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ABSTRACT OF DISSERTATION 

  

 

PHYSIOLOGICAL GENOMICS OF SPINAL CORD AND LIMB REGENERATION 
IN A SALAMANDER, THE MEXICAN AXOLOTL 

 
Salamanders have a remarkable ability to regenerate complex body parts including the 
limb, tail, and central nervous system. Although salamander regeneration has been 
studied for several hundred years, molecular-level studies have been limited to a 
relatively few important transcription factors and signaling molecules that are highly 
conserved among animals. Physiological genomic approaches were used here to 
investigate spinal cord and limb regeneration. Chapter 2 reports that hundreds of gene 
expression changes were identified during spinal cord regeneration, showing that a 
diverse injury response is activated in concert with extracellular matrix remodeling 
mechanisms during the early acute phase of natural spinal cord regeneration. Chapter 3 
presents results that identify the salamander ortholog of mammalian Nogo-A, a gene 
known to inhibit mammalian nerve axon regeneration. Nogo-A gene expression was 
characterized during salamander development and adulthood in order to address the roles 
of Nogo-A in the nervous system. Chapters 4 and 5 use physiological genomic 
approaches to examine limb regeneration and why this process is dependent upon an 
intact nerve supply. Results presented in Chapter 4 showed that many processes regulated 
during early limb regeneration do not depend upon nerve-derived factors, but striking 
differences arise between innervated and denervated limbs by 14 days after amputation. 
Chapter 5 identified genes associated with peripheral nerve axon regeneration and 
identified gene candidates that may be secreted by nerves to support limb regeneration. 
Lastly, chapter 6 characterizes the expression of a developmentally important family of 
genes, matrix metalloproteinases, during tail regeneration. These results suggest that 
matrix metalloproteinases play multiple roles throughout the regeneration process. 
Primarily, this dissertation presents data from the first genomic studies of salamander 
regeneration. The results suggest genes such as matrix metalloproteinases, and molecular 
pathways such as the Wnt and FGF signaling pathways that can be exploited to enhance 
regenerative ability in humans. 
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CHAPTER 1 
 

INTRODUCTION 

“But if the above-mentioned animals (salamanders), either aquatic or amphibious, 
recover their legs, even when kept on dry ground, how comes it to pass, that other land 
animals, at least such as are commonly accounted perfect and are better known to us, are 
not endued with the same power?...Should the flattering expectation of obtaining this 
advantage for ourselves be considered entirely as chimerical?”  
       Lazzaro Spallanzani, 1768  

This question, which has motivated and perplexed scientists for centuries, remains 

unanswered. Formal studies of salamander (Urodele) regeneration trace back at least to 

the 1760’s, when Lazzaro Spallanzani and Charles Bonnet described the phenomenon of 

tail, limb, and eye regeneration in newts (Dinsmore, 1996). Since this time, it has become 

widely appreciated that the salamander’s remarkable regenerative abilities are 

unparalleled among vertebrates. Much progress has been made in describing how 

salamander regeneration is accomplished at the morphological level.  However, only 

recently have resources and technologies been developed to allow specific genes and gene 

functions to be studied in salamanders. In particular, microarray analysis, high-throughput 

sequencing, feasible transgenic and knockdown approaches, and bioinformatic databases 

are now available to re-address centuries old questions for the first time at the genomic 

level. The studies described in this dissertation address several salamander regeneration 

paradigms, including spinal cord regeneration, limb regeneration, wound healing, and the 

neural dependence of limb regeneration. The results of these studies provide some of the 

first unbiased insights into how salamanders re-grow a variety of tissues following injury. 

The hope is that someday we will soon be able to translate the secrets of salamander 

regeneration to clinical therapies in humans.   

 

Spinal cord regeneration 

 The salamander spinal cord offers a promising model of central nervous system 

(CNS) regeneration because it is capable of functional recovery after transection, crush, 

and amputation injuries. However, it is unclear why salamanders have such a high 

capacity for spinal cord regeneration (SCR) while mammals do not. One difference 

between salamander and mammalian spinal cord injury (SCI) is that salamanders 
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regenerate large numbers of neurons from progenitor cells following SCI while mammals 

do not (Bareyre, 2008; Pinto and Götz, 2007; Ferretti et al., 2003; Chernoff et al., 2003). 

Results presented in Chapter 2 attempt to address this problem by comparing gene 

expression changes that take place during salamander SCR to gene expression changes 

that take place after mammalian SCI. It is also possible that salamanders can regrow 

nervous system tissue so readily because their neurons have a higher intrinsic capacity to 

regenerate axons than mammalian neurons. We attempt to identify genes associated with 

salamander axon regeneration by identifying up-regulated genes in sensory neurons 

during axon regeneration. Lastly, molecules known to inhibit regeneration in the 

mammalian CNS may not be present in the salamander CNS. We address this problem by 

identifying and characterizing the salamander ortholog of a gene that is inhibitory in 

mammals, Nogo-A. To develop the salamander model further, studies are needed to 

address these and other aspects of CNS repair, and from this information, determine the 

bases of a natural regenerative response.  

A striking feature of salamander SCR is the activation of cells that line the central 

canal of the spinal cord (Egar and Singer, 1972; Nordlander and Singer, 1978). These cells 

have traditionally been called ependymoglia (Chernoff et al., 2003; Egar and Singer, 

1972), but are structurally similar to mammalian radial glia seen during development 

(Holder et al., 1990; Mchedlishvili et al., 2007). Upon SCI, ependymoglia migrate to close 

off the exposed spinal cord lumen, proliferate, and eventually differentiate into new 

neurons (Norlander and Singer, 1978; Benraiss et al., 1999; Echeverri and Tanaka, 2002; 

Mchedlishvili et al., 2007). Ependymoglia-like cells seem to be critical in all animals 

capable of SCR including salamanders, zebrafish, anuran larvae, and lizard tails, although 

cell-tracking studies are severely lacking in all of these models (Reimer et al., 2008; 

Chernoff, 1996; Chernoff et al., 2003). In the future, it will be necessary to know what cell 

types ependymoglia are capable of differentiating into and the signaling mechanisms that 

regulate their activities. Experiments described in chapter 2 present some early efforts in 

identifying the early gene expression changes after SCI that may contribute to 

ependymoglia activation.  

The extracellular environment of the injured mammalian spinal cord is thought to 

be inhibitory to regeneration. Investigations aimed to promote human SCR have mainly 
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focused on circumventing these inhibitory properties (Silver and Miller, 2004; Schwab, 

2002; Horner and Gage, 2000). Several factors contribute to the hostile CNS environment 

including glutamate excitotoxicity, astrocytic gliosis, inhibitory myelin products, and 

toxic metabolic byproducts (Profyris et al., 2004 for review). Salamanders may be capable 

of SCR because they can naturally circumvent some or all of these injury byproducts. 

Indeed, a gliotic scar does not form after SCI, but the contribution of the other 

components is poorly understood. Inhibitory myelin products are thought to be major 

contributors to the inhibitory environment (Ramer et al., 2005). Nogo-A, or Reticulon 4A, 

in particular has received considerable attention as a target for clinical intervention 

(Buchli and Schwab, 2005; Freund et al., 2006, 2009). It has been proposed that 

salamanders may have a higher regenerative ability because Nogo-A is absent in the CNS 

(Schwab, 2004; Oertle et al., 2003; Klinger et al., 2004; Chernoff et al., 2003). There is 

also evidence that other inhibitory myelin breakdown products, specifically myelin-

associated glycoprotein, and the inhibitory molecule Tenascin-R are quickly eliminated 

from the injury site. We address the first hypothesis in Chapter 3 by providing evidence 

that Nogo-A is present and expressed in the salamander CNS. This chapter concludes with 

a discussion of the possible roles of Nogo-A in the salamander nervous system. 

The prospect of using information obtained from vertebrates capable of SCR for 

therapeutic treatments to SCI is appealing. This realization will be impossible without 

understanding how the salamander performs such feats. The results presented here address 

some of the most relevant questions related to these questions. Future studies will be 

needed to build upon these results using anatomical, functional, and genomic approaches 

to tease apart the complex process of building new neural tissue. 

 

Limb Regeneration 

 The second model addressed in this dissertation is limb regeneration. Limb 

regeneration was chosen to study because it is the best characterized model of 

regeneration at the morphological level, but little gene expression data has been collected 

to date. The goal of our work is to fill this knowledge gap by performing physiological 

genomic techniques on regenerating limbs. 
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Limb regeneration is possibly the most extreme example of regeneration in 

vertebrates. It is an amazing feat to us humans that an animal can regenerate entire 

appendages that have been cut or bitten off. Hundreds of years of observation have given 

us a framework upon which we can build new understanding using the techniques and 

tools of modern biology. Below, I will review this framework and then describe how work 

presented in this dissertation builds upon this framework. 

Amputated limbs recruit local cells to participate in regeneration. Following 

amputation, cells just proximal to the amputation surface are coaxed into migrating to the 

injury site, become highly proliferative, and form a mass of mesenchymal-type cells 

termed the blastema. The blastema is a self-organizing structure capable of re-growing 

into a new limb. The blastema is the fundamental element of a regenerating limb. Two of 

the major components needed to form a blastema are a functional wound epidermis, and 

an adequate supply of innervation at the amputation site. Understanding the role of each of 

these components are major focal areas in the field of regenerative biology.  

 

Wound healing and the wound epidermis 

 Critical events necessary for limb regeneration take place only hours after limb 

amputation. A fibrin clot forms over the wound stump shortly after amputation. Basal 

keratinocytes proximal to the stump then lose their hemidesmosomes that connect them to 

the basal lamina and begin to migrate over the fibrin clot (Repesh and Overpriller, 1978, 

1980; Norman and Schmidt, 1967). The keratinocytes meet in the wound epicenter and 

start to pile up within the first 24 hours. Preventing the formation of a healthy wound 

epithelium (WE) inhibits regeneration, demonstrating that the WE is essential to 

regeneration (Goss, 1956; Mescher, 1976; Tassava and Garling, 1979; Thornton, 1957; 

Lheureux, 1983). Once the WE is formed, continued migration of cells from the proximal 

epidermis and cell proliferation thicken the WE to create a specialized structure termed 

the apical epidermal cap (AEC).  

The WE/AEC is thought to play multiple roles during regeneration. An 

unequivocal role of the WE is to phagocytose wound debris and either expel or dissolve it 

(Reviewed by Carlson, 2007).  Singer and Salpeter (1961) showed that implantation of 

large and small debris are taken up by the WE into the intercellular space as well as inside 
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epidermal cells and extruded from the blastema. Extrusion of normal cellular debris from 

dying cells has also been clearly observed by microscopy (reviewed by Singer and 

Salpeter, 1961). A second hypothetical role of the WE/AEC is to promote histolysis of 

underlying tissues, which initiates dedifferentiation and blastema formation. Tissue 

histolysis does not take place if a functional WE is not formed (Adova and Feldt, 1939; 

Carlson, 1967; Reviewed by Singer and Salpeter, 1961 and Carlson, 2007). This histolytic 

property has been associated with matrix metalloproteinases (MMPs) including 

MMP3/10a and b, newt-specific MMPe, MMP9, and newt collagenase (Miyazaki et al., 

1996; Kato et al., 2003; Yang et al., 1999; Vinarsky et al., 2005). Results presented in 

Chapter 6 support this hypothesis by showing that two collagenases, MMP9, and 

MMP3/10a are expressed in the WE during tail regeneration.  

A third role of the WE/AEC may be to support blastemal cell growth. Biolly and 

Albert (1986; 1990) showed that culturing blastemal cells supplemented with crude 

protein extract isolated from WE can increase the mitotic index by 11x, which was 

significantly more mitogenic than either blastemal mesenchyme or nerve extract. There is 

strong evidence that fibroblast growth factors (FGFs) are produced by the wound 

epithelium to support blastema cell proliferation. These include the localization of FGFs 

1, 2, 8, and 10 to the WE, the localization of FGF Receptor 1 to blastemal cells, and the 

observation that exogenous FGF can induce blastema cell proliferation when applied in 

vitro or in vivo (Biolly et al., 1991; Mullen et al., 1996; Han et al., 2001; Christensen et 

al., 2001; Campbell and Crews for review, 2008).  

 

Nerve-dependency of limb regeneration 

 Amputated salamander limbs also need an adequate supply of nerves to regenerate. 

About 50 years after Spallanzanni described salamander limb regeneration, Todd (1823) 

showed that the limb does not regenerate when the nerve supply is compromised. His 

observations are clearly explained by the following quote: 

 

“If the sciatic nerve be intersected at the time of amputation, that part of the stump below 
the section of the nerve mortifies [necroses]…If the division of the nerve be made after 
the healing of the stump, reproduction [regeneration] is either retarded or entirely 
prevented.”  
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Tweedy John Todd (1823) J Sci Lit Arts 16, 84-96.  
 

 Anatomical, immunological, and retrograde staining of neurons has shown that 

nerve fibers quickly grow from the severed end of brachial nerves into the injured tissues 

and WE (Singer, 1949; Thornton, 1970; Koussoulakos et al., 2003; Satoh et al., 2008). It 

is hypothesized that nerve fibers supply a factor or set of factors that support the 

proliferation of blastemal cells during the early phases of regeneration. This hypothesis is 

based upon the observation that spinal ganglia extracts are capable of supporting blastema 

cell proliferation in vivo and in vitro (Boilly and Albert, 1988; Globus and Vethamany-

Globus, 1977; Mescher and Loh, 1981; Reviewed by Dinsmore and Mescher, 1998). 

Removing the nerve supply shortly before or during the first few weeks after amputation 

leads to a loss of cell proliferation and regenerative failure. Two critical questions need to 

be answered for us to understand the role of nerves during limb regeneration: 

1) What is the neurotrophic factor (NTF) or NTFs secreted from regenerating peripheral 

nerve axons that support regeneration? 

2) What are the cellular and molecular targets of the NTF(s) in the injured tissues? 

 The NTF(s) has not been identified to date. Multiple gene candidates have been 

proposed and supported experimentally including fibroblast growth factors (Mullen et al., 

1996, but see Dungan et al., 2002; Satoh et al., 2008), substance P (Globus et al., 1991), 

neuregulin (Wang et al., 2000), and transferrin (Mescher et al., 1997), but no candidates 

have been accepted by the community as the neurotrophic factor. Specifically, Mullen et 

al. showed that FGF2 is expressed in sensory neurons and the wound epidermis. 

Implanting beads soaked in FGF2 could also rescue denervated limbs to regenerate, but 

similar experiments with FGF1 failed to rescue denervated limbs (Dungan et al., 2002). 

Substance P has been localized to neuronal cells and the regenerating limb, decreases 

abundance following denervation, and is mitogenic in cultured blastemal cells, but has not 

been tested for its ability to rescue denervated limbs (Globus et al., 1991). Neuregulin is 

expressed in dorsal root ganglia and can increase blastema cell proliferation in denervated 

limbs, but did not rescue regeneration in denervated limbs. Lastly, transferrin is expressed 

by sensory neurons, released from growth cones, and support blastemal cell growth in vivo 

and in vitro (Mescher et al., 1997). Although each of these candidates is promising, a 
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comprehensive study is needed to address whether these genes or a combination of them 

can be definitively identified as the neurotrophic factor. 

Several criteria are known about the NTF(s) that may assist in narrowing down 

candidate molecules in future studies. It is hypothesized that sensory, motor, and 

sympathetic nerves all produce the NTF(s), but sensory neurons are the major contributors 

of the NTF because they contribute more axons to the blastema (Singer, 1978 for review; 

Koussoulakos et al., 2003). The NTF(s) is produced in the neuronal cell body, transported 

down the axon, possibly by fast axonal transport, and released at the synapse (Scadding, 

1988; Wallace, 1972; Kiffmeyer et al., 1991). The NTF(s), and hence the stimulatory 

properties of axons, are increased following nerve injury or limb amputation (Singer, 

1952; Maier et al., 1984; Boilly and Albert, 1988; Boilly and Bauduin, 1988). Lastly, the 

NTF(s) should not be produced in the blastema and down-regulation should mimic 

denervation. Limb regeneration should also be rescued with local expression of the NTF 

following denervation. These criteria should be kept in mind when determining the role of 

nerves during regeneration (Brockes, 1984). 

 The cellular and molecular targets of the NTF(s) are largely unknown. Recent 

experimental evidence support multiple cellular targets including the WE (Satoh et al., 

2008), Schwann cells (Kumar et al., 2007), endothelial cells (Smith and Wolpert, 1975; 

Rageh et al., 2002), and blastemal cells (Maden, 1978; Vethamany-Globus, 1978). It will 

be important to find out whether the loss of blastemal cell proliferation following 

denervation is directly or indirectly downstream of the NTF. Kumar et al., (2007) have 

recently identified a downstream molecular target [Newt Anterior Gradient (nAG)] that 

may do the bidding of the NTF. nAG is a secreted mitogen of blastemal cells that is 

expressed in Schwann cells and skin glands shortly after injury. Denervation at the time of 

amputation abrogates expression in these cell types. Expression of nAG using DNA 

constructs in denervated limbs can rescue regeneration to the digit stage, identifying nAG 

as a likely downstream molecular target of the NTF. Alternatively, Satoh et al (2008) have 

proposed that the nerves target the WE, which then do the bidding of the NTF. A 

promising strategy for identifying the downstream nerve target is to sample differentially 

regulated genes between innervated and denervated limbs. mRNA localization of these 

differentially regulated genes with in situ hybridization would likely identify the 
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downstream targets of the nerves. We use physiological genomic strategies in chapter 4 to 

identify these differentially regulated genes and the possible downstream targets for 

nerves. Results from this chapter show that the nerve has little affect on the early events of 

limb regeneration, but has profound affects when the blastema begins to form. Chapter 5 

attempts to identify the NTF as well as genes that are upstream of the NTF. In this 

experiment, we sampled differentially expressed genes in dorsal root ganglia following 

limb amputation. Several new gene candidates were identified that could be the NTF and 

transcription factors that may be associated with axon outgrowth of the peripheral nerve or 

induce expression of the NTF were identified. Overall, these experiments give the most 

detailed molecular description of how the NTF may work. The next steps will be to 

characterize both the upstream and downstream components of the NTF using in situ 

hybridization because knowing which cell types they are expressed is essential for us to 

understand how the NTF affects limb regeneration.  

 All of the work presented in this dissertation is descriptive in nature, but it is 

necessary for understanding how a salamander can regenerate a spinal cord or limb. 

Experiments of the past have suggested that both of these regeneration paradigms need 

cellular and molecular events to take place that are unique to the salamander. We attempt 

to identify these events by characterizing the expression pattern of thousands of genes 

simultaneously during regeneration and then compare these patterns to non-regenerating 

tissues. Overall, we found that both spinal cord (Chapter 2) and limb regeneration 

(Chapter 4) are global processes that involve thousands of genes. We also found that some 

gene expression signatures of the wound response are similar between regenerating spinal 

cord, non-regenerating mammalian spinal cords, regenerating limbs, and non-regenerating 

denervated limbs. The truly regeneration-specific gene expression patterns become 

apparent days after the injury takes place. Future experiments should focus on where these 

genes are expressed, how early do they become regeneration-specific, and are they 

necessary for regeneration to take place. The studies presented here lay the groundwork 

for researchers to address the role of these genes during regeneration and whether this 

knowledge can be translated into human therapies. 

 
Copyright © James Robert Monaghan 2009 
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Introduction  

 Salamanders have a remarkable ability to regenerate complex body parts including 

the limb, tail, lens, and CNS. Although salamander regeneration has been studied for 

several hundred years (Spallanzani, 1768; Müller, 1864), molecular-level studies have 

been limited to a relatively few important transcription factors and signaling molecules 

that are highly conserved among vertebrates, and in some cases metazoans (e.g. Schnapp 

et al. 2005; Christensen et al. 2002; Carlson et al. 2001; Caubit et al. 1997; Torok et al. 

1999). Broader assessments of gene expression during salamander regeneration may 

identify mechanisms that can be exploited to enhance regenerative ability in humans.  

Salamanders regenerate their spinal cords and regain full movement and function 

after tail amputation. Within a few hours of amputation, injury responses are initiated to 

increase cell survival and transform the tissue-damaged environment into one that is 

permissive for repair and subsequent regeneration. It is possible that the unrivaled 

regenerative ability of salamanders is due in part to this early injury response phase of 

regeneration, but very little is known about early response genes and associated biological 

processes. Most attention has been directed to understand cellular and developmental 

changes during the dramatic and conspicuous de-differentiation and re-patterning phases 

of regeneration. During de-differentiation, cells of mesodermal origin (muscle, dermal 

fibroblasts, and cartilage) re-enter the cell cycle and proliferate to form a mass called the 

blastema (Hay and Fischman, 1961). Blastemal cells subsequently re-differentiate into 

mesodermal tissues but apparently do not contribute to the regenerating spinal cord. 

Epithelial cells (ependymoglia) of the ependymal lining that surrounds the central canal of 

the spinal cord re-form neural tissues of the regenerating spinal cord (Nordlander and 

Singer, 1978). The signals that initiate and maintain the proliferative response of 

ependymoglia are largely unknown, however recent studies implicate some of the same 

highly conserved genes that are known to regulate the proliferation and differentiation of 

neural stem cells among vertebrates including sonic hedgehog, FGFs, epidermal growth 

factor,  (O’Hara and Chernoff, 1994; Zhang et al. 2000, 2002; Schnapp et al. 2005). This 

suggests that some aspects of salamander spinal cord regeneration may be shared with 

organisms that have little or no potential for neural regeneration. Analyses of gene 
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expression in salamanders may point to key similarities and differences that are associated 

with regenerative ability.  

We designed a custom Affymetrix GeneChip and performed the first microarray 

analysis of spinal cord regeneration in the Mexican axolotl (Ambystoma mexicanum). We 

sampled regenerating spinal cord tissue at five early time points after amputation and 

identified differentially expressed genes and temporal patterns of gene expression. We 

compared our lists of significantly regulated genes to lists that have been similarly 

compiled from microarray studies of spinal cord injury in rat. Our results highlight genes 

and gene expression patterns that are associated with the salamander’s natural ability to 

regenerate spinal cord.   

 

Materials and Methods 

Animals, tissue collection, and RNA isolation 

 The handling and surgical manipulation of all salamanders was carried out 

according to the University of Kentucky Animal Care and Use guidelines (IACUC 

#00609L2003). The caudal 1/3 of the tail was amputated from 225 Mexican axolotl sibs 

(mean snout-vent length = 6.2 cm) from an inbred Voss laboratory strain. Spinal cord 

tissue was collected 1.0 mm rostral to the injury plane at the time of spinal cord 

transection (day 0), and also on 1, 3, 5, and 7 days post amputation. The tail blastema was 

removed prior to sampling however it is likely that some infiltrating blastemal cells were 

represented in the day 1-7 samples. Total RNA (mean = 1.7µg) was extracted from pools 

of nine tissues for each of five replicates that were collected at each time point. Probe 

labeling, hybridization, and scanning for the 25 RNA samples were performed by a single 

staff member of the University of Kentucky Microarray Core Facility.  

 

Development of a microarray platform  

A custom Ambystoma Affymetrix GeneChip was designed from curated expressed 

sequence tag (EST)s assemblies for A. mexicanum and A. t. tigrinum as described in Page 

et al. (2006). These ESTs are enriched for genes expressed in neural and regenerating 

tissues (Putta et al. 2004). Briefly, the array contains 4,844 total probe sets, 254 of which 

are controls or replicate probe sets. Of the remaining 4,590 probe sets, all but 188 
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correspond to unique A. mexicanum contigs, of which 2,960 are significantly identical in 

nucleotide composition (e-7; BLASTX) to a human sequence in the non-redundant, 

RefSeq protein database. Significant salamander-human blast hits were considered gene 

orthologs in our analyses and we assumed that salamander-human orthologs have similar 

gene functions or ontologies. Raw data files can be obtained at www.ambystoma.org.  

 

Quality Control and Low Level Analyses.  

We used the Bioconductor package affy (www.bioconductor.org) that is available 

for the statistical programming environment R (www.r-project.org) to perform quality 

control and preprocessing procedures at the individual probe level (Bolstad et al. 2005a). 

These procedures included: (1) generating matrices of M versus A plots for all replicate 

arrays, (2) investigating measures of central tendency, measures of dispersion, and the 

distributions of all 25 arrays via boxplots and histograms, (3) viewing images of the log2 

(intensity) values for each array to check for spatial artifacts, and (4) viewing an RNA 

degradation plot (Bolstad et al. 2005b) that allows for visualization of the 3’ RNA 

labeling bias across all arrays simultaneously. In addition, we used ArrayAssist Lite 

software (Stratagene, La Jolla, CA) and the MAS5.0 algorithm to assess several quality 

control measures that are recommended by Affymetrix (www.affymetrix.com) such as 

average background (mean = 61.5, range = 55-81.5), noise (mean = 4.23, range = 2.89-

6.94), and percent present (mean = 84.7% range = 81.2-87.0%). This high number of 

present probe sets likely reflects the biased selection of regeneration-associated genes and 

high quality contigs for probe set design. Next, the repeatability of probe set estimates of 

hybridization intensity was evaluated between arrays. We examined the correlation of 

hybridization intensities across all probe sets among the biological replicates for each 

regeneration time point (mean r = 0.994; range r = 0.983-0.998). These results 

demonstrate that we were able to obtain a high level of repeatability. We processed our 

data similarly to the methods of Choe et al. (2005) to determine a probe set intensity 

value. Briefly, our processing method consisted of using the MAS 5.0 background 

correction algorithm, the quantiles algorithm for probe-level normalization, the MAS 5.0 

algorithm for perfect match/mismatch correction, the median polish algorithm for 

expression summary generation, and a loess normalization at the probe set level using the 

www.ambystoma.org
www.bioconductor.org
www.r-project.org
www.affymetrix.com
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GoldenSpike package for R (Choe et al. 2005; www.ccr. buffalo.edu/ halfon/ spike/ 

index.html). 

 

Detection of differentially expressed genes and data filtration.  

 Microarray platforms may not accurately or precisely quantify genes with low 

intensity values (Choe et al. 2005; Draghici et al. 2006). Because low intensity genes 

contribute to the multiple testing problem that is inherent to all microarray studies, we 

filtered 1,203 probe sets whose mean intensity across all 25 arrays were smaller than or 

equal to the mean of the lowest quartiles across all arrays (mean = 6.44, SD = 0.09; data 

presented on a log2 scale). Probe sets (3641) were then tested for differential expression 

via a one-way fixed effect linear model (intensity = day sampled) using the Fs test of Cui 

et al. (2005) and J/MAANOVA software (www.jax.org/ staff/ churchill/ labsite/ 

software/anova/index.html). Initially, we adjusted for multiple testing by setting the false 

discovery rate (FDR) to 0.01 using the step-up algorithm of Benjamini and Hochberg 

(1995). As is shown in Figure 2.1a, upon performing this FDR correction, 2771 probe sets 

of the 3,641 probe sets tested (76.11%) were selected as differentially expressed. We then 

took a more conservative approach to our first pass at selecting differentially expressed 

genes by setting the family-wise error rate (FWER) to 0.01. Upon adjusting the FWER to 

0.01, 1,273 of the 3,641 genes tested (34.96%) were selected as differentially expressed 

(Figure 2.1b). In order to identify a smaller subset of probe sets, we prioritized probe sets 

that were selected as differentially expressed that exhibited: (1) a 2-fold change at any 

time point relative to day zero and (2) Fs values that were in the upper 50% of these 1,273 

genes (Fs > 28.36), leading to a total of 376 probe sets. The intensity values of three probe 

sets pairs designed for the same contigs as well as probe sets corresponding to the same 

human gene were combined, yielding a final short list of 360 unique genes (Table 2.1). 

 Candidate gene lists may differ when different preprocessing algorithms are used 

to identify statistically significant genes from oligonucleotide microarrays (Millenaar et 

al. 2006). To address this concern, we compared the 376 candidate probe set list above to 

a 646 probe set list that was generated using only the robust Robust-Multiarray Averaging 

algorithm (Irizarry et al. 2003), One-way ANOVA (FDR = 0.01), and a 2-fold change 

criterion. Only 11 of the 376 candidate probe sets (2.9%) were unique, indicating that our 

www.ccr.buffalo.edu/halfon/spike/index.html
www.jax.org/staff/churchill/labsite
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methodology for identifying candidate genes is largely concordant with other statistical 

approaches. 

 

Identification of gene expression patterns 

 We used the following criteria to define temporal gene expression patterns for the 

360 genes that met statistical and fold-level criteria. For each gene we assigned a score to 

qualify the mRNA abundance at each post-amputation sample time (d1, d3, d5, and d7). A 

gene received a score of non-significant (N) for each sample time that mRNA abundance 

was < 2 fold deviant of the d0 estimate. We refer to the d0 estimate as the baseline 

estimate of mRNA abundance. A gene received a score of up-regulated (U) or down-

regulated (D) for the first post-amputation sample time that mRNA abundance deviated by 

> 2 fold from baseline. For subsequent sample times, each gene received one of three 

possible scores: C, U, or D. A score of constant (C) was assigned if the fold level estimate 

was < 2 fold deviant of the previous U or D estimate (C was never assigned after N), and 

> 2-fold deviant from baseline. A score of U or D was assigned if mRNA abundance 

deviated again by > 2 fold. Using this scoring system, a gene received a score of U, D, or 

N for d1, and U, D, N, or C for d3, 5, and 7. A complete breakdown of the 360 changed 

genes is shown in Table 2.2. To annotate genes, we used multiple databases (GO, KEGG, 

IHOP, OMIM, etc.) and searched the literature for information about the expression and 

functions of each gene that we identified as significant in our study. We biased our 

annotations to emphasize possible gene functions that have been described in regeneration 

and spinal cord injury research fields.  

 

Identification of genes expressed differently between salamander regeneration and rat 

spinal cord injury 

 A bioinformatics approach was used to identify gene orthologs that are expressed 

similarly or differently after salamander tail amputation versus rat spinal cord injury. We 

used current (May 2006) human Entrez Gene ID’s that were assigned to each annotated 

probe set on the Ambystoma GeneChip to identify all presumptive salamander orthologs 

on RatU34A, B, and C GeneChips. To accomplish this cross-referencing task, we used 

Resourcerer (Tsai et al. 2001), a database that allows orthologous genes to be identified 
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among species-specific microarray resources. This yielded a list of 1,036 probe sets 

between the Ambystoma and RatU34 GeneChips that presumably correspond to 662 

unique, orthologous genes. We compared the expression pattern of each of these genes 

using results from this study and published studies that profiled gene expression after SCI 

in rat, using RatU34 GeneChips (Song et al. 2001; Carmel et al. 2001; Aimone et al. 

2004; De Biase et al. 2005). De Biase et al. (2005) provide a table that compares specific 

details of these rat SCI microarray studies. The rat studies used thoracic T8-10 contusion 

models (MASCIS, OSU, and weight drop methods) and tissues were sampled at and 

flanking the impact site during the first 48 hours post-injury; Aimone et al. (2004) also 

sampled 7 and 35 days after injury. For each gene, we qualified gene expression as either 

significantly up, significantly down, or non-significant. We used statistical and fold-level 

criteria (FWER < 0.01; > 2-fold change) to score salamander genes for these criteria. If a 

gene was reported as significantly regulated in the rat studies, we recorded it as such; 

otherwise we recorded it as non-significant.  

 

Quantitative Real-Time PCR (QRT-PCR) 

 Ten genes from the microarray experiment were selected for validation by QRT-

PCR. Genes were selected based on technical and biological rationale.  Technically, we 

wanted to validate genes that yielded a broad range of relative fold change estimates by 

microarray analysis and included both possible directions of differential expression. These 

genes also exhibited a range of hybridization intensity values; for example, the average 

intensity value of hairy enhancer of split 1 ranked among the bottom 37% of all probe sets 

while galectin 1 (lgals1) ranked among the top 95%. Biologically, we selected genes that 

are of interest in regenerative biology and spinal cord injury research fields. A BioRad 

iScript cDNA synthesis kit (Hercules, CA) was used to synthesize cDNA templates from 

three d0 and d3 RNA samples from microarray analysis. Primers were designed with 

Primer3 (Rozen and Skaletsky, 2000) and used to amplify DNA fragments from the same 

gene regions that were used to design corresponding GeneChip probe sets (Table 2.3). 

Reactions included cDNA that was synthesized from 10ng total RNA, 300nM primers, 

and iQ SYBR-Green real-time PCR mix and run on a BioRad I Cycler QRT-PCR system 

(BioRad). The three replicates were normalized against a gene that showed no significant 
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gene expression change in the microarray experiment (glyceraldehyde-3-phosphate 

dehydrogenase, MC01187). PCR efficiencies for each primer were incorporated into the 

relative fold change calculations according to Pfaffl (2001). Student’s t-tests were 

performed using the three normalized biological replicates for d0 and d3 samples. 

 

In situ hybridization (ISH) 

 Digoxygenin (DIG)-labeled RNA probe production and ISH were performed as 

described by Hirota et al. (1992) with minor modifications. RNA probes were synthesized 

by in vitro transcription using 300-350 base pair PCR products as template and included 

SP6 or T3 RNA polymerase promoters appended to the 5’ ends (Table 2.3). PCR products 

were cleaned using Qiagen PCR purification columns before performing in vitro 

transcription. Axolotl tissues were collected three days after tail amputation and fixed at 

4ºC in 1x PBS, 4% paraformaldehyde overnight. Bone was decalcified by incubating the 

tissue in 500 mM EDTA (pH8.0), 1xPBS for at least two days, cryoprotected overnight in 

30% sucrose, and sectioned to 16µm using a Microm 500HM cryostat. Hybridization, 

washing, and colorimetric detection with NBT/BCIP were performed on a Tecan Genesis 

Workstation 200 liquid handling robot with a Genepaint® hybridization station (Zurich, 

Switzerland). Microscopy was performed using an Olympus IX81 microscope and images 

were acquired with an Olympus DP70 camera.  

 

Results 

Histology of the spinal cord during the first week after tail amputation  

 We performed histology on tails collected at day 1, day 3, day 5, and day 7 to relate 

our experiment to previous morphological descriptions of urodele spinal cord and tail 

regeneration (Piatt, 1955; Stensaas, 1983; Iten and Bryant, 1976). Upon amputation of the 

salamander tail, the spinal cord regresses approximately 0.5 mm rostral to the amputation 

plane and a clot, including a large number of leukocytes, forms at the wound site (Figure 

2.2A; Iten and Bryant, 1976; Jones et al., 1993). By day 7, the clot is replaced by a 

mesenchymous cell-mass called the blastema and the blastema forms while there is 

extensive extracellular matrix remodeling and bone degeneration (arrows, Figure 2.2A, C, 

E, G). Also throughout the first week, cell death occurs rostral to the injury plane and cell 
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proliferation of inflammatory cells is apparent, but little cell division is observed among 

ependymal cells (Figure 2.2B; Zhang et al., 2003; Stensaas, 1983). By day 3, rostral axons 

begin to degenerate and ependymal cells migrate to close off the lumen of the spinal cord, 

thus creating a terminal bulb (Figure 2.2B, C, D, E; Egar and Singer, 1972; data not 

shown). Ependyma become highly proliferative by day 7, increasing ependymal tube 

thickness and extending the tube along the length of the regenerating tail (Zhang et al., 

2000). Following the first week of regeneration, ependymal cells differentiate into new 

CNS neurons and peripheral ganglia, reconnecting the spinal cord to the body periphery 

and recovering function (Koussoulakos et al., 1999).  

 

Identification of differentially expressed genes and gene expression patterns 

 We identified 360 probe sets as detecting significantly different mRNA 

abundances between d0 and another time point (d1-7), using statistical and fold change 

thresholds (ANOVA p < 0.01; FWER of 0.01; Fs > 28.36; > 2-fold). More than half of 

these probe sets (n = 210) correspond to salamander sequences (genes) that show high 

sequence identify to a presumptive human protein-coding locus; the remainder correspond 

to anonymous EST contigs that do not align to human genes. In comparison to d0 

(baseline) mRNA levels, most genes exhibited significantly different mRNA abundances 

at two or more post-amputation time points. This temporal variability did not yield an 

extensive list of gene expression patterns. Although a total of 100 different gene 

expression patterns were possible under our scoring system, only 32 different patterns 

were observed and over 85% of all genes were classified into ten categories (Table 2.1; 

Table 2.2). Eight of the top ten categories identified groups of genes in which mRNA 

abundance increased or decreased at a particular time point, and afterward the level 

remained constant through d7. Transcript levels for a few genes did increase or decrease 

by > 2 fold among post-amputation time points, however only three genes yielded a 

temporal expression profile that deviated significantly from baseline in both up- and 

down-regulated directions during the seven day period (UNND; Table 2.1). Thus, the 

majority of the gene expression profiles that we examined consisted of a single, 

significant deviation from base line levels followed by relatively constant mRNA 

abundance. It is likely that many of the uniquely expressed genes at d7 are regulated at 
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later time points because only 43 of the 360 genes exhibited transcript levels at d7 that 

approximated baseline. Clearly, we only sampled the initial phases of a continuous gene 

expression program that extends beyond d7. However, our experiment does precisely 

sample discrete phases of gene expression variability during this temporal process. For 

example, Figure 2.3 illustrates that gene expression profiles of samples collected at d1 are 

much more similar to each other than samples collected at d0, as well as d3, 5, and 7. 

Below, we describe major gene expression patterns in greater detail. We also highlight 

some of the genes and gene functions that were found in each of the major gene 

expression categories. Finally, we compare the expression of salamander genes to 

presumptive rat orthologs that have been examined in microarray studies of spinal cord 

injury. 

 

Gene expression patterns 

 Overall, a greater number of genes were up-regulated above baseline during the 7-

day period (n = 238 compared to n = 125). The majority (n = 134) were significantly up-

regulated at the first sample time after amputation (d1) and half of these genes (UCCC: n 

= 64) registered constant mRNA abundances above baseline at all subsequent post-

amputation sample times (d3, d5, and d7). A substantial number of the d1 up-regulated 

genes showed decreasing mRNA abundances at later sample points. Some of these genes 

yielded mRNA abundances at d3 (UNNN: n = 20), d5 (UCNN: n = 5) or d7 (UCCN, 

UDNN: n = 5) that approximated d0 levels, while others remained above baseline 

(UDCC, UCDC, UNNU, UDDC: n = 22). The early group of up-regulated genes suggests 

that a diversity of regulatory pathways and biological processes are activated within the 

first 24 hours after tail amputation. In addition to genes that presumably function in 

wounding, stress, inflammation, and immunity, this group includes genes that function in 

tissue remodeling, apoptosis, ion transport, cell-cell interactions, cell migration, vitamin B 

economy, lipid metabolism, and cytoskeleton dynamics (Table 2.1). Several different 

regulatory networks are implicated directly or indirectly among these d1 up-regulated 

responses, including MAPK, WNT, v-MYC, TNF, v-YES, RAS, and TGF-beta.    

Other groups of genes were up-regulated for the first time at d3, 5, and 7 (n = 104). 

The majority of the d3 and d5 genes maintained high, constant mRNA levels at 
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subsequent time points (NUCC: n = 24, NNUC: n = 44). Gene functions that were 

observed among d1 up-regulated genes were also represented among d3-7 up-regulated 

genes. However, the distribution of genes among these functional categories was very 

different. In particular, fewer injury response genes and a greater number of extracellular 

matrix (ECM) and cytoskeleton-associated genes were observed compared to d1 up-

regulated genes. Also, a greater number of cell cycle related genes were observed (e.g. 

NNUC, cell cycle = 14) as well as genes that presumably function in DNA replication, 

metabolism, chromatin assembly, and cytokinesis. These results suggest that the 

regeneration gene expression program transitions during the first seven days from an 

injury responsive phase to one that is defined primarily by the up-regulation of genes that 

function in cell division. Throughout both injury response and cell proliferation phases, 

genes that function in tissue remodeling are significantly regulated. 

Relative to the total number of up-regulated genes, a much smaller number of 

genes (n = 125) were down-regulated significantly below baseline levels during 

regeneration. In contrast to the up-regulated gene set, very few of these genes were down-

regulated at d1 (DCCC, DCNN, DNNN, DCDC = 12). Also, the magnitude of the fold-

level changes was generally lower than those measured for significantly up-regulated 

genes (mean of maximum up-regulated fold changes = 6.61; down-regulated = -3.07). The 

largest number of down-regulated genes was observed at d3 (n = 45) and this was 

followed by additional groups of down-regulated genes at d5 (n = 29) and d7 (n = 35). In 

general, many genes with neural related functions were down-regulated, including those 

that function in ion transport, glutamate metabolism, glutamate binding, neuroprotection, 

neurotransmission, neurogenesis, and lipid metabolism. Several functional categories that 

were observed among up-regulated genes were also observed among down-regulated 

genes, including apoptosis, cytoskeleton, ECM, signal transduction, and heat shock (Table 

2.1). The overall pattern indicates that fewer genes are down-regulated during the first 

seven days of regeneration, and down-regulated genes show significantly lower mRNA 

abundances at d3, after the early up-regulation of genes at d1. 

Some gene expression patterns were more complicated than linear, directional 

responses, involving changes in mRNA abundance that fluctuated both above and below 

the baseline. Some of these genes with complex expression patterns (UDCC, UCDC, 
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NUCN, UDDC, NDCD, UUCD) may function in the regulation of biological processes 

during regeneration. These include genes that function in ECM remodeling (matrix 

metalloproteinase [mmp] 1, mmp13, tissue inhibitor of metalloproteinase 1 [timp1]), 

coagulation (tissue factor pathway inhibitor 2), vitamin B transport (intrinsic factor, 

transcobalamin 1), cell proliferation (v-Ha-ras viral oncogene, hypothetical protein 

FLJ20303), transcriptional regulation (jun-b proto-oncogene), and cell signaling (latent 

TGF beta binding protein; chromosome 8 orf 4; secreted frizzled-related protein 2 

[sfrp2]).  

 

Gene expression after spinal cord injury: salamander verses rat 

 To identify similarities and differences between the salamander and mammalian 

spinal cord injury response, we compared our gene expression results to published results 

from the rat spinal cord microarray literature. Specifically, we compared the expression of 

662 presumptive rat–salamander orthologous genes that are represented on both the 

Ambystoma and rat Affymetrix GeneChips. The resulting list of gene orthologs represents 

an unbiased sampling of ~24,000 transcripts on the rat arrays and 4,590 transcripts on the 

salamander array. Although the majority of gene orthologs were not significantly 

regulated (n = 553), we identified many similar and dissimilar gene expression responses 

between these organisms. Eleven genes are up-regulated in both species, with no common 

genes down-regulated. There were 46 and 41 uniquely up-regulated genes in the 

salamander and rat, respectively. Overall, the majority of dissimilarities between the rat 

and salamander injury response were changes in one animal and not the other (n = 126) 

rather than opposite gene expression changes between animals (n = 2; Table 2.5). 

 

Quantitative Real-time QRT-PCR 

 Using QRT-PCR, we estimated fold change between d0 and d3 for ten genes from 

the microarray experiment (Table 2.4). All of the transcripts that met statistical and fold 

level criteria from the microarray analysis registered significant differences in mRNA 

abundance by QRT-PCR (6/10). Overall, we were able to verify nine of the ten gene 

changes in the correct direction with close agreement in most cases. We only failed to 

replicate the microarray estimate for sox3, which was not significant by QRT-PCR and 
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registered such a low fold change that it was excluded from the short list of microarray 

gene candidates. Thus, for all genes that met our stringent statistical and fold level criteria, 

and three genes that did not, QRT-PCR validated microarray estimates of gene expression 

with very good precision.  

 

Spatial analysis of mRNAs using in situ hybridization 

 Ten genes that were significantly regulated during spinal cord regeneration were 

examined further by ISH. We probed tissues that were collected three days after tail 

amputation to localize expression among cell types that were within 1 mm from the end of 

the regenerating spinal cord. Figure 2.4 illustrates the diverse patterns of spatial 

expression observed with hybridization found in cells resembling ependymoglia, neurons, 

and immune cells. All genes but fibroblast growth factor binding protein used for in situ 

hybridization were up-regulated after injury. Assuming that these genes are not expressed 

in uninjured tissue, these results show that the general increase in mRNA abundance as 

determined from microarray analysis can be replicated and localized to specific cell 

populations and tissues of the spinal cord using ISH. 

 

Discussion 

 We built a custom Affymetrix GeneChip and profiled gene expression during the 

early phases of natural spinal cord regeneration in a salamander model (Ambystoma 

mexicanum). Our results show that regeneration involves significant changes in mRNA 

abundance for many genes that are represented on the array. The overall list of 1,273 

genes that met a very stringent statistical criterion is available as a new resource for 

regeneration and spinal cord injury research fields (www.ambystoma.org). The large 

number of genes on this list, which were identified using a custom microarray with 

enriched gene content, shows that thousands of genes are significantly regulated during 

the first few days of natural spinal cord regeneration. We used additional statistical and 

fold change criteria to sample a smaller sub-group of candidate genes to describe gene 

expression patterns and biological functions. The presumptive functions of this smaller list 

of genes suggest the operation of many biological processes that change temporally during 

spinal cord regeneration. Below we discuss up- and down-regulated genes and gene 
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functions that may be important in the regenerative response. In particular, we compare 

our gene expression results to several studies that have examined rat spinal cord injuries 

using microarrays.  

 

Up-regulated gene responses  

 Similar gene expression changes are often observed after tissue injury, regardless 

of the type of injury or specific tissue type examined. With respect to CNS tissue injury in 

mammals, an early acute phase is characterized in part by the expression of transcription 

factors and immune response genes. Our study identified several genes that change by d1 

in salamander spinal cord that are also expressed during the mammalian CNS acute injury 

response (Vazquez-Chona et al. 2005; Bareyre and Schwab, 2003). These include jun-B 

proto-oncogene, interferon regulatory factor 1, heme oxygenase 1, and apolipoprotein E 

(apoE). Overall, many of our d1 and d3 up-regulated genes encode proteins that 

participate in immune response functions, including lymphocyte, platelet and monocyte 

activation, macrophage differentiation and migration, cell adhesion, thrombosis, 

coagulation, inflammation, oxidative and metabolic stress, and apoptosis. In addition to 

immune response genes, we also observed up-regulation of genes that function in 

transport and binding of vitamin B and lipids, and ECM remodeling. While processes like 

vitamin B homeostasis have received little attention in regeneration and injury fields 

(Bauer, 1998), lipid turnover and MMP activity is well documented to be associated with 

regeneration (Vance et al. 2000; Vinarsky et al. 2005). In A. mexicanum, MMP1, MMP2, 

and MMP9 activity is associated with proliferating ependymal cells after 2-3 weeks of 

regeneration (Chernoff, 2000). Our study shows that mmps 1, 3, 9, 13, 27, and timp1 are 

all highly up-regulated by 24 hours after injury, which is the first association of mmps 13 

and 27 with regeneration in urodeles. MMPs are also up-regulated in rodents after SCI and 

high levels appears to contribute to secondary injury (Noble, et al., 2002; Wells et al., 

2003). Although application of MMP inhibitors may increase functional recovery after 

SCI, our results emphasize the beneficial effects of MMPs and the need to quantify the 

timing and amount of their delivery; clearly, MMP up-regulation and high MMP transcript 

levels after spinal cord amputation are characteristic of natural regeneration in A. 

mexicanum. In general, our results show a robust and diverse gene expression response is 
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activated during the acute phase of natural spinal cord regeneration, and this response 

includes genes whose functions are thought deleterious to recovery after SCI in mammals. 

The majority of the early-activated genes were up-regulated throughout the first 

seven days, extending into a subsequent phase of cell cycle-related gene expression at d5. 

The accumulation of mRNAs that increase during the first seven days of regeneration 

suggests a temporal change toward biological processes that are associated with cell 

division. Many genes up-regulated at d5 (NNUC) are associated with mitotic cell cycle 

regulation including four genes involved in the G2/M transition and six associated with 

mitosis (Table 2.1). These gene expression changes maybe associated with the early 

proliferation of blastemal and ependymal cell populations, which are known to expand 

after the first week of regeneration (Lo et al. 1993; Zhang et al. 2003). Cell cycle-related 

genes are also up-regulated early after rat spinal cord injury, but the functions of these 

genes are associated primarily with S-phase and DNA repair and expressed in damaged or 

apoptotic neurons, not proliferating cells (Di Giovanni et al. 2003). Thus, within a few 

days after spinal cord injury, cell-cycle gene expression is biased towards cell death 

pathways in mammals but cell survival and proliferation pathways in salamanders. This 

observation could explain the cell proliferation of neural progenitors in the salamander, 

which is likely necessary for the spinal cord to regenerate. 

 

Down-regulated gene responses 

 In comparison to up-regulated genes, there were fewer down-regulated genes and 

most showed gradual changes over time. Multiple genes were down-regulated whose 

products are associated with neural functions, including axon guidance, ion transport, 

glutamate metabolism, neuroprotection, and neurotransmitter signaling. Changes in 

neural-related gene expression patterns may reflect the damage or loss of neural cell types 

verses the survival, infiltration, and proliferation of other cell types. This explanation has 

been advanced to explain the down-regulation of genes after mammalian spinal cord 

injury, where there can be extensive tissue damage and cell loss (Profyris et al. 2004). 

Indeed, even in the regenerating salamander, there is local spinal cord tissue loss after 

injury (Figure 2.2B; Zhang et al. 2003; Stensaas, 1983). Thus, in both mammals and 

salamanders, many of the down-regulated gene expression patterns may reflect the 
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stochastic nature of cell survival at the injury site. However, we did observe significant 

down-regulation of several genes that are associated with glutamate metabolism and 

transport, that are up-regulated after CNS injury in mammals. This suggests the possibility 

that some genes are actively and uniquely repressed during salamander regeneration. It is 

also possible that the down-regulation of these genes is associated with the switch from 

neuronal signaling to neuronal axon outgrowth.  

 

Identification of genes expressed differently between salamander regeneration and 

rat spinal cord injury 

 We compared genes that changed during early salamander spinal cord regeneration 

to gene lists that were compiled from microarray studies of spinal cord injury in rats. We 

acknowledge that this comparison is potentially confounded by several sources of 

variation including experimental, technical, statistical, tissue, and organismal differences. 

However, as we described above, some of the same genes that are expressed early after 

mammalian CNS injury are also up-regulated during spinal cord regeneration in 

salamander. If similar gene expression programs underlie homologous tissues, then 

comparisons of homologous tissues among distantly related organisms may filter 

conserved gene expression responses and help identify uniquely regulated genes. Some of 

the uniquely regulated genes from salamander are associated with regeneration in other 

organisms and tissues including amphibian limb regeneration (cytokeratin 18 [ck18], 

Corcoran and Ferretti, 1997; msx1, Beck et al. 2003; msx2, Carlson et al. 1998; and 

mmp9, Yang et al. 1999), fish tailfin regeneration (ck18 and periostin, Padhi et al. 2004), 

and annelid epimorphic regeneration (phosphoribosylaminoimidazole carboxylase, 

Myohara et al. 2006). Several other up-regulated genes are associated with mammalian 

liver regeneration, including follistatin ( fst; Borgnon et al. 2005), cystathionase 

(Teshigawara et al. 1995), laminin alpha 1 (Kikkawa et al. 2005), transglutaminase 1 

(Ohtake et al. 2006), and uncoupling protein 2 (Horimoto et al. 2004). Furthermore, eight 

cell cycle genes, a necessary process for true tissue regeneration, are present within this 

unique salamander gene list including cell division cycle 2, kinesin family member 11, and 

mitotic arrest deficient-like 1. Up-regulation of the same gene orthologs across multiple 

regeneration paradigms suggests that regeneration is definable across taxa and tissues by 
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distinct gene expression patterns. Further studies are needed to determine if a conserved 

group of genes function in molecular pathways that are required for regeneration.  

 

Molecules that regulate morphogenic signaling 

 Morphogenic molecules such as sonic hedgehog (SHH), bone morphogenic 

proteins (BMPs), WNT factors, and fibroblast growth factors (FGFs) have been associated 

with regeneration because they establish positional identity, control cell proliferation, and 

regulate cell fate during development (Vergara et al. 2005; Whitehead et al. 2005; 

Schnapp et al. 2005; Niemann, 2006). In this study, we identified changed genes that code 

for extracellular molecules that participate in BMP, WNT, and FGF signaling. Fst, a 

protein that regulates dorsal-ventral patterning of the developing vertebrate CNS through 

BMP inhibition, is up-regulated during the first week of regeneration (Table 2.4; NUCC; 

Lee and Jessel, 1999). mRNAs for sfrp2, a secreted WNT antagonist that blocks ligand 

binding to frizzled receptors (Kawano and Kypta, 2003), is also highly up-regulated 

(Table 2.4; UUCD; Figure 2.4G-H). Furthermore, wnt5A demonstrates a 3.86 fold 

increase in expression (UCCC), suggesting a network of pro- and negative WNT signaling 

during regeneration. Lastly, fibroblast growth factor binding protein 1, a secreted 

molecule that sequesters FGF ligands from the ECM (Tassi et al. 2001) is down-regulated 

6.42 fold at 24 hours (DCCC; Figure 2.4S-T). These large gene expression changes 

suggest that BMP, WNT, and FGF signaling pathways are all altered during early spinal 

cord regeneration. Further studies with each of these molecules and their corresponding 

binding substrates will be needed in order to assess their possible roles during 

regeneration.  

 

Conclusion 

 The salamander’s unique ability to regenerate complex body parts has long been 

recognized as an important model in developmental biology, however salamanders have 

received relatively little attention from researchers of mammalian spinal cord injury. Our 

study shows that genomic and bioinformatics resources are now available to associate 

gene expression changes with cellular and molecular aspects of natural spinal cord 
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regeneration. The emerging salamander perspective on regeneration promises to extend 

existing research paradigms and may suggest novel therapies for CNS injury in humans. 
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Symbol Function  Symbol Function 
UCCC = 64 Unk; n = 30  KIF11 cell cycle; M 
MYO1B actin binding  CCNB3 cell cycle; G2/M 
TAGLN actin binding  PLK1 cell cycle 
ADFP lipid metabolism  RFC2 cell cycle; S 
TNFAIP8 anti-apoptotic  PCNA cell cycle; S 
ETHE1 anti-apoptotic  MCM7 cell cycle; S 
LGALS1 apoptosis  STK6 cell cycle; M 
GADD45G apoptosis  CCNA2 cell cycle 
GADD45B apoptosis  CDC2 cell cycle 
EFHD2 calcium binding  CHEK1 cell cycle 
AGC1 unknown  MAD2L1 cell cycle; M 
MYC cell cycle  CDC20 cell cycle; M 
CTSL cysteine protease  AURKB cell cycle; M 
CTSK cysteine protease  CDCA8 cell cycle; M 
TUBB6 cytoskeleton  KRT18 cytoskeleton 
FBP1 glycolysis  CALD1 cytoskeleton 
B3GNT5 glycosylation  FEN1 DNA metabolism 
TGFB1 growth factor  SLBP mRNA processing 
TYROBP immune response  CKAP4 inflammation 
SLC11A1 immune response  KPNA2 intracellular transport 
MPEG1 immune response  VRK1 Kinase 
CXCR4 immune response  COL12A1 ECM component 
LGALS3BP immune response  UCP2 neuroprotection 
CYBB immune response  CTSK Protease 
ANKRD1 injury response  OLFML2B signal transduction 
FTH1 iron homeostasis  CNIH4 Unknown 
ATP6V0D1 proton transport  CCDC82 Unknown 
C1ORF33 ribosomal  RPL38 ribosomal 
MAP2K3 signal transduction  NDCC = 42 Unk; n = 22 
MMP9 tissue remodeling  KRT7 cytoskeleton  
MMP1 tissue remodeling  KIF21A cytoskeleton  
LYN tyrosine kinase  SLC1A2 glutamate transport 
TMEM49 unknown  SLC1A3 glutamate transport 
FLJ2262 unknown  HSPA8 heat shock 
WNT5A WNT signaling  TTR hormone transport 
NNUC = 44 Unk; n = 14  SLC12A2 ion transport 
GLRX antioxidant  KCTD3 ion transport 
LGALS3 carb. binding  FDPS lipid metabolism 
Table 2.1 continued to right   Table 2.1 continued on next page 
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Table 2.1 continued 
Symbol Function  Symbol Function 

FAAH lipid metabolism  NASP histone transport 
COL8A1 ECM component  COL2A1 ECM component 
FBN2 ECM component  LAMA1 ECM component 
GSTM4 metabolism  DAG1 ECM component 
GRM3 neurotransmission  P2RY2 neuronal diff. 
PADI3 protein metabolism  NUP107 nuclear transport 
APCDD1 signal transduction  ANP32E phosphotase inhib. 
TJP1 signal transduction  PAICS purine metabolism 
APC signal transduction  CTPS pyrimidine bio. 
MAPRE3 structural protein  SSB mRNA processing 
CRYAB structural protein  EXOSC2 rRNA processing 
NNND = 35 Unk; n = 17  RANBP1 signal transduction 
PDCD4 apoptosis  TPRT ubiquinone bio. 
APP apoptosis  C6ORF115 unknown 
CCNI cell cycle  CCDC58 unknown 
SPTAN1 cytoskeleton  NNDC = 27 Unk; n = 8 
SPTBN1 cytoskeleton  CDKN1C negative cell prolif. 
PYGM glycogen metabolism  MLF1 cell differentiation 
FABP7 lipid metabolism  KRT6L cytoskeleton  
CHPT1 lipid metabolism  ABLIM1 cytoskeleton  

SLC25A4 
mitochondrial 
transport  GLUD1 

glutamate 
catabolism 

GPM6B neurogenesis  ATP1B3 ion transport 
AHNAK neurogenesis  FXYD3 ion transport 
GSTM1 neuroprotection  PRKAG2 lipid metabolism 
GSTP1 neuroprotection  COX4I2 metabolism 
GABARAPL2 neurotransmission  BHMT metabolism 
PBP protease inhibitor  PCBD metabolism 
CALCA signal transduction  CKMT1A metabolism 
TRAPPC6B transport  SERPINI1 neurogenesis 
C11ORF74 unknown  ABAT neurotransmission 
NNNU = 28 Unk; n = 7  TM4SF2 protein bio. 
KIFC1 cell cycle; M  GNB5 signal transduction 
CHC1 cell cycle; G2/M  POLR2L transcription 
RPA2 cell cycle  C6ORF110 unknown 
MCM6 cell cycle; S  FAM79A unknown 
CTH cysteine synthesis  NUCC = 24 Unk; n = 6 
CALD1 cytoskeleton   TAGLN actin binding 
Table 2.1continued on right   Table 2.1 continued on next page 
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Table 2.1 continued 
Symbol Function  Symbol Function 

ASAH1 apoptosis  PUS1 tRNA processing 
UHRF1 cell cycle; S  FLJ36031 unknown 
CDK4 cell cycle; G1/S  TGM1 injury response 
KIAA0101 cell cycle; S  IFIH1 immune response 
PPGB cellular transport  UUCC = 12 Unk; n = 8 
LGMN cysteine protease  F13A1 wound healing 
CSTB protease inhibitor  MARCO immune response 
RRM2 DNA metabolism  FABP2 lipid metabolism 
ANXA1 inflammation  GPNMB negative cell prol. 
THBS2 ECM component  UDCC = 10 Unk; n = 6 
GLB1 metabolism  TFPI2 coagulation 
ATP6V0E proton transport  MMP1 tissue remodeling 
RPL31 ribosomal  GIF vitamin B transport 
APOE lipid metabolism  C8ORF4 WNT signaling 
METTL2 ubiquinone biosynthesis  UCDC = 8 Unk; n = 3 
CCDC43 unknown  HMOX1 heat shock 
ANGPTL2 growth factor  MMP13 tissue remodeling 
UNNN = 20 Unk; n = 7  MMP1 tissue remodeling 
BYSL cell adhesion  TIMP1 tissue remodeling 
GLN3 cell cycle; G1/S  JUNB transcription 
DUSP1 heat shock  DCCC = 6 Unk; n = 5 
IRF1 immune response  CYP2A13 metabolism 
HSPA5 injury response  UCCN = 4   
SLC30A1 ion transport  LTB4DH antioxidant 
AGXT2L1 metabolism  TXNDC2 antioxidant 
DKC1 ribosomal  TXN antioxidant 
RPS6KA1 signal transduction  BTBD3 protein binding 
UNNN = 20 Unk; n = 7  DCNN = 4 Unk; n = 2 
BYSL cell adhesion  RGMA axon guidance 
GLN3 cell cycle; G1/S  FHL1 protein binding 
DUSP1 heat shock  UCNN = 5 
IRF1 immune response  CES1 neuroprotection 
HSPA5 injury response  USP2 protein breakdown 
SLC30A1 ion transport  RAP2B signal transduction 
AGXT2L1 metabolism  SAT polyamine homeostasis 
DKC1 ribosomal  CD63 signal transduction 
RPS6KA1 signal transduction  UNNU = 3 Unk; n = 2 
Table 2.1 continued on right  Table 2.1 continued on next page 
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Table 2.1 continued 
Symbol Function 

NOL5A ribosomal 
NUCN = 3   
HRAS cell proliferation 
NSUN2 cell proliferation 
LTBP1 TGF-beta signaling 
UNND = 3 Unk; n = 3 
NNUU = 2   
COL11A1 ECM component 
POSTN skeletal development 
NUNN = 2 Unk; n = 2 
UNUC = 2 Unk = 2 
UDDC = 1   
TCN1 vitamin B transport 
NDCD = 1   
AGR2 cell survival 
NUCU = 1   
FLJ1472 unknown 
UUCD = 1   
SFRP2 WNT signaling 
UDNN = 1   
IL8RB immune response 
DCDC = 1   
KRT5 cytoskeleton 
NDCC; DNNN; NDCN 
NDNN; NNDD; NNDN 
Unk; n = 1   

 

Table 2.1. Gene symbols and functions for 360 changed salamander genes during the first 

week of spinal cord regeneration. Each column contains highlighted categories that 

describe gene expression patterns on day 1, day 3, day 5, and day 7 compared to basal 

gene expression (d0). Gene symbols are found under each category. 
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Table 2.2. Distribution of gene expression patterns for 360 significantly regulated 
salamander genes during spinal cord regeneration. 
 

Pattern  N Description 
UCCC 64 up D1, above baseline D1-7 
NNUC 44 baseline D1-3, up D5, above baseline D5-7 
NDCC 42 baseline D1, down D3, below baseline D3-7 
NNND 35 baseline D1-5, down D7 
NNNU 28 baseline D1-5, up D7 
NNDC 27 baseline D1-D3, down D5, below baseline D5-7 
NUCC 24 baseline D1, up D3, above baseline D3-7 
UNNN 20 up D1, baseline D3-D7  
UUCC 12 up D1 and D3, above baseline D1-7 
UDCC 11 up D1, down D3, above baseline D1-7  
UCDC 8 up D1, down D3, above baseline D1-7  
DCCC 6 down D1, below baseline to D1-7 
UCNN 5 up D1, above baseline D1-3, baseline D5-7 
UCCN 4 up D1, above baseline D1-5, baseline D7  
DCNN 4 down D1, below baseline D1-3, baseline D5-D7 
UNND 3 up D1, baseline D3-D5, below baseline D7  
UNNU 3 up D1 and D7, baseline D3-D5 
NUCN 3 baseline D1, up D3, above baseline D5, baseline D7 
NUNN 2 baseline D1, up D3, baseline D5-7 
NNUU 2 baseline D1-D3, up D5 and D7 
UNUC 2 up D1 and D5, baseline D3, above baseline D5-7 
DNNN 1 down D1, baseline D3-D7 
NDCD 1 baseline D1, down D3 and D5, below baseline D3-7 
NNDN 1 baseline D1-D3, down D5, baseline D7 
NNDD 1 baseline D1-D3, down D5 and D7 
NDNN 1 baseline D1, down D3, baseline D5-7 
NDCN 1 baseline D1, down D3, below baseline D5, baseline D7 
UUCD 1 up D1 and D3, down D7, above baseline D1-7 
UDNN 1 up D1, down D3, above baseline D1-3, baseline D5-7 
UDDC 1 up D1, down D3 and D5, above baseline D7 
NUCU 1 baseline D1, up D3 and D7, above baseline D3-7 
DCDC 1 down D1 and D5, below baseline D1-7               
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Table 2.3. Primer sequences for QRT-PCR and in situ hybridization analysis. Forward 

ISH primers were appended with an SP6 RNA polymerase promoter and reverse primers 

with a T3 promoter at the 5’ end (MC02287 and MC01277 are opposite). Promoter 

equences are SP6: 5’-ATT TAG GTG ACA CTA TAG AAG AG-3’ and T3: 5’-AAT 

TAA CCC TCA CTA AAG GGA GA-3’. 

Sal ID Forward Primer Reverse Primer 
MC03237 5’-GGCAAACTGCCTCTCCTT-3’ 5’-CCTGTGGTTTTCCCATGA-3’ 
MC00341 5’-TTTCTGGACAGCCACTGC-3’ 5’-TTTCTGGACAGCCACTGC-3’ 
MC01765 5’-CCTGATGGGGATCATCG-3’ 5’-GTGCAGCCGGTACTTGTC-3’ 
MC03278 5’-TGCATCAAAGCCAAGTCC-3’ 5’-CCTCGGTTCACCTTGAAA-3’ 
MC01583 5’-ATCCCGGAGAACAAGAGC-3’ 5’-CATCCTTGAGCCAGAGCA-3’ 
MC02459 5’-CAACGAGTGCATGAACGA-3’ 5’-GCCAGACAGGTGGCCTA-3’ 
MC01067 5’-TGAGACCAATGCCTTTGC-3’ 5’- GAGCCCCAGAAGCAGAGT-3’ 
MC01275 5’-GAGGCCAGAAAACCCAGA-3’ 5’-CCGGTTTGGAAATTTCATC-3’ 
MC01620 5’-TGGCCTGACCAGTAACGA-3’ 5’-AAGTCCCATTCAGCACCA-3’ 
MC02501 5’-TCCATCCATGTCCTCTGC-3’ 5’-CTGTTTGCGATTGCATGA-3’ 
MC01187 5’-CCAGGCGGCAGGTCAAGTCAAC-3’ 5’-GTCGGCAAGGTCATCCCAGAGC-3’ 
   

in situ hybridization primers 
MC02287 5’-GCGCACGATGTCTTTCTGTA-3’ 5’-GCGGTGGTACTCCAACTCAT-3’ 
MC00365 5’- CGGCTTAGCCAGAAAATGAG-3’ 5’- GTGGTTTCAGCAAAGCCAAT-3’ 
MC00145 5’- GGCAAGATCATGGCTGAAAT-3’ 5’- CAAGCCGCAGTATCATGTTG -3’ 
MC02339 5’- TTTGGGAGCGAAGAAGAAAA-3’ 5’- GAACGCTTGGTCTGGTAAGC-3’ 
MC01583 5’-AAATTCCAATGCAAGTTGGG-3’ 5’-ACGCCGTTCAGCTTGTAGAT-3’ 
MC01706 5’-ACAACTCAGCCTGGACCATC-3’ 5’- GTCTTTCACCCATTGCAGGT-3’ 
MC00018 5’-ACATGGAGGACACCAAAAGC-3’ 5’-AGCTCTGGAGTTCAGCTGGT-3’ 
MC01275 5’-TATTAAGGGCCACGTTCCAG-3’ 5’-TATGGAAGCCCTCCACAGAC-3’ 
MC01182 5’-GTGCTGCAGGATGTCAAGAA-3’ 5’-GCTGGTGTCTTCCTCTCTGG-3’ 
MC01277 5’- AATCCAGCCACATCCTTCAC-3’ 5’- GGCGCACCACATACACATAC-3’ 
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Table 2.4. Comparison of microarray versus real-time PCR estimates of fold change for 

ten genes that were quantified on d0 and d3. *In the list of 360 genes that met statistical 

and fold level criteria. 

** Significant fold change difference between d0 and d3 according to real-time PCR 

(student’s unpaired t-test, P < 0.05). 

 

Sal ID Gene Name Microarray Real Time 
MC01620 SOX2 -1.7 -1.86** 
MC02459 HES1 -2.15 -1.35 
MC02501 SOX3 -1.92 1.14 
MC03278 FST 3.09 3.45** 
MC01765 CXCR4 3.17* 4.19** 
MC01067 CD63 2.17* 4.77** 
MC00341 TGFB1 3.69* 5.43** 
MC01275 LGALS1 2.55* 10.5** 
MC01583 SFRP2 17.95* 23.8** 
MC03237 AGC1 56.84* 42.9** 
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Table 2.5        
Sal ID Symbol  Sal ID Symbol  Sal ID Symbol 

Up sal. and rat; n=11  MC00222 GLB1  MC01940 ATIC 
MC02474 LGALS3BP  MC01541 RGS10  MC00862 GSTA1 
MC01211 HMOX1  MC02123 KIF11  MC04981 FKBP1A 
MC01277 LGALS3  MC01119 CTH  MC03940 OTUB1 
MC01006 ATP1B2  MC02344 GIF  MC01364 OCLN 
MC01230 IRF1  MC02468 LAMA1  MC04214 DDIT4 
MC03756 NIP7  MC01297 MAD2L1  D. rat, up sal; n=1 
MC01354 GPNMB  MC02065 DAG1  MC02177 RAB11A 
TC01086 TIMP1  MC04570 CRELD2  D. sal., N/C rat; n=21 
MC03344 CNIH4  MC01751 VRK1  MC00837 FAAH 
MC04256 C8ORF4  MC02308 PLK1  MC00399 CYP2A13 
MC00018 APOE  MC01068 CDC2  MC01099 COL8A1 

Up sal, N/C rat; n=46  MC00594 RRM2  MC02628 FXYD3 
MC00197 TGM1  MC04538 VKORC1L1  MC00345 ADH1A 
MC04407 SLC30A1  MC01709 TYROBP  MC02307 SERPINI1 
MC00663 ARG2  MC05477 OLFML2B  TC00019 APC 
MC02499 SGK  MC07609 MPS1  MC03555 MAST3 
MC03162 LTB4DH  MC03420 ANKRD1  MC01037 BHMT 
MC00337 LTBP1  MC02287 MMP9  MC00741 CSRP3 
MC01521 RAC2  MC02182 ATP6V0D1  MC01503 PTPRR 
MC00770 DKC1  gi|40809686 MSX2  MC04857 COX4I2 
TC00995 RPA2  MC02833 POSTN  MC04494 MLF1 
MC02792 NOL5A  MC00043 F13A1  MC01631 SPTBN1 
MC03278 FST  D. rat, N/C sal.; n=18  TC00539 FABP7 
MC01728 UCP2  MC01716 UBE2G1  MC05220 GSTM5 
MC01639 SSB  MC02022 RNF14  MC04424 MID1IP1 
gi|1139526 MSX1  MC02955 TMED2  MC00251 AK1 
MC01194 GLRX  NP_002133 HOXA9  MC05114 C11orf74 
MC04782 WDR75  MC00031 COL1A2  MC00841 FHL1 
MC02823 PAICS  MC01720 UBE2L3  MC01620 SOX2 
MC01405 PIM1  MC03866 LOC51255  Up rat, N/C sal.; n=41 
MC02564 MPHOSPH10 MC00030 COL1A1  MC04731 HNRPD 
MC01526 RANBP1  MC01092 COL2A1  MC04672 SEC13L1 
MC04306 NUP107  MC00212 COL5A2  MC01058 CBR1 
MC00145 KRT18  MC05202 YWHAZ  gi|5199142 LDHA 
MC00535 RPL38  MC00423 IGF1R  MC01272 LDHB 
Cont. in next column  Cont. in next column  Cont. on next page 
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Sal ID Symbol Sal ID Symbol 
MC03456 C9ORF10 MC00282 TP53 
MC01484 PSMD8 Up rat, D. sal.; n=1 
MC04823 ELOF1 TC00219 APP 
MC02100 HNRPAB   

MC00811 EIF4A1   

MC01697 TPT1   

MC00919 HSPB1   

MC00523 RPL28   

MC04974 HTRA3   

MC03977 NOLA2   

MC04373 RPL36A   

MC03396 CORO1C   

MC03842 HSPC152   

MC02234 GSTO1   

MC00196 TGFBI   

MC01786 DUSP11   

MC05214 ANXA11   

MC03882 FKBP11   

MC04970 LRRC42   

MC01722 UBE2N   

MC00545 RPS3   

MC02237 EIF4E2   

MC05309 EMP3   

MC01868 TRADD   

MC01933 ANXA7   

MC01392 PGD   

MC01095 COL4A1   

MC00332 GPX1   

MC00274 HEXB   

MC01711 RPS27A   

MC03904 CHRAC1   

MC03898 SMN1,SMN2  

MC02876 HSPA8   

gi|49473435 NPY   

MC02061 CSPG3   

cont. in next column   
 



 

 36

Table 2.5. Gene list for changed genes found on both the Ambystoma and rat U34 

Affymetrix GeneChips. Genes were determined to be up-regulated, down-regulated, or not 

changed (N/C) according to the criteria set by each rat microarray study. 
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Figure 2.1. Volcano plots showing the number of genes selected as differentially 

expressed after spinal cord injury. False discovery rate was set to 0.01 (a) and the FWER 

set to 0.01 (b). Genes selected by each of these respective criteria are gray and non-

selected genes are black. 
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Figure 2.2. Cross sections of regenerating spinal cords at days 1 (A-B), 3 (C-D), 5 (E-F), 

and 7 (G-H) days after tail amputation. Mayer’s hematoxylin and Eosin were used to stain 

chromatin blue and cytoplasm shades of red. Photos were taken for sections within which 

the vertebrae were either fragmented or degenerating, and the central canal was clearly 

defined. A-B) At day 1, hemorrhaging is apparent, the white matter degenerates, and there 

are few neurons within the spinal cord grey matter. Leukocytes and erythrocytes are 

present near the injury plane (stained deep red) with apoptotic bodies (arrowheads) near 

the loosely interconnected ependymal cells (blue cells surrounding central canal; star). 

Bone degeneration is minimal (A: arrow) and there is proliferation of leukocytes at the 

injury site (B: arrow). Bone degeneration increases throughout the first week (A, C, E, G: 

arrows). E-H) A mesenchymous mass of cells (blastema) surrounds the regenerating 

spinal cord and ependymal cells project radial processes as the ependymal tube forms (D, 

F, H: arrows). 
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Figure 2.3. Two-dimensional plot of a principal component analysis (PCA) showing the 

relatedness of each GeneChip. JMP statistical software was used to perform PCA on 25 

GeneChips. A Pearson’s correlation coefficient matrix was made for 25 GeneChips using 

intensity values for 376 changed genes. Principal component 1 (PC1; 80.35% of the 

variation; eigenvalue 20.09) is displayed on the x-axis and Principal component 2 (PC2; 

13.54% of the variation; eigenvalue 3.34) is displayed on the y-axis. The cumulative 

variation accounted for by PC1 and PC2 is 93.89%. Twenty-five principal components 

account for 100% of the variation in the dataset. Five biological replicate chips used for 

each of the five time points are enclosed by an oval to illustrate their close proximity. ♦: 

d0, n = 5; ■ : d1, n = 5; ▲: d3, n = 5; ● : d5, n = 5; ▬: d7, n = 5. 
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Figure 2.4. In situ hybridizations of d3 and d0 axolotl spinal cords. In situ hybridizations 

were performed on d3 (A-R) and d0 (S-T) axolotl spinal cords using DIG-RNA probes 

that correspond to significantly regulated genes from the microarray analysis. Anti-sense 

probes are represented in columns 1 and 3, and sense control probes in columns 2 and 4. 

ck18 (A-B), mmp9 (C-D), Annexin A1 (E-F), and sfrp2 (G-H) transcripts are all present in 

ependymal cells near the end of the regenerating spinal cord. Inflammatory-like cells that 

are found in the degenerating white matter are positive for ApoE (I-J), Ferritin-heavy 

polypeptide (K-L), lgals1 (M-N), and lgals3 (O-P). Thioredoxin (Q-R) transcripts are 

present in cells resembling ependyma as well as neurons of the injured spinal cord. 

Fibroblast growth factor binding protein 1 (S-T) is highly expressed in lateral ependyma 

and a subset of neurons in the uninjured spinal cord.  Bar = 100 µm. 

 
Copyright © James Robert Monaghan 2009 
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Introduction  

 Salamanders are capable of axon regeneration after spinal cord injury. They 

apparently perform this task by circumventing various inhibitory factors that have been 

shown to limit CNS axon regeneration in mammals. Several different experimental 

approaches using mammals show that CNS myelin inhibits the growth of axons that 

would allow partial functional recovery after injury (Review by Schwab and Bartholdi, 

1996; Huang et al., 1999; David and Aguayo, 1981; Caroni and Schwab, 1988). A well-

established family of inhibitory factors in mammals are CNS myelin-associated molecules 

including myelin-associated glycoprotein (MAG; Li et al., 1996), oligodendrocyte-myelin 

glycoprotein (OMgp; Wang et al., 2002), and Nogo-A (GrandPre et al., 2000; Chen et al., 

2000). In contrast to mammals, axons of lower vertebrates such as fish (Gaze, 1970; 

Review by Martin et al., 1994) and salamanders (Stensaas, 1977) successfully traverse the 

lesion site, leading to full functional recovery. Several explanations for the fish and 

salamander’s regenerative abilities have been proposed such as the possibility that 

inhibitory myelin-associated molecules are not present in fish and salamanders, they are 

cleared from the area early after injury, the membrane topology or expression is different, 

or they are not inhibitory to the growth of axons in anamniotes (Schwab, 2004; Oertle et 

al., 2003; Klinger et al., 2004).  

Among the myelin-associated inhibitory molecules, Nogo-A has been best 

characterized. The nogo gene (i.e. reticulon 4) is a member of the reticulon gene family. 

Reticulon-like genes are found throughout eukaryotes (Oertle et al., 2003) and code for 

proteins possessing a highly conserved membrane-spanning region at the carboxy 

terminus called the reticulon homology domain (RHD). The reticulon proteins are 

primarily located within the endoplasmic reticulon with multiple possible functions 

including synaptic plasticity (McGee et al., 2005), vascularization (Acevedo et al., 2004), 

apoptosis (Tagami et al., 2000; Watari and Yutsudo, 2003), amyloid-β regulation (He et 

al., 2004), and vesicle trafficking (Steiner et al., 2004). Mammalian Nogo (mNogo) is of 

primary interest to human health because it codes for a protein isoform (Nogo-A) found 

on the cell surface of oligodendrocytes that contributes to the lack of axon regeneration in 

the mammalian CNS (Review by Schweigreiter and Bandtlow, 2006; Dodd et al., 2005). 

The nogo gene is processed to form three primary protein isoforms named Nogo-A, Nogo-
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B, and Nogo-C. All three isoforms contain a common carboxyl end that contains a highly 

conserved reticulon homology domain. The Nogo-A isoform is the largest of the three 

because it contains a large exon (2400 base pairs) that codes for a domain found to be 

inhibitory to axon outgrowth. The Nogo-A isoform was first identified as being the 

antigen of a monoclonal antibody (IN-1) capable of neutralizing the inhibitory nature of 

mammalian CNS myelin (Caroni and Schwab, 1988; Chen et al., 2000; GrandPre et al., 

2000). Since this time, the inhibition of Nogo-A and its downstream signaling 

mechanisms have become worthy candidates for clinical application to human CNS 

trauma (Buchli and Schwab, 2005; Freund et al., 2006, 2009). Furthermore, a role of 

Nogo-A in nervous system development other than myelin inhibition is starting to be 

recognized including peripheral nerve axon guidance, neural differentiation, neurite 

formation, and cortical development, (Brösamle and Halpern, 2008; Caltharp et al., 2007; 

Mingorance-Le Meur et al., 2007; Richard et al., 2005, 2009; O’neill et al., 2004). 

Understanding the evolutionary history of the Nogo-A isoform may broaden our 

understanding of the normal roles Nogo-A has in the CNS. Recent work has shown that 

the Nogo-A isoform is present in frogs (Klinger et al., 2004) but not fish (Diekmann et al., 

2005). The frog loses the ability to regenerate some CNS axons after metamorphosis, 

while fish maintain regenerative ability throughout life; a characteristic that may be 

possible because of the absence of Nogo-A. Furthermore, frog CNS myelin and not fish or 

salamander myelin are inhibitory to axon growth in vitro (Lang et al., 1995). The 

identification and characterization of this isoform in a vertebrate capable of CNS axon 

regeneration throughout life has yet to be observed. 

Here we report on the identification of the amniotic ortholog of Nogo-A in the 

salamander Ambystoma mexicanum (axNogo-A). We demonstrate orthology via sequence 

similarity and genetic linkage analysis. We show that axNogo-A mRNAs are enriched in 

nervous system tissue throughout development. We also find that axNogo-A is expressed 

in the nervous system well before myelin formation, suggesting an early role in nervous 

system development. Thus, while the CNS of the Mexican axolotl is permissive to axon 

growth, it contains transcripts of axNogo-A, an inhibitory molecule that is structurally 

similar to mNogo-A orthologs from vertebrates that lack regenerative ability.  
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Methods and Materials 

Animals and RNA extraction 

 Wild-type adult axolotls and albino embryos were obtained from the Ambystoma 

Genetic Stock Center (University of Kentucky) or the Voss lab and housed at 20-22ºC in 

modified Holtfretter’s solution. Staging was according to Beetshcen and Gautier 

classification (Armstrong and Malacinski, 1989). Animals were anesthetized using 0.01% 

benzocaine (Sigma) before tissue collection. Tissue extraction was performed from adults 

measuring 10-15 cm snout to cloaca and snap frozen in liquid nitrogen. RNA isolation 

was performed using TRIzol reagent according to manufacturer instructions, followed by 

an Rneasy column, quantified by spectrophotometry, and quality-assessed by 

formaldehyde-gel electrophoresis.  

 

Identification and Mapping of axNogo-A 

 Primers 5’-CTC CAC GCC CAG AGA TTG-3’ (F.1) and 5’-ACT GAG AGC 

AGG GCC AAT-3’ (R.1) were used on axolotl brain and spinal cord for long distance 

PCR. ExTaq long distance polymerase (Takara) was used with PCR parameters: 94ºC, 30 

seconds, 65ºC 1 minute, 72ºC 5 minutes for 30 cycles.  Nested PCR was performed using 

a 1:1000 dilution of the above PCR product and 5’-AGC CAC CCT TAG CAG GAG AC-

3’ (F.2) and 5’CCA ATG CAA TGT ACG CTG AC-3’ (R.2). PCR parameters were 35 

cycles at 94ºC for 45 sec, 65ºC for 45 sec, and 72ºC for 1 min (fig 1b). PCR product was 

gel isolated using QIAquick gel isolation kit.  A clone representing 1300bp of the 3’ end 

was also isolated.  Both were sequenced using Bigdye and assembled using Seqman II 

DNASTAR software. Mapping of axNogo was performed according to Smith et al. (2005) 

using the following primers: 5’-GAA GAC GAT GAA ACG ACT GAG AG-3’, 5’-CCG 

CAG CGC CAG GTG ATG GTC GAG GAA-3’, and 5’-GGC TTC TTC CTC TCC TCA 

AAA G-3’. 

 

Sequence Alignment and Analysis 

 Rattus novegicus, Mus musculus, Homo sapien, Gallus gallus, and Xenopus laevis  

Nogo-A sequences are found at NCBI (NP_114019, NP_918943, NP_065393, 

NP_989697, and AAQ82646, respectively).  Sequence assembly and open reading frame 
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prediction of axolotl nogo-A was performed with DNASTAR.  Sequence alignment was 

performed using CLUSTALW and shaded for similarity using BOXSHADE. Protein 

motifs were predicted using Motifscan (Pagni et al., 2007). Hydrophobic regions were 

predicted using Tmpred, TMHMM (Krogh et al., 2001), and DAS transmembrane 

prediction programs (Cservo et al., 1997). 

 

RT-PCR 

 cDNA was produced using 1ug total RNA and the Bio-Rad ISCRIPT cDNA 

synthesis kit. Templates for PCR included 10ng cDNA. PCR primers for nogo-A were 

forward (5’-TGA TGG AAA AAC TGG GGA GA-3’) and reverse (5’-GGG GAT GTA 

CGG AGT CTC AA-3’) giving a product of 991bps. EF-1α primers are described 

elsewhere (Carlson et. Al., 2001). Primers have a modified T7 and T3 promoter added 

onto each for subsequent digoxygenin RNA probe production. MBP primers were forward 

(5’-TAA TAC GAC TCA CTA TAG GGA GGC CAG AAC CTT GGA ATC TGA-3’) 

and reverse (5’-AAT TAA CCC TCA CTA AAG GGA GGA CAA CGG GGT TAT CCT 

CAA-3’) giving a PCR product of 344bp.  PCR parameters for nogo-A were 28 cycles of 

94ºC for 45 sec, 55ºC for 45 sec, 72ºC for 45 sec, 24 cycles using the same parameters for 

EF-1α, and 33 cycles at 94ºC for 45 sec, 60ºC for 45 sec, and 72ºC for 45 sec for MBP. 

5ul of PCR product was analyzed on a 2% gel and visualized using a Gel Logic 100 

Imaging system. Relative PCR product was compared with the control EF-1α. 

 

In situ Hybridization 

 PCR products produced using primers F.3 and R.3 was cloned into a Promega 

pGEM-T vector by the A-tailing procedure. Nogo-A digoxygenin RNA probe was 

produced using PCR templates produce from M13 forward and reverse primers and T7 or 

SP6 polymerase as described in Roche DIG-RNA labeling manual. Briefly, reactions were 

incubated 2 hours at 37ºC, stopped by adding 2ul 200mM EDTA, ethanol precipitated, 

and quantified using formaldehyde-gel electrophoresis. Tissue samples were fixed in 4% 

paraformaldehyde/1XPBS overnight, decalcified in 0.5M EDTA/1xPBS for 4 days when 

bone was in the tissue, cryoprotected by immersion in 10% sucrose/1xPBS for 1hr, 20% 

sucrose/1xPBS, followed by 30% sucrose/1xPBS for 3hr to overnight.  Tissues were then 
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mounted in OCT medium, sectioned at 16um, and stored at -80ºC. Sections were 

processed, hybridized, and washed as described elsewhere (Hirota et. Al., 1992). 

Overnight incubation with NBT/BCIP gave sufficient signal for specific detection.  

Sections were mounted with Permount, imaged using an AX-80 Olympus microscope, and 

photographed using an Olympus DP-70 camera. 

 

Results and Discussion 

Cloning and identification of axNogo-A 

 It is of particular interest to understand the evolutionary history of the long exon 

found within nogo. It has been suggested that the nogo-A isoform is not present in 

amphibians or fish, which is in accordance with their ability to regenerate axons after CNS 

injury (Schwab, 2004). Indeed, the nogo-A isoform is not present in the teleost fish 

genome (Diekmann et al., 2005). In contrast, Klinger et al. has shown that the nogo-A 

isoform is present and expressed in the CNS of anuran, Xenopus laevis (2003). In this 

study, we unambiguously identify the mammalian nogo ortholog in the axolotl and show 

that the axNogo-A isoform is present and expressed.  

 We identified a 1577 base pair contig from the Ambystoma Expressed Sequence 

Tag Database (http://www.ambystoma.org) with high nucleotide sequence identity to 

human reticulon 4 (BLASTX; 2e-74). The contig contained the presumptive full-length 

coding sequence of the rtn-4B/nogo-B mammalian isoform; it lacked a large terminal exon 

characteristic of the nogo-A isoform (Figure 3.1a). To obtain the characteristic nogo-A 

exon, PCR was performed with primers F.1 and R.1, producing two fragments at 2625bp 

and 183bp. These products were sequenced to identify the axNogo-A large exon. The 

nested primers F.2 and R.2 were used to amplify the axNogo-A region yielding a 2349bp 

PCR product (Figure 3.1b). The resulting DNA sequence was assembled with the nogo-B 

contig to yield a 4024bp sequence with a predicted open reading frame of 1158 amino 

acids.  The predicted protein is highly identical to Human RTN4-A/Nogo-A (BLASTP; 

3e-157). To provide additional evidence that our sequence was orthologous to amniote 

nogo-A, we mapped the sequence to linkage group 13 (LG13) in the Ambystoma genome 

(Smith et al., 2005). Few syntenic regions have been identified between LG13 and the 

human chromosomal region where Nogo is located (Hsa 2p16.3). Therefore, we compared 
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LG13 to the position of nogo in the chicken genome, which shows greater overall 

conservation in gene order to Ambystoma. Eleven Ambystoma LG13 contigs, including 

axNogo-A, map to chicken chromosome 3. This strongly suggests that axNogo is the 

ortholog of the amniote nogo. Thus, two separate lines of evidence, sequence similarity 

and gene mapping, indicate that the assembled contig is the amniote ortholog of nogo-A in 

Mexican axolotl (here after referred to as axnogo-A). 

 The presence of nogo-A in both urodele and anuran amphibians indicate that its 

origin is basal to their closest ancestor, believed to be during the Jurassic period 

approximately 200 million years ago (Zardoya and Meyer, 2001). A loss or gain of 

function in the inhibitory property of myelin must have occurred during the divergence of 

these organisms because adult anuran spinal cord myelin has inhibitory activity in vitro, 

while axolotl myelin is permissive to axon growth (Lang et al., 1995). It is also possible 

that the myelin isolated from the axolotl in Lang et al. was from a region that does not 

express inhibitory myelin molecules. We propose that it is not the presence or absence of 

the nogo-A isoform contributing to this loss or gain of function in these organisms. It is 

possible that inhibition was gained independently in anurans or inhibitory myelin is a 

basal property to tetrapods, which is lost in urodele amphibians. It would be interesting to 

pursue the evolution of nogo-A and inhibitory myelin further in lobe-finned vertebrates as 

this would better resolve the ancestral amphibian condition. 

 

Comparison of vertebrate Nogo-A Protein Sequences 

 Several conserved domains were found between salamanders and other 

vertebrates. The most striking resemblance is within the RHD. The RHD is located at the 

carboxyl end and is much more similar than the 970 aa amino end of the rat Nogo-A 

predicted protein sequence (87% compared to 34%, respectively). The RHD contains two 

>34 aa predicted transmembrane domains around a conserved 66 aa domain, the 

extracellular Nogo-66 domain that inhibits neurite outgrowth through binding to Nogo 

receptor (NgR; Fournier et al., 2001). The RHD in teleost fish are also highly similar and 

seem to have similar transmembrane regions, suggesting similar orientation and function 

(Diekmann et al., 2005). Interestingly, a mammalian NgR ortholog is also present in fish 

(Klinger et al., 2004) and morpholino knockdown of NgR or the Nogo-66 region causes 
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defects in peripheral nervous system axon outgrowth to the head and lateral line 

(Brösamle and Halpern, 2008). These results suggest that Nogo-66/NgR signaling is a 

conserved pathway in vertebrates that regulates axon growth during development. A 

second conserved motif in the RHD is a dilysine endoplasmic reticulum retention motif, 

giving indication of the primarily intracellular location of Nogo proteins (Chen et al., 

2000; Grandpre et al., 2000; Van der Haar et al., 2003). The intracellular role of Nogo-A 

is poorly understood in any vertebrate. 

The ~800 aa Nogo-A-specific region (NAS) is more divergent with similarity 

ranging from 32-36% between all vertebrates analyzed (Figure 3.2). The carboxyl 24 aa of 

human NAS binds to NgR through an Isoleucine found at human amino acid 995 (Hu et. 

Al. 2005). All other animals examined, except the frog, have a Valine at this position 

(Figure 3.2). A highly inhibitory region found within the rat NAS termed ∆20 (Oertle et 

al., 2003) shows higher similarity (45%) between rat and axolotl compared to the entire 

NAS (34%). This suggests that the salamander ∆20 region may also have inhibitory 

properties similar to the rat ∆20 domain. It will be important to identify whether the 

amphibian ∆20 domain has inhibitory properties in order to know whether ∆20 inhibition 

was a basal character of Nogo-A or a recently derived character in mammals. 

 A second unknown receptor binds within the first 172 amino acids of the rat nogo-

A/B region inhibiting fibroblast spreading (Oertle et al., 2003). This region is also 

responsible for migration of endothelial and vascular smooth muscle cells in vitro and 

vascular remodeling in vivo (Acevedo et al., 2004). A large proline-rich region is 

predicted in both amphibians and mammals within this Nogo-A/B amino region. There are 

multiple SH3-ligand motifs found within the proline-rich region suggesting protein-

protein interactions. It is conceivable that this region is responsible for binding to some of 

these proteins and receptors in mammals as well as amphibians, mediating similar 

signaling. Overall, low sequence similarity within this region is seen except for the 

proline-rich motifs.  

 

Nogo-A expression 

 To examine how nogo-A expression changes during development, we performed 

RT-PCR using RNA isolated from whole embryos. Strong axNogo-A expression started 
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between stages 27 and 36 (Figure 3.3b). The tail bud embryo starts to enlarge during this 

developmental window, which correlates with the differentiation of neuronal circuits in 

the spinal cord. Twitching also starts during these stages meaning that motor neurons have 

innervated the musculature of the embryo (Armstrong and Malacinski, 1989). To illustrate 

the independent regulation of nogo-A from the onset of myelination, RT-PCR analysis 

was performed using primers specific to the myelin marker, myelin basic protein (MBP). 

axNogo-A expression starts well before the onset of MBP transcription around hatching 

(Figure 3.3), suggesting that Nogo-A has a role in development before oligodendrocyte 

differentiation and myelination. Expression of Nogo-A in neurons before the onset of 

myelination has been observed in chickens (Caltharp et al., 2007; O’Niell et al., 2004), 

frogs (Klinger et al., 2003), rodents (Huber et al., 2002; Tozaki et al., 2002; Mingorance et 

al., 2004), and humans (O’Niell et al., 2004). Nogo-A knockout mice show mild deficits in 

neuronal migration during cortical development (Mingorance-Le Meur et al., 2007) and 

increased neuronal plasticity (Montani et al., 2009). The expression of Nogo-A in neurons 

before myelination in multiple tetrapods strongly supports a conserved neuron-specific 

role during development. To define the localization of axNogo-A during development, 

whole-mount in situ hybridization was performed on animals at developmental stages 36 

and 38 (Figure 3.4), stages when Nogo-A mRNA is expressed (Figure 3.3). axNogo-A 

mRNAs localized to multiple areas of the CNS including the developing brain, spinal 

cord, and eye. Expression was also evident in a specific location near the developing 

spinal ganglia. It is unknown if the developmental role of axNogo-A is related to Nogo-

66/NGR or the NAR. Morpholino knockdown studies of all Nogo isoforms compared to 

the Nogo-A isoform should resolve the developmental function of Nogo-A. Regardless, 

the broad expression of Nogo-A in the developing nervous system of axolotls and other 

vertebrates strongly suggests a conserved role in early nervous system formation.  

 The adult distribution of Nogo-A was examined using RT-PCR and in situ 

hybridization. RT-PCR showed that axNogo-A mRNA was most abundant in brain, eye, 

spinal cord and heart tissues (Figure 3.3a). These results are consistent with observations 

found in other amphibians and mammals (Figure 3.3a; Klinger et. Al., 2004; Oertle et al., 

2003). In situ hybridization localized mRNAs to neurons and oligodendrocytes according 

to location in the brain, spinal cord, and dorsal root ganglia (Figure 3.5 and 3.6). Some 
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neuronal populations had much stronger staining than others. To localize these regions in 

the brain, darkly stained cells were highlighted on cross sections of the adult brain (Figure 

3.5). Heavily stained regions corresponded to the medial pallium in the telencephalon, 

habenula in the epithalamus, outer neurons of the optic tectum, and neurons of the 

hindbrain. AxNogo-A transcripts were also localized to areas of differentiated neurons 

throughout the spinal cord (data not shown), with strongest expression in the ventro-lateral 

portion of the grey matter (motor neurons). Strong staining was also observed in neurons 

of the dorsal root ganglia, as was observed in mammals (Huber et al., 2002). The 

conservation in expression between salamanders and mammals suggest a conserved role 

in neuronal development.  

 An interesting finding of the study was that Nogo-A transcripts were localized to 

cells located in regions of oligodendrocytes. Figure 3.5 and 3.6 show that MBP and nogo-

A staining do not overlap in the forebrain, but are expressed in cells located in the same 

regions as oligodendrocytes in the hindbrain and spinal cord. No Nogo-A staining was 

observed in cranial nerves expressing high levels of MBP, suggesting that Nogo-A is not 

expressed in Schwann cells. The large number of Nogo-A positive cells located in the 

white matter of the CNS strongly suggest that axNogo-A is expressed in oligodendrocytes 

in some portions of the adult CNS. This staining pattern was surprising because IN-1 

antibody, an antibody that binds to the amino arm of Nogo-A (Fiedler et al., 2002), was 

found to stain myelinated axon tracts in X. laevis, but was not observed in axolotl myelin 

(Lang et al., 1995). This suggested that Nogo-A is not expressed in axolotl 

oligodendrocytes, explaining the growth permissive nature of axolotl myelin. It may be 

that IN-1 immunoreactivity is independent of the expression of Nogo-A mRNA and more 

related to a conformation found at the cell surface, as suggested elsewhere (Klinger et al., 

2004).  It is also possible that this cell surface conformation is necessary for inhibitory 

activity in vivo. Understanding what this conformation may be and how it interacts with 

other CNS components is necessary to design more effective therapeutics against the 

inhibitory activity. 

 One hypothesis why the axolotl possesses such high CNS regenerative capacity is 

that Nogo-A is down regulated following injury. Figure 3.7E shows that mRNA levels 

decline only slightly during the first week of injury (Monaghan et al., 2007). Some 
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neurons can be seen expressing Nogo-A at the injury plane following tail amputation 

(Figure 3.7F and G). A similar gene expression pattern is observed after spinal cord 

lesions in rats suggesting that Nogo-A is not a lesion-induced inhibitor of axon growth 

(Huber et al., 2002). A second hypothesis of how the axolotl can circumvent myelin 

inhibitors is that Nogo-A protein is cleared from the injury site following injury. This 

hypothesis is supported by the observation that tenascin-R and MAG, both potent 

inhibitors of neurite outgrowth in mammals, are cleared from an optic nerve injury lesion 

within 8 days after injury in newts (Becker et al., 1999). Future studies are needed to 

address the role of Nogo-A in neurons and why salamander myelin is not inhibitory even 

though it likely contains Nogo-A.  

 

Conclusions 

 We identified the ortholog of human reticulon 4/nogo in the Mexican Axolotl 

(Ambystoma mexicanum). We illustrate that the long exon that is diagnostic of nogo-A and 

encodes a highly inhibitory region in humans, is also coded for in the axolotl. We predict 

protein structure and possible motifs, and characterize developmental and adult mRNA 

expression. This is the first identification and characterization of nogo-A in a vertebrate 

capable of functional regeneration of spinal cord axons throughout life.  
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Figure 3.1 A) Cartoon of the predicted axolotl Nogo-A protein. Grey shading represents 

the Nogo-A-specific portion of the protein.  Black shading represents the two inhibitory 

regions as predicted through homology with rat Nogo-A.  Arrows indicate the location of 

primers designed in the study. B) Gel electrophoresis of the nested RT-PCR product as 

produced using primers F.1/R.1 followed by F.2/R.2. 
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Figure 3.2. Predicted protein sequence alignment and motif comparison of several 

tetrapod vertebrate Nogo-A proteins. Black shading represents 100% homology and grey 

shading 100% similarity. Predicted transmembrane regions are underlined with dark, 

black line. Presumptive inhibitory regions, human isoleucine at aa 995, and endoplasmic 

reticulon-retention motifs are boxed. The nogo-A specific region is indicated with black 

arrowheads. Predicted glutamic acid-rich regions are underlined with a thin grey line and 

proline-rich regions with multiple carrots (^^^^).  
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Figure 3.3. RT-PCR of Nogo-A in adult tissues and development. A) Nogo-A in adult 

tissues compared to expression in adult human and X. laevis tissues. The top band is the 

specific Nogo-A PCR product. The bottom band is the control EF-1 alpha PCR product. 

The + and – found below indicate expression in humans and Xenopus modified from 

(Klinger et al., 2004) B) Expression of Nogo-A during development. Staging was 

according to Beetshcen and Gautier classification. C) Expression of EF-1 control gene 

during development. D) Expression of myelin basic protein mRNA during development. 

Notice that MBP is not expressed until hatching. H = heart, B = brain, E = eye, Sp = 

spleen, Sk = skin, G = gill, SC = spinal cord, Lu = lung, M = muscle, Li = liver. 
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Figure 3.4. Whole mount in situ hybridization of stage 38 embryos using an antisense 

probe against axNogo-A. Three different embryos are represented. The embryo on the left 

is viewed from the side, middle embryo is viewed from above, and right embryo viewed 

from the front. Purple staining represents locations of Nogo-A mRNA. Arrows indicate 

positive staining in locations of the possible lateral line ganglia. Arrowheads indicate the 

eye premordia.  
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Figure 3.5. Tracing of MBP and Nogo-A staining throughout the brain. The left 

hemisphere represents positive staining of cells probed with anti-MBP. The right 

hemisphere represents cells with strong expression of axNogo-A. Some light staining is 

not presented in the Nogo-stained sections because it was found in most neuron-

containing regions. The images correspond from the middle of the telencephalon (A) to 

the hindbrain (E). Dots represent positive cells. The black areas on the outside of the left 

hemisphere are deeply stained cranial nerves. No staining was observed in cranial nerves 

for Nogo-A. Close-up images can be seen in Figure 3.6. 

 

 
 



 

 57

Figure 3.6. Positive staining for Nogo-A and MBP in the brain represented in Figure 

3.5. A, C, and E represent antisense Nogo-A probe staining. B, D, and F represent sense 

Nogo-A probe staining. G and I represent antisense MBP probe staining. H and J 

represent sense MBP probe staining. Sections correspond to the top image in Figure 3.5 

(A, B, G, and H), second from bottom image in Figure 3.5 (C, D, I, and J), and bottom 

image in Figure 3.5 (E and F). No MBP staining was seen in the medial pallium of the 

telencephalon. Scale bar = 200um 
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Figure 3.7. Nogo-A and MBP positive staining in spinal cord and DRG tissue. A) 

cells with positive Nogo-A staining. The arrow indicates  possible motor neurons. Notice 

the location of possible oligodendrocytes in the white matter. B) Positive MBP staining in 

the adult spinal cord. C) Positive Nogo-A staining in an uninjured adult tail. Arrows 

highlight possible motor neurons and the star indicates a dorsal root ganglia. D) Gene 

expression pattern of Nogo-A in the spinal cord following tail amputation (Monaghan et 

al., 2007). Minimal, but significant down-regulation was observed. E and F show Nogo-A 

staining in regenerating tails 7 days following amputation. Positive staining is still 

observed in motor neurons (arrows) and DRGs (stars). 

 
Copyright © James Robert Monaghan 2009 
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Introduction 

 Salamanders are fascinating vertebrate organisms because they routinely 

regenerate complex tissues. In only a few weeks after losing a piece of limb to a hungry 

predator or scalpel-welding scientist, a salamander perfectly reforms the missing structure. 

In the early history of salamander regeneration research, scientists innovated elegant 

experimental designs to probe the anatomical basis of regeneration (Dinsmore, 1991). 

More recently and in parallel with the discovery of conserved, regulatory genes and 

developmental pathways among metazoans, scientists have focused attention on candidate 

molecules and signaling pathways whose functions were deduced first from studies of 

model organisms. In particular, much research has been devoted to understanding aspects 

of limb regeneration associated with wound healing that recapitulate limb development; 

this strategy has yielded many useful insights and molecular probes (Carlson et al., 2001; 

Christensen et al., 2001, 2002; Endo et al., 2004; Kumar et al., 2004; Mercader et al., 

2005; Schnapp et al., 2005; Levesque et al., 2007; Satoh et al., 2007, 2008; Theodosiou et 

al., 2007; Villiard et al., 2007; Ghosh et al., 2008). Although it is clear that key regulatory 

molecules play important roles in the development of all organisms, it is not clear that a 

framework for understanding regeneration can be constructed using a generic and limited 

molecular toolkit. There is a need to go beyond candidate molecules and use unbiased 

approaches to characterize the molecular complexity underlying salamander regeneration. 

 Recent research resource development for the Mexican axolotl now allows classic 

regeneration experiments to be re-examined with powerful and unbiased genomic 

approaches. One particularly elegant experiment performed almost two hundred years ago 

showed that salamander limb regeneration requires the presence of peripheral nerves.  

Todd found in 1823 (Todd, 1823) that limb regeneration does not occur if the sciatic nerve 

of the hindlimb is severed shortly before or immediately after, a more distal limb 

amputation. Subsequent research showed that the brachial nerves entering the forelimb are 

required to promote limb outgrowth and patterning of a new limb (Singer, 1952, 1978). 

Within a few days after limb amputation, cells proximal to the amputation plane 

dedifferentiate and accumulate to form a blastema. Blastema cells proliferate and 

progressively differentiate during regeneration to give rise to all mesodermal structures of 

a typical vertebrate limb (Bryant et al., 2002). Upon amputation, nerve fibers in the 
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vicinity of the amputation plane extend into the blastema and play a supportive role in cell 

proliferation (Mescher, 1996; Satoh et al., 2008). Transection of the spinal nerves that 

enter the limb in the axolotl leads to a decrease in cycling cells and there is resorption of 

distal tissues of the amputated limb. Histological and cell proliferation analyses suggest 

that early cellular events are similar between denervated and innervated limbs, but 

denervated limbs are incapable of blastema formation because they do not support 

significant cell proliferation and outgrowth (Bryant et al., 1971; Mescher and Tassava, 

1975; Geraudie and Singer, 1981; Olsen et al., 1984a, b; Barger and Tassava, 1985).  

 Although limb regeneration is a complex developmental process, nerve 

dependency and other aspects of regeneration have often been conceptualized as having a 

simple molecular basis, involving relatively few regulatory factors. For example, Ferretti 

and Brockes (1991) hypothesized that in the absence of nerves, Schwann cells produce an 

inhibitory factor that prevents blastema cell proliferation. This mechanism is supported by 

experimental results although the hypothetical factor has not been identified (Irvin and 

Tassava, 1998; Tassava and Olsen-Winner, 2003). Alternative mechanisms for nerve 

dependency have also been proposed for several factors with growth promoting effects 

(Brockes and Kintner, 1986; Smith et al., 1995; Mullen et al., 1996; Mescher et al., 1997; 

Wang et al., 2000). A recent study identified newt anterior gradient protein (nAG) as a 

blastema cell growth-promoting factor in vitro, whose over-expression was sufficient to 

rescue regeneration of denervated and amputated limbs in vivo (Kumar et al., 2007). Most 

recently, nerve-dependent expression of the transcription factor sp9 has been identified as 

an early marker of dedifferentiation of the wound epithelium and the initiation of limb 

regeneration (Satoh et al., 2008). While considerable progress has been made in 

investigating the functions of candidate regulatory factors and signaling pathways, a 

broader systems-level perspective is needed to understand why multiple aspects of limb 

regeneration are dependent upon the presence of a nerve.  

 Genomic tools are now available that allow global characterization of the 

regeneration process in salamanders. Expressed sequence tag (EST) information has 

facilitated the development of an Ambystoma salamander Affymetrix microarray platform 

(Monaghan et al., 2007; Page et al., 2007; Stewart et al., 2008). This platform and a high-

throughput 454 cDNA sequencing approach were used in this study to compare transcript 
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abundance among uninjured limbs, regenerating limbs, and limbs denervated at the time 

of amputation. The results show that innervated (NR) and denervated (DL) limbs 

exhibited similar (but not identical) gene expression patterns at 5 days post amputation 

(dpa) but then diverged as a blastema formed under the influence of nerves. The results 

are discussed within the context of previous studies of nerve-dependency, highlighting 

specific genes and biological processes that are associated with blastema formation and 

outgrowth, and more generally, the salamander’s unparalleled ability to regenerate limbs. 

 

Materials and Methods 

Animal procedures 

 Mexican axolotls were obtained from the Ambystoma Genetic Stock Center at the 

University of Kentucky. Siblings were reared individually under ab libitum conditions to 

60-70 mm snout to vent length. The 3rd, 4th, and 5th spinal nerves that enter the left limb 

were severed at the brachial plexus behind the shoulder. Denervated left and innervated 

right limbs were amputated at mid-stylopod and allowed to regenerate for 5 and 14 days. 

Animal care and use procedures were approved by the University of Kentucky Internal 

Animal Care and Use Committee. 

 

Histology 

 Limbs were collected at 5 and 14 dpa and fixed in 4% paraformaldehyde, 1x PBS 

overnight at 4°C. Tissues were cryoprotected in sucrose, embedded in TissueTek, and 

sectioned at 16µm. Eosin Y and Gill’s hematoxylin #2 (Sigma-Aldrich, St. Louis, MO, 

USA) were used to stain cytoplasm and nuclei. DIC and brightfield images were taken on 

an Olympus AX80 microscope (Center Valley, PA, USA). 

 

RNA extraction and microarray analysis 

 DL (left) and NR (right) limbs were collected approximately 1 mm proximal to the 

amputation plane 5 dpa and 14 dpa. Nine animals were used for each time point and limbs 

were pooled into three groups of three. Left and right limbs were paired within animals 

when possible in making the pools for the 5 and 14 dpa time points. The day 0 pools were 

created using only the right limbs of 9 different individuals that were collected within 
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minutes following limb amputation. RNA was extracted using Trizol Reagent (Invitrogen, 

Carlsbad, CA, USA) followed by RNeasy minicolumns (Qiagen, Valencia, CA, USA). 

RNA quality was assessed by spectrophotometry using a Nanodrop ND-1000 (Nanodrop, 

Wilmington, DE, USA) and run on a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). 

The Ambystoma microarray platform was produced by the Voss lab and Affymetrix and 

has been described elsewhere (Page et al., 2007; Monaghan et al., 2007). Total RNA was 

used to produce cRNA probes for GeneChip hybridizations (Affymetrix, Santa Clara, CA, 

USA) at the University of Kentucky Microarray Core Facility according to standard 

Affymetrix protocols. Probe level quality control analyses were performed as described in 

(Monaghan et al., 2007). Data processing and statistical analysis was performed using the 

Affy Bioconductor package for the R statistical environment (Bolstad et al., 2005). 

Background correction, normalization, and probe set summarization were performed via 

the robust multi-array average (RMA) algorithm of (Irizarry et al., 2003).  Correlation 

matrices (Pearson’s r) for replicate GeneChips at the probe-set level were produced to 

assess correlation between GeneChips (minimum r = 0.9787, maximum r = 0.9952). 

Probe-sets were removed if mean signal intensity was less than the mean of the lowest 

quartile across all 15 GeneChips (mean ± standard deviation = 7.748 ± 0.031). Some 

microarray technologies may provide unreliable hybridization estimates for lowly 

expressed genes (Draghici et al., 2006). For this reason, a stringent cut-off was applied 

that removed the bottom quartile of genes for significance testing. Probe-set filtering 

yielded 3656 probe-sets for significance testing. 

 

Microarray analysis 

 The limma package (Smyth, 2004, 2005) available from Bioconductor was used to 

conduct three analyses to statistically identify differentially expressed genes. In the first 

analysis, linear models were fit to each gene. These models used coefficients to denote 

each of the five treatments by sampling time combinations. The following coefficients 

were contrasted: Day 0 versus NR 5 dpa (NR5), Day 0 versus DL 5 dpa (DL5), Day 0 

versus NR 14 dpa (NR14), Day 0 versus DL 14 dpa (DL14), NR5 versus NR14, and DL5 

versus DL14. The other two analyses were equivalent to paired t-tests and compared NR5 

versus DL5, and NR14 versus DL14. Multiple testing was corrected using an FDR cutoff 
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of 0.05 and then a fold-change filter (≥ 1.5-fold change) was implemented to derive final 

gene lists. All microarray data are available at (www.ambystoma.org). The identity of 

differentially expressed salamander transcripts was inferred from presumptive human 

orthologs. Orthology was assumed for all salamander transcripts that exhibited significant 

sequence similarity to protein coding sequences from human RefSeq and nr databases 

(BLASTx, e < 1 x 10-7). K-means gene clustering was performed using the Genesis 

software package (Sturn et al., 2002). Presumptive human-salamander orthologs were 

further annotated using GO terms and tools provided by the Database for Annotation, 

Visualization, and Integrated Discovery (Dennis et al., 2003). Significantly over-

represented GO terms (EASE score p < 0.01) were identified for specific 

treatment/sampling time combinations. Certain GO terms were excluded from the results 

if similar information was represented by a similar GO term. The null expectation for GO 

term representation was obtained by assigning GO terms to 3271 EST contigs from 

Ambystoma ESTdb.  

 

454 cDNA Sequence Analysis  

 The same total RNA samples that were used in the microarray analysis were used 

to produce cDNA templates for 454 pyro-sequencing. cDNA libraries were generated for 

Day 0, NR5, NR14, DL5, and DL14 RNA samples using the Super SMART cDNA 

Synthesis protocol (Clontech, Mountain View, CA). Single stranded cDNA template was 

amplified using the Advantage 2 PCR Kit (Clontech) and size selected according to 

manufacturer’s instructions. cDNAs were sequenced using the Genome Sequencer FLX 

System (Roche Applied Science, Indianapolis, IN). SeqClean was used for vector/poor 

quality trimming, bacterial contaminant screening, and identification of A. mexicanum 

mitochondrial DNA and rDNA sequences (http:// compbio.dfci.Harvard.edu/ 

tgi/software/). Retained sequences were pre-clustered using PaCE and then assembled 

using CAP3 with a 90% sequence similarity threshold (Kalyanaraman et al., 2003; Huang 

and Madan, 1999). Contigs (including singletons) were searched using BLAST algorithms 

against the Ambystoma ESTdb, human and nr RefSeq databases, and Xenopus laevis and 

X. tropicalis Unigene sets. Annotated queries that returned a significant BLAST hit were 

assigned the gene identifier of the best matching subject sequence. All of these new 454 
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sequence reads have been submitted to the Short Read Archive (SRA) at the National 

Center for Biotechnology Information (NCBI), accession SRA004195.2. New 454 

Sequences were assembled with previous EST data and are available at Sal-Site 

(www.ambystoma.org). 

 The number of times each 454 DNA sequence read matched a unique EST contig 

from the Ambystoma ESTdb was recorded, and these count data were used to estimate 

mRNA abundances for presumptive axolotl genes. The following method was used to 

identify differentially expressed genes among 10,275 contigs that were sampled ≥ 5 times 

across all five cDNA libraries. First, 5000 random draws were taken from a multinomial 

distribution to derive expected count data for each gene (k = 5 cDNA libraries, n = the 

sum of counts across all libraries for a given gene, and p1, p2, p3, p4, and p5 = expected 

proportion of counts per library given unequal sampling among cDNA libraries). Then, χ2 

statistics were calculated, on a gene-by-gene basis, for each of these random draws. P-

values for each gene were estimated by calculating the proportion of randomized χ2 

statistics that were ≥ to the χ2 statistic associated with the observed data. Contigs with P-

values ≤ 0.001 were considered differentially expressed. Upon examination of this dataset, 

it was noticed that 589 of the significant EST contigs were uniquely derived from 

different cDNA libraries and these tended to form small (< 250 bp) contigs that did not 

match previous sequences in the Ambystoma ESTdb. These sequences were considered 

cloning/sequencing artifacts and removed from the dataset. This yielded a final dataset of 

1150 significant genes. GO analyses were performed as described above with the 

exception that human default GO term frequencies were used to establish null 

expectations (EASE score p < 0.02). 

 

Results  

Morphology and histology of denervated and innervated limbs 

 Histological staining verified our experimental procedures for creating innervated 

and denervated limbs on the same individual. Previous studies found few morphological 

or histological differences between innervated and denervated limbs during the first few 

days of regeneration (Singer, 1978; Deck, 1961; Carlone and Mescher, 1985). Consistent 

with these observations, denervated and innervated limbs at 5 dpa (NR5 and DL5) were 
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histologically indistinguishable (Figure 4.1a, 4.1c). Histological staining (H & E) showed 

hemorrhaging directly beneath the epithelium containing Leydig cells, squamous cells, 

and basal keratinocytes (Figure 4.1b, 4.1d). All 5 dpa limbs resembled the wound healing 

phase or early phase of dedifferentiation according to the staging of (Tank et al., 1976). A 

blastema was visible on innervated limbs 14 dpa (NR14) and histological staining showed 

an accumulation of blastemal cells under the wound epithelium. These structures were not 

observed in denervated limbs at 14 dpa (DL14; Figure 4.1e-h). These results indicate that 

blastema formation and outgrowth only occurred in NR limbs. An apical thickening of the 

epithelium characterized the distal end of NR14 limbs and this layer consisted of 

keratinocytes and Leydig cells. These histological traits indicate that 14 dpa limbs in this 

experiment corresponded to the early to mid bud stage of limb regeneration (Tank et al., 

1976). Immunological staining using RT-97 was performed to detect the presence or 

absence of nerve axons at 5 and 14 days after injury. At both time-points, neurofilament 

staining was positive in the NR limbs, but negative in DL limbs. In pilot experiments, we 

determined that >20 days is required for nerves to re-innervate limbs after denervation 

surgery (data not shown). Thus, DL and NR limbs were created successfully and histology 

showed that 5 and 14 dpa time points correspond to wound-healing and early-mid bud 

phases of regeneration, respectively.  

 

Transcription during normal limb regeneration: Deviations of NR limbs from 

baseline  

 At both 5 and 14 dpa, mRNA levels for hundreds of genes were significantly 

different from baseline levels of genes expressed in whole limbs at Day 0 (Table 4.1). 

Many of the same genes (n = 215; up = 111; down = 104) were identified as significant in 

NR5 and NR14 limbs; the deviation from baseline was in the same direction for all but 

one of these genes (fabp2). Four matrix metalloproteinases (mmp1, mmp3/10a, mmp9, and 

mmp13) that are known to function during wound healing in many organisms were 

upregulated at both 5 and 14 dpa (Figure 4.2), while collagens (col4a1, col4a2, col8a1, 

col9a3, and col11a1; Figure 4.3) and muscle specific genes (Figure 4.4) were 

downregulated (Table 4.1). Upregulation of collagen catabolism genes coupled with 

downregulation of collagen structural genes suggests that transcriptional activation and 



 

 67

repression are integrated to efficiently remodel the extracellular environment of damaged 

tissues. Downregulation of muscle genes at both time points suggests that the 

differentiated muscle gene expression phenotype changes by 5 dpa, and changes more 

dramatically by 14 dpa.  

 Although many genes exhibited similar deviations from baseline at 5 and 14 dpa, 

unique gene expression changes were identified at each time point (Table 4.1; 

Supplemental file 1 and 2). The unique NR5 genes were associated with gene ontology 

(GO) terms that implicate extracellular protein changes and signal transduction pathways 

of the early wounding response. These terms included response to stimulus, signal 

transduction, extracellular region, and ion transport. The unique NR14 genes were 

associated with GO terms that implicate cell division and DNA metabolism including 

ccnd2, ccnb1, rrm1, rrm2, nasp, rrc1, and cdc20. The unique gene expression changes 

that were identified at 5 and 14 dpa support the idea of temporal progression from an early 

wound-healing phase to a blastema outgrowth phase during normal limb regeneration.  

 

Transcription within denervated limbs: Deviations of DL limbs from baseline 

 As was observed in NR limbs, hundreds of genes were identified as significant 

when comparing DL5 and DL14 mRNA levels to baseline levels measured at Day 0 

(Supplemental Tables 1 and 2). Some of the same or similar GO terms that were 

associated with NR limbs were identified as significantly enriched in DL limbs (Table 

4.1). This was not unexpected because both DL and NR limbs undergo tissue histolysis at 

the limb stump and carry out an early wound healing response (Figure 4.1a, 4.1b). For 

example, extracellular region and MMP genes were upregulated at 5 and 14 dpa, as was 

seen in NR limbs (Figure 4.2; Supplemental Table 1). As in NR limbs, muscle contraction 

(Figure 4.4), cytoplasmic, and collagen genes (Figure 4.3; col4a1, col4a2, col8a1) were 

downregulated in both DL5 and DL14 limbs (Supplemental Table 2). Moreover, 83% of 

the genes that were identified as significant in NR5 limbs were also significant (and in the 

same direction) in DL5 limbs. These results indicate that many transcriptional events are 

nerve-independent during early regeneration. 

 Denervated limbs are known to cease growth following limb amputation. Several 

groups of genes may explain this observation including the downregulation of genes 
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associated with the M phase of cell division, mitochondrial transcripts, and genes 

associated with glucose metabolism (Table 4.1; Supplemental Table 2). Furthermore, 

DL14 limbs were morphologically similar to DL5 limbs because denervation prevented 

blastema formation (Figure 4.1g, 4.1h). Consistent with this observation, many of the 

genes that were identified as upregulated in DL5 limbs were also identified as significant 

in DL14 limbs (69%). These genes are associated with the following GO terms: lysosome, 

response to stress, hydrolyse activity, signal transducer activity, and ion transport. Overall, 

these terms suggest protraction and expansion of wound-healing responses in DL14 limbs, 

as well as changes in cellular metabolism and cell division. 

 

Transcript abundance differences between NR and DL limbs 

 In the preceding two sections, transcriptional patterns of NR and DL limbs were 

described relative to baseline levels at Day 0. Here, significant genes are reported between 

NR and DL limbs. In general, few significant changes in gene expression were observed 

when NR and DL transcripts were compared directly. Transcripts for 16 genes were more 

abundant in NR5 limbs and 17 were more abundant in DL5 limbs, and these differences 

were small in terms of fold-level change (< 2.82 fold difference between NR5 and DL5; 

Supplemental Table 3). Eighteen of these genes exhibited significant sequence similarity 

to human or salamander presumptive gene sequences; the others are unknown. The genes 

with significantly more transcripts in NR limbs are associated with intracellular (e.g. 

dnase1l3, uap1, acy3, nans, myl4) and extracellular functions, including membrane 

proteins (e.g. psca, umod, and emp1) and collagen binding (serpinh1). The genes with 

significantly more transcripts in DL limbs are associated with extracellular functions or 

the immune response (e.g. igll1, CD74, hmox1, neil1, marco, sftpd, mmp9, mrc1). All but 

one of the significant 5 dpa genes showed the same directional deviation at 14 dpa; 

myl1was 1.5 fold higher in the NR limb at 5 dpa, but 2.2 fold lower at 14 dpa. Thus, as 

was observed when comparing DL5 and NR5 mRNA abundances to baseline levels, 

relatively few gene expression differences were identified between NR and DL limbs at 5 

dpa, and the magnitude of these differences was small. These results further support the 

idea that transcription during limb regeneration is predominantly nerve-independent at 5 

dpa.  
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 Whereas only 33 transcriptional differences were observed between 

morphologically similar DL and NR limbs at 5 dpa, 282 differences were detected at 14 

dpa (Supplemental Table 4). K-means cluster analysis of these genes with significant 

human protein hits highlight three clusters wherein genes exhibited similar patterns of 

expression (Figure 4.5). Genes in Cluster 1 presented expression patterns with transcript 

abundances above baseline in NR14 limbs and abundances below baseline levels in DL14 

limbs. Genes associated with cell cycling, a well-established characteristic of blastemal 

cells, were highly enriched in Cluster 1 (n=26). Over 50% of the genes in Cluster 1 are 

predicted to localize to the nucleus including several transcriptional regulators (msx2, id3, 

tmpo, atf5, rbm15, spen, parp1, and tardbp). Thus, many of the genes in Cluster 1 have 

functions that are consistent with blastema formation and outgrowth in NR limbs.  

 Genes from Clusters 2 and 3 were generally expressed in the same direction 

between NR14 and DL14 limbs, however the magnitude of expression differed. Genes in 

Cluster 2 presented transcript abundances that generally exceeded baseline levels, with 

higher levels observed in DL14 limbs. This pattern suggests that most of these genes were 

activated in the same direction in the presence or absence of nerves, but denervation 

caused higher transcript abundances. Twenty two percent of the genes in Cluster 2 are 

associated with the GO term cellular response to stimulus (N =14) and a significant 

proportion localized to the lysosome (n=6), including lgmn, ctsk, ctss, asah, atp6v0d1, and 

neu1. Genes in Cluster 3 presented transcript abundances that were generally lower than 

baseline levels, with much lower levels observed in NR14 limbs. Given relatively few 

genes in this cluster, no biological process was identified as significantly enriched. 

However, inspection of the genes in Cluster 3 again supports the idea that some genes 

may function in muscle contraction (actc1, myh7, and fhl1) and tissue repair (hsp27 and 

hebp2). In summary, mRNA levels for genes from Clusters 2 and 3 were quantitatively 

affected by the presence or absence of a nerve. 

 

454 cDNA sequence analysis of nerve dependency 

 To further explore nerve dependency and generate an unbiased collection of 

molecular probes for regenerating limbs, we sequenced cDNAs derived from the same 

RNA samples that were used in the microarray analysis. Over 1.7 x 106 reads were 
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generated and this yielded approximately 90,000 – 230,000 high quality sequence reads 

for each limb treatment with an average of 215 base pairs in length (Table 4.2). More than 

half of the sequence reads correspond to mitochondrial transcripts and ribosomal RNA. 

This frequency of mtDNA transcripts (30%) approximates the number sampled in an 

earlier EST screen of the Ambystoma genome (Putta et al., 2004). The number of rRNA 

transcripts was higher than expected. Assembly of all high quality cDNA reads yielded 

429,086 unique sequences. These sequences were assembled with previous EST contigs to 

produce 61,127 contigs containing at least two overlapping sequences. The distribution of 

contig lengths is shown in Figure 4.6. All contigs and singletons were searched against 

NCBI databases to identify significant similarity matches that would suggest presumptive 

gene identities. Ambystoma contigs and singletons yielded 25,446 significant hits to 

sequences in the human RefSeq database (BLASTx, e < 1 x 10-7), including 9411 unique 

human genes. Figure 4.7 shows the distribution of percent coverage to predicted human 

RefSeq proteins. Interestingly, 7,130 Ambystoma queries that did not show significant 

amino acid sequence identity to a human reference sequence did show significant 

nucleotide identity to a Xenopus sequence. Assembly of new 454 cDNA sequences with 

existing EST contigs from the Ambystoma ESTdb more than doubled (3935 to 9411) the 

number of non-redundant human-A. mexicanum orthologous sequences. This increase in 

sequence content was even among ten GO functional categories that are relevant to 

salamander wound healing and regeneration (Table 4.3).  Assuming that many of the 

anonymous 454 contigs and singletons (> 300,000) that were generated correspond to 

functional genes, significantly more than 10,000 different transcripts are expressed during 

the first two weeks of axolotl limb regeneration.  

 

mRNA abundance estimates and gene discovery from 454 cDNA sequence data 

            The number of times that a non-redundant transcript was sampled by 454 cDNA 

sequencing was used to estimate mRNA abundances. The transcript counts for 1150 

Ambystoma EST contigs (genes) differed significantly among limb cDNA pools that were 

created for each of the limb types (Supplemental Table 5). It was possible to assign a 

putative ortholog to 563 of these genes; the remaining genes were considered anonymous. 

This final list of genes was compared to the significant gene lists from the microarray 
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analysis. It was determined that for 271 of the 1150 significant genes from the 454 cDNA 

sequencing analysis, a portion of the gene sequence was represented by a probe set on the 

Ambystoma GeneChip. Of these, 104 genes were identified as significant by both 

methodologies and mRNA abundances for these genes were highly positively correlated 

(Supplemental Table 6; median Spearman’s correlation = 0.87). The 167 genes found to 

be significant by 454 cDNA sequencing, but not by microarray analysis, were mostly 

characterized by low fold changes from baseline (median fold change as estimated from 

454 cDNA sequencing counts = 1.75); or conversely, registered low hybridization 

intensities in the microarray analysis (median rank among 4844 probe sets = 343).   

 Gene functions that were identified as significantly enriched by microarray 

analysis were also identified as significant by 454 cDNA sequencing. For example, the 

muscle contraction GO term was identified as highly enriched and the underlying genes 

were similarly downregulated relative to baseline (Table 4.4; Figure 4.4; Supplemental 

Table 6). Also, genes sampled most often from NR14 limbs were associated with DNA 

metabolism, a biological process associated with cell cycling (Table 4.4), and transcripts 

for genes associated with cell proliferation and cell cycle progression (e.g. pcna, 

smc1,ctps, umod, psca, smc1l1, rad21) were either sampled more often among NR limbs 

or were only sampled from NR limbs (Supplemental Table 5). Thus, 454 cDNA 

sequencing also identified genes in NR limbs that are consistent with blastema formation. 

Several functional terms that were not identified by microarray analysis were identified as 

enriched by 454 cDNA sequencing. Transcripts for 40 genes associated with 

macromolecule metabolism were most abundant in NR5 limbs compared to other limbs. 

Transcripts for 12 genes associated with macromolecule catabolism were most abundant 

in DL5 limbs including mmp1, mmp3/10a, mmp3/10b, mmp9, and mmp13. This suggests 

that the presence or absence of nerves differentially affects transcriptional responses and 

regulation at 5 dpa. Also, 454 cDNA sequencing identified additional psca-like genes that 

were not represented on the GeneChip and these were also differentially expressed 

between NR5 and DL5 limbs. These and other examples suggest that 454 cDNA 

sequencing complimented the microarray analysis by providing deeper sampling of 

transcriptional programs and associated biological processes. This revealed more 
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candidate nerve-dependent gene expression changes at the earlier 5 dpa time point than 

was revealed by microarray analysis. 

 In addition to providing estimates of mRNA abundance, 454 cDNA sequencing 

also discovered new gene sequences for the Mexican axolotl. These include genes that are 

known to affect developmental processes in other vertebrate models: notch (1,2,3,4), nrg1, 

bmp1, wnt4, ctnna1, btnna1, dkk1, axin 1, nrg1, fgf10, sirt (1,2,5,6), stats (1, 2, 3, 5, 6), 

sema4f, tf, sfrp (1,2,5), rara, rarg, rxr, pdgf, acvrI (IB,  IIA, IIB), bmprI, bmprII, smad (1, 

2, 4, 5, 7, 9), efna1, ntn1, slit2, slit3, robo1, and robo2.  Most of these genes were sampled 

less than 10 times and thus appear to be expressed at low levels. Other developmental 

genes that have not been previously associated with limb regeneration were sampled many 

more times than these candidates, and for the following examples, counts varied 

significantly among limb cDNA libraries. These include mdk, fliI, tagln2, ddx5, umod, and 

cnot1 (Supplemental Table 5). Also, numerous retroelement-associated sequences were 

sampled differentially between DL and NR limbs (Table 4.5). Overall, the 454 sequencing 

approach verified the primary results from the microarray analysis and identified many 

new candidate genes and functional pathways that are associated with limb regeneration. 

 

Discussion 

 Microarray analysis and 454 cDNA sequencing were used to identify nerve-

dependent and independent gene expression changes during limb regeneration in the 

Mexican axolotl. The results show that limb regeneration is associated with thousands of 

transcriptional changes. Considerable similarity was observed between the DL and NR 

transcriptional programs at 5 and 14 dpa. For example, genes that are critical to wound 

healing were upregulated in both limb types (Table 4.6) while genes that are associated 

with muscle structure and function were downregulated (Figure 4.4). Many of the 

transcriptional changes that were observed at 5 dpa were also observed at 14 dpa. Thus, 

many aspects of early limb regeneration are accomplished in the absence of nerves. 

However, gene expression differences were identified between DL and NR limbs at 5 and 

14 dpa. Many of the transcriptional differences correlated with blastema formation; cell 

numbers increased in NR limbs after 5 dpa and this yielded a distinct transcriptional 

signature of cell proliferation in NR14 limbs. Overall, this study identified genes that are 
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associated with wound healing, early events of blastema formation, and subsequent 

blastema cell proliferation and outgrowth. Below, we discuss and expand upon these 

primary results and highlight genes whose functions appear to be important for 

understanding the basis of nerve dependency and limb regeneration.  

 

Early wound healing response during limb regeneration 

 Previous studies have documented anatomical similarities between innervated and 

denervated limbs at early stages of regeneration (Bryant et al., 1971; Schotte and Butler, 

1941; Thorton, 1953). This study shows that there are also many transcriptional 

similarities. This suggests that many aspects of the early wound-healing phase of limb 

regeneration are not dependent upon post-amputation, nerve-derived factors (Table 4.6). 

Instead, humoral immune and local tissue responses appear to be key. Many genes that are 

associated with wound healing and tissue repair, including stress, inflammation, cell 

survival, immunity, and extracellular matrix remodeling were upregulated from baseline 

in 5 dpa limbs (Figure 4.2; Table 4.6). It is probably no coincidence that essentially all of 

the early stress-associated genes that were previously identified as significantly regulated 

(using the same Ambystoma GeneChip) during early spinal cord regeneration (Monaghan 

et al., 2007), and during the innate immune response of axolotls to a deadly viral pathogen 

(Stewart et al., 2008), were also identified as significant in this study. Many of these genes 

appear to be expressed similarly in all vertebrates in response to stress, including junb, 

irf1, hmox1, apoE, mmps, ptx3, gal3, gadd45g, and tgfb. Additionally, significantly more 

“extracellular” genes were identified at 5 dpa than expected by chance, including genes 

that code for matrix remodeling proteins and secreted molecules whose functions are 

associated with growth factor binding, cell signaling, survival, death, adhesion, migration, 

and proliferation. The early wound healing response initiates local environmental changes 

of the injury site that are pivotal to subsequent phases of regeneration.   

 The 5 dpa time point was chosen in this study to identify critical nerve-dependent 

signaling events that are stimulated within the first few days of regeneration (see Satoh et 

al., 2008). Comparison of DL5 and NR5 data revealed few overall gene expression 

differences. The 5 dpa time point captured many transcriptional responses that are induced 

by injury/amputation but relatively few that are associated with known or suspected 
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neurotrophic signaling pathways. More comprehensive sampling and deeper sequencing is 

needed to detail early nerve-dependent transcriptional responses because several genes 

that are known to be nerve-responsive during the wound-healing phase were not identified 

in this study (e.g. sp9; prrx1, tbx5, Satoh et al., 2007, 2008). 

 

Downregulation of genes associated with differentiated muscle  

 This study documented dramatic decreases in the relative abundance of mRNAs 

coding for skeletal muscle contractile proteins, including myosins, actins, actinins, titin, 

tropomyosins, and troponins. Many of these changes were also detected by 454 cDNA 

sequence analysis (Figure 4.4). This strong, muscle-specific transcriptional signature was 

observed because approximately half of uninjured forelimb nuclei in 7-9 cm axolotls, and 

likely more than half the cross-sectional area, derive from muscle (Tank and Holder, 

1979). It is unlikely that the down-regulation of muscle genes is due to retraction of the 

muscle towards the shoulder because muscle transcripts are much more downregulated at 

14 dpa than 5 dpa in both denervated and innervated limbs. Considering that limb tissue 

samples in this study included ~ 1 mm of un-damaged tissue proximal to the amputation 

plane, the results suggest that injury to skeletal muscle induces tissue-wide loss of muscle 

contractile transcripts. It is possible that the decrease in muscle transcripts is due to 

muscle wasting, caused by a lack of mechanical stress. It is interesting to speculate that 

this response maybe associated with the degeneration or cellularization of multinucleated 

muscle fibers into mononucleated cells, which occurs in both denervated and innervated 

amputated limbs (Tank et al., 1976; Hay, 1959; Petrosky et al., 1980; Lo et al., 1993; 

Kumar et al., 2000; Echeverri et al., 2001). It is interesting to note that muscle specific 

genes, including actc1, actn2, atp2a2, my1pf , tncc, tnni2, tnni3, are downregulated during 

early stages of mammalian skeletal muscle regeneration (Goetsch et al., 2003), and this is 

accomplished without blastema formation. Skeletal muscle regeneration in mammals and 

other vertebrates involves resident stem (satellite) cells (Morrison et al., 2006; Cameron et 

al., 1986). It is possible that muscle specific genes are downregulated as an integral step of 

a conserved, skeletal muscle regeneration program of vertebrates. Candidate 

transcriptional repressor genes were identified in this study including id3 (Iwasaki et al., 

2008), tardbp (Buratti and Baralle, 2008), cnot (Winkler et al., 2006), msx1 (Kumar et al., 
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2004; Schnapp and Tanaka, 2005) and msx2. It will be important in future studies to 

determine if the dramatic decrease in muscle transcripts is due to activation of muscle 

stem (satellite) cells, muscle loss, muscle dysfunction/wasting, or whether these 

transcriptional patterns have an active role in regeneration. 

 

Genes associated with epigenetic reprogramming and genomic stability 

 Blastema formation requires a large number of progenitor cells derived from 

quiescent stem cells or differentiated cell types. It is generally known that reprogramming 

of differentiated cells is accompanied by epigenetic changes such as histone and DNA 

modifications (Costa and Shaw, 2007; Maherali et al., 2007). Few candidates have been 

identified previously as bringing about epigenetic changes necessary for cellular 

reprogramming during regeneration (Yakushiji et al., 2007; Palacios and Puri, 2006). This 

study identified several genes whose functions are associated with epigenetic phenomena, 

including chromatin remodeling, DNA methylation, and transcriptional regulation. These 

include uhrf1 (Sharif et al., 2007), lmnb2, parp1 (Guastafierro et al., 2008), thymopoietin 

(Dorner et al., 2007), and a gene with high sequence identity to SAM-dependent 

methyltransferases (Cluster_227434_Contig1; SRV_05867_a_at). 

 After cellular reprogramming and during limb outgrowth, blastemal cells undergo 

tremendous cell proliferation. During blastema cell proliferation, telomere lengths and 

overall genome stability must be maintained to prevent cell death. This study identified 

several candidate genes from NR14 limbs that are known to function in genome stability, 

telomere homeostasis, and DNA repair. These include parp1 (Shrivastav et al., 2008), 

hmgb2 (Thomas, 2001), fen1 (Saharia et al., 2008), aurka (Yang et al., 2004), aurkb 

(Monaco et al., 2005), and pif1, a DNA helicase that maintains genome stability and binds 

to telomerase from yeast to humans (Mateyak et al., 2006). It is also important to note that 

many transcripts were identified from NR and DL limbs that code for retroelement 

components (Table 4.5; e.g. polyproteins, gag proteins, reverse transcriptases, and 

recombinases). Retrotransposons are normally transcriptionally silenced in differentiated 

somatic cells by epigenetic mechanisms, but become active upon changes in epigenetic 

status; these may also regulate nearby gene expression (Kano et al., 2007; Cropley and 
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Martin, 2007). It is unclear if upregulation of retroelement transcripts affects genome 

stability and/or is necessary for regeneration. 

 

Genes associated with nerve dependent blastema outgrowth 

 In this study, blastemas were not observed in NR5 limbs or DL14 limbs, and only 

formed on NR14 limbs. Nerve dependent limb outgrowth occurs as a result of blastemal 

cell proliferation. Two early cell proliferation biomarkers, umod and psca, were identified 

as significantly different between NR5 and DL5 limbs. umod probably locates to the 

wound epithelium as it is upregulated in apical skin cells during thyroid hormone induced 

metamorphosis of axolotl epidermis (Page et al., 2009). It is possible that psca is a 

membrane receptor of blastema cells because it shows structural similarity to prod1, a 

surface protein that is implicated in proximal-distal positional identity of blastemal cells 

during newt limb regeneration (da Silva et al., 2002). Most of the cell proliferation 

biomarkers were identified at 14 dpa, when a blastema was present in NR limbs but absent 

in DL limbs. Thus, between 5 and 14 dpa, blastemal cells underwent considerable cell 

proliferation in the presence of nerves. Because the limb blastema continues to expand 

after 14 dpa, the blastema-specific genes that were identified in this study are probably 

transcribed at much higher levels at later time points. A clear signature of cell 

proliferation, including genes that function in the cell cycle, mitosis, and nucleotide 

synthesis, was observed in NR14 limbs. In contrast, these genes were slightly 

downregulated in denervated limbs at this time (Table 4.1; Figure 4.5). Thus, transcripts 

associated with cell proliferation are maintained at steady state (no increased proliferation) 

in NR and DL limbs for at least five days. This early, nerve-independent portion of the 

limb regeneration program may allow time for re-innervation of the injury site and 

production of nerve-derived molecules in sufficient quantity to initiate and sustain 

blastemal cell proliferation.   

 Multiple gene products have been hypothesized to be neurotrophic factors 

provided by nerves to sustain blastema cell proliferation. These include growth-promoting 

factors like fibroblast growth factors (Mullen et al., 1996; Satoh et al., 2008), substance P 

(Globus et al., 1991), neuregulin (Wang et al., 2000), and transferrin (Mescher et al., 

1997). Transferrin and neuregulin were sampled by 454 sequencing, but were not 



 

 77

identified as differentially expressed by our analysis. fgf8 and fgf10 were screened out of 

the microarray analysis due to low expression, but post-hoc analysis suggested that both 

are upregulated in NR14 limbs compared to control and DL14 limbs (Table 4.7). 

Expression of these molecules is known to be nerve-dependent in blastemas of Xenopus 

(Suzuki et al., 2005) and axolotls (Christensen et al., 2001, 2002; Han et al., 2001). Other 

molecules that have previously been associated with the blastema during limb 

regeneration were not included in our statistical analyses due to low hybridization 

intensity, but later found to be differentially expressed in NR14 limbs including hoxd10, 

hoxa13, hoxa11, and msx1 (Table 4.7). Recently, Kumar et al. (Kumar et al., 2007) 

identified a growth promoting extracellular ligand (newt anterior gradient; nAG) that 

rescues aspects of nerve-dependency of limb regeneration in newts. Probesets for nAG are 

represented on the Ambystoma GeneChip and transcripts for this gene were sampled by 

454 cDNA sequencing. nAG mRNA was transcribed at a high level in all tissues, but did 

not differ significantly between NR, DL, or control limbs. It is possible that the effects of 

nAG and other neurotrophic candidates are associated with quantitative variation of 

mRNA transcript abundances over fine temporal and spatial scales. Such variation would 

have been missed in this analysis of three time points and sampling of mRNAs from 

heterogeneous tissues. Furthermore, it is possible that the increase in nAG 

immunoreactivity observed by Kumar et al. (2007) is regulated at the level of translation 

and would not be observed using microarray or sequencing approaches. Overall, we found 

that several, but not all, genes previously shown to be directly downstream of 

neurotrophic factors are expressed at higher mRNA levels in the blastema versus control 

and denervated samples. 

 Singer (1978) emphasized that the neurotrophic factor underlying nerve 

dependency was growth promoting and quantitative in effect. He showed that the trophic 

effect of nerves could be titred by surgically manipulating the number of nerves 

innervating the limb (Singer, 1952). Other lines of research showed that nerve-derived 

factors were not necessary for traversing cell cycle checkpoints, as an equivalent number 

of presumptive blastema cells are initially observed to enter S-phase in denervated and 

innervated limbs (Mescher and Tassava, 1975; Tassava and Bennett, 1974). Instead, the 

neurotrophic factor appears to be necessary to complete the cell cycle and this may be 
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non-trivial considering the cost of replicating a large salamander genome. These studies 

suggest that nerves either directly or indirectly provide limiting macromolecules that are 

needed to accomplish cell division. According to this reasoning and assuming a 

correlation between transcript and protein abundance for specific mRNA species, 

transcripts associated with nerve dependency would be expected to exceed baseline levels 

in NR limbs during regeneration, and decrease in abundance in DL limbs. This study 

identified many human-axolotl presumptive orthologs and anonymous axolotl transcripts 

that showed this pattern. For example, psat codes for a protein that regulates the second 

enzymatic step of the phosphorylated pathway in mammals, which produces L-serine (de 

Koning et al., 2003). PSAT expression (protein and mRNA) is high among cell types with 

high rates of proliferation, including cancer cell lines (Martens et al., 2005; Vie et al., 

2008). Strikingly, psat registered the largest mRNA abundance difference between NR14 

and DL14 limbs among probesets on the Ambystoma GeneChip (8.2 fold change), and this 

result was verified by both 454 cDNA sequencing (NR14=20.1, DL14=3) and real-time 

PCR (8.37 fold change; data not shown). We also found that the third enzyme in the 

phosphorylated pathway, psph, was 3.58 fold higher in NR14 versus DL14 by real-time 

PCR (data not shown). PSAT and PSPH may have neurotrophic potential but more likely 

function to provide proliferating cells with a limiting, and conditionally important 

substance (L-serine) that is required for synthesis of macromolecules, amino acids, and 

purines that are needed to accomplish mitosis (de Koning et al., 2003). The fact that 

macromolecular synthesis and cell proliferation are both depressed in denervated limbs 

(Dresden, 1969; Lebowitz and Singer.,1970; Singer and Cason., 1972) supports the idea 

that PSAT activity is associated with nerve-derived factors that contribute to blastema 

outgrowth.  

 

Comparison of microarray and cDNA sequencing approaches 

 Microarray analysis and 454 cDNA sequencing offer different advantages for 

dissecting complex biological processes. The strength of microarray analysis is the 

precision that this approach provides for estimating transcript abundances for a specific 

panel of genes. Such gene panels provide standardized markers for identifying shared and 

unique patterns of transcription among experiments. In turn, identification of such patterns 
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provides systems-level insight. For example and as was discussed above, across-

experiment comparisons of axolotl transcription helped distinguish general stress 

responses from local regenerative responses. A relatively conservative fold level threshold 

(> 1.5 fold) was used in this study to identify significant genes in the microarray analysis 

and lowly expressed genes (in the lowest quartile) were removed from consideration. 

These conservative approaches potentially exclude important genes but likely discover 

‘real’ transcriptional differences between samples. A lower threshold could be applied to 

extract more information from the dataset and future studies would likely benefit by 

increasing replication of GeneChips to detect significant differences for lowly expressed 

genes. With respect to 454 cDNA sequencing, two goals were accomplished: gene 

discovery and estimation of transcript abundance. However, accomplishment of both 

goals required a trade-off in the allocation of resources toward deep sequencing versus 

replication. Sequencing resources were used to deeply sequence Day 0, NR, and DL 

cDNA libraries instead of shallowly sequencing replicate libraries for these time points. 

This strategy identified thousands of new gene sequences that will greatly enrich future 

regeneration studies. Future studies will benefit from experimental designs that replicate 

deep sequencing of cDNA libraries and this will be possible as sequencing costs decrease. 

Still, it was encouraging to find in this study that 38% of genes that were identified as 

differentially expressed by 454 cDNA sequencing and found on the microarray GeneChip 

were identified as significant by both of these technologies, and transcript abundances for 

these genes were highly positively correlated. 

 

Conclusions 

 This study addressed the nerve-dependency of limb regeneration by characterizing 

downstream cellular events that are affected when an intact nerve supply is removed from 

an amputated salamander limb. Microarray analysis showed that the early wound response 

is largely nerve-independent, but transcriptional profiles diverge between denervated and 

innervated limbs when the innervated limb starts to regenerate. Pyro-sequencing 

supported these microarray results while substantially increasing sequence information 

from the salamander transcriptome. This study shows the utility of next-generation 

sequencing platforms for gaining transcriptome information (Emrich et al., 2007; Toth et 
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al., 2007; Vera et al., 2008). This new DNA sequence information will greatly enrich 

future regeneration studies using the axolotl. 
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Table 4.1. Significant gene ontology terms for changed genes.  

 

Upregulated  Downregulated  
NR5 and NR14 (N=111) p-value NR5 and 14 (N=104) p-value 
extracellular region (N=14) 9.05E-07 muscle contraction (N=13) 1.81E-10 
collagen catabolism (N=5) 4.35E-06 cytoplasm (N=51) 8.41E-07 
  collagen (N=6) 4.05E-05 
  ion transport (N=12) 9.44E-06 
    
NR5 only (N=110) p-value NR5 only (N=49) p-value 
extracellular region (N=15) 1.23E-05 extrinsic to membrane (N=3) 6.10E-03 
response to stimulus (N=17) 1.00E-02   
signal transduction (N=21) 2.89E-03   
Ion transport (N=9) 2.57E-03   
    
NR14 only (N=53) p-value NR14 only (N=93) p-value 
DNA metabolic process (N=8) 4.41E-04 muscle contraction (N=18) 5.43E-19 
  calcium ion binding (N=11) 4.98E-04 
    
DL5 and DL14 (N=170) p-value DL5 and 14 (N=109) p-value 
extracellular region (N=23) 6.64E-10 muscle contraction (N=15) 6.62E-13 
lysosome (N=11) 3.04E-08 cytoplasm (N=53) 1.46E-06 
ion transport (N=13) 1.42E-05 mitochondrial membrane  

(N=12) 
3.49E-04 

hydrolase activity (N=26) 3.60E-05   
response to stress (N=21) 1.02E-03   
signal transduction (N=22) 5.40E-03   
collagen catabolism (N=5) 5.09E-05   
    
DL5 only (N=68) p-value DL5 only (N=58) p-value 
extracellular region (N=9) 3.68E-04 extrinsic to membrane (N=3) 4.64E-03 
response to stimulus (N=12) 3.70E-03   
    
DL14 only (N=69) p-value DL14 only (N=111) p-value 
extracellular region (N=7) 4.10E-03 muscle contraction (N=9) 4.26E-05 
immune response (N=5) 7.80E-03 mitochondrion (N=27) 6.71E-07 
  cytoplasmic (N=43) 2.58E-03 
  M phase (N=9) 1.40E-03 
  glucose metabolic process 2.97E-03 
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Table 4.1. Significant gene ontology terms for changed  genes. Significant genes were 

identified by microarray analysis and gene ontology terms were sampled more often than 

expected in NR5, NR14, DL5, and DL14 limbs. P-value is calculated by DAVID (Dennis 

et al., 2003).  
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Table 4.2. 454 DNA sequence reads that were generated for each cDNA limb library.  

 

 Day 0 NR5 DL5 NR14 DL14 totals 

             

Total Reads 312258 216281 220561 393012 578787 1720899 

       

Filtered 19459 14390 18918 22679 88387 163833 

       

mtRNA/rRNA 168954 111490 92136 171046 256684 800310 

       

Final Reads 123845 90401 109507 199287 233716 756756 
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Table 4.3. Gene ontology breakdown of the 9411 salamander genes with presumptive 

human orthologs. The number of Ambystoma ESTdb contigs with gene ontology 

annotations before and after 454 DNA sequencing. The total is less than the sum of each 

category because several genes may belong to multiple categories. Bp = biological 

process. 

 

 

 

Ontology 
GO 

Level 
Before 454 
Sequencing 

After 454 
Sequencing 

    

cell cycle bp3 226 438 

metabolism bp2 1889 3982 

cell motility bp3 62 126 

morphogenesis bp2 109 272 

development bp1 342 795 

response to stress bp2 219 469 

cell death bp3 142 312 

catalytic activity bp1 1275 2855 

transcription factor activity bp2 112 344 

kinase activity bp4 159 456 

  Total (3935) Total (9411) 
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Table 4.4. Gene ontology results from 454 sequencing. Gene ontology analysis of 465 

genes with presumptive human orthologs identified by 454 DNA sequencing. Only the 

most significant gene ontology category was selected for the table.  

 

cDNA library Most significant GO terms e-value 
   

Day 0 (N=127) striated muscle contraction (N=17) 1.75E-27 
   

NR5 (N=84) macromolecule metabolism (N=40) 1.37E-5 
   

DL5 (N=59) macromolecule catabolism (N=12) 6.21E-8 
   

NR14  (N=54) DNA metabolism (N=6) 2.00E-2 
   

DL14 (N=43) protein biosynthesis (N=14) 1.44E-17 
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Table 4.5. Significantly changed retrovirus genes. Genes identified as differentially 

expressed by 454 sequencing analysis that have high sequence similarity to retrovirus 

genes.  

Contig Gene Name NR5 DL5 NR14 DL 14 D0 
10177_Contig1 rev. transcriptase-like 10 3 0 0 0 
10435_Contig1 envelope polyprotein 19 8 0 2 0 
10953_Contig8 end. retroviral family w 5 15 0 1 0 
109875_Contig1 rev. transcriptase-like 0 0 10 0 0 
110157_Contig5 hyp. protein LOC57523 7 20 42 6 0 
126954_Contig17 polyprotein 12 22 32 6 8 
12813_Contig1 zinc finger protein 9 14 37 67 20 37 

154450_Contig16 retrotransposon-like 1 5 27 12 2 10 
174946_Contig1 pol-like protein 0 0 12 0 0 

185474_Contig140 helitron-like trans. 81 276 314 106 59 
195627_Contig1  Gypsy 1 polyprot. 0 0 12 0 0 
218328_Contig1 retrotransposon-like 1 0 0 13 0 0 
2194_Contig1 pol polyprotein 17 0 0 0 0 
23276_Contig1 chromobox homolog 1 14 0 0 0 0 
23893_Contig1 NBB2750 hyp. protein 12 0 0 0 0 
32735_Contig1 rev. transcriptase-like 12 0 0 0 0 
331680_Contig1 lambda-recombinase 2 12 30 11 6 
352970_Contig1 reverse transcriptase 0 0 0 0 12 
39722_Contig1 rev. transcriptase 98 117 138 51 92 

42238_Contig456 paternally expressed 10 41 3 10 3 12 
42238_Contig60 paternally expressed 10 7 35 37 10 28 
89909_Contig1 reverse transcriptase 0 12 0 0 0 
94735_Contig1 lambda-recombinase 0 12 0 0 0 
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Probe ID Symbol NR5/C NR14/C DL5/C DL14/C function
SRV_01351_at JUNB 4.6 2.35 4.74 3.46 SR 
SRV_10702_at CYBB 2.84 1.73 4.11 2.46 SR 
SRV_00330_at CYBB 2.39 1.58 3.46 2.23 SR 
SRV_03054_at MARCO 2 1.83 3.11 3.01 SR 

SRV_00130_a_at APOE 1.9 2.36 2.49 4.28 SR 
SRV_00442_at SLC11A1 1.95 1.58 2.76 3 SR 
SRV_01821_at TYROBP 1.98  2.45 2.65 SR 

SRV_03023_a_at GADD45G 1.96  2.29 2.01 SR 
SRV_02588_a_at LGALS3BP 1.91  2.37 1.59 SR 
SRV_01177_a_at ENTPD1 2.39  2.23 1.58 SR 
SRV_02586_at LGALS3BP 1.79  2.25 1.81 SR 

SRV_11767_a_at IFITM5 1.75 1.56 1.63  SR 
SRV_02724_at MAT2A 2.6 1.78 1.6  SR 

SRV_01617_a_at PTX3 4.3  3.78  SR 
SRV_02002_at CES1 2.36  3.01  SR 

SRV_03221_a_at DMBT1 1.81  2.5  SR 
SRV_07036_at IL1B 1.7  1.53  SR 
SRV_02516_at HSPA5 1.65    SR 
SRV_02965_at TFPI2 2.22    SR 
SRV_12417_at NDRG1 2.57    SR 

AH_at HSPA8 1.52 1.67   SR 
SRV_01846_at UMOD 2.27 2   SR 
SRV_01294_at FTH1   1.67 2.01 SR 
SRV_01385_at LECT2   3.93 7.38 SR 
SRV_01840_at UCP2   1.53 2.13 SR 
SRV_11406_at LYN   1.74 1.72 SR 
SRV_11583_at MAPK12   2.04 1.92 SR 

SRV_07726_a_at MPEG1   1.77 2.27 SR 
SRV_04367_a_at IGLL1    2.29 SR 
SRV_04710_at NEIL1    1.93 SR 
SRV_10936_at PTGDS    4.19 SR 

SRV_00002_s_at IGLL1    2.09 SR 
SRV_00078_at IGLL1    2.43 SR 

SRV_01199_a_at CLU    2.36 SR 
SRV_02442_a_at G1P2   2.56  SR 
SRV_02611_a_at SGK   1.57  SR 
SRV_13637_a_at IFITM3   1.51  SR 
SRV_01323_a_at HMOX1 10.05 5.13 18.24 8.53 A 
SRV_00444_a_at GPX1 1.67  1.51  A 
SRV_01423_a_at MMP1 26.65 2.94 37.91 11.41 ECM 
SRV_01428_x_at MMP10 22.86 2.87 30.96  ECM 

Table 4.6 continued on next page     
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Table 4.6 continued     

Probe ID Symbol NR5/C NR14/C DL5/C DL14/C function
SRV_01430_at MMP13 22.54 9.04 34.09 24.97 ECM 
SRV_01425_at MMP13 19.64 3.1 23.46 2.6 ECM 
SRV_11420_at MMP27 16.71  23.32 4.52 ECM 

SRV_02399_a_at MMP9 15.22 3.51 23.05 15.69 ECM 
SRV_11423_at MMP13 6.79  8.48 2.2 ECM 

SRV_11417_a_at MMP1 6.42  8.48  ECM 
SRV_12016_at MMP2  1.71  2.49 ECM 
SRV_02241_at MMP2  1.66  2.34 ECM 
SRV_10485_at MMP2    2.11 ECM 

SRV_00453_a_at TGFB1 2.4  2.32 1.93 GR 
SRV_00328_at CTSK 7.03 4.86 8.07 19.35 L 

SRV_00327_a_at CTSK 3.72 2.94 4.73 8.23 L 
SRV_00326_a_at CTSK 3.19 2.84 3.78 6.47 L 
SRV_02600_a_at LGMN 2.16 1.8 2.81 3.66 L 
SRV_05534_at RAB7B 1.91  1.99 1.83 L 

SRV_02353_a_at LITAF 1.88  2.29 1.75 L 
SRV_01134_at ATP6V1B2 1.83  2.24 1.96 L 
SRV_02294_at ATP6V0D1 1.73  2.33 2.73 L 

SRV_14287_a_at CTSL 1.66  2.23 2.03 L 
SRV_02601_at LGMN 1.66 1.58 2.09 2.44 L 

SRV_05336_a_at CTSL   1.75 1.69 L 
SRV_00294_s_at PPGB   1.67 2.12 L 
SRV_01135_a_at ATP6V0C   1.62  L 
SRV_01242_a_at CTSD   1.62 2.25 L 
SRV_01559_a_at PSAP   1.58 1.61 L 
SRV_00355_at NEU1   1.57 1.87 L 
SRV_02141_at ASAH1   1.56 2.15 L 
SRV_09661_at CTSC   1.52 1.99 L 
SRV_01558_at PSAP    2.71 L 

SRV_00334_a_at GLB1    1.64 L 
SRV_10701_at CTSK       1.58 L 

 

Table 4.6. Significantly changed wound-healing genes. Fold-level change of upregulated 

genes that have functions associated with a wounding response (identified by microarray 

analysis). SR = stress response gene; A = antioxidant; ECM = extracellular matrix 

remodeling; GF = growth factor; L = lysosome. 
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Table 4.7 Lowly-abundant genes expressed in the blastema. NR14/C = Fold change of 

NR14 compared to control. NR14/DL14 = Fold change of NR14 compared to DL14. 

 

Probe ID Gene NR14/C NR14/DL14 
NR14vsDL14 students t-test P 

value 
SRV_00099_at FGF8 3.36 3.47 0.0052 
SRV_00025_at FGF10 2.32 1.79 0.0031 
SRV_00107_at HOXD10 3.52 2.77 0.0014 
SRV_00102_at HOXA13 2.26 2.57 0.0066 
SRV_00091_at HOXA11 2.00 1.71 0.0235 
SRV_00011_at MSX1 2.31 2.19 0.0068 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 90

Figure 4.1. Histology of innervated and denervated limbs at 5 and 14 dpa. 

Eosin and hematoxylin staining of DL5 (A), NR5 (C), DL14 (E), and NR14 (G) limbs. 

Higher magnification inset pictures are provided for each image (B,D,F,H). Scale Bar A = 

500 µm; B = 50 µm 
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Figure 4.2. Schematic of matrix metalloproteinase gene expression. 

Matrix metalloproteinase gene expression is represented in each box. A) Microarray 

results are represented by fold change (FC) from day 0. B) Normalized counts are 

represented from the 454 cDNA sequencing experiment. Figures 2 – 4 were created using 

GenMAPP (Dahlquist et al., 2002). Figure 2 was modified from a MAPP originally 

created by Gladstone Institutes.  
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Figure 4.3. Schematic of collagen gene expression. 

Collagen gene expression is represented in each box. A) Microarray results are 

represented by fold change (FC) from day 0. B) Normalized counts are represented from 

the 454 cDNA sequencing experiment. 
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Figure 4.4. Schematic of down-regulated muscle contraction genes. 

Striated muscle contraction genes that were downregulated during limb regeneration. Each 

gene is represented by two boxes that denote proportional expression among Day 0, NR5, 

DL5, NR14, and DL14 samples. The left box reports hybridization intensity from the 

microarray experiment and the right box reports normalized count data from the 454 

cDNA sequencing experiment. Figure 2 was created using GenMAPP (Dahlquist et al., 

2002) and was modified from a MAPP originally created by Joanna Fong and Nathan 

Salomonis. 
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Figure 4.5. Clustering of genes identified as significant from the comparison of NR14 

and DL14 limbs.  

Fold change values are relative to baseline levels at Day 0. Blue coded genes are cell cycle 

associated; orange coded genes localize to the lysosome; green coded genes are associated 

with inflammatory responses; red coded genes are matrix metalloproteinase’s; purple 

coded genes are associated with muscle. Genes coded with an * are associated with 

inflammation and localize to the lysosome. 
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Figure 4.6. Bar graph showing contig lengths. 

Distribution of sequence lengths for each of the 61,127 contigs.  
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Figure 4.7. Bar graph showing percent coverage of human proteins. 

The distribution of the percent coverage for each of the unique 9411 human proteins with 

presumptive salamander orthologs. 
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Introduction 

 Salamanders are the only tetrapods capable of regrowing limbs as adults. 

Following amputation of a limb, cells proximal to the amputation surface are recruited to 

form a mass of highly proliferative mesenchymal-type cells termed the blastema. The 

blastema is the fundamental and necessary element of a regenerating limb. It is a self-

organizing structure that eventually re-differentiates into an almost perfect replica of the 

missing limb. By focusing on events that contribute to blastema formation, we aim to 

understand how the salamander can regenerate entire limbs.  

 Blastema formation is dependent upon an adequate supply of nerves. If the limb 

nerve supply is compromised, a blastema fails to form and hence limb regeneration. This 

phenomenon has been known since 1823 (Todd), but the role nerves play in blastema 

formation is still poorly understood. Nerves are intimately connected to the early 

blastema. Anatomical, immunological, and retrograde staining of neurons has shown that 

a large number of nerve fibers quickly grow into injured limb tissues and wound 

epithelium following amputation (Figure 5.1; Singer 1949; Thornton, 1970; Koussoulakos 

et al., 2003; Satoh et al., 2008). These nerve fibers supply a neurotrophic factor (NTF) or 

set of NTFs, independent of electrical transmission, that support the proliferation of 

blastemal cells during the early phases of regeneration (Singer, 1978 for review; 

Monaghan et al., 2009). Multiple gene candidates have been proposed to be the NTF 

including fibroblast growth factors (Mullen et al., 1996, but see Dungan et al., 2002; Satoh 

et al., 2008), substance P (Globus, 1991), neuregulin (Wang et al., 2000), and transferrin 

(Mescher, 1997), but none have fulfilled all the requirements to identify these molecules 

as the NTF. It is unclear whether these molecules do not completely rescue regeneration 

because their mitogenic properties are unrelated to the critical role nerves play during 

regeneration. Alternatively, these and other factors may act synergistically to support limb 

regeneration. Unbiased genomic approaches were used here to identify possible new gene 

candidates that may explain the vital role of nerves during salamander limb regeneration. 

 Several properties are known about the NTF(s) that may assist in identifying 

candidate molecules in future studies. The NTF(s) is produced in the neuronal cell body, 

transported down the axon, possibly by fast axonal transport, and released at the synapse 

(Scadding, 1988; Wallace, 1972; Kiffmeyer et al., 1991). The mitogenic affect of nerves is 



 

 99

increased following nerve injury or limb amputation, possibly due to an increase in NTF 

production (Singer, 1952; Maier et al., 1984; Boilly and Albert, 1988; Boilly and Bauduin, 

1988). Lastly, the NTF(s) is produced by sympathetic, motor, and sensory nerves 

innervating the limb (Singer, 1952, 1974). A minimum threshold of these nerves is 

necessary for the limb to regenerate and can be met by innervation of only sensory axons. 

This is likely explained by the large contribution of sensory nerve axons to the early 

blastema (Singer, 1978; Koussoulakos et al., 2003).  

 Sensory nerves that innervate the salamander hindlimb originate from brachial 

nerves 15, 16, and 17. The cell bodies that supply the brachial nerve axons are located in 

dorsal root ganglia (DRG) found lateroventrally to the spinal cord (figure 2.7). The 

accessibility of DRGs to surgical removal and culture has made them useful for 

understanding the signaling involved in axon outgrowth. Furthermore, the substantial role 

sensory nerves play in blastema formation make DRGs an obvious choice for identifying 

candidates for the NTF(s). The aim of this study was to use microarray analysis to detect 

gene expression changes in DRGs during blastema formation in order to identify 

regeneration-associated genes (RAGs) as well as possible gene candidates for the NTF(s). 

We identified 109 genes as differentially regulated in DRGs during hindlimb blastema 

formation engrossing several aspects of neuronal physiology including axon outgrowth, 

mitogenic factors, and neuronal signaling. Many of the changed genes identified in this 

study have also been identified in mammalian models of peripheral nerve injury, 

suggesting a common transcriptional response to nerve injury. However, multiple RAGs 

were identified in this study that may be specific to salamander nerve regeneration. 

Several up-regulated genes were also localized to sensory neurons of the DRG suggesting 

that we sampled gene expression changes in sensory neurons during regeneration.  

 

Materials and Methods 

Animals, tissue collection, and RNA isolation 

 The handling and surgical manipulation of all salamanders was carried out 

according to the University of Kentucky Animal Care and Use guidelines (IACUC 

#00609L2003). Mexican axolotls were housed in the Voss lab on a 12 hour light/dark 

cycle and fed California blackworms (Lumbriculus variegates) ad libitum. Eight adult 
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animals were anesthetized in 0.01% Benzocaine (Sigma) and both hindlimbs amputated 

mid tibia/fibula. Limbs were allowed to regenerate for 14 days before right and left DRGs 

(15, 16, and 17) were collected and frozen on liquid nitrogen. Four biological replicates 

were made by pooling six DRGs isolated from two animals. Tissues were crushed under 

liquid nitrogen using a mortar and pestle, suspended in RNAlater (Qiagen), and further 

homogenized by running through a Qiashredder (Qiagen). A second group of eight 

animals had DRGs collected without limb amputation and the same tissue pooling scheme 

was performed. RNA was isolated using Trizol Reagent (Invitrogen) followed by RNeasy 

mini columns (Qiagen). RNA quality was assessed using an ND-1000 Spectrophotometer 

(Nanodrop; Wilmington, DE) and a Bioanalyzer 2100 (Agilent; Santa Clara, CA). Probe 

labeling, hybridization, and scanning for the eight RNA samples were performed by a 

single staff member of the University of Kentucky Microarray Core Facility.  

 

Microarray analysis 

  Data processing and statistical analysis was performed using the Affy 

Bioconductor package for the R statistical environment (Bolstad et al., 2005). Background 

correction, normalization, and probe set summarization were performed via the robust 

multi-array average (RMA) algorithm of (Irizarry et al., 2003). The limma package 

(Smyth, 2008) available from Bioconductor was used to conduct the equivalent of 

unpaired t-tests between the control and regenerating groups. Genes were identified as 

differentially expressed if they passed a false discovery rate set at 5% and changed at least 

>1.5 fold from baseline. 

 

Quantitative real-time PCR 

 Significantly changed genes and genes previously hypothesized to be the NTF 

were chosen for quantitative real-time PCR analysis. A BioRad iScript cDNA synthesis 

kit (Hercules, CA) was used to synthesize cDNA templates from three Day 0 and three 

Day 14 RNA samples collected from animals not used for microarray analysis. Primers 

were designed with Primer3 (Rozen and Skaletsky, 2000) to amplify 80-100 base pair 

PCR products. Reactions included cDNA that was synthesized from 10ng total RNA, 

150nM primers, and SYBR Green Reaction Mix (Roche; Switzerland) and run on a 
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StepOne Real-Time PCR System (Applied Biosystems; Foster City, CA). The three 

replicates were normalized against a gene that showed no significant gene expression 

change in the microarray experiment (glyceraldehyde-3-phosphate dehydrogenase, 

MC01187). Fold change estimates were calculated using the ∆∆Ct methodology (Livak 

and Schmittgen, 2001). Real-time PCR primers used include: ANGPTL2_F, 5’- TCA 

AGC TCC TAC GCA AGG-3’ and ANGPTL2_R 5’- CGG ATG ATT TCG TGG AGA-

3’; ANKRD1_F 5’- TGG CGC AAA CCT AAC AGT-3’ and ANKRD1_R 5’- TCC TTT 

GTG CCA TTC TGC-; CSRP_F 5’- CAC GGT GTG GGA AGT CTG-3’ and CSRP_R 

5’- TTC CCA CAA AAG GCA CAC-3’; GAP43_F 5’- GGC TAA CGG AGA GGC 

TGT-3’ and GAP43_R 5’- TCG CAG ACG TGT CAG ATG-3’; GGF_F 5’- ACA CCG 

ACC ATT GGA ACA-3’ and GGF_R 5’- AAG CAC TCG CCA CCA TT-3’; LECT3_F 

5’- GGA GGG GTC CTC GTA CTG-3’ and LECT3_R 5’- GGT TTC CGG TGA AAG 

GAG-3’; LEPTIN_F 5’- TGC CAA AAA CCT CAC CAG-3’ and LEPTIN_R 5’- CTA 

AGC CGC TCA CCT TCA-3’; SODEFRIN_F 5’- AAG GTT GCA GAC CCC AGT-3’ 

and SODEFRIN_R 5’- GAA GAA CCC CCA CAG TCC-3’; TRANSFERRIN_F 5’- 

GGC GTG TTA CGA CAC CAT-3’; TRANSFERRIN_R 5’- CCT AAT GGC AAC GAG 

CTG-3’ 

 

In situ hybridization 

 In situ hybridization was performed as described by Hirota et al. (1992) with 

minor modifications. PCR products were used as probe templates ranging from 400-700 

base pairs. Forward primers were appended with T3 (AAT TAA CCC TCA CTA AAG 

GGA G) and reverse primers with SP6 (ATT TAG GTG ACA CTA TAG AAG AG) 

RNA polymerase promoters. PCR products were cleaned using Qiagen PCR purification 

columns (Qiagen) before performing in vitro transcription using Roche DIG-labelling kits 

(Roche). Probes were cleaned up with Sigmaspin columns (Sigma) and diluted to 50 ng/ul 

in THE RNA Storage Solution (Roche). DRGs were collected from adult axolotls on Days 

0, 14, and 28 dpa and fixed at 4ºC in 1x PBS, 4% paraformaldehyde overnight. Tissues 

were cryoprotected in successive washes of 10%, 20%, and 30% sucrose, 1xPBS. Tissues 

were sectioned to 16µm using a Microm 500HM cryostat. Differential interference 

contrast microscopy was performed using an Olympus AX80 microscope and images 
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were acquired with an Olympus DP70 camera. Primers (without RNA promoters) 

included: ANKRD1_F_ISH 5’-AAT TAA CCC TCA CTA AAG GGA GTT CCG TTC 

CGT CTC TTT GTC-3’ and ANKRD1_R_ISH 5’-ATT TAG GTG ACA CTA TAG AAG 

AGG TAC AAG AGA ACC GCC TTG C-3’; HRAS_F_ISH 5’-AAT TAA CCC TCA 

CTA AAG GGA GCC GGG GAG TAA ACT TCT GAG-3’ and HRAS_R_ISH 5’-ATT 

TAG GTG ACA CTA TAG AAG AGG CGT TGG CAA GTC ACA TTT-3’; 

SRV_02399_T3_S 5’-AAT TAA CCC TCA CTA AAG GGA GAG CGC ACG ATG 

TCT TTC TGT A-3’ and SRV_02399_SP6_AS 5’-ATT TAG GTG ACA CTA TAG 

AAG AGG CGG TGG TAC TCC AAC TCA T-3’; MBP_5.1_ISH 5’-TAA TAC GAC 

TCA CTA TAG GGA GGC CAG AAC CTT GGA ATC TGA and MBP_3.1_ISH AAT 

TAA CCC TCA CTA AAG GGA GGA CAA CGG GGT TAT CCT CAA. 

 

Results 

Peripheral nerve regeneration in early blastemas 

 We chose 14 dpa for harvesting DRGs because this time point represented the 

early limb bud stage of regeneration. It is known that extensive innervation takes place 

during the early stages of blastema formation. In order to verify that axons are innervating 

the early blastema, immunohistochemical staining of axons using the antibody RT-97 was 

performed in limbs collected 14 dpa as well as 28 dpa. Figure 5.1 shows there is a large 

number of axons throughout the epidermis and blastema at 14 dpa. These results indicate 

that 14 dpa is an appropriate time point to harvest DRGs to detect mRNA changes 

associated with axon outgrowth and support of early blastema growth. 

 

Identification of differentially expressed genes and similarities to mammalian studies 

 To identify gene expression alterations in DRGs following limb amputation, 

custom axolotl Affymetrix microarrays were used to compare mRNA abundances 

between DRGs isolated from uninjured and regenerating limbs (14 dpa). 109 of 4844 

probe sets were identified as significantly different in mRNA abundances between 0 and 

14 dpa. Changes from baseline mRNA levels ranged from 29.45 fold up-regulation 

(ankyrin repeat domain 1; ANKRD1) to -2.39 fold down-regulation (Na+/K+ transporting 

ATPase beta 2 protein). The majority of genes exhibited subtle fold level changes with 
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only 11 genes changing > 5 fold up-regulation and only two genes >2 fold down-

regulation from baseline. 63% of the differentially regulated genes (n = 69) correspond to 

salamander sequences (genes) that show high sequence identify to a presumptive human 

protein-coding locus; the remainder correspond to anonymous EST contigs. Fold changes 

are summarized for up-regulated genes with presumptive human orthologs in Table 1 and 

down-regulated genes in Table 2. The genes found in Table 2 are potential candidates for 

participating in the re-growth of sensory neurons into an early blastema or as possible 

candidates for the elusive NTF(s). 

 In order to identify similarities and differences between salamander and 

mammalian peripheral nerve gene expresssion, we compared results from this study to 

studies performed on mice and rat DRGs after peripheral nerve injury. Of the 30 most up-

regulated salamander genes that have a presumptive human ortholog, almost half (n = 13) 

are up-regulated following mammalian peripheral nerve injury (Table 5.3). Three other 

genes are well-recognized regulators of neurite outgrowth in mammalian neurons (PAK1 

and HRAS). These results suggest that the transcriptional response following limb 

amputation in salamander DRGs is similar to the DRG response produced following 

mammalian peripheral nerve injury. 

 Down-regulated genes are less similar to the transcriptional response for 

mammalian peripheral nerve injury. The most striking similarity is that much fewer genes 

are downregulated than upregulated in both salamanders and mammals. Another similarity 

is the down-regulation of genes coding for NA+/K+ and calcium ion channels (Valder et 

al., 2003; Xiao et al., 2002). Although the changed genes are not identical, both Na+/K+ 

transporting ATPase beta 2 protein  and ATPase, class VI, type 11A were down-regulated 

in salamander DRGs. 

 Several genes identified by microarray analysis were validated using real-time 

PCR on independent samples (Figure 5.2). In general, we found that genes identified as 

significant by microarray analysis were also found to change in the same direction by real-

time PCR. In situ hybridization was used to localize gene transcripts within DRGs 

because gene candidates may be expressed in other cell types including Schwann cells, 

immune cells, and support satellite cells. We found that ANKRD1, MMP9, and HRAS 
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were all expressed in cells resembling neurons. A probe specific to myelin basic protein 

was used to identify Schwann cells and myelinated regions (Figure 5.3). 

 

Similarities to retinal and spinal cord injury 

 To determine whether gene expression changes that take place following 

peripheral nerve injury are similar to transcriptional events following other nervous 

system injuries, we compared the gene list from this study to changed genes following 

salamander spinal cord injury (Monaghan et al., 2007) and optic nerve transection 

(Elizabeth Debski, unpublished). Table 5.4 contains 24 genes that were significantly 

regulated in all three injury models. This list includes genes shown to be up-regulated 

after mammalian peripheral nerve injury including ankyrin repeat domain-containing 1, 

MMP9, GADD45 as well as genes involved in the mitogen-activated protein kinase 

(MAPK) signaling pathway including H-RAS, C-MYC, PAK1, and GADD45.  

  

Potential candidates for nerve outgrowth and the neurotrophic factor(s) 

 Gene ontology analysis was performed on 69 unique genes in order to identify 

possible signaling pathways regulated in DRGs following limb amputation as well as 

possible NTF(s) candidates (Dennis et al., 2003). We found that the majority of 

differentially regulated genes were intracellularly located (n = 40). These intracellular 

gene products are involved in multiple signal transduction pathways and cellular processes 

associated with neuron growth included the MAPK signaling pathway (n = 6; p = 4.2E-3), 

apoptosis (n = 13; p = 7.4E-3), and transport (n = 18; p = 2.8E-2). Only eleven gene 

products were identified as being found extracellularly located, ten of which are predicted 

to be secreted (bolded in Tables 5.1 and 5.2). One salamander-specific gene, Sodefrin, is 

known to be secreted as a mating pheromone in some salamander species and is thus 

recognized as a secreted molecule in this study (Nakada et al., 2007). 

 Previous experiments have shown that the NTF(s) is made in the cell body, 

transported down axons to be secreted into the blastema, and may increase during 

blastema formation. We identified eight gene candidates that may fit this profile including 

matrix metalloproteinase 9, sodefrin, angiopoietin-like 2, leptin, 26 serine protease, 

follistatin, leukocyte cell-derived chemotaxin 2, and latent transforming growth factor 
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beta binding protein 3. Six of these gene products have also been shown to have 

mitogenic activity on certain mammalian cell types (Zhang et al., 2006; Hiraki et al., 

1996; Mori et al., 1997; Koli et al., 2008; Jenne et al., 1991; Maumus et al., 2008; Edqvist 

et al., 2008). Unfortunately, the expression of secreted genes is often low and in situ 

hybridization failed on all but MMP9. MMP9, sodefrin, ANGPL2, and leptin are also up-

regulated following spinal cord injury and optic nerve transection. In order to address 

whether previously identified gene candidates increased expression in our injury model, 

we performed real-time PCR on neuregulin (GGF2) and transferrin. Both genes increased 

mRNA abundance in DRGs at 14 dpa (Figure 5.2). Singer hypothesized (1978) that all 

nerves are capable of supporting regeneration if in great enough quantities. These genes 

that are up-regulated in multiple injury paradigms make promising candidates for 

supporting salamander limb regeneration. 

 

Discussion 

 The present study identified differentially regulated genes in DRGs during early 

blastema formation. The aim of the study was to identify regeneration-associated genes as 

well as possible candidates for the NTF(s). We compared the changed gene lists to 

changed genes in mammalian DRGs to identify an evolutionarily conserved set of genes 

that are associated with peripheral nerve regeneration. This comparison gave 12 genes that 

may be necessary for peripheral nerve regeneration in vertebrates. We also compared gene 

expression changes in the present study with differentially regulated genes following 

spinal cord injury and optic nerve transection. This analysis identified 24 genes associated 

with both central and peripheral nerve regeneration in the salamander. Interestingly, three 

of these genes, ANKRD1, MMP9, and GADD45, were also up-regulated in mammalian 

peripheral nerve injury. Lastly, eight up-regulated genes were predicted to be secreted 

from neurons, making them good candidates for the NTF. These genes will be important 

targets for functional analysis in order to understand the relationship between nerves and 

the early blastema. 

 One aim of the study was to identify possible genes responsible for inducing and 

supporting axon regeneration. Measuring mRNA level changes is appropriate for this task 

because de novo transcription is necessary for axon outgrowth of DRG neurons in 
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mammals and frogs (Plunet et al., 2002; Smith and Skene, 1997; Tonge et al., 2008). Two 

transcriptional regulators that were up-regulated more than 20 fold in this study, ANKRD1 

and CGRP3, are also highly up regulated in rat DRGs for at least 14 days following sciatic 

nerve crush (Stam et al., 2007). Over-expression of ANKRD1, but not CGRP3, enhanced 

neurite outgrowth in vitro; knockdown of ANKRD1 had the opposite effect. These results 

indicate that ANKRD1 is involved in neurite outgrowth of rat neurons. ANKRD1 was not 

expressed in embryonic rat spinal cords or following a dorsal root nerve crush, an injury 

that does not induce substantial neurite outgrowth. This suggests that ANKRD1 expression 

is associated with neurite regeneration and not just neurite outgrowth. We found ANKRD1 

to be up-regulated following salamander spinal cord injury, optic nerve transection, and 

peripheral nerve transection; all tissues that will eventually regenerate (Table 5.4). It is 

possible that ANKRD1 up-regulation regulates downstream transcriptional targets to 

promote axon regeneration in multiple injury paradigms. It is also possible that ANKRD1 

up-regulation following spinal cord injury and optic nerve crush may be related to the 

uncommon regenerative abilities of the salamander CNS. These results justify further 

investigation of ANKRD1 during salamander regeneration. 

Regeneration-associated genes, including GAP-43 (Bomze et al., 2001), RARβ 

(Corcoran et al., 2000, 2002), Cap23 (Bomze et al., 2001), α7 integrin (Gardiner et al., 

2005), and cJun (Raivich et al., 2004), have been identified in mammalian peripheral 

nerve injury models and shown to promote intrinsic growth ability. We found that GAP-

43 and CAP23 significantly changed according to microarray analysis (p = 4.46E-5 and 

2.0E-3, respectively), but did not meet fold level criteria (fold change = 1.46 and 1.18). 

The other RAGs above are not represented on the Ambystoma GeneChip. Real-time PCR 

showed that GAP-43 is up regulated and at 14 dpa, suggesting that the GAP43 probe-set 

underestimated mRNA level changes. GAP-43 and CAP23 are both highly expressed in 

uninjured DRGs (ranks 205 and 272 of 4844 probe sets), suggesting that salamander 

DRGs may express high levels of RAGs under normal conditions. Even though cJun is 

not included on the GeneChip, a closely related gene JunB was upregulated (fold change 

= 3.75; p = 3.35E-8). It is possible that JunB has a similar role to cJun because it has also 

been found to be up regulated in several mammalian peripheral nerve injury studies 

(Buschmann et al., 1998; Kenney and Kocsis, 1997). Fourteen up regulated genes were 
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associated with apoptosis. It is unknown whether programmed cell death takes place in 

DRGs following limb amputation in salamanders, but it is known that peripheral nerve 

injury in neonatal mice induces DRG neuron death (Himes and Tessler, 1989). 

Interestingly, sensory neuron cell death does not take place in adult mice, possibly due to 

up-regulation of HSP27 (Benn et al., 2002). It is possible that a similar protective 

mechanism takes place in salamander sensory neurons following limb amputation.  

 The comparison of changed genes between three nervous system injury models 

identified a list of 30 genes that changed in all three studies. Four of these genes, H-RAS, 

C-MYC, PAK1, and GADD45 are known to function in the mitogen-activated protein 

kinase (MAPK) signaling pathway. The MAPK signaling pathway is activated by the 

binding of extracellular growth factors at the cell surface and leads to multiple cellular 

responses including cell proliferation, differentiation, and survival of neurons. The small 

GTPase, H-RAS is an up-stream component of the MAPK signal transduction cascade that 

is a major contributor to the survival of neurons through multiple signal transduction 

pathways including PI-3Kinase/AKT and MAPK pathways (Kaplan and Miller, 2000 for 

Review). One target of the MAPK pathway is the phosphorylation and activation of the 

transcription factor C-MYC. Phosphorylated C-MYC then transcriptionally activates a 

wide range of target genes that regulate cell behavior (Pelengaris et al., 2002). PAK1 

(Smith et al., 2008) and GADD45 (Takekawa and Saito, 1998) are also involved in 

regulating MAPK signaling. PAK1 is upregulated in zebrafish retinal ganglion cells after 

optic axon injury (Veldman et al., 2007) and can control neurite outgrowth by regulating 

actin dynamics in neurons (Daniels et al., 1998; Rashid et al., 2001). The up-regulation of 

these genes in three nervous system regeneration models suggests that the MAPK 

pathway plays a role in nervous system regeneration in salamanders. The lack of up-

regulation of H-RAS, C-MYC, and PAK1 (data not shown) during limb regeneration 

supports the hypothesis that the role of these genes is specific to nervous system 

regeneration.  

 One criteria of the NTF(s) is that it is a secreted peptide or set of peptides (Singer, 

1952). Co-culture experiments of injured and uninjured spinal ganglia with blastema cells 

suggest that this secreted peptide(s) increases in regrowing neurons (Boilly and Bauduin, 

1988). Lastly, the NTF is thought to be found in all nervous tissue (Globus and Liversage, 
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1975; Globus and Vethamany-Globus, 1977; Kamrin and Singer, 1959; Singer et al., 

1976; Carlone and Foret, 1979; Choo et al., 1978; Deck, 1971; Lebowitz and Singer, 

1970). Several genes were identified as secreted and up-regulated in DRGs during 

blastema formation, spinal cord regeneration, and optic nerve transection including 

MMP9, Sodefrin, angiopoietin-like 2, and leptin (Table 3). MMP9 is likely not the NTF 

because it is highly expressed in all salamander injury models studied to date (Monaghan 

et al., 2009; Monaghan et al., 2007; Elizabeth Debski, personal communication; Cotter et 

al., 2008). It is possible that MMP9 activates growth factors or releases them from the 

blastema extracellular matrix (McCawley and Matrisian, 2001 for Review), but MMP9 

activity is also known to promote neurite elongation (Shubayev and Myers, 2004). 

A sequence (SRV_10508_a_at) with 33% amino acid homology to the sodefrin 

precursor-like factor found in the salamander Desmognathus monticola, was upregulated 

7.18 fold in DRGs and also upregulated in other nervous system injury models (Table 

5.4). Sodefrin is a sex pheromone in plethodontid salamanders that is secreted from male 

glands and influences female behavior (Palmer et al., 2007; Kiemnec-Tyburczy, 2009). 

We find that the axolotl sodefrin contains a secretion signal sequence (TargetP; 

Emanuelsson et al., 2000) and contains a Phospholipase A2 (PLA2) inhibitor domain. 

PLA2s play roles in inflammatory pathways and disease (Touqui and Alaoui-El-Azher, 

2001) and are found as toxic components of snake and insect venoms (Huang and Kini, 

1997). PLA2 inhibitors are expressed in snakes to block toxic PLA2 enzyme activity 

(Dunn and Broady, 2001 for Review). It may be that sodefrin’s role in limb regeneration 

is to decrease local inflammation by inhibiting PLA2 activity. There is support for 

sodefrin’s role in the nerve dependence of limb regeneration, because it belongs to the Ly-

6 family of proteins, the same protein family as prod1. Prod1 is the receptor to newt 

anterior gradient 2, a gene that can rescue regeneration in denervated limbs when 

overexpressed (Kumar et al., 2007). It will be interesting to see if either of these 

hypotheses is supported by functional analyses. 

The gene product of angiopoietin-like 2 (ANGPTL2) is a possible candidate for the 

NTF. ANGPTL2 is a member of the angiopoietin-like family of orphan ligands that are 

involved in angiogenesis and lipid, glucose, and energy metabolism (Hato et al., 2008). 

Morpholino knockdown of ANGPTL1 and ANGPTL2 in zebrafish cause severe vascular 
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defects because they increase endothelial cell death during development (Kubota et al., 

2005). Angiogenesis takes place early during blastema formation in newts, (Rageh et al., 

2002), which is not surprising considering that all growing tissues, including developing 

limbs require oxygen and nutrients normally supplied by vasculature (Vargesson, 2003). 

Smith and Wolpert (1975) proposed that vascularization is necessary for regeneration to 

take place and that denervation inhibits vascularization of the regeneration stump. Tassava 

(personal communication) has since shown that angiogenesis does take place in 

denervated newt stumps, but further characterization is needed. It is possible that 

ANGPTL2 is secreted by nerves into the early blastema and promotes angiogenesis. 

ANGPTL2 has also been shown to be a potent stimulator of hematopoietic stem cell 

expansion ex vivo (Zhang et al., 2006). Furthermore, a related molecule, ANGPTL6, 

promotes mouse keratinocyte expansion in vivo and increases epidermal regeneration 

(Oike et al., 2003). It will be interesting to find whether ANGPTL2 plays a mitogenic role 

in early blastema tissues.  

The last of the up-regulated, secreted molecules in all nervous system injuries is 

leptin. Leptin is a major regulator of energy metabolism in mammals normally expressed 

in adipose tissue (Zhang et al., 1994). A closely related salamander species, the Tiger 

salamander, also shows leptin expression in nervous system tissue (Boswell et al., 2006). 

It is possible that leptin is secreted from peripheral nerves to regulate energy expenditure 

in the blastema. The probe set for leptin gives a very low signal in all studies, suggesting 

that leptin mRNA levels may be low. Regardless, it may have a very focused affect on the 

innervated blastema tissue. 

 In order to address whether previously identified NTF candidates change in our 

injury model, real-time PCR was performed on genes previously proposed to be the NTF 

including neuregulin-1 (Wang et al., 2000) and transferrin (Mescher, 1997). Both of these 

genes were up regulated in our injury model, supporting the hypothesis that these may be 

the NTF(s). In conclusion, this study indicates that changes in mRNA levels of at least 

100 genes take place in DRGs following limb amputation. The results provide a set of 

new gene candidates for understanding the role of nerves during salamander limb 

regeneration. Intracellular genes such as ANKRD1, signaling pathways such as the 
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MAPK pathway, and extracellular candidates for the NTF(s) need to be followed up by 

experiments designed to assess the function of these genes during limb regeneration.  
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Table 5.1. Up-regulated genes in DRGs following limb amputation. 

Probe ID Human ortholog FC p-value 
SRV_03532_at ANKRD1 29.45 6.83E-09 
SRV_02024_at ADRP 21.76 1.21E-10 
SRV_00853_at CGRP3 21.14 3.32E-08 
SRV_00344_at Keratin 5 11.38 1.60E-07 
SRV_02399_a_at MMP9 10.98 5.74E-06 
SRV_03023_a_at GADD45γ 7.19 4.63E-08 
SRV_10508_a_at SODEFRIN 7.18 2.66E-07 
SRV_01031_at HSP27 4.4 4.55E-07 
SRV_01466_at NMB 4 1.34E-04 
SRV_04693_a_at DESMOCOLLIN 1 3.81 1.48E-08 
SRV_01351_at JUN B  3.75 3.35E-08 
SRV_03250_a_at ANGIOPOIETIN-LIKE 2 3.23 3.72E-10 
SRV_03753_at GADD45β 2.97 6.29E-05 
SRV_01323_a_at HMO1 2.95 3.19E-05 
SRV_00259_a_at LEPTIN 2.77 1.90E-05 
SRV_05557_at TMEM52 2.72 2.11E-05 
SRV_02773_at 26 SERINE PROTEASE 2.7 2.49E-05 
SRV_11456_at HRAS 2.68 3.36E-08 
SRV_01488_at PAK1 2.67 8.17E-08 
SRV_02611_a_at GLUCOCORTICOID REG. KINASE 2.59 4.40E-06 
SRV_02866_a_at TUMOR SUSCEPTIBILITY 101 2.56 1.28E-06 
SRV_02973_at IGF-LIKE 2 MRNA BINDING 3 2.32 7.76E-05 
SRV_09706_at GLUTAMINE SYNTHETASE 2.1 1.94E-05 
SRV_01307_a_at GLUTAMINE SYNTHETASE 2.07 1.14E-03 
SRV_03871_a_at SAR1 2.05 9.63E-08 
SRV_03246_at 6-PHOSPHOGLUCONOLACTONASE 2.04 1.93E-07 
SRV_03390_a_at FOLLISTATIN 2.01 2.74E-03 
SRV_01385_at LECT2 1.97 1.59E-03 
SRV_04964_a_at TUBULIN, BETA 6 1.91 1.40E-05 
SRV_01467_a_at GLYCOPROTEIN NMB 1.91 1.16E-04 
SRV_00140_at CDK1C 1.78 9.70E-05 
SRV_05752_at SYNCYTIN 1.76 1.67E-03 
SRV_05081_a_at SORTING NEXIN 18 1.76 1.83E-05 
SRV_00332_a_at G6PD 1.75 3.89E-06 
SRV_02600_a_at LEGUMAIN 1.75 3.68E-05 
SRV_04911_at TXNDC2 1.75 6.76E-07 
SRV_04735_at NUCLEAR PROTEIN UKP68 1.71 2.83E-06 
SRV_04996_at SOLUTE CARRIER FAMILY 7, 3 1.71 2.02E-03 
SRV_04524_at SOLUTE CARRIER FAMILY 30, 1 1.71 2.48E-06 
Table 5.1 continued on next page  
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Table 5.1 continued  

Probe ID Human ortholog FC p-value 
SRV_03758_a_at ARRESTIN DOMAIN CONTAINING 2 1.69 2.78E-05 
SRV_02687_s_at M6PRBP1 1.69 1.07E-05 
SRV_04819_a_at TRANSMEMBRANE PROTEIN 49 1.66 3.27E-04 
SRV_04501_a_at LATENT TGFB BINDING PROTEIN 3 1.6 2.14E-03 
SRV_03383_a_at PDCD61P 1.57 1.40E-06 
SRV_09231_at ADRP 1.55 3.65E-05 
SRV_00867_a_at DEFENDER AGAINST CELL DEATH 1 1.55 2.53E-06 
SRV_01305_at GLUTAMATE-CYSTEINE LIGASE 1.54 2.67E-04 
SRV_00515_at FLJ16008 PROTEIN 1.54 3.33E-03 
SRV_03108_a_at SPLICING FACTOR 2 1.54 1.09E-04 
SRV_05100_at GLUCURONOSYLTRANSFERASE P 1.54 1.56E-04 
SRV_00744_a_at ADRP 1.53 1.56E-03 
SRV_01442_at CMYC 1.51 3.13E-04 
SRV_01651_a_at RGS2 1.51 8.63E-04 
SRV_02584_a_at STATHMIN 1 1.51 1.04E-05 
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Table 5.2. Downregulated genes in DRGs following limb amputation. 

Probe ID Human ortholog FC p-value 
SRV_01118_a_at ATPASE, NA+/K+ TRANSPORTING, β2 -2.39 1.55E-06 
SRV_03357_at CD69 ANTIGEN -2.32 3.01E-03 
SRV_01275_at FIBULIN 1 -1.96 7.50E-04 
SRV_02395_a_at JUMONJI -1.93 5.10E-05 
SRV_02948_a_at FIBULIN 1 -1.79 9.16E-06 
SRV_04213_at RHO GTPASE ACTIVATING 27 -1.78 7.70E-06 
SRV_02599_a_at ATPASE, CLASS VI, TYPE 11A -1.75 2.59E-05 
SRV_02792_at SEMAPHORIN 3D -1.71 3.84E-03 
SRV_02442_a_at INTERFERON, ALPHA-INDUCIBLE -1.67 9.07E-04 
SRV_05046_at HORNERIN -1.65 2.55E-03 
SRV_02421_at PLASTIN 3 -1.6 1.85E-03 
SRV_01225_at CRYSTALLIN, ALPHA B -1.57 5.24E-05 
SRV_00038_at KIT LIGAND -1.55 8.19E-04 
SRV_01281_at FK506 BINDING PROTEIN 4, 59KDA -1.54 2.93E-03 
SRV_03517_a_at TNF, ALPHA-INDUCED PROTEIN 8 -1.54 1.05E-03 
SRV_05108_a_at PSAT1 -1.51 3.04E-03 
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Table 5.3. Upregulated genes that are also upregulated after mammalian peripheral 

nerve injury 

Probe ID 
Human 
ortholog FC Other studies 

SRV_00853_at CGRP3 21.14
Valder 2003 (U44948); Newton et al., 
2000; Costigan et al., 2002; Xiao et al., 
2002 

SRV_03023_a_at GADD45G 7.19 Tanabe et al., 2003; Befort et al., 2003; 
Nilsson et al., 2005;  

SRV_03753_at GADD45B 2.97 Tanabe et al., 2003 
SRV_01466_at NMB 4 Takeuchi et al., 2008 

SRV_03532_at ANKRD1 29.45 Stam et al., 2007; Boeshore et al., 2004; 
Costigan et al., 2002 

SRV_02399_a_at MMP9 10.98 Shubayev and Myers, 2004 
SRV_03390_a_at FOLLISTATIN 2.01 Nilsson et al., 2005 

SRV_01323_a_at HMO1 2.95 Magnusson et al., 1999; Takeuchi et al., 
2008; Boeshore et al., 2004 

SRV_01031_at HSP27 4.4 

Costigan et al., 2002; Tandrup et al., 
2000; Lewis et al., 1999; Williams et al., 
2006; Costigan et al., 1998; Xiao et al., 
2002 

SRV_04964_a_at TUBULIN B6 1.91 costigan et al., 2002 

SRV_01351_at JUNB 3.75 Buschmann et al., 1998; Kenney and 
Kocsis, 1997 

SRV_09706_at GLUL 2.1 Boeshore et al., 2004 
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Table 5.4. Changed genes in three nervous system injury studies. 

Probe ID Gene Name 
DRG 
FC 

Retina 
FC 

SC 
FC  

SRV_03532_at ANKYRIN REPEAT DOMAIN 1 29.45 4.04 4.13 
SRV_02024_at AP1S3 21.76 2.97 2.74 
SRV_08647_a_at NO KNOWN ORTHOLOG 16.96 4.36 6.49 
SRV_02399_a_at MMP9 10.98 1.99 5.53 
SRV_03023_a_at GADD45γ 7.19 3.57 2.4 
SRV_10508_a_at SODEFRIN 7.18 21.53 1.75 
SRV_09432_at NO KNOWN ORTHOLOG 4.24 1.59 1.54 
SRV_01466_at GLYCOPROTEIN NMB 4 4.62 20.65 
SRV_04693_a_at DESMOCOLLIN 1 3.81 2.31 1.8 
SRV_03250_a_at ANGIOPOIETIN-LIKE 2 3.23 1.5 5.33 
SRV_00259_a_at LEPTIN 2.77 5.01 2.18 
SRV_11456_at H-RAS 2.68 2.34 2.05 
SRV_01488_at PAK1 2.67 2.28 1.68 
SRV_09852_at NO KNOWN ORTHOLOG 2.13 1.59 1.92 
SRV_09045_at NO KNOWN ORTHOLOG 1.94 1.55 4.88 
SRV_04964_a_at TUBULIN, BETA 6 1.91 3.84 3.2 
SRV_01467_a_at GLYCOPROTEIN NMB 1.91 3.92 7.54 
SRV_04911_at TXNDC2 1.75 2.28 1.96 
SRV_02687_s_at M6PRBP1 1.69 1.54 1.69 
SRV_04819_a_at TMEM49 1.66 2.11 3.98 
SRV_09231_at ADFP 1.55 1.99 3.43 
SRV_03108_a_at SPLICING FACTOR 2 1.54 2.31 1.56 
SRV_00744_a_at ADFP 1.53 1.94 3.85 
SRV_01442_at C-MYC 1.51 1.86 1.54 

 

 

 

 

 

 

 

 

 

 

 



 

 116

Figure 5.1 Immunohistochemical staining of neurites in a blastema at 14 dpa. RT-97 

antibody (Red) was used to stain axons in a regenerating limb and Hoescht 33258 was 

used to stain nuclei. The WE is seen on the right overlying a small blastema. 
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Figure 5.2. Real-time PCR of genes that change in DRGs following limb amputation. 

Grey bars represent log2 transformed fold changes according to real-time PCR. White 

bars represent log2 transformed fold changes according to microarray analysis. Error bars 

= + standard error of the mean. GGF and Transferrin were not represented on the 

microarray platform. 
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Figure 5.3 In situ hybridization of changed genes in DRGs during limb regeneration. 

DRGs collected at 14 dpa are represented in A,C,D,F,G,I,J, and K. Sense probes are 

represented in C,F,I, and K. DRGs collected at 0 dpa are represented in B,E, and H. A-C) 

ANKRD1, D-F) MMP9, G-I) HRAS, J-K) MBP. Scale bar = 100µm. 
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Introduction 

 Salamanders have an unusual ability to repair injuries and regenerate missing 

appendages. This ability traces, in part, to cellular responses that modify the extracellular 

environment in a way that promotes cell survival, proliferation, differentiation, and 

patterning. Matrix metalloproteteinases (MMPs) are a family of proteolytic enzymes that 

regulate cell-cell and cell-extracellular matrix (ECM) interactions by cleaving 

extracellular substrates. These proteolytic events alter the structural composition of the 

ECM and regulate the availability of growth factors and cytokines (Page-McCaw et al., 

2007; McCawley and Matrisian, 2001). Studies using rodent models have implicated 

MMP function in development, tissue remodeling, immunity, and disease (Nagase et al., 

2006). MMPs also participate in regenerative responses across a wide range of animals 

including hydra foot and head regeneration (Leontovich et al., 2000; Shimizu et al., 2002), 

drosophila imaginal disc regeneration (McClure et al., 2008), sea cucumber intestinal 

regeneration (Quiñones et al., 2002), zebrafish fin regeneration (Bai et al., 2005), 

amphibian limb regeneration (Vinarsky et al., 2005), and mouse liver regeneration 

(Alwayn et al., 2008). However, it is unclear exactly when MMPs participate, which 

MMPs participate, or how MMPs are regulated in these regeneration paradigms. It will be 

important to address these issues in order to assess the therapeutic potential of MMPs in 

regenerative medicine.  

 MMPs are regulated at multiple cellular levels (reviewed by Yan and Boyd, 2007). 

Following transcription and translation into an inactive enzyme, MMPs are held inactive 

through binding of the pro-peptide domain to the catalytic site via a zinc ion (Figure 6.2; 

6.3). MMPs are then activated by proteolytic cleavage of the pro-peptide domain, freeing 

the catalytic domain (HEXXHXXGXXH) to cleave substrates. Some MMPs also contain 

domains thought to evoke substrate specificity such as fibronectin-like and hemopexin-

like domains (Nagase et al., 2006; Clark and Cawston, 1989, Chung et al., 2004). Lastly, 

endogenous inhibitors of MMPs termed tissue inhibitors of MMPs (TIMPs) bind to MMP 

proteins and regulate their local activity (Nagase et al., 2006). The multi-level nature of 

MMP regulation ensures that they are only activated when and where they are needed. 

The importance of MMP regulation is evident in diseases associated with unchecked 
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MMP activity such as cancer, rheumatoid arthritis, cardiovascular disease, vanishing bone 

syndrome, atherosclerosis, fibrosis, and ulcers (reviewed by Visse and Nagase, 2003). 

 MMP activity was first detected in regenerating salamander tissues over 40 years 

ago (Grillo et al., 1968). Since then, a handful of studies have characterized MMP mRNA 

levels or protein activity during salamander regeneration (Dresden and Gross, 1970; Yang 

and Bryant, 1994; Vinarsky et al., 2005; Kato et al., 2003; Chernoff et al., 2000; Yang et 

al., 1999; Miyazaki et al., 1996; Park and Kim, 1999; Kato et al., 2003). Vinarky et al. 

(2005) also showed that newt limb regeneration can be partially inhibited if treated with a 

wide-spectrum MMP inhibitor for 60 days. These data suggest that MMPs are necessary 

for appendage regeneration, but it is unkown which MMPs are necessary for regeneration 

or when they may participate in the process. In order to address these questions, we 

collected MMP sequences from newly-developed salamander genomic databases and 

characterized their expression throughout regeneration (Putta et al., 2004; Monaghan et 

al., 2009).  

 

Materials and Methods 

Sequence identification and alignments 

 Matrix metalloproteinase sequences were identified for the axolotl by searching 

the Ambystoma EST database (www.ambysoma.org) and NCBI databases. These 

sequences were assembled with annotated vertebrate MMPs to develop gene models. 

Sequence assembly was accomplished using Seqman (DNASTAR). As many of these 

gene models were partial sequences, it was necessary to extend sequences by PCR and 5’ 

or 3’ RACE (Invitrogen). All gene models have been deposited in the NCBI non-

redundant nucleotide database. 

 

Animal model, RNA extraction, and real-time RT-PCR 

 All surgical manipulations were carried out on Ambystoma mexicanum according 

to the University of Kentucky Animal Care and Use guidelines (IACUC #01088L2006). 

Tail amputations were made at the bottom 1/3 of the tail. Total RNA was isolated from 

three tails collected 1 mm proximal to the injury plane at 0, 3, 6, 12, 24 hpa, 7, and 14 dpa 

(mass = 10.34 + 1.97 standard deviation [SD]; snout-vent length [SVL] = 6.42 + 1.40) 

www.ambystoma.org
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using TRIzol Reagent (Invitrogen) followed by Qiagen Mini columns (Qiagen). cDNA 

was produced using poly-T primers provided in the iScript Select cDNA synthesis Kit 

(Bio-Rad). Real-time PCR was performed in 10 µl reactions including 300 pM forward 

and reverse primers, 10 ng cDNA, and FastStart Universal SYBR Green Master Mix 

(Roche). Primers used are shown in Table 6.1. PCR reactions and melt curve analysis 

were run on a StepOne Real-time PCR System (Applied Biosystems). Gene expression 

values (Ct) were produced for three biological replicates by averaging Ct values for two 

technical replicates. The ∆∆Ct method was chosen to calculate ratios (Livak and 

Schmittgen, 2001). Ct values were normalized to a control gene (GAPDH) and then a 

ratio (R) was calculated using the mean of the 0 hpa samples. R-values were log2 

transformed for statistical analysis and graphical presentation (Fig. 4,5,7). One-factor 

analysis of variance was performed followed with Fisher’s PLSD tests to test for 

significance between time points (Stat-View).  

 

In situ hybridization and histology 

 Tail tissues were sectioned in the transverse and coronal planes for histology and 

in situ hybridization. Figures 6.4L, 6.5M, 6.6H, and 6.7G show cartoons of a typical 

transverse section through an axolotl tail. In the middle of the axolotl vertebral column is 

the centrum, containing remnants of the notochord. The spinal cord lies dorsal to the 

centrum within the neural arch. The hemal arch lies ventral to the centrum, containing the 

caudal artery and vein. Processes (apophyses) are represented as circles at the dorsal or 

ventral end of the arches. It was difficult to distinguish between cartilagenous and ossified 

vertebral tissues. For this reason, cells lying within matrix lacunae of processes were 

referred to as osteocytes, multinucleated cells surrounding processes were referred to as 

osteoclasts, other cells within the centrum or arches were referred to as chondrocytes, and 

cells on the external surface of vertebrae were referred to as perichondrial fibroblasts. 

Probe templates were created from PCR products produced by either M13 primers 

(cloned MMP fragments into a pGEM-T vector) or MMP-specific primers appended with 

SP6 and T3 promoters (cDNA produced from regenerating tail RNA). PCR products were 

cleaned up using Qiagen PCR purification kits (Qiagen). 200-500 ng of PCR product was 

incubated at 37 ºC for 2 hrs in a 10 µl digoxygenin-labeling in vitro transcription reaction 
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(Roche DIG-RNA labeling kit). DNA was degraded for 20 min. with 10 U DNase I, 

stopped with 2 µl 200 mM EDTA, and cleaned up on Sigmaspin Sequencing Reaction 

Clean-up columns (Sigma). RNA was quantified on a nanodrop spectrophotometer, 

diluted to 50 ng/µl in THE RNA storage solution (Ambion), and stored at -80°C. Tissue 

samples were fixed in freshly made 4% paraformaldehyde / 1XPBS at 4 °C overnight, 

cryoprotected at 4 °C by immersion in 10% sucrose / 1xPBS for 1 hr, 20% sucrose / 

1xPBS for 1hr, and 30% sucrose / 1xPBS overnight. Tissues were mounted in OCT 

medium, sectioned at 16 µm, and used after 2 hr of drying at room temperature. 

Hybridization mix included 50% formamide, 10 mM Tris-Cl (pH 8.0), 200 µg/ml yeast 

tRNA, 10% dextran sulfate, 1x Denhardts’s solution, 0.25% SDS, 1 mM EDTA, and 1 

µg/ml of DIG-labelled RNA probe. Incubations were performed at 64 °C overnight in a 

humidified chamber and detected with an overnight incubation in an NBT/BCIP solution 

(Roche). Sections were mounted with Permount, imaged using an AX-80 Olympus 

microscope, and photographed using an Olympus DP-70 camera. Figures were assembled 

using Photoshop 7.0 and brightness and contrast were changed to whole figures. Tissues 

were treated identically up to sectioning for histology except tissues were decalcified with 

500 mM EDTA for 2 days. Tissues were then sectioned at 16 µm and stained with Eosin 

Y and Gill’s hematoxylin #2 (Sigma-Aldrich). 

 

Results and Discussion 

Identification of MMPs in the salamander 

 To identify MMPs in the Mexican axolotl, the Ambystoma EST database 

(www.ambysoma.org) and NCBI databases were searched for presumptive salamander 

MMPs. These sequences were assembled into 16 contiguous sequences (contigs) and 

extended using PCR, 5’ RACE, and 3’ RACE. Contigs then were used as query sequences 

to search the NCBI human RefSeq protein database (BLASTX; Table 6.2). Eight of the 16 

contigs yielded full-length protein coding sequences (relative to human proteins). The 

other contigs ranged from 96.7% (MMP2) to 15.5% (MMP16) coverage of human MMP 

protein sequences. Table 6.2 shows the best human hit and best non-redundant hit for each 

of the 16 presumptive MMP sequences. Sequence similarity alone was insufficient to 

determine the orthology of many MMP sequences so contigs were named according to 

www.ambystoma.org
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their best human hit or their presumptive orthologs previously identified in the Japanese or 

American newts. Overall, sequences similar to four collagenases (aCola, aColb, aColc, 

aCol3), two gelatinases (aMMP2, aMMP9), four stromelysins (aMMP3/10a, aMMP3/10b, 

aMMP3/10c, aMMP11), three membrane-type MMPs (aMMP14, aMMP17, aMMP23), 

three other MMPs (aMMP7, amphMMP, aMMP19), and a tissue inhibitor of MMP 

(atimp1) were identified. Approximate coverage of each predicted protein sequence to its 

most similar human MMP is shown in Figure 6.3. Alignment of predicted protein 

sequences for MMPs with > 50% coding sequence coverage shows the high conservation 

among the MMPs in the propeptide domain, catalytic domain, and hemopexin-like domain 

(Figure 6.2). Notice the fibronectin-like repeats in aMMP2 and aMMP9 that define 

vertebrate gelatinases. Also notice the highly variable hinge domain located between the 

catalytic and hemopexin-like domains. Below, we  show the association of the identified 

MMPs with aspects of tail regeneration. Each MMP family is treated separately and a 

summary of expression patterns is provided in Table 6.3. 

 

Wound epithelium formation and function  

 The wound epithelium (WE) is a critical element of salamander appendage 

regeneration because preventing WE formation inhibits regeneration (Goss, 1956; 

Mescher, 1976; Tassava and Garling, 1979; Thornton, 1957; Lheureux, 1983). It is 

possible that MMP activity in the WE is necessary for regeneration. We found that four 

MMPs were strongly expressed in the WE basal keratinocytes during the first 24 hpa 

including aMMP9 (Fig. 6.5A,C), aCola (Fig. 6.4A,D,J), aColb (Fig. 6.4B,E), and 

aMMP3/10a (Fig. 6.6A,C,G). aMMP9 expression was seen only at 12 hpa in basal 

keratinocytes of the epidermis and was lost by 24 hpa (Figure 6.5C,E,G). It is possible that 

aMMP9 expression in the epidermis is associated with keratinocyte migration and is not 

needed for downstream WE function. Similar observations have been made by others 

(Yang et al., 1999; Satoh et al., 2007, 2008). Indeed, MMP9 is up-regulated in migrating 

keratinocytes in mammals (Mohan et al., 1999) and it can cleave collagen type IV, the 

major constituent of basement membranes. Collagen IV proteolysis has been shown to 

expose cryptic sites that promote cell migration (Giannelli et al., 1997; Xu et al., 2001). 
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Thus, it is possible that the role of MMP9 is to cleave collagen IV located in the basement 

membrane, leading to epithelial cell migration. 

aCola, aColb, and aMMP3/10a expression were all observed at 24 hpa. The 

strongest expression was always observed in basal keratinocytes, but some expression was 

observed where migrating epithelial sheets overlay the wound surface (Figure 6.4D,E, 

6.6C,G). Six hypotheses have been proposed for the function of MMP expression in the 

WE: 1) MMPs may initiate and support keratinocyte migration and wound closure. This 

hypothesis is supported by mammalian studies showing defects in wound closure after 

disrupting MMP function (Bullard et al., 1999; Agren et al., 1999, 2001; Lund et al., 

1999; Mirastschijski et al., 2002, 2004; Pilcher et al., 997; Dumin et al., 2001) 2) MMPs 

may participate in phagocytosis of wound debris from the wound epidermis (Singer and 

Salpeter, 1961; Reviewed by Carlson, 2007). 3) MMPs may prevent basement membrane 

formation under the WE, promoting epithelial/mesenchymal interactions (Yang et al., 

1999). Epithelial/mesenchymal interactions are thought to be necessary to support 

blastemal growth (Tsonis, 1996). 4) MMPs may initiate blastema formation by promoting 

histolysis of underlying tissue. This is supported by experimental evidence showing that 

histolysis does not take place if the WE is not formed (reviewed by Singer and Salpeter, 

1961). 5) MMPs may release growth factors such as FGFs from the ECM to make them 

available to blastemal cells (Hondermarck and Boilly, 1992; Boilly et al., 1991). 

Mammalian studies have shown that MMPs 1 and 3 can cleave ECM components to make 

FGF bioavailable to cells (Whitelock et al., 1996). 6) MMP activity may promote 

regeneration by preventing scar formation. This is supported by the association of scar 

formation and regenerative ability in fetal mammalian skin (Bullard et al., 1997; Ferguson 

and O’Kane, 2004) and the observation that a scar-like epidermis formed when newt 

limbs were treated with GM6001 (Vinarsky et al., 2005). It is likely that these MMPs may 

have redundant roles and work synergistically in WE formation and function. The exact 

function of the WE is just starting to be appreciated during appendage regeneration, but it 

is clear that MMPs will be intimately involved in these functions (Campbell and Crews, 

2008). 

 

Histolysis and blastema formation 
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 One surprising observation in this study was the low MMP expression in muscle 

cells undergoing histolysis versus strong staining in cartilage, bone, and epidermis. 

Similar observations were made during limb regeneration for MMP3/10b and MMP9 in 

the Japanese newt (Kato et al., 2003) and MMP9 in larval axolotls (Yang et al., 1999), but 

strong expression was observed in blastema cells for MMP9 and collagenase in the 

American newt (Vinarsky et al., 2005). We found some expression of aCola (Figure 

6.4D,J), aColb (Figure 6.4E), aMMP9 (Figure 6.5G), and TIMP1 (Figure 6.7D) transcripts 

in areas of tissue histolysis. In particular, aColb was expressed in cells resembling 

neutrophils and leukocytes throughout the early wound site (Fig. 4B,K). Human MMP8, 

or neutrophil collagenase, is expressed in neutrophils following injury, suggesting that 

aColb and human MMP8 play similar functions (Van Lint and Libert, 2006). Regardless, 

muscle fibers seemed to be stained the least of all tissues. It is possible that the WE, bone, 

and inflammatory cells are secreting the necessary MMPs to promote muscle histolysis 

and blastema formation. Further investigation is needed to see if MMP activity is needed 

for muscle histolysis. 

 

Bone and cartilage remodeling 

 One of the most striking expression patterns observed was broad MMP expression 

in bone and cartilage found throughout the vertebrae. We observed expression in cells 

resembling osteocytes, osteoclasts, perichondrial fibroblasts, periosteal fibroblasts, and 

chondrocytes. By 24 hpa, strong expression was observed by aMMP9 (Figure 6.5E), 

aCola (Figure 6.4D,J), and aCol3 (Figure 6.4F) in vertebrae. Expression of these genes 

extended out to 14 dpa, suggesting that they play roles in bone and cartilage remodeling. 

Indeed, knockout mice of MMP9 and Col3 show growth-plate defects (Vu et al., 1998; 

Stickens et al., 2004; Inada et al., 2004), suggesting that the function of these genes may 

be conserved between development in mammals and regeneration in salamanders. 

 Two MMPs were found to be up-regulated only during later stages of regeneration 

including aMMP2 (Figure 6.5B) and aMMP14 (Figure 6.7A). aColc showed a similar 

gene expression pattern, but was also expressed earlier (Figure 6.4C). Each of these genes 

was also expressed in similar cell types including chondrocytes and perichondrial 

fibroblasts of the centrum (Figure 6.4O,6.5K,6.7C). Interestingly, aMMP3/10b was also 
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found to be expressed in osteocytes at 14 dpa. Given the short time frame studied here, 

these mRNAs likely continue to increase beyond 14 dpa. Mouse knockouts of MMP2 and 

MMP14 have defects in bone and/or connective tissue formation and remodeling (Stickens 

et al., 2004; Inada et al., 2004; Holmbeck et al., 1999; Zhou et al., 2000; Inoue et al., 

2006; Page-McCaw et al., for Review). Also, two out of three human skeletal diseases 

caused by loss-of-function MMP mutations are associated with coll3 and MMP2 

(Martignetti et al., 2001; Kennedy et al., 2005). MMP14 is also known to activate MMP2 

in vivo and function redundantly (Nagase and Woessner, 2000; Oh et al., 2004). This 

evidence suggests that aCol3, aMMP2, and aMMP14 may participate similarily during the 

reformation of vertebrae, especially the cartilage tube, during tail regeneration. Other 

studies are needed to test whether these MMPs are critical at the cartilage-forming stages 

of salamander appendage regeneration.  

 

Nervous system and vascular MMP9 expression 

 aMMP9 transcripts were localized to multiple tissues including the nervous system 

and the vasculature (Fig. 5H,J). aMMP9 has previously been localized to spinal cord 

tissue during the early stages of spinal cord regeneration in the axolotl (Monaghan et al., 

2007) as well as dorsal root ganglia neurons during limb regeneration (personal 

observations). MMP9 has been shown to be involved in neurite elongation in mammals 

(Shubayev and Myers, 2004). aMMP9 expression in multiple CNS injury paradigms 

suggest that it may have a role in nervous system injury or regeneration. Functional 

analyses are necessary to test this hypothesis. 

aMMP9 was also expressed in areas resembling vascular formation at 21 dpa. It 

was surprising to find that aMMP9 was not expressed elsewhere in the regenerating tail at 

this time point. Support for the role of aMMP9 in vascular remodeling comes from mouse 

studies showing that MMP9 mutant mice have defects in angiogenesis as well as MMP9 

mutants causing defects in smooth muscle cell blood vessel ensheathment (Vu et al., 1998; 

Chantrain et al., 2004). Overall, aMMP9 was expressed in a wide array of cell types in 

this study and likely is associated with multiple functions during tail regeneration. 

 

Other MMPs and TIMP1 expression during tail regeneration 
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 Several other MMPs were identified that may further studies of axolotl 

development and regeneration. A novel sequence was identified that contains all predicted 

MMP protein domains (Fig. 2; amphMMP); this sequence shows poor alignment to 

previously characterized mammalian and salamander MMPs. This sequence was named 

amphMMP (amphibian-specific MMP) because it had homology to a hypothetical 

Xenopus tropicalis protein (60% similarity; AAI55488), a translated EST sequences from 

Xenopus laevis (BJ032306), and an MMP protein found in the domesticated silkworm 

(Bombyx mori; NP_01116499; 37% similar). amphMMP may be the Xenopus genes 

XMMP (NP_001079285; 26% similarity) or collagenase 4 (AAH84654; 38% similar), but 

their low homology to these MMPs suggests that a yet unidentified MMP is present in the 

amphibian genome. Another sequence named aMMP7 showed similarity to H. sapiens 

collagenase 3 (57/% similar) but contained a stop codon sequence at predicted amino acid 

291. An identical transcript has been previously characterized and named collagenase 3 

(Yang et al., 1999). aMMP7 is 59% similar to aMMP3, suggesting that it is transcribed 

from a different genomic loci. Multispecies alignments of the predicted aMMP7 protein 

sequence shows that it truncates at a similar region in the H. sapiens and X. laevis 

matrilysin proteins (Fig. 2; Harrison et al., 2004; NP_002414; NP_001079682). Further 

work is needed to confirm orthology, including possibly genome mapping. Contigs 

similar to several other MMPs including membrane type MMPs 17 and 23, stromelysin 

MMP11, and MMP19 were identified, but were either not expressed during tail 

regeneration or did not change expression (data not shown). It will be necessary in the 

future to address whether these genes are pseudogenes and transcribe functional MMPs. 

These sequences will be valuable for comparisons to MMPs in other vertebrates.  

 

Conclusion 

 In summary, this study identified several previously unidentified MMPs in the 

Mexican axolotl and showed when and where these genes are expressed during 

regeneration. Our results suggest that most MMPs are highly orchestrated - they are 

expressed during regeneration in specific tissue types and only at certain times. The 

overlaping expression patterns of MMPs also suggest that MMPs have redundant 

functions during regeneration. The results presented here suggest hypotheses for how 



 

 129

MMPs participate in regeneration, when they participate, and upon which tissues they 

may target. These insights bring us closer to understanding the roles of MMPs in complex 

tissue regeneration. 
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Table 6.1. Primers used for real-time PCR and in situ hybridization. RT-PCR stands 

for real-time PCR. ISH stands for in situ hybridization. Each ISH primer contained either 

a T3 or SP6 promoter sequence appended to the 5’ end of the primer. 

 

Gene RT-PCR ISH 
aCola_F CACCCGAAATCTGTGACAA AGTTCAGTCTTCCCCAGGATG 
aCola_R CGGCGCCAGAAGAATC AAGAACGTTTTCCCTGTTGC 
aColb_F TGGACCAAGTTCGCTTGT ACAGGAGCTCAGGGAAGAATG
aColb_R GCTTGCGGATGTTCTTTG AAGTGGACGTCTCCACCAAC 
aCol3_F GTGTGGAGCGAGGTTACG CTGCATCGATGGATAGCTCA 
aCol3_R TCGGGTTCCAAAGGAGAT GGCAAACTCGACGAAGAGAC 

aMMP9_F GAATGCACATGGACCAGAA AGCGCACGATGTCTTTCTGTA 
aMMP9_R TTGGCACAGAACATTGGAG GCGGTGGTACTCCAACTCAT 
aMMP2_F ACCCGTTGCAAGAAAGAAG CGTTATGTTCGACGTTCCCT 
aMMP2_R GTGTTGGAGTCCAGCTTCC CTTGGACTGGTGTCCCTGAT 

aMMP3/10a_F ACCCGTTGCAAGAAAGAAG clone 
aMMP3/10a_R GTGTTGGAGTCCAGCTTCC clone 
aMMP3/10b_F TGGAAGAAGACTGCGTTGA ACCTTCCACTCCTGCTGCTAC 
aMMP3/10b_R ACACTTTGAAGGCCCTTTG GCCCGTCAAATGGATAGAAA 

aMMP14_F AGGACTTCCCAGCGACAT ACACGCGGTTATCTCGTACC 
aMMP14_R CGTCAAACACCCAATGCT TCCGTGATGGACATGAGAAA 
aTimp1_F CGAAGAGCCAAGCTGGA AAGACGGCCTTCTGCTATTCA 
aTimp1_R CATCGGGGTGTAGAGGAAC TAGATATGGGCCAGTCCTCG 

aMMP16_F ACTGGCGCTATGACGAGA  
aMMP16_R GGCTAGGGAGGTGTGTCC  
aMMP23_F AGGACCGTGTTCTCACCA  
aMMP23_R GCACAAGGAGGGGAAAAG  
aMMP11_F TCAGCCAGACAGCCAGAT  
aMMP11_R GGTCAGGTGGGTCCTCTC  
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Table 6.2. Best human protein hits for 16 axolotl MMPs. % Cov. = Percent coverage of 

the salamander sequence compared to the human protein. % Id. = Percent identical/similar 

between axolotl and human protein. Best NR hit = best non-redundant NCBI protein 

database hit. Nv = Notophthalamus viridescence, Cp = Cynops phyrrhogaster, Xt = 

Xenopus laevis, Xt = Xenopus tropicalis, R = Rabbit, Rr = Rattus rattus, Op = Opossum.  

 

Name Human hit % Cov. E-value Best NR hit % Id. E-value 
aCola MMP1 100 5.00E-156 Nv coll 83/91 0 
aColb MMP1 100 4.00E-143 Nv coll 63/78 8.00E-175 
aColc MMP10 96.6 9.00E-132 Nv coll 61/75 3.00E-165 
aCol3 MMP13 100 2.00E-176 Cp col3 81/89 0 

aMMP2 MMP2 96.7 0 Xl MMP2 82/90 0 
aMMP9 MMP9 88 0 Nv MMP9 90/95 0 

aMMP3/10a MMP3 100 3.00E-147 Nv 3/10a 80/89 0 
aMMP3/10b MMP3 100 1.00E-141 Cp 3/10b 72/83 0 
aMMP3/10c MMP3 100 3.00E-148 Nv 3/10a 75/85 0 
amphMMP MMP19 100 3.00E-53 Xt hyp. 60/74 0 

aMMP7 MMP13 100 2.00E-83 R MMP13 59/74 1.00E-86 
aMMP11 MMP11 23.6 1.00E-46 Xl MMP11 86/92 3.00E-56 
aMMP14 MMP14 72.6 5.00E-172 Xt MMP14 78/86 2.00E-178 
aMMP17 MMP17 15.5 8.00E-19 Rr MMP17 42/60 1.00E-19 
aMMP19 MMP19 27.4 8.00E-50 Xt hyp. 81/92 7.00E-64 
aMMP23 MMP23B 51.8 5.00E-80 Op MMP23 78/89 5.00E-90 
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Table 6.3. Summary of MMP and Timp1 gene expression patterns. This table 

summarizes in situ hybridization results for MMPs and timp1. Figures 6.4-6.7 show how 

strong each gene is expressed in particular tissue types. E, Epidermis; F, perichondrial 

fibroblasts; MH, area of muscle histolysis; M/N, macrophage/neutrophils; Ch, centrum 

chondrocytes; Oc, osteoclast; N, neuron; V, vasculature; O, osteocytes; Na, was not 

assayed; --, no expression observed. 

 

Name 12 hpa 24 hpa 7 dpa 14 dpa 21 dpa
aCola E,F E,F,MH Oc Oc Na 
aColb E,M/N E,F,M/N Ch Ch Na 
aCol3 Na Ob,F Ob,F Ob,F Na 

aMMP2 -- -- Ch Ch Na 
aMMP9 E,Ob,F, F,M/N,MH,Ob,Ch O,Oc,F,Ch O,Oc,F,Ch V,N,F 

aMMP3/10a E E -- -- Na 
aMMP3/10b -- -- Ob Ob Na 

aMMP14 -- -- Ch,F Ch,F Na 
atimp1 Na E,MH,F Ch,F Ch,F Na 
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Figure 6.1. Hematoxylin-Eosin staining was performed on cryosections at 3 hpa (A), 

6 hpa (B), 12 hpa (C), 24 hpa (D), and 21 dpa (E). Scale bar 200 µm 
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Figure 6.2. Predicted protein sequence alignment of axolotl MMPs. Sequences 

covering >50% of the presumptive protein coding sequence were used for the multiple 

sequence alignment. The top box shows the conserved cysteine switch region in the 

propeptide domain. The second box highlights the putative zinc-binding domain necessary 

for catalytic activity. The top sequence underlined highlights the catalytic domain and the 

bottom sequenced underlined represents the hemopexin domain. Notice the large insert 

within the catalytic region of aMMP2 and aMMP9 that represents the fibronectin-like 

repeats. 
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Figure 6.3. Cartoon showing all 16 MMPs identified in this study. Black lines 

represent approximate coverage of the predicted coding sequence and amino acid (aa) 

lengths are presented to the right. The top cartoon represents the prototypical MMP 

protein. Other cartoons represent domains found in each family of MMPs including 

collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others.  
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Figure 6.4. Temporal (A,B,C) and spatial (D-K,M-O) expression of aCola 

(A,D,G,J,M), aColb (B,E,H,K,N), and aCol3 (C,F,I,O) during tail regeneration. 

Temporal gene expression patterns assayed by real-time quantitative PCR are shown in A, 

B, and C. All y-axes are log-2 fold changes from the average day 0 samples. Spatial 

expression is shown at 24 hpa (D-K) and 14 dpa (M-O). Note the specific staining when 

antisense probes were used (D,E,F,J,K,M,N,O) and the lack of staining when sense probes 

were used (G,H,I). J and K are close-up photos of D and E. L represents a tail cross 

section showing approximate locations of images. Dorsal is upward. Horizontal lines 

represent coronal sections (D-K) and boxes represent cross sections (M-O). SC, spinal 

cord. Error bars = + standard error of the mean (SEM). Scale bar = 100 µm. 
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Figure 6.5. Temporal (A,B) and spatial (C-L) expression patterns of aMMP9 (A,C-J) 

and aMMP2 (B,K,L) during tail regeneration. Temporal gene expression patterns 

assayed by real-time quantitative PCR are shown in A and B. All y-axes are log-2 fold 

changes from the average day 0 samples. Spatial expression is shown at 6 hpa (C,D), 24 

hpa (E-H), 14 dpa (I,K,L), and 21 dpa (J). Sense probes were used on sections shown in 

D, F, and L. G is a close-up of E. Arrows indicated neuron-like cells and arrowheads 

indicate vasculature. M represents a tail cross section showing approximate locations of 

images. Horizontal lines represent coronal sections (C-H) and boxes represent transverse 

sections (I-L). Error bars = + SEM. Scale bar = 100 µm. 
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Figure 6.6. Temporal (A,B) and spatial (C-G) expression patterns of aMMP3/10a 

(A,C,E,G) and aMMP3/10b (B,D,F) during tail regeneration. Temporal gene 

expression patterns assayed by real-time quantitative PCR are shown in A and B. All y-

axes are log-2 fold changes from the average day 0 samples. Spatial expression is shown 

at 24 hpa (C,G) and 14 dpa (D). Sense probes are shown in E and F. G) close-up of C. The 

horizontal line in H represents a coronal section (C,E,G) and the box represents a 

transverse section (D,F). SC = spinal cord. NC = notochord. Scale bar = 100 µm. 
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Figure 6.7. Temporal (A,B) and spatial (C-F,H) expression patterns of aMMP14 

(A,C,E) and aTIMP1 (B,D,F,G) during tail regeneration. Temporal gene expression 

patterns assayed by real-time quantitative PCR are shown in A and B. All y-axes are log-2 

fold changes from the average day 0 samples. Spatial expression is shown at 24 hpa 

(D,F,H) and 14 dpa (C,E). Sense probes were used on sections shown in E and F. H is a 

close-up of D. The horizontal line in G represents a coronal section (D,F,H) and the box 

represents a transverse section (C,E). Scale bar = 100 µm. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 The studies presented in this dissertation describe the physiological genomics of 

spinal cord and limb regeneration in the salamander. These studies are some of the first to 

use unbiased genomic technologies to identify gene candidates for salamander limb 

regeneration. Below I highlight some of the interesting gene candidates and possible 

future directions to address their roles in regeneration. 

 Spinal cord regeneration is likely the most relevant model of salamander 

regeneration to the human condition. For this reason, we performed our first microarray 

analyses on the regenerating spinal cord (Chapter 2). In this study, we found that spinal 

cord injury changes thousands of genes from baseline suggesting that regeneration is a 

global process. Among these genes, we were interested in ones that may contribute to the 

activation or maintenance of ependymoglia. Ependymoglia are thought to act as neural 

precursors during regeneration and understanding how they are maintained and activated 

is critical to our understanding of regeneration. Gene pathways known to regulate neural 

precursors were identified including BMP, FGF, and Wnt signaling pathways. Several 

genes that code for molecules involved in these pathways were differentially regulated 

during regeneration included follistatin, secreted frizzled-related protein 2, wnt5a, and 

fibroblast growth factor-binding protein 1. Although this work is important for identifying 

genes candidates that regulate ependymoglia activation, over-expression and knockdown 

experiments of these genes during spinal cord regeneration will be needed to see if they 

disrupt ependymoglia function.  

One of the most interesting results from this study was the extreme change in 

mRNA abundance of matrix metalloproteinases (MMPs). The dramatic upregulation of 

MMPs motivated us to extend these studies to the entire MMP gene family, the results of 

which are presented in Chapter 6. Overall, we found that MMP9 was expressed in the 

spinal cord during regeneration. Further analysis showed that it was mostly expressed in 

cells resembling neurons, but also ependymoglia (Figure 2.4C; Figure 6.5; data not 

shown). Chapter 5 shows that MMP9 is also expressed in dorsal root ganglia neurons 

during limb regeneration and in the retina following optic nerve injury (Elizabeth Debski, 
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personal communication). The similar MMP9 expression patterns in these three injury 

paradigms suggest that MMP9 is specifically associated with regenerating or injured 

neurons. In mammals, MMP9 has been associated with increased axon outgrowth in 

spinal cord injury models (Duchossoy et al., 2001), retinal ganglion cell axon regeneration 

(Ahmed et al., 2005), and peripheral nerve regeneration (Ferguson and Muir, 2000). 

MMP9 may facilitate nervous system regeneration by breaking down inhibitory neurite 

outgrowth molecules including CSPGs (Ferguson and Muir, 2000) and myelin-inhibitory 

products (Milward et al., 2008), promote remyelination (Larsen et al., 2003), or release 

growth factors that could then support neuron survival and growth (Pizzi and Crowe, 2007 

for review). It will be interesting to find out if disrupting MMP9 activity in neurons in 

vitro affects neurite outgrowth. The identification and characterization of Nogo-A in the 

salamander nervous system (Chapter 3) also raises the possibility that MMPs clear the 

injury site of Nogo-A and other inhibitory molecules after injury. Indeed, the inhibitory 

molecules tenascin-R and myelin-associated glycoprotein are quickly cleared from the 

salamander optic nerve after injury, and this is correlated with axon regeneration (Becker 

et al., 1999). It is possible that neuronal expression of MMP9 mediates this process. 

A second gene that showed an interesting expression pattern across multiple 

nervous system injury paradigms was ankyrin repeat domain-containing 1 (ANKRD1). It 

was found to be upregulated in all neural injury models and was highly expressed in 

dorsal root ganglia neurons 14 days after limb regeneration (Figure 5.2 and 5.3). Real-

time PCR also found this gene to be upregulated by 3 dpa, suggesting that the expression 

of this gene is expressed throughout regeneration (data not shown). This transcription 

factor has traditionally been thought of as muscle specific gene, but recent data in a rat 

injury model have associated ANKRD1 with dorsal root ganglia neuron outgrowth (Stam 

et al., 2007). It is possible that the large upregulation of ANKRD1 in regenerating neurons 

may explain the high axon regenerative capacity of axolotl neurons. Localization of this 

gene in regenerating spinal cord and retinal ganglion neurons would support this 

hypothesis. Knockdown of ANKRD1 is also needed in vitro, possibly using morpholino 

technologies, to address whether ANKRD1 mediates axon outgrowth. 

 The role of nerves in limb regeneration is one of the most perplexing questions in 

the regeneration field. We attempted to address this question by identifying the 
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downstream targets of nerves during limb regeneration as well as molecules expressed by 

sensory neurons during limb regeneration (Chapters 4 and 5). Chapter 4 shows that many 

differences were found between denervated and regenerating limbs. Many of these genes 

were associated with the presence of a blastema in the innervated limb and absence in the 

denervated limb. The utility of this experiment is that we now have a gene expression 

signature of a limb blastema. Understanding what the blastema is at the cellular and 

molecular level will be necessary in future experiments to address whether we can 

experimentally perturb this process. The next step is to locate the expression of these 

genes between denervated and regenerating limbs in order to identify where they are 

expressed. For example, expression in the WE would suggest that the WE is the primary 

target of the regenerating nerves, which then creates a regeneration competent 

environment. An interesting candidate gene pathway identified in Chapter 5 that may fit 

this profile is the L-serine synthesis pathway. The three enzymes involved in this pathway 

were differentially regulated between denervated and regenerating limbs at 5 and 14 days 

after limb amputation. Attempting to rescue regeneration in denervated limbs with local 

administration of L-serine would functionally link L-serine to limb regeneration. Such a 

simple model for how nerves support limb regeneration may be directly relevant to 

wounding in mammalian systems. 

Chapter 5 highlighted up-regulated genes in the DRG during limb regeneration. 

We suggest that these could be involved in axon regeneration, upstream of the NTF, or 

possibly be the NTF. All of this work is correlative in nature, but sets the groundwork for 

functional analysis of these genes. It will be important to localize expression of these 

genes to sensory neurons and show secretion from peripheral nerves. It will also be 

important to over-express gene candidates in denervated, amputated limbs.  

  The successes of these early experiments provide optimism that we may soon 

understand the underlying mechanisms of regeneration. Regardless, some major hurdles 

need to be met before we can understand how complex regeneration is accomplished. For 

example, we need to know how important the wounding/immune response is in both 

spinal cord and limb regeneration. Is there something unique about the salamander 

immune response that supports regeneration? It will also be necessary to understand the 

relationship between nerves, the wound epidermis, and their support of blastema 
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formation during limb regeneration. These three elements are essential for creating a 

regeneration-permissive environment, but little is known about their specific function or 

relationship with one another. Thirdly, it is necessary for us to know how plastic 

salamander cells are following injury. Are salamanders able to regenerate spinal cord and 

limb tissue because they have a large supply of resident stem cells or are they capable of 

creating a local supply of stem cells by dedifferentiating cells after injury? Once each of 

these questions is answered in the salamander system, it may be plausible to replicate the 

salamander “injury” environment at a mammalian injury site. It is also plausible that 

knowledge gained from the salamander system may be useful for tissue engineering. 

Tissue engineering is the process of growing tissue or organs in vitro and implanting this 

tissue in the human patient. The salamander regeneration model gives a unique example 

of the environment necessary to support complex adult tissue growth and may aid in the 

engineering of these in vitro systems. The descriptive work provided in this dissertation is 

an important step towards these goals. The next challenge will be to identify which of the 

descriptive observations presented here is necessary for regeneration. 
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