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ABSTRACT OF DISSERTATION 
 
 
 
 

INCREASED OXIDATIVE DAMAGE TO DNA AND THE EFFECTS ON 
MITOCHONDRIAL PROTEIN IN ALZHEIMER’S DISEASE 

 
 

Alzheimer’s disease (AD) is a progressive, irreversible, neurodegenerative 
disease.  The key to understanding AD is to elucidate the pathogenesis of neuron 
degeneration in specific brain regions.  

We hypothesize that there is increased DNA oxidation in AD brain compared to 
age-matched control subjects, especially in mitochondrial DNA (mtDNA), and that 
the changes in DNA bases will affect protein expression in mitochondria and 
contribute to neurodegeneration in AD.  To test this hypothesis: 

1) We quantified multiple oxidized bases in nuclear DNA (nDNA) and mtDNA 
of frontal, parietal, and temporal lobes and cerebellum from late-stage AD (LAD), 
mild cognitive impairment (MCI), and age-matched control subjects using gas 
chromatography/mass spectrometry with selective ion monitoring (GC/MS-SIM).  
Also, we quantified oxidized DNA bases in cortex of APP/PS1 transgenic mice.  (a) 
nDNA and mtDNA were extracted from eight LAD and eight control subjects.  We 
found levels of multiple oxidized bases were significantly higher in frontal, parietal, 
and temporal lobes and that mtDNA had approximately 10-fold higher levels of 
oxidized bases than nDNA.  Eight-hydroxyguanine was approximately 10-fold 
higher than other oxidized base adducts in both LAD and control subjects.  These 
results suggest that oxidative damage to mtDNA may contribute to the 
neurodegeneration of AD.  (b) Mild Cognitive Impairment (MCI), the phase between 
normal aging and early dementia, is a common problem in the elderly with many 
subjects going on to develop AD.  Results from eight amnestic MCI and six control 
subjects suggest oxidative damage to DNA occurs in the earliest detectable phase of 
AD.  (c) Analysis of nDNA from the cortex of four groups (3m, 6m, 9m, 12m) of 
APP/PS1 and wild type mice showed elevations of 8-hydroxyguanine in 12 month old 
APP/PS1 mice. 

2) To analyze mitochondrial protein changes in LAD, 2D gels were run to 
separate proteins and MALDI-TOF mass spectrometry was used to identify proteins.  



Five mitochondrial proteins were significantly decreased in LAD.  This proteomic 
study provides a proteome map of mitochondria in LAD brain and an insight into the 
pathogenesis of neuron degeneration in Alzheimer’s disease. 
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CHAPTER ONE 

Introduction 

 

1.1 Alzheimer’s disease 

 

1.1.1 Overview of Alzheimer’s disease 

Alzheimer’s disease (AD) is a progressive, irreversible, neurodegenerative disorder.  

In 1907, Alois Alzheimer, a German psychiatrist and neuropathologist,  published a paper 

that described a 51-year-old woman with a 4 ½ year course of progressive dementia 

which subsequently bears his name (Alzheimer 1907).  The patient died in a completely 

demented state.  Autopsy revealed an atrophic brain with cortical neuron loss and the 

presence of silver-positive intracellular tangled bundles of fibers (now called 

neurofibrillary tangles (NFTs)) and extracellular deposits (now called senile plaques 

(SPs)), two main hallmark pathological features of AD.   

AD is the most common form of dementia in the elderly.  Current data suggest 

AD affects 4-5 million people in the US and 20-30 million people worldwide with a 

prevalence of 3% for the persons 65-74 years old, 18.8% for those 75-84 years old, and 

47.2% for those over 85 years old (Katzman 1976; Markesbery and Carney 1999; Martin 

1999).  Without efficient preventative methods, it is estimated that by 2050 ~45 million 

individuals worldwide could develop this disorder with increasing life span (NIA 1995; 

Selkoe and Schenk 2003). 

 

1.1.2 Clinical characteristics of AD 

AD is characterized by memory loss, behavior changes, and impaired cognitive 

ability.     At the very early stage, the only symptom is mild forgetfulness.  Patients can 

not recall the names of recent activities or events.  Most people with mild forgetfulness 

likely do not develop AD.  It is easily confused with normal aging forgetfulness, which is 

not progressive (Sclan and Kanowski 2001).  As the disease goes on, progressive 

worsening of memory is more noticeable.  AD patients have trouble learning, speaking or 

thinking, and cannot carry out daily activities, such as combing their hair, brushing their 
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teeth, or recognizing familiar people around them.  At later stages of AD, patients can 

become aggressive or wander away from home (Selkoe and Schenk 2003).    

 

1.1.3 Pathological features in AD 

Two hallmark pathological features of AD are the presence of neurofibrillary 

tangles (Figure 1-1) and senile plaques (Figure 1-2).  NFTs are intracellular and are 

composed of paired helical filaments (PHF), which consist of hyperphosphorylated tau, a 

neuron-specific phosphoprotein that is the major constituent of neuronal microtubules 

and predominantly located in the axon (Trojanowski and Lee 1995).  NFTs are generally 

present in neurons of the cerebral cortex and are mainly found in temporal lobe structures 

of the AD brain, such as hippocampus and amygadala (Pappolla et al. 1992; Wang et al. 

2006).   

Senile plaques are extracellular deposits composed of β–amyloid (Aβ) 

polypeptides (39 to mainly 42 amino acids) derived from the amyloid precursor protein 

(APP), a transmembrane glycoprotein precursor, synthesized in endoplasmic reticulum, 

and transferred to secretory vesicles and cell surface through Golgi apparatus 

(Weidemann et al. 1989).  APP is cleaved by β-secretase to release N- terminal Aβ-42.  γ-

secretase cleaves APP to release the C- terminal of Aβ-42.  Due to the different cleavage 

sites of β-secretase, Aβ-40 is also produced (Citron et al. 1996).  These peptides 

aggregate easily and form plaques.  Traces of transition metals, such as copper, zinc, and 

iron, may accelerate this aggregation (Lovell et al. 1998).  However, Aβ-40 is more 

soluble and less neurotoxic than Aβ-42.  Numerous studies show that Aβ-42 may play an 

important role in the pathogenesis of AD (Citron et al. 1996; Selkoe and Schenk 2003).  

Senile plaques are present in the brain in normal aging and Alzheimer’s disease, although 

the AD brain has higher numbers of senile plaques compared to normal aging. 

Besides NFTs and SPs, synapse loss and neuron dysfunction occur in AD.  

Histological examination of AD brain shows pyramidal neuron loss in the hippocampus, 

which may be caused by accumulated amyloid plaques (DeKosky and Scheff 1990; 

Scheff and Price 1993; Kril et al. 2002; Kril et al. 2004; Schmitz et al. 2004; Simard et al. 

2006).  Pyramidal neurons are the primary cell type in cortex and hippocampus. 
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Figure 1-1. Schematic of the formation of neurofibrillary tangles in neuron 
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Figure 1-2. Formation of senile plaques from cleavage of APP by β and γ-secretases 
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 Pyramidal neurons are composed of a pyramid-shaped cell body, a tree-like dendrite, and 

axons.  In addition, glia function as supporting cells in CNS.  Previous studies show more 

than half of large pyramidal neurons are damaged in the late stage AD in prefrontal 

cortex and hippocampal CA1 region (West et al. 1994; Gomez-Isla et al. 1997; Bussiere 

et al. 2003).  

 

1.1.4 Risk factors of AD 

The cause of AD is not fully understood.  It probably is not a single cause, but a 

consequence of several factors.  These risk factors may interact with each other and affect 

each person differently. Age is the most well known factor in AD. The number of people 

with AD doubles every five years beyond age 65 (Evans et al. 1989; Floyd 1999).  

Genetic factors (Henderson 1986), education, diet, environment (Zhang et al. 

1990; Zawia and Basha 2005), and head injury (Heyman et al. 1984; French et al. 1985; 

Sullivan et al. 1987; Borenstein et al. 2006) also play important roles in the development 

of AD.  Early-onset familial AD (FAD), a rare form of AD that usually occurs before age 

60, is associated with several genetic mutations, including mutations of APP, Presenilin 1 

(PS1) and Presenilin 2 (PS2) (Hardy 1997).  Presenilins are transmembrane proteins with 

six to nine transmembrane domains (Sherrington et al. 1995; Li and Greenwald 1996). 

Studies show that PS1 and PS2 mutations alter APP processing in favor of Aβ production 

(Borchelt et al. 1996; Scheuner et al. 1996).  Presenilins are also substrates for a caspase-

3 family, and mutations in presenilins may make cells vulnerable to apoptotic cell death 

(Kim et al. 1997; De Strooper et al. 1998). 

However, the more common form of AD known as late-onset accounts for 90-

95% of total AD cases (Harman 2006).  Apolipoprotein ε4 (ApoE4) is the only risk gene 

identified so far for late-onset AD (Travis 1993; Markesbery 1997; Selkoe 1999).  ApoE 

is encoded by a gene on chromosome 19 and has three isoforms: ε2, ε3, and ε4.  The risk 

of AD increases three fold with one ε4 allele and eight fold with two ε4 alleles compared 

to non-Apo ε4 carriers (Strittmatter et al. 1993; Evans et al. 1997).  
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1.2 Mild Cognitive Impairment  

Recent emphasis in adult dementing disorders is on early detection with the hope 

of early treatment to slow disease progression.  Mild Cognitive Impairment (MCI) is 

generally considered to be the transitional zone between normal aging and early 

dementing disorders, especially AD (DeCarli et al. 2001; DeCarli 2003; Wolf et al. 2004).  

In general, most MCI subjects eventually convert to AD or other dementias with ~15% of 

MCI subjects converting to AD per year (DeCarli 2003).  Several studies of MCI show 

elevated levels of tau (Okamura et al. 2002), Aβ (Andreasen et al. 1999), and 

isoprostanes (Pratico et al. 2002) in ventricular cerebrospinal fluid (CSF), and more 

recently significant elevations of DNA damage in peripheral leukocytes of MCI and AD 

(Migliore et al. 2005).  Additionally, several gene mutations associated with AD have 

been observed in subjects with MCI including mutations in apolipoprotein E, PS1, and 

APP (de Leon et al. 2001; Traykov et al. 2002; Lopez et al. 2003; Nacmias et al. 2004).  

 

1.3 APP/PS1 transgenic mice 

Although the majority of AD cases are sporadic, ~ 5% of cases, are linked to 

specific mutant genes that encode the amyloid precursor protein (APP) or the presenilins 

(PS1 or PS2) (Selkoe 2001; Selkoe and Schenk 2003; Esposito et al. 2004).   

APP is encoded by a gene on chromosome 21, which can be cleaved by β- and γ-

secretases to produce amyloid-β peptides (Aβ) mainly containing Aβ40 and Aβ42 (Haass 

and Selkoe 1993; Xu et al. 1997; Storey and Cappai 1999).  Studies show that Aβ42 

aggregates faster than Aβ40 and is more toxic to cultured neurons (Pike et al. 1993; 

Roher et al. 1993; Watt et al. 1994; Lemere et al. 1996; Lovell et al. 1999b; Lovell et al. 

2003).  Why Aβ is neurotoxic is not clear.  The possible reason is that Aβ may lead to the 

production of free radicals which result the oxidation of protein, lipid, and DNA (Loo et 

al. 1993; Hensley et al. 1994; Watt et al. 1994).   

PS1 and PS2 are encoded by genes on chromosomes 14 and 1 respectively.  More 

than 50 mutations have been identified in PS1 gene, much more than those of in PS2 

(Hardy 1997; Cruts et al. 1998).  Studies show increased Aβ42 production in PS1 

transgenic mice (Duff et al. 1996).  APP/PS1 mice have higher levels of Aβ42 compared 

to single transgenic mice (Blanchard et al. 2003; Wirths et al. 2006). 
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The amyloid cascade hypothesis suggests that Aβ processing and aggregation 

may contribute to the pathogenesis of AD.  Transgenic mouse models offer opportunities 

to investigate the molecular mechanisms of Aβ production.  APP transgenic mice show 

early-onset deposition of Aβ in neocortex and hippocampus by 12 month of age (Games 

et al. 1995; Hsiao et al. 1996; Chishti et al. 2001).  Water maze tasks showed increased 

age-related memory deficit in APP mice. Also, these mice show electrophysical 

pathology and functional disruption in cortex and hippocampus (Hsiao et al. 1996; 

Chapman et al. 1999; Stern et al. 2004).  In the mouse model coexpressing APP and PS1, 

the deposition of senile plaques is accelerated at early ages by 12 month of age and the 

ratio of Aβ42/ Aβ40 was increased in brain (Borchelt et al. 1997; Holcomb et al. 1998; 

Wengenack et al. 2000).  Mutations in presenilins may accelerate the Aβ42 production by 

altering APP processing (Duff et al. 1996).   

 

1.4 Oxidative stress and AD 

 

1.4.1 Free radical theory of aging 

Current evidence indicates that oxidative stress is associated with aging.  In 1956, 

Denham Harman proposed the free radical theory of aging. It says that aging is due to the 

cumulative damage from free radical mediated reactions.  Reactive oxygen species (ROS) 

are the byproducts of enzymatic redox chemistry.  Traces of metal ions may catalyze 

these reactions (Harman 1973; Smith et al. 2000a; Smith et al. 2000b; Harman 2003).   

 

1.4.2 Mitochondria – power house of cells and source of ROS 

Mitochondria are considered the “power house” of cells (Boyer et al. 1954), and 

are composed of an outer membrane, inner membrane, and matrix (Figure 1-3).  ATP 

(adenosine triphosphate) is produced at the inner membrane through coupling of 

oxidative phosphorylation with respiration (Boyer et al. 1954; Mitchell 1961).  Five 

enzyme complexes are involved in respiratory chain during energy production.  While the 

enzymes transfer electrons to oxygen in the final step, they pump protons out of the inner 

membrane, establishing a proton gradient.  It is this pH gradient that provides energy to 
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drive ATP synthesis from ADP and inorganic phosphate (Boyer et al. 1954; Mitchell 

1961; Wallace 1999; Jaroszewski et al. 2000; Stock et al. 2000; Eckert et al. 2003).   

Mitochondria are then considered a “free radical factory” of the cell because of 

potential electron leakage from the electron transport chain.  Free radicals are atoms or 

molecules with at least one unpaired electron in the outer shell and are chemically very 

active (Sampson et al. 1998).  In biological systems, free radicals mainly include reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) (Halfpenny and Robinson 

1952; Smith et al. 1998).   Oxidative phosphorylation is the major endogenous source of 

ROS.  During respiration, ~2% of the total oxygen consumed by the cell is converted into 

superoxide radical O by leaked electrons.  Cellular protective enzymes against 

oxidative stress include Cu/Zn and Mn superoxide dismutases (SOD)  that convert 

superoxide radical to hydrogen peroxide (H

2
.-

2O2) , which is either reduced to water or 

more active hydroxyl radical .  in the presence of trace metals through the Fenton or 

Haber-Weiss reaction (Figure 1-4) (Fenton 1894; Harbor and Weiss 1934). 

OH

Hydroxyl radicals plus H2O2 and singlet oxygen are the ROS we usually talk 

about.  Iron may play an important role in catalyzing and propagating these reactions 

(Fenton 1894; Harbor and Weiss 1934; Xie et al. 1996; Lyras et al. 1997).    Studies have 

indicated that there is increased iron in AD brain compared to controls (Ehmann et al. 

1986).  Another potential oxidant is nitric oxide (NO) which is produced in biological 

reactions from the oxidation of L-arginine.  By itself, NO is not very active, although it 

can react with superoxide radical to from peroxynitrite ONOO-, a very reactive oxidant 

that can oxidize DNA, protein and lipids (Marletta 1993; Hurshman and Marletta 2002).   

Oxidative stress refers to the status when free radicals and their damaged products 

are beyond the ability of repair systems (Kish et al. 1986; Imlay and Linn 1988; Beyer et 

al. 1991).  Mitochondria are the major source of endogenous free radicals in cells and 

their DNA and protein may be more easily oxidized than nuclear DNA and protein 

(Wallace 1992; Ames et al. 1993; Mecocci et al. 1993).  Oxidative stress can decrease the 

mitochondrial membrane potential, which induces cell death through apoptosis (Wadia et 

al. 1998).  Mitochondrial DNA (mtDNA) tends to have higher mutation rates than 

nuclear DNA (nDNA) because of the lack of histone protection and limited repair 

mechanisms  
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Figure 1-3. Diagram of a mitochondrion. Mitochondria are composed of an outer 

membrane, inner membrane, and matrix.
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Figure 1-4. Production of reactive oxygen species through Fenton and Haber-Weiss 

reactions 
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(Wallace 1992; Ames et al. 1993; Lovell et al. 2000b; Hashiguchi et al. 2004; Stuart et al. 

2005).  Mutations of mtDNA could cause functional consequences because mtDNA has 

no noncoding sequences (Wallace 1992).  Studies show that there is more than 10 times 

the damage in mtDNA than is observed in nuclear DNA (Richter et al. 1988; Wang et al. 

2005; Wang et al. 2006). 

 

1.4.3 Oxidative stress and AD – protein oxidation and lipid peroxidation 

Several lines of evidence indicate that oxidative damage plays an important role 

in the pathogenesis in AD.  Protein oxidation may affect neuron function by damaging 

enzymes that are critical to neuron metabolism (Smith et al. 1991; Hensley et al. 1995; 

Poon et al. 2004; Chen et al. 2005).  Protein carbonyls have been used to measure 

damaged protein (Gutteridge and Wilkins 1983; Smith et al. 1991; Youngman et al. 

1992).  Previous studies show that protein carbonyls are increased in frontal lobe, 

hippocampus, and parietal lobe in AD compared to control subjects (Smith et al. 1991; 

Hensley et al. 1995).  Studies show that nitrotyrosine is present in NFT in AD brain 

(Smith et al. 1997).   

Lipid peroxidation can cause structural membrane damage leading to cell death 

and produce secondary bioreactive aldehydes, such as 4-hydroxy-2-nonenal (HNE) and 

acrolein (Benedetti et al. 1980; Benedetti et al. 1986; Lovell et al. 1997; Bruce-Keller et 

al. 1998; Markesbery and Lovell 1998; Lovell et al. 2000a, 2001).  These two chemicals 

may form adducts with DNA and protein, which can modify their normal functions. They 

are both increased in the AD brain and are toxic to cultured neurons (Lovell et al. 1997; 

Lovell et al. 2000a, 2001).  Additionally, HNE is shown to be elevated in cerebrospinal 

fluid (CSF) of AD subjects (Lovell et al. 1997).  Studies also show that the concentration 

of isoprostanes in the CSF of AD subjects is higher than in the controls (Montine et al. 

1998; Musiek et al. 2004).  Isoprostanes, a measure of lipid peroxidation, are produced by 

non-enzymatic, free radical-catalyzed peroxidation from arachidonic acid (Morrow et al. 

1992a; Morrow et al. 1992b; Milne et al. 2005). 

Studies of antioxidants in AD show varied results.  Several studies have shown 

increased enzyme activities including Catalase, SOD, GSH-Px and GSSG-R, which 

suggested that elevated enzyme activities reflect a compensatory response to increased 
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ROS species (Lovell et al. 1995).  Some studies show that there is no significant 

difference or reduced enzyme activity in AD brain (Richardson 1993; Marcus et al. 1998).  

These inconsistent results suggest that the neuron death in AD brain may not be due to 

the damages of antioxidant enzymes. 

    

1.4.4 Oxidative stress and AD – DNA oxidation 

ROS, especially hydroxyl radicals, can attack DNA bases, leading to more than 

20 oxidized base adducts (Steenken 1989a; Cooke et al. 2003).  As a consequence of 

oxidation, DNA may have strand breaks,  DNA-DNA and DNA-protein crosslinking, and 

base modification (Davies 1995; Crawford et al. 2002).  Oxidized DNA also may lead to 

cell death by changing protein expression.  

Several biomarkers of DNA damage have been quantified, including 8-hydroxy-

2’-deoxyguanosine (8-OHdG), the most useful of several damaged bases (Mecocci et al. 

1993; Mecocci et al. 1994; Gabbita et al. 1998; Lovell et al. 1999a).  Previous studies 

show that there is more 8-OHdG in mtDNA than in nuclear DNA and there is a 

significant increase in aged subjects compared to younger subjects.   

The first step in DNA oxidation is to add hydroxyl radical to the double bond of 

bases.  The addition of .OH to the C5-C6 double bond of pyrimidine results in C5-OH or 

C6-OH adducts (Steenken 1989b, c).  The products following these two adducts depend 

on the absence or presence of oxygen.  For purines, the hydroxyl radical is added to C4, 

C5, or C8 to form the purine-OH radicals.  Among them, C8 is the most probable 

addition position.  For guanine-C4 adducts, the elimination of a hydroxyl group leads to 

the guanine radical cation, which can react with 2’-deoxyribose in DNA causing DNA 

strand breaks (Steenken 1989c).  The guanine-C8 adducts can produce 8-hydoxyguanine 

with one electron oxidation and produce 2, 6-diamino-4-hydoxy-5-formamidopyrimidine 

(fapyguanine) with one electron reduction following the ring opening (Steenken 1989c; 

Dizdaroglu et al. 2002) (Figure 1-6).  There are more than 20 damaged bases already 

described (Cooke et al. 2003). 8-hydroxyguanine has ~1% chance to mispair with 

adenine resulting in G→T substitution (Cheng et al. 1992).  Previous studies show 

increased levels of some oxidized bases in certain AD brain regions (Lyras et al. 1997; 
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Gabbita et al. 1998).  In our study, we are interested in the following six oxidized DNA 

bases because they show higher levels compared to other DNA adducts.  They are  

8-hydroxyguanine, fapyguanine, 8-hydroxyadenine, 4,6-diamino-5-formamidopyrimidine 

(fapyadenine), 5-hydroxycytosine, and 5-hydroxyuracil (Figure 1-5).  The detailed 

mechanism of the production of these six oxidized bases is shown in Figure 1-6. 

 

1.5 Methods to quantify DNA oxidation 

 

1.5.1 Commonly used methods to detect DNA adducts 

Oxidized DNA bases can be measured by various analytical methods.  The two 

most commonly used methods are high-performance liquid chromatography with 

electrochemical detection (HPLC/ECD), and gas chromatography / mass spectrometry 

with selective ion monitoring (GC/MS-SIM) (Dizdaroglu et al. 2002).  In HPLC/ECD, 

DNA is enzymically digested into 2’-deoxyribonucleosides before HPLC analysis, while  

for GC/MS-SIM, acidic hydrolysis is carried out to yield intact and damaged bases that 

are further derivatized (Herbert et al. 1996; Collins et al. 1997).  Artifactual oxidation of 

DNA bases could be induced during derivatization for GC/MS.  Unlike acidic hydrolysis, 

enzymic hydrolysis only cleaves the damaged nucleosides from DNA backbone.  

Enzymic hydrolysis method does not induce artifact in the analysis (Dizdaroglu 1998).  

However, HPLC/ECD can not provide spectroscopic support for structural identification 

of adducts.  Studies also show that acid hydrolysis does not cause any artifacts once the 

DNA sample is processed under proper experimental conditions (Dizdaroglu 1998).  

Because enzymes are significantly more costly than formic acid and take a longer time, 

acid hydrolysis can replace enzymic digestion. 

Liquid chromatography / mass spectrometry (LC/MS) and liquid chromatography 

/tandem mass spectrometry (LC/MS/MS) are also used to quantify DNA adducts 

(Serrano et al. 1996; Ravanat et al. 1998; Jaruga et al. 2002; Liu et al. 2005; Van den 

Driessche et al. 2005).  However, LC/MS and LC/MS/MS are less sensitive compared to 

GC/MS-SIM (Dizdaroglu et al. 2002; Jaruga et al. 2002).  The sensitivity of GC/MS-SIM 

is 1-2 fmol for 8-hydroxyguanosine, whereas the sensitivity of LC/MS is ~30 fmol and 

LC/MS/MS is 10-20 fmol (Dizdaroglu et al. 2001; Jaruga et al. 2002).  Because of the 
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Figure 1-5. Structures of oxidized DNA bases in our study  
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Figure 1-6. Formation of oxidized bases from guanine, adenine, and cytosine 
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high sensitivity of GC/MS-SIM, this method needs less DNA for analysis.  GC/MS-SIM 

can provide accurate quantification and identification with high selectivity and sensitivity.  

Using GC/MS, hydrolysates after formic acid are derivatized with silylating reagents 

containing trimethylsilyl (TMS) groups, such as N,O-Bis(trimethylsilyl)acetamide  (BSA) 

and N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA).  During derivatization, TMS 

groups will replace the H- in OH, NH, and SH groups.  The derivatives are generally less 

polar, more volatile, and more thermally stable (Halliwell and Dizdaroglu 1992).  In 

selective ion monitoring mode, GC/MS can analyze a wide range of bases in a single run 

with high sensitivity and selectivity of detection (Halliwell and Dizdaroglu 1992; 

Dizdaroglu et al. 2002).  Stable isotope-labeled internal standards with the exact same 

chemical and physical properties as analytes are used for quantification of the damaged 

bases based on the ratio of the peak areas of base adducts versus internal standards.    

 

1.5.2 Principles of GC/MS 

 GC/MS is one of the most commonly used techniques to analyze volatile organic 

chemicals.  GC/MS is composed of a component for chemical mixture separation (gas 

chromatograph), a sensitive and qualitative detector (mass spectrometer), and a data 

collection system (Figure 1-7) (Santos and Galceran 2003).  The carrier gas, such as 

nitrogen, helium, or hydrogen, must be chemically inert to analytes (Parcher 1983; 

Blumberg 1997).  The choice of carrier gas depends on the detector and analytes.  In 

order to shorten analysis time, hydrogen or helium is usually used because of their low 

viscosity.  The carrier gas must be highly pure in order to reduce deterioration of the 

stationary phase and to limit potential contamination.  A constant flow of carrier gas is 

always desirable to get a constant retention time.  

For optimum efficiency and high resolution, a microsyringe is commonly used to 

inject microliter samples through a rubber septum into a heated chamber with a higher 

temperature by 20°C to 40°C than column.  Once the sample is introduced, it is vaporized 

rapidly and swept into the column by the carrier gas (Schomburg et al. 1981; Lieshout et 

al. 1998).  For capillary GC, split or splitless injections are used.  In the split mode, most 

of the sample exits with most of the sample lost through the split cutlet.  Split ratios vary 

from 10:1 to 500:1 (Bayer 1986).  Because most of the sample in the split injection mode 
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is wasted, it is generally not suitable for ultra-trace analysis.  In the splitless mode, the 

residence time of sample in the injection port is longer because of the relatively larger 

sample volume and the lower velocity of carrier gas compared to split injection 

(Schomburg et al. 1981; Matovská and Lehotay 2003).   

Packed or capillary (open tubular) columns are usually used, while capillary 

columns are more efficient (Grob 1982; Gübitz and Schmid 2000).  Column tubing must 

be chemically inert and thermally stable.  Fused silica open tubular column is a new type 

of wall coated capillary column with much thinner walls than the other glass capillary 

columns, and provides high sensitivity and reproducibility.  The polyimide coating makes 

the fused silica columns flexible and inert.  However, micro cracks might occur in the 

fused silica because of the differences in thermal expansion of silica and aluminum 

coating  (Michalske and Freiman 1982).  Usually, efficiency increases but sample 

capacity decreases as the internal diameter or film thickness decreases.  Column length is 

another factor that affects resolution.  Longer columns improve resolution but increase 

analysis time (Ettre and March 1974; Matovská and Lehotay 2003).   

Temperature control on columns is very important for good reproducibility.  

Retention time increases as column temperature decreases.  In order to get good 

separation, a temperature slightly above the boiling points of analytes is used for analysis.  

For the samples with a wide range of boiling points, a temperature program is usually 

used to avoid poor resolution or long analysis time caused by isothermal analysis 

(Lieshout et al. 1998).   

 GC detectors are classified into two categories.  One is concentration-sensitive 

and independent of mass flow of analytes, such as thermal conductivity detectors (TCD) 

and electron capture detectors (ECD).  The other type is a mass-sensitive detector, such 

as MS and flame ionization detector (FID) (Halász 1964). Once separated analytes flow 

through the interface between the GC and the MS, they enter the ionization chamber of 

MS.  The interface is maintained at high vacuum (< 10-2 Pa) so that no molecular 

reactions occur.  In the MS, electron impact or chemical ionization is used for ion 

production.    Molecular ions (M+) are separated based on different mass/charge ratios by 

mass analyzer, such as quadrupole analyzer, ion trap， etc.  Because of the high 

sensitivity, a quadrupole analyzer is generally used in GC/MS.  The peaks are recorded   
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Figure 1-7. Diagram of gas chromatography – mass spectrometry 
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by a detector and a computer processes the data and converts the electrical signal into a 

spectrum.  The mass spectrum indicates the peaks of molecular ion and other fragments, 

and the abundances of these ions (Matovská and Lehotay 2003).   

Mass spectrometers may be operated in various scanning modes, including full scan 

and selected ion monitoring (SIM).  Analysis in the full scan mode monitors all ions over 

the full cycle.  However, sometimes, only a few selected ions are of interest in an analysis.  

SIM is used in this case with a higher sensitivity compared to full scan mode, because the 

selected ions are monitored for a greater portion of the scan time.  Detection limits 

decrease as the number of ions increases (Vékey 2001). 

 

1.6 Proteomics 

 

1.6.1  Background of proteomics 

The proteome, the basic sum of “protein” and “genome”, is used to describe the 

entire complement of proteins in a biological system (Wasinger et al. 1995).  Proteomics 

is the field involved with the characterization, quantification, and identification of global 

proteins in cells, tissue, or organism (Wasinger et al. 1995; Anderson and Anderson 1996; 

Wilkins et al. 1996; Peng and Gygi 2001; Pedersen et al. 2003).  Proteomics was 

introduced in the 1970s with two dimensional (2D) electrophoresis (O'Farrell 1975; 

Scheele 1975).  Although many proteins were separated at that time, they could not be 

fully identified because of the limited sequencing techniques.  Edman degradation, a 

method of sequencing amino acids in a small peptide for identification of protein, was a 

big breakthrough in protein sequencing (Edman 1949).  The first protein mapping 

database was established in 1987 with the methods of 2D electrophoresis and Edman 

degradation (Celis et al. 1987).  However, Edman degradation is low-throughout process 

and can not sequence peptides over 50-60 residues.  One milestone in proteomics was the 

introduction of mass spectrometry into the analysis of biological molecules, which 

provides an accurate, sensitive, and high throughput method for protein identification 

(Andersen and Mann 2000; Pandey and Mann 2000). 

 

 

 19



1.6.2  Synthesis of mitochondrial proteins 

The human mitochondrial genome is much smaller (16.6 kbp) than the nuclear 

genome (3.3 billion bp).  mtDNA encode 13 subunits of complexes involved in oxidative 

phosphorylation (Wallace 1999) and the necessary RNA machinery (2 rRNAs and 22 

tRNAs) (Taylor and Turnbull 2005).  The remaining mitochondrial proteins are encoded 

by nuclear DNA, synthesized at cytoplasmic ribosomes, and transported into the 

mitochondrial matrix (Figure 1-8).  Mitochondrial protein precursors with an N- terminal 

extension as a targeting signal are recognized by a receptor on the mitochondrial surface. 

The cleavable signal normally consists of a ~20-60 amino acids residue and an 

intramitochondrial sorting signal (von Heijne et al. 1989). These precursor proteins are 

transported by Translocase complexes in the Outer and Inner Membrane (TOM and TIM) 

(Pfanner et al. 1996).  Electrochemical potential and ATP hydrolysis are required during 

the translocation through membranes (Schleyer et al. 1982; Horst et al. 1997).  Then the 

presequence signal is cleaved off by mitochondrial processing peptidase (MPP) localized 

in matrix (Schatz 1996; Gakh et al. 2002).  This non-native protein is refolded in the 

matrix and becomes functional in mitochondrial matrix.  Unlike proteins in matrix, most 

outer membrane proteins and carriers proteins on inner membrane do not have a 

cleavable signal. 

 

1.6.3  Protein separation and isolation 

The most efficient way to separate a protein mixture is polyacrylamide gel 

electrophoresis.  In one dimensional electrophoresis, protein mixtures are separated based 

on molecular weight after denaturation in sodium dodecyl sulfate (SDS).  SDS makes 

proteins negatively charged and run in the electric field in a polyacrylamide gel (Laemmli 

1970).   

For a whole cell lysate or a very complex protein mixture, 2D electrophoresis is 

generally used for separation (Figure 1-9).  The gel separates proteins based on different 

isoelectric points (PI) in the first dimension and molecular weight in the second 

dimension.  One single gel can separate complex mixtures of thousands of proteins.  One 

application of 2D electrophoresis is to map proteins from cells or tissues and compare the 

protein expression between experimental groups.   
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Figure 1-8. Diagram of formation of mitochondrial protein 
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Several techniques have been developed to resolve the problem of reproductivity 

in 2D electrophoresis over the years (Anderson and Anderson 1996; Celis and Gromov 

1999).  The introduction of immobilized pH gradient (IPG) strips to replace tube gels was 

one of the biggest improvements which increased reproducibility between samples 

(Bjellqvist et al. 1993; Gorg et al. 2000).  In isoelectric focusing (IEF), a high voltage is 

applied to the ends of strips consisting of polymerized acrylamide gel on a plastic base. 

After the IEF is complete, the strip is equilibrated with thiol reductant and denaturing 

reagents and applied to the second dimensional SDS polyacrylamide gel electrophoresis 

(SDS-PAGE).  The other exciting improvement is termed differential gel electrophoresis, 

which uses different fluorescent dyes to tag different protein samples.  Those two 

samples are run on the same gel and create two images using different fluorescent 

wavelengths (Unlu et al. 1997). 

After isoelectric focusing and SDS-PAGE, a protein spot map is visualized with a 

proper staining method.  Most often, each spot represents a unique protein.  The spots of 

interest are cut out followed by trypsin in-gel digestion.  The peptide digest is analyzed 

using mass spectrometry.  The experimental mass spectrum is input into a database 

containing theoretical protein sequences.  Based on the peptide mass fingerprints specific 

to one protein, the protein is identified (Henzel et al. 1993; Borodovsky et al. 2002; 

Butterfield et al. 2003; Butterfield and Castegna 2003; Weiler et al. 2003).   

To visualize and quantify protein spots, chemical staining such as Coomassie blue 

G-250/R-250, SYPRO Ruby, fluorescence, and silver are generally used on 2D gels 

(Urwin and Jackson 1993; Matsui et al. 1999; Berggren et al. 2000).  The problem is that 

low level proteins cannot be detected using this method.  Antibody-based detection 

methods are more specific and more sensitive than the usual chemical stains, although 

quantification is more difficult because of a limited dynamic range (Jarvik and Telmer 

1998). 

Although a lot of effort has been devoted to resolve the problems in 2D 

electrophoresis, it is still a labor and time consuming process.  Also, membrane proteins 

are difficult to detect because of low solubility. 
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Figure 1-9. Diagram of proteomics with 2-dimensional gel electrophoresis and protein 

identification based on peptide mass fingerprint 
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1.6.4 Protein identification and quantification 

Two major methods for protein identification are Edman degradation and mass 

spectrometry.  Edman degradation was developed by Pehr Edman for identification of 

proteins and was a major breakthrough in protein sequencing (Edman 1949).  The N-

terminal amino acids are cleaved off the peptide without breaking other peptide bonds.  

The cleaved amino acids are identified through formation of phenylthiohydantoin – 

amino acid derivatives followed by chromatography or electrophoresis.  The procedure is 

repeated to identify the next amino acid.  Peptides longer than 50 – 70 amino acids can 

not be analyzed reliably by Edman degradation.  Long peptides need to be broken up into 

small peptides and be sequenced individually (Aebersold et al. 1988; Alms et al. 1999).   

One of the big limitations of Edman degradation is that it does not work if the N-terminal 

amino acid is chemically modified or concealed in the body of protein.   

Mass spectrometry has been widely used in recent years for rapid protein 

identification.  In proteomics, the protein is introduced into the MS in the form of 

peptides after protease digestion.  Electrospray ionization (ESI) and matrix-assisted laser 

desorption/ionization (MALDI) are two most commonly used methods to ionize peptides.  

In ESI, fine liquid charged droplets are generated after the liquid sample flows through a 

microcapillary column into an electronic field (Wilm and Mann 1996; Wilm 2000).  As 

the solvent evaporates, the charged droplet is broken into tiny droplets as the charge 

reaches a critical point.  ESI is a kind of soft ionization method because it does not break 

the molecules (Fenn et al. 1989).  Nanospray ionization was introduced to analyze low 

abundance proteins at the femtomole level (Wilm et al. 1996; McCormack et al. 1997).  

Liquid chromatography (LC) has been used to as an automatic sample introduction 

method recently to replace manual loading methods (McCormack et al. 1997).  

 MALDI is a laser-based soft ionization method to promote the formation of 

molecular ions (Karas and Hillenkamp 1988).  The analytes are spotted on metal plates 

with matrix, usually an aromatic acid with chromophore which strongly absorbs laser 

energy, such as α-cyano-4-hydroxycinnamic acid.  The selection of matrix is very 

important for generation of a good mass spectrum.  Matrix materials must be chemically 

inert, stable in high vacuum condition, and easy to evaporate.  As the solvent evaporates, 

a crystal spot is formed.  However, it can not used to analyze peptides bigger than 10 
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KDa.  Koichi Tanaka developed MALDI to be used in the whole range of biological 

macromolecules in 1988, which allowed him to share the 2002 Noble prize for chemistry 

with John Fenn.   

 Once the peptides ions are generated, they are analyzed based on different 

mass/charge ratios (m/z).  The most commonly used mass analyzers are quadrupole, time 

of flight (TOF), and ion trap mass analyzers.  The quadrupole is composed of four 

parallel metal rods.  On one pair, a direct current voltage is applied, while a radio 

frequency voltage is applied to the other pair.  Based on the ratio of given voltages, only 

ions with a select range of m/z pass through the rods and reach the detector (Miller and 

Denton 1986; Burlingame et al. 1998).  A series of triple quadrupoles can be used in 

analysis, in which the first and third quadrupoles work as mass filter, and the second one 

works as a collision cell.   

Another commonly used analyzer is TOF, which measures ions based on the time 

taken to reach detectors through a flight tube.  After the ions are accelerated by an 

electrical field, they have the same kinetic energy (KE):  
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Where m is the mass of the ion; z is the charge; V is the acceleration voltage; d is 

the length of the flight tube & t is the flight time.  The velocity of ions depends on their 

mass/charge ratio.  They will fly through the tube at different speeds because they have 

the same kinetic energy and same charge (Yates 1998).  Reflective TOF has an ion mirror 

which can reflect ions back to reach a detector.  It increases the resolution through 

increasing flight length of ions.   

Ion trap analyzer has three electrodes, a ring electrode and two hemispherical 

electrodes located on two sides.  It selectively ejects trapped ions through changing 

voltages on electrodes (Cooks et al. 1991; Yates 1998).  
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1.6.5 Database searching 

Once mass spectra are generated, database search engines, such as Mascot, 

provide a speedy way to identify proteins, using the peptide mass fingerprint (PMF) to 

identify proteins from primary sequence database (James et al. 1993; Yates et al. 1993; 

Perkins et al. 1999).  In PMF, the experimental masses of peptides obtained from 

proteolytic enzyme digestion are input into the database and are compared with 

theoretical masses of peptides.  Based on the overlap of experimental and calculated 

masses, a Mowse score is used to describe the match.  Rather than the number of the 

matched peptides, Mowse scores count the match on a probability-based scoring (-

10*log10P) (Pappin et al. 1993).  However, in PMF, it is hard to identify big genomes 

because of the peptide mass redundancy.  Posttranslational modification of proteins 

causes another problem in PMF identification, which results in no match in the calculated 

database.  Because of the complexity of peptides, this method cannot be used in the 

identification of protein mixtures (Clauser et al. 1999).   

There are several database search methods available for identification of protein 

mixtures, such as amino acid sequence database searching (Mann and Wilm 1994; Wilm 

et al. 1996), De novo peptide sequence information (Mackey et al. 2002), and 

uninterpreted MS/MS data searching (Yates et al. 1995; Perkins et al. 1999).  Amino acid 

sequence searching is more specific than PMF.  In this method, a partial amino acid 

sequence is determined by MS/MS spectra.  Combined with the mass of parent peptide 

and masses of the peptides on each end, the unknown peptide is matched with the 

theoretical peptide sequence in the database (Mann and Wilm 1994; Wilm et al. 1996).  

De novo peptide sequence databases can provide both sequence information of DNA and 

protein.  It can be used in the organisms that have no well-annotated databases (Mackey 

et al. 2002).  The most commonly used method to interpret MS/MS spectra is 

uninterpreted MS/MS data searching, such as Mascot, or SEQUEST (Yates et al. 1995; 

Perkins et al. 1999).  Although several improvements have been made in proteomics, 

especially in protein mixture identification, it is still a big challenge to identify the low-

abundance proteins and highly modified proteins. 
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1.7 Statements of research projects 

 

1.7.1 Increased oxidative damage in nuclear and mitochondrial DNA in 

Alzheimer’s disease 

As mentioned above, oxidative stress plays an important role in the development 

of AD.  ROS can attack DNA bases, leading to more than 20 oxidized base adducts.  As a 

consequence of oxidation, DNA may have strand breaks, DNA-DNA and DNA-protein 

crosslinking, and base modification.  Several biomarkers of DNA damage have been 

quantified, including 8-hydroxy-2’-deoxyguanosine (8-OHdG), the most studied 

biomarker in DNA oxidation.  In 1993, Mecocci et al. reported an age-depended increase 

of the levels of 8-OHdG in both nDNA and mtDNA in human brain.  Subsequently, she 

observed increased levels of 8-OHdG in brain tissue of AD compared to normal aged 

subjects (Mecocci et al. 1994).  In 1998, Gabbita et al. reported increased levels of 

multiple oxidized DNA bases in nDNA in AD subjects.  

We hypothesized that oxidative damage to DNA, especially mtDNA, may play an 

important role in the pathogenesis of Alzheimer’s disease. 

To carry out this study, brain specimens from eight late-stage AD (LAD) (four 

females, four males) and eight age-matched control subjects (four females, four males) 

were used for the analysis of oxidative damage to DNA.  Four brain regions (frontal lobe, 

parietal lobe, temporal lob, and cerebellum) were used.  Among them, cerebellum was 

used as a control region compared to the other three neocortical regions.  

 

1.7.2 Increased oxidative damage in nuclear and mitochondrial DNA in Mild 

Cognitive Impairment 

Recent emphasis in adult dementing disorders is on early detection with the hope 

of early treatment to slow disease progression.  Mild Cognitive Impairment (MCI) is 

generally considered to be the transitional zone between normal aging and early 

dementing disorders.  In general, most MCI subjects eventually convert to AD or other 

dementias with ~15% of MCI subjects converting to AD per year.   Several gene 

mutations associated with AD have been observed in subjects with MCI including 

mutations in apolipoprotein E, presenilin 1, and the amyloid precursor protein.  Several 
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studies of MCI show elevated levels of tau, Aβ, and isoprostanes in ventricular CSF, and 

more recently significant elevations of DNA damage in peripheral leukocytes of MCI and 

AD (Migliore et al. 2005). 

As we saw elevated DNA oxidation in AD brain in our previous study, this study 

tried to address when the oxidation begins in AD progression. Although increased DNA 

oxidation is observed in the AD brain, it is unclear when the oxidative damage begins. To 

determine if DNA oxidation occurs in the brain of subjects with MCI, we quantified 

multiple oxidized bases in nuclear and mitochondrial DNA isolated from frontal, parietal 

and temporal lobes and cerebellum of short post-mortem interval autopsies of eight 

patients with amnestic MCI and six age-matched control subjects.   

 

1.7.3 Increased oxidative damage in nuclear DNA in APP/PS1 transgenic mice  

The amyloid cascade hypothesis suggests that Aβ processing and aggregation 

may contribute to the pathogenesis of sporadic AD.  APP is cleaved by β- and γ-

secretases to produce Aβ mainly containing Aβ40 and Aβ42.  The possible reason why 

Aβ is toxic is that it may lead to the production of free radicals that result in the oxidation 

of proteins, lipids, and DNA.   More than 50 mutations have been identified in PS1, much 

more than those of in PS2.  Studies show increased Aβ42 production in PS1 transgenic 

mouse (Duff et al. 1996). 

APP transgenic mice show senile plaques in neocortex and hippocampus by 12 

month of age.  In the mouse model coexpressing APP and PS1, the deposition of senile 

plaques get accelerated at early ages (Holcomb et al. 1998; Wengenack et al. 2000).  

The present study was carried out to measure levels of oxidized nDNA bases in 

the brain of APP/PS1 transgenic mice using GC/MS-SIM and stable isotope labeled 

internal standards, and to study the relation of Aβ deposition and DNA oxidation.  The 

bases quantified were 8-hydroxyadenine and 8-hydroxyguanine, the most studied 

biomarkers of DNA damage. 

 

1.7.4 Proteomic Studies of Mitochondria in Alzheimer’s Disease 

Mitochondria are the major source of free radicals in cells and their DNA and 

proteins may be more easily oxidized than in the nucleus.  Our previous studies show 
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increased nuclear and mitochondrial DNA damage in LAD and MCI brain.  The DNA 

damage may lead to the altered protein expression in cells.  Numerous studies also 

showed protein changes in cultured neuron cells and AD brain (Butterfield and Castegna 

2003; Choi et al. 2004; Lovell et al. 2005).  Protein oxidation may affect neuron function 

through damaging enzymes that are critical to neuron metabolism. 

Proteomics provides an ideal way to study the mitochondrial proteome in AD 

brain.  Two-dimensional gel electrophoresis has the ability to resolve complex mixtures 

of thousands of proteins in one gel.  

Based on our results and previous studies of AD, we hypothesized that DNA 

damage may alter protein expression in AD brain, especially in mitochondria.  In this 

study, we used proteomics to characterize protein changes in mitochondria in the brain of 

five LAD and four age-matched control subjects. 
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CHAPTER TWO 

Materials and Methods 

 

2.1 Reagents 

N, O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) and anhydrous pyridine were 

from Aldrich Chemical (Milwaukee, WI, USA). Molecular biology grade phenol, 

chloroform, isoamyl alcohol, proteinase K, sucrose, acetonitrile and other standard 

chemicals for preparation of buffers were obtained from Sigma (St. Louis, MO, USA).  

Stable labeled oxidized base analogues were from Cambridge Isotope 

Laboratories (Andover, MA, USA). These included 8-[8-13C, 7, 9-15N2] hydroxyguanine, 

8-[8-13C, 6, 9-diamino-15N2] hydroxyadenine, 5-[2-13C, 1, 3-15N2] hydroxycytosine, 5-

[13C4, 15N2] hydroxyuracil, [formyl-13C, diamino-15N2] fapyadenine, and [formyl-13C, 

diamino-15N2] fapyguanine.  

The oct-1 antibody was from Santa Cruz Biotechnology (Santa Cruz, CA, USA) 

and the porin antibody was from Oncogene (San Diego, CA, USA).   

The DNA Extractor WB and mtDNA Extractor CT kits were from Wako 

Chemicals USA, Inc. (Richmond, VA, USA). 

IPG strips, Coomassie Blue G-250, Sypro ruby and the 2D starter kit were 

purchased from Bio-Rad Laboratories (Hercules, CA, USA).  Percoll for gradient 

centrifugation was from Amersham Biosciences (Piscataway, NJ, USA). The density 

marker beads were from Amersham Pharmacia Biotech AB (Uppsala, Sweden). 

 

2.2 Methods 

 

2.2.1 Brain specimen sampling 

Due to the low yield of mtDNA from brain samples, large (15–20 g) specimens of 

frontal, temporal and parietal lobe and cerebellum were removed at autopsy, immediately 

placed in liquid nitrogen and stored at −80°C until used for analysis. Although the 

specimens were primarily composed of cerebral cortex and cerebellar cortex, some gyral 

and subcortical white matter or folial white matter was present.  
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All LAD patients were followed longitudinally at the University of Kentucky 

Alzheimer's Disease Center (UK-ADC) Clinic.  All AD subjects met standard clinical 

diagnostic criteria for probable AD (McKhann et al. 1984) and met accepted 

neuropathologic criteria for the diagnosis of AD (Mirra et al. 1991, Gearing et al. 1995, 

Anon 1997). 

All MCI patients were followed longitudinally at the UK-ADC Clinic and were 

initially normal on enrollment but developed MCI during follow-up. The clinical criteria 

for amnestic MCI were those described by Petersen et al. (1999) and include: (i) memory 

complaints; (ii) expected memory impairment for age and education; (iii) normal general 

cognitive function; (iv) intact activities of daily living and (v) the subject does not meet 

criteria for dementia. Objective memory test impairment was based on a score ≤ 1 SD 

from the mean of controls on the CERAD Word List Learning Task (Morris et al. 1989) 

and corroborated in many cases with the Free and Cued Selective Reminding Test. 

Patients with MCI showed a significant increase in neuritic plaques in neocortical regions 

and a significant increase in neurofibrillary tangles in entorhinal cortex, hippocampus and 

amygdala (Markesbery et al. 2006).  

All control subjects were followed longitudinally in the UK-ADC Clinic and had 

neuropsychological testing annually which remained in the normal range. Exclusionary 

criteria included strokes, hemorrhages, history of hypoxia or hypoxic changes, systemic 

disorders affecting the CNS and psychiatric or other neurological disorders. The most 

frequent causes of death were myocardial infarcts, pneumonia, pulmonary emboli, cancer 

(none of the patients had cerebral metastases) and congestive heart failure.  

All patients had extensive neuropathological evaluation of multiple neocortical, 

ventromedial temporal lobe, basal ganglia, brainstem and cerebellum sections using the 

modified Bielschowsky stain, hemotoxylin-eosin and 10D-5 and alpha synuclein 

immunostains. Braak staging (Braak and Braak 1991) was determined using the Gallyas 

stain on sections of entorhinal cortex, hippocampus and amygdala and the Bielschowsky 

stain on neocortex.  

None of the subjects demonstrated significant Lewy body pathology. 
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2.2.2 Isolation of nuclear DNA 

Brain specimens from eight LAD (four females and four males) and eight age-

matched control (four females and four males) subjects were used for the analysis of 

oxidative damage to DNA in the LAD study.  

To examine oxidative DNA damage in MCI, brain specimens from eight MCI 

(four females and four males) and six age-matched control (two females and four males) 

subjects were used for DNA isolation.  

To examine the effects of amyloid deposition on DNA oxidation, brain specimens 

from APP/PS1 mice and wild type were used for the analysis of oxidative damage to 

DNA.  Four groups of different ages (3m, 6m, 9m, 12m) were used with 8 to 10 mice in 

each group.   

A modified procedure of Mecocci et al. (1993) was used to isolate DNA. Briefly, 

brain specimens were homogenized on ice using a motor-driven Teflon-coated dounce 

homogenizer in MSB-Ca2+ buffer (0.21 M mannitol, 0.07 M sucrose, 0.05 M Tris-HCl, 

3 mM CaCl2, pH 7.5). Disodium EDTA was added to the homogenate with final 

concentration at 0.01 M, followed by centrifugation at 1,500 x g at 4°C for 20 min. The 

pellet was resuspended in MSB-Ca2+ buffer and centrifuged again. The combined 

supernatant was kept for isolation of mtDNA and the resulting nuclear pellet was 

suspended in digestion buffer (0.5% sodium dodecyl sulfate, 0.05 M Tris-HCl, 0.1 M 

Na2EDTA) and incubated with 400 µg/mL proteinase K in a 55°C water-bath overnight. 

Then, 160 µL of 5 M NaCl per 10 mL solution was added, followed by extraction three 

times with buffer-saturated phenol containing 5.5 mM 8-hydroxyquinoline and three 

times with chloroform/isoamyl alcohol (24 : 1). 8-hydroxyquinoline was used to limit 

artifactual DNA oxidation. For the resulting clear solution, 800 µL 5 M NaCl per 10 mL 

and an equal volume of chilled absolute ethanol were added to precipitate DNA. After 

centrifugation, the DNA pellet was washed three times with 60% ethanol and air-dried. 

The pellet was dissolved in autoclaved water and a Genesys 10UV spectrometer 

(Rochester, NY, USA) used to measure concentration and purity of DNA samples at 260 

and 280 nm.  The ratio of A260/A280 was used to verify DNA purity. 
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Due to the large sample size, DNA isolated in theses studies is probably from a 

mixture of glia and neurons and represents a global measure of DNA oxidation. The 

DNA was stored at −80°C until used for GC/MS-SIM analyses. 

 

2.2.3 Isolation of mitochondria 

The combined supernatant from above was centrifuged at 20,000 x g for 20 min. 

The pelleted crude mitochondrial fraction was washed with MSB-Ca2+ buffer once.  This 

raw pellet still contained contaminants, including cytosolic proteins.  

To further purify the mitochondria, it was resuspended in 2 mL MSB-Ca2+, loaded 

onto the percoll/MSB-Ca2+ buffer (1 : 1), and centrifuged at 50,000 x g for 1 h.  Several 

bands were observed after centrifugation and the light brown band (1.035 g/ml) was 

separated.  This fraction was primarily composed of intact mitochondria.  

The pelleted mitochondria were resuspended and centrifuged a second time 

through a percoll gradient leading to highly purified intact mitochondria.  The 

mitochondria were centrifuged and washed three times with MSB-Ca2+ buffer.  The 

resulting pellet was used for isolation of mtDNA or protein. 

To verify the purity of mitochondria, representative samples were fixed with 2.5% 

glutaraldehyde, post fixed in 1% osmium tetroxide, dehydrated through graded ascending 

alcohols and propylene oxide, and embedded in Spurr's low viscosity embedding media. 

Sections were cut and analyzed by electron microscopy (EM) by the UK Electron 

Microscopy Facility. 

 

2.2.4 Isolation of mitochondrial DNA 

For DNA isolation, the mitochondrial pellet from above was lysed by addition of 

2% sodium dodecyl sulfate solution and 400 µg/mL proteinase K for 4 hr in a 37°C water 

bath. After addition of 160 µL 5 m NaCl per 10 mL, the solution was extracted three 

times with buffer-saturated phenol (5.5 mm 8-hydroxyquinoline) and chloroform/isoamyl 

alcohol (24 : 1) as described above.  mtDNA was precipitated with 800 µL 3m sodium 

acetate and two volumes of absolute ethanol at −20°C overnight.  mtDNA was pelleted at 

14,000 x g for 20 min, washed with 60% alcohol, dried, then resuspended in 200 µL 
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autoclaved water.  The concentration was calculated based on the absorbance at 260 nm 

measured by UV-Vis spectrometry. 

 

2.2.5 Western blot analysis 

To verify the purity of nuclear and mitochondrial fractions, nuclear and 

mitochondrial proteins from representative AD and control subjects were dissolved in 

distilled water. Protein concentrations were determined using the Pierce BCA method. 

Protein (50 µg) was separated on a 4–20% sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis gradient gel and was transferred to nitrocellulose. The blot was blocked in 

5% milk in 0.5% Tween-20/Tris-buffered saline (TTBS) overnight at 4°C. Primary 

antibodies (rabbit anti-porin [1 : 1000] and rabbit anti-oct-1 [1 : 500]) were added and 

blots were incubated for 3 hr at room temperature. The blots were washed three times for 

10 min each with TTBS and incubated in horseradish peroxidase conjugated secondary 

antibody for 1 h.  The blots were rinsed three times with TTBS and the bands visualized 

using enhanced chemiluminescence per manufacturer's instructions (Amersham 

Pharmacia Biotech, Piscataway, NJ, USA). 

 

2.2.6 Polymerase chain reaction amplification of mitochondrial DNA and neural 

DNA 

To further verify that mtDNA was not contaminated by nDNA, PCR was 

performed with 500 ng mtDNA and nDNA using primers for APOE, a nuclear-coded 

protein. PCR reaction mixtures of 50 µL contained 1 × PCR buffer, 250 µm dNTPs, 

0.625 U Taq polymerase, 1.5 mm MgCl2, and 500 ng DNA. Primer sequence were as 

described by Tsukamoto et al. (1993); and were 5'-GGCGCTCGCGGATGGCGCTGAG-

3'(sense primer) and 5'-GCACGGCTGTCCAAGGAGCTGCAGGC-3' (reverse primer) 

(Integrated Device Technology, Santa Clara, CA, USA) PCR products were separated on 

a 2% low-melt agarose gel containing ethidium bromide as previously described (Addya 

et al. 1997).   

PCR amplification showed no cross-contamination between nDNA and mtDNA 

(Wang et al. 2005). 
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2.2.7 Isolation of nuclear DNA and mitochondrial DNA using NaI method 

To ensure that phenol extraction did not lead to artifactual DNA oxidation, nDNA 

and mtDNA were isolated from four representative frontal lobe specimens using DNA 

Extractor WB and mtDNA Extractor CT kits (Wako Chemicals USA, Inc.) following the 

manufacturer's instructions. To isolate nDNA, tissue specimens were homogenized in the 

lysis buffer provided in the DNA Extractor WB kit. The homogenate was centrifuged at 

1,500 x g and 4°C for 15 min and the pellet resuspended in enzyme reaction solution. 

Proteinase K was added to a final concentration of 10 µg/mL and the solution was 

incubated in a 55°C water-bath overnight. RNase was added to the solution at a final 

concentration of 20 µg/mL and incubated for an additional 10 min. The supernatant was 

collected after centrifugation at 10,000 x g and 25°C for 2 min. nDNA was precipitated 

by the addition of 0.6 mL NaI solution from the kit and an equal volume of 100% 

isopropanol.  

For mtDNA isolation tissue specimens were homogenized in ice-cold 

homogenization buffer provided in the mtDNA Extractor CT kit. The homogenate was 

centrifuged at 1,500 x g and 4°C for 15 min. The supernatant was collected and 

centrifuged at 20,000 g at 4°C for 20 min and solutions I, II and III from the kit were 

added to the pellet as in the manufacturer's instructions. mtDNA was precipitated by the 

addition of 0.3 mL NaI and an equal volume of 100% isopropanol. DNA concentrations 

were measured by the absorbance at 260 nm. 

 

2.2.8 Sample preparation for gas chromatography/mass spectrometry 

nDNA (200 µg) and mtDNA (20 µg) were used for analysis by GC/MS-SIM. 

Individual bases were prepared by acid hydrolysis and derivatization with BSTFA. The 

DNA samples were added to 5-mL conical glass tubes with a Teflon disc screw cap. 

Isotope-labeled internal standards were added for quantification of oxidized bases. Two 

hundred and fifty microliters of 90% formic acid was used to hydrolyze DNA at 145°C 

for 30 min in evacuated tubes.  Acid hydrolysis releases intact and modified bases by 

cleaving the bonds between bases and sugar moieties. After hydrolysis, the samples were 

lyophilized and derivatized with a mixture of BSTFA/pyridine (1 : 1) at room 

temperature for 2 h in evacuated tubes.  
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The derivatized products were lyophilized again and dissolved in 20 µL BSTFA 

immediately before analysis and 2 µL injected into the GC/MS-SIM for analysis. 

 

2.2.9 Gas chromatography/mass spectrometry analysis 

A Hewlett-Packard model HP6890 gas chromatograph interfaced with an MS 

detector was used. The injection port was maintained at 250°C. A 5% 

phenylmethylsiloxane capillary column (30 m, 0.25 mm i.d., 0.25 µm film thickness; HP-

5MS) was used for separation. Ultra-high-purity helium was used as a carrier gas at an 

inlet pressure of 11.8 psi using constant flow and a splitless mode. The glass liner in the 

injection port was filled with silanized glass wool, which allowed homogeneous 

vaporization of injected samples. The initial temperature was held 2 min after sample 

injection with the following ramps: ramp 1: 100–178°C at 3°C/min; ramp 2: 178–181°C 

at 0.3°C/min; ramp 3: 181–208°C at 3°C/min; ramp 4: 208–280 at 10°C/min. The final 

temperature was maintained for 2 min. The run time was 56.2 min for each sample. The 

temperature of the ion source inside mass spectrometer was ~180°C. 

 

2.2.10 Amyloid plaque counts 

APP/PS1 mice were sacrificed by halothane overexposure using procedures 

consistent with the Panel on Euthanasia of American Veterinarian Association.  The 

brains were quickly removed and a single hemisphere without cerebellum was placed in 

4% phosphate buffered paraformaldehyde.  The hemisphere was dissected after 

paraformaldehyde fixation for 7 days and embedded in paraffin.  10 µm sections were cut 

using a Shandon Finesse microtome and placed on Plus slides.   Sections were stained 

using a monoclonal antibody against Aβ17-34 (Vector Laboratories, Burlingame, CA) 

using standard protocols.  Briefly, sections were deparaffinized through xylene and 

graded descending alcohols to water, incubated 30 min at room temperature in 3% 

H2O2/methanol, washed in distilled/deionized water, followed by 3 min incubation at 

room temperature in 90% formic acid.  The sections were washed 5 min in running 

distilled/deionized water, pretreated 10 min at room temperature with 2 mg/ml pepsin 

(Biomedia, Foster City, CA), blocked in 15% normal goat serum in automation buffer 1 

hr at room temperature after 3 times (2 min each) washes in automation buffer.  Sections 
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were incubated in a 1:100 dilution of anti-Aβ at 4 oC overnight and washed 3 times (5 

min each) with automation buffer.  The sections were incubated 1 hr at room temperature 

in horse anti-mouse IgG (1:2000) in 1.5% horse serum/automation buffer. The sections 

were washed 3 times (5 min each) in automation buffer, incubated 30 min in Vector 

laboratories ABC reagent, washed 3 times (5 min each) in automation buffer, and color 

developed using DAB. Sections were counterstained using hematoxylin/ecosin, 

dehydrated, cleared in xylene and coverslipped.  This work was done by Dr. 

Markesbery’s neuropathology laboratory. 

Aβ deposits were counted semi-quantitatively by taking serial micrographs of the 

entire hemisphere of each animal using a 20X objective on a Nikon Eclipse E60 

Microscope.  Each Aβ deposit was circled and counted on the printed micrograph with 

naked eye.  Deposits considered as an independent plaque must be discrete and not 

connected to another. The number of Aβ deposits were normalized to the area of the 

section measured using Bioquant software.  This work was carried out by Dr. WR 

Markesbery. 

 

2.2.11 Two-dimensional electrophoresis 

 Five hundred milligram lyophilized mitochondrial protein was dissolved in 300 µl 

rehydration buffer (8.0 M urea, 4% CHAPS, 100 mM DTT (dithiothreitol), 0.001% 

bromophenol blue, 0.2% Bio-Lytes) and loaded onto the 17 cm IPG (pI 3-10) strips. The 

strips were rehydrated for 12 hr at room temperature under mineral oil.  A pause is 

needed after rehydration for inserting paper wicks, adding mineral oil, transferring strips 

from rehydration tray to focusing tray per manufacture.  Then a self-defined program 

(300 V for 5 hr, 1,000 V for 1hr, 2,500 V for 1 hr, and 5,000 V for 80,000 voltage:hour) 

was run for total time of about 23 hr.  

 Before running the second dimension, the strips were equilibrated with 

equilibration buffer I (6 M urea, 2% SDS, 0.375 M Tris-HCl, 20% glycerol, 130 mM 

DTT) and equilibration buffer II (6 M urea, 2% SDS, 0.375 M Tris-HCl, 20% glycerol, 

130 mM iodoacetamide) for 20 min each.  After equilibration, the strips were washed in 

running buffer and loaded onto 8-16% SDS-PAGE gel.  Running conditions were 16 

mA/gel for 30 min, then 24 mA/gel for about 5 hr. 
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2.2.12 Gel staining and image analysis 

 The gels were stained with Sypro ruby per manufacture’s instruction.  Briefly, the 

gels were fixed with 30% methanol/10% acetic acid for one hr.  250 ml of Sypro ruby 

solution was used to stain the gels overnight in a dark box.  The gels were washed with 

20% ethanol 3 times (15 min each wash).  Gel images were taken using a ChemiDoc 

XRS system and analyzed with PDQuest software from Bio-Rad.   

 Spots stained with Sypro ruby can only be visualized under UV light.  In order to 

see spots under white light, the gels were stained with 0.1% Colloidal Coomassie 

Brilliant Blue G250.  Briefly, gels were fixed in fixing solution (1.3% phosphoric acid, 

20% methanol), and stained overnight with fresh staining solution (0.1% Coomassie Blue, 

1.6% phosphoric acid, 8% ammonium sulfate, 20% methanol).  Gels were transferred to 

neutralization buffer for 1-3 min (0.1 M tris-base, pH 6.5), followed by washing with 

25% methanol for less than 1 min.  Gels were stored in 20% ammonium sulfate at 4 oC 

until the spots were cut for trypsin digestion. 

 

2.2.13 Trypsin digestion for MS analysis 

   After PDQuest analysis, spots of interest were cut out as close to the edge of 

spots as possible using glass Pasteur pipette.  The gel pieces from single spot were 

washed with water 3 times.  100 mM NH4HCO3 was added followed by addition of an 

equal volume of acetonitrile.  The solution was vortexed for 15 min and centrifuged at 

10,000 g for 5 min.  The gel pieces were dehydrated with 100 µl acetonitrile until they 

stuck together.  All liquid was removed.  If gel particles were still blue (stained with 

Coomassie Brilliant Blue), this step was repeated until gel became white.  The pellet was 

dried and rehydrated in 1.5 µM modified trypsin for 60 min at 4°C.  Excess trypsin was 

aspirated and the gel digested in a 60°C water bath overnight.  5% formic acid was added 

to stop the digestion reaction.   The supernatant is ready for MS.   

 

2.2.14 MALDI-TOF analysis and database searching 

 A Bruker Autoflex MALDI-TOF (Matrix assisted laser desorption ionization – 

time of flight) mass spectrometer (Bruker Daltonics, Billerica, MA, USA) at the 

University of Kentucky Mass Spectrometry Facility was used to generate mass spectra.  
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An AnchorChip target (Bruker Daltonics) was used to load trypsin digested samples.  1µl 

of the supernatant was loaded onto an α-cyano-4-hydoxycinnamic acid (0.3 mg/ml in 

ethanol: acetone, 2:1 ratio) spot.  After the sample spot was air dried, 1 µl of 1% TFA 

solution was used to wash the spot.  The resulting spot was recrystallized with 1µl of a 

solution of ethanol:acetone:0.1% TFA (6:3:1).   

 All spectra consist of at least 40 laser shots depending on the intensity of samples.  

The MASCOT search engine was used to search proteins based on the peptide mass 

fingerprints.  The following parameters were used in database search: homo sapiens; 

monoisotopic; oxidation (methionine); mass tolerance of 100 ppm; and up to one missed 

trypsin cleavage. 

 

2.3 Statistical Analysis 

Statistical analyses of all the data were carried out using 2-way ANOVA and 

ABSTAT software (Arvada, CO, USA).  p ≤ 0.05 was considered as a significant 

difference.  All results are expressed as mean ± SEM.  Comparison of age and post-

mortem interval was by two-tailed Student's t-test.  Braak staging scores were compared 

using non-parametric testing and the Mann–Whitney U-test.  Braak staging scores are 

reported as the median. 
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CHAPTER THREE 

 

Results 

 

3.1 Increased oxidative damage in nuclear and mitochondrial DNA in late stage 

Alzheimer’s disease 

Mitochondrial density was measured using density marker beads.  Results show 

that mitochondria position at a density of 1.035 g/ml during centrifugation through a 

percoll gradient (Figure 3-1). Electron microscopy of a representative mitochondrial 

preparation isolated using our procedure showed a highly purified (~95%) mitochondrial 

fraction (Figure 3-2).  

We also carried out Western blot analysis of nuclear and mitochondrial protein 

samples using Oct-1 and porin antibodies to verify the purity of nuclear and 

mitochondrial fractions, respectively.  Western blot analysis (Figure 3-3) of 

representative nuclear and mitochondrial fractions probed for Oct-1, an octamer-binding 

protein specific to nuclei, and porin, a membrane-bound mitochondrial transport protein, 

showed no cross contamination of proteins between the mitochondrial and nuclear 

fractions.  Figure 3-4 shows the results of PCR amplification of representative mtDNA 

and nDNA samples for APOE, a nuclear-coded protein, and demonstrates that there was 

no cross contamination of nDNA in mtDNA. 

One representative DNA sample (50 µg) was run with six isotope-labeled internal 

standards (1µg each).  The chromatogram is shown in Figure 3-5.   The bases of interest 

were well separated, as indicated by their different retention times.  5-Hydroxyuracil was 

eluted at a retention time of 18.4 min.  The other oxidized bases were 5-hydroxycytosine 

(21.7 min), fapyadenine (28.2 min), 8-hydroxyadenine (32.2 min), fapyguanine 

(39.2 min), and 8-hydroxyguanine (44.5 min). We did not quantify modified thymine 

because 5, 6-dihydroxythymine was below the minimum detection limit (Gabbita et al. 

1998).   

Three replicates were performed to determine the dynamic range of internal 

standards. Results show that all internal standards had a large dynamic range.  5-
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hydroxyuracil showed a linear range from 6 pmol to 130 nmol (r = 0.9992) (Figure 3-6 b).  

5-hydroxyuracil has three active hydrogen atoms from -NH and -OH groups, which are 

replaced with -Si(CH3) from BSTFA during derivatization (Table 3-1).  The resulting 

molecular ion (M+) of the BSTFA derivative is 350 amu.  With a loss of a CH3 group, the 

daughter ion is observed at 335 amu (Figure 3-6 a).  Similarly, three active hydrogen 

atoms of 5-hydroxycytosine are replaced by –Si(CH3) during derivatization, resulting in 

m/z values of 346 and 331 amu (Table 3-1, Figure 3-7 a).  The linear range (r = 0.9995) 

of 5-hydroxycytosine is from 2 pmol to 40 nmol (Figure 3-7 b).  Three –Si(CH3) groups 

replace three hydrogen atoms in fapyadenine, which results in m/z values of 372 amu for 

the molecular ion and 357 amu for the daughter ion resulting from a loss of CH3 (Table 

3-1, Figure 3-8 a).  The linear dynamic range for fapyadenine is from 6 pmol to 120 nmol 

(r = 0.9993) (Figure 3-8 b).  8-hydroxyadenine has three replaceable hydrogens during 

derivatization by BSTFA, which results in m/z values of 370 amu (parent ion) and 355 

amu (daughter ion) (Table 3-1, Figure 3-9 a).  The standard curve of 8-hydroxyadenine 

showed a wide dynamic range from 4 pmol to 90 nmol with an r of 0.9985 (Figure 3-9 b).  

Four –Si(CH3) are added to fapyguanine in derivatization.  The resulting mass of M+ is 

460 amu. With a loss of CH3, the mass is 445 amu (Table 3-1, Figure 3-10 a).  The linear 

range of fapyguanine is from 7 pmol to 150 nmol (r = 0.9974) (Figure 3-10 b).  Similar to 

fapyguanine, 8-hydroxyganine has 4 replaceable hydrogen atoms, resulting in ions with 

m/z values of 458 amu and 443 amu (Table 3-1, Figure 3-11 a).  A linear response was 

observed from 7 pmol to 130 nmol (Figure 3-11 b) for 8-hydroxyguanine. 

To address the concern that artifactual oxidation of DNA occurred during phenol 

extraction, we used DNA Extractor WB and mtDNA Extractor CT kits (Wako Chemicals 

USA, Inc.) that use non-organic solutions and NaI precipitation. Table 3-2 shows that 

levels of oxidized bases measured in DNA samples isolated using the two different 

methods were similar, although levels of fapyguanine (p < 0.02) and fapyadenine 

(p < 0.01) were significantly reduced in DNA isolated using the DNA Extractor WB kit 

and levels of fapyadenine (p < 0.02) were significantly reduced with the mtDNA 

Extractor CT kit. In contrast, levels of 5-hydroxycytosine (p < 0.02) were significantly 

increased in DNA samples prepared using the mtDNA Extractor CT kit. Levels of 8-

hydroxyguanine and 8-hydroxyadenine showed no significant differences between the 
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two methods.  Based on these data, DNA samples used for statistical comparisons were 

isolated using phenol/chloroform extraction. 

Eight AD and eight age-matched control DNA samples as previously described 

were used in GC/MS-SIM analysis and six modified bases quantified using stable 

isotope-labeled internal standards.  There were no significant differences in age or 

postmortem interval (PMI) between LAD and age-matched control subjects (Table 3-3). 

There was a significant difference in median Braak score between AD (VI) and age-

matched control subjects (I) (Table 3-3).  The amount of each modified base is expressed 

as mean ± SEM number of modified lesions per million DNA bases (Halliwell and 

Dizdaroglu 1992) as shown in Table 3-4.  Table 3-5 shows a comparison of levels of 

oxidized bases in terms of lesions/106 DNA bases, lesions/unmodified DNA bases, 

percentage of lesions, and nmol/mg DNA.  Levels of modified bases in mtDNA were 

statistically significantly (p < 0.01) higher than in nDNA for both LAD and control 

subjects for each region.  Comparison of the ratio of mitochondrial to nuclear DNA 

oxidation showed no significant differences between LAD and control subjects due to 

considerable subject to subject variability. In LAD samples, the damage was consistently 

higher than controls. The absolute amount of 8-hydroxyadenine was the lowest among 

the modified bases, whereas 8-hydroxyguanine was the highest. 

Hydroxyl radical attack on the C8 of adenine leads to the production of 8-

hydroxyadenine.  Mean levels of 8-hydroxyadenine were approximately twofold higher 

in AD than in the controls, and mtDNA had approximately eightfold higher levels than 

the nDNA. Significant differences were found in nDNA in the frontal lobe (p < 0.03) and 

parietal lobe (p < 0.04), and nDNA (p < 0.001) and mtDNA (p < 0.04) of temporal lobe 

in LAD. The absolute amount of 8-hydroxyadenine in LAD mtDNA of the temporal lobe 

was the highest (Figure 3-12). 

One electron reduction followed by ring opening of 8-hydroxyadenine leads to 

formation of fapyadenine. Significant elevations of fapyadenine were present in mtDNA 

of LAD parietal lobe (p < 0.05), nDNA (p < 0.001) and mtDNA (p < 0.05) of AD 

temporal lobe, and nDNA of cerebellum (Figure 3-13).  

5-Hydroxycytosine is formed by dehydration of cytosine glycol and 5-

hydroxyuracil by dehydration and deamination of cytosine glycol, the oxidation product 
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of cytosine. Our data show that 5-hydroxycytosine was significantly elevated in AD 

samples in nDNA (p < 0.01) and mtDNA (p < 0.01) of frontal lobe, mtDNA (p < 0.01) 

of parietal lobe and nDNA (p < 0.001) and mtDNA (p < 0.05) of temporal lobe (Figure 

3-14). 5-Hydroxyuracil levels were significantly elevated in mtDNA of parietal (p < 0.05) 

and temporal (p < 0.04) lobes, and nDNA in temporal lobe of AD (p < 0.05) (Figure 3-

15). 

In our study, we observed levels of 8-hydroxyguanine considerably higher than 

any of the other bases. Statistical comparison showed significant elevations of 8-

hydroxyguanine in nDNA in the frontal (p < 0.03) and parietal (p < 0.01) lobes of AD 

subjects and in mtDNA of parietal (p < 0.05) and temporal (p < 0.05) lobes in AD 

(Figure 3-16). Fapyguanine, which results from a one electron reduction and ring opening 

product of 8-hydroxyguanine, was significantly elevated in mtDNA of cerebellum 

(p < 0.04), and parietal (p < 0.05) lobe in AD (Figure 3-17). 

Statistical results from two-way ANOVA showed that 8-hydoxyadenine (p < 0.02) 

and 8-hydroxyguanine (p < 0.04) in AD nDNA were significantly increased in 

neocortical regions compared to cerebellum (Table 3-4).  In order to compare our results 

easily to previous studies, a units conversion table is provided (Table 3-5). 
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Table 3-1.  m/z values of BSTFA derivatives of internal standards 
 
Internal Standards Molecular 

weight  
Addition of –

Si(CH3) groups 
m/z of M+ m/z for  

M+ – CH3 
5-hydroxyuracil 134 3 350 335 

5-hydroxycytosine 130 3 346 331 
fapyadenine 156 3 372 357 

8-hydroxyadenine 154 3 370 355 
fapyguanine 172 4 460 445 

8-hydroxyguanine 170 4 458 443 
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Table 3-2. Comparison of two different DNA extraction methods 

Level of modified bases (Lesions/106 DNA Bases, mean ± SEM) 
Nuclear DNA Mitochondrial DNA 

 

Phenol-
Chloroform 

WB kit (NaI) Phenol-
Chloroform 

CT kit(NaI) 

  
  Frontal lobe 
  8-OH-guanine
  Fapyguanine  
  5-OH-cytosine  
  8-OH-adenine 
  Fapyadenine 

 
 

50.4 ± 7.8 
20.5 ± 2.3 
8.2 ± 1.0 
12.2 ± 2.3 
12.9 ± 1.3 

 

 
 

61.9 ± 21.6 
12.1 ± 1.0* 
26.2 ± 9.5 
19.0 ± 7.0 
4.6 ± 0.5* 

 
 

262.7 ± 64.9 
187.2 ± 75.1 
78.0 ± 15.9 
42.5 ± 12.5 
72.6 ± 16.7 

 
 

223.7 ± 53.4
154.5 ± 48.6
158.2 ± 21.9* 
22.0 ± 10.1 
7.3 ± 1.9* 

* p < 0.05 phenol-chloroform vs. NaI precipitation
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Table 3-3.  Demographic data for control and LAD subjects 
 

 Number and 
sex 

Age (yr)  
(mean ± SEM) 

PMI (hr) 
(mean ± SEM) 

Braak Score 
(median) 

Control N=8 (4F, 4M) 84.3 ± 3.4 2.9 ± 0.2 I 
LAD N=8 (4F, 4M) 85.1 ± 1.6 3.3 ± 0.2 VI* 

* p < 0.05 control vs. LAD 
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Table 3-4.  Levels of markers of DNA oxidation in nuclear and mitochondrial DNA 
from late stage Alzheimer’s disease and age-matched control subjects.   
 

 
Level of modified bases (Lesions/106 DNA Bases, mean ± SEM) 

Nuclear DNA Mitochondrial DNA 
 

control LAD control LAD 
Cerebellum 
  8-OH-adenine 
  Fapyadenine 
  5-OH-cytosine 
  5-OH-uracil 
  8-OH-guanine
  Fapyguanine 
 
Frontal lobe 
  8-OH-adenine 
  Fapyadenine 
  5-OH-cytosine 
  5-OH-uracil 
  8-OH-guanine
  Fapyguanine 
 
Parietal lobe 
  8-OH-adenine 
  Fapyadenine 
  5-OH-cytosine 
  5-OH-uracil 
  8-OH-guanine
  Fapyguanine 
 
Temporal lobe 
  8-OH-adenine 
  Fapyadenine 
  5-OH-cytosine 
  5-OH-uracil 
  8-OHguanine 
  Fapyguanine 

 
13.0 ± 2.2 
7.2 ± 1.4 
9.9 ± 1.1 
6.9 ± 0.8 
36.3 ± 4.9 
14.8 ± 2.1 

 
 

11.8 ± 2.0 
12.8 ± 1.2 
9.4 ± 1.4 
8.7 ± 1.4 
49.4 ± 5.8 
20.7 ± 2.1 

 
 

12.5 ± 1.6 
12.7 ± 1.8 
10.5 ± 1.3 
9.8 ± 1.2 
46.6 ± 4.9 
17.0 ± 1.5 

 
 

12.7 ± 1.5 
10.2 ± 1.3 
7.6 ± 0.6 
6.5 ± 0.6 

72.8 ± 17.1 
23.3 ± 3.6 

 
18.0 ± 2.1 
13.2 ± 1.9* 
14.9 ± 1.9 
9.6 ± 2.1 
49.4 ± 8.7 
21.5 ± 3.2 

 
 

28.3 ± 4.1*#

16.4 ± 3.2 
16.6 ± 2.4* 
10.9 ± 2.5 

133.9 ± 25.8*#

22.3 ± 5.0 
 
 

23.3 ± 3.9*#

15.7 ± 1.9 
15.2 ± 1.8 
13.9 ± 2.3 

84.4 ± 10.4*#

38.7 ± 11.4 
 
 

35.7 ± 4.9 *#

18.1 ± 1.1* 
15.5 ± 1.2* 
11.3 ± 2.0* 

142.5 ± 31.5#

41.6 ± 8.5 

 
96.1 ± 13.4 
81.5 ± 13.1 
90.0 ± 18.5 
52.8 ± 12.3 
205.0 ± 35.1 
144.9 ± 23.2 

 
 

92.6 ± 8.9 
73.1 ± 12.2 
93.7 ± 19.8 
39.4 ± 4.8 

407.9 ± 70.7 
238.7 ± 59.7 

 
 

86.8 ± 10.4 
71.7 ± 10.0 
95.4 ± 12.6 
27.3 ± 4.0 

271.6 ± 34.1 
178.5 ± 33.7 

 
 

77.8 ± 10.4 
79.4 ± 15.9 
102.3 ± 22.4 
30.5 ± 4.4 

350.1 ± 81.8 
178.4 ± 49.2 

 
136.9 ± 17.8 
114.4 ± 14.4 
226.6 ± 58.0 
95.1 ± 21.9 

439.6 ± 115.7 
344.8 ± 70.5* 

 
 

124.9 ± 16.9 
101.7 ± 23.2 
223.9 ± 22.4* 
70.8 ± 21.5 

568.5 ± 140.2 
532.2 ± 131.4 

 
 

119.3 ± 15.4 
108.1 ± 9.2* 
217.7 ± 31.0* 
68.4 ± 14.3* 

646.9 ± 175.3*
370.8 ± 84.8* 

 
 

210.8 ± 48.6* 
126.0 ± 13.6* 
315.5 ± 95.1* 
87.8 ± 19.8* 

610.6 ± 158.9*
257.5 ± 31.6 

 
* p < 0.05 significant elevations in LAD DNA compared to age matched control subjects 
# p < 0.05 significant elevations in DNA from frontal, parietal and temporal lobes 

compared to cerebellum. 
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Table 3-5.  Comparison of levels of DNA damage in terms of lesions/106 total DNA 

bases, ratio of lesion/unmodified DNA base, percentage of lesions, and nmol/mg of DNA 

 
lesions/106 total 

DNA bases 
1 10 20 50 100 250 500 

lesion:unmodified 
DNA base 

1:250,000 1:25,000 1:12,500 1:5,000 1:2,500 1:1,000 1:500

% of lesions 0.0004% 0.004% 0.008% 0.02% 0.04% 0.1% 0.2%
nmol lesions/mg 

of DNA 
0.003 0.031 0.063 0.159 0.300 0.796 1.592
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Figure 3-1. Mitochondrial density was measured using density marker beads.  
Mitochondria were positioned at a density of 1.035 g/ml during centrifugation through a 
Percoll gradient. 
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Figure 3-2. Electron micrograph of a representative mitochondrial preparation after 
centrifugation through Percoll gradients. Final magnitude is 32,500 X.
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Figure 3-3. Western blot analysis of protein from nuclei and mitochondria using 
antibodies against Oct-1(a nuclear protein) and porin (a mitochondrial protein). The blots 
show there was no cross contamination between nuclear and mitochondrial preparations. 
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Figure 3-4. Two percent low-melt agarose gel of PCR amplified nDNA and mtDNA for 
APOE, a nuclear encoded protein.  It showed that there was no cross contamination 
between nDNA and mtDNA. 
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Figure 3-5. A representative gas chromatogram of a DNA sample with stable isotope -
labeled internal standards. 
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Figure 3-6. (a) A representative mass spectrum of isotope-labeled 5-hydroxyuracil 
(retention time 18.2 min).  Figure (b) shows a standard curve of isotope-labeled 5-
hydroxyuracil, which has a good dynamic range from 6 pmol to 130 nmol.       

 54



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

isotope-labeled 5-hydroxycytosine (nmol)
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(b) 

Figure 3-7. (a) A representative mass spectrum of isotope-labeled 5-hydroxycytosine 
(retention time 21.7 min).  Figure (b) shows a standard curve of isotope-labeled 5-
hydroxycytosine, which has a wide dynamic range from 2 pmol to 40 nmol. 
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(a) 

isotope-labeled fapyadenine (nmol)
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(b) 

 
Figure 3-8. (a) A representative mass spectrum of isotope-labeled fapyadenine (retention 
time 28.2 min).  Figure (b) shows standard curve of isotope-labeled fapyadenine, which 
has a wide dynamic range from 6 pmol to 120 nmol. 
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(b) 

Figure 3-9. (a) A representative mass spectrum of isotope-labeled 8-hydroxyadenine 
(retention time 32.2 min).  Figure (b) shows a standard curve of isotope-labeled 8-
hydroxyadenine, which has a wide dynamic range from 4 pmol to 90 nmol. 
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isotope-labeled fapyguanine (nmol)
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(b) 

Figure 3-10. (a) A representative mass spectrum of isotope-labeled fapyguanine 
(retention time at 39.2 min).  Figure (b) shows a standard curve of isotope-labeled 
fapyguanine, which has a dynamic range from 7 pmol to 150 nmol. 
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(b) 

Figure 3-11. (a) A representative mass spectrum of isotope-labeled 8-hydroxyguanine 
(retention time 44.5 min).  Figure (b) shows a standard curve of isotope-labeled 8-
hydroxyguanine, which has a dynamic range from 7 pmol to 130 nmol. 
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Figure 3-12. Mean regional differences in levels of 8-hydroxyadenine.  Significant 
elevations were observed in nDNA of frontal (p < 0.03) and parietal (p < 0.04) lobes, and 
nDNA (p < 0.01) and mtDNA (p < 0.04) of temporal lobe.  Results are expressed as 
mean ± SEM altered bases/106 bases. * p < 0.05 
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Figure 3-13. Mean regional differences in levels of fapyadenine.  Significant elevations 
were observed in nDNA of cerebellum (p < 0.02), mtDNA of parietal lobe (p < 0.05), and 
nDNA (p < 0.001) and mtDNA (p < 0.05) of temporal lobe. Results are expressed as 
mean ± SEM altered bases/106 bases. * p < 0.05 
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Figure 3-14. Mean regional differences in levels of 5-hydroxycytosine. 5-
hydroxycytosine was significantly elevated in AD samples in nDNA (p < 0.01) and 
mtDNA (p < 0.01) of frontal lobe, mtDNA (p < 0.01) of parietal lobe and nDNA (p < 
0.001) and mtDNA (p < 0.05) of temporal lobe.  Results are expressed as mean ± SEM 
altered bases/106 bases. * p < 0.05 
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Figure 3-15. Mean regional differences in the levels of 5-hydroxyuracil.  5-hydroxyuracil 
was significantly elevated in mtDNA from parietal (p < 0.05) and temporal (p < 0.04) 
lobe of AD subjects. Results are expressed as mean ± SEM altered bases/106 bases. * p < 
0.05 
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Figure 3-16. Mean regional differences in the levels of 8-hydroxyguanine.  There were 
significant elevations of 8-hydroxyguanine in nDNA of frontal (p < 0.03) and parietal (p 
< 0.01) lobes and in mtDNA of parietal (p < 0.05) and temporal (p < 0.05) lobes of AD 
subjects. Results are expressed as mean ± SEM altered bases/106 bases. * p < 0.05 
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Figure 3-17. Mean regional differences in the levels of fapyguanine.  Fapyguanine was 
significantly increased in mtDNA of cerebellum (p < 0.04) and parietal (p < 0.05) lobe of 
AD brain. Results are expressed as mean ± SEM altered bases/106 bases. * p < 0.05 
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3.2  Increased oxidative damage in nuclear and mitochondrial DNA in Mild 

Cognitive Impairment 

Subject demographic data are shown in Table 3-6. There were no significant 

differences for age or PMI, although there was a significant difference in median Braak 

staging scores between control (I) and MCI (III) (p < 0.001) subjects. 

Table 3-7 shows levels of all five base adducts expressed as the mean ± SEM 

number of modified bases per million DNA bases. Two-way ANOVA showed that 8-

hydroxyguanine (p < 0.04), fapyadenine (p < 0.001) and 5-hydroxycytosine (p < 0.004) 

in mtDNA were significantly increased in neocortical regions compared with cerebellum 

in MCI (Table 3-7) but not in control subjects.  A similar comparison of data for nDNA 

showed no significant differences between cerebellum and neocortical regions for either 

MCI or control subjects. 

Hydroxyl radicals can adduct to C8 and C5 of guanine.  The C8 attack is 

predominant and leads to formation of 8-hydroxyguanine.  Significant elevations of 8-

hydroxyguanine were observed in nDNA from frontal and parietal (p < 0.04) lobes and 

mtDNA of temporal lobe (p < 0.05) in MCI (Figure 3-18). Comparison of 8-

hydroxyguanine in MCI mtDNA showed no significant differences between MCI and 

LAD subjects from our previous study (Wang et al. 2005) suggesting that oxidative DNA 

damage occurs early in the progression of AD.  Fapyguanine is produced by ring opening 

of 8-hydroxyguanine followed by one electron reduction and was not significantly altered 

in mtDNA or nDNA of any MCI brain region studied compared with control subjects 

(Figure 3-17). 

5-Hydroxycytosine, produced by free radical attack on C5 of cytosine followed by 

dehydration of cytosine glycol, was significantly elevated in nDNA of frontal (p < 0.01), 

parietal (p < 0.05) and temporal (p < 0.01) lobes and mtDNA of frontal lobe (p < 0.003) 

in MCI (Figure 3-18). Comparison of levels of 5-hydroxycytosine in MCI with those in 

late-stage AD (Wang et al. 2005) showed no significant differences suggesting that 

oxidative damage to cytosine is an early event in the pathogenesis of AD. 

As shown in Figure 3-19, levels of 8-hydroxyadenine were significantly increased in 

MCI nDNA from frontal (p < 0.05), parietal (p < 0.02) and temporal (p < 0.007) lobes 

consistent with our observations in late-stage AD (Wang et al. 2005).  However, no 
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significant differences in levels of 8-hydroxyadenine were observed in mtDNA between 

MCI and control subjects.  These data are in contrast to our previous study of late-stage 

AD subjects that showed a significant elevation of 8-hydroxyadenine in mtDNA from 

late-stage AD temporal lobe (Wang et al. 2005).  Figure 3-20 shows that levels of 

fapyadenine were significantly elevated in both nDNA and mtDNA of frontal, parietal 

and temporal lobes in MCI compared with age-matched control subjects.  Levels of 8-

hydroxyadenine and fapyadenine in MCI were not significantly different from those 

observed in our previous study of late-stage AD brain (Wang et al. 2005). 

 

 67



 

Table 3-6.  Demographic data for control and MCI subjects 

 
 Number and 

sex 
Age (yr) 
(mean ± 
SEM) 

PMI (hr) 
(mean ± 
SEM) 

Braak 
Score 

(median) 

ApoE 
genotype 

Control N=6 (3F, 3M) 81.0 ± 3.8 3.0 ± 0.4 I E3/E3, N=6 
MCI  N=8 (6F, 2M) 89.5 ± 4.8   4.0 ± 0.9  III* E3/E3, N=6 

E4/E4, N=2 
 

* p < 0.05 control vs. MCI
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Table 3-7.  Levels of DNA oxidation in nuclear and mitochondrial DNA in MCI and 
age-matched control subjects 
 

 
Level of modified bases (Lesions/106 DNA Bases, mean ± SEM) 

Nuclear DNA Mitochondrial DNA 
 

control MCI control MCI 
Cerebellum 
  8-OH-guanine
  Fapyguanine  
  5-OH-cytosine  
  8-OH-adenine 
  Fapyadenine 
   
  Frontal lobe 
  8-OH-guanine
  Fapyguanine  
  5-OH-cytosine  
  8-OH-adenine 
  Fapyadenine 
 
Parietal lobe 
  8-OH-guanine
  Fapyguanine  
  5-OH-cytosine  
  8-OH-adenine 
  Fapyadenine 
 
Temporal lobe 
  8-OH-guanine
  Fapyguanine  
  5-OH-cytosine  
  8-OH-adenine 
  Fapyadenine 

 
40.8 ± 6.9 
6.5 ± 1.8 
11.6 ± 1.2 
12.9 ± 2.5 
14.9 ± 2.6 

 
 

50.4 ± 7.8 
20.5 ± 2.3 
8.2 ± 1.0 
12.2 ± 2.3 
12.9 ± 1.3 

 
 

46.4 ± 6.0 
16.6 ± 1.5 
10.0 ± 1.3 
12.5 ± 1.6 
12.5 ± 1.7 

 
 

69.0 ± 18.4 
22.0 ± 4.5 
8.1 ± 0.9 
14.2 ± 1.6 
10.3 ± 1.6 

 

 
95.2 ± 38.0 
21.0 ± 9.6 
20.7 ± 4.9 
16.7 ± 5.9 
20.8 ± 4.5 

 
 

143.8 ± 53.4* 
19.9 ± 1.2 
32.8 ± 6.6* 
24.1 ± 4.9* 
27.8 ± 5.2* 

 
 

149.1 ± 41.4* 
18.3 ± 0.9 
35.3 ± 9.9* 
26.2 ± 4.3* 
40.7 ± 9.1* 

 
 

135.1 ± 22.7 
21.4 ± 1.4 
24.5 ± 4.6* 
25.8 ± 2.9*  
29.1 ± 5.5* 

 

 
227.1 ± 35.5 
131.2 ± 33.2 
92.5 ± 23.2 
50.8 ± 11.2 
75.3 ± 17.1 

 
 

262.7 ± 64.9 
187.2 ± 75.1 
78.0 ± 15.9 
42.5 ± 12.5 
72.6 ± 16.7 

 
 

293.0 ± 45.0 
158.8 ± 41.3 
88.1 ± 13.4 
64.4 ± 18.3 
77 ± 12.6 

 
 

271.5 ± 46.9 
127.4 ± 50.4 
 107.0 ± 29.6 

   48.8 ± 10.0 
69.8 ± 19.7 

 

 
307.2 ± 75.9 
133.4 ± 9.6 
124.2 ± 4.8 
47.2 ± 4.9 
72.2 ± 5.3 

 
 

329.4 ± 128.6#

237.3 ± 48.5 
  257.8 ± 37.4*# 

53.1 ± 15.4 
158.1 ± 9.6*#

 
 

343.0 ± 63.9#

158.5 ± 20.1 
92.7 ± 23.2#

74.6 ± 9.2 
158.8 ± 10.4*#

 
 

460.3 ± 83.5*#

159.6 ± 16.9 
187.4 ± 50.5#

66.5 ± 9.9 
177.1 ± 10.8*#

 
 
* p < 0.05 significant elevation in MCI DNA compared to age matched control subjects 
# p < 0.05 significant elevations in DNA from frontal, parietal and temporal lobes 
compared to cerebellum. 

 69



 

CERBLM FRONTAL PARIETAL TEMPORALM
ea

n 
?

SE
M

 8
-h

yd
ro

xy
gu

an
in

e 
(L

es
io

ns
/1

06  D
N

A
 B

as
es

)

0

200

400

600

800

control nDNA  
MCI nDNA
control mtDNA 
MCI mtDNA 

*

*

* p < 0.05 control vs. MCI

*

 

 

Figure 3-18. Mean regional levels of 8-hydroxyguanine.  There was a statistically 
significant elevation of 8-hydroxyguanine in MCI in nDNA of frontal (P < 0.05) and 
parietal (P < 0.04) lobes, and mtDNA of temporal lobe (P < 0.05).  Results are expressed 
as mean ± SEM altered bases/106 bases. * P < 0.05 
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Figure 3-19. Mean regional differences in levels of fapyguanine.  Results are expressed 
as mean ± SEM altered bases/106 bases. * P < 0.05 
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Figure 3-20. Mean regional differences in levels of 5-hydroxycytosine.  There were 
significant elevations in MCI in nDNA of frontal (P < 0.01), parietal (P < 0.05) and 
temporal (P < 0.01) lobes, and mtDNA of frontal lobe (P < 0.003) compared to age-
matched control subjects.  Results are expressed as mean ± SEM altered bases/106 bases. 
* P < 0.05 
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Figure 3-21. Mean regional levels of 8-hydroxyadenine.  There were significant 
elevations in nDNA of frontal (P < 0.05), parietal (P < 0.02), and temporal (P < 0.007) 
lobes.  Results are expressed as mean ± SEM altered bases/106 bases.   * P < 0.05 
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Figure 3-22. Mean regional differences in levels of fapyadenine.  There were significant 
elevations in MCI in nDNA of frontal (P < 0.02), parietal (P < 0.02) and temporal (P < 
0.02) lobes, and mtDNA of frontal (P < 0.0007), parietal (P < 0.0002) and temporal (P < 
0.0002) lobes.  Results are expressed as mean ± SEM altered bases/106 bases. * P < 0.05 
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3.3 Increased oxidative damage in nuclear DNA in APP/PS1 transgenic mice  

To evaluate the effects of Aβ deposition on DNA oxidation, one third of cortex 

from APP/PS1 (ages 3, 6, 9, 12 months) and wild type mice were used for the analysis of 

oxidative damage to nDNA.  Each group consisted of 8 to 10 mice.  Damage to nDNA 

was quantified in this study because the brain tissue was too small to get enough mtDNA 

for GC/MS-SIM analysis.  Phenol-chloroform extraction was used in nDNA extraction as 

previously described.  

 Figure 3-23 shows amounts of oxidized DNA base adducts expressed as the 

mean ± SEM number of modified bases per million DNA bases.  Levels of 8-

hydroxyguanine were consistently higher than the levels of 8-hydroxyadenine both in 

wild type and APP / PS1 mice (p < 0.001). 

C8 attack on guanine by hydroxyl radicals leads to formation of 8-

hydroxyguanine, the most studied adduct in DNA oxidation.  Significant elevations of 8-

hydroxyguanine in 12-month old APP / PS1 mice (p < 0.05) compared to 12-month WT 

were observed (Figure 3-23).  Hydroxyl radical attack on C8 of adenine leads to 

production of 8-hydroxyadenine.  No significant change was observed between wild type 

and APP / PS1 mice at any age (Figure 3-23).  Using ANOVA there was no significant 

age-dependent changes observed. 

Aβ plaque counts were performed by Dr. WR Markesbery’s laboratory (Table 3-

8).  A statistically significant positive correlation between plaque counts and the levels of 

8-hydroxyguanine in APP / PS1 mice was observed (r = 0.90). 
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Table 3-8.  Aβ plaque burden of WT and APP/PS1 mice 

 
 3 month 6 month 9 month 12 month 

WT 0 0 0 0 
APP/PS1 0 0.81 ± 0.12*  1.37 ± 0.13* 1.88 ± 0.13* 
 
* p < 0.05 WT vs. APP/PS1 
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Figure 3-23. Mean levels of 8-hydroxyadenine and 8-hydroxyguanine in APP/PS1 and 
WT mice.  There was significant elevations in the level of 8-hydroxyguanine in APP/PS1 
in nDNA of 12-month mice compared to wild type. Results are expressed as mean ± 
SEM altered bases/106 bases.  No significant difference was observed in levels of 8-
hydroxyadenine. * P < 0.05 
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Figure 3-24.  A positive correlation between plaque counts and the levels of 8-

hydroxyguanine in APP/PS1 mice (r = 0.90) 
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3.4 Proteomic studies of mitochondria in Alzheimer’s disease  

Based on our previous DNA studies, protein expression in mitochondria was 

expected to be altered in LAD.  Proteomics is an efficient way to study these changes.  In 

this study, mitochondrial proteins from temporal pole specimens of 5 LAD (3 female, 2 

male) and 4 (2 female, 2 male) age-matched control subjects were analyzed.  Subject 

demographic data are shown in Table 3-9.  There were no significant differences in age 

or PMI between LAD and control subjects using Student’s t-test.  There was a significant 

difference in median Braak staging scores between control (I) and LAD (VI) (p < 0.001) 

subjects. 

Mitochondrial protein was isolated using Percoll gradient centrifugation as 

previously described.  500 µg protein was used for 2D gel electrophoresis.  After Sypro 

ruby staining, ~650 protein spots on each gel were detected by PDQuest software.  A 

representative gel is shown in figure 3-24.  An IPG strip (pH 3-10 nonlinear) was used in 

the first dimension and an 8-16% SDS gel was used to separate proteins in the second 

dimension. Proteins identified were labeled on gel (Figure 3-24).  Molecular weights of 

mitochondrial proteins detected ranged from 10 to 80 kDa.   

A MALDI mass spectrum for a representative protein spot is shown in figure 3-25.  

Every peak in the spectrum represents a specific peptide which was characterized by its 

m/z value.  The mass of peptides in the mass spectrum ranged from 800 to 2,000 Da.  MS 

data were submitted to the Mascot database in the form of peptide mass fingerprint 

(PMF).  By comparing these experimental data to the existing calculated peptide mass, 

the matched proteins were identified.  Only proteins with the lowest probability were 

assigned as the best match.  In this study, a Mowse score ≥ 52 was considered a 

significant match (p < 0.05).  Figure 3-26 shows the probability based Mowse score of 

ATP synthase beta chain protein.  176 spots were identified and listed alphabetically in 

Table 3-10 out of ~250 intense spots excised manually and analyzed.  116 out of 176 

spots were unique proteins (Table 3-10).   

Of the spots identified as differentially expressed, 116 spots representing 67 

proteins were mitochondrial proteins.  23 spots were cytoplasmic proteins which 

represent 18 different proteins.  10 spots represented 7 endoplasmic reticulum proteins.  6 
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spots were 6 nuclear proteins.  2 spots were 1 lysosomal protein.  Results were expressed 

based on protein’s subcellular locations (Figure 3-27).   

The 66 mitochondrial proteins were classified into 11 categories based on 

function (Figure 3-28).  70% of these proteins were involved in oxidative 

phosphorylation (OXPHOS), redox, tricarboxylic acid (TCA) cycle, carbohydrate 

metabolism, nucleotide metabolism, lipid metabolism and glycolysis.  The remaining 

30% were involved in DNA/RNA/protein synthesis, signaling proteins, targeting proteins, 

and transporter proteins. 

Student’s t test was used to compare alterations in protein expression.  10 of 116 

proteins were found to be significantly different in LAD brain (p < 0.05) (Table 3-11).  

Two cytoplasmic proteins were significantly increased in LAD.  Five mitochondrial 

proteins were significantly decreased in LAD, in which 2 mitochondria-encoded proteins 

from mitochondrial inner membrane were highlighted.  One nuclear, one ER, and one 

cytoplasmic protein were significantly decreased in LAD brain.   

Western blots were used to verify proteomics results for representative proteins.  

Because no commercial antibodies were available for the significantly altered proteins, 

we used rabbit anti-VDAC and rabbit anti-CNPase for Western analysis.  No significant 

difference was observed in Western blots for either protein, which were consistent with 

our findings using 2D gel analysis (Figure 3-29). 
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Table 3-9.  Demographic data of LAD and control subjects  

 
 Number and 

sex 
Age (mean ± 

SEM) 
PMI (mean ± 

SEM) 
Braak Score 

(median) 
Control N=4 (2F, 2M) 82.8 ± 3.9 2.9 ± 0.5 I 

LAD N=5 (3F, 2M) 88.2 ± 3.6  3.8 ± 0.9  VI* 
 
* p < 0.05 control vs. LAD 

 81



Table 3-10. Protein spots identified with MALDI-TOF MS in two-dimensional gels 
 

Spot  
# 

Protein name Acce-
ssion 

Number

Mowse 
score 

Sequen-
ce 

Covera-
ge (%) 

M.W 
(Da) 

PI Subcellular 
Location 

4403 26S protease 
regulatory subunit 

8 

P47210 52 20 45,597 7.11 Cytoplasmic 
and nuclear 

6102 39S ribosomal 
protein L12, 

mitochondrial 
[Precursor] 

P52815 55 19 21,335 9.04 Mitochondrial

7303 3-hydroxyacyl-
CoA 

dehydrogenase 
type II 

Q99714 95 43 26,906 7.66 Mitochondrial

7901 
7902 
7903 

Aconitate 
hydratase, 

mitochondrial 
[Precursor] 

Q99798 55 
56 
65 

10 
10 
11 

85372 7.36 Mitochondrial

1505 
2502 

Actin, 
cytoplasmic 1 

P02570 123 
129 

32 
33 

41,710 5.29 Cytoplasmic 

9304 Adenylate kinase 
isoenzyme 4, 
mitochondrial 

P27144 76 33 25,252 8.47 Mitochondrial 
matrix 

2806 Alanyl-tRNA 
synthetase 

P49588 52 5 10673
4 

5.31 Cytoplasmic 

3808 
4701 
4702 

Aldehyde 
dehydrogenase, 
mitochondrial 

[Precursor] 

P05091 106 
80 
125 

23 
17 
18 

56,346 6.63 Mitochondrial 
matrix 

5205 Alpha crystallin B 
chain 

P02511 76 26 20,146 6.76 Unknown 

6601 Alpha enolase P06733 62 18 47,002 6.99 Cytoplasmic 
1402 Annexin A5 P08758 212 47 35,783 4.94 Unknown 
0805 
5503 
8702 
8705 
8706 
9503 
9504 
1401 
1701 

ATP synthase 
alpha chain, 

mitochondrial 
[Precursor] 

P25705 54 
103 
196 
215 
123 
62 
153 
124 
191 

20 
22 
36 
39 
26 
10 
27 
33 
40 

59,714 9.16 mitochondrial 
inner 

membrane 
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Table 3-10. (continued) 
0206 ATP synthase D 

chain, 
mitochondrial 

O75947 67 43 18,348 5.22 Mitochondrial

9008 ATP synthase E 
chain, 

mitochondrial 

P56385 76 76 7,797 9.34 Mitochondrial

9205 ATP synthase O 
subunit, 

mitochondrial 
[Precursor] 

P48047 121 
 

52 23,263 9.97 Mitochondrial 
matrix 

8102 
8103 

ATPase inhibitor, 
mitochondrial 

[Precursor] 

Q9UII2 60 
58 

33 
35 

12,241 9.34 Mitochondrial

0804 Calreticulin 
[Precursor] 

P27797 89 19 48,112 4.29 cytoplasmic 

2402 
2404 

Cathepsin D 
[Precursor] 

P07339 64 
70 

16 
18 

44,524 6.10 Lysosomal 

2605 Creatine kinase 
B-type 

P12277 107 27 42,617 5.34 Cytoplasmic 

7501 
7502 
8501 

Creatine kinase, 
ubiquitous 

mitochondrial 
[Precursor] 

P12532
 

106 
106 
53 

26 
26 
16 

47,007 8.60 Mitochondrial 
inner 

membrane; 
outer side 

7301 CTD small 
phosphatase-like 

protein 

O15194 57 13 37,851 8.95 Nuclear 

3603 cyclic-nucleotide 
3'-

phosphodiesterase 

P09543 58 12 47,579 8.90 Mitochondrial 

4004 Cytochrome c 
oxidase 

polypeptide VIb 

P14854 55 47 10,055 6.78 Mitochondrial

6803 
6804 

Delta-1-pyrroline-
5-carboxylate 

dehydrogenase, 
mitochondrial 

[Precursor] 

P30038
 

73 
181 

7 
33 

61,713 8.25 Mitochondrial 
matrix 

5804 
6801 
6802 

Dihydrolipoyl 
dehydrogenase, 
mitochondrial 

[Precursor] 

P09622 103 
54 
64 

24 
11 
15 

54,116 7.59 Mitochondrial 
matrix 
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Table 3-10. (continued) 
4710 Dihydrolipoyllysi

ne-residue 
succinyltransferas
e component of 2-

oxoglutarate 
dehydrogenase 

complex, 
mitochondrial 

[Precursor] 

P36957 131 25 48,609 9.01 Mitochondrial

3806 Dihydropyrimidin
ase related 
protein-2 

Q16555 76 16 62,255 5.95 Cytoplasmic 

3506 DNA 
topoisomerase I, 
mitochondrial 

[Precursor] 

Q969P6 54 18 69,828 9.46 Mitochondrial

4402 Dolichyl-
phosphate beta-

glucosyltransferas
e 

Q9Y673 56 10 36,922 9.34 Endoplasmic 
reticulum 

7401 Electron transfer 
flavoprotein 

alpha-subunit, 
mitochondrial 

[Precursor] 

P13804 60 17 35,058 8.62 Mitochondrial 
matrix 

8304 Electron transfer 
flavoprotein beta-

subunit 

P38117 86 32 27,826 8.24 Mitochondrial 
matrix 

5602 
5604 
5605 

Elongation factor 
Tu, mitochondrial 

[Precursor] 

P49411 80 
156 
215 

20 
35 
41 

49,510 7.26 Mitochondrial

4303 Endoplasmic 
reticulum protein 

ERp29 
[Precursor] 

P30040 84 33 28,975 6.77 Endoplasmic 
reticulum 

0802 Endoplasmin 
[Precursor] 

P14625 130 22 92,411 4.76 ER 

0403 Fatty aldehyde 
dehydrogenase 

P51648 53 12 54,813 7.98 cytoplasmic 

7105 Fibroblast growth 
factor-20 

Q9NP95 53 22 23,484 8.89 Secreted 

3203 Fibroblast growth 
factor-8 

[Precursor] 

P55075 53 20 26,509 10.4
4 

Unknown 
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Table 3-10. (continued) 
8502 Fructose-

bisphosphate 
aldolase  

P04075 53 8 39,264 8.39 Mitochondrial

6501 Fructose-
bisphosphate 

aldolase C 

P09972 124 32 39,300 6.46 Mitochondrial

6602 
6603 
7601 
7602 

Fumarate 
hydratase, 

mitochondrial 
[Precursor] 

P07954 63 
52 
167 
167 

18 
12 
30 
30 

54,602 8.85 Mitochondrial 
and 

cytoplasmic 

1101 Galectin-1 P09382 53 38 14,575 5.34 Unknown 
5702 
5703 
5704 
7701 

Glutamate 
dehydrogenase 1, 

mitochondrial 
[Precursor] 

P00367 75 
134 
68 
135 

18 
28 
13 
29 

61,359 7.66 Mitochondrial 
matrix 

6701 
6703 

Glutamate 
dehydrogenase 2, 

mitochondrial 
[Precursor] 

P49448 52 
114 

10 
20 

61,395 8.63 Mitochondrial 
matrix 

5805 
5809 

Glycerol-3-
phosphate 

dehydrogenase, 
mitochondrial 

[Precursor] 

P43304 90 
33 

16 
11 

80,764 6.98 Mitochondrial

9305 GTP:AMP 
phosphotransferas
e mitochondrial 

Q9UIJ7 131 48 25,419 9.16 Mitochondrial 
matrix 

4005 Guanine 
nucleotide-

binding protein 
G(I)/G(S)/G(O) 

gamma-5 subunit 

P63218 48 30 7,314 9.90 Mitochondrial

1504 
3502 

Guanine 
nucleotide-

binding protein 
G(I)/G(S)/G(T) 
beta subunit 1 

P62873 53 
53 

12 
12 

37,353 5.60 Mitochondrial

1403 Guanine 
nucleotide-

binding protein 
G(I)/G(S)/G(T) 
beta subunit 2 

P62879 61 17 37,307 5.60 Mitochondrial

1501 Heat shock 
cognate 71 kDa 

protein 

P11142 76 10 70,898 7.80 Cytoplasmic 
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Table 3-10. (continued) 
9004 heat shock protein 

(10 kDa), 
mitochondrial 

Q04984 95 59 10,794 8.91 Mitochondrial 
matrix 

1801 
2801 
2802 
2803 
2808 

heat shock protein 
(60 kDa), 

mitochondrial 
[Precursor] 

P10809
 
 
 
 

79 
199 
82 
129 
199 

16 
34 
18 
22 
26 

61,016 5.70 Mitochondrial 
matrix 

7004 heat shock 
protein1 (10 

kDa), 
mitochondrial 

P61604 87 39 10,794 8.91 Mitochondrial 
matrix 

1901 Huntingtin 
interacting 
protein 1 

O00291 53 7 11540
4 

5.20 Cytoplasmic 

4807 Hypothetical 
protein 

KIAA0555 
 

Q96AA
8 

58 7 94,875 5.88 Unknown 

0107 hypothetical 
RNA-binding 

protein 

P42696 54 21 25,187 9.75 nuclear 

9007 Hypoxia-
inducible gene 

protein 2 

Q9Y5L2 52 31 6,946 6.72 Unknown 

3604 Inositol 1,4,5-
trisphosphate 

receptor type 1 

Q14643 73 6 31394
5 

7.20 Endoplasmic 
reticulum 

8604 Isocitrate 
dehydrogenase 

[NADP], 
mitochondrial 

[Precursor] 

P48735 52 16 50,877 8.88 Mitochondrial

5701 Lipoamide 
acyltransferase 
component of 

branched-chain 
alpha-keto acid 
dehydrogenase 

complex, 
mitochondrial 

[Precursor] 

P11182 122 26 53,453 8.71 Mitochondrial 
matrix 
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Table 3-10. (continued) 
6805 Methylcrotonoyl-

CoA carboxylase 
beta chain, 

mitochondrial 
[Precursor] 

Q9HCC
0 

112 20 61,294 7.57 Mitochondrial 
matrix 

7801 
8801 
8802 

Methylmalonate-
semialdehyde 
dehydrogenase 

[acylating], 
mitochondrial 

[Precursor] 

Q02252 93 
57 
109 

15 
10 
21 

57,803 8.72 Mitochondrial

5504 Mitochondrial 
28S ribosomal 

protein S22 

P82650 159 34 41,254 7.70 Mitochondrial

5501 Mitochondrial 
import inner 
membrane 
translocase 

subunit TIM9 A 

Q9Y5J7 52 47 10,371 6.71 Mitochondrial 
inner 

membrane 

2506 Myosin Id O94832 55 12 78740 9.58 Unknown 
7102 NADH-

ubiquinone 
oxidoreductase 13 

kDa-A subunit, 
mitochondrial 

[Precursor] 
 

O75380 53 34 13,703 8.59 inner 
membrane 

3102 NADH-
ubiquinone 

oxidoreductase 13 
kDa-B subunit 

Q16718 68 40 13,327 5.70 Mitochondrial 
inner 

membrane 

1204 NADH-
ubiquinone 

oxidoreductase 23 
kDa subunit, 

mitochondrial 
[Precursor] 

P80269 105 23 23,690 6.00 mitochondrial 
inner 

membrane 

4201 NADH-
ubiquinone 

oxidoreductase 24 
kDa subunit, 

mitochondrial 
[Precursor] 

P19404 62 27 27,374 8.22 mitochondrial 
inner 

membrane 
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Table 3-10. (continued) 
2302 NADH-

ubiquinone 
oxidoreductase 30 

kDa subunit, 
mitochondrial 

[Precursor] 
 

O75489 52 16 30,223 6.69 Mitochondrial 
inner 

membrane 

5603 NADH-
ubiquinone 

oxidoreductase 39 
kDa subunit, 

mitochondrial 
[Precursor] 

Q16795 52 14 42,483 9.81 Mitochondrial 
matrix 

8601 NADH-
ubiquinone 

oxidoreductase 51 
kDa subunit, 

mitochondrial 
[Precursor] 

P49821 57 11 50,817 8.29 Matrix side of 
the 

mitochondrial 
inner 

membrane. 

2902 NADH-
ubiquinone 

oxidoreductase 75 
kDa subunit, 

mitochondrial 
[Precursor] 

P28331 175 27 79,523 5.80 mitochondrial 
inner 

membrane 

9006 NADH-
ubiquinone 

oxidoreductase 9 
kDa subunit, 

mitochondrial 
[Precursor] 

P56181 64 24 11,933 9.72 Mitochondrial 
inner 

membrane; 
matrix side 

9201 NADH-
ubiquinone 

oxidoreductase 
PDSW subunit 

O96000 67 26 20,632 8.77 Mitochondrial 
inner 

membrane; 
matrix side 

9303 NipSnap1 protein Q9BPW
8 

91 22 33,289 9.35 Unknown 

3505 Nucleoprotein 
TPR 

P12270 54 6 26544
1 

5.1 nuclear pore 
complex 

6103 Origin 
recognition 

complex subunit 
6 

Q9Y5N
6 

52 18 28,089 8.91 Nuclear 
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Table 3-10. (continued) 
8108 Peptidyl-prolyl 

cis-trans 
isomerase A 

P05092 67 26 17,870 7.82 Cytoplasmic 

9103 Peptidyl-prolyl 
cis-trans 

isomerase B 
[Precursor] 

P23284 103 39 22,728 9.33 Endoplasmic 
reticulum 

3201 Peroxiredoxin 2 P32119 67 27 21,878 5.66 Cytoplasmic 
4401 Peroxiredoxin 6 P30041 51 20 24,888 6.02 Cytoplasmic 
7101 
8201 

Phosphatidyletha
nolamine-binding 

protein 

P30086 55 
75 

27 
37 

20,913 7.42 Cytoplasmic 

3304 Potential 
phospholipid-
transporting 
ATPase IIA 

O75110 56 7 11850
6 

8.00 Integral 
membrane 

protein 

2403 
3301 
3303 

Prohibitin P35232 152 
53 
59 

45 
12 
15 

29,786 5.57 Cytoplasmic 

0602 
0803 

Protein disulfide-
isomerase 
[Precursor] 

P07237 65 
87 

15 
21 

57,081 4.76 Endoplasmic 
reticulum 

3809 
3901 
4803 

Protein disulfide-
isomerase A3 
[Precursor] 

P30101 115 
77 
93 

25 
17 
20 

56,747 5.98 Endoplasmic 
reticulum 

0501 Protein 
NipSnap3A 

Q9UFN
0 

53 19 28,449 9.21 Unknown 

9102 Putative RNA-
binding protein 3 

P98179 64 26 17,160 8.86 Mitochondrial

5501 Pyruvate 
dehydrogenase 
E1 component 
alpha subunit, 
somatic form, 
mitochondrial 

[Precursor] 

P08559 133 26 43,268 8.35 Mitochondrial 
matrix 

3401 Pyruvate 
dehydrogenase 
E1 component 
beta subunit, 

mitochondrial 
[Precursor] 

P11177 53 25 3,1949 6.20 Mitochondrial 
matrix 
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Table 3-10. (continued) 
4709 Pyruvate 

dehydrogenase 
protein X 

component, 
mitochondrial 

[Precursor] 

O00330 67 14 54,089 8.80 Mitochondrial 
matrix 

2508 
3302 

Ras-related 
protein Rab-17 

Q9H0T7 53 
57 

16 
29 

23,460 7.70 Mitochondrial

6301 Ras-related 
protein Rab-39A 

Q14964 52 22 24,854 6.90 Mitochondrial

1201 Rho GDP-
dissociation 
inhibitor 1 

P52565 83 29 23,195 5.02 Cytoplasmic 

8106 Single-stranded 
DNA-binding 

protein, 
mitochondrial 

[Precursor] 

Q04837 65 45 17,870 9.59 Mitochondrial

1104 
1202 

Sorcin P30626 97 
117 

37 
31 

21,662 5.32 Cytoplasmic 

5301 SSX5 protein O60225 53 20 21,615 9.45 Unknown 
2804 
3801 
3803 

Stress-70 protein, 
mitochondrial 

[Precursor] 

P38646 53 
229 
252 

12 
32 
38 

73,635 5.87 Mitochondrial

9302 Succinate 
dehydrogenase 
[ubiquinone] 
iron-sulfur 

protein, 
mitochondrial 

[Precursor] 

P21912 62 27 31,609 9.03 Mitochondrial 
inner 

membrane 

4804 
4805 
5801 

Succinyl-CoA:3-
ketoacid-

coenzyme A 
transferase 1, 
mitochondrial 

[Precursor] 

P55809 67 
87 
54 

10 
21 
14 

56,112 7.14 Mitochondrial 
matrix 

6202 Superoxide 
dismutase [Mn], 
mitochondrial 

[Precursor] 

P04179 58 11 24,707 8.35 Mitochondrial 
matrix 

4502 
5505 

Synaptotagmin-1 P21579 61 
95 

16 
23 

47,543 8.26 Synaptic 
vesicles and 
chromaffin 

granules 
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Table 3-10. (continued) 
4601 Transmembrane 

glycoprotein 
NMB [Precursor] 

Q14956 58 5 62,603 6.17 Type I 
membrane 

protein 
 

4708 Tryptophan 5-
hydroxylase 1 

P17752 59 8 50,972 6.97 Mitochondrial

0701 
1404 
1406 

Tubulin beta-2 
chain 

P07437 72 
54 
63 

13 
9 
15 

49,727 4.75 Unknown 

0402 Tubulin beta-4q 
chain 

Q99867 64 14 48,403 5.11 Unknown 

5203 
5206 
5208 

Ubiquinol-
cytochrome c 

reductase iron-
sulfur subunit, 
mitochondrial 

[Precursor] 

P47985 83 
104 
52 

17 
34 
11 

29,633 8.55 Mitochondrial 
inner 

membrane 

8602 Ubiquinol-
cytochrome-c 

reductase 
complex core 

protein 2, 
mitochondrial 

[Precursor] 

P22695 79 23 48,413 8.74 Mitochondrial 
inner 

membrane; 
matrix side 

3602 Ubiquinol-
cytochrome-c 

reductase 
complex core 

protein I, 
mitochondrial 

[Precursor] 

P31930 105 22 52,585 5.94 Mitochondrial 
inner 

membrane 

2303 Ubiquitin 
carboxyl-terminal 

hydrolase 
isozyme L1 

P09936 72 31 24,808 5.33 Cytoplasmic 

2807 
3805 

Vacuolar ATP 
synthase catalytic 

subunit A, 
ubiquitous 

isoform 

P38606 186 
67 

17 
14 

68260 5.35 Mitochondrial

7304 Vacuolar ATP 
synthase subunit 

E 

P36543 56 24 26,129 7.71 Unknown 
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Table 3-10. (continued) 
5302 
5401 
6401 
8403 
9401 

Voltage-
dependent anion-
selective channel 

protein 1 

P21796 61 
88 
102 
77 
139 

19 
30 
31 
25 
30 

30,623 8.63 Outer 
membrane of 
mitochondria 
and plasma 
membrane 

5402 
6403 
6404 
8402 

Voltage-
dependent anion-
selective channel 

protein 2 

P45880 83 
59 
62 
84 

22 
20 
17 
23 

38,069 6.32 Outer 
mitochondrial 

membrane 

2104 Wilms' tumor 1-
associating 

protein 

Q15007 60 11 44,244 5.20 Nuclear 

5802 Zinc finger 
protein 169 

Q14929 54 11 57,615 9.61 Nuclear 
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Table 3-11. Proteins with significant alterations in AD brain (Bold proteins are encoded 

by mitochondrial DNA) 
 

Protein name Accession
Number 

P 
Value

Ratio of 
expression 

(AD/Control)

Subcellular 
Location  

Calreticulin 
[Precursor] 

P27797 0.03 3.2 cytoplasmic 

CTD small 
phosphatase-like 

protein 

O15194 0.02 0.58 Nuclear 

Delta-1-pyrroline-5-
carboxylate 

dehydrogenase, 
mitochondrial 

[Precursor] 

P30038 0.01 0.18 Mitochondrial matrix 

Fumarate hydratase, 
mitochondrial 

[Precursor] 

P07954 0.02 0.47 Mitochondrial and 
cytoplasmic 

Methylmalonate-
semialdehyde 
dehydrogenase 

[acylating], 
mitochondrial 

[Precursor] 

Q02252 0.02 0.52 Mitochondrial 

NADH-ubiquinone 
oxidoreductase 13 

kDa-B subunit 

Q16718 0.01 0.71 mitochondrial inner 
membrane 

Peroxiredoxin 2 P32119 0.05 0.3 Cytoplasmic 
Prohibitin P35232 0.01 2.17 cytoplasmic 

Protein disulfide-
isomerase A3 
[Precursor] 

P30101 0.01 0.28 Endoplasmic reticulum 

Ubiquinol-
cytochrome c 

reductase iron-sulfur 
subunit, 

mitochondrial 
[Precursor] 

P47985 0.03 0.47 mitochondrial inner 
membrane 
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Figure 3-25.  A representative 2-dimensional gel with 500 µg mitochondrial protein 
loaded.  8 – 16 % SDS gel was stained by Sypro Ruby and the pI of the IPG strip was 
from 3 to 10 (nonlinear). 
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Figure 3-26.  A representative MALDI / TOF mass spectrum.  Each peak represents a 
unique peptide 
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Figure 3-27.  The probability based Mowse score. Protein scores greater than 52 were 
considered significant. 
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Figure 3-28. Proteins from the mitochondrial fraction classified by subcellular locations 
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Figure 3-29. Mitochondrial proteins classified by cellular function 
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Figure 3-30. Western blots of VDAC and CNPase.  No significant difference was 
observed in Western blots for both of proteins, which were consistent with what we got 
from 2D gel analysis. * p < 0.05  
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CHAPTER FOUR 

 

Discussion 

 

4.1 Increased oxidative damage in nuclear and mitochondrial DNA in late stage 

Alzheimer’s disease 

Oxidative stress to neurons may play an important role in the pathogenesis of AD 

(Marletta 1993; Lyras et al. 1997; Markesbery 1997; Marcus et al. 1998; Markesbery and 

Lovell 1998; Markesbery and Carney 1999; Martin 1999; Lovell et al. 2000, 2001).  This 

increased oxidative damage includes elevated levels of oxidized DNA bases (Mecocci et 

al. 1994; Gabbita et al. 1998; Wang et al. 2005; Wang et al. 2006), lipid peroxidation 

(Lovell et al. 1995; Markesbery and Lovell 1998), and protein oxidation in AD brain 

(Butterfield et al. 2003) and increased lipid oxidation in ventricular CSF (Lovell et al. 

1997; Montine et al. 2001, 2002).  Because of the critical role of DNA in cellular 

function, oxidative damage to DNA may be one of the most important factors in neuron 

degeneration in AD. mtDNA may be more easily oxidized than nDNA due to its 

proximity to free radical species and the lack of histone protection. 

This study is the first to use GC/MS-SIM to quantify multiple oxidized base 

adducts associated with mtDNA damage in LAD brain.  Because of the large amounts of 

tissue required to isolate sufficient amounts of mtDNA for GC/MS-SIM, our results 

likely reflect a global measure of DNA oxidation from neurons and glia.  Although there 

is increased astrocytosis in the brain in AD, Nunomura et al. (1999) showed a significant 

increase in 8-hydroxyguanine immunoreactivity in neuron cytoplasm in AD hippocampal 

neurons, but little to no reactivity in glia, suggesting that DNA oxidation is 

predominantly associated with neurons.  

To verify that extracted mitochondria were pure, representative samples were 

analyzed by electron microscopy and Western blot analysis.  Both showed the 

mitochondria isolated were 95% pure after centrifugation through two Percoll gradients. 

PCR amplification of APOE, a gene coded by nDNA, showed that mtDNA was not 
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contaminated by nDNA.  A previous study (Mecocci et al. 1994) demonstrated elevated 

8-hydroxyguanisine in AD mtDNA; however, this is the first study to measure multiple 

base adducts and provide a more comprehensive measure of DNA oxidation. Although 8-

hydroxyguanine is the predominate marker of oxidative damage, our results indicate 

several other base adducts were significantly increased in nDNA and mtDNA of LAD 

patients compared to age-matched controls subjects. 

GC/MS-SIM is a highly selective and sensitive method that can monitor a wide 

range of bases simultaneously and unequivocally in a single run. Detection limits can 

approach 5 fmol (Halliwell and Dizdaroglu 1992), whereas the detection limit of HPLC-

ECD is about 20 fmol.  The major disadvantage in the use of GC/MS-SIM is the potential 

for artifactual oxidation during hydrolysis and derivatization (Douki et al. 1996).  

However, under proper processing, formic acid hydrolysis and derivatization do not 

induce artifacts (Dizdaroglu 1998).  In our study, we excluded oxygen during these two 

steps, and used 8-hydroxyquinoline as an antioxidant to prevent artifactual DNA 

oxidation during extraction.   

During DNA isolation, Na2EDTA was added to complex trace metals that could 

catalyze oxidation.  Prolonged PMIs could also contribute to artifactual oxidation and, in 

most other studies, tissue samples with PMIs longer than 6 hr were used. In contrast, we 

used brain specimens with short PMI (2.9 ± 0.2 hr for control and 3.3 ± 0.2 hr for LAD). 

Calculation of correlation coefficients between PMI and levels of oxidized bases showed 

no significant correlation for any of the oxidized base adducts (r < 0.5).  

In order to verify that phenol extraction does not induce artifactual oxidation, the 

NaI 'salting out' method was used to isolate nDNA and mtDNA from representative 

tissues. Our results show that levels of DNA oxidation from representative brain 

specimens processed using the two methods are similar.  Levels of 8-hydroxyguanine 

showed no significant difference between these two methods, although there was a 

decrease in fapyguanine and fapyadenine of nDNA and fapyadenine of mtDNA samples 

and an increase in 5-hydroxycytosine of mtDNA using NaI precipitation.  
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One concern in DNA isolation using phenol/chloroform extraction was the 

artifactual oxidation caused during isolation.  Comparison of levels of base adducts in 

DNA isolated using either NaI precipitation or phenol/chloroform extraction suggests that 

phenol/chloroform extraction did not lead to artifactual oxidation.  Therefore, all DNA 

samples used for statistical analyses in our studies were isolated using phenol/chloroform 

extraction. 

Our data show significantly increased oxidative DNA damage in LAD subjects 

compared to age-matched controls with levels of damaged bases in mtDNA 

approximately 10-fold those of nDNA (2.8 < ratio of mtDNA/nDNA < 23.8).  

Comparison of mtDNA and nDNA oxidative damage for each oxidized base showed 

statistically significantly increased oxidation in mtDNA for both LAD and control 

subjects for all base adducts analyzed. There were no significant differences in the ratio 

of mtDNA/nDNA oxidized bases between LAD and control subjects, which may be due 

to variability in the degree of oxidation between mitochondria and nuclei in LAD and 

aged control subjects.  

In order to compare levels of oxidative damage in nDNA and mtDNA in the other 

way, we list oxidative levels in terms of lesions/106 total DNA bases, ratio of 

lesion/unmodified DNA base, percentage of lesions, and nmol/mg of DNA (Table 3-5).  

Due to the big size difference between nuclear genome (3.3 billion bp) and mitochondrial 

genome (16.6 kbp), the absolute value of oxidized bases in each nDNA molecule is much 

larger than in mtDNA.  However, mtDNA have much higher mutation rate which is more 

important in protein synthesis (2.8 < ratio of mtDNA/nDNA < 23.8).  nDNA has ~10% 

protein coding genes, whereas 100% mtDNA are useful genes in protein synthesis.  

Considering above two facts, mutations in mtDNA cause far worse consequences than 

mutations in nDNA.  

The absolute level of 8-hydroxyguanine is the highest of the damaged bases in 

both control and LAD subjects, which is consistent with previous studies (Mecocci et al. 

1993, 1994; Lyras et al. 1997; Gabbita et al. 1998; Birincioglu et al. 2003), suggesting 

that guanine is the DNA base most vulnerable to oxidative damage (Aruoma et al. 1989; 
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Steenken 1989; Floyd et al. 1990; Halliwell and Dizdaroglu 1992; Gabbita et al. 1998; 

Dizdaroglu et al. 2002; Birincioglu et al. 2003; Musiek et al. 2004). In nDNA and 

mtDNA from temporal lobe, five of the six oxidized bases (except fapyguanine) were 

increased significantly in LAD.  In mtDNA from parietal lobe, statistically significant 

increases in levels of 8-hydroxyguanine, fapyguanine, 5-hydroxyuracil, 5-

hydroxycytosine, and fapyadenine were observed.  

For different DNA bases, the variation in levels of oxidation may be due to their 

different structures and redox potentials (Steenken 1989).  This is one reason why all 

adducts are not elevated in the same proportion, even in the same brain region. Also it is 

possible that a small variable amount of white matter was present in some specimens, 

which might alter the cellular makeup of the specimens.  Our results show that there is 

more oxidative damage in neocortical regions in AD brain than cerebellum, which has 

minimal pathologic changes in AD and is consistent with previous studies (Mecocci et al. 

1994; Hensley et al. 1995; Lovell et al. 1995; Lyras et al. 1997; Gabbita et al. 1998). The 

variation in levels of DNA damage in brain regions may be due to differences in trace 

metals, antioxidant levels, and repair mechanisms (Xie et al. 1996; Cornett et al. 1998; 

Lovell et al. 1998, 1999, 2002). The levels of oxidized bases per million DNA bases in 

our study are consistent with previous studies using HPLC (Mecocci et al. 1993, 1994) 

and GC/MS (Lyras et al. 1997; Dizdaroglu 1998; Dizdaroglu et al. 2002; Birincioglu et al. 

2003).  

High levels of free radical damage in mitochondria may cause impaired 

mitochondrial function, which may result in cellular dysfunction in neurons. Previous 

studies (Lustbader et al. 2004) demonstrated a link between Aβ and mitochondrial 

toxicity through Aβ binding to alcohol dehydrogenase. This interaction in mitochondria 

promotes increased ROS formation, mitochondrial dysfunction, and neuron death 

(Wallace 1992; Markesbery 1997).  Thus, it is possible that the increase in Aβ in AD 

enhances mtDNA oxidation, which also might cause variable results from region to 

region.  Oxidative damage to DNA may accelerate protein crosslinking and aggregation, 
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such as beta amyloid and tau protein (Dyrks et al. 1992, 1993; Butterfield et al. 1999; 

Varadarajan et al. 2000; Butterfield 2003). 

The current study shows that the neuron degeneration in AD may be associated 

with oxidative damage to both nDNA and mtDNA, with more pronounced damage 

accumulating in mtDNA.  In contrast to nDNA that contains ~10% protein coding genes, 

entire mtDNA encode 37 genes exclusively involved in respiratory chain.  Accumulation 

of mitochondrial mutations could lead to energy deficiencies and eventually neuron death 

in the brain in AD. 
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4.2 Increased oxidative damage in nuclear and mitochondrial DNA in Mild 

Cognitive Impairment 

This is the first study to quantify multiple oxidized DNA base adducts in MCI 

brain.  Although the DNA in this study was isolated from a mixture of glia and neurons, 

previous immunohistochemical studies show that only neurons are immunopositive for 8-

hydroxyguanine (Hirai et al. 2001; Aliyev et al. 2005), suggesting that the levels of 

oxidized bases which we measured represent neuronal DNA oxidation.  

Our data showed significantly (p < 0.05) increased levels of all base adducts 

analyzed in mtDNA compared with nDNA for both MCI and control subjects.  

Comparison of MCI and control subjects shows significantly increased levels of oxidized 

base adducts in MCI subjects compared with control subjects in several brain regions.  

The absolute level of 8-hydroxyguanine was the highest among the five adducts analyzed, 

which is consistent with previous studies of LAD brain (Mecocci et al. 1993, 1994; Lyras 

et al. 1997; Gabbita et al. 1998; Birincioglu et al. 2003; Wang et al. 2005).  Guanine is 

particularly vulnerable to oxidation by hydroxyl radicals because of its high electron 

density (Steenken 1989). Our data show significantly elevated 8-hydroxyguanine in 

nDNA from MCI frontal and parietal lobe but not temporal lobe or cerebellum. These 

data are consistent with our previous study of late-stage AD subjects that showed 

significantly elevated 8-hydroxyguanine in frontal and parietal lobe DNA but not 

temporal lobe (Wang et al. 2005).  

In contrast to our study of LAD subjects that showed significantly elevated 8-

hydroxyguanine in mtDNA from parietal and temporal lobe, our current data show a 

significant elevation in mtDNA from temporal lobe only.  Our current data show no 

significant differences in levels of fapyguanine in nDNA or mtDNA between MCI and 

control subjects which is in contrast to our previous study of LAD subjects that showed a 

significant elevation of fapyguanine in mtDNA from parietal lobe and cerebellum (Wang 

et al. 2005). 

Free radical attack of C8 of adenine leads to 8-hydroxyadenine radicals that result 

in 8-hydroxyadenine and fapyadenine in the presence and absence of oxygen, 
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respectively (Steenken 1989; Breen and Murphy 1995; Dizdaroglu et al. 2002). Our 

results show significantly elevated 8-hydroxyadenine in nDNA from frontal, temporal 

and parietal lobes and significant increases in fapyadenine in both nDNA and mtDNA 

from frontal, temporal and parietal lobes of MCI subjects. The significant elevation of 

fapyadenine raises the question of a hypoxic environment being present in MCI. Hypoxia 

can also increase the risk of AD (Tatemichi et al. 1994; Kokmen et al. 1996; Higashide 

et al. 2004; Smith et al. 2004). In a particular brain region, electrophilic free radicals have 

different reaction rate constants with different bases (Steenken 1989) which may be one 

reason why absolute levels of the five adducts studied here varied between brain regions 

in the same subject.  

Statistical analysis using two-way ANOVA showed that 8-hydroxyguanine, 

fapyadenine and 5-hydroxycytosine were significantly elevated in mtDNA but not nDNA 

from neocortical regions compared with cerebellum in MCI subjects.  In controls there 

were no significant differences in levels of any of the base adducts studied in mtDNA or 

nDNA from neocortical regions compared with cerebellum.  These observations are 

consistent with minimal pathological changes in cerebellum in normal aging brain 

(Mecocci et al. 1994; Hensley et al. 1995; Lovell et al. 1995; Lyras et al. 1997; Gabbita 

et al. 1998) and with our previous studies of DNA adducts in LAD brain (Gabbita et al. 

1998; Wang et al. 2005).  Neocortex and cerebellum have different levels of trace metals, 

antioxidants and DNA repair capacities (Xie et al. 1996; Cornett et al. 1998; Lovell et al. 

1998, 1999, 2002; Dizdaroglu et al. 2002; Hashiguchi et al. 2004; Stuart et al. 2005) 

which may contribute to the different yields and patterns of DNA modification observed 

here.  

Comparison of levels of oxidized bases and the presence of Apolipoprotein-E4 

(APOE-4) alleles showed no significant differences in levels of oxidized bases between 

subjects carrying an APOE-4 allele and subjects who carried no APOE-4 alleles (Table 3-

6). 

In this study, we used brain specimens with short post-mortem intervals 

(3.0 ± 0.4 h for control subjects and 4.0 ± 0.9 h for MCI subjects), which is important 
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because prolonged post-mortem interval may lead to artifactual oxidation.  During DNA 

isolation, Na2EDTA was added following homogenization to chelate trace metals that 

may catalyze oxidative reactions (Xie et al. 1996; Cornett et al. 1998; Lovell et al. 1998, 

1999, 2002).  In addition, 8-hydroxyquinoline was added to phenol to prevent artifactual 

oxidation during DNA extraction.  

To limit the possibility of artifactual oxidation during processing of DNA for 

GC/MS-SIM, tubes containing DNA samples were fully evacuated during formic acid 

hydrolysis and N,O-bis(trimethylsilyl)trifluoroacetamide derivatization which was 

previously shown to limit artifactual oxidation during DNA derivatization (Dizdaroglu 

1998).  Levels of oxidative damage that we measured are similar to previous studies of 

DNA oxidation in AD brain using HPLC (Mecocci et al. 1993, 1994) and gas 

chromatography/mass spectrometry (Lyras et al. 1997; Dizdaroglu 1998; Dizdaroglu et al. 

2002; Birincioglu et al. 2003; Wang et al. 2005) 

Compared with our previous study of LAD (Wang et al. 2005), these data show 

that levels of oxidized bases, especially 8-hydroxyguanine, 8-hydroxyadenine and 

fapyguanine, were not significantly different in MCI compared with LAD subjects.  

These results suggest that both nDNA and mtDNA are oxidized early in the progression 

of MCI to advanced AD.  Due to the crucial role DNA plays in cells, high levels of 

oxidation, particularly early in the progression of AD, may result in a decline of normal 

cell function through altered transcription, changes in protein expression or cross-linking 

with proteins. In all regions of both control and MCI subjects, there is significantly more 

mtDNA damage than in nDNA (p < 0.02).  mtDNA is more susceptible to oxidation 

because of the proximity to ROS, lack of protective histones and relatively limited 

antioxidant capacities.  Repair of 8-hydroxyguanine through base excision repair (BER) 

has been demonstrated in mitochondria (Stuart et al. 2005).  Although there have been no 

studies of BER in mitochondria from AD, MCI or aged control subjects, previous studies 

showed decreased BER capacity in mitochondria of aged rats (Chen et al. 2002; 

Englander et al. 2002). Our previous study of AD and control subjects showed decreased 

BER in nuclei isolated from AD brain (Lovell et al. 2000b).  However, we did not 
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compare BER activity in mitochondria from AD subjects but would anticipate that 

mitochondrial BER may be diminished consistent with decreased nuclear activity.  It is 

possible that the combination of diminished repair capacity and accumulated DNA 

damage in nuclei and mitochondria may lead to neuron death (Wallace 1992; Hashiguchi 

et al. 2004; Stuart et al. 2005). 

In summary, our data show elevated levels of oxidized base adducts in MCI 

compared with age-matched control subjects that are similar to levels observed in LAD 

subjects, which suggests that the oxidative damage to nDNA and particularly mtDNA 

occurs early in the course of AD and may contribute to the pathology of 

neurodegeneration. 
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4.3 Increased oxidative damage in nuclear DNA in APP/PS1 transgenic mice  

This is the first study to quantify oxidized DNA base adducts in APP/PS1 mice 

with GC/MS-SIM.  Our results show significantly increased levels of 8-hydroxyguanine 

in nDNA of 12 month old APP/PS1 mice compared to wild type mice.  The absolute 

level of 8-hydroxyguanine is consistently higher than 8-hydroxyadenine, which is 

consistent with previous AD studies (Mecocci et al. 1993; Mecocci et al. 1994; Lyras et 

al. 1997; Gabbita et al. 1998; Birincioglu et al. 2003; Wang et al. 2005; Wang et al. 2006).  

Due to the electrophilic property, guanine is vulnerable to be oxidized by ROS.  In the 

oxidative condition, the oxidation is in favor of the production of 8-hydroxyguanine 

(Steenken 1989a).  This significant elevation of the levels of 8-hydroxyguanine is 

consistent with the previous studies which showed the early-onset increased Aβ 

production in APP/PS1 transgenic mice (Borchelt et al. 1996; Duff et al. 1996; Borchelt 

et al. 1997).  The levels of oxidized base adducts are comparable to previous AD studies 

using HPLC (Mecocci et al. 1993; Mecocci et al. 1994) and GC/MS (Lyras et al. 1997; 

Dizdaroglu 1998; Dizdaroglu et al. 2002; Birincioglu et al. 2003; Wang et al. 2005; 

Wang et al. 2006).   

Our results also show a positive correlation between the amyloid plaque burden 

and levels of 8-hydroxyguanine in APP/PS1 mice (r = 0.90).  No positive correlation was 

observed between amyloid plaque burden and levels of 8-hydroxyadenine.   Previous 

studies suggest that Aβ may accelerate the generation of free radicals, which may 

increase oxidative damage in cells (Hensley et al. 1994; Markesbery 1997; Butterfield 

and Boyd-Kimball 2005).  Increasing evidence suggests that Aβ may cause  

mitochondrial dysfunction and apoptosis, and that normal mitochondrial respiration is 

diminished with Aβ and free radicals, such as nitric oxide (Casley et al. 2002; Reddy et al. 

2004).  Studies showed that PS1 alone did not induce amyloid pathology, while PS1 

coexpressing with APP showed the early onset deposition of Aβ (Shen et al. 1997). 

To avoid artifactual DNA oxidation during nDNA isolation and sample 

preparation before GC injection, Na2EDTA was added during tissue homogenization, and 

glass tubes were fully evacuated in the steps of formic acid hydrolysis and BSTFA 
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derivatization (Dizdaroglu 1998); (Xie et al. 1996; Cornett et al. 1998; Lovell et al. 1998; 

Lovell et al. 1999a; Lovell et al. 2002; Wang et al. 2005; Wang et al. 2006).   

DNA oxidation may accumulate without efficient DNA repair ability.  DNA 

damage may result in decline in normal cell functions through blocking transcription, 

changing protein expression, or cross-linking with proteins (Wallace 1992).  The 

increased early-onset Aβ deposition accelerates the free radical production and results in 

neuronal death because of the mitochondrial dysfunction (Reddy et al. 2004).   

In summary, our data show significantly elevated 8-hydroxyguanine in APP/PS1 

mice at the age of 12 month old, which is consistent with the increased Aβ production.  

This mouse model may provide an insight to study the mechanism of neuron death and 

pathology of AD.   
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4.4 Proteomic studies of mitochondria in Alzheimer’s disease 

This study is a comprehensive survey of mitochondrial proteins in AD brain, 

which may provide more information about mitochondrial dysfunction in 

neurodegenerative diseases.   

On each gel, ~650 protein spots were visualized with Sypro ruby staining.  Sypro 

ruby provided a wider dynamic range than silver staining and is more sensitive than 

Coomassie Blue Staining (Berggren et al. 2000).  On these gels, the majority of proteins 

were mid-sized proteins (10 kDa < M.W. < 90kDa).  This is consistent with previous 

studies that showed middle range molecular weight proteins dominated the mitochondrial 

proteome (Taylor et al. 2003).  

Among 176 differentially expressed spots, ~66% were mitochondrial, which 

represent 67 unique proteins.  The remaining spots mainly consisted of proteins from 

cytoplasm (13%), nuclei (3%), and ER (5%).  ~11% of the identified proteins were 

uncertain in localization.  The percentage of mitochondrial protein was higher than 

previous mitochondrial studies (~40%)  (Mootha et al. 2003; Fukada et al. 2004; Jiang et 

al. 2005), consistent with our Western blot charactering mitochondrial fraction using Oct-

1 immunochemistry. 

Based on different functions annotated by GeneBank and EXPASY, the 67 

mitochondrial proteins were classified into 11 categories (Taylor et al. 2003).  About half 

of mitochondrial proteins were enzymes involved in redox, TCA cycles, and the 

respiratory chain.  Results showed that the enzymes involved in TCA cycle were mainly 

in mitochondrial matrix which was consistent with a previous study (Wallace 1999).  The 

majority of enzymes function in respiratory chain and redox reactions and are located in 

the inner membrane of mitochondria, where the main components of enzyme complexes 

I-V are located (Wallace 1999).  ~20% of the identified mitochondrial proteins were 

involved in carbohydrate metabolism, lipid metabolism, nucleotide metabolism, and 

glycolysis.  13% of the proteins identified were signaling proteins, mainly isoforms and 

subunits of G protein, which function as modulators or transducers in various 

transmembrane signaling systems (Gao et al. 1987).  The targeting proteins identified 
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were mainly heat shock proteins, which facilitate folding of imported proteins.  Under 

stress conditions, they may prevent misfolding and promote refolding of proteins (Venner 

et al. 1990; Hansen et al. 2003).  VDAC1 (porin) and VDAC2 were also identified, which 

function to form channels allowing diffusion of small hydrophilic molecules in 

mitochondrial membranes (Yu et al. 1995). 

Due to the restrictions of 2D gel electrophoresis and staining methods, we can 

only quantify and identify proteins with high expression levels.  67 mitochondrial 

proteins out of ~2000 were identified, which represents a small percentage of total 

mitochondrial proteins.  This may be the reason why we only see 2 out of 13 

mitochondrial-encoded proteins in our study. 

Student’s t-test was applied to analyze the protein expression changes.  The 

abundance of 10 proteins was significantly altered.   They include 5 mitochondrial 

proteins, 3 cytoplasmic proteins, 1 ER protein, and 1 nuclear protein.  However, as no 

commercial antibodies were available, we used rabbit anti-VDAC and rabbit anti-CNPase 

for Western analysis.  No significant difference was observed in Western blots for both 

proteins, which were consistent with what we got from 2D gel analysis. 

NADH-ubiquinone oxidoreductase 13 kDa-B subunit, a mitochondrial-encoded 

subunit of complex I localized in the matrix side of the mitochondrial inner membrane, 

was decreased significantly in LAD brain.  The protein functions to transfer electrons 

from NADH to the respiratory chain.  In this process, ubiquinone is electron acceptor and 

is reduced to ubiquinol (Pata et al. 1997; Tensing et al. 1999).   Decreased expression of 

NADH-ubiquinone oxidoreductase 13 kDa-B subunit in mitochondrial complexes may 

reduce the capacity and efficiency of ATP synthesis in AD brain, which may cause 

neuron death because of the energy deficiency.   

Ubiquinol-cytochrome c reductase iron-sulfur subunit is also significantly 

decreased in AD brain, and is one mitochondrial-encoded subunit of complex III, which 

is located on the mitochondrial inner membrane.  It is involved in the respiratory chain 

which generates the electrochemical potential necessary to promote ATP synthesis 

(Nishikimi et al. 1990; Grimwood et al. 2004).  The electron transfer may be affected 
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because of the lower expression of ubiquinol-cytochrome c reductase iron-sulfur subunit.  

Lower electrochemical potentials may lead to ATP deficiencies for neurons in AD brain.  

Two aldehyde dehydrogenases (Delta-1-pyrroline-5-carboxylate dehydrogenase and 

Methylmalonate-semialdehyde dehydrogenase) were decreased in AD.   

Delta-1-pyrroline-5-carboxylate dehydrogenase is located in the mitochondrial 

matrix and catalyzes conversion of Delta-1-pyrroline-5-carboxylate to glutamate.  It is an 

interconnecting step between urea and TCA cycles.  The decreased expression was 

consistent with previous studies of mental retardation, and AD (Hu et al. 1996; Li et al. 

1997; Geraghty et al. 1998).  Glutamate is the major excitatory neurotransmitter.  Low 

expression of delta-1-pyrroline-5-carboxylate may disturb glutamate transport in neurons.  

Glutamate transporter alterations may affect the APP expression and calcium influx in 

neuronal cells, which may induce neuronal damage and memory loss in AD brain 

(Greenamyre et al. 1988; Li et al. 1997; Burbaeva et al. 2005).  

Methylmalonate-semialdehyde dehydrogenase is an enzyme which catalyzes the 

reaction of 2-methyl-3-oxopropanoate and NAD+ to propanoyl-CoA and NADH which is 

used in ATP generation through the electron transport chain.  It plays an important role in 

valine and pyrimidine metabolism (Chambliss et al. 2000).   

Fumarate hydratase is involved in the TCA cycle.  It catalyzes the conversion of 

fumarate to malate.  Defects in fumarate hydratase may cause the fumarase deficiency 

characterized by progressive encephalopathy, developmental delay, and cerebral atrophy.  

It also acts as a tumor suppressor (Coughlin et al. 1998; Tomlinson et al. 2002).  

Fumarase deficiency will cause the disorders of pyruvate metabolism and the oxygen – 

dependent energy production (Pithukpakorn 2005).  All the five enzymes discussed above 

are associated with mitochondrial energy production.  The decrease in these protein 

expressions in AD brain may cause the energy deficiency leading to neuron cell death.  

This study provides a proteome map of mitochondria in AD brain and several 

proteins with altered expression.  It also suggests that proteomic study in mitochondria 

may provide an insight to study the pathogenesis of neuron degeneration in Alzheimer’s 

disease.                                   Copyright © Jianquan Wang 2006 
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CHAPTER FIVE 

 

Conclusion 

 

In summary, oxidative stress plays a crucial role in the development of AD.  

Numerous studies show that the oxidation levels of DNA, protein, and lipids are 

increased in Alzheimer’s disease.  Mitochondria are the main energy source in eukaryotic 

cells, and are the primary sites for endogenous ROS generation.  Our studies suggest that 

mitochondrial dysfunction might be involved in the process of neuron degeneration in 

AD.   

In the LAD study, our data showed significantly increased oxidative DNA 

damage in LAD subjects compared to age-matched control subjects with levels of 

damaged bases in mtDNA approximately 10-fold those of nDNA (2.8 < ratio of 

mtDNA/nDNA < 23.8), which is consistent with the absence of histone protection and 

low level of repair capacity for mtDNA.  Results also showed that there was more 

oxidative damage in neocortical regions in LAD brain than cerebellum, which is 

consistent with the minimal pathologic changes in cerebellum in AD.  The level of 8-

hydroxyguanine is constantly higher than other base adducts, consistent with the lowest 

oxidation potential of guanine which is the most vulnerable to oxidative damage.  This 

study suggested that neuron degeneration in AD might be associated with oxidative 

damage to both nDNA and mtDNA, especially mtDNA.  Previous immunohistochemical 

studies show that only neurons are immunopositive for 8-hydroxyguanine, suggesting 

that the levels of oxidized bases which we measured represent neuronal DNA oxidation. 

However, it is not clear whether these changes in LAD are primary or secondary to 

neurodegeneration. 

In order to see when the oxidation begins, we carried out a study of MCI and age-

matched control subjects.  Statistical analysis showed that 8-hydroxyguanine, 

fapyadenine and 5-hydroxycytosine were significantly elevated in mtDNA but not nDNA 

from neocortical regions compared with cerebellum in MCI subjects.  Compared to the 
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LAD study, the levels of oxidized base adducts in MCI are comparable to levels observed 

in late-stage AD subjects.  The significant elevation of fapyadenine raises the question of 

a hypoxic environment being present in MCI.  Previous studies showed that hypoxia can 

also increase the risk of AD (Tatemichi et al. 1994; Kokmen et al. 1996; Smith et al. 

2004).  This study suggests that the DNA oxidation occurs early in the course of AD and 

is less likely to be secondary to neurodegenerative alterations.  It suggests that oxidative 

damage to DNA might play an important role in AD progression. 

Senile plaques are one of the main pathological hallmarks of AD.  To study the 

effect of Aβ plaques on DNA oxidation, nDNA from four age groups of APP/PS1 

transgenic mice were analyzed.  The amyloid cascade hypothesis states that Aβ 

processing and aggregation may contribute to the pathogenesis of AD.  In the mouse 

model coexpressing mutant APP and PS1, the deposition of senile plaques was 

accelerated and the ratio of Aβ42/Aβ40 was increased in brain.  Our results showed 

significantly increased levels of oxidized 8-hydroxyguanine in nDNA of 12 month old 

APP/PS1 mice compared to wild type and a positive correlation between amyloid plaque 

counts and levels of 8-hydroxyguanine in APP/PS1 mice.  Oxidative damage to DNA 

may accelerate protein crosslinking and aggregation, such as beta amyloid and tau protein 

(Dyrks et al. 1992; Dyrks et al. 1993; Mark et al. 1997; Varadarajan et al. 2000; 

Butterfield and Castegna 2003).  Aβ deposition in turn increases ROS production through 

peptide interactions with redox-active trace metal ions (Huang et al. 1999).  A previous 

study (Lustbader et al. 2004) demonstrated a link between Aβ and mitochondrial toxicity 

through Aβ binding to alcohol dehydrogenase, which causes increased ROS production.  

There are ~2000 mitochondrial proteins encoded by both nDNA and mtDNA. 

Based on the results from DNA studies, we expected to see altered expression of 

mitochondrial proteins in AD brain.  Our study provided a proteome map of mitochondria 

in AD brain and showed 5 mitochondrial proteins related to energy production were 

significantly altered in LAD.  The down-regulation of mitochondrial proteins in AD brain 

may affect ATP synthesis and cause the energy deficiency leading to neuronal death.  
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In contrast to the nuclear genome that contains ~10% protein coding genes, the 

entire mitochondrial genome is involved in coding for 37 genes including 13 proteins 

exclusively involved in the respiratory chain,  22 tRNAs and 2 rRNAs for translation 

machinery.  Damage to mtDNA could be potentially more detrimental than alterations in 

nDNA.  All mitochondrial coded proteins are involved in oxidative phosphorylation and 

ATP synthesis.  Oxidative alterations of mtDNA could lead to synthesis of functionally 

altered enzyme subunits, which in turn further augment ROS production.  

DNA oxidation may accumulate without efficient DNA repair ability.  DNA 

damage may result in decline in normal cell functions through blocking transcription, 

changing protein expression, or cross-linking with proteins.  Aβ deposition accelerates 

the free radical production and results in neuronal death because of the mitochondrial 

dysfunction.  Mutations in DNA lead to errors in protein biosynthesis, which especially 

affects the high-energy consumptive neuronal cells.  The defects of mitochondrial 

proteins may result from mutations of nDNA and mtDNA.  Alterations in nDNA-

encoded mitochondrial proteins that we observed may be due to mutations in nDNA, or 

due to interruption during transportation from cytoplasm into mitochondria.  Our results 

show the decreased expression of 5 mitochondrial proteins.  Two of them are encoded by 

mtDNA, which accounts for 15% among the 13 mitochondrial-encoded proteins.  Due to 

the restriction of 2-D gel electrophoresis and gel staining methods, only proteins with 

high expression levels could be identified and quantified.  In our study, we identified 67 

out of ~2000 mitochondrial proteins.  This may explain why only 2 mitochondrial 

proteins were identified.   

Oxidative damage to mitochondria, especially to respiratory enzymes, triggers 

mitochondria to release more ROS from the respiratory chain, which would further 

damage DNA and proteins.  This vicious circle eventually causes dysfunctional 

mitochondria which would accumulate in non-dividing cells, such as neurons.  Several 

factors, including oxidative stress and calcium disruption, could induce apoptosis through 

formation of a non-specific permeability transition pore that allows small molecular 

solutes to swell the mitochondrial matrix, leading to rupture of outer membrane and 
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release of several proapoptotic factors, including cytochrome c, resulting in activation of 

cytosolic caspases and subsequent cell death.  During mitochondrion-mediated apoptosis, 

cytochrome c is released from intermembrane space and binds to apoptotic protease-

activating factor 1 and caspase-9.  This caspase complex activates downstream capases, 

such as caspase 3, followed by further activation of capases and ultimately apoptosis.  

Defective mitochondria can have catastrophic consequences for cells, not only due to loss 

of ATP, but also due to the impairment of downstream functions, such as disruption of 

calcium homeostasis. Accumulation of defective mitochondria may lead to neuronal cell 

apoptosis.   

What causes AD is not fully understood.  Our results suggest ROS are involved, 

although we do not know whether ROS production is a primary or secondary event.  

Considerable evidence suggests there is increased oxidation of DNA, protein, lipid, and 

RNA in AD brain.  Neuronal death can be caused by many factors, such as enzyme 

dysfunction, energy deficiency, etc.  Removal of ROS seems like a potential way to slow 

AD progression.  Commonly used antioxidants have effects on slowing progression of 

AD (Ames et al. 1993).  The tolerance of neurons to oxidative stress is limited because 

neurons are non-replicating cells and contain relatively low levels of antioxidants.  Once 

damaged, neurons are permanently dysfunctional or are committed to apoptosis. 

Currently, definite AD only can be diagnosed at autopsy.  Although memory and 

recall tests are used to diagnose probable AD or predict individuals with high risk of AD, 

considerable effort has been devoted to methods of early diagnosis.  Our studies suggest 

oxidative stress plays an important role in the development of AD.  As the main energy 

source of cell, mitochondria are the primary sites for endogenous ROS generation.  

Neuron degeneration in AD may be associated with oxidative damage to DNA, especially 

to mtDNA, which may lead to altered expression of proteins involved in ATP synthesis.  

Our studies suggest that mitochondrial dysfunction might be involved in the process of 

neuron degeneration in AD.    

 

Copyright © Jianquan Wang 2006 
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