the same order of the matrix A. It is obvious
that the equations (1.1) and (1.5) are equivalent and have the same solution. If M
is close to A in some sense, and if it is inexpensive to solve Mz = y, for some vector
y, the resulting system (1.5) can be solved by a Krylov subspace method and may
require fewer steps to converge than solving the original system (1.1). System (1.5)
is called a preconditioned system, and M is referred to as a preconditioner.

The usefulness of a preconditioner depends very much on how much it can reduce
the condition number of the coefficient matrix, and on the cost of constructing and
applying the preconditioning matrix M. The preconditioners used in this disserta-
tion are constructed based on one or another form of incomplete Gauss elimination

(incomplete LU factorization) [39, 48|.

10

ILUO and MILUO

ILUO is the ILU factorization technique with no fill-in, which takes the zero pattern
P to be precisely the zero pattern of the matrix A [48]. The definition of the ILUO
factorization is: “any pair of the matrices L (unit lower triangular) and U (upper
triangular) so that the elements of A — LU are zero in the locations of NZ(A)” [48],
where NZ(A) is the nonzero pattern of the matrix A. The procedure of the ILUQ

factorization is described in Algorithm 1.2.2 [48].

ALGORITHM 1.2.2. The ILUO algorithm.

1. Fori=2,...,n, Do:

2. For k=1,...,i—1, and for (i, k) € NZ(A) Do:

3. Compute a;x = air/agk

4. For j=k+1,...,n, and for (i,5) € NZ(A) Do:
5. Compute a;; = a;j — GixGx;

6 EndDo

7. EndDo

8. EndDo

ILUO is simple to implement, its computational cost is inexpensive, and it is
effective for some problems, such as those from low-order discretizations of scalar
elliptic PDEs and diagonally dominant matrices. However, for more difficult and
realistic problems the no-fill factorizations result in too crude an approximation to
the original matrix, and more sophisticated preconditioners, which allow some fill-in
in the incomplete factors, are needed [4].

In ILUO, the entries dropped out are just discarded. However, there are some

techniques that attempt to reduce the effect of dropping by compensating for the
11

discarded entries. The modified ILU (MILU) factorization is to add up all the ele-
ments that have been dropped out in the kth loop of the algorithm. Then this sum is
subtracted from the diagonal entry in U [48]. This strategy guarantees that the row
sums of the matrix A are equal to those of LU. MILU often works well for PDEs.
For other problems, such as problems with discontinuous coefficients, MILU usually
is not better than its ILU counterparts, in general. MILUO is an MILU factorization

technique with no fill-in.

ILUK

ILUK is the ILU factorization with level of fill to be k. A level of fill is attributed to
each element that is processed by Gaussian elimination and dropping is based on the
value of the level of fill. The rationale is that the level of fill should be indicative of
the size of an element: the higher the level, the smaller the element. The initial level

of fill of an element a;; of a sparse matrix A is defined by [48]:

_] 0, ifa; #0,0ri=
levij = { 00, otherwise.

Each time the value of a;; is modified in the Gaussian Elimination, its level of fill is
updated by:

lev;; = min{lev;;, lev;; + levy; + 1}. (1.6)

In ILUK, all fill-in elements whose level of fill does not exceed k are kept. The
ILUK algorithm is shown in Algorithm 1.2.3 [48]. In our experiments, we only consider
k = 1,2, 3 respectively.

There are also some drawbacks of ILUK. For example, the amount of fill-in can-
not be predicted in advance and the cost of updating the levels can be quite high.
Furthermore, the algorithms may drop large size elements and result in an inaccurate

incomplete factorization in some cases.

12

ALGORITHM 1.2.3. The ILUK algorithm.

1. For all nonzero elements a;;, define lev(a;;) = 0

2. Fori=2,---,n, Do:

3. For each k =1, - i — 1 and for lev(ay) < k, Do:

4. Compute a;x, := ai/agy

5. Compute ;4 1= Gjx — Uiprs

6. Update the levels of fill of the nonzero a;;’s using (1.6)
7. EndDo

8. Replace any element in row ¢ with lev(a;;) > k with zero
9. EndDo

ILUT and ILUTP

Incomplete factorizations that rely on the levels of fill are blind to numerical values
because elements that are dropped depend only on the structure of the matrix. This
can cause some difficulties for realistic problems that arise in many applications [48].
A generic ILU algorithm with threshold (ILUT) can be derived from the IKJ version
of Gaussian elimination by including a set of rules for dropping small elements [47].
The drop strategy works as follows: (1) The threshold in L and U is set by tol. Any
element whose magnitude is less than tol (relative to the absolute value of the diagonal
element of the current row) is dropped. (2) Keeping only the largest [fil elements
in the ith row of L and the largest [fil element in the ith row of U (excluding the

diagonal elements) [48]. The ILUT algorithm is depicted in Algorithm 1.2.4 [48].

ALGORITHM 1.2.4. The ILUT algorithm.

0. Setuy=ayk=1,...,N

13

1. Fori=2,...,N, Do:
2. W = A«
3. For k=1,...,2—1 and when w; # 0, Do:

Wg = wk/ukk

5. Apply a dropping rule to wy
6. If wy # 0 then

7. W= W — Wy * Ups

8. EndIf

9. EndDo

10. Apply a dropping rule to row w
1. Ly=wjforj=1,...,i—1

12. uj; =wj for j=4,...,N

13. w=0

14. EndDo

The dual dropping strategy of the ILUT is implemented using the two parameters
tol and [fil. The small entries of wy (with respect to tol and relative to a certain
norm of the current row) are dropped in Line 5. In Line 10, small entries are dropped
again. A search algorithm is used to find out the largest [fil entries in magnitude.
These [fil largest entries are kept, the others are dropped. Roughly speaking, [fil
can be viewed as a parameter that helps control memory usage, while tol helps reduce
computational cost.

The ILUT may also fail for many of the matrices that arise from real applications.
One of the reasons is that the ILUT procedure encounters a zero pivot. The ideal
solution in this case is to use pivoting. ILUTP is ILUT with pivoting. Because of
the data structure used in ILUT, column pivoting can be implemented rather easily

[48]. The complexity of the ILUTP is virtually the same as that of ILUT. A tolerance
14

parameter permtol may be applied to help determine whether or not to permute
columns: A nondiagonal element a;; is a candidate for a permutation only when
permtol * |a;;| > |a;|. Furthermore, pivoting may be restricted to take place only

within diagonal blocks of a fixed size.
ILUD and ILUDP

The preconditioner ILUD computes the ILU factorization with a standard threshold
dropping: at the ith step of the elimination, an element a(i, j) in row 4 is dropped if
its magnitude is smaller than the product of the average magnitude of the elements
in the 7th row and the threshold tol. There is no control on memory size required
for the factors as is done in ILUT. This preconditioner computes also various diag-
onal compensation just like MILU. A parameter « is used to control whether to use
diagonal compensation or not.

ILUD also suffers from the same zero pivot problem as ILUT does. Like ILUTP,
ILUDP is ILUD with column pivoting.

1.3 Sparse Linear Systems

The sparse linear systems, or the sparse matrices, analyzed in this dissertation are
briefly described in this section. All the sparse linear systems were formed by as-
suming that the exact solution is a vector of all ones and the initial guess is a zero
vector.

We use 319 sparse matrices in the experiments, all of which were downloaded
from MatrixMarket [38]. The matrices come from the following industrial or en-
gineering problems: dynamic or static analysis in structural engineering, air traffic
control, astrophysics, power networks, finite-element structures problems in aircraft

design, chemical engineering, circuit physics, economic modeling, power flow mod-

15

eling, simulation studies in computer systems, partial differential equations, nuclear
reactor modeling, oil reservoir simulation, oceanic modeling, demography, petroleum
engineering, etc.

Of the 319 matrices, 255 of them are of the type “RUA”, which means they are
real, unsymmetric and assembled matrices. The other 64 matrices are of the type
“RSA”, which means they are real, symmetric and assembled matrices. The size of
the matrices varies from 27 to 23560. Some basic features of these 319 matrices are
listed in the Appendix. The meaning of the features will be explained in the next

chapter.

1.4 Structure of the Intelligent Preconditioner Rec-
ommendation System

The purpose of the Intelligent Preconditioner Recommendation System (IPRS) is
to recommend the best preconditioners and the appropriate parameters for a given
sparse matrix. Here “the best” means the sparse linear system generated from the
sparse matrix can be solved using the least memory cost or time cost. The main
structure of the IPRS is described in Figure 1.1. It works as follows: When a matrix
is submitted through an interface, the preprocessing unit calculates the attributes
of the matrix and passes on the computed attributes to the predicting unit. The
predicting unit uses the attributes of the matrix and the models from Knowledgebase
to predict which preconditioners would work best for the matrix as well as the suitable
parameters. Then it sends the suggestions back to the interface. The whole processing
time includes the time to calculate attributes and the time to make predictions, hence
the user may expect a quick response time to get recommendations.

The other part of the work is done in background (the part within the dashed-line
block in Figure 1.1). After a matrix is submitted, it is saved in the Database. The

16

attributes of the matrix are saved in the attribute table. Then the matrix is solved
using different kinds of preconditioned iterative solvers and the results are stored in
respective tables. The data mining unit periodically reconstructs models using the
attribute table and the preconditioned solver tables. With more and more matrices
stored in the database, the models in the Knowledgebase will be more accurate, thus
the suggestions made by the system will be more and more helpful. The system is

actually a closed-loop feedback system.

Matrixi T Suggestions
<

Interface

v

Preprocessing Attributes

Predicting

—
Knowledgebase
S——

Attributes @ Models i
@ Data Mining | |
Solving < i

Suggestions

Matrix

Database

Figure 1.1: Structure of the Intelligent Preconditioner Recommendation System
(IPRS).

The functions of each component of IPRS are described below:

e Interface. It is a friendly GUI. User may submit the matrices to be solved and

get suggestions on which preconditioner to choose and what parameters are

17

suitable to be used according to user’s performance expectations. It can also

list the values of matrix features for the user’s reference.

Preprocessing unit. It computes the various attributes of the matrices. It also
does some preprocessing on the values of the attributes. For example, for some
attributes with large value ranges (e.g., 10719 —10%°), it calculates their 10-base

logarithm.

Predicting unit. Using the models saved in the Knowledgebase, it predicts which
preconditioners with what parameters may solve the linear systems. Then it
chooses the preconditioners and parameters with the least memory and/or time

cost and returns the suggestions to the interface.

Data mining unit. It constructs models from the attribute table and precon-
ditioned solver tables from Database and saves the models in Knowledgebase.
The data mining algorithms used in the system include K-means clustering
algorithm, Support Vector Machine Classification and Regression algorithms,
some feature selection algorithms and the new algorithms proposed by us. Such

algorithms will be introduced in later chapters.

Solving unit. It generates a sparse linear system from a sparse matrix. It as-
sumes that the exact solution is a vector of all ones and calculate the right hand
side. Then it uses various preconditioned GMRES (PGMRES) with different
parameters to solve the linear system and saves the results in respective PSolver

tables.

Database. It stores all the matrices submitted to the system. It has an At-
tribute table containing all the attributes of the matrices in the system. It also
has some Psolve tables which store the solving status, time and memory cost,

18

and other parameters of solving all the matrices in the system using various

preconditioners with different parameters.

e Knowledgebase. It stores the models obtained from the data mining unit.

1.5 Contributions of the Dissertation

Our research work for the dissertation is focused on studying and designing the Intel-
ligent Preconditioner Recommendation System. The contributions of the dissertation

are:

e We have designed the structure of the Intelligent Preconditioner Recommen-
dation System. It is the first mathematical application tool that applies data
mining techniques to find out the relationship between matrix features and the
solving status of sparse linear systems using preconditioned iterative solvers.
It is also the first time that data mining techniques instead of mathematical
methods are used to predict the solving status of sparse linear systems and

their memory costs.

e We have extracted more than 60 matrix features to represent a sparse matrix.
Some of them are well-known, the others are derived from the construction of

preconditioners or from our experience of solving sparse linear systems.

e We have proposed a new method to estimate condition number of a matrix.
It is the first time that some expensive matrix features like condition number
are estimated using data mining methods. Such techniques can be applied to
estimate other expensive matrix features. The low cost of obtaining such matrix
features may lead to the invention of more efficient mathematical methods or

algorithms.

19

e We have compared some feature selection methods and proposed an efficient fea-
ture selection method utilizing the difference of a matrix and its preconditioned

counterparts.

e We have proposed some new algorithms in predicting the solving status of sparse
linear systems with different preconditioners. We can predict whether a sparse
linear system may be solved by a certain preconditioned solver (preconditioner).

If a failure status is predicted, we can also predict the reason why it fails.

e Instead of solving the sparse linear systems by PGMRES with all the possible
parameters and comparing them, we have proposed a much faster method to
find out which preconditioners work best for a certain sparse linear system with

what parameters.

The organization of this dissertation is as follows:

e Matrix feature extraction is discussed in Chapter 2. The features of a matrix
are directly related to the precision of the prediction system. Thus, the first
problem we must address in building IPRS is determining the set of features
that would represent the matrices in the database. In this chapter we first show
some examples of special matrix features and then describe all the features used

in the system.

e In Chapter 3, we analyze in a statistical way the relationship among the the
solving status of the sparse linear systems, the choice of preconditioned solvers

with different parameters, and the attributes of the matrices.

e Condition number is an important matrix feature as well as a widely used

measure in numerical analysis and linear algebra. In Chapter 4, we propose to

20

use the Support Vector Regression methods to predict condition number from
the matrix features. We also use some feature selection methods to further

reduce the response time and improve accuracy.

In order to construct the IPRS we need to predict whether a given sparse linear
system can be solved by a certain preconditioned solver (preconditioner). In
Chapter 5, we propose a prediction method which combines clustering and clas-
sification to predict whether a sparse linear system can be solved by PGMRES
with preconditioner ILUO or ILUK.

Chapter 6 is an extension of Chapter 5 in which we predict whether a sparse
linear system can be solved with a more complex preconditioner ILUT with two

parameters.

In Chapter 7, we propose an algorithm to choose the best preconditioner and
parameters for a given sparse matrix. Our criteria for the best preconditioner
and parameters are that the sparse linear system can be successfully solved by
the chosen preconditioner and parameters, and at the same time, the memory

cost and/or the time cost is the lowest.

We conclude the dissertation in Chapter 8 and point out some directions for

future work.

21

Chapter 2

Matrix Feature Extraction

For the various data mining algorithms we plan to use for establishing the possible
connections between matrix features and the solving status to work, we need first
to construct the appropriate dataset of these features for the known sparse matrices
(such as those in the MatrixMarket repository). Thus, the first problem we must
address in building IPRS is: determining the set of features that would represent the
matrices in the database.

As will be seen from Section 2.1, some of the features of interest are quite complex,
and determining their presence/absence in matrices may be a fairly involved task.
This is exactly why it is important for us to determine the right set of features
for representing sparse matrices. However, before we can make decisions on what
features will be helpful to solve a matrix, we want to extract as many features as
possible from the matrix. Then we will use some feature selection methods to choose
the appropriate feature set, which will be explained in Chapter 4.

The organization of this chapter is: Some examples of special matrix features are
given in Section 2.1. Most of the features used in the IPRS system are described in

detail in Section 2.2.

22

2.1 Examples of Special Matrix Features

The features we are looking for to include in our IPRS can be quite intricate, possibly
requiring a lot of computation. Some of these features are generally not known to the
engineers who would need to solve a particular sparse matrix. A few examples below

illustrate the complexity of such features.

2.1.1 Small Magnitude Pivots

Some well known features such as the diagonal dominance, positive definiteness, sym-
metry, etc., of a sparse matrix, may be obvious for application scientists. They are
useful in choosing suitable iterative solvers [2]. We shall discuss some features that
may not be so obvious but are useful in building ILU preconditioners.

The preconditioner M is constructed as the product of two matrices, L and U,
where L is a lower triangular matrix with a unit diagonal and U is an upper triangular
matrix. In general, the matrices L and U are some approximations of the lower-upper
(LU) factors of A. The approximation is achieved by computing an incomplete LU

factorization of A, i.e., we have a relation of the form
R=A-LU (2.1)

where R is the error matrix representing the difference between the preconditioner
M = LU and the coefficient matrix A. It is well known that the size of R, denoted
by ||R||, affects the convergence rate of the preconditioned iterative methods [17].
For well behaved matrices, ||R|| can be reduced by allowing more fill-in entries in the
incomplete LU factorization. However, for ill conditioned matrices, merely allowing
more fill-in entries in the ILU factorization is not enough to guarantee the quality of
the preconditioner. This is because the stability of the preconditioner also affects the

preconditioning effect [18]. In fact, it is shown in [62] that the following inequality
23

holds
||w —

[l

Here w is the correction from the preconditioning, and w is the exact correction

< IELU) IR (2.2)

required for an exact solution. In (2.2), |[(LU)™!|| measures the stability of the
triangular solution processes involved in solving the preconditioning system. Thus,
Inequality (2.2) shows that the quality of the preconditioning is directly related to
the size of both (LU)™! and R.

The size of the entries in the L and U factors is mainly determined by the magni-
tude of the pivots in the process of the LU factorization [33]. The instability problems
are often caused by small or zero pivots. These small magnitude pivots may lead to
unstable and inaccurate factorizations [18]. The size of the entries in the LU fac-
tors may be very large which lead to inaccurate factorization due to large computer
rounding errors [62].

Thus, our first identified negative feature of sparse matrices is small magnitude

pivots in ILU factorization. Two natural questions following this identification are

e how to identify if a sparse matrix will encounter small magnitude pivots in an

ILU factorization before we perform the ILU factorization?

e how to design a suitable strategy to transform this negative feature into a pos-
itive feature, i.e., without encountering small magnitude pivot in the ILU fac-

torization?

Based on the study in [62], we anticipate that small magnitude pivots are likely to
be encountered in an ILU factorization if the main diagonal entries in certain rows
of the matrix is zero or small. Although this is not a 100% accurate statement, since
small magnitude main diagonal entries may be enlarged or reduced during the ILU

factorization, it can happen for many of the indefinite matrices arising from realistic

24

applications [62]. Such an inaccurate or not exact statement may satisfy the need of
an application scientist or engineer.

The transformation strategy proposed in [62] is to identify these rows with small
magnitude or zero main diagonals, and place these rows as the last few rows in the
matrix via a symmetric permutation. The matrix A is permuted to have a block

format

- r (D F
A=PAP _<E o)

where the submatrix D contains rows with relatively large magnitude main diagonals,
and the submatrix C' contains rows with small magnitude or zero main diagonals. A

partial ILU factorization is then performed on the permuted matrix A as

i=(2 &)~ (wam 1)(0 1)

where LU =~ D is the ILU factorization of the submatrix D, and A; ~ C— E(LU)™'F
is the approximate Schur complement matrix with respect to the submatrix C. Since
the submatrix D has large magnitude diagonal entries and is well conditioned, its
ILU factorization LU should be stable. The formulation of the (approximate) Schur
complement matrix A; avoids the factorization of the submatrix C' in this first phase,
thus avoids the potential instability problem that may be caused by small magnitude
or zero pivots. The hope is that some of the small magnitude or zero diagonals may
be enlarged when forming the (approximate) Schur complement matrix A;. An ILU
factorization on those rows of A; may be stable, the remaining small magnitude or
zero diagonal rows are forced into another smaller Schur complement matrix As, and
so on. This recursive procedure can be repeated for a few times. Each time, part
of the matrix is stably factored. Analytic results and numerical experiments in [62]
indicate that this multilevel recursive ILU factorization produces a much better ILU

preconditioner than the standard ILU factorizations do.

25

2.1.2 Zero Diagonals in Matrices from 3D Coupled Navier-
Stokes Simulations.

The 3D stationary Navier-Stokes equations for an incompressible viscous fluid can

be written in velocity-pressure (primitive variable) form [61]. The finite element

discretized sparse nonlinear system of equations can be written as

vCu+g(u) - B'p = f, (2.3)
—Bu = 0, (2.4)
where u and p denote the nodal values of velocity and pressure. C and B are sub-

matrices associated with the finite element discretization [9]. The nonlinear system of

equations (2.3) and (2.4) is solved in a fully coupled sense using the Newton iteration

method: given Sy, for n =0,1,2,..., solve
J,08,=—-F,,
where
C ag(u)‘ _BT
Jo=| VT |y, (2.5)
-B 0

is the Jacobian matrix. It is comprised of a symmetric part associated with the
viscous Laplace operator and a nonsymmetric part due to the contribution dg(u)/0u
at u,, from the nonlinear convective term.

The matrix (2.5) is not expressed in the standard form coded in most imple-
mentations since the nodal variables have been re-ordered for convenience with all
u variables listed first, followed by the p variables. In practice most finite element
codes apply a different ordering of variables by nodes with velocity nodal values and
pressures listed consecutively node by node so that the bandwidth is reduced. The
u variable of the (i + 1)st node is listed after the p variable of corner node i, and so

on. In the case where additional transport variables are present their nodal values

26

are grouped with the velocity nodal values and precede them. For example, at node 7
we have (T, u;, v;,w;) in the coupled thermal-viscous (variable viscosity) calculations
[64].

It is noted by a few authors that an ILU factorization on the Jacobian matrix
will encounter a zero pivot in the first few steps [11, 64, 65]. Thus it is important
to permute all rows corresponding to the p variables to the last few rows of the
matrix [62, 66]. If an ILU factorization retaining the coefficient matriz structure
is applied on the permuted matrix, no zero pivot will be encountered. These are
useful matrix features and information that may help build intelligent preconditioned

iterative solvers.

2.1.3 Dense Blocks in Matrices from Semiconductor Diffu-
sion Simulations.

One of the key steps in fabricating a semiconductor device such as a MOSFET is
the “doping” of the semiconductor with impurities such as phosphorus, boron, and
germanium using various implant techniques. The 5-species model for phosphorus
diffusion proposed by Richardson and Mulvaney is representative of such a process
modeling systems for impurity doping [45, 42, 65]. The associated system consists of 5
coupled reaction diffusion equations [45]. In [42] a class of semi-implicit Runge-Kutta
methods is used to integrate the semi-discrete system of ODEs. The Runge-Kutta
integrator can be written as

q

u" ="+ Atz o k;,
i=1

where ¢ denotes the number of stages and k; has the form

i—1 i—1
Akz =|I- AtGiJ(’U,n + Atz Cjkj) kz = F(’U,n + Athjk])
7j=1 7j=1

27

Here J is the Jacobian matrix of F' with respect to w and o, a;, b; and c¢; are constants.
k; is the unknown vectors to be solved for.

Since 5 equations are defined at any grid point, the matrix A has 5 by 5 dense
blocks if the variables at each grid point are listed consecutively. This information
can be very useful in building block version of ILU preconditioners. However, careful
examination reveals that not all five variables appear in all five equations, which
means each of the 5 by 5 dense block contains entries that are numerically zero. Thus
if the matrix is stored in a standard sparse matrix format, such as the compressed
sparse row format [48], these dense 5 by 5 blocks will be difficult to detect and to
exploit in a block ILU factorization. Strategies that can detect and exploit block
structure in a general sparse matrix are obviously useful in such applications for
effective and intelligent preconditioning. Note that extracting useful information from
a sparse matrix does not destroy the generality of the ILU preconditioner. On the
contrary, it provides problem specific information to the preconditioning techniques

so that a better preconditioner can be constructed.

2.2 Matrix Features Extracted

The features of a matrix are directly related to the precision of the prediction system.
As illustrated by the previous examples, some matrix features are closely related to
the performance of preconditioned iterative solvers. We will compute the features of
a matrix first and then use such information to make prediction. The features of a
matrix are a reflection of its sparsity and the locations and the size of the nonzero
elements. We have extracted more than 60 features such as the matrix structure,
value, bandwidth and diagonal related statistics. There may be other useful features
that we can extract in the future and add them to the feature space. Part of the

matrix features are calculated using SPARSKIT [51].
28

Figure 2.1 is an illustration of the sparsity pattern structures of two different sparse
matrices from the MatrixMarket [38]. Figure 2.1(a) shows the sparsity pattern of the
matrix NOS7, which has 729 columns and 2673 nonzero elements. The matrix NOS7
is from finite difference approximation to diffusion equation with varying diffusivity in
a 3D unit cube with Dirichlet boundary conditions. Figure 2.1(b) depicts the sparsity
pattern of the matrix NNC261, which has 261 columns and 1500 nonzero elements.
The matrix NNC261 is from a nuclear reactor model. It can be seen that the two
matrices have quite different sparsity patterns. Our aim is to extract features that
can represent these and other properties of the sparse matrices and to use data mining
techniques to predict the solving status of the sparse matrices by the preconditioned

iterative solvers, based on their sparsity pattern and properties (features).
2.2.1 Structure

This group of features describe the distribution of nonzero entries of a sparse matrix.

e nnzrt - sparsity rate (the number of nonzero elements divided by the number

of all elements) of the whole matrix.

e low fillrt - sparsity rate (the number of nonzero elements divided by the number

of all elements in the lower triangular part) of the lower triangular part.

e upfillrt - sparsity rate (the number of nonzero elements divided by the number

of all elements in the upper triangular part) of the upper triangular part.

e diagfillrt - sparsity rate (the number of nonzero elements divided by the num-

ber of all elements in the main diagonal) of the main diagonal.
e avnnzprow - the average nonzero entries per row.

e sdavnnzprow - the standard deviation of nonzero entries per row.

29

avnnzpcol - the average nonzero entries per column.

sdavnnzpcol - the standard deviation of nonzero entries per column.
maxnnzprow - the maximum number of nonzero elements per row.
minnnzprow - the minimum number of nonzero elements per row.
maxnnzpcol - the maximum number of nonzero elements per column.
minnnzpcol - the minimum number of nonzero elements per column.

nzdiags - the total number of non-void diagonals, i.e., the number of diagonals
which have at least one nonzero element among the 2n — 1 diagonals of the

matrix.
symmec - it measures whether a matrix is symmetric, i.e., A = AT,

relsymm - it describes the relative symmetry rate of a matrix. It is the ratio
of the number of elements that match divided by nnz. An element a(7,j) in
the matrix A matches if it satisfies the following condition: if a(i, j) is nonzero

then a(7, %) is nonzero.

normal - if a matrix is a normal matrix, normal is equal to 1, otherwise it is 0.
A matrix A is said to be normal if it commutes with its transpose conjugate,

i.e., if it satisfies the relation A% A = AAH,

blocksize - it reflects whether a matrix has a block structure or not. The matrix
has a block structure if it consists of square blocks that are dense. The value of

blocksize greater than one represents the size of the largest block.

30

2.2.2 Value

The attributes in this group sum up the value distribution of a matrix.

e onenorm - the one norm of a matrix, which equals to the maximum of the sum

of the columns.

e infnorm - the infinity norm of a matrix, which equals to the maximum of the

sum of the rows.
e frnorm - the Frobenius norm of a matrix, which is defined as (Y7, Y7, [aq/*)'/2.
e minonenorm - the minimum of the sum of the columns.
e mininfnorm - the minimum of the sum of the rows.
e symfnorm - Frobenius norm of the symmetric part of a matrix.
e nsymfnorm - Frobenius norm of the unsymmetric part of a matrix.

e avnnzval - the average of the absolute value of all nonzero entries in a matrix.

e sdavnnzval - the standard deviation of the absolute value of all nonzero entries

In a matrix.

e avdiag - the average of the absolute value of all nonzero entries in the main

diagonal.

e sdavdiag - the standard deviation of the absolute value of all nonzero entries in

the main diagonal.

e avuptrig - the average of the absolute value of all nonzero entries in the upper

triangular part.

31

e sdavuptrig - the standard deviation of the absolute value of all nonzero entries

in the upper triangular part.

e avlowtrig - the average of the absolute value of all nonzero entries in the lower

triangular part.

e sdavlowtrig - the standard deviation of the absolute value of all nonzero entries

in the lower triangular part.

e pup - ratio of the sum of the absolute value of entries in upper triangular part

to the sum of entries of the whole matrix.

e plow - ratio of the sum of the absolute value of entries in lower triangular part

to the sum of entries of the whole matrix.

e pdiag - ratio of the sum of the absolute value of entries in main diagonal to the

sum of entries of the whole matrix.

2.2.3 Bandwidth

This group of features describe the bandwidth of a matrix. The bandwidth provides

a measure of the clustering of nonzero entries about the main diagonal.

e lowband - lower bandwidth of a matrix. It is defined as the largest value of

i — j, where a(i, 7) is nonzero.

e upband - upper bandwidth of a matrix. It is defined as the largest value of j —1,

where a(i, j) is nonzero.

e mazband - maximum bandwidth of a matrix. It is defined as max(max(j) —

min(j)), where a(7, j) is nonzero.

32

e avband - average bandwidth of a matrix. It is defined as the average width of

all rows: avg(max(j) — min(j)), where a(i, j) is nonzero.

2.2.4 Diagonal

The features in this group are diagonal related.

e avdisfd - the average distance from each entry to the diagonal.
e sdavdisfd - the standard deviation of distance from each entry to the diagonal.

e avvalfd - the average of the value difference from each of the entry to its

diagonal value.

e sdavval fd - the standard deviation of the value difference from each of the entry

to its diagonal value.

e avmaxval fd - the average of the difference from the largest value in a row to

the diagonal value.

e sdavmaxval fd - the standard deviation of the difference from the largest value

in a row to the diagonal value.

e diagdomrow - the percentage of weakly diagonally dominant rows. Row 17 is

weakly diagonally dominant if |a;| > Z;jj i |aij].-

e diagdomcol - the percentage of weakly diagonally dominant columns. Column

i=n

j is weakly diagonally dominant if [a;;| > >°,77 . [aijl.

e diagvalrate - the ratio of the minimum absolute diagonal element value (except

zero) to the maximum absolute diagonal element value.

33

2.2.5 Others

We also include some other features which are listed below:

e strzpiv - the number of structural zero pivots (a structural zero pivot is a null

column above or null row to the left of a zero diagonal element).
e zpivrow - whether a matrix has a null row to the left of a zero diagonal element.
e zpivcol - whether a matrix has a null column above a zero diagonal element.

e szvdiag - the smallest nonzero diagonal element with the dot product of its left

vector and up vector being zero.

e minvalcol - the minimum of the smallest nonzero value in each column with a

zero diagonal element.

e minpivrate - if a diagonal element has nonzero value, find the smallest nonzero
value in that column and divide it by the diagonal element. Find the minimum

of such values among all columns.

34

.
0 100 200 300 400 500 600 700
nz = 2673

(a) Matrix NOS7

BRRRON R f

200} - hl T

Ll H,'; l‘ &

250} ool
. -

L L L L hd L L 1

0 50 100 150 200 250

(b) Matrix NNC261

Figure 2.1: Illustration of different sparsity patterns of two different sparse matrices.

35

Chapter 3

Solving Status of the Sparse Linear
Systems

In this chapter, we analyze the relationship among the the solving status of the sparse
linear systems with respect to different preconditioners, the choice of preconditioned
solvers with different parameters, and the attributes of the matrices [56, 57]. We show
some of the interesting experimental results obtained from solving the 319 sparse
linear systems with different preconditioned iterative solvers. Here we say a sparse
linear system is solved if the preconditioner can be successfully constructed with a
moderate condest value (condest is defined as ||(LU) ' el|o, where e is the vector of all
ones), the preconditioned solver converges within a preset number of iteration times
and the relative residual norm is smaller than a preset limit.

The structure of this chapter is as follows: We analyze the solving status of the 319
sparse linear systems with one kind of preconditioners in each of the first 6 sections.

In the last section, we show some comprehensive results for all the preconditioners.

3.1 ILUO

Most general purpose preconditioners are derived from incomplete (lower-upper) LU

(ILU) factorization of the coefficient matrix A. It has been noted [13, 48] that stan-

36

dard ILU preconditioner, ILUOQ, is not robust for solving difficult problems from real-
istic applications. Our experimental results show that, of the 319 matrices, the ILUO
preconditioner can be successfully constructed for 185 matrices, and among them,
139 matrices are successfully solved.

When solving the 319 sparse linear systems generated from the 319 sparse ma-
trices, there are 4 kinds of returning status. If solvstat = —100, it means that the
program fails because zero pivot is encountered in constructing the preconditioner.
If solvstat = —7, it means the condest value is very large (larger than 10'°) and the
preconditioner is unstable. The condest value measures the stability of the triangular
solvers [10]. When solvstat = —1, it means that the preconditioned solver does not
converge when the number of iterations is greater than the preset limit (the limit is
set to be 500). If solvstat = 0, the problem is solved successfully with the ILUOQ pre-
conditioner. We divide the 319 matrices into 4 categories according to the returning
status of solving the corresponding sparse linear systems. The number of matrices in

each category is shown in Table 3.1.

Category | Number of Matrices | solvstat
1 132 -100
2 18 -7
3 30 -1
4 139 0

Table 3.1: Number of matrices in each category with respect to ILUO.

3.2 MILUO

MILUO preconditioner is ILUO with the diagonal compensation. It also suffers from
the same zero pivot problem as ILUO does. Generally speaking, if the main diago-

nal of the matrix has small magnitude value or low density, MILUO will not work

37

well. However, it is better than ILUO for certain problems, thanks to the diagonal
compensation technique. Of the 319 sparse linear systems, the preconditioner can be

successfully constructed for 190 of them, and 164 of them are successfully solved (see

Table 3.2).
Category | Number of Matrices | solvstat
1 129 -100
2 24 -7
3 2 -1
4 164 0

Table 3.2: Number of matrices in each category with respect to MILUO.

Compared with ILUO, we can see that the number of matrices in Category 3 is
greatly reduced (from 30 to 2). That means that the number of matrices for which
MILUO cannot converge decreases. The number of matrices in Categories 1 and 2
does not change much. Thus the total number of matrices that can be successfully

solved increases about 18%.

3.3 ILUD

The preconditioner ILUD computes the ILU factorization with only the standard
threshold dropping. In ILUD, the parameter « indicates whether or not the diagonal
compensation is used. If & = 0, it means that there is no diagonal compensation, and
only the standard threshold dropping is used. If @ = 1, it means that the diagonal
compensation is applied in addition to the standard threshold dropping. We test
ILUD under these two cases separately. In each case we test the matrices with three

different dropping tolerance values, which are 0.0001, 0.001 and 0.01 respectively.

38

331 a=1

First, we analyze the relationship among the tolerance value, the solving status of
the sparse linear systems, and the attributes of the matrices. With the decrease
of the tolerance value, more sparse linear systems are solved. As the decrease of
the tolerance value allows more fill-in elements, the performance of ILUD begins to
improve. For example, when tol = 0.01, 197 linear systems are solved. When tol
decreases to 0.001, 53 more linear systems that cannot be solved when tol is 0.01 are
now solved. When tol decreases to 0.0001, 19 more are solved. Table 3.3 shows these

solving results.

Class | Number of Matrices solvability
1 197 solved when tol = 0.01
2 197 + 53 solved when tol = 0.001
3 197 + 53 + 19 solved when tol = 0.0001

Table 3.3: Number of matrices in each class in testing ILUD with o = 1.

We analyze the average value of attributes in the three classes in Table 3.4. It
reveals that there are some trends in the attributes of the matrices in the three
classes. For example, when tol becomes smaller, more matrices with smaller values
of AVNNZPCOL, AVBND, AVDIAG and NZDIAGS are solved. Table 3.4 shows the
average value of AVNNZPCOL is 0.2604 in Class 1, which decreases to 0.0231 in Class
2 and further decreases to 0.0053 in Class 3.

From Table 3.3, we know when tol = 0.0001 ILUD works the best. The results
in Table 3.5 are obtained with tol = 0.0001. In this case, of the 319 sparse linear
systems, 265 of them were successfully solved with ILUD. When solving the 319
problems, there are also four kinds of returning status, the same as with ILUQ. The
only difference is when solvstat = —100, the construction of the preconditioner fails

because a zero row is encountered, instead of a zero pivot in ILUQO. The number of

39

Attributes Class 1 Class 2 | Class 3
AVNNZPCOL 0.2604 0.0231 0.0053
NNZLOW 0.5098 0.4759 0.4717
NNZUP 0.4966 0.4816 0.4460
NNZDIAG 0.1936 0.0396 0.0809
LOWBAND 0.2972 0.1505 0.1427
UPBAND 0.3002 0.1566 0.1429
MAXBAND 0.3626 0.2412 0.2161
AVBAND 0.1946 0.1222 0.0893
AVDISFD 0.0812 0.0522 0.0493
SDAVDISFD 0.0864 0.0491 0.0520
AVDIAG 0.0202 0.0113 0.0023
SDAVDIAG 0.0218 0.0089 0.0016
AVVALFD 1.77TE+10 | 5.57E+6 | 3.83E+5
SDAVVALFD 1.80E+10 | 4.35E+6 | 3.67TE+5
AVMAXVALFD | 2.98E+10 | 9.40E+7 | 7.94E+5
SDAVMAXVALFD | 1.95E+10 | 4.68E+6 | 4.20E+5
RELSYMM 0.9134 0.9187 0.9274
NZDIAGS 0.1393 0.0963 0.0449
DIAGDOMCOL 0.4591 0.0942 0.1201
DIAGDOMROW 0.4337 0.0753 0.1111

Table 3.4: Average attributes of the sparse linear systems solved by ILUD with o = 1.

matrices in each category is shown in Table 3.5.

Category | Number of Matrices | solvstat
1 5 -100
2 45 -7
3 4 -1
4 265 0

Table 3.5: Number of matrices in each category with respect to ILUD with o = 1.

3.3.2 a=0

Now let us look at the some of the experimental results of ILUD with o = 0, which

means only the standard threshold dropping is applied and no diagonal compensation

40

is used. Following the sequence of analyzing ILUD with o = 1, We will also analyze
the relationship among the tolerance value, the solving status of the sparse linear
systems and the attributes of the matrices at first.

Table 3.6 shows the similar three classes of matrices as in Table 3.3. With the
decrease of the tolerance value, the number of linear systems that can be successfully
solved increases, too. As no diagonal compensation is used, the number of matrices
in each class is much less compared with using diagonal compensation. For example,
there are 197 matrices in Class 1 when o = 1, but there are only 161 matrices in

Class 1 when oo = 0.

Class | Number of Matrices solvability
1 161 solved when tol = 0.01
2 161 + 44 solved when tol = 0.001
3 161 + 44 + 24 solved when tol = 0.0001

Table 3.6: Number of matrices in each class in testing ILUD with o = 0.

Table 3.7 shows the average value of attributes in the three classes. We can
observe that some attributes have similar trends as in Table 3.4. For example, when
tol becomes smaller, more sparse linear systems with smaller values of AVNNZPCOL,
AVBAND, AVDIAG and NZDIAGS are solved.

Figures 3.1 - 3.4 compare the trends of the average values of some attributes in
each class with & = 1 and a = 0. In these figures ILUD means ILUD with o = 1,
while ILUDA means ILUD with o« = 0. It can be easily observed from these figures
that the attributes AVNNZPCOL, AVBAND, AVDIAG and NZDIAGS have very
similar trends in the dropping of the average values with the decrease of the tolerance
parameter tol.

Like the way we analyze the case with o = 1, Table 3.8 is obtained by setting the
tolerance value to be 0.0001. In this case, 224 out of the 319 sparse linear systems

41

Attributes Classl Class2 Class3
AVNNZPCOL 0.2773 0.0293 0.0116
NNZLOW 0.5172 0.4750 0.4771
NNZUP 0.5083 0.4694 0.4661
NNZDIAG 0.2206 0.0512 0.0556
LOWBAND 0.3215 0.1620 0.1939
UPBAND 0.3258 0.1579 0.1939
MAXBAND 0.3867 0.2534 0.2734
AVBAND 0.2123 0.1317 0.1299
AVDISFD 0.0914 0.0523 0.0528
SDAVDISFD 0.0963 0.0457 0.0584
AVDIAG 0.0224 0.0146 0.0067
SDAVDIAG 0.0237 0.0121 0.0062
AVVALFD 2.16E+10 | 2.29E+7 | 4.01E+7
SDAVVALFD 2.20E+10 | 2.20E+7 | 3.46E+7
AVMAXVALFD | 3.65E+10 | 3.98E+7 | 7.19E+7
SDAVMAXVALFD | 2.39E+10 | 2.50E+7 | 3.71E+7
RELSYMM 0.9086 0.9258 0.9058
NZDIAGS 0.1501 0.1037 0.0726
DIAGDOMCOL 0.5331 0.1351 0.1071
DIAGDOMROW 0.4945 0.1034 0.1228

Table 3.7: Average attributes of the sparse linear systems solved by ILUD with o« = 0.

were successfully solved with ILUD with o = 0. Unlike the case with o = 1, there are
5 categories of returning status this time. Four of them are the same as with o = 1,
the only difference is solvstat = —3, which means that there is an unanticipated
break-down or divide by zero error when running GMRES. The number of matrices
in each category is shown in Table 3.8. Compared with Table 3.5, 224 matrices can
be successfully solved with a = 0, while 265 can be successfully solved with o = 1.
Without diagonal compensation, 7 more matrices have the problem of large condest

value, 16 more have the problem of unanticipated break-down, and 32 more can not

be solved in 500 iterations.

42

0.315
0. 28
0. 245
0.21
0.175
0.14
0. 105
0.07
0.035

—— i lud
—#— iluda

Classl Class2 Class3

Figure 3.1: The trend of the values of AVNNZPCOL in ILUD and ILUDA.

_ |——1ilud
—&— i luda

Classl Class2 Class3

Figure 3.2: The trend of the values of AVBAND in ILUD and ILUDA.

3.4 ILUDP

ILUDP is ILUD with column pivoting. As with ILUD, we test ILUDP with or without

diagonal compensation separately. We use the same set of tolerance values, which are

0.0001, 0.001 and 0.01.

341 a=1

We first test ILUDP with the diagonal compensation. Table 3.9 illustrates the re-
lationship between the tolerance value and the solving status of the sparse linear

systems. With the decreasing of tolerance value, more sparse linear systems are

43

.024
021 |
.018
015
012
.009 —
.006 —
.003

SO DODDODDODIDODOO

Classl Class2 Class3

Figure 3.3: The trend of the values of AVDIAG in ILUD and ILUDA.

0.16
0.14 |
0.12 |
0.1 r ——ilud

B —8— i]uda

e

cooo

o R ®
I

Classl Class? Class3

Figure 3.4: The trend of the values of NZDIAGS in ILUD and ILUDA.

solved. Compared with Table 3.3, a larger number of matrices appears in each class.
For example, when tol = 0.01, only 197 sparse linear systems are successfully solved.
After applying column pivoting, 62 more sparse linear systems are solved.

Table 3.10 shows the average value of attributes in each of the three classes. Unlike
ILUD, there is no obvious trend in the attributes of the matrices with the dropping
of the tolerance value tol.

From Table 3.9, we know when tol = 0.0001 ILUDP works the best. The results
in Table 3.11 are obtained with tol = 0.0001. When solving the 319 sparse linear
systems, there are only three different kinds of returning status, all of which have

appeared with ILUD. The difference is that for ILUDP, there is no category with
44

Category Number | Number of Matrices | solvstat
1 5 -100
2 38 -7
3 16 -3
4 36 -1
) 224 0

Table 3.8: Number of matrices in each category with respect to ILUD with o = 0.

Class | Number of solved Matrices solvability
1 259 solved when tol = 0.01
2 259 + 23 solved when tol = 0.001
3 259 + 23+ 6 solved when tol = 0.0001

Table 3.9: Number of matrices in each class in testing ILUDP with a = 1.

solvstat = —1, which means that the construction of the preconditioner fails because
the maximum number of iterations is reached. The number of matrices in each
category is shown in Table 3.11. Compared with Table 3.5, not only there is no
category with solvstat = —1, the number of matrices with solvstat = —7 also drops.
Once again the results show that using column pivoting can improve the solvability

of ILUD with a = 1.

342 a=0

Now let us look at the some of the experimental results of ILUDP with o« = 0, which
means no diagonal compensation is used. Following the sequence of analyzing ILUDP
with o = 1, We also analyze the relationship among the tolerance value, the solving
status of the sparse linear systems and the attributes of the matrices at first.

As we may expect, for ILUDP with o = 0, with decrease of the tolerance value tol,
more sparse linear systems are solved. The number of solved linear systems in each
class in Table 3.12 is smaller than in Table 3.9, as no diagonal compensation is used

here. However, the solving ability of ILUDP with o = 0 is much better than that of
45

Attributes Classl Class2 Class3
AVNNZPCOL 0.0252 0.0234 0.0234
NNZLOW 0.4925 0.4921 0.4920
NNZUP 0.5035 0.5015 0.4997
NNZDIAG 0.1559 0.1458 0.1445
LOWBAND 0.3337 0.3103 0.3110
UPBAND 0.3405 0.3163 0.3160
MAXBAND 0.4112 0.3850 0.3858
AVBAND 0.1997 0.1855 0.1859
AVDISFD 0.1031 0.0951 0.0949
SDAVDISFD 0.0972 0.0901 0.0901
AVDIAG 0.0172 0.0161 0.0160
SDAVDIAG 0.0179 0.0166 0.0166
AVVALFD 1.34E+10 | 1.23E+10 | 1.21E+10
SDAVVALFD 1.36E+10 | 1.25E+10 | 1.23E+10
AVMAXVALFD | 2.27E+10 | 2.08E+10 | 2.04E+10
SDAVMAXVALFD | 1.48E+10 | 1.36E+10 | 1.33E+10
RELSYMM 0.8321 0.8421 0.8398
NZDIAGS 0.1784 0.1678 0.1673
DIAGDOMCOL 0.3660 0.3402 0.3365
DIAGDOMROW 0.3408 0.3149 0.3142

Table 3.10: Average attributes of the sparse linear systems solved by ILUDP with
a=1.

ILUD with o = 0 (see Table 3.6). For example, after applying column pivoting, 73
more sparse linear systems are successfully solved when tol = 0.01.

Like the situation with ILUDP with o = 1, there is no obvious trend in the average
of the matrix attributes with respect to the dropping of tol so we just omit the table
here.

Like the way we analyze the case with o = 1, Table 3.13 is obtained by setting the
tolerance value to be 0.0001. When solving the 319 sparse linear systems, we observe
4 kinds of returning results. All of them are the same as in ILUD. The number

of matrices in each category is shown in Table 3.13. Compared with Table 3.11,

it shows that without using diagonal compensation, the number of matrices that

46

Category | Number of Matrices | solvstat
1 5 -100
2 26 -7
3 288 0

Table 3.11: Number of matrices in each category with respect to ILUDP with o = 1.

Class | Number of solved matrices solvability
1 234 solved when tol = 0.01
2 234 + 29 solved when tol = 0.001
3 234 +29+ 9 solved when tol = 0.0001

Table 3.12: Number of matrices in each class in testing ILUDP with oo = 0.

fall in Category 2 and Category 3 increases. However, compared with Table 3.8,
because of the adoption of column pivoting, the number of sparse linear systems with
solvstat = —3 and solvstat = —1 decreases, thus the total number of sparse linear

systems successfully solved increases by 48.

Category | Number of Matrices | solvstat
1 5 -100
2 34 -7
3 8 -1
4 272 0

Table 3.13: Number of matrices in each category with respect to ILUDP with o = 0.

3.5 ILUT

ILUT is incomplete LU factorization with double dropping strategies. There are two
important parameters for ILUT. One is drop tolerance tol, the other is the number of
fill-in elements [fil. The smaller the tolerance value, the more elements will remain
in the preconditioner, thus the better the result. We can see from Figure 3.5 that

with the increase of tol, the number of sparse linear systems solved decreases. We

47

can think of tol as the parameter that helps reduce computational cost.

140 r
139 F
138 F
137 F
136 F
135 F
134 F
133 1 1 |

0. 0001 0.001 0.01
tol

solved

number of matrices

Figure 3.5: The number of sparse linear systems solved by ILUT with different tol
values.

To use the ILUT algorithm 1.2.4, the number of fill-in elements [fil has to be
set, for each matrix. As the matrices vary in size and sparsity, it is difficult to set a
specific value for [fil for all the matrices. Thus we use another parameter filr, which
denotes the fill-in rate. [fil can be obtained by multiplying filr with the average
number of non-zero entries of all the rows. Now [fil may get different values for
different matrices. Figure 3.6 shows the number of sparse linear systems solved with
different filr values. Here we choose filr to increase from 0.8 to 1.5. When the fill-in
rate grows, the number of the sparse linear systems solved increases steadily.

The results in Table 3.14 are obtained by setting tol to be 0.0001 and filr to be
1.5. When solving the 319 sparse linear systems, we got 5 kinds of returning status,
the same categories as we obtained with ILUD with = 0. The number of matrices

in each category is shown in Table 3.14.

48

145
140 F
135 F
130 F
125 F
120 F
115 F

solved

number of matrices

110
0.8

1 1.2
filr

1.5

Figure 3.6: The number of sparse linear systems solved by ILUT with different filr

value.
Category Number | Number of Matrices | solvstat
1 5 -100
2 118 -7
3 11 -3
4 46 -1
5 139 0

Table 3.14: Number of matrices in each category with respect to ILUT.

3.6 ILUTP

ILUTP is ILUT with column pivoting. Like ILUT, there are also two important

parameters for ILUTP, drop tolerance tol, and the number of fill-in elements [f4l.

Again like ILUT, with the increase of tol, the number of sparse linear systems solved

decreases (see Figure 3.7).

Based on the same reason mentioned in the previous section, we use the fill-in rate

filr instead of [fil in Figure 3.8. With the increase of filr, the number of sparse

linear systems solved grows steadily as in Figure 3.6.

From Figure 3.7 and Figure 3.8, we know that when tol is 0.0001 and filr is 1.5,

49

138

%)
)

e 137 F
&

T o 136 |
o

Gq 135 B
5

N 134 |
)

< 133
S

S 132

0. 0001 0. 001

tol

0.01

Figure 3.7: The number of sparse linear systems solved by ILUTP with different tol

value.

ILUTP achieves the best result. So we set the tol to be 0.0001 and filr to be 1.5 to

partition the matrices in categories in Table 3.15. When solving the 319 sparse linear

systems, we got the same 5 kinds of returning status as with ILUT. The number of

matrices in each category is shown in Table 3.15. Compared with Table 3.15, we

can find out that using column pivoting, there are less sparse linear systems suffering

from unanticipated break-down and failing to convergence, but more linear systems

suffering from large condest value. Thus the total number of successfully solved linear

systems almost remains the same as without column pivoting.

Category Number | Number of Matrices | solvstat
1 5 -100
2 150 -7
3 6 -3
4 21 -1
5 137 0

Table 3.15: Number of matrices in each category with respect to ILUTP.

90

140
135
130
125
120

115 | | | |
0.8 1 1.2 1.5

filr

solved

number of matrices

Figure 3.8: The number of sparse linear systems solved by ILUTP with different filr
value.

3.7 Comprehensive Results

We sum up the attributes of the matrices that can be successfully solved by the
preconditioned iterative solvers in Table 3.16. Here ILUD means ILUD with o =
1, while ILUDA means ILUD with o = 0. Similarly, ILUDP means ILUDP with
a = 1, while ILUDPA means ILUDP with o = 0. {} means that the average value
of this category is the highest among all the categories. || means that the average
value of this category is the lowest among all the categories. fa means that the
average value of this category is not the highest among all the categories, but higher
than the total average. On the contrary, |a means that the average value of this
category is lower than the total average. So the category of the problems can be
successfully solved has the highest values of NNZDIAG, AVDIAG, AVVALFD and
AVMAXVALFD compared with the average values with other returning statuses.
And the values of DIAGDOMCOL and DIAGDOMROW are generally high, at least
higher than the average. Also, the RELSYMM values are higher than the average

o1

and the NZDIAGS values are lower than the average.

svzoiae |)] fr fr ZL
AVDIAG gL A)) f | Ta
avwaen | P 0 1)) £
AVMAXVALFD ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ
AVBAND M N Ja | Ja Ja Ta Ta | fTa
DIAGDOMCOL ﬂ ﬂ Ta ﬂ Ta Ta ﬂ ﬂ
DIAGDOMROW ﬂ“ 'ﬂ Ta Ta Ta Ta 'ﬂ ﬂ“
RELSYMM Ta Ta ﬂ Ta ﬂ Ta Ta Ta
NZDIAGS Ja | la U Ja (X la Ja | la

Table 3.16: Attributes of the matrices that can be successfully solved.

According to our experimental results, we verify that most of the diagonal domi-
nant and symmetric matrices can be easily solved. We also find out that if a matrix
satisfies the condition that ncol=nnzdiag, then it probably can be solved by some

preconditioned solver, too.

3.7.1 Symmetric Matrices

All symmetric matrices can be solved using at least one of the preconditioners except
two matrices: BCSSTM13 and ZENIOS. They cannot be solved by any preconditioned
iterative solvers, using the 6 preconditioners under our consideration. The reasons

why they failed are listed in Table 3.17 and Table 3.18.

Preconditioner result explanation

ILUO precresult = 4 | zero pivoting encountered at step 4
MILUO precresult = 4 | zero pivoting encountered at step 4
ILUD precresult = -3 zero row encountered
ILUDP precresult = -3 zero row encountered

ILUT precresult = -5 zero row encountered
ILUTP precresult = -5 zero row encountered

Table 3.17: Solving result of BCSSTM13 using different preconditioners.

52

Preconditioner result explanation

ILUO precresult = 1 | zero pivoting encountered at step 1
MILUO precresult = 1 | zero pivoting encountered at step 1
ILUD precresult = -3 zero row encountered
ILUDP precresult = -3 zero row encountered

ILUT precresult = -5 zero row encountered
ILUTP precresult = -5 zero row encountered

Table 3.18: Solving result of ZENIOS using different preconditioners.

3.7.2 Diagonally Dominant Matrices

Among the 319 matrices, there are all together 27 diagonally dominant matrices.
Among them, SHERMAN3 is the only matrix that cannot be solved by any pre-
conditioned iterative solvers. The reasons are the same for all the preconditioned
solvers: the condest value is so large that the constructed preconditioners are unsta-
ble. FS-680-2 and FS-680-3 cannot be solved by ILUT and ILUTP, but can be solved
by other preconditioned solvers. The reasons that they fail are also the same: the

solvers cannot converge in the preset number of iterations.

3.7.3 The Case ncol=nnzdiag

We also find out that when ncol=nnzdiag, i.e., the entries in the main diagonal
are all nonzero, most of the matrices can be successfully solved no matter what
preconditioner is used. In the 319 matrices, there are 164 matrices with such a
property. Table 3.19 shows the number of matrices solved by different preconditioned
iterative solvers. We can see that 76% of matrices with this property are successfully
solved by ILUT and ILUTP. If using ILUD and ILUDP, more than 95% of the matrices

are solved.

93

Preconditioners | ILUO | MILUO | ILUD | ILUDP | ILUT | ILUTP
Matrices solved | 128 144 157 160 125 125
Percentage 8% | 88% 96% 98% 6% | 76%

Table 3.19: Percentage of matrices with the property ncol=nnzdiag that can be solved.

3.7.4 Solving Status of the Sparse Linear Systems

Of the 319 the sparse linear systems, 300 of them can be solved by one or several
preconditioned iterative solvers. We consider that a preconditioner is the best to a
matrix if the preconditioned iterative solver runs successfully on that matrix with
the smallest running time. If there is a tie in the running time, we list all the
preconditioners that can be used to get that time. Our experiments show that all the
preconditioners have the chance to be the best preconditioners, but their chances are
quite different. Table 3.20 lists the preconditioners and for how many matrices they

are the best. Here ILUD is the most favorable preconditioner as 65% of the matrices

think it is the best choice.

Preconditioners ILUO | MILUO | ILUD | ILUDP | ILUT | ILUTP
Best for how many matrices 39 91 208 161 62 60
Percentage of all the matrices | 12% | 29% | 65% | 50% | 19% | 19%

Table 3.20: Chances of each of the preconditioners to be the best.

Nineteen sparse linear systems cannot be solved by any preconditioned iterative
solvers. Table 3.21 shows the returning status with different preconditioned solvers.
We can see that almost all of these matrices either fail at the construction of the
preconditioner (result = —100) or the condest value of the constructed preconditioner
is too large (result = —7) to be stable. Here S,es: denotes the returning status of
preconditioned solver using the preconditioner ILUO. The meaning of other column

titles are similar to it. The returning status of constructing the preconditioners are

54

listed in Table 3.22. In this table Spyecstqt denotes the return status of constructing
preconditioner ILUQO. The meaning of other column titles are similar. If the returning
status is a positive number, it means zero pivot is encountered at that step. If it is
equal to -3, it means the matrix U overflows the array. If it is equal to -5, it means

zero row is encountered. If it is zero, it means the preconditioner is successfully

constructed.

NAME Srestat Mrestat Drestat DPrestat T’restat TPrestat
BCSSTM13 -100 -100 -100 -100 -100 -100
IMPCOLA -100 -100 -7 -7 -7 -7
MBEACXC -100 -100 -100 -100 -100 -100
MBEAFLW -100 -100 -100 -100 -100 -100
MBEAUSE -100 -100 -100 -100 -100 -100
MHD3200A -100 -100 -7 -7 -3 -7
MHDA416A -100 -100 -7 -7 -7 -7
MHD4800A -100 -100 -7 -7 -3 -7
NNC1374 -100 -100 -7 -7 -7 -7
RW5151 -100 -100 -7 -7 -7 -7
SHERMANS3 -7 -7 -7 -7 -7 -7
WESTO0167 -100 -100 -7 -7 -7 -7
WEST0479 -100 -100 -7 -7 -7 -7
WEST0497 -100 -100 -7 -7 -7 -7
WEST0655 -100 -100 -7 -7 -7 -7
WEST0989 -100 -100 -7 -7 -7 -7
WEST1505 -100 -100 -7 -7 -7 -7
WEST2021 -100 -100 -7 -7 -7 -7
ZENIOS -100 -100 -100 -100 -100 -100

Table 3.21: Return status of the unsolved matrices.

95

NAME Sp'recstat Mprecstat Dprecstat DPprecstat Tprecstat Tpp'recstat
BCSSTM13 4 4 -3 -3 -5 -5
IMPCOLA 1 1 0 0 0 0
MBEACXC 1 1 -3 -3 -9 -9
MBEAFLW 1 1 -3 -3 -9 -9
MBEAUSE 1 1 -3 -3 -9 -9
MHD3200A 2 2 0 0 0 0
MHDA416A 2 2 0 0 0 0
MHD4800A 2 2 0 0 0 0
NNC1374 9 9 0 0 0 0
RW5151 1 1 0 0 0 0
SHERMANS3 0 0 0 0 0 0
WESTO0167 1 1 0 0 0 0
WEST0479 1 1 0 0 0 0
WEST0497 1 1 0 0 0 0
WEST0655 1 1 0 0 0 0
WEST0989 1 1 0 0 0 0
WEST1505 1 1 0 0 0 0
WEST2021 1 1 0 0 0 0
ZENIOS 1 1 -3 -3 -9 -9

Table 3.22: Return status of constructing the preconditioners for the unsolved matri-
ces.

o6

Chapter 4

Matrix Condition Number
Prediction

Condition number of a matrix is an important feature which is closely related to
the solvability of the preconditioned solvers. Condition number is also a widely used
measure in numerical analysis and linear algebra. The general approach to obtaining
it is through direct computation or estimation. The time and memory cost of such
approaches are very high, especially for large size matrices. However, if we could
find out the condition number of a matrix using some kind of “quick” method, it can
benefit not only the IPRS, but also many mathematicians and engineers.

In this chapter, we propose a quite new approach to estimating the condition
number of a sparse matrix [58]. That is, after computing the features of a matrix, we
use support vector regression (SVR) technique to predict its condition number. We
also use feature selection strategies to further reduce the response time and improve
accuracy. We use a feature selection criterion which combines the weights from SVR
and the weights from comparison of matrices with their preconditioned counterparts.
Our experiments show that the response time of the prediction method is on average
15 times faster than the direct computation approaches, which makes it suitable for

online condition number query. The accuracy of our prediction method is not as

o7

precise as the general direct computation methods. Our experiments also show that
using the predicted condition number will not improve the prediction accuracy in the
IPRS. However, many application engineers are only interested in knowing whether
a matrix is well-conditioned or ill-conditioned or the order of the condition number,
not the exact value of the condition number. For such users, a rough prediction with
quick response time is probably a better choice than a precise value after waiting for
hours or days.

The structure of this chapter is as follows: Matrix condition number concept is
introduced in Section 4.1. We briefly review SVM regression in Section 4.2. Three
feature selection methods are described in Section 4.3. The computational experi-
ments are carried out and the results are discussed in Section 4.4. We draw some

conclusions in Section 4.5.

4.1 Matrix Condition Number

The condition number k(A) of a nonsingular matrix A with respect to a matrix norm
is formally defined as ||A]| - ||[A™"|| [20]. The condition number corresponding to the
Frobenius norm will be denoted by kz(A) and the condition number corresponding
to the p-norm will be denoted by k,(A). There are some relationships among the

condition numbers based on different norms. For example, if A € R"*", then

%/@(A) < ki (A) < nky(A),

%koo(A) < ky(A) < nkool(A),

L1 (A4) < ko (A) < n2k (A).

n2
In this chapter, we only stress on the condition number corresponding to the 1-norm

ki(A). If k(A) is relatively small, then the matrix A is called a well-conditioned

o8

matriz, but if k(A) is large, then A is an ill-conditioned matriz (e.g., around 10° for
a b x 5 Hilbert matrix).

Condition number is a widely used matrix feature in many areas, such as in
numerical analysis and linear algebra. In numerical analysis, the condition number
is basically a measure of stability or sensitivity of a matrix (or the linear system it
represents) to numerical operations. For example, the condition number associated
with the linear equation Az = b gives a bound on how inaccurate the solution will be
after the numerical solution. Suppose A is nonsingular, & is an approximate solution

to x, r is the residual, and b # 0, then:

< k(A)%.

L lrll [l — 2]

k(A) [fol] = Il

It means that the relative error in the computed solution is bounded by the condition
number of the matrix A times the relative size of the residual. If A is ill-conditioned,
the relative error may not be small even if the relative size of the residual is small.

k(A) can also measure how close A is to being singular:

T ||[A-B|
min

WA) = W, B is singular.

A can be approximated by a singular matrix B if and only if £(A) is large.
Condition number can also be used to predict the convergence of iterative methods.

For example, for the conjugate gradient (CG) method, the error can be bounded in

terms of ko(M~'A) [2], where M is a preconditioner. If A is symmetric positive

definite, then for CG with a symmetric positive definite preconditioner M, it can be

shown that:
189 — 2[4 < 20]|2 — 2|4,
where a = (\/ko(M~1A) — 1)/(\/k2(M—1A) + 1) [22, 30].
There are several ways to obtain condition number. The direct method is to com-

pute A~! first and then multiply its norm with the norm of A. However, computing

99

A1 is equivalent to solving a linear system which is very time and memory consum-
ing. Another method is using a less expensive algorithm to estimate the condition
number. There are some estimation algorithms in literature [25]. For example, LA-
PACK uses subroutine SGECON to compute the condition number. Its time cost is
O(n?) extra beyond the O(n?) cost of solving Az = b, where n is the dimension of
A. If the size of the matrix is relatively large (e.g., n > 20000), the memory will be
depleted before the computation is completed on our SunBlade 150 workstations. In
most cases, the estimated condition number is within a factor of 10 of the true con-
dition number, but there exist some counter-examples with large estimation errors.
MATLAB uses LINPACK [16] for computing reciprocal of k;(A) and uses Higham’s
modification [25] of Hager’s method to estimate k;(A). Such methods have similar
problems with respect to memory and computing costs for large size matrices.

We propose a new approach to estimating the condition number of a sparse matrix.
Instead of direct computation or estimation, we predict condition number from matrix
features using data mining techniques. The predictor used is SVM regression (SVR)
[24, 50, 53]. We also apply some feature selection methods [23, 41] to further reduce
the time cost and improve precision. We propose a feature selection criterion which
combines the weights from SVR with the weights from comparison of matrices with
their preconditioned counterparts. Although the condition number predicted is not
as precise as the above-mentioned direct computation methods, (in our experiments,
if a relative deviation of 102 between the computed values and the predicated values
of the condition number is acceptable, our prediction error is smaller than 25%), it
has much smaller time and memory cost, especially for large size matrices, which
is suitable for online condition number query. Furthermore, many users are only
interested in knowing whether a matrix is well-conditioned or ill-conditioned, or the

approximate order of the condition number. In these situations, response time and

60

reliability are at least as important as accuracy.

4.2 SVM Regression

SVM regression is an approach to predicting real-valued outputs. It has been success-
fully applied in many areas such as financial forecasting [52, 60], image recognition
[35, 53] and signal processing [53]. SVM regression using the e-insensitive loss func-
tion is called e-SV regression [54]. In e-SV regression, the goal is to find a function
f(z) that has at most ¢ deviation from the actually obtained targets y; for all the
training data, and at the same time is as flat as possible [50]. We can visualize this
as a tube of size 2¢ around f(z) and data fall out of the tube are errors [3].

Suppose a linear function f(x) is of the form:
f(z) =<w,z>+b, weX, beR,

where < w,x > denotes the dot product of the vectors w and z. To account for the
errors, we introduce slack variables & and &. & computes the error for underesti-
mating the function while £ computes the error for overestimating the function The

e-insensitive loss function ||, is expressed as:

£ |€] — e, otherwise.

Then we have the following convex optimization problem:

I
1 .

minimize | w|* +C Z(fz +&),

i=1

yi—<w,$i>_b§6+£ia

<w,x; > +b—y <e+&,

fia 6:20:

C >0,

where C' determines the trade-off between the flatness of f(z) and the amount up to

subject to

which deviation larger than ¢ is tolerated.

61

The above optimization problem can be solved more easily in its dual formulation
[50]. We can use a standard dualization method utilizing Lagrange multipliers. After

solving it, we can get:

fl@)=> (o —0f) < zj,z > +b. (4.2)
i=1
The variable b can be computed as:

po l vim <wai>—e, for o; € (0,0),
| yi— <w,z; > +e, for of € (0,0).

For the nonlinear case, we apply a mapping ® : X — F' to map input space into
some feature space F. Here we use a kernel function, K(z,z;) =< ®(z), ®(z;) >,
which is a symmetric function and satisfies the Mercer’s condition. We substitute
K(z,z;) for the dot product, which maps the input space into some reproduced

kernel feature space. The commonly used kernel functions are:

Polynomial : K (z,z;) = (< z,z; > +¢)%,

2
_ z—=;ll

RBF : K(z,z;) = e~ 22

Neural Network : K (z,z;) = tanh(n < z,z; > +9).

4.3 Feature Selection

Our experiments show that the accuracy of the condition number predicted based on
the matrix features described in Section 2.2 seems to be good. But such a collection
of features may contain some redundant information. We apply feature selection
methods to remove the redundancy. Feature selection may also bring other benefits:
reduce the computation time, save memory space, remove noise and possibly optimize

the prediction accuracy. For an online condition number prediction system, it is

62

crucial to lower the response time and improve precision. In this section we investigate

3 feature selection methods.

4.3.1 Correlation

Correlation is one of the simplest feature selection methods. It computes the corre-

lation of the input vector z; and the target vector y as follows:

Cor, = > bt (T — Ti) (yx —)

\/Z;cnzl(xk,i D (T ??)2’
where the bar stands for an average over the index k. In linear regression, Cor?
represents the fraction of the total variance around the mean value 7 that is explained
by the linear relation between z; and y. Correlation criteria can only detect linear

dependencies between variables and target [23].

4.3.2 Weights from SVR

There have been some feature selection methods based on the weights from the SVM
classification model [6, 28, 40, 44]. Using the weights from SV-regression works in the
same way.

Using the kernel function K (x,z;), Equations (4.1) and (4.2) can be written as:

w = Z(Oéi —a;) K (z),

=1

l

fl@) = (o — of) K (i, z) +b.

i=1
Like in neural networks, the output prediction is of the form:

predict(x) = G(Z wiz; +b),
J

where G(z) is an activation function. A feature j with a larger weight w; has more

effect on the prediction than a feature with a smaller weight [40, 44]. Shih et al. jus-
63

tified in [49] that the features with higher weights are more influential in determining

the width of the margin. Thus ||w||? is a suitable criterion for feature selection.

4.3.3 Combinational Method

It is known that a good preconditioner can improve the condition number of a matrix
[48]. Suppose M is a preconditioner of a matrix A. We compare the condition number
as well as the matrix features of the original matrix A and the preconditioned matrix
M to find out which features contribute more to the improvement of the condition
number. Certain features have larger influence on the condition number and should
be kept in feature selection. Assume we have [matrix examples, and k“ represents
the condition number vector for all the original matrices, while k™ represents the

condition number vector for all the preconditioned matrices. v is the vector of

features for the ith original matrix, likewise, v is the vector of features for the
1th preconditioned matrix. Then we can obtain the weight vector wey,, to rank the

features:
!

Weamp = Y (ki = KM | # ot —] (4.3)

=1

Wemp Seems to be a reasonable criterion for feature selection. However, as we cannot
successfully construct a useful preconditioner for all the general matrices, wepyp is
biased towards the features of the matrices that can be preconditioned. To remedy
this problem, we propose to use the weight w.ems, Which combines w¢n, and the

weight from SVM regression wgy s, as
Weomp = NI (Wermp) + nml(wgyar), (4.4)
where the function nml(z) normalizes vector . Thus weemy is the sum of the normal-

ized Wemp and wgy .

64

4.4 Experiments and Results

In this section, we report our experiments on the accuracy and response time of the
condition number prediction methods. We use SV ML [29] for SVM regression.
There are 277 matrices from Matrix Market [38] tested in the experiments. We
use altogether 60 matrix features, most of which are explained in Section 2.2. The

experiments are carried out on a SunBlade 150 workstation.

4.4.1 Accuracy

First, we test how accurate the predicted condition numbers are, compared with the
directly computed condition numbers using LAPACK. The accuracy is obtained using
a b-fold cross validation. The matrices are assigned to each part in the training data
and the test data in a round-robin way. We choose C' to be 10000 for SVR which works
best according to the results of the 5-fold cross validation. Other parameters for the
kernels are chosen in the same way. The feature selection criteria used are correlation,
WSy M, Wemp, and Weomp. We compare them together with the SVR without feature
selection on three kernels: linear kernel, polynomial kernel and RBF kernel. Here all
the feature selection methods choose 50% of the features.

Figure 4.1 shows the accuracy comparison using a RBF kernel (v = 0.1). The fig-
ure illustrates the percentage of all matrices for which the relative differences between
the computed values and the predicted values of the condition number are within 10,
102, 10%, 10%, respectively. For the RBF kernel, w,,, does not work well. Its accuracy
is the lowest. For all the other methods, we can safely say that more than 70% of
the matrices have relative differences smaller than 10?. Among them, feature selec-
tion with weem, works best for all the difference scales except the first one. Using

feature selection with wegms, 76.2% of the matrices have relative differences smaller

65

RBF Kernel

90 -
85
80
o 75 OSVM
g gg B FS-Corr
g 60 OFS-Cmp
& 55 - OFS-SVM
50 - B FS-Comb
45 A
40 A

<10M <1072 <10A3 <1074
Diff erence

Figure 4.1: Comparison of accuracy with a RBF kernel.

than 10%. It has better accuracy than using SVR alone, although it only uses half
of the features. Other feature selection methods can also obtain similar accuracy to
that obtained from SVR without feature selection.

Figure 4.2 displays the accuracy comparison using a linear kernel. Here both
feature selection criteria weomp and wgy s work well. Their accuracy are higher than
using SVR alone for all the difference scales. For the first two difference scales, wgy s
is better than wgyy,,, while for the last two, Wy, exceeds wgy . Correlation criterion
performs worst for the linear kernel.

The accuracy obtained using a polynomial kernel (d = 2) is depicted in Figure 4.3.
In this figure, all the feature selection methods obtain much better accuracy than that
without feature selection. Here wgy s and weomp perform similarly, both are better
than the other methods.

Put these 3 figures together, we can see that the best accuracy is obtained using

the RBF kernel, then the linear kernel, and the polynomial kernel does not seem to

66

Linear Kernel

90 -
85
80
Q 75 EOSVM
-g Zg B FS-Corr
3 60 OFS-Cmp
& 55 OFS-SVM
50 B FS-Comb
45 -
o Tl [|

<10M <10r2 <107A3 <1074
Diff erence

Figure 4.2: Comparison of accuracy with a linear kernel.

fit for this job. For the RBF kernel SVR without feature selection works rather well,
thus the advantage of the feature selection methods over it is moot. However, for the
polynomial kernel, when SVR without feature selection performs poorly, using feature
selection methods can remarkably improve accuracy. Among the feature selection
methods, the performance of the criteria using weymp Or wey s are consistently good.

Next, we compare the performance of the feature selection methods with different
number of features selected. We test the accuracy using 25%, 50%, 75% of the
features respectively, and make comparison with using 100% of the features, that
is, running SVM without any feature selection. Here we choose the percentage of
matrices with relative condition number differences smaller than 10? as accuracy.
Figure 4.4 illustrates the results obtained with a RBF kernel (y = 0.1). Only feature
selection with correlation has the property that with more features used the system
becomes more accurate. For feature selection using weemps and wgy s, choosing 50% of

the features seems to yield optimal results, with which they gain the highest accuracy.

67

Polynomial Kernel

90 -
80
S 70 ESVM
£ B FS-Corr
S 60 1 COFS-Cmp
S 50 OFS-SVM
40 - B FS-Comb
30 -

<10M <1072 <1073 <1074
Diff erence

Figure 4.3: Comparison of accuracy with a polynomial kernel.

For feature selection using we, it is an opposite story, choosing 50% of the features
gives the worst results.

Table 4.1 shows the first 50% of the features chosen by the combinational method
with a RBF kernel. The features are ranked according to their wey, values. The
meaning of the features are explained in Section 2.2. This table tells us which features
have more influence on the prediction of matrix condition number according to the
combinational feature selection method.

For linear kernel, all feature selection criteria except wem, seem to find their op-
timized feature sets with 50% of the features. They get the best accuracy with 50%
of the features. wepy, like using RBF kernel, performs the worst with 50% of the
features (see Figure 4.5).

In Figure 4.6, nearly all the feature selection criteria get their best accuracy with
25% of the features. Even with the only exception wgy s, the accuracy obtained

with 25% of the features is very close to its best accuracy obtained with 50% of the

68

RBF Kernel

X ; ﬂi - —=—FS-Corr
—— FS-Cmp
—a—FS-SVM

m\/ —*—FS-Comb

>

Percentage
(o2} ~
(3)] o

qs

[*2]
o

25% 50% 75% 100%
Features Selected

Figure 4.4: Comparison of accuracy with a RBF kernel with different percentage of
features selected.

features. Figure 4.6 explains why polynomial kernel (d = 2) does not work as well
as RBF kernel and linear kernel in Figures 4.1 - 4.3. In these 3 figures, 50% of the
features are used. Thus almost all the feature selection methods find their optimal
feature sets for RBF kernel and linear kernel, but not for the polynomial kernel.
The feature selection methods work well with 25% of the features for the polynomial
kernel. Figure 4.6 also suggests that the polynomial kernel is worthwhile to try, as

the fewer features used, the less the response time.

4.4.2 Response Time

Given a matrix, the time used to obtain the condition number is referred to as the
response time. The response time for the LAPACK method is the time to compute
the condition number using LAPACK routines. The response time for the prediction
method includes the time to compute matrix features and the time for prediction.
Here we also compare the response time for prediction using the whole matrix features

and using half of the features selected based on wgy ;.

69

Table 4.1: The first 50% of the features chosen by the combinational method with a
RBF kernel.

Rank Feature Wemp | Rank Feature Wemp
1 diagvalrate 0.6218 16 diagdomrow | 0.2402
2 onenorm 0.4992 17 avband 0.2274
3 upfillrt 0.4688 18 nnzrt 0.2201
4 minonenorm | 0.3978 19 maxnnzpcolrt | 0.2169
5 sdavnnzpcolrt | 0.3941 20 nnz 0.2156
6 sdavlowrt 0.3679 21 symfnormrt | 0.2053
7 avnnzpcolrt | 0.3164 | 22 plow 0.2030
8 blocksize 0.2870 | 23 sdavvalfdrt | 0.1983
9 nsymfnormrt | 0.2812 | 24 ncol 0.1983

10 | minnnzprowrt | 0.2798 25 frnorm 0.1782
11 relsymm 0.2797 | 26 sdavnnzval | 0.1768
12 lowfillrt 0.2749 | 27 lowbandrt 0.1735
13 avlowrt 0.2695 28 nzdiagsrt 0.1702
14 pdiag 0.2578 29 szvdiagrt 0.1701
15 sdavuprt 0.2572 30 avmaxvalfdrt | 0.1687

Table 4.2: Average response time (in seconds).
LAPACK | prediction(all) | prediction(FS)
99.23 6.56 6.32

Table 4.2 shows the average response time for the 277 matrices used in our tests.
The prediction methods are 15 times faster than using LAPACK on average. 6 seconds
is also an acceptable time for an online query system. Prediction with feature selection
is only slightly faster than without any feature selection. Using half of the features
does not mean reducing the time cost by half. In our system, we usually compute a
group of features in a function. Thus the time cost for calculating one feature using
the function is the same as calculating all the features provided by the function. We
will consider code optimization to make feature selection more beneficial in response
time, once we decide which selected features are to be computed.

The prediction method is especially advantageous in response time for large size

70

Linear Kernel

-/ A/\ —=—FS-Corr
—— FS-Cmp
% /@ —= FS-SVM

~
o

Percentage
(o2}
(3)]

(o2}
o

—*—FS-Comb

25% 50% 75% 100%
Features Selected

(S
(5]

Figure 4.5: Comparison of accuracy with a linear kernel with different percentage of
features selected.

Table 4.3: Average response time for larger size matrices (in seconds).
Size | NumMat | LAPACK | prediction(all) | prediction(FS)

> 1000 119 227.22 15.17 14.62

> 2000 78 340.74 22.81 21.99

matrices. For example, in Table 4.3 the average LAPACK response time for the 78
matrices with size larger than 2000 is around 6 minutes, while using the prediction
methods, the response time is only about 20 seconds. A matrix with size greater
than 1000 is large in our experiments though this may not be the case for some
other computing systems. As LAPACK will run out of memory on our computers
with matrices of size larger than 20000, we can only test matrices under this size for
comparison.

Table 4.4 gives some examples of how the prediction methods exceed the LAPACK
method in response time. For instance, LAPACK uses about two and a half hours
to compute the condition number of the matrix ADD20, the prediction methods only

need less than one second. Although this may not be true for all the matrices, the

71

Polynomial Kernel

75 r
70
S t}\
S 65 —=—FS-Corr
B N
= 60 \ —&—FS-SVM
% 55 ——FS-Comb
50 1 1 1 1

25% 50% 75% 100%
Features Selected

Figure 4.6: Comparison of accuracy with a polynomial kernel with different percent-
age of features selected.

Table 4.4: Performance comparison for some large size matrices (in seconds).

Matrix name | Size nnz | LAPACK | prediction(all) | prediction(FS)
ADD20 2395 | 13151 8206.7 0.94 0.81
CRY10000 | 10000 | 49699 2262.4 23.41 24.01
LNS_3937 3937 | 25407 2977.0 1.38 1.33
PSMIGR_1 3140 | 543160 2129.8 15.82 3.31

significantly reduced response time is exactly our motivation for using prediction and

feature selection.

4.5 Conclusion

In this chapter we propose a new approach to estimating the condition number of
a matrix - predicting them from the matrix features. We use SVM regression with
feature selection. The experiments show that around 75% of the matrices can be
predicted with a relative difference from the computed condition number within 102.

The accuracy is low compared with direct computation or estimation, but it is enough

72

for those people who just want to know whether the matrix in question is well-
conditioned or ill-conditioned. The advantage of the prediction method is that the
response time is very low, especially for large size matrices. Thus it is desirable for
an online condition number query.

We also tried several feature selection methods. We proposed a combinational
feature selection criterion which uses both the weights from SVR and from comparison
of a matrix and its preconditioned counterpart. The experimental results show that
using feature selection can reduce the time cost and improve or maintain the accuracy.
The combinational feature selection criterion is one of the best methods tested.

Our future work includes further improve the accuracy of the prediction method.
We may also work out the error bound for the accuracy of the proposed method
to increase the confidence of the user. We need to find more representative matrix
features, as well as try other feature selection methods to better utilize these features.
Following the idea of this chapter, we may also try to predict other important matrix

attributes such as rank and eigenvalue distribution.

73

Chapter 5
ILUO and ILUK Prediction

One of the crucial parts of the Intelligent Preconditioner Recommendation System
is to predict the solving status of the sparse matrices, which is the main topic of
this and the next chapter. That is, given a sparse matrix, predicting whether the
matrix can be solved by a certain preconditioned solver (preconditioner). If not,
predicting the reason why it fails. The preconditioners that we choose to study in
this chapter are ILUO and ILUK. Such preconditioners are chosen because they are
relatively simple, and they do not have many free parameters used in the construction
of the preconditioners that can influence their performance. Thus the results of such
preconditioned solvers are easier to predict. We will deal with more sophisticated
preconditioner ILUT in the next chapter.

Our method of predicting the solvability of ILUO and ILUK works as follows.
First, we extract features from matrices, then these features are used to classify the
matrices into groups, with matrices in the same group having the same solving status.
There are many classification algorithms in literature. We choose Support Vector
Machine Classification (SVC) [53, 54] because of its success in many classification
problems. We also propose a new prediction method [59]: The matrices are first
divided into clusters according to their similarity in the features. We define the purity
of a cluster to be the maximum percentage of the sparse matrices in the cluster that

74

have the same solving status. Then SVC is applied only to the clusters with low
purity values. Our experimental results show that we not only improve the accuracy
of the prediction but also gain some insights into the relationship between matrix
features and solving status of the matrix by the preconditioned solvers. The overall
accuracy of the prediction is above 90% for the ILUO preconditioner and above 87%
for the ILUK preconditioners.

This chapter is organized as follows: We briefly review the clustering and classi-
fication algorithms used in the IPRS system in Section 5.1. The proposed prediction
method is described in Section 5.2. The computational experiments are carried out

and the results are discussed in Section 5.3. We sum up this chapter in Section 5.4.

5.1 Clustering and Classification

In this section, we briefly review the clustering and classification algorithms we use

in the system.

5.1.1 K-means Clustering

The K-means algorithm [36] (with its many variants) is a popular clustering method
in data mining. It gains its popularity due to its simplicity and intuition. The
algorithm is an iteration procedure and requires that the number of clusters, &, be
given a priori. Suppose that the £ initial cluster centers are given, the algorithm
iterates as follows:

(1) It computes the Euclidean distance from each of the objects to each cluster
center. An object is assigned to the cluster with the smallest distance.

(2) Each cluster center is recomputed to be the mean of its constituent objects.

(3) Repeat steps (1) and (2) until the convergence is reached.

75

The criterion function for the convergence can be computed, e.g., as

n

1 . .
fo=- > (Edist*(d, 1)),

i=1
where 7 is the step of the iterations. The function Edist(d;, ¢;) computes the Euclidean
distance between the object d; and a cluster center ¢;. Given a convergence criterion
¢, the K-means algorithm stops when | f..1 — f,| < e. Note that f, is a monotonically

decreasing function with a lower bound. So its limit exists [15].

5.1.2 SVM Classification

The SVM (Support Vector Machine) is based on a structural risk minimization theory
[53]. It has been successfully applied to many applications like face identification, text
categorization, bioinformatics, etc [7, 8, 35].

In SVM classification the goal is to find a hyperplane that separates the examples
with maximum margin. Given [examples (z1,v1), ..., (z1,4), with z; € R™ and
y; € {—1,1} for all i, SVM classification can be stated as a quadratic programming

problem:
!
1
minimize 3 | w? +C’Z§i
i=1

yi(< w,x; > +b) >1- 51
subject to &E>0
C>0

where C' is a user-selected regularization parameter, and &; is a slack variable account-
ing for errors. After solving it, we can get the following decision function:

!
f(x) = Zaiyi < xj,x > +b. (51)

i=1
where 0 < o;; < C.
For the nonlinear case, we apply a kernel function, K(z,z;) =< ®(z), ®(z;) >,

which maps the input space into some reproduced kernel feature space. Then Equa-

76

tion (5.1) can be rewritten as:

flz) = Zaz‘yz’K(I,l‘z’) + b. (5.2)

The above methods only work for classifying two classes. If the matrix features
are to be classified into more than two classes, we have to use one of the multi-class
classification methods [27, 43, 55]. Two of the commonly used multi-class methods are
“one-against-one” and “one-against-all”. Suppose there are n classes, “one-against-
all” method constructs n classifiers. Classifier ¢+ divides the data into the class be-
longing to class 7 and those not belonging to class 7. The “one-against-one” method
constructs classifiers for each of the class pairs, thus totally constructing n(n — 1)/2
classifiers. Hsu et al. showed in [27] that “one-against-one” is more suitable for
practical use. However, a recent publication [46] argued that “one-against-all” is
as accurate as any other approaches. Since using “one-against-all” can save more

training time, we adopt the “one-against-all” method in this chapter.

5.2 Prediction Method

We now explain how our prediction method works. The prediction method actually

consists of two parts, the training algorithm and the classification algorithm.

ALGORITHM 5.2.1. Training Algorithm.

1. Compute the feature matrix My;
2. Apply K-means(k,My);

3. For clusters cq,..., ¢
4. If (Purity; < w)
5. SVC_train(¢;).

7

In the training algorithm (Algorithm 5.2.1), we first calculate the features of
each sparse matrix and save them in a feature matrix M;. Then we use the K-
means algorithm to cluster all the objects (matrices) into & clusters according to their
features. For each of the clusters, if its purity value is greater than a threshold value
w, most matrices in this cluster are considered to have the same solving status. If the
purity value of a cluster is smaller than w, we use the SVM classification algorithm

to build training models for the cluster.

ALGORITHM 5.2.2. Classification Algorithm.

1. Given a matrix A, compute its features;
2. Find its nearest cluster c;;

3. If(Purity; > w)

4. SS4 =88,
5. Else
6. SSa = SVC_classify(c;,A).

Given a new matrix A, if we want to predict its solving status, we will apply the
classification algorithm (Algorithm 5.2.2). First, the matrix features are computed.
Then, the distance of the feature vector to the center of each cluster is calculated.
The matrix is assigned to the cluster with the shortest distance. If the purity value of
the cluster is greater than w, the solving status of the matrix is defined as the solving
status of the majority of the matrices in the cluster. Otherwise, the SVC training
models of that cluster are used to classify the matrix to its corresponding solving
status group.

After a certain number of new matrices have been inserted into each cluster, the
training algorithm will be run again to reflect the changes brought by the newly added

matrices.

78

5.3 Experiments and Results

We conduct some experiments to test the prediction method. The linear systems are
constructed by using sparse matrices from MatrixMarket [38]. The right hand sides
of the linear systems are constructed by assuming that the solutions are a vector
of all ones. The initial guessed solutions are a vector of all zeros. The maximum
number of iterations is 500. The convergence stopping criterion is that the 2-norm
of the residual vectors is reduced by 7 orders of magnitude. The iterative method
used is GMRES(20) and the preconditioners are matrix structure-based incomplete
LU factorizations ILUO and ILUK. We choose K to be 1, 2, 3 respectively and denote
them as ILUK1, ILUK2 and ILUK3. We first predict whether a matrix can be solved
by these preconditioned solvers. If we predict that a matrix cannot be solved by a
particular preconditioner, we will also predict the reason(s) of the failure. Table 5.1
shows the possible solving status (SS) of running these preconditioned solvers and
their meanings. If the prediction method encounters any problem during its process-
ing, it will stop and return a corresponding status to indicate the problem. We use
SV M9t [29] for SVM classification. The results are obtained by using a 5-fold cross
validation.

Table 5.1: Solving status (SS) and the meanings.
SS Meaning
-100 | zero pivot in constructing a preconditioner
-5 | zero row in constructing a preconditioner
-8 | large condest, unstable preconditioner

-1 | solver cannot converge in 500 iterations
0 | successfully solved

79

5.3.1 Solving Status Prediction

Here we compare the prediction results obtained by using the proposed prediction
method (CSVC) and by using SVM classification (SVC) alone. A total of 66 matrix
features are extracted and used. In the K-means algorithm, we choose k£ to be 12. w
is set to be 85%. Thus if more than 85% of the matrices in a cluster have the same SS,
we will not do further classification on that cluster. In SVM classification, we apply
the one-against-all method, constructing classifiers for each of the solving status and
choosing the one with the highest value as a sparse matrix’s final predicted solving

status.

Table 5.2: Predicted solving status related to ILUO.

SS 0 -100 -1 -8 Total
NM 143 132 32 12 319
NMsyce 127 128 13 2 270

CTsyve 88.8% | 97.0% | 40.6% | 16.7% | 84.6%
NMcsyce 136 128 21 5 290

CTcsye | 95.1% | 97.0% | 65.6% | 41.7% | 90.9%

The predicted solving status related to ILUO are listed in Table 5.2. Here NM
denotes the number of matrices, while CT denotes the correct rate (of successful
prediction). Of all the 143 successfully solved matrices, we can correctly predict 136
of them by using CSVC, with the correct rate of 95.1%. On the other hand, if we
use SVC, the correct rate is only 88.8%. If a matrix factorization encounters a zero
pivot error, we can predict it with a correct rate of 97.0% with both SVC and CSVC.
The accuracy is not high for predicting the cases of SS = —1 or SS = —8, the major
reason for the poor predictions is that there are too few examples of such cases in the
data sets. However, we can see the improvement of the prediction accuracy by using
CSVC in stead of SVC. The correct rates are raised by 25% for both SS = —1 and

SS = —8. Finally, the total correct rate for predicting ILUO by SVC is 84.6%, while
80

using CSVC it rises to 90.9%.

Table 5.3: Predicted solving status related to ILUK.

ss | o | -5 | -1 | -8 | Total
ILUK1
NM 197 | 74 37 11 319
NMgsyc | 187 | 61 15 6 269
CTsyc | 94.9% | 82.4% | 40.5% | 54.6% | 84.3%
NMcsyc | 185 67 26 3 281
CTosve | 93-9% [90.5% | 70.3% | 27.3% | 88.1%
ILUK?2
NM 198 69 34 18 319
NMgyc | 182 59 16 7 264
CTsyc | 91.9% | 85.5% | 47.1% | 38.9% | 82.8%
NMcsyc | 183 63 22 10 | 278
CTosve | 924% | 91.3% | 64.7% | 55.6% | 87.1%
ILUK3
NM 203 69 31 16 319
NMgyc | 182 58 17 5 262
CTsvc | 89.7% | 84.1% | 54.8% | 31.3% | 82.1%
NMcsve | 187 | 64 21 8 280
CTosve | 92.1% | 92.8% | 67.7% | 50.0% | 87.8%

We compare the accuracy in predicting the solving status of ILUK1, ILUK2 and
ILUK3 in Table 5.3. For ILUK1, CSVC excels SVC in predicting SS = —5 and
SS = —1, but its correct rate of predicting SS = 0 is slightly lower than that of
SVC. It performs worse than SVC in predicting SS = —8, too. The total correct rate
of CSVC is 88.1%, which is higher than that of SVC (84.3%). Compared with the
results of ILUK1, CSVC works better for ILUK2 and ILUK3. It has higher accuracy
in predicting every solving status. For ILUK2, it increases the CT by around 17%
for SS = —5 and SS = —1. The total correct rate is raised from 82.8% to 87.1%.
For ILUK3, CSVC exceeds SVC for every solving status, too. It gets 87.8% in total
correct rate while SVC only gets 82.1%.

In conclusion, the prediction accuracy is improved in almost all the categories

81

with CSVC for ILUK. Using CSVC, the correct rate of predicting whether a sparse
matrix can be successfully solved is above 92% for all levels of the ILUKs. And the

total correct rate is above 87%.

5.3.2 Choice of w

In the previous subsection, we choose w to be 85% because it works best for our
system, after a large number of experiments. Figure 5.1 shows the change of total
correct rates of using CSVC for ILUO and ILUKSs with the increase of w. We can see
that the trend of the lines representing ILUQ and ILUKSs are very similar. When w
is not large enough, with the increase of w, C'T" increases. It means when the cluster
is not very pure, choosing the solving status of the majority of the matrices as the
solving status for every matrix will incur a large error. In this case, it is better to
construct classification models for each of the solving status group in the cluster and
predict the solving status of each matrix using these models. However, after w reaches
some point (85% in our experiments), the prediction error of the classification models
is larger than not using these models. We do not need to construct classification
models in this situation and can save training time.

Another point of Figure 5.1 is that even the lowest C'T" of ILUO and ILUK in the
figure is higher than the C'T" obtained by using SVC alone. It suggests that even if
the w value used is not the best one, it can also improve the prediction accuracy by

using the CSVC method.

5.3.3 Cluster Analysis

Table 5.4 lists some statistics of the 12 clusters. Py, denotes the purity of the cluster
with respect to the solving status related to ILUO, and SS;,0 denotes the solving

status of the majority of the matrices in the cluster. Other columns for ILUKSs have

82

0.92 7

0.91
0.9
0. 89 ——ILUO
S 0.88 = ILUKL
—a— TLUK2
0.87 —¢ ILUK3
0. 86 ¢ X
0.85 + \-—A
0. 84 | | | | |
0.75 0.8 0.85 0.9 1
w

Figure 5.1: Relation of w and the total correct rate.

the similar meanings. There are 6 clusters with the purity value equal to 1 for both
ILUO and ILUKs. Matrices in Cluster 1 and Cluster 9 all have SS = —100 for ILUO
and SS = —5 for ILUKSs. All matrices in Clusters 7, 10, 11, and 12 can be successfully
solved. The last line of the table shows the average purity values for ILUO and ILUKSs.

We can get:

average(Pjyo) > average(Puks) >

average(Pyuke2) > average(Piuk1)

If we compare that with the improvement of total correct rate obtained by using

CSVC instead of SVC, we can get a similar sequence:

improvement(CTj,0) > improvement(CTyk3) >

improvement(CTjyk2) > improvement(CT k1)

It seems that CSVC works better with higher average purity values. Our experiences
in the experiments also show this trend. It suggests that if we use some clustering

methods which can achieve higher purity value, we can gain higher total correct rate.

83

We will do some experiments in the future to verify whether this hypothesis is true

or not.

Table 5.4: Cluster statistics.

Clusters | NM || Pyyo | SSitwo || Pitukr | SSitukt || Pituk2 | SSituke || Pituks | S Situks
Cluster 1 11 1.0 | -100 1.0 -5 1.0 -5 1.0 -5
Cluster 2 | 72 | 0.69 | -100 0.48 0 0.50 0 0.56 0
Cluster 3 | 26 || 0.88 | -100 0.62 0 0.69 0 0.73 0
Cluster 4 | 27 | 0.37 | -100 0.26 -1 0.30 -1 0.37 -1
Cluster 5 | 16 || 0.69 0 0.75 0 0.81 0 0.81 0
Cluster 6 | 18 || 0.78 0 0.83 0 0.83 0 0.83 0
Cluster 7 5 1.0 0 1.0 0 1.0 0 1.0 0
Cluster 8 | 50 || 0.92 0 0.90 0 0.86 0 0.86 0
Cluster 9 | 31 1.0 | -100 1.0 -5 1.0 -5 1.0 -5
Cluster 10 | 41 1.0 0 1.0 0 1.0 0 1.0 0
Cluster 11 | 7 1.0 0 1.0 0 1.0 0 1.0 0
Cluster 12 | 15 1.0 0 1.0 0 1.0 0 1.0 0
Average | 26.6 || 0.86 - 0.82 - 0.83 - 0.85 -

5.3.4 Stable Clusters

The clusters generated by the K-means algorithm is greatly influenced by the initial
cluster centers. Both the size of each cluster and its component matrices will change
if the initial cluster center is changed. However, we notice that whichever the initial
cluster center is chosen, some matrices will always be clustered together. We call such
groups of matrices stable clusters. If the matrices in a stable cluster have the same
solving status, then the cluster is called a pure stable cluster. Table 5.5 describes the
composition of some pure stable clusters, each of which has more than 10 matrices.
The clusters are obtained by running K-means algorithm 10 times. K is also set to
be 12. Matrices with the same name come from the same source. For example, BP(9)

means 9 matrices of BP type. The ILUO and ILUKSs share the first 4 pure stable

84

clusters. PSC5 is only for ILUKSs, not for ILUO. All the 10 matrices in PSC5 have
the same solving status for ILUKs, but for ILUO, 6 of them get SS = 0, and 4 of

them get SS = —100. Thus it is not a pure stable cluster for ILUO.

Table 5.5: Matrix composition of the pure stable clusters.

Clusters | NM Matrices
PSC1 19 BP(9), SHL(3), STR(4), WEST(3)
PSC2 13 BUSS(4), BCSSTK(1),BCSSTM(4), NOS(4)
PSC3 12 BCSSTK(10), NOS(2)
PSC4 14 BCSSTM(14)
PSC5 10 | CAVITY(1), E05R(3), FIDAP(2), FIDAPM(1), PORES(1), BCSSTK(2)

If a given new matrix with the feature vector very close to one of these pure cluster
centers, we can predict that it will show similar property as the other matrices in the
cluster when solved by some preconditioned solvers. Table 5.6 shows the prediction
accuracy using the centers of the above pure stable clusters. Here we normalize each
matrix feature vectors, and calculate the center of each pure stable cluster. Then we
find out the maximum distance (Mazdis) from the component matrices to the cluster
center. Next we test on the 319 matrices. The distance of each matrix to each cluster
center is computed. If the distance of each matrix to its nearest pure stable cluster
is within the maximum distance of that cluster, we predict the matrix has the same
solving status as the pure stable cluster. In Table 5.6, TN means the total number of
matrices with distance to a pure stable cluster center within Maxdis. C N means the
number of matrices whose solving status is correctly predicted. T'A denotes the total
correct prediction rate, while FA denotes the correct prediction rate if the number of
matrices in the pure stable cluster is taken out exclusively. For ILUO, the number of
matrices with distance to the center of PSC'1 smaller than 0.8088 is 34, among them,

the solving status of 31 are correctly predicted. The total correct rate is 91.2%. If we

85

take out the 19 matrices that belong to PSC1, the exclusive correct rate is 12 out of
15, that is, 80.0%. If all 4 of the pure stable clusters are counted, the total T'A for
ILUO is 92.5%, while the total EA is 85.5%.

Table 5.6: Prediction accuracy using pure stable cluster centers.

Clusters | PSC1 | PSC2 | PSC3 | PSC4 | PSC5 | Total
Maxdis | 0.8088 | 0.7479 | 0.9023 | 0.8681 | 0.8371 -

ILUO
SS -100 0 0 0 - -
TN 34 29 43 14 - 120
CN 31 23 43 14 - 111
TA 91.2% | 79.3% | 100% | 100% - 92.5%
EA 80.0% | 62.5% | 100% | 100% - 85.5%
ILUK1

5SS -9 0 0 0 0 -
TN 25 26 33 14 32 130
CN 25 22 33 14 26 120

TA 100% | 84.6% | 100% | 100% | 81.2% | 92.3%
EA 100% | 69.2% | 100% | 100% | 72.7% | 83.9%

ILUK2
SS -9 0 0 0 0 -
TN 25 26 33 14 32 130
CN 25 22 33 14 26 120

TA 100% | 84.6% | 100% | 100% | 81.2% | 92.3%
EA 100% | 69.2% | 100% | 100% | 72.7% | 83.9%

ILUK3
SS -5 0 0 0 0 -
TN 25 26 33 14 32 130
CN 25 22 33 14 26 120

TA 100% | 84.6% | 100% | 100% | 81.2% | 92.3%
EA 100% | 69.2% | 100% | 100% | 72.7% | 83.9%

For ILUK1, ILUK2 and ILUK3, although they have different stable clusters, they
share the same pure stable clusters. The TA and FA for PSC1, PSC3 and PSC4

are all 100%. The prediction accuracy using the other two pure stable clusters is
a little lower. On average, the total correct rate for ILUKs is 92.3% and the total

exclusive correct rate is 83.9%.

86

The above results show that using the pure stable cluster center is a good way to
predict the solving status of matrices. We will save such pure stable cluster center

and Maxdis pairs in the knowledge base to help improve the accuracy of prediction.

5.4 Conclusion

The experimental results show that the prediction method gets promising results in
predicting the solving status of sparse matrices by the matrix structure-based ILU
type preconditioners. The overall accuracy of the prediction is above 90% for the
ILUO preconditioner and above 87% for the ILUK preconditioners. Using CSVC
can improve the prediction accuracy over using SVC alone, the pure stable clusters
generated can also provide us with a good way to predict which kind of matrices can

get what results when solved by these preconditioned solvers.

87

Chapter 6
ILUT Prediction

In this chapter we continue the work of the previous chapter to predict the solving
status of a sparse linear system using a certain preconditioned solver. The precondi-
tioner we work on in this chapter is ILUT, one of the popular preconditioners with
many successful applications. Unlike ILUO or ILUK, ILUT needs two preset param-
eters and it only works well under some sets of values of these parameters. Different
sparse linear systems usually can be solved with ILUT with different parameters. Our
aim in this chapter is to predict with which parameter sets the sparse linear systems
can be solved by ILUT.

This chapter is organized as follows: Section 6.1 explains the problem encounters
in predicting the solving status of a sparse linear system using ILUT and our method
to resolve the problem. Singular value decomposition (SVD) and Sparsified SVD
are introduced in Section 6.2. The experiments are carried out and the results are

reported in Section 6.3. Conclusion of this chapter is in Section 6.4.

6.1 Introduction

ILUT is a kind of incomplete LU preconditioner with double dropping strategies.

It is one of the popular preconditioners with many successful applications [34, 31].

88

PGMRES with ILUT can solve some sparse linear systems that would fail other
preconditioners like ILUO (e.g., matrix F2DB). With ILUT, PGMRES may reduce
the number of iterations to lower the computational time [48].

Corresponding to the two dropping strategies, there are two parameters used in
ILUT. One is tolerance value tol, the other is the number of fill-in [fil. As we have
explained in Section 1.2, we will use the fill-in rate filr instead of [fil. Whether a
sparse linear system can be solved by ILUT and the number of iterations the PGMRES
will take are closely related to the value of these two parameters. Given a sparse
linear system, we want to predict all the possible combination of the parameters
with which the linear system can be solved. It is a quite hard problem, as both
of the parameters may take real positive values, the possible combination of the
parameters may construct arbitrary areas in a two-dimensional parameter space. The
left subfigure in Figure 6.1 illustrates the parameter space of ILUT. The closed grey
area represents the parameter area within which a certain sparse linear system can
be solved. As the area may be irregular and open and there may exists more than

one such areas, it is very difficult to find some functions to describe such area(s).

filr & filr A

—
Sy

o
Figure 6.1: Parameter space of ILUT.

Our current method to solve this problem is to choose some points in the parameter

space as samples. Studying the performance of ILUT with these sample parameters,

89

we can get the main idea of what kinds of combination of the parameters are favorable
for a given sparse linear system. In the right subfigure in Figure 6.1, the dots represent
samples. If we can correctly predict the solving status at these samples (red dot means
that with the sample parameters the sparse linear system cannot be solved; back dot
means it can be solved), we may obtain an outline of the parameter area(s) in which
the sparse linear system can be solved. We use SVM classification to predict the
solving status of the sparse linear systems by ILUT with a specific set of parameters.
We also use SVD and sparsified SVD to preprocess the matrix features to improve

the accuracy of prediction.

6.2 SVD and Sparsified SVD

6.2.1 Singular Value Decomposition

Singular Value Decomposition (SVD) [20] is a popular method in data mining and
information retrieval [14]. It is usually used to reduce the dimensionality of the
original dataset.

Let A be a sparse matrix of dimension n x m representing the original dataset.
The rows of the matrix correspond to data objects and the columns to attributes.

The singular value decomposition of the matrix A is [20]
A=UHVT,

where U is an n X n orthonormal matrix, H = diag|oy, 09, ...,0s] (s = min{m,n})
is an n X m diagonal matrix whose nonnegative diagonal entries are in a descending
order, and V7 is an m x m orthonormal matrix. The number of nonzero diagonals of
H is equal to the rank of the matrix A.

Due to the arrangement of the singular values in the matrix H (in a descending

order), the SVD transformation has the property that the maximal variation among

90

the objects is captured in the first dimension, as o; > o; for + > 2. Similarly much
of the remaining variations is captured in the second dimension, and so on. Thus, a
transformed matrix with a much lower dimension can be constructed to represent the

original matrix faithfully. Define
Ay, = UHyV/,

where Uy, contains the first £ columns of U, Hj, contains the first £ nonzero diagonals
of H, and V}!' contains the first k¥ rows of V?. The rank of the matrix Ay is k. With k
being usually small, the dimensionality of the dataset has been reduced dramatically
from min{m, n} to k (assuming all attributes are linearly independent). It has been
proved that Ay is the best k£ dimensional approximation of A in the sense of Frobenius

norm.

k

Figure 6.2: Singular value decomposition and reduced dimension.

In data mining applications, the use of A; to represent A has another important
function. The removed part E, = A — A can be considered as the noise in the
original dataset A [5]. Thus, in many cases, mining on the reduced dataset Ay may

yield better results than mining on the original dataset A.

91

6.2.2 Sparsified SVD

The SVD sparsification concept was proposed by Gao and Zhang in [19] for reducing
the storage cost and enhancing the performance of SVD in text retrieval applications.
Several sparsification strategies were proposed and experimented in [19]. The one
that we used in this section is the simplest one.

After reducing the rank of the SVD matrices, we set some small size entries,
which are smaller than a certain threshold ¢, in Uy, and V}I, to zero. We refer to this
operation as the dropping operation [19]. For example, given a threshold value €, we
drop u;; in Uy if |u;| < e. Similarly, an element v;; in V;! is also dropped if |v;;| < e.
Let U} denote U, with dropped elements and VZ denote V,” with dropped elements,

we can represent the sparsified data matrix Ay, with
— = =T
Ay =UH,V,.

The sparsified SVD method is equivalent to further removing noise from the dataset

Ai. Denote E, = A, — A, we have

A=A, +E,+E..

6.3 Experiments and Results

We conduct some experiments to test the prediction accuracy of the solving status of
the 319 sparse linear systems by PGMRES with preconditioner ILUT with different
parameter sets. The sparse linear systems are constructed by using sparse matrices
from MatrixMarket [38]. The parameter setting in PGMRES is the same as in Chapter
5. We use SV MLkt [29] for SVM classification and Matlab [37] for SVD. The results

are obtained by using a 5-fold cross validation.

92

6.3.1 Prediction with SVM Classification

In this section we test the accuracy of predicting the solving status of sparse linear
systems with the combination of parameters using SVM classification. For parameter
tol, we choose the most often used values 0.1, 0.01, 0.001, 0.0001 and 0.00001. For
parameter filr, the sample values we choose are 1, 2, 3, 4, and 5. The kernel we used

in SVM classification is RBF, which is expressed by:
RBF : K(z,x;) = e*Hm—;?ilﬁ

Figure 6.3 shows the average prediction accuracy with different combination of
parameters. Here o is set to be 0.1 in RBF kernel. We can see the highest prediction
accuracy 92.79% is obtained with tol = 0.001 and filr = 1. The lowest prediction
accuracy 83.6991% is obtained with tol = 0.0001 and filr = 3. Generally speaking,
when tol is high, e.g., tol = 0.1 and filr is low, e.g. filr = 1, the prediction accuracy
is better. With the increase of filr and the decrease of tol, prediction accuracy

becomes lower.

tol
0.1 0.921630 | 0.909091 | 0.902821 | 0.915361 | 0.915361
0.01 | 0.921630 | 0.909091 | 0.899687 | 0.902821 | 0.921630
0.001 | 0.927900 | 0.902821 | 0.868339 | 0.862069 | 0.858934
0.0001 | 0.912226 | 0.899687 | 0.836991 | 0.843260 | 0.884013
0.00001 | 0.924765 | 0.899687 | 0.843260 | 0.862069 | 0.865204
1 2 3 4 5 il >

Figure 6.3: Prediction accuracy of SVM Classification (o = 0.1).

Figure 6.4 also shows the average prediction accuracy with different combination
of parameters. The difference from Figure 6.3 is that o is set to be 0.01 in RBF kernel.

However, it does not depict the same prediction accuracy distribution as Figure 6.3

93

does. Here the highest prediction accuracy area is on the upper-right corner of the

figure, with tol from 0.1 to 0.01 and filr from 4 to 5.

tol
0.1 0.890282 | 0.912226 | 0.899687 | 0.915361 | 0.915361
0.01 | 0.896552 | 0.896552 | 0.890282 | 0.921630 | 0.921630
0.001 | 0.905956 | 0.896552 | 0.855799 | 0.880878 | 0.874608
0.0001 | 0.890282 | 0.902821 | 0.884013 | 0.890282 | 0.924765
0.00001 | 0.899687 | 0.909091 | 0.874608 | 0.884013 | 0.899687
1 2 3 4 5 flr >

Figure 6.4: Prediction accuracy of SVM Classification (o = 0.01).

Figure 6.5 is obtained by setting o to be 0.001 in RBF kernel. This figure shows
another prediction accuracy pattern. This time the highest prediction accuracy is

achieved with tol = 0.01 or filr = 1.

tol

0.1 1 0.905956 0.899687 0.890282 0.899687 0.899687

0.01 | 0.909091 0.909091 0.918495 0.921630 0.918495
0.001 | 0.905956 0.899687 0.846395 0.862069 0.868339
0.0001 | 0.905956 0.905956 0.874608 0.849530 0.902821
0.00001 | 0.905956 0.905956 0.880878 0.868339 0.896552
1 2 3 4 5 filr

Figure 6.5: Prediction accuracy of SVM Classification (¢ = 0.001).

Figure 6.6 is obtained by setting o to be 0.0001 in RBF kernel. Its highest pre-
diction accuracy area is also on the upper-right corner of the figure, like in Figure 6.4
but much longer. To be specific, it is the area with tol from 0.1 to 0.01 and filr from
2 to 5.

Table 6.1 describes the total prediction accuracy of SVM Classification with dif-

ferent o values. In calculating the total prediction accuracy we take into account

94

tol
0.1 | 0.899687 0.909091 0.905956 0.905956 0.905956
0.01 | 0.893417 0.909091 0.909091 0.915361 0.915361
0.001 | 0.890282 0.899687 0.865204 0.849530 0.896552
0.0001 | 0.890282 0.896552 0.868339 0.846395 0.896552
0.00001 | 0.890282 0.896552 0.874608 0.865204 0.887147
1 2 3 4 5 filr

Figure 6.6: Prediction accuracy of SVM Classification (¢ = 0.0001).

all the combinations of parameters. The table shows that the value of o does not
affect the total prediction accuracy much. All the total average prediction accuracy
are between 89% and 90%, which means SVM Classification works well for solving
status prediction. In the latter experiments, we set o = 0.001, as it provides a good

prediction accuracy and takes less time to train than using o = 0.01.

o 0.1 0.01 0.001 0.0001
Total Accuracy | 0.892414 | 0.897304 | 0.894044 | 0.891285

Table 6.1: Total prediction accuracy of SVM Classification with different o.

6.3.2 Applying SVD

In many data mining applications, using SVD to preprocess data can improve the
performance of data mining algorithms. In this section, we first apply SVD to the
original data set and then use SVM Classification to predict the solving status of the
sparse linear systems to see if it can improve the prediction accuracy. To compare
the results obtained with or without SVD, we set ¢ = 0.001 in RBF in this section.
Table 6.2 shows the prediction accuracy obtained by applying SVD with rank
k = 60 in preprocessing. The highest prediction accuracy 92.163% is obtained with

tol = 0.01 and filr = 4, which is similar to the highest prediction accuracy in Figure

95

6.3. The lowest prediction accuracy 84.6395% is obtained with tol = 0.0001 and
filr = 3, which is a little bit higher than the lowest prediction accuracy in Figure

6.3. The high prediction accuracy areas lie on the row with tol = 0.01 and the column

with filr = 1.
tol filr =1 filr =2 | filr =3 | filr=4 | filr =5
0.1 0.905956 | 0.899687 | 0.890282 | 0.899687 | 0.899687
0.01 | 0.909091 | 0.909091 | 0.918495 | 0.92163 | 0.918495
0.001 | 0.905956 | 0.899687 | 0.846395 | 0.862069 | 0.868339
0.0001 | 0.905956 | 0.905956 | 0.874608 | 0.84953 | 0.902821
0.00001 | 0.905956 | 0.905956 | 0.880878 | 0.868339 | 0.896552

Table 6.2: Prediction accuracy after applying SVD with k& = 60.

Table 6.3 is obtained with using £ = 50 in SVD. The high prediction accuracy
pattern is exactly the same as the one showed in Table 6.2. Actually, most of the

combinations of tol and filr parameters have same accuracy as in Table 6.2.

tol filr =1 filr =2 | filr =3 | filr =4 | filr =5
0.1 0.905956 | 0.899687 | 0.887147 | 0.899687 | 0.899687
0.01 | 0.909091 | 0.912226 | 0.918495 | 0.92163 | 0.918495
0.001 | 0.905956 | 0.899687 | 0.846395 | 0.862069 | 0.868339
0.0001 | 0.905956 | 0.905956 | 0.877743 | 0.84953 | 0.902821
0.00001 | 0.905956 | 0.905956 | 0.880878 | 0.868339 | 0.896552

Table 6.3: Prediction accuracy after applying SVD with k£ = 50.

Table 6.4 is obtained with using £ = 40 in SVD. Its high prediction accuracy
pattern is quite different from the ones in Table 6.2 and Table 6.3. The high prediction
accuracy area lies in the first two rows with tol = 0.1 and tol = 0.01.

Table 6.5 is obtained with using £ = 30 in SVD. In this table the high prediction
accuracy area lies in the column with filr = 2.

Table 6.6 is obtained with using £ = 20 in SVD. In this table the high prediction

accuracy area lies in the area with tol = 0.01 and filr from 3 to 5.

96

tol filr =1 filr =2 | filr =3 | filr=4 | filr =5
0.1 0.902821 | 0.905956 | 0.887147 | 0.902821 | 0.902821
0.01 0.902821 | 0.912226 | 0.915361 | 0.92163 | 0.918495
0.001 | 0.893417 | 0.896552 | 0.84326 | 0.865204 | 0.868339
0.0001 | 0.887147 | 0.902821 | 0.874608 | 0.84953 | 0.915361
0.00001 | 0.896552 | 0.902821 | 0.877743 | 0.874608 | 0.899687
Table 6.4: Prediction accuracy after applying SVD with k£ = 40.
tol filr =1 filr =2 | filr =3 | filr =4 | filr =5
0.1 0.902821 | 0.902821 | 0.896552 | 0.899687 | 0.899687
0.01 | 0.896552 | 0.905956 | 0.802508 | 0.9279 | 0.915361
0.001 | 0.902821 | 0.899687 | 0.852665 | 0.880878 | 0.884013
0.0001 | 0.896552 | 0.905956 | 0.884013 | 0.805643 | 0.909091
0.00001 | 0.899687 | 0.902821 | 0.887147 | 0.874608 | 0.896552

Table 6.5: Prediction accuracy after applying SVD with &£ = 30.

To sum up all the patterns of high prediction accuracy areas appear in Table 6.2 -
Table 6.6, we can see that high prediction accuracy is usually obtained with tol = 0.1
and tol = 0.01, or filr =1 and filr = 2.

Table 6.7 shows the total prediction accuracy after applying SVD with different
rank. The total prediction accuracy without SVD with the same o value is 0.894044,
which is the same as applying SVD with £ = 60. When we choose k£ = 50, the total
prediction accuracy after applying SVD is 0.894169, a little higher than without using

SVD. But from then on, with the decrease of rank k, the total prediction accuracy

tol filr=1| filr=2 | filr =3 | filr =4 | filr =5
0.1 0.877743 | 0.887147 | 0.880878 | 0.887147 | 0.887147
0.01 | 0.862069 | 0.890282 | 0.909091 | 0.918495 | 0.915361
0.001 | 0.874608 | 0.893417 | 0.858934 | 0.852665 | 0.880878
0.0001 | 0.880878 | 0.902821 | 0.874608 | 0.855799 | 0.890282
0.00001 | 0.884013 | 0.899687 | 0.884013 | 0.868339 | 0.890282
Table 6.6: Prediction accuracy after applying SVD with k£ = 20.

97

also drops. This table shows that applying SVD can improve the accuracy a little in
this experiment. However, even the the rank £ is set to be very small, e.g., less than
one third of the number of attributes, the total prediction accuracy will not drop

much either.

K 60 20 40 30 20
tol | 0.894044 | 0.894169 | 0.892790 | 0.889279 | 0.884263

Table 6.7: Total prediction accuracy after applying SVD with different rank.

6.3.3 Applying Sparsified SVD

In sparsified SVD (SSVD), we drop small entries in U and V. This method can save
memory space, it can also improve the performance of data mining algorithms in
some applications. In this section, we conduct some experiments on preprocessing
the original matrix features using sparsified SVD and then use SVM Classification
to predict the solving status of the sparse linear systems to see if it can improve the
prediction accuracy. To compare the results obtained with or without SSVD and with
SVD, we set ¢ = 0.001 in RBF and k£ = 50 in SVD.

Table 6.8 shows the average prediction accuracy after applying SSVD with e = 0.01
using different combinations of tol and filr. The highest prediction accuracy 92.163%
is obtained with tol = 0.01 and filr = 4, which is similar to the highest prediction
accuracy in Figure 6.3 and the same as using SVD method. The lowest prediction
accuracy 82.4451% is obtained with tol = 0.001 and filr = 3, which is a little lower
than the lowest prediction accuracy obtained by without using SSVD and by using
SVD. The high prediction accuracy area in this table lies in the area with tol = 0.01
and filr from 3 to 5.

Table 6.9 shows the average prediction accuracy after applying SSVD with ¢ =

98

tol filr =1 filr =2 | filr =3 | filr=4 | filr =5
0.1 0.909091 | 0.896552 | 0.877743 | 0.896552 | 0.896552
0.01 0.896552 | 0.899687 | 0.902821 | 0.92163 | 0.912226
0.001 | 0.902821 | 0.887147 | 0.824451 | 0.84953 | 0.858934
0.0001 | 0.887147 | 0.890282 | 0.852665 | 0.846395 | 0.890282
0.00001 | 0.893417 | 0.890282 | 0.852665 | 0.846395 | 0.871473

Table 6.8: Prediction accuracy after applying SSVD with € = 0.01.

0.001. Besides the high prediction accuracy area appears in Table 6.8, there is one

more small area with tol = 0.1 and filr from 4 to 5.

tol filr =1 filr =2 | filr =3 | filr =4 | filr =5
0.1 0.899687 | 0.899687 | 0.887147 | 0.902821 | 0.902821
0.01 | 0.899687 | 0.899687 | 0.902821 | 0.915361 | 0.912226
0.001 | 0.902821 | 0.890282 | 0.84326 | 0.858934 | 0.865204
0.0001 | 0.887147 | 0.890282 | 0.858934 | 0.84953 | 0.899687
0.00001 | 0.890282 | 0.893417 | 0.868339 | 0.846395 | 0.887147

Table 6.9: Prediction accuracy after applying SSVD with ¢ = 0.001.

Table 6.10 shows the average prediction accuracy after applying SSVD with € =
0.0001. This time the high prediction accuracy area is exactly the same as the ones
in Table 6.9.

We have also tested the prediction accuracy after applying SSVD with € = 0.00001.
But the results are the same as the ones in Table 6.10 so we just omit it here. From
the three tables in this section, we can see that the area with tol = 0.01 and fulr
from 3 to 5 is the area that works best for SSVD. High prediction accuracy can be
obtained by using parameters in this area with whichever e values.

Table 6.11 shows the total prediction accuracy after applying SSVD with different
dropping threshold e. With the decrease of €, the total accuracy drops as less elements
in the matrix are set to be 0. Same accuracy is obtained with ¢ = 0.0001 and

e = 0.00001, as after a certain € value, no more elements in the matrix will be

99

tol filr =1 filr =2 | filr =3 | filr=4 | filr =5
0.1 0.899687 | 0.899687 | 0.887147 | 0.902821 | 0.902821
0.01 0.899687 | 0.899687 | 0.902821 | 0.915361 | 0.912226
0.001 | 0.902821 | 0.890282 | 0.84326 | 0.862069 | 0.865204
0.0001 | 0.887147 | 0.890282 | 0.858934 | 0.84953 | 0.899687
0.00001 | 0.890282 | 0.893417 | 0.868339 | 0.84953 | 0.887147

Table 6.10: Prediction accuracy after applying SSVD with € = 0.0001.

dropped. The best accuracy obtained by SSVD in this example is 88.2132%, which

is lower than using SVD or without using any preprocessing method.

€ 0.01
Total Accuracy | 0.882132

0.001
0.886144

0.0001
0.886395

0.00001
0.886395

Table 6.11: Total prediction accuracy after applying SSVD with different dropping
threshold.

6.4 Conclusion

In this chapter, we try to predict the solving status of a sparse linear system using
PGMRES with ILUT, which has two parameters. The problem is hard as it is difficult
to predict all the possible areas in the parameter space that a given sparse linear
system can be solved. We choose some sample points in the parameter space to
predict the solving status of sparse linear systems at such sample points. Then we
can have an idea of the outline of the area in the parameter space that the sparse
linear system can be solved.

We use SVM classification in prediction and try SVD and sparsified SVD to pre-
process the matrix features. The experimental results show that using SVM classi-
fication alone the total average accuracy of prediction on all the sample points are
above 89%. The SVD method can improve the accuracy a little bit but the sparsi-

fied SVD method does not work well in this problem. We also analyze in detail the
100

area patterns in parameter space that can obtain high prediction accuracy in each

prediction method.

101

Chapter 7

Best Preconditioner Selection

The goal of the Intelligent Preconditioner Recommendation System is to recommend
one or more suitable preconditioners with appropriate parameters for solving a given
sparse linear system. In the previous two chapters we predict whether a sparse linear
system can be solved with a certain preconditioner. In this chapter we deal with the
problem of selecting the preconditioners that work best for a sparse linear system.
This chapter is organized as follows: Section 7.1 introduces our algorithm to
select the best preconditioners and parameters for a given sparse matrix. Memory
cost analysis for PGMRES with the preconditioners ILUO, ILUK and ILUT are made
in Section 7.2. The experiments are carried out and the results are reported in Section

7.3. Conclusion of this chapter is in Section 7.4.

7.1 Best Preconditioner Selection Algorithm

The goal of the Intelligent Preconditioner Recommendation System is to recommend
one or more suitable preconditioners with appropriate parameters for solving a given
sparse linear system. In this chapter we will select the preconditioners and parameters
that work best for a sparse linear system. Here “the best” means that the sparse linear

system can be solved with the least memory cost and/or time cost.

102

Our method works as follows. First we predict whether a sparse linear system
can be solved with a certain preconditioner under some parameter settings. Then
we predict the memory cost and/or time cost in solving the sparse linear system
with the preconditioner under the chosen parameter settings. At last we choose the
preconditioner and parameters with which the sparse linear system can be solved with

the least value of ObjV alue, which is defined as:
ObjValue = Wy, x Cy, + W, x C,

where C,, denotes the memory usage in Kilobytes, and C; denotes the total execu-
tion time of the preconditioned solver in number of floating point operations. W,
is the weight for memory cost and W; is the weight for time cost. They are the pa-
rameters set by the users to represent their preference. The algorithm for our best

preconditioner selection method is shown in Algorithm 7.1.1.

ALGORITHM 7.1.1. Algorithm for Best Preconditioner Selection.

1. For each preconditioner P; with parameter set S;;

2. Predict solving status S.5;;

3. If (SS; ==1) //it can be solved

4. Put preconditioner P, with parameter set .S; into candidate pool CP;
5. Predict memory cost C? ;

6 Predict time cost C;

7. Calculate ObjValue' = Wy, x Ct, + W, * C}

8 EndIf

9. EndFor

10. Return preconditioner P; with parameter set S; in CP with smallest ObjValue’.

103

In Algorithm 7.1.1, the most difficult part is step 2, predicting the solving status
of a sparse linear system by a preconditioned solver, and steps 5 and 6, predicting the
memory and time cost of running the preconditioned solver. We have discussed the
problem of predicting the solving status in the previous two chapters. As predicting
the memory cost and the time cost are very similar, we will only focus on the problem
of predicting the memory cost in this chapter. So we set W,, = 1 and W; = 0 in
Algorithm 7.1.1 which means we only care about the memory cost in selecting the
best preconditioners. We think memory cost is more important than time cost since if
a computer cannot allocate enough memory for a solver program, the solver program

cannot run on that computer at all.

7.2 Memory Cost Analysis

In this section, we will analyze the memory cost of running PGMRES with precondi-
tioners ILUO, ILUK and ILUT respectively. The code we used for PGMRES and the
preconditioners and for memory analysis is from SPARSKIT [51].

Assume n denotes the size of a matrix; nnz denotes the number of nonzero ele-

ments in the matrix; and 7m denotes the size of the Krylov subspace, then the memory

cost (in KB) of running PGMRES with ILUO is:
Crrrvo = 4(2n(im + 5) + (im + 1)im + 6im + 6nnz)/1024.

As the number of nonzero elements in the preconditioner ILUO is the same as that of
the original matrix A, the memory occupation of the preconditioner can be directly
calculated from the attributes of A.

Let lulen denote the number of nonzero elements in preconditioner, then the

memory cost of running PGMRES with ILUK is:

Crrrvrx = 4(2n(im + 5) + (im + 1)im + 6im + 3nnz + 3lulen)/1024.
104

The memory cost of running PGMRES with ILUT is:
Corvr = 4(2n(im 4+ 5) + (im + 1)im + 6im + 3nnz + 3lulen)/1024.

We can see that the formula for calculating the memory cost of PGMRES with ILUK
is the same as that of PGMRES with ILUT. However, for different preconditioners
with different parameter settings, the value of lulen may vary greatly. And there
is no exact formula to calculate the value of lulen for different preconditioners with

different parameter settings. Here we apply SVM regression to predict the memory

cost of PGMRES with ILUK and PGMRES with ILUT from matrix features.

7.3 Experiments and Results

We have conducted some experiments to test the absolute and relative errors of mem-
ory cost prediction. And we also show some example results of executing the Best
Preconditioner Selection Algorithm. The parameter setting of PGMRES is the same
as that in the previous chapters. We use SV ML [29] for SVM regression. The

results are obtained by using a 5-fold cross validation.

7.3.1 ILUK Memory Cost Prediction

We use RBF kernel in SVM regression to predict the memory cost of PGMRES with
ILUK. Table 7.1 shows the average absolute prediction error (in KB) for ILUK with
different 0. The average absolute error is about 1 MB for ILUK. ILUK1 obtains the
smallest absolute error with o = 0.01, while ILUK2 and ILUK3 obtain the smallest
absolute error with ¢ = 0.001. With the increase of level of fill £ in ILUK, more fill-in
elements are allowed, thus the memory cost grows, and the absolute prediction error
grows as well.

The average relative prediction error for ILUK with different o is shown in Table

105

o 0.01 0.001 | 0.0001
ILUKI | 962.4 | 1054.9 | 1628.2
ILUK2 | 1584.4 | 1262.9 | 1787.6
ILUKS3 | 1842.3 | 1819.2 | 2245.7

Table 7.1: Average absolute prediction error (in KB) for ILUK with different o.

7.2. Similar as in Table 7.1, the smallest relative error is obtained with ¢ = 0.01 for
ILUK1, and with ¢ = 0.001 for ILUK2 and ILUK3. o = 0.0001 is not a good choice
for this regression task, as all the ILUK preconditioners get the largest absolute and

relative error with this parameter setting.

o 0.01 0.001 | 0.0001
ILUKI | 0.2263 | 0.2480 | 0.3829
ILUK2 | 0.2748 | 0.2190 | 0.3100
ILUK3 | 0.2508 | 0.2476 | 0.3057

Table 7.2: Relative prediction error for ILUK with different o.

7.3.2 ILUT Memory Cost Prediction

In this section, we will show some results of predicting the memory cost of PGMRES

with ILUT using SVM regression with RBF kernel.
An Example of Prediction Results

Figure 7.1 shows some sample prediction results of running PGMRES with ILUT for
a given sparse linear system. A shaded cell means using the parameters representing
that cell, the sparse linear system can be solved. The sparse linear system can be
solved by ILUT with 10 different parameter settings. The number in each cell denotes
the estimated memory cost in Kilobytes. The best parameter setting is tol = 0.01

and filr = 1, as its estimated memory cost is 777KB, much smaller than using other

shaded cells.
106

filr T
5[2150 [2012 1647 1037
4 [2486 1989 1789 1189
3 2182 | 1941 1642 1192
2
1 777
0.00001 0.0001 _ 0.001 0.01 0.1 > tol

Figure 7.1: ILUT prediction results of solving status and memory cost of a matrix.

Figure 7.2 shows the real results of solving status and memory cost of the matrix
used in Figure 7.1. Actually the linear system can be solved with the 10 cells pre-
dicted. There are some errors in estimated memory cost. The best parameter setting
predicted in Figure 7.1 actually works best for the sparse linear system, with the real
memory cost of 7T60KB. The prediction made in Figure 7.1 is neither the best nor
the worst in our experiments. We just use it to illustrate how the solving status and

memory cost predictions are made for ILUT in the IPRS system.

filr 4
5| 2318 1981 1635 1283
4 2294 1974 1632 1282
31 2092 1862 1587 1264
2
1 760
0.00001 0.0001 0.001 0.01 0.1 > tol

Figure 7.2: Actual results of solving status and memory cost of a matrix.

Average Error Comparison

Table 7.3 describes the total average absolute errors and relative errors of SVM re-

gression with different o values for ILUT. The average absolute error is about 300KB,

107

which is much smaller compared with that of ILUK. In calculating the total average
errors we take into account all the parameter settings. The table shows that the value
of o has some effect on the prediction errors. The lowest absolute error is obtained
with o = 0.1, which is about 305KB. The lowest relative error is also obtained with
o = 0.1, which is about 24%. With the increase of o, both the average absolute error
and relative error become larger. o = 0.0001 is the worst choice as both its absolute

error and relative error are much larger than using the other o values.

o 0.1 0.01 0.001 | 0.0001
Total average absolute error (in KB) | 305.9 | 343.4 | 360.0 | 483.5
Total relative error 0.2442 | 0.2742 | 0.2874 | 0.3860

Table 7.3: The comparison of total average prediction errors for ILUT with different
0.

Error Distribution

Table 7.4 shows the absolute prediction error with different combination of parame-
ters. Here o is set to be 0.1 in RBF kernel. With the increase of tol and filr, more
fill-in elements are allowed in the preconditioner, thus the memory cost for storing
the preconditioner as well as the absolute prediction error rise. We can see that the
absolute prediction error with tol = 0.00001 and filr = 5 is more than twice as high

as with tol = 0.1 and filr = 1.

tol filr=1| filr=2| filr=3 | filr=4| filr=5
0.1 225.8 222.7 200.9 198.0 239.9
0.01 261.7 247.3 247.7 252.5 267.1
0.001 262.2 280.4 355.4 296.8 332.6
0.0001 264.2 286.9 314.2 436.5 407.3
0.00001 | 285.6 288.4 351.4 416.4 502.3

Table 7.4: Absolute prediction errors for ILUT with ¢ = 0.1.

108

Table 7.5 shows the relative prediction error with different combination of param-
eters. The parameter settings with large absolute errors do not necessarily mean the
relative errors are high, too. We can see that the highest prediction error 29.83% is
obtained with tol = 0.1 and filr = 5. The lowest prediction error 17.87% is obtained
with tol = 0.001 and fulr = 5. The highest relative prediction error area lies on the

column filr =1.

tol filr=1| filr =2 | filr =3 | filr=4| filr=5
0.1 0.2800 | 0.2771 0.2488 0.2479 | 0.2983
0.01 0.2908 | 0.2681 0.2616 0.2659 | 0.2799
0.001 0.2812 | 0.2777 | 0.2894 | 0.1880 | 0.1787
0.0001 | 0.2751 0.2659 | 0.2418 0.2504 | 0.1866
0.00001 | 0.2942 | 0.2676 | 0.2643 0.2573 | 0.2099

Table 7.5: Relative prediction errors for ILUT with o = 0.1.

7.3.3 Results of the Best Preconditioner Selection Algorithm

In this section, we show two examples of the results of running the Best Preconditioner
Selection Algorithm. The preconditioners to choose from are ILUO, ILUK1 - ILUKS,
and ILUT with 25 different parameter settings.

In the first example, the sparse matrix is CAVITY09, which comes from a finite
element modeling problem. Table 7.6 lists the prediction results of executing the
Best Preconditioner Selection Algorithm. By prediction, CAVITY09 can be solved
by 6 preconditioners with different parameter settings. The preconditioners with their
parameter settings are ranked according to the memory cost. ILUK1 is predicted to
be the best preconditioner as its memory cost is the lowest. Table 7.7 shows the
actual best preconditioners chosen from actually solving the sparse linear systems
with all the preconditioners. We can see that we make correct prediction that ILUK1

is ranked No. 1 in Table 7.7. The ranks of other preconditioners are also almost right

109

except that the order changes a little bit for ILUT with different parameter settings.

The memory cost predicted are also close to the actual memory needed. The total

relative error is only 0.93%.

Rank | Precond. tol filr | Memory
1 ILUK1 - - 1944.3
2 ILUT | 0.00001 | 5 2068.4
3 ILUT 0.001 5 2179.3
4 ILUT 0.0001 | 5 2347.3
5 ILUK2 - - 2770.3
6 ILUK3 - - 3021.9

Table 7.6: Predicted best preconditioner selection for matrix CAVITY09.

Rank | Precond. tol filr | Memory
1 ILUK1 - - 2083.9
2 ILUT 0.001) 2150.1
3 ILUT 0.0001) 2284.1
4 ILUT 0.00001 | 5 2318.0
) ILUK2 - - 2593.4
6 ILUK3 - - 3036.3

Table 7.7: Actual best preconditioner selection for matrix CAVITY09.

The sparse matrix in the second example is FIDAP036, one of the matrices gen-
erated by the FIDAP Package. Table 7.8 lists the prediction results of executing the
Best Preconditioner Selection Algorithm. Here it is predicted that FIDAPP036 can
be solved by 7 preconditioners with different parameter settings. The best precondi-
tioner predicted is ILUO. If a sparse linear system is predicted to be able solvable by
ILUO, ILUO will definitely be the best preconditioner as it allows no fill-in elements
and its memory cost can be precisely calculated. According to the prediction, ILUK1
ranks No. 2. Table 7.9 shows the actual best preconditioners chosen from actually

solving the sparse linear systems with the all the preconditioners. As the sparse linear

110

system can actually be solved by ILUO, ILUO is the best preconditioner for it. Just
like our prediction, ILUK1 ranks No. 2. But the ranks of other preconditioners are

different from our prediction except No. 6 and No. 7. The relative memory cost

prediction error is 21.49%.

Rank | Precond. tol | filr | Memory

1 ILUO - - 1727

2 ILUK1 - - 2530.1
3 ILUT | 0.0001 | 4 | 3039.4
4 ILUT 0.001 4 3123.3
5 ILUK2 - - 3140.1
6 ILUT 0.001 | 5 | 3178.6
7 ILUK3 - - | 4165.8

Table 7.8: Predicted best preconditioner selection for matrix FIDAPO036.

Rank | Precond. tol filr | Memory

1 ILUO - - 1727

2 ILUK1 - - 2052.8
3 ILUK?2 - - 2555.9
4 ILUT 0.001 | 4 | 2638.2
5 ILUT]0.0001| 4 | 2734.0
6 ILUT 0.001 | 5 | 2793.1
7 ILUK3 - 3010.8

Table 7.9: Actual best preconditioner selection for matrix FIDAP036.

7.4 Conclusion

In this chapter we describe our algorithm to choose the best preconditioners with
parameters for a given sparse linear system, that is, to choose the preconditioner with
which the sparse linear system can be solved using the least memory cost and/or time

cost.

111

To choose the best preconditioners, we need to estimate the time and memory cost
of executing the preconditioned solvers. We use SVM regression to make such predic-
tions. The experimental results show that the relative prediction error in estimating
the memory cost is about 21% for ILUK and 24% for ILUT. We also show some

examples of the results of executing the Best Preconditioner Selection Algorithm.

112

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This dissertation introduces our research work in studying and designing an Intelligent
Preconditioner Recommendation System. We have conducted some research in the

following directions:

e We have designed the structure of the Intelligent Preconditioner Recommenda-
tion System. This system uses data mining techniques in predicting the solving

status of sparse linear systems and recommending the best preconditioners.

e We have studied and searched for useful matrix features to represent a sparse

matrix. Currently we have extracted more than 60 matrix features.

e We have proposed a new prediction algorithm to estimate the condition number
of a matrix. Our algorithm exceeds the traditional direct computation methods

or estimation methods in response time.

e We have proposed an efficient feature selection method utilizing the difference of
a matrix and its preconditioned counterparts. Using only the selected features

in prediction can improve accuracy and save computational time.

113

e We have proposed some prediction algorithms in predicting the solving status
of sparse linear systems with different preconditioners. The overall accuracy
of the prediction is above 90% for the ILUO preconditioner, above 87% for the

ILUK preconditioners, and above 89% for the ILUT preconditioners.

e We have predicted the memory cost of executing PGMRES with different pre-
conditioners. The relative prediction error is about 21% for the ILUK precon-

ditioners and 24% for the ILUT preconditioners.

e We have proposed an algorithm to find out which preconditioners work best for
a certain sparse linear system with what parameters. We use some examples to

illustrate the results of the best preconditioners with parameters recommended.

8.2 Future Work

We have done some fundamental research related to the Intelligent Preconditioner
Recommendation System and obtained some preliminary results. More work needs to
be fulfilled to make the Intelligent Preconditioner Recommendation System a mature

and useful mathematical tool. Future work may follow the directions listed below:

e The experiments in this dissertation are conducted on 319 matrices downloaded
from MatrixMarket [38]. The size of the matrices varies from 27 to 23560. As
the advantage of the IPRS will be shown better on large matrices, we will
download and test more large matrices from, for example, the University of

Florida Sparse matrix collections [12].

e One of the difficult problems in IPRS is determining the set of features that
would represent the matrices in the database. The features of a matrix are

directly related to the precision of the prediction system. We have used more

114

than 60 features in the current system. Yet there are more features that may
be related to the performance of the preconditioned solvers to be explored in

the future.

We also applied some feature selection methods to find out the features that are
most useful to a given task, for example, regression or classification. We may
find out more efficient feature selection methods and take the cost of computing

features into consideration in future work.

The solver used in the experiments in this dissertation is PGMRES and the
preconditioners are restricted to several kinds of ILU preconditioners. We may
extend our work to more Krylov subspace methods like the Conjugate Gra-
dient method and Lanczos method and so on. We may also try other kinds
of preconditioners like Jacobi, Successive Overrelaxation, and Symmetric Suc-
cessive Overrelaxation preconditioners, Approximate Inverse Preconditioners,

block preconditioners, etc. [48].

We proposed some algorithms to improve the accuracy of prediction of the solv-
ing status of sparse linear systems, the memory cost and some matrix features
like condition number. The experiments show that the classification methods
work well but the regression methods do not achieve satisfactory results. For
example, around 75% of the matrices have prediction error within 102 in pre-
dicting condition number. We need to work out more efficient algorithms to

improve the prediction accuracy.

In the current IPRS, we use solving status, time cost and memory cost to select
the best preconditioners as well as the parameters for a given matrix. The

experimental results show that the absolute and relative errors for memory cost

115

prediction is relatively high. We may find out more efficient prediction methods

to lower the absolute and relative errors.

116

Appendix: Features of Matrices

Name
ADD20
ADD32
AF23560
ARCI130
BFW398A
BFW398B
BFW62A
BFW62B
BFW782A
BFW782B
BP 1000
BP 1200
BP 1400
BP 1600
BP 200
BP 400
BP 600
BP 800
BP 0
BWM200
BWM2000
CAVITYO01
CAVITYO02
CAVITYO03
CAVITY04
CAVITYO05
CAVITY06
CAVITYO07
CAVITYO08
CAVITY09
CAVITY10
CAVITY11
CAVITY12
CAVITY13
CAVITY 14
CAVITY15
CAVITY16
CAVITY17
CAVITY18
CAVITY19

Type
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA

size
2395
4960
23560
130
398
398
62
62
782
782
822
822
822
822
822
822
822
822
822
200
2000
317
317
317
317
1182
1182
1182
1182
1182
2597
2597
2597
2597
2597
2597
4562
4562
4562
4562

nnzrt
0.00229
0.00081
0.00083
0.06136
0.02322
0.01837
0.11707
0.08897
0.01229
0.00978
0.00690
0.00699
0.00709
0.00716
0.00563
0.00596
0.00617
0.00671
0.00485
0.01990
0.00200
0.07245
0.05894
0.07275
0.05894
0.02336
0.02124
0.02341
0.02124
0.02341
0.01129
0.01062
0.01131
0.01062
0.01131
0.01062
0.00663
0.00633
0.00663
0.00633

relsymm diagdomcol

1.00000
1.00000
0.99744
0.78315
0.99021
1.00000
0.97333
1.00000
0.99255
1.00000
0.01030
0.01058
0.01148
0.01198
0.00684
0.00596
0.00671
0.00618
0.00946
1.00000
1.00000
0.81029
0.81029
0.81029
0.81029
0.90747
0.90747
0.90747
0.90747
0.90747
0.93885
0.93885
0.93885
0.93885
0.93885
0.93885
0.95434
0.95434
0.95434
0.95434

0.99958
0.94194
0.00429
0.20769
0.18090
0.33166
0.48387
0.61290
0.11893
0.29540
0.00122
0.00122
0.00122
0.00122
0.00122
0.00122
0.00122
0.00122
0.00122
0.51000
0.50100
0.25552
0.29022
0.25552
0.25868
0.13621
0.17428
0.13621
0.15482
0.13621
0.09280
0.12399
0.09280
0.11244
0.09280
0.10820
0.07036
0.10215
0.07036
0.09338

avband
0.52505
0.51067
0.02560
0.54544
0.54978
0.54179
0.62383
0.55073
0.53558
0.53141
0.28729
0.28431
0.28560
0.27651
0.26505
0.27644
0.28110
0.28334
0.24690
0.50995
0.50100
0.22085
0.27833
0.22085
0.27833
0.12366
0.13830
0.12366
0.13830
0.12366
0.08532
0.09184
0.08532
0.09184
0.08532
0.09184
0.06506
0.06872
0.06506
0.06872

frnorm
1.04E+01
1.57E+00
1.02E+04
4.89E+05
8.38E+01
2.36E-04
3.06E+01
5.41E-04
1.29E+02
2.54E-04
1.12E+03
1.18E+03
1.13E+03
1.13E+03
9.93E+02
9.85E+02
1.06E+03
1.08E+03
9.78E+02
8.46E+03
2.64E+06
9.32E+01
1.18E+02
2.11E+02
3.51E+02
1.92E+02
2.01E+02
2.40E+02
3.00E+02
3.85E+02
2.91E+02
2.97E+02
3.21E+02
3.59E+02
4.15E+02
4.79E+02
3.91E+02
3.90E+02
3.96E+02
4.01E+02

strzpiv

=== ===

376
366
367
376
443
414
395

(98]
o0
o0

499

S —m O = O = OO —=O —=O O O — O O

117

Cont. (Features of Matrices)

Name
CAVITY20
CAVITY21
CAVITY22
CAVITY23
CAVITY24
CAVITY25
CAVITY26
CDDEI1
CDDE2
CDDE3
CDDE4
CDDES5
CDDE6
CK104
CK400
CK656
CRY10000
EO5R0000
EO05R0100
E05R0200
EO05R0300
E05R0400
EO05R0500
E20R0000
E20R0100
E20R0500
E20R1000
E20R2000
E20R3000
E20R4000
E20R5000
E30R0000
E30R0100
E30R0500
E30R1000
E30R2000
E30R3000
E30R4000
E30R5000
E40R0000

Type
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA

size
4562
4562
4562
4562
4562
4562
4562
961
961
961
961
961
961
104
400
656
10000
236
236
236
236
236
236
4241
4241
4241
4241
4241
4241
4241
4241
9661
9661
9661
9661
9661
9661
9661
9661
17281

nnzrt
0.00663
0.00633
0.00663
0.00633
0.00663
0.00633
0.00663
0.00507
0.00507
0.00507
0.00507
0.00507
0.00507
0.09172
0.01788
0.00903
0.00050
0.10496
0.10496
0.10496
0.10496
0.10496
0.10496
0.00731
0.00731
0.00731
0.00731
0.00731
0.00731
0.00731
0.00731
0.00328
0.00328
0.00328
0.00328
0.00328
0.00328
0.00328
0.00328
0.00185

relsymm diagdomcol

0.95434
0.95434
0.95434
0.95434
0.95434
0.95434
0.95434
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99021
0.99279
0.99797
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

0.07036
0.08900
0.07036
0.08724
0.07036
0.08527
0.07036
0.12487
0.06348
0.12487
0.06348
0.12487
0.06348
0.09615
0.02500
0.01524
0.01970
0.16949
0.09322
0.06780
0.03390
0.02119
0.01695
0.03773
0.03655
0.02452
0.01863
0.00990
0.00755
0.00566
0.00495
0.02484
0.02464
0.01749
0.01522
0.01149
0.00880
0.00745
0.00652
0.01852

avband
0.06506
0.06872
0.06506
0.06872
0.06506
0.06872
0.06506
0.06354
0.06354
0.06354
0.06354
0.06354
0.06354
0.55473
0.39967
0.34164
0.04910
0.29422
0.29422
0.29422
0.29422
0.29422
0.29422
0.07000
0.07000
0.07000
0.07000
0.07000
0.07000
0.07000
0.07000
0.04628
0.04628
0.04628
0.04628
0.04628
0.04628
0.04628
0.04628
0.03456

frnorm
4.13E+02
4.24E+02
4.42E+02
4.59E+02
4.83E+02
5.05E+02
5.33E+02
1.37E+02
1.57E+02
1.36E+02
1.55E+02
1.31E+02
1.52E+02
1.11E+01
1.53E+01
1.81E+01
3.42E+05
9.15E+01
9.61E+01
1.11E+02
1.44E+02
1.94E+02
2.50E+02
3.89E+02
3.90E+02
4.23E+02
5.28E+02
8.81E+02
1.35E+03
1.86E+03
2.40E+03
5.87E+02
5.88E+02
6.10E+02
6.81E+02
9.38E+02
1.29E+03
1.70E+03
2.15E+03
7.85E+02

strzpiv

S OO O OO OO OO OO OO OO OO OO OO O OO OCOOCO OO O—RO RO

118

Cont. (Features of Matrices)

Name
E40R0100
E40R0500
E40R1000
E40R2000
E40R3000
E40R4000
E40R5000
FIDAPO0O1
FIDAP002
FIDAPO0O03
FIDAP00O4
FIDAPO005
FIDAPO006
FIDAPOO07
FIDAPOOS
FIDAPO009
FIDAPO10
FIDAPOI11
FIDAPO12
FIDAPO13
FIDAPO14
FIDAPO15
FIDAPO18
FIDAPO19
FIDAP020
FIDAPO021
FIDAPO022
FIDAPO023
FIDAP024
FIDAPO025
FIDAPO026
FIDAP027
FIDAP028
FIDAP029
FIDAPO31
FIDAPO032
FIDAPO33
FIDAPO35
FIDAPO036
FIDAPO037

Type
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA

size
17281
17281
17281
17281
17281
17281
17281
216
441
1821
1601
27
1651
1633
3096
3363
2410
16614
3973
2568
3251
6867
5773
12005
2203
656
839
1409
2283
848
2163
974
2603
2870
3909
1159
1733
19716
3079
3565

nnzrt
0.00185
0.00185
0.00185
0.00185
0.00185
0.00185
0.00185
0.09300
0.13796
0.01588
0.01242
0.38272
0.01796
0.01746
0.00947
0.00879
0.00944
0.00395
0.00501
0.01147
0.00622
0.00204
0.00208
0.00180
0.01389
0.04406
0.03175
0.02143
0.00919
0.03374
0.01586
0.03964
0.01135
0.00288
0.00597
0.00822
0.00676
0.00056
0.00560
0.00532

relsymm diagdomcol

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

0.01840
0.01371
0.01233
0.01018
0.00851
0.00712
0.00637
0.45370
0.00000
0.00055
0.00500
0.00000
0.01878
0.02449
0.00065
0.00000
0.03610
0.00000
0.07903
0.00000
0.21255
0.03641
0.05889
0.05789
0.24875
0.34299
0.02145
0.01987
0.04205
0.04953
0.04854
0.32033
0.04456
0.26028
0.06754
0.06903
0.08482
0.03971
0.14745
0.59888

avband
0.03456
0.03456
0.03456
0.03456
0.03456
0.03456
0.03456
0.28946
0.27490
0.08055
0.09162
0.79424
0.06806
0.14341
0.05946
0.03670
0.05898
0.04550
0.03507
0.05385
0.07485
0.01925
0.04508
0.01983
0.07082
0.16415
0.07125
0.08572
0.06247
0.13744
0.24577
0.15399
0.05596
0.02739
0.04958
0.06013
0.08749
0.01221
0.06367
0.07984

frnorm
7.86E+02
8.02E+02
8.57E+02
1.06E+03
1.36E+03
1.70E+03
2.08E+03
6.83E-01
9.76E+08
1.40E+08
1.61E+01
9.09E+06
1.80E+03
1.13E+10
4 .24E+08
2.96E+10
2.16E+08
3.63E+09
1.83E+03
5.13E+10
1.07E+08
6.89E+10
6.91E+08
3.25E+08
3.66E+00
2.21E+00
5.70E+01
1.35E+06
7.19E+02
1.66E+00
3.76E+02
9.51E-01
5.84E+02
1.35E+01
8.85E+01
2.98E+02
2.43E+11
3.24E+08
3.21E+03
1.47E+03

strzpiv

S = = O =N O OO OO0 O OO O OO0 O OO0 OO OO oo oo o

119

Cont. (Features of Matrices)

Name
FIDAPMO2
FIDAPMO03
FIDAPMOS5
FIDAPMO7
FIDAPMOS
FIDAPMO09
FIDAPM10
FIDAPM11
FIDAPM13
FIDAPM15
FIDAPM29
FIDAPM33
FIDAPM37
FS 183 1
FS 1833
FS 183 4
FS 183 6
FS 5411
FS 541 2
FS 5413
FS 541 4
FS 680 1
FS 680 2
FS 680 3
FS 760 1
FS 760 2
FS 760 3
GEMATI1
GEMATI2
GRE 1107
GRE 216A
GRE 216B
GRE 115
GRE 185
GRE 343
GRE 512
HOR 131
IMPCOL A
IMPCOL B
IMPCOL C

Type
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA

size
537
2532
42
2065
3876
4683
3046
22294
3549
9287
13668
2353
9152
183
183
183
183
541
541
541
541
680
680
680
760
760
760
4929
4929
1107
216
216
115
185
343
512
434
207
59
137

nnzrt
0.06639
0.00775
0.28628
0.01060
0.00578
0.00427
0.00573
0.00124
0.00564
0.00111
0.00098
0.00418
0.00914
0.02980
0.03192
0.03192
0.02986
0.01463
0.01463
0.01463
0.01460
0.00472
0.00524
0.00534
0.00994
0.00994
0.01007
0.00136
0.00136
0.00462
0.01740
0.01740
0.03183
0.02849
0.01113
0.00754
0.02220
0.01335
0.07785
0.02131

relsymm diagdomcol

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.51731
0.51731
0.51731
0.51731
0.72275
0.72275
0.72275
0.72275
0.63643
0.63643
0.63643
0.69545
0.69545
0.69545
0.00172
0.00172
0.19544
0.24658
0.24658
0.45843
0.52239
0.23902
0.23358
1.00000
0.03846
0.14423
0.16302

0.15642
0.00000
0.09524
0.08523
0.02838
0.00256
0.02725
0.00022
0.00113
0.02735
0.29814
0.17382
0.00350
0.55191
0.54098
0.56831
0.56831
0.99815
0.43808
0.37523
0.42699
0.94265
1.00000
1.00000
0.98158
0.50526
0.15395
0.00041
0.00020
0.06504
0.22222
0.16667
0.66957
0.14595
0.16910
0.13281
0.29724
0.01449
0.16949
0.10219

avband
0.25694
0.07276
0.76190
0.13257
0.05485
0.03294
0.05398
0.03979
0.04864
0.01664
0.02586
0.07658
0.15220
0.60623
0.60623
0.60623
0.60623
0.67334
0.67334
0.67334
0.67334
0.24932
0.24932
0.24932
0.69779
0.69779
0.69779
0.12312
0.12397
0.27947
0.15745
0.15745
0.49921
0.32386
0.13558
0.11912
0.57611
0.09870
0.30336
0.13219

frnorm
5.39E+01
3.95E+01
1.81E+01
2.54E+02
9.08E+02
5.44E+03
9.78E+00
2.60E+01
3.24E+01
2.82E+01
1.78E+02
4.94E+02
1.05E+08
1.13E+09
1.15E+09
1.12E+09
1.18E+09
7.15E+01
1.70E+06
1.27E+07
1.58E+06
1.21E+14
1.21E+14
1.21E+14
4.54E+08
4.54E+08
4.54E+08
8.25E+02
9.71E+02
1.79E+01
7.81E+00
1.43E+01
7.25E+00
7.98E+00
9.70E+00
1.17E+01
2.10E+00
2.35E+03
1.39E+01
1.45E+02

strzpiv

O O OO O = O O OO

BN
S

W N N = = = O N N O

N NN
SO O

2322
2342

—_ 0 OO O OO OO

—
N NN
O BN

120

Cont. (Features of Matrices)

Name Type size nnzrt relsymm diagdomcol avband frnorm strzpiv
IMPCOLD RUA 425 0.00695 0.08140 0.00000 0.05805 1.40E+02 91
IMPCOLE RUA 225 0.02574 0.14220 0.01333 0.13845 1.58E+04 67
JPWH991 RUA 991 0.00614 0.94691 0.89304 0.14599 1.94E+02 58
LNS 3937 RUA 3937 0.00164 0.86862 0.07798 0.44959 1.44E+12 185
LNS 131 RUA 131 0.03123 0.76493 0.32061 0.35802 1.52E+10 20
LNS 511 RUA 511 0.01071 0.82976 0.18004 0.41503 1.06E+11 50
LNSP3937 RUA 3937 0.00164 0.86862 0.07798 0.03313 1.44E+12 200
LNSP 131 RUA 131 0.03123 0.76493 0.32061 0.19911 1.52E+10 24
LNSP 511 RUA 511 0.01071 0.82976 0.18004 0.13380 1.06E+11 59
LOP163 RUA 163 0.03519 0.54652 0.53988 0.12439 8.74E+00 0
MBEACXC RUA 496 0.20291 0.32179 0.02823 0.95452 4.78E+00 80
MBEAFLW RUA 496 0.20291 0.32179 0.02823 0.95452 4.09E+04 80
MBEAUSE RUA 496 0.16691 0.22668 0.02016 0.95096 4.24E+04 118
MCCA RUA 180 0.08207 0.66867 0.38333 0.16991 2.32E+19 38
MCFE RUA 765 0.04166 0.70884 0.65882 0.14402 2.01E+17 40

MEMPLUS RUA 17758 0.00031 1.00000 0.87859 0.56544 7.61E+00
MHD3200A RUA 3200 0.00664 0.77172 0.00219 0.01186 1.83E+05
MHD3200B RUA 3200 0.00179 1.00000 0.75438 0.00898 5.19E+00
MHD416A RUA 416 0.04948 0.77190 0.01683 0.08848 2.87E+03
MHD416B RUA 416 0.01336 1.00000 0.75240 0.06666 5.18E+00
MHD4800A RUA 4800 0.00444 0.77189 0.00146 0.00792 4.12E+05
MHD4800B RUA 4800 0.00119 1.00000 0.75458 0.00599 5.19E+00
NNC1374 RUA 1374 0.00455 0.83546 0.00000 0.05637 9.61E+03
NNC261 RUA 261 0.02202 0.84133 0.00000 0.13950 3.96E+03
NNC666 RUA 666 0.00909 0.83630 0.00000 0.08367 6.52E+03
ODEP400A RUA 400 0.00751 0.99750 0.99000 0.01246 4.91E+01
ORSIRR1 RUA 1030 0.00646 1.00000 0.54175 0.22305 1.85E+06
ORSIRR2 RUA 886 0.00761 1.00000 0.54853 0.27065 1.55E+06
ORSREG1 RUA 2205 0.00291 1.00000 0.53333 0.32409 8.54E+05
PDE225 RUA 225 0.02104 1.00000 0.30222 0.12944 7.61E+01
PDE2961 RUA 2961 0.00166 1.00000 0.85849 0.03159 2.23E+02
PDE900 RUA 900 0.00541 1.00000 0.67333 0.06563 1.46E+02
PORES 1 RUA 30 0.20000 0.68889 0.50000 0.42667 3.75E+07
PORES 2 RUA 1224 0.00642 0.66140 0.48121 0.15560 1.50E+08
PORES 3 RUA 532 0.01227 0.78181 0.71805 0.16377 6.63E+05
PSMIGR1 RUA 3140 0.05509 0.48166 0.60159 0.92605 3.54E+06
PSMIGR2 RUA 3140 0.05477 0.47865 0.00000 0.92604 1.50E+01
PSMIGR3 RUA 3140 0.05509 0.48166 0.82707 0.92605 3.62E+01
QH1484 RUA 1484 0.00277 1.00000 0.01348 0.54609 4.71E+16
QH768 RUA 768 0.00497 0.94479 0.05729 0.40259 2.48E+I13

i = === === === === = = =

o0 o0
B 0

121

Cont. (Features of Matrices)

Name
QHS&82
RDB1250
RDB1250L
RDB200
RDB200L
RDB2048
RDB2048L
RDB3200L
RDB450
RDB450L
RDBS8OOL
RW136
RW496
RW5151
SAYLRI
SAYLR3
SAYLR4
SHERMANI
SHERMAN?2
SHERMAN3
SHERMAN4
SHERMANS
SHL 200
SHL 400
SHL 0
STEAMI1
STEAM?2
STEAM3
STR 200
STR 400
STR 600
STR 0
TOLS1090
TOLS2000
TOLS340
TOLS4000
TOLS90
UTM1700a
UTM1700b
UTM300

Type
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA

size
882
1250
1250
200
200
2048
2048
3200
450
450
800
136
496
5151
238
1000
3564
1000
1080
5005
1104
3312
663
663
663
240
600
80
363
363
363
363
1090
2000
340
4000
90
1700
1700
300

nnzrt
0.00431
0.00467
0.00467
0.02800
0.02800
0.00287
0.00287
0.00184
0.01274
0.01274
0.00725
0.02590
0.00756
0.00076
0.01991
0.00375
0.00176
0.00375
0.01980
0.00080
0.00311
0.00190
0.00393
0.00389
0.00384
0.03903
0.01572
0.04906
0.02328
0.02396
0.02488
0.01862
0.00298
0.00130
0.01900
0.00055
0.21556
0.00737
0.00744
0.03506

relsymm diagdomcol

0.93739
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.44259
0.46907
0.49022
1.00000
1.00000
1.00000
1.00000
0.68624
1.00000
1.00000
0.78026
0.00348
0.00175
0.00296
1.00000
1.00000
1.00000
0.01173
0.02027
0.02013
0.00570
0.48562
0.54282
0.37432
0.59358
0.29897
0.59213
0.56097
0.51601

0.06349
0.57680
0.50000
0.50000
0.50000
0.12109
0.50000
0.50125
0.50000
0.50000
0.09500
0.00000
0.00000
0.00000
0.73950
0.52900
0.98737
0.52900
0.06852
1.00000
0.99728
0.67029
0.00452
0.00151
0.00452
0.66667
0.50000
0.50000
0.00275
0.00275
0.00275
0.00275
0.73211
0.76100
0.59706
0.77875
0.05556
0.32059
0.21353
0.28000

avband
0.37531
0.07772
0.07772
0.18685
0.18685
0.06109
0.06109
0.04909
0.12723
0.12723
0.09649
0.14852
0.08088
0.02589
0.11539
0.07049
0.10608
0.07049
0.32318
0.07744
0.22222
0.22188
0.36746
0.35902
0.35110
0.57797
0.54658
0.55000
0.10846
0.10823
0.12223
0.08519
0.18138
0.17149
0.23309
0.16570
0.50556
0.16912
0.16842
0.22630

frnorm
2.26E+13
2.74E+03
7.43E+02
2.24E+02
1.09E+02
5.61E+03
1.46E+03
2.76E+03
6.46E+02
2.19E+02
4.19E+02
7.24E+00
1.34E+01
4.19E+01
8.86E+08
4.31E+01
4 38E+05
4.32E+01
7.00E+09
1.36E+07
5.04E+02
1.40E+04
9.43E+03
9.25E+03
9.57E+03
8.41E+07
5.27E+10
1.85E+10
3.72E+01
3.95E+01
4.83E+01
3.18E+01
1.23E+07
5.40E+07
7.97E+05
2.98E+08
3.96E+04
4.12E+01
4.12E+01
1.73E+01

strzpiv
103

SO O OO OO O OO O o OO

133

72
503
485
532

[\

229
220
205
238
218
400
68
800
18
96
86
44

122

Cont. (Features of Matrices)

Name
UTM3060
UTM5940
WATT 1
WATT 2
WESTO0067
WESTO0132
WESTO0156
WESTO0167
WESTO0381
WEST0479
WEST0497
WESTO0655
WEST0989
WEST1505
WEST2021
1138 BUS
494 BUS
662 BUS
685 BUS
BCSSTKO1
BCSSTKO02
BCSSTKO03
BCSSTKO04
BCSSTKO05
BCSSTKO06
BCSSTKO07
BCSSTKO08
BCSSTKO09
BCSSTK10
BCSSTK11
BCSSTK12
BCSSTK13
BCSSTK 14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK19
BCSSTK20
BCSSTK21

Type
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RUA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA

size
3060
5940
1856
1856
67
132
156
167
381
479
497
655
989
1505
2021
1138
494
662
685
48
66
112
132
153
420
420
1074
1083
1086
1473
1473
2003
1806
3948
4884
10974
11948
817
485
3600

nnzrt
0.00451
0.00238
0.00330
0.00335
0.06549
0.02370
0.01488
0.01814
0.01470
0.00823
0.00697
0.00655
0.00360
0.00239
0.00179
0.00313
0.00683
0.00565
0.00692
0.17361
1.00000
0.05102
0.20937
0.10351
0.04456
0.04456
0.01124
0.01572
0.01871
0.01578
0.01578
0.02091
0.01945
0.00756
0.01217
0.00356
0.00104
0.01027
0.01333
0.00205

relsymm diagdomcol

0.55914
0.56242
0.98873
0.98355
0.04082
0.03382
0.00000
0.04339
0.00603
0.01780
0.01042
0.00736
0.01951
0.00202
0.00394
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

0.17582
0.15572
0.55819
0.53879
0.00000
0.00000
0.00000
0.01198
0.00000
0.00835
0.00000
0.00458
0.00000
0.00000
0.00000
0.95958
0.92308
0.93051
0.95328
0.54167
0.50000
0.50000
0.56061
0.49673
0.63810
0.63810
0.70112
0.38504
0.15101
0.56280
0.56280
0.32152
0.57807
0.50152
0.21785
0.26654
0.68806
0.65728
0.53196
1.00000

avband
0.09895
0.10125
0.06501
0.06724
0.54266
0.12052
0.13400
0.13819
0.62436
0.14197
0.09797
0.12015
0.09840
0.09941
0.09994
0.06069
0.15735
0.10773
0.07078
0.35677
0.50758
0.05230
0.21625
0.10359
0.08576
0.08576
0.16143
0.05402
0.03233
0.06218
0.06218
0.11463
0.05855
0.06887
0.02535
0.02436
0.04600
0.10831
0.01968
0.03283

frnorm
5.53E+01
7.71E+01
1.13E+01
1.38E+01
1.31E+01
3.57E+05
1.95E+07
6.39E+05
3.05E+03
7.10E+05
1.22E+06
7.10E+05
1.27E+06
1.56E+06
1.80E+06
1.26E+05
5.75E+04
7.36E+03
4.01E+04
7.52E+09
5.29E+04
347E+11
4.19E+07
2.21E+07
2.13E+10
2.13E+10
1.01E+11
8.57E+08
2.97E+08
4.67E+09
4.67E+09
7.54E+12
6.47E+10
5.70E+10
6.01E+10
4.83E+10
2.36E+11
9.62E+14
2.92E+16
2.96E+09

strzpiv
88
165
64
64
25
73
82
83
169
262
262
437
609
967
1313

(=

SO OO OO OO OO OO OO OO OO OOOoO o oo

123

Cont. (Features of Matrices)

Name
BCSSTK22
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK26
BCSSTK27
BCSSTK?28
BCSSTMO02
BCSSTMO05
BCSSTMO06
BCSSTMO07
BCSSTMO08
BCSSTMO09
BCSSTM10
BCSSTM11
BCSSTM12
BCSSTM13
BCSSTM19
BCSSTM20
BCSSTM21
BCSSTM22
BCSSTM23
BCSSTM24
BCSSTM?25
BCSSTM26
BCSSTM27
GR 30 30
LUND A
LUND B
NOSI
NOS2
NOS3
NOS4
NOS5
NOS6
NOS7
PLATI919
PLAT362
ZENIOS

Type
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA
RSA

size
138
3134
3562
15439
1922
1224
4410
66
153
420
420
1074
1083
1086
1473
1473
2003
817
485
3600
138
3134
3562
15439
1922
1224
900
147
147
237
957
960
100
468
675
729
1919
362
2873

nnzrt
0.03655
0.00460
0.01260
0.00106
0.00821
0.03746
0.01126
0.01515
0.00654
0.00238
0.04111
0.00093
0.00092
0.01873
0.00068
0.00906
0.00528
0.00122
0.00206
0.00028
0.00725
0.00032
0.00028
0.00006
0.00052
0.03746
0.00956
0.11333
0.11296
0.01811
0.00452
0.01719
0.05940
0.02361
0.00714
0.00869
0.00880
0.04415
0.00016

relsymm diagdomcol

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

0.84058
0.65699
0.48119
0.55625
0.41103
0.53595
0.04399
1.00000
1.00000
1.00000
0.57143
1.00000
1.00000
0.40792
1.00000
0.59335
0.85372
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.14052
1.00000
0.68027
0.38095
0.67089
0.66771
0.97604
0.91000
0.90598
1.00000
1.00000
0.66649
0.65470
0.92691

avband
0.10744
0.10874
0.20894
0.01102
0.06356
0.03368
0.04172
0.01515
0.00654
0.00238
0.08573
0.00093
0.00092
0.03233
0.00068
0.06178
0.02938
0.00122
0.00206
0.00028
0.00725
0.00032
0.00028
0.00006
0.00052
0.03368
0.03441
0.13749
0.13749
0.01811
0.00452
0.04347
0.09450
0.11697
0.03710
0.10137
0.34597
0.35991
0.13334

frnorm
2.06E+07
9.11E+16
1.39E+14
3.15E+15
3.95E+11
2.07E+07
1.05E+09
8.22E-01
4.67E+00
6.74E+04
1.80E+04
2.29E+06
4.92E-03
2.96E+05
3.01E+02
8.24E+01
8.94E+02
1.08E+08
1.01E+08
6.23E-03
3.67E-02
3.73E+07
6.27E+06
8.58E+09
1.15E+01
3.08E+04
2.54E+02
1.39E+09
2.88E+04
1.34E+10
1.72E+12
7.71E+03
4.19E+00
4 97E+06
4.50E+07
2.97E+07
2.22E+01
5.00E+00
9.31E+00

strzpiv

S OO OO OO OO OO OO o oo

762

SO O OO OO OO OO OO OO OOoOOoo oo

2873

124

Bibliography

1]

2]

3]

[4]

[5]

[6]

[10]

[11]

[12]

O. Axelsson. Iterative Solution Methods. Cambridge Univ. Press, Cambridge,
1994.

R. Barrett, M. Berry, and et al. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, STAM, Philadelphia, PA, 1993.

K. P. Bennett and C. Campbell. Support vector machines: Hype or Hallelujah?
SIGKDD Ezplorations, 2(2):1-3, 2000.

M. Benzi. Preconditioning techniques for large linear systems: survey. J. Com-
put. Phy., 182:418-477, 2002.

M. W. Berry, Z. Drmac, and E. R. Jessup. Matrix, vector space, and information
retrieval. SIAM Rev., 41:335-362, 1999.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimiza-
tion and support vector machines. In Proceedings of the Fifteenth International
Conference on Machine Learning, 1998.

C. Burges. A tutorial on support vector machine for pattern recognition. Kluwer
Academic Publishers, 1998.

C. Campbell. Kernel methods: A survey of current techniques. Neurocomput-
ing., 48:63-84, 2002.

G. F. Carey, R. McLay, G. Bicken, B. Barth, S. Swift, and A. Ardelea. Parallel
finite element solution of three-dimensional Rayleigh-Benard-Marangoni flows.
Int. J. Numer. Meth. Fluids, 31:37-52, 1999.

E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite
matrices, J. Comput. Appl. Math., 86:387-414, 1997.

O. Dahl and S. @. Wille. An ILU preconditioner with coupled node fill in for
iterative solution of the mixed finite element formulation of the 2D and 3D
Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 15:525-544, 1992.

T. Davis. University of Florida sparse matrix collection,
http://www.cise.ufl.edu/~davis/sparse. NA Digest, 97(23), June 7, 1997.

125

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

E. F. D’Azevedo, F. A. Forsyth, and W. P. Tang. Ordering methods for pre-
conditioned conjugate gradient methods applied to unstructured grid problems.
SIAM J. Matriz Anal. Appl., 13:944-961, 1992.

S. Deewester, S. Dumais, and et al. Indexing by latent semantic analysis, J.
Amer. Soc. Infor. Sci., 41:391-407, 1990.

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text
data using clustering. Machine Learning, 42(1):143-175, 2001.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and et al. LINPACK Users’ Guide.
SIAM, Philadelphia, PA, 1979.

I. S. Duff and G.A. Meurant. The effect of reordering on preconditioned conju-
gate gradients. BIT, 29:635-657, 1989.

H. C. Elman. A stability analysis of incomplete LU factorization. Math. Comp.,
47:191-217, 1986.

J. Gao and J. Zhang. Sparsification strategies in latent semantic indexing, in
Proceedings of the 2003 Text Mining Workshop, M. W. Berry and W. M. Pot-
tenger, (ed.), pp. 93-103, San Francisco, CA, May 3, 2003.

G. H. Golub and C. F. van Loan. Matriz Computation. John Hopkins Univ.
Press, Baltimore, 3rd Edition, 1996.

G. H. Golub and H. A. van der Vorst. Closer to the solution: iterative linear
solvers. In I. S. Duff and G. A. Watson, editors, The State of the Art in
Numerical Analysis, pages 63-92, Oxford, 1997. Clarendon Press.

A. Greenbaum. [lterative Methods for Solving Linear Systems. STAM, Philadel-
phia, PA, 1997.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157-1182, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer-Verlag, New York, 2001.

N. J. Higham. Fortran codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation. ACM Trans. Math. Soft.,
14:381-396, 1988.

E. N. Houstis, J. R. Rice, and R. Vichnevetsky. Intelligent Mathematical Soft-
ware Systems, Proceedings of the first IMACS/IFAC International Conference
on Expert Systems for Numerical Computing, North-Holland, New York, 1990.

126

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

C. W. Hsu and C. J. Lin. A comparison of methods for multi-class support
vector machines. Technical report, Department of Computer Science and Infor-
mation Engineering, National Taiwan University, Taipei, Taiwan, 2001

R. Jin and H. Liu. Robust feature induction for support vector machines. In
Proceedings of the 21st International Conference on Machine Learning, Banff,
Canada, 2004.

T. Joachims. Making large-scale SVM learning practical. Advances in Kernel
Methods - Support Vector Learning, B. Schélkopf, C. Burges and A. Smola (ed.),
MIT-Press, 1999.

S. Kaniel. Estimates for some computational techniques in linear algebra. Math.
Comput., 20:369-378, 1966.

N. Kang, J. Zhang, and E. S. Carlson. Parallel simulation of anisotropic diffusion
with human brain DT-MRI data. Computers and Structures, 82(28):2389-2399,
2004.

S. Karaa, J. Zhang, and C. C. Douglas. Preconditioned multigrid simulation of
an axisymmetric laminar diffusion flame, Math. Comput. Model., 38:269-279,
2003.

D.S. Kershaw. On the problem of unstable pivots in the incomplete LU-
conjugate gradient method, J. Comput. Phys., 38:114-123, 1980.

J. Lee, J. Zhang, and C.-C. Lu. Performance of preconditioned Krylov iterative
methods for solving hybrid integral equations in electromagnetics, J. of Applied
Comput. Electromagnetics Society, 18:54-61, 2003.

Y. Li, S. Gong, and H. Liddell. Support vector regression and classification
based multiview face detection and recognition. In Proc. of the IEEE Inter-
national Conference on Automatic Face and Gesture Recognition (FGR’00).,
Grenoble, France, 2000.

J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proc. of the 5th Symposium on Math, Statistics, and Probabil-
aty., Univ. of California Press, p. 281-297, 1967.

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml.
http://math.nist.gov/MatrixMarket.

J. A. Meijerink and H. A. van der Vorst. An iterative solution method for
linear systems of which the coefficient matrix is a symmetric M-matrix. Math.
Comput., 31:148-162, 1977.

127

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

D. Mladeni¢, J. Brank, M. Grobelnik, and N. Milic-Frayling. Feature selec-
tion using linear classifier weights: interaction with classification models. In
Proceedings of SIGIR’0/, Sheffield, UK, July, 2004.

L. C. Molina, L. Belanche, and A. Nebot. Feature selection algorithms: A

survey and experimental evaluation. In Proceedings of 2002 IEEE International
Conference on Data Mining (ICDM’02), Maebashi City, Japan, 2002.

A. L. Pardhanani and G. F. Carey. Time-integration and iterative techniques
for semiconductor diffusion modeling. IEEE J. Technology Computer Aided
Design, SISPAD97:1-12, 1997. (in html format).

J. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGS for multiclass
classification. Advances in Neural Information Processing Systems, 12 ed. S.A.
Solla, T.K. Leen and K.-R. Muller, MIT Press, 2000.

A. Rakotomamonjy. Variable selection using SVM-based criteria. Journal of
Machine Learning Research, 3:1357-1370, 2003.

W. B. Richardson, G. F. Carey, and B. J. Mulvaney. Modeling phosphorus
diffusion in three dimensions. IEEE Trans. Computer Aided Design, 11(4):487—
496, 1992.

R. Rifkin and A. Klautau. In Defense of One-Vs-All Classification. Journal of
Machine Learning Research, 5:101-141, 2004.

Y. Saad. ILUT: a dual threshold incomplete LU factorization, Numer. Linear
Algebra Appl., 14:387-402, 1994.

Y. Saad. Iterative Methods for Sparse Linear Systems, PWS, New York, 1996.

L. Shih, Y. Chang, J. Rennie, and et al. Not too hot, not too cold: The
Bundled-SVM is just right! In Workshop on Text Learning (TextML-2002),
Sydney, Australia, 2002.

A. J. Smola and B. Scholkopf. A tutorial on support vector regression. Neuro-
COLT Technical Report Series, NC2-TR-1998-030, 1998.

http://www-users.cs.umn.edu/Saad /software/SPARSKIT /sparskit.html

T. B. Trafalis and H. Ince. Support vector machine for regression and applica-
tions to financial forecasting. In Proceedings of IEEE-INNS-ENNS International
Joint Conference on Neural Networks (IJCNN’00), Como, Italy, 2000.

V. N. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York,
1998.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
1995.

128

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

V. Vural and J. G. Dy. A hierarchical method for multi-class support vector
machines. In Proc. of the Twenty-first International Conference on Machine
Learning., Banff, Alberta, Canada, July 2004

S. Xu, E. Lee, and J. Zhang. An interim analysis report on preconditioners
and matrices. Technical Report No. 388-03, Department of Computer Science,
University of Kentucky, Lexington, KY, 2003.

S. Xu, E. Lee, and J. Zhang. Designing and building an intelligent precondi-
tioner recommendation system (a progress report). In Abstracts of the 2003
International Conference on Preconditioning Techniques for Large Sparse Ma-
triz Problems in Scientific and Industrial Applications, Napa, CA, 2003.

S. Xu and J. Zhang. Matrix condition number prediction with SVM regression
and feature selection, in Proceedings of the Fifth SIAM International Conference
on Data Mining, Newport Beach, CA, April, 2005.

S. Xu and J. Zhang. A Data Mining Approach to Matrix Preconditioning
Problem, in Proceedings of the Eighth Workshop on Mining Scientific and En-
gineering Datasets (MSD05), in conjunction with the Fifth SIAM International
Conference on Data Mining, Newport Beach, CA, April, 2005.

H. Yang, L. Chan, and I. King. Support vector machine regression for volatile
stock market prediction. In Proceedings of the Third International Conference
on Intelligent Data Engineering and Automated Learning, 2002.

J. Zhang. Preconditioned Krylov subspace methods for solving nonsymmet-
ric matrices from CFD applications. Comput. Methods Appl. Mech. Engryg.,
189(3):825-840, 2000.

J. Zhang. A multilevel dual reordering strategy for robust incomplete LU factor-
ization of indefinite matrices, SIAM J. Matriz Anal. Appl., 22:925-947, 2001.

J. Zhang. Performance of ILU preconditioners for stationary 3D Navier-Stokes
simulation and the matrix mining project. In Proceedings of the 2001 Inter-
national Conference on Preconditioning Techniques for Large Sparse Matrix
Problems in Scientific and Industrial Applications, p. 89-90, Tahoe City, CA,
2001.

J. Zhang, G. F. Carey, R. McLay, and B. Barth. Performance of ILU pre-
conditioner in stationary Navier-Stokes simulation, Preprint, Department of
Computer Science, University of Kentucky, Lexington, KY, 2001.

J. Zhang, A. L. Pardhanani, and G. F. Carey. Performance of adaptive dual-
dropping ILUT preconditioners in semiconductor dopant diffusion simulation.
Int. J. Numer. Modeling: Electronic Networks, Devices and Fields, 15(2):147—
167, 2002.

129

[66] Y. Saad and J. Zhang. Enhanced multi-level block ILU preconditioning strate-
gies for general sparse linear systems, J. Appl. Comput. Math., 130:99-118,
2001.

130

Vita

Personal Data:
Name: Shuting Xu
Date of Birth: 05/04/1973
Place of Birth: Jinan, China

Educational Background:

e Doctor of Engineering in Computer Science and Engineering, Shanghai Jiaotong

University, China, 2001.

e Bachelor of Engineering in Computer Engineering, Shandong University, China,

1994.

Professional Experience:

e Research Assistant, 01/2003 - present. Department of Computer Science, Uni-

versity of Kentucky.

e Teaching Assistant, 01/2002 - 01/2003. Department of Computer Science, Uni-

versity of Kentucky.

e Software Engineer, 07/2001 - 12/2001. Shanghai Bell Company Ltd., Shanghai,
China.

e Research Assistant, 09/1996 - 07/2001. Department of Computer Science and

Engineering, Shanghai Jiaotong University.

e Instructor, 09/1994 - 07/1996. Department of Computer Science, Shandong

University, China.
131

Awards:

e International Conference On Preconditioning Techniques For Large Sparse Ma-

trix Problems In Scientific And Industrial Applications Travel Support, 2005.

e Student Travel Support from Graduate School Fellowship of the University of
Kentucky, 2004-2005.

e Thaddeus B. Curtz Memorial Scholarship Award, 2004.

e The Commonwealth Research Award of the University of Kentucky, 2004.
e SIAM Conference on Applied Linear Algebra Travel Awards, 2003.

e IEEE WIAPP’03 Travel Awards, 2003.

e Student Travel Support from Graduate School Fellowship of the University of
Kentucky, 2003-2004.

e Award of Merit for a paper presentation at the 17th Annual EKU Symposium

in the Mathematical, Statistical and Computer Sciences, 2003.

e Student Travel Support from Graduate School Fellowship of the University of
Kentucky, 2002-2003.

Refereed Publications:
e Intelligent Preconditioner Recommendation System

— Shuting Xu and Jun Zhang, Matrix condition number prediction with SVM
regression and feature selection, in Proceedings of the Fifth SIAM Interna-

tional Conference on Data Mining, Newport Beach, CA, April, 2005.

132

— Shuting Xu and Jun Zhang, A data mining approach to matrix precon-
ditioning problem, in Proceedings of the Eighth Workshop on Mining Sci-
entific and Engineering Datasets (MSDO05), in conjunction with the Fifth
SIAM International Conference on Data Mining, Newport Beach, CA,
April, 2005.

— Shuting Xu, Eun-Joo Lee, and Jun Zhang. Designing and building an
intelligent preconditioner recommendation system (a progress report), in
Abstracts of the 2003 International Conference on Preconditioning Tech-
niques for Large Sparse Matrixz Problems in Scientific and Industrial Ap-

plications, Napa, CA, 3 pages, October, 2003.
e High Performance Document Clustering

— Shuting Xu and Jun Zhang, A hybrid parallel web document clustering
algorithm and its performance study. Journal of Supercomputing, Vol. 30,

No. 2, P. 117-131, Nov, 2004.

— Shuting Xu and Jun Zhang, Clustering text documents with different close-
ness, in Proceedings of the 2004 Workshop on Clustering High Dimensional
Data and its Applications, in conjunction with the Fourth SIAM Interna-
tional Conference on Data Mining, P. 34-42, Orlando, FL, April, 2004.

— Shuting Xu and Jun Zhang, A hybrid parallel algorithm for clustering
web documents, in Proceedings of the 7th International Workshop on High
Performance and Distributed Mining, in conjunction with the Fourth STAM
International Conference on Data Mining, P. 66-73, Orlando, FL, April,
2004.

e Terrorist Analysis System with Privacy Protection

133

— Shuting Xu, Jun Zhang, Dianwei Han, and Jie Wang, Data distortion for
privacy protection in a terrorist analysis system, in Proceedings of IEEE
Intl. Conf. on Intelligence and Security Informatics (ISI-2005), Atlanta,
Georgia, May, 2005.

e Parallel object-relational database management system

— Shuting Xu and Yonggiang Sun. Performance study Of real-time multiver-
sion concurrency control protocols in parallel database systems. Chinese

Journal of Computers, Vol. 25, No. 2, P. 173-180, 2002.

— Shuting Xu, Chaojun Lu, Changsheng Chen, and Yonggiang Sun. A par-
allel transaction processing model based on BSP. Journal of Computer
Research and Development (Chinese), Vol. 38, No. 11, P. 1399-1404,
2001.

— Changsheng Chen, Shuting Xu, and Yongqgiang Sun. Object-relational
database system and its parallel processing. Journal of Computer Appli-

cation and Software (Chinese), October, 2001.

— Shuting Xu and Yonggiang Sun. An improved BSP 1/O cost model. Jour-

nal of Shanghai Jiaotong University, September, 2001.

— Shuting Xu and Yongqgiang Sun. The comparison and analysis of multi-
version access methods. Journal of Computer Engineering (Chinese). Vol.

27, No. 5, P. 85-88, 2001.

— Yonggiang Sun, Shuting Xu, Fenghua Zhu, and et al. PORLES: a paral-
lel object-relational database system, in Proceedings of ISES’01, Wuhan,
China, March, 2001.

— Shuting Xu and Yingcai Bai. Concurrent engineering and the technol-

134

ogy of CAD/CAPP/CAM integration. Journal of Computer Engineering
(Chinese). Vol. 23, No. 12, P. 40-41, 1997.

Teaching Experience:

e Instructor, Spring 2005. Department of Computer Science, University of Ken-

tucky.

e Instructor, Summer 2004. Department of Computer Science, University of Ken-

tucky.

e Teaching Assistant, 01/2002 - 01/2003. Department of Computer Science, Uni-

versity of Kentucky.

e Instructor, 09/1994 - 07/1996. Department of Computer Science, Shandong

University, China.

135

	Study and Design of an Intelligent Preconditioner Recommendation System
	Recommended Citation

	Abstract
	Title Page
	Dedication
	Acknowlegements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Preconditioned Krylov Methods
	1.3 Sparse Linear Systems
	1.4 Structure of the Intelligent Preconditioner Recommendation System
	Figure 1.1 Structure of the Intelligent Preconditioner Recommendation System (IPRS) .

	1.5 Contributions of the Dissertation

	Chapter 2 Matrix Feature Extraction

	2.1 Examples of Special Matrix Features

	2.2 Matrix Features Extracted

	Figure 2.1 Illustration of different sparsity patterns of two different sparse matrices.

	Chapter 3 Solving Status of the Sparse Linear Systems

	3.1 ILU0

	Table 3.1 Number of matrices in each category with respect to ILU0.

	3.2 MILU0

	Table 3.2 Number of matrices in each category with respect to M
ILU0.

	3.3 ILUD

	Table 3.3 Number of matrices in each class in testing ILUD with a=1.
	Table 3.4 Average attributes of the sparse linear systems solved by ILUD with a=1.

	Table 3.5 Number of matrices in each category with respect to
 ILUD with a=1.
	Table 3.6 Number of matrices in each class in testing ILUD with a=0
.
	Table 3.7 Average attributes of the sparse linear systems solved by ILUD with a=0 .
	Figure 3.1 The trend of the values of AVNNZPCOL in ILUD and ILUDA.

	Figure 3.2 The trend of the values of AVBAND
 in ILUD and ILUDA.
	Figure 3.3 The trend of the values of AVDIAG
 in ILUD and ILUDA.
	Figure 3.4 The trend of the values of NZDIAGS
 in ILUD and ILUDA.
	Table 3.8 Number of matrices in each category with respect to ILUD with a=0
.

	3.4 ILUDP

	Table 3.9 Number of matrices in each class in testing ILUDP
 with a=1.
	Table 3.10
 Average attributes of the sparse linear systems solved by ILUDP with a=1.
	Table 3.11 Number of matrices in each category with respect to ILUDP
 with a=1.
	Table 3.12 Number of matrices in each class in testing ILUDP
 with a=0 .
	Table 3.13 Number of matrices in each category with respect to ILUDP with a=0
.

	3.5 ILUT

	Figure 3.5 The number of sparse linear systems solved by ILUT with different tol values.

	Figure 3.6
 The number of sparse linear systems solved by ILUT with different filr values.
	Table 3.14 Number of matrices in each category with respect to ILUT.

	3.6 ILUTP

	Figure 3.7 The number of sparse linear systems solved by ILUTP
 with different tol values.
	Table 3.15
 Number of matrices in each category with respect to ILUTP .
	Figure 3.8 The number of sparse linear systems solved by ILUTP with different filr values
 .

	3.7 Comprehensive Results

	Table 3.16 Attributes of the matrices that can be successfully solved.

	Table 3.17 Solving result
 of BCSSTM13 using different preconditioners.
	Table 3.18 Solving result of ZENIOS
 using different preconditioners.
	Table 3.19 Percentage of matrices with the property ncol=nnzdiag that can be solved.

	Table 3.20 Chances of each of the preconditioners to be the best.

	Table 3.21 Return status of the unsolved matrices.

	Table 3.22 Return status of constructing the preconditioners for the unsolved matrices.

	Chapter 4 Matrix Condition Number Prediction

	4.1 Matrix Condition Number

	4.2 SVM Regression

	4.3 Feature Selection

	4.4 Experiments and Results

	Figure 4.1 Comparison of accuracy with a RBF kernel.

	Figure 4.2 Comparison of accuracy with a linear
 kernel.
	Figure 4.3 Comparison of accuracy with a polynomial
 kernel.
	Figure 4.4 Comparison of accuracy with a RBF kernel with different percentage of features selected.
	Table 4.1 The first 50% of the features chosen by the combinational method with a RBF kernel.

	Table 4.2 Average response time (in seconds).

	Figure 4.5
 Comparison of accuracy with a linear kernel with different percentage of features selected.
	Table 4.3 Average response time for larger matrices (in seconds).

	Figure 4.6 Comparison of accuracy with a polynomial
 kernel with different percentage of features selected.
	Table 4.4 Performance comparison for some large size matrices (in seconds).

	4.5 Conclusion

	Chapter 5 ILU0 and ILUK Prediction

	5.1 Clustering and Classification

	5.2 Prediction Method

	5.3 Experiments and Results

	Table 5.1 Solving status (SS) and the meanings.

	Table 5.2 Predicted solving status related to ILU0.

	Table 5.3
 Predicted solving status related to ILUK .
	Figure 5.1 Relation of w and the total correct rate.

	Table 5.4 Cluster statistics.

	Table 5.5 Matrix composition of the pure stable clusters.

	Table 5.6 Prediction accuracy using pure stable cluster centers.

	5.4 Conclusion

	Chapter 6 ILUT Prediction

	6.1 Introduction

	Figure 6.1 Parameter space of ILUT

	6.2 SVD and Sparsified SVD

	Figure 6.2 Singular value decomposition and reduced dimension

	6.3 Experiments and Results

	Figure 6.3 Prediction accuracy of SVM Clsssification (d=0.1).
	Figure 6.4 Prediction accuracy of SVM Clsssification (d=0.01).
	Figure 6.5 Prediction accuracy of SVM Clsssification (d=0.001).
	Figure 6.6 Prediction accuracy of SVM Clsssification (d=0.0001)
	Table 6.1 Total prediction accuracy of SVM Classification with different d.
	Table 6.2 Prediction accuracy after applying SVD with k=60.
	Table 6.3 Prediction accuracy after applying SVD with k=50.
	Table 6.4 Prediction accuracy after applying SVD with k=40.
	Table 6.5 Prediction accuracy after applying SVD with k=30.
	Table 6.6 Prediction accuracy after applying SVD with k=20.
	Table 6.7 Total prediction accuracy after applying SVD with different rank.
	Table 6.8 Prediction accuracy after applying SSVD with e=0.01.
	Table 6.9 Prediction accuracy after applying SSVD with e=0.001.
	Table 6.10 Prediction accuracy after applying SSVD with e=0.0001.
	Table 6.11 Total prediction accuracy after applying SSVD with different dropping.

	6.4 Conclusion

	Chapter 7 Best Preconditioner Selection

	7.1 Best Preconditioner Selection Algorithm

	7.2 Memory Cost Analysis

	7.3 Experiments and Results

	Table 7.1 Average absolute prediction error (in KB) for ILUK with different d.

	Table 7.2 Relative prediction error for ILUK with different d.

	Figure 7.1 ILUT prediction results of solving status and memory cost of a matrix.

	Figure 7.2 Actual results of solving status and memory cost of a matrix.

	Table 7.3 The comparison of total average prediction errors for ILUT with different d.

	Table 7.4 Absolute prediction erros for ILUT with d=0.1.

	Table 7.5 Relative
 prediction erros for ILUT with d=0.1.
	Table 7.6 Predicted best preconditioner selection for matrix CAVITY09.
	Table 7.7 Actual best preconditioner selection for matrix CAVITY09.
	Table 7.8 Predicted best preconditioner selection for matrix FIDAP036
.
	Table 7.9 Actual best preconditioner selection for matrix FIDAP036
.

	7.4 Conclusion

	Chapter 8 Conclusion and Future Work

	8.1 Conclusion

	8.2 Future Work

	Appendix
	Bibliography
	Vita

