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ABSTRACT OF DISSERTATION 

 

ROLE OF ANGIOTENSIN CONVERTING ENZYME 2 (ACE2) IN OBESITY-
ASSOCIATED HYPERTENSION 

The purpose of this research was to determine whether adipocytes 
express ACE2 and its role in obesity-associated hypertension with diet-induced 
obesity.  

To determine if ACE2 was expressed in adipose tissue and its regulation 
in the setting of diet-induced obesity, we fed male mice either a low fat (LF) or 
high fat (HF) diet acutely (1 week) or chronically ( 4 months). We demonstrated 
that ACE2 was regulated specifically in adipose tissue with consumption of a HF 
diet. However, with chronic HF feeding adipose ACE2 was dysregulated resulting 
in activation of the systemic RAS and increased blood pressure.  

 To determine the role of ACE2 in obesity-associated hypertension, we 
used ACE2 deficient male and female mice. Wild type and ACE2 deficient mice 
were chronically fed either a LF or HF diet. Metabolic parameters were measured 
during the entire course of the study and blood pressure was measured by 
telemetry at the end of the study. Results from these studies demonstrate that 
HF diet promotes obesity-associated hypertension in male mice which is further 
augmented with ACE2 deficiency. Further, ACE2 deficiency resulted in marked 
glucose intolerance suggesting that stimulation of ACE2 may blunt the 
progression of obesity-associated diabetes.   

In contrast to the males, females are protected against obesity-associated 
hypertension. However, this protection in the females is lost with ovariectomy 
and ACE2 deficiency. These results suggest that female sex hormones protect 
the females against obesity-associated hypertension by regulating ACE2.  

To define mechanisms for HF diet-induced regulation of ACE2 in adipose 
tissue we examined various fatty acids for their ability to regulate ACE2 mRNA 
abundance in 3T3-L1 adipocytes. We revealed that omega-3 fatty acids, known 
regulators of PPARγ, increased ACE2 mRNA abundance in adipocytes. 
Therefore, we examined in vitro and in vivo regulation of ACE2 in 3T3-L1 cells 
and adipose tissue by PPARγ receptor ligands (TZDs). Results demonstrate 



regulatory effects of PPARγ to promote ACE2 gene transcription. These effects 
were associated with changes in glucose tolerance.   

Taken together, these results demonstrate that adipose ACE2 plays a 
protective role against obesity-associated hypertension in male and female mice 
and is regulated by natural and synthetic ligands of PPARγ. 
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1 

Section I. BACKGROUND 

1.1.Obesity. 

The prevalence of obesity is rising in the United States with 30% of 

the population obese with a body mass index (BMI) ≥ 30 (Flegal et al. 2010; BMI 

= weight in kg/height in m2; NHLBI, 1998). Alarmingly, the percentage of 

American men with a BMI of ≥ 30 in the last ten years went from 28% to 32% 

whereas the percentage of women with BMI ≥ 30  only rose by 1% (34 to 35%) 

(NHANES 2007-2008) (Flegal et al. 2010). Additionaly, obesity affects 17% of the 

children in the age group of 2-19 years (Whitaker et al. 1997; Serdula et al. 

1993). A recent report in the Journal of American Medical Association indicated 

that 9.5% of infants and toddlers were at or above the 95th percentile of the 

weight-for-recumbent-length growth charts and 17% of children and adolescents 

were at or above the 95th percentile of BMI for age (Odgen et al. 2010). 

According to the National Heart, Blood and Lung Institute, three parameters that 

need to be assessed as risk factors for obesity and associated disease are BMI, 

waist to hip ratio (WHR) and risk factors for diseases associated with obesity 

(Table 1.1). These marked increases in the prevalence of obesity are associated 

with significant elevations in cardiovascular pathologies associated with obesity, 

including hypertension, type 2 diabetes, stroke, heart disease and certain types 

of cancers. 

 

 

 



 
 
 
 

2 

1.2. Obesity hypertension. 

Despite a doubling of obesity prevalence over the last two decades, 

the number of deaths from heart diseases has declined in the past fifty years as 

a result of improved health care and awareness (Cutler et al. 2008). In contrast, 

the prevalence of hypertension has risen in the last ten years (24 to 29%), with 

up to one fourth of the increase attributed to an increased BMI (Cutler at al. 

2008). 

Longitudinal studies in humans have demonstrated BMI as an 

independent risk factor for hypertension after controlling for associated risk 

factors such as age, sex, ethnicity, gender and smoking (Dyer et al. 1990; Huang 

et al. 1998; Brown et al. 2000). Importantly, recent studies suggest that 60-70% 

of hypertension in adults is attributed to obesity with a 3.5-fold increase in 

likelihood of developing hypertension in the setting of obesity (20% increases in 

body weight) (Kotchen. 2010). Thus, obesity is closely linked to the development 

of hypertension.  

       

1.3. Causes of obesity-induced hypertension. 

Obesity has been demonstrated to raise pressure by increased 

renal sodium reabsorption, increased intravascular volume, impaired natriuresis, 

impaired endothelial function and also physical compression of kidneys, 

especially with visceral obesity (da Silva et al. 2009). Different factors involving 

multiple systems are indicated to play a role in obesity-related hypertension   

(Table 1.2 Kotchen. 2010). However, the key systems that have been implicated 



 
 
 
 

3 

in obesity-induced hypertension are an activated sympathetic nervous system 

(SNS) and a stimulated renin angiotensin system (RAS) (da Silva et al. 2009). 

Numerous studies in animals and humans demonstrate an important role 

for the SNS in the eitiology of obesity-hypertension. High fat (HF) diet (normal 

diet supplemented with cooked beef fat) for 5 weeks in dogs resulted in 

significant increases in body weight (~12 kg) along with an increase in mean 

arterial pressure (MAP; ~ 17 mmHg) (Hall et al. 1993a). Additionally, dogs with 

diet-induced obesity exhibited an increase in extracellular fluid volume and 

sodium retention (Hall et al.1993a). Administration of α- and β-adrenergic 

blockers (prazosin and propranolol) lowered blood pressure to a much greater 

extent in obese hypertensive dogs compared to lean dogs (21 ± 4 in obese 

versus 10 ± 1 mmHg in lean dogs (Hall et al.1993a). Furthermore, male Sprague 

Dawley (SD) rats administered a HF diet for 6 weeks exhibited a significant 

increase in body weight and MAP (113 ± 2 versus 94 ± 8 mmHg; Nagae et 

al.2009). Administration of a neuronal acetylcholine receptor antagonist reduced 

MAP to a greater magnitude in HF-fed rats (LF: -46+/-3.5; HF: -62+/-1.5 mmHg), 

indicating increased sympathetic activity with diet-induced obesity (Nagae et al. 

2009). In another study male SD rats fed a moderately high fat (MHF) diet for 13 

weeks exhibited a significant increase in MAP (~11mmHg) in obesity- prone (OP) 

rats compared to the low fat (LF) controls. Interestingly, administration of 

muscimol, a GABA(A) receptor agonist  in the rostral ventrolateral medulla 

resulted in a greater reduction in MAP in OP rats compared to controls, thus 

identifying a specific region in the central nervous system contributing to 
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increased pressure with obesity (Stocker et al. 2007) . Similar to the previous 

findings Chen et al. demonstrated a reduction in lumbar sympathetic nerve 

activity (LSNA) (35%) and MAP (-14mmHg) in HF-fed rats with muscimol 

administration in the paraventricular nucleus, indicative of an activated SNS with 

diet-induced obesity (Chen et al. 2010).  

Leptin has been implicated as an adipokine contributing to increased 

sympathetic nerve activity (SNA) with obesity. Female rats fed either a LF or HF 

diet for 8 weeks were injected intracerebroventrically (i.c.v) with leptin and LSNA, 

heart rate and MAP were measured (Lu et al. 1998). In a separate group of 

animals, HF diet for 8 weeks was followed by a restricted diet (50% less calories 

from fat) for 3 weeks. LSNA and MAP were increased with leptin injection in LF 

or rats administered a restricted diet. In contrast, obese rats exhibited a reduction 

in LSNA and MAP (Lu et al. 1998).  However, since obesity is associated with 

leptin resistance it is unclear if the resistance to a blood pressure increase in 

obese rats was a result of decreased response or increased resistance to leptin 

with obesity (Hall et al. 2001). In contrast, leptin administration (intraperitoneally 

or i.c.v) to HF-fed mice resulted in reduced metabolic effects indicating leptin 

resistance (Rahmouni et al. 2005). HF-fed mice demonstrated a blunted 

response to lumbar and adipose tissue SNA; however, renal SNA was preserved 

with obesity. Importantly, obese mice exhibited a significant increase in MAP 

(~10mmHg) with leptin, indicating leptin-mediated increases in SNA and blood 

pressure are preserved in obese mice (Rahmouni et al. 2005). Rabbits fed a HF 

diet for 4 weeks exhibited a 3-fold increase in visceral fat, MAP (8%), heart rate 
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(26%), plasma norepinephrine (87%) and renal sympathetic activity (48%) 

compared to controls (Prior et al. 2010). Leptin administration intracerebrally 

resulted in comparable elevations in blood pressure between HF-fed and control 

animals. In contrast, renal SNA was significantly higher in HF-fed rabbits, despite 

evidence of leptin resistance to metabolic effects as demonstrated by reduced 

expression of c-Fos (expressed in appetite and sympathetic actions of leptin) 

(Prior et al. 2010). These authors implicated marked selective leptin resistance to 

metabolic, but not cardiovascular effects of leptin with obesity. 

Similar to animals, studies in humans also indicate a role for an activated 

SNS in obesity-hypertension. Muscle sympathetic activity was increased by 2-

fold in normotensive adults with weight gain (Grassi et al. 1995). Weight loss 

attenuated this increase (Grassi et al.1998). An  activated SNS in obesity was 

further supported by a study administering an α1 receptor blocker (doxazosin) or 

β1 receptor blocker (atenolol) to obese and lean hypertensive adults  (Wofford et 

al. 2001). Administration of an adrenergic receptor antagonist resulted in a 

greater reduction in blood pressure in obese (16mmHg) compared to lean adults 

(8mmHg). Body fat distribution has also been demonstrated as an important 

predictor of SNS activation (Alvarez et al. 2002; Alvarez et al. 2004). SNA was 

unaltered in obese and non-obese subjects with comparable visceral obesity. In 

contrast, an increased visceral adiposity was associated with elevated SNA and 

blood pressure (Alvarez et al. 2002; Alvarez et al. 2004). Increased systolic blood 

pressure (SBP) and muscle sympathetic activity measured by microneurographic 

methods has been demonstrated in normal healthy adults even with modest diet-
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induced weight gain (Gentile et al. 2007). These results from animal and human 

studies demonstrate an important role of SNS in the eitiology of obesity-

hypertension. Similar to SNS, studies in animals as well as humans demonstrate 

a strong association between RAS and obesity-hypertension, which will be 

discussed in section 1.10. 

 

    1.4. Classical RAS. 

The discovery of the first enzyme of the RAS dates back to 1896-

1897, when a Finnish physiologist and his Swedish student isolated a compound 

from extracts of rabbit kidney cortex that was able to raise blood pressure, which 

they called renin (Tigerstedt et al. 1898; Fyhrquist. et al. 2008). Almost 35 years 

later in 1934 Henry Goldblatt demonstrated chronic hypertension in dogs whose 

renal arteries were clamped using silver clips (Goldblatt et al. 1934). Following 

this Braun et al. (1940) as well as Page and Helmer (1940) also using similar 

techniques demonstrated a pressor compound from kidneys which they called 

angiotensin (Page and Helmer et al.1940; Braun et al. 1940; Braun et al.1958; 

Benigni et al. 2010). By the early 1970’s major components of the classical RAS 

were identified such as angiotensinogen , renin, angiotensin converting enzyme 

(ACE), angiotensin receptor subtype 1 (AT1) and angiotensin receptor subtype 2 

(AT2) (Figure 1.1). Additionally, in the last two decades studies from different 

groups have identified new components of the RAS, constantly altering the 

dynamics of the RAS (Figure 1.2).  
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The classical RAS begins with angiotensinogen, the only known precursor 

of angiotensin (Ang) peptides. Angiotensinogen, a 58kD protein consisting of 452 

amino-acids (Kageyama et al. 1984) is synthesized primarily by the  liver, which 

secretes this protein in the systemic circulation to be acted upon by other 

enzymes (Dévény et al. 1968). However, studies demonstrate a role for other 

tissues and cells to synthesize angiotensinogen locally and secreted into the 

systemic circulation, which includes adipocytes (Cassis et al. 1988). Studies in 

rodents in the last few years demonstrated an important role of angiotensinogen 

in blood pressure regulation. One of the earlier studies to demonstrate the role of 

angiotensinogen in blood pressure regulation was by Tanimoto et al. where mice 

lacking angiotensinogen exhibited 20 mmHg lower MAP compared to wild type 

controls (Tanimoto et al.1994). Importantly, studies in rats and mice 

demonstrated a dose-dependent increase in MAP with increasing doses of 

infused angiotensinogen. Administration of 0.8, 1.2, and 2.9 mg/kg 

angiotensinogen increased MAP of rats by 8 ± 0.4, 19.3 ± 2.1, and 

32 ± 2.4 mmHg, respectively (Klett et al. 2001). Similarly, Cholewa et al. 

demonstrated an increase in MAP of mice that were infused with 

angiotensinogen. Intravenous infusion of angiotensinogen at a dose of 

5nmol/kg/min resulted in significant increases in plasma angiotensinII ( AngII) 

levels (34+/-6 vs 288+/-109 pg/ml) along with an increase in arterial pressure 

(119 +/- 5 to 141 +/- 3 mmHg, p<0.05) (Cholewa et al. 2005).  

Angiotensinogen is converted to angiotensinI (AngI) by renin, an aspartyl 

protease secreted from the juxtaglomerular (JG) cells of the kidney by the 
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conversion of pro renin to renin. Three factors play an important role in 

stimulating renin secretion, i.e., a reduction in renal perfusion pressure, activation 

of sympathetic nerve activity and decreased sodium delivery to the macula densa 

(Lorenz et al.1990; Data et al. 1978; Gaal et al. 1979). 

Besides the JG cells of the kidney, renin is localized to brain (Inagami et 

al.1980), blood vessels (Mizuno et al. 1984), testis (Pandey et al. 1984)  

macrophages (Lu et al. 2008) and adipose tissue (Karlsson et al. 1998). An area 

which has recently been of interest is the newly identified human renin receptor 

which binds renin and pro renin known as renin(pro) receptor, expressed in 

heart, brain, placenta, liver, kidney (Nguyen et al. 2002) and adipose tissue 

(Galvez-Prieto et al. 2008).  

AngiotensinI (AngI), a biologically inactive peptide of this system is 

converted by ACE to AngII. ACE, identified in 1956, is a dipeptidyl 

carboxypepetidase which converts AngI to AngII (Skeggs et al. 1956). Two forms 

of ACE produced from a single gene by alternate promoters have been identified 

(Soubrier et al. 1988, Ehlers et al. 1989), somatic ACE which is primarily 

expressed in endothelial cells of lung (Ryan et al. 1976), kidney (Wallace et al. 

1978), intestine (Bruneval et al. 1986), placenta (Sim et al. 1984) and adipose 

tissue (Crandall et al. 1992; Karlsson et al. 1998) and germinal ACE, found 

exclusively in testis (Velletri et al. 1985). Importantly, besides synthesizing AngII, 

ACE also degrades bradykinin (Ryan et al.1975), a vasodilator peptide, giving 

ACE inhibitors another mechanism of action as antihypertensive drugs (Turner et 

al. 2002). Besides AngI and bradykinin, ACE also hydrolyzes substance P 
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(Couture et al. 1981), cholecystokinin (Dubreuil et al. 1989) and luteinizing 

hormone-releasing hormone (LHRH) (Skidgel et al. 1985). 

Undoubtedly, the role of AngII has been well established in blood pressure 

regulation, vasoconstriction and sodium absorption via its action on different 

tissues involved in fluid volume homestasis (Figure 1.3). In the vasculature AngII 

has been demonstrated to elicit vasoconstriction in vascular smooth muscle cells 

(Chiu et el. 1991), exhibit mitogenic effects causing vascular smooth muscle cell 

growth (Lyall et al. 1988), proliferation (Stouffer et al. 1992) and hypertrophy 

(Chiu et al. 1991). AngII also increases blood pressure via stimulation of 

sympathetic neurotransmission where even at subpressor levels AngII has been 

demonstrated to enhance vasopressor responses to norepinephrine (Reams et 

al. 1987), or facilitate norepinephrine release (Hughes et al. 1971). Besides 

increasing norepinephrine release during sympathetic stimulation, AngII can also 

inhibit norepinephrine reuptake (Campbell et al. 1979) and to stimulate 

catecholamine release from the chromaffin cells of the adrenal medulla (Peach et 

al. 1974). In the kidney AngII has been demonstrated to increase pressure via 

efferent arteriole vasoconstriction (Plante et al. 1988). A well known effect of 

AngII in the kidney is to facilitate sodium reabsorption in the distal collecting 

tubule via aldosterone release from the adrenal cortex (Chui et al. 1974; 

Carpenter et al. 1961). In the the heart AngII elicits a positive inotropic and 

chronotropic effect (Baker et al. 1992; Li et al. 1996) and regulates cardiac 

growth (Schorb et al. 1993). AngII mediates its effects in the central nervous 

system where it has been demonstrated to mediate drinking and pressor 
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response via its actions in the subfornical organ of the brain (Gutman et al. 1988) 

and through mediating vasopressin release (Mouw et al. 1971; Keil et al. 1975).  

AngII mediates its effects via binding to two distinct G-protein coupled 

receptors (GPCR) i.e angiotensin receptor type1 (AT1R) and angiotensin 

receptor type 2 (AT2R) (Lin et al.1970; Chiu et al.1989). Most of the known 

classical effects of AngII such as vasoconstriction (Touyz et al.1997), growth and 

differentiation (Huang et al.1996; Touyz et al.1997), tubular reabsorption (Navar 

et al.1999) and aldosterone synthesis and secretion (Balla et al.1991) are 

mediated via AT1R, while AT2R counterbalances majority of the effects mediated 

via AT1R (Figure 1.4). While humans possess only one AT1R subtype, rodents 

possess two subtypes, termed AT1a receptors (AT1aR) and AT1b receptors 

(AT1bR), with 95% sequence homology (Inagami et al. 1993). AT1aR are 

expressed in adult kidney, heart, adrenal gland, lung , brain, adipose tissue, and 

testis while AT1bR are expressed in the brain, testis, anterior pituitary gland and 

adrenal zona glomerulosa (Burson et al. 1994; Oliverio et al. 2000). One of the 

first studies to demonstrate the role of AT1aR in blood pressure regulation was 

by Ito et al. where deletion of the gene encoding AT1aR reduced blood pressure 

by ~ 24mmHg compared to wild type mice (Ito et al. 1995). In contrast, targeted 

deletion of AT1bR did not alter blood pressure or plasma aldosterone levels 

(Chen et al. 1997). These results indicated AT1aR as the major receptor involved 

in blood pressure regulation in mice. However, AT1aR deficient mice exhibit a 

modest vasoconstrictor response to AngII, which is blunted by an AT1 receptor 

antagonist, suggesting a role of AT1bR in blood pressure regulation. Additionally, 
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vasoconstrictor responses to AngII were totally lost in AT1aR/AT1bR double 

knock out mice (Oliverio et al. 2000). In contrast to AT1aR-/- mice that exhibit 

lower blood pressure, deletion of AT2R did not alter blood pressure; however, 

AT2R deficient mice exhibited an increased vasopressor response to AngII (Hein 

et al. 1995).   

Angiotensin (2-8) (AngIII), a biologically active peptide of this system is 

generated from AngII by aminopepetidase A (Vaughan et al.1974; Kugler et 

al.1982). Some of the important functions of AngIII are similar to AngII i.e 

facilitating vasoconstriction (Satoh et al. 1981), vasopressin (Yamaguchi et 

al.1979), and aldosterone release (Campbell et al.1974) mediated via ATI 

receptor. Infusion of AngII  intravenously or directly in renal artery elicited a more 

potent vasoconstrictor response in anaesthesized dogs compared to AngIII, 

demonstrating AngII as a more potent vasoconstrictor peptide of this system 

compared to AngIII (Satoh et al. 1981). In contrast, in a recent study 

administration of either AngII or AngIII i.v in conscious dogs elicited comparable 

effects on blood pressure, plasma renin activity, and aldosterone release, which 

were inhibited by an AT1R antagonist (Gammelgaard et al. 2006). However, 

AngIII was cleared metabolically five times faster compared to AngII.  

AngIII is rapidly converted by aminopeptidase N to Angiotensin (3-8) 

(AngIV), which elicits its action via the AT4 receptor also called IRAP (insulin-

regulated amino peptidase receptor) (Albiston et al. 2001; Keller et al.1995). 

AngIV has been demonstrated to increase expression of plasminogen activator 

inhibitor -1 (PAI-1) in bovine aortic endothelial cells in a time and dose dependent 
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manner (Kerins et al. 1995). In line with this finding a recent study demonstrated 

an increase in PAI-1 expression in endothelial cells stimulated with AngII or 

AngIV (Numaguchi et al. 2009). In contrast, PAI-1 expression is reduced in 

endothelial cells from IRAP-/- mice. Reduced occlusive thrombosis and increased 

fbrinolysis is observed in IRAP-/- mice compared to wild type in a carotid artery 

ligation model indicating a role for this peptide in thrombosis and fibrinolysis  

(Numaguchi et al. 2009). Additionally, this peptide has been implicated in 

memory and learning (Wright et al. 2008).  

 

    1.5. Angiotensin Converting Enzyme 2 (ACE2). 

Almost 50 years after the discovery of ACE two independent 

groups using unique molecular strategies identified a homologue of ACE known 

as ACE2 (Tipnis et al. 2000; Donoghue et al. 2000). The discovery of this 

enzyme was exciting as it was shown to convert AngII, a potent vasoconstrictor 

peptide of the RAS to angiotensin-(1-7) (Ang-(1-7)), a vasodilator peptide. This 

enzyme was discovered by one group in a human lymphoma cDNA library when 

screening for zinc metalopepetidases, and these investigators called it ACEH 

(Angiotensin Converting Enzyme Homologue) (Tipnis et al. 2000). 

Simultaneously, another group also identified this enzyme, which they called 

ACE2, from 5’ sequence of a human heart failure ventricle cDNA library 

(Donoghue et al. 2000). On its initial discovery its expression was thought to be 

limited to heart, kidney and testis, hence the enzyme was implicated in 

cardiovascular and kidney diseases (Tipnis et al. 2000; Donoghue et al. 2000). 
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ACE2, a 40kb gene located on chromosome Xp22 consists of 18 exons 

with the zinc binding motif (HEMGH) which contains the catalytic site of this 

enzyme located on exon 9 (Turner et al. 2002). The full length cDNA encodes 

805 amino acids with an N terminal which harbors the signal sequence a typical 

feature of zinc peptidases and a hydrophobic C terminal which serves as a 

membrane anchor (Turner et al. 2002) (Figure 1.5). Overall, ACE2  has 40% 

identity at the protein level to the catalytic domain of ACE (Turner et al. 2002) 

and the C terminal of ACE2 shares homology with collectrin, a protein expressed 

in the kidney (Zhang et al. 2001).  Unlike mammalian ACE gene which generates 

two isoforms, only a single ACE2 protein is formed (Hamming et al. 2007;  

Warner et al. 2004). The ACE2 protein has seven potential N-linked glycosylation 

sites with a molecular weight of 120kDa. Deglycosyation of the protein reduces 

its size to 85kDa (Turner et al. 2002). ACE2 is proteolytically active at a pH of 6.5 

and is activated by monovalent anions like chloride and fluoride but not bromide 

(Vickers et al. 2002).  ACE2 activity is inhibited by EDTA, but is not affected by 

classical ACE inhibitors such as captopril, enalapril and lisinopril (Tipnis et al. 

2000). Though initial studies demonstrated expression of this enzyme limited to 

heart, kidney and testis later studies in humans and animals demonstrate a more 

widespread distribution of ACE2 mRNA, protein and activity in rodents and 

humans (Gembardt et al. 2005; Hamming et al. 2007). 

Interestingly, ACE2 serves as receptor for the SARS-CoV pathogen that 

caused a respiratory illness in 2003, called severe-acute respiratory syndrome as 

demonstrated by in vitro as well as in vivo studies (Li et al. 2003). 
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ACE2 is a monocarboxypeptidase cleaving a single amino acid from the 

C- terminal of the substrate (Turner et al. 2002). In the RAS, ACE2 hydrolyzes 

AngI and AngII to generate Ang (1-9) and Ang-(1-7), respectively. Studies on 

enzyme kinetics demonstrated a 400-fold higher catalytic efficiency to hydrolyze 

AngII as a substrate compared to AngI (Vickers et al. 2002). Besides AngII and 

AngI, ACE2 also hydrolyzes des-Arg-Bradykinin, neurotensin 1-8, kinetensin and 

apelin-13 (Vickers et al. 2002).     

Ang-(1-7), a heptapeptide product of ACE2 generated from AngI and AngII 

in canine brain was demonstrated to possess biological activity such as 

vasopressin release from the brain. In contrast, unlike AngII, Ang-(1-7) does not 

stimulate vasoconstriction, thirst or aldosterone release (Ferrario et al. 1988; 

Santos et al. 1988) (Figure 1.6). Importantly, Ang-(1-7) infusion in spontaneously 

hypertensive rats (SHR) elicited significant reductions in plasma vasopressin 

levels and increased urinary prostaglandins, diuresis and natriuresis (Benter et 

al. 1995). In addition, SBP was reduced significantly in response to Ang-(1-7), 

indicating a blood pressure lowering effect of this peptide. Using canine coronary 

artery rings, investigators demonstrated that Ang-(1-7) induced vasodilation was 

mediated via nitric oxide and bradykinins as pretreatment with a nitric oxide 

synthase inhibitor (L-NAME) completely abolished the vasodilator response 

(Brosnihan et al. 1996). In addition, a bradykinin receptor antagonist blocked 

Ang-(1-7)-mediated vasodilation by 75%. A non-selective AngII receptor 

antagonist blocked the vasodilator response to Ang-(1-7) by 80%; however, 

selective AT1 and AT2 receptor antagonists were ineffective. These results 
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suggested that Ang-(1-7) elicits vasodilation via endothelium-dependent nitric 

oxide involving involving bradykinin receptors (Brosnihan et al. 1996). 

ACE2/Ang-(1-7) has been recently highlighted as the counter balancing 

arm of the RAS to the ACE/AngII axis. Though the earlier studies described 

above demonstrated a functional role of Ang-(1-7) as far back as 1988, it was the 

discovery of ACE2 in 2000 that stimulated renewed interest in Ang-(1-7) as a 

peptide influencing cardiovascular function. 

Ang-(1-7) mediates its effects via a distinct GPCR which was identified in 

1988 as a Mas oncogene. However, at that time the ligand for this receptor was 

yet unknown (Jackson et al. 1988).  In 2003, Ang-(1-7) was demonstrated as an 

endogenous ligand for Mas (Santos et al. 2003), expressed predominantly in 

testis, forebrain, kidney and heart (Bunnemann et al. 1990; Alenina et al. 2002). 

Unlike AngII, Ang-(1-7) has been demonstrated to have vasodilatory, 

antiproliferative and antitrophic properties (Figure 1.6). Cardiac dysfunction and 

remodeling were attenuated in transgenic-DOCA-SD rats with increased Ang-(1-

7) in the plasma via Ang-(1-7) fusion protein (Santiago et al. 2010). Ang-(1-7) 

fusion protein resulted in a reduction in pressure and increased cardiac Ang-(1-7) 

levels almost 3-fold in rats and attenuated cardiac dysfunction and prefibrotic 

lesions (Santiago et al. 2010). Ang-(1-7) has also been demonstrated to be 

important for endothelial function. Mas receptor knock out mice on C5BL/6 and 

FVBN backgrounds exhibit diminished vasodilation in response to acetylcholine 

and alteration in nitric oxide synthesis and reactive oxygen species  production 

(Rabelo et al. 2008; Xu et al. 2008). Additionally, SD rats expressing Ang-(1-7) 
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fusion protein exhibit lower body weight, fat mass, triglycerides and cholesterol 

(Santos et al. 2010). Moreover, these animals exhibit increased insulin 

sensitivity, glucose tolerance and improved glucose uptake in adipocytes. Insulin 

signaling in adipose tissue is improved as demonstrated by increased 

phosphorylation of PI3K/ AKT along with increased plasma adiponectin levels 

(Santos et al. 2010). These results are in agreement with a previous report by the 

same group using Mas receptor deficient mice on an FVB/N background (Santos 

et al. 2008a). The Mas receptor deficient mice exhibited increased adipose mass, 

glucose intolerance, decreased insulin sensitivity and elevated plasma lipids 

compared to controls. Mas receptor deficiency resulted in increased 

angiotensinogen expression in adipose tissue along with a 10 mmHg increase in 

blood pressure. Insulin stimulated glucose uptake was blunted in mice with Mas 

receptor deficiency, as evidenced by decreased expression of GLUT4 in adipose 

tissue (Santos et al. 2008a). In contrast, there are studies which demonstrated 

either no effect of Mas deficiency on blood pressure (Walther et al. 2000) or 

increased pressure in Mas deficient mice (de Moura et al. 2010).  

These studies together highlight the importance of ACE2 in numerous 

pathologies given its important function in the RAS, i.e catabolising AngII to 

generate Ang-(1-7), peptides shown to exhibit opposite functions within the same 

system. 
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    1.6. ACE2 regulation. 

       1.6.1. ACE2 shedding. 

ACE2 is a type I integral membrane protein, where the 

ectodomain which contains the active site of this enzyme faces the extracellular 

surface and hydrolyzes the circulating peptides (Hamming et al. 2007). Shedding 

of the ectodomain of enzymes has been an important phenomenon in regulation 

and expression of these enzymes in normal physiological conditions or in 

different   pathologies (Lambert et al. 2005). Ectodomain shedding has been 

observed in a number of membrane proteins such as tumor necrosis factor-α 

(TNFα), ACE, amyloid precursor protein (APP), and β site amyloid cleaving 

enzyme (BACE) (Black et al. 1997; Hundahausen et al. 2003; Beldent et al. 

1993; Hussain et al.2003; Palecanda et al. 1992; Arribas et al. 1995; Parkin et al. 

2004). Ectodomain shedding of enzymes can occur under normal conditions or 

stimulation via phorbol esters such as phorbol -12-myristate-13-acetate (PMA). 

Proteins that have been implicated in PMA mediated shedding are mostly from 

the ADAM (a disintegrin and metalloproteinase) family  (Arribas et al. 2002) 

which constitutes a number of members such as ADAM-9, ADAM-10, ADAM-12, 

ADAM-17.  ADAM-17, also known as TACE (TNF-α converting enzyme) since it 

was first identified to shed TNF-α, is  the best characterized protein to mediate 

shedding of membrane bound proteins on stimulation by PMA. To test if ACE2 

also undergoes shedding, ACE2 protein was expressed in two stable cell lines, 

HEK293 and CHO cells (Lambert et al. 2005). HEK-ACE2 exhibited a 120kDa 

band typical of mature ACE2 protein. Western blot from media of these cells 
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revealed two bands at ~105 and 95 kDa. However, on stimulation with PMA they 

saw an intense band of ~105kDa. An antibody targeting the cytoplasmic domain 

did not detect ACE2 in the media with or without stimulation by PMA. 

Furthermore, the shed form of ACE2 was demonstrated to possess catalytic 

activity. Thus, these results indicate that ACE2 ectodomain can be shed via 

phorbol ester stimulation and this shed form is enzymatically active. Further, 

using different inhibitors and siRNA, they were able to identify ADAM-17 as the 

protease mediating ectodomain shedding of ACE2 (Lambert et al. 2005).  

ADAM-17 has been demonstrated to be upregulated in vivo by high fat 

diets as well as in adipocytes on stimulation with fatty acids, insulin or glucose. 

ADAM-17 expression was increased in 3T3F442A adipocytes stimulated with 

palmitic acid, lipolysaccharide, high glucose, and high insulin (Fiorentino et al. 

2010). Similarly, C57BL/6 fed a high fat diet for 20 weeks exhibited increased 

ADAM-17 activity in adipose depots (Fiorentino et al. 2010).C57BL/6 129Svj 

mice fed a high fat (42%) diet for 15 weeks exhibited an increased expression of 

ADAM-17 in subcutaneous adipose tissue compared to the mice that were fed 

standard diet (Voros et al. 2003).  In line with these studies C57BL/6 male mice 

chronically fed a high fat (60%) for 4 months demonstrated a significant elevation 

in ADAM-17 expression in adipose depots (Gupte et al. 2008). These results 

demonstrated that the ACE2 shedding enzyme ADAM-17 is increased in adipose 

tissue upon HF feeding.  
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1.6.2. Regulation of ACE2 by hormones. 

Some of the components of the RAS such as angiotensinogen, 

ACE and AT1R have been shown to be regulated by gonadal hormones such as 

estrogen  

(Dzau et al.1982; Gallagher et al.1999; Nickenig et al.1998; Krishnamurthi et al. 

1999). In a study by Brosnihan et al using ApoE-/- mice with or without estrogen 

receptor α (ERα), administration of 17β estradiol to ovariectomized mice resulted 

in down regulation of ACE2 mRNA in kidneys of mice that possess the ERα 

receptor (Brosnihan et al. 2008). However, this effect was lost in ERα knockout 

mice suggesting a role of estrogen via ERα receptor in ACE2 regulation 

(Brosnihan et al. 2008). Another study demonstrated upregulation of ACE2 

activity and proteins in rat kidneys by 17β estradiol in a model of renal wrap 

hypertension. ACE2 activity, protein and mRNA were reduced in ovariectomized 

Sprague Dawley rats administered a high salt (4%) diet for 6 weeks (Ji et al. 

2008). However estrogen replacement prevented these effects and protected the 

rats against renal hypertensive disease (Ji et al. 2008). A study examined the 

expression of Ang-(1-7) and ACE2 staining in either virgin or 19 day pregnant 

Sprague Dawley rats (Brosnihan et al. 2003). At 19 days of pregnancy they 

demonstrated increased ACE2 and Ang(1-7) immunostaining in the inner cortex 

and outer medulla of the kidneys of pregnant rats. Estrogen levels are elevated in 

pregnancy; hence it is possible that in these animals the increased ACE2 in 

kidneys may have resulted from increased estrogen (Brosnihan et al. 2003). 
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1.7. ACE2 knock out models. 

To study the role of this enzyme in various pathologies, three 

different investigators have generated ACE2 deficient mice targeting specific 

exons, resulting in loss of functional protein and activity. The first group 

(Crackower et al. 2002) targeted deletion of portions of exon 7-9, as exon 9 

contains the catalytic site of ACE2, resulting in loss of ACE2 protein and mRNA. 

ACE mRNA in heart and kidney was unaltered in ACE2 deficient mice. ACE2 

deficient mice did not exhibit any abnormalities and were fertile. ACE2 deficiency 

did not result in alterations in blood pressure at 3 months in male or female mice. 

However, ACE2 deficiency resulted in a cardiac phenotype in male mice which 

progressed with age, including wall thinning of the left ventricle and increased 

diameters of cardiac chambers. In spite of the mild chamber dilation there was no 

evidence of cardiac myopathy or hypertrophy. At 6 months of age the ACE2 

deficient mice exhibited reduced blood pressures resulting from severe cardiac 

function. Plasma, kidney and heart AngII levels were elevated (Crackower et al. 

2002).   

Another line of ACE2 deficient mice were generated by deleting exon 3 of 

the mouse ACE2 gene (Yamamoto et al. 2006) and used to define the role of 

ACE2 in pressure overload. At baseline cardiac function as well as plasma and 

cardiac AngII levels were similar in ACE2 deficient and wild type mice. However, 

pressure overload after transverse aortic constriction (TAC) resulted in cardiac 

hypertrophy and decreased contractility in ACE2 deficient mice, and heart failure 
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related deaths were higher in ACE2 deficient mice. Ventricular and plasma AngII 

levels were elevated with ACE2 deficiency. Cardiac hypertrophy and contractility 

in ACE2 deficient mice were reversed by administration of AT1 receptor 

antagonist (Yamamoto et al. 2006). 

The third colony of ACE2 deficient mice was generated by Gurley et al, 

(Gurley et al. 2006) by replacing the zinc-binding motif which contains the active 

site of this enzyme with a neocassette. In the initial cohort of mice on a mixed 

background (129SvEv x C57BL/6) SBP was 7mmHg higher in ACE2 deficient 

mice compared to wild type. On a C57BL/6 background, blood pressure 

measurements exhibited a modest but significant elevation of ~7mmHg in ACE2 

deficient mice but there was no difference in blood pressure of ACE2 deficient 

mice on a 129SvEv background. Plasma AngII levels were not increased by 

ACE2 deficiency; however, acute infusion of AngII resulted in a 3-fold increase in 

plasma AngII in ACE2 deficient mice compared with wild type. Further, chronic 

infusion of AngII for 14 days resulted in more pronounced elevations in blood 

pressure in ACE2 deficient mice (+64mmHg) compared to wild type (+36mmHg). 

Plasma and kidney levels of AngII were significantly elevated in ACE2 deficient 

mice, indicating an important role for this enzyme in AngII catabolism and AngII 

mediated hypertension. In this model, cardiac function was not altered by ACE2 

deficiency (Gurley et al. 2006). Mechanisms for differences in effects of ACE2 

deficiency on blood pressure and cardiac function between these models are 

unclear (Table.1.3). 
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Since ACE2 is located on the X chromosome, in the present dissertation 

ACE2 deficient male mice are denoted as Ace2-/y and ACE2 deficient females 

are denoted as Ace2-/-. 

 

1.8. ACE2 in hypertension. 

Since its initial discovery in 2000, the role of ACE2 in different 

models of hypertension has been studied given its ability to convert AngII, a 

vasoconstrictor peptide of this system to Ang-(1-7), a vasodilator peptide. In the 

preceding section, effects of ACE2 deficiency on blood pressure control were 

discussed.  In this section we highlight other data indicating a role for ACE2 in 

blood pressure control.  In a recent study by Wysocki et al (2010), administration 

of recombinant ACE2 reversed AngII-induced increases in blood pressure in 

ACE2 deficient mice. Further, recombinant ACE2 reduced plasma AngII and 

increased plasma Ang-(1-7) in wild type and ACE2 deficient mice.  Administration 

of a selective Ang-(1-7) receptor antagonist had no effect on the blood pressure 

reduction from recombinant ACE2; however, an ACE2 inhibitor blunted 

reductions in blood pressure. These results indicated that decreased systemic 

AngII from recombinant ACE2 protected mice against AngII-mediated 

hypertension (Wysocki et al. 2010). A recent study by Zhong et al (2010) also 

demonstrated reductions in AngII-induced elevations in blood pressure in mice 

that were infused with recombinant ACE2 (Zhong et al. 2010).  

Several researchers have demonstrated a role for ACE2 in hypertension 

in different animal models by overexpressing the enzyme in different tissues. 
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Using lentiviral gene therapy, Diez-Freire et al (2006) demonstrated that 

intracardiac injection of lentiviral vector containing murine ACE2 to 5 day old 

SHR rats reduced blood pressure when rats were 4 months of age.  In contrast, 

there was no effect of lentiviral ACE2 on blood pressure in WKY rats (Diez et al. 

2006). The same group overexpressed ACE2 in the rostral ventrolateral medulla 

of SHR and demonstrated a role for ACE2 in central regulation of blood pressure 

(Yamazato et al. 2007). To determine the role of vascular smooth muscle ACE2 

in blood pressure regulation, transgenic expression of human ACE2 using an 

SM22 promoter in SHRSP rats attenuated the vasoconstrictive response to AngII 

and reduced blood pressure (Rentzsch et al. 2008). Similarly, Xia et al (2009) 

over-expressed human ACE2 in the brain and reversed AngII-induced increases 

in blood pressure. In this study administration of an Ang-(1-7) receptor antagonist 

reversed reductions in blood pressure from ACE2 overexpression (Xia et al. 

2009). In another study the same group using adenoviral vectors expressed 

human ACE2 in subfornical organ (SFO) and demonstrated a reduction in AngII-

mediated pressor and drinking responses (Feng et al. 2008). Taken together, 

these studies indicate a role for ACE2 in different models of hypertension.   

An unresolved issue in studies manipulating ACE2 is whether effects 

result from changes in Ang-(1-7) or AngII. In ACE2 deficient mice infused with 

AngII, plasma (3-fold) and kidney (6-fold) levels of AngII increased compared to 

wild type mice (Gurley et al. 2006). In mice infused with recombinant human 

ACE2, AngII-induced elevations in blood pressure were reduced and 

administration of an Ang-(1-7) antagonist had no effect, indicating the importance 
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of ACE2 to lower AngII rather than increase Ang-(1-7) to blunt the effects of 

AngII-mediated hypertension (Wysocki et al. 2010). 

Several lines of evidence support ACE2 polymorphisms in humans with 

hypertension. One of the initial studies in randomly selected Chinese patients 

with essential hypertension showed that a single nucleotide polymorphism (SNP) 

in the fourth base pair of the third Intron of the ACE2 gene may be associated 

with essential hypertension and cardiac incompetence (Liu et al. 2005). A single 

A/G polymorphism of the ACE2 gene was associated with hypertension in 

patients with the metabolic syndrome (Zhong et al. 2006). An interesting study 

measured macrophage ACE2 activity in normotensive, pre-hypertensive and 

hypertensive subjects. Interestingly ACE2 activity was increased in macrophages 

of pre-hypertensive subjects suggesting a protective role of ACE2 to counteract 

the increased levels of AngII (Keidar et al. 2007). Collectively, these studies in 

animals and humans demonstrate a role for ACE2 in hypertension.  

 

1.9. ACE2 in diabetes. 

One of the first studies to indicate a role for ACE2 in diabetes 

examined ACE and ACE2 mRNA and protein expression in kidneys of 24 week 

streptozocin diabetic SD rats (Tikellis et al. 2003). ACE2 protein and mRNA were 

downregulated in the renal tubules and glomerulus of diabetic rats, and 

administration of an ACE inhibitor rescued the downregulation of ACE2. In an 

interesting study examining ACE and ACE2 mRNA, protein and activity in 



 
 
 
 

25 

kidneys from type 1 (streptozotocin) and type 2 (db/db) mouse models of 

diabetes, Wysocki et al (2006) demonstrated in both models that ACE2 protein 

and activity were significantly lower in diabetic mice. Interestingly, these changes 

were restricted to ACE2 protein and not reflected by changes in ACE2 mRNA, 

indicating post translational modification of ACE2 in pathology and cautioning 

against making interpretations based solely on mRNA data (Wysocki et al. 2006).  

In addition to regulating kidney AngII levels and function, studies have 

suggested a role for ACE2 in glucose homeostasis and type 2 diabetes. ACE2 

immunostaining is evident in the endocrine and exocrine pancreas of the mouse 

(Niu et al. 2008). In addition, ACE2 deficient mice have impaired first phase 

insulin secretion and impaired glucose tolerance which progresses with age (Niu 

et al. 2008). However, insulin sensitivity was not influenced by ACE2 deficiency. 

A recent study by Bindom et al demonstrated a pivotal role for pancreatic ACE2 

over-expression in regulation of glucose homeostasis in db/db mice (Bindom et 

al. 2010). Using recombinant human ACE2 (hACE2) to drive expression of ACE2 

in the pancreas of db/db mice, glucose tolerance improved and pancreatic insulin 

content increased. ACE2 expression in pancreas increased β-cell proliferation 

and reduced apoptosis in db/db mice (Bindom et al. 2010).  

   

    1.10. Role of the RAS in obesity-induced hypertension.     

 An activated RAS is one of the key systems implicated in the 

etiology of obesity-hypertension, especially since all the components of the RAS 
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are expressed in adipose tissue. Excess weight gain has been demonstrated to 

increase renal sodium reabsorption which shifts the pressure natruresis curve to 

the right, resulting in increased blood pressure in obese subjects to maintain 

sodium balance (Hall et al. 1999). Obese subjects have been demonstrated to 

exhibit an increased plasma renin activity in spite of an increased sodium 

retention and extracellular volume leading to further sodium reabsorption and 

elevation in arterial blood pressure (Hall et al. 1999). In contrast, reduction in 

body weight paralleled reduction in plasma renin activity and blood pressure in 

obese subjects (Hall et al. 1999; Tuck et al. 1981). A study by Cooper et al 

(1997) demonstrated a positive correlation between BMI and an activated 

systemic RAS. Serum ACE and angiotensinogen levels were significantly 

elevated in individuals with BMI >30 (Cooper et al.1997). Weight loss of 6+/-3% 

of initial body weight in obese subjects resulted in reductions in blood pressure 

(systolic and diastolic), plasma renin activity and systemic ACE activity (23%) 

(Harp et al. 2002). Similarly, in another study weight loss resulted in a significant 

reduction in plasma renin activity and aldosterone levels and blood pressure 

([systolic (~9mmHg) and diastolic (~7mmHg]) in obese subjects (BMI of 32.9+/- 

4.3kg/m2) (Ho et al. 2007). An activated RAS along with a beneficial effect of 

weight loss was also demonstrated by Engeli et al (2005) in post menopausal 

obese and lean subjects. Plasma ACE, angiotensinogen, aldosterone and renin 

activity were higher in obese compared to lean subjects.  Adipose 

angiotensinogen was reduced with obesity. In contrast a 5% weight loss resulted 

in a reduction of the systemic RAS components such as angiotensinogen, renin, 
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aldosterone and ACE activity. Importantly, they saw a ~7mmHg reduction in 

ambulatory systolic pressure with a 5% reduction in body weight (Engeli et al. 

2005). These results indicate that the systemic RAS in humans is activated with 

obesity, and reductions in body weight blunt the activated RAS and lower blood 

pressure. 

In spite of the high prevalence of obesity-induced hypertension, not many 

studies in humans are available that have tested the efficacy of drugs related to 

the RAS in treatment of resistant hypertension associated with obesity. The 

TROPHY (treatment in obese patients with hypertension) trial was one of the first 

randomized double blinded trials that compared the effects of either an ACE 

inhibitor (lisinopril) or diuretic (hydrochlorothiazide) for treatment of hypertension 

and associated metabolic parameters such as lipid and glucose profile in obesity-

associated hypertensive subjects. TROPHY was a 12 week study with 232 

enrolled subjects with average BMI of 32. While neither of the drugs completely 

blunted hypertension, obese patients exhibited a 40% reduction in pressure with 

lisinopril and 33 % with a diuretic. Other parameters such as blood glucose and 

lipid levels were not significantly altered. Thus, at the end of the trial the authors 

recommended a monotherapy with either ACE inhibitor or diuretic as the initial 

treatment for subjects with obesity-induced hypertension (Jansen et al. 2010). In 

the CROSS (Candesartan Role on Obesity and on Sympathetic System) study 

with 127 obese subjects (BMI of 32 kg/m2), antihypertensive effects of an AT1 

receptor antagonist were compared to hydrochlorothiazide. Though both drugs 

decreased blood pressure (80%), the AT1R antagonist, candesartan, improved 
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insulin sensitivity and modestly lowered sympathetic nerve activity (Grassi et al. 

2003; Jansen et al. 2010). In a study in 489 obese subjects, blood pressure 

lowering effects of the direct renin inhibitor, aliskiren, were compared with 

amlodipine (calcium channel blocker) or irbesartan (AT1receptor antagonist) in 

patients who had not responded to an initial 4 week therapy with 

hydrochlorthiazide (Jordan et al. 2007). Results demonstrated that combination 

treatment with aliskiren was effective in obese patients with hypertension who fail 

to achieve blood pressure control with a first-line diuretic. Taken together, these 

studies demonstrate an important role for RAS in obesity-induced hypertension. 

 

    1.11. The adipose renin-angiotensin system. 

Though traditionally the RAS is a circulating endocrine system, 

numerous studies in the last two decades support the presence of a local RAS in 

numerous tissues including adipocytes. Cassis et al (1988) demonstrated the 

expression of angiotensinogen mRNA and protein in brown (perivascular adipose 

tissue surrounding rat aorta) and white adipose tissue (epididymal adipose 

tissue) from rats (Cassis et al. 1988). Similarly, Campbell et al demonstrated 

angiotensinogen expression in rat periatrial and periaortic brown adipocytes 

(Campbell et al. 1987). Gomez et al contrasted developmental expression of 

angiotensinogen in different tissues in rats during maturation and demonstrated 

adipose tissue (brown fat) as the primary source of angiotensinogen in the fetus 

rather than the liver (Gomez et al.1988). In 3T3-L1 cells, angiotensinogen 

expression has been shown to be increased with differentiation as the cells 
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acquired an adipocyte phenotype (Saye et al. 1989). Additionally, 

angiotensinogen in adipocytes is regulated hormonally and nutritionally by 

insulin, β adrenergic agonists (Jones et al. 1997), glucocorticoids (Aubert et al. 

1997), fatty acids (Safonova et al. 1997) and androgen (Serazin-Leroy et al. 

2000). One of the earlier studies to indicate nutritional regulation of adipose 

angiotensinogen was by Frederich et al (1992) where angiotensinogen 

expression in adipocytes from SD rats was reduced on fasting (14.6+/-2.3%) and 

increased on refeeding (228+/- 53%). Importantly, SBP was reduced by 

~25mmHg with fasting and increased by ~15 mmHg on refeeding, indicating a 

role for adipose derived angiotensinogen in blood pressure homeostasis 

(Frederich et al. 1992). Additionally, AngII, which has been demonstrated to be 

elevated with diet-induced obesity, has also been demonstrated to increase 

adipose angiotensinogen (Lu et al. 2007). Additionally glucose and fructose 

recently were demonstrated to increase angiotensinogen expression in mature 

3T3-L1 adipocytes (Carvalho et al. 2010), indicating nutrional regulation of 

angiotensinogen in adipocytes. 

Shenoy et al (1997) also demonstrated renin-like activity in rat 

interscapular brown adipose tissue; however, renin mRNA was undetectable by 

polymerase chain reaction in brown and white adipose tissue (Shenoy et al. 

1997). In contrast, renin as well as renin binding protein is expressed in mature 

and preadipocytes from human adipose tissue (Karlsson et al. 1998, Schling et 

al. 1999).  In addition to angiotensinogen, each component of the RAS has been 

localized to adipose tissue (for review see Thatcher et al. 2009).  The following 
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section will overview changes in the adipose RAS in the setting of obesity 

hypertension.    

 

1.12. Role of the adipose RAS in obesity-induced hypertension. 

A number of studies in animals and humans have looked at the 

regulation of different RAS components in the setting of diet-induced obesity, 

with the majority of these studies focused on the role of adipose angiotensinogen 

in obesity-hypertension.  Frederich et al (1992) demonstrated increased release 

of angiotensinogen from explants of adipose tissue from genetically obese mice 

(ob/ob) indicating a role of obesity in regulating adipocyte angiotensinogen 

expression (Frederich et al. 1992). In contrast, using obese Zucker rats, Jones at 

al (1997) demonstrated a reduction in angiotensinogen expression in adipose 

tissue of obese compared to lean rats (Jones et al. 1997). In contrast to the 

previous finding Hainault at al (2002) demonstrated an increase in adipose 

angiotensinogen expression and release in Zucker rats with obesity (Hainault et 

al. 2002).  

One of the earlier studies to demonstrate a role for the RAS in obesity –

hypertension in mice was by Ortlepp et al (2002). In HF-fed mice administered an 

ACE inhibitor (captopril) or AT1R antagonist (Irbesartan), MAP was reduced by 

47 and 50%, respectively, indicating a role for an activated RAS in obesity-

hypertension in mice (Ortlepp et al. 2002). Similarly, Rahmouni et al. (2004) also 

demonstrated increased angiotensinogen expression in omental, reproductive 

and peri renal adipose tissue in HF-fed mice. Unfortunately, blood pressure was 
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not measured in this study (Rahmouni et al. 2004). Boustany et al (2004) fed rats 

a HF diet for 11 weeks, at which time adipose  angiotensinogen expression and 

plasma AngII concentrations were increased and blood pressure was elevated 

(Boustany et al. 2004). Elevated pressures in obese hypertensive rats were 

abolished by an AT1R antagonist (Boustany et al. 2005). Transgenic mice either 

expressing  angiotensinogen only in adipose tissue (TG-KO) or over expressing 

angiotensinogen in adipose tissue (TG-WT) exhibited increased plasma 

angiotensinogen  levels and rescued the hypotension of angiotensinogen 

deficient mice (Massiera et al. 2001a). Of note, over-expression of 

angiotensinogen in adipose tissue of wild type mice increased plasma  

angiotensinogen concentrations and elevated blood pressure, implicating 

adipose derived angiotensinogen in the etiology of obesity-hypertension 

(Massiera et al. 2001a). Spontaneously hypertensive rats fed a HF diet (45%) for 

12 weeks resulted in significant elevations in body weight, SBP and glucose 

intolerance (Chung et al. 2010). Morover, HF diet resulted in increased 

expression of all components of the RAS such as, AngII, renin, ACE and 

angiotensinogen expression in kidney, and administration of candersartan or 

tempol reversed these effects. 

Studies in humans looking at the different RAS components with obesity 

have provided contradictory results. Gorzelniak et al (2002) examined expression 

of different components of the RAS in subcutaneous adipose tissue from lean, 

obese normotensive and obese hypertensive subjects. Adipose angiotensinogen 

was decreased in obese normotensive and hypertensive subjects. In contrast 
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expression of renin, ACE and AT1 receptor was significantly increased in 

adipose tissue from obese hypertensive subjects (Gorzelniak et al. 2002).In 

contrast Van Harmelem et al (2000) demonstrated a 2-fold increase in adipose  

angiotensinogen with obesity (Van Harmelem et al. 2000). Faloia et al (2002) 

reported no differences in parameters of the circulating RAS with obesity. 

However, they reported a significant increase in AT1 receptor expression in 

adipose tissue from obese subjects. Additionally, studies in humans also 

demonstrate a differential expression of RAS components in visceral (VAT) 

versus subcutaneous (SAT) adipose tissue (Faloia et al. 2002). Giacchetti et al 

(2002) looked at the expression of angiotensinogen, renin, ACE, ATIR, AT2R in 

VAT and SAT from either lean or obese normotensive subjects. AT1R expression 

was higher in VAT compared to SAT. In contrast ACE expression was not 

different in the two depots. Renin and AT2R were undetected in either depot 

(Giacchetti et al. 2002).  

 

 1. 13. Obesity-hypertension:  influence of gender. 

Though women develop hypertension, the prevalence of obesity-

associated hypertension is lower in pre-menopausal women compared to age 

matched men inspite of a higher BMI in females (Table 1.4). A number of studies 

implicate a role for sex hormones as mediators of sex differences in 

hypertension. In contrast, there is a paucity of studies defining mechanisms for 

differences in obesity-hypertension in females compared to males. 
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One of the earliest reports to demonstrate the role of estrogen in lowering 

blood pressure was by Brosnihan et al (1997), where administration of 17β-

estradiol to transgenic (mRen2)27-positive [Tg(+)] and negative [Tg(-)] rats 

resulted in significant reductions in blood pressure in normotensive  and 

hypertensive rats. Estrogen administration increased plasma Ang-(1-7) levels 

and reduced plasma AngII levels in Tg(+) rats. Additionally, estrogen reduced 

ACE activity in plasma, kidney and aortas of Tg(+) rats (Brosnihan et al. 1997).  

The same group then demonstrated that reduced ACE mRNA expression in 

kidney cortex, medulla, lung and aorta of ovariectomized Sprague-Dawley rats 

could be reversed upon administration of 17β-estradiol (Gallagher et al. 1999). 

Investigators have contrasted AngII-induced hypertension between male and 

female rats to begin to understand mechanisms for sex differences.  Infusion of 

AngII to male SHR rats resulted in greater blood pressure elevations compared 

to females (Sullivan et al. 2010). Though plasma AngII levels were comparable 

between male and female rats infused with AngII, female SHR exhibited elevated 

plasma Ang-(1-7) levels compared to males before and after AngII infusion. In 

renal cortex, expression of AT1R and AT2R were higher in males compared to 

females; in contrast, females exhibited increased Mas receptor expression. 

Administration of a Mas receptor antagonist to AngII-infused rats eliminated 

gender differences in blood pressure. The authors concluded that Ang-(1-7) is a 

mediator of sex differences in AngII-induced hypertension (Sullivan et al. 2010).  

Studies have provided similar results in mice, where administration of 

AngII resulted in a greater increase in blood pressure in males compared to 
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females (Xue et al. 2005). Gonadectomy reduced blood pressure in male mice, 

but increased pressure in females (~23mmHg), indicating that female sex 

hormones render protection against AngII-mediated hypertension (Xue at al. 

2005). In a rat model of renal wrap hypertension, renal glomerulosclerosis was 

higher in intact males compared to females (Ji et al. 2005). Gonadectomy 

decreased the pathology in males; however, this protection was lost in females. 

In gonadectomized females, estrogen replacement reversed renal pathology.  

Follow-up studies by this group examined estrogen regulation of ACE2 in renal 

wrap hypertension (Ji et al. 2008).  In ovariectomized female rats, ACE2 activity 

in renal cortex was decreased compared to sham-operated controls, and these 

effects were reversed by estrogen administration.   Infusion of Ang-(1-7) 

prevented effects of ovariectomy on renal pathology in female rats, but effects 

were unrelated to blood pressure (Ji et al. 2008). These investigators suggested 

positive regulation of kidney ACE2 by estrogen. In summary, while a variety of 

studies demonstrate sex differences in the RAS that relate to blood pressure 

control, including studies supporting a role for ACE2, no studies have defined 

mechanisms of sex differences in obesity-hypertension.  

 

                                                                                                                           

 

 

 

Copyright © Manisha Gupte 2011 



35 
 

        Table 1.1. Key measurements for assessing weight and health risk.      
(Source: National  Heart,Blood and Lung Institute, 2010) 

 
                     A.  Body Mass Index (BMI) 

 BMI 

Underweight Below 18.5 

Normal 18.5-24.9 

Overweight 25.0-29.9 

Obesity 30 and above 

 

                    BMI = weight in kg/height in meter 2 

 

         B. Waist circumference: Higher waist circumference increases risk for heart  

         disease and type 2 diabetes           

Men >35 inches 

Women > 40 inches 

    

           C. Risk factors for Obesity-Associated Diseases 

• High blood pressure (hypertension)  

• High LDL cholesterol ("bad" cholesterol)  

• Low HDL cholesterol ("good" cholesterol)  

• High triglycerides  

• High blood glucose (sugar)  

• Family history of premature heart disease  

• Physical inactivity  

• Cigarette smoking  
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                        Table 1.2 Putative mechanisms of obesity-related hypertension.  
 
 

 
Primary 

mechanism 

 
Possible underlying 

mechanism 

 
Sodium retention 

Antinatriuretic effect of 
insulin 

Increased renal SNS activity 
Increased aldosterone 

Increased cortisol activity 
Anatomic renal compression 

 
Increased 

Sympathetic 
Nervous System 

activity 

Insulin resistance 
Renin-angiotensin 
Leptin/adipokines 

Obstructive sleep apnea 
Β adrenergic receptor 

polymorphisms 
Psychological stress 

 
Increased 

circulating renin-
angiotensin 

 
Increased renal sympathetic 

nerve system 

 
Increased adipose 
renin-angiotensin 

 

 
Impaired vascular 

endothelial function 

 
Insulin resistance 

 
Other vascular 
mechanisms 

Insulin resistance 
Altered vascular ion 

transport 

 
 
                                      (Kotchen. 2010) 
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                 Table 1.3 Characteristics of Ace2-/y models. 
 
 

  Crackower et al Yamamoto et al Gurley et al 

Genetic Background  Mixed Mixed Mixed 129/SvEv C57BL/6 

Cardiac systolic function Impaired  Normal Normal Normal Normal 

Heart weight Normal Normal Normal Normal Normal 

Blood pressure Decreased Normal Variable Normal Increased 

Plasma angiotensin II Increased Normal Normal n.d n.d 

Cardiac angiotensin II Increase Normal n.d n.d n.d 

Renal angiotensin II Increase n.d n.d n.d n.d 
 
 
                     (Gurley et al. 2008) 
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Table 1.4. Prevalence of Hypertension in age matched men and women. 

 

Age Men (%) Women (%) 

20-34 9.2 2.2 

35-44 21.1 12.6 

45-54 36.2 36.2 

55-64 50.2 54.4 

65-74 64.1 70.8 

75 and older 65.0 80.2 

All 31.8 30.3 

 

 Source: National Center for Health Statistics. Health, United States, 2008   
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                                                           Figure 1.1. Classical RAS. 
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                                                        Renin 
 
 

                                            AngI (1-10) 
Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu 

  
        

                                                      ACE(Angiotensin converting enzyme) 
                                                                                             
                                        
                                                 AngII (1-8) 

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe 
 

                                                       Aminopeptidase A 
                                                               
                                                AngIII (2-8) 

Arg-Val-Tyr-Ile-His-Pro-Phe 
 
                                                       Aminopeptidase N 

 
                                            AngIV (3-8) 

Val-Tyr-Ile-His-Pro-Phe 
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Updated RAS 
Angiotensinogen

Renin

Angiotensin I (1-10)
Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu

ACE

Angiotensin II (1-8)
Asp-Arg-Val-Tyr-Ile-His-Pro-Phe

Angiotensin III (2-8)
Arg-Val-Tyr-Ile-His-Pro-Phe

Angiotensin IV (3-8)
Val-Tyr-Ile-His-Pro-Phe

Aminopeptidase A

Aminopeptidase N

Vasoconstriction
Inflammation
↑Cell growth

Vasodilation
Anti-inflammatory
↓Cell growth
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AT2 ACE 2
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ACE 2
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Figure 1.2. Updated RAS, with biological active peptides highlighted in blue.  
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Figure 1.3. Action of AngII on tissues associated with cardiovascular functions. 

(Cohn et al. 2006) 
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Figure 1.4. Effects of angiotensin peptides and renin/prorenin mediated by their 

corresponding receptors. (Fyhrquist et al. 2008) 
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Figure 1.5. Comparison of gene structure of ACE and its homologue ACE2. 

(Warner et al. 2004) 
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Figure 1.6. Actions of Ang-(1-7) on tissues associated with cardiovascular 

function. (Santos et al. 2008) 
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1 A. STATEMENT OF THE PROBLEM 

    

Western countries are experiencing an epidemic of obesity and face 

increasing rates of related complications such as diabetes mellitus, elevated lipid 

levels and hypertension.  A variety of mechanisms have been proposed to link 

obesity to the high prevalence of hypertension, including activation of the RAS.  

However, mechanisms for activation of the RAS in the development of obesity-

hypertension are undefined.  Moreover, the role of the RAS in obesity-related 

hypertension in females is undefined. 

The mono-carboxypeptidase, ACE2, is a homolog of ACE that cleaves the 

potent vasoconstrictor AngII as a substrate for the production of the vasodilator 

peptide, Ang-(1-7).  Through these dual mechanisms (e.g., reducing AngII and 

elevating Ang-(1-7)), ACE2 is capable of blunting activation of the RAS.  In 

experimental models of hypertension involving AngII, ACE2 blunts blood 

pressure responses to AngII, demonstrating it can protect against AngII-related 

hypertension. However, the role of ACE2 in the development of obesity-related 

hypertension has not been previously defined.  Moreover, since studies suggest 

differences in the ACE2/Ang-(1-7) axis between males and females in AngII-

induced models of hypertension, it is conceivable that differential regulation of 

ACE2 between males and females contributes to sex differences in obesity-

hypertension.           

Adipocytes express several components of the RAS, which have been 

suggested as a link between obesity and hypertension.  Nutritional regulation of 
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RAS components, including angiotensinogen, has been demonstrated in the 

setting of diet-induced obesity in a manner consistent with the development of 

obesity-related hypertension.  To date, a few studies have examined nutritional 

regulation of ACE2 in the context of sodium intake; however, no studies have 

focused specifically on nutritional regulation of ACE2 in adipose tissue in 

response to HF feeding.  However, fatty acids, enriched in HF diets, are well 

known regulators of gene expression and adipocyte hypertrophy from obesity 

has been demonstrated to activate the ACE2 shedding protein, ADAM-17.  

Nutritional regulation of adipose ACE2 would be predicted to influence adipocyte-

derived synthesis and secretion of angiotensinogen and/or AngII, potentially 

contributing to the development of obesity-hypertension.  Thus, the overall 

hypothesis of this dissertation is that nutritional regulation of ACE2 in the 

setting of diet-induced obesity protects males and females against obesity-

related hypertension.  We examined the following Specific Aims to test this 

hypothesis: 

Specific Aim 1:  Determine effects of HF feeding on adipose ACE2 and the 

systemic RAS in the development of obesity-related hypertension. 

A.  Define effects of acute and chronic HF feeding on adipose ACE2 

expression (mRNA, protein, activity) in relation to activation of the 

systemic RAS and the development of hypertension. 

B. Define mechanisms for HF-regulation of adipose ACE2, focusing on 

ADAM-17-mediated shedding from hypertrophied adipocytes, and fatty 

acid and/or PPARγ regulation of ACE2 mRNA express 
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Specific Aim 2:  Determine effects of ACE2 deficiency on the 

development of obesity-induced diabetes and hypertension. 

A.  Define effects of ACE2 deficiency in male C57BL/6 mice on the 

development of obesity, diabetes and hypertension. 

B. Define effects of ovariectomy on the development of obesity-induced 

diabetes and hypertension in C57BL/6 control and ACE2 deficient female 

mice.   
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Section II. SPECIFIC AIM 1 A 

 

Determine expression and regulation of ACE2 in adipose tissue with diet 

induced obesity. 

2.1. Summary. 

Adipose tissue expresses components of the renin-angiotensin 

system (RAS).  Angiotensin Converting Enzyme 2 (ACE2), a recently described 

component of the RAS, catabolizes the vasoconstrictor peptide angiotensinII 

(AngII) to form the vasodilator angiotensin-(1-7) (Ang-(1-7)). We examined 

whether adipocytes express ACE2 and its regulation by high fat feeding.  ACE2 

mRNA expression increased during differentiation of 3T3-L1 adipocytes. Male 

C57BL/6 mice were fed low (LF) or high fat (HF) diets for 1 week or 4 months. At 

1 week of HF feeding, C57BL/6 male mice fed a HF-diet exhibited a significant 

increase in body weight and adipose depots.  ACE2 activity and protein levels 

were increased specifically in adipose tissue of 1 week HF-fed mice, and 

systemic angiotensin peptide concentrations and blood pressure were not 

altered. These results suggest that initial increases in ACE2 activity in response 

to short-term HF feeding may protect mice against an activated adipose and 

systemic RAS. 

In contrast, at 4 months of HF feeding ACE2 activity and protein in 

adipose tissue were reduced compared to LF-fed controls.  Increased expression 
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of ADAM-17, a protease responsible for ACE2 shedding from cell membranes, 

was evident in adipose tissue from 4 month HF-fed mice, and plasma ACE2 

activity increased.  In vitro studies using 3T3-L1 adipocytes demonstrated that 

lipid-laden mature adipocytes exhibited reductions in cell-associated ACE2 

activity, and an ADAM-17 inhibitor decreased levels of ACE2 activity released 

into media from incubated adipocytes. These results suggest enhanced ACE2 

shedding from hypertrophied adipocytes with chronic HF feeding.  Importantly, 

despite modest increases in plasma ACE2 activity in 4 month HF-fed mice, 

obese mice exhibited marked increases in plasma angiotensin peptide 

concentrations (LF: 2,141 + 253; HF: 6,829 + 1,075 pg/ml) and elevated blood 

pressure.   

These results demonstrate that adipocytes express ACE2 that is 

dysregulated in HF-fed mice with and activated systemic RAS and elevated 

blood pressure compared to LF controls.   
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      2.2. Introduction. 

     In 2000, a new component of the RAS was described as a 

monocarboxypeptidase homolog of ACE, identified as ACE2 (Donoghue et al. 

2000, Tipnis et al. 2000).  ACE2 exhibits catalytic activity for both angiotensinI 

(AngI) and angiotensinII (AngII); however, its catalytic efficiency for AngII is 

approximately 400-fold greater than AngI (Vickers et al. 2002).  The product of 

ACE2 cleavage of AngII is Ang-(1-7), a peptide of the RAS which exhibits several 

effects to decrease blood pressure (Ferrario et al. 2005, Ferreira et al. 2007). 

The ability of ACE2 to catabolize AngII to Ang-(1-7) has been suggested as the 

counterbalancing arm of the RAS in blood pressure control, limiting the effects of 

AngII and promoting effects of Ang-(1-7) (Ferrario et al. 2005). Supporting this 

hypothesis, recent studies demonstrated that deficiency of ACE2 on a C57BL/6 

background results in a modest increase in blood pressure, and a markedly 

elevated response to acute and chronic AngII (Gurley et al. 2006). Additionally, 

using recombinant human ACE2 a recent study demonstrated reductions in 

blood pressure in C57BL/6 and ACE2 deficient mice infused with AngII, 

indicating an important role of this enzyme in AngII mediated hypertension 

(Wysocki et al. 2010).However, the role of ACE2 in obesity-induced hypertension 

is yet unknown. This is particularly important as systemic AngII concentrations 

are elevated in obesity-induced hypertension (Boustany et al. 2004). 
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The tissue distribution of ACE2 was originally thought to be restricted to 

kidney and heart; however, further studies demonstrated relatively wide-spread 

distribution of ACE2 mRNA and enzymatic activity in rodents (Gembardt et al. 

2005).  Interestingly, a comprehensive analysis of ACE2 mRNA and protein in 

tissues from rats and mice demonstrated ACE2 expression in adipose tissue 

(Gembardt et al. 2005).  The physiological relevance of ACE2 expression in 

kidney, heart and brain has been investigated, but the role of ACE2 in other 

tissues, including adipose tissue, is not as well understood.  Regulatory 

mechanisms for ACE2 include differential glycosylation, shedding from the cell 

membrane (Lambert et al. 2005; Tipnis et al. 2000), and tissue-specific regulation 

through inhibition of AngII synthesis or activity (Ferrario et al. 2005).  Recent 

studies demonstrated that ADAM-17, the metallopeptidase that cleaves TNF-α 

from cell membranes, can mediate shedding of ACE2 (Lambert et al. 2005). 

However, the role of ADAM-17-mediated ACE2 shedding in diseases associated 

with an activated RAS is unknown.  

Adipocytes express components of the RAS, including angiotensinogen 

(Campbell et al. 1987, Cassis et al.1988), renin-like activity (Shenoy et al. 1997), 

ACE (Saye et al.1993; Schling et al.1999) and angiotensin receptors (type 1 and 

type 2)(Cassis et al. 1996; Mallow et al. 2000).  Interestingly, adipocyte 

expression of angiotensinogen has been demonstrated to exhibit nutritional 

regulation by fatty acids and by HFfeeding (Engeli et al. 2005; Gorzelniak et al. 
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2002; Safonova et al. 1997).  Moreover, angiotensinogen expression in adipose 

tissue, similar to the liver, is positively regulated by AngII (Lu et al. 2007).  In 

addition to components of the RAS, adipocytes express the ACE2 shedding 

metallopeptidase ADAM-17, which has been suggested to contribute to 

enhanced release of TNF-α from adipocytes with obesity (Hotamisligil et al. 1995; 

Hotamisligil et al. 1993).  In this study, we investigated whether adipocytes 

express ACE2, and defined mechanisms for regulation of adipose ACE2 

nutritionally by HF feeding.   
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 2.3. Methods. 

2.3.1. Animals and diets.  

 Male, C57BL/6 mice (2 months of age; The Jackson Laboratory, 

Bar Harbor, MA) were fed a LF (10% kcal as fat; D12450B; Research Diets, Inc, 

New Brunswick, NJ; n=10 mice per group) or a HF diet (60% kcal as fat; D12492, 

Research Diets, Inc, New Brunswick, NJ; n=10 mice per group) for 1 week or 4 

months. Diets were matched in protein content (20% kcal) and provided energy 

at 3.85 or 5.25 kcal/gm (LF and HF, respectively) (Table. 2.1). Diets were 

provided to mice ad libitum, and body weight recorded weekly.  All experiments 

involving mice conformed to the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals and were approved by the University of Kentucky 

Institutional Animal Care and Use Committee. 

 2.3.2. Measurement of blood pressure.  

Systolic blood pressure was measured by tail cuff using the Visitech 

2000 system for mice fed the LF or HF diet for 1 week. Measurements were 

obtained 4 days/week beginning 1 week prior to initiation of diet and through day 

7 (Henriques et al. 2004).  Criteria for inclusion of measurements from individual 

mice were 5 out of 10 successful measurements with a standard deviation < 50. 

For mice fed the LF or HF diets for 4 months, radiotelemetry was used to 

measure blood pressure. At month 4, mice were anesthetized (isoflurane), the 
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left carotid artery was isolated, and the telemeter catheter was inserted into the 

artery and advanced to reach the aortic arch. The telemetry implants (model 

TA11PA-C10, Data Sciences International, St. Paul, MN) were placed in a 

subcutaneous pocket on the right flank.  Mice were allowed to recover for 1 week 

before recordings began (3 consecutive days at 24 hours/day). The telemeter 

signal was processed using a model RPC-1 receiver, a 20 channel data-

exchange matrix, APR-1 ambient pressure monitor, and Dataquest ART 2.3 

acquisition system (Data Sciences International). The system was programmed 

to acquire data for 10 seconds every minute and to calculate 10-min averages of 

the mean, systolic and diastolic blood pressure.     

2.3.3. 3T3-L1 adipocytes.  

 3T3-L1 cells were obtained from ATCC and maintained in Dulbecco’s 

modified Eagle’s medium (DMEM) containing 10% fetal bovine serum.  Cells 

were grown to confluence, and then differentiation was induced with a cocktail of 

insulin (0.1 µM, Sigma, St. Louis, MO), dexamethasone (1 µM; Sigma, St. Louis, 

MO) and isobutyl methyl xanthine (0.5 mM; Sigma, St. Louis). Cells were 

collected for mRNA analysis every day beginning 1 day prior to addition of 

cocktail through day 10. In separate experiments (n = 3), 3T3-L1 adipocytes (day 

10) were incubated with vehicle or GM6001 (10 µM) for 1 hour prior to 

measurement of ACE2 activity in media 
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2.3.4. mRNA quantification. 

Total RNA was extracted from cells (3T3-L1) and tissues 

(epididymal fat, EF; subcutaneous fat, SubQ; retroperitoneal fat, RPF) using 

Trizol reagent (Invitrogen, CA). RNA (0.4 µg) was reverse transcribed for 1 hr at 

55οC with the following components: random decamers, 10X reverse 

transcription buffer, deoxynucleotide triphosphate mix, ribonuclease inhibitor and 

reverse transcriptase (RETROscript; Ambion, TX). Relative quantification of gene 

expression was performed with an iCycler (BioRad, CA) using the SYBR Green 

PCR core reagent (Applied Biosystems, CA). The reaction mix consisted of: 

SYBR Green mix (1X), MgCl2 (3 mM), dNTP mix (1.25 mM), fluorescein (0.01 

µM), primers (0.5 µM) and AmpliTaq gold (2.5 units). The real-time PCR 

conditions were: 5 min at 94οC, 40 cycles for 1 min at 94oC, 1 min at the 

annealing temperature, 1 min at 72οC, and a final elongation step for 10 min at 

72οC. 18S rRNA was used as the endogenous control for normalization. The 

abundance of each mRNA transcript was measured using a standard curve 

method.  Briefly, cDNA (10-7 to 10-3   starting concentration, total of 5 

concentrations) from a tissue source known to express each gene of interest was 

amplified with unknowns. Software on MyiQ Single-Color Real Time PCR 

Detection System (Bio-Rad, CA) plotted the Ct value for each DNA standard 

against the starting quantity (SQ) of cDNA (R2 = 0.98 - 1.00), and extrapolated 

unknowns from the standard curve.  cDNA template (SQ) for each gene was 

normalized to 18S RNA (SQ obtained using the standard curve method) to 
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control for starting amount of DNA, and data are expressed as the ratio of 

gene/18S RNA. 

  2.3.5. Measurement of ACE2 enzymatic activity.  

 ACE2 activity was quantified in 3T3-L1 adipocytes, tissues and 

plasma by determining the conversion of [125I]AngII to [125I]Ang-(1-7) (Ferrario et 

al. 2005a).  Tissues were homogenized in a Tris buffer (100 mM) containing 

NaCl (0.3 M), ZnCl2 (10 µM), and Z pro-prolinal (10 µM). Following centrifugation 

(30,000g for 20 min, 4οC), pellets were reconstituted in the above buffer 

containing 0.5% triton-X and incubated overnight at 4οC. Samples were 

centrifuged, and the supernatant used for measurement of ACE2 enzyme 

activity. Membrane (0.05 - 0.2 mg protein) was added to tubes with buffer (Tris, 

100 mM; total volume 250 µl) containing the following inhibitors: thiorphan (0.1 

mM), phoshoramidon (0.1 mM), bestatin (100 µM), pepstatin (100 µM), and 

captopril (10 µM). Initial experiments optimized the ACE2 activity assay for 

membrane protein, inhibitor cocktail, substrate concentration and validated loss 

of ACE2 activity in adipose membranes from Ace2-/y mice (Fig.2.7 B, 2.7 C, 2.8).  

[125I]AngII (specific activity 2,200 Ci/mmol; 2 x 106 cpm equivalent to 414 fmoles) 

was incubated with samples for 30 minutes, and the reaction stopped by the 

addition of 1% phosphoric acid. Samples were centrifuged, filtered, and injected 

onto a Beckman HPLC system for resolution of [125I[AngII from [125I]Ang-(1-7).  

Reverse phase HPLC was used to resolve angiotensins with a linear gradient 

varying from 15% to 33% acetonitrile (0.5 ml/min). The mobile phase was 25 mM 



57 

 

NaPO4, with a retention time of 6.6 min for [125I]Ang-(1-7) and 13.6 min for 

[125I]AngII (Fig. 2.7 A). HPLC fractions (1 min) were collected and radioactivity 

quantified by gamma counting.  ACE2 activity is expressed as fmol/mg 

protein/min, based on the specific activity of [125I]AngII (2175 Ci/mmol). Protein 

was measured using the BCA Assay (Pierce Chemicals, Rockford, IL). 

2.3.6. Measurement of ACE2 protein.   

Tissues were homogenized on ice in M-PER reagent (Pierce, 

Rockford, IL), sonicated (2 min), and lysates were pelleted by centrifugation.  

Protein (25 µg) from adipose tissue (EF) was electrophoresed on a 7.5% SDS-

PAGE gel under reducing conditions.  Proteins were blotted onto PVDF 

membrane (GE Healthcare, Piscataway, NJ), blocked overnight (5% nonfat milk, 

4oC) and incubated with anti-goat ACE2 antibody (1:1000 dilution; Santa Cruz 

Biotechnology, Santa Cruz, CA) for 1 hour (22οC).  Goat IgG conjugated 

horseradish peroxidase antibody (1:5000 dilution, Santa Cruz) was used for 

chemiluminescent detection. Blots were stripped and re-probed with anti-mouse 

β-actin antibody (1:1000 dilution, clone AC-15, Sigma, St. Louis, MO) for 

normalization of protein loading. Controls included incubation with a blocking 

peptide for ACE2 (1:1 peptide/primary antibody; SC-21834, Santa Cruz, CA), 

which eliminated all immunoreactivity from ACE2 primary antibody. Images were 

collected on a Kodak Image Station 440CF and analyzed using Kodak 1D 

analysis system software (Version 3.6.4, New Haven, CT).   
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2.3.7. Measurement of angiotensin peptides.  

 Angiotensin peptides were measured in mouse plasma (150 µl) 

using reverse phase HPLC followed by radioimmunoassay as previously 

described (Daugherty et al. 2004). 

2.3.8. Statistical analysis.  

Data are expressed as mean + SEM. Data were tested for 

normality and equal variance. For in vitro studies examining mRNA expression 

during adipocyte differentiation, data were analyzed by 1-way ANOVA. For in 

vivo studies, data were analyzed by 2-way ANOVA, with time of diet feeding and 

diet as between group factors.  For post-hoc analysis, data were analyzed using 

Tukey’s test, with significance at P < 0.05.   
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 2.4. Results. 

 2.4.1. Expression of ACE2 in 3T3-L1 Murine Adipocytes and in Mouse   

 Adipose Tissue. 

             ACE2 mRNA expression in differentiating murine 3T3-L1 

adipocytes was contrasted to other components of the RAS and to PPARγ as an 

index of adipocyte differentiation (Fig. 2.1). PPARγ mRNA abundance increased 

beginning on day 3 compared to undifferentiated (Undiff) preadipocytes (Fig.2.1 

A, P < 0.05). ACE2 mRNA expression increased on day 5 (Fig. 2.1 B, P < 0.05). 

Similarly, expression of Mas and AT1a receptors also increased during the 

course of adipocyte differentiation (Fig. 2.1 C, D; P < 0.05).    

2.4.2. The Temporal Effect of HF Feeding on Adipose ACE2 

Expression and  Enzymatic activity.           

            We determined whether ACE2 was nutritionally regulated by short-

term and chronic HF feeding. Body weight and EF mass were modestly 

increased in HF mice at 1 week (Table 2.2, P < 0.05 compared to LF). Blood 

glucose concentrations were increased at 1 week of HF-feeding (Table 2.2, P < 

0.05 compared to LF). At 1 week of HF feeding, expression of angiotensinogen 

was increased in adipose tissue, but not liver, of HF-fed mice (Table 2.2). ACE2 

activity (EF, Fig. 2.2 A, SubQ, Fig. 2.2 B) and protein (EF, Fig. 2.3 A) were 

increased in adipose tissue of HF compared to LF-fed mice. Plasma ACE2 

activity was modestly, but not significantly, increased by 1 week of HF feeding 

(LF, 0.004 + 0.001; HF, 0.009 + 0.001 fmol/ml/min; P > 0.05). Moreover, plasma 



60 

 

concentrations of angiotensin peptides (Fig. 2. 4 A) and systolic blood pressure 

(SBP: LF, 120 + 5; HF, 120 + 4 mmHg; P> 0.05) were not altered by 1 week of 

HF feeding. 

At 4 months of HF feeding, body weight and adipose mass were markedly 

increased compared to LF (Table 2.2, P < 0.05). Moreover, blood glucose 

concentrations were increased in HF-fed mice (Table 2.2, P < 0.05 compared to 

LF).    Expression of angiotensinogen in adipose tissue increased with age in 

both LF and HF-fed mice (Table 2.2, P < 0.05, 1 week compared to 4 months 

within diet group).  Moreover, liver and adipose angiotensinogen mRNA 

expression was increased in 4 month HF compared to LF mice (Table 2.2, P < 

0.05). Surprisingly, with 4 months of chronic high fat feeding ACE2 activity (Fig. 

2.2 A, B) and protein (Fig. 2.3 B) were reduced in adipose tissue of HF-fed mice. 

Since ADAM-17 has been demonstrated to shed ACE2 from cell membranes 

(Lambert et al. 2005), we measured ADAM-17 mRNA expression (Fig. 2.5 A) and 

ACE2 enzymatic activity in 3T3-L1 adipocytes at day 8 and 10 of differentiation 

(Fig. 2.5 B).  These time points were chosen to represent early-stage (8 days) 

and lipid-laden mature adipocytes (10 days). ADAM-17 mRNA expression 

increased over this time course (Fig. 2.5 A) and was associated with reductions 

in membrane ACE2 activity (Fig. 2.5 B). ACE2 activity was also detected in the 

media of 3T3-L1 adipocytes, and levels were reduced by an ADAM-17 inhibitor 

(Fig. 2.5 C). Adipose tissue from 4 month HF-fed mice exhibited an increase in 

ADAM-17 mRNA expression (Fig. 2.5 D; P < 0.05), and plasma ACE2 activity 

increased (LF, 1.8 + 0.3; HF, 3.1 + 0.1 fmol/mg/min, P < 0.05). Despite modest 
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increases in plasma ACE2 activity, plasma concentrations of AngII, AngIV and 

AngI were greater in HF compared to LF mice (Fig. 2.4 B). Moreover, systolic 

and diastolic pressures were significantly increased in both the light and dark 

cycle of 4 month HF-fed compared to LF mice (Fig. 2.6 A, B, P < 0.05), 

contributing to an elevation in mean arterial pressure.  
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 2.5. Discussion.     

This study examined whether adipocytes express ACE2 and its 

regulation by HF feeding. Results demonstrate expression of ACE2 mRNA, 

protein and enzymatic activity in 3T3-L1 adipocytes and in mouse adipose tissue, 

and regulation of adipose ACE2 during HF feeding. With short-term HF-feeding 

of C57BL/6 mice, ACE2 protein expression and enzymatic activity were 

stimulated in adipose tissue, and blood pressure was not altered. With chronic 

HF feeding, ACE2 protein and enzymatic activity in adipose tissue was reduced. 

Expression of ADAM-17, a protease which can shed ACE2 from membranes, 

increased with differentiation of 3T3-L1 adipocytes and in adipose tissues from 

chronic HF-fed mice. With chronic HF feeding, expression of angiotensinogen 

increased in both adipose tissue and liver, plasma concentrations of angiotensin 

peptides were markedly elevated and HF-fed mice exhibited higher blood 

pressure compared to LF-fed controls. These results demonstrate that 

adipocytes express ACE2, and that ACE2 is nutritionally regulated by HF 

feeding.  

The monocarboxypeptidase ACE2 was identified by 5' sequencing of a 

human heart ventricle or lymphoma cDNA library (Donoghue et al. 2000; Tipnis 

et al. 2000).  Expression of ACE2 was originally suggested to be restricted to 

human heart, kidney and testis (Donoghue et al. 2000); however, recent studies 

have demonstrated more widespread distribution of ACE2 (Gembardt et al. 

2005).  In a comparison of tissues from mice and rats, Gembardt et al. 



63 

 

(Gembardt et al. 2005) reported ACE2 expression in adipose tissue, and recent 

studies extend ACE2 expression to both brown and white adipose tissue from 

rats (Galvez-Prieto et al. 2008).  Similarly, ACE2 mRNA was detected in human 

adipose tissue, with greater ACE2 expression in visceral compared to 

subcutaneous adipose tissue (Li et al. 2007; Zhang et al. 2006). However, the 

relative expression of ACE2 in adipocyte versus non-adipocyte fractions of 

adipose tissue has not been defined. 3T3-L1 cells are a fibroblast-like cell line 

from the Swiss mouse embryo which differentiates to mature white adipocytes 

upon exposure to a differentiating cocktail (Green et al. 1975). This system has 

been used previously to define adipocyte expression of RAS components, 

including angiotensinogen (Saye et al. 1989) and AT1 receptors (Mallow et al. 

2000). Our results confirm previous findings of AT1 receptor expression in 

differentiating 3T3-L1 adipocytes (Mallow et al. 2000), and extend these findings 

by demonstrating that mRNA expression of ACE2 and the Mas receptor 

increases upon differentiation of preadipocyte to adipocyte (Hotamisligil et al. 

1995; Hotamisligil et al. 1993). The functional relevance of Mas receptor 

expression on adipocytes was not defined in the current study. Interestingly, 

recent studies demonstrate that Mas receptor deficient mice exhibit a phenotype 

characteristic of the metabolic syndrome, with increased abdominal adipose 

mass, dyslipidemia, hyper-insulinemia and leptinemia, and glucose intolerance 

(Santos et al. 2008a). Moreover, in agreement with our findings in 3T3-L1 

adipocytes, Mas receptor expression was detected in mouse adipose tissue 

(Santos et al. 2008a). Additionally, recent studies demonstrate improvements in 
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lipid and glucose homeostasis such as improved glucose tolerance, increased 

insulin stimulated glucose uptake in adipocytes, improved insulin sensitivity, 

lower plasma cholesterol and triglycerides in transgenic rats expressing Ang-(1-

7) producing fusion protein (Santos et al. 2010). A number of studies recently in 

Mas deficient mice demonstrate a role of this peptide in blood pressure 

homeostasis. However, the results are varying with no difference (Walther et al. 

2000) or increased blood pressure (de Moura et al. 2010) with Ang-(1-7). Altered 

expression of RAS components in adipose tissue has been linked to obesity-

related hypertension in experimental models and humans (Boustany et al. 2004; 

Cassis et al. 1996; Engeli et al. 2005; Giacchetti et al. 2000; Massiera et al. 

2001a; Rahmouni et al. 2004; Van Harmelen et al. 2000).  In rats with diet-

induced obesity and hypertension, expression of angiotensinogen in visceral 

adipose tissue increased, and was associated with elevated concentrations of 

angiotensin peptides (Boustany et al. 2004).  Administration of an AT1 receptor 

antagonist to rats with obesity-hypertension decreased blood pressure (Boustany 

et al. 2005). Similarly, in mice over-expressing human angiotensinogen under the 

control of its own promoter, a HF diet resulted in an increase in angiotensinogen 

expression in visceral adipose tissue (Rahmouni et al. 2004).  However, blood 

pressure was not examined. In human obesity-hypertension, plasma 

concentrations of angiotensinogen, renin, aldosterone and ACE were increased 

compared to lean controls, and weight loss resulted in reductions in these RAS 

components (Engeli et al. 2005).  Our results extend previous findings by 

demonstrating that while short term HF feeding does not activate the systemic 
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RAS, chronic HF-feeding is associated with a stimulated RAS (angiotensinogen 

and AngII) at a time when blood pressure is increased. 

Since other RAS components in adipocytes exhibit nutritional regulation 

(Bertile et al. 2004; Einstein et al. 2005; Frederich et al. 1992; Jones et al. 1997; 

Le Lay et al. 2001; Safonova et al. 1997), we examined effects of HF feeding on 

adipose ACE2 expression. Results from this study are the first to demonstrate 

that short term HF feeding increases ACE2 expression and enzymatic activity in 

adipose tissue. A recent study in rats also demonstrated increased expression of 

ACE2 and Ang-(1-7) levels in adipose tissue of animals administered a high 

sucrose diet (Coelho et al. 2010), supporting nutritional regulation of this enzyme 

in adipose tissue. 

The human ACE2 protein is a type I integral membrane glycoprotein 

(Donoghue et al. 2000; Tipnis et al. 2000), but the enzyme can be shed from the 

cell surface through proteolytic cleavage of its extracellular domain by tumor 

necrosis factor-α convertase (ADAM-17) (Lambert et al. 2005). Mechanisms for 

regulation of ACE2 at the mRNA or protein level have not been well described; 

however, differential glycosylation of the enzyme and shedding from the cell 

surface have been suggested to regulate cellular ACE2 activity (Lambert et al. 

2005; Tipnis et al. 2000). Shedding of ACE2 may impact the RAS, as well as the 

infectivity of the SARS coronavirus since ACE2 serves as the virus receptor (Li et 

al. 2003). Moreover, phorbol ester-induced shedding of ACE2 in HEK293 cells 

overexpressing the enzyme was suggested to result in the release of a soluble 
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form of catalytically active enzyme (Lambert et al. 2005). Our results 

demonstrate that ACE2 activity can be detected in media from adipocytes and 

activity manipulated by an ADAM-17 inhibitor. These results suggest that 

elevated ADAM-17 mRNA expression in adipose from chronic HF-fed mice may 

contribute to shedding of ACE2 from adipocyte membranes. These findings are 

in agreement with previous results demonstrating that adipocyte hypertrophy with 

obesity results in elevated expression and release of another adipocytokine shed 

by ADAM-17, TNF-α (Hotamisligil et al. 1995; Hotamisligil et al. 1993). Further 

studies are required to determine if ADAM-17 mediates enhanced shedding of 

ACE2 from adipocytes with chronic HF feeding, and the implication of these 

findings on the systemic RAS.  

In conclusion results from this study suggest that ACE2 protects male 

mice against obesity-induced hypertension. However, with chronic high fat 

feeding this effect is overwhelmed with loss of ACE2 activity resulting in an 

activated systemic RAS and  obesity-induced hypertension.  
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                  Table 2.1. Composition of diets used in the study. 

 

  

D12450B 
(10%) 

 

D12492 (60%) 

Fat 10 60 

Protein 20 20 

Carbohydrates 70 20 

Total (kcal/g) 3.85 5.2 

Fat Sources Total % Total % 

Lard 45 91 

Soyabean oil 55 9 

Total fat (g)/ kg 45 270 

Kcal from fat /kg diet 405 2430 
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Table 2.2. Characteristics of LF and HF-fed C57BL/6 mice. 

  LF HF 

  1 week 4 months 1 week 4 months 

Body weight (g) 25.2  ±  0.9 29.9 ±  0.3 27.8 ±0.5* 48.0 ± 1.6* 

Blood Glucose (mg/dl)                             130  ±  8 132  ±  5 155   ±  8* 161   ±  7* 

EF (gm) 0.43 + 0.03 0.62 + 0.1 0.74 + 0.06* 2.19 + 0.15* 

Liver angiotensinogen mRNA 0.85 + 0.33 0.84 + 0.09 0.90 + 0.24 1.62 + 0.14*,** 

EF angiotensinogen mRNA 0.11 + 0.01 0.25 + 0.01 0.42 + 0.08* 0.58 + 0.01*,** 
 

    EF, epididymal fat.        

    *, P < 0.05 compared to LF within time point.   

   **, P < 0.05 compared to 1 week within diet group
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Fig. 2.1. A. Relative expression of PPARγ in differentiating 3T3-L1 adipocytes, B. 
Relative expression of ACE2 in differentiating 3T3-L1 adipocytes (n=4 for each 
time point). *, significantly different from UD (Undiff), P < 0.05. 
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Fig. 2.1. C. Relative expression of Mas in differentiating 3T3-L1 adipocytes, D. 
Relative expression of AT1a receptor in differentiating 3T3-L1 adipocytes (n=4 
for each time point). *, significantly different from UD (Undiff), P < 0.05.   
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Fig.2.2.  A. The effect of 1week and 4 months of HF feeding on ACE2 activity in  

epididymal adipose tissue, B. The effect of 1week and 4 months of HF feeding on 

ACE2 activity in  subcutaneous adipose tissue. Data are mean + SEM from n = 5 

mice/time point/diet. *, significantly different from LF. 
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Fig.2.3. A. ACE2 protein in epididymal adipose tissues at 1 week of LF and HF 

feedin, B. ACE2 protein in epididymal adipose tissues at 4 months of LF and HF 

feeding. Data are mean + SEM from n = 5 mice/time point/diet. *, significantly 

different from LF, P < 0.05.  
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Fig. 2.4. A.Plasma angiotensin peptide concentrations at 1 week of LF and HF-

feeding, B. Plasma angiotensin peptide concentrations at 4 months of LF and 

HF-feeding.  Data are mean + SEM from n = 10 mice/time point/diet. *, 

significantly different from LF, P < 0.05. 
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Fig. 2.5. A. ADAM-17 mRNA expression in differentiating 3T3-L1 adipocytes 

during the course of differentiation, n=4 for each time point. *,significantly 

different from Undiff, P < 0.05, B. ACE2 activity decreased from day 8 to 10 of 

differentiation, C. Effect of ADAM-17 inhibition on ACE2 activity, (n = 3), D. 

ADAM-17 mRNA expression in adipose tissue from 4 month HF-fed mice. Data 

are mean + SEM from n = 5 mice/group. *, significantly different from LF, P < 

0.05. 

 

 

 

 

 

 

                  

LF HF
0

1

2

3

4
*

A
D

A
M

17
/1

8s



76 

 

               A)  

 

 

 

 

 

 

 

                 B)     

                       

                            

Fig. 2.6. A. Systolic blood pressure of 4 month LF and HF-fed mice, B. Diastolic 

blood pressure of 4 month LF and HF-fed mice.  Blood pressure was measured 

using radiotelemetry during the light and dark cycle in the final week of month 4.  

Systolic (SBP) and Diastolic (DBP) blood pressure increased in 4 month HF 

compared to LF mice.  Data are mean + SEM from n = 5 mice/group. *, 

significantly different from LF, P < 0.05. 
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Fig. 2.7. A. Left, HPLC chromatogram for resolution of angiotensin 1-7 (Ang-(1-

7); retention time = 6.6 min) and angiotensinII (AngII; retention time = 13.6 min).  

Right, Effect of protease inhibitors on Ang-(1-7) generation.  When [125I]AngII is 

injected onto the HPLC in the absence of adipose membrane ([125I]AngII), only 

one peak of radioactivity is demonstrated in HPLC fractions.  In the presence of 

adipose membrane ([125I]AngII/adipose), radioactivity is detected in the Ang-(1-7) 

fraction, but not in other HPLC fractions. Radioactivity appears in HPLC fractions 

with a 3 minute lag time from the retention time of individual peptides.  B. Left, 

ACE2 activity increases as adipose membrane protein increases. A membrane 

protein concentration of 0.05 mg was chosen for studies.  Right, Dependence of 

[125I]Ang-(1-7) product formation from varying concentrations of [125I]AngII 

substrate. Measurements were performed at a saturating concentration of 

[125I]AngII substrate (200 nM). Moreover, under these experimental conditions, 

less than 5% of [125I]AngII substrate was hydrolyzed to [125I]Ang-(1-7), to assure 

that substrate concentrations were not limiting.  C. ACE2 activity is markedly 

decreased in EF membranes from Ace2-/y mice compared to control (C57BL/6). 
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                        Fig. 2.8. Inhibitors used in ACE2 activity assay. 
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                           Fig. 2.9. Proposed model for Aim 1. 
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Section III. SPECIFIC AIM 1 B 

 

Define mechanisms for regulation of adipose ACE2, focusing on fatty 

acids and peroxisome proliferator activated receptor gamma (PPARγ) ligands 

(thiazolidinediones; TZDs). 

 3.1. Summary. 

Administration of a high fat (HF) diet to C57BL/6 (Ace2+/y) male mice 

increased adipose ACE2 mRNA expression, suggesting regulation of ACE2 

expression in adipose tissue by dietary lipids. In addition, expression of PPARγ 

preceded expression of ACE2 in differentiating 3T3-L1 adipocytes. Specific fatty 

acids serve as ligands of PPARγ. Therefore, we sought to determine if natural 

(fatty acids) or synthetic ligands (TZDs) of PPARγ regulate ACE2 expression and 

activity in 3T3-L1 mature adipocytes. Additionally, since TZDs have been 

demonstrated to reduce blood pressure and improve insulin sensitivity, we 

focused on in vivo regulation of ACE2 in adipose tissue by TZDs as a potential 

mechanism for the blood pressure lowering and insulin sensitizing effects of 

these compounds. 

Fatty acids of the n-3 family, specifically docosahexaenoic acid (DHA), 

increased ACE2 mRNA expression in differentiated 3T3-L1 adipocytes. In 

contrast, fatty acids of the n-6 family had no effect on adipocyte ACE2 

expression or activity. Since n-3 fatty acids are ligand activators of PPARγ, we 

defined effects of TZDs on ACE2 expression in vitro and in vivo. Synthetic 



82    

PPARγ ligands, including rosiglitazone (Rosi) and pioglitazone (Pio), increased 

ACE2 mRNA, activity and protein in a concentration-dependent manner in 

differentiated 3T3-L1 adipocytes. To determine if PPARγ interacts with PPREs on 

the ACE2 promoter, we employed ChIP assays using differentiated 3T3-L1 cells 

incubated with vehicle or Rosi.  Chromatin immunoprecipitation with a PPARγ 

antibody followed by PCR amplification using primers designed against a 

putative PPRE site within the ACE2 promoter revealed binding to DNA from 

adipocytes incubated with Rosi.    

To determine if PPARγ activation regulated ACE2 in vivo, eight week old 

Ace2+/y male mice were administered vehicle or Rosi (p.o.) at a daily dose of 25 

mg/kg body weight for 21 days. ACE2 expression and activity were increased in 

adipose tissue of mice administered Rosi. In contrast, Rosi had no effect on 

ACE2 expression in kidney and heart, two prominent tissue sources of ACE2.  

Plasma concentrations of angiotensin-(1-7) (Ang-(1-7)), a catabolic product of 

ACE2, were increased in mice administered Rosi. Administration of Rosi 

significantly improved glucose tolerance and reduced systolic blood pressures 

(SBP) in Ace2+/y mice compared to vehicle-treated controls. Improvements in 

glucose tolerance in Rosi-administered mice were accompanied by reductions in 

plasma insulin concentrations. 

 We then sought to determine if the reductions in blood pressure and 

improved glucose tolerance observed in Ace2+/y mice administered Rosi were 

mediated via ACE2. Administration of Rosi to Ace2-/y mice reduced SBP, 
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indicating that Rosi-induced reductions in blood pressure were not mediated via 

ACE2. In contrast, glucose tolerance was reduced, rather than improved, by Rosi 

administration in Ace2-/y mice. Moreover, administration of Rosi had no effect on 

plasma insulin concentrations in Ace2-/y mice. 

Results from this study indicate that PPARγ ligands stimulate ACE2 

mRNA expression, activity and protein in vitro and in vivo. Blood pressure 

lowering effects of TZDs were not ACE2 mediated. In contrast, improvements in 

glucose tolerance by Rosi administration were lost in Ace2-/y mice, and 

associated with suppressed plasma insulin concentrations.  
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3.2. Introduction. 

Previous studies in our laboratory demonstrated that ACE2 mRNA 

expression in adipose tissue is transiently increased in response to consumption 

of a high fat (HF) diet (Gupte et al. 2008), suggesting nutritional regulation of 

adipose ACE2 expression. The high fat (HF) diet (D12492, Research Diets) used 

in previous studies consists of a mixture of saturated, monounsaturated and 

polyunsaturated fatty acids. A well described effect of fatty acids is regulation of 

expression of various genes by acting as ligands for specific transcription factors.  

Thus, it is conceivable that specific fatty acids contributed to increased ACE2 

mRNA abundance in adipose tissue of HF-fed mice. 

PPARs are ligand-activated transcription factors with three known 

isoforms (PPARα, PPARβ/δ and PPARγ; Kliewer et al.1994), all expressed in 

tissues associated with cardiovascular function and glucose homeostasis. The 

most widely studied isoform of the PPAR family, PPARγ, is expressed at a high 

level in adipose tissue, with lower levels of expression in liver, kidney, skeletal 

muscle, monocytes and macrophages (Roszer et al. 2010). PPARγ has been 

demonstrated to play a pivotal role in adipocyte differentiation (Brun et al. 1997). 

In type 2 diabetics, PPARγ  ligands improve glucose homeostasis (Picard et al. 

2002), an effect thought to involve increased differentiation of new, insulin 

sensitive, adipocytes. Well known natural ligands of PPARγ  include long chain 

fatty acids and eicosanoids such as arachidonic acid, docosahexanoic acid, and 

eicosapentaenoic acid (Kliewer et al. 1997). Similarly, thiazolidinediones (TZDs), 
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such as rosglitazone (Rosi) and pioglitazone (Pio), are well known synthetic 

ligands of PPARγ that have been widely used to improve insulin sensitivity in type 

2 diabetics (Olefsky et al. 2000). 

In addition to their insulin sensitizing effects, a number of studies in 

rodents and in humans and rodents demonstrate blood pressure lowering effects 

of TZDs (Sarafidis et al. 2006; de Oliveira Silva-Junior et al. 2009; Blasi et al. 

2009; for review see Ketsawatsomkron et al.  2010), as well as natural fatty acid 

ligands of PPARγ (e.g., docosahexaenoic acid; Grynberg et al. 2005). In this 

study, we sought to identify mechanisms for regulation of adipocyte ACE2 by HF 

feeding, focusing on natural fatty acid as well as synthetic ligands of PPARγ. Our 

results demonstrate that natural and synthetic ligands of PPARγ stimulate ACE2 

mRNA abundance, activity and protein expression in adipocytes. Since ACE2 

catabolizes AngII to the vasodilator peptide angiotensin-(1-7) (Ang-(1-7)), and 

since activation of PPARγ has been demonstrated to lower blood pressure, we 

defined blood pressure lowering effects of a synthetic TZD in Ace2+/y and -/y mice.  

Moreover, since previous studies demonstrated hyperglycemia and impaired 

glucose tolerance in Ace2-/y mice (Bindom et al. 2009; Niu et al. 2008), we 

defined effects of ACE2 deficiency on insulin sensitizing effects of TZDs.   
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3.3. Methods. 

3.3.1. 3T3-L1 adipocytes.  

3.3.1.1. Incubation of 3T3-L1 adipocytes with fatty acids. 

3T3-L1 cells were obtained from ATCC and maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine 

serum.  Cells were grown to confluence, and then differentiation was induced 

with a cocktail of insulin (0.1 µM, Sigma, St. Louis, MO), dexamethasone (1 µM; 

Sigma, St. Louis, MO) and isobutyl methyl xanthine (0.5 mM; Sigma, St. Louis). 

On day 8 of differentiation 3T3-L1 adipocytes were incubated with 100µm of 

various fatty acids (palmitic acid (PA), stearic acid (SA), docosahexaenoic acid 

(DHA), linoleic acid (LA)) for 24 hours and cells were harvested for quantification 

of ACE2 mRNA abundance and enzymatic activity (described in section 2.3.4 

and 2.3.5).  

 Preparation of fatty acid-enriched media: Stock solutions of high purity 

(>99%) fatty acids (Nu-Chek,MN) were prepared in hexane. NaOH (6 M, or 30x 

molarity of fatty acid) was used for saponification to convert the fatty acids into a 

water-soluble form. The desired amount of fatty acid was aliquoted, mixed with 6 

M NaOH, and dried under high purity nitrogen gas. The residue was dissolved in 

experimental medium containing albumin. The final ratio of fatty acids to albumin 

was 4:1. Then, the pH was adjusted to 7.4 with HCL and the medium was 

sterilized through a syringe-driven filter unit (Toborok et al. 2002). 
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3.3.1.2. TZD (Rosi) treatment. 

3T3-L1 cells were obtained from ATCC and maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine 

serum. Cells were grown to confluence, and then differentiation was induced with 

a cocktail of insulin (0.1 µM, Sigma, St. Louis, MO), dexamethasone (1 µM; 

Sigma, St. Louis, MO) and isobutyl methyl xanthine (0.5 mM; Sigma, St. Louis). 

On day 8 of differentiation cells were stimulated with varying concentrations of 

Rosi (0.01-1µm) for 24 hours. Cells were then harvested for quantification of 

ACE2 mRNA abundance and/or enzymatic activity (described in section 2.3.4 

and 2.3.5).  

3.3.2. Chromatin immuno precipitation (ChIP) assay. 

ChIP assay was performed using an EZ-Chip assay kit (Upstate) 

according to the manufacturer’s instruction. Mature adipocytes (day 8) were 

stimulated with Rosi (1uM) for 24 hours. Cells were harvested, and soluble 

chromatin was prepared. Chromatin was immunoprecipitated using an antibody 

(4µg) directed against PPARγ (catalog number SC 7273; Santacruz 

Biotechnology). Final DNA product was PCR-amplified using the following primer 

pairs that cover the PPRE consensus sequences between -1367 and -1355 in 

the ACE2 promoter: forward, 5'-TGGAATTATTTTCAGGCTTGG-3'; reverse, 5’-

CTCATGGGCCTGCTTGATTA -3’. 
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3.3.3. Measurement of ACE2 protein.   

3T3-L1 cells were grown to confluence, and then differentiation 

was induced with a cocktail as described in section 3.3.1.1. On day 8 of 

differentiation cells were stimulated with varying concentrations of Pio (0.01-1µm) 

for 24 hours.  At the end of 24 hours cells were harvested on ice in M-PER 

reagent (Pierce, Rockford, IL), sonicated (2 min), and lysates were pelleted by 

centrifugation.  Protein (25 µg) from 3T3-L1 adipocytes was electrophoresed on a 

7.5% SDS-PAGE gel under reducing conditions. Proteins were blotted onto 

PVDF membrane (GE Healthcare, Piscataway, NJ), blocked overnight (5% 

nonfat milk, 4oC) and incubated with anti-goat ACE2 antibody (1:1000 dilution; 

Santa Cruz Biotechnology, Santa Cruz, CA) for 1 hour (22ºC). Goat IgG 

conjugated horseradish peroxidase antibody (1:5000 dilution, Santa Cruz) was 

used for chemiluminescent detection. Blots were stripped and re-probed with 

anti-mouse β-actin antibody (1:1000 dilution, clone AC-15, Sigma, St. Louis, MO) 

for normalization of protein loading. Images were collected on a Kodak Image 

Station 440CF and analyzed using Kodak 1D analysis system software (Version 

3.6.4, New Haven, CT).  

3.3.4. Animals. 

 Male Ace2+/y mice (8 weeks of age; The Jackson Laboratory, 

Bar Harbor, MA; n=10 per group) or Ace2-/y mice (8 weeks of age; backcrossed 

10 times onto a C57BL/6 background) originally obtained from Dr. Thomas 

Coffman (Duke University, NC; n=10 per group) were fed normal laboratory diet 
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ad libitum. All experiments involving mice conform to the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and were approved by 

the University of Kentucky Institutional Animal Care and Use Committee. 

 3.3.5. Drugs. 

Ace2+/y or -/y were administered vehicle or Rosi (25 mg/kg body 

weight, by gavage; Glaxo Smith Kline) daily for 21 days. Body weight was 

measured daily to calculate dose and to monitor daily dosages.   

3.3.6. Measurement of blood pressure. 

Systolic blood pressure (SBP) was measured by tail cuff using 

the Visitech 2000 system in all mice for one week prior to starting the drug and 

during the last five days of the study. Criteria for inclusion of measurements from 

individual mice were 5 out of 10 successful measurements with a standard 

deviation < 50 (Henriques et al. 2004). 

3.3.7.Statistical analysis. 

Data are expressed as mean + SEM.  For in vitro studies 

examining mRNA expression and activity with different treatments, data were 

analyzed by 1-way ANOVA with Tukey’s test for post-hoc comparisons. For in 

vivo studies, non-paired t-test was performed to determine statistical significance 

of ACE2 expression, activity, plasma Ang-(1-7) concentrations. Differences 

between SBP at baseline and after treatments were analyzed by 1-way ANOVA 

with Tukey’s test for post-hoc comparisons. For body weight and plasma insulin 
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concentrations, glucose tolerance we used a 2-way anova with genotype (Ace2+/y 

vs -/y) and treatment (Vehicle vs Rosi), with significance at P < 0.05.  
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3.4. Results. 

3.4.1. n-3 fatty acids and Rosi stimulate ACE2 m RNA, protein 

abundance and enzyme activity in 3T3-L1 adipocytes. 

We incubated 3T3-L1 adipocytes with various fatty acids that are 

either enriched in the HF diet, or ligand activators of PPARγ. Saturated fatty acids 

(SA, PA), as well as an n-6 polyunsaturated fatty acid (LA) had no effect on 

ACE2 mRNA abundance or enzymatic activity (Fig. 3.1 A). In contrast, incubation 

with the n-3 fatty acid DHA resulted in increased ACE2 mRNA abundance in 

3T3-L1 adipocytes (Fig. 3.1 A). Similarly, synthetic ligands of PPARγ such as 

Rosi and Pio significantly increased ACE2 mRNA abundance, protein expression 

and enzymatic activity in 3T3-L1 mature adipocytes. Rosi increased ACE2 

mRNA and activity at concentrations of 0.01 and 0.1 µM (Fig. 3. 2 A, B). 

However, higher concentrations (1 µM) of Rosi had no effect on ACE2 mRNA 

abundance or activity. In contrast Pio increased ACE2 protein in a concentration 

dependent manner (0.01-1 µM) (Fig. 3.2 C). 

To determine if stimulation of PPARγ by synthetic ligands results in 

binding at putative PPRE sites on the ACE2 promoter, we employed ChIP 

assays. After incubation of differentiated 3T3-L1 adipocytes with Rosi and 

chromatin immunoprecipitation with a PPARγ antibody, primers spanning a 

putative PPRE within the ACE2 promoter amplified a product of the appropriate 

size (Fig. 3.3).  
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  3.4.2. In vivo Rosi administration to C57BL/6 male mice increases 

adipose ACE2  mRNA abundance and activity. 

 Administration of Rosi for 21 days had no effect on body weight 

(Table 3.1). In EF, mRNA abundance of ACE2 was increased in response to 

Rosi (Table 3.2; Fig.3.4 A). In contrast, ACE2 mRNA abundance was not altered 

in kidney or heart (Table 3.2). We also examined other components of the renin-

angiotensin system (RAS), including renin in kidney, angiotensin type 1a receptor 

(AT1aR) in adipose, and angiotensinogen mRNA abundance in liver or adipose 

(Table 3.2). 

To confirm that Rosi-mediated increases in ACE2 mRNA abundance 

resulted in increased functional protein, we measured ACE2 enzymatic activity in 

adipose and non-adipose tissue sources. Administration of Rosi increased ACE2 

enzymatic activity in adipose tissue (Fig. 3.4 B), but had no effect on ACE2 

activity in kidney (Fig. 3.4 C). Rosi-induced stimulation of ACE2 activity in 

adipose tissue was associated with increased plasma concentrations of the 

ACE2 product, Ang-(1-7) (Table 3.4, Fig.3.4 D).   

3.4.3. Rosi administration reduces blood pressure and glucose 

tolerance:  effects of ACE2 deficiency. 

After 21 days of Rosi treatment glucose tolerance (area under 

the curve; AUC) was improved in Ace2+/y mice (Table 3.4, Fig.3.5 A). 

Additionally, we did not see any difference in blood pressure in vehicle-treated 

Ace2+/y mice. However, Rosi administration resulted in a significant reduction in 

SBP in Ace2+/y mice (Table 3.3, Fig. 3.5 B). We then administered vehicle or Rosi 
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to Ace2-/y mice using the same protocol. Administration of Rosi to Ace2-/y mice 

had no effect on body weight (Table. 3.1). Similar to findings in Ace2+/y males, 

Rosi administration reduced SBP in Ace2-/y mice (Table 3.3, Fig. 3.6 B). In 

contrast, rather than reduce AUC indicating improved glucose tolerance, 

administration of Rosi to Ace2-/y mice worsened glucose tolerance (Table 3.4, 

Fig. 3.6. A). In addition, Rosi administration had no effect on plasma insulin 

concentrations in Ace2-/y mice (Table 3.4, Fig. 3.7). Moreover, plasma insulin 

concentrations were lower in Ace2-/y compared to +/y mice administered vehicle 

(Table 3.4, Fig. 3.7).  
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 3.5. Discussion. 

Results from the present study demonstrate that natural fatty acid 

ligands, as well as synthetic ligands of PPARγ, increase ACE2 expression in 

adipocytes.  Chromatin immunoprecipitation demonstrated binding of PPARγ to 

PPREs on the ACE2 promoter in adipocytes. Administration of Rosi to Ace2+/y 

mice resulted in increased ACE2 mRNA and activity in adipose tissue, but not in 

other tissues expressing a high level of ACE2. Moreover, Rosi administration 

elevated systemic concentrations of the ACE2 product, Ang-(1-7). Interestingly, 

blood pressure lowering effects of Rosi remained evident in ACE2 deficient mice, 

suggesting other mechanisms contribute to this effect. In contrast, ACE2 

deficient mice no longer exhibited improved glucose tolerance in response to 

Rosi. These results suggest that stimulation of ACE2 expression by PPARγ in 

target tissues, such as adipose tissue, may contribute to improved glucose 

homeostasis following TZD administration. Additional studies are necessary to 

identify mechanisms of PPARγ/ACE2 interactions in the regulation of glucose 

homeostasis.      

A number of dietary fatty acids are known to regulate various proteins by 

influencing gene transcription, mRNA processing, or post-translational 

modification of proteins (Madsen et al. 2005; Clarke et al. 2004). In vitro studies 

suggest that several fatty acids can bind to and activate PPARγ (Sauma et al. 

2006; Kliewer et al. 1997). Interestingly, a recent study demonstrated increased 
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expression of renin in CaLu-6 cells stimulated with oleic acid (Todorov et al. 

2007), indicating a role of fatty acids to regulate genes of the RAS. 

This is of interest as ingestion of diets rich in polyunsaturated fatty acids( 

PUFAs) are beneficial for cardiac health with a reduction in cardiovascular 

morbidity and mortality (Sauma et al. 2006). Importantly, heart healthy fatty acids 

from the n-3 family such as DHA and EPA are well known natural ligands of 

PPARγ (Kliewer et al. 1997). Since in our previous study the expression of 

PPARγ preceded the expression of ACE2 in 3T3-L1 adipocytes, we incubated 

mature adipocytes with specific fatty acids. Natural ligands of PPARγ, such as 

DHA, increased ACE2 mRNA expression in adipocytes. In contrast, saturated 

fatty acids as well as an n-6 fatty acid had no effect on ACE2 expression in 

adipocytes.  A recent study examined effects of specific fatty acids on ACE2 

expression in porcine adipocytes (Tseng et al. 2010). In contrast to our findings, 

incubation of adipocytes with DHA reduced porcine ACE2 expression.  

Mechanisms for differences in results are unclear, but may relate to species of 

adipocytes (porcine vs murine in Tseng et al. 2010 vs this study, respectively), 

duration of incubation (48 hours vs 24 hours), dose (50 vs 100µM), and 

incubation conditions (1% albumin vs 4:1 fatty acid/albumin ratio).   

 In addition to DHA as a regulator of ACE2, in this study we demonstrated 

that two different synthetic ligands of PPARγ increased ACE2 mRNA abundance, 

protein and enzymatic activity in adipocytes. Results from ChIP assays support 

binding of PPARγ to PPREs on the ACE2 promoter. To determine if PPARγ 
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regulation of ACE2 occurs in vivo, we administered Rosi to mice and 

demonstrated increased expression of ACE2 in adipose tissue, but not in heart of 

kidney. Regulation of ACE2 in adipose, but not non-adipose tissues, may relate 

to differences in expression levels of PPARγ between these tissues. Stimulated 

ACE2 expression by Rosi administration in adipose tissue was associated with 

increased plasma concentrations of the ACE2 product, Ang-(1-7), suggesting 

that adipose ACE2 stimulation was sufficient to influence the systemic RAS.  

However, elevations in systemic Ang-(1-7) concentrations did not appear to 

influence blood pressure, since blood pressure lowering effects of Rosi persisted 

in ACE2 deficient mice.  The contribution of Ang-(1-7) to blood pressure control is 

unresolved. Studies in Mas receptor deficient mice have shown either no change 

in blood pressure (Walther et al. 2000) or increased blood pressure (de Moura et 

al. 2010). In transgenic rats engineered with a fusion protein to chronically drive 

elevated production of Ang-(1-7) (2.5-fold higher plasma levels), blood pressure 

was not altered (Botelho-Santos et al. 2007). Collectively, these results support 

the observation that Rosi-induced elevations in systemic Ang-(1-7) 

concentrations did not contribute to blood pressure lowering effects of this 

compound, as demonstrated by continued reductions in blood pressure following 

Rosi administration to ACE2 deficient mice. 

An interesting finding from this study was that effects of Rosi to improve 

glucose tolerance were reversed in ACE2 deficient mice. Recent studies support 

a potential role for ACE2/Ang-(1-7) in glycemic control. Mas receptor deficient 

mice exhibit glucose intolerance and reduced insulin sensitivity including 
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reductions in glucose uptake by adipocytes and decreased GLUT4 expression in 

adipose tissue (Santos et al. 2008a). Conversely, in transgenic rats over-

expressing Ang-(1-7) glucose tolerance, insulin sensitivity and insulin-stimulated 

glucose uptake were enhanced (Santos et al. 2010). Recent studies using db/db 

diabetic mice demonstrated that adenoviral over-expression of ACE2 in pancreas 

improved fasting glycemia and glucose tolerance and increased islet insulin 

content, and that these effects could be blocked by a Mas receptor antagonist 

(Bindom et al. 2010). Our results demonstrate that ACE2 deficient mice have 

reduced plasma concentrations of insulin compared to wild type mice.  In wild 

type mice, Rosi administration reduced plasma insulin concentrations and 

enhanced glucose tolerance. In contrast, ACE2 deficient mice did not respond to 

Rosi to improve glucose tolerance and lower circulating insulin concentrations.  

Future studies should examine whether altered glucose homeostasis in ACE2 

deficient mice administered Rosi result from defects in insulin synthesis and 

secretion, or altered insulin responsiveness. Interestingly, PPARγ is expressed in 

the pancreas and has been suggested to preserve beta-cell function (Kanda et 

al. 2010; Gupta et al. 2008).  

In conclusion, results from this study support regulation of ACE2 in 

adipocytes by natural and synthetic PPARγ ligands in vitro and in vivo.  

Deficiency of ACE2 did not influence blood pressure lowering effects of Rosi, but 

reversed Rosi-induced improvements in glucose tolerance.  
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These results suggest that stimulation of ACE2 by PPARγ agonism may 

contribute to beneficial effects of these agents on glucose homeostasis. 
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Table 3.1. Body weight (g) in Ace2+/y and Ace2-/y treated with Vehicle or Rosi for 

21 days. 

  Ace2+/y Ace2-/y 

  Vehicle Rosi Vehicle Rosi 

Day 1      25 ±  0.4       24 ± 0.4     25 ± 0.5      25 ± 0.5 

Day 21      26 ± 0.5       25 ± 0.4     24 ± 0.4      24 ± 0.4 

                Data are mean + SEM from n = 10 mice/group  
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Table 3.2. mRNA expression of genes of the RAS in Vehicle or Rosi treated  

Ace2+/y Mice. 

  Vehicle Rosi 

PPAR-EF 0.6±0.0 0.8±0.1 

ap2-EF 1.7±0.0 3.2±0.0* 

ACE2-Kidney 11.4±1.1 10.4±1.5 

ACE2-Heart 0.4±0.0 0.6±0.1 

ACE2-EF 0.007±0.0 0.02±0.0* 

AT1-EF 0.5±0.0 0.5±0.0 

Renin –Kidney 2.0±0.3 2.4±0.5 

AO-Liver 0.8±0.1 1.4±0.1 

AO-EF 0.5±0.0 0.3±0.0 
 

               EF, epididymal fat.  

               Data are mean + SEM from n = 5 mice/group    

     *, P < 0.05 compared to Vehicle    
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Table 3.3. Systolic blood pressure (mmHg) in Ace2+/y and Ace2-/y mice treated 

with Vehicle or Rosi. 

  Ace2+/y Ace2-/y 

  Vehicle Rosi Vehicle Rosi 

Baseline  121 ± 1     126 ± 6   124 ± 3       124 ± 6   

Final   118 ± 2      109 ± 4*  123 ± 1       109 ± 1* 
 

        Data are mean + SEM from n = 8-10 mice/group, *, P < 0.05 compared to     

        vehicle   
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Table 3.4. Area under curve (AUC), Plasma Ang-(1-7) and Plasma insulin levels in Ace2+/y and Ace2-/y mice treated 

with Vehicle or Rosi. 

 

 

 

 

 

 

 

 

 

                *, P < 0.05 compared to Vehicle    

              **, P < 0.05 compared to Ace2+/y   

  Ace2+/y Ace2-/y 

  Vehicle Rosi Vehicle Rosi 
 
AUC 
 14495±1140 4053±663* 6645±596** 11033±876*,** 
 
 
Plasma Ang-(1-7)(ng/ml) 0.13±0.0 0.19±0.0* 0.12±0.0 0.11±0.0 
 
 
Plasma Insulin (ng/ml) 0.68±0.0 0.49±0.0* 0.38±0.0** 0.34±0.0 
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Fig .3.1. A. ACE2 mRNA in 3T3-L1 adipocytes treated with specific fatty acids 

(100µm) for 24 hours, B. ACE2 activity in 3T3-L1 adipocytes treated with specific 

fatty acids (100µm) for 24 hours. Data are mean + SEM from n =3- 4 /group. *, P 

< 0.05 compared to Vehicle. 
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                                                 C) 

 

 

 

Fig .3.2. A. ACE2 mRNA (Rosi) in 3T3-L1 adipocytes treated with TZD (0.01-

1µm) for 24 hours, B. ACE2 activity (Rosi) in 3T3-L1 adipocytes treated with TZD 

(0.01-1µm) for 24 hours C. ACE2 protein (Pio) in 3T3-L1 adipocytes treated with 

TZD (0.01-1µm) for 24 hours. Data are mean + SEM from n = 3-4 /group, *, P < 

0.05 compared to Vehicle. 
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Fig .3.3. ChIP assay. 3T3-L1 cells stimulated with 1µm Rosi for 24 hours.   
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Fig .3.4. A. ACE2 m RNA (EF) in Ace2+/y mice treated with Vehicle or Rosi, B. 

ACE2 activity (EF) in Ace2+/y mice treated with Vehicle or Rosi, C. ACE2 activity 

(Kidney) in Ace2+/y mice treated with Vehicle or Rosi, D. Plasma Ang-(1-7) 

concentrations in Ace2+/y mice treated with Vehicle or Rosi. Data are mean + 

SEM from n = 5 mice /group. *, P < 0.05 compared to Vehicle. 
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Fig .3.5. A. AUC for glucose tolerance test after 21 days of Rosi treatment in 

Ace2+/y  mice (n = 5-8 mice /group), B. Systolic blood pressure at baseline and 

after Rosi treatment in Ace2+/y  mice  (n= 8-10 mice/group). *, P < 0.05 compared 

to baseline. 
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Fig .3.6. A. AUC for Glucose tolerance test after 21 days of Rosi treatment in 

Ace2-/y  mice (n = 5-8 mice /group), B. Systolic blood pressure at baseline and 

after Rosi treatment in  Ace2-/y  mice (n= 8-10 mice/group)  *, P < 0.05 compared 

to baseline. 
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Fig .3.7. Plasma insulin concentrations in Ace2+/y and -/y Vehicle or Rosi treated 

mice (n = 5-7 mice/group).  *, P < 0.05 compared to vehicle; **, P < 0.05 

compared to Ace2+/y. 
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Section IV. SPECIFIC AIM 2 A 

  

Determine the effects of ACE2 deficiency on the development of obesity 

and diabetes and hypertension in male C57BL/6 mice. 

 

 4.1. Summary. 

Previous studies demonstrated ACE2 expression in adipose tissue. 

ACE2 gene expression in adipose tissue was stimulated by high fat (HF) feeding.  

However, chronic obesity was associated with dysfunctional adipose ACE2 

activity, elevated systemic angiotensinII (AngII), and hypertension. These results 

suggested that ACE2 may protect against obesity-hypertension. Therefore, in 

this study we examined effects of ACE2 deficiency in mice on the development of 

obesity-induced hypertension. Moreover, since diet-induced obesity is associated 

with impaired glucose homeostasis, we measured effects of ACE2 deficiency on 

glucose and insulin tolerance. Male C57BL/6 Ace2+/y or -/y mice were fed a low fat 

(LF, 10% kcal as fat) or HF diet (60% kcal as fat) for 16 weeks. Body weight 

increased with HF feeding in Ace2+/y and -/y mice; however, body weight was 

modestly lower in Ace2-/y compared to +/y mice. Ace2-/y mice exhibited glucose 

intolerance compared to controls even when fed a LF diet. With HF feeding, both 

genotypes exhibited glucose intolerance. However, HF-fed Ace2-/y mice had 

lower plasma insulin concentrations compared to HF-fed controls and were more 

insulin sensitive. Importantly, ACE2 deficiency promoted increased plasma AngII 

concentrations in HF-fed Ace2-/y mice compared to HF-fed controls. HF feeding 
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reduced plasma concentrations of Ang-(1-7) in Ace2+/y mice compared to LF 

controls. Systolic blood pressure (SBP) was increased in HF-fed Ace2+/y and -/y 

mice compared to LF-fed controls. Importantly, SBP was increased in HF-fed 

Ace2-/y mice compared to HF-fed Ace2+/y mice. We administered losartan to 

determine if increases in SBP in HF-fed Ace2-/y mice were AngII/AT1 receptor-

mediated. Administration of losartan eliminated differences in SBP between HF-

fed Ace2+/y and -/y mice.   

These results demonstrate that ACE2 deficiency promotes obesity-

induced hypertension. 
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4.2. Introduction. 

Obesity is an epidemic worldwide leading to an increase in 

cardiovascular pathologies such as hypertension (Kotsis et al. 2010). Early 

reports in the Framingham Study demonstrated that 78% of essential 

hypertension in men can be directly attributed to obesity (Garrison et al. 1987). 

Given the unabating rise in obesity prevalence, it is clear that obesity-related 

hypertension will increase in the future.  Despite a strong association between 

obesity and hypertension, mechanisms linking the two diseases are not fully 

understood.   

Hemodynamic characteristics of obese hypertensive subjects include an 

increase in intravascular volume, increased cardiac output, endothelial 

dysfunction and abnormal kidney function (Reisin et al.1978; Carroll et al. 1995; 

Davy et al. 2004).  Candidate systems contributing to these hemodynamic 

changes in obese hypertensives include activation of the sympathetic nervous 

system (Hall et al. 1997; O’Dea K et al. 1982) and the renin-angiotensin system 

(RAS) (Coopert et al.1998; Cooper et al. 1997). Clinical studies comparing obese 

to lean subjects demonstrated a positive correlation between body mass index 

(BMI) and plasma concentrations of angiotensinogen (Cooper et al.1998; Cooper 

et al. 1997; Umemeura et al. 1997). Several studies have demonstrated 

activation of the RAS in experimental models of diet-induced obesity (Boustany 

et al. 2004; Boustany et al. 2005; Rahmouni et al. 2004; Gupte et al. 2008). 

However, mechanisms for an activated RAS in obesity-hypertension are unclear. 
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 In 2000, two independent groups using unique molecular strategies 

identified a homologue of angiotensin converting enzyme (ACE) known as ACE2 

(Tipnis et al. 2000; Donoghue et al. 2000). The discovery of ACE2 was 

particularly exciting since it was shown to convert angiotensinII (AngII), a 

vasoconstrictor peptide, to angiotensin-(1-7) (Ang-(1-7)), a vasodilator peptide 

(Vickers et al. 2002). Studies in male mice with ACE2 deficiency have 

demonstrated a significant increase in systolic blood pressure with chronic AngII 

infusion, indicating an important role for this enzyme in AngII degradation (Gurley 

et al. 2006). Based on its ability to blunt an activated RAS, ACE2 has been 

suggested as a potential target for activation to decrease blood pressure.  

Previous studies demonstrated that ACE2 is expressed in rodent adipose 

tissue (Gupte et al. 2008; Gembardt et al. 2005; Galvez-Prieto et al. 2008). 

Moreover, high fat (HF) feeding in mice initially resulted in an increase in ACE2 

gene expression and activity in adipose tissue, suggesting a protective role for 

ACE2 against obesity-induced hypertension (Gupte et al. 2008). However, with 

chronic HF feeding, stimulated ACE2 activity in adipose tissue was lost, and 

obese mice exhibited an activated systemic RAS and hypertension. These 

results demonstrated that ACE2 is nutritionally regulated by HF feeding in 

adipose tissue and suggest that this regulation contributes to activation of the 

systemic RAS and the development of obesity-related hypertension. To 

determine if ACE2 protects against obesity-hypertension, we tested the 

hypothesis that deficiency of ACE2 promotes obesity-induced hypertension.  

Moreover, since diet-induced obesity is associated with impaired glucose 
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homeostasis, we defined effects of ACE2 deficiency on glucose and insulin 

tolerance.    

Results from this study demonstrate that deficiency of ACE2 markedly 

promotes obesity-induced hypertension.   
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 4.3. Methods. 

 4.3.1. Animals and diet.   

Male Ace2+/y and -/y mice (8 weeks of age; backcrossed 10 times 

onto a C57BL/6 background)(Gurley et al. 2006 ) were fed a low fat (LF;10% kcal 

as fat; D12450B; Research Diets, Inc, New Brunswick, NJ ; n=20) or HF diet 

(60% kcal as fat; D12492, Research Diets, Inc, New Brunswick, NJ ; n=20)  for 

sixteen weeks.  Diets were matched in protein content (20% kcal) and provided 

energy at 3.85 or 5.25 kcal/gm (LF and HF, respectively). Diets were provided to 

mice ad libitum. All experiments involving mice conformed to the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the University of Kentucky Institutional Animal Care and Use 

Committee. 

 

4.3.2. Glucose and insulin tolerance tests.  

Fasting (6 hr) blood glucose concentrations were measured 

using a One Touch glucometer. Glucose tolerance was measured in fasted mice 

injected with glucose intraperitoneally at a dose of 2 g/kg body weight. Blood 

glucose concentrations were measured at times 0, 15, 30, 60, 90 and 120 

minutes after the injection.  Insulin sensitivity was measured in fasted mice 

injected (i.p.) with insulin (0.5 U/kg in 0.9% saline). Blood glucose concentrations 

were measured at times 0, 15, 30, 60, 90 and 120 minutes. 
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 4.3.3. Measurement of food intake and physical activity. 

 Mice (n = 5/genotype/diet group) were housed individually in 

TSE Lab Master System (TSE Systems, Inc., Chesterfield,MO) for measurement 

of food intake, indirect calorimetry and physical activity every 30 minutes over 3 

days. Mice were acclimated to the test cages for 1 day prior to measurements. 

Activity (counts in the X plane/30 minutes) was averaged over the 3 days of 

recording.  Energy intake was calculated as food intake (per day averaged over 3 

days) times the energy density of LF or HF diets.  Energy expenditure was 

measured as oxygen consumption (VO2: Flowml x (V1 + V2)/(N2 Ref x 100) 

(V1=N2 Ref * dO2, V2=O2 Ref *(dO2-dCo2) and was normalized to mouse lean 

mass measured using a PIXI-mus Densitometer (GE Lunar Corp., Madison, WI) 

at the end of the recording session.    

 

 4.3.4. Measurement of plasma parameters.  

Plasma insulin concentrations (Rat/Mouse Insulin ELISA Kit, 

Millipore, MA) or Ang-(1-7) concentrations (Peninsula laboratories, LLC Bachem 

group, CA, USA) were quantified using commercial kits. Plasma AngII 

concentrations were measured as previously described (Daugherty et al. 2004). 

Due to the large volume of plasma required for accurate quantification of 

concentrations of AngII (150 µl) or Ang-(1-7) (100µl) in mice, we measured 

concentrations of Ang-(1-7) in plasma from all mice, but quantified plasma AngII 

concentrations only in HF-fed groups (Ace2+/y and -/y) since previous studies from 
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our laboratory demonstrated increased plasma AngII concentrations in HF 

compared to LF-fed C57BL/6 mice (Gupte et al. 2008). 

 

4.3.5. Measurement of blood pressure.  

 Blood pressure was measured by radiotelemetry during week 16 

according to previously described method (Gupte et al. 2008).  Briefly, mice were 

implanted with carotid artery catheters during week 15 of LF or HF feeding, 

allowed one week to recover, and then pressure was recorded continuously (5 

minute sampling) for 3 days. After baseline recordings of blood pressure, mice (n 

= 5/group) were administered losartan in the drinking water (10 mg/kg body 

weight) and recordings continued for 3 days. 

 

 4.3.6. Statistical analysis. 

Data are expressed as mean ± SEM.  All data were analyzed 

using SigmaStat for equal variance. For data with equal variance, two- way 

ANOVA was used to analyze end-point measures followed by Tukey’s test for 

post-hoc analysis. Significance was accepted at a P<0.05.  
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4.4. Results. 

4.4.1. Metabolic characteristics of HF feeding in Ace2+/y and Ace2-/y 

Mice. 

 In LF-fed mice, body weights were not different between Ace2+/y 

and -/y mice (Figure 4.1 A). Both Ace2+/y and -/y mice exhibited increased body 

weights (Fig. 4.1 A) when fed a HF diet. However, HF-fed Ace2-/y mice had lower 

body weights compared to Ace2+/y controls (Fig. 4.1 A; P<0.05). To define 

mechanisms for differences in body weight between HF-fed Ace2+/y and -/y mice, 

in the last week of the study a subset of mice from each group were placed 

individually in sealed chambers for measurement of physical activity, food intake, 

and energy expenditure. Physical activity was reduced by HF feeding to a similar 

extent in both Ace2+/y and -/y mice (Fig. 4.1 B). Similarly, energy intake was 

increased by a similar extent from HF-feeding in Ace2+/y and -/y mice (Fig. 4.1 C). 

In contrast, energy expenditure was increased by HF feeding in Ace2-/y, but not in 

Ace2+/y mice (Fig.4.1 D; P<0.05). 

 Previous investigators have reported hyperglycemia in Ace2-/y mice fed a 

standard diet (Bindom et al. 2009). Moreover, HF feeding in mice promotes 

glucose intolerance and type 2 diabetes. Thus, we examined effects of ACE2 

deficiency on glucose and insulin tolerance in HF-fed mice. At 8 weeks of age, 

Ace2-/y mice fed standard diet exhibited elevated fasting blood glucose compared 

to controls (Ace2+/y, 127 + 3; Ace2-/y, 138 + 3 mg/dl; P<0.05; Fig. 4.3 A).  

Moreover, at 16 weeks of LF feeding, Ace2-/y mice were glucose intolerant 

compared to LF-fed controls (Fig.4.2 A, B; P<0.05). After 16 weeks of HF 
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feeding, both Ace2+/y and -/y mice exhibited markedly impaired glucose tolerance 

(Fig. 4.2 A, B). Non-fasted insulin concentrations in control Ace2+/y mice were 

robustly increased by HF feeding (LF-fed, 0.6 ± 0.1; HF, 2.9 ± 0.8 ng/ml; P<0.01; 

Fig. 4.2 C). In contrast, Ace2-/y mice did not exhibit an increase in plasma insulin 

concentrations with HF feeding (LF-fed, 0.5 ± 0.0; HF-fed, 0.8 ± 0.1 ng/ml; Fig. 

4.2 C). To further examine glucose homeostasis in Ace2-/y mice, we performed 

insulin tolerance tests. Age-matched (8 weeks) Ace2-/y mice fed standard diet 

were more sensitive to insulin to reduce blood glucose concentrations compared 

to Ace2+/y controls (Fig. 4.3 B). With HF feeding, control Ace2+/y mice did not 

respond to insulin to lower blood glucose concentrations (Fig. 4.2 D). In contrast, 

HF-fed Ace2-/y mice remained relatively more insulin sensitive compared to 

controls (Fig. 4. 2 D).  

 

4.4.2. HF-fed Ace2-/y mice exhibit an activated systemic RAS.   

We previously reported that HF feeding resulted in elevated 

systemic concentrations of AngII in male mice (Gupte et al. 2008). Deficiency of 

ACE2 resulted in a further increase in plasma concentrations of AngII with HF-

feeding (Ace2+/y, 2.2 ± 0.2; Ace2-/y, 3.2 ± 0.1 ng/ml, P<0.05; Fig.4.4 A). Plasma 

concentrations of the catabolic product of ACE2, Ang-(1-7), were decreased by 

HF feeding in Ace2+/y controls (LF, 0.45 + 0.1; HF, 0.12 + 0.02 ng/ml , P<0.05 ; 

Fig.4.4 B). As anticipated, ACE2 deficient mice exhibited low concentrations of 

plasma Ang-(1-7).  
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4.4.3. ACE2 deficiency markedly promotes obesity hypertension.   

There was no effect of HF feeding or of ACE2 genotype on pulse 

pressures or heart rates (Table 4.2). In Ace2+/y mice, HF feeding had no effect on 

diastolic or mean arterial pressure (Table 4.2). As previously reported (Gupte et 

al. 2008), HF feeding resulted in an increase in SBP (24 hours of recording) of 

Ace2+/y controls (LF-fed, 124 ± 1; HF-fed, 135 ± 2 mmHg; p=0.05; Fig. 4.5 A).  

Deficiency of ACE2 had no effect on SBP (Fig. 4.5 A), diastolic or mean arterial 

pressure in LF-fed mice (Table 4.2). Similar to wild type controls, HF feeding 

increased SBP (24 hours of recording) of Ace2-/y controls (LF-fed, 128 ± 2; HF-

fed, 145 ± 5 mmHg; P<0.05; Fig. 4.5 A). Importantly, with HF feeding, Ace2-/y 

mice exhibited elevations in SBPs compared to HF-fed Ace2+/y mice (Ace2+/y,135 

± 2; Ace2-/y, 145 ± 5 mmHg; P<0.05; Fig. 4.5 A). To determine if elevated blood 

pressures in Ace2-/y mice were AngII/AT1 receptor-mediated, we administered 

losartan to LF and HF-fed Ace2+/y and -/y mice.  Administration of losartan to HF-

fed Ace2+/y and -/y mice normalized elevated systolic blood pressures, but had no 

effect in other groups (Fig. 4.5 B).  
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 4.5. Discussion. 

 In the present study we demonstrate for the first time that ACE2 

deficiency markedly promotes obesity-induced hypertension.  Interestingly, ACE2 

deficient mice exhibited impaired glucose tolerance, lower plasma insulin 

concentrations, and relatively greater insulin sensitivity when challenged with a 

HF diet. The systemic RAS, as indicated by plasma concentrations of AngII, was 

further activated in ACE2 deficient mice fed a HF diet. Of note, ACE2 deficiency 

markedly promoted the development of systolic hypertension in obese mice, with 

normalization of blood pressures upon treatment with losartan. These results 

demonstrate a pivotal role for ACE2 in obesity-induced hypertension.   

 In the present study ACE2 deficient mice that exhibit significant elevations 

in systemic AngII concentrations had lower body weights when fed a HF diet. 

Previous studies demonstrated a dose-dependent reduction in body weight and 

lean mass in rats and/or mice infused with AngII (Cassis et al. 1998a; English et 

al. 1999; Brink et al. 1996; Brink et al. 2001). Further studies suggested that 

AngII-induced reductions in body weight resulted from elevated energy 

expenditure (Brink et al. 1996). In this study, elevated plasma concentrations of 

AngII in HF-fed ACE2 deficient mice may have contributed to modest reductions 

in lean mass and elevated energy expenditure. However, modest reductions in 

body weight in HF-fed ACE2 deficient mice did not provide protection against 

obesity-induced hypertension.  
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 An interesting finding from the present study was impaired glucose 

tolerance in ACE2 deficient mice. These results are in agreement with previous 

findings demonstrating progressively impaired glucose tolerance in aging ACE2 

deficient mice (Niu et al. 2008). Moreover, previous investigators demonstrated 

that ACE2 deficiency resulted in a selective decrease in first phase insulin 

secretion in Ace2-/y mice (Niu et al. 2008). Recent studies demonstrated that 

adenoviral expression of ACE2 in pancreas of db/db mice reduced 

hyperglycemia and glucose intolerance, and improved insulin secretion and β-cell 

function (Bindom et al. 2010). These results suggested that ACE2 favorably 

modulates insulin production upon targeted over-expression in the pancreas.  

Our results are the first to demonstrate that deficiency of endogenous ACE2 

impairs glucose homeostasis in HF diet-induced type 2 diabetes. In contrast to 

wild type mice that exhibited hyperinsulinemia with impaired insulin and glucose 

tolerance, ACE2 deficient mice were glucose intolerant, remained responsive to 

insulin, and did not exhibit hyperinsulinemia. However, blunted hyperinsulinemia 

with HF feeding in ACE2 deficient mice did not protect mice against glucose 

intolerance. Similar to recent results (Bindom et al. 2010), our data suggest a 

protective role for endogenous ACE2 in β-cell insulin production and/or secretion.  

However, since our studies were performed in mice with whole body ACE2 

deficiency, it is unclear whether blunted hyperinsulinemia from HF feeding in 

ACE2 deficient mice results from direct or indirect effects of ACE2 at the 

pancreas. Taken together, results suggest a novel role for ACE2 in the regulation 

of glucose homeostasis in type 2 diabetes. 
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 An important finding of the present study was the ability of ACE2 

deficiency to markedly promote systolic hypertension in HF-fed mice.  Plasma 

concentrations of Ang-(1-7) were reduced in obese mice, suggesting that 

reductions in this peptide contribute to obesity-hypertension. However, HF-fed 

Ace2-/y mice exhibited similar plasma Ang-(1-7) concentrations as HF-fed 

controls, but had greater blood pressures, suggesting that reduced 

concentrations of Ang-(1-7) alone are insufficient to promote obesity-

hypertension. Previous studies from our laboratory demonstrated that mice with 

diet-induced obesity and hypertension exhibited an increase in plasma 

concentrations of AngII (Gupte et al. 2008). Of note, in this study plasma AngII 

concentrations were further augmented by HF feeding in ACE2 deficient mice.  

Based on results demonstrating amelioration of obesity-hypertension upon 

losartan administration, augmented obesity-induced hypertension in ACE2 

deficient mice most likely resulted from increased plasma concentrations of AngII 

acting at AT1 receptors in cardiovascular target organs.   

 In conclusion, results from this study demonstrate that ACE2 deficiency 

augments obesity-hypertension in mice. Elevated concentrations of plasma 

AngII, and amelioration of augmented hypertension with losartan, suggest that 

effects of ACE2 deficiency to promote obesity-hypertension are AngII/AT1 

receptor-mediated. Interestingly, glucose and insulin homeostasis were impaired 

in ACE2 deficient mice challenged with a HF diet. Results from this study 

suggest that ACE2 plays a protective role against the development of obesity-

associated diabetes and hypertension. Therapeutic targeting of ACE2 activation, 
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and/or nutritional methods to modulate ACE2 expression in pivotal sites, like 

adipose tissue, may serve as a novel strategy for treating obesity-associated 

diseases. 
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Table 4.1. Characteristics of Ace2+/y and -/y mice fed a LF or HF diet. 
 

  Ace2+/y LF Ace2+/y HF Ace2-/y LF Ace2-/y HF  

Lean mass (g) 20.2 ± 0.6 25.0 ± 0.3 * 19.6 ± 0.3 23.1 ± 0.4 *,†  

Fat mass (g) 6.5 ± 1.3 18.60 ± 0.9 * 3.3 ± 0.3† 18.6 ± 1.2 * 

RPF (%body weight) 1.0 ± 0.1 2.7 ± 0.2* 0.7 ± 0.0 2.5 ± 0.2* 

Kidney(%bodyweight) 1.2 ± 0.0 0.8 ±. 0 * 1.2 ± 0.0 0.8 ± 0.0 * 

 

         RFP, retroperitoneal fat. 

        Data are mean + SEM from n = 20/group. 

       *, P<0.05 compared to LF within genotype. 

       †,P<0.05 compared to Ace2+/y within diet. 
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Table 4.2. 24h Diastolic Pressure, Pulse Pressure and Heart Rate of Ace2+/y and -/y mice fed a LF or HF diet. 
 

 

 

 

 

 

 

                     Data are mean + SEM from n = 8-10 mice/group. 

                     *, P< 0.05 LF vs HF within genotype.

  Ace2+/y LF Ace2+/y HF Ace2-/y  LF Ace2-/y HF   
 
 
Diastolic Pressure (mmHg) 94 ± 2.3 100.0 ± 2.2 93.1 ± 1.0 111.0 ± 6.1* 
 
 
 
Mean Pressure (mmHg) 107.9 ± 1.8 117.5 ± 1.2 106.9 ± 2.1 125.8 ± 4.7* 
 
 
 
Pulse Pressure (mmHg)  

 
30.5 ± 2.5 34.7 ± 3.0 34.6 ± 1.6 34.1 ± 2.3 

 
 
Heart Rate (beats per minute) 585.8 ± 5.0 602.5 ± 16.0 607.5 ± 9.0 603.2 ± 7.8 
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                   A)                                                            B)                                                                         
 

 

 

 
 
 
 
 
 
 
                    C)                                                    D)                                                                                                                                                           
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1. A. Body weight at 16 weeks in Ace2+/y and -/y mice fed a LF or HF diet, B. 

Physical activity at 16 weeks in Ace2+/y and -/y mice fed a LF or HF diet, C. Energy intake 

at 16 weeks in Ace2+/y and -/y mice fed a LF or HF diet, D. Oxygen consumption at 16 

weeks in Ace2+/y and -/y mice fed a LF or HF diet. Data are mean + SEM from n = 20 

mice/group (A) or n = 5 mice/group (B-D). *, significantly different from LF within 

genotype, P<0.05; ✝, significantly different from Ace2+/y within diet, P<0.05. 
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                  A)                                                B)                                                                          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                C)                                                   D)                                                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2. A. Glucose tolerance tests in Ace2+/y and -/y mice fed a LF or HF diet. B. Area 

under the curve (AUC) for glucose tolerance tests performed in A. C. Plasma insulin 

concentrations at study endpoint in mice from each group. D. Insulin tolerance tests in 

Ace2+/y and -/y mice fed a HF diet. Data are mean + SEM from n = 8 mice/group. *, 

significantly different from LF within genotype, P<0.05; ✝, significantly different from 

Ace2+/y within diet, P<0.05.   
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                                    A)                                                                                

 

 

 

 
 
 
 
 
 
 
 
 
                                    B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.3. A. Fasting blood glucose in Ace2+/y and -/y male mice (8 weeks of age) 

fed standard diet, B. Insulin tolerance tests in Ace2+/y and -/y male mice (8 weeks 

of age) fed standard diet. Data are mean + SEM from n = 20 mice/group (A) or n 

= 5 mice/group (B).*, P<0.05 compared to Ace2+/y.  
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                                 A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig .4.4. A. Plasma concentrations of AngII in HF-fed Ace2+/y and -/ y mice. B. 

Plasma concentrations of Ang-(1-7) in LF and HF-fed Ace2+/y and -/y mice.  Data 

are mean + SEM from n = 8-10 mice/group. *, significantly different from LF 

within genotype, P<0.05; ✝ , significantly different from Ace2+/y within diet, 

P<0.05. 
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                      A) 

 

 
 
 
 
 
 
 
 
 
 
 
 
                    B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.5. A. Systolic arterial pressures (24 hours of recording) in LF and HF fed 

Ace2+/y and -/y mice, B. Systolic arterial pressures (24 hours of recording) in  LF 

and HF fed Ace2+/y and -/y mice before (baseline) and after 3 days of losartan 

administration. Data are mean + SEM from n = 5 mice/group. *, significantly 

different from LF within genotype, P<0.05; ✝, significantly different from Ace2+/y 

within diet, P<0.05. 
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Working Model of Obesity-HTN and the 
RAS

MALES
HF Diet

Angiotensinogen

Angiotensin II

ACE2 mRNA, 
but protein is 
shed (Gupte et al., 

2008)

Ang-(1-7)

HYPERTENSION
 

Fig. 4.6. Working model of obesity-induced hypertension in Ace2+/ y male mice. 
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Section V. SPECIFIC AIM 2 B 

  

Determine the effects of ACE2 deficiency on the development of obesity 

and hypertension in female C57BL/6 mice. 

 

5.1. Summary. 

Previous studies in males demonstrated that initial increases in 

adipose ACE2 expression with high fat (HF) feeding were followed by 

dysregulation of ACE2 during chronic obesity associated with increased systemic 

angiotensinII (AngII), lower angiotensin-(1-7) (Ang-(1-7) and hypertension. These 

results suggested that ACE2 initially protects males against obesity-

hypertension, but that with chronic obesity protective effects of ACE2 are lost and 

mice exhibit obesity-hypertension. In this study we defined effects of ACE2 

deficiency on the development of obesity-induced hypertension in females. Since 

studies in humans demonstrate a lower incidence of obesity-hypertension in pre-

menopausal women compared with age-matched men, we hypothesized that 

females would be protected against obesity-hypertension. Moreover, previous 

investigators demonstrated that ACE2 activity and protein in kidney were down 

regulated by ovariectomy (Ovx) of female rats, suggesting that estradiol is a 

positive modulator of ACE2. Thus, in this study we defined effects ACE2 

deficiency in the absence or presence of Ovx on the development of obesity-

induced diabetes and hypertension. Female C57BL/6 Ace2+/+ or -/- mice were fed 

a low fat (LF, 10% kcal as fat) or a HF diet (60% kcal as fat) for 16 weeks. A 
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subset of HF-fed Ace2+/+ or -/- females underwent sham or Ovx surgery prior to 

beginning the diet. Body weight increased with HF feeding in Ace2+/+ and -/- 

females; however, HF-fed Ace2-/- females had lower body weights than controls. 

In addition, Ovx significantly increased body weights in HF-fed Ace2+/+ and -/- 

mice; however, differences in body weights between Ace2-/- and +/+ mice 

remained.  With HF feeding, both genotypes exhibited glucose intolerance, which 

was further augmented by Ovx. HF- feeding reduced plasma renin 

concentrations in Ace2+/+ and -/- mice compared to controls. Importantly, Ovx 

further decreased plasma renin concentrations in Ace2+/+ and -/- mice. Plasma 

concentrations of the catabolic product of ACE2, Ang-(1-7), were elevated in 

female Ace2+/+ mice fed a HF diet; however, this effect was lost with Ovx and 

was not present in female Ace2-/- mice. Systolic (SBP) (Ace2+/+, LF: 117±3, HF: 

122±2 mmHg, P>0.05) and diastolic blood pressures (DBP) (Ace2+/+, LF: 90±2, 

HF: 92±2 mmHg , P>0.05) were not influenced by HF feeding in Ace2+/+ mice fed 

a HF diet compared to LF-fed controls.  In contrast, Ace2-/- females fed a HF-diet 

exhibited a significant increase in SBP (Ace2-/-, LF: 126±1, HF: 134±2 mmHg, 

P<0.05) and DBP (Ace2-/-, LF: 95±2, HF: 101±2 mmHg) compared to LF-fed 

controls. Ovx significantly increased SBP in HF-fed Ace2+/+ mice compared to LF 

controls to a level comparable to HF-fed Ace2-/- mice (Ace2+/+ Ovx: 134± 3.3, 

Ace2-/- sham: 134±2 mmHg, P>0.05). In contrast, SBP and DBP were reduced in 

HF-fed Ovx Ace2-/- females compared to sham-operated Ace2-/- females.  To 

define mechanisms for reductions in blood pressure in Ovx Ace2-/- females fed a 

HF diet, we used ultrasound and demonstrated contractile dysfunction as 



137 
 

indicated by reduction in ejection fraction and fractional shortening. These results 

suggest that ACE2 protects females against obesity-induced hypertension 

through an estradiol-dependent mechanism. Reductions in cardiac function in 

Ovx Ace2-/- mice fed a HF diet may arise from marked activation of the systemic 

renin-angiotensin system.  
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 5.2. Introduction. 

The prevalence of obesity is rising at an epidemic rate in the United 

States. With obesity, there is a marked increase in cardiovascular pathologies 

such as hypertension, coronary artery disease, stroke, type 2 diabetes and 

certain types of cancer. A  recent report by the National Health and Nutrition 

Examination Survey estimates 32% of men and 36% of women exhibit a BMI of ≥ 

30 (K Flegal et al. 2010). Though females develop hypertension during their 

lifetime, for adults under 45 years of age the prevalence of hypertension is higher 

in males whereas after 65 years the prevalence is higher in females (National 

Center for Health Statistics. Health, United States, 2008). Given that obesity is 

more prevalent in females compared to males, it is likely that sex hormones, 

namely estradiol in females, protects premenopausal women against obesity-

hypertension in spite of a higher body mass index (BMI). 

 Sex hormones have been demonstrated to regulate components of the 

renin-angiotensin system (RAS; Yanes et al. 2010; Fischer et al. 2002). In 

general, estrogen has been suggested to blunt expression of each component of 

the RAS, with the exception of angiotensinogen, while androgen has been 

reported to stimulate RAS components (Fischer et al.2002). These sex-mediated 

differences have been suggested to contribute to a greater blood pressure 

response to chronically infused angiotensinII (AngII) in male compared to female 

mice  (Xue et al. 2007; Xue et al. 2005), or in the greater blood pressure of male 

compared to female spontaneously hypertensive rats (SHR; Reckelhoff et al. 

2000; Radin et al. 2002). 
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 Angiotensin Converting Enzyme 2 (ACE2) converts AngII, a 

vasoconstrictor peptide, to angiotensin (1-7) (Ang-(1-7)), a vasodilator peptide.  

Through these effects, ACE2 has been suggested to blunt the RAS and protect 

against hypertension induced by infusion of AngII (Gurley et al. 2006), or from 

diet-induced obesity (Gupte et al. 2008). A recent study in SHR suggested that 

the catabolic product of ACE2, Ang-(1-7), mediates differences in blood pressure 

between male and female rats infused with AngII (Sullivan et al. 2010). In 

addition, ovariectomy (Ovx) of females rats reduced kidney ACE2 expression 

and increased renal hypertension in a rat renal ablation model, and these effects 

were reversed when Ovx rats were administered estrogen (Ji et al. 2008).  

Collectively, these results suggested that estrogen-mediated regulation of ACE2 

may contribute to differences in blood pressure between males and females. 

In spite of a strong association between obesity and hypertension, the 

mechanistic link between the two pathologies is yet unclear.  Consumption of a 

high fat (HF) diet, coupled with a sedentary lifestyle, has been suggested as an 

environmental factor contributing largely to the increased prevalence of obesity.  

In male and female rats fed a cafeteria diet containing 49% fat, despite a similar 

increase in fat pad weight, only male mice exhibited an increased blood pressure 

(Plut et al. 2002). Previous results from our laboratory demonstrated that diet-

induced obesity in male rats was associated with an activated RAS and 

hypertension, which was abolished by administration of an AT1 receptor 

antagonist (Boustany et al. 2004; Boustany et al. 2005). In addition, we 

demonstrated that obesity-induced hypertension and an activated systemic RAS 
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in male mice fed a HF diet were accompanied by diet-induced dysregulation of 

ACE2 in adipose tissue (Gupte et al. 2008). These results support a role for the 

RAS, and specifically ACE2, in the development of obesity-related hypertension.  

Unfortunately, very few studies have focused on sex differences in the RAS as a 

potential contributor to differences in susceptibility between males and females to 

obesity-induced hypertension.   

The purpose of the present study was to define (1) if females are 

protected against the development of obesity-related hypertension, (2) if ACE2 

deficiency confers obesity-hypertension in female mice, (3) if Ovx promotes 

obesity-hypertension in female mice, and (4) if Ovx augments obesity-

hypertension in ACE2 deficient females.  The hypothesis of these studies is that 

sex hormones protect female mice against the development of obesity-

hypertension through an ACE2-dependent mechanism.    
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5.3. Methods. 

5.3.1. Animals and diets. 

Female Ace2+/+ (C57BL/6, 2 months of age; The Jackson 

Laboratory, Bar Harbor, MA) and -/- mice (2 months of age; backcrossed 10 times 

onto a C57BL/6 background ; Gurley et al. 2006) were fed a low fat (LF;10% kcal 

as fat; D12450B; Research Diets, Inc, New Brunswick, NJ; n=20) or HF diet 

(60% kcal as fat; D12492, Research Diets, Inc, New Brunswick, NJ; n=30) for 

sixteen weeks. Diets were matched in protein content (20% kcal) and provided 

energy at 3.85 or 5.25 kcal/gm (LF and HF, respectively). Diets were provided to 

mice ad libitum.  A subset of Ace2+/+ and -/- mice (n=10) underwent either sham 

surgery or ovariectomy (Ovx) and were fed a HF-diet for 16 weeks. All 

experiments involving mice conformed to the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals and were approved by the University 

of Kentucky Institutional Animal Care and Use Committee.  

  

  5.3.2. Glucose tolerance tests.   

 Fasting (6 hr) blood glucose concentrations were measured 

using a One Touch glucometer. Glucose tolerance was measured in fasted mice 

(6 hours) injected with glucose intraperitoneally at a dose of 2 g/kg body weight. 

Blood glucose concentrations were measured at times 0, 15, 30, 60, 90 and 120 

minutes after the injection.   
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 5.3.3. Measurement of plasma parameters. 

Ang-(1-7) concentrations (Peninsula laboratories, LLC Bachem 

group, CA, USA) were quantified using commercial kits. Plasma renin 

concentrations were measured as described previously (Cassis et al. 2004). 

 

5.3.4. Measurement of blood pressure. 

Blood pressure was measured by radiotelemetry during week 16 

according to previously described methods (Gupte et al. 2008). Briefly, mice were 

implanted with carotid artery catheters during week 15 of LF or HF feeding, 

allowed one week to recover, and then pressure was recorded continuously (5 

minute sampling) for 3 days.  

 

5.3.5. Echocardiography methods. 

 Mice were placed under isoflurane gas and measurements of 

the heart were taken with a VisualSonics 660 ultrasound using a RMV 707 

30MHz probe.  Images of the left ventricle were acquired in short axis parasternal 

view at the level of the papillary muscle in M-mode. Measurements were made in 

B-mode and analysis was done through Vevo 660 Analytic Software.   

  

  5.3.6. Statistical analysis.  

Data are expressed as mean ± SEM.  All data were analyzed 

using Sigma Stat for equal variance. For data with equal variance, two- way 
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ANOVA was used to analyze end-point measures followed by Tukey’s test for 

post-hoc analysis.  Significance was accepted at a P<0.05.  
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5.4. Results. 

 5.4.1. Metabolic characteristics of Ace2+/+ and -/- female mice fed LF or 
HF diets.   

Ace2+/+ mice exhibited significant increases in body weights 

when fed a HF diet which were further increased by Ovx compared to LF-fed 

controls (Fig. 5.1 A, B). Both HF-diet and Ovx significantly increased fat as well 

as lean mass in Ace2+/+ mice. In spite of a significant increase in body weights of 

HF-fed Ace2-/- female mice, ACE2 deficient mice exhibited significantly lower 

body weights, fat and lean mass compared to HF-fed controls (Table 5.1). 

Additionally, differences between Ace2-/- and +/+ females remained with Ovx 

(Table 5.1).  

Previous investigators have reported hyperglycemia in Ace2-/- mice fed a 

standard diet (Bindom et al. 2009). Moreover, HF feeding in male mice promotes 

glucose intolerance and type 2 diabetes. Thus, we examined effects of ACE2 

deficiency and Ovx on glucose tolerance in female HF-fed mice. At 8 weeks of 

age, Ace2-/- female mice fed standard diet exhibited elevated fasting blood 

glucose compared to controls (Ace2+/+,115 + 4; Ace2-/-, 134 + 4 mg/dl; P<0.05).  

Moreover, at 16 weeks of HF feeding, Ace2+/+ and -/- mice were glucose intolerant 

compared to LF-fed controls (Fig. 5.2). However, glucose intolerance was 

blunted in HF-fed Ace2-/- females with lower body weights compared to controls.  

Ovx resulted in further impairment of glucose tolerance in HF-fed Ace2+/+, but not 

-/- females (Fig. 5.2 A). HF fed Ace2+/+ and Ovx Ace2+/+ mice exhibited significant 

increases in plasma insulin concentrations and glucose intolerance, however 

these effects were blunted in Ace2-/- mice (Fig. 5.2 B).  
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 5.4.2. Systemic RAS in LF and HF fed Ace2+/+ and -/- Mice.    

 We measured concentrations of renin in plasma as a relatively 

stable inverse predictor of plasma concentrations of the labile peptide, AngII. HF-

diet significantly decreased plasma renin concentrations in Ace2+/+ mice, which 

were reduced further in HF-fed Ovx females (Ace2+/+, LF: 12.7 ± 1.4; HF: 5.9 ± 

1.2; HF/Ovx: 1.1 ± 0.2 pg/ml/30 min, P<0.05, Fig. 4.3 A). In Ace2-/- females, 

reductions in plasma renin concentrations by HF feeding were augmented (Ace2-

/-, LF: 9.2 ± 1.3; HF: 3.1 ± 0.4; HF/Ovx: 1.4 ± 0.4 pg/ml/30 min, P<0.05, Fig. 5.3 

A). Plasma concentrations of Ang-(1-7) were increased by HF feeding in Ace2+/+ 

females. However, this effect was absent in HF-fed Ovx Ace2+/+ females (Ace2+/+, 

LF: 0.21 ± 0.0; HF: 0.32 ± 0.0; HF/Ovx: 0.21 ± 0.0 ng/ml). As anticipated, HF-

feeding did not promote increases in plasma concentrations of Ang-(1-7) in Ace2-

/-females (Fig 5.3 B). Of note, deficiency of ACE2 in LF-fed female mice did not 

reduce plasma concentrations of Ang-(1-7). 

           

 5.4.3.Blood pressure in LF and HF fed Ace2+/+ and -/- Mice.   

Obese HF-fed Ace2+/+ mice did not exhibit an increase in systolic 

(SBP), diastolic (DBP) or mean (MAP) arterial pressure compared to LF-fed 

controls (Fig. 5.4 A, Table 5.2).  In contrast, ovariectomized HF-fed Ace2+/+ 

females exhibited significant elevations in SBP, DBP and MAP compared to LF-

fed controls (Fig.5.4 A, Table 5.2). In addition, Ace2-/- fed a HF diet exhibited 

significant elevations in SBP compared to LF-fed Ace2-/- mice and compared to 

HF-fed Ace2+/+ controls. Surprisingly, in HF-fed Ace2-/- females, SBP and DBP 
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were significantly reduced by Ovx compared to non-ovariectomized females (Fig. 

5.4 A). Since previous studies have demonstrated a reduction in SBP in 6 month 

old male and female ACE2 deficient mice due to severe contractile dysfunction 

(Crackower et al. 2002), we examined heart function in Ace2-/- females. In Ace2-/- 

females that were ovariectomized, ejection fraction and fractional shortening 

were reduced compared to sham-operated controls (Table 5.3). 
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 5.5. Discussion. 

 Our results demonstrate that female mice are protected against 

obesity-induced hypertension. While C57BL/6 female mice exhibited marked 

development of obesity from chronic HF feeding including the development of 

obesity-induced diabetes, they were totally resistant to obesity-induced 

hypertension. Resistance to obesity-induced hypertension in female mice was 

associated with an increase in plasma concentrations of the vasodilator peptide 

Ang-(1-7), and marked reductions in plasma renin concentrations indicative of 

elevated systemic AngII. Of note, ovariectomy of Ace2+/+ females conferred 

obesity-hypertension.  Moreover, elevations in plasma Ang-(1-7) concentrations 

were abolished by ovariectomy in HF-fed Ace2+/+ female mice exhibiting obesity-

hypertension, suggesting that elevated plasma levels of Ang-(1-7) protected 

females against obesity-hypertension. In support, ACE2 deficient female mice 

fed a HF diet exhibited obesity-hypertension at a level similar to that observed in 

Ovx-Ace2+/+ controls. Moreover, the ability of ovariectomy to confer obesity-

hypertension was lost in Ace2-/- females. On the contrary, ovariectomized Ace2-/- 

females exhibited reduced blood pressures and cardiac dysfunction compared to 

HF-fed sham controls. These results demonstrate a pivotal role for sex hormones 

and ACE2 in protection against obesity-hypertension in female mice. 

Several studies have demonstrated that sex hormones regulate various 

components of the RAS important in blood pressure control, collectively favoring 

a stimulated RAS in males compared to females. Specifically, estradiol has been 

demonstrated to decrease tissue levels of AngII (Senanayake et al. 1998; Wu et 
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al. 2003), ACE expression and activity (Brosnihan et al. 1997; Seltzer et al. 

1992), and AT1 receptor expression (Rogers et al. 2007).  Conversely, estradiol 

promotes expression of angiotensinogen (Feldmer et al.1991; Clauser et al. 

1989), making it difficult to predict the overall effects of estradiol on the RAS and 

blood pressure control. However, chronic infusion of AngII resulted in a greater 

blood pressure increase in male compared to female mice (Xue et al. 2005).  

Further studies demonstrated that administration of an estrogen receptor (ER) 

antagonist to female mice, or use of female mice with ERα deficiency, 

augmented the blood pressure response to AngII (Xue et al. 2007). In a recent 

study in male and female SHR though the magnitude of increase in blood 

pressure with AngII infusion was higher in males compared to females, plasma 

and renal concentrations of AngII were not different between the sexes (Sullivan 

et al. 2010). Importantly, female rats exhibited significantly higher plasma 

concentrations of Ang-(1-7) levels at baseline as well as after AngII infusion, and 

increased expression of the Mas receptor. Administration of a Mas receptor 

antagonist eliminated differences in blood pressure between the two sexes. 

These results demonstrated a protective role of Ang-(1-7) in AngII-induced 

hypertension in females (Sullivan et al. 2010). While considerable studies 

support sex differences in the RAS that may contribute to different susceptibilities 

to hypertension between males and females, our studies are the first to define 

mechanisms for sex differences in the context of obesity-related hypertension. 

Results from this study demonstrate that female mice are protected 

against the development of obesity-hypertension, but that ovariectomy of females 
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can confer obesity-induced hypertension. Previous investigators have 

demonstrated that ovariectomy augments blood pressure elevations of female 

mice infused with AngII (Xue et al. 2005, 2007).  In this study, plasma 

concentrations of renin were reduced in HF-fed females, indicative of increased 

concentrations of plasma AngII. However, HF-fed females did not exhibit 

hypertension despite marked obesity, potentially resulting from HF-induced 

elevations in plasma Ang-(1-7). In support, previous studies in male mice fed a 

HF diet and exhibiting obesity-hypertension demonstrated reductions in plasma 

concentrations of Ang-(1-7) (Gupte et al. 2010), suggesting that elevations in 

concentrations of this vasodilatory peptide in females may protect against 

obesity-hypertension. Indeed, ACE2 deficient females exhibiting obesity-

hypertension in this study did not exhibit an increase in plasma concentrations of 

Ang-(1-7). Mechanisms for increased plasma Ang-(1-7) concentrations in HF-fed 

females are unknown; however, it is conceivable that HF diet-induced increases 

in adipose ACE2 expression (Gupte et al. 2008) are maintained by estradiol in 

female mice.   

A recent study demonstrated a protective role for ACE2 in kidneys of 

female rats in a renal wrap model of hypertension (Ji et al. 2008). In 

ovariectomized female rats, ACE2 activity and protein in renal cortex were 

reduced. However, repletion with 17-β estradiol in ovariectomized female rats 

normalized renal ACE2 activity and protein and protected the rats against renal 

hypertensive disease (Ji et al. 2008). In the present study, ovariectomy of female 

mice conferred obesity-hypertension, and eliminated HF diet-induced increases 
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in plasma concentrations of the ACE2 vasodilator product, Ang-(1-7). If 

ovariectomy and ACE2 deficiency exerted distinct mechanisms to confer obesity-

hypertension in females, we would have anticipated additive effects of these 

parameters on obesity-related hypertension. Rather, we observed a reduction in 

blood pressures of HF-fed Ace2-/- females with ovariectomy, suggesting that 

ACE2 and ovariectomy promote obesity-hypertension in female mice through a 

similar mechanism. 

An interesting finding of the present study was the observed reductions in 

blood pressure of HF-fed Ovx Ace2-/- mice. To define mechanisms for reduced 

pressures, we examined cardiac function and demonstrated reduced ejection 

fraction and fractional shortening in ovariectomized HF-fed ACE2 deficient 

females. One of the first studies using ACE2 deficient mice demonstrated severe 

reductions in cardiac contractility in 6 month old male and female Ace2-/- mice 

(Crackower et al. 2002). Reductions in cardiac output from elevated cardiac and 

systemic AngII concentrations were demonstrated to contribute to decreased 

SBP in 6 month old ACE2 deficient male mice.  Several additional studies have 

followed up on this finding and demonstrated a role for ACE2 in the regulation of 

heart function (Nakamura et al. 2008, Zhong et al. 2010). In the present study we 

demonstrate a similar phenotype of cardiac dysfunction associated with reduced 

SBPs in ovariectomized ACE2 deficient female mice with chronic obesity. 

Chronic activation of the systemic RAS, as evidenced by low plasma renin 

concentrations, coupled with a loss of stimulated plasma concentrations of Ang-
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(1-7) in ovariectomized ACE2 deficient females may have contributed to cardiac 

dysfunction and the observed decrease in blood pressure.   

In conclusion, these results demonstrate that female mice are protected 

against obesity-hypertension, but not diabetes. Ovariectomy, or ACE2 deficiency, 

confers obesity-induced hypertension in females. Moreover, a lack of additive 

effects of ovariectomy and ACE2 deficiency on blood pressure control in HF-fed 

female mice suggests similar mechanisms for protection by estradiol and ACE2 

against obesity-hypertension in females. These results suggest that female mice 

are protected against obesity-hypertension through estradiol regulation of ACE2.   
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Table 5.1. Characteristics of Ace2+/+ and -/- mice fed a LF or HF diet and effects of ovariectomy (Ovx). 

 

 

 

 

 

 

 

                         RPF, retroperitoneal fat. 

                         Data are mean + SEM from n = 10-15 mice/group. 

                      *, P<0.05 compared to LF within genotype 

                     **, P<0.05 compared to genotype within diet 

                       †, P<0.05 HF vs HF/Ovx within genotype 

                       ^ , P< 0.05 compared to Ace2+/+ within HF/Ovx 
 
 
 

  LF HF HF/Ovx 

  Ace2+/+ Ace2-/- Ace2+/+ Ace2-/- Ace2+/+ Ace2-/- 

Body weight (g) 22 ±0.4 22 ±0.3 39 ± 1.2* 34 ± 0.9*,** 49 ± 2.0† 40 ± 2.0†,^ 

Fat mass (g) 2.2±0.2 2.6±0.4 13 ± 1.0* 10 ± 0.8*,** 17 ± 1.5† 12 ± 1.7^ 

Lean mass (g) 15 ±0.7 14 ±0.1 17 ± 0.3* 16 ± 0.5*,** 19 ± 0.8† 15 ± 0.6^ 

RPF (% body weight) 0.6±0.0 0.9±0.0 3.6 ± 0.2* 2.9 ± 0.4* 3.8 ± 0.2 2.3 ± 0.4 

Kidney (% body weight) 1.2±0.0 1.2±0.0 0.8 ± 0.0* 1.0 ± 0.0*,** 0.8 ± 0.0 0.9 ± 0.0 

Heart (% body weight) 0.5±0.0 0.5±0.0 0.4 ± 0.0 0.6 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 
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Table 5.2. Hemodynamic characteristics of Ace2+/+ and -/- female mice fed a LF or HF diet and effects of 

ovariectomy (Ovx). 

 

 

 

 

 

 

 

 

 

 

 

 

                           SBP, Systolic blood pressure; DBP, Diastolic blood pressure; MAP, Mean arterial pressure 

 Data are mean + SEM from n = 10-15 mice/group. *, P<0.05 compared to LF within genotype; **, P<0.05 compared to     

genotype within diet; †, P<0.05 HF vs HF/Ovx within genotype; ^ , P< 0.05 compared to Ace2+/+ within HF/Ovx 

  LF HF HF/Ovx 

  Ace2+/+ Ace2-/- Ace2+/+ Ace2-/- Ace2+/+ Ace2-/- 
 
SBP(mmHg) 117 ± 3 126±1** 122 ± 2 134 ± 2*,** 134±3.3† 124 ± 3†,^ 

DBP(mmHg)  90 ± 3  95 ± 2 92 ± 2 101 ± 2** 102 ± 3† 

 

88 ± 3†,^ 
 

 
 
MAP(mmHg) 102 ± 3 110 ± 1 106 ± 2 115 ± 2** 116 ± 3† 106 ± 2†,^ 
 
 
Heart Rate (bpm) 595±21 618 ±8* 639 ± 7 638 ± 5.3 620 ±9.4 647 ± 6 
 
 
Pulse Pressure 23 ± 3 32 ±2** 29 ± 2 33 ± 2 32 ± 2 36 ± 3 

Activity 7 ± 0 7 ± 1 8 ± 1 6 ± 1 5 ± 0 4 ± 0 
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Table 5.3. Cardiac function in HF-fed Ace2-/- female mice with and without ovariectomy (Ovx). 

                   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                          Data are mean + SEM from n = 5 mice/group. 
 
                        *, P<0.05 compared to HF. 
 

  Ace2-/- HF Ace2-/- HF/Ovx 

Heart rate (b.p.m)  656.8 ± 3.5 656.5 ± 7.4 

IVS s 1.09 ± 0.03 1.07 ± 0.07 

IVS d 0.81 ± 0.03 0.78 ± 0.04 

LVID s 2.58 ± 0.05 2.49 ± 0.17 

LVID d 3.74 ± 0.08 3.35 ± 0.24 

LVPW s 1.28 ± 0.10 1.18 ± 0.09 

LVPW d 0.91 ± 0.10 1.08 ± 0.07 

%EF 59.56 ± 0.76 51.61 ± 1.8 * 

%FS 31.05 ± 0.55 25.63 ± 1.1* 
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Fig. 5.1. A. Body weight progression in Ace2+/+ and -/- female mice fed a LF or HF 

diet. B. Body weight at week 16 in Ace2+/+ and -/- female mice fed a LF or HF diet.  

(n = 10-15 mice/group). *, significantly different from LF within genotype; **, 

significantly different from Ace2+/+ within diet; ✝, significantly different from HF vs 

HF/Ovx , P<0.05. 
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Fig. 5.2. A. Area under the curve (AUC) for glucose tolerance tests B. Plasma 

insulin concentrations at study endpoint in mice from each group. Data are mean 

+ SEM from (n = 8-10 mice/group). *, significantly different from LF within 

genotype; **, significantly different from Ace2+/+ within diet; ✝, significantly 

different from HF vs HF/Ovx , P<0.05. 
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Fig .5.3. A. Plasma rennin concentrations in Ace2+/+ and -/- female mice, B. 

Plasma Ang-(1-7) concentrations in Ace2+/+ and -/- female mice. Data are mean + 

SEM from n = 8-10 mice/group. *, significantly different from LF within genotype; 

**, significantly different from Ace2+/+ within diet; ✝, significantly different from HF 

vs HF/Ovx , P<0.05. 
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                               A) 

 
 

                                B) 

 

Fig. 5.4. A. Effects of ACE2 deficiency and Ovx on 24 h systolic arterial pressure in 

Ace2+/+ and -/- mice, B. Effects of ACE2 deficiency and Ovx on 24 h diastolic arterial 

pressure in Ace2+/+ and -/- mice. Measurements taken during week 16; n = 8-10 

mice/group) *, significantly different from LF within genotype;  **, significantly different 

from Ace2+/+ within diet; ✝, significantly different from HF vs HF/Ovx , P<0.05. 
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Fig. 5.5. Working model of obesity-induced hypertension in Ace2+/+ female mice. 
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Section VI. GENERAL DISCUSSION 

6.1. Summary. 

The purpose of this research was to determine the role and regulation 

of ACE2 in obesity-induced hypertension. Initially, we started with 3T3-L1 cells, 

which are a mouse embryonic fibroblast-like cell line from Swiss mouse embryos 

which differentiate to mature white adipocytes upon exposure to a differentiating 

cocktail (Green et al. 1975). Using this cell system we determined expression of 

ACE2 during the course of differentiation. Importantly, ACE2 expression 

increased with differentiation when the cell acquired a mature adipocyte 

phenotype.  Additionally, expression of PPARγ preceded expression of ACE2 

during the course of differentiation. We also demonstrated expression of the 

AT1aR, which has been reported previously during differentiation. Mas, a 

receptor for Ang-(1-7) was also expressed in adipocytes during the course of 

differentiation. 

These preliminary experiments in an adipocyte cell system demonstrated 

to us that besides the classical components of the RAS necessary for synthesis 

and responsiveness to AngII, components of the RAS related to AngII catabolism 

(e.g., ACE2) and responsiveness to additional angiotensin peptides such as Ang-

(1-7) (e.g., Mas receptor) are also expressed in adipocytes and their expression 

is increased during the course of differentiation. 

Since some of the components of the RAS such as angiotensinogen have 

been demonstrated to be regulated nutritionally, we then went in vivo to 
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determine ACE2 regulation in adipose and non-adipose tissues by HF-feeding. 

We wanted to determine the temporal effect of HF feeding on adipose ACE2 

expression and activity. Hence we fed C57BL/6 male mice either a LF or a HF 

diet for a short duration (I week) or chronically (4 months). Even at 1 week HF-

fed mice exhibited an increase in body weight (~17% increase from baseline) 

compared to the LF (~5% increase from baseline) controls. Importantly HF- fed 

mice exhibited a 1.7-fold increase in adipose mass compared to the LF. This 

increase in body weight and fat mass also resulted in a significant increase in 

fasting blood glucose. Thus, even at 1 week the HF-fed mice exhibited some 

features of the metabolic syndrome, namely obesity and hyperglycemia. HF diet 

and obesity have been demonstrated to activate the adipose RAS. At 1 week 

along with an increased adiposity we saw an increase in adipose 

angiotensinogen, indicating an activated adipose RAS. Surprisingly with 

increased body weight and activated adipose RAS, we saw a significant 

elevation in ACE2 activity and protein specifically in the adipose tissue of the HF-

fed mice. Plasma angiotensin peptides were unaltered in spite of marked obesity. 

Importantly, we did not see any difference in blood pressure between the LF and 

HF fed mice at 1 week of HF feeding.   

In contrast, at 4 months, HF-fed mice exhibited a 4-fold (~100% increase 

from baseline) increase in body weight compared to the LF (~25% increase from 

baseline) controls. Adipose angiotensinogen was elevated further with HF 

feeding and the mice exhibited significant elevations in plasma angiotensin 

peptides. In contrast to data from 1 week of HF feeding, at 4 months we saw a 
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reduction in ACE2 activity and protein specifically in the adipose tissue of HF-fed 

mice. HF-fed mice exhibited a significant elevation of blood pressure in the light 

as well as the dark cycle, thus exhibiting obesity- induced hypertension. 

The ectodomain of ACE2 which contains the active site of this enzyme 

has been demonstrated to undergo shedding via ADAM-17, a protease shown to 

be upregulated with HF feeding (Lambert et al. 2005, Voros et al. 2003). ADAM-

17 expression increased in 3T3-L1 adipocytes at day 10 of differentiation when 

adipocytes were lipid loaded, and this coincided with a reduction in ACE2 activity 

in the cells. We then incubated the cells on day 10 with an ADAM-17 inhibitor 

and demonstrated a modest but significant reduction in ACE2 activity in the 

media. We demonstrated a significant increase in ADAM-17 expression in 

adipose depots of HF-fed mice compared to the LF controls. These experiments 

suggest that chronic obesity results in loss of ACE2 activity in adipose tissue as a 

result of increased ADAM-17 which sheds the ectodomain of ACE2 containing 

the catalytic site of this enzyme.  Collectively these results indicate that ACE2 

initially protects against an activated RAS with obesity. However with chronic 

obesity ACE2 activity in adipose tissue is lost, the systemic RAS is activated and 

the mice exhibit obesity-induced hypertension. 

 Since HF diet increased ACE2 expression and activity specifically in 

adipose tissue and expression of PPARγ  preceded the expression of ACE2 

during the course of differentiation, we focused on natural (fatty acids) and 

synthetic ligands (TZDs) of PPARγ as regulators of ACE2 expression in 

adipocytes. In this experiment we used fatty acids that were part of the diet used 
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in the previous study. Additionally we also included examination of DHA in the 

present experiment, given its protective effects against cardiovascular diseases 

including hypertension. Additionally, we also incorporated synthetic ligands of 

PPARγ i.e TZDs such as Rosi and Pio. 

 DHA increased ACE2 expression in 3T3-L1 adipocytes. Importantly, we 

demonstrated a concentration-dependent increase in ACE2 mRNA, protein and 

activity with Rosi as well as Pio. We then administered either Rosi or vehicle to 8 

week old Ace2+/y male mice. Similar to the in vitro results Rosi administration 

significantly increased ACE2 mRNA and activity in adipose tissue. Administration 

of Rosi significantly improved glucose tolerance and reduced blood pressure in 

Ace2+/y mice compared to vehicle-treated controls. Improvements in glucose 

tolerance in Rosi-administered mice were accompanied by reductions in plasma 

insulin concentrations. 

 To determine if the reductions in blood pressure in Ace2+/y male mice 

administered Rosi were mediated via ACE2, we administered Rosi to Ace2-/y 

male mice. We saw a similar reduction in blood pressure in Ace2-/y male mice as 

demonstrated in wild type Ace2+/y mice. In contrast, glucose tolerance was 

reduced, rather than improved, by Rosi administration in Ace2-/y male mice.  

Moreover, administration of Rosi had no effect on plasma insulin concentrations 

in Ace2-/y mice.  These results indicate that the reduction in blood pressure with 

Rosi is not mediated via ACE2. In contrast, improvements in glucose tolerance 

by Rosi administration were lost in Ace2-/y mice, and associated with suppressed 

plasma insulin concentrations.  
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 In our first in vivo experiment we demonstrated that loss of ACE2 with 

chronic HF-diet elevated blood pressure in male C57BL/6 mice. To follow up on 

this finding we used ACE2 deficient mice and induced obesity with chronic HF 

diet. Moreover, since ACE2 is an X linked gene and not many studies in mice 

have looked at the effect of chronic HF-diet on obesity and hypertension in 

females, we investigated the effects of HF-diet and obesity in ACE2 deficient 

male (Ace2-/y) as well as female (Ace2-/-) mice, to uncover potential roles of sex 

hormones in regulating this enzyme in the setting of obesity. Ace2-/y male and 

Ace2-/- female mice fed a HF-diet exhibited a lower body weight compared to the 

HF fed controls. However, we did not see any differences in body weight with LF 

diet and ACE2 deficiency in either gender. Ace2-/y male mice exhibited marked 

glucose intolerance with LF diet, with HF feeding both Ace2+/y and -/y male mice 

exhibited glucose intolerance. In contrast, we did not see any difference in 

glucose tolerance between the Ace2+/+ and -/- female mice fed a LF diet. 

However, with HF feeding in contrast to males Ace2+/+ female mice exhibited 

marked glucose intolerance compared to -/- female mice. Ovx exacerbated 

glucose intolerance in Ace2+/+ and -/-  female mice. Interestingly, Ace2-/y male 

mice fed a HF- diet exhibited a significant increase in blood pressure compared 

to Ace2+/y male mice. In contrast we did not see any difference in blood pressure 

between Ace2-/y and Ace2+/y male mice fed a LF diet.    

Female Ace2+/+ mice exhibited resistance to obesity-induced hypertension 

in spite of the development of pronounced obesity. In contrast, Ace2-/- female 

mice exhibited a marked increase in blood pressure with HF feeding. This 
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increase in blood pressure with ACE2 deficiency indicates that ACE2 protects the 

females against obesity-induced hypertension.  

 Several studies have demonstrated that sex hormones regulate various 

components of the RAS, collectively favoring a stimulated RAS in males 

compared to females. Specifically, estradiol has been demonstrated to regulate 

tissue levels and activity of ACE2 (Ji et al. 2008). Hence we ovariectomized 

Ace2+/+ female mice to evaluate the role of sex hormones in the differences in 

blood pressure observed between the two genders. Ovariectomy conferred a 

hypertensive phenotype in HF-fed Ace2+/+ female mice as they demonstrated an 

increase in blood pressure similar to HF-fed Ace2-/- female mice. These results 

suggest that Ace2+/+ female mice are protected against obesity-induced 

hypertension via estrogen regulation of ACE2. In contrast, ovariectomized Ace2-/- 

female mice demonstrated a reduction in blood pressure. Along with a reduction 

in blood pressure ovariectomized Ace2-/- female mice demonstrated a reduction 

in cardiac function as indicated via a reduction in ejection fraction and fractional 

shortening compared to non ovariectomized Ace2-/- female mice. 

Results from these studies demonstrate a protective role of ACE2 against 

obesity-induced hypertension and cardiac function. 

 

6.2. Insights from diet-induced regulation of ACE2.   

Since results from the present study indicate that a HF-diet stimulates 

ACE2 specifically in adipose tissue, an important unanswered question arises. 
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What in the HF diet stimulated ACE2 in adipose tissue? Excess food intake with 

reduced energy expenditure still remains a major cause of obesity. Since dietary 

fat contains more calories than protein and carbohydrates, it is generally 

recommended that dietary fat content should be decreased in the treatment of 

obesity (Madsen et al. 2005). However, it is the composition of the diet that is 

very important, as not all fat is bad (Grynberg et al. 2005). Our diets are 

composed of a mixture of fatty acids, i.e saturated as well as unsaturated fatty 

acids, which are further divided into mono (MUFA) and polyunsaturated fatty 

acids (PUFA). PUFAs are further divided into fatty acids belonging to the n-3 or 

n-6 family. Importantly, PUFAs are essential fatty acids as the regular diet does 

not provide enough precursors for their synthesis in vivo (Maurice Shills et al. 

2006). These fatty acids are extremely important for vital functions of the body 

including blood pressure homeostasis (Grynberg et al. 2005).  Additionally, the 

majority of the essential fatty acids have been demonstrated to activate PPARγ 

and thus regulate transcription of several genes including those of the RAS 

(Kliewer et al.1997).  

Since some of the components of the RAS can be nutritionally regulated 

via fatty acids, we also wanted to determine if ACE2 can be regulated 

nutritionally. In the present study we used two diets, HF (60% calories from fat) 

and LF (10% calories from fat) composed of different fatty acids such as palmitic 

(PA), stearic (SA), oleic (OA), linoleic (LA) and arachidonic (AA) acid. We 

acknowledge that the fat content of the mouse diet was higher than the average 

fat composition of the human diet; however, this diet was necessary to create a 
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model to study obesity-hypertension especially given the fact that mice are 

resistant to hypertension from AngII infusion (Cassis et al. 2004) and exhibit 

modest but significant increases in blood pressure from HF feeding (Gupte et al. 

2008).  

 We demonstrated an increase in ACE2 activity and protein with 1 week of 

HF feeding specifically in adipose tissue which has been demonstrated to 

abundantly express PPARγ. Thus, we hypothesized that fatty acids in the diet 

activated PPARγ in adipose tissue to stimulate ACE2 expression and activity 

locally to catabolize AngII and thus protect mice against obesity-induced 

hypertension.  However, incubating 3T3-L 1 cells with individual fatty acids 

representative of those in the HF diet did not stimulate ACE2 activity in vitro. It is 

possible that a combination of fatty acids which mimics those in the diet used in 

the present study could elicit the in vivo response. Additionally, other factors such 

as differentiation, concentration of fatty acid used, and duration of incubation may 

also have affected the results.  

 

6.3. Insights from Ace2+/y, -/y (male) and Ace2+/+, -/-(female) mice: Role in 

body weight, fat and lean mass regulation. 

In the present study Ace2-/y male and Ace2-/- female mice were fed a 

LF or HF diet for 16 weeks and body weight progression was compared to the 

control.  Ace2-/y male mice exhibited a modest resistance to weight gain with HF-

diet. Importantly, lower body weights in Ace2-/y males did not arise from a lower 

fat mass; however, Ace2-/y male mice exhibited a lower lean mass (15%) 
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compared to Ace2+/y male mice. Our data suggests that this difference in body 

weight in males was not a result of decreased calorie intake or increased 

physical activity as we did not see any differences between the genotypes on 

either diet. Interestingly, previous studies from our lab have demonstrated a 

dose-dependent reduction in body weight in rats with AngII infusion that was 

independent of blood pressure (Cassis et al.1998a).This reduction in body weight 

was attributed to increased energy expenditure with chronic AngII exposure 

(Cassis et al. 2002). Earlier, studies from our lab have also shown that elevations 

in systemic AngII can lead to sympathetic activation (Cassis et al.1998b) to 

tissues involved in metabolism and result in increased energy expenditure 

peripherally in tissues such as adipose or skeletal muscle. Interestingly, in the 

present study Ace2-/y male mice fed a HF diet exhibited increased energy 

expenditure compared to Ace2+/y male mice. Thus, it is plausible that increased 

AngII concentrations due to ACE2 deficiency may have contributed to lower body 

weights in Ace2-/y male mice fed a HF diet.  

Similar to males, Ace2-/- females exhibited a lower body weight compared 

to Ace2+/+ female mice fed a HF diet. Even though body weights were similar in 

LF-fed Ace2+/+ and -/- females, with HF feeding Ace2-/- female mice exhibited a 

lower fat mass (~25%) and lean mass (~38%) compared to Ace2+/+ female mice. 

Mechanisms for reductions in fat and lean mass in HF-fed Ace2-/- females were 

not identified in the present study. However, it is conceivable that elevated 

systemic AngII concentrations raised energy expenditure and lowered body 

weight to a greater degree in female compared to male ACE2 deficient mice.  
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However, preliminary data suggests that energy expenditure is similar in HF-fed 

Ace2+/+ and -/- mice. Recent studies suggest restricted fetal growth in offspring 

from Ace2-/- females (Brosnihan et al. 2010), suggesting that developmental 

effects of ACE2 deficiency could blunt expanded fat and lean mass in Ace2-/- 

females in response to HF feeding. Indeed, we routinely breed heterozygote 

Ace2+/- females to Ace2-/y males for generation of experimental mice because we 

have noted smaller offspring and fetal death from breeding homozygous ACE2 

deficient females. Increases in fat mass and body weight have been 

demonstrated in several species following ovariectomy (Zoth et al. 2010; 

Anderson et al. 2009). In this study, ovariectomy increased the development of 

obesity in both genotypes fed HF diets. Thus, the ability of ovariectomy to 

increase body weight and fat mass appears to be independent of ACE2 

deficiency. However, even though ACE2 deficient females gained weight from 

ovariectomy, their weight gain was lower than wild type females. Alarmingly, 

ovariectomized Ace2-/- female mice exhibited lower fat mass (~30%) and lean 

mass (~67%) compared to ovariectomized Ace2+/+ female mice. Reductions in 

cardiac function in ovariectomized ACE2 deficient females may have contributed 

to these alarming reductions in fat and lean mass, similar to cardiac cachexia 

seen in patients with chronic heart failure (Piepoli et al. 2006).    
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6.4. Insights from Ace2+/y, -/y (male) and Ace2+/+, -/-(female) mice: Role in 

glucose  homeostasis. 

 

6.4.1. Effect of HF diet.  

HF fed mice exhibited marked glucose intolerance compared to 

the LF fed mice across both genders. Results from our study indicate fat mass as 

an important determinant of glucose intolerance. Our findings in HF-fed males 

and females are in agreement with previous studies in humans, demonstrating 

positive correlations between fat mass and insulin resistance in postmenopausal 

women (Van Pelt et al. 2002) and men and women (Wu et al.1998; Ito et al. 

2003). Thus, diet-induced obesity in mice is similar to humans in terms of the 

relationship between body weight and the development of diabetes. Importantly, 

the WT HF ovariectomized females which gained the highest fat mass (~14 fold 

increase) exhibited the highest glucose intolerance. To illustrate the relationship 

between body weight and glucose intolerance in our studies, we ranked mice 

across all groups and genders for glucose intolerance as follows:  WT HF, 

ovariectomized females> WT HF-fed males>Ace2-/y HF-fed males>Ace2-/- 

ovariectomized HF-fed females>WT HF-fed females. This ranking of glucose 

intolerance precisely parallels rankings of body weight across these groups.  

Thus, increased adiposity with HF diet appears to be an important determinant of 

glucose tolerance. 
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6.4.2. Role of ACE2 deficiency.  

In the present study we demonstrated glucose intolerance in 

Ace2-/y males fed a LF diet. Additionally, non fasted plasma insulin levels are 

lower in ACE2 deficient animals even in the face of marked glucose intolerance, 

which is a consistent finding in all our studies. A complete RAS has been 

identified in the pancreas (Tikellis et al. 2006). Additionally, a review of studies in 

animals and humans highlights the role of AngII systemically as well as locally in 

the development of insulin resistance and its implication for diabetes (Olivares et 

al. 2009). A recent study demonstrated that administration of an AT1R antagonist 

rendered protection against the inflammatory and metabolic consequences of HF 

diet in pancreas and adipose tissue in mice fed a western diet for 12 weeks (Cole 

et al. 2010). The AT1R antagonist improved glucose tolerance, fasting blood 

glucose and glucose stimulated insulin release in mice fed a high fat diet. In 

addition, mice administered the AT1R antagonist were demonstrated to have 

enhanced mitochondrial function, reduced β-cell hyperplasia and increased 

insulin content (Cole et al.2010). To date, no studies have examined the role of 

endogenous ACE2 expression in β cell function.  However, our findings suggest 

that elevated AngII levels either systemically or locally in the pancreas of ACE2 

deficient fed the HF diet contributed to glucose intolerance possibly from 

decreased insulin synthesis and/or secretion from the pancreas. To test this 

hypothesis we attempted to stain pancreas from 8 week old Ace2+/y and -/y 

deficient male mice with insulin. Immunostaining of Ace2+/y and -/ mice pancreas 
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for insulin indicated less staining in Ace2-/y mice as compared to +/y mice (Figure 

6.2). Unfortunately, we were unable to quantify insulin content in the pancreas.   

It is well known that diet-induced obesity results in glucose intolerance in 

experimental models and humans through insulin resistance primarily at skeletal 

muscle, adipose tissue, and liver. In our studies, HF-fed ACE2 deficient male 

mice were glucose intolerant, did not increase systemic insulin concentrations 

with HF feeding, and had better insulin tolerance compared to wild type controls.  

Despite the potential for different mechanisms contributing to glucose intolerance 

between ACE2 deficient males compared to wild type, both groups most likely 

developed some degree of insulin resistance. Several lines of evidence suggest 

that AngII can induce insulin resistance at skeletal muscle and adipose tissue (for 

review see Henriksen, 2007). Thus, elevations in systemic or local AngII in HF-

fed ACE2 deficient mice may have altered metabolic pathways of insulin 

signaling i.e (PI3K/AKT).  

Another possible mechanism for glucose intolerance in ACE2 deficient 

mice is lower systemic concentrations of Ang-(1-7), as demonstrated in HF fed 

mice. Recent studies demonstrated a beneficial effect of Ang-(1-7) on glucose 

homeostasis using an Ang-(1-7) producing fusion protein to increase insulin 

stimulated glucose uptake in adipocyes in rats (Santos et al. 2010). Additionally, 

Ang-(1-7) fusion protein reduced adipose AO expression and increased 

expression of proteins of the insulin metabolic pathway (PI3K/AKT) (Santos et al. 

2010). Thus, imbalances between systemic and/or local concentrations of 
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AngII/Ang-(1-7) may have contributed to the observed effects of ACE2 deficiency 

on glucose homeostasis in the setting of diet-induced obesity. 

It is also conceivable that a crosstalk between the adipose tissue and 

pancreas may also have resulted in the above dysfunctions. Using co-culture 

systems Zhao et al. demonstrate that 3T3-L1 adipocytes induce dysfunction of 

insulin producing β cells (Zhao et al. 2007). 

 

6.5. Insights from Ace2+/y, -/y (male) and Ace2+/+, -/-(female) mice: Role in 

obesity-induced hypertension. 

Previous studies demonstrated that ACE2 deficient mice exhibit 

increased blood pressures in response to AngII infusion (Gurley et al. 2006). 

Plasma and kidney levels of AngII were increased in AngII-infused mice with 

ACE2 deficiency, supporting local and systemic activation of the RAS (Gurley et 

al. 2006). Our results suggest that initial activation of ACE2 in adipose tissue 

may protect male mice against obesity-induced hypertension. However, with 

chronic HF feeding ACE2 activity in adipose tissue was lost and the mice 

exhibited a significant increase in SBP and DBP compared to LF controls. 

Chronic HF feeding resulted in loss of ACE2 activity via shedding of the catalytic 

domain of ACE2 mediated via ADAM-17, which is upregulated with chronic 

obesity. Importantly, plasma Ang II levels were elevated in obese mice exhibiting 

lower ACE2 activity in adipose tissue. These results indicated that increased 

AngII resulting from reduced ACE2 activity contributed to obesity-induced 

hypertension in HF fed C57BL/6 male mice. 
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 Since increases in blood pressure coincided with a reduction in ACE2 

activity in adipose tissue we hypothesized that ACE2 protects the mice against 

obesity-induced hypertension. Following up on this finding we determined the 

effect of ACE2 deficiency on obesity-induced hypertension in ACE2 deficient 

male and female mice.  Importantly, Ace2-/y male mice exhibited significant 

elevations in SBP compared to HF-fed Ace2+/y mice. Since ACE2 has been 

demonstrated to catabolize AngII to generate Ang-(1-7), we predicted that ACE2 

deficiency would increase systemic concentrations of AngII. This is particularly 

important in diet-induced obesity where plasma AngII levels have been 

demonstrated to be increased significantly with HF feeding and obesity 

(Boustany et al. 2004; Gupte et al. 2008). In the present study Ace2-/y mice fed a 

HF diet exhibited significant elevations in plasma AngII levels compared to 

Ace2+/y mice. This suggests that the increase in blood pressure observed in HF 

fed Ace2-/y resulted from increased plasma AngII levels as a result of ACE2 

deficiency. Further evidence supporting a primary role for AngII as a mediator of 

blood pressure elevations in HF-fed Ace2-/y males comes from data using 

losartan.  Losartan administration reversed elevations in blood pressure from HF-

feeding in Ace2-/y males.  Thus, in the males it appears that increased systemic 

AngII in obese ACE2 deficient mice contributed to the etiology of obesity-induced 

hypertension. Since ACE2 deficiency can also result in lowered plasma Ang-(1-

7), it is conceivable that the increases in pressure seen in Ace2-/y male mice 

could have resulted from lower Ang-(1-7) levels. This is especially important as 

HF-fed wild type mice exhibited lower concentrations of plasma Ang-(1-7).  
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However, our data does not support a prominent role for Ang-(1-7) in blood 

pressure differences with obesity and ACE2 deficiency, as we saw similar  

plasma  Ang-(1-7) concentrations in HF fed Ace2+/y and  -/y male mice, even 

though blood pressure was different between these groups. 

In contrast to males, HF fed females were protected against obesity-

induced hypertension. However, with ACE2 deficiency this protection against 

obesity-induced hypertension was lost and the female mice also exhibited 

increased SBP as well as DBP. To address mechanisms for differences between 

males and females in their susceptibility to obesity-hypertension in relation to 

ACE2 deficiency and the RAS, we provide the following discussion. We 

compared plasma concentrations of Ang-(1-7), a catabolic product of ACE2, in 

HF fed male and female mice. Interestingly, Ace2+/+ female mice fed a HF diet 

exhibited significantly higher plasma Ang-(1-7) concentrations compared to 

Ace2+/y HF male (female : 0.32 +/-0.0, male : 0.12+/-0.0 ng/ml, p=0.001). This is 

an interesting finding, as it indicates that unlike males where ACE2 activity is lost 

and Ang-(1-7) levels are lowered with chronic obesity, ACE2 activity is preserved 

in females which exhibit higher plasma Ang-(1-7) levels in response to HF 

feeding. Thus, it is likely that increased Ang-(1-7) concentrations, presumably 

through an ACE2-dependent mechanism, protected the females against obesity-

induced hypertension.        

 It is unclear why HF feeding would lower plasma Ang-(1-7) concentrations 

in males, but raise them in females. Moreover, our data using losartan suggests 

that plasma concentrations of AngII, and not Ang-(1-7), primarily mediate 
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enhanced obesity-hypertension in ACE2 deficient males. Moreover, since mouse 

groups with similar plasma concentrations of Ang-(1-7) (HF-fed Ace2-/y and +/y) 

exhibited disparate blood pressures, these results do not support reductions in 

plasma Ang-(1-7) concentrations in HF-fed male mice as a contributor to 

augmented obesity hypertension in ACE2 deficient males. In contrast, female 

mice exhibited elevated plasma concentrations of Ang-(1-7) and were resistant to 

obesity-hypertension, a phenomenan reversed by ACE2 deficiency. These 

results suggest that females respond to plasma concentrations of Ang-(1-7) to 

regulate blood pressure differently than males. Unfortunately, there are no 

studies comparing expression levels of Mas receptors in tissues from male 

compared to female mice under control conditions or in response to HF feeding.   

Additional studies are required to elucidate mechanisms for differences in blood 

pressure responses to plasma concentrations of Ang-(1-7) between obese male 

and female mice.  

A second interesting aspect of comparisons of male to female mice in their 

responses to HF feeding and the development of obesity is the role of female sex 

hormones through studies using ovariectomy. Previous studies in rats 

demonstrated that estrogen positively modulates ACE2 protein in rat kidney (Ji et 

al. 2008), supporting our observation that female mice exhibit higher plasma 

concentrations of Ang-(1-7) compared to males. Our results demonstrate that HF 

feeding in females increases plasma concentrations of Ang-(1-7), and that these 

effects are lost in ovariectomized females. These results suggest an interaction 

between HF feeding and female sex hormones. Results from ACE2 deficient 
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females demonstrated that HF diet-induced increases in plasma concentrations 

of Ang-(1-7) are ACE2-mediated. It is conceivable that estrogen stimulated ACE2 

expression in female mice, allowing for HF diet-induced increases in production 

of Ang-(1-7) and protection against obesity-hypertension. Recent studies 

demonstrated expression of the Mas receptor in human ovaries (Reis et al. 

2010). In addition, Ang-(1-7) production and Mas expression were stimulated by 

gonadotropin (Pereira et al. 2009). Thus, either increased concentrations of Ang-

(1-7) or alternatively an increased sensitivity to Ang-(1-7) via increased 

expression of Mas may have contributed to this protection. Additional studies are 

needed to directly define effects of estrogen on ACE2 mRNA in the context of 

obesity hypertension.   

 An important indicator of an activated systemic RAS is plasma renin 

concentrations. In mice a lower plasma renin concentration indicates increased  

AngII concentrations because of an endocrine negative feedback loop of AngII at 

kidney AT1R. HF-fed Ace2+/+ female mice exhibited lower plasma renin 

concentrations, indicative of increased plasma AngII levels compared to Ace2+/+ 

mice fed a LF diet. This indicates that similar to males plasma AngII 

concentrations are elevated in females with HF diet and chronic obesity. 

However, in spite of an activated RAS, females were protected against obesity-

induced hypertension.  As described above, elevations in plasma Ang-(1-7) 

concentrations most likely mediated protection against obesity-hypertension in 

females, as ACE2 deficiency eliminated these elevations and promoted obesity-

hypertension. Plasma renin concentrations were further lowered by ovariectomy 
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in Ace2+/+ and -/- female mice, suggesting that ovariectomy elevated plasma 

AngII concentrations to promote obesity-hypertension. The lack of an additive 

effect of ACE2 deficiency and ovariectomy on blood pressure in female mice 

suggests that ACE2 and estrogen most likely induced obesity-related 

hypertension through similar mechanisms.   

 

6.6. Insights from Ovx Ace2-/- (female) mice: Role in cardiac function. 

In the present study we hypothesized that Ace2+/+ females are 

resistant to obesity-induced hypertension via an ACE2-estrogen mediated 

mechanism. To test this hypothesis we ovariectomized Ace2+/+ and -/- female 

mice. Surprisingly, we found that ovariectomy decreased systolic and diastolic 

blood pressures in Ace2-/- females. The first publication examining ACE2 

deficiency in mice demonstrated a reduction in blood pressure in 6 month old 

Ace2-/y male mice as a result of cardiac dysfunction, indicating an important role 

for ACE2 in cardiac function (Crackower et al. 2002). Similar to their findings, in 

our studies we demonstrate reductions in blood pressure of ovariectomized 

Ace2-/- mice, coinciding with reduced ejection fraction and fractional shortening. 

These results indicate that in contrast to the pathology of hypertension where 

ACE2 and estrogen deficiency mediate their effects via similar mechanisms, they 

appear to function via distinct mechanisms in the pathology of heart failure as 

this pathology is absent in non ovariectomized Ace2-/- females. Cardiac 

dysfunction in ovariectomized Ace2-/- females may have resulted from increased 

AngII levels systemically as well as locally in the heart as a result of combined 
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ACE2 and estrogen deficiency. Since increased AngII levels locally in the heart 

have been demonstrated to promote cardiac hypertrophy and fibrosis (Baker et 

al. 1992, Zhong et al. 2010), it is likely that cardiac remodeling due to increased 

AngII adversely influenced cardiac function. Additionally, this could also be 

aggravated via AngII-mediated increases in sympathetic activation to the heart, 

as previous studies from our lab have demonstrated a role for AngII to increase 

sympathetic activation in ventricles of rats experiencing pressure overload (Akers 

et al. 2004).  

             

6.7. Future directions. 

 There are many new questions that arise from this research that 

should be addressed in the future.  

6.7.1 Role of specific fatty acids in obesity-induced hypertension. 

 In the present study we demonstrated increased ACE2 

expression via DHA, an n-3 fatty acid well known for its cardioprotective effects. 

This would be an important area to be investigated as an effective dietary 

intervention against obesity-induced hypertension.  An interesting study would be 

to administer diets enriched in specific fatty acids (DHA) and contrast these with 

the different parameters measured in the present study.  Alternatively, a group 

could be fed a regular HF (used in the study) and then switched to a diet 

containing n-3 fatty acids to study the effects of this fatty acid to reverse the 

effects of diet-induced obesity.     
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 6.7.2 Role of AngII in metabolic parameters. 

In the present study we demonstrated lower body weights in HF-

fed ACE2 deficient mice. We implicate increased AngII as a result of ACE2 

deficiency for these differences. Moreover since studies in animals deleting other 

components of the RAS such as AO (Massiera et al. 2001) also demonstrated 

resistance to obesity with HF feeding the exact role of AngII in diet-induced 

obesity is unclear. In the present study we demonstrated increased energy 

expenditure in male HF-fed mice with ACE2 deficiency. Previous studies from 

our lab have demonstrated an increased sympathetic activity via increased 

systemic AngII (Cassis et al.1998 b) to tissues involved in metabolism. Hence to 

understand mechanisms for differences in body weight, an important experiment 

would be to administer either an AT1 receptor antagonist or a β receptor 

antagonist to wild type and ACE2 deficient mice during the progression of 

obesity. If the differences in body weight are blunted via AT1 receptor antagonist 

then we can implicate the RAS as a mediator of differences in body weight. In 

contrast, if the body weight differences are blunted by a β receptor antagonist, 

then an activated SNS via AngII is implicated in these differences. 

 

6.7.3 Role of AngII or Ang-(1-7) in glucose metabolism. 

Since studies implicated a role for increased AngII as well as 

lowered Ang-(1-7) levels for perturbations in glucose homeostasis, to dissect 

specific roles of these peptides an important study would be to infuse Ace2+/y and 
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-/ fed either a LF or HF diet with AngII or Ang-(1-7) chronically and monitor 

different  parameters associated with glucose homeostasis. Alternatively, as 

results from the present study suggest a role for the pancreatic RAS in effects of 

ACE2 deficiency on glucose homeostasis, it would be interesting to define effects 

of HF feeding on the pancreatic RAS. Moreover, available mouse models in our 

laboratory, namely AO or AT1aR floxed models, could be used with pancreatic β-

cell promoters to target deficiency of these RAS components to islet cells.  

 

6.8. Clinical implications. 

Increased ACE2 has been demonstrated to render protection in 

numerous cardiovascular pathologies including obesity-induced hypertension as 

demonstrated by the present research. Additionally, we demonstrated that ACE2 

can be stimulated via specific fatty acids. This can be facilitated by incorporating 

fatty acids in the diet which could potentially tonically stimulate ACE2 activity. 

Additionally, intake of fatty acids that increase ADAM-17 expression resulting in 

loss of ACE2 activity should be limited to sustain ACE2 activity.  

 A study in SHR demonstrated a beneficial effect of an ACE2 activator 

(xanthenone and resorcinolnaphthalein) to reduce blood pressure in a dose 

dependent manner (Hernández-Prada et al. 2008). In the present study we 

demonstrated that ACE2 was stimulated by TZDs, some of which are effectively 

used in the treatment of type 2 diabetes (Olfesky et al. 2000). Since majority of 

patients with type 2 diabetes are also obese and hypertensive, it is possible that 

addition of a TZD to these patients may provide potential benefit through 
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stimulation of ACE2.  Additionally, studies have also tested the efficacy of ACE2 

gene transfer in tissues associated with cardiovascular functions such as heart 

(Diez-Freire et al. 2006) and smooth muscle (Rentzsch et al. 2008) and 

demonstrated beneficial effects on cardiac function and blood pressure. Since 

results from our laboratory implicate that adipose RAS in the etiology of obesity-

induced hypertension, it would be interesting to increase ACE2 in adipose tissue 

directly via gene transfer as an alternative therapy against obesity-induced 

hypertension. Additionally, in females Ang-(1-7) appears to play an important role 

in protecting against obesity-induced hypertension. Studies in animals have 

demonstrated a beneficial role of an Ang-(1-7) producing fusion protein, which 

results in increased levels of Ang-(1-7) over lifetime. This would be particularly 

important for females as our results indicate that levels of this peptide fall with 

ovariectomy. Thus, in post menopausal women who exhibit a higher prevalence 

of obesity and hypertension compared to pre-menopausal women, we suggest 

testing this therapy.  

 

6.9. Concluding Remarks. 

In conclusion, findings of this dissertation demonstrate that PPARγ 

ligands promote ACE2 expression and activity in adipose tissue. Additionally, 

results from these studies demonstrate a pivotal role of ACE2 in male as well in 

female mice in the development of obesity-associated cardiovascular pathologies 

such as hypertension, diabetes and cardiac functions (Figure 6.1).      

                                      Copyright © Manisha Gupte 2011 
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           Figure. 6.1 Role of ACE2 in Obesity-Associated Hypertension. 
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Figure. 6.2 Pancreas from 8 week old male Ace2+/y and -/y stained for insulin. 
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