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ABSTRACT OF DISSERTATION

CONTROLS ON MIDDLE TO LATE ORDOVICIAN SYNOROGENIC

DEPOSITION IN THE SOUTHEASTERN CORNER

OF LAURENTIA

Middle and Upper Ordovician strata in the southernmost Appalachians document initial

collision along the southeastern margin of Laurentia during the Blountian orogeny, an early

phase of the Taconic orogeny.  Coeval drowning and exposure of different parts of the former

platform and variations in stratal architecture have been attributed to tectonic and depositional

loading along the collisional margin.  Stratigraphic correlations, using a bentonite-graptolite-

conodont time framework, a palinspastic map, and a map of subsurface basement structures,

suggest that basement-fault reactivation, flexural subsidence, and eustasy variously controlled

uplift, subsidence, and deposition at different sites within the peripheral foreland basin.

This dissertation documents how pre-existing structures in the continental margin and

interior affected subsidence, deposition, diagenesis, and composition of foreland strata, and

deformation in tectonic loads.  Stratigraphic correlations document an early episode of basement-

fault inversion in the distal foreland, and heterogeneous subsidence and provenance patterns in

the middle and proximal foreland.  Abrupt variations in depth of erosion of passive-margin strata

and in thickness of distal foreland deposits coincide with the boundaries of the intraplate

Birmingham graben.  Inversion of the former graben increased the magnitude of erosion on



inverted upthrown blocks; increased tectonic subsidence in adjacent blocks; supplied chert and

quartz detritus to shallow-marine carbonate depocenters; and facilitated influx of meteoric water

to aquifers in shallow-marine limestones.  Tectonic subsidence of middle and proximal foreland

deposits reflects local irregularities in the foreland subsidence and different rates of migration of

the flexural wave along strike.  Differential subsidence between embayments and promontories

may have caused reactivation of transverse basement faults.  Relief produced by reactivation of

transverse basement faults and flexural normal reactivation of basement faults may provide

sources for local conglomerates interbedded with deep-water shales.  Differences in orogenic-

belt deformation are reflected in provenance analyses that suggest exposure of dominantly

feldspar-bearing basement rocks in the orogenic belt adjacent to the promontory and exposure of

basement rocks and sedimentary cover in the orogenic belt adjacent to the embayment.  Results

of this study reveal the importance of considering the effects of pre-existing structures in the

interpretation of along- and across-strike variations of foreland strata.  Therefore, geodynamic

modeling of the Blountian foreland basin needs to consider along-strike variations in the

geometry of tectonic loads and reactivation of different basement structures.

KEYWORDS: Blountian orogeny, reactivation, Ordovician, peripheral foreland, inversion
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CHAPTER ONE

GENERAL INTRODUCTION, PURPOSE, SIGNIFICANCE, AND

ORGANIZATION OF THE DISSERTATION

Middle and Upper Ordovician strata in the Appalachian thrust belt in Alabama and

Georgia contain the record of the Blountian phase of the Taconic orogeny (Rodgers, 1953; Drake

et al., 1989) (hereinafter referred to as the Blountian orogeny), that also marks the onset of

several events of collision along the margin of Laurentia during the Paleozoic (Hatcher, 1989).

This event of collision has been interpreted from deposition of Middle Ordovician basinal shales

toward the pre-existing rifted margin of Laurentia and exposure of the platform toward the

craton.  The inherited structural zig-zag configuration of the southeastern Laurentian margin

consisted of the Alabama promontory and Tennessee embayment along the margin and the

intraplate Birmingham graben (Thomas, 1977, 1991).  Irregularities of colliding crustal blocks

and pre-existing internal structures within the blocks have not been given enough attention in the

analysis of sedimentary basins associated with mountain-building processes.  This dissertation

focuses on the role of basement structures in the distribution and evolution of source areas and

sedimentation at different settings within a peripheral foreland basin.  The results of this

dissertation document how intraplate basement faults may be reactivated as inverted faults,

flexural normal faults, or transverse faults.  Basement-fault reactivation may predate or be coeval

with the migration of a flexural wave. Basement-fault reactivation distorts the pattern of

lithospheric flexure predicted from geodynamic models and allows the accommodation of

differential rates of subsidence and migration along strike of the foreland basin.

The significance of this research is that it uses a well-constrained palinspastic map and

chronostratigraphic framework to relate changes in composition and architecture of synorogenic

sedimentary successions to subsurface basement structures.  This approach permits the

distinction among (1) local effects of a fixed structure on composition and architecture of

foreland deposits; (2) the plate-margin-scale pattern of foreland deposition controlled by

migration of the flexural wave; and (3) cratonwide fluctuations of sea level.  Synconvergence

reactivation of rift-related basement faults and irregularities of the foreland plate margin

adequately explain many otherwise unclear stratigraphic and compositional relationships in the
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southern Blountian foreland basin.  Consequently, integration of pre-existing structures into the

comprehensive analysis of foreland or other synorogenic basins will contribute to a better

understanding of causes of abrupt changes in the stratigraphy, structure, and composition of

foreland basins.

This dissertation is divided into an introductory chapter (this chapter), three chapters that

address specific goals (Chapters 2 to 4), and a final chapter with a summary of the conclusions

(Chapter 5).  For dissertation purposes, the major goal in Chapter 2 is the construction of a

palinspastic map and a map of basement structures.  An overlay of these two maps generates the

base map for stratigraphic analysis of Blountian strata in Chapters 3 and 4.  Another goal of

Chapter 2 is to determine whether sub-décollement basement faults and variations of synrift

deposits contributed to the regional kinematic and geometric partitioning of the Alabama and

Georgia thrust belt.  Chapter 2 examines the causes of small-scale curvatures of the thrust belt,

and the relationship between structural styles of the thrust belt and the sub-décollement structural

configuration of the basement.

How did the intraplate Birmingham graben and lithosphere flexure interact at distal

foreland settings during the Middle and Late Ordovician Blountian orogeny?  In order to answer

this question, Chapter 3 documents distal and middle foreland variations of (1) stratal

architecture, (2) composition of carbonate and siliciclastic deposits, and (3) tectonic subsidence

using stratigraphic sections that restore palinspastically northwest (toward the craton), inside,

and southeast (toward the plate margin) of the Birmingham graben.  The palinspastic distribution

of sections, which also covers different configurations of the Birmingham graben along strike,

allows the determination of whether faults of the Birmingham graben system were reactivated as

inverted faults.  Chapter 3 presents an integrated analysis of basement-fault reactivation, flexural

deformation, and sea-level fluctuations in order to estimate the control of erosion of passive-

margin strata and subsequent distal to middle foreland deposition.

Chapter 4 describes the effects of the zig-zag configuration of the southeastern

Laurentian margin and intraplate structures near the plate margin in the architecture and

composition of middle to proximal foreland strata, as well as in deformation of the Blountian

orogenic belt.  The main goal of Chapter 4 is to document along-strike changes in the

stratigraphy and composition of the Blountian foredeep, dispersal patterns of synorogenic

sediments, and migration of the flexural wave; and to determine if the stratal architecture of the
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Blountian foreland basin is somehow influenced by the pre-existing plate-margin configuration

of the southern Laurentian margin.  Provenance analysis presented in this chapter intends to

examine along-strike variations in composition of synorogenic siliciclastic strata in order to

predict a possible gradient of deformation of the Blountian orogenic belt.  Integration of results

of Chapters 3 and 4 allows (1) the identification of flexural deformation in the proximal to

middle foreland, (2) the establishment of the extent of sea-level fluctuations in controlling

foreland deposition, and (3) calculation of flexural wave migration in the Blountian foreland

basin.

Chapter 5 brings together the results of Chapters 2 to 4.  This chapter gives some insights

into the geometry and kinematics of the Appalachian thrust belt in Alabama and Georgia, and

summarizes the effects of pre-existing structural configuration of the foreland plate, flexural

deformation, and sea-level fluctuations in deposition of the Blountian carbonates and

synorogenic clastic wedge on the southeastern margin of Laurentia.
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CHAPTER TWO

GEOMETRY, KINEMATICS, AND RESTORATION OF THE APPALACHIAN FOLD AND

THRUST BELT OF ALABAMA AND GEORGIA: LINKING SUB-DÉCOLLEMENT

BASEMENT STRUCTURES WITH THIN-SKINNED STRUCTURES

2.1  INTRODUCTION

Field and laboratory investigations have explored the causes of the curvature (salient and

recess) geometry of fold-thrust belts (e.g., Thomas, 1977; Marshak et al., 1992; Macedo and

Marshak, 1999; Paulsen and Marshak, 1999).  The Pennsylvania salient (convex-to-the-foreland

curve) of the central Appalachian thrust belt has been interpreted as a curvature inherited from

the rifted continental margin of Laurentia (Rankin, 1976; Thomas, 1977; Kent, 1988; Stamatakos

and Hirt, 1994).  In the southern Appalachian thrust belt, the Tennessee salient and the Virginia

recess (concave-to-the-foreland curve, Figure 2.1A) have been interpreted as a curvature related

to the shape of an embayment-promontory pair of the rifted continental margin (e.g., Thomas,

1977, 1991; Spraggins and Dunne, 2002).  Alternatively, this curvature has been modeled by

pushing an indenter (i.e., island arc) into the continental margin (Macedo and Marshak, 1999).

The abrupt Uinta recess in the Sevier thrust belt of Utah has been related to differential

propagation of the thrust belt caused by along-strike variations in pre-deformational basin

geometry (Paulsen and Marshak, 1999).  Studies in the Wyoming-Idaho thrust belt have

documented curvature in response to the buttressing effects of uplifted basement-cored blocks

within the foreland (Grubbs and Van der Voo, 1976; Eldredge and Van der Voo, 1988).  All

these studies indicate that knowledge of the pre-existing intraplate configuration of basement and

rifted continental margins is essential for the understanding of the geometry of the thrust belt.

Furthermore, indenter geometry, convergence direction, lateral variations of orogenic taper,

strength of detachment host rocks, and stratal architecture are other factors that may control the

geometry of curved thrust belts (e.g., Marshak et al., 1992; Macedo and Marshak, 1999).  Most

mechanical models of mountain chains consider a low-angle, hinterlandward-dipping basal slope

of the critical wedge as following the geometry of the top of basement (e.g., Chapple, 1978;

Davis et al., 1983).  This assumption eliminates consideration of the effects of an irregularly

shaped basal detachment surface (e.g., Thomas, 1985, 2001) in the evolution of thrust belts.  This
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chapter illustrates how sub-detachment basement grabens and stratal architecture exert a primary

control in the irregular surface trace of the basal detachment and in the geometry and kinematics

of a thin-skinned thrust belt.

In the Appalachian thrust belt of Georgia and Alabama (southern part of the Tennessee

salient and Alabama recess, Figure 2.1B), folds and faults in intermediate imbricates have local

strike deviations which are not transmitted to either leading or trailing thrust sheets.  An across-

strike alignment of structures with strike deviations constitutes a transverse zone in the thrust belt

(Thomas, 1990), such as the Anniston transverse zone (Figures 2.1B and 2.1C).  Differences in

style of deformation and kinematic evolution of the thrust belt across the Anniston transverse

zone have been associated with differences in elevation of the top of basement and in synrift

stratal architecture across a basement transverse fault (Thomas, 2001; Thomas and Bayona,

2002; Bayona et al., in press).  Therefore, abrupt strike-parallel and strike-perpendicular internal

changes in thrust-belt geometry might be related to variations in basement structural

configuration and stratal architecture across intraplate structures, such as basement grabens.  The

question is whether sub-décollement basement faults and variations of synrift deposits

contributed to the regional kinematic and geometric partitioning of the Alabama and Georgia

thrust belt.

Examination of individual thrust surfaces, fault-related folds, and associated synorogenic

deposits allows the identification of the timing, kinematics, and mechanical processes associated

with thrust faulting (e.g., Boyer and Elliot, 1982; Mitra, 1997).  Previous studies of thrust belts

have considered the effects of pre-existing sub-thrust extensional basement faults and pre-

deformational stratal architecture on ramp location, out-of-sequence thrusts, and arcuate thrust

traces (e.g., Wiltschko and Eastman, 1983; Hayward and Graham, 1989; Mitra, 1997; Paulsen

and Marshak, 1999).  However, the moderate to poor resolution of gravity (e.g., Hutchinson et

al., 1983) and seismic reflection profiles in several mountain belts to depths of crystalline

basement does not allow determining a clear and direct link between basement and cover

deformation in several mountain belts.  Consequently, configuration of the top of basement is

commonly constrained by the restored geometry of the sedimentary wedge.  Seismic reflection

profiles across the thrust belt of Georgia and Alabama used in this study distinctly depict the

contact between sedimentary cover and crystalline basement, and allow deciphering the

geometry of the top of basement (Figure 2.2).



6

2.2  REGIONAL STRUCTURAL SETTING AND DEFINITION OF LITHOTECTONIC

UNITS

The southern Appalachian thrust belt is the result of the Alleghanian orogeny, which

affected the eastern margin of Laurentia in late Paleozoic time (Hatcher, 1989).  The foreland

thrust belt in Alabama and Georgia consists of large-scale, northeast-striking thrust faults and

associated folds bounded by undeformed foreland strata on the northwest and by metamorphic

rocks of the Talladega slate belt and western Blue Ridge on the southeast (Figure 2.1) (Pickering

et al., 1976; Osborne et al., 1988).  Paleozoic strata in the thrust belt have been tectonically

transported to the northwest by thin-skinned thrust faults (Thomas, 1985).

Transverse zones, which are cross-strike alignments of lateral ramps, transverse faults,

and displacement-transfer zones, cross much or all of a thrust belt (Wheeler, 1980; Thomas,

1990) and break the dominant northeasterly strike of the thrust belt.  Straight long lineations

perpendicular to the strike of the thrust belt were initially identified by multispectral photographs

(e.g., Powell et al., 1970), and are parallel to transverse zones (e.g., Drahovzal, 1975).

Transverse structures link two frontal ramps across strike, and in map view they are marked by

abrupt along-strike changes in thrust-belt structure, including plunging ends of ramp anticlines,

bends of longitudinal thrust faults and associated folds, transverse faults, changes in stratigraphic

level of detachment, displacement transfer between frontal ramps, and boundaries between

structural styles (Wheeler, 1980; Thomas, 1990).  In the Alabama and Georgia Appalachian

thrust belt, the Bessemer, Harpersville, Anniston, and Rising Fawn transverse zones cut

completely across the unmetamorphosed thrust belt (Figure 2.1C) (Thomas, 1990).  In addition

to these four transverse zones, this chapter describes two transverse zones of more local extent.

The Clinchport and Rome transverse zones cut across intermediate to trailing structures of the

Appalachian thrust belt in Georgia.

The dominant northeasterly strike of the thrust belt is better observed in leading

structures than in intermediate and trailing structures.  Several northeast-striking faults and folds

in the leading thrust belt either terminate or deviate in strike within transverse zones (e.g.,

anticlines SQ and MV in Figure 2.1).  In contrast, the strike in intermediate and trailing faults

and folds shifts abruptly from northeast in Alabama to north-northeast in Georgia across the

Anniston, Rome, Rising Fawn, and Clinchport transverse zones (Figure 2.1C).  Additionally,
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folds in intermediate thrust sheets and between the Rome and Clinchport transverse zones show

interference patterns (points 10 and 11 in Figure 2.1C) (Bayona et al., in press).

Geometric analysis of structural trend-line patterns in thrust belts has contributed to the

understanding of the generation of curved thrust belts (Macedo and Marshak, 1999).  In map

view, the shift in strike of faults and folds corresponds to a divergence of trend lines of faults in

the southern part of the Tennessee salient, in opposition to convergence of faults in the apex of

the Tennessee salient (figure 17 of Macedo and Marshak, 1999).  A similar geometry of trend

lines was obtained in sandbox models where the salient was the product of pushing an indenter

into the foreland.  Macedo and Marshak (1999) suggested than an Ordovician volcanic arc,

caught during Laurentian-Gondwana collision, acted as the indenter in the Alleghanian orogeny.

In this chapter, we argue that the shift of trend lines of faults is related to southwestward

deepening of the top of basement and thickening of synrift strata across the Rising Fawn and

Rome transverse zones.

The Paleozoic succession in the Appalachian thrust belt of Alabama and Georgia consists

of upper Precambrian to Lower Ordovician synrift and passive-margin deposits (Thomas, 1991)

overlain by Middle Ordovician to Carboniferous deposits associated with three contractional

events: the Taconic, Acadian, and Alleghanian orogenies (Hatcher, 1989).  On the basis of

palinspastic restoration and stratigraphic analyses of synrift and passive-margin deposits in the

Appalachian and Ouachita orogenic belts, Thomas (1977, 1991) proposed an orthogonal zig-zag

geometry of the eastern Laurentian (North American) rift margin.  The zig-zag configuration of

the margin resulted from the Blue Ridge and Ouachita rifting episodes during late Precambrian

and Early Cambrian times, respectively.  Extension in Cambrian time reached intracratonic areas

forming the Birmingham and Mississippi Valley grabens (Thomas, 1991), structures documented

by reflection seismic profiles.  The fault systems bounding the Birmingham graben are defined in

greater detail in this chapter.

For cross-section construction, Paleozoic strata are divided into four lithotectonic units

with distinct mechanical behavior, as described in Thomas (2001) (Figure 2.2).  Lower to Middle

Cambrian clastic and carbonate passive-margin strata and intraplate synrift strata are grouped in

unit 1.  The basal unit hosts the regional décollement and has a dominantly weak mechanical

behavior during deformation (e.g., Thomas, 1985; Thomas and Bayona, 2001).  Unit 2 consists

of Upper Cambrian to Lower Ordovician passive-margin carbonate deposits of the Knox Group.
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This unit 2 is 600 to 1250 m thick and is the regional stiff layer of the southern Appalachians

thrust belt (Figure 2.2).  Unit 3 consists of a heterogeneous carbonate-siliciclastic succession that

includes Middle and Upper Ordovician synorogenic strata (the focus of Chapters 3 and 4), as

well as Silurian to Lower Mississippian strata.  The thickness of unit 3 ranges from 0 to 490 m.

Upper levels of detachment are hosted in unit 3.  Unit 4 includes Upper Mississippian-

Pennsylvanian synorogenic foreland deposits and is passively transported above the stiff layer

and upper levels of detachment.

2.3  METHODS

Seventeen balanced cross sections were constructed using conventional methods (e.g.,

Dahlstrom, 1969; Marshak and Mitra, 1988), along lines perpendicular to thrust-belt strike

(Figure 2.2 and Plate 2.1).  The cross-section lines are distributed along strike to cover the

complete thrust belt and the different transverse zones.  The cross sections are based on outcrop

geology (e.g., Pickering et al., 1976; Osborne et al., 1988; Szabo et al., 1988), stratigraphic

thicknesses, bedding attitudes, seismic reflection profiles, and deep wells.  Down-plunge

projection provides geometric constraints on plunging folds that overlie both hanging-wall and

footwall lateral ramps.

Mapping of subsurface basement faults relies on calculation of depth to the top of

basement along 18 seismic reflection profiles.  Breaks in the trace of the top of basement were

identified in each line, and the probable range of position of basement fault(s) was located in a

map.  Vertical separation of the top of basement was calculated from the difference in depth to

basement on opposite sides of the fault.  Criteria for map connection and tracing of basement

faults include: same sense of separation, similar or gradual change in the magnitude of vertical

separation, and position within a regional graben (shoulder, margin, or floor).  We used geometry

of modern intraplate rifts (e.g., East Africa rift, Rosendahl, 1987) and accommodation (or

transfer) zones of continental rifts (Moustafa, 2002) as a model to consider alternatives in the

geometry of splays and along-strike changes in structural configuration of intraplate graben(s).

Restoration of the strike-perpendicular cross sections was accomplished by a combination

of bed-length and area balance, as explained in Thomas (2001) and Thomas and Bayona (2002).

A palinspastic map was constructed for the stratigraphic level of top of unit 1 in order to

establish the distribution of dominant lithologies of the Conasauga Formation (dominant horizon



9

of detachment) and variations in thicknesses of the weak unit 1 (Rome and Conasauga

Formations) across and along the Birmingham graben.  The palinspastic map is also the base

map to locate palinspastically the stratigraphic sections of Blountian strata described in Chapters

3 and 4.  Restored cross sections and palinspastic maps are essential for the analysis of the pre-

deformational geometry of the regional décollement and for establishing the mechanism that

controls the position of ramps.  In addition to the successful balance of cross sections, the

validity of the palinspastic map is confirmed by comparison of the distribution of synrift (this

Chapter) and synorogenic (Chapter 3) deposits with the structural map of the top of basement

(Thomas et al., 2000; Bayona et al., 2001).

2.4  THE ALABAMA AND GEORGIA FORELAND THRUST BELT

Structures with more than 15 km of lateral continuity are grouped into 9 areas on the

basis of geographic position (Figure 2.1D), and the boundaries between areas are the surficial

traces of regional structures.  Description of the geometry of major thrust faults and folds in each

area is from leading (northwest) to trailing structures (southeast), and from northeast to

southwest along strike.  All these structures are identified in cross sections 1 (northeasternmost

section) to 17 (southwesternmost section) in Plate 2.1 (see Figure 1B for location of strucuttral

cross sections).

In the next section, the structures are gropued into four structural styles, which are

identified on the basis of the geometry of faults and folds both in map and cross-section views.

This section discusses the relation between fault and fold geometries, as well as the geometry

and palinspastic restoration of the problematic Rome thrust sheet. Cross-section geometry of

each strucutral style, as well as representative structures for areas 1 to 8, is shown in Figure 2.3.

2.4.1  Area 1: Sequatchie, Wills Valley, and Murphrees Valley anticlines, and composite

Chickamauga fault system

The northwestern (frontal) part of the thrust belt is dominated by three, large-scale,

northeast-striking, shallow asymmetric anticlines (Figure 2.3A), which are the northwest-verging

Sequatchie and Wills Valley anticlines and the southeast-verging Murphrees Valley anticline.

These anticlines bound broad and flat-bottomed synclines, which are from north to south the

Sand Mountain, Lookout, and Blount Mountain synclines (Figure 2.1B, Plate 2.1). The en
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echelon arrangement and oppositely directed plunging of the Murphrees Valley and Wills Valley

anticlines (point 1 in Figure 2.1C) together with a curve of the fold axis of the Sequatchie

anticline define the northwestern segment of the Anniston transverse zone (ATZ).  The

northeastern plunging end of the Wills Valley anticline defines the northwestern segment of the

Rising Fawn transverse zone (RFTZ) (Figures 2.1B and C).  Anticlines southwest of the RFTZ

are associated with thrust ramps that rise from the regional décollement (unit 1) to the present

land surface.  Structures northeast of the RFTZ within the composite Chickamauga fault system

consist of four fault-bend folds.  The trailing fold is associated with a thrust ramp that rises from

the regional décollement, whereas the other three folds are associated with thrust faults with at

least two levels of detachment in units 1 and 3 (cross section 1, Plate 2.1).

2.4.2  Area 2: Kingston and Chattooga thrust faults

The northeast-striking and northwest-verging Kingston and Chattooga faults have leading

imbricates that strike parallel to the main fault and are detached from the regional décollement.

Tight asymmetrical anticlines are in the leading imbricate slices between the Kingston fault and

the leading imbricate (Figure 2.3B), and between the Chattooga fault and the leading imbricate.

The linear traces of the Kingston and associated imbricate faults extend northeast straight across

the RFTZ.  Toward the southwest, the Kingston fault terminates in east-plunging folds defining

the northwest segment of the RTZ (Figure 2.1C).  The east-plunging folds mark the separation

between two structurally distinct anticlines that in map view appear as a laterally continuous

structure.  Northeast of the east-plunging folds is the ramp anticline associated with the Kingston

fault (Figure 2.3B), whereas southwest of the east-plunging folds is the detachment Peavine

anticline (Figure 2.3C).  The Chattooga fault and structures associated within the composite

thruts sheet terminate northward at lateral ramps within the RFTZ (Bayona et al., in press),

whereas the same structures to the south are truncated by the Rome thrust sheet along the Rome

transverse zone (RTZ).

Eroded hanging-wall cut offs of the Kingston and Chattooga thrust faults make balancing

difficult.  However, in the northeastern part of the trace, the thickness of unit 1 increases abruptly

from the leading imbricate thrust sheet to the Kingston thrust sheet.  Previous studies (e.g.,

Ferrill, 1989; Thomas, 1990) have related the abrupt increase in thickness of unit 1 to

synsedimentary extensional basement faults.  Additionally, basement faults are considered to be
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as a stress concentration mechanisms leading to thrust ramps (Wiltschko and Eastman, 1983;

Rowan and Linares, 2000).  These general relationships suggest that the leading edge of the

Kingston thrust sheet restores to the southeast of a down-to-southeast basement fault.  Interactive

comparison of location of sub-detachment basement faults and the palinspastic map at the top of

unit 1 gives an estimate of the minimum bed length of erosion of the top of unit 1 at the leading

edge of the Kingston fault.

2.4.3  Area 3: Peavine anticline

Northeast of the ATZ, the Peavine anticline borders the southeast limb of the flat-

bottomed Lookout Mountain syncline.  Although the Rome thrust sheet truncates the

southeastern flank of the Peavine anticline (Figure 2.3C), seismic reflection profiles image a long

backlimb (Peavine thrust sheet) that dips southeast parallel to the average level of the top of

basement rocks within a wide system of down-to-southeast basement faults. At the ATZ, the

nearly symmetrical Peavine anticline and adjacent flat-bottomed Lookout Mountain syncline are

truncated by a northwesterly curved fault at the northeast end of the Gadsden mushwad (point 2

in Figure 2.1C) which has unit 1 in the hanging wall.

Southeast- and northwest-dipping strata of the Knox Group (unit 2) define the Peavine

anticline as a nearly symmetrical fold cored by strata of unit 1.  Seismic reflection profiles image

the continuation of the basal detachment across the down-to-southeast basement faults and the

position of the Peavine anticline on the upthrown (northwest) basement block of the Birmingham

graben.  The Peavine anticline is interpreted as a detachment fold because of the large volume of

unit 1 in the core and the continuation of the basal detachment beneath the Peavine anticline

(Figure 2.3C).  Tips of thrust ramps are within the core, and the thrust ramp breaks to the surface

at the northeastern end of the Peavine anticline (cross section 6, Plate 2.1).  As will be discussed

later, the extra volume of unit 1 in the core of the Peavine anticline is restored in the downthrown

block of the basement fault system.

2.4.4  Area 4: Gadsden and Palmerdale mushwads and bounding thrust sheets

A mushwad comprises the core of a deformed detachment fold, in which the stiff layer is

broken and uplifted by the tectonically thickened ductile core (Thomas, 2001).  Two mushwads,

the Gadsden and Palmerdale, have been identified in Alabama where the tectonically thickened,
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ductilely deformed core consists of the shale-dominated unit 1.  In the next paragraphs, I make

reference to a structural link between mushwads and adjacent major structures; details in the

description and kinematics of structures surrounded and/or affected by the two mushwads are in

Thomas (2001).

The wide area of deformed strata of unit 1 at the present surface of the Gadsden mushwad

is the product of erosion of the stiff-layer cover (Figure 2.3F).  The northwest, leading edge of

the upper part of the Gadsden mushwad is thrust over the northwest-facing forelimb in the

footwall of the Big Canoe Valley fault, marking the exposed leading edge of the mushwad where

the stiff-layer cover has been thrust upward and eroded.  The Gadsden mushwad is bounded on

the southeast by the broken Dunaway Mountain thrust sheet.  The Gadsden mushwad is the

structural unit that borders the southwest end of the Peavine anticline and adjacent flat-bottomed

Lookout Mountain syncline at the ATZ (point 2 in Figure 2.1C).  The southwest end of the

Gadsden mushwad consists of a lower wedge of the mushwad that is inserted beneath the

northeast end of the Cahaba synclinorium.

In contrast to the Gadsden mushwad, the stiff-layer cover of the Palmerdale mushwad is

preserved as a wide exposure of the Knox Group (unit 2) in the Birmingham anticlinorium

(Thomas, 2001).  The northeastern end of the Palmerdale mushwad is marked by the

northeastward plunge of units 2 to 4 into the flat-bottomed Blount Mountain syncline.  From

north to south, the Palmerdale mushwad is bounded on the northwest by the southern termination

of the Muphrees Valley anticline, northwest-dipping strata in the footwall of the Opossum Valley

fault, and a folded structure in the footwall of the Jones Valley fault.  The southeastern boundary

of the Palmerdale mushwad is depicted in structural cross sections by the long southeast-dipping

forelimb of the Cahaba synclinorium in the hanging-wall of the Jones Valley fault (cross sections

13 to 16 in Plate 2.1).

2.4.5  Area 5: composite Clinchport and composite Dalton fault systems, Rocky Mountain

and Horseleg blind thrust systems; subsurface trailing imbricates of the Chattooga,

Peavine, and Dunaway Mountain thrust faults

Surficial structures of area 5 are bounded by structures of areas 1 to 3 on the northwest

and by the eastern Coosa, western Coosa, and Helena thrust faults on the southeast.  Structures
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shown in geologic maps are bounded and truncated by the Rome thrust sheet; however the Rome

thrust sheet covers structures that are imaged by seismic reflection profiles.

The northern parts of the composite Clinchport fault system and the composite Dalton

fault system have two structural levels of deformation.  Antiformal duplexes in the lower

structural level duplicate the thickness of unit 1 (Figure 2.3E).  The roof fault of the lower

structural level is the detachment of an imbricate fan system involving units 2 and 3.  Duplexes

of the northern composite Clinchport thrust sheet change southward along strike to ramp

anticlines as a response to the stratigraphic rise of detachment level from the middle to the top of

unit 1at a lateral ramp in the Clinchport transverse zone (CTZ).  The change in rheology between

lower and upper detachment levels has been suggested as the cause of strike deviation of

southeast-plunging folds in the Clinchport thrust sheet (point 11 in Figure 2.1C) (Bayona et al.,

in press).  In map view and from north to south, the Clinchport fault cuts up section from a thick

unit 1 to a thin unit 1 and, farther south, to the stiff unit 2, forming two south-plunging hanging-

wall lateral ramp anticlines.  A rise of detachment to strata of unit 4 and a south-plunging fold

mark the southern end of the Clinchport fault at the RFTZ.  The surface trace of the Dalton fault

ends southward at a north-plunging syncline that is near the north end of the Rome fault and

within the CTZ.

South of the RFTZ, northeast-east-plunging asymmetrical anticlines and flat-bottomed

synclines diverge from the northeast-striking Chattooga fault (point 10 in Figure 2.1C)(Coleman,

1988).  Folds in this area have a wavelength shorter than folds in northwestern areas 1 and 2.

Rocky Mountain and Horseleg folds are the surface expression of a blind thrust system (Figure

2.3D).  These faults are detached within unit 1, and the faults cut up section along strike, in a

short distance from south to north, to upper detachment levels within units 2 and 3.  The strike

deviation of Rocky Mountain and Horseleg folds has been associated with the change in

rheology of units along the lateral ramp (Bayona et al., in press).

In the subsurface, two types of ramp anticlines are identified in seismic reflection profiles

beneath the Rome thrust sheet and south of the Rocky Mountain-Horseleg folds.  One type

corresponds to high-amplitude (elevation of the lower detachment from near top of basement to

surface) ramp anticlines in the trailing segments of the Chattooga and Peavine thrust sheets

(cross sections 5 and 6, Plate 2.1).  The other type is low-amplitude ramp anticlines with short

separation identified in the intermediate segment of the Peavine thrust sheet (cross sections 6 and
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7, Plate 2.1), and in the trailing segment of the composite Dunaway Mountain thrust sheet

(Figure 2.3F).  Low-amplitude ramp anticlines in the intermediate segment of the Peavine thrust

sheet fold the high-amplitude ramp anticline in the trailing segment of the Peavine thrust sheet.

2.4.6  Area 6: Rome thrust sheet

Southeast of the Clinchport and Chattooga faults in Georgia and the Peavine anticline and

Dunaway Mountain thrust sheet in Alabama is the Rome thrust sheet (Osborne et al., 1988).  The

Rome thrust sheet consists of deformed shale and thin-bedded limestone of unit 1 (Conasauga

Formation), and the stiff-layer unit 2 cover has been eroded, except in a few very small areas.

The present eroded trace of the leading edge of the Rome fault is sinuous and irregular, and in

general, the dip of the Rome thrust sheet is very shallow, as discussed below.

The sinuosity and strike of the leading edge of the Rome thrust sheet changes across

transverse zones.  Between the CTZ and RTZ in Georgia, geologic map patterns (Cressler, 1970)

show that the irregular trace of the Rome fault mimics the trace of the topographic contour lines

(Figure 2.1B).  Within the RTZ, the trace of the Rome fault curves westward widening the thrust

sheet on the surface (point 5 in Figure 2.1C), as well as truncates and diagonally crosses strike of

the Rocky Mountain-Horseleg folds, Chattooga and Kingston thrust systems.  Between the RTZ

and the ATZ, the Rome fault strikes southwestward and truncates beds in small folds on the

southeast limb of the Peavine anticline (Figure 2.3C).  Within the ATZ, the trace of the Rome

fault curves southward and then southwestward along the Dunaway Mountain thrust sheet.

Southwest of the ATZ, the Rome fault truncates southeast-dipping strata and local cross

structures within the Dunaway Mountain thrust sheet (Figure 2.3F) (Garry, 1999).

The shallow dip of the Rome thrust sheet is evident from the irregular map trace,

presence of windows, hanging-wall cut offs, and lack of seismic imaging of the near-surface

fault (Figure 2.2).  Within the ATZ and CTZ, the Ballplay and Lamasgus windows, respectively,

expose rocks of unit 4 as a result of folding of the fault surface (Figure 2.1D).  In Georgia, the

Rome fault surface is folded coaxially but less steeply than footwall beds by the Rocky

Mountain-Horseleg folds (Figure 2.3D).  In the subsurface, the trailing imbricates of the Peavine

and Chattooga thrust sheet are truncated by the Rome fault and also fold the shallow-dipping

Rome fault.  The northwest (leading) edge of the Rome thrust sheet is in upper Conasauga strata,

whereas the southeast (trailing) edge is in lower Conasauga strata (e.g., Cressler, 1970), further
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indicating shallow dip of the Rome fault.  The lack of seismic imaging is consistent with a very

thin, shallow thrust sheet that is lost in surface noise (Figure 2.2).  Thus, the seismic profiles do

not image a frontal ramp of the Rome thrust sheet rising from the décollement; in contrast,

seismic reflectors clearly image strata of units 1 and 2 in frontal ramps of the Jones Valley and

Helena thrust sheets.

The Rome thrust sheet narrows abruptly at its northern and southern ends.  North of the

CTZ, however, Cressler (1974) and Kesler (1975) mapped the Rome fault as a straight, north-

striking fault that extends farther north beyond the Georgia-Tennessee state boundary.  The

structural equivalent along strike to the Rome thrust sheet and across the CTZ is an antiformal

duplex of the Dalton thrust system (Figure 2.3E).  As described above, the Rome fault is

characterized by an irregular and sinuous trace rather than by a straight trace, and the thrust sheet

dips nearly horizontal (Figure 2.3D) rather than with ~45º to the southeast (Dalton fault in Figure

2.3E).  Therefore, I consider that the shallow-dipping Rome thrust sheet ends within the CTZ and

that the antiformal duplex of the Dalton fault in the north is a different structure that also

terminates southward within the CTZ.  The southwestern end of the Rome fault is truncated

beneath the Helena thrust sheet.

2.4.7  Area 7: Western Coosa and Helena thrust sheets, the Coosa deformed belt, and

Yellowleaf fault

The presently eroded leading trace of the western Coosa thrust sheet includes two small-

scale salients separated by a small-scale recess within the ATZ.  Northeast of the ATZ and

within the ATZ, the level of detachment cuts irregularly up- and down-section in stratigraphic

position within unit 1.  Stratigraphic units hosting the lower detachment level in the northeastern

salient are, in stratigraphic order, upper units of the Chilhowee Group, the Shady Dolomite, and

the Rome and Conasauga Formations; ~ 800 m separates the uppermost beds of the Chilhowee

Group from the upper beds of the Conasauga Formation (Ferrill, 1989).  At the northeast side of

the ATZ, the western Coosa thrust sheet dips southeastward beneath the Pell City and

Jacksonville thrust sheets, and the trailing edge is cut by leading (Talladega) fault of the

metamorphic thrust belt deep in the subsurface (cross sections 7 and 8, Plate 2.1).  The narrowest

exposed segment of the western Coosa thrust sheet coincides with the small-scale recess

geometry of the leading trace of the fault, and an east-striking segment and termination of the
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Helena thrust sheet (Graham, 1999).  At the southwest side of the ATZ, the western Coosa fault

and a diverging splay bound the Angel block, which constitutes the southwestern small-scale

salient.  In both faults, the level of detachment rises southwestward from unit 1 to the lower beds

of the Knox Group (unit 2).  Farther southwest and along the southwest side of the Angel block,

southwest-plunging, hanging-wall lateral-ramp folds mark the along-strike transition from the

western Coosa thrust sheet to the Coosa deformed belt (Thomas and Bayona, 2002).

The eroded trace of the Helena thrust fault is characterized by two small-scale curves at

the ATZ and Bessemer transverse zone (BTZ).  A transverse fault within the ATZ divides the

Helena thrust sheet into northeastern and southwestern segments.  The Helena fault in the

northeastern segment bends gradually to an eastward strike (point 3 in Figure 2.1C), the basal

detachment cuts up section along strike from unit 1 into the basal part of unit 2, and the fault is

truncated on the east by the western Coosa fault (Graham, 1999).  Along the east-striking fault,

beds in the Helena hanging wall dip southward following the southwestward dip of a footwall

lateral ramp in unit 4 (Bayona et al., in press) and forming the shallower of two down-to-

southwest plunging steps that account for ~4000 m of relief in the deep Coosa synclinorium in

the Helena thrust sheet (Thomas, 1990).  In cross section, the geometry of the Helena fault

northeast of the ATZ follows the geometry of the footwall block (Peavine thrust sheet) with a

very gentle southeastward dip.  The Helena fault in the southwestern segment has an irregular

southwesterly strike for more than 110 km.  The Helena fault is detached from the regional

décollement, which follows the geometry of the southeastern margin and floor of the

Birmingham graben (BG) (Figure 2.3G).  At the BTZ, the Helena fault curves gradually

southward and then curves abruptly west-southwestward (point 4 in Figure 2.1C).  The southern

part of the Helena fault has a diverging splay (cross section 17, Plate 2.1), and farther south

Cretaceous coastal plain deposits cover the traces of both faults.  The detachment horizon (unit

1) in the southern part of the fault trace includes clastic deposits of the Rome Formation and a

dominantly thick carbonate succession of the Conasauga Formation (Thomas et al., 2000).

The intermediate part of the Helena thrust sheet has two structural levels of deformation

southwest of the ATZ.  The lower level consists of a duplex system involving a very thin unit 1

and a thick unit 2 (Figure 2.3G) now located within the southeastern part of the Birmingham

graben (cross sections 9 to 14, Plate 2.1).  The trailing part of the Helena thrust sheet includes a

ramp anticline that slightly folds overlying structures and a trailing flat segment.  The upper level
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of deformation is an emergent imbricate fan system, called the Coosa deformed belt (Figure

2.3G) (Thomas and Drahovzal, 1974).  The stratigraphic position of the detachment level

changes irregularly and northwesterly up section from the uppermost beds of unit 2 to lower beds

of unit 3.  All imbricates involve strata of the lower part of unit 4.  The Coosa deformed belt ends

northeastward along strike at the ATZ, where southwest-plunging folds mark the connection

with the lower detachment level in the western Coosa thrust sheet along lateral ramps (Thomas

and Bayona, 2002).

The southern end of the Coosa deformed belt merges with the Yellowleaf thrust sheet.

The detachment level in the latter thrust sheet changes southward along strike from beds in unit 4

to beds in unit 1.  On the surface, the Yellowleaf fault juxtaposes unit 4 strata against unit 4

strata.  In the subsurface, however, the Yellowleaf thrust sheet includes a ramp anticline at

different positions across the HTZ.  Northeast of the HTZ, the ramp anticline is near the trailing

segment of the thrust sheet, whereas the leading segment brings to surface strata of units 3 and 4

along the upper detachment level (cross section 14, Plate 2.1).  Southwest of the HTZ, the ramp

anticline is in the leading segment, but the ramp is completely in the subsurface (cross section

15, Plate 2.1).  Therefore, the stratigraphic level of detachment of the Yellowleaf thrust sheet

changes along strike along a southwest-dipping lateral ramp.

2.4.8  Area 8: trailing trust sheets: eastern Coosa, Pell City, Jacksonville, Indian Mountain,

Choccolocco Mountain, and Sleeping Giants thrust complexes

Deformation in trailing thrust sheets involves at least two horizons of detachment that

control deformation at two structural levels.  In addition to detachment levels within unit 1, other

levels of detachment are in beds near top of unit 2, along the contact between units 2 and 3, and

within unit 3.

At least two structural levels of deformation are identified in the eastern Coosa thrust sheet.

In northwestern Georgia, the eastern Coosa thrust sheet broadly exposes Conasauga and Knox

strata (units 1 and 2) and Rome strata along the leading trace of the fault and in trailing

structures.  Strata of unit 3 are also exposed in trailing synclines north and south of the

Clinchport and Rome transverse zones.  The eastern Coosa thrust sheet overlies subsurface

duplexes involving unit 1.  Identification of subsurface duplexes is supported by the recognition

in seismic reflection profiles of southeast-dipping reflectors characteristic of unit 1 and by the
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calculation of depth to the top of basement at ∼3 km.  An east-west structural high aligned with

the end of the Rome thrust sheet and within the CTZ (Figure 2.1C) separates tighter folds and

thicker horses on the north (cross section 1, Plate 2.1) from wider folds and thinner horses on the

south (cross section 2, Plate 2.1).  The eastern Coosa thrust sheet between the CTZ and RTZ

includes several leading imbricates with a northeasterly strike, and tight anticlines with broad

synclines in the middle and trailing parts.  This configuration, similar to structures in areas 1, 2

and 5, suggests a shallow detachment that may correspond to the roof of underlying duplexes.

At the RTZ, the leading thrust fault at the eastern Coosa system bends abruptly (point 6 in Figure

2.1C) and trailing splays diverge with a more northerly strike forming horsetail structures.  In

Alabama, the eastern Coosa thrust sheet dips southeast, flattens above the trailing segment of the

Peavine thrust sheet, is overlain by structures forming the Talladega fault salient (point 8 in

Figure 2.1C), and is truncated on the southwest by the Pell City and Jacksonville thrust sheets.

Two down-to-southwest plunging steps of the structural level of the fault and

corresponding southwestward rise in stratigraphic level of detachment characterize the geometry

of the Pell City thrust sheet across the ATZ (Thomas, 1990).  Northeast of the ATZ, the thrust

sheet is a narrow belt that consists mostly of deformed unit 1 strata.  Across the ATZ, the thrust

sheet significantly widens and plunges southwestward, the trace of the leading edge has an

abrupt dextral offset, and the detachment level cuts up section through the middle to upper beds

of unit 1 to the base of unit 2 forming southwest-plunging, hanging-wall lateral-ramp anticlines.

Farther southwest, the thrust sheet widens and the leading trace of the Pell City fault bends

abruptly southeastward at the Harpersville transverse zone (HTZ, point 7 in Figure 2.1C).  The

southwestern end of the Pell City thrust sheet is marked by a rise of the level of detachment to

the middle part of unit 2 (cross section 14, Plate 2.1), and by northwest-striking, upright isoclinal

folds, involving beds of units 2 and 3, paralleling the northwest-striking trace of the Pell City

fault (Thomas and Drahovzal, 1974; Cook, 2001).  The surface of the Pell City fault is folded by

ramp anticlines in the trailing part of the Helena thrust sheet (Figure 2.3G), producing the

structural relief to expose deformed strata of units 3 and 4 in the Fort McClellan windows

(Figure 2.1D).  Also, the surface of the Pell City fault follows southwestward and northeastward

dips of footwall lateral ramps in the Coosa deformed belt at the ATZ and HTZ, respectively.

Duplexes with floor and roof faults in strata of unit 1 are identified in the Jacksonville thrust

sheet, as well as in the Indian Mountain, Choccolocco Mountain, and Sleeping Giants thrust
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complexes.  The Jacksonville thrust sheet changes from a duplex geometry in areas with

exposures of lowermost beds of unit 1 into splays at both northern and southern ends, where

strata of unit 2 are preserved.  The preserved geometry of the floor detachment in the Indian

Mountain, Choccolocco Mountain, and Sleeping Giants thrust complexes indicates a nearly flat

surface forming klippes of lowermost beds of unit 1 (Bearce, 1978).

2.4.9  Area 9: Metamorphic belt

The Cartersville and Talladega faults separate rocks with no to very low-grade

metamorphism and low topographic relief on the northwest from rocks with a higher grade of

metamorphism and a pronounced topographic break on the southeast.  The higher grade

metamorphic rocks are grouped into the Talladega slate belt in Alabama and western Blue Ridge

in Georgia, and they consist of polydeformed and variably metamorphosed metasedimentary

cover rocks.  Grenvillian basement rocks are exposed in the Blue Ridge in Georgia (Li and Tull,

1998).  Affinity of the sedimentary cover and basement rocks with those inboard of the

Laurentian margin suggests that these allochtohons represent the outboard part of the Laurentian

craton (Li and Tull, 1998; Tull, 1998).  Surface mapping suggests that the minimum horizontal

net slip of 23 km and a stratigraphic throw of 5 to 7 km in southernmost exposures in Alabama

(Tull, 1998).

A small-scale salient curvature of the Cartersville and Talladega faults and the most

hinterland unmetamorphosed thrust sheets (points 6 and 8 in Figure 2.1C) differs from the almost

straight northeasterly strike of leading structures in areas 1 and 2 (Figure 2.1).  The north-striking

eastern Coosa and Cartersville faults bend abruptly southwestward at the RFTZ.  This bend is

south of the southernmost external basement massif in the Blue Ridge (Li and Tull, 1998).

Between the RFTZ and RTZ, the trace of the Cartersville fault has a small-scale salient-recess

geometry (point 9 in Figure 2.1C), and the Cartersville fault bends abruptly westward south of

the RTZ.  The leading trace of the eastern Coosa fault also bends westward at the RTZ.  On the

southwestern side of a prominent salient of the metamorphic belt at the ATZ (point 8 in Figure

2.1C), northeast-striking Jacksonville and Talladega faults bend abruptly northward at the ATZ.

The traces of both the Cartersville and Talladega faults end in opposite directions in this

prominent small-scale salient.
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2.5  STRUCTURAL STYLES

2.5.1  Structural style one: fault-related folds

The first structural style is defined by a fault and associated fold.  Structures of areas 1, 2, 3,

and 5 include broad asymmetrical anticlines, flat-bottomed synclines, detachment folds, and tight

asymmetrical folds (Figures 2.3A to D).  The stratigraphic position of the detachment level is

dominantly within upper beds of unit 1 (Conasauga Formation); therefore, these structures

include a thickness of the weak layer (unit 1) that is less than half as thick as the thickness of the

regional stiff layer (unit 2).  In northwestern Georgia, geometry of fault-related folds is affected

by the rise of the detachment level to strata of units 2 and 3 (Bayona et al., in press).  All these

folds are primarily associated with the three-dimensional ramp-flat geometry of the Appalachian

thrust belt (e.g., Jamison, 1987).  Footwall deformation includes moderate-dipping to overturned

beds in the limb of the adjacent flat-bottomed syncline (Figure 2.3A) or a leading imbricate fault

with an associated tight fold (Figure 2.3B).  In northwest Georgia, the width of folds decreases

southeastward from areas 1 to 2, and 5.  The low amplitude of folds and relative short separation

of thin-skinned faults in areas 1 to 3 are dominantly related to the shallow position of the top of

basement.  However, low-amplitude ramp anticlines are also imaged by seismic reflection

profiles in the trailing segments of the Chattooga, Peavine, and Dunaway Mountain thrust sheets.

Southeast-dipping thrust sheets of the Helena (leading segment), western Coosa, and Pell

City thrust sheets may also be included in structural style one.  In general, the level of

detachment of these structures is in upper beds of unit 1 (Rome and Conasauga Formations), but

the stratigraphic position of detachment changes laterally either to upper levels or lower levels

(e.g., western Coosa thrust sheet).  The cross-section geometry of the Helena, western Coosa,

and Pell City faults varies from a ramp-flat-ramp geometry to curved (concave) trajectory with

more than 3 km relief.  Plunging folds in the western Coosa and Pell City thrust sheets suggest

that western Coosa, Helena, and Pell City thrusts include hanging-wall lateral ramp folds

(Thomas and Bayona, 2002); however, frontal-ramp anticlines for the Coosa, Helena, and Pell

City faults are not observed on the surface because of the present level of erosion.  Thomas

(2001) interpreted the Helena thrust sheet as an out-of-sequence ramp thrust with large amount

of horizontal separation and with a fault-bend fold geometry at the leading (now eroded) segment

of the fault.  Near the southwest end of the Pell City thrust sheet, the subsurface structure of the

hanging-wall cut off is interpreted as a wide ramp anticline (cross section 13, Plate 2.1).



21

The major difference in the structural geometry between structures in areas 1 to 3 and the

Helena, western Coosa, and Pell City faults is that the latter structures have more curved and

irregular trace of the fault in map view, larger amount of separation along the fault, and the

Helena has evidence of out-of-sequence deformation.  Therefore, leading structures of the

Helena, western Coosa, and Pell City thrust sheets necessarily would not restore palinspastically

in the same order.  The Helena, western Coosa, and Pell City thrust are not affected by mushwad

deformation.

2.5.2  Structural style two: duplexes

The second structural style corresponds to duplex systems, which are differentiated on

the basis of stratigraphic position of floor and roof detachment levels.  The Gadsden and

Palmerdale mushwads are ductile duplex complexes with floor and roof levels within unit 1.

Tectonic thickening of mushwad structures elevates and distorts the geometry of the overlying

stiff layer (unit 2) (Thomas, 2001).  Kinematic models of deformation of the mushwad Gadsden

include fault-bend folds and detachment anticlines in the now eroded roof of the mushwad

(Thomas, 2001).  In contrast, small-amplitude anticlines are associated with a conjugate of

frontal and back thrust in the roof of the Palmervale mushwad, that is the crest area of the

Birmingham anticlinorium (Thomas, 2001).

Trailing structures (eastern Coosa, Jacksonville, and Sleeping Giants thrust complexes)

have duplexes with floor and roof levels within unit 1 and the number of horses varies from 1 to

4.  Horses are wider in the eastern Coosa thrust sheet than in the Jacksonville and Sleeping

Giants thrust complexes.  The roof of each duplex consists dominantly of a thrust sheet with an

uncomplete stratigraphy of unit 1 and to variable record of the stratigraphy of the stiff layer, like

in the eastern Coosa thrusts sheet.  In Georgia and south of the CTZ, the duplex consists of only

one wide horse, and in the area where the top of basement is shallow no duplex is interpreted in

the subsurface.  An important difference from musdwad structures is that these thrust sheets are

in the trailing part of the thrust belt.  It is inferred that Indian Mountain and Choccolocco

Mountain thrust complexes also include duplex systems similar to the Jacksonville thrust sheet.

However, present level of erosion does not allow the definition of the structural style of these

structures.
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Duplex structures are also interpreted in the Clinchport and Dalton thrust sheets, trailing

segments of the eastern Coosa thrust sheet, and subsurface duplexes in the Helena thrust sheet.

Antiformal duplexes of the Clinchport and Dalton thrust sheets include only one horse and have

the floor detachment in the regional décollement and the roof at upper beds of unit 1 or at the

contact between units 1 and 2 (Figure 2.3E).  At the trailing segment of the eastern Coosa thrust

sheet and south of the RTZ, a narrow duplex system includes beds of units 1 and 2 (cross

sections 4 and 5, Plate 2.1).  The duplex system in the intermediate segment of the Helena thrust

sheet has the floor detachment within upper beds of unit 1 and the roof detachment within upper

beds of unit 2 and lower beds of unit 3 (Figure 2.3G).  The number of horses varies along strike

from two to four.

2.5.3  Structural style three: imbricate fans

The third structural style consists of emergent imbricate fan systems that are detached

from beds within the uppermost unit 2 and unit 3 and overlie duplexes described in the previous

paragraph.  This structural style includes deformation of the Coosa deformed belt, and the roof of

duplexes in Clinchport, Dalton, and trailing eastern Coosa thrusts sheet.  The fan imbricate in

Clinchport and Dalton involves a very thin unit 2 and beds of unit 3.  In the Coosa deformed belt,

the stratigraphic level of detachment rises irregularly from upper beds of unit 2 to lower beds of

unit 3, and all the imbricates involve lower strata of unit 4.

In the trailing eastern Coosa, the imbricate fan system is very local and involves upper

beds of unit 2 and lower beds of unit 3.  Deformation in lower fine-grained deposits of unit 3

(Middle Ordovician Rockmart Slate and Athens shale) includes clay minerals and a structural

fabric typical of low-grade metamorphic rocks, whereas clay minerals and structural fabric in

upper beds of unit 3 (Devonian Frog Mountain Sandstone and Mississippian Fort Payne Chert)

indicate a lower degree of deformation (Sibley, 1983; Renner, 1989).  This change in degree of

deformation within unit 3 has been used as evidence of a pre-Devonian deformation event

(Sibley, 1983; Higgins et al., 1988; Renner, 1989).
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2.5.4  Structural style four: Rome thrust sheet and its palinspastic restoration

The shallow Rome thrust sheet is characterized by its irregular and sinuous trace and by

its nearly horizontal dip.  No other regional thrust sheet in the Appalachian thrust belt of

Tennessee, Georgia, and Alabama (Woodward, 1985) shares the same characteristics.

Because of its structural position in the footwall of the Helena, western Coosa, and

eastern Coosa faults, the Rome fault has been considered as a splay from the regional

décollement in the footwall of these faults (Thomas, 1985, 1990; Ferrill, 1989).  If the Rome

thrust sheet is palinspastically restored on the foreland side of the Helena thrust sheet, a large

transverse offset in the leading frontal ramp is required to accommodate the abrupt southern

termination of the Rome thrust sheet (Figure 2.1B).  The present outcrop trace of the Helena fault

indicates no offset at that location.  The Helena fault generally places older hanging-wall rocks

on younger footwall strata (both within unit 1) in a conventional break-forward pattern at the

trailing cutoff of the Rome thrust sheet.  The Helena fault, however, cuts up and down section

(from unit 1 to unit 2) along strike in the hanging wall, placing younger rocks (unit 2) over older

rocks (unit 1) along parts of the trailing cutoff of the Rome thrust sheet (Osborne et al., 1988).

The along-strike variations in stratigraphic separation indicate out-of-sequence thrusting, similar

to folding in the footwall of the Rome thrust sheet as documented by the Ballplay and Lamasgus

windows, in the Rocky Mountain-Horseleg folds, and trailing imbricates of the Peavine and

Chattooga thrust sheets.

An alternative interpretation is that the Rome thrust sheet restores in the foreland of the

eastern Coosa thrust sheet and in the hinterland of the Helena and western Coosa thrust sheets.

This interpretation allows a clearer explanation of the flat-dipping nature of the Rome thrust

sheet, truncation of footwall folds, and out-of-sequence thrusting of the Helena thrust sheet and

other footwall folds.  In addition, the abrupt widening and narrowing of its preserved length, as

described above, and the abrupt southern termination of the Rome fault would not affect the

palinspastic restoration of the Helena thrust sheet.  However, restoration of the Rome thrust sheet

affects the restored geometry of southeastern trailing structures, such as the eastern Coosa and

Pell City thrust sheets.  Because of small-scale deformation, bed-length balance of unit 1 is not

possible, and the lack of preserved stiff-layer cover precludes both bed-length balance of unit 2

and area balance of unit 1.  The shape of the restored Rome thrust sheet is constrained by

calculation of the minimum preserved length, by minimum estimate of the eroded cover, and by
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matching the restored geometry of foreland thrust sheets and the most likely geometry of the

leading trace of the Rome thrust sheet.

This alternative interpretation of the palinspastic restoration of the Rome thrust sheet

raises a new question about the lateral continuity of the presently continuous eastern Coosa and

western Coosa thrust sheets in their palinspastic position.  Stratigraphic level of the basal

detachment in the eastern Coosa fault is mainly in beds of the Rome Formation, whereas the

detachment in the western Coosa fault cuts irregularly up and down and in short distances within

the Conasauga and Rome Formations, the Shady Dolomite, and upper units of the Chilhowee

Group.  Beside the differences in geometry of detachment levels, a large offset is indicated

between the eastern and western Coosa thrust sheets because apparently abrupt along-strike

changes in stratigraphy of synrift strata of unit 1 (see below), synorogenic Middle and Upper

Ordovician strata (Chapters 3 and 4), as well as Devonian and lower Mississippian strata of unit

3 (Ferrill, 1989).  The substantial differences in stratigraphy further suggest large separation

between the eastern and western Coosa thrust sheets, permitting the possibility that the eastern

Coosa thrust sheet is part of the Pell City-Jacksonville thrust system, whereas the western Coosa

thrust sheet and the Helena thrust sheet comprise another thrust system, interconnected with

lateral ramps (Thomas and Bayona, 2002).

2.6  STRUCTURAL CONFIGURATION OF THE TOP OF BASEMENT

The structure of the top of the Precambrian crystalline basement rocks beneath the thin-

skinned Appalachian thrust belt is depicted by onlap and breaks of lowermost laterally

continuous reflectors of unit 1 (e.g., Figure 2.2).  The southeastern extent of seismic reflection

profiles is limited near the Cartersville-Talladega faults, and one seismic line of the Consortium

for Continental Reflection Profiling (COCORP) extends into the metamorphic thrust belt of

Alabama and Georgia (Nelson et al., 1985; McBride, 2001).  Therefore, documentation of

possible basement faults farther southeast depends on interpretation of abrupt variations of

lithofacies and thicknesses of syntectonic rocks, such as the synrift strata grouped in unit 1 or

synorogenic strata in units 3 (Chapter 3) and 4.  The dominant geometry the top of basement is

of horst and half-graben structures (Ferrill, 1989), and a regional southwestward deepening of

the top of basement across transverse basement faults (Figure 2.4).
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Locations of northwest-striking transverse basement faults are less constrained because

seismic reflection profiles are generally oriented northwest-southeast.  Only two strike-parallel

seismic lines document a southwestward drop in the top of basement rocks across the Anniston

transverse zone (figure 3 in Coleman, 1988) and across the Rome transverse zone.

Consequently, the following criteria were used for identification of a transverse basement fault:

abrupt along-strike change in offset of northeast-striking basement faults, differences in map-

view and cross-section profiles of basement fault systems, and variations in thickness and

lithology in late synrift strata of the Conasauga Formation (unit 1).  Transverse basement faults

make the boundaries of the three structural configurations of the top of basement (Figure 2.4),

which are described below.

The northern configuration corresponds to the top of basement beneath the thrust belt in

northwestern Georgia.  Depth to top of basement is less than 3 km, and the basement is closely

broken by an array of northeast-striking, down-to-southeast faults with small (< 500 m) vertical

offsets.  On the north side of the northernmost transverse basement fault, which coincides with

the position of the Clinchport transverse zone in the thin-skinned thrust belt, northeasterly

striking basement faults define two narrow half-grabens (Figure 2.4).  Northward deepening of

the top of basement across the northernmost transverse basement fault has been confirmed by a

local gravity survey (Guinn and Long, 1978).  The top of basement on the south side of the

northernmost transverse basement fault has a nearly flat configuration with a graben structure

with less than 500 m of relief.

The wider and deeper Birmingham graben (BG) beneath the thrust belt in Alabama

defines the southern configuration.  The northwestern shoulder of the BG is bounded by down-

to-southeast faults with large (> 1000 m) vertical offsets.  The graben is more than 37 km wide,

and the graben floor is nearly flat in cross sections.  Both the northwest shoulder and the bottom

of the graben deepen southwestward (Figure 2.4).  A narrow down-to-northwest fault system

marks the southeastern margin of the BG, and has a dextral offset across a local transverse

basement fault in the southern part of the southern configuration.  This transverse fault also

offsets a down-to-southeast basement fault system, that is the southernmost basement fault

documented by seismic reflection profiles.

The central configuration corresponds to a transition from the northern shallow

configuration of the top of basement to the wide and deep basement graben on the southwest.
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The boundaries of the central configuration are a transverse basement fault on the southwest that

coincides with the position of the ATZ in the thin-skinned thrust belt and two parallel transverse

basement faults on the northeast that coincides with the boundaries of the RTZ in the thin-

skinned thrust belt.  The BG in the central configuration is less than 21 km wide and has a

dextral offset across a transverse fault (Figure 2.4).  The northwest boundary of the BG has a

wide system of down-to-southeast basement faults, which have a dextral offset with respect to

the down-to-southeast basement faults in the southern configuration.  The down-to-northwest

fault system has a sinistral offset across the southern transverse basement fault and a dextral

offset across the northern transverse faults.

Southwestward deepening of the top of basement in the northwest shoulder and graben

floor of the BG in southern and central configurations parallels southwestward deepening of the

top of basement documented for the Black Warrior basin (Figure 2.4 ) (Thomas, 1988; Whiting

and Thomas, 1994).  The southeastern BG shoulder is deeper than the northwestern BG shoulder,

but it does not follow the same southwestward pattern of deepening of the northwest shoulder.

The deepest zone on the southeastern shoulder is in the central configuration and coincides with

a small-scale salient in the Talladega fault (point 8 in Figure 2.1C, Figure 2.4).  This difference

in the regional deepening of the top of basement coincides with interference patterns of Black

Warrior and Appalachian foreland subsidence documented by Whiting and Thomas (1994).

Flexural subsidence in the Black Warrior basin increased southwestward and the clastic wedge

thickens toward the Ouachita Mountains.  Flexural subsidence in the Appalachian basin

deepened the top of basement southeastward.  Therefore, Appalachian and Ouachita tectonic

loads affected the configuration of the top of basement (Figure 2.4).

2.7  PRE-DEFORMATIONAL THICKNESS OF UNIT 1 AND LITHOFACIES OF THE

CONASAUGA FORMATION

Because late Paleozoic tectonic loading influenced the present structural configuration of

the top of basement, the early post-rift geometry of the top of basement was determined using a

palinspastic map of the top of unit 1 (Figure 2.5) and the mapped basement structures (Figure

2.4) as the base on which an isopach map of the compacted thicknesses of unit 1 was constructed

(Figure 2.6).  The isopach map of unit 1 follows the regional trend defined by the present

configuration of the top of basement: narrow and shallow half grabens beneath the thrust belt in
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northwestern Georgia, and wider and deeper half grabens beneath the thrust belt in Alabama

(Figure 2.6).  However, details of the isopach map indicate a uniform thickness of unit 1

northwest of the graben, northwestward thickening across the half-graben, and a slightly greater

thickness of unit 1 southeast of the graben than northwest of the graben.  The isopach map of

unit 1 also confirms that the BG is a complex system of half-graben structures with dextral

offsets of half-graben depocenters across transverse basement faults.

The southernmost down-to-southeast basement fault beneath the leading edge of the

metamorphic belt (Figures 2.4 and 2.6) may be the border of another graben on the southeast of

the BG.  However, there is no direct identification of basement faults southeast of the

southeastern margin of the BG to delineate another basement structure.  Consequently, basement

faults southeast of the BG can only be inferred from the identification of abrupt variations in

lithofacies and stratigraphic thickness of the Rome and Conasauga Formations (beds of unit 1

above the basal detachment).

The Rome Formation in outcrops is an irregular succession of mudstones, siltstones, and

sandstones with some interbeds of limestone and dolostone (Raymond et al., 1988).  In the

subsurface and southeast of the Helena fault, the Rome Formation contains anhydrite in intervals

near the thrust fault (Thomas et al., 2001).  Outcrops of the Rome Formation restore southeast of

the BG; however, Rome stratigraphy is documented in deep wells northwest of the BG (Thomas

et al., 2001).  Association of fauna, lithofacies, and sedimentary structures of the Rome

Formation indicate deposition in fault-bounded horst and graben blocks of a continental rift

setting during Early Cambrian time (Thomas et al., 2000).

The Conasauga Formation overlies the Rome Formation and includes a wide range of

carbonate and siliciclastic deposits in the present deformed locations (Figure 2.7) (Osborne et al.,

2000).  Palinspastic restoration of major lithofacies of the Conasauga Formation supports an

interpretation of the influence of mapped basement faults in the distribution of lithofacies (Figure

2.8) (Thomas et al., 2000).  Carbonate lithofacies dominate on structurally high blocks, such as

the northwestern shoulder of the BG, suggesting deposition in shallow-water environments.

Stratigraphic sections and local outcrop data from the Gadsden mushwad (lithologic data from

AMOCO No. 1 Young, Raymond, 1991) that restore within the BG (Thomas, 2001), and

lithologic data from wells that have drilled into autochthonous Conasauga Formation within the

BG (ARCO-Anschutz No. 1, Alabama Properties Co., Raymond, 1991) indicate that the
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Conasauga Formation within the BG consists of a very thick succession (> 500 m) of thin

interbeds of limestones and dark-colored shales.

The lithofacies assemblage of the Conasauga Formation within the BG is similar to the

lithofacies assemblage of the Conasauga Formation in the leading and middle parts of the Rome

thrust sheet.  The palinspastic position of the Rome thrust sheet behind the Helena thrust sheet

(Figure 2.5) places a thick succession of shale and thin-bedded limestone deposits southeast of

carbonates and thin shale deposits (now in the Helena thrust sheet) that accumulated along the

southeastern shoulder of the BG (Figure 2.8).  The latter deposits constrain the location of

another graben depocenter, named here as the Randolph-Heard graben (RHG, Figure 2.8).

Comparison of faunal assemblages from shales in the BG and in the Rome thrust sheet

supports the interpretation of accumulation in two different graben systems.  The assemblage of

trilobites (Glyptagnostus) collected in the leading edge of the Rome thrust sheet indicates outer

shelf oceanic conditions in the RHG, whereas limestones on the northwest shoulder of the BG

are somewhat closer to the carbonate platform (A. R. Palmer written communication to W. A.

Thomas, 2002).

Conasauga strata restoring southeast of the RHG have variable composition.  In the

trailing part of the Rome thrust sheet and eastern Coosa thrust sheet, interbeds of siltstone and

sandstones in the Conasauga Formation (Cressler, 1970; Pickering et al., 1976) suggest

proximity to uplifted areas on the eastern shoulder of the RHG in its northern part (Figure 2.8).

The dominance of carbonate beds in the Conasauga Formation in the Pell City and Jacksonville

thrust sheets, which restore southeast of the Rome thrust sheet, might indicate shallow-water

clastic-free marine deposition on the southeastern shoulder of the RHG in its southern segment

(Figure 2.8).

The geographic coincidence of thickness and lithofacies variations of the Conasauga

Formation with contrasting relief of basement structures of the BG suggests accumulation on

fault blocks and synsedimentary fault movement (Thomas et al., 2000). Lithologic similarity of

autochthonous strata within the BG to strata in the Rome thrust sheet and palinspastic restoration

of the Rome thrust sheet southeast of the Helena thrust sheet support the interpretation of

deposition in a continental rift setting, including several fault-bounded horst and graben blocks,

during Early and Middle Cambrian time.
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2.8  DISCUSSION

Relationships between cover deformation and sub-detachment basement configuration

may be established directly in areas with seismic information.  This relationship is

complemented with palinspastic maps showing variations in compacted thickness of the weak-

layer unit 1 and lithofacies distribution of detachment-host units.  Boundaries of structural styles

and curvature of structures of the thin-skinned thrust belt are here related to abrupt differences of

elevation of top of basement across basement faults.  Lithofacies variations in the stratigraphic

framework may control the stratigraphic position of upper detachment levels and the kinematics

of thrust sheets.

Fault-related low-amplitude asymmetric anticlines of structural style one are formed

dominantly in areas of shallow (< 3.5 km depth) basement affected by northeast-striking

basement faults with small (< 350 m) vertical separation (Figures 2.3A and D).  Palinspastic

positions of ramp anticlines with footwall imbricates and detachment folds (Figures 2.3B and C)

are related to isolated down-to-southeast basement faults with moderate vertical offsets (350-

1000 m).  This second group of structures reflects the resistance to foreland propagation of

deformation because of the moderate shallowing of the top of basement and thinning of the

weak-layer unit (e.g., Wiltschko and Eastman, 1983).  Strike of all of these low-amplitude

structures mimics the northeasterly trend of basement faults, suggesting that pre-existing

extensional faults trigger frontal ramp generation as observed in other thrust belts (e.g., Hayward

and Graham, 1989).

Tectonic growth of the Gadsden and Palmerdale mushwads of the structural style two is

related to the large volume of unit 1 within the wide BG southwest of the ATZ and the large

vertical offset of the top of basement (> 1000 m) along the northwestern margin of the BG

(Figure 2.3F) (Thomas, 2001).  Although the Peavine detachment fold (structural style one) and

the Gadsden mushwad (structural style two) are adjacent to each other both in deformed and

restored stages, the former restores above the central basement configuration and the latter

restores above the southern basement configuration.  The volume of unit 1 in the Gadsden

mushwad restores within the broad BG, whereas the volume of unit 1 in the detachment fold

restores in the downthrown block of a basement fault with moderate vertical separation (Figure

2.9).
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Along-strike changes of structural styles in the thrust belt in northwestern Georgia are

associated with variations in pre-deformational thickness of the weak unit 1.  Interfering

plunging folds (Rocky Mountain-Horseleg folds and folds in the Clinchport thrust sheet) restore

in areas of shallow basement, but in places of abrupt thickening of unit 1 across transverse

basement faults (Bayona et al., in press).  In the Clinchport thrust sheet, the along-strike change

from a duplex (Figure 2.3E) to a shallow, ramp anticline (similar to Figure 2.3D; cross section 2,

Plate 2.1) is related to the northeastward deepening of the top of basement and associated

thickening of the weak unit 1 across the Clinchport transverse zone.  Similar to the mechanism

for generation of frontal ramps, transverse basement faults also trigger lateral ramp generation.

In addition to the lateral ramp geometry, the along-strike rise of detachment level from a thick

unit 1 to a thin unit 1, and then to beds of units 2 and 3 caused vertical-axis thrust sheet rotations

and the along-strike termination of these folds (Bayona et al., in press).

Assuming no scale dependency of structures, factors that control regional curvatures

(e.g., Macedo and Marshak, 1999; Paulsen and Marshak, 1999) may also control small-scale

curvatures.  Abrupt curvatures of the northern Helena fault and the northern end of the Gadsden

mushwad may be directly related to changes in elevation of the top of basement across transverse

basement faults (points 2 and 3 in Figure 2.10A).  The abrupt convex-to-the-foreland curve of

the northeastern segment of the Helena fault reflects both the southwestward deepening of the

top of basement across a transverse basement fault beneath the ATZ and the geometry of a

southwest-dipping lateral ramp in the footwall (Bayona et al., in press).  Southwestward

deepening of the top of basement and thickening of the weak unit 1 across a transverse basement

fault beneath the ATZ also correspond to the northeastern termination of the Gadsden mushwad

(Thomas and Bayona, 2002).

Small-scale recesses are identified in the southern part of the Helena fault, at the southern

end of the Pell City fault, and at the southern end of the Cartersville fault (points 4, 7, and 9 in

Figures 2.10A and B).  The southern curve of the Helena fault is gradual, probably reflecting a

gradual northeastward deepening of the top of basement.  At the position where the Helena fault

broke upward (Thomas, 2001), the elevation of the top of basement changes southwestward from

the floor to a shoulder configuration of the BG across a down-to-northeast basement transverse

fault (point 4 in Figure 2.10A).  This transverse fault is aligned with the Bessemer transverse

zone in the thrust belt.  The southward curvature of the Pell City fault and adjacent northwest-
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striking structures in the hanging wall have been related to a northeast-dipping oblique ramp in

the footwall (Cook, 2001).  This lateral ramp in the footwall is aligned with the palinspastic

position of a large, stepwise northeast-dipping lateral ramp of the Pell City thrust sheet along the

Harpersville transverse zone (Figure 2.10B).

Along-strike variations in the strength of the detachment horizon is another mechanism

that generates salients and recesses in thrust belts (e.g., Macedo and Marshak, 1999; Marret and

Aranda-Garcia, 1999).  Hence, along-strike variations in lithofacies of the Conasauga Formation

in a palinspastic map (Figure 2.8) might have contributed to the generation of the small-scale

salient in the Rome thrust sheet southwest of the RTZ (point 5 in Figure 2.10A).  The apex of the

Rome fault salient is dominated by shale and thin-bedded limestone lithologies.  The Rome

thrust sheet narrows abruptly northeast of the RTZ and includes coarser clastic deposits.  In

palinspastic maps, restoration of the Rome thrust sheet constrains the position of the RHG;

therefore, the graben narrows and includes coarser lithologies northeastward from the RTZ.  This

configuration indicates that beds hosting the regional décollement had finer and shaly lithologies

southwest of the RTZ, and favored an easier cratonward advance of that segment of the thrust

sheet.

Basin geometry plays a primary control in along-strike variation in thrust-belt shortening

(Figure 2.11) (Macedo and Marshak, 1999), in addition to strength of the detachment horizon.

The slightly greater shortening in structures between the ATZ and RTZ (Figure 2.11) and small-

scale salients of the eastern Coosa and Talladega thrust sheets (points 6 and 8 in Figure 2.10B)

may be explained by deepening of the top of basement and associated thickening of weak strata

in the RHG.

Small-scale curvatures of Rome, eastern Coosa, and Talladega-Cartersville faults

between the Anniston and Rome transverse zones are similar to the convex-to-the-foreland curve

of the northeastern segment of the Helena fault.  However, no direct evidence links the curvature

of the Rome, eastern Coosa, and Talladega-Cartersville faults to a change in elevation of the top

of basement (points 5, 6, 8, and 9 in Figures 2.10A and B).  On the basis of the relationship

between syntectonic thickening across transverse basement faults and curvature of the Helena

fault and Gadsden mushwad, several down-to-southwest transverse basement faults in the central

configuration and southeast of the BG may be inferred (Figure 2.10B).
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The present eroded trace of the Rome fault may also reflect the complex history of

emplacement and rupture of the Rome thrust sheet.  Truncation of footwall folds indicates that

the Rome thrust fault has a component of out-of-sequence break-back movement.  Folding of the

Rome thrust sheet by footwall structures indicates a later break-forward movement on a deeper

detachment.  These relationships permit the suggestion of an early translation of the Rome thrust

sheet that truncated fault-related folds developed as far as the northwest boundary of the BG.  In

this early event, strata in the Helena and western Coosa thrust sheets were translated with no

deformation on a flat segment of the regional décollement.  In a later event, the Helena and

western Coosa faults broke upward displacing and breaking the Rome thrust sheet.  Out-of-

sequence faulting caused the erosion of the branch line and trailing segments of the Rome thrust

sheet (Thomas and Bayona, 2002).

The zig-zag configuration of the shallow basement on the northwest shoulder of the

Birmingham graben may represent structural highs or local promontories that controlled the

kinematics of the thrust belt in intermediate and leading thrust sheets (e.g., Thomas and Bayona,

2002).  These foreland obstacles act as stress concentrators that favored strain partitioning within

the advancing thrust belt.  For example, differences in the magnitude of shortening between the

detachment fold and mushwad affect foreland structures.  As the basal décollement propagated

northwestward, minor differences in thrust-sheet translation were absorbed in a displacement

transfer zone defined by the en echelon arrangement and along-strike terminations of the Wills

Valley and Murphrees Valley anticlines (point 1 in Figure 2.10A; Thomas and Bayona, 2002).

Similarly, differences in the magnitude of shortening along the Clinchport, Chattooga, and

Kingston faults were absorbed in another displacement-transfer zone at the RFTZ defined by the

along-strike terminations of the Wills Valley anticline and anticlines associated with the

Chickamauga thrust system.

The differences in thrust-sheet translation on opposite sides of transverse basement faults

formed displacement transfer zones, lateral ramps, and transverse faults.  The alignment of these

transverse structures in the thrust belt delineates the four transverse zones that cut across the

entire Alabama and Georgia thrust belt (Figures 2.1C and 2.10B) (Thomas, 1990), and two local

transverse zones, Rome and Clinchport, at the intermediate and trailing parts of the thrust belt.

The coincidence in position of these transverse zones with transverse basement faults
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corroborates the assumption of a genetic relation between transverse basement faults and

transverse structures in the thrust belt (e.g., Thomas, 1990).

For intraplate rift configuration, the central configuration represents an accommodation

(or transfer) zone between graben systems, according to the models of accommodation zones in

the Suez rift (Moustafa, 2002).  The southern transverse basement fault (parallel to the ATZ in

the thrust belt) links northeast-striking basement faults with the same sense of throw.  The

transverse basement fault juxtaposes a deep and wide BG on the southwest with a narrower BG

on the northeast.  Northern transverse basement faults (parallel to the RTZ in the thrust belt)

place the down-to-southeast fault system of the BG against shallow, tilted fault blocks of the

northern configuration (Figure 2.4).  Southeast of the tilted fault blocks, the depocenter of the

RHG widens southwestward of the northern transverse basement faults (Figure 2.10A).

Vertical gradients of deformation within thrust sheets are interrupted by upper

detachment horizons.  Low-amplitude anticlines and associated faults that are detached from the

regional décollement are an example of vertical attenuation of deformation (Figures 2.3A, B, and

D).  Positions of upper detachment levels encompass a wide range from strata in unit 2 to strata

in unit 3.  An upper detachment level separates the style of deformation in at least two structural

levels with two different gradients of vertical attenuation of deformation.  Duplexes dominate the

lower structural level, whereas fan imbricates, such as the Coosa deformed belt, dominate the

upper structural level.  In trailing structures of the eastern Coosa thrust sheet, vertical attenuation

of deformation in an upper structural level might have contributed to the up section decrease of

structural fabrics and distinct clay mineral assemblage in beds of unit 3 (Sibley, 1983; Renner,

1989).

2.9  CONCLUSIONS

Geometry and kinematics of structural styles in the thin-skinned and unmetamorphosed

thrust belt of Alabama and Georgia may be directly and indirectly related to sub-décollement

basement structures and the pre-deformational stratal architecture of the unit that hosts the

regional décollement.  In the leading and intermediate imbricates of Georgia and the leading

imbricates in Alabama, low-amplitude fault-related anticlines form where depth to basement is

shallow.  In the intermediate imbricates in Alabama, high-amplitude fault-related anticlines form

where the regional décollement is deep within the Birmingham graben; detachment folds
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nucleate above down-to-southeast basement faults with moderate vertical separation; and a

mushwad evolves above a broad graben bounded by basement faults with large vertical

separation and containing a large volume of weak strata (i.e., shale).

Small-scale curvatures of the thrust belt are also related to differences in basement

elevation across basement transverse faults.  Small-scale salients or convex-to-the-foreland

curvatures of the Helena fault and Gadsden mushwad are very abrupt, and they are related to a

transverse basement fault that separates a narrow Birmingham graben on the northeast from a

wider and deeper graben on the southwest.  We use this direct observation to suggest that a

transverse basement fault primarily controlled the salient geometry of the Rome, eastern Coosa,

and Talladega faults.  Abrupt curvatures are confined in transverse zones suggesting that

distribution of northwest-striking basement faults and related differences in elevation of the top

of basement played a primary role in the location of transverse structures in the thrust belt.

Vertical and horizontal gradients of deformation were partially controlled both by

variation in elevation of the top of basement and pre-deformational basin architecture.  Shallow

basement promontories bounded by intersections of northeast-striking and northwest-striking

transverse basement faults acted as stress concentrators that favored strain partitioning and

differences in the style of deformation within the advancing thin-skinned thrust belt.  These

promontories contribute to the nucleation of thin-skinned transverse structures and the different

transverse zones recognized in the thrust belt in Alabama and Georgia.  The regional

décollement is dominantly within weak layers of the Rome and Conasauga Formations, but thick

shale beds in intermediate levels of the sedimentary wedge contributed to the generation of upper

levels of detachment and the vertical differentiation of deformation into duplexes and imbricate-

fan systems.
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Figure 2.1  (previous two pages) A) Regional salient and recess geometry of the southern

Appalachians (modified from Thomas, 1977).  Digital shaded map shows the location of the

Appalachian thrust belt in Alabama and Georgia (modified from Thelin and Pike, 1991).  B)

Structural outline map of Appalachian thrust belt in Alabama and Georgia, showing location of

structural cross sections, deep wells, and seismic profiles (modified from Pickering et. al., 1976;

Osborne et al., 1988; Szabo et al., 1988).  See Coleman (1988) and Raymond (1991) for detailed

information about deep wells.  C) Location of abrupt small-scale curves of folds and faults in

relation to the four transverse zones that cut across the entire thrust belt (from Thomas, 1990),

and the more local Rome and Clinchport transverse zones documented in this study.

Abbreviation: TZ = transverse zone.  D) Map showing the geographic distribution of areas 1 to 9,

which are used for an organized description of individual structures in the Alabama and Georgia

Appalachian thrust belt.  Locations of windows in the thrust belt (I to III) are also shown.
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Figure 2.3 Selected parts of the 17 structural

cross sections displayed in Plate 2.1 showing

representative structures of the Appalachian

thrust belt in Alabama and Georgia (see Figure

2.1 for locations of cross sections). Structures

are grouped into nine geographic areas, and

they are identified at the top of each panel.

The rectangle at the bottom of each panel

indicates different structural styles (SS)

illustrated in each panel. The shallow Rome

thrust sheet (area 6 and structural style four) is

illustrated in Figures 2.3C, D, F, and G.

AREA 1

AREA 1 AREA 2

AREA 3 AREA 6

AREA 8AREA 5

1

tight
asymmetrical

anticline

tight
asymmetrical

anticline

AREA 1

C
H

A
T

T
O

O
G

A



4

1
4

1

ROME

DD

0

km

5

GADSDEN
MUSHWAD

Wills
Valley

anticline HELENA

44 1
4

1
1DD

0

km

5

H
E

LE
N

A Duplexes, intermediate
part of the Helena thrust sheetCoosa

deformed belt
PELL CITY JACKSONVILLE

0

km

5

CLINCHPORT

(E)

(F)

(G)

EASTERN
COOSA

BIRMINGHAM GRABEN

BIRMINGHAM GRABEN

3

1

3

1
1

3

1
B

IG
C

A
N

O
E

V
A

LL
E

Y

D
A

LT
O

N

R
O

M
E

40

SS two: antiformal duplexes (Clinchport and Dalton faults)

SS two: mushwad

SS two: duplex of the weak layer (Jacksonville fault)
SS two: duplex of the stiff layer (intermediate part of the Helena thrust sheet)
SS three: imbricate fan (Coosa deformed belt)

Figure 2.3 (continued)
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Figure 2.7 Map of lithofacies distribution of the Conasauga Formation at present

locations in the southern Appalachians. Squares are locations with outcrop or

well descriptions. See Cressler (1970) and Osborne et al. (2000) for detailed

description of sections.
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Figure 2.11  (previous page) Along-strike variation of shortening at leading, intermediate, and

trailing structures of the Appalachian thrust belt in Alabama and Georgia.  Shaded polygons are

the bottom of sub-décollement basement graben structures.  Shortening values are the minimum

because they are calculated using the present leading trace of structures on the surface (hanging-

wall cutoffs are eroded) and northwestern boundary of the corresponding restored thrust sheet

(construction of cross sections considers minimum amount of shortening).  Leading structures

are the Kingston, subsurface Peavine (thrust sheet beneath the Rome thrust sheet), and Dunaway

Mountain faults. A projection of the fault to the surface (dashed line) was used for the subsurface

Peavine fault.  In palinspastic position, northwest boundaries of leading thrust sheets are nearly

straight.  However, the present trajectories of these faults indicate more shortening at the both

ends (21-24%) than in the middle (13-17%).  The stratigraphic thickness of unit 1 above the

regional décollement is thicker at the northeastern of the Kingston fault (cross section 1, Plate

2.1) than along the rest of Kingston fault and other leading structures.  More shortening at the

southeastern end is caused by leading deformation of the Gadsden mushwad within the wide and

deep Birmingham graben (Figure 2.3F).  Intermediate structures are Dalton, Rome, Yellowleaf,

and southwestern part of the Helena faults.  Northwestern boundaries of these intermediate

structures restore southeast of the Birmingham graben and northwest of the Randolph-Heard

graben.  The shortening is larger at the middle, with the least value to the northeast.  The trailing

structures are the Cartersville and Talladega faults.  Shortening pattern is similar to intermediate

structures, with more shortening in the middle and the least to the northeast.
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CHAPTER THREE

ROLE OF BASEMENT FAULT REACTIVATION IN THE EVOLUTION OF THE DISTAL

BLOUNTIAN FORELAND BASIN

3.1 INTRODUCTION

Flexurally controlled subsidence of underfilled peripheral foreland basins in tropical

zones leads to the growth of carbonate platforms in distal foreland zones and deposition of deep-

water siliciclastic deposits in the foredeep (e.g., Papua-New Guinea; Pigram et al., 1989).  Active

convergence and advance of tectonic-sediment loads force the carbonate-platform and the deep-

water siliciclastic systems to migrate forelandward, as recorded by the onlap of foreland deposits

onto a flexurally deformed passive-margin succession (Dorobek, 1995; Sinclair, 1997).

However, truncation of the former passive-margin succession and patterns of initiation of distal

foreland deposition may be additionally controlled by the presence of weak zones in the foreland

lithosphere, reactivation of basement faults, and cratonwide fluctuations of sea level (Figure 3.1).

This chapter documents local and abrupt variations in the geometry of the passive margin-

foreland unconformity, as well as in depositional patterns of Middle to Upper Ordovician distal

foreland deposits along the southernmost margin of Laurentia during the Blountian orogeny, an

early phase of the Taconic orogeny (Rodgers, 1953; Drake et al., 1989).  Recognition of these

variations in the stratigraphic record is essential for distinguishing between the plate-marginal

scale migration of the flexural wave in distal zones of an underfilled peripheral foreland basin

(Figures 3.1A and B), and small-scale fixed structural elements, such as reactivation of basement

faults (Figure 3.1C).

Understanding the complexity of the unconformity and overlying carbonate-siliciclastic

deposition in the distal foreland is essential for testing three non-exclusive models that explain

anomalous depth of erosion, creation of accommodation space, and deposition in distal

peripheral foreland basins (Figure 3.1).  One model consists of the plate-marginal scale (~

several hundreds of km) migration of a flexural wave (backbulge-peripheral bulge-foredeep

depozones of DeCelles and Giles, 1996) in a homogeneous foreland lithosphere of constant

strength in space and time (Figure 3.1A) (e.g., Yu and Chou, 2001; White et al., 2002).

Migration of the flexural wave across a lithosphere with weak zones (i.e., lateral strength
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variations) has a different rate of migration and forebulge construction than of the preceding

model.  The forebulge will be positioned most of the time above a narrow weak zone and will

migrate episodically, rather than continuously, from one weak zone to the next weak zone

(Figure 3.1B) (Patton and O’Connor, 1988; Washbush and Royden, 1992).  Another model to

explain anomalous depth of erosion or onset of deposition in the distal foreland, but with more

local effects (~ tens of km), is reactivation of basement faults.  Reactivation of extensional

basement faults as reverse faults (positive inversion; Figure 3.1C) has been related to horizontal

compressional forces generated during the early stages of the orogeny, as documented in the

Rocky Mountains (Meyers et al., 1992), Antler (Dorobek, 1995), and the southeastern France

Alpine (Gupta and Allen, 2000).  In contrast to the fixed position and early episodes of reverse

faulting, extensional stresses cause normal fault activity on the foreland plate as the elastic plate

bends during migration of the flexural wave (Figure 3.1A).  Normal faulting may reactivate

extensional faults, as in the northern Appalachians (Bradley and Kidd, 1991; Lehmann et al.,

1995) and the present northwest shelf of Australia (Lorenzo et al., 1998), or reactivate thrust

structures (negative inversion), as in the Pantanal wetland (Ussami et al., 1999).

Regional sea-level fluctuations also must be considered because the Middle Ordovician

post-Knox unconformity is pervasive throughout the Laurentian craton (Sloss, 1963).

Cratonwide erosion and restricted marine sedimentation along the edge of cratonic shelves

(Harris and Repetski, 1982) document a relative drop of sea level of ~ 150 m with respect to the

present sea-level position (Ross and Ross, 1995).

Distal foreland carbonate ramps are very sensitive to changes in water depth and

dispersal of siliciclastic sediments (Benedict and Walker, 1978).  The careful study of carbonate-

ramp deposits provides evidence of dynamic changes in elevation or bathymetry of the

depositional profile, as well as in discharge rates of detritus from uplifted areas (Dorobek, 1995).

The lithology, stratal geometry, faunal content, faunal association, and early cementation change

abruptly with a very subtle change of water depth (Steinhauff and Walker, 1996, and references

therein).  Causes of onset, variations, and termination of carbonate deposition include eustasy,

tectonic subsidence, differential compaction, dispersal of siliciclastic sediments, and rate of

carbonate production (Jones and Desrochers, 1992; Dorobek, 1995; Allen et al., 2001).  In

peripheral foreland settings, proximity of terrigenous influx may rapidly suppress the rate of
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carbonate production as indicated by progradation of the siliciclastic wedge during later stages of

foreland evolution (Walker et al., 1983; Dorobek, 1995; Sinclair, 1997).

In this chapter, I determine which of these three models, or a combination of them,

explains the irregular patterns of depth of erosion of the passive-margin succession and rates of

carbonate and siliciclastic distal Blountian foreland deposition.  Because these rocks are

presently displaced by late Paleozoic Alleghanian faults in the Appalachian thrust belt of

Alabama and Georgia (Figure 3.2), a map showing the palinspastically restored position of each

stratigraphic section in relation to the trace of subsurface basement faults is used for this study

(see Chapter 2 for details of the construction of this map).  The restored distribution of sections

encompasses the northwest shoulder, intragraben, and the southeast shoulder of the intraplate

Birmingham graben.  This distribution of sections on the distal foreland plate permits the

determination of three-dimensional variations in (1) the geometry of the post-Knox

unconformity; (2) depositional systems, composition, and stratal patterns; and (3) tectonic

subsidence of distal Blountian (Middle-Upper Ordovician) foreland deposits.

3.2 GEOLOGIC AND STRATIGRAPHIC SETTING

3.2.1 Structures from the previous extensional tectonic setting

On the basis of palinspastic restoration and stratigraphic analyses of upper Precambrian

synrift and Cambrian to Lower Ordovician passive-margin deposits in the Appalachian and

Ouachita orogenic belts, Thomas (1977; 1991) proposed an orthogonal zig-zag geometry of the

eastern Laurentian (North American) rift margin.  This margin configuration consisted of

embayments (e.g., the Tennessee embayment) and promontories (e.g., the Alabama promontory)

and resulted from the Blue Ridge and Ouachita rifting episodes during late Precambrian and

Early Cambrian times, respectively.  In Early Cambrian time, passive-margin deposition

dominated along the eastern margin of Laurentia (Thomas, 1991), but extension reached

intracratonic areas of the Alabama promontory forming several graben structures, such as the

Birmingham graben, a structure documented by reflection seismic profiles (Figure 3.3) (Thomas,

1991; Chapter 2).  Northeast-striking basement faults include faults bordering intraplate grabens

and faults parallel to the plate margin.  Northwest-striking basement faults separate the southern,

central, and northern graben configurations of the Birmingham graben (Chapter 2).  Carbonate

platform deposits of the Upper Cambrian-Lower Ordovician Knox Group, which extend from
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intracratonic regions to throughout west of the Blue Ridge (Thomas, 1991), have been

recognized as the upper unit of the passive-margin succession in the study area.

3.2.2 Taconic (Blountian) orogeny and foreland deposits

Rapid drowning of the Lower Ordovician carbonate platform, diachronous deposition of

deep-water shales in proximal foreland settings, and thin beds of volcanic ash are the evidence

for a collisional orogenic event along the eastern margin of Laurentia (e.g., Bradley, 1989; Drake

et al., 1989; Finney et al., 1996).  The southernmost depocenter along the Taconic orogen of

Laurentia is spatially coincident with the Tennessee embayment of the older rifted continental

margin.  In the depocenter, black shales overlie carbonate-ramp deposits and grade upward in a

coarsening-upward turbidite succession, reflecting drowning of the foreland plate and sediment

dispersal from an orogenic terrain on the east (Shanmugam and Walker, 1978, 1980;

Shanmugam and Lash, 1982; Diecchio, 1991).  The Blountian clastic wedge extends

southwestward from the depocenter in the Tennessee embayment onto the Alabama promontory

(Thomas, 1977).  Despite the general southwestward thinning and truncation of the Blountian

clastic wedge (Thomas et al., 2002), correlation of graptolites indicates earlier deposition of

basal synorogenic siliciclastic deposits on the Alabama promontory than on the Tennessee

embayment (Bradley, 1989; Finney et al., 1996).

A very complex Blountian succession of carbonate and siliciclastic strata covers the post-

Knox unconformity on the foreland plate in the Alabama promontory and southern Tennessee

embayment.  In this study, northwestern, intermediate, southeastern, and absent-strata lithofacies

belts are distinguished on the basis of structural position within the thrust belt, age, and the order

of stacking of carbonate and siliciclastic deposits (Figures 3.2 and 3.3).

The northwestern lithofacies belt consists mostly of Upper Ordovician carbonate beds

and contains a complex array of lithologies ranging from mudstones to skeletal, algal, and

intraclastic grainstones (Drahovzal and Neathery, 1971; Walker et al., 1983; Benson, 1986a).

The association of carbonate lithologies to the northwest has been interpreted as deposition in

peritidal and shallow-water carbonate platform (Ruppel and Walker, 1984; Benson, 1986b;

Steinhauff and Walker, 1995).  These deposits are irregularly covered by reddish tidal-flat and

estuarine siliciclastic deposits (Neathery and Drahovzal, 1985; Martin, 1991).
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Carbonates and red siliciclastic strata characterize the intermediate lithofacies belt.  The

lower part consists of karst-filling conglomerates, and peritidal and shallow-marine carbonate

deposits, whereas the upper part consists mostly of red siltstone beds with some interbeds of

sandstones, shales, and carbonates (Drahovzal and Neathery, 1971; Chowns and Carter, 1983).

Rocks of the intermediate lithofacies belt have been interpreted as deposits of shallow-platform,

estuarine, and tidal-flat environments (Ruppel and Walker, 1984; Benson, 1986b; Martin, 1991).

In the Blountian foreland basin, strata of the intermediate lithofacies mark the transition between

platform-carbonate deposition to the northwest and deep-water siliciclastic deposition to the

southeast.

The southeastern lithofacies belt consists of Middle Ordovician carbonate beds and a

thick succession of deep-water siliciclastic deposits.  Southeastern carbonate strata include

peritidal, and shallow- to deep-water carbonate platform deposits (Drahovzal and Neathery,

1971; Walker et al., 1983; Ruppel and Walker, 1984; Benson, 1986a).  Deep-water shales and

turbidites overlie the drowned carbonate succession (Ruppel and Walker, 1984; Benson, 1986b),

and are truncated at the top by Devonian and Mississippian strata.

3.2.3 Flexural subsidence/uplift in southeastern Laurentia

Flexural deformation models have been used to explain regional patterns of erosion on

the top of the Knox Group and deposition of Middle to Upper Ordovician strata.  Shanmugam

and Lash (1982, 1983) and Ettensohn (1991) explained the unconformity on the top of the Knox

Group by upward flexure formed in response to subduction and the building of a deformational

load.  Distal foreland deposition of carbonates has been related to events of lithospheric flexure

in response to tectonic loading, and the overlying siliciclastic succession has been interpreted as

recording basin filling and cratonward progradation of the clastic wedge (Shanmugam and Lash,

1982; Ettensohn, 1991, Sinclair, 1997).  Holland and Patzkowsky (1997) suggested that soft-

sediment deformation and introduction of siliciclastic sediments on Middle and Upper carbonate

deposition on the Nashville dome are direct effects of the Taconic orogeny.  They also linked a

decrease in the rate of relative sea-level rise recorded after foreland-basin initiation with slowing

of subsidence that may reflect flexural uplift of the Nashville dome.

The model of flexural uplift, but of shorter wavelength than the forebulge proposed

above, also has been used to explain local irregularities in erosion, deposition, and/or diagenesis
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of Ordovician strata in southeastern Laurentia.  Benson (1992) proposed a forebulge to explain

the deep erosion of the Knox Group in Alabama (section BI in Figure 3.2).  Roberson (1994),

and Steinhauff and Walker (1995) used the backbulge-forebulge model of DeCelles and Giles

(1996) to explain the thicker and earlier accumulation of lowermost Middle Ordovician shallow-

marine carbonates in platform-interior settings rather than in platform-margin settings.  Kher

(1996) proposed a forebulge to explain meteroric diagenesis in uppermost cycles of Upper

Ordovician shallow-marine carbonates in Georgia (northwest of section RI in Figure 3.2).

3.3 METHODS

This chapter integrates data from field work, seismic reflection profiles, deep wells, and

literature (published papers, theses, dissertations) to carry out stratigraphic, petrographic, and

tectonic subsidence analyses in a total of 17 sections (Figure 3.2).  Age control for each section

is documented by conodots (Hall, 1986; Hall et al., 1986; Shaw et al., 1990; Repetski, 1992),

graptolites (Finney et al., 1996), and absolute ages of K-bentonite beds (Kolata et al., 1996,

1998).  The time framework used in this study is based on the conodont-graptolite-K-bentonite

correlation chart of Kolata et al. (1996) (Figure 3.4).  Information related to the identification of

K-bentonite beds in sections HM, HL, GU, DM, GS, and CL is in Appendix A.  Identification

and correlation of graptolites in sections PF, CL, EC, and AB is in Appendix B.  The framework

in space is given by the palinspastic map constructed for the Appalachian thrust belt of Georgia

and Alabama (Chapter 2).  Plates 3.1 to 3.10 include a detailed description and interpretation of

depositional environments of each stratigraphic sections and show photomicrographs of selected

thin sections.  Definitions of lithofacies and interpretations of depositional environments used in

this study are given in Tables 3.1 and 3.2, and graphic symbols are illustrated in Figure 3.5.

Appendices C and D include the thickness of stratigraphic units used for tectonic subsidence

analysis and a summary of descriptions of thin sections and hand samples.

Three lines of stratigraphic correlation are constructed at different settings of the plate

margin and cross different structural configurations of the Birmingham graben (Figure 3.3).

Line of correlation A is in the southern part of the Tennessee embayment and crosses shallow,

tilted fault blocks of the northern configuration of the top of basement.  Lines of correlation B

and C are in the Alabama promontory and cross the wide and deep southern configuration of the

top of basement.
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Tectonic subsidence analysis was carried out in each section assuming that the top of

Ordovician was ultimately buried to a depth of at least 4 km (from an estimate of the thickest

post-Ordovician succession in the Cahaba synclinoriun in the southern Appalachians, Plate 2.1).

I used backstripping techniques (e.g., Sclater and Christie, 1980; Allen and Allen, 1992) to

decompact the measured stratigraphic thickness; this technique assumes a lithology-dependent

exponential decrease of porosity with depth, a fully saturated column of sediments, and local

compensation (Airy isostasy) of sedimentary loads.  Initial porosities and porosity-depth

coefficients (values from Sclater and Christie, 1980) were averaged according to the percentage

of each lithology in each stratigraphic interval (Appendix C).  Although the assumption of Airy

isostasy is inappropriate for analysis of flexural deformation (Whiting and Thomas, 1994), I

intend to illustrate contrasts in tectonic subsidence curves of closely-spaced sections that restore

palinspastically in distal foreland settings, and on different structural configuration of the top of

basement.  Tectonic subsidence analysis for each section and models of intraplate flexure were

carried out using MatLab programs written by Nestor Cardozo at Cornell University.  The

tectonic subsidence program uses the assumptions specified above.  The elastic mechanical

model for flexural deformation and its assumptions are explained in Cardozo and Jordan (2001).

3.4 POST-KNOX UNCONFORMITY

Lower Ordovician strata of the Knox Group dominantly underlie the post-Knox

unconformity.  The younger units of the Knox Group are exposed in southeastern thrust sheets

(Newala and Odenville Limestones) and older units in northwestern thrust sheets (Chepultepec

Dolomite and Longview Limestone) (Raymond, 1993).  However, depth of erosion in

intermediate sections reaches lowermost Ordovician strata (Chepultepec Dolomite, section HM

in Figure 3.2) and Upper Cambrian strata (Copper Ridge Formation, sections DG, HL, and BI in

Figure 3.2).  These areas of deep erosion are relatively broad along strike (Cressler, 1970, 1974;

Chowns and Carter, 1983; Szabo et al., 1988; Osborne et al. 1988).  Seismic reflection profiles in

areas near and south of BI image the anomalous thin Knox Group dipping southeast beneath the

surface (see Chapter 2, cross section 16, Plate 2.1).  Abrupt changes in depth of erosion are

illustrated in strike-perpendicular lines A, B, and C (Figure 3.6).  The depth of erosion of the

post-Knox unconformity rises from lower to upper beds of the Knox Group across boundary

faults of the Birmingham graben (Figure 3.6C).  In fact, all sections with deeper levels of erosion
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restore palinspastically inside the boundary fault systems of the Birmingham graben (sections

DG, HL, BI), whereas sections with the youngest preserved record of Knox strata restore on the

shoulders of the graben system (e.g., sections AB, GS, RI).

3.5 MIDDLE AND UPPER ORDOVICIAN STRATIGRAPHY

The following descriptions of lithofacies, ages, thicknesses, and interpreted depositional

environments cite important variations in the stratigraphy, using as a location reference the

subsurface trace of northwestern and southeastern boundary fault systems of the Birmingham

graben (Figure 3.3).  These variations are considered in the tectonic analysis of the distal

foreland.

3.5.1 Sections northwest of the northwestern fault system of the Birmingham graben

3.5.1.1 Units, thickness, and age.   Middle and Upper Ordovician strata of sections CH,

RI, GU, SS, and ST consist mostly of carbonate beds of the northwestern lithofacies belt, and

represent the thickest record of distal carbonate beds in the Blountian foreland.  In general, the

thickness among these sections decreases southward from 504 m at section CH to 234 m at

section ST.  The stratigraphic thickness also thins northwestward, and at a distance of 80 km (out

of the study area) is less than 190 m (Kidd, 1975).  All the sections are considerably thicker than

adjacent sections to the southeast (Figures 3.7 to 3.9).  Conodont analyses of basal beds of the

Chickamauga Group in Georgia (Pond Spring Formation, Shaw et al., 1990; Repetski, 1992)

indicate initiation of carbonate deposition in late Middle Ordovician time (between H.

holodentata and C. sweeti zones, upper Whiterockian).  Conodonts and body fossils recovered

from the Chickamauga and Sequatchie units suggest nearly continuous deposition in Late

Ordovician (Mohawkian and Cincinnatian) time.  The lack of latest Ordovician (uppermost

Cincinnatian) fauna and truncation of uppermost beds of the Sequatchie Formation document the

Ordovician and Silurian unconformity in section RI (Rindsberg and Chowns, 1986; Phillips and

Hall, 1993).

3.5.1.2 Lithology.  The lower units of the Chickamauga Limestone (Pond Spring,

Mufreesboro, Ridley, Lebanon, and Carters in section CH, Figure 3.7; Stone River in sections

GU, SS, and ST, Figures 3.8 and 3.9) are poorly exposed and consist of mud-dominant

lithofacies (e.g., micritic matrix in mudstones to wackestones, and packstones with peloids,
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intraclasts, and green algae) with intervals of skeletal limestones that are thicker, less dolomitic,

and more abundant up section (strata between surfaces 1 and 8 in section CH-RI, Figure 3.7).

The basal beds include conglomerates with chert and dolomite clasts, and slump-folded

structures (Milici and Smith, 1969; Chowns et al., 1992).  In these lower units, thick successions

of dolomitic limestone beds with peloids and intraclasts dominate over skeletal wackestones to

packstones with ostracods, brachiopods, crinoids, mollusks, trilobites, and bryozoans.  The

dominant lithology is interbedded with reddish bioturbated limestone beds, varicolored shales,

and thin skeletal grainstones (Milici and Smith, 1969; Chowns et al., 1992; Phillips, 1996).  The

uppermost beds of the Carters Limestone consist of interbedded fenestral mudstones and

wackestones with intraclasts and mudcracks, and the succession contains the Deicke and

Millbrig K-bentonite beds (Milici and Smith, 1969; Chowns, 1989).  Equivalent beds in the

subsurface (strata below surface 8 in sections GU-SS and ST, Figures 3.8 and 3.9) are dolomitic

limestone beds in the lower half with rounded sand grains near the base; whereas in the upper

half, limestone beds are more crystalline and some are skeletal (Kidd, 1975).

The upper units of the Chickamauga Limestone and the overlying units to the west and

southwest (strata between surfaces 8 and 11 in Figures 3.7 and 3.8) include the transition from

carbonate to siliciclastic deposition in this area.  An important increase in the concentration of

fossils, mostly of bryozoans, crinoids, Tetradium corals, and red algae, is recorded in beds a few

meters above surface 8 in the composite section CH-RI (Figure 3.7) (Milici and Smith, 1969;

Phillips, 1996) and above surface 9 in the composite section GU-SS (Figure 3.8) (Neathery and

Drahovzal, 1985).  These skeletal limestone beds are interbedded with dolomitic and mud-

dominant limestone beds (Milici and Smith, 1969; Neathery and Drahovzal, 1985).  In the

middle of the section, the mud-dominant carbonate lithofacies change upward to calcareous

siltstones, sandstones, and shales (mixed lithologies of the lower Sequatchie Formation, and

Inman Formation and Leipers Limestone) with fenestral textures, ubiquitous bioturbation, and

mudcracks (Neathery and Drahovzal, 1985; Rindsberg and Chowns, 1986).  However, this

upward change is not observed in other sections farther west (west of SS and GU in Figure 3.3),

where fine-grained calcareous deposits dominate (Leipers Limestone; Neathery and Drahovzal,

1985).

The uppermost part of the composite sections CH-RI and GU-SS (beds between surface

10 and 11 in Figures 3.7 and 3.8) consists of phosphatic calcarenites and calcareous siltstones
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with low degree of bioturbation and abundant body fossils (brachiopods, bivalves, bryozoans,

crinoids) (Neathery and Drahovzal, 1985; Martin, 1991).  In sections CH, RI, and north of

sections GU and SS, this succession is capped by a distinctive phosphastic crust, and is overlain

by shales, bioturbated sandy mudstones, and muddy sandstones with phosphate grains and less

diverse and abundant body fossils than the underlying unit (Martin, 1991).  This fine-grained

siliciclastic succession grades laterally northwestward (outside the study area) to phosphatic

calcarenites (Martin, 1991), and a succession of interbedded limestone and shales (Neathery and

Drahovzal, 1985).

3.5.2 Sections inside the graben

3.5.2.1 Units, thickness, and age.   Middle and Upper Ordovician strata that restore

inside the Birmingham graben consist of the Chickamauga Limestone and Sequatchie Formation

in the southern sections BI, BR, and DM; whereas to the north, sections DG and HL include

mostly red siliciclastic units of the Greensport and Sequatchie Formations.  Stratigraphic

thickness in these sections decreases southwestward from 268 m at section DG to 96 m at section

BI, and are approximately half as thick as sections to the northwest and southeast (Figures 3.7,

3.8, and 3.9).  The lowest carbonate beds are not older than latest Middle Ordovician in section

BI (C. sweeti zone, upper Whiterockian, Hall et al., 1986; Roberson, 1988) and earliest Late

Ordovician in section BR (E. quadridactylus zone, lower Mohawkian, Hall et al., 1986).

Conodonts in section BR (Raymond, 1973) and brachiopods (Platystrophia) found in upper beds

in section DG, which are similar to those reported for the Leipers Formation in Tennessee

(Wilson, 1949), document Upper Ordovician (Cincinnatian) rocks (Frank Ettensohn, 2002

personal communication to G. Bayona).  In section BI, an unconformity is documented between

the uppermost beds of the Chickamauga Limestone of middle Late Ordovician age (P. undatus

zone, middle Mohawkian) and the less-than-one-meter-thick Sequatchie Formation of late Late

Ordovician age (late Cincinnatian, Drahovzal and Neathery, 1971).  In section BI, strata of the

Sequatchie Formation are locally distributed (Drahovzal and Neathery, 1971) and truncate at

least 1 m of the underlying Chickamauga strata (Benson and Stock, 1986).  An angular

discordance of 1.6 degree with a dip direction to the southeast is reported between upper beds of

the Ordovician and basal beds of the Silurian Red Mountain Formation (Thomas, 1986) at

section BI.
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3.5.2.2 Lithology.  Basal beds of sections BI, BR, DM, and HL include a very complex

array of lithofacies of (1) clast- and matrix-supported chert-clast conglomerates; (2) dolomitic

mudstones with isolated chert clasts and chert conglomerate beds; (3) red to green siltstones and

shales; and (4) red fenestral intraclastic limestones with chert clasts interbedded with thin beds of

muddy skeletal limestones with diverse fauna (Drahovzal and Neathery, 1971, Chowns and

Carter, 1983; Roberson, 1988; Garry, 2002).  Stratigraphic thickness ranges from 0 to 21 m in

very short distances (Drahovzal and Neathery, 1971, Roberson, 1988).  Mudcracks, fenestral

textures, burrows, and sparse gastropods, ostracods, and trilobites fragments are common in

dolomitic mudstones.  These heterogeneous basal beds have been grouped into the Atalla Chert

Conglomerate Member of the Chickamauga Limestone.

A heterogeneous association of carbonate lithofacies is found in southern sections BR,

DM, and BI and between the basal beds with chert clasts and the beds that contain the Millbrig

or Deicke K-bentonite (surface 8 in Figures 3.7, 3.8, and 3.9).  Lower carbonates of the

Chickamauga Limestone consist of dolomitic mudstone to packstones with peloids, intraclasts,

oncoids, and sparse fauna (mainly ostracods and gastropods).  In section DM, this lithofacies

persists up to the Millbrig K-bentonite bed.  In section BR, medium to thick beds of skeletal and

peloidal wackestones to packstones with more abundant and diverse fauna are interbedded with

mud-dominant, dolomitic limestone beds (surface 7 in Figure 3.8).  The latter lithology

dominates in the interval that contains the Millbrig K-bentonite level.  In section BI, the

interbeds of skeletal and peloidal wackestones to packstones include skeletal grainstones as

much as 32 m thick with bryozoan-sponge-algal bioherms (Benson, 1986a), but these skeletal

limestone beds pass up section to dolomitic limestone beds below the Millbrig K-bentonite bed

(Figure 3.9).  Fenestral textures, burrows, and mudcracks are common in mud-dominated and

dolomitic limestone beds at section BI (Drahovzal and Neathery, 1971; Benson, 1986a).

Sedimentary structures in the skeletal-peloidal limestone beds include horizontal and ripple

lamination, wavy bedding, and local cross bedding in grainstone beds.

Another distinctive lithofacies association between the basal beds with chert clasts (or the

post-Knox unconformity) and the Millbrig or Deicke K-bentonite corresponds to siliciclastic

beds of the Greensport Formation and Colvin Mountain Sandstone in northern sections HL and

DG (Figure 3.7) (Chowns and Carter, 1983).  The Greensport Formation in section HL includes

several coarsening-upward successions with red shales, siltstones, and red dolomitic mudstones
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in the lower part; argillaceous and fine-grained subarkoses to arkoses interbedded with sandy

siltstones in the middle; and fine-to-coarse grained subarkoses and quartzarenites interbedded

with sandy siltstones and thin beds of K-bentonite at the top.  Mudcracks are common in sandy

siltstones.  Bioturbation is more pervasive in the middle and upper parts.  Horizontal, wavy

ripple, and heterolithic lamination dominates in lower sandstone beds, whereas medium sets of

cross beds are in the upper sandstone beds.

Overlying the Deicke K-bentonite bed (Haynes, 1994) is the 10-meter-thick,

conglomeratic quartzarenite Colvin Mountain Sandstone (Chowns and Carter, 1983).  In section

DM, to the south, the quartzarenite unit is less than 5 m thick and overlies the dolomitic

limestone succession and the Millbrig K-bentonite bed.  The Colvin Mountain Sandstone is

characterized by trough and planar cross beds, horizontal bedding, scour and fill structures,

bimodal sand-size distribution in some beds, and vertical burrows as much as 60 cm deep.

Bentonite beds have not been identified in section DG, and surface 8 is placed in an interval of

slightly calcareous shale to silty shale.  In section DG, strata between the post-Knox

unconformity and surface 8 consist of calcareous and siliceous sandy siltstones interbedded with

fine-grained argillaceous subarkoses and thin dolomitic mudstones.  Sandstone beds and sandy

siltstones have ripple, flaser, and heterolithic laminations; mudcracks and bioturbation are very

common in this interval.

Strata between the K-bentonite interval and the post-Ordovician unconformity (surfaces 8

and 11 in Figures 3.7, 3.8, and 3.9) correspond mainly to the Sequatchie Formation.  Lithofacies

and sedimentary structures are very similar to those described for sections CH-RI and GU-SS.

Calcareous lithologies with thin interbeds of fine-grained mixed siliciclastic and carbonate beds

dominate to the west and south (section BR); mixed carbonate-siliciclastic lithologies increase

considerably to the east (section DM), and siliciclastic beds dominate to the north (sections DG

and HL).  In sections BI and BR, dolomitic limestone beds pass up section abruptly to skeletal

and peloidal wackestones to grainstones.  In section BR, mixed lithologies with ripple lamination

and mudcracks and dolomitic limestone beds cover skeletal limestone beds (e.g., beds above

surface 9 in section BR, Figure 3.8).  Quartzarenite beds of the Colvin Mountain Sandstone in

sections DM and HL separate the very similar red silty lithologies of the Greensport and

Sequatchie Formations.  In section DG, quartzarenites of the Colvin Mountain Sandstone are

absent making a contact between those stratigraphic units difficult to place.  In section DG, the
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uppermost beds grade from dolomitic sandstone beds with brachiopods, to mixed siliciclastic-

carbonate mudstones in the middle, and fine- to coarse-grained, cross-bedded quartzarenites to

the top.

Coarse-grained beds of distinct lithologies and with phosphates interbedded with red

siltstones are found toward the top of all the sections and underlying dark-colored siliciclastic

mudstone and thin bedded fine-grained sandstones with ripple and hummocky cross beds of the

Red Mountain Formation.  Coarse-grained lithofacies vary from (1) skeletal grainstones in

section BI; (2) cross-bedded, skeletal grainstone capped by fine- to coarse-grained phosphatic

arenites with skeletal fragments (bryozoans, red algae, crinoids), quartz, and feldspar fragments

in section BR; (3) quartzose sandstone with bryozoan fragments in section DM; and (4)

quartzarenites in section HL and DG.

3.5.3 Equant calcite cements in carbonate rocks of the Chickamauga Limestone and

Sequatchie Formation

Distinctive styles of meteoric diagenesis have been documented in strata of the

Chickamauga and Sequatchie units on the basis of petrography and geochemistry (Tobin and

Walker, 1994; Kher, 1996).  In sections CH and BR and in all lithofacies of the Chickamauga

Limestone, 75-80% of the porosity is associated with equant (drusy) calcite, and paragenic

relations indicate precipitation in shallow to moderate depths (Kher, 1996).  In section BI and

Tidwell Hollow (50 km northeast of BI), thick-cross bedded skeletal grainstones (bioherms) also

show equant calcite cements (Tobin and Walker, 1994).  Stable-isotope (oxygen and carbon) and

trace-element compositions of the equant (drusy) calcite suggest a component of meteoric water

mixing with marine-like fluids.  Because spar cements are petrographically and geochemically

similar throughout the vertical succession, Kher (1996) inferred a synchronous event of

precipitation in a subsurface meteoric phreatic diagenetic environment.  Tobin and Walker

(1994) compared early cements pattern of bioherm deposits of the Chickamauga Limestone and

deposits underlying the post-Ordovician unconformity and concluded that meteoric cementation

in bioherm facies occurred before the development of the post-Ordovician unconformity.

In contrast, early meteoric diagenesis is not pervasive in uppermost beds of the

Chickamauga Limestone at section BI (Tobin and Walker, 1994) and Sequatchie Formation at

the northwestern corner of Georgia (Kher, 1996).  In section BI, equant calcite cements have
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high Fe and Mn values, and Tobin and Walker (1994) interpreted this cement as precipitation in

a meteoric phreatic lens that developed during the erosion of upper Chickamauga strata.

Meteoric diagenesis is local and restricted to the upper beds of a shoaling-upward succession in

the upper phosphatic calcarenites and calcareous siltstones of the Sequatchie Formation in areas

northeast of section RI and northwest of section CH (Kher, 1996).  Cements at the top of

equivalent phosphatic calcarenites in section RI do not allow the interpretation of subaerial

diagenesis (Kher, 1996).  Physical features of exposure are not evident at this contact, and the

interpretation of subaerial diagenesis is based exclusively on observations under the microscope

(Kher, 1996).

3.5.4 Sections southeast of the southeastern fault system of the Birmingham graben

3.5.4.1 Units, thickness, and age.  Middle and Upper Ordovician carbonate strata

restoring southeast of the Birmingham graben consist of the Lenoir, Little Oak, and Holston

Limestones.  The carbonate succession is overlain by the Athens Shale in southern sections PF,

AB, and CL; by red siliciclastic beds of the Greensport-Colvin Mountain-Sequatchie units in

sections GS and HM, and mixed carbonate-siliciclastic Ottosee Formation in the northern section

RH.  Measured stratigraphic thickness for these sections is incomplete because of truncation of

upper strata at the post-Ordovician unconformity (sections GS, AB, CL, and PF) or erosion on

the present land surface (sections HM and RH).  Regardless of the incomplete preservation, these

sections are thicker, and the lower beds are older than those in the adjacent sections to the

northwest.  A significant decrease in thickness is shown by sections RH and CL (Figures 3.7 and

3.9, respectively) that restore progressively farther southeast from the Birmingham graben.

Conodonts in basal carbonate beds in section PF yield a late Middle Ordovician (C.

friendsvillensis zone, middle Whiterockian) age (Shaw et al., 1990).

Conodonts and graptolites reported in the Lenoir-Athens contact of locality CL are one

zone older than the conodonts and graptolites reported in sections PF and AB to the northwest

(Hall et al., 1986; Finney et al., 1996).  The difference in age of the Lenoir-Athens contact

documents the diachronous drowning of the carbonate platform during late Middle Ordovician

and early Late Ordovician time (Figure 3.9) (Finney et al., 1996).  In section GS, conodont

studies in the Lenoir Limestone yield sparce fauna in the lower beds, an earliest Late Ordovician

age (C. sweeti zone, uppermost Whiterockian) for middle and upper beds (Tom Shaw, written
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communication to Ed Osborne, 1987), and middle to late Late Ordovician age (B. confluens to A.

ordovicicus zones, late Mohawkian to middle Cincinnatian) for the upper part of the Sequatchie

Formation (Raymond, 1973).  Ages for stratigraphic units in northern sections HM and RH

(Lenoir, Holston, and Ottosee) are assigned by lithostratigraphic correlation with equivalent units

in southern Tennessee (Bergström, 1973, 1977).

3.5.4.2 Lithology.  The vertical association of lithofacies in basal beds of the carbonate

interval is very complex and varies from place to place, even within the same section.  The most

dominant lithology is fenestral and mud-rich limestones with sparce fauna (ostracods and

gastropods) with isolated sand-size fragments of quartz and chert.  This lithology has been

identified in all sections as the Mosheim Member of the Lenoir Limestone, and thickness varies

from 0 to 30 m.  Lowermost beds also locally includes: (1) argillaceous and dolomitic mudstone

to wackestone with dolomite conglomerates at the base and isolated cross beds in upper beds

(section PF, Shaw et al., 1990); (2) chert conglomerates (section AB, Drahovzal and Neathery,

1971); (3) intraclastic and skeletal wackestone to grainstone with chert clasts (in areas near

sections AB and GS, Roberson, 1988; Osborne, 1996); (4) peloidal, intraclastic, algal

wackestone to packstone and limestone conglomerate (sections CL and GS, Bearce, 1999); and

(5) red, mudcracked, mixed siliciclastic and limestone lithologies (section HM; Randy Kath,

written communication to G. Bayona, 2001).

The carbonate interval of the Lenoir Limestone overlying the Mosheim Member and

underlying fine-grained siliciclastic deposits (surfaces 3 and 6 in Figures 3.7, 3.8, and 3.9)

changes along strike from algal, intraclastic and mud-dominant limestone beds on the south and

west to more skeletal limestone beds to the northeast.  The Lenoir Limestone in sections PF and

CL consists of argillaceous, peloidal, algal (Calcisphere, Nuia and Girnavella), intraclastic

wackestone to packstone.  Interbeds of skeletal limestone with more diverse and abundant fauna

(crinoids, trilobites, brachiopods, and mollusks) and intensity of bioturbation increase upsection.

Uppermost beds of the Lenoir Limestone in section PF consist of well sorted, skeletal grainstone

(crinoids, bryozoans, brachiopods, sponges, mollusks, and trilobite fragments; Pratt Ferry beds of

Drahovzal and Neathery, 1971).  In section CL, thin calcareous beds are interbedded in the upper

part of the section with skeletal, intraclastic wackestones.  The uppermost part of the section CL

consists of horizontal-laminated, bioclastic debris with internal normal grading, mixed

argillaceous skeletal wackestones to grainstones, and calcareous black shales.  Time-equivalent
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carbonate beds to the northwest have been named the Little Oak Limestone.  This carbonate unit

is well exposed in section AB and consists of a very uniform succession of argillaceous, dark-

gray, intraclastic, algal (Nuia, Girnavella, Calcisphere, Dasyclads), and skeletal wackestones to

packstones with more diversity of skeletal grains (Drahovzal and Neathery, 1971 reports a few

graptolites) than in the underlying Lenoir strata (Osborne, 1996).  Chert nodules, thin chert

interbeds and slump-folded strata are observed locally in the upper beds of the Little Oak in

section AB.  In section GS, the carbonate interval is dolomitic, with diverse fauna (bryozoan,

crinoids, brachiopods, trilobite) and algae (Nuia, Girnavella, Solenopora) at the bottom, and less

diverse fauna (Tetradium, mollusks, ostracods, trilobites), fenestral, and algal-laminated

dolomite toward the top.  Isolated pebbles of chert have been reported only in one medium bed at

the middle of the section (Drahovzal and Neathery, 1971).  Bedding contacts and internal

lamination in all these sections are stylonodular, with local high amplitude and high

concentration of shaly residue (Bearce, 1999).

In northern sections HM and RH, carbonate beds are grouped into two groups.  One

group includes mud-dominant lithofacies of the Lenoir Limestone as described in section GS.

The other group includes coarse-grained limestones.  In section HM, oncolitic and skeletal

(mostly crinoids) limestones are interbedded with the Lenoir mud-rich lithologies.  The coarse-

grained lithologies are massive at the base, and have more ripple laminations and cross beds at

the top.  In section RH, the Holston Limestone (Cressler, 1974; or Rockwell and Chapman Ridge

Formations of Caldwell, 1992) consists of oncolitic limestones, calcarenites, and cross-bedded

skeletal grainstones (Cressler, 1974; Caldwell, 1992).  The uppermost beds in section RH are

coarse-grained mixed crinoid and bryozoan grainstones with quartz-rich laminations and red

calcilutite in the matrix (Caldwell, 1992).  Sedimentary structures include planar and trough

cross-beds.

Overlying the carbonate interval and underlying the Millbrig-Deicke K-bentonite beds is

a dominant siliciclastic interval of fine-grained sediments, but of differing lithofacies assemblage

along strike.  In southern sections AB and CL, graptolite-bearing siliciclastic black shales overlie

the interbedded calcareous shales and argillaceous skeletal limestone lithofacies.  In section PF,

graptolite-bearing and calcareous black shales with slump-folded structures (Ferrill, 1989) and

isolated hummocky cross beds pass up section to laminated, argillaceous calcareous mudstones

with fine-grained bioclastic debris composed of bryozoans, brachiopods, and trilobites (Finney,
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1977).  Farther northeast in sections GS and HM, the transition between carbonate and

siliciclastic lithofacies is more gradual.  In section GS, dolomitic limestones are interbedded with

gray and red calcareous and siliciclastic shales and shaly siltstones; whereas in section HM,

argillaceous skeletal grainstones and packstones are interbedded with dark-colored shales.

Shales and siltstones are overlain by a lithofacies assemblage similar to the one described

for sections DG and HL, a succession that consists of siltstones, subarkoses, quartzarenites, and

K-bentonites of the Greensport Formation and Colvin Mountain Sandstone.  Thin to medium

beds of dolomitic mudstones and intraclastic-skeletal debris deposits appear locally in the middle

of the section, overlying surface 7 in sections HM and GS (Figures 3.7 and 3.8).  In section GS,

intraclastic and skeletal debris-like deposits truncate underlying strata, and in both sections HM

and GS the debris-like deposits separate calcareous beds below from siliciclastic deposits above

with thin laminae of K-bentonite beds.  Overlying the skeletal grainstone with quartz-rich

laminae in section RH is a succession of calcareous laminated mudstones, sandstones, and shales

of the Ottosee Formation (Caldwell, 1992).  The framework of the sandstones includes quartz,

calcareous intraclasts, trilobites, bryozoans, brachiopods, and peloids; the more common

sedimentary structures are wavy and heterolithic laminations.

Deposits overlying the Millbrig-Deicke K-bentonite interval are preserved only in section

GS, and correspond to uppermost beds of the Colvin Mountain Sandstone grading abruptly to

strata of the Sequatchie Formation.  In the transitional contact, quartzarenite beds of the Colvin

Mountain Sandstone are bioturbated, have trace amounts of crinoids is some laminaes, and the

geometry of beds is cuneiform with sets of lateral accretion.  The lithofacies assemblage of the

Sequatchie Formation in section GS is dominated by red laminated mudstones and siltstones at

the base; red, fine-grained mixed carbonate and siliciclastic lithofacies in the middle; and

dolomitic mudstones to wackestones to the top.  Mudcracks and rip-up clasts are common in the

intermediate interval.
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3.6  STRATIGRAPHIC CORRELATION, DEPOSITIONAL ENVIRONMENTS, AND

STACKING PATTERNS

3.6.1 Definition of stratigraphic surfaces of correlation

The key for stratigraphic correlation in strata with a high diversity of lithofacies is the

identification of chronostratigraphic surfaces that may be connected across different depositional

systems.  Eleven stratigraphic surfaces are identified, and the definition of each surface in

sequential order is given in Table 3.3.  Surfaces 4, 7, 8, and 9 have the best spatial and

chronostratigraphic constrains.  We use these surfaces, in addition to the lower and upper

unconformities, to divide the Middle and Upper Ordovician succession into five stratigraphic

intervals.

3.6.1.1 Unconformities.  Onset of post-Knox deposition is highly diachronous and very

irregular across the study area.  Two regional patterns in the onset of deposition are observed: (1)

deposition in sections restoring inside the graben began later (at least 5 m.y.) than in adjacent

sections restoring both northwest and southeast, and (2) lowermost Blountian strata are younger

northeastward along strike.  Because of the diachroneity of initiation of Blountian foreland

deposition, the post-Knox unconformity surface is covered by beds that range from stratigraphic

levels of correlation 1 through 5 in the study area.  The uppermost surface (11) is the post-

Ordovician unconformity and separates Ordovician strata from the Silurian Red Mountain

Formation (Chowns and McKinney, 1980) or Devonian strata in southeastern sections PF, CL,

AB, and EC.

3.6.1.2 Termination of carbonate-platform deposition.  The abrupt, transitional, or

gradual contact between carbonate and siliciclastic deposits may be used as a surface of

lithostratigraphic correlation.  However, biostratigraphic data indicate that this contact is highly

diachronous (Hall et al., 1986; Finney et al., 1996) and follows a cratonward (surface 3 in

sections CL and AB) and northeastward (compare surface 3 in section CL, Figure 3.9; and

surface 6 in section HM, Figure 3.7) trend in sections restoring southeast of the graben.  Surfaces

1 and 2 correspond to the abrupt drowning of the carbonate platform (platform sumerged below

the euphotic zone, Schlager, 1981) in proximal parts of the foreland (Finney et al., 1996).

Drowning in the southern sections PF, AB, and CL corresponds to surface 3.  Termination of

carbonate deposition in section GS (surface 5) and the northern sections HM and RH (surface 6)
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might be related to combined effects of deepening and influx of terrigenous sediments.  Surface

10 near the top of the Ordovician succession marks the onset of a very gradual progradation of

terrigenous detritus and deepening of the carbonate platform.

3.6.1.3 Regional marine-flooding surfaces.  Boundaries of third-order depositional

cycles (tens to hundred of meters thick and ~ 3 m.y. in duration) define a surface used for

stratigraphic correlation in carbonate platforms (e.g., Steinhauff and Walker, 1995, 1996).

Meter-scale shoaling-upward successions (or parasequences) in carbonate and siliciclastic

successions are bounded by marine-flooding surfaces (Van Wagoner et al., 1990).  However,

marine-flooding surfaces separating meter-scale successions in the Middle to Upper Ordovician

carbonate platform are of more local extent and very difficult to use for stratigraphic correlation

(Steinhauff and Walker, 1996).  Vertical stacking of meter-scale successions (or parasequence

sets) can be used to determine whether deposits within a depositional system are vertically

progradational, aggradational, or retrogradational.  A progradational parasequence set in the

Middle to Upper Ordovician carbonate platform of southern Laurentia consists dominantly of

shallow-ramp, subtidal deposits grading upward to peritidal and very shallow marine deposits

(Steinhauff and Walker, 1996).

In this study, regional marine-flooding surfaces are called at boundaries of parasequence

sets recognizable in carbonate and siliciclastic depositional systems, have a regional extend

(Figure 3.4), and are within the same or equivalent conodont zone.  Three surfaces of regional

marine flooding are identified (surfaces 4, 7, and 9; Figures 3.7 and 3.8; Table 3.3).  The internal

array of meter-scale successions, time duration (Table 3.3), and thickness of strata between

surfaces 4 and 7 (Interval II) and 7 and 9 (Intervals III and IV) suggest that these surfaces are

boundaries of third-order sea-level cycles or sequences (e.g., Van Wagoner, 1990).

3.6.1.4 K-bentonites.  Several K-bentonite beds have been identified within the Middle

and Upper Ordovician succession in Alabama and Georgia (Haynes, 1994; Kolata et al., 1996).

The Millbrig and the Deicke K-bentonite beds have been identified using petrography and

geochemical analysis both in the carbonate and siliciclastic successions (Haynes, 1994).

Because of rapid deposition and widespread distribution, these beds have been considered to be

the best surfaces for stratigraphic correlation (e.g., Kolata et al., 1996, 1998).   For this reason,

the Millbrig K-bentonite bed (or the Deicke where Millbrig is missing) is used as a boundary

between intervals III and IV, and as the datum for stratigraphic correlation.
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3.6.1.5 Chronostratigraphic surfaces.  With the exception of the K-bentonite beds

(surface 8), the other ten surfaces have varying degrees of diachroneity, but they are within the

range of one conodont or graptolite zone (Figure 3.4).  Of the eleven stratigraphic surfaces, only

three regional marine-flooding surfaces and one K-bentonite bed might be correlated between

depositional systems.  These four surfaces are used to divide the Middle and Upper Ordovician

succession into five stratigraphic intervals, numbered I through V in Figures 3.7, 3.8, and 3.9.

3.6.2 Strata and depositional systems of Interval I (upper Middle to lower Upper

Ordovician)

3.6.2.1 Distribution and thickness.  Strata of this interval are bounded by the post-Knox

unconformity at the base and the regional marine-flooding surface 4 at the top.  This interval is

thick in southern sections PF, AB, and CL (Figure 3.9) and is very thin and scattered in northern

sections CH, RI, HM, RH, and GS (Figures 3.7 and 3.8).  All these sections restore outside the

Birmingham graben.  Of the sections that restore inside the graben, a thin and very variable

accumulation of the Atalla Chert Conglomerate Member of the Chickamauga Limestone in

section BI yields conodonts (Hall et al., 1986) that indicate initiation of deposition at this locality

in the later part of Interval I.

3.6.2.2 Depositional environments and stacking patterns.  Lithofacies of basal beds in

sections CH, RI, HM, RH, BI, AB, PF, and CL vary both vertically and laterally, but are

suggestive of very shallow marine to supratidal environments.  Irregular and scattered

distribution of chert and dolomite conglomerate beds overlying the post-Knox unconformity

have been interpreted as the filling of karst topography (e.g., Drahovzal and Neathery, 1971).

Benson (1986b) interpreted the dolomitic, fenestral, mud-rich limestone beds of the Mosheim

Member as the record of peritidal environments; a similar interpretation is valid for reddish

mudcracked mixed lithologies for lower beds in sections CH, RI, HM, and BI (e.g., Roberson,

1988; Chowns et al., 1992).  Intraclastic and skeletal wackestones to packstones and peloidal,

intraclastic, algal packstones are more indicative of intertidal to very shallow subtidal

environments (Benson, 1986b; Roberson, 1988).  The wide variation in lithologies and

depositional environments may be an indication of the irregular topography associated with the

post-Knox unconformity (e.g., Roberson, 1988).
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In contrast to the diversity of lithofacies in basal strata, the lithofacies association of the

main body of limestone beds between surfaces 1 and 3 (i.e. Lenoir Limestone) in southern

sections PF, AB, and CL, and in sections RH and GS is more homogeneous.  The main body of

limestone consists of argillaceous, peloidal, intraclastic wackestones to packstones with more

diverse and abundant body fossils and algae than the underlying strata.  A restricted subtidal

lagoonal environment with water depths in the photic zone and below wave base is indicated by

the abundance of algae (e.g., Nuia, Girnavella), the presence of more diverse body fossils,

bioturbation, and absence of shallow-water sedimentary structures.  Deposition in low-energy

regimes is interpreted from the abundance of micrite and argillaceous detritus forming the

characteristic stylonodular structures in these beds.  Lagoonal environments reached its

maximum water depths near section AB, as interpreted from the association of argillaceous

limestones with few graptolites in the Little Oak Limestone.  A subtidal lagoonal environment

also has been proposed for algal-bearing beds of the Lenoir Limestone in Tennessee (Walker,

1977) with water depths between 20 to 50 m (Benedict and Walker, 1978).  Interbeds of fenestral

and dolomitic mudstones to wackestones are common and are fundamental to the identification

of meter-scale shoaling-upward successions.  These successions suggest an aggradational to

slight progradational stacking pattern of deposition (e.g., section PF in Figure 3.9).  In section

CH, strata overlying basal deposits consist of dolomitic peloidal mudstones and wackestones,

bioturbated limestone beds, and shales with a low faunal content.  Chowns et al. (1992)

interpreted these deposits as restricted subtidal-lagoonal environment.

The upper beds of the Lenoir Limestone have an increase in normal-marine water skeletal

(e.g., crinoids and bryozoans; Jones and Desrochers, 1992) fragments and decrease of chert

clasts, mud particles, green algae, and mollusk fragments.  The up section change in allochems

and matrix suggests deposition in more open-marine waters than lagoonal restricted waters.

These skeletal-rich beds pass upward at an abrupt transitional contact to deep-water, graptolite-

bearing black shales, recording the drowning of the carbonate platform (surface 3).  Near surface

3, K-bentonite beds and slump-folded strata in sections PF, AB, and CL record platform

instability (drowning) associated with active tectonic activity at the plate margin.  Correlation

using the boundary between P. serra and P. anserinus conodont zones, and the C. sweeti zone

(as interpreted by Hall et al., 1986) indicate the lateral continuity of peritidal (section BI),

lagoonal (section AB), shallow to deep carbonate ramp (sections PF and CL), and basinal
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deposition (sections CL and EC) (Figure 3.10A).  This southeast-dipping depositional profile is

confirmed by the abrupt contact between carbonate and siliciclastic shales in sections AB, CL,

and EC.  A deep carbonate ramp environment is recorded in section PF by calcareous graptolite-

bearing calcareous shales with isolated hummocky cross beds that grade up section to calcareous

mudstones.

In general, interval I records the onset of peritidal to very-shallow marine carbonate

deposition in areas outside of the Birmingham graben.  Aggradational to progradational

carbonate deposits in sections on the southeast are interpreted as deposition in peritidal to

subtidal lagoonal environments, whereas peritidal deposits dominate to the north.  Drowning of

the carbonate platform in southern sections is diachronous, and accompanied by thin

accumulation of K-bentonite beds and soft-sediment deformation of carbonate beds.  Deep-water

black shale deposits in southeasternmost sections are of the same age as shallow-marine,

lagoonal, and peritidal deposits to the northwest and northeast (Figure 3.10A).

3.6.3 Strata and depositional systems of Interval II (lower Upper Ordovician)

3.6.3.1 Distribution and thickness.  Interval II is recorded in all sections with the

exception of southern sections AB, CL, and EC, where the post-Ordovician unconformity

truncates the upper strata of Interval I.  Regional marine flooding surfaces 4 and 7 are the lower

and upper boundaries of this interval.  Interval II includes: (1) an increment in the rate of

deposition in sections restoring northwest of the Birmingham graben (Figure 3.7); (2) thin

accumulation in sections restoring inside the graben (Figures 3.7, 3.8, and 3.9); and (3)

termination of carbonate-platform deposition in sections GS, HM, and RH.  In contrast to the

southward trend of thickening of Interval I, deposits of interval II thicken northward and thin

abruptly in sections restoring inside the Birmingham graben.

3.6.3.2 Depositional environments and stacking patterns.  Encroachment of deposition

in interval II is recorded by a heterogeneous array of carbonate depositional systems and the

influx of siliciclastic detritus from the east.  Deep-water carbonate ramp environments are

documented by laminated argillaceous carbonate mudstones interbedded with calcareous shales

in the upper part of section PF.  Bioherms and skeletal-peloidal limestones in section BI indicate

the equivalent shallower and open-marine section of the carbonate ramp.  Bioclastic debris beds

in section PF might be derived from the area around section BI, where production of open-
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marine fauna was high and diverse.  Following the northward shallowing of the carbonate

platform, dolomitic mudstones to packstones with peloids, intraclasts, algae, and sparse fauna in

sections BR, DM, GS, HL, and CH are the record of subtidal lagoonal to peritidal deposition.

Fenestral and mudcrack structures document very shallow marine deposition and exposure

(Benson, 1986b).

Termination of carbonate-platform deposition in sections GS, HM, and RH (southeast of

the Birmingham graben) is more gradual and in shallower and more oxygenated water depths

than in sections AB, CL, EC, and PF of Interval I.  Up section decrease of faunal diversity,

fenestral structures and algal-laminated dolomitic mudstones to the top of the Lenoir in section

GS document dominance of low-energy supratidal to intertidal environments.  In contrast, cross-

bedded, skeletal and quartz-rich, coarse-grained carbonates in sections HM and RH indicate

deposition in more open, high-energy, shallow-ramp environments.  Interbedding of the

carbonate lithologies with shales and siltstones documents the influx of terrigenous detritus from

the east and deposition in a low-energy subtidal to shallow-shelf environment (Drahovzal and

Neathery, 1971).  The influx of fine-grained terrigenous detritus did not reach areas around

sections CH, RI, BR, and BI, where carbonate deposition continued.  Coarsening-upward

siliciclastic successions in sections GS and HM, up section increase of bioturbation and ripple

laminations, and mudcracks in sections HL and HM indicate shoaling cycles in the shallow

clastic shelf.  Thin carbonate and mixed lithologies in section RH suggest shallow depositional

conditions that favored episodic production of carbonates (Figure 3.10B).

Depositional environments of interval II include a shallow- to deep-water carbonate ramp

to the south and southeast and shallow-marine to peritidal environments to the north and

northwest (Figure 3.10B).  Aggradational to progradational patterns of deposition dominated in

carbonate and siliciclastic depocenters.  The east-to-northeastward shift from shallow-ramp

carbonate to low-energy clastic shelf illustrates the process of termination of carbonate

production in shallow environments.  Lack of soft-sediment deformation and K-bentonite beds

also suggest a period of tectonic stability.  Patterns of fine-grained clastic deposition are

progradational with coarser-grained, bioturbated, and ripple-laminated strata toward the top.

Phosphate detritus in both carbonate and siliciclastic deposits are irregularly distributed in this

interval.
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3.6.4 Strata and depositional systems of Interval III (lower Upper Ordovician)

3.6.4.1 Distribution and thickness.  Interval III encompasses strata bounded by the

regional marine flooding surface 7 at the base and by the Millbrig or Deicke K-bentonite at the

top (surface 8) (Figures 3.7, 3.8, and 3.9).  In this interval, the migration of carbonate and

siliciclastic depocenters characteristic of underlying intervals ended; consequently, carbonates

and siliciclastic deposition continued in the same areas as for upper deposits of Interval II

(Figures 3.10B and C).  Stratigraphic thickness of interval III decreases toward sections restoring

inside the graben and increases northward.

3.6.4.2 Depositional environments and stacking patterns.  Up section increase of

peloidal and intraclastic dolomitic limestone beds with fenestral and mudcrack structures over

transgressive shallow-marine carbonate strata suggest shoaling and progradation of peritidal

environments in sections to the northwest of the southeast boundary of the Birmingham graben,

with exception of section DG.  At the base of interval III in sections HM, RH, and GS, skeletal

and intraclastic debris-like deposits, slump-folded strata, and slight truncation of underlying

strata indicate either an event of carbonate platform instability or a marine transgression (i.e.

transgressive lag deposit).  Up section prevalence of sandy siltstones and subarkosic sandstones,

increase of bioturbation, and mudcracks indicate subtidal to intertidal environments of deposition

in sections southeast of the Birmingham graben (DG, HL, HM, RH, and GS).  In general,

progradational deposition is basinwide and documented in carbonate depocenters northwest of

the Birmingham graben (sections CH, RI, SS, GU, and ST), in sections inside the graben to the

south and with carbonate rocks (sections BR, DM, and BI), and in sections southeast of the

Birmingham graben in the siliciclastic depocenter (DG, HM, RH, HL, and GS) (Figures 3.7, 3.8,

and 3.9).

The sharp contact of the Colvin Mountain Sandstone with underlying strata indicates an

abrupt change in depositional conditions accompanied by an increase in coarse-grained sediment

supply and thin accumulation of K-bentonite beds (Figure 3.10C).  Strata underlying the contact

range from peritidal carbonates in section DM to bioturbated sandy siltstones and sandstones in

sections HM, HL, and GS; these deposits represent shallow-water deposition in a low- to

moderate-energy regime.  In contrast, quartzarenites overlying the contact show planar and

trough cross beds, have bimodal sand-size distribution in some lower beds, and are texturally and

compositionally mature (Jenkins, 1984). Elongated vertical burrows in upper beds suggest a
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shallowing-upward trend of deposition in high-energy regimes.  All these criteria suggest

alternate high- to moderate-energy regime in shallow-marine environments.

The sharp change on depositional conditions between Greensport and Colvin Mountain

units is diachronous and younger to the northeast and northwest.  The change is positioned below

the Millbrig-Deicke K-bentonite interval in section GS, within the K-bentonite interval in

sections DM and HL, and above the K-bentonite interval in section HM.  In palinspastic maps,

quartzarenites of the Colvin Mountain Sandstone form a northeast-striking narrow belt of

shallow-marine sand bars that separates fine-grained subtidal siliciclastic deposits on the

southeast from peritidal carbonate deposition on the northwest (Figures 3.7, 3.8, and 3.10C).

Shallow-marine sand bars correlate along-strike with subtidal, quartzose, medium-grained sand

ridges and sandy siltstones of the Greensport Formation.  Previous studies have interpreted these

quartzarenites as shallow-marine sand bars reworked by tidal and longshore currents (Chowns

and Carter, 1983; Jenkins, 1984).  This event of change in energy migrates from the southeast

(section GS) to sections in the north and west (Colvin Mountain Sandstone is in interval IV in

sections DM and HM).  A similar distribution of sand and gravel bars striking parallel to the

foreland, and separating carbonate production on one side from tidal-dominated deltaic

deposition on the other side is documented in the Gulf of Papua foreland basin (Harris et al.,

1996).

Interval III records shallowing of carbonate and siliciclastic depositional systems after an

event of platform instability, and the resume of volcanic activity as documented by the numerous

K-bentonite beds in the lastest part of this interval.  A localized and diachronous event of along-

strike migration of sand bars is recorded in the siliciclastic depocenter, and it is associated with

an increase in rate of supply of coarse and very mature sediments.

3.6.5 Strata and depositional systems of Interval IV (lower-middle Upper Ordovician)

3.6.5.1 Distribution and thickness.  Interval IV encompasses strata bounded by the

Millbrig K-bentonite bed (surface 8) at the base and the regional marine-flooding surface 9 at the

top (Figures 3.7, 3.8, and 3.9). In section DG, where K-bentonite beds have not been reported,

surface 8 is located at the base of a thick interval of red calcareous silty shales and siltstones that

are interpreted to represent deepening of the basin floor (Figure 3.7).  The depocenter of

siliciclastic deposition continued nearly in the same areas as for upper deposits of interval III,
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whereas the depocenter of carbonate deposition migrated slightly northeastward (Figure 3.10C

and D).  Although stratigraphic thickness of interval IV thickens northward, as documented for

intervals II and III, stratigraphic thinning toward sections inside the Birmingham graben is

minimal in southern areas and abrupt in northern areas.  Maximum values of thickness are

recorded in section CH, where carbonate deposition dominates.

3.6.5.2 Depositional environments.  A diachronous deepening and increase of energy of

depositional conditions is recorded by a change from prograding peritidal carbonates of interval

III to locally cross-bedded, skeletal, peloidal, and intraclastic wackestones to packstones beds

near the base of interval IV, reflecting a deepening of the basin floor.  The change to deeper

water deposition is positioned at different levels above the Millbrig K-bentonite, documenting

the diachroneity of a marine-flooding surface.  In section BI, surface 8 records the transition

(Figure 3.9); in section CH, the transition is 2 m above surface 8 (Figure 3.7); in section BR is 6

m above the Millbrig K-bentonite (Figure 3.8).  Calcareous shales and siltstones overlying a

succession of siltstones and fine-grained sandstones in section DG (Figure 3.7), in addition to

deposition of Colvin Mountain quartzarenite beds in sections DM and HM, indicate the

diachronous event of sand bar migration in siliciclastic depocenters.

After the event of deepening in the carbonate ramp, a regional shoaling occurred in both

carbonate and siliciclastic depocenters.  Micritic and dolomitic limestone beds with mudcracks in

sections GU and BR, and fine-grained mixed lithologies interbedded with mudcracked dolomitic

mudstones in sections DM and GS document the dominance of very shallow, peritidal deposits

near the top of interval IV.  In section DG, the up section change from laminated shales to

bioturbated siltstones and fine arkosic sandstones with mudcracks document the shoaling of

depositional conditions toward surface 9.  Limited exposures of siltstones and thin beds of fine-

grained sandstone in sections HL, DM, and GS suggest the dominance of low-energy regime of

deposition in siliciclastic depocenters.  The progradational pattern of deposition is also observed

in the lower part of carbonate beds of the thick section CH; however, the up section increase in

abundance and diversity of skeletal fragments suggest gradual deepening and deposition in more

open waters, and a change from progradational to more aggradational and retrogradational

patterns of deposition.

Interval IV documents waning of volcanic activity, slight deepening in the carbonate

ramp, and the continuation of the diachronous migration of high-energy depositional settings that
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initially affected siliciclastic depocenters southeast of the subsurface Birmingham graben (top of

Interval III), and then affected carbonate depocenters located inside and northwest of the

subsurface Birmingham graben (lower Interval IV).  Progradation of shallow-marine and

peritidal deposits and variable low influx rates of sediment supply from the east favored the

resumption of production of carbonates in sections to the east (Figure 3.10D).

3.6.6 Strata and depositional systems of Interval V (middle-upper Upper Ordovician)

3.6.6.1 Distribution and thickness.  The upper interval V is bounded by the regional

marine-flooding surface 9 and the post-Ordovician unconformity (Figures 3.7, 3.8, and 3.9).  In

this interval, the siliciclastic depocenter migrated cratonward and mixed with carbonate deposits,

anticipating the termination of the Ordovician carbonate platform in distal foreland settings.  The

northward thickening trend of strata continues in this interval.  Truncation at different levels of

upper Ordovician strata at the post-Ordovician unconformity does not allow the definition of

thickness trends in a northwest-southeast direction.

3.6.6.2 Depositional environments and stacking patterns.  Strata between surfaces 9

and 10 show shoaling of both carbonate and fine-grained mixed carbonate-siliciclastic deposits.

In sections restoring northwest of the Birmingham graben and section BR, strata between

surfaces 9 and 10 consist of skeletal grainstones and packstones passing up section to fenestral

dolomitic limestone beds and mixed, fine-grained lithologies with mudcracks.  In sections DM

and GS, shoaling is indicated by the up section decrease of reddish, bioturbated, fine-grained

mixed lithofacies and increase of dolomitic limestone beds.  The superposition of these

lithofacies constitutes shoaling-upward successions with subtidal deposits at the bottom and

shallower marine to peritidal deposits toward the top (Chowns et al., 1992; Phillips, 1996).

Lithofacies assemblages of strata above surface 10 change both vertically and laterally in

short distances (Figure 3.10E).  Phosphatic cross-bedded skeletal grainstones, skeletal dolomitic

sandstone beds, bioturbated shales, and cross-bedded quartzarenites overlie surface 10 in

sections northwest of the southeastern fault system of the Birmingham graben (e.g., RI, DG, HL,

GU, BR, DM, and BI), suggesting deepening of the platform and abrupt, lateral changes in the

energy of deposition.  Overlying these coarse-grained beds in section DG are coarsening-upward

siltstones and cross-bedded quartzarenites.  In section RI, the coarse-grained succession is

capped by a phophastic crust and overlain by bioturbated shales and sandstones; these two
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features indicate a shift from high to low energy regimes of deposition.  The abrupt changes in

lithofacies assemblages above surface 10 have been interpreted as a dynamic shift of

depositional conditions from a shallow carbonate platform to lagoon and riverine estuary

environments to the east (Rindsberg and Chowns, 1986; Martin, 1991).

Deposits of Interval V record the cratonward progradation and encroaching of siliciclastic

deposits over locations previously dominated by carbonate deposition and above or northwest of

the subsurface Birmingham graben structure.

3.7  TECTONIC SUBSIDENCE OF THE DISTAL FORELAND

Curves of total and tectonic subsidence for sections restoring in middle and distal

foreland settings illustrate different behaviors of the top of basement during Middle and Late

Ordovician deposition.  Figure 3.11 shows representative curves of total and tectonic subsidence

for sections restoring northwest, inside, and southeast of the Birmingham graben.  Total

subsidence curves may be divided into four segments.  The first segment has a negative slope

and corresponds to thermal subsidence, as recorded by upper beds of the Knox Group along the

southern margin of Laurentia (Thomas and Astini, 1999).  The second segment is flat and

corresponds to the post-Knox unconformity.  The third segment is again downslope and is

between the post-Knox unconformity and the Millbrig and Deicke K-bentonite beds (surface 8).

The fourth segment is between the K-bentonite beds and the top of the Silurian, where the total

subsidence curve has a gentle downslope, with exception of section DG that follows the

geometry of the third segment.

Tectonic subsidence curves show a different geometry than total subsidence curves, and a

total of five segments (segments a to e, Figure 3.11) is recognized after the segment of thermal

subsidence of the Knox Group and before Silurian.  Sections restoring inside the graben (e.g.,

sections DG and BI, Figure 3.11A) have a deeper level of erosion at the post-Knox unconformity

than sections in adjacent blocks (e.g., sections CH-RI, GS, or PF).  The minimum amount of

erosion of upper Knox strata is represented by segment a in sections CH-RI, GS, and PF.  For

sections DG and BI, an estimated amount of uplift (difference in thickness of preserved Knox

strata between adjacent sections; compacted for lower boundary and uncompacted for upper

boundary) was calculated and included in the tectonic subsidence diagrams (segment b in Figure
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3.11A).  As a result, the basement in sections DG and BI rises during time of the post-Knox

lacuna with respect to sections restoring outside the graben.

Two inflections of the tectonic curve (segments c and d) previous to deposition of

Millbrig-Diecke K-bentonite beds are observed in the tectonic subsidence curves for composite

section CH-RI (northwest of the graben, Figure 3.11A) and section PF (southeast of the graben,

Figure 3.11B).  The first and more gentle downslope geometry of segment c is related to

subsidence and the early onset of peritidal and shallow-marine deposition in both areas (Interval

I); the second downslope is of segment d and corresponds to the onset of black shale deposition

in section PF (Interval I) and an increase in the rate of carbonate deposition in composite section

CH-RI (Intervals II and III).  Segment d in section PF corresponds to the passage of the flexural

wave that also affected sections CH-RI to a lesser degree.  Therefore, subsidence of segment d is

related to lithospheric flexure.  Tectonic subsidence of segment c is related to an earlier event

that affected sections restoring at both sides of the Birmingham graben.  Tectonic subsidence

curves for sections DG, GS, and BI have an initial gentle downslope trend before the K-bentonite

interval that may be equivalent to segment d in sections CH-RI.

The gentle downlope segment d is followed by flattening and/or upslope trend of segment

e toward the top of the Ordovician.  Segment e is observed in sections restoring outside of the

Birmingham graben (sections GS and CH-RI) and inside the Birmingham graben (sections DG

and BI).  The upslope trend records uplift of the top of basement coeval with the cratonwide rise

of sea level (Bond and Kominz, 1991).  This event of uplift is better recorded in section BI,

where the angular unconformity between Upper Ordovician strata of the Chickamauga

Limestone and the Silurian strata indicates erosion and tilting (1.6-degree to the southeast) of the

Chickamauga Limestone.  In the other sections, the magnitude of the rise of the top of basement

in sections GS and DG is higher than sections BR and CH-RI to the northwest (Appendix C).  In

the Silurian, the curve stays flat for sections CH-RI, BI, and GS, and bends down for section DG.

The latter downslope in section DG documents an increase of tectonic subsidence only in the

northeasternmost section of the study area.

3.8  DISCUSSION

In this section, we discuss the effects of basement fault reactivation, flexural subsidence,

and eustasy in the geometry of the post-Knox unconformity, patterns of carbonate and
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siliciclastic deposition, generation and distribution of uplifted areas, and tectonic subsidence for

the distal Blountian foreland basin.

3.8.1  Lacuna geometry and stratigraphic patterns associated to early forebulge migration

Initial migration of the flexural wave creates a characterisitc pattern of erosion and/or

deposition on the foreland plate (Figure 3.1A and B).  In the western Taiwan (Yu and Chou,

2001) and north Alpine foreland basins (Crampton and Allen, 1995), the regional basal

unconformity has a chronostratigrahic gap increasing forelandward and with the maximum gap

at the flexural bulge.  This distinctive forelandward increase of the lacuna reflects the forward

migration of the flexural wave.  Besides of the time-transgressive onlap of foreland strata on

flexurally-deformed passive-margin strata, the forebulge has an orogen-parallel orientation (Yu

and Chou, 2001; White et al., 2002).  In contrast, the growth of a semi-fixed forebulge (Figure

3.1B) causes deep truncation of passive-margin strata in very narrow areas, as documented in the

Apennine foreland basin (Washbush and Royden, 1992) and in the Oman Mountain foredeep

(Patton and O’Connor, 1988).

In distal foreland settings, early stages of deposition of underfilled foreland basins are

characterized by development of a carbonate platform deepening toward the orogen (Dorobek,

1995).  Distal foreland stratal architecture of carbonate beds allows the differentiation between a

migrating and a semi-fixed forebulge.  Cratonward migration of the flexural wave causes

increasing subsidence rates at progressively more distal foreland localities, backsteeping and

drowning of the carbonate platform on localities facing the hinterland, and the reactivation of

older basement faults as normal faults (Figure 3.1A).  In contrast, the growth of a semi-fixed

forebulge is associated with: (1) an abrupt lateral change from shallow-water to deep-water

carbonate deposition at both sides of a pronounced bulge; (2) narrowing and steepening of the

foredeep and backbulge depozones; and (3) if the bulge becomes expose, unroofing of the

passive-margin succession (Figure 3.1B).

As discussed in section 3.2.3, the model of flexural wave migration has been postulated

to be the principal factor in controlling the origin of the basal unconformity (or post-Knox

unconformity), irregular Middle Ordovician deposition in the distal foreland, and backstepping

of Middle and Upper Ordovician carbonate-ramp deposits.  The lacuna geometry and early

patterns of distal foreland uplift and carbonate deposition, as discussed below, indicate that
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neither a migrating nor a semi-fixed forebulge played a primary control in the early evolution of

the distal foreland.  However, migration of the flexural wave did play an important role on

deposition in subsequent stages of distal foreland evolution.

3.8.2  Geometry of the post-Knox unconformity and intraforeland uplifts

The cratonwide post-Knox unconformity shows the greatest magnitude of the lacuna in

sections DG, BR, DM, and BI, which restore inside the Birmingham graben (Figure 3.6).  The

chronostratigraphic gap increases from ~ 9 m.y. in section AB to more than ~ 32 m.y. in section

BI, and the unconformity truncates at least 472 m (compacted thickness) of the Knox Group in

section BI.  Palinspastic restoration of the thin Knox interval imaged in seismic reflection

profiles indicates that the abrupt change in the lacuna geometry occurs across the southeastern

fault boundary system of the Birmingham graben (cross section 16, Plate 2.1).  A similar

magnitude of change in the lacuna and depth of erosion across the northwestern fault boundary

system of the Birmingham graben is documented between sections DG and RI.  The contrasting

geometry of the lacuna between sections BI and AB in the south, and sections RI and DG in the

north may not be explained solely by eustasy, where maximum erosion is expected either at the

paleoshelf edge in incised channels (e.g., Van Wagoner et al., 1990) or toward the craton, where

the rocks would be exposed longer (Bond and Kominz, 1991).  A semi-fixed forebulge above the

Birmingham graben (i.e., the graben as a weak segment of the lithosphere) may explain the deep

erosion of the Knox Group, but it does not explain the early and thick accumulation of deep

lagoonal carbonate deposits with chert clasts at both sides of the Birmingham graben.

Tectonic inversion of the graben (Figure 3.1C) provides a better explanation for the

lacuna geometry, patterns of early deposition on the distal foreland, supply of conglomerate

clasts, and recharge of meteoric waters.  Positive relief of the inverted upthrown block (former

Birmingham graben) caused the deep truncation of Knox strata and the late onset of deposition in

sections restoring inside the Birmingham graben.  The thick and mappable record of karst-filling

chert conglomerates in sections restoring inside the graben indicates deep weathering of

limestone and chert beds of the Knox Group in inverted upthrown blocks.  In contrast, less

weathering of the Knox Group and early deposition occurred in inverted downthrown blocks

(former shoulders of the Birmingham graben).  Limestone-conglomerate clasts in sections CH,

RI, AB, CL, and PF indicate short time of exposure below the basal conglomerates in inverted
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downthrown blocks.  Gravel-sized chert and limestone clasts, and sand-size monocrystalline

quartz embedded in shallow-marine and lagoonal carbonate deposits of sections CH, RI, AB,

CL, and PF indicate the nearby presence of uplifted areas.  Karst topography in uplifted blocks

bounded by faults should have facilitated nearly vertical filtration of meteoric waters to

subsurface aquifers that contributed to early cementation in carbonate strata of the Chickamauga

Limestone (Tobin and Walker, 1994; Kher, 1996).

An alternative explanation is to consider the intraplate uplift as bounded by normal faults

(flexural profile of time 2 in Figure 3.1A).  As the foreland plate bends and the flexural wave

migrates, flexural normal faults will reactivate older basement structures and uplift segments of

the distal foreland carbonate platform.  The coincidence in position between uplift blocks and the

Birmingham basement graben, lack of Middle Ordovician conglomerate clasts in limestone beds,

and later record of flexural migration in early Late Ordovician time (see below) suggest that

upthrown and downthrown blocks were bounded by basement-cored inversion structures rather

than by flexural normal faults.  These intraforeland structures record the early response of

ancient structures to the new in-plane stress regime (Dorobek, 1995) caused by Blountian

convergence.

3.8.3  Architecture of the Middle Ordovician carbonate platform

Thickness, lithofacies assemblages, and stacking patterns of lower-middle Lenoir and

lower Chickamauga strata (lower Interval I) constraints the early inversion of basement faults.

In areas adjacent to inverted upthrown blocks, tectonic subsidence curves of lower carbonate

deposits of the Chickamauga and Lenoir beds document an early development of carbonate

depocenters on opposite sides of the inverted upthrown block (segment c in sections CH-RI and

PF, Figure 3.11), previous to the steep downslope curve of flexural subsidence (segment d in

Figure 3.11).  Stacking patterns of lagoonal deposits are dominantly aggradational, suggesting

that the rate of carbonate production kept pace with creation of accommodation space in

downthrown blocks.

Local topography of the inverted graben likely distorted the marginal-scale flexure of the

foreland plate.  Carbonate deposits in section HM and AB are thicker and more fine-grained than

adjacent sections RH and CL, respectively, to the southeast.  The Middle and Upper Ordovician

succession also thins northwestward away from sections ST and SS (Kidd, 1975).  Stratigraphic
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thinning of foreland strata suggests the presence of two small-scale foreland-like basins adjacent

to the inverted upthrown block.  If the inverted block is considered as a tectonic load on a

continuous elastic plate (e.g., Turcotte and Schubert, 1982), the effects of loading bend the

elastic plate and two asymmetrical basins are formed (Figures 3.12A and B).  As this model

predicts, thicker and deeper water deposition occurred in sections adjacent to the inverted

structure (e.g., AB, HM, ST, and CH-RI) than in sections away from the inverted load (e.g., CL,

RH).  This model gives an explanation of the southeastward and northwestward thinning and

shallower depositional conditions of coeval carbonate strata away from the Birmingham graben.

(Figures 3.9 and 3.12B)

Latest Middle Ordovician carbonate deposition may be the combined result of basement

fault inversion and distal effects of the northeastward migration of the flexural wave (Finney et

al., 1996; Chapter 4).  Thick lagoonal deposits as seen in sections PF and AB in Interval I

(Figure 3.9) are also observed later in Interval II in section CH (Figure 3.7).  Similarly,

lowermost deposits above the post-Knox unconformity in the inverted upthrown block are older

in section BI (Interval I; Figure 3.9) and younger to the northeast in sections DM, HL and DG

(Interval II; Figure 3.7 and 3.8).  Termination of carbonate deposition in the southeastern

inverted downthrown block is older to the southeast (sections AB and CL) and younger to the

northeast in sections GS, HM, and RH.  This northeastward trend in carbonate deposition in both

southeastern inverted downthrown and inverted upthrown blocks is similar to the northeastward

migration of black shale deposition in the proximal foreland (Finney et al., 1996).

3.8.4  Upper Ordovician carbonate platform, progradation of the synorogenic clastic

wedge, and eustasy

The early signature of basin inversion in the distal foreland was subdued gradually by

weathering of intraplate uplifts, fluctuations of sea level, thin accumulation of K-bentonite beds,

and forelandward migration of the flexural wave that brings the sea floor into different facies

zones and backsteps the zone of optimum carbonate production (Figure 3.12C) (Dorobek, 1995).

The lateral change from peritidal and karst-filling deposits in section BI, lagoonal-subtidal in

section AB, well-sorted skeletal grainstones in section PF, and turbidite skeletal limestones and

graptolitic black shales in sections CL and EC depicts the geometry of a regionally southeast-

dipping foredeep in early Late Ordovician (Figure 3.10A).  In southeastern sections AB, CL, EC,
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and PF, the up section increase of coarser-grained carbonate deposits in upper beds of the Lenoir

Limestone followed by deposition of thin K-bentonite beds and graptolitic black shales

documents the cratonward flexural wave migration, drowning of the carbonate platform in a time

of input of volcanic material to the foreland basin.

However, early Late Ordovician forelandward migration of the flexural wave partially

stopped above the Birmingham graben.  Segment d in tectonic subsidence curves documents the

regional and variable response of the top of basement to flexural subsidence in early Late

Ordovician time.  Segment d in flexural subsidence curves is steeper in sections restoring

southeast and away of the Birmingham graben (e.g., section PF in Figure 3.11B) than in sections

to the northeast (e.g. sections GS and DG) and northwest of the Birmingham graben (e.g., section

CH-RI).  The record of peritidal to shallow-water carbonates underlying fine-grained red

siliciclastic beds and the lack of deep-water carbonates and siliciclastic beds in sections GS, HM,

and RH indicate that termination of carbonate deposition may be more the result of siliciclastic

influx than deepening caused by flexural subsidence (Figure 3.10B).

Tectonic subsidence and sea-level curves for deposits of Intervals III, IV, and V indicate

that these deposits accumulated in a time of cratonwide rise of sea level and of regional rise of

the top of basement (segment e in Figure 3.11).  The regional rise of basement may reflect

orogenicward migration of flexural uplift, an interpretation further supported by (1) shoaling of

siliciclastic depocenters favoring deposition of shallow-marine sandy shoals of the Colvin

Mountain Sandstone (Figure 3.10C); (2) later southeastward progradation of shallow-water to

peritidal carbonates over siliciclastic deposits (Figure 3.10D); and (3) aggradational to

retrogradational carbonate deposition in section CH-RI to the northwest (Interval IV in Figure

3.7).  The migration of the flexural wave toward the orogenic belt was initially accompanied by

accumulation of K-bentonite beds and high influx of sand-sized quartzose detritus followed by a

decrease in influx of siliciclastic detritus to the distal foreland.  Cratonwide sea-level rise of ~ 80

m (Bond and Kominz, 1991) created the conditions for the record of a submerged southeastward

migration of the flexural wave, the thick and widespread record of deposition of volcanic ash

beds, and the thicker and aggradational to retrogradational pattern of deposition in section CH-RI

(Figures 3.7 and 3.10D).

The dynamic change related to the passage of the flexural wave is repeated in uppermost

Ordovician and lowermost Silurian strata.  The shallowest part of the latest Ordovician flexural
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profiles is in section BI, where southeast tilting of Upper Ordovician strata caused erosion

(Thomas, 1986) and iron-rich meteoric cementation (Tobin and Walker, 1994) in uppermost

preserved strata of the Chickamauga Limestone.  Farther to the northeast, peritidal to subtidal

deposits of sections RI, GU, BR, and DM pass up section to high-energy, shallow-marine, mixed

carbonate-siliciclastic deposits with evidence of early meteoric diagenesis in upper beds of

shoaling-upward cycles (Kher, 1996).  The siliciclastic and deep-water component of the flexural

wave profile is in sections RI and DG and corresponds to prograding clastic estuarine and tidal-

flat deposits (Martin, 1991).  All these carbonate and siliciclastic Ordovician deposits are

overlain by deeper-water shales and hummocky cross-bedded sandstones of the Silurian Red

Mountain Formation with a slight increase in tectonic subsidence rates in the northern section

DG (Figure 3.11A).

Geodynamic models of foreland basins explain migration of the flexural wave using two

different mechanisms.  Quinlan and Beaumont (1984) suggested that viscoelastic relaxation of

the lithosphere is the dominant control on hinterland bulge migration between periods of crustal

deformation, whereas cratonward bulge migration and generation of accomodation space in the

distal foreland occur during episodes of crustal deformation.  In contrast, Flemings and Jordan

(1990) indicated that the flexural wave migrates hinterland at the onset of deformation using an

elastic rheology of the lithosphere, whereas cratonward bulge migration and accomodation space

in the distal foreland occur between periods of crustal deformation.  Because a complete

proximal foreland stratigraphy and the Blountian tectonic loads are not preserved (Chapter 4),

there is not a direct evidence to link depositional patterns in the distal foreland with events of

deformation in the Blountian orogenic belt and deposition in the proximal foreland.

This study can establish a relationship between episodes of flexural migration,

accumulation of K-bentonite beds, and influx of siliciclastic detritus.  The early episode of

forelandward flexural migration recorded in southeastern sections (e.g., section CL) was

accompanied by deposition of thin K-bentonite beds and black shales (Interval I).  The episode

of hinterlandward flexural migration was accompanied by deposition of the Deicke and Millbrig

K-bentonite beds and an upsection decrease in influx of synorogenic detritus (Interval IV).  The

last event of cratonward flexural wave migration is documented by termination of carbonate

deposition and initiation of deep shelf synorgenic clastic deposition of the Silurian Red Mountain
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Formation.  These relationships suggest that flexural wave migration was linked with active

volcanism along the plate margin, and sedimentary filling of the foredeep.

Progradation of the Blountian clastic wedge was controlled by inverted upthrown blocks

in the distal foreland.  Distribution of the Greensport Formation and Colvin Mountain Sandstone

follows the southeast boundary of the inverted Birmingham graben, suggesting local structural

control of sedimentation within the siliciclastic depocenter and restricted dispersal of fine- and

coarse-grained synorogenic detritus in the inverted upthrown and southeastern downthrown

blocks (Figure 3.10A to D).  The restricted and structurally controlled siliciclastic deposition on

the southeast permitted shallow-marine carbonate deposition in the northwestern inverted

downthrown block.  Cratonward progradation of the clastic wedge in the latest Ordovician-Early

Silurian and thicker deposition in sections restoring inside the graben in the upper part of Interval

V (Figures 3.7 and 3.10E) suggest the termination of basement fault inversion in the distal

foreland.

Eustatic effects in Middle and Late Ordovician deposition are defined by identification of

nearly coeval regional marine flooding surfaces that affected both siliciclastic and carbonate

depocenters.   Surfaces 4, 7, and 9 are the lower boundaries of third-order depositional cycles

(Intervals II, III, and V) that include transgressive carbonate and siliciclastic deposits and meter-

scale shoaling-upward successions.  Internal stacking patterns of third-order depositional cycles

indicate the conformable progradation of shallow-marine and peritidal deposits. The regional

marine flooding surfaces identified in this study are of regional extent, and they may be

correlated with depositional sequence boundaries documented in the Tennessee platform

(Steinhauff and Walker, 1995, 1996) and the Nashville dome (Holland and Patzkowsky, 1997)

(Figure 3.4). However, the correlation of coeval K-bentonite beds and transgressive marine

deposits near surface 8 depict the diachronous signature of marine flooding surfaces in a foreland

basin.

3.9  CONCLUSIONS

Patterns of carbonate, mixed, and siliciclastic deposition in the distal Blountian foreland

basin and during Middle and Late Ordovician time were controlled by the interaction of

basement-fault inversion, fluctuated migration of the Blountian flexural wave, and rise of sea

level.  Each of these factors dominated at different stages of the foreland evolution, and they are
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identified by the local, plate-margin, or cratonwide effects on foreland deposition.  Late Middle

Ordovician inversion of a former northeast-striking basement graben (Birmingham graben)

enhanced erosion of Knox strata and shaped an irregular karst relief at the post-Knox

unconformity.  Local bending effects of inverted upthrown blocks triggered carbonate deposition

in two small-scale foreland-like basins adjacent to the active faults and in opposite sides of the

inverted upthrown blocks.  Deeply weathered inverted upthrown blocks supplied coarse-grained

chert and quartz grains to carbonate depocenters in inverted downthrown blocks, facilitated

filtration of meteoric waters to carbonate aquifers in downthrown blocks, and restricted the

cratonward advance of the synorogenic clastic wedge during early and middle Late Ordovician.

A geodynamic model of the inversion corroborates the link between intraplate uplift and

deposition, and together with stratigraphic and provenance analyses allow to reject the model of

flexural uplift as the solely mechanism to create the post-Knox unconformity in southernmost

Laurentia..

Flexural subsidence related to tectonic and sediment loading along the plate margin and

influx of siliciclastic detritus strongly contributed to the diachronous termination of carbonate

platform deposition in the study area.  In the southeastern inverted downthrown block, flexural

drowning of the carbonate platform at the southeastern end and influx of terrigenous clastic

detritus at the northeastern end caused the diachronous termination of carbonate deposition in

early Late Ordovician time.  Tectonic subsidence curves, shoaling stratigraphic patterns in

siliciclastic depocenters, and southeastward progradation of carbonate beds indicate an event of

hinterlandward migration of the flexural wave during the middle to late Late Ordovician time.

These first two events of flexure are accompanied by deposition of volcanic ash material.  The

combined effects of cratonwide sea-level rise and hinterlandward forebulge migration created the

conditions for continuous shallow-water deposition and the record of shoaling-upward

successions forming third-order depositional cycles in both siliciclastic and carbonate

depocenters.  Termination of carbonate-platform deposition in the inverted upthrown block and

northwestern downthrown block is linked to the cratonward progradation of synorogenic

siliciclastic deposits, first during early and middle Late Ordovician and later during the latest

Ordovician and early Silurian.  The latter is associated with the forelandward passage of the

flexural wave that also tilted and eroded Upper Ordovician strata in southern sections.
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Table 3.1  Explanation of lithofacies codes and lithofacies interpretations for carbonate and

mixed carbonate and siliciclastic deposits.

Lithology
code

Rock name
(Dunham, 1962)

Energy, Water
depth

Environment of deposition.  Dominant
framework grains.  Structures

Lmm, LDmm
Dmm

Mudstone to wackestone Low
< 4 m

Supratidal to intratidal.
Peloids, intraclasts, algae, restricted fauna.  Fenestral,
ripple and horizontal  laminated, mudcracks,
bioturbated.

Mudstone to wackestoneLmms, LDmms
Dmms

Generally low
< 16 m

Supratidal to subtidal (lagoon).  Restricted fauna
fragments of conglomerate size.  Massive, fenestral.

Lmo, LDmo Wackestone to grainstone Low to high
< 16 m

Supratidal to shallow subtidal.  Algae, oncoids, peloids,
 intraclasts,  minor skeletal (mixed fauna).  Massive,
 fenestral, ripple lamination, stylonodular.

Lmi, LDmi Wackestone to packstone Moderate to high
< 64 m

Intratidal to shallow subtidal  with restricted circulation
(lagoon).  Intraclasts dominantly of Lmo lithologies.
Massive,  bioturbated, stylonodular, poor sorting.

Lmr, LDmr Wackestone to packstone Low to moderate
< 16 m

Shallow to internediate subtidal, ramp or lagoon.
Mixed restricted and open-water skeletal fragments,
minor algae and peloids.  Massive, stylonodular,
fenestral.

Lms Wackestone to grainstone Moderate to low
< 64 m

Subtidal, open-marine circulation (shallow ramp).
Open-marine fossils, trace of algae, intraclasts and
peloids.
Massive, laminated, cross beds, stylonodular, bioherms.

Lml Mudstone to wackestone Generally low
< 256 m

Intermediate to deep ramp.  Thin horizontal  lamination,
internal grading and thin beds of Lss and Sb.

Dsm Coarse-crystalline dolomite Non-skeletal.  Massive.  Original components must
have been destroyed during dolomitization.

Lso Grainstone Moderate to high
< 16 m

Shallow ramp, shoals, tidal bars.  Ooids, algae,  trace of
skeletal fragments, quartz.  Cross beds, normal grading,
lamination.

Lss Packstone to grainstone Moderate to high
< 16 m

Shallow ramp, shoals, tidal bars.  Open-marine skeletal
fragments, sand-size quartz.  Massive, cross beds,  good
sorting.

Lsp Packstone to grainstone Moderate to low
< 16 m

Very shallow, intratidal to subtidal.  Peloids and
intraclasts, rare skeletal grains.  Lamination, cross beds,
good sorting.

Lsi, Dsi Packstone to grainstone Moderate to high
< 16 m

Very shallow, intratidal to subtidal.  Intraclasts and
open-marine skeletal grains, sand-size quartz.  Massive,
horizontal- and cross-bedded, good to moderate sorting.

restricted-water skeletal fragments:  ostracods, trilobites, mollusks, brachiopods, coral Tetradium, crinoids, green algae, oncoids

open-marine skeletal fragments: brachiopods, trilobites, crinoids, bryozoans, corals,  red algae

Lithology

code

Dominant carbonate
and siliciclastic

lithologies

Energy,
Water depth

Environment of deposition.  Dominant
framework grains.  Structures

LSbs, SLbs Lml, Lms, Lss, Sb Low

< 1024 m

Deep-water ramp, distal carbonate turbidites.
Graptolites.  Horizontal lamination, soft-sediment
deformation.

LSf, SLf LDmm, Ldmo, Lml, Sfsm,
Sfm, calcisiltite

Generally low
< 16 m

Intertidal, subtidal lagoon.  Trace of skeletal grains.
Mottled, diverse degree of bioturbation, massive,
ripples and horizontal lamination, cross beds,
mudcracks.

LSci, SLci Lmi, Lms, Ssm, Sgcg
conglomerate

High
< 64 m

Subtidal, debris-flow deposit.  Massive, cross-bedded,
matrix- to clast-supported, bioturbated, argillaceous,
matrix of LSf, Sfsm, Ssm.

LScs, SLcs Lss, Lms, Sst, Ssp, Ssm, Sgcg
conglomerate

High
< 16 m

Very shallow ramp, shoals, tidal bars. Open-marine
skeletal fragments, trace of peloids and intraclasts.
Cross beds, cuneiform and lenticular beds, clast-
supported.
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Table 3.1 (previous page) Explanation of lithofacies codes and lithofacies interpretations for

carbonate and mixed carbonate and siliciclastic deposits.  The codes have uppercase letters to

indicate which is the dominant composition of each lithofacies (L=limestone, D=dolomite,

S=siliciclastic (see Table 3.2)).  Mixed lithofacies have two uppercase letters (LD=dolomitized

limestone; LS=carbonate-siliciclastic).  In only carbonates lithofacies, the first lowercase letter

indicates either micritic (m) or sparry (s) lithologies.  The second and third lowercase letter(s)

denote important components or structures of the lithofacies: p =peloidal, i =intraclastic, o =non-

skeletal allochems, r = association of skeletal fragments indicates restricted-water environments

(ostracods, trilobites, mollusks, brachiopods, Tetradium, crinoids, green algae, oncoids), s =

association of skeletal fragments indicates open-marine environments (brachiopods, trilobites,

crinoids, bryozoans, corals, red algae), l =laminated, m=massive.  In mixed lithologies, the

lowercase letters indicate: bs = interbedding with black shales, f = fine-grained lithologies, ci =

coarse-grained intraclastic, cs = coarse-grained skeletal.
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Table 3.2  Explanation of lithofacies codes and lithofacies interpretations for siliciclastic

deposits.  The code uses the uppercase letter “S” to identify the lithofacies as siliciclastic. The

first lowercase letter denotes the grain size: g = gravel-size deposits, s = sand-size deposits, f =

silt-size deposits, b = shale deposits.  The second and/or third lowercase letters denote an

important structure, as described in the table, and allow the identification of each lithofacies.

Lithology
code

Dominant grain size Structures Interpretation. Range of depositional
environments

Sgmm Gravel, matrix-supported Massive to weak grading Plastic debris flow.  Subaerial to submarine
fans

Sgmg Gravel, matrix-supported Inverse to normal grading Pseudoplastic debris flow.  Subaerial to
submarine fans

Sgmh Gravel, matrix-supported Crude horizontal bedding Hyperconcentrated flow.  Subaerial to
submarine fans

Sgcg Gravel, clast-supported Normal grading Hyperconcentrated flow.  Subaerial to fan
deltas

Sgcm Gravel, clast-supported Massive to crude horizontal
bedding

Clast-rich debris flow, pseudoplastic debris
flow, hyperconcentrated flow.  Fan deltas

Sgh Gravel, clast-supported Crudely- to horizontally bedded,
Imbrication

Longitudinal bedforms; lag or sieve deposits.
Subaerial unconfined water flows

Sgt Gravel, stratified Trough cross-beds Transverse bedforms, channel fill.  Fluvial to
fan deltas

Sgp Gravel, stratified Planar cross-beds Transverse bedforms, deltaic growths from
older bar remnants.  Fluvial to fan deltas

Sst
Ssti

Sand, fine to very coarse, locally
pebbly.  (i= bimodal grain size
distribution)

Solitary or grouped trough cross-
beds

Sinuous-crested and linguoid 3-D dunes.
Fluvial, subtidal, longshore bars

Ssp
Sspi

Sand, fine to very coarse, locally
pebbly.  (i= bimodal grain size
distribution)

Solitary or grouped planar cross-
beds

Transverse and linguoid 2-D dunes.  Fluvial,
subtidal, longshore bars

Sse Sand to pebble Sigmoidal or ellipsoidal bedding Lateral accretion.  Fluvial to subtidal bars

Ssr Sand, fine to coarse Ripple cross-lamination
(current or oscillatory)

Ripples (lower flow regime).  Fluvial to
deep-water turbidites

Ssh
Sshi

Sand, fine to very coarse, locally
pebbly.  (i= bimodal grain size
distribution)

Horizontal lamination with parting
or streaming lineation

Plane-bed flow (critical flow). Fluvial to
deep-water turbidites

Ssl Sand, fine to very coarse, locally
pebbly

Low-angle (<15º) cross-beds Scour fills, humpback or washed-out dunes,
antidunes.  Fluvial

Sss Sand to pebble Broad, shallow scours Scour fill.  Fluvial, subtidal, longshore bars

Ssm Sand, fine to coarse Massive, or faint lamination Sediment-gravity flow deposits.  Fluvial to
deep-water turbidites

Ssw Sand, fine to coarse Wave ripples and planar cross-
beds

Sand dunes reworked by wave-dominated
currents.  Intratidal to shallow shelf

Ssb Sand, fine Hummocky cross-beds Wave-dominated currents (storm currents).
Shallow shelf

Sshe Sand, mud Heterolithic lamination, lenticular
lamination

Continuing change from suspension to lower
flow regime.  Intratidal to shallow shelf

Ssfl Sand, mud Flaser or thin horizontal lamination Deposition and/or erosion of mud laminae.
Fluvial, intratidal, shallow shelf
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Table 3.2  (continued).

Sfl Sand, mud, slightly calcareous Fine lamination, very thin lenses of
sandstones, ripples, rare skeletal
fragments (mollusks, brachiopods,
bryozoans)

Overbank, abandoned channel, or waning
flood deposits, intermediate-water
suspension.  Fluvial to deep-water turbidites

Sfsm Sand, mud Massive, leached carbonate,
mottled by bioturbation, thin
lenses of Ssm, Sss

Suspension in intermediate waters.  Fluvial
to intratidal

Sfm Mud Massive, faint lamination,
dolomitic, desiccation cracks

Suspension in intermediate waters;
overbank, abandoned channel, or drape
deposits.  Fluvial to intratidal

Sb Black shale Fissil, organic, calcareous and non-
calcareous, graptolites

Suspension in deep water.  Offshore and
slope suspension; distal tail of submarine
fans
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Table 3.3  Explanation of key stratigraphic surfaces.  Abbreviations for stratigraphic sections are

explained in Figure 3.2.

Age Significance of the event in carbonate and
mixed lithologies successions (sections
restoring northwest of and inside the
graben)

Significance of the event in siliciclastic
successions (sections restoring southeast of
and inside the graben)

11 Post-Ordovician unconformity.  Total to partial
drowning of the Ordovician platform.

Post-Ordovician unconformity.  Regional onset of fine-
grained, siliceous to calcareous shales deposition of the
Silurian Red Mountain Formation with thin interbeds of
hummocky, fine-grained sandstones.

10 late Late
Ordovician
(Cincinnatian,
ca 446)

Marine flooding and shoaling with deposition of coarser-
grained, phosphatic, skeletal carbonates (at BI, BR), mixed
lithologies (at GU, BR, RI), and quartzarenites (at DG, HL,
DM) (A. ordovicicus zone).

9 middle Late
Ordovician
(Mohawkian –
Cincinnatian,
ca. 451)

Limited subaerial exposure followed by regional marine
flooding above surface 8 in carbonate lithologies at CH,
GU, and BR; and mixed lithologies at GS (P. tenius to B.
confluens).

Regional marine flooding between surfaces 8 and 10 at DG.

8 ca 454 Ma Millbrig and Deicke K-bentonite interval in dolomitic
limestones at CH, BR, and BI.

Millbrig and Deicke K-bentonite interval in red siltstones
at HM, at the base of quartzarenite deposits at HL and DM;
and toward the top of the quartzarenite interval in GS.

7 early Late
Ordovician
(middle
Mohawkian, ca
456)

Subaerial exposure followed by regional marine flooding
below surface 8 at CH, BR, and BI (upper E.
quadridactylus to lower B. compressa zones).

Subaerial exposure followed by regional marine flooding
below surface 8 at HM, HL, DM, GS, and PF (C. bicornis
zone).  Resurgence of limestone deposition in section E.

6 Late
Ordovician
(late
Mohawkian)

Marine flooding in southern sections BI and BR (E.
quadridactylus zone).

Coarsening-upward and shallowing, termination of
carbonate deposition, and onset of fine-grained siliciclastic
deposition in northern sections D and E  (P. gerdae zone).

5 Late
Ordovician
(late
Mohawkian)

Marine flooding in BI (P. acuelata zone) and onset of
carbonate deposition in BR (older than E. quadridactylus
zone).  Inferred latest onset of deposition in DG, SS, GU,
DM, and ST.

Shoaling, termination of carbonate deposition, and onset of
fine-grained siliciclastic deposition in section GS (younger
than P. Sweeti conodont zone).

4 Middle-Late
Ordovician
(ca. 458)

Subaerial exposure followed by regional marine flooding
in section BI (upper C. Sweeti to lower P. aculeata zones).

Regional marine flooding in southern section Q (N. gracilis
to C. bicornis zones).

3 Middle-Late
Ordovician
(ca. 458)

Onset of carbonate deposition at BI (C. sweeti zone) and
inferred for GS, HM, and RH (P. serra zone).

Drowning of the carbonate platform and graptolitic, black
shales deposition at AB and CL; slight shoaling and
drowning at PF (top of G. teretiusculus to N. gracilis zones;
Finney et al., 1996).

2 late Middle
Ordovician
(upper
Whiterockian,
ca. 463)

Onset of carbonate deposition at the northern section RH
(P. serra zone) and uncertain for section HM.  Marine
flooding events may have been recorded in the carbonate
interval at CH, RI, PF, AB, and CL.

Drowning of the carbonate platform and graptolitic,
calcareous shales deposition (D. teretiusculus zone) at areas
eastward of RH (Finney et al., 1996).

1 late Middle
Ordovician
(middle
Whiterockian,
ca 466-464
Ma)

Localized onset of carbonate deposition at CH (H.
holodentata to C. sweeti zones), PF (C. friendsvillensis
zone), and uncertain at RI, AB, and CL.

Drowning of the carbonate platform and graptolitic shales
(D. murchisoni zone) deposition at areas eastward of CL, GS,
and HL (Finney et al., 1996).

Post-Knox unconformity.  This surface incorporates
surfaces 1, 2, 3, 4, or 5 due to the diachronous onset of
carbonate deposition in the distal foreland.

Post-Knox unconformity.  This surface either corresponds
to surface 1 or is less than 20 m below of surfaces 1 or 2.
Resume of peritidal to shallow-marine deposition in proximal
foreland settings in northwester Georgia and Tennessee.
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Figure 3.1 Illustration of the flexural geometry and distribution of depositional settings through time
for three different configurations of the distal foreland lithosphere (not to scale). These hypothetical
profiles are constructed assuming that time intervals (e.g., time 2 to time 3, time 3 to time 4) are the
same, a marginal load advances to the left beginning at time 2, and sea-level position is fixed. (A) In a
homogeneous lithosphere, the flexural wave migrates cratonward at a consistent rate. Flexurally-
induced irregularities, such as flexural normal faults (shown only in profile for time 2 for simplicity),
develop as the flexural wave migrates. The carbonate platform shallows, may be exposed to subaerial
settings, and later deepens as the flexural wave and flexurally-induced irregularities place the foreland
plate at different water depths. (B) Weak zones in the lithosphere affect the rate of cratonward migra-
tion and geometry of the bulge (e.g., Patton and O’Connor, 1988; Washbush and Royden, 1992). The
bulge is locked above the weak zone for longer intervals of time because the plate bends more easily
in weak segments than in stiff segments. As a result, the bulge will have a narrower and higher ampli-
tude than the forebulge predicted in flexural models. Additionally, the foredeep will narrow and deep-
en with time. As the bulge grows with time, shallow-water carbonates and underlying strata are
exposed to the surface, whereas the carbonate platform on the foredeep side of the weak zone is
drowned rapidly. (C) Intraplate uplifts generated prior to marginal loading at time 1, such as inversion
of a pre-existing graben structure (e.g., Dorobek, 1995; this chapter), may also interfere with the
geometry and rate of migration (as in B) of the marginal flexural wave. Prior to the arrival of the flex-
ural wave and flexurally-induced irregularities, deep erosion of the passive-margin succession occurs
within inverted upthrown blocks, whereas thick successions of carbonates (dc and sc) are deposited in
downthrown blocks. As the flexural wave advances, the intraplate uplift obscures the position of the
flexural uplift (time 3) and becomes less evident with time (time 4).
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Figure 3.2  (previous page) Location of study sections and distribution of lithofacies belts of the

Middle and Upper Ordovician strata in the Appalachian thrust belt of Georgia and Alabama.

References to sources of stratigraphic sections are listed in alphabetic order:1) Bearce, 1999;2a)

Bergström, 1973; 2b) Bergström 1977; 3) Caldwell, 1992; 4) Chowns, 1972; 5) Chowns and

Carter, 1983; 6) Drahovzal and Neathery, 1971; 7) Ferrill, 1989; 8) Finney et al., 1996; 9)

Guthrie, 1994; 10) Hall, 1986; 11) Hall et al., 1986; 12) Jenkins, 1984; 13a) Kath et al., 1994;

13b) Randal  L. Kath, written communication, 2001; 14) Kher, 1996; 15) Kidd, 1975; 16) Lee,

1983; 17) Martin, 1991; 18) Milici and Smith, 1969; 19) Neathery and Drahovzal, 1985; 20)

Osborne, 1996; 21) Phillips, 1996; 22) Raymond, 1973; 23) Repetski, 1992; 24) Rindsberg and

Chowns, 1986; 25) Shaw et al., 1990; 26) Ward, 1983; 27)  Zeigler, 1988.
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Figure 3.4  (previous page) (A) Ordovician series (from Webby, 1998) and correlation of

conodont zones, graptolite zones, and K-bentonite beds (modified from Kolata et al., 1996);

radiometric ages of Mohawkian K-bentonites from Kolata et al. (1996, 1998), and of older K-

bentonites from correlations made by Finney et al. (1996).  Also are shown the positions of the

stratigraphic surfaces discussed in the text (numbers 1 to 10, see Table 3.3 for definition of each

of these surfaces).  (B) Third-order depositional sequences established in the platform interior of

northeastern Tennessee and the Nashville dome.  (C) Proposed Ordovician sea-level curves.

Ross and Ross (1995) curve is based on third-order stratigraphic sequences from several key

sections in North America.  Bond and Kominz (1991) curve is relative to a section in the stable

Iowa craton.  The latter curve was used in constructing tectonic subsidence curves.  The

stratigraphic position of surface 8 is shown for reference.



Depositional environment

peritidal

subtidal
shallow ramp

deep carbonate
ramp

upper estuarine, fan deltas

middle submarine fans:
moderate to deep water
turbidites

fine-grained clastic
shelf,
lower estuarine,
muddy tidal flat

upper estuarine,
subtidal sand bars,
longshore shoals

Lmo, Lmr, LDmr,
Lmi, LDmi,
Lml, Lmml

Lmm, Lmmf, Lmma,
LDmm, Dmm, Lmo,
LDmo, Lsp, Dsm

Lmr, Lms, Lml

Lsi, Dsi,
Lmms, LDmms,
Dmms

Lso, Lss,

LSbs, SLbs

LSf, SLf

LSci,
SLci

LScs; LScs,
SLci

basinal, anoxic, organic-rich
tail of submarine fans

Sg

Ss, Sst, Ssp,
Sse, Ssh, Ssr
Ssl, Sss

Ssb, Sshe

Ssfl, Sfl

Sfsm, Sfm

Ssr, Ssw, Sst,
Sshe, Ssp, Ssm

Sb

Ssm, Sshe

Ssfl, Sfl

Sb

Lithofacies codes
Carbonate Mixed Siliciclastic

Sgsubmarine debris flow

Sgcm, Sgmh
Ssl, Sgh

Sfsm, Sfl

OROGENIC
BELT

B
A

S
IN

A
X

IS
CRATON

C
ar

bo
na

te
ra

m
p

U
nd

er
fil

le
d

fo
re

de
ep

higher
energy

de
ep

er
w

at
er

O
ve

rf
ill

ed
fo

re
de

ep

open
m

arine

de
ep

er
,r

es
tr

ic
te

d
w

at
er

fault

K-bentonite (M= Millbrig,
D= Deicke)

phosphate

bioturbation

fossil in siliciclastic beds

mudcrack
horizontal bedding

cross bedding in carbonates

slump-folded strata

chert nodules/thin beds
in calcareous beds

3 stratigraphic surface
line of correlation (uncertain
with question marks)

x-x

suprafan lobes and
outer submarine fans

lo
w

er
en

er
gy

subtidal
lagoon

post-Ordovician unconformity
post-Knox unconformity

IV stratigraphic interval

?

SYMBOLS FOR STRATIGRAPHIC COLUMNS

99

Figure 3.5 Key to facies for stratigraphic columns in Figures 3.7, 3.8, and 3.9. Explanation of

lithofacies codes is given in Tables 3.1 and 3.2.
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Figure 3.6 Geometry of the truncation of passive-margin strata of the Knox Group in the distal

Blountian foreland basin. See Figure 3.3 for location of lines of correlation. Thicknesses of

Knox units are from Raymond (1993) and Chowns et al. (1992). (A) Depth of erosion rises

northwestward from Copper Ridge beds in section DG (Cressler, 1974) to upper Lower

Ordovician beds of the Mascot Dolomite unit in section RI (Chowns et al., 1992; Repetski,

1992). (B) Depth of erosion rises southeastward from beds in the Longview (section DM) to

beds in the Newala Limestone (section GS) (Drahovzal and Neathery, 1971). (C) Depth of

erosion rises southeastward from beds in the Copper Ridge (section BI) to beds in the Odenville

Limestone (section AB). The anomalous thin Knox interval identified in section BI extends

southeastward in the subsurface, as imaged by seismic reflection profiles and structural cross

sections southeast of section BI (e.g., cross section 16, Plate 2.1). Note that sections with

maximum and minimum amount of Knox truncation are adjacent to each other and restore on

different sides of basement faults.
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Figure 3.7  (previous page) Line of stratigraphic correlation A (including section HL, which is

southwest of line A) showing stratigraphic units, biostratigraphic data, lithofacies, stratigraphic

correlation surfaces (numbers 1 to 10), and stratigraphic intervals (numbers I to V).  Note the

dominance of siliciclastic deposits to the southeast in sections HM and DG; the thinner

succession in sections DG, HL, and RH; and the thick carbonate succession in the composite

section CH-RI.  The datum for stratigraphic correlation is the stratigraphic interval containing the

Millbrig (where Millbrig is absent, the Deicke) K-bentonite.  See Figure 3.3 for location of line

of correlation A, Figure 3.5 and Tables 3.1 and 3.2 for facies codes, and Figure 3.2 for key code

of sections.
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Figure 3.9 Line of stratigraphic correlation C showing stratigraphic units, biostratigraphic

data, lithofacies, stratigraphic correlation surfaces (numbers 1 to 10), and stratigraphic

intervals (numbers I to V). Note the dominance of carbonate deposits in northwestern sections

BI and AB; the sharp contact between shales and carbonate successions in sections AB, CL,

and PF, and the thinner succession in section BI. The datum for stratigraphic correlation is the

inferred position in the stratigraphic column of the boundary between P. anserinus -P. Serra

conodont zones. See Figure 3.3 for location of line of correlation A, Figure 3.5 and Tables

3.1 and 3.2 for facies codes, and Figure 3.2 for key code of sections.
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Figure 3.10  (previous page) Paleogeographic maps showing evolution of depositional

environments in the distal foreland basin through the Middle and Late Ordovician.  Each map

represents the time of deposition for strata underlying the stratigraphic surface indicated.  Note

the role of inversion of basement faults of the Birminghan graben system in the early distribution

of depocenters (Interval I), and stopping the cratonward progradation of the Blountian clastic

wedge on the southeast (Intervals I to IV).  Siliciclastic depocenters migrated northeastward and

are shallower on the northeast (Intervals I to IV).  The clastic wedge prograded across the

inverted Birmingham graben in Interval V.  See Figure 3.2 for key code of sections.
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Figure 3.11  (previous page) (A) Total and tectonic subsidence curves (lower and upper curves,

respectively) for representative sections restoring along the northwestern shoulder of the

Birmingham graben (composite section CH-RI) and inside the graben (sections BI and DG).  (B)

Total and tectonic subsidence curves (lower and upper curves, respectively) for representative

sections restoring southeast of the Birmingham graben (sections GS and PF).  Cross symbols in

tectonic subsidence curves correspond to the error in determination of water-depth for the

uppermost strata of each interval.  Definitions of water-depth criteria are from Steinhauff and

Walker (1996).  Correction for sea-level fluctuations uses the sea-level curve relative to the Iowa

craton (Bond and Kominz, 1991) in order to give a minimum estimate of relative sea-level

fluctuation along the plate margin.  See text for discussion of the patterns of tectonic and total

subsidence.



600

400

200

he
ig

ht

undeformed load

CLAB PF
0

109

400

200

200
200 0100300400500

horizontal distance, km

he
ig

ht

deformed load
(for Te = 50 km)

su
bs

id
en

ce

0

width of the Birmingham
graben = 40 km

density of load = 2700 kg/m3

v = Poisson’s ratio = 0.25

decompacted thickness
of the Knox

18
11

m

13
41

m

19
49

m

Te=30 km
Te=50 km

flexural deformation

BI

ST

CLAB PF

Northwest Southeast

(B)

(A)

Te = 30-50 km
E = Young’s modulus =70 Gpa

deposition in ST,
CH and RI

northwestward thinning
of Upper Ordovician strata

range of observed tectonic subsidence between
stratigraphic surfaces 1 and 3 (carbonate inter-

val only; maximum and minimum values are
from the error in water-depth interpretations).

m

m

deposition in HM, RH

400 300 200 100 0

-500

0

500

profile 1

profile 2

de
pt

h,
m

el
ev

at
io

n,
mearly generation and later

reduction of accommodation
space

profile 1

flexural uplift followed by
flexural subsidence

forebulge

o
ro

g
en

ic

1

2

3

4

el
ev

at
io

n,
km

se
d
im

en
ta

ry
an

d

Te=40 km

profile 1
profile 2

horizontal distance, km

Geometry of loads

sediments

water

w
at

er
lo

ad
s

lo
ad

s

in
tr

ap
la

te
lo

ad
s

(s
am

e
lo

ad
s

in
b
o
th

p
ro

fi
le

s)

Figure 3.12

(C)

profile 2



110

Figure 3.12  (previous page) Effects of tectonic loads in an intraplate setting, assuming that the

load consists of the inverted Birmingham graben at early phases of deposition of Interval I (late

Middle Ordovician).  (A) Flexural models indicate bending of a continuous elastic lithosphere by

effects of tectonic loading (Turcotte and Schubert, 1982).  Geometry of the load corresponds to

the width of the Birmingham graben (from seismic data and thickness of Cambrian strata); the

height of the load to the half northwest is from the difference in decompacted thickness of the

Knox Group between sections ST and BI, and for the half southeast between BI and AB.  Values

of 30 and 50 km were chosen as reasonable boundary values for the elastic thickness of the

continental lithosphere (e.g., Cardozo and Jordan, 2001).  Other model input parameters are

specified in the diagram.  This flexural model does not consider the effects of reactivation of

other faults and the distal effects of flexural subsidence by loading at the plate margin.  (B)

Predicted flexural deformation curves are within the range of the tectonic subsidence calculated

for sections AB, PF, and CL (shown in Figure 3.11B).  This hypothetical model predicts the

creation of two small-scale foreland-like basins adjacent to the inverted block (Figure 3.10A),

which geometry will depend on the geometry of the inverted upthrown block.  In section ST,

lack of biostratigraphic data does not permit the calculation of tectonic subsidence for Interval I.

This model also explains early carbonate deposition in sections CH-RI, HM, and RH, and deep

truncation of Knox strata in section DG.  A better match in the geometry of the depocenter would

be obtained if the following factors, among others, were considered: angle of the faults (e.g.,

Zhang and Bott, 2000) and rate of erosion of the tectonic load (e.g., Crampton and Allen, 1995).

(C) Hypothetical model showing the effects on distal foreland deposition by interaction between

intraplate flexure and the migration of the marginal flexural wave (note that intraplate uplift has

less relief than A and has the same geometry for profiles 1 and 2).  Initial overlap of intraplate

and marginal flexural profiles creates anomalous patterns of deposition northwest of the

intraplate uplift (profile 1).  Forelandward migration of the marginal flexural wave by advance of

tectonic and depositional loads (profile 2) reduces the anomalous accommodation space

northwest of the intraplate uplift (e.g., in section CH-RI, middle Interval I) and creates

accommodation space southeast of the intraplate uplift by flexural subsidence.
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CHAPTER FOUR

INFLUENCE OF PRE-EXISTING STRUCTURES ON FOREDEEP STRATIGRAPHY,

SUBSIDENCE, AND PROVENANCE OF THE BLOUNTIAN FORELAND BASIN

4.1  INTRODUCTION

In peripheral foreland basins, coeval drowning and exposure of different parts of the

former platform have been attributed to tectonic and sediment loading along the collisional

margin (e.g., Beaumont, 1981; Jordan, 1981; Dorobek, 1995; Sinclair, 1997).  The drowned

platform becomes the foredeep zone of the foreland basin, which is bounded by the frontal tip of

the orogenic belt on the collisional side and the forebulge on the craton side (DeCelles and Giles,

1996).  Temporal and spatial variations of flexurally controlled subsidence of the foredeep have

been constrained mainly by the effects of crustal loads and the underlying lithosphere.  The

uneven distribution of crustal loads on the plate margin are controlled by the temporal and spatial

variations of tectonic shortening (e.g., Whiting and Thomas, 1994; DeCelles and Mitra, 1995;

DeCelles and DeCelles, 2001), exhumation (Fleming and Nelson, 1991), climate (Horton, 1999),

and/or sediment supply.  The underlying lithosphere has also spatial and temporal variations in

strength, which are a function of its thermal state (e.g., Beaumont, 1981; Stockmal et al., 1986),

can be affected by pre-existing variations in lithospheric strength (e.g., Patton and O’Connor,

1988; Cardozo and Jordan, 2001), or inelastic yieding of the deep continental lithosphere during

flexural bending (Waschbush and Royden, 1992; Lorenzo et al., 1999; Tandon et al., 2000).

Geodynamic modeling of the lithosphere depends strongly on the choice of rheological

properties assumed for the lithosphere (i.e., uniform elastic, uniform viscoelastic, or temperature-

dependent viscosity models; Quilan and Beaumont, 1984) and if the foreland plate is infinite

(continuous) or broken.  Subsurface loads acting on the subducted slab (Royden et al., 1987) and

dynamic loading by viscous mantle corner flow associated with subduction (Gurnis, 1992) are

other mechanism proposed to explain tectonic subsidence of the lithosphere.

In general, all these models ignore the role of inherited structural and compositional

configuration of the rifted margin (e.g., zig-zag geometry of the Laurentian margin of Thomas,

1977, 1991, 1993) in the three-dimensional evolution of the orogenic thrust belt and foreland

basin.  This study considers the role of reactivation of rift-related marginal and intraplate faults
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in subsidence and sedimentary filling of a peripheral foreland basin, as well as the influence of

those structures in foreland-plate and orogenic-belt deformation (Figure 4.1).  Reactivation of

pre-existing structures, such as intraplate grabens, transverse basement faults, and normal faults

in promontories and embayments needs somehow be included in the three-dimensional analysis

and geodynamic modelling of foreland basins.

There is a growing recognition of the effects of pre-existing structures in the evolution of

foreland basins.  Offsets of foreland depocenters and forebulges in the Apennine foreland plate

occur across faults that trend nearly perpendicular to the mountain belt (Royden et al., 1987).

Reactivation of faults trending at high angles to the collisional margin also has provided an

efficient mechanism to explain differential subsidence, sand percent, and sequence distribution

along the Taconic foreland in the north-central Appalachians (Castle, 2001).  Bradley and Kidd

(1991) and Lehmann et al. (1995) have suggested flexural reactivation of basement faults

striking parallel to the collisional margin to explain the rapid subsidence and abrupt shift from

shallow- to deep-water deposition in the northern Taconic foreland basin.  Gupta and Allen

(2000) recognized reactivation of basement structures as the primary control on the geometry of

the basal unconformity and deposition in the distal Alpine foreland basin.  Similarly, intraplate

normal basement faults in the southeastern corner of Laurentia striking parallel to the margin

were reactivated as reverse structures during early pulses of the Taconic orogeny (Chapter 3) and

controlled both erosion and depositional patterns in the distal foreland.

The structural and stratigraphic configuration of the continental margin is a dominant

factor in the evolution of orogenic belts (Thomas, 1977; Macedo and Marshak, 1999).  Spatial

and temporal changes in thrust-belt deformation are recorded in the geometry and composition of

foreland strata adjacent to the thrust belt (Figure 4.1).  The regional recess and salient geometry

of the Appalachian thrust belt (Thomas, 1977) has been kinematically linked to the basin

geometry and stratal composition of the rifted margin of Laurentia (Thomas, 1991).  Salients of

the thrust belt include the thick sedimentary successions of the embayments; in contrast, recesses

of the thrust belt formed in the promontories, where the sedimentary cover is thinner than in the

embayments (Thomas, 1977).  In the Appalachians and other thrust belts, salients have less

internal shortening and broader critical wedges than in recesses (e.g., Macedo and Marshak,

1999; Marrett and Aranda-Garcia, 1999).  Total shortening in cross sections across the

Tennessee salient is in average 10% less than in cross sections across the Alabama recess (Figure
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2.11 in Chapter 2).  Higher deformation in recesses than in salients of the orogenic belt may

cause along-strike changes in the geometry and depth of erosion of the mountain belt.  Because

peripheral foreland-basin geometry is dominantly influenced by geometry of orogenic loads

(e.g., Stockmal et al., 1986), along-strike variation of foredeep geometry may reflect the along-

strike recess-salient geometry of the orogenic belt (Figure 4.1).

In this chapter, stratigraphic, tectonic subsidence, and provenance analyses of proximal

and middle Blountian foreland strata are used to establish whether along-strike variations on

foredeep stratigraphy are somehow influenced by the pre-existing configuration of the plate

margin of southern Laurentia.  Blountian strata are involved in the Alabama and Georgia

Appalachian thrust belt (Figure 4.2), but they restore palinspastically on the transition between

the Alabama promontory and Tennessee embayment of the southeastern Laurentia margin

(Figures 4.1 and 4.3) (Chapter 2).

4.2 GEOLOGIC AND STRATIGRAPHIC SETTING

4.2.1 Structures from the previous extensional tectonic setting

On the basis of palinspastic restoration and stratigraphic analyses of upper Precambrian

synrift and Cambrian to Lower Ordovician passive-margin deposits in the Appalachian and

Ouachita orogenic belts, Thomas (1977, 1991) proposed an orthogonal zig-zag geometry of the

eastern Laurentian (North American) rift margin.  Although for latest Early Ordovician the

eastern margin of Laurentia was covered by a shallow carbonate platform after more than 40

m.y. of passive-margin deposition (Thomas, 1977, 1991), the underlying basement configuration

of the Laurentian margin differs along-strike from embayments (e.g., the Tennessee embayment,

Figure 4.1B) to promontories (e.g., the Alabama promontory, Figure 4.1B’).  The embayment-

promontory configuration resulted from the Blue Ridge and Ouachita rifting episodes during late

Precambrian and Early Cambrian times, respectively (Thomas, 1991).  Extension in Cambrian

time reached intracratonic areas of the Alabama promontory forming several graben structures,

such as the Birmingham graben (Figures 4.1 and 4.3).  The structural configuration of the

intraplate Birmingham graben changes along strike across several transverse basement faults

(Chapter 2) forming an accommodation or transfer zone typical of continental rifts (Moustafa,

2002; Younes and McClay, 2002).  This accommodation zone strikes parallel with and likely
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connects with the Georgia transform fault system that separates the Alabama promontory and

Tennessee embayment in the plate margin (Figure 4.1) (Thomas, 1993).

4.2.2 Taconic (Blountian) orogeny and foreland deposits

Rapid drowning of the Lower Ordovician carbonate platform, diachronous deposition of

deep-water shales in proximal foreland settings, and thin beds of volcanic ash are the evidence

for a collisional orogenic event along the irregular eastern margin of Laurentia (e.g., Bradley,

1989; Drake et al., 1989; Finney et al., 1996).  The southernmost depocenter along the Taconic

orogen of Laurentia is spatially coincident with the Tennessee embayment of the older rifted

continental margin (Thomas, 1977).  In the depocenter, black shales overlie Middle Ordovician

carbonate-ramp deposits and grade upward in a coarsening-upward turbidite succession,

reflecting drowning of the foreland plate and sediment dispersal from an orogenic terrain on the

east (Shanmugam and Walker, 1978, 1980; Shanmugam and Lash, 1982; Diecchio, 1991).  The

Blountian clastic wedge thins southwestward from the depocenter in the Tennessee embayment

onto the Alabama promontory (Thomas, 1977; Thomas et al., 2002).  However, the ages of basal

synorogenic siliciclastic deposits show that orogeny along the Alabama promontory began

somewhat earlier than farther north along the southern part of the Laurentian margin (Bradley,

1989; Finney et. al., 1996).

A very complex Blountian succession of carbonate and siliciclastic strata covers the post-

Knox unconformity on the foreland plate in the Alabama promontory and southern Tennessee

embayment (Chapter 3).  In this study, northwestern, intermediate, southeastern, and absent

strata lithofacies belts are distinguished on the basis of structural position within the thrust belt,

age, and the order of stacking of carbonate and siliciclastic deposits (Figures 4.2 and 4.3).

The northwestern lithofacies belt corresponds to the distal zone of the Blountian foreland

and is described in detail in Chapter 3.  This lithofacies belt consists mostly of Upper Ordovician

carbonate beds and contains a complex array of lithologies ranging from mudstones to skeletal,

algal, and intraclastic grainstones (Drahovzal and Neathery, 1971; Walker et al., 1983; Benson,

1986a).  The association of carbonate lithologies on the northwest has been interpreted as

recording deposition on a peritidal and shallow-water carbonate platform (Ruppel and Walker,

1984; Benson, 1986b; Steinhauff and Walker, 1995) (chapter 3).  These deposits are irregularly
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covered by reddish tidal-flat and estuarine siliciclastic deposits (Neathery and Drahovzal, 1985;

Martin, 1991).

Carbonates and red siliciclastic strata characterize the intermediate lithofacies belt.  The

lower part consists of karst-filling conglomerates, peritidal and shallow-marine carbonate

deposits, whereas the upper part consists mostly of red siltstone beds with some interbeds of

sandstones, shales, and carbonates (Drahovzal and Neathery, 1971; Chowns and Carter, 1983).

Rocks of the intermediate lithofacies belt have been interpreted as deposits of shallow-platform,

estuarine, and tidal-flat environments (Ruppel and Walker, 1984; Benson, 1986b; Martin, 1991).

In the Blountian foreland basin, strata of the intermediate lithofacies mark the transition between

platform carbonate deposition to the northwest and deep-water siliciclastic deposition to the

southeast.

The southeastern lithofacies belt consists of Middle Ordovician carbonate beds and a

thick succession of deep-water siliciclastic deposits.  Southeastern carbonate strata include

peritidal, and shallow- to deep-water carbonate platform deposits (Drahovzal and Neathery,

1971; Walker et al., 1983; Ruppel and Walker, 1984; Benson, 1986a).  Deep-water shales and

turbidites overlie the drowned carbonate succession (Ruppel and Walker, 1984; Benson, 1986b),

and are truncated at the top by Devonian and Mississippian strata.

On the northwestern side of the southeastern lithofacies belt, Middle Ordovician to

Silurian strata are absent.  In the palinspastic map, localities with no Blountian or Silurian

stratigraphic record (i.e., sections with Devonian or Mississippian strata resting on Lower

Ordovician strata) form a gap of ~ 111 km with a linear (Figure 4.3).  Sections northwest of the

linear gap include Middle Ordovician carbonates of the southeastern lithofacies (sections GS and

RL in Figure 4.3), and sections southeast of the linear gap include either only Middle Ordovician

black shales (section CB) or carbonates and black shales (section FC).  Sections southwest of the

gap have either mostly carbonates (e.g., sections AA and AB in Figure 4.3) or the same

succession of carbonates grading abruptly to deep-water black shales (section CL in Figure 4.3).

The vertical and lateral change from shallow-marine carbonates to deep-water shales, as

recorded in sections southeast and southwest of the gap, is a common characteristic of

underfilled peripheral foreland basins (Sinclair, 1997).  Therefore, I infer that Middle Ordovician

deposits were originally accumulated on a homogeneous southeast-dipping foredeep, and that the
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linear gap formed after Ordovician deposition, probably because of reactivation of basement

structures.

4.2.3  Previous subsidence studies in the central-southern Taconic foreland

Several studies have used a model of lithospheric flexure associated with tectonic loading

on the eastern margin of Laurentia as the primary mechanism driving subsidence for the foreland

of the Blountian and Taconic orogeny (Shanmugam and Lash, 1982; Quinlan and Beaumont,

1984; Beaumont et al., 1988, Ettehnsohn, 1991; Diecchio, 1993).  However, the northwestern

extent of the Blountian foredeep is controversial.  A thin succession of distal mixed carbonate-

siliciclastic strata that separates a deeper and more clastic-rich basin to the southeast (foredeep)

from thick, shallow-marine carbonates to the northwest was interpreted by Diecchio (1993) and

Roberson (1994) as evidence of the Blountian forebulge.  Diecchio (1993) suggested that buried

graben-fill successions in the distal foreland played an active role in subsidence (i.e., sediment

load subsidence), creating the conditions for the thick record of shallow-marine carbonates

northwest of the forebulge.  Walker et al. (1983) considered that high depositional rates of

carbonates and siliciclastic deposits at opposite sides of the foreland plate created a zone of thin

deposition (slow depositional rates) between carbonate and siliciclastic depocenters.  Quinlan

and Beaumont (1984), Beaumont et al. (1988), and Ettensohn (1991) include both carbonate and

siliciclastic deposits within the foredeep zone.  None of these studies considered the effects of

reactivation of pre-existing structures in the foreland plate.

4.2.4  Provenance in the central-southern Taconic foreland

Provenance data are available from conglomerates and sandstones within the Blountian

clastic wedge near and to the northeast of the depocenter in the Tennessee embayment.  Coarse

conglomerate beds distributed at various stratigraphic levels of proximal foreland strata and in

several localities along strike consist dominantly of clasts of carbonate rocks, with subordinate

clasts of sandstones and siltstones, and trace amounts of volcanic (greenstones) and Precambrian

(Grenville) basement clasts (Kellberg and Grant, 1956; Cressler, 1970; Rader and Gathright,

1986).  This clast population indicates that nearby source areas included the Lower Cambrian-

Lower Ordovician passive-margin succession of the Laurentian margin, as well as late

Precambrian synrift clastic sedimentary rocks and synrift volcanic rocks.  Sandstone composition
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of the Blountian clastic wedge is dominated by monocrystalline quartz, plagioclase, and

sedimentary rock fragments (Mack, 1985).  This association of sand-size detritus indicates

sources composed primarily of sedimentary rocks and subordinate amounts of low-grade

metamorphic rocks and plagioclase-rich plutonic rocks and/or gneiss (Mack, 1985).  Sandstones

also contain detrital grains of carbonate rocks, and an extrabasinal source of detrital carbonate

grains rather than intrabasinal allochems is consistent with the clast population of the

conglomerates (Mack, 1985).  Matching heavy-mineral associations between sandstones of the

Upper Ordovician Bays Formation and Lower Cambrian and late Precambrian siliciclastic rocks

in northeastern Tennessee indicates supply from Laurentian sedimentary rocks and Precambrian

crystalline basement (Cummings, 1965).  Farther to the northeast, sandstones of the Upper

Ordovician Martinsburg Formation (clastic wedge in the Pennsylvanian embayment) contain

volcanic rock fragments; and percentages of pelitic, low-grade metamorphic, chert, and

plagioclase fragments are higher than in the Blountian sandstones (Mack, 1985).

Whole-rock chemical analysis in Middle and Upper Ordovician samples from the

southern-central Appalachians indicates supply from terranes with more diverse rock

composition.  Whole-rock chemical composition of Blountian and Taconic (clastic wedge in the

Quebec embayment) mudstones indicates an increase in the ratio of mafic to felsic elements with

time suggesting supply from mafic rocks within colliding terranes (Andersen, 1995).  This

increase is higher in the Taconic clastic wedge in the Quebec embayment than in the Blountian

clastic wedge in the Tennessee embayment (Andersen, 1995).

Sedimentary provenance analysis using initial 143Nd/144Nd ratios (εNd) have been used in

the southern Appalachians to determine an average age of regional source areas.  This approach

assumes that major chemical fractionation of the Sm-Nd system occurs during differentation of

material from the mantle and incorporation into the continental crust (Taylor and McLennan,

1985).  The advantage of Nd isotopes for provenance analysis is the low diagenetic effects

affecting the Sm/Nd ratios after deposition, coherent behavior of Nd isotopes in clastic sediments

during transport, and the ability to differentiate sources if their crustal ages are > 100 m.y.

(Gleason et al., 1994).  Nd-isotopic composition of Middle and Upper Ordovician deposits of the

southern-central Appalachians and Ouachita Mountains reflects an isotopic shift, which has

generated controversy in the interpretation of source and paleodrainage of Middle and Upper

Ordovician sediments deposited along the southern margin of Laurentia and the Ouachita
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embayment (Gleason et al., 1994, 1995a, 1995b, 1997, 2002; Thomas, 1995, 1997; Andersen and

Samson, 1995).  The rapid up section increase of Nd-isotopic composition at ~ 465-455 Ma from

εNd = -15 to εNd = -7 contrasts with the homogeneous composition after 450 Ma (Gleason et al.,

2002).  This isotopic shift is recorded earlier in Blountian sediments than in sediments in the

Ouachita Mountains to the southwest (Gleason et al., 2002) or in other Taconic sediments to the

north (Gleason et al., 1995b; Andersen and Samson, 1995).  The increase in Nd-isotopic ratios is

greater in Blountian sediments than in Taconic sediments, indicating greater influence of

juvenile source rocks in the south than in the north (Andersen and Samson, 1995).

The abrupt change of isotopic signature has been interpreted as the result of delivery of

detritus from a combined Archean-Grenville crust (more negative εNd) to sources composed

mainly of Grenville rocks (more positive εNd) (Andersen and Samson, 1995; Gleason et al.,

2002).  Using Nd isotopes and U-Pb ages of single detrital zircons, Gleason et al. (2002) indicate

that Middle and Upper Ordovician sediments in the Ouachita region were delivered from the

Appalachian Taconic highlands with a dominant Grenville component.  Andersen and Samson

(1995) suggest juvenile sediment being delivered from uplifted Grenville crust probably

combined with exotic terranes, such as volcanic arcs.  Thomas (1997) argued that the

homogeneous Nd-isotopic composition after 450 Ma contrasts with along-strike heterogeneity of

lithotectonic composition of the orogenic belt.

4.2.5  Blountian allochthonous terranes in the southern Appalachians

Late Paleozoic (Alleghanian) dextral strike-slip and thrusting in the southern

Appalachians (Hatcher et al., 1989; Hatcher, 1999) obscure the identification of possible

Blountian allochthonous terranes and loads in the southern Appalachians.  Southeast of the

unmetamorphosed Appalachian thrust belt, the Talladega Slate belt and the Pine Mountain

internal massif contain lower Paleozoic Laurentian rocks (Tull, 1998, 2002; Steltenpohl and Tull,

2002).  Because Blountian provenance studies have suggested that sediment sources had exposed

Grenville basement, these two metamorphic complexes cannot be considered as source areas or

tectonic loads for the Blountian orogeny.  Farther northeast, tectonic loads for the Taconic

orogeny have been proposed by accretion of the Piedmont arc in east-dipping subduction

collision (Hatcher, 1999), followed by accretion of the peri-Gondwana Carolina terrane

(Hibbard, 2000).
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The Blountian highlands have been proposed as the site of Middle and Upper Ordovician

volcanism, even though the position of the volcanic arc in the southern Appalachians is

unknown.  K-bentonite beds are thicker, more numerous, and coarser in the southern

Appalachians suggesting that source volcanoes were situated near the southern and central

margin of Laurentia (Kolata et al., 1996).  Trace element analyses of K-bentonites indicate that

parent magmas were highly evolved felsic calc-alkaline, more likely produced by melting of

continental crust (Kolata et al., 1996, 1998).

4.3  METHODS

In this chapter, I integrate data from field work, seismic reflection profiles, deep wells,

and literature (published papers, theses, dissertations) to carry out stratigraphic, provenance, and

tectonic subsidence analyses in a total of 17 sections (Figure 4.2).  Age control for each section

is documented by conodonts (Bergström, 1973, 1977; Hall et al., 1986; Shaw et al., 1990),

graptolites (Finney et al., 1996), and absolute ages of K-bentonite beds (Kolata et al., 1996,

1998).  The time framework used in this study is based on the conodont-graptolite-K-bentonite

correlation chart of Kolata et al. (1996) (Figure 4.4).  Information related to the identification of

K-bentonite beds in sections HM, HL, RK, GU, DM, GS, and CL is in Appendix A.

Identification and correlation of collection of graptolites in sections PF, CL, EC, AB, HV, and

LM is in Appendix B.  The framework in space is given by the palinspastic map constructed for

the Appalachian thrust belt of Georgia and Alabama (Chapter 2).  Definitions of lithofacies and

interpretations of depositional environments used in this study are given in Tables 4.1 and 4.2,

and graphic symbols are illustrated in Figure 4.5.  Plates 4.2 and 4.3 include a detailed

description and interpretation of depositional environments of the stratigraphic sections in CI and

RK.  Appendices C and D include the thickness of stratigraphic units used for tectonic

subsidence analysis and a summary of decriptions of thin sections and hand samples.

Two lines of along-strike stratigraphic correlation of the middle to distal Blountian

foreland are constructed to illustrate differences in depositional architecture among the Alabama

promontory, the accommodation zone, and the Tennessee embayment (Figures 4.6 and 4.7).

Stratigraphic columns and estimation of thickness of proximal Blountian deposits are from

regional and local structural cross sections (Figures 4.8 to 4.10).  Plate 4.1 shows four strike-

perpendicular stratigraphic correlations that connect the information of stratigraphic columns in
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the distal and middle foreland discussed in Chapter 3 (Plates 3.1 to 3.10) with the sections in the

proximal foreland (Plates 4.2 and 4.3).  The key for stratigraphic correlation among sections in

the middle foreland or between sections in the proximal and middle foreland is the identification

of chronostratigraphic surfaces that may be connected across different depositional systems.

Eleven chronostratigraphic surfaces were identified, and they correspond to unconformities,

termination of carbonate deposition, marine flooding surfaces, and K-bentonites.  Definition of

each surface in sequential order is given in Table 4.3.  A more detailed explanation of these

surfaces is in Chapter 3.

Provenance analyses were carried out for distal, middle, and proximal Blountian

sandstone and mudstone deposits.  Eighty-one thin sections of fine to medium sandstones,

selected from a total of 132 thin sections, were point-counted utilizing 300 framework points per

thin section and using the Gazzi-Dickinson method (e.g., Ingersoll et al., 1984).  Thin sections

were stained for identification of plagioclase and potassium feldspars.  Detrital modes exclusive

of carbonate grains were calculated from the point-count results following the technique of

Dickinson (1985) (Table 4.4).  The 81 thin sections were grouped in 20 sandstone groups

according to location and stratigraphic position (Table 4.5) in order to establish spatial and

temporal variations in sandstone composition of the Blountian clastic wedge (Plates 3.1 to 3.10

and 4.2 to 4.4 show photomicrographs of selected thin sections next the stratigrahic columns).

The mean and standard deviation of each group was plotted in QFL and QmFLt ternary diagrams

of Dickinson (1985) (Figures 4.6B and 4.9D).  Six samples of shales were selected at different

stratigraphic positions within the Blountian clastic wedge in the Alabama promontory for

determination of Nd-isotopic composition.  These samples were analyzed by James D. Gleason

at the University of Michigan.  Procedures are explained in Gleason et al. (1995b, 2002, in

prep.).

Tectonic subsidence analysis was carried out in each section assuming that the top of

Ordovician was ultimately buried to a depth of at least 4 km. (from an estimate of the thickest

post-Ordovician succession in the Cahaba synclinoriun in the southern Appalachians).  I used

backstripping techniques (e.g., Sclater and Christie, 1980; Allen and Allen, 1992) to decompact

the measured stratigraphic thickness; this technique assumes a lithology-dependent exponential

decrease of porosity with depth, a fully saturated column of sediments, and local compensation

(Airy isostasy) of sedimentary loads.  Initial porosities and porosity-depth coefficients (values
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from Sclater and Christie, 1980) were averaged according to the percentage of each lithology in

each stratigraphic interval (Appendix C).  Although the assumption of Airy isostasy is

inappropriate for analysis of flexural deformation (Whiting and Thomas, 1994), I intend to

illustrate contrasts in tectonic subsidence curves of sections that restore palinspastically in the

middle and proximal foreland zones, and on the Alabama promontory and Tennessee

embayment.  Tectonic subsidence analysis for each section was carried out using a MatLab

program written by Nestor Cardozo at Cornell University.  The elastic mechanical model for

flexural deformation and its assumptions are explained in Cardozo and Jordan (2001).

4.4  MIDDLE FORELAND STRATIGRAPHY AND COMPOSITION OF

SILICICLASTIC DEPOSITS

4.4.1  Units, thickness, and age

Middle and Upper Ordovician carbonate strata restoring southeast of the Birmingham

graben consist of the Lenoir, Little Oak, and Holston Limestones.  The carbonate succession is

overlain by the Athens Shale in sections restoring on the southeasternmost part (e.g., in sections

AB, CL, CI); by red siliciclastic units of the Greensport-Colvin Mountain-Sequatchie succession

in sections near the Birmingham graben (e.g., sections GS and HM), and by the mixed

carbonate-siliciclastic Ottosee Formation in section RH (Figure 4.3).  Measured stratigraphic

thickness for some sections is incomplete because of truncation of upper strata at the post-

Ordovician unconformity (sections HL, GS, RL, AB, CL, EC, PF) or erosion on the present land

surface (sections HM and RH).  In general, stratigraphic thickness is greater at both the northeast

and southwest ends of the line of correlation HM-HL-GS-AB (Figure 4.6).  Conodonts in basal

carbonate beds in section PF yield a late Middle Ordovician age (C. friendsvillensis zone, middle

Whiterockian) (Shaw et al., 1990).  Conodonts and graptolites reported at the Lenoir-Athens

contact of locality CL are one zone older than the conodonts and graptolites reported in sections

PF and AB to the northwest (Figure 4.6; Hall et al., 1986; Finney et al., 1996).  The difference in

age of this contact documents the diachronous northwestward drowning of the carbonate

platform during late Middle Ordovician and early Late Ordovician time (Finney et al., 1996).  In

section GS, conodont studies in the Lenoir Limestone yield an earliest Late Ordovician age (C.

sweeti zone, uppermost Whiterockian) for middle and upper beds (Tom Shaw, written

communication to Ed Osborne, 1987).  The difference in conodont ages of upper Lenoir beds
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between sections AB and GS documents the diachronous northeastward termination of carbonate

deposition (Figure 4.6).  For section GS, middle to late Late Ordovician conodonts (B. confluens

to A. ordovicicus zones, late Mohawkian to middle Cincinnatian) have been reported for the

upper part of the Sequatchie Formation (Raymond, 1973).  Ages for stratigraphic units in

northern sections (Lenoir, Holston, and Ottosee) are assigned by lithostratigraphic correlation

with equivalent units in southern Tennessee (Bergström, 1973, 1977).

4.4.2  Lithology

The vertical association of lithofacies in lowermost beds of the carbonate interval is very

complex and varies from place to place.  The dominant lithology is fenestral and mud-rich

limestones with sparce fauna (ostracods and gastropods) with isolated sand-size fragments of

quartz and chert.  This lithology has been identified in all sections as the Mosheim Member of

the Lenoir Limestone, and thickness varies from 0 to 30 m.  Lowermost beds also locally

includes: (1) argillaceous and dolomitic mudstone to wackestone with dolomite conglomerates at

the base and isolated cross beds in upper beds (section PF, Shaw et al., 1990); (2) chert

conglomerates (section AB, Drahovzal and Neathery, 1971); (3) intraclastic and skeletal

wackestone to grainstone with chert clasts (in areas near sections AB and GS, Roberson, 1988;

Osborne, 1996); (4) peloidal, intraclastic, algal wackestone to packstone and limestone

conglomerate (sections CL and GS, Bearce, 1999); and (5) red, mudcracked, mixed siliciclastic

and limestone lithologies (section HM; Randy Kath, written communication to G. Bayona,

2001).

The carbonate interval of the Lenoir Limestone overlying the Mosheim Member and

underlying fine-grained siliciclastic deposits (surfaces 3, 5 and 6 in Figure 4.6) changes along

strike from algal, intraclastic, and mud-dominant limestone beds in sections at the Alabama

promontory and accommodation zone to more skeletal limestones in sections at the Tennessee

embayment.  The Lenoir Limestone in sections PF and CL consists of argillaceous, peloidal,

algal (Calcisphere, Nuia and Girnavella), intraclastic wackestone to packstone.  Interbeds of

skeletal limestone with more diverse and abundant fauna (crinoids, bryozoans, sponges,

trilobites, brachiopods, and mollusks) and intensity of bioturbation increase up section.

Uppermost beds of the Lenoir Limestone in section PF consist of well sorted, skeletal grainstone

(crinoids, bryozoans, brachiopods, sponges, mollusks, and trilobite fragments; Pratt Ferry beds of
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Drahovzal and Neathery, 1971).  In section CL, thin calcareous beds are interbedded in the upper

part of the section with skeletal, intraclastic wackestones.  Time-equivalent carbonate beds to the

northwest have been named the Little Oak Limestone.  This carbonate unit in sections AB and

RL consists of argillaceous, dark-gray, intraclastic, algal (Nuia, Girnavella, Calcisphere,

Dasyclads), and skeletal wackestones to packstones with more diversity than in the underlying

Lenoir strata (Drahovzal and Neathery, 1971; Osborne, 1996).  Chert nodules, thin chert

interbeds and slump-folded strata are observed locally in the upper beds of the Little Oak in

section AB.  In section GS, the carbonate interval is dolomitic, with diverse fauna (bryozoan,

crinoids, brachiopods, trilobite) and algae (Nuia, Girnavella, Solenopora) at the bottom, and less

diverse fauna (Tetradium, mollusks, ostracods, trilobites), fenestral, and algal-laminated

dolomite toward the top.  In section HL, the carbonate interval is the thinnest in the middle

foreland (Figure 4.6) and consists mainly of very argillaceous intraclastic, skeletal, algal

packstone.  Bedding contacts and internal lamination in all these sections are stylonodular, with

local high amplitude and high concentration of shaly residue (Bearce, 1999).

In northern sections HM and RH, carbonate beds are divided into two groups.  One group

includes mud-dominant lithofacies of the Lenoir Limestone as described in section GS.  The

other group includes coarse-grained limestones.  In section HM, oncolitic and skeletal (mostly

crinoids) limestones are interbedded with the Lenoir mud-rich lithologies.  The coarse-grained

lithologies are massive at the base, and have more ripple laminations and cross beds at the top.

In section RH, the Holston Limestone (Cressler, 1974; or Rockwell and Chapman Ridge

Formations of Caldwell, 1992) consists of oncolic limestones, calcarenites, and cross-bedded

skeletal grainstones (Cressler, 1974; Caldwell, 1992).  The uppermost beds in section RH are

coarse-grained mixed crinoid and bryozoan grainstones with quartz-rich laminae and red

calcilutite in the matrix (Caldwell, 1992).  Sedimentary structures include planar and trough

cross-beds.

Overlying the carbonate interval and underlying the Millbrig-Deicke K-bentonite interval

(surface 8 in Figure 4.6) is a dominant siliciclastic interval of fine-grained sediments, but of

differing lithofacies assemblage along strike.  In southern sections AB and CL, graptolite-bearing

siliciclastic black shales overlie the interbedded calcareous shales and argillaceous skeletal

limestone lithofacies.  In section PF, graptolite-bearing calcareous black shales with slump-

folded structures (Ferrill, 1989) and isolated hummocky cross beds pass up section to laminated,
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argillaceous calcareous mudstones with fine-grained bioclastic debris beds composed of

bryozoans, brachiopods, and trilobites (Finney, 1977).  Farther northeast in sections GS, HL, and

HM, the transition between carbonate and siliciclastic lithofacies is more gradual.  In sections GS

and HL on the accommodation zone, dolomitic limestones are interbedded with gray and red

calcareous and siliciclastic shales and shaly siltstones.  In section HM on Tennessee embayment,

argillaceous skeletal grainstones and packstones are interbedded with siliciclastic shales.  In

section RH, a succession of calcareous laminated mudstones, sandstones, and shales of the

Ottosee Formation overlies the skeletal grainstone with quartz-rich laminae (Caldwell, 1992).

The framework of the sandstones includes quartz, calcareous intraclasts, trilobites, bryozoans,

brachiopods, and peloids; the more common sedimentary structures are wavy and heterolithic

laminations.

Shales and siltstones in sections GS, HL, and HM are overlain by siltstones, sandstones,

and K-bentonites of the Greensport Formation and Colvin Mountain Sandstone (Figure 4.6).

The Greensport Formation includes several coarsening-upward successions with red shales,

siltstones, and red dolomitic mudstones in the lower part; argillaceous and fine-grained

subarkoses to arkoses interbedded with sandy siltstones in the middle; and fine- to coarse-

grained subarkoses and quartzarenites interbedded with sandy siltstones at the top.  Bioturbation

is more pervasive in the middle and upper parts.  Horizontal lamination, wavy ripples, and

heterolithic lamination dominates in lower sandstone beds, whereas medium sets of cross beds

are in the upper sandstone beds.  Mudcracks are common in sandy siltstones in section HM at the

Tennessee embayment.  Thin to medium beds of dolomitic mudstones and intraclastic-skeletal

debris beds with red sandy siltstone matrix appear locally in the middle of the section, overlying

surface 7 in sections HM and GS (Figure 4.6).  In section GS, these debris beds truncate

underlying strata; and in section HM, slump-folded beds are in this interval.  In both sections

HM and GS, the debris beds separate calcareous beds below from siliciclastic deposits above.

The Colvin Mountain Sandstone is characterized by trough and planar cross beds,

horizontal bedding, scour and fill structures, bimodal sand-size distribution in some beds, and

vertical burrows as much as 60 cm deep.  This unit pinches out laterally to the northeast and

southwest of sections HM and GS, respectively (Figure 4.6).  In the distal foreland, and using the

Deicke and Millbrig K-bentonite for correlation of sections BI-DM-DG (Figure 4.7), the thin

Colvin Mountain wedge grades southwestward to shallow-water carbonate deposits in section
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BI.  In the same line of correlation and on the Tennessee embayment, the Greensport Formation

thickens northeastward and directly overlies the post-Knox unconformity (Chapter 3).

Deposits overlying the Colvin Mountain Sandstone correspond to strata of the Sequatchie

Formation and are best recorded in section GS and in distal foreland sections (Figures 4.6 and

4.7).  The lithofacies assemblage in section GS is dominated by red laminated mudstones and

siltstones at the base; red, fine-grained, mixed carbonate and siliciclastic lithofacies in the

middle; and dolomitic mudstones to wackestones toward the top.  Mudcracks and rip-up clasts

are common in the middle Sequatchie Formation.  In sections DG and DM, the Sequatchie

Formation thickens and is coarser northeastward.  In addition to the lithofacies association

described for section GS, Sequatchie beds in sections DG and DM include medium-grained

quartzarenites and mixed siliciclastic and carbonate deposits toward the top (Figure 4.7) (Martin,

1991; Zeigler, 1988; Chapter 3).

4.4.3  Composition of conglomerates and sandstones.

In middle foreland strata, clast-supported conglomerate beds have a scattered distribution

and are mostly in basal beds of the Lenoir Limestone (Figure 4.6).  Clast composition is

oligomictic, but varies from locality to locality.  In section PF, dolomite and lime mud clasts

dominate, and the matrix consists of dolomitic mud (Shaw et al., 1990).  In section CL,

limestone clasts are in a calcareous mud matrix (Bearce, 1999).  In section AB, chert and

quartzite clasts are in a calcareous silt matrix (Drahovzal and Neathery, 1971).  In section HL,

angular chert fragments are in red mudstones and shaly limestones (Chowns and Carter, 1983).

In other localities where basal chert-conglomerate beds are best exposed (i.e., the Atalla Chert

Conglomerate Member of the Chickamauga Limestone near BR and BI sections), the sand-size

matrix of the chert-conglomerate consists of chert (27-60%) and monocrystalline quartz (40-

67%) grains with calcareous and silica cement (sandstone group 15; Table 4.5 and Figure 4.6).

Fine- to medium-grained sandstones in the middle foreland have composition ranging

from arkoses to quartzarenites (sandstone groups 9 to 14 and 16 to 20; Table 4.5 and Figure 4.6).

Framework grains consist, in order of abundance, of monocrystalline quartz (44-99%),

plagioclase (0–26%), unidentified feldspar (includes albitized plagioclase and feldspar partly

replaced by calcite, 0-20%), potassium feldspar (0-13%), non-foliated polycrystalline quartz (0-8

%), sedimentary lithic fragments (0-8%), metamorphic lithic fragments (0-7%), unidentified
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lithic fragments (0-5%), foliated polycrystalline quartz (0-4 %), and chert (0-2%).  Volcanic and

plutonic lithic fragments are identified in trace amounts.  The dominance of monocrystalline

quartz in these units is illustrated by the very small switch in position of group mean values in

QFL and QmFLt diagrams (Figure 4.6).  In a single feldspar grain, albitization was identified by

yellow and pink stains with irregular dissolution-like borders, irregular change from twinned to

untwinned feldspar, and chessboard albite (e.g., Walker, 1984).  Sedimentary lithic fragments are

mainly siltstones and shale fragments, whereas metamorphic lithic grains are quartz-mica

phyllites.  Matrix and cements constitute between 15 and 35% of the thin sections.  Clay, silt,

calcite, dolomite, hematite, micas, and glauconite are the dominant interstitial constituents in the

Greensport and Sequatchie Formations, whereas quartz, oxides, clay, and silt dominate in the

Colvin Mountain Sandstone.

Sandstone composition varies both vertically and laterally in middle foreland strata, being

more quartzose in coarser grained beds of the Colvin Mountain Sandstone and Sequatchie

Formation.  Sandstone beds of the Greensport Formation are arkosic to subarkosic in lower and

middle beds (sections GS and HL; sandstone groups 9, 10, and 13; Figure 4.6) and subarkosic to

quartzarenitic in upper beds (sections HM, HL, and DM; sandstone groups 11, 12, and 14).  The

Colvin Mountain Sandstone in sections HM, HL, and GS consists mostly of quartzarenites

(Jenkins, 1984) (sandstone groups 16 and 18), although subarkoses are found in sections GS and

DM (sandstone group 17).  Sandstones of the Sequatchie Formation are subarkosic to

quartzarenitic in sections DG (Zeigler, 1988) and HL (sandstone group 20), as well as in samples

from sections BR, DM, and GS (sandstone group 19).  Skeletal fragments (algae, bryozoans,

crinoids), and phosphates are also present in medium-to-coarse sandstone beds at the top of the

Sequatchie Formation in section BR.

4.5  PROXIMAL FORELAND STRATIGRAPHY AND COMPOSITION OF

SILICICLASTIC DEPOSITS

4.5.1  Units, thickness, and age

Middle and Upper Ordovician units in the proximal foredeep zone include the Lenoir

Limestone, Athens Shale, Rockmart Slate, and Chota Formation.  Although Blountian strata

restoring palinspastically to the southeast are thicker than Blountian strata to the northwest,

complexity of Alleghanian structures (e.g., in section AA and AA’), truncation of upper strata at
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the post-Ordovician unconformity (sections RK and FM), or erosion on the present land surface

(sections CI, LM, FC, and HV) preclude an estimate of the complete thickness.  I calculate

values from structural cross sections and geologic maps of > 605 m in section CI (Figure 4.8),

350 m in section RK (Sibley, 1983), and several hundred meters in sections LM, FC, and HV

(Figure 4.10).  In addition to complex deformation, lack of biostratigraphic control in most of the

proximal foreland succession does not allow constraints on the stratigraphic column constructed

from structural cross sections.  Conodonts collected in metamorphosed carbonate beds of the

Lenoir Limestone in section RK (E. foliaceous, middle Whiterockian, Bergström, 1973), and

graptolites of the overlying Rockmart Slate in section RK and in the Athens shale in sections

LM, FC, and HV (D. murchisoni zone, middle Whiterockian, Finney et al., 1996) document the

oldest record of Middle Ordovician deposition in the southern corner of Laurentia.  Graptolites

reported in Athens beds of section CI (G. teretiusculus zone, middle-late Whiterockian, Finney et

al., 1996) indicate diachronous drowning of the platform parallel to the plate margin.  The

youngest age documented for proximal foreland deposits comes from graptolites in section RK

(G. teretiusculus zone, middle-late Whiterockian, Cressler, 1970 (graptolites identified by

William B. Berry)), and in the Athens Shale in section FM (N. gracilis zone, late Whiterockian,

Appendix B).

4.5.2  Lithology

Absence or thin and irregular distribution of the Lenoir Limestone characterizes the basal

beds of the proximal foreland on the Alabama promontory.  In section HV, the Lenoir Limestone

has not been reported, and the black shales overlie Newala and Odenville beds of the Knox

Group (Thomas and Drahovzal, in prep.).  In section FC, the Lenoir Limestone consists of ~ 38

m of fenestral mudstones (i.e., Mosheim Member) and mud-dominated limestones with

gastropods, brachiopods, cephalopods, and trilobites (Ed Osborne, written communication to G.

Bayona, 2001).  In sections CB and LM, the Lenoir Limestone has not been reported.  In section

FM on the accommodation zone, thin to medium beds of highly fractured, mud-dominated, black

limestones are juxtaposed with highly deformed black shales with slaty cleavage; this succession

overlies structurally undifferentiated units of the Knox Group (Osborne et al., 1988; Thomas and

Drahovzal, in prep.).  In section RK, the Lenoir Limestone is < 20 m and contains lithologies

similar to those described for section FC, but with foliation (i.e., flattened fenestral textures).
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Other lithologies of the Lenoir Limestone correspond to dolomite-conglomerates, ferruginous

intraclastic and algal limestone beds with brachiopods, trilobites, mollusks, and phosphate grains

(Figure 4.9C).  These last lithologies have very local distribution and have been assigned to the

Deaton Member (Cressler, 1970).  The Lenoir Limestone in section CI on the Tennessee

embayment is 5 m thick and consists of peloidal to intraclastic packstone and grainstone

interbedded with fenestral peloidal mudstones.

Middle Ordovician strata overlying either the Lenoir Limestone or Knox strata consist

uniformly of graptolite-bearing black shales of the Athens Shale or black slate of the Rockmart

Slate.  Calcareous content in shales varies along strike.  Calcareous shales have not been reported

in sections restoring on the Alabama promontory and in section FM (Figure 4.3).  In section RK

on the accommodation zone, calcareous black slates are interbedded with siliciclastic black

slates.  In section CI on the Tennessee embayment, laminated dolomitic dark gray silty shales

and siltstones are the dominant lithology of the Athens Shale.  In contrast to the uniform fine-

grained lithology of lower beds of the Athens, lithofacies of the overlying Blountian succession

vary along strike, as described below.

4.5.2.1  Athens Shale and Chota Formation in section CI on the Tennessee

embayment.  Strata overlying the lower calcareous black shale of the Athens Shale include at

least seven coarsening-upward successions 15-60 m thick (Figure 4.8C).  These coarsening-

upward successions consist in the lower part of planar-laminated shale and siltstones, and wavy-,

lenticular-, and ripple-laminated siltstones and very fine-grained sandstones.  Laminae and thin

beds of sandstone and bioturbation increase up section, and the top of each coarsening-upward

succession consists of thick to medium bedded, fine- to medium-grained calcareous sandstones.

Thick-bedded sandstones are dominantly massive, but thinner bedded sandstones and sandstones

near the top of the Athens Shale have more ripples and cross-bedding structures, and wavy to

planar contacts.  Although siltstone-sandstone contacts are sharp, scour surfaces are not

identified and rip-up clasts were observed only in very few beds.

The coarsening-upward trend of deposition continues in the Chota Formation.  The fine-

grained lithology is more silty and laminated than the calcareous shaly lithologies of the Athens

Shale.  Thin- to medium-bedded sandstones of the lower Chota Formation have sedimentary

structures that change up section from ripple lamination in the lower part to hummocky and

planar cross beds in the middle, and toward the top to planar and trough cross beds.  Skeletal
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fragments (bryozoans and crinoids) were identified in lower sandstones of the Chota Formation,

and in bryozoan lenses in the middle part of the Chota Formation (Salisbury, 1961).  Thick cross-

bedded sandstones and horizontal-bedded, matrix-supported, cobble- to pebble-size

conglomerates in the middle of the Chota Formation are the coarsest deposits found in section CI

(Figure 4.8C).  Caldwell (1992) reported herringbone cross bedding in sandstones of the Chota

Formation in areas north of section CI.  Overlying the conglomeratic sandstone interval are red

and bioturbated sandy siltstones with slaty cleavage interbedded with argillaceous sandstones

with scoured lower contacts and shale rip-up clasts, massive and planar cross-beds in sandstones,

and a thin bed of quartzose conglomeratic sandstone at the top.

4.5.2.2  Rockmart Slate in section RK.  Fine-grained lithologies are the dominant

lithofacies in section RK on the accommodation zone, but sandstone and conglomerate interbeds

are more common, coarser grained, and thicker to the southeast (Cressler, 1970; Sibley, 1983).

Section RK was measured and described in one of the southeasternmost outcrops of the

Rockmart Slate (Figure 4.9C), and the section is divided into two parts, as defined by the

structure (Figure 4.9B).  The lower structural part consists of at least six coarsening-upward

successions.  The lower part of each coarsening-upward succession consists of silty shale with

thin interbeds of thin- to medium- bedded argillaceous and calcareous sandstones.  Sandy

siltstones and medium- to thick-bedded, massive, argillaceous sandstones are at the top of these

successions.  Primary sedimentary structures and nature of depositional contacts of the sandstone

beds are obscured by foliation; however, normal and inverse grading, and gradational and planar

contacts were observed.  Interbedded with sandstones are cobble- to pebble-size conglomerates

with flattened and elongated clasts parallel to the cleavage. The conglomerates are in medium to

very thick lenticular beds, have sharp contacts with underlying and overlying sandstones,

internally are massive and matrix-supported with sandy matrix.  The upper structural part of the

section makes the core of an overturned syncline (Figure 4.9B) and consists of fine-grained

lithologies of calcareous and siliciclastic shales and silty shales with slaty cleavage (Figure

4.9C).  A 4-cm-thick light green plastic claystone with isolated sand-size quartz grains and

expandable clay (smectite) near the top may be an altered volcanic ash bed (or K-bentonite).

4.5.2.3  Athens Shale in sections on the Alabama promontory and section FM.  The

black shale and silty shale lithologies with varying intensity of slaty cleavage are the dominant
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lithologies in section FM on the accommodation zone, and in sections LM, FC, CB, and HV on

the Alabama promontory.  Thin to medium beds of fine- to coarse-grained argillaceous

sandstones intebedded with sandy siltstone and dark-colored silty shales with trace of fossils

were observed in sections LM and HV on the Alabama promontory.  These sandstone interbeds

are in different structures from where graptolitic black shales have been reported (Figure 4.10).

Sandstone beds are mostly massive, have sharp contacts with underlying and overlying beds, and

few sandstones in section HV have internal gradations and planar laminations.

4.5.3  Composition of conglomerates and sandstones

Conglomerate beds are distributed in three stratigraphic positions, and have a dominant

population of limestone clasts.  Thin and scattered conglomerates at the base of the Deaton

Member in Rockmart (Plate 4.3) contain clasts mainly of dolomite, limestone, sandstones, and

dark shales in a matrix of dolomite or feldspathic sandstone and siltstone (Cressler, 1970).  In the

lower part of the Rockmart Slate (middle Whiterockian, Figure 4.9C), the clast population (clast

counting of 50 clasts after examinations of hand samples and one thin section) of conglomerates

includes: dolomitized limestone and sandy dolomite (43%); limestones (micrite and calcarenites,

35%); black calcareous slate (20%); and chert, sandstones, and siltstones together (2 %).

Cressler (1970) and Sibley (1983) reported the same order of composition of conglomerate

clasts, in addition to quartzite fragments in trace amounts.  The matrix of these conglomerates is

subarkosic sandstones with calcareous cement.  An olistolith (or exotic block) with a diameter of

at least 15 m and enclosed by sandstones and slate has been reported by Sibley (1983) near

section RK.  The conglomerate clast population in the Chota Formation (early Mohawkian ?

Figure 4.8C) reported by Kellberg and Grant (1956, point counting of 848 pebbles) and Caldwell

(1992) includes: carbonates (80-87%); sandstones (5-10%); siltstones (2-4%); chert (2%); and

quartzite, quartz veins, and pelites in trace amounts.  The matrix of the conglomerates is

sublitharenite with calcareous cement.  Uppermost beds of the Chota Formation include a thin

bed of quartzose conglomeratic sandstone with fragments identified in thin section of

monocrystalline quartz, polycrystalline quartz, and chert; clay and oxides are in the matrix

fraction.

Sandstones in the Athens Shale are arkosic, lithic arkoses, and subarkosic with 28 to 45%

of matrix and cement, whereas sandstones in the Chota Formation are sublitharenites with a



131

range of matrix and cement from 30 to 52% (sandstone groups 1 to 8; Table 4.5, Figure 4.9D).

In order of abundance, framework grains consist of monocrystalline quartz (33-88%),

unidentified feldspar (includes albitized plagioclase and feldspar partly replaced by calcite, 1-

30%), plagioclase (0–24%), sedimentary lithic fragments (0-19%), non-foliated polycrystalline

quartz (0-10 %), potassium feldspar (0-9%), foliated polycrystalline quartz (0-4 %),

metamorphic lithic fragments (0-3%), unidentified lithic fragments (0-3%), and chert (0-2%).

Devitrified volcanic lithic fragments and plutonic rock fragments were identified in trace

amounts.

The dominance of monocrystalline quartz and feldspars in the Athens Shale is illustrated

by the group mean values in QFL and QmFLt diagrams (sandstone groups 1 to 6; Table 4.5,

Figure 4.9D).  Albitization is more common and pervasive than in middle foreland sandstones

(Plate 4.2).  Grains showing intergrowth of feldspars (perthite) and feldspar with quartz

(myrmekite) were also observed (Plates 4.3 and 4.4).  Sedimentary lithic grains are mainly sandy

siltstones, siltstones, and shale fragments (Plate 4.4), whereas metamorphic lithic grains are

mainly phyllite (foliated mica and quartz).  Plutonic or coarse-grained metamorphic rock

fragments are inferred from aggregates of feldspars and quartz.  Micritic-carbonate-rock-

fragment content varies from 0 to 14% in sandstones of the Athens Shale, and from 13 to 28% in

the lower part of the Chota Formation.  Carbonate rock fragments were not observed in upper

beds of the Chota Formation.  Interstitial constituents in sandstones of the proximal foreland are

clay, oxides, micas, and more quartz and calcite cementation in sections RK and CI.

Composition of proximal foreland sandstones varies along strike and in the stratigraphic

succession.  Sandstones of the Athens Shale in sections that restore on the Alabama promontory

and southern part of the accommodation zone (sections FM, LM, and HV) are arkosic to lithic

arkosic (sandstone groups 1 and 2, Figure 4.9D), regardless of grain size or stratigraphic

position.  Sandstones of section RK on the accommodation zone are subarkosic (sandstone group

3, Figure 4.9D).  The sandy matrix of the conglomerates is also subarkosic.  Sandstone

composition of the Athens Shale and lower Chota Formation in section CI on the Tennessee

embayment varies from arkosic (sandstone groups 4 and 6, Figure 4.9D) to subarkosic in thick-

bedded, massive medium- to coarse-grained sandstones.  Composition of middle and upper

sandstones of the Chota Formation is sublitharenitic (sandstone groups 7 and 8, Figure 4.9d),
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with higher content of sedimentary lithic fragments (1-20%), non-foliated polycrystalline quartz,

and chert than in underlying sandstones of the Athens Shale.

4.6  MIDDLE AND PROXIMAL FORELAND STRATIGRAPHIC CORRELATION,

AND INTERPRETATION OF DEPOSITIONAL ENVIRONMENTS

Figures 4.6 and 4.7 show along-strike correlation of middle and middle-distal foreland

strata based on the identification of 11 stratigraphic surfaces (Table 4.3).  Surfaces 4, 7, 8, and 9

have the best spatial and chronostratigraphic constrains on the basis of conodont biostratigraphy

in the distal foreland (Chapter 3).  I use these surfaces, in addition to the lower and upper

unconformities, to divide the Middle and Upper Ordovician succession into five stratigraphic

intervals.  This section gives a detailed description and interpretation of environment of

deposition for strata in the lower three intervals; the description and interpretation for strata in

intervals IV and V are given with more detail in Chapter 3.

4.6.1 Strata and depositional systems of Interval I (upper Middle to lower Upper

Ordovician)

Interval I is bounded by the post-Knox unconformity and correlation surface 4.

Lithofacies of basal beds of the Lenoir Limestone (i.e., Mosheim Member) in the proximal

foreland vary both vertically and laterally, but all of them are suggestive of very shallow-marine

to supratidal environments.  Section HV on the Alabama promontory and parts of sections RK,

CB, and FM on the accommodation zone do not record carbonate deposition at the base of the

proximal Blountian succession (Figure 4.11A) (Cressler, 1970).  Irregular and scattered

distribution of chert and dolomite conglomerate beds overlying the post-Knox unconformity

have been interpreted as the filling of karst topography (e.g., Drahovzal and Neathery, 1971;

Chowns, 1977; Sibley, 1983).  Benson (1986b) interpreted the dolomitic, fenestral, mud-rich

limestone beds of the Mosheim Member as the record of peritidal environments; a similar

interpretation is valid for basal reddish mudcracked mixed lithologies in section HM (e.g.,

Roberson, 1988).  Intraclastic and skeletal wackestones to packstones and peloidal, intraclastic,

algal packstones are more indicative of intertidal to very shallow subtidal environments (e.g.,

section AB; Benson, 1986b; Roberson, 1988).  The wide variation in lithologies and depositional
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environments may be an indication of the irregular topography associated with the post-Knox

unconformity (e.g., Roberson, 1988).

Graptolite-bearing black shales overlying the basal carbonate unit or the post-Knox

unconformity in the proximal foreland have been interpreted as pelagic deposition in a quiet-

water, anoxic, deep marine environment (Figures 4.11A and B) (Shanmugam and Walker, 1978;

Benson, 1986b).  Lehmann et al. (1995) interpreted the Taconic black shales in the northern

Appalachians as the pelitic tail of axial fan turbidite deposits.  Calcareous black shales in

sections RK and CI on the accommodation zone and Tennessee embayment, respectively, record

a mixture of influx of mud carbonate particles from the carbonate ramp to the west and distal

turbidite detritus from the east (Figure 4.11B) (Benson, 1986b).  The massive aspect of thick-

bedded sandstones, lack of shallow-water sedimentary structures, the sharp and non-erosive

contacts between sandstone and siltstone beds, the presence of ripples and lenticular lenses in

laminae and thin beds of sandstones, the feldspathic composition and matrix-rich fabric of

sandstones, and the alternation of silt layers and pelagic shale, all suggest pelagic settling

deposition intermittenttly interrupted by submarine turbidity current deposition.  Shanmugam

and Walker (1978) gave a similar interpretation of depositional environments for lower

siliciclastic strata (Blockhouse and lower Sevier Formations) farther north in the Tennessee

depocenter.  In section RK, up section increase from laminae to thick beds of subarkosic and

arkosic sandstones are interpreted as the approach of submarine turbiditic deposits.  Interbeds of

massive, wedge-shape conglomerates are interpreted as proximal debris-flow deposits, mixing

with axial turbidity deposits (Figure 4.11B).  Sibley (1983) interpreted the olistolith as a rock

mass transported by submarine gravity sliding or slumpling.

K-bentonite beds and conodonts allow the correlation between deep-water siliciclastic

strata to the southeast and shallow-water carbonates in the middle foreland on the Alabama

promontory (Figures 4.11B, Plate 4.1).  The main body of the Lenoir Limestone consists of

argillaceous, peloidal, intraclastic wackestones to packstones with more diverse and abundant

body fossils and algae than strata of the Mosheim Member.  A restricted subtidal lagoonal

environment has been interpreted for most of the Lenoir Limestone (Chapter 3) on the basis of

abundance of algae, the restricted and few diverse body fossils, bioturbation, absence of shallow-

water sedimentary structures, and abundance of micrite and argillaceous detritus.  The upper

beds of the Lenoir Limestone in sections CL and PF have an increase in open-marine skeletal
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fragments (e.g., crinoids and bryozoans; Jones and Desrochers, 1992) and decrease of mud

particles, green algae, and mollusk fragments, suggesting deposition in more high-energy, open-

marine waters.  These skeletal-rich beds pass upward at an abrupt transitional contact to skeletal-

debris limestones and graptolite-bearing black shales, recording deposition on deep carbonate

ramp settings (surface 3).  Slump-folded strata in sections PF and AB, near surface 3, record

platform instability in the deep carbonate ramp.  Correlation using the boundary between P.

serra and P. anserinus conodont zones indicates the lateral continuity of subtidal lagoonal

(section AB), shallow to deep carbonate ramp (sections PF and CL), and basinal deposition

(sections CL and EC) (Figure 4.11B, Plate 4.1).  This southeast-dipping depositional profile is

confirmed by deposition of siliciclastic shales in southern sections CL and EC.  A deep carbonate

ramp environment is recorded in section PF by calcareous graptolite-bearing calcareous shales

with isolated hummocky cross beds that grade up section to calcareous mudstones.

Interval I thins abruptly in middle foreland sections near and on the accommodation zone

(sections GS and HL) and on the Tennessee embayment (section HL).  Lithofacies in these

sections belong to the Mosheim Member, and are indicative of deposition in peritidal to very

shallow-marine environments.

In general, Interval I records the early drowning of the Middle Ordovician carbonate

platform in the proximal foreland and coeval peritidal to subtidal lagoonal limestone deposition

in the middle foreland on the Alabama promontory (Figure 4.11A).  Later drowning of the

carbonate platform is documented in the middle foreland on the Alabama promontory, whereas a

thin accumulation of peritidal carbonate deposits is recorded farther northeast on the Tennessee

embayment (Figure 4.11B).  On the proximal foreland, the thick siliciclastic succession consists

of pelagic and submarine turbidity deposits, interbedded with local debris-flow conglomerates on

the accommodation zone.

4.6.2  Strata and depositional systems of Interval II (lower Upper Ordovician).

Correlation of middle and proximal foreland strata on the Tennessee embayment

(sections HM, RH, and CI) depends on regional lithostratigraphic correlation of stratigraphic

correlation surfaces 4 and 7, which are defined by marine-flooding surfaces that affected middle

and distal foreland settings (Table 4.3, Plate 4.1).
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Surface 4 in section CI is located at the base of a thick interval of shales, silty shales, and

siltstones that are interpreted to represent deepening of the basin floor.  The up-section change in

sedimentary structures from ripples to cross beds in sandstones in the lower part of interval II

reflects an increase in energy of deposition.  In addition, the coarsening-upward trend from fine-

grained lithologies to interbedding of sandstones and siltstones suggests a shallowing trend in

deposition on a clastic platform environment with influence of storm currents.  In the upper part

of interval II, interbedding of cross-bedded sandstones with horizontal-bedded limestone

conglomerates documents an increase in energy of deposition and proximity to source areas

(Figure 4.11C).  Bioturbated red siltstones, argillaceous sublitharenites with scoured bases, and

lenses of quartzose conglomerates in the uppermost beds of interval II indicate alternation of

high-energy and low-energy regimes.  The vertical coarsening-upward trend of sandy siltstones

to conglomeratic sandstones followed by interbedding of sandstones and bioturbated siltstones is

interpreted as the progradation of a tide-dominated delta, as illustrated by hypothetical

prograding sand ridges and abandoned delta-plain vertical profiles of Dalrymple (1992).

In the middle foreland, deposition in interval II is recorded by a northeastward shallowing

trend of carbonate depositional systems and influx of siliciclastic detritus from the east (Figure

4.11C).  On the southern Alabama promontory (section PF), laminated argillaceous carbonate

mudstones interbedded with calcareous shales are interpreted as deposition in deep-water

carbonate ramp environments.  Farther northeast on the northern Alabama promontory, dolomitic

mudstones to packstones with peloids, intraclasts, algae, and sparse fauna in section GS are the

record of subtidal lagoonal to peritidal deposition.  Up-section decrease of faunal diversity,

fenestral structures, and algal-laminated dolomitic mudstones toward the top of the Lenoir in

section GS document dominance of low-energy supratidal to intertidal environments.  The thin

carbonate interval in section HL, a section that palinspastically restores inside the Birmingham

graben and on the accommodation zone, records the low rates of creation of accommodation

space associated with inversion of the graben structure (Chapter 3).  Up-section dominance of

coarse-grained algal and skeletal deposits in sections HM and RH on the Tennessee embayment

suggest shallow subtidal environments with energy regimes higher than in the subtidal

environment on the Alabama promontory.  Cross-bedded, skeletal and quartz-rich, coarse-

grained carbonates at the top in sections HM and RH on the Tennessee embayment indicate

deposition continued in open, high-energy, shallow-ramp environments.
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Termination of carbonate-platform deposition in the middle foreland and on the

accommodation zone and Tennessee embayment (Figure 4.11C; sections HM, HL, and GS) is in

shallower depths and in more oxidizing conditions than the earlier drowning of the carbonate

platform (Interval I) in the middle foreland on the southern Alabama promontory.  In sections

HM, HL, and GS, the coarsening-upward trend of the lower siliciclastic succession from shales

to siltstones and feldspathic sandstones, and the up-section increase of bioturbation and ripple

laminations have been interpreted as shoaling cycles in a low-energy subtidal to shallow-shelf

environment (Drahovzal and Neathery, 1971).  Ripple laminated and cross-bedded sandstones in

section GS and mudcracks in sections HM and HL suggest shallower subtidal depositional

conditions on the Tennessee embayment (sections HM, RH) than on the Alabama promontory

(section GS).  Coarse interbeds of carbonate lithologies in sections HM and RH also indicate a

close proximity of the carbonate platform to sections on the Tennessee embayment.

Proximal and middle foreland strata of Interval II record the filling of the proximal

foredeep and initial progradation of the clastic wedge toward the carbonate ramp in the middle

foreland.  Patterns of proximal foreland clastic deposition are coarsening-upward and

progradational with finer grained clastic platform deposits grading to coarser grained marginal

deposits of tide-dominated deltas.  Coeval depositional environments in the middle to distal

foreland include a southwest-deepening carbonate ramp on the Alabama promontory and high-

energy shallow-marine ramp on the Tennessee embayment.  The east-to-northeastward shift from

carbonate-ramp to low-energy clastic shelf deposition illustrates the process of termination of

carbonate production in shallow environments by northeastward (along-strike) advance of the

clastic wedge.  Coarsening–upward siliciclastic successions in the middle foreland document

shoaling of the clastic shelf and cratonward advance of the Blountian clastic wedge.

4.6.3 Strata and depositional systems of Interval III (lower Upper Ordovician)

Strata of Interval III are absent because of present level of erosion or by unconformable

deposition of Devonian or Mississippian strata in sections of the proximal foreland.  In the

middle foreland, Interval III thickens northeastward (Figure 4.6); in the middle to distal foreland

the thinnest record is in the middle of stratigraphic correlation DG-DM-BI (Figure 4.7).  This

interval is bounded at the base by the marine-flooding surface 7 constrained in distal foreland

deposits (Table 4.3, Chapter 3) and at the top by the Millbrig or Deicke K-bentonite (Figure 4.6).
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Skeletal and intraclastic debris beds and slump-folded strata in sections HM, RH, and GS are

interpreted as the record of a marine transgression (i.e. transgressive lag deposit).  Platform

deepening is interpreted from carbonate platform instability and deposition of fine-grained, non-

calcareous siliciclastic beds above the debris beds or shallow-water calcareous beds.

In sections HM, HL, and GS, intervals of only bioturbated sandy siltstones and

coarsening-upward successions overlying surface 7 record depositional conditions shallower

than those of the former clastic shelf.  The coarsening-upward successions include bioturbated

sandy siltstones and massive, cross-bedded, and bioturbated sandstones.  In section RH, fine-

grained mixed carbonate-siliciclastic beds interbedded with thin beds of calcareous mudstones

dominate (Caldwell, 1992).  The association of these lithologies may represent prograding sand

ridges that accumulated in subtidal to intertidal environments of a tide-dominated delta (e.g.,

Dalrymple, 1992).  The sharp basal contact and distribution of the Colvin Mountain Sandstone

indicate an abrupt change in depositional conditions accompanied by an increase in coarse-

grained sediment supply and accumulation of K-bentonites.  Strata below the contact consist of

bioturbated sandy siltstones and sandstones in sections HM, HL, and GS; these deposits

represent shallow-water deposition in a low to moderate energy regime.  In contrast,

quartzarenites overlying the contact show planar and trough cross beds, have bimodal sand-size

distribution in some beds, and texturally and compositionally are mature (Jenkins, 1984).

Elongated vertical burrows in upper beds suggest a shallowing-upward trend of deposition in

high-energy regimes in sections on the Alabama promontory and in the accommodation zone,

whereas the thin accumulation of the Colvin Mountain Sandstone on the Tennessee embayment

suggest the dominance of deposition in low to moderate energy regime.

The sharp change of depositional conditions between Greensport and Colvin Mountain

units is diachronous and is younger in sections on the Tennessee embayment.  The change is

positioned below the Millbrig-Deicke K-bentonite interval in section GS, within the K-bentonite

interval in section HL, and above the K-bentonite interval in section HM.  In palinspastic maps,

quartzarenites of the Colvin Mountain Sandstone form a narrow belt of shallow-marine sand bars

that interfinger with subtidal siliciclastic deposition, and this belt is bounded by peritidal

carbonate deposition on the northwest (Figure 4.12A).  This belt of shallow-marine sand bars

migrates northeastward from section GS on the Alabama promontory to section HL on the

accommodation zone, and then to section HM where pinches out.
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Interval III records a continuous shallowing trend of siliciclastic depositional systems

from shallow clastic shelf to subtidal to intertidal environments in the middle foreland (Figure

4.12A).  Diachronous northeastward migration of quartzose shallow-marine sand bars suggests

an event of slight deepening and an oblique direction of dispersal of sediments in the middle

foreland.

4.6.4 Strata and depositional systems of Interval IV (lower-middle Upper Ordovician).

Interval IV in the middle foreland thickens slightly northeastward and encompasses strata

bounded by the Millbrig K-bentonite bed (surface 8) at the base and the regional marine-flooding

surface 9 at the top (Figure 4.6).  In section DG, where K-bentonite beds have not been reported,

surface 8 is located at the base of a thick interval of red calcareous silty shales and siltstones that

are interpreted to represent deepening of the basin floor (Figure 4.7).  Stratigraphic sections that

palinspastically restore farther to the northwest, but inside the Birmingham graben, show also the

northeastward thickening of this interval (Figure 4.7).

In sections GS, HL (Figure 4.6), and DM (Figure 4.7), peritidal carbonate deposits and

mudcracked fine-grained siliciclastic sediments prograded over shallow-marine sand bars and

sandy siltstones.  In sections GS and DM on the Alabama promontory, interbedding of fine-

grained mixed lithologies with mudcracked dolomitic mudstones document the dominance of

very shallow, peritidal deposits near the top of interval IV.  Farther to the southwest in BI,

equivalent strata correspond to shallow-marine carbonate beds of the upper Chickamauga

Limestone (Figures 4.7 and 4.12B).  In section HL, limited exposures of siltstones and thin beds

of fine-grained sandstone suggest the dominance of low-energy regime of deposition.  Farther

northeast on the Tennessee embayment in section DG (Figure 4.7), the-up section change from

laminated shales to bioturbated siltstones and fine arkosic sandstones with mudcracks document

the shoaling of depositional conditions toward surface 9.  Progradation of peritidal carbonate

deposits over the clastic wedge was favored by variable low influx rates of sediment supply from

the east.  Consequently, the depocenter of siliciclastic deposition continued nearly in the same

areas as for the upper deposits of interval III (Figure 4.12B).



139

4.6.5  Strata and depositional systems of Interval V (strata between correlation surfaces 9

and the post-Ordovician unconformity, lower-middle Upper Ordovician).

 Interval V is bounded by the marine-flooding surface 9 and the post-Ordovician

unconformity (surface 11 in Figures 4.6 and 4.7).  Truncation at different levels of upper

Ordovician strata at the post-Ordovician unconformity does not allow clear definition of

thickness trends either in a northwest-southeast direction or in the middle foreland (Figure 4.6).

Northeastward thickening of strata is more evident in the middle to distal foreland (Figure 4.7).

Strata between surfaces 9 and 11 show progradation of both carbonate and fine-grained

mixed carbonate-siliciclastic deposits.  In sections DM and GS on the Alabama promontory,

progradation is indicated by the up-section decrease of reddish, bioturbated, fine-grained mixed

lithofacies and increase of dolomitic limestone beds (Figures 4.6 and 4.7).  In the DG section on

the Tennessee embayment, the event of flooding at surface 9 is interpreted from calcareous

shales and siltstones overlying a succession of mudcracked siltstones and fine-grained

sandstones.  In section DG and above the calcareous shales and siltstones, fine- and coarse-

grained mixed carbonate lithologies are interbedded with siltstones in the middle part, and the

succession grades to coarsening-upward successions of siltstones and cross-bedded

quartzarenites in the upper part (Figure 4.7).

The lateral and vertical array of these lithofacies constitutes shoaling-upward successions

with fine-grained subtidal to peritidal deposits at the bottom.  However, depositional

environment interpretation of the top of these shoaling-upward successions indicates northeast

deepening of the basin floor (Figure 4.12C).  Erosion of Upper Ordovician beds in section BI is

documented by truncation by a skeletal limestone bed less than 1 meter thick of the Sequatchie

Formation (Figure 4.7) (Benson and Stock, 1986), and by an angular discordance of 1.6 degree

with a dip direction to the southeast between upper beds of the Ordovician and basal beds of the

Silurian Red Mountain Formation (Thomas, 1986).  Farther northeast in sections GS and DM on

the Alabama promontory and in section HL on the accommodation zone, the dominance of

dolomitic limestones and fine-grained siliciclastic deposits at the top of the succession record

deposition in peritidal to intertidal environments.  In section DG on the Tennessee embayment,

coarser grained estuarine delta deposits suggest more subtidal environments with higher energy

regimes (Rindsberg and Chowns, 1986; Martin, 1991).  In this interval, the siliciclastic
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depocenter migrated cratonward and mixed with carbonate deposits of the distal foreland

(Chapter 3).

4.7  PROVENANCE OF SANDSTONES AND CONGLOMERATES AND ISOTOPIC

NEODYMIUM ANALYSIS

Clastic deposits of the Blountian wedge have variations in grain size and composition

both along and across strike of the foreland basin.  In this section, I discuss the possible

provenance of conglomerate and sandstones deposits, and include the results of Nd-isotopic

composition of shales and siltstones.

4.7.1  Conglomerates

Conglomerate beds are distributed at both middle and proximal zones of the foreland, as

well as at different stratigraphic levels, but they accumulated at different stages of the foreland

and by distinct depositional processes.  Karst-filling conglomerates overlying the post-Knox

unconformity are oligomitic, but clast population is dominated either by carbonate clasts or by

chert clasts.  Chert-conglomerates of the Atalla Chert Conglomerate Member of the

Chickamauga Limestone in the middle and middle to distal foreland are in sections that

palinspastically restore inside the Birmingham graben (BI, DM, HL, DG; Figure 4.3, Plates 3.4

and 3.10).  Dolomite conglomerates in sections RK and PF palinspastically restore southeast of

the graben and are overlain by shales and carbonates, respectively, of stratigraphic Interval I

(Plate 4.3).  Abundance and compositional maturity of the conglomerates in sections restoring

inside the graben suggest longer subaerial weathering and support the interpretation of inversion

of the graben (Chapter 3); in contrast, earlier deposition on adjacent blocks and on proximal

foreland settings allowed preservation of compositionally immature dolomite-clast

conglomerates.

Conglomerates in the proximal foreland have a clast population dominated by carbonates,

which have been identified as fragments of the Lenoir and older Paleozoic units of the

Laurentian margin by Kellberg and Grant (1956) and Cressler (1970). Lenticular massive

conglomerates in section RK, interpreted as debris-flow deposits, are interbedded with turbiditic

sandstones and deep-water black shales of the lower part of Interval I.  Calcareous black shales

(20%) are the dominant subordinate clasts (Figures 4.9C), and the matrix is subarkosic.  Fabric
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and composition of these conglomerates suggest short distance of transport and proximity to

uplifted areas in a deep-water system.  This interpretation is further supported by the presence of

a 15-m-diameter olistolith in section RK (Sibley, 1983).  Horizontal-bedded conglomerates in

section CI are part of coarsening-upward successions of prograding tide-dominated deltas at the

top of Interval II.  Subordinate clasts include sandstones and siltstones (7-14%) (Figure 4.8C),

and the matrix is sublitharenite.  Composition and depositional structures of conglomerates and

interbedded cross-bedded sandstones in section CI suggest transport by high-energy, shallow-

water currents, and possible mixing of carbonate clasts derived from extrabasinal and

intrabasinal sources, as indicated by bryozoan fragments in sandstone beds.  Therefore,

conglomerate beds in sections RK and CI accumulated at different stages of the foreland

evolution and by different sedimentary processes.

4.7.2  Sandstones

The Blountain clastic wedge has spatial and temporal variation in the composition of

sandstones of Interval I and II (Athens Shale, Chota and Greensport Formations).  On the

Alabama promontory, sandstones are arkosic (sandstone groups 1 and 9), lithic arkosic

(sandstone group 2), and subarkosic (sandstone groups 10 and 11) (Table 4.5; Figures 4.6B and

4.9D).  Composition of sandstones on the accommodation zone and Tennessee embayment

ranges between arkosic (sandstone groups 4 and 6), subarkosic (sandstone groups 3, 5, 13, and

14), sublitharenite (sandstone groups 7 and 8), and quartzarenite (sandstone group 12) (Table

4.5; Figures 4.6B and 4.9D).  Albitization alteration makes the calculation of the initial relation

between plagioclase and potassium feldspars difficult.  However, potassium feldspar (orthoclase

and microcline) is more easily identified (i.e., less albitizated) in sandstones in section CI on the

Tennessee embayment (e.g., sandstone group 5; Table 4.5) than in sandstones in sections on the

Alabama promontory and accommodation zone.  Similarly, potassium feldspars are more evident

in sandstones of the Greensport and Sequatchie Formations in the middle to distal foreland (e.g.,

sandstone groups 11, 14, 19, and 20; Table 4.5).  Micritic carbonate rock fragments are very

common in sandstones of the Tennessee embayment (section CI).  Along-strike variations in

petrofacies suggest more feldspathic sandstones on the Alabama promontory than farther north,

more compositionally mature sandstones (i.e., more quartzose) on the accommodation zone,
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more albitization in proximal sandstones on the Alabama promontory and accommodation zone,

and more carbonate fragments on the Tennessee embayment.

Mack’s (1985) interpretation of coarse-grained plutonic or gneissic rocks with a

sedimentary cover as the main rock types in source areas is additionally supported in this study

by the identification of (1) high content of both plagioclase and potassium feldspars, (2) feldspar

aggregates, (3) myrmekite structures, (4) feldspar-quartz aggregates, and (5) higher and more

diverse population of sedimentary lithic fragments than low-grade metamorphic components

(quartzite and metamorphic lithics) (Table 4.5).  The higher concentration of feldspar on the

Alabama promontory, and the higher content of quartzose, sedimentary lithic, and carbonate rock

fragments on the Tennessee embayment suggest either deeper erosion in source areas supplying

sediments to the Alabama promontory or less transportation and less weathering of sediments

accumulated on the Tennessee embayment.  Supply of carbonate fragments from intrabasinal

sources (i.e., carbonate platform to the northwest) should be also considered by the record of

well-preserved bryozoan fragments and bioclastic debris beds in sections CI and PF (Salisbury,

1961; Finney, 1977; Caldwell, 1992).

The subarkosic-arkosic composition of Blountian foreland sandstones and the irregular

location of detrital modes in provenance diagrams of Dickinson (1985) (Figures 4.6B and 4.9D)

further support the interpretation of sandstone provenance from basement-cored uplifts with a

sedimentary cover dominated by chemically-unstable rocks.  The Cambrian-Lower Ordovician

sedimentary cover of the outer margin of Laurentia margin includes >60% of carbonate and

evaporite rocks on the Alabama promontory, whereas on the Tennessee embayment the

siliciclastic units are >75% of the Precambrian-Lower Ordovician sedimentary succession

(estimates from figures 3 and 4 of Thomas, 1991).  Here, I propose that the southern Blountian

highlands involved basement and outer-margin stratigraphy of the Alabama promontory, and

orogenic uplifts were more chemically-weathered on the southern part than on the northern part

(record of carbonate detritus increse northeastward).

The abrupt increase of non-metamorphic quartz and sedimentary lithic fragments at the

top of interval II, as documented in sandstones and conglomerates of the upper Chota Formation,

influenced the up-section increase of compositional maturity of coeval and younger middle

foreland strata (Figures 4.11C and 4.12A).  In section RH, the influx of quartz is recorded in

quartz-rich laminae of cross-bedded skeletal grainstones of the Holston Limestone (Interval II).
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Farther southwest, quartzarenites of the Colvin Mountain (Interval III) mark an abrupt change in

the mechanical and compositional maturity of sandstones in the middle foreland (Table 4.5,

sandstone groups 16 and 17).  The increasing influx of quartzose detritus is documented in

subarkoses and quartzarenites of the Sequatchie Formation in section DG, and at the uppermost

beds of Interval V in sections HL, DM, and in section BR in the distal foreland (Chapter 3).

4.7.3  Shales and siltstones (Nd-isotopic analysis)

Nd-isotopic composition of shales and siltstones from the Athens Shale, Lenoir

Limestone, Greensport Formation, Colvin Mountain Sandstone, and Sequatchie Formation

(Table 4.6) show an up-section increase of εNd values.  These results reinforce the regional trend

reported previously in Middle and Upper Ordovician rocks of the southern Appalachians and

Ouachita Mountains (Gleason et al., 1995b; Andersen and Samson, 1995; Gleason et al., 2002).

Figure 4.13 and Table 4.6 show Nd-isotopic compositions from rocks of the Blountain

clastic wedge on the Alabama promontory, Tennessee embayment, and Virginia promontory.

Temporal and spatial comparisons of these data suggest: (1) in synorogenic deposits, εNd

increases to less negative values more uniformly on the Alabama promontory than on Tennessee

embayment; (2) εNd of basal Blountian black shales is less negative to the northeast; (3) the trend

toward less negative values in the Tennessee embayment has an abrupt fall at 456 Ma (post-

Tellico deposition); (4) the less negative εNd is in the Virginia promontory; and (5) εNd variations

in strata younger than 454 Ma are poorly constrained.

Along-strike comparison of εNd within the Blountian clastic wedge may give an

independent constraint on temporal and spatial variation in supply of juvenile material, under the

assumption that supply of juvenile sediment yields less negative εNd.  Andersen and Samsom

(1995) and Gleason et al. (2002) suggested that Grenville rocks were the most likely source of

juvenile sediments for the Ordovician synorogenic deposits.  Therefore, stripping of the

sedimentary cover should yield more negative εNd values because siliciclastic rocks of the

southern Laurentian passive-margin succession were supplied from the craton interior (i.e.,

Archean and Grenville crust) (Mack, 1980).  As uplift and erosion in the Blountian highlands

exposed Grenville basement rocks, supply of juvenile sediments to the foreland basin increased.

Therefore, an uniform increase to less negative values of εNd would be expected in foreland

sediments recording unroofing of the basement-cored uplifts.
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4.8  TECTONIC SUBSIDENCE

Curves of total and tectonic subsidence for sections restoring in middle and distal

foreland illustrate different along-strike behaviors of the top of basement during Middle and Late

Ordovician deposition.  Figure 4.14 shows representative curves of total and tectonic subsidence

for sections restoring on the Alabama promontory, accommodation zone, and Tennessee

embayment.  Total subsidence curves may be divided into four segments.  The first segment has

a negative slope and corresponds to the last stage of post-rift thermal subsidence and

accumulation of the Knox Group along the southern margin of Laurentia (Thomas and Astini,

1999).  The second segment is flat and corresponds to the post-Knox unconformity.  The third

segment also has a negative slope and is between the post-Knox unconformity and the Millbrig

and Deicke K-bentonite beds (surface 8).  The total subsidence curve of section GS has the

fourth segment that is between the K-bentonite beds and the top of the Silurian with a gentle

negative slope to flat trend.  Tectonic subsidence curves show a different geometry than total

subsidence curves, and a total of five segments (segments a to e, Figure 3.11) is recognized after

the segment of thermal subsidence of the Knox Group and before Silurian.

Tectonic subsidence curves in the middle foreland (sections HM, GS, and AB in Figure

4.14A) include the local effects of inversion of the Birmingham graben (Chapter 3) and flexure

by loading at the plate margin.  The minimal amount of erosion of upper Knox strata is

represented by segment a in sections AB and GS.  In section AB on the Alabama promontory,

the inflection after initiation of Middle Ordovician deposition is divided into a gentle and large

downslope and a steep and short downslope (segments c and d, respectively, Figure 4.14A).  The

former segment is better explained by inversion of the Birmingham graben that created

accommodation space in inverted downthrown blocks, and the latter reflects the later advance of

the flexural wave that placed the platform in deep-water settings.  After a longer interval of

exposure of the passive-margin strata in section GS than in section AB (segment a), the tectonic

subsidence curve in section GS includes a gentle downslope trend followed by a flat-to-upslope

trend (segments d and e, Figure 4.14A).  These two segments have been observed in other

sections in the middle and distal foreland (Chapter 3, Appendix C) and have been interpreted as

distal effects of flexural subsidence (segment d) followed by a rise of the top of basement related

to migration of the flexural wave toward the thrust belt (segment e; Chapter 3).  Low tectonic

subsidence, flexural uplift, and regional rise of sea level favored shallow-water carbonate and
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clastic deposition in section GS.  In section HM on the Tennessee embayment, deep truncation of

Knox strata may be the record of inversion uplift of the Randolph-Heard graben (Figure 4.3;

segment b in Figure 4.14A).  After initiation of Blountian deposition, the steep slope of the

tectonic subsidence curve in section HM is the result of lithosphere flexure.  Farther to the east in

section RH, the preserved record of upper units of the Knox Group and early record of the Lenoir

Limestone (Cressler, 1974) suggest that inversion uplift did not affect this area, but flexural

subsidence caused the initiation of carbonate deposition.

Tectonic subsidence curves in the proximal foreland sections CI and RK reflect rapid

drowning of the carbonate platform (segment d) after initiation of Blountian deposition (Figure

4.14B).  The steepest slope in section RK on the accommodation zone documents the stronger

influence of flexural subsidence in this section that restores nearest the zone of collision (Figure

4.11A).  The slope of the curve is less in section CI that restores farther cratonward on the

Tennessee embayment.  Because thickness and biostratigraphic control in section HV are not

constrained, the tectonic subsidence curve for section CL is shown to illustrate subsidence on the

Alabama promontory (Figure 4.14B).  The downslope curve in section CL is divided into two

segments.  Segment c has a gentle downslope that may correspond to distal effects of subsidence

in inverted downthrown blocks (Chapter 3) and flexural uplift (i.e., forebulge?) related to

tectonic loading along the plate margin.  The subsequent segment d has a steeper slope than

segment c and documents the rapid drowning of the platform to deep-water settings as result of

migration of the flexural wave.

4.9  DISCUSSION

Stratigraphic, sedimentologic, compositional, and tectonic subsidence data of the

Blountian clastic wedge in the southern Appalachians of Georgia and Alabama allow the

establishment of some considerations on how the pre-existing rift-related configuration affected

the along-strike evolution of the middle and proximal foreland basin and orogenic belt.

4.9.1  Relationship between Blountian foreland basin evolution and the inherited

configuration of the plate margin

The identification of coeval carbonate ramp, basinal shales, and submarine sandstone

turbidites units of an underfilled foreland basin (Sinclair, 1997) during the earliest stages may
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give a good approximation of the initial flexural profile for water-filled foredeeps.  Therefore,

the examination of how these three (or trinity) underfilled units evolve across and along strike of

the foreland may give an approximation of the early migration of the early Blountian flexural

wave.  Lower strata of stratigraphic Interval I include the underfilled trinity units (Figure 4.11A).

The highest rates of deposition are toward the deepest part of the Blountian foreland basin and in

intraplate settings (Chapter 3), as documented by coeval deposition of the Lenoir Limestone and

Athens Shales at both extremes.  In the distal foreland, carbonate deposition at depths < 100 m is

favored by the low influx of clastic sediments (Walker et al., 1983; Dorobek, 1995), and

subsidence related to inversion of the Birmingham graben (Figure 4.15C, profile a) (Chapter 3).

Toward the hinterland, coarse-grained axial submarine fan deposits in the deepest part of the

basin record the influx of sediments from the tectonic loads (Walker et al., 1983; Sinclair, 1997).

In the middle of the foreland, thin accumulations of carbonate and siliciclastic mud record the

drowning of the platform to deep-water settings with low influx of mud particles from axial fan

turbidites and the carbonate platform.

Distribution of sedimentary environments in the Blountain foreland basin for strata

underlying stratigraphic surface of correlation 1 shows a belt of carbonate deposition that thins

toward the accommodation zone and south-to-southeastward deepening of the basin (Figure

4.11A).  The earliest event of flexure is recorded in section HV on the Alabama promontory,

where deep-water graptolitic shales rest over the youngest Knox strata.  Farther northwest across

strike and northeast along strike, coeval peritidal to very-shallow carbonate deposition was

occurring in the middle foreland on the Alabama promontory and in wide areas on the Tennessee

embayment (Figure 4.11A).  The early and wide record of peritidal carbonate deposition may

correspond to (1) fluctuations of sea level; (2) lateral effects of tectonic loads centered on the

Alabama promontory; or (3) local subsidence effects of basement fault reactivation.  Middle

Ordovician sea-level fluctuations are recorded in plate-marginal sections of Laurentia (Figure

4.4; Ross and Ross, 1995); however, those fluctuations do not explain the presence of intraplate

uplifts in the distal foreland (Figures 4.15A and B).  The variation in area of carbonate deposition

(31-78 km, calculated from Figure 4.15) and areas of exposure in the distal foreland (10-40 km,

calculated from Figure 4.15) can not be explained either by flexural models.  Models of flexural

subsidence indicate that optimal carbonate deposition (0-100 m) occurs in platforms 5 to 40 km

wide, and that the platform migrates together with the peripheral bulge in early foreland stages
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(Dorobek, 1995).  The varying magnitude of exposed areas in the middle to distal foreland and

the wide peritidal to very shallow-marine platform in the Tennessee embayment (Mosheim

Member beds) may reflect both local effects of fault reactivation (Chapter 3) and marginal-scale

flooding related to sea-level fluctuations.

Along-strike comparison of the evolution of initial flexural profiles (Interval I, Figure

4.15B) shows a wider carbonate platform with less area of exposure on the Tennessee

embayment than on the Alabama promontory, and a steeper slope of the foredeep on the

Alabama promontory than on the Tennessee embayment.  The flexural wave migrated first

northeastward to sections RK and CI (drowning at surfaces 1 and 2, respectively), and later

continued northwestward to sections EC, AA’, CL, PF, and AB (drowning at surface 3) (Figures

4.11B and 4.15C).  In the distal foreland, deposition on the wide carbonate platform was affected

by inversion of the Birmingham graben on the Alabama promontory (Chapter 3), and by

backstepping of the carbonate ramp (Walker et al., 1983) and marginal-scale sea-level

fluctuations on the Tennessee embayment (Steinhauff and Walker, 1995).  The transition from

optimal carbonate deposition in ramps (< 100m, Dorobek, 1995) to dominantly shale deposition

(>300 m, Benedict and Walker, 1978) spreads across ~ 10 km in the foredeep on the Alabama

promontory, and in ~ 18-23 km in the foredeep on the Tennessee embayment (Figure 4.15B).

The pre-existing configuration of the Laurentia margin continued to influence basin

geometry and deposition in later stages of the Blountian foreland, where the foredeep widens and

the fill thickens toward the Tennessee embayment.  Progradation of shallow-water siliciclastic

deposition is recorded in section CI of the proximal foreland (Interval II, Figure 4.11C), and in

the middle and distal foreland (Intervals II to V, Figure 4.12).  Northeastward and northwestward

dispersal of synorogenic detritus is documented by dominantly carbonate deposition in

southwestern section PF, mixed siliciclastic and carbonate deposition in section GS, and by

northeastward thickening and coarsening of red siliciclastic deposits of the Greensport and

Sequatchie Formations (e.g., section DG and HM).  Northwestward dispersal of synorogenic

sediments on the Alabama promontory was controlled by the inversion of the Birmingham

graben in the distal foreland (Chapter 3), and by northeast migration of orogenic loads (Figures

4.11 and 4.12).  In contrast, the northeastward migration of the Blountian orogenic belt and

siliciclastic depocenter rapidly filled the less steep foredeep on the Tennessee embayment, which

also widened with time (Figures 4.12 and 4.16).
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4.9.2  Reactivation of pre-existing intraplate structures

Besides of inversion of the Birmingham graben, as documented in Chapter 3, and of the

western fault system of the Randolph-Heard graben, as documented by deep erosion in section

HM, flexural deformation may trigger the reactivation of other basement faults in the middle and

proximal foreland.  Flexural normal reactivation of basement faults adds to lithospheric flexure

and may contribute to the abrupt change from limestone to shales in underfilled foreland basins,

as documented in the Taconic foreland basin in New York and Ontario (Bradley and Kidd, 1991;

Lehmann et al., 1995).

The along-strike differences in flexural profiles between the narrow foredeep on the

Alabama promontory and wider foredeep on the Tennessee embayment may be accommodated

by reactivation of cross-strike structures in the accommodation zone.  Castle (2001) proposed

this type of reactivation in a distal foreland basin to accommodate along-strike variations in

subsidence patterns, which coincided with the boundaries of promontories and embayments.

Normal flexural extension and cross-strike reactivation may create intra-foredeep uplifts, which

may be the source areas of the olistolith, conglomeratic debris flows interbedded with turbiditic

sandstones and black shales in section RK (Figure 4.11B).

4.9.3  Identification and trace of the foredeep side of the forebulge

During the early stages of flexural wave migration, the overall geometry of the shallow

portion of the flexural wave is obscured by reactivation of basement faults in the distal foreland

(Chapter 3) and flexural normal fault reactivation in the proximal and middle foreland.

Intraplate flexure associated with inversion of the Birmingham graben creates a fixed small-scale

structure and local flexural wave superimposed on to the plate-marginal scale migration of the

Blountian flexural wave (e.g., Figure 4.15C, profile a).  The local effects of the inversion would

be diminished as the foredeep side of the Blountian flexural wave passes across the inverted

downthrown block.  Therefore, the clearer picture of the Blountian flexural wave is observed

where the platform deepens uniformly southeastward.

The trace of the foredeep side of the forebulge at the time of stratigraphic surface of

correlation 3 does not follow the same strike of facies belts (Figure 4.15A) because of the

inversion of the Birmingham graben.  On the Alabama promontory, the approximate trace of the

foredeep side of the forebulge is located near section PF.  The top of the Lenoir Limestone in
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section PF contains shallow-water skeletal grainstones that grade southeastward in section CL to

deep-water calcareous shales and debris-like, argillaceous skeletal beds (Lenoir Limestone-

Athens Shale contact).  Farther northwest in section AB, mud-rich carbonate lithologies (upper

Lenoir Limestone) indicate northwestward deepening to subtidal lagoonal conditions caused by

local effects of the inversion.  On the Tennessee embayment, the carbonate profile east of section

HM deepens uniformly southeastward, suggesting that the Blountian flexural wave masks the

effects of graben inversion in this area.  Farther northeast in Tennessee, Roberson (1994) and

Steinhauff and Walker (1995) recognized the forebulge as the narrow area with no record of

Middle Ordovician deposition within the carbonate platform (i.e., area between sections DE and

P in Figure 4.15B).

In stratigraphic intervals III to V, identification of the foredeep side of the forebulge in

the middle and distal foreland is on the basis of profiles of carbonate-siliciclastic depositional

systems, tectonic subsidence curves, and truncation of upper Ordovician strata.  The evolution of

the depositional profile of Upper Ordovician Blountian deposits records the position and

migration of a submerged to partly exposed forebulge (Figures 4.16A and B).  Before the time of

deposition of the Deicke and Millbrig K-bentonite beds, the depositional profile has the

shallowest part at section DM (Figure 4.16B), where peritidal deposition of the carbonate

platform dominated on the northwest and subtidal siliciclastic deposition dominated on the

southeast.  The position of the foredeep side of the forebulge is inferred to be at this location or

farther northwest because of the thin accumulation at section DM (Figure 4.7) with several beds

showing mudcracks, an indicator of subaerial exposure.  Latest effects of inversion of the

Birmingham graben preclude the determination of the position of maximum flexural uplift at this

time (Chapter 3).  The transition between carbonate and siliciclastic deposition, nearly parallel to

the trace of the forebulge but more toward the foredeep zone, had the maximum extent of

progradation on the northern part of the Alabama promontory (~ 61 km, Figure 4.16A).

Rise of the top of basement in middle and distal foreland sections during deposition of

upperbeds of Interval II, Interval IV and lower part of Interval V is interpreted as result of

migration of the forebulge toward the orogenic belt (Chapter 3).  The rise of the top of basement

in section GS (Alabama promontory, Figure 4.14A) is also observed, but in less magnitude, in

other sections restoring as far as 90 km to the northwest of section GS (e.g., sections BR, GU,

Appendix C) and in other middle and distal foreland sections restoring on the Tennessee
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embayment (e.g., sections DG, RI).  Lack of sedimentary record of Intervals III to V in sections

southeast of GS does not permit the determination of the distance of hinterland migration, and if

the migration was associated to a period of quiescence (e.g., Quinlan and Beamount, 1984) or

thrusting (e.g., Flemings and Jordan, 1990).  The regional coeval cratonwide rise of sea level

after the time of Millbrig-Deicke K-bentonites (Figure 4.14A, Bond and Kominz, 1991) and

hinterland migration of the flexural wave created the conditions for the wide expanse of shallow-

water carbonate and siliciclastic deposits in the distal and middle foreland.

For the lastest Ordovician, the shallowest part of the depositional profile adjacent to the

foredeep migrated farther northwestward onto the carbonate platform, as indicated by exposure

surfaces and meteoric water cements in cross-bedded skeletal and phosphatic rich limestones on

the Tennessee embayment (northwest of sections CH and RI, Figure 4.16D, Martin, 1991; Kher,

1996), and by meteoric water cements and truncation of Upper Ordovician strata and thin

deposition of skeletal limestones in the Birmingham section (Figure 4.7) (Benson and Stock,

1986; Thomas, 1986; Tobin and Walker, 1994).  The tectonic subsidence curve in the

northeasternmost section DG indicates an event of flexural subsidence during the early Silurian

(Chapter 3, Figure 3.11A).  This event of flexure may be related to the last migration of the

flexural wave in the latest Ordovician.  In the upper part of Interval V, the foredeep side of the

forebulge advanced farther cratonward on the Tennessee embayment (~ 73 km) than on the

Alabama promontory (~ 11 km) (Figure 4.16C).  Overall, the greatest migration of the forebulge

and siliciclastic depocenter was on the accommodation zone (Figures 4.16A to C), indicating

that, on the plate margin, the transition between the Alabama promontory and Tennessee

embayment was loaded most of the time during the Middle and Late Ordovician.

4.9.4  Migration of the flexural wave

Flexural wave migration in a homogenous foreland lithosphere may be kinematically

linked to the rates of propagation of orogenic belts and of convergence in the collisional margin

(DeCelles and DeCelles, 2001).  In the depocenter of the Blountian foreland basin in the

Tennessee embayment (northeastern Tennessee) an average rate of migration of 13 mm/yr

(ranging in time from 40 mm/yr to 9 mm/yr) was calculated using the difference in age of the

stratigraphic base of the black shale succession of two sections located in the proximal foreland

area (Finney et al., 1996).  This average rate corresponds to flexural wave migration across the
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deep part of the foredeep (initiation of black shales deposition) in the first 3.8 m.y and on the

Tennessee embayment.  On the Alabama promontory, a rate of ~ 8 mm/yr is calculated using the

difference in age and palinspastic distance between the basal Athens Shale in section HV

(stratigraphic surface 1) and in section CL (stratigraphic surface 3) (50 km/6 m.y.; Figures 4.3

and 4.4).  Farther northwest, a rate of ~ 11 mm/yr is calculated using the difference in age and

palinspastic distance between sections CL and PF (stratigraphic surface 3 in both sections; 13

km/1.2 m.y; Figures 4.3 and 4.4).

Comparison of migration rates of the flexural wave indicate that the Blountian thrust belt

propagated faster on the Tennessee embayment than on the Alabama promontory, under the

assumptions of a uniform foreland lithosphere, an instantaneous response of the lithosphere to

applied loads, and rate of plate convergence was the same along strike.  Slow movement of the

flexural wave may also document the presence of weak zones in the Alabama foreland

lithosphere (e.g., the Birmingham graben, Chapter 3) (Waschbusch and Royden, 1992).  Besides

in differences on lithosphere configuration, the rates of flexural wave migration are measured

using different sources of palinspastic maps (see Figure 4.3 for the Alabama promontory and

Finney et al., 1996, for the Tennessee embayment), although the time constraint is the same and

based on graptolite determinations of Finney et al. (1996).

Using the trace of the foredeep side of the forebulge on the accommodation zone, the

average rate of flexural wave migration between stratigraphic surfaces 3 and 8 is ~15 mm/yr (61

km/4 m.y.; Figure 4.16A), and between stratigraphic surfaces 8 and 11 is ~5 mm/yr (55 km/10

m.y.; Figure 4.16A).  Comparison of flexural wave migration on the accommodation zone and

the Alabama promontory over the time span of the Blountian orogen indicate an overall

deceleration in migration of the flexural wave from the earliest stages of foreland development (8

to15 mm/yr) to the latest stage in the Late Ordovician (5 mm/yr).  Deceleration of foreland

migration can be expected either by the northeastward migration of the orogenic loads (Figures

4.11 and 4.12), a decrease in rate of propagation of orogenic wedges with time (DeCelles and

DeCelles, 2001), and passage of the flexural wave above a weak zone of the lithosphere

(Waschbusch and Royden, 1992).
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4.9.5  Interaction between Blountian hinterland and the inherited configuration of the plate

margin

Along-strike differences in composition of siliciclastic detritus and irregular distribution

of conglomerates in the proximal foredeep may be also related to the pre-existing configuration

of the plate margin.  According to the provenance interpretation from sandstones and

conglomerates, Blountian highlands supplying detritus to the clastic wedge had Grenville

basement and sedimentary cover rocks of the Laurentian margin (Figure 4.17).  Up-section

increase of sedimentary lithic grains and quartzose fragments at the time of deposition of the

Chota Formation and younger beds (ca 457 Ma, stratigraphic surface of correlation 6) suggest

exposure of a new sedimentary cover as result of break-forward thrusting of the Blountian thrust

belt (Figure 4.17).  Abundant K-bentonite beds and a few volcanic rock fragments in upper

sandstones of the Blountian clastic wedge are the only indication of magmatic activity in the

orogenic belt.  The greater abundance of feldspars and the more uniform rate of change to less

negative εNd on the Alabama promontory than on the Tennessee embayment may suggest

increasing supply of juvenile sediments because of more exposure of Grenville basement rocks.

The increased influx of quartzose and sedimentary-cover sediments and the record of coarse-

grained tidal-influenced marginal facies on the Tennessee embayment (e.g., top of Chota

Formation in section CI and top of Sequatchie Formation in section DG) may reflect less

exposure of basement rocks and the farther cratonward advance of the orogenic belt.

The along-strike change in foredeep width supports the interpretation of along-strike

variation of deformation in the orogenic belt (Figures 4.12 and 4.16).  In the recess-salient model

of orogenic belts (Figure 4.1), high deformation in the recess brings to surface older rocks in the

orogenic belt and creates a narrow and steep foreland basin.  In the salients of the orogenic belt,

the orogenic belt is less shortenned and advances farther cratonward.  The wider foredeep and

higher content of quartzose sedimentary lithic fragments on the Tennessee embayment than on

the Alabama promontory suggest the presence of a salient curve of the Blountian thrust belt at

the position of the Tennessee embayment.  Farther southeast along strike, the higher content of

feldspars grains, less negative εNd values, and the narrow and steep foredeep on the Alabama

promontory support the curved geometry of the Blountian thrust belt.
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4.10  CONCLUSIONS

Stratigraphy, sediment composition, and tectonic subsidence patterns of the proximal and

middle strata of the Blountian foreland basin document along-strike variations genetically related

to the rifted-margin configuration of southern Laurentia.  The Blountian foredeep, as depicted by

change in depositional depth of coeval Middle Ordovician carbonate and black shale strata, was

narrower and had steeper slope in the Alabama promontory than in the Tennessee embayment.

Flexural reactivation of basement normal faults in the foredeep may have contributed to the rapid

drowning of the carbonate platform.  Deposition of the wide carbonate platform on the distal

foreland and on the Alabama promontory was controlled primarily by uplift and subsidence

related to the inversion of the Birmingham graben, whereas flexural subsidence and eustasy

controlled distal foreland carbonate deposition on the Tennessee embayment.  Differential

flexural subsidence along the Blountian foredeep may be accommodated by reactivation of

transverse basement faults on the accommodation zone.

Northeastward and northwestward migration of marginal sediment and tectonic loads, as

indicated by diachronous drowning of the Middle Ordovician platform in the proximal foreland,

controlled the migration of the clastic wedge depocenter and forebulge in middle and distal

foreland.  Up-section coarsening and shoaling of proximal and middle foredeep strata on the

Tennessee embayment documents: (1) up section increase in influx of terrigenous detritus

throughout the section, (2) an abrupt increase of quartz and sedimentary lithic fragments in

coarse deltaic deposits toward the top, (3) cratonward progradation of shallow clastic platform to

marginal environments, and (4) cratonward advance of a salient in the Blountian orogenic belt.

In contrast, the low influx of terrigenous detritus to the narrow foredeep on the Alabama

promontory favored the establishment of a carbonate ramp in the southwestern part, whereas

shallow-water carbonate and siliciclastic deposition interfingered in the foredeep on the Alabama

promontory and the accommodation zone.

The flexural wave initially migrated farther cratonward on the Alabama promontory, but

as the tectonic loads moved northeastward, the forebulge migrated rapidly cratonward on the

Tennessee embayment.  In the early stages of foreland evolution, the rate of flexural wave

migration is higher on the Tennessee embayment (9-40 mm/yr) than on the Alabama promontory

(8-11 mm/yr) and accommodation zone (15 mm/yr).  If flexural rigidity (or elastic thickness) of

the lithosphere is uniform, propagation rates of tectonic/sediment loads on the Tennessee
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embayment are inferred to be higher than those on the Alabama promontory; however, weak

zones on the Alabama promontory lithosphere may explain the relative slow propagation of the

flexural wave on the promontory.  On the accommodation zone, rates of migration of the flexural

wave decelerate through time from 15 mm/yr to 5 mm/yr.  The largest migration of the forebulge

on the accommodation zone may suggest that this zone was loaded most of the time during the

Middle and Late Ordovician.

Intrabasinal uplifts and differential deformation in the Blountian orogenic belt are

recorded by along-strike changes in the composition of the Blountian clastic wedge. Local

conglomerates interbedded with turbiditic feldspar-bearing sandstones in the underfilled

stratigraphy of the Blountian foredeep suggest the mixing of sediments transported by axial

submarine fan deposits and debris flows derived from intrabasinal uplifts.  Petrographic and Nd-

isotopic data indicate a source area composed of Grenville basement and a sedimentary cover

with a Laurentian-margin stratigraphy.  The uniform increase of Nd-isotopes, the higher

percentages of feldspars in the clastic wedge on the Alabama promontory, and the more

abundant quartzose and sedimentary lithic fragments in the clastic wedge on the Tennessee

embayment, suggest that the Blountian tectonic load was more deeply eroded in areas supplying

sediments to the promontory, and the sedimentary cover was more exposed in areas supplying

the embayment.  This pattern of deformation is similar to the gradients of deformation

documented in curved thrust belts, a geometry that is primarily controlled by the rifted

configuration of the older margin.

In short, this chapter relates the along-strike change from a promontory to an embayment

configuration of the Laurentian margin with (1) evolution of the depositional profile of the

Blountian foredeep, (2) differential subsidence history and migration rates of the Blountian

foredeep, and (3) intensity in deformation of the Blountian orogenic belt.  Therefore,

geodynamic modeling of the Blountian foreland basin needs to consider along-strike variations

in the geometry of tectonic loads and reactivation of different basement structures.
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Table 4.1  Explanation of lithofacies codes and lithofacies interpretations for carbonate and

mixed carbonate and siliciclastic deposits.

Lithology
code

Rock name
(Dunham, 1962)

Energy, Water
depth

Environment of deposition.  Dominant
framework grains.  Structures

Lmm, LDmm
Dmm

Mudstone to wackestone Low
< 4 m

Supratidal to intratidal.
Peloids, intraclasts, algae, restricted fauna.  Fenestral,
ripple and horizontal  laminated, mudcracks,
bioturbated.

Mudstone to wackestoneLmms, LDmms
Dmms

Generally low
< 16 m

Supratidal to subtidal (lagoon).  Restricted fauna
fragments of conglomerate size.  Massive, fenestral.

Lmo, LDmo Wackestone to grainstone Low to high
< 16 m

Supratidal to shallow subtidal.  Algae, oncoids, peloids,
 intraclasts,  minor skeletal (mixed fauna).  Massive,
 fenestral, ripple lamination, stylonodular.

Lmi, LDmi Wackestone to packstone Moderate to high
< 64 m

Intratidal to shallow subtidal  with restricted circulation
(lagoon).  Intraclasts dominantly of Lmo lithologies.
Massive,  bioturbated, stylonodular, poor sorting.

Lmr, LDmr Wackestone to packstone Low to moderate
< 16 m

Shallow to internediate subtidal, ramp or lagoon.
Mixed restricted and open-water skeletal fragments,
minor algae and peloids.  Massive, stylonodular,
fenestral.

Lms Wackestone to grainstone Moderate to low
< 64 m

Subtidal, open-marine circulation (shallow ramp).
Open-marine fossils, trace of algae, intraclasts and
peloids.
Massive, laminated, cross beds, stylonodular, bioherms.

Lml Mudstone to wackestone Generally low
< 256 m

Intermediate to deep ramp.  Thin horizontal  lamination,
internal grading and thin beds of Lss and Sb.

Dsm Coarse-crystalline dolomite Non-skeletal.  Massive.  Original components must
have been destroyed during dolomitization.

Lso Grainstone Moderate to high
< 16 m

Shallow ramp, shoals, tidal bars.  Ooids, algae,  trace of
skeletal fragments, quartz.  Cross beds, normal grading,
lamination.

Lss Packstone to grainstone Moderate to high
< 16 m

Shallow ramp, shoals, tidal bars.  Open-marine skeletal
fragments, sand-size quartz.  Massive, cross beds,  good
sorting.

Lsp Packstone to grainstone Moderate to low
< 16 m

Very shallow, intratidal to subtidal.  Peloids and
intraclasts, rare skeletal grains.  Lamination, cross beds,
good sorting.

Lsi, Dsi Packstone to grainstone Moderate to high
< 16 m

Very shallow, intratidal to subtidal.  Intraclasts and
open-marine skeletal grains, sand-size quartz.  Massive,
horizontal- and cross-bedded, good to moderate sorting.

restricted-water skeletal fragments:  ostracods, trilobites, mollusks, brachiopods, coral Tetradium, crinoids, green algae, oncoids

open-marine skeletal fragments: brachiopods, trilobites, crinoids, bryozoans, corals,  red algae

Lithology

code

Dominant carbonate
and siliciclastic

lithologies

Energy,
Water depth

Environment of deposition.  Dominant
framework grains.  Structures

LSbs, SLbs Lml, Lms, Lss, Sb Low

< 1024 m

Deep-water ramp, distal carbonate turbidites.
Graptolites.  Horizontal lamination, soft-sediment
deformation.

LSf, SLf LDmm, Ldmo, Lml, Sfsm,
Sfm, calcisiltite

Generally low
< 16 m

Intertidal, subtidal lagoon.  Trace of skeletal grains.
Mottled, diverse degree of bioturbation, massive,
ripples and horizontal lamination, cross beds,
mudcracks.

LSci, SLci Lmi, Lms, Ssm, Sgcg
conglomerate

High
< 64 m

Subtidal, debris-flow deposit.  Massive, cross-bedded,
matrix- to clast-supported, bioturbated, argillaceous,
matrix of LSf, Sfsm, Ssm.

LScs, SLcs Lss, Lms, Sst, Ssp, Ssm, Sgcg
conglomerate

High
< 16 m

Very shallow ramp, shoals, tidal bars. Open-marine
skeletal fragments, trace of peloids and intraclasts.
Cross beds, cuneiform and lenticular beds, clast-
supported.
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Table 4.1  (previous page) Explanation of lithofacies codes and lithofacies interpretations for

carbonate and mixed carbonate and siliciclastic deposits.  The codes have uppercase letters to

indicate which is the dominant composition of each lithofacies (L=limestone, D=dolomite,

S=siliciclastic (see Table 3.2)).  Mixed lithofacies have two uppercase letters (LD=dolomitized

limestone; LS=carbonate-siliciclastic).  In only carbonates lithofacies, the first lowercase letter

indicates either micritic (m) or sparry (s) lithologies.  The second and third lowercase letter(s)

denote important components or structures of the lithofacies: p =peloidal, i =intraclastic, o =non-

skeletal allochems, r = association of skeletal fragments indicates restricted-water environments

(ostracods, trilobites, mollusks, brachiopods, Tetradium, crinoids, green algae, oncoids), s =

association of skeletal fragments indicates open-marine environments (brachiopods, trilobites,

crinoids, bryozoans, corals, red algae), l =laminated, m=massive.  In mixed lithologies, the

lowercase letters indicate: bs = interbedding with black shales, f = fine-grained lithologies, ci =

coarse-grained intraclastic, cs = coarse-grained skeletal.
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Table 4.2  Explanation of lithofacies codes and lithofacies interpretations for siliciclastic

deposits.  The code uses the uppercase letter “S” to identify the lithofacies as siliciclastic. The

first lowercase letter denotes the grain size: g = gravel-size deposits, s = sand-size deposits, f =

silt-size deposits, b = shale deposits.  The second and/or third lowercase letters denote an

important structure, as described in the table, and allow the identification of each lithofacies.

Lithology
code

Dominant grain size Structures Interpretation. Range of depositional
environments

Sgmm Gravel, matrix-supported Massive to weak grading Plastic debris flow.  Subaerial to submarine

fans
Sgmg Gravel, matrix-supported Inverse to normal grading Pseudoplastic debris flow.  Subaerial to

submarine fans
Sgmh Gravel, matrix-supported Crude horizontal bedding Hyperconcentrated flow.  Subaerial to

submarine fans
Sgcg Gravel, clast-supported Normal grading Hyperconcentrated flow.  Subaerial to fan

deltas
Sgcm Gravel, clast-supported Massive to crude horizontal

bedding
Clast-rich debris flow, pseudoplastic debris
flow, hyperconcentrated flow.  Fan deltas

Sgh Gravel, clast-supported Crudely- to horizontally bedded,
Imbrication

Longitudinal bedforms; lag or sieve deposits.
Subaerial unconfined water flows

Sgt Gravel, stratified Trough cross-beds Transverse bedforms, channel fill.  Fluvial to
fan deltas

Sgp Gravel, stratified Planar cross-beds Transverse bedforms, deltaic growths from
older bar remnants.  Fluvial to fan deltas

Sst
Ssti

Sand, fine to very coarse, locally
pebbly.  (i= bimodal grain size
distribution)

Solitary or grouped trough cross-
beds

Sinuous-crested and linguoid 3-D dunes.
Fluvial, subtidal, longshore bars

Ssp
Sspi

Sand, fine to very coarse, locally
pebbly.  (i= bimodal grain size

distribution)

Solitary or grouped planar cross-
beds

Transverse and linguoid 2-D dunes.  Fluvial,
subtidal, longshore bars

Sse Sand to pebble Sigmoidal or ellipsoidal bedding Lateral accretion.  Fluvial to subtidal bars

Ssr Sand, fine to coarse Ripple cross-lamination
(current or oscillatory)

Ripples (lower flow regime).  Fluvial to
deep-water turbidites

Ssh
Sshi

Sand, fine to very coarse, locally
pebbly.  (i= bimodal grain size
distribution)

Horizontal lamination with parting
or streaming lineation

Plane-bed flow (critical flow). Fluvial to
deep-water turbidites

Ssl Sand, fine to very coarse, locally
pebbly

Low-angle (<15º) cross-beds Scour fills, humpback or washed-out dunes,
antidunes.  Fluvial

Sss Sand to pebble Broad, shallow scours Scour fill.  Fluvial, subtidal, longshore bars

Ssm Sand, fine to coarse Massive, or faint lamination Sediment-gravity flow deposits.  Fluvial to
deep-water turbidites

Ssw Sand, fine to coarse Wave ripples and planar cross-
beds

Sand dunes reworked by wave-dominated
currents.  Intratidal to shallow shelf

Ssb Sand, fine Hummocky cross-beds Wave-dominated currents (storm currents).
Shallow shelf

Sshe Sand, mud Heterolithic lamination, lenticular
lamination

Continuing change from suspension to lower
flow regime.  Intratidal to shallow shelf

Ssfl Sand, mud Flaser or thin horizontal lamination Deposition and/or erosion of mud laminae.
Fluvial, intratidal, shallow shelf
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Table 4.2  (continued).

Sfl Sand, mud, slightly calcareous Fine lamination, very thin lenses of
sandstones, ripples, rare skeletal
fragments (mollusks, brachiopods,
bryozoans)

Overbank, abandoned channel, or waning
flood deposits, intermediate-water
suspension.  Fluvial to deep-water turbidites

Sfsm Sand, mud Massive, leached carbonate,
mottled by bioturbation, thin
lenses of Ssm, Sss

Suspension in intermediate waters.  Fluvial
to intratidal

Sfm Mud Massive, faint lamination,
dolomitic, desiccation cracks

Suspension in intermediate waters;
overbank, abandoned channel, or drape
deposits.  Fluvial to intratidal

Sb Black shale Fissil, organic, calcareous and non-
calcareous, graptolites

Suspension in deep water.  Offshore and
slope suspension; distal tail of submarine
fans
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Table 4.3  Explanation of key stratigraphic surfaces.

Age Significance of the event in carbonate and
mixed lithologies successions (sections
restoring in the middle to distal foreland)

Significance of the event in siliciclastic
successions (sections restoring in the
proximal to middle foreland)

11 Post-Ordovician unconformity.  Total to partial
drowning of the Ordovician platform.  Deposition of basal
shales of the Red Mountain Formation with thin interbeds
of fine-grained sandstones with hummocky cross beds.

Post-Ordovician unconformity.  Regional onset of shale
deposition of the Red Mountain Formation with thin
interbeds of fine-grained sandstones with hummocky cross
beds in section GS.

10 late Late
Ordovician
(Cincinnatian,
ca 446)

Marine flooding and shoaling with deposition of coarser-
grained, phosphatic, skeletal carbonates (section BR and
BI), mixed lithologies (sections BR and RI), and
quartzarenites (sections DM, HL, DG) (A. ordovicicus
zone).

9 middle Late
Ordovician
(Mohawkian –
Cincinnatian,
ca. 451)

Limited subaerial exposure followed by regional marine
flooding above surface 8 in carbonate lithologies at section
BR, in mixed lithologies at GS (P. tenius to B. confluens),
and in siliciclastic lithologies in section DG.

Regional marine flooding in mixed lithologies in section GS
(P. tenius to B. confluens)

8 ca 454 Ma Millbrig and Deicke K-bentonite interval in dolomitic
limestones in section BR and BI.

Millbrig and Deicke K-bentonite interval in red siltstones
in section HM, at the base of quartzarenite deposits in
sections HL and DM, and toward the top of the quartzarenite
interval in GS.

7 early Late
Ordovician
(middle
Mohawkian, ca
456)

Subaerial exposure followed by regional marine flooding
below surface 8 in sections BR and BI (upper E.
quadridactylus to lower B. compressa zones).

Subaerial exposure followed by regional marine flooding
below surface 8 in sections HM, HL, DM, GS and PF (C.
bicornis zone).  Resurgence of limestone deposition in
section RH.

6 Late
Ordovician
(early
Mohawkian)

Marine flooding in southern sections BR and BI (E.
quadridactylus zone).

Coarsening-upward, shallowing, and termination of
carbonate deposition.  Onset of fine-grained siliciclastic
deposition in northern sections HM and RH (P. gerdae zone).

5 Late
Ordovician
(early
Mohawkian)

Marine flooding in section BI (P. acuelata zone) and onset
of carbonate deposition in section BR (older than E.
quadridactylus zone).  Inferred latest onset of deposition in
sections DG and DM.

Shoaling, termination of carbonate deposition, and onset of
fine-grained siliciclastic deposition in section GS (younger
than P. Sweeti conodont zone).

4 Middle-Late
Ordovician
(ca. 458)

Subaerial exposure followed by regional marine flooding
in section BI (upper C. Sweeti to lower P. aculeata zones).

Regional marine flooding in southern section PF (N. gracilis
to C. bicornis zones).

3 Middle-Late
Ordovician
(ca. 458)

Onset of carbonate deposition in section BI (C. sweeti
zone) and inferred for GS (P. serra zone).

Drowning of the carbonate platform.  Graptolitic, black
shales deposition in sections AB and CL; slight shoaling and
drowning at PF (top of G. teretiusculus to N. gracilis zones;
Finney et al., 1996).  The drowning in section CL occurred
1.2 m.y. earlier than in section PF (Finney et al., 1996).

2 late Middle
Ordovician
(late
Whiterockian,
ca. 463)

Onset of carbonate deposition at RH (P. serra zone) and
uncertain for HM.  Marine flooding events may have been
recorded in the carbonate interval in sections CH, RI, PF,
AB, and CL.

Drowning of the carbonate platform on the Tennessee
embayment.  Graptolitic, calcareous shales deposition (D.
teretiusculus zone) at CI (Finney et al., 1996).

1 late Middle
Ordovician
(middle
Whiterockian,
ca 466-464
Ma)

Localized onset of carbonate deposition in section PF (C.
friendsvillensis zone), and uncertain in sections CH, RI,
AB, and CL.

Drowning of the carbonate platform on the accommodation
zone and Alabama promontory.  Graptolitic shales deposition
(D. murchisoni zone) at RK, LM, FC, and HV (Finney et al.,
1996).

Post-Knox unconformity.  This surface incorporates
surfaces 1, 2, 3, 4, or 5 due to the diachronous onset of
carbonate deposition in the distal foreland.

Post-Knox unconformity.  This surface corresponds to
surface 1 in section HV (Alabama promontory).  In sections
FC, FM, and RK (accommodation zone) peritidal carbonates
< 38 m thick overlie the unconformity and underlie surface 1.
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Table 4.4  Parameters for sandstone point counts

Symbol Grain category Recalculated
parameters

Qm Monocrystalline quartz Q+F+L:
Qpf Foliated polycrystalline quartz Q = Qm+Qpf+Qpo+Ch
Qpo Non-foliated polycrystalline quartz F = P+K+Fu
Ch Chert L = Ls+Lv+Lm+Lu
P Plagioclase feldspar
K Potassium feldspar, microcline Qm+F+Lt:
Fu Unidentified feldspar, albitized feldspar Qm = Qm
Ls Sedimentary lithic fragments F = P+K+Fu
Lm Metamorphic lithic fragments Lt =Ls+Lv+Lm+Lu+
Lv Volcanic (devitrified) lithic fragments        Qpf+Qpo+Ch
Lu Unidentified lithic fragments
Lp Plutonic rock fragments (0.0 indicate presence)
Rc Carbonate rock fragments (excluding skeletal

fragments)

Inters. = Interstitial (matrix-cement) points (n) / framework points (300) + n
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Table 4.5  Raw point-count data and recalculated modal point-count data for sandstones of the

Blountian clastic wedge.  Stratigraphic levels of samples are shown in Figures 4.8 to 4.10 for

proximal foreland sandstones and in Figures 4.6 and 4.7 for middle to distal foreland sandstones.

For each sandstone group, a mean and standard deviation is calculated and plotted in Ternary

diagrams in Figures 6B and 9D.  See Table 4.4 for explanation of codes and recalculated

parameters

Sample Inter
s.

Qm Qpf Qpo Ch P K Fu Ls Lm Lv Lu Lp Rc Q F L Qm F Lt

S2-2216 7.7 54.3 0.6 8.6 0.0 3.3 3.3 25.3 3.6 0.6 63.8 32.0 4.2 54.5 32.0 13.5
I4-0601 57.6 46.0 1.6 6.6 4.3 9.6 9.0 13.6 3.6 2.3 3.0 58.7 32.3 8.9 46.2 32.3 21.5
O4-0401s 29.4 58.6 1.0 6.3 1.3 14.3 3.0 5.3 5.6 3.0 0.3 1.0 67.4 22.7 9.9 58.8 22.7 18.6
O4-0403 46.2 39.6 1.0 6.3 23.3 2.0 23.6 1.3 2.6 47.0 49.0 3.9 39.7 49.0 11.2
R3-0401 29.6 65.0 3.6 2.6 2.0 9.6 1.3 9.3 3.6 2.3 0.0 73.7 20.3 5.9 65.5 20.3 14.2
R3-0801 29.6 70.0 1.6 3.3 1.3 4.3 1.6 8.0 8.6 0.3 0.6 0.0 76.5 14.0 9.5 70.3 14.0 15.8
R3-0803 31.8 54.3 3.3 7.0 2.3 5.6 5.3 9.3 8.3 2.6 1.6 67.2 20.3 12.6 54.5 20.3 25.2
R3-0806 51.5 49.6 1.3 6.3 1.0 16.3 6.3 11.3 4.6 1.3 1.6 58.4 34.0 7.5 49.8 34.0 16.2
H3-1007 45.8 73.0 2.0 4.3 0.3 8.6 0.0 8.6 0.3 0.6 0.0 2.0 81.5 17.6 0.9 74.7 17.6 7.7
H3-1008 47.2 73.5 3.5 4.5 0.0 13.5 0.0 4.0 1.0 81.5 17.5 1.0 73.5 17.5 9.0
H3-1009 39.0 75.0 1.6 6.0 4.6 4.0 0.0 7.6 0.0 1.0 87.4 11.6 1.0 75.2 11.6 13.2
H3-1012 45.4 76.0 1.6 5.3 1.6 9.6 0.0 4.0 0.6 1.0 84.8 13.6 1.6 76.2 13.6 10.1
H3-1013 38.8 82.3 1.0 6.0 0.6 2.6 0.0 7.3 90.1 9.9 0.0 82.5 9.9 7.6
H3-1301 49.4 81.0 0.5 10.0 0.0 3.5 0.0 5.0 91.5 8.5 0.0 81.0 8.5 10.5
H3-1303 45.7 87.0 1.5 3.0 2.0 3.5 0.0 2.0 1.0 93.5 5.5 1.0 87.0 5.5 7.5
E3-1904 34.8 49.6 0.0 3.3 0.0 14.3 2.6 18.0 3.0 1.6 0.0 7.3 57.3 37.8 5.0 53.7 37.8 8.5
E3-2101 48.5 33.0 0.0 2.5 17.0 5.5 29.5 3.0 2.0 0.0 7.5 38.4 56.2 5.4 35.7 56.2 8.1
E3-2106 49.5 35.5 0.5 0.0 18.5 5.0 22.5 3.0 1.0 0.0 14.0 41.9 53.5 4.7 41.3 53.5 5.2
E3-2102 20.6 74.0 0.5 5.0 0.5 2.0 7.5 8.5 2.0 0.0 80.0 18.0 2.0 74.0 18.0 8.0
E3-2103 32.4 70.6 0.3 3.0 0.6 9.3 8.3 5.6 1.6 0.3 0.0 74.8 23.3 1.9 70.9 23.3 5.8
E3-2104 33.3 72.6 0.0 1.6 0.3 5.0 1.3 11.0 3.0 0.0 5.0 78.6 18.2 3.2 76.6 18.2 5.2
E3-2105 26.2 86.5 1.0 2.5 0.5 0.5 4.5 3.5 1.0 90.5 8.5 1.0 86.5 8.5 5.0
E3-2202 61.1 40.0 2.0 0.0 24.5 0.5 8.0 11.0 0.5 13.5 48.6 38.2 13.3 46.2 38.2 15.6
E3-2201 59.8 43.0 0.0 1.5 0.5 17.0 0.5 6.0 2.5 0.5 28.5 62.9 32.9 4.2 60.1 32.9 7.0
E3-2203 36.6 50.3 0.3 0.6 0.0 5.3 3.3 6.6 1.6 0.3 31.3 75.0 22.3 2.8 73.6 22.3 4.1
E3-2204 29.7 67.6 0.6 2.0 3.0 0.6 10.0 0.3 15.6 87.0 0.7 12.2 80.4 0.7 18.9
E3-2205 31.5 61.6 1.0 2.6 0.6 0.3 16.0 1.0 16.6 79.2 0.4 20.5 74.1 0.4 25.5
E4-2901 28.4 77.0 0.6 4.0 1.3 0.3 15.6 1.0 83.1 0.3 16.6 77.2 0.3 22.5
E4-2902 33.3 79.3 0.3 4.0 0.6 2.6 12.3 0.3 0.3 84.5 2.6 12.9 79.5 2.6 17.9
E4-2903 42.9 72.0 0.0 2.5 3.0 3.0 19.1 0.5 77.4 3.0 19.6 71.9 3.0 25.1
E3-2207 32.0 78.0 3.5 5.5 3.0 1.0 9.0 90.0 1.0 9.0 78.0 1.0 21.0
E3-2206 28.7 88.3 2.6 1.0 6.0 0.6 1.3 98.1 0.6 1.3 88.5 0.6 10.9

         0.0   denotes trace amounts of that fragment in the sample

Group 6. Chota Formation,
section CI.
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QUARTZ FELDSPAR LITHICS QmFLtQFL

Sandstone Group

Group 1. Athens Shale,
sections FM, LM, CL.

Group 2. Athens Shale,
section HV

Group 3. Rockmart
Slate, section RK.

Group 4. Athens Shale,
section CI.

Group 5. Athens Shale,
section CI.

Group 7. Chota Formation,
section CI.

Group 8. Chota Formation,
section CI.
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Table 4.5  (continued)

Sample Inter
s.

Qm Qpf Qpo Ch P K Fu Ls Lm Lv Lu Lp Rc Q F L Qm F Lt

M3-2110 57.4 51.0 0.5 7.0 0.0 23.5 3.5 13.0 0.5 59.1 40.4 0.5 51.5 40.4 8.1
M3-1704 20.0 44.6 2.0 3.0 2.0 25.0 5.3 9.6 3.6 3.3 1.3 0.0 51.8 40.0 8.2 44.7 40.0 15.2
M3-2504 20.6 58.0 2.3 0.6 8.0 1.0 20.0 3.0 5.0 0.3 1.6 61.0 29.1 9.9 58.1 29.1 12.8
M3-2503 9.1 56.3 0.3 5.0 1.0 11.3 5.0 15.0 2.6 2.0 1.3 62.7 31.4 5.9 56.4 31.4 12.2
M3-2501 25.0 53.0 1.3 4.3 0.6 8.0 5.3 14.3 6.0 6.6 0.3 59.4 27.7 12.9 53.2 27.7 19.2
M3-2206 23.7 47.6 7.6 0.3 26.6 5.6 4.0 2.3 0.6 5.3 55.6 36.2 8.2 47.6 36.2 16.1
M3-1705 27.9 70.3 4.3 1.6 0.3 15.6 2.3 1.3 1.6 2.0 0.3 76.8 19.3 3.9 70.6 19.3 10.1
M3-2306 50.2 78.0 0.5 4.0 0.5 8.5 0.5 4.0 1.5 2.5 83.0 13.0 4.0 78.0 13.0 9.0
M3-2507 34.6 74.3 2.3 6.6 0.6 0.3 9.0 2.3 2.3 2.0 84.1 9.3 6.6 74.5 9.3 16.1
M3-2506 41.7 63.6 2.6 13.0 0.6 0.6 0.3 9.6 5.3 2.0 2.0 80.1 10.5 9.3 63.9 10.5 25.6
M3-2502 18.7 74.6 0.3 4.0 0.6 1.6 4.6 10.3 1.3 0.6 1.6 79.9 16.6 3.5 75.0 16.6 8.4
L4-0501 25.6 89.6 0.3 2.7 0.6 2.0 1.6 2.3 0.3 0.3 93.8 5.9 0.3 90.1 5.9 3.9
L4-0503 44.2 86.0 0.6 2.3 0.3 1.6 7.3 1.6 89.5 10.5 0.0 86.3 10.5 3.2
G111009A 13.8 93.5 2.5 2.0 1.0 1.0 99.0 1.0 0.0 93.5 1.0 5.5
G11-1010 22.8 97.0 1.0 1.0 0.5 0.5 99.5 0.5 0.0 97.0 0.5 2.5
G11-1020 26.7 94.0 2.0 2.5 0.0 1.5 98.5 1.5 0.0 94.0 1.5 4.5
G11-1021 26.5 96.5 0.5 1.0 1.0 1.0 99.0 1.0 0.0 96.5 1.0 2.5
G11-1011 0.0 97.5 0.5 1.0 0.0 1.0 99.0 1.0 0.0 97.5 1.0 1.5
G11-1019 24.8 74.3 1.0 4.6 1.0 0.0 1.0 17.0 1.0 81.0 18.0 1.0 74.4 18.0 7.6
G11-1012 30.4 72.0 1.0 3.6 1.0 13.6 4.0 4.6 77.8 13.6 8.6 72.1 13.6 14.2
C3-1403 26.7 77.3 0.3 3.0 0.0 2.0 8.6 8.6 0.0 80.8 19.2 0.0 77.5 19.2 3.3
D3-1605 30.2 86.6 1.0 1.6 2.0 2.6 5.0 1.0 91.4 8.6 0.0 86.8 8.6 4.6
D3-1606 30.4 81.6 0.0 5.3 1.6 4.6 2.0 1.0 0.0 3.6 88.8 4.6 6.6 81.8 4.6 13.5
K3-3002 16.2 67.3 4.0 26.5 0.0 0.0 1.0 99.0 1.0 0.0 68.1 1.0 30.9
K3-3004 26.3 66.6 8.6 23.6 0.3 100 0.0 0.0 67.4 0.0 32.6
P3-1200 28.7 40.0 60.0 100 0.0 0.0 40.0 0.0 60.0
M3-1701 28.6 90.0 0.3 7.0 1.0 1.6 0.0 98.4 0.0 1.6 90.1 0.0 9.9
M3-1804 22.9 98.0 1.0 1.0 100. 0.0 0.0 98.0 0.0 2.0
M3-1803 22.7 99.6 0.3 99.7 0.0 0.3 99.7 0.0 0.3
M3-1805 22.3 99.0 0.3 0.6 0.0 100 0.0 0.0 99.1 0.0 0.9
M3-1801 32.6 94.3 0.3 3.6 1.0 0.3 0.3 99.4 0.3 0.3 94.5 0.3 5.2
M3-2309 25.6 84.6 1.6 6.0 0.6 4.3 0.6 2.0 93.1 4.3 2.6 84.9 4.3 10.8
M3-2204 16.9 87.0 0.3 1.6 0.3 1.6 3.6 5.3 89.5 10.5 0.0 87.3 10.5 2.2
M3-2201 16.9 81.0 3.3 1.0 3.0 1.6 7.3 0.6 2.0 85.5 11.9 2.6 81.2 11.9 6.9
L4-0506 13.3 75.6 0.3 2.6 0.3 1.6 12.6 4.6 1.6 0.3 79.2 18.9 1.9 76.0 18.9 5.1
G11-1004 16.3 97.5 1.0 0.5 0.5 0.5 99.5 0.5 0.0 97.5 0.5 2.0
G11-1005 20.0 89.5 3.0 4.0 2.5 1.0 99.0 1.0 0.0 89.5 1.0 9.5
D3-1610 17.7 90.0 1.0 2.0 2.5 4.5 95.5 0.0 4.5 90.0 0.0 10.0
M3-1901 27.0 75.6 8.0 1.0 2.0 1.0 6.6 2.6 2.3 0.6 ?? 84.9 9.6 5.5 75.8 9.6 14.5
L4-0102s 49.7 88.3 0.0 1.3 0.0 5.6 2.6 1.0 0.6 0.6 90.1 9.3 0.6 88.8 9.3 1.9
K3-2907 35.5 80.3 1.0 1.3 0.0 1.6 8.0 3.6 0.6 3.0 0.0 83.1 13.3 3.6 80.8 13.3 5.9
K3-2904 31.2 93.0 1.3 2.0 0.0 0.3 0.6 1.0 1.6 96.5 1.9 1.6 93.2 1.9 4.9
K3-2902 28.7 90.6 1.9 1.6 0.3 0.3 4.6 0.3 94.8 0.3 4.9 91.0 0.3 8.7
K3-2901 30.1 72.6 1.0 7.0 1.0 5.3 3.0 3.3 6.0 0.6 81.8 11.6 6.6 72.7 11.6 15.6
G11-1001 18.0 93.3 2.0 2.0 0.3 1.3 0.6 0.3 97.8 1.3 0.9 93.5 1.3 5.2
G11-1002 22.5 59.5 4.5 14.5 0.5 4.5 7.0 8.5 1.0 79.0 11.5 9.5 59.5 11.5 29.0
G11-1003 14.0 98.0 0.3 0.6 0.3 0.3 0.3 99.1 0.3 0.6 98.2 0.3 1.5
C3-1504 17.8 96.6 1.3 1.6 0.3 100 0.0 0.0 96.8 0.0 3.2
C3-1506 14.3 89.3 0.0 2.6 0.0 4.6 3.0 0.3 92.1 7.9 0.0 89.5 7.9 2.6

0.0 denotes trace amounts of that fragment in the sample
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Group 13. Greensport
Formation, section HL

Group 14. Greensport
Formation, sections
HM and DG

Group 15. Atalla chert
conglomerate, sections
BI and BR

Group 16. Colvin
Mountain Sandstone,
section GS.

Group 17. Colvin
Mountain Sandstone,
sections GS and DM.
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Mountain Sandstone,
sections HM and HL.
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Formation, sections GS,
BR, and DM.

Group 20. Sequatchie
Formation, sections HL and
DG.
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Table 4.6  Sm-Nd isotopic data for Middle and Upper Ordovician strata from the Blountain

clastic wedge.  Samples are distributed in three areas, which are from south to north, the

Alabama promontory, the Tennessee embayment, and the Virginia promontory.

Biostratigraphy (1) Sm Nd
Sample Location Unit Rock

type
graptolite Ma ppm ppm measure present initial TDM reference

conodont (2) (3) (4) (5) (5,6) (Ga)

Alabama promontory
R3-0504 Harpersville Athens shale D. murchisoni 463 0.1305 0.511902 ± 11 -14.4 -10.6 this study
duplicate 0.1305 0.511914 ± 13 -14.1 -10.4 this study
V-1 Vincent Athens shale D. murchisoni 463 4.09 21.30 0.1162 0.511896 ± 9 -14.5 -9.9 1.79 Gleason et al.,  2002
S2-2406 Calera Lenoir bentonitic

shale
P. serra 460 0.1587 0.512022 ± 10 -12.0 -9.9 this study

Duplicate (7) 0.1526 0.512015 ± 9 -12.2 -9.7 this study
S2-2502 Calera Lenoir calcareou

s shale
P. serra 460 0.1469 0.512015 ± 10 -12.2 -9.4 this study

17-2 Calera Athens shale G. teretiusculus 458 5.23 27.71 0.1141 0.511939 ± 9 -13.6 -8.9 1.69 Gleason et al.,  2002
26/28 Calera Athens shale G. teretiusculus 458 4.67 24.26 0.1163 0.511932 ± 7 -13.8 -9.2 1.74 Gleason et al.,  2002
84/3 Calera Athens shale N. gracilis 457 5.16 27.38 0.1139 0.511921 ± 11 -14.0 -9.2 1.71 Gleason et al.,  2002
106-1 Calera Athens shale N. gracilis 457 6.20 33.08 0.1134 0.511941 ± 22 -13.6 -8.8 1.67 Gleason et al.,  2002
M3-2305 Greensport Greensport dolomitic

shale
P. sweeti 455 0.1151 0.511951 ± 10 -13.4 -8.8 this study

M3-2203 Greensport Colvin
Mountain

siltstone B. compressa 454 0.0974 0.511929 ± 8 -13.8 -8.2 this study

K3-2906 Big Ridge Sequatchie shale A. ordovicicus 446 0.0944 0.511965 ± 11 -13.1 -7.3 this study

Tennessee embayment
M-1 Mosheim Blockhouse shale G. tere.-N.

gracilis
458 5.86 31.30 0.1132 0.511876 ± 5 -14.9 -10.0 Andersen and Samson, 1995

M-2 Mosheim Blockhouse shale G. tere.-N.
gracilis

458 6.10 33.30 0.1108 0.511899 ± 6 -14.4 -9.4 Andersen and Samson, 1995

SHD-8-3 Holston
dam

Blockhouse sandstone N. gracilis 457 7.27 34.20 0.1318 0.512045 ± 6 -11.6 -7.8 Andersen and Samson, 1995

SHD-6-2 Holston
dam

Blockhouse shale N. gracilis 457 10.10 48.50 0.1254 0.512031 ± 8 -11.8 -7.7 Andersen and Samson, 1995

HOL-1 E.
Tennessee

Tellico shale 457 9.21 49.35 0.1127 0.512001 ± 8 -12.4 -7.5 1.57 Gleason et al. 1995

HOL-2 E.
Tennessee

Tellico lithic sandstone 457 6.30 33.43 0.1139 0.512028 ± 5 -11.9 -7.0 1.55 Gleason et al. 1995

SHD-3-6 Holston
dam

Tellico shale N. gracilis 456 7.86 41.20 0.1154 0.512031 ± 5 -11.8 -7.1 Andersen and Samson, 1995

SHD-3-4 Holston
dam

Tellico shale N. gracilis 456 8.23 40.80 0.1218 0.512010 ± 7 -12.2 -7.9 Andersen and Samson, 1995

TH-2 E.
Tennessee

Mantirsburg lithic sandstone 450 6.30 28.12 0.1355 0.512000 ± 7 -12.4 -8.9 2.03 Gleason et al. 1995

TH-1 E.
Tennessee

Juniata lithic sandstone 445 9.17 41.45 0.1337 0.512095 ± 5 -10.6 -7.0 1.80 Gleason et al. 1995

TH-3 E.
Tennessee

Clinch quartzose sandstone 440 3.45 16.40 0.1272 0.512044 ± 7 -11.6 -7.7 1.76 Gleason et al. 1995

Virginia promontory
C-5 Chilhowie Rich Valley shale N. gra.-C.

bicornis
457 6.30 34.60 0.1100 0.511878 ± 4 -14.8 -9.7 Andersen and Samson, 1995

311-2 Blacksburg Bays sandstone 454 7.80 35.30 0.1333 0.512131 ± 5 -9.9 -6.2 Andersen and Samson, 1995

(1) conodont zones from Hall et al. (1986); graptolite zones from Finney et al (1996).
(2) Sample M3-2203 is few meters below the Millbrig K-bentonite and a 454 Ma is assigned.  Assigment of ages for other samples is
     relative and accommodates the samples in an older-to-younger order, as depicted in Figure 13 and using the time framework of Figure 4.4
     Ages of samples TH-1, TH-2, and TH-5 from Gleason et al. (1995).
(3) two-sigma error better than 1% for data of this study; better than 0.5% for Gleason et al. (2002)
(4) measured ratio, normalized to 146Nd/144Nd = 0.7219.  Uncertainties are ± 2 s  (Anderson and Samson, 1995); are ± 2 s of the mean on 105

ratios, and reflect in-run precision for the other data.

(5) this study follows Gleason et al (2002) calculations; for other samples, see original papers

εNd = 104[(143 Nd/144 Nd (t)SAMPLE )/( 143 Nd/144 Nd (t)CHUR)-1];   143 Nd/144 Nd (t)CHUR(bulk earth) = 0.512638

(6) calculated for 450 Ma in data from Gleason et al. (2002) and this study

(7) Nd isotopic ratio only was calculated

εNd
147Sm/
144Nd

143Nd/
144Nd

εNd
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Figure 4.2  (previous page) Location of study sections and distribution of lithofacies belts of the

Middle and Upper Ordovician strata in the Appalachian thrust belt of Georgia and Alabama.

References to sources of stratigraphic sections are listed in alphabetic order: 1) Bearce, 1999; 2a)

Bergström, 1973; 2b) Bergström 1977; 3) Caldwell, 1992; 4) Chowns, 1977; 5) Chowns and

Carter, 1983; 6a) Cressler, 1970; 6b) Cressler, 1974; 7) Drahovzal and Neathery, 1971; 8) Finney

et al., 1996; 9) Guthrie, 1994; 10) Hall et al., 1986; 11) Higgins et al., 1988; 12) Jenkins, 1984;

13a) Kath et al., 1994; 13b) Randal L. Kath, written communication, 2001; 14a) Osborne, 1996;

14b) Ed Osborne, written communication, 2001; 15a) Raymond, 1973; 15b) Raymond, 1991; 16)

Thomas and Drahovzal in prep; 17) Salisbury, 1961; 18) Shaw et al., 1989; 19) Sibley, 1983.

See Chapter 3 for a complete list of references to sources of stratigraphic sections and a more

detailed description of sections in the middle to distal foreland.
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Figure 4.3  (previous page) Palinspastic map showing location of study sections, lines of

stratigraphic correlation, and lithofacies belts.  See Figure 4.2 for explanation of lithofacies belts.

The leading trace of the Appalachian metamorphic thrust belt (white dash line) is shown in

present location for reference.  Eastern boundary of the southeastern lithofacies belt corresponds

to the trailing edge of unmetamorphosed Paleozoic rocks.  See Chapter 2 for details on the

construction of the palinspastic map.  This Figure 4.3 also shows the distribution of study

sections and lithofacies belts in relation to subsurface basement faults and the configuration of

the rifted-margin of Laurentia (from Thomas, 1993).  Note the concentration of cross-strike

structures in the accommodation zone, which is parallel to the Georgia transform at the plate

margin (Figure 4.1).  Question marks between the southeasternmost sections and the orogenic

belt indicate no constraint on the palinspastic distance to the leading edge of the Blountian

orogenic belt.  Black dash line shows the present location of the leading edge of the Pine

Mountain internal basement massif (Osborne et al., 1988).
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Figure 4.4  (previous page) (A) Ordovician series (from Webby, 1998) and correlation of

conodont zones, graptolite zones, and K-bentonite beds (modified from Kolata et al., 1996);

radiometric ages of Mohawkian K-bentonites from Kolata et al. (1996, 1998), and of older K-

bentonites from correlations made by Finney et al. (1996).  Also are shown the positions of the

stratigraphic surfaces discussed in the text (numbers 1 to 10, see Table 4.3 for definition of each

of these surfaces).  (B) Proposed Ordovician sea-level curves.  Ross and Ross (1995) curve is

based on third-order stratigraphic sequences from several key sections in North America.  Bond

and Kominz (1991) curve is relative to a section in the stable craton.  The latter curve was used

in constructing tectonic subsidence curves.  The stratigraphic position of surface 8 is shown for

reference.
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Figure 4.5 Key to facies for stratigraphic columns in Figures 4.6 to 4.10. Explanation of

lithofacies codes is given in Tables 4.1 and 4.2.



3
S

b

Lm
s,

Lm
r

Lm
o

Lm
r

Lm
m

Lm
o

Lm
r

Lm
o

Lm
r

LD
m

i

Ls
i

LS
bs

11 S
gc

m
1

N.gracilisA
B

Ls
i,

Lm
of

P.serra

x-
x

P.
anserinus

Athens
Shale

Mosheim
Mb

LenoirLimestoneLittleOakLimestone

I

P.sweetiB.
confluens DM

x-
x

x-
x

x-
x

A
.o

rd
ov

ic
ic

us
A

.s
up

er
bu

s

35 478911

S
Lf

,S
fl,

D
sm

LD
m

o,
D

m
m

LD
m

o,
LD

m
r

D
m

m
,L

S
f

S
fl

LD
m

m
,S

fs
m

S
Lc

i,
S

sm
,S

fs
m

S
st

,S
sp

D
m

m
D

m
m

,L
S

f
D

m
o,

LS
f

D
m

o,
D

m
r

LD
m

m
s

S
sr

,S
sw

,S
st

S
fs

m
,S

sr
,S

sw
,

S
sp

,S
sh

,S
sw

S
ss

,S
sp

S
sf

l
D

m
i,

S
fs

m

G
S

50
m

Sequatchie
Fm.

C
ol

vi
n

M
ou

nt
ai

n
Sa

nd
st

on
e

GreensportFm. Lenoir
Limestone

IV II

I

V
?

7

6 2?45

LD
m

m
,S

gm
m

Lm
m

,L
S

f

Lm
m

LsLm
i

LsLm
o

LsLm
o

Ls
s

Lm
o

Ls
s

S
fl,

S
Lb

s

Ls
s,

S
fl

S
fm

LS
f,

S
sh

e

S
Lf

S
sr

D
m

m
,S

Lf
S

sr
,S

fm
,D

m
m

S
fm

,D
m

m
S

sr
,S

fl

S
Lf

,S
fm

S
sp

,S
sh

e

S
Lf

S
st

S
st

,S
sm

,
S

sr

x-
x 3-

5?

x-
x

D

68

11

Lm
m

Lm
r,

Lm
o

Lm
o,

Lm
s

Lm
m

LS
f

S
fs

m
S

sp

S
st

,S
sm

S
fs

m
,S

fl

S
sp

,S
st

S
fs

m
,S

ss

S
fs

m
,S

ss
S

sp

S
sh

e,
S

fs
m

S
fs

m
,S

gc
m

x-
x

8

DM
x-

x

x-
x

S
fs

m

S
sm

S
fl

S
fl

S
sh

,S
sp

H
M

H
L

SequatchieFm. GreensportFm.

C
ol

vi
n

M
ou

nt
ai

n
Sa

nd
st

on
e

GreensportFm. LenoirLimestone

L
en

oi
r

L
im

es
to

ne

A
ta

lla
C

he
rt

C
on

gl
om

er
at

e

Se
qu

at
ch

ie
an

d
C

ol
vi

n
M

ou
nt

ai
n

Sa
nd

st
on

e

Po
nd

Sp
ri

ng
Fm

.

II

II
I

IV

Mosheim
Mb.

?

?

20

19

18

17

16

Q

F
L

75
%

20 19

18

17

16

F
L

t

Q
m

14

13

12

11

15

L
t

Recycled Orogenic

10

9
M

ix
ed

C
ra

to
n

In
te

ri
or

Q
ua

rt
zo

se

Q
m

F

B
as

em
en

t
up

lif
t

M
ix

ed

14

13

12

11

15

Q

F

10

9

Arkose

Lithicarkose

Q
ua

rt
za

re
ni

te

Su
ba

rk
os

e
Su

bl
ith

ar
en

ite

40
%

75
%

Q
ua

rt
za

re
ni

te

Su
ba

rk
os

e

Su
bl

ith
ar

en
ite

L

(B
)

sandstone
group 19

18 12

9,10,11

14

15

20 13

II
I

sandstone
group

sandstone
group

A
L
A

B
A

M
A

P
R
O

M
O

N
T
O

R
Y

ac
co

m
m

o
d
at

io
n

zo
n
e

T
EN

EE
S
S
EE

EM
B
A

Y
M

EN
T

S
W

N
E

16,17

172

F
ig

ur
e

4.
6



173

Figure 4.6  (previous page) (A) Along-strike stratigraphic correlation of the middle Blountian

foreland showing stratigraphic units, biostratigraphic data, lithofacies, stratigraphic correlation

surfaces (numbered 1 to 11), and stratigraphic intervals (numbers I to V).  Sections AB and GS

palinspastically restore on the Alabama promontory and southeast of the Birmingham graben;

section HL restores inside the graben and on the accommodation zone; and section HM restores

on the Tennessee embayment and inside the Randolph-Heard graben (Figure 4.3).  Datum of

correlation is the Deicke and Millbrig K-bentonite beds (surface 8).  Note the early record of

thick carbonates and thin black shales in the southwestern section AB, the thinner but most

complete stratigraphic record of section GS, and the northeastward thickening of red siliciclastic

deposits.  See Figure 4.3 for location of sections, and Figure 4.5 and Tables 4.1 and 4.2 for facies

codes.  (B) Ternary diagrams for middle Blountian foreland sandstones.  See left column in

stratigraphic sections and Table 4.5 for identification of sandstone groups; mean and standard

deviations (polygons) of each group are plotted.
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Figure 4.7 Along-strike stratigraphic correlation of middle to distal foreland strata between

stratigraphic surfaces of corelation 7 and 11. Sections show stratigraphic units, biostratigraphic

data, lithofacies, stratigraphic correlation surfaces (numbered 5 to 11), and stratigraphic intervals

(numbers III to V). All three sections palinspastically restore inside the Birmingham graben

(Figure 4.3). This diagram shows thinning of the clastic wedge in Interval III toward section

DM, and northeastward thickening of the clastic wedge in Intervals IV and V (datum of

correlation is the Deicke and Millbrig K-bentonite beds, surface 8). See Chapter 3 for details of

the stratigraphy in sections BI and DM below surface 7. See Figure 4.3 for location of sections,

and Figure 4.5 and Tables 4.1 and 4.2 for facies codes. Provenance data of sandstone groups are

in Figure 4.6B.
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Figure 4.8  (previous page) (A) regional structural cross section across stratigraphic sections DG

and HM and at the southern end of the north-plunging syncline that includes stratigraphic section

CI; (B) local structural cross section across stratigraphic section CI (see Figure 4.2 for location of

cross sections).  Interpretation of stratigraphic order and thickness depends on the structural

model.  I prefer the multiple-detachment-levels model because it honors the changes in dip

domains and fits the regional duplex style of deformation in trailing structures of the

Appalachian thrust belt in Georgia (Chapter 2).  The single-detachment model is shown for

comparison of the structure and calculated thickness of the Athens Shale and Chota Formation.

(C) Stratigraphic column for section CI showing stratigraphic units, biostratigraphic data,

lithofacies, stratigraphic correlation surfaces (numbered 1 to 6), stratigraphic intervals (numbers

I to II), and conglomerate clast population for conglomeratic levels of the Chota Formation.

Section CI palinspastically restores on the Tennessee embayment and includes the most complete

record of proximal Blountian foreland stratigraphy.  Sandstone beds in the middle of the Athens

and conglomerate beds in the middle of the Chota Formation are in the tops of coarsening-

upward successions that record the filling of the foredeep, the shoaling of depositional

environments, and propagation of marginal deposits.  Note the variable content of carbonate rock

fragments (Rc) along the section.  Provenance data of sandstone groups are in Figure 4.9D.  See

Figure 4.3 for location of section CI, and Figure 4.5 and Tables 4.1 and 4.2 for facies codes.
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Figure 4.9  (previous page) (A) and (B) are regional and local structural cross sections,

respectively, near stratigraphic section RK (see Figure 4.2 for location of section).  Interpretation

of structural stacking of strata (deformation and lack of fossils preclude construction of a

continuous stratigraphic column) depends on the structural model.  We follow the model of

overturned folds of Sibley (1983), and Alleghanian deformation followed multiple levels of

detachment in upper units of the Knox Group and in the Athens Shale (similar structural style of

the multiple-detachment-levels in Figure 4.8B).  Other models of deformation considered

structural fabrics of the Rockmart slate and the faulted contact with the Knox Group as pre-

Alleghanian structures (e.g., Higgins et al., 1988).  (C) Stratigraphic column for section RK

showing biostratigraphic data, lithofacies, stratigraphic correlation surfaces (numbered 1 to 3),

and conglomerate clast population.  Section RK palinspastically restores on the accommodation

zone and contains the most proximal record of the Blountian foreland.  Note the heterogeneity of

lithofacies in basal beds, the interbedding of conglomerate with sandstones in the lower half of

the section, the dominance of fine-grained deposits in the upper half, and the very low content of

carbonate rock fragments (Rc).  See Figure 4.3 for location of section RK, and Figure 4.5 and

Tables 4.1 and 4.2 for facies codes.  (D) Ternary diagrams for proximal Blountian foreland

sandstones.  See left column in stratigraphic sections in Figures 4.8 to 4.10 and Table 4.5 for

identification of sandstone groups; only the mean and respective standard deviations (polygons)

of each group are plotted.
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Figure 4.10  (previous page) (A) and (B) are regional structural cross sections across sections

GS, LM, FC (on Figure 10.A), and HV, which contain proximal foreland stratigraphy and restore

on the Alabama promontory (see Figure 4.2 for location of sections).  Poor exposures and intense

deformation preclude construction of continuous stratigraphic columns and a calculation of

stratigraphic thickness.  Instead, vertical and lateral lithostratigraphic relations are defined in the

present structural position (see stratigraphic column for each section), but following the

stratigraphic trend observed in sections CI and RK (Figures 4.8 and 4.9, respectively).

Biostratigraphic data are also shown in each section.  In these proximal sections on the Alabama

promontory, graptolitic black shales (comparable to the lower beds in sections CI and RK) are in

different structures than the turbiditic sandstones (comparable to intermediate beds in sections CI

and RK).  Note that surface of correlation 1 is at the post-Knox unconformity in section HV;

other proximal foreland sections farther northeast (e.g. sections FC and RK) have a thin

succession of peritidal carbonates between the post-Knox unconformity and stratigraphic surface

of correlation 1.  See Figure 4.3 for location of sections, and Figure 4.5 and Tables 4.1 and 4.2

for facies codes. Provenance data of sandstone groups are in Figure 4.9D.
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Figure 4.11  (previous page) Paleogeographic maps showing the evolution of the underfilled

stage of the Blountian foreland basin through the Middle Ordovician to early Late Ordovician.

Each map represents the time of deposition for deposits underlying the stratigraphic surface

indicated.  Location of source areas for synorogenic detritus is shown tentatively on the east side

of each diagram.  Note the northeastward and northwestward migration of basinal black-shale

deposition and drowning of the carbonate platform, and the diachronous and irregular onset of

carbonate deposition on middle to distal foreland areas.  See Figure 4.2 for key code of sections.
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Figure 4.12  Paleogeographic maps showing the evolution of the Blountian foreland basin

through the Late Ordovician.  Each map represents the time of deposition for deposits underlying

the stratigraphic surface indicated.  Location of source areas for synorogenic detritus is shown

tentatively on the east side of each diagram.  Note the northeastward migration of siliciclastic

depocenters and dominance of carbonate deposition to the southwest, indicating that source areas

supplying synorogenic detritus and direction of dispersal of those sediments into the basin

changed through time.  See Figure 4.2 for key code of sections.
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Figure 4.14  (previous page) Total and tectonic subsidence curves (lower and upper curves,

respectively) for representative sections in the middle (A) and proximal (B) foreland, and with

sections on the Alabama promontory, accommodation zone, and Tennessee embayment.  Cross

symbols in tectonic subsidence curves correspond to the error in determination of water depth for

the upper strata of each interval.  Definitions of water-depth criteria are from Steinhauff and

Walker (1996).  Correction for sea-level fluctuations uses the sea-level curve relative to the Iowa

craton (Bond and Kominz, 1991) in order to give a minimum estimate of relative sea-level

fluctuation along the plate margin.  However, Ross and Ross (1995) reported minor fluctuations

of sea level (Figure 4.4B) that probably affected sections restoring near the plate margin.
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Figure 4.15  (previous page) (A) Estimated position of the foredeep side of the forebulge at

stratigraphic surface of correlation 3 (Interval I, same as Figure 4.11B).  The trace (thick black

line) follows the axis from where the carbonate platform deepens uniformly southeastward (i.e.,

no uplifts).  (B) Initial depositional profiles a (Alabama promontory), and b and c (Tennessee

embayment) give a good approximation of along-strike changes of the downwarped Blountian

foredeep, position of the forebulge, and intraplate uplifts.  On the Alabama promontory, uplifted

areas are wider, the carbonate ramp southeast of the uplift is wider, and the foredeep is steeper

than the profiles on the Tennessee embayment.  Depositional profile c in the Tennessee

embayment uses the strata along surface of correlation 1 of Walker et al. (1983).  Location of

sections DE, the uplifted portion between DE and P, P, SS, and MV are in palinspastic position

and to scale of the map.  See Walker (1977) and Benedict and Walker (1978) for the names and

descriptions of sections.  Slope is calculated using the interpreted profiles and between 100 m

and 300 m depths.  (C) Tectonic subsidence profiles a and b illustrate subsidence related to the

inversion of the Birmingham graben in the distal foreland and subsidence related to flexure in the

most proximal zones.
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Figure 4.16  (previous page) (A) Estimated position of the foredeep side of the forebulge at

stratigraphic surface of correlation 8 (Interval III, same as Figure 4.12A).  The trace of the

foredeep side of the forebulge (thick black line) is defined where peritidal carbonate successions

have common indicators of subaerial exposure and strata to the southeast grade to subtidal mixed

carbonates and red siliciclastic deposits.  Inversion of the Birmingham graben obscures the

precise location of the crest of the bulge.  (B) Depositional profile d showing the position of the

forebulge and southeastward deepening of the basin floor to subtidal environments.  (C)

Estimated position of the foredeep side of the forebulge at stratigraphic surface of correlation 11

(Interval V).  The position of the forebulge is defined where open-water, high-energy carbonate

successions with indicators of subarerial exposure grade eastward to subtidal mixed carbonates

and red siliciclastic deposits or deep lagoonal successions.  Cratonward advance of the forebulge

is shown by arrows between successive positions shown on maps A and C.  Note that the

foredeep side of the forebulge advanced farther on the Alabama promontory than in the

Tennessee embayment between intervals I and III (466 to 454 Ma), whereas between intervals III

and V (454 to 443 Ma), the forebulge advanced farther in the Tennessee embayment than in the

Alabama promontory.  However, the maximum total advance occurred in the accommodation

zone.  Map C shows the location of cross section in Figure 4.17.  (D) Depositional profile b

showing the position of the forebulge on the carbonate platform and southeastward deepening of

the basin floor to deep lagoonal and subtidal environments.
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Figure 4.17  Two-dimensional tectonic evolution of the Laurentia margin during the Blountian

orogeny (see location of cross section in Figure 4.16C).  (A) Configuration of the rifted

Laurentian margin at the end of passive-margin deposition (ca 477 Ma).  The cross section uses

the palinspastic restoration of passive-margin and intraplate rift strata across the northern part of

the Alabama promontory (strata northwest of the vertical gray line; line of cross section is the

same as the restored cross section 8 in Plate 2.1).  A simplified sketch of basement graben

structures is also shown in their post-rift stage in the early Middle Ordovician.  Thin dashed lines

in restored pre-Middle Ordovician strata show the trace of the initial and final flexural profiles

for the top of the passive-margin strata.  White arrows point to successive locations of the

forebulge (distance of forebulge migration from Figure 4.16).  The outer part of the Laurentian

margin (right of the gray line) is not constrained, but depicts the suggested location of tectonic

loads and source of Blountian synorogenic detritus in palinspastic position.  Thick dashed line

indicates the trajectory of the detachment level.  Although the Pine Mountain internal basement

massif (PMIM) and Talladega slate belt stratigraphy (TSB) may have been transported from an

uncertain palinspastic position during the Alleghanian orogeny (e.g., Steltenpohl and Tull, 2002),

we infer that the microplate colliding with the southern corner of Laurentia in the Middle

Ordovician had a similar configuration (Grenville basement and Laurentian-type sedimentary

cover).  Oceanic crust or thinned Laurentian crust may separate the microplate and the

Laurentian margin.

(B) Collision of the microplate with the Alabama promontoty.  The diagram illustrates from west

to east: (1) erosion of the passive-margin succession from the allochthon block and thin

accumulation of the clastic wedge in the distal foreland associated with the inversion of the

Birmingham graben; (2) slight variations of the southeast thickening trend of the Blountian

clastic wedge because of reactivation of other inferred basement structures; (3) basement-cored

uplifts with a Laurentian-margin sedimentary cover as source area for Blountian detritus; (4)

eastward-dipping subduction and continental volcanism; (5) relative position of Pine Mountain

internal massif, the Talladega slate belt, and Ordovician bimodal volcanism; and (6) west-

dipping subduction along the eastern margin of the microplate.  A similar tectonic setting of

microcontinent-continent collision has been proposed recently for the northern Appalachians

(Waldron and Staal, 2001).
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CHAPTER FIVE

SUMMARY OF CONCLUSIONS

5.1  CONSTRUCTION OF THE PALINSPASTIC MAP AND A MAP OF SUBSURFACE

BASEMENT FAULTS: INSIGHTS TO THE REGIONAL GEOMETRY AND

KINEMATICS OF THE APPALACHIAN THRUST BELT IN ALABAMA AND

GEORGIA

As a fundamental step for the analysis of Blountian strata, it was necessary to determine

the palinspastic location of Blountian deposits previous to the late Paleozoic Alleghanian

orogeny.  In addition, subsurface mapping of basement structures beneath the Appalachian thrust

belt of Georgia and Alabama allows the establishment of a spatial relation of the palinspastic

position of each stratigraphic section with the seismically constrained Birmingham graben and

the stratigraphically and structurally constrained Randolph-Heard graben.  As discussed in the

next sections, the knowledge of the spatial relation between stratigraphic sections and basement

structures is fundamental to the analysis of proximal to distal Blountian foreland strata.  The

following conclusions are derived from the integrated analysis of structural cross sections and

the effects of some sub-décollement basement structures in the evolution of the Alleghanian

thrust belt.

Geometry and kinematics of structural styles in the thin-skinned and unmetamorphosed

Appalachian thrust belt of Alabama and Georgia may be directly and indirectly related to sub-

décollement basement structures and the pre-deformational stratal architecture of the unit that

hosts the regional décollement.  In the leading and intermediate imbricates of Georgia and the

leading imbricates in Alabama, low-amplitude fault-related anticlines form where depth to

basement is shallow.  In the intermediate imbricates in Alabama, high-amplitude fault-related

anticlines form where the regional décollement is deep within the Birmingham graben;

detachment folds nucleate above down-to-southeast basement faults with moderate vertical

separation; and a mushwad evolves above a broad graben bounded by basement faults with large

vertical separation and containing a large volume of weak strata (i.e., shale).
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Small-scale curvatures of the thrust belt are also related to changes in basement elevation

across basement transverse faults.  Small-scale salients or convex-to-the-foreland curvatures of

the Helena fault and Gadsden mushwad are very abrupt, and they are related to a transverse

basement fault that separates a narrow Birmingham graben on the northeast from a wider and

deeper graben on the southwest.  We use this direct observation to suggest that a transverse

basement fault primarily controlled the salient geometry of the Rome, eastern Coosa, and

Talladega faults.  Abrupt curvatures are confined in transverse zones suggesting that distribution

of northwest-striking basement faults and related changes in elevation of the top of basement

played a primary role in the location of transverse structures in the thrust belt.

Vertical and horizontal gradients of deformation were partially controlled both by

differences in elevation of the top of basement and pre-deformational basin architecture. Shallow

basement promontories bounded by intersections of northeast-striking and transverse basement

faults acted as stress concentrators that favored strain partitioning and differences in the style of

deformation within the advancing thin-skinned thrust belt.  These promontories contribute to the

nucleation of thin-skinned transverse structures and the different transverse zones recognized in

the thrust belt in Alabama and Georgia.  The regional décollement is dominantly within weak

layers of the Rome and Conasauga Formations, but thick shale beds in intermediate levels of the

sedimentary wedge contributed to the generation of upper levels of detachment and the vertical

differentiation of deformation into duplexes and imbricate-fan systems.

5.2  INTERACTION OF BIRMINGHAM GRABEN INVERSION AND FLEXURAL

DEFORMATION AT DISTAL TO MIDDLE BLOUNTIAN FORELAND SETTINGS

Patterns of carbonate, mixed, and siliciclastic deposition in the distal Blountian foreland

basin and during Middle and Late Ordovician time were controlled by the interaction of

basement-fault inversion, fluctuated migration of the Blountian flexural wave, and rise of sea

level.  Each of these factors dominated at different stages of the foreland evolution, and they are

identified from the local, plate-margin, or cratonwide effects on foreland deposition.  The

inversion of the Birmingham graben created a topography in the distal foreland that consisted of

inverted upthrown blocks (former Birmingham graben) and inverted downthrown blocks (former

shoulders of the Birmingham graben) (Figure 5.1).
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Late Middle Ordovician inversion of the northeast-striking Birmingham graben enhanced

erosion of Knox strata in inverted upthrown blocks and controlled the initiation of carbonate

deposition in adjacent inverted downthrown blocks.  The greatest magnitude of the lacuna is

observed in sections that restore inside the Birmingham graben.  Thin Knox intervals imaged in

seismic reflection profiles also restore palinspastically inside the graben.  Tectonic inversion of

the graben explains the relief to cause the deep truncation of Knox strata and the late onset of

deposition in sections restoring on the inverted upthrown block.  The inversion model also

explains the preservation of the youngest units of the Knox Group and the earlier Blountian

carbonate deposition in inverted downthrown blocks.  The thick and mappable record of karst-

filling chert conglomerates in sections restoring inside the graben indicates longer exposure and

weathering of inverted upthrown blocks; in contrast, limestone-conglomerate clasts in sections at

inverted downthrown blocks indicate short time of exposure below the basal conglomerates.

Inverted upthrown blocks supply coarse-grained chert and quartz grains and recharge of meteoric

waters to aquifers in carbonate depocenters in inverted downthrown blocks.

Local bending effects of inverted upthrown blocks triggered carbonate deposition in areas

adjacent to the active inverted faults.  Tectonic subsidence curves of lower carbonate deposits of

the Chickamauga and Lenoir beds (Interval I) in sections restoring in both the northwestern

(section CH-RI) and southeastern (sections PF, AB) inverted downthrown blocks document the

development of the earliest carbonate depocenters in the distal foreland.  Stacking patterns of

deposition are dominantly aggradational, suggesting that the rate of carbonate production kept

pace with creation of accommodation space in inverted downthrown blocks.  This irregular

pattern of carbonate deposition in the distal foreland is explained using a flexural model of

deformation of a continuous elastic plate and considering the inverted block as the tectonic load.

Inversion loading bends the elastic plate and two asymmetrical basins are formed (e.g., Tucotte

and Schubert, 1982).  As this model predicts, thicker and deeper water deposition occurs in

sections adjacent to the inverted structure (e.g., section AB, PF) than in sections farther away

from the inverted load (e.g., section CL, southeast of sections AB and PF), disturbing the

marginal-scale flexural deformation associated with loading at the plate margin.  Tectonic

subsidence curves in sections adjacent to inverted upthrown blocks indicate that subsidence

related to local flexural effects occurred earlier than flexural subsidence related to loading at the

plate margin.  This geodynamic model of inversion corroborates the link between intraplate
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uplift and deposition, and together with stratigraphic and provenance analyses allow to reject the

model of flexural uplift as the solely mechanism to create the post-Knox unconformity in

southernmost Laurentia.

Flexural subsidence related to loading along the plate margin and influx of siliciclastic

detritus strongly contributed to the diachronous termination of carbonate platform deposition in

the southeastern inverted downthrown block.  Drowning of the carbonate platform in the

southeastern part of the southeastern inverted downthrown block occurred at the Middle-Late

Ordovician boundary (e.g., section CL).  Termination of carbonate deposition by combined

effects of deepening and influx of terrigenous clastic detritus occurred in early Late Ordovician

at the northeastern end of the southeastern inverted downthrown block (e.g., section RH), and in

sections adjacent to the inverted structure (e.g., section GS).  The inverted upthrown block

restricted the cratonward advance of the synorogenic clastic wedge during early and middle Late

Ordovician.  As a consequence, carbonate-platform deposition in the northwestern downthrown

block dominated during the early and middle Late Ordovician, and termination of carbonate-

platform deposition did not occur until the latest Ordovician as a result of cratonward

progradation of synorogenic siliciclastic deposits.

The early signature of basin inversion in the distal foreland was subdued gradually by

flexural subsidence/uplift and fluctuations of sea level.  After initiation of fine-grained

siliciclastic deposition in low-energy and oxygenated environments, and during a cratonwide rise

of sea level, siliciclastic and carbonate deposits in the middle and distal foreland record episodes

of shoaling and hinterland progradation of shallow-water to peritidal carbonates over the

siliciclastic depocenter.  Tectonic subsidence curves indicate an event of rise of the top of

basement during the middle to late Late Ordovician that is related to the migration of the flexural

wave toward the hinterland and was accompanied initially by deposition of volcanic ash

material.  Therefore, the combined effects of cratonwide sea-level rise and forebulge migration

created the conditions for continuous shallow-water deposition and the record of shoaling-

upward successions forming third-order depositional cycles in both siliciclastic and carbonate

depocenters.
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5.3  ROLE OF THE RIFTED-MARGIN CONFIGURATION OF LAURENTIA IN THE

ARCHITECTURE AND COMPOSITION OF MIDDLE TO PROXIMAL BOUNTIAN

FORELAND STRATA

Along-strike variations in the stratigraphy, sediment composition, and tectonic

subsidence patterns of the proximal and middle strata of the Blountian foreland basin are partly

related to the along-strike change in configuration of the rifted margin of eastern Laurentia from

the Alabama promontory on the southwest, to the accommodation zone, and to the Tennessee

embayment on the northeast.

The Blountian foredeep, as depicted by change in depositional depth of coeval Middle

Ordovician carbonate and black shale strata, was narrower and had steeper slope in the Alabama

promontory than in the Tennessee embayment (Figure 5.1).  Normal flexural reactivation of

basement faults in the foredeep may have contributed to the rapid drowning of the carbonate

platform, as documented by the abrupt contact between carbonate beds of the Lenoir Limestone

and graptolitic shales of the Athens Shale.  Deposition of the wide carbonate platform on the

distal foreland and on the Alabama promontory was controlled primarily by uplift and

subsidence related to the inversion of the Birmingham graben, whereas flexural subsidence and

eustasy controlled distal foreland carbonate deposition on the Tennessee embayment.

Differential flexural subsidence along strike of the Blountian foredeep may be accommodated by

reactivation of transverse basement faults on the accommodation zone.

The sedimentary filling of the Blountian foreland basin also changes along strike.  Up-

section coarsening and shoaling of proximal and middle foredeep strata on the Tennessee

embayment documents: (1) up section increase in influx of terrigenous detritus throughout the

section, (2) an abrupt increase of quartz and sedimentary lithic fragments in coarse deltaic

deposits toward the top, (3) cratonward progradation of shallow clastic platform to marginal

environments, and (4) cratonward advance of a salient in the Blountian orogenic belt.  In

contrast, the low influx of terrigenous detritus to the narrow foredeep on the Alabama

promontory favored the establishment of a carbonate ramp in the southwestern part (e.g., section

PF), whereas shallow-water carbonate and siliciclastic deposition interfingered in the foredeep

on the Alabama promontory (section GS) and the accommodation zone (section HL).

Intrabasinal uplifts and differential deformation in the Blountian orogenic belt are

recorded by along-strike changes in the composition of the Blountian clastic wedge.  Olistoliths
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and local conglomerates interbedded with turbiditic feldspar-bearing sandstones and black slates

in the underfilled stratigraphy of the Blountian foredeep suggest the mixing of sediments

transported by axial submarine fan deposits and debris flows derived from intrabasinal uplifts.

Petrographic and Nd-isotopic (εNd) data of sandstones and mudstones, respectively, indicate a

source area composed of Grenville basement and a sedimentary cover with a Laurentian-margin

stratigraphy.  The mostly uniform increase of εNd, the higher percentages of feldspars in the

clastic wedge on the Alabama promontory, and the more abundant quartzose and sedimentary

lithic fragments in the clastic wedge on the Tennessee embayment, suggest that the Blountian

tectonic load was more deepely eroded in areas supplying sediments to the promontory, and the

sedimentary cover was more exposed in areas supplying sediment to the embayment.  This

pattern of deformation is similar to the gradients of deformation documented in salient and recess

geometry of the Georgia and Alabama thrust belt, respectively, a geometry that is primarily

controlled by the zig-zag configuration of the older Laurentian rifted margin.

5.4  MIGRATION OF THE BLOUNTIAN FLEXURAL WAVE

Finney et al. (1996) documented a diachronous northeastward and northwestward

migration of the Blountian flexural wave on the basis of determination of the age of initiation of

graptolitic black shales in the proximal foreland.  This dissertation documents the migration of

the foredeep side of the forebulge in middle and distal foreland because the inversion of the

Birmingham graben obscures the identification of the maximum flexural uplift in the distal

foreland.

In the distal foreland, deposition in inverted downthrown and upthrown blocks was

primarily controlled by basement fault inversion; however, the northeastward migration of the

Blountian foredeep and tectonic loads also played an important role in what type of sediments

accumulated in the distal foreland.  Lowermost deposits above the post-Knox unconformity in

inverted upthrown blocks are older and calcareous to the southwest (e.g., lower Chickamauga

Limestone in sections BI and BR), in contrast to younger and siliciclastic to the northeast (e.g.,

Greensport Formation in sections HL and DG).  In the southeastern inverted downthrown block,

termination of carbonate deposition and accumulation of deep-water black shales is older to the

southeast (Athens Shale in section CL) than in the northwest (sections AB and PF).  In the

middle foreland, termination of carbonate deposition and accumulation of dark-colored to red
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shales is also younger to the northwest and northeast (Greensport Formation in sections GS, HM,

and RH).

Although basement inversion and normal-fault reactivation might have disrupted the

geometry of the flexural wave, the migration of the shallow part of the foredeep side of the

forebulge was identified using profiles of carbonate-siliciclastic depositional systems, tectonic

subsidence curves, and truncation of upper Ordovician strata in the middle and distal foreland.

At the Middle-Late Ordovician time boundary, the foredeep side of the forebulge was marked by

a carbonate platform profile uniformly deepening southeastward to basinal settings.  In early

Late Ordovician and before the time of deposition of the Deicke and Millbrig K-bentonite beds,

the depositional profile indicates an area of subaerial exposure and thin accumulation in section

DM (Figure 4.16B) that separates peritidal deposition of the carbonate platform on the northwest

from subtidal siliciclastic deposition on the southeast.  Effects of inversion of the Birmingham

graben preclude the determination of the position of maximum flexural uplift at these two

intervals of time.

During the middle to late Late Ordovician, tectonic subsidence curves indicate a rise of

the top of basement that is interpreted as the migration of the flexural wave toward the thrust

belt.  This interpretation is additionally supported by (1) shoaling of siliciclastic depocenters

favoring deposition of shallow-marine sandy shoals of the Colvin Mountain Sandstone; (2) later

southeastward progradation of shallow-water to peritidal carbonates over siliciclastic deposits;

and (3) aggradational to retrogradational carbonate deposition in section CH-RI to the northwest.

The migration of the flexural wave toward the orogenic belt was initially accompanied by

accumulation of of K-bentonite beds and high influx of sand-sized quartzose detritus followed by

a decrease in influx of siliciclastic detritus to the distal foreland.  Cratonwide sea-level rise of ~

80 m (Bond and Kominz, 1991) created the conditions for the record of a submerged

southeastward migration of the flexural wave, the thick and widespread record of deposition of

volcanic ash beds, and the thicker and aggradational to retrogradational pattern of deposition in

section CH-RI.

For the lastest Ordovician, the shallowest part of the depositional profile adjacent to the

foredeep migrated farther northwestward onto the carbonate platform, as indicated by exposure

surfaces and meteoric water cements in cross-bedded skeletal and phosphatic rich limestones on

the Tennessee embayment (Figure 4.16D), and by meteoric water cements and truncation of
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Upper Ordovician strata and thin deposition of skeletal limestones in section BI (Figure 4.7).

The tectonic subsidence curve in the northeasternmost section DG indicates an event of flexural

subsidence during the early Silurian.  This event of flexure may be related to the last migration of

the flexural wave in the latest Ordovician.

The flexural wave initially migrated farther cratonward on the Alabama promontory, but

as the tectonic loads moved northeastward, the forebulge migrated rapidly cratonward on the

Tennessee embayment.  In the early stages of foreland evolution, the rate of flexural wave

migration is higher on the Tennessee embayment (9 to 40 mm/yr) than on the Alabama

promontory (8 to 11 mm/yr) and at the accommodation zone (15 mm/yr).  If flexural rigidity (or

elastic thickness) of the lithosphere is uniform along strike and the response of the lithosphere to

applied loads is instantaneous, propagation rates of tectonic/sediment loads on the Tennessee

embayment are inferred to be higher than those on the Alabama promontory.  Slow movement of

the flexural wave may also document the presence of weak zones in the Alabama foreland

lithosphere (e.g., the Birmingham graben, Chapter 3) (Waschbusch and Royden, 1992).  On the

accommodation zone, rates of migration of the flexural wave decelerated through time from 15

mm/yr to 5 mm/yr.  The largest migration of the forebulge on the accommodation zone may

suggest that this zone was loaded most of the time during the Middle and Late Ordovician.
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APPENDIX A

IDENTIFICATION OF K-BENTONITES

Identification of K-bentonite beds has been essential for stratigraphic correlation of

Ordovician strata in the southern Appalachians as well as for constraining interpretations of

tectonic settings for the Taconic orogeny (Haynes, 1994; Kolata et al., 1996).  Phenocrystal and

XRD analyses were carried out in 17 samples from the Middle and Upper Ordovician succession

of Alabama in order to establish if they are bentonite beds and how they correlate with other

reported K-bentonite beds in the Alabama Appalachians.  The methods of phenocrystal

separation and XRD analysis are the same as described by Haynes (1994); identification of

mixed-layer illite/smectite is based on the interpretation of XRD patterns of air versus ethylene

glycol-solvated samples, and comparison with the XRD patterns of a calcareous black shale of

the Lenoir Limestone and red siltstone of the Greensport Formation.  The analyses were carried

out at the University of Cincinnati and the University of Kentucky.  These 17 samples are

grouped into two different sets.

One set of samples comes from the Middle Ordovician Lenoir Limestone and Athens

Shale in Calera (section CL, Figure 4.2), and one bentonite bed in the Rockmart Slate.  This

study documents at least three K-bentonites in three different stratigraphic levels in section CL.

The lower level is in the Lenoir Limestone.  The intermediate level is in lower beds of the

Athens Shale, which has been inferred as a bentonite layer (Drahovzal and Neathery, 1971).  The

upper level is at the top of the Athens Shale.  From this set of K-bentonites, only one K-bentonite

bed has been reported in section RL (Drahovzal and Neathery, 1971; Haynes, 1994), and this

study documents one K-bentonite bed in the upper Rockmart Slate in section RK.

Another set of samples comes from the Upper Ordovician Greensport Formation, Colvin

Mountain Sandstone, Sequatchie Formation, and Inman Formation.  This set of samples is in a

stratigraphic position similar to the widespread Deicke and Millbrig K-bentonite beds (Haynes,

1994), but at least 12 K-bentonite beds have been reported in the early Late Ordovician (middle

Mohawkian) in the southern Appalachians (Figure 4.4) (Kolata et al., 1996).  The K-bentonite

beds of this set reported in this study are from sections GS, DM, GU, HL, and HM.
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Phenocrystal association and clay mineralogy of the two sets of samples are very

different.  The results of this study indicate that altered micas (biotite?), and gypsum dominates

the phenocrystal fraction of the lower set (Middle Ordovician), with trace heavy minerals

(oxides?) and quartz (K-bentonite in section RK).  Expandable clay minerals in the lower set are

inferred from changes in the backslope of peak 10 Å, and they may be better identified as

bentonitic shales.  Biotite and quartz are the common phenocrystal association of the Upper

Ordovician set.  Mixed-layer illite/smectite is the predominant clay mineral and permit the

identification of these beds as K-bentonites (Haynes, 1994).  Bentonitic shales and K-bentonites

reported here contribute to the tectonic and stratigraphic analyses of the Middle and Upper

Ordovician succession of Alabama and Georgia.  The record of volcanic material in shale beds of

the Lenoir Limestone may be used to identify the switch between passive-margin and collisional

deposition in southern Laurentia.

Table A.1 gives a detailed description of the 17 samples analyzed in this study.  Figure

A.1 shows the XRD patterns of some samples.
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Table A.1  Description of K-bentonite beds

Olol= Lenoir-Little Oak Limestone;  Ol= Lenoir Limestone;  Oa= Athens shale; Og= Greensport

Fm; Ocm= Colvin Mtn SS; Os = Sequatchie Fm; Dfm= Frog Mountain Formation..
Sample Thickn

ess
(cm)

Section Stratigraphic
position

General remarks Description of phenocrystals Clay mineralogy

S2-
2406

4 CL
CALERA
(Blue circle)

40 m below Ol-
Oa contact

Reddish., fissil, calcareous
shale with micas
(muscovite? biotite)

-Black oxides, gypsum, micas
(altered biotite?), one flake of
biotite. Trace of quartz grains
coated with yellsh oxides
-shale-like fragments have
yellow color.

Bentonitic shale: trace of
expandable clay component
(mixed layer I/S?) documented by
peak 14.03 Å in the ethylene-
glycol-solveted sample

S2-
2502

5 CL
CALERA
(Blue circle)

36 m below Ol-
Oa contact

fissil, calcareous shale Illite + chlorite (huff, pers.
commun, 2000.)  No expandable
clay.

S2-
2207

8 CL
CALERA
(Blue circle)

9 m above Ol-Oa
contact

Lower Bentonite bed.
Highly altered, calcareous,
light green claystone.
breaks like flakes.

Oxides, gypsum, pyrite?,
reworked quartz, trace of
biotite.
-clay color is light brownish
gray.

Illite + chlorite-kaolinite.  No
clear signature of expandable
components.

S2-
2213

4.5 CL
CALERA
(Blue circle)

47 m above Ol-Oa
contact

Upper bentonite bed.
Highly altered, light green
to gray, alters to yellowish
color, claystone, abundant
oxides.

Gypsum, trace of quartz, red
oxides, black & shiny heavy
minerals.  Trace of micas.
-clay color is yellow

Bentonitic shale: trace of
expandable clay component
(mixed layer I/S?) documented by
peaks 17.29 and 13.83 Å in the
ethylene-glycol-solveted sample

S2-
2806

3 CL
CALERA
(Vulcan
quarry)

9 m above Oa-Ol
contact.  The total
thickness of the
lower bed is 9 cm

Lower layer of the lower
bentonite bed.  Light gray,
rich in veins of calcite;
fibrous clay (volcanicblack
grains may be shale
fragments.  It is 3 cm thick,
but the basal 0,5 cm looks
like the upper layer.

Light brown to yellow,
translucent flakes of biotite;
gypsum.  Granular-shape,
shinny and black heavy?
Minerals.  Trace of quartz.
-Clay has a medium to light
gray-brown color

Bentonitic shale:  expandable
(mixed-layer I/S) clay
documented by peak 18.01 Å in
the ethylene-glycol-solveted
sample. Chlorite-kaolinite clay is
inferred by the peak 7.08 Å

S2-
2808

2 CL
CALERA
(Vulcan
quarry)

9 m above Oa-Ol
contact

Upper layer of the Lower
bentonite bed.  Here
consists of light gray, thin
laminated, with black
grains (biotite?) and platty
grains (muscovite?) in a
fibrous gray matrix (ash ?)

Abundant light brown to
yellow, translucent flakes of
altered biotite; gypsum; trace
of quartz.
Clay color is white to very
light brown.

K-bentonite: mixed-layer I/S clay
documented by peak 17.16 Å in
the ethylene-glycol-solveted
sample. Chlorite-kaolinite clay is
inferred by the peak 7.55 Å and
feldspar by peak 3.18 Å

M3-
2313

6 GS
GREENSPO
RT
(Alexander
gap)

4.7 m above Ocm-
Os contact

Blue greenish clay with
abundant flakes of mica and
feldspar

Abundant flakes of biotite.
Reddish, blocky fragments
may be oxides (hematie?),
trace of black heavy minerals.
-Clay color is light orange.

K-bentonite: mixed-layer I/S clay
(order R3) documented by peaks
18.01 and 16.53 Å in the
ethylene-glycol-solveted sample.

L4-
0106

0-30 DM
DUNAWAY
MOUNTAIN

Og-Ocm contact Bluish to greenish, matrix-
supported, bentonic
sandstone (Qz=95%-
cht+biotite=5%)

Reworked Qz; oxides are
coating some grains.  Light
yellow to brown flakes of
biotite; shiny, granular and
black heavy minerals.
Clay color is light to medium
brown.

K-bentonite: mixed-layer I/S clay
(order R2-R3) documented by
peaks 11.70 and 9.74 Å in the
ethylene-glycol-solveted sample.

L4-
0505

0-10 DM
DUNAWAY
MOUNTAIN

1.5 m above Og-
Ocm contact

Greenish, micaceous
bentonite

Green and brown flakes of
biotite, minor amount of
quartz, some quartz grains are
coated by oxides.
-clay color is light grayish-
blue, but in suspension is dark
orange.

K-bentonite: mixed-layer I/S clay
(order R3) documented by peaks
11.77 and 10.10 Å in the
ethylene-glycol-solveted sample.

J4-0807 7 cm GU
GUNTERSV
ILLE

8.5 m below of
the top of Inman
Fm (Drah&Neat.,
1971).

Greenish, micaceous?
Bentonite?

Biotite flakes, dark gray to
black color.
Clay color is light green, and
milky to light brown in
suspension

K-bentonite: mixed-layer I/S clay
(order R3-R2) documented by
peaks 11.29 and 9.90 Å in the
ethylene-glycol-solveted sample.
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Table A.1  (continued)

Olol= Lenoir-Little Oak Limestone;  Ol= Lenoir Limestone;  Oa= Athens shale; Og= Greensport

Fm; Ocm= Colvin Mtn SS; Os = Sequatchie Fm; Dfm= Frog Mountain Formation.
Sample Thickn

ess
(cm)

Section Stratigraphic
position

General remarks Description of phenocrystals Clay mineralogy

G11-
1006
(top)

G11-
1007
(bottom
)

116 cm HL
HORSELEG
MOUNTAIN
Radio Spring
road
Livingstone
quad.
N 34º 13’25”
W 85º 15’01”

It marks the
contact between
the Greensport
and Colvin
Mountain
Sandstone
Formatios

Top: collected along the
Mount Alto road.  Light
greenish, plastic and
massive claystone.
Bottom: collected along the
Radio Spring road where it
is not altered as in the
Mount Alto road.
Light greenish, plastic  (but
with more blocky fracture
than the other sample) and
massive claystone with vf
sand-sized black flakes of
biotite and white angular
crystals (feldspars?)

Top: trace of hyaline quartz,;
yellow, translucent micas
(biotite); and black, angular,
blocky, (heavy) minerals

Bottom: dominates yellow,
translucent micas (biotite);
trace of black, angular, blocky,
(heavy) minerals; and pink,
white quartz

K-bentonite: mixed-layer I/S clay
(order R3) documented by peaks
11.7 and 9.90 Å in the ethylene-
glycol-solveted sample.

G11-
1009

Up 3
cm

HL
HORSELEG
MOUNTAIN
Radio Spring
road
Livingstone
quad.
N 34º 13’25”
W 85º 15’01”

12.6 m below Og-
Ocm contact

Yellowish to greenish,
massive and silty claystone
in elongated, flat, thin
lenses; It is not as plastic as
G11-1006.  This claystone
interfingers in an interval of
1.4 m with massive and
mottled reddish siltstone.

- dominates coarse-silt to fine
sand-size quartz; trace of
yellow, translucent micas
(biotite); only a few grains of
black, angular, blocky, (heavy)
minerals were observed.  Red
silstones may be derived from
interlayered laminaes.

K-bentonite: mixed-layer I/S clay
(order R3) documented by peaks
13.8, 11.7 and 9.90 Å in the
ethylene-glycol-solveted sample.
Chlorite-kaolinite clay is inferred
by the peak 7.1 Å

D3-
1607

30 cm HM
HAMILTON
MOUNTAIN
501 Reed
road
Dalton N.
quad.
N 34º 48’09”
W 84º 58’25”

Deicke (?)
bentonite; sample
collected at 15 m
below Og-Ocm
contact.

Light green, massive,
plastic, and gummy with
water.  thin interbeds of
reddish shale.

Poor recovery of
phenocrystals:  trace of quartz,;
yellow, translucent micas
(biotite); and black, angular,
blocky, (heavy) minerals

K-bentonite: mixed-layer I/S clay
(order R1-2)

D3-
1608

50 cm
(upp);
50 cm
(mid);
70 cm
(low)

HM
HAMILTON
MOUNTAIN
501 Reed
road
Dalton N.
quad.
N 34º 48’09”
W 84º 58’25”

The Millbrig (?)
bentonite is
divided into three
beds.  Sample D3-
1608 is from the
lower bed, at 6 m
below the Og-
Ocm contact.
Sample D3-1609
is from the middle
bed.  Upper bed is
similar to the
lower bed.

Reddish, medium-sand
grained, biotite rich K-
bentonite.  Medium to thin
lamineas interbeds; micas
give an aspect of
lamination.  Phenocrystals
are 30-40%

Dominates yellow-brown,
translucent micas (biotite);
traces of very fine to fine quart
and black or red, angular,
blocky, (heavy) minerals

K-bentonite: mixed-layer I/S clay
(order R2)

D3-
1609

50 cm
(mid)

HM
HAMILTON
MOUNTAIN
501 Reed
road
Dalton N.
quad.
N 34º 48’09”
W 84º 58’25”

Middle bed of the
Millbrig (?)
bentonite.
Sample located at
5 m below Og-
Ocm contact.

Light green, massive
bentonite with less than
10% of phenocrystals

Quartz dominates the
phenocrystal components;
yellow-brown, translucent
micas (biotite) are very
common.

K-bentonite: mixed-layer I/S clay
(order R1-2); kaolinite

H3-
1304

4 cm RK
ROCKMAR
T
Rockmart S.
quad.
N 33º 58’34”
W 85º 02’16”

Near the axial
plane of an
overturned
syncline
(structural upper
part of the
Rockmart Slate,
according to the
map of Sibley
(1983)).

Light green, sandy, plastic
and gummy in contact with
water, bentonite (?); slate
cleavage observed in
several fragments

-Quartz with very irregular
shapes; trace of black, angular,
blocky, (heavy) minerals.
Identification of micas is
questionable by micas
development along slate
cleavage planes

K-bentonite: mixed-layer I/S clay
(order R0); kaolinite
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Figure A.1 Selected X-ray diffraction (XRD) patterns of the clay fraction of the Middle and

Upper Ordovician K-bentonites. Samples are saturated with ethylene glycol.



208

APPENDIX B

IDENTIFICATION OF GRAPTOLITES

By Stanley Finney
Department of Geological Sciences

California State University - Long Beach
Lithologic description and collection of samples by Germán Bayona

Table B.1  Identification of graptolites

Olol= Lenoir-Little Oak Limestone;  Ol= Lenoir Limestone; Oa= Athens Shale; Dfm= Frog Mountain Formation
Sample Location Stratigraphic

position
General remarks Graptolites (by Stanley

Finney)
Remarks (by Stanley Finney)

T2-
2601

PF  PRATT FERRY
SW1/4 NE1/4 sec 33
T24N R10E West
Blocton East quad.

7 m above Ol-
Oa contact

Soft-sediment
deformation.  Locality #2
of Finney et al., 1996

Didymograptus sp.
Reteograptus geinitzianus
Cryptograptus tricornis
Glossograptus ciliatus
Dicellograptus gurleyi
Dicellograptus sextans
Glyptograptus sp.

Correlation: Nemagraptus gracilis Zone

S2-
2203

CL  CALERA (Blue
circle)
SW1/4 sec 19 T22S
R2W Montevallo
quad.

5 m above Ol-
Oa contact

Lowermost graptolites in
section CL; interval with
shale rich in skeletal
grains and medium beds
of dark gray skeletal
limestone. Locality #3 of
Finney et al., 1996

Pseudoclimacograptus
angulatus

Correlation: This species ranges through
the Glyptograptus teretisuculus and
Nemagraptus gracilis Zones.  The level
at which is occurs in the Calera section
has been correlated by Finney et al.
(1996, fig. 7) with the top of the G.
teretiusculus Zone.

S2-
2206

CL  CALERA (Blue
circle)

8-9 m above Ol-
Oa contact

Below the lower bentonite
bed (S2-2207 in Appendix
B)..

Didymograptus sp.
Cryptograptus tricornis
Glossograptus ciliatus
Pseudoclimacograptus
angulatus
Pseudoclimacograptus modestus
Climacograptus meridionalis
Glyptograptus teretiusculus
Glyptograptus euglyphus

Correlation: Nemagraptus gracilis Zone,
probably very low level in that zone
given its stratigraphic level

S2-
2208

CL  CALERA (Blue
circle)

9-10 m above
Ol-Oa contact

Above lower bentonite
bed (S2-2207 in Appendix
B)

Reteograptus geinitzianus
Cryptograptus tricornis
Glossograptus ciliatus
Pseudoclimacograptus
angulatus
Pseudoclimacograptus modestus
Glyptograptus teretiusculus

Correlation: Nemagraptus gracilis Zone,
probably very low level in that zone
given its stratigraphic level.

S2-
2212

CL  CALERA (Blue
circle)

46-47 m above
Ol-Oa contact

Below upper bentonite
bed  (S2-2213 in
Appendix B)

Cryptograptus tricornis
Pseudoclimacograptus
angulatus
Pseudoclimacograptus modestus
Glyptograptus teretiusculus
Dicellograptus gurleyi
Dicellograptus sextans

Correlation:  Nemagraptus gracilis Zone

S2-
2214

CL  CALERA (Blue
circle)

47-48 m above
Ol-Oa contact

Above upper bentonite
bed (S2-2213 in Appendix
B)

Didymograptus sp.
Pseudoclimacograptus modestus
Climacograptus meridionalis
Glyptograptus teretiusculus
Glyptograptus euglyphus
Dicellograptus sextans
Dicellograptus alabamensis
Nemagraptus gracilis

Correlation:  Nemagraptus gracilis Zone

S2-
2219

CL  CALERA (Blue
circle)

1 m beneath Oa-
Dfm contact

Graptolites in the
uppermost black shale
lithofacies

Didymograptus sp.
Cryptograptus tricornis
Glyptograptus teretiusculus
Glyptograptus euglyphus
Dicellograptus gurleyi
Dicellograptus sextans
Dicellograptus alabamensis
Leptograptus trentonensis

Correlation: upper part of Nemagraptus
gracilis Zone
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Table B.1  (continued)
Sample Location Stratigraphic

position
General remarks Graptolites (by Stanley

Finney)
Remarks (by Stanley Finney)

S2-
2220

CL  CALERA (Blue
circle)

0.3 m beneath
Oa-Dfm contact

Graptolites in green silty
shale lithofacies overlying
sandstone beds of the
Athens Shale; however,
graptolites disappear
abruptly in a few
centimeters above.

Glyptograptus euglyphus
Pseudoclimacograptus modestus
Dicellograptus sp.

Correlation: Nemagraptus gracilis Zone. 
Too few species to determine level
within zone.

S2-
2506

EC  EAST CALERA
SE1/4 SW1/4 sec 16
T22S R2W Ozan quad.

3-5 m above Ol-
Oa contact

Here the section is only
15 m thick

Thamnograptus sp.
Didymograptus superstes
Reteograptus geinitzianus
Cryptograptus tricornis
Glyptograptus teretiusculus
?Nemagraptus gracilis

Correlation: Nemagraptus gracilis
Zone.  Too few species to determine
level within zone.

S2-
2805

CL  CALERA (Vulcan
quarry)

10 m above Oa-
Ol contact

Graptolites below and
above bentonite bed (S2-
2806 and S2-2807)

Didymograptus sp.
?Glossograptus sp.
Pseudoclimacograptus
angulatus
Glyptograptus euglyphus

Correlation: Many specimens, but most
are too heavily carbonized to identify. 
Those identified range from the G.
teretiusculus Zone through the N.
gracilis Zone.

Q3-
0201

AB  ALABASTER
 NE1/4 SW1/4 sec. 25
T20S R3W Helena
quad.

3-5 m above
Olol-Oa contact.

The Oa is only 10 m thick
and pinches out (?)
northward

?Nemagraptus sp.
Pseudoclimacograptus sp.
Climacograptus sp

Correlation: Nemagraptid identification
is uncertain.  Can only state with some
uncertainty that this collection
correlations with a level somewhere
within the G. teretiusculus and N.
gracilis Zones.

Q3-
0303

AB  ALABASTER
(juntion 31-119 roads)
SW1/4 NE1/4 sec. 2
T21S R3W Alabaster
quad.

6 m above Ol-
Oa contact

The Oa is 27 m thick ?Glyptograptus

Q3-
0304

AB  ALABASTER
(juntion 31-119 roads)
SW1/4 NE1/4 SEC. 2
T21S R3W Alabaster
quad.

23-25 m above
Ol-Oa contact

The Oa is 27 m thick Didymograptus sp.
Cryptograptus sp.
Pseudoclimacograptus
angulatus?
Pseudoclimacograptus
modestus?
Climacograptus meridionalis?
Glyptograptus sp.
Glyptograptus euglyphus?
Dicellograptus alabamensis

Correlation: specimens are tectonically
deformed and very poorly preserved,
making identifications of species
difficult.  Nevertheless, this collection
can be correlated with the Nemagraptus
gracilis Zone.

R3-
0702

HV  HARPERSVILLE
(juntion 79-76)
NE1/4 NE1/4 sec 14
T20S R2E
Harpersville quad.

Lower Athens
Shale?

Structurally is located in
the eastern belt that
corresponds to black
shales with graptolites

biserial graptolite?, but further identification not possible. 
Several specimens are very faint molds
in very friable mudstone.  I wonder if
they are even graptolites.  Correlation:
middle to upper Ordovician if specimens
are graptolites

R3-
0703

HV  HARPERSVILLE
(juntion 79-76) NE1/4
NE1/4 sec 14 T20S
R2E Harpersville
quad.

Lower Athens
Shale?

Structurally is located 40
m to the east of sample
R3-0702

Climacograptus sp.
Pseudoclimacograptus
angulatus
Glyptograptus sp.

Correlation: murchisoni, teretiusculus,
or gracilis zone; can't be more precise.

R3-
0807

HV  HARPERSVILLE
NW 1/4 sec 23 T19S
R2E Harpersville
quad.

Lower Athens
Shale?

Structurally is located to
the east, in the black shale
belt with graptolites.
Locality #5 of Finney et
al., 1996. 1 sample.

Cryptograptus tricornis
Pseudoclimacograptus sp.
Glyptograptus teretiusculus

Correlation: murchisoni, teretiusculus,
or gracilis zone; probably one of the first
two.

O4-
0406

LM  Leydens Mill
NE1/4 NE1/4 sec 19
T14S R8E Jacsonville
West quad.

Athens shale Greenish silty shale
interbedded with
sandstones

Couple of unidentifiable, questionable
graptolites

I4-
0601

FM  FROG
MOUNTAIN
NE1/4 SW1/4 sec 16
T12S R10E Piedmont
quad.

Athens Shale Greenish silty shale
interbedded with
sandstones

Dicellograptus sp.
Glyptograptus sp. (probably G.
teretiusculus)

Correlation: somewhere in N. gracilis
Zone.
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APPENDIX C

TECTONIC SUBSIDENCE DATA

Tectonic subsidence analysis was carried out in each section assuming that the top of

Ordovician was ultimately buried to a depth of at least 4 km (from an estimate of the thickest

post-Ordovician succession in the Cahaba synclinoriun in the southern Appalachians, cross

section 16, Plate 2.1).  I used backstripping techniques (e.g., Sclater and Christie, 1980; Allen

and Allen, 1992) to decompact the measured stratigraphic thickness; this technique assumes a

lithology-dependent exponential decrease of porosity with depth, a fully saturated column of

sediments, and local compensation (Airy isostasy) of sedimentary loads.  Initial porosities and

porosity-depth coefficients (values from Sclater and Christie, 1980) were averaged according to

the percentage of each lithology in each stratigraphic interval (Plates 3.1 to 3.10 and Plates 4.2 to

4.3).  Tectonic subsidence analysis for each section was carried out using MatLab programs

written by Nestor Cardozo at Cornell University.  The tectonic subsidence program uses the

assumptions specified above.

The Paleozoic strata were divided into the following intervals: Rome Formation and older

units; Conasauga Formation; Conasauga Formation and older units (if data of the Rome

Formation or older units are not available); Knox Group; post-Knox unconformity; the Middle

and Upper Ordovician strata are divided using the stratigraphic surfaces of correlation; Silurian

strata; Devonian strata; Carboniferous strata; model= stratigraphic thickness needed to bury the

top of Ordovician to a depth of 4 km.  Calculation of thickness of post-Ordovician strata is from

the literature and cross sections in Plate 2.1.

Figure C.1 explains how I interpreted the behaviour of the top of basement through the

post-Knox unconformity.  For calculation of the amount of basement uplift in sections BI, DG,

HL, HM, and RH, I calculated the difference of decompacted (maximum) and compacted

(minimum) thickness of the Knox Group between adjacent sections (e.g., difference in thickness

of the Knox Group between sections BI and ST).  This calculation assumes that the pre-Middle

Ordovician thickness of the Knox Group was the same in sections BI and ST, thermal subsidence

had the same slope until 475 Ma (Figure C.1), and the top of basement was fixed during the

shortest chronostratigraphic gap of the post-Knox unconformity.
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The following table includes the parameters used for each interval in the calculation of

tectonic subsidence.  From left to right are: top and base of units, ages of the top and base,

density= average dry density, c= coefficient determining the slope of the porosity-depth curve,

porosity= average initial porosity, minimum and maximum estimate of water depth for the top of

the interval, and sea level position relative to present.  Figures C.1 and C.18 include, for each

section, one plot of decompacted depth versus time, and another plot showing total thickness,

total decompacted thickness, total decompacted thickness corrected for the weight of sediments,

and tectonic subsidence versus time
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section AB ALABASTER

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.923 6.228 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 5.49 5.923 505 517 2710 0.71 0.7 0.004 0.016 0.07

Knox Group 4.256 5.49 475 505 2710 0.71 0.7 0 0.004 0.08

post-Knox unconformity 4.256 4.256 466 475 0 0 0 0 0 0

1-3 4.027 4.256 458 466 2710 0.71 0.7 0.016 0.064 0

3-6 4 4.027 457 458 2720 0.51 0.63 0.064 0.125 0

post-Ordovician unconformity 4 4 417 457 0 0 0 0 0 0.07

Devonian 3.999 4 354 417 2650 0.27 0.49 0.016 0.016 0.15

Carboniferous 1.966 3.999 290 354 2680 0.39 0.56 0.016 0.016 0.15

model 0 1.966 270 290 2680 0.39 0.56 0.016 0.016 0.15

section BR  BIG RIDGE

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.872 6.116 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 5.238 5.872 505 517 2710 0.71 0.7 0.004 0.016 0.07

Knox Group 4.165 5.238 483 505 2710 0.71 0.7 0 0.004 0.1

post-Knox unconformity 4.165 4.165 458 483 0 0 0 0 0 0

5-6 4.15 4.165 457 458 2710 0.71 0.7 0.004 0.016 0

6-8 4.092 4.15 454 457 2710 0.71 0.7 0 0.004 0

8-11 4 4.092 443 454 2710 0.62 0.67 0.016 0.064 0.065

Silurian 3.86 4 417 443 2680 0.39 0.56 0.004 0.016 0.07

Devonian 3.852 3.86 354 417 2720 0.51 0.63 0.016 0.016 0.15

Carboniferous 3.398 3.852 290 354 2685 0.5 0.61 0.016 0.016 0.15

model 0 3.398 270 290 2680 0.39 0.56 0.016 0.016 0.15

section BI  BIRMINGHAM

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.602 7.571 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 4.858 5.602 505 517 2710 0.71 0.7 0.004 0.016 0.07

Knox Group 4.096 4.858 490 505 2710 0.71 0.7 0 0.004 0.09

post-Knox unconformity 4.096 4.096 458 490 0 0 0 0 0 0

3-6 4.067 4.096 457 458 2710 0.71 0.7 0.004 0.016 0

6-8.1 4.011 4.067 454 457 2710 0.71 0.7 0 0.004 0

8.1-11 4 4.011 443 454 2710 0.71 0.7 0.016 0.064 0.065

Silurian 3.922 4 417 443 2680 0.39 0.56 0.016 0.064 0.07

Devonian 3.89 3.922 354 417 2720 0.51 0.63 0.016 0.016 0.15

Carboniferous 2.79 3.89 290 354 2685 0.5 0.61 0.016 0.016 0.15

model 0 2.79 270 290 2680 0.39 0.56 0.016 0.016 0.15

section CL  CALERA

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.732 6.723 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 5.358 5.732 505 517 2710 0.71 0.7 0.004 0.016 0.07

Knox Group 4.124 5.358 475 505 2710 0.71 0.7 0 0.004 0.08

post-Knox unconformity 4.124 4.124 466 475 0 0 0 0 0 0

1-3 4.065 4.124 458 466 2710 0.71 0.7 0.016 0.064 0

3-6 4 4.065 457 458 2720 0.51 0.63 0.4 0.8 0

post-Ordovician unconformity 4 4 417 457 0 0 0 0 0.004 0.07

Devonian 3.998 4 354 417 2650 0.27 0.49 0.016 0.016 0.15

Carboniferous 1.965 3.998 290 354 2680 0.39 0.56 0.016 0.016 0.15

model 0 1.965 270 290 2680 0.39 0.56 0.016 0.016 0.15
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section CH-RI  CHICKAMAUGA-RINGGOLD

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 6.399 6.459 517 544 2680 0.39 0.56 0.004 0.016 0.03

Conasauga Fm. 5.236 6.399 505 517 2713 0.65 0.68 0.004 0.016 0.07

Knox Group 4.504 5.236 478 505 2710 0.71 0.7 0 0.004 0.085

post-Knox unconformity 4.504 4.504 466 478 0 0 0 0 0 0

1-5 4.457 4.504 458 466 2710 0.71 0.7 0.004 0.016 0

5-6 4.399 4.457 457 458 2710 0.71 0.7 0.004 0.016 0

6-8 4.19 4.399 454 457 2710 0.71 0.7 0 0.004 0

8-11 4 4.19 443 454 2705 0.65 0.67 0.016 0.064 0.065

Silurian 3.855 4 417 443 2680 0.39 0.56 0.016 0.016 0.07

Devonian 3.85 3.855 354 417 2720 0.51 0.63 0.016 0.016 0.15

Carboniferous 3.02 3.85 290 354 2689 0.49 0.6 0.016 0.016 0.15

model 0 3.02 270 290 2680 0.39 0.56 0.016 0.016 0.15

section CI  CISCO

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Conasauga Fm. and older 5.548 6.758 505 544 2696 0.5 0.61 0.004 0.016 0.07

Knox Group 4.634 5.548 478 505 2710 0.71 0.7 0 0 0.085

post-Knox unconformity 4.634 4.634 463 478 0 0 0 0 0 0

2-3 4.562 4.634 458 463 2720 0.51 0.63 0.1 0.3 0

3-6 4.068 4.562 457 458 2712 0.49 0.62 0.016 0.064 0

6-7 4 4.068 456 457 2704 0.46 0.6 0.004 0.016 0

model 0 4 270 456 2680 0.39 0.56 0.016 0.016 0.15

section DG  DUG GAP

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.225 6.08 517 544 2713 0.49 0.62 0.004 0.016 0.03

Conasauga Fm. 4.725 5.225 505 517 2715 0.61 0.67 0.004 0.016 0.07

Knox Group 4.268 4.725 490 505 2710 0.71 0.7 0 0.004 0.09

post-Knox unconformity 4.268 4.268 458 490 0 0 0 0 0 0

5-6 4.244 4.268 457 458 2710 0.71 0.7 0 0.004 0

6-8 4.157 4.244 454 457 2705 0.46 0.6 0.004 0.016 0

8-11 4 4.157 443 454 2701 0.45 0.6 0.004 0.016 0.065

Silurian 3.63 4 417 443 2680 0.39 0.56 0.016 0.016 0.07

Devonian 3.603 3.63 354 417 2664 0.67 0.69 0.016 0.016 0.15

Carboniferous 2.433 3.603 290 354 2689 0.49 0.6 0.016 0.016 0.15

model 0 2.433 270 290 2680 0.39 0.56 0.016 0.016 0.15

section DM  DUNAWAY MOUNTAIN

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.625 7.277 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 4.991 5.625 505 517 2715 0.61 0.67 0.004 0.016 0.07

Knox Group 4.077 4.991 483 505 2710 0.71 0.7 0 0.004 0.1

post-Knox unconformity 4.077 4.077 458 483 0 0 0 0 0 0

5-6 4.059 4.077 457 458 2711 0.69 0.69 0 0.004 0

6-8 4.047 4.059 454 457 2712 0.68 0.69 0 0.004 0

8-11 4 4.047 443 454 2704 0.54 0.63 0.016 0.064 0.065

Silurian 3.86 4 417 443 2680 0.39 0.56 0.004 0.016 0.07

Devonian 3.852 3.86 354 417 2720 0.51 0.63 0.016 0.016 0.15

Carboniferous 3.398 3.852 290 354 2685 0.5 0.61 0.016 0.016 0.15

model 0 3.398 270 290 2680 0.39 0.56 0.016 0.016 0.15
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section GS  GREENSPORT

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.299 6.051 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 5.189 5.299 505 517 2720 0.51 0.63 0.004 0.016 0.07

Knox Group 4.153 5.189 478 505 2710 0.71 0.7 0 0.004 0.085

post-Knox unconformity 4.153 4.153 458 478 0 0 0 0 0 0

3-6 4.098 4.153 457 458 2709 0.65 0.68 0.016 0.064 0

6-8 4.047 4.098 454 457 2698 0.45 0.59 0.004 0.016 0

8-11 4 4.047 443 454 2707 0.6 0.65 0.004 0.016 0.065

Silurian 3.967 4 417 443 2680 0.39 0.56 0.004 0.016 0.07

Devonian 3.962 3.967 354 417 2680 0.39 0.56 0.016 0.016 0.15

Carboniferous 3.086 3.962 290 354 2685 0.5 0.61 0.016 0.016 0.15

model 0 3.086 270 290 2680 0.39 0.56 0.016 0.016 0.15

section GU  GUNSTERVILLE

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.921 6.11 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 5.287 5.921 505 517 2710 0.71 0.7 0.004 0.016 0.07

Knox Group 4.296 5.287 485 505 2710 0.71 0.7 0 0.004 0.11

post-Knox unconformity 4.296 4.296 458 485 0 0 0 0 0 0

5-8 4.056 4.296 454 458 2710 0.71 0.7 0 0.004 0

8-11 4 4.056 443 454 2710 0.62 0.67 0.016 0.064 0.065

Silurian 3.942 4 417 443 2680 0.39 0.56 0 0.004 0.07

Devonian 3.927 3.942 354 417 2720 0.51 0.63 0.016 0.016 0.15

Carboniferous 3.482 3.927 290 354 2685 0.5 0.61 0.016 0.016 0.15

model 0 3.482 270 290 2680 0.39 0.56 0.016 0.016 0.15

section HM  HAMILTON MOUNTAIN

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.361 6.081 517 544 2713 0.49 0.62 0.004 0.016 0.03

Conasauga Fm. 4.861 5.361 505 517 2712 0.59 0.65 0.004 0.016 0.07

Knox Group 4.311 4.861 485 505 2710 0.71 0.7 0 0.004 0.11

post-Knox unconformity 4.311 4.311 458 485 0 0 0 0 0 0

3-6 4.203 4.311 457 458 2710 0.71 0.7 0.004 0.016 0

6-8 4.004 4.203 454 457 2712 0.5 0.62 0.016 0.064 0

8-9 4 4.004 451 454 2700 0.45 0.6 0.016 0.016 0.023

model 0 4 270 451 2680 0.39 0.56 0.016 0.016 0.15

section HL  HORSELEG MOUNTAIN

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Conasauga Fm. and older 4.819 5.794 505 544 2705 0.51 0.62 0.004 0.016 0.07

Knox Group 4.209 4.819 490 505 2710 0.71 0.7 0 0.004 0.09

post-Knox unconformity 4.209 4.209 458 490 0 0 0 0 0 0

3-6 4.172 4.209 457 458 2699 0.57 0.65 0 0.004 0

6-8 4.063 4.172 454 457 2704 0.46 0.6 0.004 0.016 0

8-11 4 4.063 443 454 2704 0.46 0.6 0.016 0.064 0.065

Silurian 3.63 4 417 443 2680 0.39 0.56 0.016 0.016 0.07

Devonian 3.603 3.63 354 417 2664 0.67 0.69 0.016 0.016 0.15

Carboniferous 2.433 3.603 290 354 2689 0.49 0.6 0.016 0.016 0.15

model 0 2.433 270 290 2680 0.39 0.56 0.016 0.016 0.15
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section LM  LEYENDS MILL

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Conasauga Fm. and older 5.679 6.541 505 544 2696 0.5 0.61 0.004 0.016 0.07

Knox Group 4.643 5.679 478 505 2710 0.71 0.7 0 0.004 0.085

post-Knox unconformity 4.643 4.643 466 478 0 0 0 0 0 0

1-3 4 4.643 458 466 2714 0.5 0.62 0.4 0.8 0

post-Ordovician unconformity 4 4 354 458 0 0 0 0.016 0.016 0.15

model 0 4 270 354 2680 0.39 0.56 0.016 0.016 0.15

section PF  PRATT FERRY

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) (km-1) minimum maximum (km)

Rome Fm. and older 5.887 6.878 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 5.513 5.887 505 517 2710 0.71 0.7 0.004 0.016 0.07

Knox Group 4.279 5.513 478 505 2710 0.71 0.7 0 0.004 0.085

post-Knox unconformity 4.279 4.279 466 478 0 0 0 0 0 0

1-3 4.122 4.279 458 466 2710 0.71 0.7 0.016 0.064 0

3-6 4.017 4.122 457 458 2715 0.61 0.67 0.064 0.125 0

6-8.1 4 4.017 443 457 2710 0.71 0.7 0.064 0.125 0

post-Ordovician unconformity 4 4 417 443 0 0 0 0 0 0.07

Devonian 3.991 4 354 417 2650 0.27 0.49 0.016 0.016 0.15

Carboniferous 3.965 3.991 290 354 2680 0.39 0.56 0.016 0.016 0.15

model 0 3.965 270 290 2680 0.39 0.56 0.016 0.016 0.15

section RH  RED HILL

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) km-1 minimum maximum (km)

Conasauga Fm. and older 4.771 5.991 505 544 2696 0.5 0.61 0.004 0.016 0.07

Knox Group 4.161 4.771 485 505 2710 0.71 0.7 0 0.004 0.11

post-Knox unconformity 4.161 4.161 458 485 0 0 0 0 0 0

3-6 4.07 4.161 457 458 2710 0.71 0.7 0.004 0.016 0

6-7 4 4.07 456 457 2708 0.53 0.63 0.016 0.016 0

model 0 4 270 456 2680 0.39 0.56 0.016 0.016 0.15

section RK  ROCKMART

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) km-1 minimum maximum (km)

Conasauga Fm. and older 5.265 6.765 505 544 2696 0.5 0.61 0.07 0.016 0.07

Knox Group 4.35 5.265 478 505 2710 0.71 0.7 0.085 0.004 0.085

post-Knox unconformity 4.35 4.35 466 478 0 0 0 0 0 0

1-3 4 4.35 458 466 2714 0.5 0.62 0 1 0

post-Ordovician unconformity 4 4 417 458 0 0 0 0.07 0 0.07

Devonian 3.91 4 354 417 2650 0.27 0.49 0.15 0.016 0.15

model 0 3.91 270 354 2680 0.39 0.56 0.15 0.016 0.15

section SS  SHENANDOAH 1 SMITH well

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) km-1 minimum maximum (km)

Rome Fm. and older 5.958 6.046 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 5.299 5.958 505 517 2710 0.71 0.7 0.004 0.016 0.07

Knox Group 4.308 5.299 485 505 2710 0.71 0.7 0 0.004 0.11

post-Knox unconformity 4.308 4.308 458 485 0 0 0 0 0 0

5-8 4.062 4.308 454 458 2710 0.71 0.7 0 0.004 0

8-11 4 4.062 443 454 2710 0.62 0.67 0.016 0.064 0.065

Silurian 3.991 4 417 443 2680 0.39 0.56 0 0.004 0.07

Devonian 3.985 3.991 354 417 2720 0.51 0.63 0.016 0.016 0.15

Carboniferous 3.549 3.985 290 354 2685 0.5 0.61 0.016 0.016 0.15

model 0 3.549 270 290 2680 0.39 0.56 0.016 0.016 0.15



216

section ST  U.S. 1 STEEL well

INTERVAL top base top base density c porosity water depth (km) Sea
level

 (km) (km) (Ma) (Ma) (kgr m-3) km-1 minimum maximum (km)

Rome Fm. and older 6.106 6.124 517 544 2680 0.39 0.56 0.004 0.004 0.03

Conasauga Fm. 5.362 6.106 505 517 2710 0.71 0.7 0.004 0.016 0.07

Knox Group 4.234 5.362 485 505 2710 0.71 0.7 0 0.004 0.11

post-Knox unconformity 4.234 4.234 458 485 0 0 0 0 0 0

3-8 4.028 4.234 454 458 2710 0.71 0.7 0 0.004 0

8-11 4 4.028 443 454 2710 0.62 0.67 0.016 0.064 0.065

Silurian 3.845 4 417 443 2680 0.39 0.56 0.004 0.016 0.07

Devonian 3.84 3.845 354 417 2720 0.51 0.63 0.016 0.016 0.15

Carboniferous 2.74 3.84 290 354 2685 0.5 0.61 0.016 0.016 0.15

model 0 2.74 270 290 2680 0.39 0.56 0.016 0.016 0.15



resume of tectonic subsidence

Uplift of top of basement. The amount of uplift is calcu-
lated using the difference of compacted (minimum) and
decompacted (maximum) thickness of the Knox Group
between adjacent structural blocks.

short dashed line joins the tectonic
subsidence curve through the post-
Knox unconformity

No subsidence. This interval is bounded by the
youngest record of the Knox Group (475 Ma) and
the earliest record of Blountian deposition (466 Ma)

Thermal subsidence. Solid line is the recorded interval of the Knox
Group; long dashed line is the eroded interval (no shown in Figures
C.2 to C.19). Here it is assumed that thermal subsidence had the
same slope until 475 Ma for each section.

Figure C.1 Explanation of the trace of the tectonic subsidence curve through the post-Knox
unconformity (short dashed line shown in Figures C.2 to C.19). The long dashed line illus-
trates the behaviour of the top of basement through the post-Knox unconformity in a section
that restores inside the Birmingham graben (e.g., section BI, Figure C.3). This approach
assumes that passive-margin deposition was continuous until 475 Ma, the top of basement
was stable during the shortest chronostratigraphic gap of the post-Knox unconformity, and
the inversion of the Birmingham graben caused the uplift of the top of basement. The short
dashed line joins the tectonic subsidence curve of the recorded interval of the Knox and the
calculated position of the top of basement at the time of initiation of Blountian deposition.
Figure C.2 (section AB) shows a section that restores outside of the graben, has the shortest
chronostratigraphic gap of the post-Knox unconformity, and subsides because of the inver-
sion of the Birmingham graben. Figure C.10 (section GS) shows a section with a longer
chronostratigraphic gap of the post-Knox unconformity and a late initiation of subsidence.
For simplicity, the long dashed line is not shown in Figures C.2 to C.19.

Decompacted
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Figure C.2 Section AB - Alabaster

Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity



Figure C.3 Section BR - Big Ridge
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.4 Section BI - Birmingham
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.5 Section CL - Calera
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.6 Section CH-RI - Chickamauga - Ringgold



223

Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.7 Section CI - Cisco
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.8 Section DG - Dug Gap
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.9 Section DM - Dunaway Mountain
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.10 Section GS - Greensport
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.11 Section GU - Gunsterville
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.12 Section HM - Hamilton Mountain
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.13 Section HL - Horseleg Mountain



230

Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.14 Section LM - Leyends Mill
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.15 Section PF - Pratt Ferry
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.16 Section RH - Red Hill
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.17 Section RK - Rockmart
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Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Compacted Decompacted
After sediment load correction

Figure C.18 Section SS - Shenandoah 1 Smith well
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Compacted Decompacted
After sediment load correction
Tectonic subsidence (cross symbols are from
the error in water-depth interpretations).
post-Knox unconformity

Figure C.19 Section ST - U.S. 1 Steel well
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APPENDIX D

DESCRIPTION OF THIN SECTIONS AND HAND SAMPLES

Table D.1 summarizes the description of some hand samples and thin sections (marked

with @ on the left side of the table).  Samples are listed by sections.  For stratigraphic location of

samples see the correspondent plate.  Abbreviations are as follow:

Units: Dfm= Frog Mountain Formation; Oa= Athens Shale; Och= Chickamauga Limestone;

Oca= Atalla Chert Conglomerate Member of the Chickamauga Limestone; Ocho; Chota

Formation; Ocm= Colvin Mountain Sandstone; Og= Greensport Formation; Ol= Lenoir

Limestone; Olol= Little Oak-Lenoir Limestone; Olol= Little Oak Limestone; On= Newala

Limestone; Oo= Odenville Limestone; Or= Rockmart Slate; Os= Sequatchie Formation; Srm=

Red Mountain Formation.

Name: For carbonates: A= algal; I= intraclasts; S= skeletal; P= peloidal; argil.= argillaceous; P

wackestone/I packstone = peloidal wackestone interbedded with intraclastic packstone; mixed =

mixed carbonate and siliciclastic lithologies.

Sandstones and conglomerates:

Grain size: cgl= conglomerate; m= medium sand; bimodal = two grain sizes

Composition: Q, F, and L are modal composition (see Table 4.4)

Non Skeletal: I= population of intraclasts

Skeletal: brach.= brachiopod; bryo.= bryrozoan; echinod.= echinoderms, crinoids;

ostrac.=ostracods; pelecyp.= pelecypods.

Q, F, L = see Table 4.4 for explanation of codes

Matrix/cement: qz= quartz; mi= micrite; dol= dolomite; cal= calcareous; ox= oxides; pmtx=

pseudomatrix

Other: bt= biotite; chl.= chlotite; glauc.= glauconite; hn= hornblende; musc.= muscovite;

phosp.= phosphates; py= pyrite; zr= zircon

Structures/fabric: dol= dolomitization; mod.= moderate; styl= stylonodular
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