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ABSTRACT OF DISSERTATION 
 
 
 
 

CELLULAR TRAFFICKING PROPERTIES AND PHYSIOLOGICAL FUNCTIONS 
OF THE α1-ADRENOCEPTOR SUBTYPES 

 
 The α1-adrenoceptors (α1-ARs) serve as an interface between the sympathetic 

nervous system and the cardiovascular system where they are mediators of systemic 

arterial blood pressure, initiators of positive inotropy, and regulators of cellular growth 

responses.  There are three subtypes: α1A-, α1B-, and α1D-ARs.   

 This dissertation research investigated the trafficking properties of the α1-ARs at 

the cellular level as well as physiological relevance of the α1-ARs at the tissue level.  In 

vitro studies using transiently transfected α1-AR/GFP subtypes revealed distinct basal 

localization patterns and different agonist-mediated activation and desensitization 

properties.  The α1A- and the α1B-AR/GFP subtypes displayed agonist-mediated receptor 

redistribution, in which rate and degree of redistribution differed.  Additionally, 

redistribution of either of these two receptor subtypes required β arrestin-1, a protein 

often associated with receptor internalization.  In contrast, the α1D-AR/GFP did not 

require β arrestin-1 for maintaining the basal receptor orientation pattern.   

 Although these data increase our knowledge of trafficking properties of the α1-AR 

subtypes, it is of equal importance to determine the role(s) that each subtype contributes 



 

 

to cardiovascular function.  The lack of subtype-selective α1-AR pharmacological agents 

prompted the use of genetically manipulated mouse models with a systemic over-

expression of a constitutively active α1B-AR.  Echocardiographic analysis of transgenic 

hearts indicated both an enlarged left ventricular chamber in the absence of hypertrophy 

and a depressed cardiac function.  From isolated transgenic hearts, experimental results 

suggested a role for the α1B-AR in attenuating the inotropic responses.  However, 

experiments using isolated thoracic aortae from transgenic animals suggested that the 

α1B-AR does not participate in vascular smooth muscle contractile responses.  Additional 

studies investigated the role of α1D-AR in cardiovascular function by using animals 

systemically lacking the α1D-AR subtype.  Experimental data suggested an α1D-AR 

participation in vascular smooth muscle function since the deficiency of the α1D-AR 

subtype affected vasoconstriction in the coronary arteries but not inotropy in the heart. 

 The data presented in this dissertation research suggest subtype specific 

differences of α1-ARs in cellular localization, signal regulation, and trafficking.  

Additionally, the data provide an investigation into the physiologic significance of both 

the α1B- and the α1D-ARs in cardiovascular tissue. 

 
 
Key Words: α1-Adrenoceptors (α1-ARs), Receptor Localization and Trafficking, 
Transgenic Animals, Vascular Smooth Muscle, Heart  
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Chapter One 

Background 

Receptor Concept and History 

 The term given to a foreign molecule with the potential to elicit physiological 

effect(s) within the biological milieu is a “drug”.  A drug uses its intrinsic structural 

features to interact with a functionally relevant biological molecule.  The term for the 

biological entity that undergoes a physiocochemical interaction to elicit a response in the 

presence of a drug molecule is a “receptor”.  

 In the late 19th and early 20th century, the receptor concept developed from two 

distinct lines of experimentation, and John Newton Langley developed the first line.  In 

his studies, Langley discovered that atropine, a muscarinic antagonist, inhibits feline 

salivary flow induced by the alkaloid pilocarpine, a muscarinic agonist.  From his 

observations, he surmised that atropine and pilocarpine form complexes with a substance 

present on the nerve terminals that ultimately contributes to an overall response (Langley, 

1878).  However, he did not coin the term “receptive substance” until 1905 after 

performing a follow-up study on Claude Bernard’s observations of the South American 

arrow poison, curare.  Bernard illustrated that curare inhibits impulse transmissions from 

the motor nerves to the skeletal muscle and that the drug localizes its effects to the nerve 

terminal (Bernard, 1864).  Langley observed that even with a severed motor nerve, a 

muscle fiber retains the ability to contract in the presence of the cholinergic agonist 

nicotine.  Additional experiments with curare led to the observation that direct electrical 

stimulation is capable of eliciting a contractile response in either the innervated or the 

denervated muscle fiber.  From these results, Langley suggested that both nicotine and 
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curare interact with an entity other than the nerve or the muscle directly.  So he termed 

this biological entity as a “receptive substance” (Langley, 1905). 

 Paul Erlich’s work on antigen-antibody interactions contributed to the 

development of the second line of experimentation in the receptor concept.  His 

fascination with antibody specificity for antigenic substances led to his belief that there 

are precise interactions between the antibody and the antigenic molecule.  From his work 

with organic dyes and parasitic protozoa, Ehrlich observed that changes in the functional 

group(s) on a drug would affect the anti-parasitic potency.  Therefore, he postulated that 

drugs interact with side chains on the cell to evoke specific actions.  In 1913, Ehrlich 

coined the term “receptor” to describe the side chains that bind drugs (Ehrlich, 1913).     

 

Adrenoceptor History 

 Many investigators used naturally occurring alkaloids and sympathomimetic 

amines to study the physiological responses on the autonomic nervous system, and the 

adrenoceptor family would emerge from this line of study.  Using ergot derivatives and 

adrenaline, Sir Henry Dale made the observation that ergot alone raises blood pressure in 

cats.  However, a combination of ergot and adrenaline results in the fall of blood 

pressure, from which he concluded that the ergot alkaloids could antagonize the 

stimulatory but not the inhibitory effects of adrenaline (Dale, 1906).  Dale’s 

documentation of feline physiological responses to ergot alkaloids and adrenaline is 

likely the first evidence of multiple receptors.   

 R.P. Ahlquist later provided more definitive evidence for the existence of multiple 

adrenoceptors.  Using sympathomimetic amines in animals, Ahlquist demonstrated that 
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there are distinct differences in the order of agonists (epinephrine, norepinephrine, and 

isoproterenol) potency to induce physiological responses (blood pressure, heart rate, and 

myocardial contractility) (Ahlquist, 1948).  He defined sympathomimetic amine-induced 

vasoconstrictive responses as being α-adrenotropic receptor-mediated, while the 

sympathomimetic amine-induced vasodilatory and myocardial contractile responses as 

being β-adrenotropic receptor-regulated. 

 

α-Adrenoceptor Subtypes 

 While the work by Ahlquist documented the α-adrenoceptors (α-ARs) as 

mediators of vasoconstriction, later studies proved that this receptor group could also 

participate in synaptic transmission and myocardial function (Wenzel and Su, 1966; 

Govier et al., 1966; Benfey and Varma, 1967).  Studies using the non-selective α-AR 

antagonists, phenoxybenzamine and phentolamine, illustrated increases of norepinephrine 

release following nerve stimulation (Brown and Gillespie, 1957).  This finding indicated 

that the α-AR can modulate the release of neurotransmitters from the synaptic nerve 

terminals.  Thus, activation of the pre-synaptic receptor would result in the inhibition of 

the neurotransmitter release, whereas the blockade of the pre-synaptic receptor would 

augment the neurotransmitter release.   

 Studies conducted by Starke documented that the use of imidazoline derivatives 

and phenylephrine increases while the use of dihydroergotamine decreases 

norepinephrine release in the isolated heart.  However, use of the imidazoline derivative 

oxymetazoline antagonizes the phentolamine-mediated norepinephrine release from the 

pre-synaptic junction (for review, see Starke, 1977).  From these observations as well as 
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the realization that the imidazoline agonists do not increase the myocardial contractile 

force as phenylephrine does, Starke proposed that different α-ARs are responsible for 

mediating different physiological responses such as myocardial contraction and 

neurotransmitter release.   

 In conjunction with the emerging evidence of multiple α-ARs, Dubocovich and 

Langer observed that low concentrations of phenoxybenzamine blocks the increase in 

perfusion pressure (mediated by the later identified post-synaptic vascular receptors) 

without altering norepinephrine release (Dubocovich and Langer, 1974).  On the 

contrary, they reported that a 10- to 100-fold dose increase of this irreversible non-

selective α-AR antagonist would enhance the norepinephrine release.  The differences 

noted from this study confirmed the existence of distinct pre- and post-synaptic receptors.      

 In 1974, Langer termed the pre-junctional α-ARs as α2 while the post-junctional 

α-ARs as α1.  Unlike the previous pharmacological classification that distinguished the α- 

from the β-ARs, anatomical location was the basis of the early α-AR subdivision scheme.  

Following the discovery of a population of pre-synaptic α2-ARs and the emerging data 

implicating α2-AR participation in more than inhibition of synaptic transmissions, the 

criteria for α-AR subclassification would evolve to better define the groups of α-ARs.  In 

1977, Berthelsen and Pettinger suggested that physiological functions should serve as the 

basis for α-AR subclassification (Berthelsen and Pettinger, 1977).  With this newer 

classification scheme, the α1-ARs defined the receptors associated with vascular smooth 

muscle contraction while the α2-ARs included receptors associated with functional 

inhibition.  Redefining the α-AR classification would continue with the advent of more 

selective ligands.  Drew and Whiting investigated the pressor responses of the agonists, 
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phenylephrine and norepinephrine, in the presence of either prazosin or yohimbine.  They 

observed that yohimbine antagonizes both agonists, but only prazosin antagonizes the 

phenylephrine-induced pressor response (Drew and Whiting, 1979).  Thus, they deduced 

that α1-AR is prazosin sensitive and α2-AR is prazosin insensitive.  This pharmacological 

classification also defined the α1-ARs as the group responsive to the agonists as 

phenylephrine, methoxamine, or cirazoline and the antagonists as prazosin or WB 4101; 

the α2-ARs as the group receptive to the agonists as BHT-933, UK 14304, or BHT-920 

and the antagonists as yohimbine, rauwolsine, or idazoxan.  Additional support 

entertaining the notion of two α-ARs demonstrated that the Ca2+-channel blocker 

verapamil antagonizes the clonidine-induced constriction in the rabbit pulmonary artery, 

but minimally affects the methoxamine-induced response (Holck et al., 1983).  Emerging 

studies embraced this pharmacological classification that discerned the receptor subtypes 

according to ligand binding specificities (Timmermans and Van Zwieten, 1980; Ruffolo 

et al., 1991).    

 

Heterogeneity of the α1-Adrenoceptors 

Following the pharmacological classification of the α-ARs into α1- and α2-ARs, 

several studies using various vascular smooth muscle preparations generated results 

inconsistent with the notion of a single post-junctional α1-AR.  Emerging data favored the 

notion of α1-AR heterogeneity.  In 1977, Ruffolo reported that oxymetazoline could 

desensitize the α1-AR imidazoline-mediated response in the vas deferens; however, the 

phenylethylamines (phenylephrine, norepinephrine, and methoxamine) could still elicit a 

response, which suggested the possibility of distinct interactions between α1-ARs and 
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structurally unrelated agonists (Ruffolo et al., 1977).  Later, Bevan generated biphasic 

dose-response curves in a series of experiments with phenylethylamine agonists, and 

again the results from this study suggested the existence of more than one receptor 

subtype (Bevan, 1981).  In other studies, Coates et al. (1982) and Coates and Weetman 

(1983) demonstrated the existence of two types of α1-ARs in the rat anococcygeal muscle 

using the α1-AR selective imidazoline agonist, SGD 101/75.  They showed that 

phenoxybenzamine preferentially blocks what would be termed the α1S-AR-mediated 

SGD 101/75 response but not the other α1-AR-mediated norepinephrine response.   

From data such as those discussed above, McGrath proposed two types of post-

junctional α1-ARs: α1A- and α1B-ARs.  Under this classification scheme, the α1A-AR 

defined the group mediating the effects of both phenylethylamines at low concentrations 

and non-phenylethylamines while the α1B-AR defined the group mediating the effects of 

both phenylethylamines at a high concentration and non-phenylethylamines at low 

concentrations (McGrath, 1982).  Additional evidence supporting the notion of two α1-

ARs came from a study observing differences in the extracellular Ca2+-sensitivity to the 

two agonists: clonidine and methoxamine (Holck et al. 1983).  More evidence of α1-AR 

heterogeneity emerged with the finding that Ca2+-channel blockers inhibit the SGD 

101/75-mediated increases in blood pressure in the pithed rat (Timmermans et al., 1983).  

A study investigating vasoconstriction in the rat superfused tail artery revealed a 

population of α1-ARs with a high affinity and another population with a low affinity for 

prazosin (Medgett and Langer, 1984).    

Although physiological studies indicated α1-AR heterogeneity, early binding 

studies were unable to confirm this notion (Hughes et al., 1982; Tsujimoto et al., 1984).  
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Later, several laboratories including our own generated Scatchard plots displaying high 

and low affinity binding sites for [3H]-prazosin, suggestive of the existence of two types 

of α1-ARs (Drew, 1985; Flavahan and Vanhoutte, 1986; Babich et al., 1987; Piascik et 

al., 1988).  In binding studies using [3H]-prazosin with a series of agonists and 

antagonists, Morrow and Creese (1986) pharmacologically identified the high affinity 

binding α1-AR as the α1A-AR and the α1B-AR as the low affinity receptor.  In support of 

this notion, several studies indicated that the α1A-AR possesses higher binding affinities 

than the α1B-AR for the following ligands: 5-methylurapidil (Gross et al., 1988; Hanft and 

Gross, 1989), niguldipine (Boer et al., 1989), oxymetazoline and citrazoline (Horie et al., 

1995), and Abbott 61603 (Knepper et al., 1995).   

Further pharmacological characterization of the α1-ARs indicated that both 

dibenamine and benextramine could eliminate the [125IBE] α1-AR binding population 

completely in the rat cerebral cortex (Johnson and Minneman, 1987).  However, these 

investigators noted that the alkylating analog of clonidine, chloroethylclonidine (CEC), 

could reduce the [125IBE] α1-AR binding population by approximately 35 to 40%, which 

suggested that one α1-AR subtype is sensitive to CEC inactivation.  Additional 

experiments revealed that CEC does not inactivate the receptor subtype population 

possessing a high affinity for WB 4101, 5-methylurapidil, phentolamine, or niguldipine 

(Han et al., 1987a, 1987b; Minneman et al., 1988).  In in vivo experiments, the alkylating 

analog of prazosin, SZL-49, selectively blocks the α1A-AR population without affecting 

the α1B-AR population (Kusiak et al., 1989; Piascik et al., 1988; Piascik et al., 1990).  

However, subsequent work using SZL-49 revealed that this selectivity does not apply 

during in vitro conditions (Piascik et al., 1991).   
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Molecular Cloning of the α1-Adrenoceptor Subtypes 

 Although the pharmacological characterization of the α1-ARs identified two 

subtypes, the molecular cloning of the α1-ARs found three receptor subtypes.  From the 

hamster smooth muscle cell line, Cotecchia et al. (1988) isolated and cloned the first α1-

AR.  Experiments with the cloned α1-AR revealed that the complementary DNA (cDNA) 

encodes a polypeptide of 515 amino acids with an approximate molecular weight of 56 

kDa.  The pharmacological characterization of the cloned receptor showed similarities to 

the α1B-AR pharmacology because of the ability to bind the antagonist 2-{β-(4-hydroxy-

3-[125I] iodophenyl)ethylaminomethyl]-tetralone ([125I]HEAT) with high affinity and the 

α1A-AR selective antagonists phentolamine and WB 4101 with low affinity.  The cloned 

receptor possessed low affinity for many α1-AR ligands and demonstrated sensitivity to 

CEC inactivation.  Because of the similarities with the pharmacological profile of the 

α1B-AR defined by Morrow and Creese (1986), Cotecchia et al. (1988) identified the 

cloned hamster α1-AR as the α1b-AR.              

 Schwinn et al. (1990) isolated and cloned a different α1-AR from the bovine 

brain.  These investigators showed that the cDNA for this receptor encodes a polypeptide 

of 466 amino acids with an approximate molecular weight of 51 kDa and shares about a 

72% homology of the membrane spanning domains with the α1B-AR.  The 

pharmacological studies revealed that this cloned α1-AR receptor possesses binding 

affinities higher than the α1B-AR but lower than the defined α1A-AR.  Schwinn et al. 

(1990) found no correlations between the properties of this cloned receptor and the 

previous α1-AR pharmacological binding profiles; in addition, the investigators could not 

locate the mRNA transcripts for the cloned receptor in tissues known to express the α1A-
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AR.  Further experiments revealed partial receptor sensitivity to CEC inactivation, which 

the α1A-AR is resistant.  Because experiments with the cloned receptor revealed distinct 

properties from both the pharmacologically defined α1A- and α1B-ARs, these investigators 

concluded the discovery of a new receptor subtype; thus, they termed the novel cloned 

receptor as the α1c-AR.  However, other studies using more sensitive ribonuclease 

protection assays and Northern blots revealed the presence of the mRNA for the α1c-AR 

in tissues expressing the α1A-AR (Forray et al., 1994; Laz et al., 1994; Perez et al., 1994; 

Price et al., 1994a; Rokosh et al., 1994).  Increasing evidence correlated the similarities 

of the pharmacological properties of the α1c-AR to the α1A-AR; consequently, researchers 

agreed that the α1c-AR was the α1a-AR (Hieble et al., 1995).         

 Similar to the confusion involved in identifying the α1a-AR, the identification of 

the third cloned α1-AR subtype also entailed controversy.  Lomasney et al. (1991) 

isolated and cloned an α1-AR from the rat cerebral cortex.  The investigators showed that 

the cDNA for this isolated receptor encodes a polypeptide of 560 amino acids that is 

approximately 73% homologous to the α1B-AR membrane spanning domains.  In 

addition, they noted that the cloned receptor lacked a consensus site in the 3rd cytosolic 

loop for protein kinase C (PKC) phosphorylation.  The pharmacological studies on the 

receptor revealed a similar profile to the α1A-AR because of the higher binding affinities 

for α1-AR ligands.  Additional experiments demonstrated receptor insensitivity to CEC 

inactivation like the α1A-AR, thus the investigators termed the cloned α1-AR as the α1a-

AR.  On the contrary, a different study reported a cloned receptor from the rat 

hippocampal tissue of nearly identical nucleic acid sequence (98% homologous) with 

binding properties unlike the pharmacologically defined α1A-AR (Perez et al., 1991).  The 
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pharmacological experiments performed by these investigators revealed the binding 

affinity of this novel receptor for (+)-niguldipine to be lower than the α1A-AR yet higher 

than the α1B-AR.  In addition, these investigators provided further evidence that the 

cloned receptor from the rat cerebral cortex could not be the α1A-AR by demonstrating 

that the cloned receptor was susceptible to CEC inactivation (70% inactivated).  So 

owning to the different pharmacological profiles previously documented, Perez et al. 

(1991) designated this cloned receptor as the α1d-AR.  Table 1 lists the accepted 

nomenclature and the pharmacological profiles associated with the α1-ARs.  

 

Structure of the α1-Adrenoceptors 

 From the cloned α1a-, α1b-, and α1d-AR amino acid sequences, the hydrophobicity 

analyses revealed stretches of hydrophilic residues linking seven clusters of 20 to 25 

hydrophobic residues (Cotecchia et al., 1988; Schwinn et al., 1991; Lomasney et al., 

1991; Perez et al., 1991).  The characteristics of these amino acid sequences are similar to 

the family of guanine nucleotide binding-protein-coupled receptors (GPCRs).  The 

structural arrangement of the GPCR consists of seven hydrophobic domains spanning the 

cellular membrane with the hydrophilic domains making up the amino-terminus, the 

alternating loops between hydrophobic domains, and the carboxyl-terminus (reviewed in 

O’Dowd et al., 1989; Dohlman et al., 1991; Caron and Lefkowitz, 1993). 

Similar to all GPCRs, modification may occur on specific segments of the protein.  

For example, N-linked glycosylation can occur on the amino-terminus and palmitylation 

may occur on the carboxyl-terminus, which could potentially affect receptor signal 

transduction (O’Dowd et al., 1989; Kennedy and Limbird, 1993).  Receptor



    
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  

T
ab

le
 1

.  
N

om
en

cl
at

ur
e 

an
d 

ph
ar

m
ac

ol
og

y 
of

 th
e 
α 1

-A
dr

en
oc

ep
to

rs
. 

 

 
Se

le
ct

iv
e 

N
on

-s
el

ec
tiv

e 
A

nt
ag

on
is

ts
 

 
 

Pr
ev

io
us

 
N

am
e(

s)
 

C
E

C
 

 S
en

si
tiv

ity
 

(%
 in

ac
tiv

at
ed

) 

  
A

go
ni

st
 

  
A

nt
ag

on
ist

(s
) 

  
A

go
ni

st
s 

R
ev

er
si

bl
e 

Ir
re

ve
rs

ib
le

 

α 1
A
-A

R
 

α 1
C
-A

R
 

Lo
w

 
(3

0)
 

A
 6
16

03
 

SN
A

P 
69

91
, 

5-
M

U
, 

N
ig

ul
di

pi
ne

, 
Ta

m
ul

os
in

, 
W

B
 4
10

4,
  

SZ
L-

49
(ir

re
v)

 
α 1

B
-A

R
 

α 1
B
-A

R
 

H
ig

h 
(9

0)
 

__
_ 

__
_ 

α 1
D
-A

R
 

α 1
A
-A

R
 

&
 

α 1
A

/D
-A

R
 

M
od

er
at

e 
to

 H
ig

h 
 (7

0)
 

__
_ 

B
M

Y
 7

37
8 

 
Ph

en
yl

ep
hr

in
e,

 
M

et
ho

xa
m

in
e,

 
Ep

in
ep

hr
in

e,
 

N
or

ep
in

ep
hr

in
e,

 
O

xy
m

et
az

ol
in

e,
 

C
itr

az
ol

in
e,

 
Im

id
az

ol
in

es
 

   
Pr

az
os

in
, 

D
ox

az
os

in
, 

Ph
en

to
la

m
in

e,
 

 

   
Ph

en
ox

yb
en

za
m

in
e,

D
ib

en
am

in
e,

 
B

en
ex

tra
m

in
e 

 

  

11 



 

                                                                     12 

glycosylation potentially affects the number of receptors on the cellular surface while 

receptor palmitylation potentially affects the anchoring of the receptor to the plasma 

membrane (for review, see Chen and Manning, 2001).  For discussion pertaining to the 

phosphorylation of the intracellular loops and the carboxyl-terminus, see the section on 

regulation of receptor signaling.   

 

Ligand Binding Pocket of the α1-Adrenoceptor 

 As members of the GPCR superfamily, the ARs use one or a combination of the 

following three domains for ligand binding: the amino terminus, the extracellular loops, 

and the membrane-spanning sections.  Based on the residues in the membrane-spanning 

domains of the β2-AR, site-directed mutagenesis studies of the aminergic receptors 

favored the notion that amino acids in the membrane-spanning domains participate in 

interactions with key functional groups on the ligand (Strader et al., 1987).  The binding 

domains form a binding pocket where sets of highly conserved amino acid residues 

interact with specific structural features of the endogenous catecholamines.  For a time, 

investigators believed that endogenous catecholamines bind all ARs in a similar fashion; 

however, a later study revealed distinct differences within the ligand bind pocket that 

would confer the ability to discriminate among different ligands (Hwa et al., 1995).  

These investigators confirmed that two amino acid residues in the binding pocket are 

responsible for a specific pharmacological profile between two different but related α1-

AR subtypes. 

 Interactions between catecholamines and ARs are likely to involve the use of the 

following key structural features: the phenyl ring, the hydroxyls attached at the para- and 
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the meta-positions, and the positive charge on the basic amine moiety (for review, see 

Strader et al., 1994).  A study investigating the molecular structure of the α1B-AR showed 

that Phe310 is relevant in the formation of an aromatic bond between the receptor and the 

phenyl ring since loss of the interaction results in reduction of binding affinity for 

antagonists such as phentolamine and prazosin (Chen et al., 1999).  Additionally, these 

investigators demonstrated a decrease in agonist potency and efficacy with the loss of the 

aromatic bond.  With regard to interactions of the catechol hydroxyls, Strader et al. 

(1989) revealed that the β2-AR uses both Ser204 and Ser207; however, the α1A-AR requires 

only Ser188 for meta-hydroxyl binding (Hwa and Perez, 1996) (see Figure 1).  In 

addition, there is a difference in the number of residues separating the serines required for 

H-bonding to hydroxyls, so there is approximately a 120° rotation of the catechol ring.  

This difference in orientation may contribute to the observed differences in agonist 

binding specificity between the α1- and the β2-ARs.  Similar to the Asp113 of β2-AR 

described by Strader et al. (1988), the α1B-AR uses the Asp125 to interact with the 

protonated amine of the catecholamine molecule.  In the absence of the catecholamine, a 

salt bridge exists between Asp125 and Lys331 that constrains the receptor in an inactive 

state; however, in the presence of the catecholamine there is a competition between the 

protonated amine and Lys331 residue for the Asp125 residue (Porter et al., 1996).  

Ultimately, binding of the catecholamine results in the formation of a new salt bridge 

between the protonated amine of the ligand and the Asp125 residue.  Thus, the Asp125 

residue serves as a counter ion relevant for agonist binding and activation of the receptor. 
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Figure 1.  A space-filled representation of the α1A-AR binding pocket.  The model shows 
the relevant amino acid residues believed to participate in the ligand binding (Figure from 
Piascik and Perez, 2001).  
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Receptor Activation  

 In the unbound state, the receptor has a salt bridge that links two amino acid 

residues together to constrain the receptor to the ground state or the inactivated 

conformation.  In the presence of an agonist, this salt bridge breaks and a new salt bridge 

forms between an aspartic acid residue and an aliphatic nitrogen atom common to all 

sympathomimetic amines (Porter et al., 1996).  Consequently, this disruption of the salt 

bridge between the two amino acid residues results in an altered receptor conformation 

and receptor activation. 

A study using site-directed mutagenesis on the α1B-AR mRNA revealed that 

altering the Asp293 to any other amino acid results in receptors that are active in the 

absence of an agonist (a characteristic of a constitutively active receptor, which is the 

topic of the following section) (Kjelsberg et al., 1992).  This study proposed that there is 

an element within the 3rd intracellular loop that constrains the receptor to the basal state 

until an agonist binds.  In a similar study, replacing Lys331 with Ala in the α1B-AR 

eliminates a positive charge that results in the disruption of a salt bridge (Porter et al., 

1996).  This mutagenesis study also produced a receptor possessing the ability to initiate 

signaling without agonist binding.  Additionally, site-directed mutagenesis of the Asp125 

to either a neutral Ala or a positively charged Lys resulted in an activated receptor and 

the postulate: the positively charged Lys331 is responsible for stabilizing the negatively 

charged Asp125 via salt bridge formation.  

 

Constitutively Active Receptors 

In traditional signaling paradigms, receptor activation occurs subsequent to 
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agonist-induced 3-dimensional conformational changes of the receptor.  Thus, the 

classical notion views that an unbound receptor lacks the capacity to initiate signaling or 

coupling to effector pathways.  However, the more recent consensus on receptor 

activation favors the notion that receptors may exist in two conformations: an inactive 

state (R) and an active state (R*) (Milligan et al., 1995; Gether and Kobilka, 1998).  

Because the receptor can exist in one of two states at any given time, the state of the 

receptor in the absence of agonists determines the basal activity level.  At baseline, the 

receptor resides mainly in the R state whereas in the presence of an agonist the R* state 

predominates.  The current notion postulates that that agonists have a higher binding 

affinity for the R* and will stabilize the receptor in the active form, which promotes 

signal transduction.  On the other hand, competitive antagonists can interact with either 

the R or the R* with similar affinity to prevent conversion of the receptor to the active 

state and to inhibit signal transduction (See Figure 2).   

 Under basal conditions, certain receptors have the majority of their population in 

the R* state, and the term for describing these types of receptors is constitutively active.  

With the ability of site-directed mutagenesis to produce such receptors, constitutively 

active receptors are proving to be useful for investigating receptors that do not have 

highly selective agonists available.  Using the α1B-AR, Kjelsberg et al. (1992) 

documented an increase in signaling associated with the mutation of the Asp293 to any 

other amino acid residue.  These investigators postulated that the constitutive activity is 

the result of relieving the structural constraint associated with a salt bridge formation.  

Another study arriving at the same conclusion used site-directed mutagenesis to eliminate 

the positive charge associated with the Lys331 residue, which disrupts the salt bridge 
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Figure 2.  Diagram of the equilibrium existing between an inactive R state and either an 
active R* state or a constitutively active R* state.  In the presence of an agonist, the 
equilibrium shifts from the R to the R* state.  In the presence of an antagonist, the 
equilibrium tends to shift from the R* to the R state.  The majority of the constitutively 
active receptor population resides in the R* state, in which an inverse agonists can shift 
the equilibrium to the R state.    
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formation and results in enhanced ligand binding affinity and increased signal 

transduction both in the absence and the presence of an agonist (Porter et al., 1996).   

 In a different study, Perez et al. (1996) showed that site-directed mutagenesis at 

approximately one helical turn away from the Asp125 results in different degrees of 

constitutive activity depending on the intrinsic properties of the amino acid replacing the 

Cys128 residue.  These investigators noted that the greater the size and the more 

hydrophobic the residue, the greater the receptor activity.  The residue likely interferes 

with the formation of the salt bridge, which would cause the receptor to adopt the R* 

state.  Unlike the constitutively active mutants described thus far, Hwa et al. 

(1996) generated a constitutively active receptor by altering the helical packing between 

transmembrane domains.  These investigators found that replacing the Ala204 with Val in 

the α1B-AR would alter the 3-dimensional arrangement of the transmembrane domains; 

consequently, both the Ser207 and the Ser211 residues are positioned closer together.  The 

result of this 3-dimensional alteration results in increased agonist binding affinity, 

potency, and signal transduction. 

Other constitutively active mutants of the α1B-AR exist, but these receptors have 

mutations unrelated to the formation of the salt bridge.  Cotecchia et al. (1990) generated 

several constitutively active α1B-ARs with a combination of mutations on the 3rd 

cytoplasmic loop.  These mutations resulted in the generation of receptors possessing 

increased basal level of inositol phosphates and increased potency to agonists.   

 

Signal Transduction Pathways and Coupling to Guanine Nucleotide Proteins 

Once activated, the α1-ARs are capable of participating in ionic transport of 
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molecules across the plasma membrane by modulating Na+/H+-pumps, Na+/Ca2+-

exchange, Ca2+-, and K+-channels (reviewed in Terzic et al., 1993; Graham et al., 1996).  

In cells that endogenously express the α1-ARs, the postulated function of these receptors 

is to modulate the increases of intracellular Ca2+ concentrations (for review, see Van 

Zwieten and Timmermans, 1987; Graham et al., 1996). 

These receptors may participate in complex signal transduction cascades via their 

coupling to different G-proteins.  Similar to other GPCRs, the α1-AR family uses the 3rd 

intracellular loop and the carboxyl-terminus to couple to a variety of G-proteins that may 

interact with a multitude of effector pathways (reviewed in Gilman, 1987; Savarese and 

Fraser, 1992).  The heterotrimeric G-protein has three subunits (α, β, and γ) in which a 

guanosine diphosphate (GDP) molecule binds the α subunit.  Once activated, the 

heterotrimeric G-protein exchanges the GDP for a guanosine triphosphate (GTP) 

molecule, which leads to the dissociation of the GTP-bound α subunit from the βγ 

complex.  The dissociated complexes activate specific downstream effectors until the α 

subunit hydrolyzes GTP to GDP, which results in the inactivation of the subunit and the 

reassociation of the heterotrimeric complexes (reviewed by Carman and Benovic, 1998). 

 Of the many heterotrimeric G-proteins available, the α1-ARs have a proclivity for 

coupling to the pertussis toxin (PTx)-insensitive G-proteins of the Gq/11 family (Braum et 

al., 1990; Wu et al., 1992a).  Additionally, these receptors couple to the PTx-sensitive 

(Gi/o) proteins (Steinberg et al., 1985, 1987; Bohm et al., 1987; Shah et al., 1988; Perez et 

al., 1993).  Other investigators demonstrated that the α1B-AR is capable of coupling to the 

Gh, a different form of the heterotrimeric G-protein that still retains the ability to mediate 

intracellular signaling in the absence of GTP, but this protein has a Ca2+-dependent 
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transglutaminase activity antagonizable by GTP for cross-linking proteins (Nakaoka et 

al., 1994). 

 

Phospholipase Pathways and the Generation of 2nd Messengers 

 The α1-AR-activated signal transduction scheme is complex because the α1-ARs 

can couple to different G-proteins that activate three distinct phospholipase pathways: 

phospholipase D (PLD), phospholipase A2 (PLA2), and phospholipase C (PLC) (for 

review, see Terzic et al., 1993; Graham et al., 1996; Varma and Deng, 2000). 

In the rat cerebral cortex, Llahi and Fain (1992) reported that α1-AR stimulation 

results in the activation of the PLD signaling pathway.  Activation of this pathway results 

in the hydrolysis of phosphatidylcholine (PC) to phosphatidic acid (reviewed in Billah 

and Anthes, 1990; Exton, 1990; Shukla and Halenda, 1991).  DAG hydrolase converts 

phosphatidic acid to the 2nd messenger 1,2-diacylglycerol (DAG), which is an activator of 

protein kinase C (PKC) (see Figure 3).   

The ability of the α1-AR to couple to the PTx-sensitive G-proteins permits the 

receptor to activate the PLA2 pathway (Slivka and Insel, 1987; Weiss and Insel, 1991; for 

review, see Insel et al., 1991).  Activation of this signaling pathway results in the 

hydrolysis of PC to arachidonic acid.  Moreover, the second messengers generated by the 

hydrolysis of glycerolphospholipids are fatty acids and lysophospholipids, both of which 

augment the DAG-induced activation of PKC (for review, see Bell and Burns, 1991) (see 

Figure 3).     

The phospholipase pathway prevalently associated with α1-AR activation is the 

PLC pathway.  Three isoforms make up the phospholipase C group: PLC-β, PLC-γ, and
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PLC-δ.  The α1-ARs mainly associate with the PLC-β isoform (Im et al., 1990; Blank et 

al., 1991; Berstein et al., 1992).  Either the GTP-bound Gqα subunit or the Gqβγ complex 

can promote PLC-β activation (Wu et al., 1992b).  Substrates for activated PLC-β 

enzyme are phosphatidylinositol (PI), PI-4-phosphate (PIP), and PI-4,5-bisphosphate  

(PIP2).  The activation of the PLC-β enzyme results in the cleavage of PIP2 to two 

relevant 2nd messengers, DAG and inositol-1,4,5-trisphosphate (IP3) (reviewed by Terzic 

et al., 1993; Woodcock 1995; Graham et al., 1996) (see Figure 3).  As mentioned 

previously, DAG activates PKC while IP3 is responsible for evoking changes in 

intracellular Ca2+ concentrations.  IP3 increases the intracellular Ca2+ concentration upon 

binding to the IP3 receptors located on intracellular organelles that store Ca2+; thus, 

resulting in the release of Ca2+, a relevant biological ion. 

 

2nd Messenger-Induced Effector Activation 

 The 2nd messenger product of both the PLD and the PLC pathways is DAG.  This 

molecule stimulates PKC, which is a serine/threonine kinase.  PKCs belong to a family of 

enzymes that consists of 11 isoforms categorized into three groups based on primary 

structure and function: Ca2+-dependent PKC, Ca2+-independent PKC, and atypical PKC 

(for review, see Nishizuka 1992, 1995).  The α1-AR-Gq-PLC-β signaling pathway mainly 

results in the activation of the Ca2+-independent PKC group (Clerk et al., 1994; Puceat et 

al., 1994).  Activated PKC will translocate from the cytosol to specific regions of the cell 

in order to phosphorylate cellular substrates, ion channels, and/or receptors (Kraft and 

Anderson, 1983; Clerk et al., 1994; Puceat et al., 1994).   
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Regulation of Receptor Signaling 

 Cellular signaling commences upon receptor conformational changes induced by 

specific agonist interactions within the ligand binding pocket.  In many receptor systems, 

the stimulus-induced signal transduction pathway is a stringently regulated event that 

ensures appropriate cellular and physiological responses.  The agonist-induced response 

becomes attenuated under conditions of chronic or excessive receptor stimulation.  In 

studies investigating α1-AR-induced inositol phosphate turnover, investigators 

demonstrated that under prolonged agonist stimulation, there is a remarkable reduction in 

both receptor responsiveness and the population of receptors on the cellular surface 

(Wikberg et al., 1983; Leeb-Lundberg et al., 1987; Fonseca et al., 1995).  For the GPCR 

superfamily, the diminished response is typically the result of three distinct mechanisms: 

desensitization, internalization, or down-regulation. 

Desensitization is a rapid process occurring within seconds to minutes of receptor 

activation that involves the covalent modification (phosphorylation) that renders the 

receptor incapable of coupling to the heterotrimeric G-proteins (Lurie et al., 1985; Brown 

et al., 1986; Lee-Lundberg et al., 1987).  Depending on the causative stimulus, 

desensitization proceeds in one of two ways: heterologous (agonist-non-specific) and 

homologous (agonist-specific) desensitization (for review, see García-Sáinz et al., 2000).  

Heterologous receptor desensitization involves an exposure to agonists of different 

receptor systems.  This process involves the activation of either PKC or cAMP-dependent 

protein kinase (PKA), which subsequently phosphorylates the 2nd and the 3rd intracellular 

loops and/or the carboxyl terminus of the GPCR.  On the other hand, homologous 

desensitization involves receptor activation that leads to the activation of a set of kinases 
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termed G-protein receptor kinases (GRKs).  Some studies demonstrated that the GRKs 

can be activated by PKC phosphorylation (Chuang et al., 1995; Winstel et al., 1996).  

There are currently six mammalian GRKs: GRK1 (rhodopsin kinase), GRK2 (β-AR 

kinase 1 or βARK1), GRK3 (β-AR kinase 2), GRK4, GRK5, and GRK6 (for review, see 

Premont et al., 1995; Pitcher et al., 1998).    These GRKs co-localize to the plasma 

membrane where they have a unique ability to recognize and to phosphorylate the 

activated GPCRs (Benovic et al., 1986). 

The current model of GRK action postulates that GRK-phosphorylated GPCRs 

have an increased binding affinity for a family of cytoplasmic inhibitory proteins known 

as arrestins.  The arrestin family includes visual arrestin (arrestin-1), β-arrestin 1 

(arrestin-2), β-arrestin 2 (arrestin-3), and cone arrestin (arrestin-4) (reviewed by Krupnick 

and Benovic, 1998).  The β-arrestin 1 and β-arrestin 2 molecules are the non-visual 

arrestins that contain binding domains for GPCRs (Gurevich et al., 1995).  The binding 

of arrestin to the phosphorylated receptor quenches signal transduction by disrupting the 

receptor/heterotrimeric G-protein interactions (Benovic et al., 1987; Lohse et al., 1990).   

The arrestin molecule also acts as an “adaptor” protein that serves as an 

intermediary between the GRK-phosphorylated GPCR carboxyl terminus and the clathrin 

molecule (Goodman et al., 1996, 1997; Krupnick et al., 1997).  This protein-protein 

association promotes receptor endocytosis into endosomal vesicles, so arrestin 

participates in both desensitization and agonist-induced internalization (see Figure 4) 

(Ferguson et al., 1995; Goodman et al., 1998).  

Another mechanism the cell uses to reduce the response(s) invoked by an 

endogenous or an exogenous stimulus is receptor internalization (Fratelli and DeBlasi,  
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Figure 4.  Diagram depicting the processes associated with receptor internalization and 
cycling of activated G-Protein-Coupled Receptors.   
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1987; Cowlen and Toews, 1988) (see Figure 4 for a diagram concerning the process of 

receptor cycling).  The study by Fonseca et al. (1995) showed that prolonged stimulation 

of the hamster α1B-AR in HEK-293 cells would lead to a concurrent decrease in receptor 

responsiveness of inositol phosphate production as well as an increase in co-localization 

of receptor and transferrin, an endosomal marker (via immunocytochemistry).  These 

investigators observed that the translocation of receptors from the cellular surface to the 

endosomes upon PKC activation is antagonizable by staurosporine, a non-selective 

kinase inhibitor.  However, others suggest that GRKs are responsible for mediating the 

receptor internalization process (Lattion et al., 1994; Diviani et al., 1996).  In a different 

study using the A293E hamster α1B-AR mutant, Mhaouty-Kodja et al. (1999) observed 

that this constitutively active receptor assumes a conformation that makes it a substrate 

for GRK2 phosphorylation, and subsequently increases the β-arrestin binding and the 

degree of receptor internalization.  In addition, these investigators generated 

constitutively active receptors with mutations in different domains.  The results of these 

mutations were functional receptors that could not undergo either phosphorylation or 

internalization.  Therefore, this study demonstrated that mutations in different domains 

may induce constitutive activity but may have divergent results on the regulatory 

properties of the receptor.    

Internalization of a GPCR results in one of two processes: down-regulation 

(degradation) or resensitization.  Down-regulation of the receptor results in a reduction of 

the total receptor population, thereby reducing the overall stimuli-induced effect(s)  

(Hughes and Insel, 1986; Wickberg et al., 1983).  The long-term event of down-

regulation lasts for hours to days depending on turnover rate of the receptor protein, and 
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replacing the degraded receptor population requires time.  Resensitization is a relatively 

simple process involving the dephosphorylation of the receptor in vesicular endosomes.  

Subsequently this process returns a functional receptor to the plasma membrane (Fonseca 

et al., 1995). 

 

α1-Adrenoceptor Localization and Trafficking  

 The internalization of the receptors into endosomal vesicles for down-regulation 

or resensitization is a relevant process in controlling signal transduction, so it should be 

of no surprise that studies investigated the localization and the trafficking properties of 

the receptors.  A study by Hirasawa et al. (1997) visualized cellular localization of the 

α1A- and the α1B-ARs in COS-7 cells using FLAG-tagged epitopes and green fluorescent 

proteins (GFPs) conjugated to the amino termini and to the carboxyl termini, 

respectively.  These investigators reported a dense α1A-AR localization mainly in the 

intracellular space in the perinuclear region whereas a diffuse α1B-AR localization was 

observed predominantly on the plasma membrane.  Additionally, they showed that CEC, 

a highly hydrophilic alkylating antagonist, inactivates approximately the same proportion 

of α1A- as α1B-ARs on membrane incubated with CEC; thus suggesting that receptors on 

the membrane are more susceptible to CEC inactivation because of ligand accessibility.  

Also Awaji et al. (1998) investigated the internalization properties for the α1B-AR/GFP in 

stably transfected mouse αT3 cells using real-time conditions, and they found that agonist 

stimulation promotes the redistribution of the receptor from the cellular surface to the 

intracellular region.  This group provided additional evidence that the receptor 

internalizes to the endosomal compartment.  McCune et al. (2000) used 
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immunocytochemistry and laser-scanning confocal microscopy to demonstrate in stably 

transfected fibroblasts that the α1B-AR predominantly localizes to the cellular surface 

whereas the α1D-AR localizes to the intracellular region.   

   

Distribution of the α1-Adrenoceptors 

 Many studies reported a wide distribution of the α1-AR mRNA transcripts in 

several tissues (Ping and Faber, 1993; Piascik et al., 1994; Rokosh et al., 1994; Scofield 

et al., 1995).  More notably α1-AR mRNA transcripts co-localize in the peripheral 

vasculature where the translated products participate in the regulation of vascular smooth 

muscle contraction (Piascik et al., 1995, 1997; Hrometz et al., 1999).  With respect to 

mRNA expression, the rank order of distribution in many arteries studied so far is α1A > 

α1B > α1D with the α1A-AR making up approximately 90% of the total α1-AR mRNA 

(Piascik et al., 1995).  Due to the paucity of highly selective ligands that can distinguish 

between the α1B- and the α1D-ARs in radioligand-binding experiments, determining the 

protein expression level for each subtype is difficult.  However, many studies generated 

estimates for the α1A-AR subtype population in the rat aorta, caudal artery, mesenteric 

artery, heart, and brain using α1A-AR subtype selective ligands (Morrow and Creese, 

1986; Hanft and Gross, 1989; Piascik et al., 1990; Han and Minneman, 1991).  These 

studies estimated approximately 5 to 30% of the α1-AR population is the α1A-AR, 

indicating that there is no correlation between mRNA transcript levels and protein 

expression.  In the human heart, the α1-ARs account for up to 15% of the cardiac 

adrenoceptors (Delhaye et al., 1983). 

 In addition to the vasculature, the α1-ARs reside in several other tissues where  
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they maintain homeostasis.  In brain, liver, and heart, these receptors participate in 

physiological functions such as sympathetic neurotransmission, regulation of hepatic 

metabolism, and mediation of myocardial inotropy, respectively.  Studies using rat hearts 

demonstrated that mRNA transcripts for all three α1-AR subtypes exist (Price et al., 1994; 

Rokosh et al., 1994; Scofield et al., 1995).  Although the transcripts for the α1-ARs exist 

in the rat heart, other studies examining the translated products confirmed that the α1A- 

and the α1B-AR make up the α1-AR population in the heart (Deng et al., 1996a; Deng and 

Varma, 1997).  These studies revealed that the α1D-AR is nearly undetectable in neonatal 

rat hearts and virtually non-existent in the adult rat hearts.  These findings suggest that 

the α1D-AR may play a minor role in mediating physiological responses in the heart.                           

  

Functions of the α1-Adrenoceptors in the Vascular Smooth Muscle  

In the vasculature, the α1-ARs mediate two responses: vasoconstriction and 

vascular growth.  From a physiological standpoint, the α1-ARs are important in their 

contribution to regulation of blood flow and maintenance of vascular resistance (for 

review, see Vargas and Gorman, 1995).  The stimulation of α1-ARs in vascular smooth 

muscle results in phosphoinositide turnover as well as PKC activation, both of which lead 

to an increase in Ca2+ sensitivity of contractile proteins and an increase in intracellular 

Ca2+ concentration via the opening of Ca2+ channels on the sacroplasmic reticulum or the 

cellular membrane (reviewed by Minneman, 1988).  The released Ca2+ forms a complex 

with the Ca2+ binding protein, calmodulin, that promotes the activation of the myosin 

light chain kinase (MLCK), which phosphorylates the light chains of myosin (for review, 

see Gao et al., 2001).  This phosphorylation subsequently leads to cross-bridge formation 
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and cycling during which the adenosine triphosphate molecule provides the energy for 

tension development and shortening of the muscle fiber (reviewed in Adelstein and 

Eisenberg, 1980).  In addition, one notion postulates that PKC phosphorylation of 

calmodulin will increase the affinity of calmodulin for Ca2+, indicating the possibility for 

vascular smooth muscle contraction under lower intracellular Ca2+ concentrations 

(Nishimura et al., 1990).   

 Since vascular smooth muscle expresses a combination of all three α1-AR 

subtypes, there is a difficulty associated with determining which α1-AR subtype 

predominates in the contractile response because all may participate to some degree (for 

review, see Nichols and Ruffolo, 1991; Vargas and Gorman, 1995; Piascik et al., 1996; 

Docherty, 1998).  With both the lack of selective pharmacological tools and the 

uncertainty associated in the identification of the α1D-AR, many early studies were unable 

to establish a correlation between subtype activity and vasoconstrictive response.  In 

addition, concerns surrounded the interpretations from early studies that used CEC to 

distinguish between the α1A- and the α1B-ARs in contractile responses since later studies 

revealed that CEC is capable of inactivating the α1A- and the α1D-ARs to a low and 

moderate to high degree, respectively (Johnson and Minneman, 1987; Han et al., 1987).  

Although lacking a selective α1D-AR antagonist at the time, several studies that sought to 

define the vasoconstrictive responses for the α1A- and the α1B-ARs in arterial vessels 

ended up generating results inconsistent with other studies (Tian et al., 1990; Piascik et 

al., 1991; Aboud et al., 1993; Oshita et al., 1993).  However, Piascik et al. (1991) and 

Aboud et al. (1993) implicated the potential for a third binding site that could explain the 

discrepant observations. 
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Functional studies using isolated rat arterial vessels revealed that the α1A-AR is 

the prominent receptor participating in contraction of the renal and the caudal arteries 

(Lachnit et al., 1997; Piascik et al., 1997; Hrometz et al., 1999).  For a time, studies using 

CEC implicated a role for α1B-AR participation in contraction of the rat thoracic aorta.  

However, with the discovery of the α1D-AR selective antagonist BMY 7378, experiments 

using this antagonist disproved this notion (Kenny et al., 1995; Testa et al., 1995; Piascik 

et al., 1995, 1997; Buckner et al., 1996; Deng et al., 1996a; Saussy et al., 1996).  With a 

more selective antagonist, Piascik et al. (1995, 1997) showed in functional studies that 

aside from the rat thoracic aorta, the α1D-AR is the main mediator of contraction in the rat 

femoral, iliac, and superior mesenteric arteries.  Presently, little evidence exists that 

conclusively links the α1B-AR to vessel constriction, and data indicating that the α1B-AR 

participates in the mesenteric resistance artery resulted from exclusion of the other two 

α1-ARs (Piascik et al., 1994).  Use of anti-sense nucleotides targeted against specific 

receptor subtypes in the rat vessels confirmed the results from earlier studies (Hrometz et 

al., 1999). 

The cardiovascular system is a dynamic system able to respond to many stimuli; 

for instance, the vasculature maintains blood pressure and flow through the regulation of 

vascular tone by vasoconstriction or vasodilation.  In some instances, regulation of 

vascular tone may occur through wall remodeling.  With chronic changes in 

hemodynamics or humoral factors, the blood vessel wall alters its physical structure as an 

adaptive response (Dzau and Gibbons, 1993).  In the cardiovascular disease of 

hypertension, increased sensitivity to vasopressors usually accompanies the structural 

changes in the blood vessel walls.  The thickening of the layers in the vessel walls 
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attenuates the physical stimuli (stretch and tension) resulting from an increased blood 

pressure; in addition, hypersensitivity to vasopressors develops to modulate the effects of 

the ever changing levels of catecholamines.  As a consequence of this process, the 

increase in vessel wall thickness results in a decrease of the lumen diameter which 

contributes to increased peripheral vascular resistance and increased after-loading on the 

heart. 

 

Functions of the α1-Adrenoceptors in the Myocardium 

The α1-ARs have a multi-functional role in the cardiovascular system.  In addition 

to participating in vascular smooth muscle contraction, they serve a role in myocardial 

inotropy and hypertrophic growth responses.  Wenzel and Su (1966) reported the first 

evidence that the α1-ARs induce a positive inotropic effect in response to 

sympathomimetic amines on rat ventricular strips.  The characteristics of positive 

inotropy include an augmentation of the myocardial contraction amplitude without a 

significant alteration in the contraction-relaxation cycle or the time to achieve peak 

tension and relaxation (reviewed in Terzic et al., 1993).  The characteristics associated 

with the α1-AR-mediated inotropic effects are the subject of several reviews (see Fedida 

et al., 1993; Terzic et al., 1993; Li et al., 1997). 

The α1-AR-mediated inotropic effect is usually a tri-phasic response and may 

include a negative inotropic component (Skomedal et al., 1983).  The first two phases of 

the triphasic response are transient and subtle.  In brief, the triphasic response first has a 

rapid increase in contractile force followed by a decline in contractile force below 

baseline then a sustained contractile force greater than the initial positive contractile 
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force.  Although the mechanism of the triphasic response is not fully understood, this 

response has been seen in rat papilliary muscle (Otani et al., 1988), mouse cardiac 

trabeculae (McCloskey et al., 2002), and isolated mouse hearts (Turnbull et al., 2003).  

This α1-AR-mediated positive inotropic effect wanes with age in the rat heart and is 

likely the consequence of a reduction in the receptor density (Inayatulla et al., 1994; 

Deng et al., 1996b).    

Three proposed mechanisms associated with α1-AR-mediated myocardial positive 

inotropy exist: increased myofibril sensitivity to Ca2+, increased sarcolemmal Ca2+ influx, 

and alkalinization.  In the first mechanism, the activation of PKC leads to the 

phosphorylation of MLCK that subsequently phosphorylates MLC-2, leading to increased 

myofibril sensitivity to Ca2+ (Morano et al., 1985; Venema et al., 1993).  In the other 

mechanism, α1-AR activation inhibits the K+ current believed to prolong the action 

potential duration, resulting in the increase of the intracellular Ca2+ concentration (Apkon 

and Nerbonne, 1988; for review, see Fedida et al., 1993; Terzic et al., 1993).  A third 

mechanism uses the Na+/H+ exchanger to regulate the intracellular Ca2+ (Fliegel and 

Wang, 1997).  Studies have found a correlation between the magnitude of α1-AR-

mediated inotropic response and extent of alkalinization by α1-AR agonists (Terzic et al., 

1992; Gambassi et al., 1992). 

To support the finding that the α1-ARs use a different mechanism than the β1-AR 

in mediating positive inotropy, studies reported that the presence of either a 

phosphodiesterase or an adenylyl cyclase inhibitor does not affect the α1-AR-stimulated 

response (Endoh and Motomura, 1979; Endoh and Yamashita, 1980; Christiansen et al., 

1987).  Thus the α1-AR response is independent of cAMP generation.  Early studies 
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showed that the phenylephrine-mediated positive inotropy could be antagonized with 

prazosin in the adult rat heart (Skomedal et al., 1980).  Skomedal et al. (1988) found that 

the α1-ARs contribute approximately 25% of the norepinephrine-mediated inotropic 

response.  At the cellular level, several studies documented an α1-AR-regulated positive 

inotropic effect in rat cardiomyocytes (Capogrossi et al., 1991; Fedida and Bouchard, 

1992; O’Rourke et al., 1992; Terzic et al., 1992; Gambassi et al., 1998). 

As mentioned earlier, expression of the α1D-AR subtype is not common in the 

myocardium; therefore, there is little data supporting a role for this receptor in the 

inotropic response (Deng and Varma, 1997; Wenham et al., 1997).  Other studies have 

implicated the α1A- and the α1B-AR in the regulation of positive inotropy (Williamson et 

a., 1994; Deng et al., 1996b).  Michel et al. (1990, 1994) and Yu and Han (1994) 

reported that the α1B-AR is the more relevant subtype for myocardial inotropy in rat 

hearts.  However, other studies have shown that SZL-49 and WB4101 but not CEC 

would antagonize the norepinephrine-induced response in the rat heart, which suggests 

 α1A-AR participation (Rokosh and Sulakhe, 1991; Gambassi et al., 1991). 

 As discussed above, β-AR mediates the majority of the catecholamine driven 

inotropic responses in the normal heart.  Therefore, there are many questions pertaining 

to the relevance of the α1-AR inotropic responses in the myocardium.  However, there are 

suggestions that during heart failure the α1-ARs play a greater role in inotropic responses 

to endogenous catecholamines (for review, see Terzic et al., 1993; Li et al., 1997; Varma 

and Deng, 2000).  Heart failure is a condition characterized by the inability of the heart to 

provide adequate blood flow to tissues.  As a consequence of this situation, the body 

attempts to adapt by increasing the levels of circulating catecholamines to stimulate the 
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β1-AR-Gs-adenylyl cyclase signaling pathway which subsequently results in increased 

cardiac output.  This activated signaling cascade increases positive inotropy, and with 

prolonged stimulation, the regulation of the β1-AR-mediated response ensues.  

Consequently, this adaptive reflex becomes a maladaptive process because of the down-

regulation of the β1-AR population, which may cause ventricular dysfunction.  Many 

studies suggested that activation of the α1-ARs serves as a reserve mechanism to maintain 

myocardial responsiveness (Bristow et al., 1982; reviewed in Brodde et al., 1995).  To 

support this notion, Bristow et al. (1988) showed that there are no differences between 

the failing and the non-failing hearts in terms of α1-AR densities or α1-AR-mediated PI 

turnover.  Therefore, the question of whether the α1-ARs can sustain myocardial function 

in the long-run still exists.      

 

α1-Adrenoceptor Signaling in Growth-Related Responses   

 The α1-ARs are versatile receptors, and there is a growing interest concerning the  

roles these receptors play in cellular growth and proliferation.  Growth of mammalian 

cells resulting in increases of cell size (hypertrophy) and/or number (hyperplasia) is 

attributable to a wide range of factors such as catecholamines, growth factors, physical 

stress, etc.  The precise mechanism(s) of α1-AR-mediated growth and proliferation is(are) 

poorly understood because of the multiple stimuli. 

 The activation of the heterotrimeric G-protein, Gαq, by α1-ARs leads to the up-

regulation of transcriptional factors that are associated with increases in the activities of 

two effectors: Ras and PKC (for review, see Widmann et al., 1999; Hoffman and Hu, 

2000; Varma and Deng, 2000; Michelotti et al., 2000).  Signaling associated with the 
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activation of these effectors converge on a family of serine/threonine kinases known as 

the mitogen-activated protein kinases (MAPKs) (reviewed in Gutkind, 1998).  Three 

types comprise this MAPK family: extracellular signal-regulated protein kinase (ERK or 

p42/p44), c-Jun N-terminal kinase (JNK), and p38.   

A link between effector and MAPK activation has been difficult to establish due 

to the involvement of numerous elements in the signaling cascade and the potential for 

interaction among other MAPK signaling pathways.  In a study using an animal model 

over-expressing the Ras effector, Ramirez et al. (1997) made the observation that 

enhanced MAPK kinase kinase (MEKK1) activity leads to the stimulation of JNK; thus, 

establishing the Ras-MEKK1-JNK pathway for cellular growth and proliferation.  In 

addition, these investigators showed that a dominant negative mutant of Raf, a MAPK 

kinase kinase, does not impact the JNK pathway.  This investigation supported the notion 

that MEKK1 preferentially stimulates the JNK pathway while Raf preferentially regulates 

the ERK pathway (reviewed in Minden and Karin, 1997).  A controversial issue is that 

both PKC and Ras have the ability to activate both MAPK kinase kinases (MEKK1 and 

Raf) (Lazou et al., 1994; Bogoyevitch et al., 1995).  Adding to the confusion, a study 

implicated Raf in the activation of a MEK6, a MAPK kinase that leads to the activation 

of p38 (Zechner et al., 1997).  Despite the controversy, a degree of separation exists 

within the MAPK family that may clarify the role each member has in the growth and the 

proliferation response.  Under stressful conditions, there is an enhancement in both the 

JNK and the p38 activities.  Due to circumstances surrounding the activation of JNK and 

p38, researchers termed these proteins as the stress-activated protein kinases (SAPKs).  

Depending on the type of stimulus, activation of a specific MAPK pathway utilizes the 
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same effectors and proteins, but for unknown reasons the mechanisms and the results are 

different.  Figure 5 depicts portions of the α1-AR-MAPK signaling cascade. 

Many studies correlated the effects of catecholamines to cellular growth and proliferation 

in the cardiovascular system.  Evidence stems from the observation that in the presence 

of catecholamines rat smooth muscle cells proliferate (Blaes and Boissel, 1983).  Other 

work demonstrated that inhibiting the sympathetic neurotransmission in the rat smooth 

muscle tissue stunts the cellular proliferation (Fronek, 1983).  Therefore, besides 

mediating vasoconstriction, the α1-ARs regulate the sympathetic effects on vascular 

proliferation (reviewed in Jackson and Schwartz, 1992; Hoffman and Hu, 2000).   

Nakaki et al. (1990) demonstrated that stimulation of α1-ARs promotes DNA 

synthesis in quiescent rat smooth muscle cells.  Additionally, stimulation of α1-ARs in rat 

aortic smooth muscle cells markedly increases the gene expression of the transcriptional 

factor c-fos (Majesky et al., 1990).  Other studies demonstrated that activation of α1-ARs 

results in an increase of protein synthesis (Chen et al., 1995; Xin et al., 1997).  These 

studies demonstrated that the activation of the α1B- and α1D-AR can mediate certain 

aspects of cellular proliferation in rat vascular smooth muscle tissue.  However, Siwik 

and Brown (1996) demonstrated that unlike the response associated with prolonged α1B-

AR activation, the α1A-AR results in attenuation of the α1B-AR-mediated growth 

response. 

The α1-ARs are also capable of mediating events associated with cellular growth 

and proliferation in neonatal rat myocardial cells (Simpson, 1983, 1985; Meidell et al., 

1986; reviewed by Simpson, 1988).  Studies examining cellular growth and proliferation 

revealed two requirements: the up-regulation of the proto-oncogenes and the increased 
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Figure 5.  A depiction of the α1-AR mitogen-activated protein kinase (MAPK) signaling 
pathway.  MEKK, MAPK Kinase Kinase; MEK, MAPK Kinase. 
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production of cellular proteins prior to cellular division (reviewed in Schluter and Piper, 

1999).  Indicators of cellular proliferation in cardiomyocytes are increases in α-actin 

mRNA and total cellular proteins (Meidell et al., 1986).  Mitogenic growth is similar to 

hypertrophic growth with the exception that hypertrophic growth is a response for the 

terminally differentiated cells such as the cardiac myocytes. 

Other than the expression of immediate early genes, there is an up-regulation of 

embryonic genes such as atrial naturetic peptide (ANP), skeletal α-actin, and β-myosin 

heavy chain (β-MHC).  The activation of immediate early and embryonic genes leads to 

the up-regulation of the constitutively expressed contractile protein genes MLC-2 and 

cardiac α-actin (Long et al., 1989).  All of these events culminate into a physically larger 

cell, which characteristically fulfills the hypertrophic phenotype. 

 In rat ventricular myocytes, Knowlton et al. (1993) linked the α1A-AR subtype to 

cellular hypertrophy.  In a study using transgenic mice harboring a constitutively active 

α1B-AR, Milano et al. (1994) reported that targeting the mutant receptor to the heart 

induces cardiac hypertrophy.  A study by D’Angelo et al. (1997) found that cardiac-

targeted over-expression of the Gαq (a protein activated as part of the α1-AR signaling 

cascade) induces cardiac hypertrophy along with cardiac dysfunction.  These Gαq over-

expressing mice showed increased heart weight, increased myocyte size, and increased 

levels of the genetic markers of cardiac hypertrophy: ANP, β-MHC, and α-skeletal actin.  

On the contrary, one study indicated that the α1B-AR antagonizes the hypertrophic actions 

of the α1A-AR in the rat myocardium (Deng et al., 1998).  Despite these conflicting 

observations, many studies favor the notion that the α1-ARs mediate the hypertrophic 

response through activation of different effector isoforms of PKC, Ras, and Raf 
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(reviewed in Gutkind, 1998).  In one transgenic study using mice with cardiac targeted 

over-expression of the Ras gene, the investigators noted morphological changes in the 

atrial and ventricular chambers and also increases in the genetic markers of cardiac 

hypertrophy (Hunter et al., 1995).  Thus, the activators that the α1-AR subtypes can 

couple with may be the deciding factor in the regulation of the hypertrophic signaling 

pathways.      
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Chapter Two 

Statement of the Problem 

The α1-ARs regulate systemic arterial blood pressure, provide a second source of 

positive inotropy during heart failure, and modulate growth responses.  Additionally 

other studies indicate that alterations in the normal signaling patterns of these receptors 

may lead to hypertension and/or heart failure.  There are three known subtypes: α1A-,  

α1B-, and α1D-ARs.  Currently many laboratories are focusing on addressing the relevance 

of multiple receptor subtypes with similar signaling properties expressed in the same 

tissue.  Establishing the physiological relevance of each α1-AR subtype is challenging 

due to the lack of selective agonists and antagonists available.  This dissertation utilized 

novel tools and models to examine the signaling and the trafficking properties of these 

receptors at the cellular level and their physiological functions at the tissue and the whole 

animal level.  In addition, this work advances the hypothesis that each receptor subtype 

subserves a different physiological function. 

 

Specific Aims 

 Many investigators believe that the divergence of the amino acid sequence in the 

intracellular loops and the carboxyl-terminus can account for the unique properties 

inherent to each α1-AR subtype.  Thus, the first specific aim of this dissertation examined 

the hypothesis that there are differences in the trafficking properties by investigating the 

basal localization patterns, agonist-mediated internalization, and desensitization of each 

receptor subtype.  Using a laser scanning confocal microscope, experiments investigated 

the basal localization patterns for each α1-AR/green fluorescent protein (GFP) subtype.  
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Additionally, an immunocytochemistry technique assessed the ability of each receptor 

construct to activate extracellular signal-regulated kinase 1/2, as well as the ability of 

prolonged agonist incubation to desensitize this response.  The other studies examined 

the agonist-mediated internalization properties of each α1-AR/GFP subtype in real-time.  

In addition, experiments assessed the participation of the receptor trafficking protein, β-

arrestin 1, in mediating α1-AR internalization.    

 Since differences exist among the receptor subtypes at the cellular level, there is 

great interest to examine the contribution that each subtype has in physiological 

function(s).  The second specific aim of this dissertation investigated the hypothesis that 

the α1-AR subtypes participate in different regulatory activities in the cardiovascular 

system.  Animals with the constitutively active α1B-AR under the control of the 

endogenous promoter were used to study the role of the α1B-AR participation in aortic 

smooth muscle contraction.  Other experiments used echocardiographic techniques to 

determine the effect(s) of α1B-AR on cardiac dimensions and functions and the potential 

for cardiac pathophysiology development.  Another series of experiments investigated the 

left ventricular contractile function using the isolated-perfused heart technique.  The 

differences in function response prompted a study to examine a possible mechanism 

underlying the depressed cardiac function in the animals over-expressing the 

constitutively active α1B-AR.  In a different series of experiment using mice deficient in 

the α1D-AR, the study focused on the role of the α1D-AR in regulating cardiac function 

and mediating coronary vasoconstriction.    

In summary, the specific aims of this dissertation are as follows: 
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1) Examine the hypothesis that there are differences in the cellular trafficking 

properties of the α1-AR subtypes. 

2) Examine the hypothesis that the α1-AR subtypes modulate different 

physiological responses in the cardiovascular system.  
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Introduction 

The α1-ARs are members of the G-protein-coupled receptor (GPCR) family of 

receptors and are utilized by the sympathetic nervous system to regulate systemic arterial 

blood pressure and blood flow.  The α1-ARs also play a major role in mediating growth 

responses in cardiac and vascular smooth muscle cells (for reviews on all aspects of the 

α1-ARs, see Graham et al., 1996; García-Sáinz et al., 1999; Schwinn and Price, 1999; 

Zhong and Minneman, 1999; Piascik and Perez, 2001).  Three genes encoding unique 

receptor subtypes, the α1A-, α1B-, and α1D-ARs, have been cloned and characterized.  

These subtypes utilize a variety of second messengers and G-proteins to modulate 

cellular processes.  Alterations in normal α1-AR function may contribute to the 

pathophysiology of diseases such as hypertension, congestive heart failure, and benign 

prostatic hyperplasia. 

GPCR signaling is also tightly regulated by a series of cellular proteins that 

promote receptor desensitization and internalization (Krupnick and Benovic, 1998; 

Lefkowitz, 1998).  Agonist occupation promotes receptor phosphorylation by a series of 

GPCR kinases (Hausdorff et al., 1990; Inglese et al., 1993; Premont et al., 1995).  The 

phosphorylated receptor exhibits high affinity for the arrestins, which, in turn, prevent 

further interaction between the receptor and G-proteins (Wilden et al., 1986; Benovic et 

al., 1987).  There are currently four known members of the arrestin family: visual arrestin 

(arrestin 1), β-arrestin 1 (arrestin 2), β-arrestin 2 (arrestin 3) and cone arrestin (arrestin 4) 

(Ferguson et al., 1996; Krupnick and Benovic, 1998).  The β-arrestins promote 

internalization by binding to both the receptor and clathrin, thus, directing the receptor to 

coated pits (von Zastrow and Kobilka, 1992; Krupnick et al., 1997a; Gagnon et al., 
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1998).  Oakley et al. (2000) demonstrated recently that GPCRs have different affinities 

for the different arrestins.  Class A GPCRs, which include the β2-AR, α1B-AR, and µ-

opioid receptor, have high affinity for β-arrestin 2 whereas Class B GPCRs, such as the 

angiotensin II type 1A receptor, neurotensin receptor 1, and vasopressin V2 receptor, 

exhibit high affinity for both β-arrestin 1 and 2 isoforms.  

With regard to the α1-AR subtypes, the desensitization, down-regulation, and 

internalization characteristics of the α1B-AR have been most extensively examined.  For 

example, agonist-mediated phosphorylation and internalization of the α1B-AR have been 

demonstrated, and the domains of the receptor involved in internalization have been 

identified (Fonseca et al., 1995; Mhaouty-Kodja et al., 1999; Wang et al., 1997, 2000).  

We know much less regarding the molecular determinants of desensitization, down-

regulation, and internalization for the α1A- and α1D-ARs.  Vázquez-Prado et al. (2000) 

showed that the α1A-AR could undergo agonist-mediated phosphorylation, albeit not to 

the same extent as the α1B-AR.  Yang and co-workers (1999) used fibroblasts stably 

transfected with each of the α1-ARs to show that the increase in inositol phosphates 

mediated by the α1A- and α1B-ARs could be desensitized, whereas the increase mediated 

by the α1D-AR was refractory to agonist-mediated desensitization.  In contrast to this, 

García-Sáinz et al. (2001) showed that the α1D-AR could be phosphorylated and 

desensitized. 

In this report, we have examined subcellular distribution, agonist-mediated 

internalization and desensitization characteristics of green fluorescent protein (GFP)-

tagged α1-ARs using real-time imaging in transiently transfected human embryonic 

kidney (HEK) 293 cells.  We show that there are significant differences in these 
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parameters that could account for differences in the cellular signaling properties of the α1-

ARs.
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Experimental Procedures 

Materials 

 α1-AR/green fluorescent protein (α1-AR/GFP) vectors were constructed by 

ligating the coding region of the human α1A-, α1B-, and α1D-AR into the EcoRI-KpnI site 

of the basic pEGFP-N3 protein fusion vector (Clontech, Palo Alto, CA) as previously 

described (Hirasawa et al., 1997; Awaji, et al., 1998).  The generation of wild-type β-

arrestin 1 and a dominant negative β-arrestin 1 (319-418) in pcDNA3 has previously been 

reported (Krupnick et al., 1997b).  Rabbit polyclonal antibodies targeted against β-

arrestin 1 were generated as described by Orsini and Benovic (1998).  

 

Cell Culture and Transient Transfection 

 HEK-293 cells were maintained in Dulbecco=s modified Eagle=s medium 

supplemented with 10% fetal bovine serum and 1%  antibiotic/antimycotic cocktail 

[10,000 units/ml penicillin G sodium, 10,000 mg/ml streptomycin sulfate, and 25 mg/ml 

amphotericin B in 0.85% saline (Invitrogen, Carlsbad, CA)].  The cells were grown in 

T75 flasks in a 37°C cell culture incubator with a humidified atmosphere of 95% air and 

5% CO2 and were fed every 2 to 3 days.  HEK cells used in immunocytochemistry 

protocols were grown on gelatin/laminin treated coverslips in 35-mm tissue culture 

dishes (Corning Glassworks, Corning, NY) whereas cells for real-time studies were 

grown in culture dishes with a glass coverslip bottom (MatTek Co., Ashland, MA) that 

were also gelatin/laminin treated.  Cells were grown to approximately 80% confluence 

and used for experimentation 3 days after being plated.  HEK cells were transfected with 

cDNA encoding either α1A-, α1B-, or α1D-AR/GFP fusion protein using calcium phosphate 
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precipitation.  In certain studies, the receptor/GFP constructs were co-transfected with a 

cDNA encoding wild-type β-arrestin 1 or β-arrestin 1 (319-418).  β-arrestin 1 over-

expression was confirmed using specific antibodies in immunocytochemistry protocols as 

we have described previously (Hrometz et al., 1999; McCune et al., 2000).  

 

Activation of ERK1/2 Phosphorylation and Agonist-Mediated Desensitization 

The coupling of the α1-AR/GFP constructs to functional responses and agonist-

mediated desensitization was assessed by measuring the phosphorylation of ERK1/2. 

Cells were challenged with 100 µM phenylephrine for a period of 2 h.  After the 

appropriate time, cells were fixed with 3.7% formaldehyde in phosphate-buffered saline 

for 10 min, and immunocytochemistry was performed as described previously by 

Hrometz et al. (1999) and McCune et al. (2000).  In brief, cells were treated with mouse 

monoclonal IgG pERK (Santa Cruz Biotechnology, Santa Cruz, CA) at a 1:50 dilution 

and then incubated with Rhodamine Red-X-conjugated AffiniPure Donkey Anti-Mouse 

IgG (Jackson ImmunoResearch Laboratories, West Grove, PA) at a dilution of 1:100.  

The degree of ERK1/2 phosphorylation was assessed using laser scanning confocal 

microscopy as described below.  Desensitization experiments were conducted on HEK-

293 cells 72 h after transient transfection with cDNA encoding α1A-, α1B-, or α1D-

AR/GFP.  Cells were treated with 100 µM phenylephrine for 15 h.  Vehicle-treated cells 

served as controls.  After the incubation, cells were washed three times (30 min intervals 

between each wash) with Dulbecco’s modified Eagle’s medium, after which cells were 

rechallenged with phenylephrine for 2 h, and the effect on ERK1/2 phosphorylation was 

assessed.   
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Laser Scanning Confocal Microscopy  

Transfected HEK-293 cells were imaged with a Spectra-Physics laser scanning 

confocal microscope attached to a TCS DM RXE microscope with a Plan-Apo 100x oil 

immersion objective lens (Leica, Wetzler, Germany).  The software used to collect the 

images was the Leica TCS NT version 1.6.587.  The images were transferred to a 

computer for reduction and analysis with Adobe Photoshop version 4.0 (Adobe Systems, 

Mountain View, CA).  The setting on the laser was constant for all experiments.  

However, both GFP and rhodamine signals were digitally enhanced by adjusting the 

photomultiplier tube (PMT).  Initial adjustment of the PMT allowed us to minimize the 

background signal while maximizing the fluorescent signal(s) of interest.  Because 

individual cells required a different PMT setting, the differences in intensity should not 

be construed as a measure of receptor expression levels.  

 

Data and Image Analysis 

The rate and extent to which the α1-AR/GFP constructs were internalized after 

exposure to agonist were analyzed using the image analysis software NIH ImageJ 1.18x 

(http://rsb.info.nih.gov/ij/).  The change in fluorescence intensity was measured in a 

rectangular area just below the cell surface before and during the internalization process.  

Data were normalized to the fluorescence obtained before agonist treatment.  The 

increase in fluorescence intensity above that observed in untreated cells is a measure of 

receptor internalization.  A plot of the relative change in fluorescence intensity versus 

time after agonist treatment was then generated.  The average phospho-ERK1/2 signal 
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per determined area was quantitated using the same image analysis software.  Only 

images acquired using exactly the same PMT settings were compared with each other.  

Treated cells were normalized to the control phospho-ERK1/2 activation signal.  All data 

are reported as the mean " S.E.  Data were analyzed by analysis of variance followed by 

Student- Newman-Kuels analysis to determine where statistically significant differences 

existed.  A P value of less than 0.05 was considered significant.  
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Results 

Basal Cellular Localization 

HEK-293 cells were transiently transfected with expression plasmids encoding α1-

AR/GFP fusion proteins and the living cells were visualized 72 h later.  Transfection with 

a cDNA encoding the α1B-AR/GFP resulted in a specific fluorescence that was detected 

predominantly on the margin of the cell, indicative of a cell surface localization (Figure 

6).  Although there was cell surface expression, the majority of the α1D-AR/GFP 

fluorescence was detected intracellularly in a perinuclear orientation (Figure 6).  

Exhibiting localization properties of each of these subtypes, α1A-AR/GFP fluorescence 

was observed both on the cell surface and in a perinuclear orientation (Figure 6). 

 

Functional Responses Mediated by the α1-AR/GFP Fusion Proteins  

To demonstrate that the expressed α1-AR/GFP fusion proteins were functional, 

transfected cells were stimulated with phenylephrine, and, after fixing of the cells, the 

effect on ERK1/2 phosphorylation was determined with a monoclonal antibody specific 

for phospho-ERK1/2.  Treatment with phenylephrine resulted in a statistically significant 

increase in phospho-ERK1/2 immunoreactivity in cells transfected with either the α1A - or 

the α1B-AR/GFP constructs (Figures 7, a, b, and d).  This indicates that these GFP 

modified α1-ARs are functional when expressed in HEK-293 cells.  Phenylephrine 

treatment of cells transfected with the α1D-AR also resulted in an increase in the level of 

ERK1/2 phosphorylation (Figures 7, c and d).  However, this increase was not 

significantly different compared with the untreated control (Figure 7d).  These findings 

could indicate that, although functional, the α1D-AR is poorly coupled to second 
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Figure 6.  Cellular localization of α1-AR/GFP constructs in transiently transfected HEK-
293 cells.  Transient transfection of α1-AR/GFP expression plasmids and laser scanning 
confocal microscopy were performed as described under Experimental Procedures.  The 
images are representative of five to eight independent transfections.  Data are from 
Chalothorn et al. (2002).   
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Figure 7.  The activation of ERK1/2 phosphorylation and agonist-mediated 
desensitization.  Immunocytochemistry demonstrating receptor functionality and agonist-
induced desensitization were performed as described in Experimental Procedures.  
Images displayed are for the phospho-ERK1/2 signals.  Data presented are for the 
vehicle-treated, the phenylephrine-stimulated ERK1/2 phosphorylation in naïve cells, and 
the effect of 15 h of phenylephrine treatment on the subsequent ability of phenylephrine 
to activate ERK1/2  phosphorylation.  Data are for a) α1A-AR/GFP, b) α1B-AR/GFP, and 
c) α1D-AR/GFP.  The images are representative of three to seven independent 
transfections.  d, bar graphs show the relative changes in the phospho-ERK1/2 signals for 
each receptor.  *, significantly greater than the control level of ERK1/2 phosphorylation.  
†, statistically less than the phenylephrine stimulation of ERK 1/2 phosphorylation.  Data 
generated by Mary L. García-Cazarín and reported in Chalothorn et al. (2002). 
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messenger pathways such that only a modest increase in ERK1/2 phosphorylation could 

be observed. 

 

Effect of Agonist Stimulation on Receptor Localization 

In addition to activating ERK1/2 phosphorylation, the ability of phenylephrine to 

promote changes in receptor localization was assessed in real-time.  Addition of 100 µM 

phenylephrine to cells expressing the α1B-AR/GFP resulted in a rapid translocation of the 

receptor from the cell surface to intracellular compartments (Figure 8).  The α1-AR 

antagonist, 1 µM prazosin, blocked this internalization (not shown). 

The increase in intracellular fluorescence signal intensity, quantitated with image 

analysis software (as described under Experimental Procedures), was used to gain a 

measure of the rate of receptor internalization.  A plot of the increase in intracellular 

fluorescence intensity versus time after phenylephrine administration is presented in 

Figure 9b and shows that α1B-AR internalization occurred in a very rapid fashion. 

Receptor activation with phenylephrine also promoted the internalization of the 

cell surface population of α1A-ARs (Figures 8 and 9a).  However, a significant increase 

in intracellular fluorescence was not detected until 50 minutes after agonist exposure.  A 

plot of the increase in intracellular fluorescence intensity versus time revealed that the 

α1A-AR internalization occurred at a slower rate than that seen for the α1B-AR.  Treatment 

of HEK cells expressing the α1D-AR/GFP fusion protein with phenylephrine did not cause 

a translocation of the cell surface population of α1D-ARs (Figure 10). 

 
Agonist-Mediated Receptor Desensitization 

Transfected HEK-293 cells were incubated for 15 h with 100 µM phenylephrine, 
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Figure 8.  Effects of 100 µM phenylephrine on the cellular localization of either the α1A- 
or α1B-ARs transiently transfected into HEK-293 cells.  Real-time images were captured 
before and at the specified time points after phenylephrine addition as described under 
Experimental Procedures.  The images are representative of five to eight independent 
transfections.  Data are taken from Chalothorn et al. (2002).  The images from 20 mins 
through 60 mins appear on the following page. 
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Figure 8.  (continued) 
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Figure 9.  Comparison of the effect of 100 µM phenylephrine on changes in intracellular 
fluorescence intensity in cells transfected with the a) α1A- or b) α1B-AR/GFP in the 
absence or presence of β-arrestin 1 (319-418).  Relative intensity assessment were 
performed as described under Experimental Procedures.  Data represent the mean and 
standard error of the mean values of four to eight independent transfections.  *, values are 
significantly greater than the unstimulated control or cells co-transfected with β-arrestin 1 
(319-418).  Data are from Chalothorn et al. (2002).   
 
a) 
 

 
b) 
 

 
 



 

 
 59 

Figure 10.  Effects of 100 µM phenylephrine on the cellular localization of the α1D-
AR/GFP transiently transfected into HEK-293 cells.  Real-time images were taken at 
specific time points after phenylephrine treatment.  Experiments were performed as 
described under Experimental Procedures.  The images are representative of four 
independent transfections.  Images taken from Chalothorn et al. (2002).  
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and the effect on α1-AR/GFP localization and the ability of the α1-ARs to stimulate 

ERK1/2 phosphorylation was assessed.  Prolonged incubation with phenylephrine 

(followed by extensive washout) resulted in an internalization of α1A- and α1B-ARs (see 

Appendix A) in a fashion similar to that seen in untreated cells.  Phenylephrine treatment 

for 15 h significantly decreased the ability of either the α1A- or α1B -AR to activate 

ERK1/2 phosphorylation in response to a second addition of phenylephrine (Figure 7d).  

The long exposure to phenylephrine had no effect on the cellular localization of the α1D-

AR.  Long-term exposure to phenylephrine significantly reduced the level of phospho-

ERK1/2 seen following rechallenge with agonist in α1D-AR expressing cells (Figure 7d).  

 

Effect of Arrestins on Agonist-Activated Receptor Internalization 

HEK cells were co-transfected with α1-AR/GFP constructs and an expression 

plasmid encoding β-arrestin 1.  The over-expression of β-arrestin 1 was confirmed using 

immunocytochemical protocols with an antibody against β-arrestin1 (Figure 11).  β-

arrestin 1 over-expression did not increase the rate or extent of α1A- or α1B-AR 

internalization after stimulation with phenylephrine (see Appendix B).  In a similar 

fashion, co-transfection with β-arrestin 2 had no effect on agonist-mediated 

internalization (see Appendix B). 

HEK-293 cells were co-transfected with a cDNA encoding the α1B-AR/GFP 

construct and a dominant-negative form of β-arrestin 1, β-arrestin 1 (319-418).  β-arrestin 

1 (319-418) had no effect on basal α1B-AR cellular localization (Figure 12).  However, 

the dominant-negative arrestin markedly decreased the ability of phenylephrine to 

promote α1B-AR internalization (Figure 12).  Analysis of these data revealed that the 
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Figure 11.  Immunolocalization of endogenous β-arrestin 1 in native HEK-293 cells and 
cells transiently transfected with a cDNA encoding β-arrestin 1.  The β-arrestin 1 
immunofluorescence was detected with a specific antibody and a rhodamine-labeled 
secondary antibody as described under Experimental Procedures.  Images selected from 
Chalothorn et al. (2002). 
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Figure 12.  The effect of co-transfection of β-arrestin 1 (319-418) on the ability of 100 
µM phenylephrine to promote internalization of the α1A- and the α1B-AR/GFP in HEK-
293 cells.  Drug administration and real-time visualization were performed as described 
under Experimental Procedures.  Representative real-time images up to 90 and 30 mins 
after agonist addition for α1A- and α1B-AR/GFP, respectively.  The images are 
representative of four (α1A-AR/GFP) and seven (α1B-AR/GFP) independent transfections.  
Images from Chalothorn et al. (2002).    
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dominant-negative arrestin significantly reduced the rate of increase in intracellular 

fluorescence intensity seen after the addition of phenylephrine to HEK-293 cells (Figure 

9b).  Similar to effects seen with the α1B-AR, β-arrestin 1 (319-418) decreased the 

magnitude of the phenylephrine-induced α1A-AR internalization (Figures 9a and 12).  

Wild-type β-arrestin 1 did not affect the basal cellular localization or the ability of 

phenylephrine to promote α1D-AR internalization (Figure 13).  Similarly, β-arrestin 1 

(319-418) had no effect on the cellular localization of the α1D-AR/GFP (Figure 13).   
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Figure 13.  The effect of co-transfection of β-arrestin 1 or β-arrestin 1 (319-418) on the 
ability of 100 µM phenylephrine to promote internalization of the α1D-AR/GFP in HEK-
293 cells.  Drug administration and real-time visualization were performed as described 
under Experimental Procedures.  Each transfection was repeated three to four times.  
Representative images are shown for the cell co-transfected with the wild-type β-arrestin 
1 and cell co-transfected with β-arrestin 1 (319-418).  Images taken from Chalothorn et 
al. (2002).   
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Discussion 

In this communication, we have examined the cellular localization, agonist-

mediated internalization, and desensitization properties of α1-AR/GFP fusion proteins in 

transiently transfected HEK-293 cells.  Previous studies with the α1B-AR/GFP construct 

demonstrated that it is fully functional and internalizes in the same manner as a non-GFP 

tagged α1B-AR construct (Awaji et al., 1998).  In a similar fashion, previous studies 

showed that both the α1A- and α1B-ARs are coupled to the activation of ERK (see reviews 

by García-Sáinz et al., 1999; Zhong and Minneman, 1999; Varma and Deng, 2000; 

Piascik and Perez 2001).  In this report, we show that both the α1A- and α1B-ARs when 

coupled to GFP can promote an increase in ERK1/2 phosphorylation (Figure 7).  The 

phosphorylation of ERK1/2 is thought to mediate growth responses, at least in part.  

Demonstration of ERK1/2 phosphorylation in these studies is evidence that the α1-ARs 

are functional and retain their ability to activate cellular signaling when conjugated to the 

GFP.  

In this report, we also noted that, although phenylephrine could increase the level 

of phospho-ERK1/2 in α1D-AR expressing cells, this increase was not statistically 

significant.  This could indicate that the small population of cell surface α1D-ARs is not 

efficiently coupled to ERK1/2 phosphorylation.  This result is consistent with the 

observations of Theroux et al. (1996) who noted that the α1D-AR was the most poorly 

coupled of the α1-AR subtypes.  In previous work with stably transfected fibroblasts, we 

showed that the α1D-AR was constitutively active with regard to ERK activation 

(McCune et al., 2000).  We also noted that there was a high basal level of ERK activity in 

these cells and that phenylephrine could not promote a further enhancement of kinase 
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activity (McCune et al., 2000).  Thus, the inability to detect a significant increase in 

ERK1/2 phosphorylation in this present study could also be due to a constitutively active 

α1D-AR.  Nonetheless, we must also accept the possibility that the α1D-AR/GFP construct 

may not be functionally active (however, see the additional discussion below). 

Laser scanning confocal microscopy revealed that the α1B-AR was expressed 

predominantly on the cell surface (Figure 6).  Although there is some cell surface 

expression of the α1D-AR, the majority of this receptor is expressed in intracellular 

compartments.  The α1A-AR has localization characteristics of both the α1B- and α1D-ARs, 

being expressed not only on the cellular surface but also intracellularly.  Using 

immunocytochemistry with subtype selective antibodies, we previously observed a 

similar distribution pattern for the α1-ARs in stably transfected fibroblasts and vascular 

smooth muscle cells (Hrometz et al., 1999; McCune et al., 2000).  However, studies of 

the cellular localization of the α1-ARs have been hampered by the low affinity of the 

commercially available antibodies.  The present studies confirm and extend our initial 

findings with techniques that do not involve antibodies.  Therefore, it seems likely that 

our observation of differential cellular localization of the α1-AR accurately portrays the 

distribution pattern in vascular smooth muscle cells that normally express all three α1-

ARs.  Indeed, an elegant series of studies using prazosin labeled with BODIPY-FL to 

image the α1-AR subtypes noted an intracellular expression of these receptors in cultured 

prostate smooth muscle cells and stably transfected fibroblasts (MacKenzie et al., 2000).  

These authors estimated that in smooth muscle cells, 40% of the total α1-AR population is 

expressed intracellularly.  

Using real-time imaging of living cells, we observed differences in the agonist- 
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mediated internalization properties of the α1-ARs (Figures 8, 9, and 10).  In agreement 

with previous work (Fonseca et al., 1995; Wang et al., 1997, 2000), we observed that the 

α1B-AR undergoes rapid agonist-mediated internalization.  However, there has been little 

investigation of the effect of agonist activation on the translocation of the other α1-AR 

subtypes.  We noted that the α1A-AR also undergoes agonist-mediated internalization.  

Interestingly, this internalization occurs at a slower rate than for the α1B-AR (Figures 9, 

compare a and b).  We were unable to detect any agonist-mediated internalization of the 

α1D-AR (Figure 10).  We cannot discount the possibility that a small amount of receptor 

internalization did take place.  However, this small increase in intracellular fluorescence 

could not be detected because of the considerable fluorescence produced by the 

intracellular population of α1D-ARs. 

We then assessed the extent to which the receptors could be desensitized after 

prolonged exposure to phenylephrine.  Transfected HEK-293 cells were incubated with 

phenylephrine for 15 h and then extensively washed. This long incubation period resulted 

in redistribution of each of the α1-AR/GFPs similar to that seen in non-desensitized cells 

(data not shown).  After the washout period the cells were rechallenged with 

phenylephrine.  Using this protocol, we demonstrated that prolonged exposure to agonist 

desensitizes the ability of the α1A- and α1B-ARs to promote ERK1/2 phosphorylation 

(Figure 7).  Interestingly, after a 15 h exposure to phenylephrine in α1D-AR expressing 

cells, rechallenge with agonist could not promote any increase in the level of phospho-

ERK1/2.  Indeed, there was a statistically significant difference in the level of agonist-

induced ERK1/2 phosphorylation in control HEK-293 cells and that seen following 

desensitization (Figure 7).  Thus even though phenylephrine could only promote a 
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modest, non-significant increase in the level of phospho-ERK1/2 in control cells, this 

could be reduced by prolonged expose to agonist and supports the notion that the α1D-

AR/GFP construct is functional. 

Our results are consistent with other studies that have examined the 

phosphorylation and desensitization of the α1-ARs.  Yang et al. (1999) noted that both the 

α1A- and α1B-ARs undergo agonist-mediated desensitization.  However, these authors 

noted that the α1B-AR was desensitized by lower concentrations of agonist.  Similarly, 

Vázquez-Prado et al. (2000) found that the α1B-AR underwent more extensive agonist-

activated phosphorylation than did the α1A-AR.  The more rapid rate of α1B-AR 

internalization noted here is also consistent with the observation that this receptor is more 

extensively phosphorylated and readily desensitized than the α1A-AR.  Yang et al. (1999) 

also observed that functional responses mediated by the α1D-AR were not subject to 

desensitization.  In contrast to the work of Yang et al. (1999), García-Sáinz et al. (2001) 

noted that in stably transfected fibroblasts, the α1D-AR could be phosphorylated and 

desensitized.  Therefore, a definitive answer regarding the desensitization characteristics 

of the α1D-AR requires additional studies. 

Arrestins have been implicated in mediating the internalization of a variety of 

GPCRs.  There has been little work performed on the role of arrestins in agonist-

mediated α1-AR internalization.  We were unable to observe any demonstrable effects of 

β-arrestin 1 over-expression to the degree to which agonist activation promotes the 

internalization of the α1A- or α1B-ARs.  This probably reflects the fact that HEK-293 cells 

possess large amounts of β-arrestin 1 (Figure 11).  Therefore, over-expression of 

additional arrestin molecules would not be expected to have an effect on agonist-
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mediated receptor internalization.  Similarly, over-expression of β-arrestin 2 had no effect 

on the degree of agonist-stimulated internalization of either the α1A- or α1B-ARs (data not 

shown).  A dominant-negative arrestin, β-arrestin 1 (319-418), completely blocked 

agonist-mediated internalization of both the α1A- and the α1B-ARs (Figures 9 and 12).  

These data argue that agonist-activated internalization of the α1-AR subtypes is mediated 

by arrestins.  Although the dominant-negative arrestin confirms the role of arrestins in α1-

AR internalization, this reagent cannot be used to determine the specific role of β-arrestin 

1 or 2 in the internalization process.  This is because the dominant-negative arrestin binds 

to clathrin, thus preventing the binding of wild-type arrestin species.  Therefore, the 

dominant-negative arrestin would be expected to block the actions of any wild-type 

arrestin. 

The intracellular localization of α1D-AR was not affected by over-expression of 

either wild-type β-arrestin 1 or β-arrestin 1 (319-418), arguing that the intracellular 

distribution of the α1D-AR is not likely to be maintained by arrestin molecules (Figure 

13).  The significance of the predominantly intracellular localization of the α1D-AR is not 

clear.  We do not know which of the α1D-ARs, the small population of cell surface 

receptors or the large population of intracellularly expressed receptors, are signaling 

competent and responsible for the regulatory activity of this subtype.  As noted above, 

data from several labs including ours show that the α1D-AR is constitutively active 

(Noguera et al., 1993; García-Sáinz and Torres-Padilla, 1999; McCune et al., 2000).  The 

observation of constitutive activity may shed some light on the relationship between 

cellular localization and functional responses.  A constitutively active receptor assumes 

an activated conformation in the absence of agonist.  The large degree of intracellular 
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localization of the α1D-AR may be due to continuous internalization of the receptor due to 

its constitutively active nature.  

The three α1-ARs are co-expressed on tissues and organs involved in 

cardiovascular regulation, yet these receptors modulate different physiological processes.  

We hypothesize that the observed differences in the cellular localization could contribute 

to the differences in the functional responses mediated by these receptors.  We also 

propose that the α1B-AR most approximates a prototypic GPCR in terms of cellular 

localization, agonist-mediated internalization, desensitization, and coupling to cellular 

signaling.  In contrast, we postulate that the α1D-AR is an atypical GPCR.  Although the 

α1A-AR is expressed intracellularly, it appears to have signaling properties expected of a 

GPCR. 
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Introduction 

 G-protein-coupled receptors (GPCR) comprise about 1% of the human genome 

and perform vital and diverse roles in the regulation of physiologic processes.  One of the 

members of the GPCR family is the α1-adrenergic receptor (α1-AR).  Three subtypes, the 

α1A-, α1B-, and α1D-ARs, have been isolated, cloned, and characterized.  These receptors 

are intimately involved in the regulation of peripheral vascular resistance, cardiac 

function, and vascular and myocardial cell growth (for recent reviews on all aspects of 

the α1-ARs see García-Sáinz et al., 1999; Varma and Deng, 2000; Piascik and Perez, 

2001).   

 Data from heterologous expression systems have shown that all three α1-ARs can 

couple to a variety of G-proteins and second messenger systems.  The α1-ARs signal 

through both pertussis toxin sensitive G-proteins (Perez et al., 1993) as well as G-

proteins of the Gq family (Wu et al., 1992).  Studies in both transiently and stably 

transfected cells have demonstrated that all α1-ARs activate phospholipases C and A2 

(Perez et al., 1993; Schwinn et al., 1991).  In addition to mobilizing intracellular calcium 

(which would occur subsequent to activation of phospholipase C), the α1-ARs have also 

been shown to activate calcium influx via voltage-dependent and -independent calcium 

channels (Minneman and Esbenshade, 1994; Lazou et al., 1994; Sayet et al., 1993).  

 While these studies have increased our understanding of α1-AR regulatory 

biology, certain caveats must be established.  Data from heterologous expression systems 

indicate the potential properties and regulatory activities of a given receptor.  However, 

these data do not necessarily confirm that these regulatory events have a correlation in 

mammalian tissues that natively express these receptors.  High density expression of non-
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native receptors into cells could promote promiscuous coupling to pathways that may not 

normally be involved in in vivo receptor function.  

 Progress on the integrated regulatory activities of the α1-ARs has been slowed by 

the availability of selective agonists and antagonists for these receptors.  This is 

especially true for the α1B-AR.  In this report we have taken advantage of a unique line of 

transgenic mice systemically over-expressing a constitutively active α1B-AR (see Zuscik 

et al., 2000, 2001) (see Appendix C), to examine the cardiovascular regulatory activities 

of the α1B-AR.  A constitutively active receptor is tonically active, thus eliminating the 

need for agonists that non-selectively activate all α1-ARs.  We have also examined 

regulatory activities in an α1D-AR knockout line of mice (see Tanoue et al., 2002).  

Transgenic mouse models also have inherent shortcomings (see Discussion).  

Nonetheless, we can still use these models to propose and test hypotheses.  In this 

communication, we test the hypothesis that the α1B- and α1D-ARs perform distinctly 

different regulatory activities.  We postulate that the α1B-AR is involved in the regulation 

of cardiac function and that the α1D-AR is responsible for regulating systemic arterial 

blood pressure. 
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Experimental Procedures 

Animal Use and Care 

 All animal protocols were reviewed and approved by the University of Kentucky 

Institutional Animal Care and Use Committee.  Tissues from two transgenic mouse lines 

were used in all aspects of this work.  In one line, mice over-expressed a constitutively 

active mutation of the α1B-AR, α1B-ARC128F.  The over-expression of the constitutively 

active α1B-AR was driven by the endogenous promoter, and the initial characterization of 

this mouse line has been described (Zuscik et al., 2000, 2001).  The other mouse line was 

a recently described α1D-AR knockout (Tanoue et al., 2002). 

 

Assessment of MAP Kinase Activity 

Tissue Preparation:  Transgenic mouse hearts were removed, quick frozen, and stored in 

liquid nitrogen. The frozen tissue was homogenized (Dremel, Racine, WI) and incubated 

on ice for 1 h in 400 µl of the lysis buffer (20 mM Tris-HCl, 250 mM NaCl, 2.5 mM 

EDTA, 3 mM EGTA, 20 mM -glycerophosphate, 0.5% NP-40, 100 µM Na3VO4, 5 µM 

AEBSF, 1.5 nM aprotinin, 10 nM E-64, 10 nM leupeptin, pH 7.4).  After incubation on 

ice for 1 h, the lysate was centrifuged for 15 min at 15,000 g at 4°C.  The total protein 

content in the supernatant was determined by Lowry assay.    

 

Assay of Extracellular Signal-Regulated Kinase Activity:  Extracellular signal-regulated 

kinase (ERK) activity was determined using an in-gel kinase assay.  Equal amounts of 

protein were resolved on 10% SDS-polyacrylamide gels containing 0.5 mg/ml myelin 

basic protein (MBP) substrate that is polymerized together with acryalamide thereby 
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immobilizing it in the gel.  Activated ERK kinase (Calbiochem) was used as a positive 

control.  After electrophoresis, gels were washed with 20% 2-propanol in 50 mM 

HEPES, pH 7.6 and then with 5 mM -mercaptoethanol in HEPES buffer.  Proteins were 

denatured by washing the gels in 6 M Urea and then renatured with an overnight 

incubation in HEPES buffer containing 0.05% (v/v) Tween-20 (renaturation buffer) at 

4°C.  Following incubation in renaturation buffer, gels were pre-incubated in 25 ml cold 

kinase buffer (20 mM HEPES, 20 mM MgCl2, 2 mM DTT, 5 mM γ-glycerophosphate, 

0.1 mM Na3VO4) for 30 min.  Phosphorylation of MBP was performed in situ by 

incubating the gels in kinase buffer containing 20 µM ATP and 150-160 µCi [γ32P]ATP 

for 90-120 min at 30°C.  Gels were washed extensively in 5% trichloroacetic acid/1% 

sodium pyrophosphate to remove unbound ATP, dried and exposed to a phosphor screen.  

Incorporation of [32P] into MBP was quantified with a phosphoimager (Molecular 

Dynamics), using ImageQuant software.  Enzyme activity from each sample was 

normalized to the total amount of ERK present.  This value was determined from 

immunoblotting as described below.  Activity is reported as integrated optical density 

units, and is normalized to a percentage of enzyme activity detected in untreated tissues. 

 

Assay for c-Jun N-Terminal Kinase Activity:  c-Jun N-terminal kinase (JNK) activity was 

determined using an in-gel kinase assay as described above.  In this case, protein was 

resolved on 10% SDS-polyacrylamide gels containing 0.1 mg/ml GST-cJun(1-135).  

Anisomycin is a known activator of the stress activated MAPKs; therefore, C6 

Anisomycin extracts (Cell Signaling, Beverly, MA) were used as a positive control. 
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Immunoblotting:  Equal amounts of protein samples were resolved on 10% SDS-

polyacrylamide gels and transferred to PVDF (polyvinylidene fluoride) membranes 

(Biorad).  The amount of total ERK was detected by immunoblotting using a 1:1,000 

dilution of Goat (c-16) anti-ERK polyclonal IgG (Santa Cruz Biotech, Santa Cruz, CA) 

with horseradish peroxidase conjugated anti-goat IgG at 1:10,000 (Jackson 

ImmunoResearch Labs, West Grove, PA).  The total JNK was detected by 

immunoblotting using a 1:1,000 dilution of Rabbit (c-17) anti-JNK1 polyclonal IgG 

(Santa Cruz Biotech, Santa Cruz, CA) with horseradish peroxidase conjugated donkey 

anti-rabbit IgG at 1:2,000 (Amersham, Buckinghamshire, U.K.).  Following exposure of 

the membranes to ECL + reagent (Amersham, Buckinghamshire, U.K.), the 

chemiluminescent signal was detected with a phosphoimager (Molecular Dynamics).  

Quantitation was performed using ImageQuant software. 

 

Experiments in the Isolated-Perfused Heart  

The Isolated-Perfused Heart Preparation:  Mice were heparinized (200 U) and 

anesthetized with an intraperitoneal injection of sodium pentobarbital (100 mg/kg).  The 

chest cavity was opened and the heart was quickly excised and submersed in ice-cold  

saline.  The aorta was dissected and the ascending aortic stump was cannulated with a 22-

guage plastic cannula primed with ice cold modified-Krebs-Hensleit buffer (KHB) (118 

mM NaCl, 25 mM NaHCO3,  4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 11 mM 

Dextrose, 1.5 mM CaCl2, and 1 mM pyruvate).  The aorta was sutured into position and 

the cannula placed on a perfusion apparatus (Radnoti, Monrovia, CA).  Retrograde 

(Langendorff) perfusion was immediately performed with oxygenated (95% O2 and 5% 
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CO2) modified KHB at 37.5°C.  The hearts were allowed to beat spontaneously.  The 

perfusion pressure was monitored with a pressure transducer (COBE, Lakewood, CO) 

connected to a Grass polygraph (Grass Instruments, Quincy, MA), and the coronary 

perfusion pressure was maintained at 75 mm Hg by adjusting the flow of the perfusion 

pump that was calibrated before each experiment by measuring volume perfused per min 

(Control Company, Friendswood, TX).  A fluid-filled balloon catheter was inserted into 

the left ventricle, and the balloon was filled to attain a diastolic pressure of 5-10 mm Hg.  

The balloon catheter line was connected to a second pressure transducer and an amplifier 

module designated to measure the developed pressure, which was linked to a 

differentiator.  The parameters measured were heart rate, left ventricular (LV) systolic 

and end diastolic pressure, and the rise and the fall in LV developed pressure as a 

function of time (+dP/dt and -dP/dt, respectively). 

 

Drug-Induced Increases in Inotropy:  In both lines of transgenic animals and their 

respective controls, hearts were perfused at a constant pressure of 75 mm Hg to assess the 

effects of α1B-AR modulation on β1-AR-induced positive inotropy.  Following a 25  

min equilibration period, an isoproterenol dose-response curve was generated by infusing 

a stock solution of 100 nM at increasing rates (.037 to 2.9 ml/min) into the aortic cannula.  

Measurements of coronary flow, heart rate, and ventricular function were collected at 

baseline (0 min) and 1 min after drug administration.       

 

Drug-Induced Coronary Vasoconstriction:  The effects of phenylephrine on coronary 

perfusion pressure were determined in the myocardium.  Once a perfusion pressure of 80-
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85 mm Hg was reached, experiments were performed at a constant flow.  The protocol 

was conducted in the presence of 100 nM of propranolol to limit the effect of β-AR 

stimulation on coronary perfusion pressure.  Following a 25 min equilibration, a stock 

solution of 1 mM phenylephrine was infused via an infusion pump to attain a final 

concentration of 100 µM.  The effect of phenylephrine on coronary pressure was 

recorded, and constriction was assessed by determining the relative change in the 

coronary perfusion pressures from baseline at specified time points following 

phenylephrine infusion.  

 

Echocardiography 

 Echocardiographic studies were performed on mice of 5-6 months of age (12 with 

the α1B-ARC128F and 10 NTs ).  Before determination of body weight, the mouse was 

anesthetized with 1.25% isoflurane, and the animal was placed on a custom-designed 

heated water-filled glass chamber that maintained an euthermic body temperature of 

37°C.  The thorax hair was shaved and warm ultrasonic coupling jelly was applied to 

cover the thorax.  Transthoracic echocardiography was performed using the Acuson 

Sequoia C256 system with a 13 MHz linear ultrasonic transducer (15L8, Acuson, 

Mountain View, CA, USA) in a phased array format.  This system offers 0.35 mm lateral 

resolution and 0.25 mm axial resolution and is capable of acquiring and storing real-time 

digital images simultaneously.  M-mode measurements on the LV short axis view 

(papillary muscle level) was performed (see Gardin et al., 1995).  The M-mode tracings 

were used to measure the end-diastolic and end-systolic LV internal chamber dimensions 

(LVID) as well as the posterior wall thickness (PWT).  The maximum end-diastolic (ED) 
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LV internal chamber dimensions (LVIDd) and PWTd were measured when the LV 

chamber cavity reached end-diastole, and the LV end-systolic (ES) internal chamber 

dimensions (LVIDs) were measured at the time corresponding to maximum motion of the 

LV posterior wall.  The cycle length (CL) and ejection time (ET) were measured from 

aortic flow waveforms.  The LV fractional shortening (%FS), LV mass, and the heart rate 

corrected mean velocity of circumferential fiber shortening (mVcfc) were estimated as 

follows: %FS = [(LVIDd-LVIDs)/LVIDd]·100; LV mass = 1.055[(LVIDd + 2·PWTd)3 – 

LVIDd3]; and mVcfc = [(LVIDd-LVIDs)/LVIDd]/(ET·CL.5).  The LV mass was 

calculated by using the uncorrected cube assumption (Pombo et al., 1971) without the use 

of the interventricular septal wall thickness since it was difficult to detect the endocardial 

border between the right ventricular cavity and the interventricular septum.  Three beats 

were averaged for each measurement.  The stroke volume (SV) was calculated from the 

dimensions as follows: SV = (ED volume - ES volume) and cardiac output (CO) was 

calculated from SV·HR. 

  

Assessment of Aortic Contractile Function 

 Isolated blood vessels were prepared by techniques routinely used in our 

laboratory (Piascik et al., 1994, 1995, 1997).  Briefly, aortic segments were removed 

from transgenic mice and placed in cold physiologic salt solution (PSS).  Stainless steel 

or platinum wires were threaded through the lumen of each vessel.  One wire was 

connected to a fixed base and the other to a micrometer clamp to adjust the passive force 

on the tissue.  The tissues were mounted in water-jacketed muscle baths filled with PSS 

maintained at 37°C under constant oxygenation (95% O2, 5% CO2; pH 7.4).  A passive 
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force of 1.0 g was placed on the aorta.  Previous studies have shown that this passive 

force gives optimal agonist responses.  Changes in the force generation were recorded 

using Grass FT .03 force transducers connected to a Grass model 7 polygraph.  The 

muscle rings were equilibrated in oxygenated PSS and then challenged with KCl at 80 

mM for 1 min.  The muscles were then washed with oxygenated PSS every 15 min until 

the contraction returned to baseline.  Arterial segments were exposed to phenylephrine 

and the contractile effects were recorded.  Contractile responses to phenylephrine were 

also measured following a 20 min incubation with 30 nM BMY 7378, a selective α1D-AR 

antagonist.  The equilibrium dissociation constant for BMY 7378 was calculated as 

described by Besse and Furchgott (1976). 

 

Cyclic AMP Assay in the Mouse Myocardium 

Tissue Preparation and Treatment:  Mouse hearts were quickly removed and cleaned in 

non-supplemented DMEM.  The ventricles were sliced and placed in a fresh non-

supplemented DMEM with 100 µM 3-isobutyl-1-methylxanthine (IBMX, Sigma 

Chemicals, St. Louis, MO) in a 37°C incubator with a 5% CO2 atmosphere.  At the 

appropriate time, the tissue was treated with vehicle, isoproterenol alone or isoproterenol 

in the presence of propranolol.  Forskolin was used as a positive control. Following drug 

treatment, the slices were quick frozen in liquid nitrogen and stored at -80°C.  The tissue 

samples were powdered and incubated in 250 µl of lysis solution (0.1 M HCl) for 1 h on 

ice.  The lysate was centrifuged for 5 sec at 11,750 g.  The supernatant was collected for 

the determination of cAMP levels and total protein content (determined by Lowry assay). 
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Assaying for cAMP Levels:  After the total protein content was adjusted to 100 µg/ml 

with 0.1 M HCl, the lysate was assayed for cAMP levels (non-acetylated) using a 

commercial cAMP assay kit (BioMol, Plymouth Meeting, PA).  Samples were performed 

in duplicates.  The optical densities of the samples were read at 405 nm.  The quality 

control parameters and the mean and the standard errors of the mean are listed below for 

four curves: Total activity (maximum colormetric enzymatic reaction with substrate) 

added = 11.02 ± 0.35 Optical Density; % Non-specific binding = 0.0008 ± 0.0003 %; % 

Maximum Binding/Total Activity = 2.92 ± 0.07 %.  From cAMP standards, the curves 

for cAMP concentration of the unknown had a 20 % Intercept = 35.00 ± 5.85 pmol/ml,  

50 % Intercept = 7.65 ± 0.59 pmol/ml, and 80 % Intercept = 1.60 ± 0.28 pmol/ml.  The 

line obtained has a slope of -32.85 ± 1.54 with a correlation coefficient of 0.942 ± 0.012. 

 

Statistical Analysis 

 In all figures, the data are expressed as the mean and standard error of the mean 

(S.E.).  When appropriate, statistical significance was assessed with either the unpaired 

two-tailed Student’s t test or the two-way analysis of variance (ANOVA) followed by 

Student-Newman-Keuls analysis.  A value of P<0.05 was considered statistically 

significant.    
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Results 

Experiments in Mice Over-Expressing the α1B-ARC128F 

Activation of Mouse Myocardial MAPKs 

 The hearts from α1B-ARC128F mice exhibited significantly elevated levels of ERK 

and JNK activity when compared to the non-transgenic controls (Figure 14, a and b).  

These results support the idea that the over-expressed α1B-ARC128F is functional and can 

couple to signaling pathways in the absence of agonists.  ERK activity was not altered in 

hearts from α1D-AR knockout mice (data not shown).  

 

Echocardiographic Analysis 

 Activation of MAPKs has been proposed to link the α1-ARs to growth responses.  

Echocardiography was performed as a non-invasive method of assessing the effect(s) of 

constitutive activation of the α1B-AR on left ventricular (LV) dimensions and cardiac 

function (Table 2, a and b).  The LV dimensions were normalized to the body weight.  

The transgenic animals showed significantly increased LV internal dimensions during 

either diastole or systole (Table 2a).  Chamber dimensions were increased in the 

transgenic animals without a change in the wall thickness (this is indicated by no change 

in the posterior wall thickness in either diastole or systole in Table 2a).  In Table 2b, LV 

dimensional analysis reveals that there is a significant reduction in the percent fractional 

shortening for mice over-expressing the α1B-ARC128F when compared to the non-

transgenic controls.  Fractional shortening value, an index of LV function, indicates 

reduced cardiac performance in the transgenic line.  The ejection time, heart rate, and 

mean velocity for circumferential fiber shortening corrected for heart rate were 
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Figure 14.  MAPK activity in transgenic mouse hearts.  a) ERK activity and b) JNK 
activity measured by in-gel kinase assays, where each bar represents the mean and the 
S.E. of 7 independent determinations.  The asterisk (*) indicates significantly different 
values from non-transgenic control values. Data are taken from Chalothorn et al., 2003.  
Data generated by Dr. Dan F. McCune.  
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reduced in the animals with the α1B-ARC128F mutation.  However these reductions were 

not statistically significant.  Neither the stroke volume nor the cardiac output was found 

to be statistically different between groups.  Therefore persistent, unregulated activation 

of the α1B-AR results in a decrease in cardiac function and chamber dilation. 

 

Responses in the Isolated-Perfused Heart 

 To more completely assess the effect of constitutive activation of the α1B-AR on 

contractile responses, experiments were performed in the isolated-perfused heart.  

Resting heart rates were 348 ± 18 bpm and 384 ± 12 bpm in control and transgenic 

mouse hearts, respectively.  This difference was not statistically significant and is 

consistent with the echocardiographic analysis of heart rate.  We did not observe any 

significant change in basal coronary flow rate in these hearts (see Appendix D).  

Isoproterenol infusion produced similar increases in heart rate in both groups (Figure 

15a).  The ability of isoproterenol (30 and 100 nM) to increase contractile force was 

significantly decreased in hearts from mice over-expressing the α1B-ARC128F mutation 

(LVDP and +dP/dt in Figures 15, b and c).  The -dP/dt curves were not significantly 

different (Figure 15d). 

 

cAMP Production  

 The blunted isoproterenol-induced response prompted additional experiments to 

determine if there were changes in the β1-AR signaling pathway that resulted from α1B- 

AR over-activity.  We therefore assessed the ability of isoproterenol to increase cAMP 

levels in ventricular slices from control and transgenic animals.  The positive control, 
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Figure 15.  Functional responses of mouse hearts to 3, 10, 30, and 100 nM of 
isoproterenol.  a) Heart rate (HR), b) left ventricular developed pressure (LVDP), c) 
positive change in the developed pressure as a function of time (+dP/dt), and d) negative 
change in the developed pressure as a function of time (-dP/dt).  Each bar or point on the 
curve represents the mean and the S.E. of 7 and 10 independent experiments for the non-
transgenic control and α1B-ARC128F hearts, respectively.  The asterisk (*) indicates 
statistical differences from the non-transgenic control value at the respective 
isoproterenol concentration.  Data from Chalothorn et al., 2003. 
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sodium forskolin, produced similar increases in cAMP in both groups (Figure 16).  In 

control ventricular slices, isoproterenol (1 and 10 µM) produced an increase in cAMP 

levels that was antagonized by 0.1 µM propranolol.  In ventricular segments from α1B-

ARC128F mice, the cAMP response to either 1 or 10 µM isoproterenol was reduced.  This 

difference was statistically significant at a concentration of 10 µM.   

 

Contractile Responses in the Mouse Aorta 

 In the aortae from non-transgenic control mice, phenylephrine produced 

concentration-dependent increases in developed tension (Figure 17a).  The dose-

response curve was shifted to the right by 30 nM of the α1D-AR selective antagonist 

BMY 7378.  From these data, we calculated the equilibrium dissociation constant for 

BMY to be 0.294 ± 0.149 nM.  This value is in good agreement with that obtained from 

experiments with cloned α1D-AR as well as the receptor expressed on rat blood vessels (2 

nM, Piascik et al., 1995), indicating that, like the rat aorta, the phenylephrine contractile 

response in the mouse aorta is mediated by the α1D-AR.  Over-expression of a 

constitutively active α1B-AR did not enhance the response of the mouse aortae to 

phenylephrine (Figure 17b).  BMY 7378 was also a potent antagonist in the aorta from 

α1B-ARC128F expressing mice with an estimated equilibrium dissociation constant of 0.385 

± 0.401 nM (Table 3), indicating that the α1D-AR still mediates contraction in this blood 

vessel.  These data show that despite over-expression of a constitutively active and 

signaling competent form of the α1B-AR, the response of the aorta is unaffected and 

remains under the control of the α1D-AR (experiments with aorta from α1D-AR knockout  

mice have previously been reported in Tanoue et al. (2002), see Discussion).  Consistent 
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Figure 16.  The ability of isoproterenol to increase cAMP levels in ventricular slices 
from non-transgenic control and α1B-ARC128F animals.  cAMP levels are presented as 
pmol of cAMP/20 mg of protein.  Data are the mean and the S.E. of 5 and 8 heart 
samples from experiments performed in duplicate from the non-transgenic control and 
the α1B-ARC128F hearts, respectively.  *, indicate a significantly different cAMP level 
from the control at 10 µM isoproterenol.  Data from Chalothorn et al., 2003.    
 

 

 

 

 

 

 

 

 

 

 



 

 90 

Figure 17.  Log-dose response curves of the phenylephrine-induced contraction in mouse 
thoracic aortae in the absence and the presence of 30 nM BMY 7378.  a) Non-transgenic 
control, where the curves in the absence and the presence of BMY 7378 are composed of 
the average and the S.E. of 52 and 23 independent experiments, respectively and b) α1B-
ARC128F, where the curves in the absence and the presence of BMY 7378 are composed 
of the average and the S.E. of 39 and 10 independent experiments, respectively.  Data 
taken from Chalothorn et al., 2003.     
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with this lack of effect on the ability of phenylephrine to induce coronary 

vasoconstriction in hearts from mice expressing the constitutively active α1B-AR. 

 

Experiments in the α1D-AR Knockout Mice 

Responses in the Isolated-Perfused Heart 

 The effects of α1D-AR deficiency on β-AR-induced responses were assessed in the 

isolated-perfused heart preparation.  The ability of isoproterenol to induce positive 

chronotrophy or inotropy was not significantly different between the control and the mice 

lacking the α1D-AR (Figures 18, a and b).  (+) or (-) dP/dt curves were also not different 

in hearts from α1D-AR deficient mice (Figures 18, c and d).   Echocardiographic analysis 

also showed no differences in cardiac parameters between the experimental groups (see 

Appendix E).  

 

Effects on Coronary Perfusion Pressure 

 In contrast to having little effect on cardiac contractile responses, knockout of the 

α1D-AR has prominent effects on coronary vascular responses.  The basal coronary flow 

rate required to maintain the coronary perfusion pressure was found to be significantly 

greater in α1D-AR knockout animals when compared to non-transgenic controls (Figure 

19).  In hearts from control mice, 100 µM phenylephrine infusion caused a significant 

increase in coronary perfusion pressure (Figure 20).  Phenylephrine-induced increases in 

perfusion pressure were significantly reduced in hearts from α1D-AR knockout mice.  
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Figure 18.  Functional responses of α1D-AR KO mouse hearts to 3, 10, 30, and 100 nM 
of isoproterenol.  a) Heart rate (HR), b) left ventricular developed pressure (LVDP), c) 
positive change in the developed pressure as a function of time (+dP/dt), and d) negative 
change in the developed pressure as a function of time (-dP/dt).  Each bar or point on the 
curve represents the mean and the S.E. of 12 and 11 independent experiments for the 
control and the α1D-AR KO hearts, respectively.  Data from Chalothorn et al., 2003. 
 
a)       

 

b) 
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c) 

 

d)   
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Figure 19.  Basal coronary flow rate required to maintain a constant perfusion pressure. 
Each bar represents the average and the S.E. of 7 independent experiments.  The asterisk 
(*) indicates statistical significance from the control group.  Data from Chalothorn et al., 
2003. 
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Figure 20.  Effect of 100 µM of phenylephrine on relative changes in the coronary 
perfusion pressure (CPP) of hearts lacking the α1D-AR.  The initial CPPs were 83.3 ± 2.3 
and 81.9 ± 2.2 mm Hg for the control and the α1D-AR KO, respectively.  The recordings 
were performed over a 7 minute period.  Each curve is composed of the average and the 
S.E. for 7 different experiments where the asterisk (*) indicates statistical significance 
between the α1D-AR KO and the control group at the respective time point.  Data from 
Chalothorn et al., 2003. 
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Discussion 

 While it is clear that the α1-AR family plays a prominent role in the regulation of 

cardiac and vascular function, the specific function of each subtype has been difficult to 

discern.   Despite the fact that many tissues express multiple α1-AR, we do not believe 

that there is redundancy in the regulatory activities of these receptors.  Rather, we 

hypothesize that each subtype is coupled to distinct regulatory processes.  We propose 

that the α1B-AR plays a role in the modulation of cardiac function while the α1D-AR is a 

specific regulator of vascular contractile function 

 These hypotheses were tested using two newly developed lines of transgenic 

mice.  While transgenic models offer a unique and powerful approach to receptor 

research, they are not without shortcomings. The assumption is that the observed 

biochemical or physiologic alterations are a direct result of transgenic receptor expression 

or deletion.  However, we must concede that any effects we observe could also be non-

specific and occur as result of interference in the expression of vital signaling molecules 

unrelated to the α1-ARs whose expression were altered.  

 To examine the regulatory activity of the α1B-AR we chose a transgenic line of 

mice over-expressing a constitutively active mutant of this α1B-AR.  An α1B-AR knockout 

line of mice is also available (Cavalli et al., 1997).  Studying these knockout animals 

would essentially be a loss of function protocol.  However, by studying constitutively 

active receptors we are able to use the gain of function as a read out of receptor activity.  

The use of constitutively active receptors offers another advantage in studying receptor 

systems like the α1B-AR for which there are no selective agonists.  Without such selective 

ligands, wild-type receptor activation can only be achieved by administering non-
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selective agonists such as phenylephrine that would activate all α1-AR subtypes.  Because 

constitutively active receptors engage signaling pathways in the absence of agonists, we 

can observe the results of α1B-AR activation without the need to administer α1-AR 

agonist compounds.  

 In previous work we showed that in the absence of agonist, the α1B-ARC128F can 

couple to inositol phosphate formation (Zuscik et al., 2001).  In this work we show that 

there is an increase in the activity of MAPKs (see Figure 1) in α1B-ARC128F animals.  This 

would imply that this receptor is indeed constitutively coupled to signaling pathways.  

Coupling of the α1B-AR to MAPKs.  would be in agreement with a great deal of data from 

non-transgenic sources (see reviews of García-Sáinz et al., 1999; Varma and Deng, 2000; 

Piascik and Perez, 2001).  However considering the uncertainties of experiments with 

transgenic animals we cannot be completely sanguine that the observed increases in 

kinase activity are a direct result of receptor expression as opposed to being non-specific 

and secondary to other pathophysiologic alterations. 

 Echocardiographic analysis of mice over-expressing the α1B-ARC128F revealed a 

statistically significant reduction in fractional shortening when compared to non-

transgenic controls (Table 2).  A decrease in fractional shortening is evidence for 

contractile dysfunction in these animals. 

 Further evidence that over-expression of the α1B-ARC128F interferes with  

myocardial contractility was obtained in the isolated-perfused heart experiments.  The 

ability of isoproterenol to increase contractile force was significantly reduced in hearts 

from transgenic animals (see Figures 15, b and c).   We also noted an impaired ability of 

isoproterenol to promote increases in cAMP levels (see Figure 16).  This indicates the 
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possibility that tonic unregulated activation of the α1B-AR impairs β1-AR signaling and 

could be the underlying reason for the decrease in contractile function. 

 Activation of members of the α1-AR subtype family has been associated with 

increases in myocardial contraction (see Varma and Deng, 2000 and references therein).  

This present work and that of others (Akhter et al., 1997; Lemire et al., 2001) clearly 

shows that the α1B-AR is not the subtype coupled to this positive inotropic effect.  In 

other work with the α1B-ARC128F over-expressing mice, we have shown that it is the α1A-

AR that mediates the positive inotropic actions of phenylephrine (Ross et al., 2003 in 

revision; see Appendix F).  We have further shown that constitutive activation of the 

α1B-AR decreases the ability of the α1A-AR to activate myocardial contraction (Ross et 

al., 2003 in revision) as well as decreasing α1A-AR mRNA levels.  Taking into 

consideration the caveats raised above regarding the use of transgenic models, our data 

can also be used to argue that tonic unregulated activation of the α1B-AR diminishes 

cardiac contractile activity by decreasing the positive inotropic signaling emanating from 

both the β1- and the α1A-ARs.    

 In addition to contractile dysfunction, echocardiographic analysis also revealed 

increases in the left ventricular internal dimensions of the α1B-ARC128F heart.  This is 

evidence of an increase in chamber size.  This phenotype of contractile dysfunction and 

increased chamber dimensions has also been seen in a distinctly different mouse model 

that uses cardiac targeting to over-express the wild-type α1B-AR (Grupp et al., 1998; 

Lemire et al., 2001).  In contrast to these results, other reports with a cardiac-targeted 

constitutively active α1B-AR (Milano et al., 1994) or our systemic over-expression model 

provide evidence of contractile dysfunction and cardiac hypertrophy.  It is not clear as to 
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why studies in the same mouse models reveal differences in cardiac phenotype.  What is 

clear is that tonic unregulated activation of the α1B-AR has significant and negative 

effects on cardiac function that can progress into hypertrophy or dilated cardiomyopathy.  

Factors that determine how biosignals emanating from the α1B-AR lead to these 

pathophysiologies are being investigated.   

 Consistent with published works (see Piascik and Perez, 2001; García-Sáinz et al., 

1999 and references therein) we propose that the α1B-AR has minimal activity as a  

regulator of vascular function.  Previously, we showed that over-expression of the α1B-

ARC128F does not increase resting systemic arterial blood pressure (Zuscik et al., 2001).  

Knockout of the α1B-AR also had no effect on resting blood pressure (Cavalli et al., 

1997).  Herein we show that over-expression of the α1B-ARC128F does not alter the 

response characteristics in the isolated aorta.  Therefore in the same mouse line where 

over-expression of a constitutively active α1B-AR has demonstrable effects on cardiac 

function, we are unable to detect any increases in systemic arterial blood pressure or 

contractility in the aorta.  If over-expression of the constitutively active α1B-AR produced 

non-specific effects on cardiovascular function then it would be reasonable to suppose 

that vascular function would also be impaired.  These data support our hypothesis that 

there is specificity in coupling amongst the α1-AR subtype family and that the α1B-AR is 

coupled to regulatory events in the heart without participating in the contraction of 

vascular smooth muscle. 

  The α1D-AR is an enigmatic and the least well-studied member of the α1-AR 

subtype family.  In previous work, it has been shown that this receptor is expressed 

mainly in intracellular compartments (McCune et al., 2000; Chalothorn et al., 2002).  We 
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do not yet know the reason for this atypical localization pattern or if the regulatory 

activities of the α1D-AR are accomplished by these intracellular receptors.  Recently, it 

has been shown that the α1D-AR is constitutively active (García-Sáinz and Torres-Padilla, 

1999; Gisbert et al., 2000; McCune et al., 2000).  D’Ocon’s group has shown that the 

constitutively active α1D-ARs are capable of mediating vascular smooth muscle 

contraction.  Other studies have demonstrated that the α1D-AR is expressed throughout 

the cardiovascular system (Rudner et al., 1999; Hrometz et al., 1999).  This includes 

being expressed on vascular beds such as the renal artery where the α1D-AR has not been 

shown to have a function.  We do not yet understand why members of the α1-AR family 

are expressed on tissues in the cardiovascular system and do not participate in regulatory 

events.  However, in keeping with this conundrum, we observed little effect of α1D-AR 

gene detection on dimensions or contractility as assessed echocardiographically or in the 

isolated-perfused heart (see also Tanoue et al., 2002).  

 We hypothesize that the major regulatory activity of the α1D-AR is the regulation 

of vascular smooth muscle contraction in specific blood vessels (Piascik and Perez, 

2001).  Evidence supporting this postulate also comes from work with the α1D-AR 

knockout line of mice (Tanoue et al., 2002).  Tanoue et al. (2002) showed that knockout 

of the α1D-AR significantly decreased systemic arterial blood pressure as well as the 

pressor responses to norepinephrine.  In this work we show that knockout of the α1D-AR 

significantly impaired the ability of phenylephrine to promote increases in coronary 

perfusion pressure.  Therefore, in the same mouse line, where we can demonstrate 

prominent effects on vascular function, we do not see measurable effects on the examined 

cardiac parameters.  This adds support to our hypothesis that the α1D-AR serves 
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predominately in vascular function.  
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Chapter 5 

Conclusions 

This dissertation work investigated the α1-ARs at the cellular and at the in vitro 

and the in vivo response levels.  The two papers comprising this dissertation each has a 

thorough discussion of the experimental data.  This section highlights and integrates key 

points from each paper into a unified conclusionary statement.  Discussion of the data in 

Chalothorn et al. (2002) will encompass the differences observed among the α1-AR 

subtypes with respect to basal localization, functional responses, and agonist-mediated 

internalization, desensitization, and trafficking properties.  The discussion of the results 

in Chalothorn et al. (2003) will focus on the roles of specific α1-AR subtypes in 

physiological responses such as myocardial regulation and function, vascular smooth 

muscle contraction, and potential roles in cardiac pathophysiology development. 

 

CHALOTHORN ET AL. (2002) 

Basal localization of α1-AR/GFPs 

Our use of the α1-AR/GFPs in living HEK-293 cells revealed distinct differences 

in the basal localization patterns of the α1-ARs that were consistent within the subtypes 

regardless of cell shape or size.  We observed a predominant surface orientation for the 

α1B-AR/GFP and an intracellular distribution for the α1D-AR/GFP (Chalothorn et al., 

2002).  Because of the receptor distribution, the α1B-AR subtype has characteristics of a 

typical GPCR whereas the α1D-AR has properties of an atypical GPCR.  The α1A-AR falls 

between the two classifications because the α1A-AR/GFP displayed a combination of 

surface and intracellular receptor distribution.  Reasons for the different localization 
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patterns are not clear; however, the patterns observed for the α1A- and the α1B-AR/GFPs 

are consistent with studies using antibodies targeted against these receptors in fixed cells 

(Fonseca et al., 1995) or studies using α1A- and α1B-AR/GFP constructs in different cell 

lines (Hirasawa et al., 1997; Awaji et al., 1998).   

 

Functional responses of the α1A- and the α1B-AR/GFPs 

The GFP conjugation to the carboxyl-terminus (portion of the receptor 

participating in signal transduction) raises a possibility that the receptor may not fold or 

function properly.  An improperly folded protein may be a reason for differences in 

cellular distribution.  A previous study from the laboratory generating these fusion 

proteins demonstrated that the α1B-AR/GFP construct expression in mouse α-T3 cells 

yields a functional receptor capable of activating phosphatidylinositol/Ca2+ signaling 

(Awaji et al., 1998).  In this work, we demonstrated that the α1A- and α1B-AR/GFP 

subtypes are coupled functionally to ERK1/2 activation with the α1A-AR/GFP showing a 

greater efficiency of coupling than the α1B-AR/GFP (Chalothorn et al., 2002).  In our 

experimentation, we were unable to detect ERK activation as early as 5 minutes 

considering that the ERK response has been documented to be rapid yet sustained for at 

least 3 hours after stimulation for platlet-derived growth factor in Chinese hamster 

embryo fibroblasts (Weber et al., 1997) and lysophosphatidic acid in rat-1 cells (Cook 

and McCormick, 1996).  Thus, we assessed for ERK activation after a 2 hour incubation.  

 

Properties of the α1D-AR/GFP 

  The small population of α1D-AR/GFP on the cellular surface was found to be  
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coupled poorly to ERK1/2 activation.  Our findings coincide with a study in PC-12 cells 

that observed greater ERK activation for both the α1A- and the α1B-ARs than the α1D-AR 

(Zhong and Minneman, 1999).  The reason(s) for this atypical behavior of the α1D-

AR/GFP is(are) not clear, but our observations agree with the work of Theroux et al. 

(1996) that showed the α1D-AR to be inefficiently coupled to both inositol phosphate 

formation and intracellular Ca2+ release in HEK-293 cells.  Another reason for our 

observations may be related to the predominant intracellular localization of the α1D-

AR/GFP.  With an intracellular orientation, the ability of the receptor to activate 

signaling pathways may be limited by access to stimuli, substrates, and/or effectors.  

However, we noted in HEK-293 cells transfectd with the α1D-AR/GFP that there was both 

a high basal ERK activity and an inefficient agonist-induced ERK1/2 activation response.  

The high basal ERK activity is evidence that this receptor/GFP construct is active.  These 

characteristics are similar to those documented for the α1D-AR in the stably transfected 

fibroblasts.  From those studies, we proposed that the receptor was constitutively active 

with respect to both ERK activation and inositol phosphate formation (McCune et al., 

2000).  Other studies have implicated the α1D-AR as a constitutively active receptor 

(Noguera et al., 1993; García-Sáinz and Torres-Padilla, 1999).  A constitutively active 

receptor would offer a plausible explanation for the observed high basal ERK activity 

since the majority of the receptor population would be in the R* state, and addition of an 

agonist is not likely to shift the overall equilibrium from R to R* significantly (see 

Figure 2). 

The α1D-AR/GFP did not undergo agonist-mediated internalization (Chalothorn et 

al., 2002).  However, we cannot exclude the possibility that some degree of α1D-AR/GFP 
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internalization may occur and is indistinguishable with the image analysis software used.  

Constitutive activity would also explain the unique localization, signaling, and 

internalization properties we observed, since this type of receptor is likely to be 

continuously cycling between the cellular surface and the intracellular region in 

endosomes to undergo resensitization. 

Following prolonged agonist exposure, the α1D-AR/GFP exhibited a minor degree  

of agonist-mediated desensitization of ERK1/2 activation (Chalothorn et al., 2002).  This 

is further evidence that the α1D-AR/GFP is a functionally active protein.  The Lomasney 

et al. (1991) work documented that the α1D-AR lacks a consensus sequence for PKC 

phosphorylation on the 3rd cytosolic loop, and this sequence may affect the ability of the 

receptor to be desensitized.  Desensitization of the α1D-AR is controversial because a 

study by Yang et al. (1999) revealed that in the stably transfected rat-1 fibroblast, the 

α1D-AR is not subject to phenylephrine- or phorbol ester-induced functional 

desensitization of inositol phosphate formation.  However, the study by García-Sáinz et 

al. (2001) also using the α1D-AR stably transfected into the rat-1 fibroblast demonstrated 

that both norepinephrine and phorbol ester could desensitize the functional intracellular 

Ca2+ release.  The notion that a constitutively active receptor can be desensitized is 

supported by a study looking at a constitutively active β2-AR caused by a point mutation 

on the 3rd intracellular loop (Pei et al., 1994).  The investigators demonstrated that in the 

absence of an agonist, the constitutively active receptor was phosphorylated by β-ARK 1 

in a manner similar to the agonist-mediated wild-type receptor phosphorylation.  

Therefore, desensitization of the constitutively activity of the α1D-AR/GFP may further 

explain the poor response to agonist incubation.        
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Agonist-mediated internalization of the α1A- and the α1B-AR/GFP 

Differences in the agonist-mediated internalization responses were noted between 

the α1A- and the α1B-AR/GFP subtypes.  The α1B-AR/GFP was observed to rapidly 

internalize after agonist stimulation (Chalothorn et al., 2002).  Our finding is in good 

agreement with works using antibodies and radioligands to detect the α1B-AR agonist-

mediated redistribution (Fonseca et al., 1995; Wang et al., 1997, 2000).  The 

internalization of the α1A-AR has not been studied.  We showed that the α1A-AR/GFP 

internalizes slower and less extensively than the α1B-AR/GFP (Chalothorn et al., 2002).  

Evidence supporting our observation comes from a study by Vázquez-Prado et al. (2000) 

that found more extensive degrees of carboxyl-terminus phosphorylation to PKC 

activation (by norepinephrine or phorbol esters) for the α1B- than the α1A-AR.  This 

greater degree of α1B-AR receptor phosphorylation is consistent with our finding that the 

α1B-AR/GFP internalizes quicker since internalization proteins are more likely to bind to 

phosphorylated receptors.   

 

Agonist-mediated desensitization of the α1A- and the α1B-AR/GFP 

Investigation of the agonist-mediated desensitization of ERK1/2 activation 

revealed differences between the α1A- and the α1B-AR/GFP subtypes.  Both the α1A- and 

the α1B-AR/GFPs demonstrated characteristics typical of desensitization, in which the 

α1B-AR/GFP was more readily desensitized (Chalothorn et al., 2002).  Our observations 

agree with a study documenting that both the α1A- and the α1B-ARs undergo functional 

desensitization of agonist-stimulated inositol phosphate formation in rat-1 fibroblasts 
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(Yang et al., 1999).  Additionally, our observation that the α1B-AR/GFP is desensitized 

more readily than the α1A-AR/GFP is in good agreement with the Vázquez-Prado et al. 

(2000) study that found a greater degree of PKC phosphorylation for the α1B-AR than the 

α1A-AR.  

 

β-arrestin 1 participation in α1-AR/GFP internalization 

The GPCR-mediated internalization and desensitization processes require 

arrestin/clathrin participation.  Since little is known about the role that arrestins play in 

α1-AR-mediated internalization, we performed studies to determine if these proteins are 

important for internalization.  In experiments using the α1A- and the α1B-AR/GFPs co-

transfected with either β-arrestin 1 or 2, we found no differences in the ability of either β-

arrestins to influence the α1A- or the α1B-AR/GFP basal localization and internalization 

properties (Chalothorn et al., 2002).  This suggested that either β-arrestins do not 

participate in α1-AR internalization or there are already adequate levels of endogenous β-

arrestins in HEK-293 cells.  Since over-expression of the β-arrestins did not conclusively 

link the β-arrestins to α1-AR/GFP internalization, additional experiments examined the 

relationship between arrestin/clathrin interaction and α1-AR/GFP internalization.  To this 

end, we used a dominant-negative β-arrestin 1 [β-arrestin 1 (319-418)].  Studies using 

this dominant negative protein revealed an effective disruption of native arrestin and 

clathrin interactions in HEK-293 cells, which prevented β2-AR internalization (Krupnick 

et al., 1997; Orsini and Benovic, 1998).  Expression of β-arrestin 1 (319-418) did not 

affect the basal localization patterns for any of the α1-AR/GFPs, but it did antagonize the 

α1A- and the α1B-AR/GFPs agonist-mediated internalization responses (Chalothorn et al., 
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2002).  The β-arrestin 1 (319-418) did not produce a detectable change in the α1D-

AR/GFP localization or agonist-mediated internalization response.  Our findings suggest 

that arrestin/clathrin interaction is irrelevant for maintaining basal localization patterns 

for the α1D-AR/GFPs but relevant for α1A- and α1B-AR/GFP agonist-mediated 

internalization.  Although the use of β-arrestin 1 (319-418) confirms the role of 

arrestin/clathrin interaction in α1A- and α1B-AR/GFP internalization, the specific role that 

either β-arrestin 1 or 2 plays in α1-AR internalization is difficult to assess because β-

arrestin 1 (319-418) protein binds to clathrin to prevent interactions with all wild-type 

arrestin subtypes. 

 

CHALOTHORN ET AL. (2003) 

Work from Chalothorn et al. (2002) shows differences in the α1-AR subtype 

localization, activation, internalization, desensitization, and trafficking properties.  

Because of these differences, we propose that the α1-AR subtypes subserve different 

biological responses by coupling to distinct regulatory processes.  We believe that the 

α1B-AR is involved in the modulation of cardiac function whereas the α1D-AR is involved 

in the regulation of vascular contractile function.   

 

Strengths and weaknesses of transgenic models 

In order to test our hypothesis, we used transgenic animals to investigate the 

regulatory properties of the α1-AR subtypes at the physiologic level.  We used transgenic 

animals expressing a constitutively active form of the α1B-AR (α1B-ARC128F) under the 

control of the isogenic promoter (Zuscik et al., 2000, 2001) to determine the activity of 
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the receptor.  Use of this model offers two distinct advantages: activation of the α1B-AR 

without use of agonists that would activate all α1-ARs and investigation of the α1B-AR 

function(s) in tissues endogenously expressing this subtype.  These types of animals have 

limitations, and it is possible that the observed biochemical or physiologic alterations 

observed are not a direct result of transgenic receptor expression or deletion.  These 

effects observed could be non-specific and a result of gene alteration unrelated to α1-AR 

expression. 

 

MAPK activity in α1B-ARC128F hearts 

  Work reported in Chalothorn et al. (2003) demonstrated that these transgenic 

mice of 5 to 6 months old have increased basal activity of two mitogen-activated protein 

kinases (MAPKs): extracellular signal-regulated kinase (ERK) and c-jun N-terminal 

kinase (JNK) (Chalothorn et al., 2003).  This enhanced signaling supports the 

constitutively active nature of the α1B-ARC128F, which has been demonstrated previously 

for inositol phosphate formation in the mouse kidney (Zuscik et al., 2001).  Our study 

suggests that this receptor subtype couples to MAPK activation in vivo.  This finding 

agrees with in vitro studies investigating the α1B-AR mediated-ERK activation in 

heterologous expression systems (Zhong and Minneman, 1999; McCune et al., 2000; 

Waldrop et al., 2002; Chalothorn et al., 2002).  However, we have made the assumption 

that the differences observed in our transgenic model are the result of α1B-ARC128F 

activity.  It is possible that the increased MAPK activity is the result of a pathophysiology 

associated with stress evoked from a dilated chamber phenotype (see below), since many 

studies have revealed several different stimuli involved in MAPK activation (as discussed  



 

 111 

in the background).   

 

In vivo assessment of cardiac dimensions in α1B-ARC128F hearts 

The echocardiographic study revealed distinct differences of the left ventricular 

internal dimensions in animals expressing the α1B-ARC128F relative to non-transgenic 

controls.  The transgenic animal displayed increased left ventricular chamber size without 

any overt signs of hypertrophy, a symptom associated with dilated cardiomyopathy 

(Chalothorn et al., 2003).  The dilated cardiomyopathy phenotype is a condition 

characterized by a dilation of the ventricular chamber and accompanied with reduced 

cardiac function (see below).  This phenotype has been documented in distinctly different 

models using a cardiac-targeted over-expression of the wild-type α1B-AR (Akhter et al., 

1997; Grupp et al., 1998; Lemire et al., 2001).  In contrast to these results, the Zuscik et 

al. (2001) study using systemic over-expression of either a wild-type or a constitutively 

active α1B-AR provided evidence of cardiac hypertrophy.  Similarly, the Milano et al. 

(1994) study using cardiac-targeted over-expression of a constitutively active α1B-AR 

found evidence of cardiac hypertrophy, yet the Harrison et al. (1998) and the Wang et al. 

(2000) studies using the same line of mice were unable to observe signs of cardiac 

hypertrophy.  It is not clear why there is a discrepancy in the cardiac phenotypes between 

studies using the same animal models.  However, it is clear that tonic unregulated 

activation of α1B-AR leads to a cardiac pathophysiology such as cardiac hypertrophy or 

dilated cardiomyopathy.              
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In vivo and in vitro assessment of cardiac function in α1B-ARC128F hearts   

In the control and the α1B-ARC128F over-expressing groups, left ventricular 

functions/performances were assessed by echocardiography.  The cardiac performance 

parameters (dependent on pre-load, contractility, after-load, and heart rate) measured 

were stroke volume, cardiac output, mean velocity of circumferential fiber shortening, 

and percent fractional shortening.  Of these measured cardiac parameters, only the 

percent fractional shortening values were found to be significantly different between the 

transgenic and the control groups.  The reduced percent fractional shortening is consistent 

with reduced cardiac performance associated with the dilated cardiomyopathy phenotype 

(Chalothorn et al., 2003).  The blood pressure may affect the percent fractional 

shortening because this index of cardiac function is dependent on ventricular loading; 

however, we previously documented that these transgenic animals are hypotensive 

(Zuscik et al., 2001).  Since cardiac output is approximately maintained, there is likely to 

be a reduction in the total peripheral resistance in animals over-expressing the α1B-

ARC128F, which should contribute to an increase in percent fractional shortening, but the 

measured percent fractional shortening values were significantly less for animals over-

expressing the α1B-ARC128F than control animals.  To account for the decreased percent 

fractional shortening without significant changes to stroke volume but increased end-

diastolic and end-systolic volumes, the left ventricular contractility is likely to be reduced 

in α1B-ARC128F over-expressing hearts.  Additionally, we did observe decreased 

contractility (altered end-systolic pressure-volume relationship) for β1-AR-mediated 

inotropic responses in isolated-perfused heart experiments in α1B-ARC128F over-

expressing hearts than control hearts.  The log-dose response curves for maximal 
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increases in left ventricular developed pressure as a function of β1-AR stimulation were 

171.0 ± 8.9 and 142.3 ± 3.0 mm Hg for control and α1B-ARC128F over-expressing hearts, 

respectively.  In addition, the log EC50 calculated were -7.87 ± 0.20 and -8.09 ± 0.15 for 

control and α1B-ARC128F over-expressing hearts, respectively.  These data show no 

significant change in the log EC50 value, but a significantly reduced contractile function 

as noted by reduced left ventricular developed pressure and positive rise in pressure as a 

function of time (+dP/dt).  Our results and implications are in agreement with studies that 

found poor cardiac function in hearts over-expressing the wild-type α1B-AR (Akhter et 

al., 1997; Grupp et al., 1998; Lemire et al., 2001).  We found no differences in 

isoproterenol-mediated chronotrophic responses although it was a reduced for both 

groups when compared to echocardiographic analysis, which could be explained by the 

absence of autonomic influences (reflexes and catecholamines).     

  

Agonist-induced cAMP generation in α1B-ARC128F ventricular slices 

Since the β1-AR inotropic response was impaired in hearts over-expressing the 

α1B-ARC128F, we examined the β1-AR-mediated cAMP response in ventricular 

homogenates.  At baseline, no differences were found in the cAMP levels between the 

control and the hearts with the α1B-ARC128F, indicating that the phosphodiesterase activity 

was not enhanced in ventricle slices as a result of α1B-ARC128F over-expression.  We 

found attenuated cAMP generation to isoproterenol treatment of hearts with the over-

expression of the α1B-ARC128F, which suggests that the tonic unregulated activation of the 

α1B-AR impairs the β1-AR signaling (Chalothorn et al., 2003).  Because Perez et al. 

(1997) showed that the α1B-ARC128F is only able to couple to the PLC-β pathway, the 
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likely mechanism for the reduced isoproterenol-mediated cAMP generation is 

heterologous desensitization of the β1-AR population by PKC phosphorylation.  In 

support of this, Akhter et al. (1997) and Lemire et al. (2001) indicated that the enhanced 

α1B-AR activity increases the PKC phosphorylation of the GRKs leading to heterologous 

desensitization of the β1-AR without reducing the β1-AR population.  In addition, Akhter 

et al. (1997) observed lower cAMP levels in isoproterenol-treated transgenic heart 

homogenates, which was attributed to α1B-AR coupling with Gi/o protein to antagonize 

the β1-AR-Gs pathway.    

 

Inotropic response and α1B-AR activation 

Collaborative work with the Perez laboratory has shown that over-expression of 

the α1B-ARC128F reduces the mRNA levels of the α1A-AR in the heart (Ross et al., in 

revision).  This work agrees with data from the Harrison et al. (1998) study 

demonstrating cardiac-targeted over-expression of the constitutively active α1B-AR 

results in α1A-AR down-regulation.  The mechanism the α1B-AR uses to influence α1A-AR 

mRNA levels is under investigation.  Our work and that of others suggest that the 

increased activity of the α1B-AR negatively modulates α1-AR inotropic signaling in the 

mouse heart.  The down-regulation of the α1A-AR attenuates the α1-AR positive inotropic 

response, which suggests that the α1A-AR is coupled to positive inotropy (Ross et al., in 

revision).  Our data are consistent with studies showing that the α1A-AR is the mediator of 

positive inotropy in the mouse (Lin et al., 2001) and the rat (Rokosh and Sulakhe, 1991; 

Gambassi et al., 1991) hearts.  In contrast to these studies, other groups found the α1B-AR 

to be the mediator of positive inotropy in the rat heart (Michel et al., 1990, 1994; Yu and 
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Han, 1994).  From our studies using α1B-ARC128F over-expressing mice, it is reasonable to 

believe that α1B-AR is a cardiac specific receptor that has the potential to negatively 

modulate the positive inotropic effects of the α1A- and the β1-ARs.     

 

Contractility assessment in α1B-ARC128F thoracic aortae 

Since our laboratory hypothesizes that the α1B-AR is a specific modulator of 

cardiac function with minimal activity in regulating vascular smooth muscle contraction, 

we tested the effect of over-expressing the α1B-ARC128F in the mouse thoracic aorta.  In 

aortic contractility experiments, we found no notable differences in the phenylephrine-

mediated contractile responses in the transgenic thoracic aorta (Chalothorn et al., 2003).  

In the same transgenic animals showing demonstratable effects of α1B-ARC128F over-

expression on myocardial regulation and function, we were unable to note a difference in 

the ability of the aorta to contract to phenylephrine.  We cannot exclude the possibility 

that the there maybe some additional growth in the aortic vessel caused by the 

constitutive activation of the α1B-ARC128F  transgene; however, we did not detect a 

significant differences in the maximal contraction between the control aortae and the 

aortae over-expressing the α1B-ARC128F (0.441 ± 0.021g vs. 0.405 ± 0.035g, respectively).  

This agrees with our earlier finding that the over-expression of the α1B-ARC128F does not 

increase the basal mean arterial pressure (Zuscik et al., 2001).  The knockout of the α1B-

AR in mice also has no effect on the resting mean arterial pressure (Cavalli et al., 1997).  

Other evidence supporting our observations comes from a different study also using mice 

lacking the α1B-AR, and this study demonstrated that the α1B-AR plays a minor role in 

vasoconstriction of the thoracic aorta (Daly et al., 2002).  However, the Cavalli et al. 
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(1997) study suggested that the α1B-AR plays a modest role in aortic contractility.  The 

reason(s) for the different observations and conclusions between the two studies using the 

same type of mice is(are) not clear.   

 

Assessment of cardiac function in α1D-AR KO hearts 

To further test our hypothesis of specificity in the regulatory activities of the α1-

ARs, we used 6 to 7 months old mice lacking the expression of the α1D-AR (α1D-AR KO).  

Echocardiographic data from these α1D-AR KO animals did not indicate anomalies in 

cardiac dimensions or functions (Chalothorn et al., 2003).  The finding that α1D-AR 

deficiency does not have detrimental effects on the heart is in agreement with Tanoue et 

al. (2002) and further strengthens our hypothesis that the α1D-AR has little or no effect on 

cardiac dimensions and/or function.  In the isolated-perfused heart experiments, we found 

no evidence that the α1D-AR plays a role in regulating cardiac function since no 

differences were noted in the ability of the α1D-AR KO hearts to respond to isoproterenol 

when compared to the non-transgenic control responses (Chalothorn et al., 2003).   

 

Role of α1B- and α1D-AR in vascular smooth muscle contraction 

In contrast to the minor effect on cardiac function, the α1D-AR plays a prominent 

role in regulating vascular smooth muscle contraction.  Studies with the α1B-ARC128F 

aortae and the α1D-AR antagonist, BMY 7378, indicate that the primary mediator of the 

α1-AR-induced contraction is the α1D-AR (Chalothorn et al., 2003).  This finding further 

supports the idea that α1-AR subtypes subserve different regulatory functions.  In 

agreement with our data, the studies of Yamamoto and Koike (2001) and Tanoue et al. 
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(2002) demonstrated that the α1D-AR is the subtype responsible for contraction of the 

mouse thoracic aorta.  Many other studies support the conclusion that the α1D-AR is a 

regulatory receptor involved in vascular smooth muscle contraction (see background).    

Additional evidence that the α1D-AR plays a role in vascular smooth muscle  

contraction comes from the isolated-perfused heart experiments examining the 

phenylephrine-induced effect on coronary vasoconstriction.  We noted that the α1D-AR 

KO hearts had higher coronary flow rates, which suggested a decreased coronary 

vascular tone (Chalothorn et al., 2003).  The vasoconstrictive response to phenylephrine 

was found to be blunted in hearts lacking the α1D-AR, which indicated that the α1D-AR 

has a role in mediating coronary vasoconstriction.  These results also implicate the 

relevance of this receptor in mediating coronary flow to cardiac tissue.  Our data are in 

good agreement with the Tanoue et al. (2002) study demonstrating that the lack of this 

receptor subtype results in the decreased ability of the thoracic aortic rings to contract in 

response to α1-AR agonists.  Our study and the Tanoue et al. (2002) study demonstrate 

that the α1D-AR is a relevant subtype responsible for mediating vascular smooth muscle 

contraction in arteries. 

 

Concluding remarks 

Work from this dissertation has shown that differences exist within the α1-AR 

subtypes for cellular and physiological responses.  Using the α1-AR/GFP constructs, we 

demonstrate that the α1B-AR subtype most approximates the prototypic GPCR with 

respect to cellular localization, agonist-mediated activation, internalization, 

desensitization, and trafficking properties.  Although the α1A-AR subtype displays both 
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surface and intracellular localization, this subtype possesses properties expected of a 

GPCR.  However, the α1D-AR subtype seems to be an atypical GPCR.  The work done in 

transgenic animals reveals that the α1B-AR is involved in the regulation of growth 

response, cardiac regulation and function, and possibly in pathophysiology development.  

In addition, we provide evidence that the α1D-AR subtype is not involved in maintaining 

cardiac regulation or function, yet the α1D-AR is more involved in the regulation of 

vascular smooth muscle contraction.   

 

 

Future Directions 

 Studies from this dissertation work could potentially be a forerunner for future 

projects further characterizing the α1-AR subtypes.  At the cellular level, we noted that 

there are indeed differences in the α1-AR subtype distribution, signaling, and trafficking 

properties.  Although the reasons why each subtype adopts these differences are not clear, 

the amino acid sequence of each subtype has been documented; therefore, it is possible to 

exchange key areas of the intracellular loops and/or the segments of the carboxyl-

terminus to generate chimeric receptors.  The construction of these chimeric receptors 

with a GFP tag on the carboxyl-terminus would extend the investigation into which 

region(s) is(are) responsible for receptor subtype distribution.  In addition, the 

characteristics of agonist-mediated internalization, signaling, and regulation may be 

uncovered as well.  From these studies, site-directed mutagenesis on identified regions 

could be used to verify the relevance of specific amino acid sequences involved in these 

processes. 
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 This study observed a very atypical behavior of the α1D-AR/GFP, and the 

region(s) of the receptor responsible for these observations may be identified through 

chimeric and mutagenesis studies; however, it would be interesting to verify that the 

observed properties are due to a constitutively active nature of this subtype which has 

been proposed by a few studies.  Use of the chimeric receptor may determine if the 

proposed constitutively active nature of the α1D-AR is the result of structural relief in the 

transmembrane domains and/or a specific configuration of the intracellular loop and/or 

carboxyl-terminus.  Additionally, use of the inverse agonists in real-time microscopy on 

the α1D-AR/GFP and the chimeric versions may provide support to the notion that the  

α1D-AR is a constitutively active subtype that undergoes constant receptor cycling. 

 At the tissue level, it would be interesting to determine if the many properties 

observed among the α1-AR subtypes in a recombinant system mirror the receptors in the 

endogenous tissue.  So additional experiments with a GFP-tagged α1-AR subtype could 

be used to transfect (via adenovirus) a tissue that has a specific subtype knocked-out.  

These studies could test the receptor distribution, signaling efficiency, regulation, etc.  

Other lines of investigations that may ensue from this study are related to functional 

restoration of responses lost or attenuated by knocking out a specific α1-AR/GFP subtype.  

These experiments are potentially useful for verifying which roles certain receptor 

subtype play in responses. 

 Because many studies indicate that there is an interplay among gene products 

when a gene gets over-expressed or knocked-out, it would be interesting to determine 

what changes in gene regulation occur in both of the transgenic models used in this 

dissertation.  Using gene chip microarray, it may be possible to correlate a phenotype 
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observed with an alteration in gene regulation.  Other pursuits with genetic manipulation 

may be the utilization of the cre-lox system to determine the physiological effect(s) of 

over-expressing any one of the α1-ARs at a certain time after the animal has reached 

adulthood.  These studies may offer a better method of assessing the function of the α1-

ARs in vivo.        

 In addressing the reason why there is a decreased β1-AR positive inotropic 

response in the α1B-ARC128F expressing mice, binding studies investigating the β1-AR 

density in the heart may be of use.  In addition, determining what effects the constitutive 

activation of the α1B-AR has on β1-AR mRNA stability and levels may increase our 

understanding of interplay between these two receptors.  Also, in addressing the inotropic 

response issue, it would be worthwhile to use an inverse agonist such as prazosin to 

determine if both the constitutively active receptor can be suppressed and the inotropic 

response can be restored. 

 Although the α1D-AR over-expressing transgenic model is not available yet, it 

would be interesting to perform the same series of experiments on this model to confirm 

that the α1D-AR predominantly plays a role in vascular smooth muscle contraction.     
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Appendix A 
 

Representative images from at least 3 to 7 independent transfection experiments showing 
the effect of vehicle or agonist treatment on GFP localization and activation of ERK 1/2 
in HEK-293 cells transiently transfected with an α1-AR/GFP subtype (data generated by 
Mary L. García-Cazarín).  See Methods for the description of α1-AR/GFP transfection, 
immunocytochemistry of phospho-ERK, and laser-scanning confocal microscopy 
procedures.  Data reported in Chalothorn et al. (2002).      
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Appendix B 
 

Comparison of the effect of 100 µM phenylephrine on changes in intracellular 
fluorescence intensity in cells transfected with a) α1A- or b) α1B-AR/GFP in the absence 
(retracing of Figure 9) and the presence of either β-arrestin 1 or 2.  See Methods for the 
description on measuring and analyzing the signal intensities for receptor internalization.  
Points on the graph represent the mean and standard error of the mean values for at least 
3 independent experiments.  Data analysis used the two-way analysis of variance 
followed by the Student-Newman-Kuels post-test.   
 
a) 

 
 
b) 
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Appendix C 
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Appendix D 
 

Measured effects of coronary flow to increasing concentrations of isoproterenol using the 
isolated-perfused heart preparation.  Refer to Methods for measuring coronary flow.  All 
bars represent the mean and the standard error of the mean for a minimum of 7 
independent experiments.   
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ABSTRACT 

α1-Adrenergic receptors (ARs) are known mediators of a positive inotropy 

in the heart which may play even more important roles in heart disease. Due to a 

lack of sufficiently selective ligands, the contribution of each of the three α1-AR 

subtypes (α1A, α1B, and α1D) to cardiac function is not clearly defined. In this 

study, we used a systemically expressing mouse model that over expresses the 

α1B-AR to define the role of this subtype in cardiac function. Using an isolated 

heart model, we find that a 50% increase of the α1B-AR in the heart does not 

change basal cardiac parameters compared to age-matched normals (heart rate, 

+ or - dp/dt, and coronary flow). However, the inotropic response to 

phenylephrine is blunted.  The same results were obtained in isolated adult 

myocytes.  The difference in inotropy could be blocked by the selective α1A-AR 

antagonist, 5-methylurapidil, which correlated with decreases in α1A-AR density, 

suggesting that the α1B-AR had caused a compensatory downregulation of the 

α1A-AR.  These results suggest that the α1B-AR does not have a major role in the 

positive inotropic response in the mouse myocardium but may negatively 

modulate the response of the α1A-AR. 

 

 

Keywords: Adrenergic receptor, heart, myocyte, inotropy 
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Introduction  

α1-Adrenergic receptors (ARs) mediate the effects of the sympathetic 

nervous system by binding the catecholamines, epinpehrine and norepinephrine. 

α1-AR subtypes (α1A, α1B, α1D) are part of the larger and related family of 

adrenergic receptors which include the β-ARs (β1, β2, β3) and the α2-ARs (α2A, 

α2B,α2C).  Adrenergic receptors are also members of the much larger family of G-

protein coupled Receptors (GPCRs) of which over 80% of hormones use to 

transduce their signals.  

Alpha-1 adrenergic receptors (AR) play many roles in the myocardium 

ranging from positive inotropic and chronotropic effects , cardiac preconditioning , 

arrhythmogenesis and cardiac hypertrophy (12, 23). α1-AR modulation of cardiac 

function may become more important in diseased heart where β-AR 

responsiveness is often impaired with concomitant upregulation of the α1-AR 

response (for review, see 2).  All three α1-AR subtypes are expressed in the 

heart of a variety of species (mouse, rat, rabbit, dog, human). Predominant 

subtypes are the α1A- and α1B AR with minor expression (if any) of the α1D-AR 

subtype (23, 26).  α1 AR mediated positive inotropic effects have been well-

documented in a number of animal models both in vivo and in vitro although this 

response is considered minor in comparison to β-AR stimulation (25% versus 

75% with norepinephrine stimulation in rat)(11). However, the role of α1-ARs in 

mediating cardiac contractility has been controversial due to the substantial 

variations (i.e. both negative and positive inotropy) between different species and 

the preparation used.  

Elucidating the roles of the individual subtypes pharmacologically has 

proved difficult with the lack of subtype selective ligands and only with the advent 

of genetic manipulation have we begun to make significant progress. Recent 

advances in transgenic and knock-out technologies have allowed investigators to 

dissect out some of the contributions of the various subtypes to physiological 

responses in the vasculature and cardiac tissues (23).  While some labs have 

focussed on heart-targeted transgenic models of α1B- and α1A-AR  over-
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expression, we have developed a transgenic mouse model whereby use of the 

isogenic mouse α1B- AR promoter has allowed us to over express a constitutively 

active mutant (CAM) form of the hamster α1B-AR only to tissues that normally 

express the receptor (33). Advantages of using this model is that over-expression 

is targeted to natural cells/tissues that express the subtype, over-expression is 

not dramatic, and multiple systems (i.e. heart, vasculature, CNS) are affected 

and can be studied in the same animal. Of the previous transgenic and knockout 

models developed, there is only one report that explores the role of the α1B-AR 

subtype in cardiac function per se  with most reports focusing on either tissue 

contractility, hypertrophy or blood pressure regulation. Heart-targeted over-

expression of the wild-type α1B-AR leads to decreased ventricular function (10) 

while over-expression of the α1A-AR in the targeted heart was found to increase 

inotropy dramatically but without  evidence of any hypertophy (14).  We wanted 

to explore the α1B-AR subtype in the heart and determine its role in cardiac 

function in our systemic mouse model.  

Since we have found that our  α1B-AR transgenic mice display 

neurodegeneration (33) and a corresponding autonomic dysfunction (34), we 

decided to look at the effects of α1B-AR over-expression in the myocardium ex 

vivo to try to determine what contribution the α1B -AR makes to the inotropic 

effects of the α1-AR pool of receptors. We find that there is no change in basal 

cardiac parameters (developed pressure, heart rate, coronary flow) in the 

transgenic animals compared to controls, however there is a significant decrease 

in the response to phenylephrine, suggesting a negative inotropy. We propose 

that this difference may be attributed to a decrease in α1A-AR levels in the 

transgenic animals due to compensatory effects. Therefore, although the α1B-AR 

may not play a direct role in inotropy in the mouse myocardium, its effects may 

be related to a negative regulation of the α1A-AR subtype, the major determinant 

of cardiac inotropy. 
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Materials and Methods 
Mice. The generation and genotyping of transgenic mice possessing 

systemic α1B-AR over-activity has been described elsewhere (33). Briefly, tissue-

specific distribution of systemic α1B-AR over-activity was achieved by utilizing the 

murine α1B-AR gene promoter (32) to drive over-expression of a transgene 

containing a cDNA coding for a constitutively active mutant of the α1B-AR, called 

T for triple mutant (12). The Cleveland Clinic Foundation Transgenic Core Facility 

injected approximately 200 copies of each transgene into the pronuclei of one-

cell B6/CBA mouse embryos, which were surgically implanted into pseudo-

pregnant female mice. Founder mice were identified and subsequent generations 

were genotyped by southern analysis of genomic DNA extracted from tail 

biopsies. Mice are used at approximately 9-10 months of age with equal numbers 

of male and female mice. 

 

Measurement of cardiac function in intact heart preparations.  After 

intravenous injection of heparin sodium, i.p. (500 U/kg) and intraperitoneal 

anesthetization with pentobarbital sodium (150 mg/kg), the heart, with all major 

vessels and lungs attached, was excised. The aorta was then cannulated with a 

flared PE10 catheter and was positioned above the coronary ostia. A water-filled 

latex balloon was inserted into the lumen of the left ventricle via the left atrium. 

The distal end of the balloon-attached catheter was connected to a pressure 

transducer for measurement of intraventricular pressure and ±dP/dt. The balloon 

was inflated to a constantly-held diastolic pressure of 3-10 mm Hg. The 

retrograde perfusion via the aorta was carried out by a perfusion pump 

maintaining a column of Krebs-Henseleit solution (KHS) composed of (in mM) 

118 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 0.5 EDTA, 25 NaHCO3, 5 

pyruvic acid, and 11 glucose; pH 7.4 (following gassing with 95% O2-5% CO2 at 

37°C) to provide a constant coronary perfusion pressure of 75 mmHg.  We 

confirmed the coronary perfusion pressure by using a pressure transducer 

connected via a side port to the aorta perfusion cannula. Coronary flow was 

measured via an in-line Transonic flow probe (Transonics 1N) connected to a 
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Transonics flow meter (T106). Drugs were added by infusion pump through an 

injection port directly above the aortic cannula. Data were continually recorded 

and displayed on a Powerlab data acquisition system. Cardiac parameters were 

measured off-line at the end of the experiment. The preparation was allowed to 

stabilize for 30 min prior to the start of the experiment. Propranolol (1 uM), 

rauwolscine (0.1 uM) and 5-methylurapidil (1 nM) were administered 20 min 

before the administration of phenylephrine. Phenylephrine (10  uM) was infused 

for a period of 10 min. 

 

Membrane preparation and binding experiments. Individual hearts were 

placed in ice cold buffer A (0.2 to 0.3 mg/ml final) composed of 10 mM Hepes 

(pH 7.4), 250 mM sucrose, 5 mM EGTA, 12.5 mM MgCl2 and a cocktail of 

protease inhibitors. After a 30 sec disruption with a polytron, material was 

transferred to a dounce homogenizer, diluted 1:7 in buffer A, and homogenized 

10 times each with a loose and tight pestle. Homogenates were spun for 5 min at 

300 x g to remove fat and for 5 min at 1250 x g to remove nuclei and then 

incubated for 15 min at 4°C in an equal volume of 0.5 M KCl. The KCl wash 

breaks down myosin, resulting in a purer membrane preparation. Homogenates 

were spun for 15 min at 35,000 x g to pellet membranes. Pellets were 

resuspended in ice cold buffer B composed of 20 mM Hepes (pH 7.4), 100 mM 

NaCl, 5 mM EGTA 12.5 mM MgCl2 and a cocktail of protease inhibitors. This 

spin/resuspension was repeated twice. After resuspension in buffer B containing 

10% glycerol, the final pellet was homogenized again, analyzed for protein 

concentration by Bradford, and frozen at –70°C (< 5 mg/ml final). Saturation 

binding was performed using the α1-AR antagonist 2-[β-(4-hydroxyl-3-

[125I]iodophenyl)ethylaminomethyl]-tetralone ([125I]HEAT) as the radioligand and 

phentolamine (100 uM) to determine the total α1-AR density. The density of the 

α1B-AR population was determined by repeating the saturation experiment with 1 

nM of 5-methylurapidil to calculate non-specific binding.  Total α1A-AR density 

was determined by subtracting the α1B-AR density from the total. Bmax 
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(maximum receptor density) and Kd (affinity) values were obtained using the 

non-linear regression function of GraphPad Prism.  

 

Isolation of mouse ventricular myocytes. Murine ventricular myocytes were 

enzymatically dissociated from mouse (25-40 g) hearts using a slightly modified 

protocol (Wolska and Solaro 1996). In brief, mice were heparinized (200 U IP) 

and anesthetized with sodium pentobarbital (100 mg/kg IP). Mouse hearts were 

rapidly excised and perfused through the aorta with a calcium-free modified 

Hepes buffer (118 mM NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 10 

mM Hepes, 11 mM Glucose, 0.2 mM pyruvate, pH 7.2, gassed with 100% O2 at 

37°C). A constant pressure of 40 mm Hg, which was monitored with a pressure 

transducer/digital polygraph (Windo Graf 900; Gould Instruments, Valley View, 

OH), was maintained by varying the flow into the coronaries with a peristaltic 

pump (Masterflex Digital Console Drive; Cole-Palmer, Vernon Hills, IL). Following 

4 min of retrograde perfusion with a Ca2+-free modified Hepes buffer, a HEPES 

buffer containing Liberase Blendzyme (14 mg/ml; Roche Diagonistic, 

Indianapolis, IN) was further perfused for 8 min after which the [Ca2+] was 

adjusted to 20 µM. Perfusion of the heart with the Ca2+/collagenase Hepes buffer 

was halted at approximately 15 min later when a dramatic fall in coronary 

perfusion pressure (when 40 mm Hg could not be maintained with increased 

coronary flow) was detected. The ventricles were minced and gently titurated, 

then filtered through a 250 µm mesh using a collagenase-free Hepes buffer with 

200 µM Ca2+. The filtrate was placed in a 37°C water bath for 5 min, and then the 

supernatant was discarded and the wash was repeated. The final pellet was 

resuspended in a collagenase free Hepes buffer containing 1 mM Ca2+. 

Myocytes were used within 4 hours of isolation. 

 

Myocyte contractility measurements. Myocytes were incubated on a 

laminin-coated glass coverslip in a recording chamber (RC-24, Warner 

Instrument, Hamden, CT) and mounted onto the stage of an inverted microscope 

(IX-70, Olympus America, Melville, NY). Rod-shaped, calcium tolerant myocytes 
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were bathed in Hepes buffer (1 mM Ca2+) at a rate of 1 ml/min (Masterflex L/S; 

Cole Parmer, Vernon Hills, IL) from an inline heater (37°C, TS 28; Warner 

Instrument, Hamden, CT), and field stimulated (0.5 Hz, SD9 stimulator; Grass 

Instruments, Quincy, MA). Myocytes were imaged with a charge-coupled device 

camera, and the changes in cell length were quantified by an edge-motion 

detection with a video dimension analyzer (Coyote Bay, Manchester, NH). The 

myocyte twitch amplitude was defined as a percentage of the diastolic length.  

The baseline measurements were quantitated (Inspector 3.0; Matrox Electronic 

Systems, Ltd., Canada) after a 5 min equilibrium period. The effect of increasing 

concentrations of phenylephrine (1 nM to 10 µM) and isoproterenol (1 nM to 10 

µM) on twitch amplitude were analyzed in two cell types (Normal (n=24 myocytes 

from 3 hearts), and transgenic (n=25 from 4 hearts). The effect on twitch 

amplitude was digitally recorded after 2 min of drug perfusion, and later 

quantitated with Matrox Inspector 3.0.  

 

Statistics. Significant differences are obtained using unpaired student’s t-

test. 
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Results 
Baseline Parameters.  To determine if the transgenic mice displayed 

changes in baseline values, we first determined physiological  parameters (Table 

1). The age matched groups (≈ 9 months) have a significant difference in body 

weight with the transgenic mice having a reduced body weight (28%) compared to 

normals. Heart weight, when normalized to body weight, is slightly greater in the 

transgenic group, however this is not significant.  There were also no differences in 

the coronary flow between the two when corrected for heart weight differences. 

We next determined changes in baselines cardiac parameters (Table 2). 

There was no significant difference in baseline cardiac parameters between the 

normal and transgenic hearts. Heart rate (≈ 350 bpm) and developed pressure (≈ 

90mm Hg) parameters are similar to previously reported values obtained using this 

isolated heart preparation (27).  

Cardiac Parameters in response to phenylephrine. Figure 1A shows a 

typical response of hearts from control animals to phenylphrine (10 uM), an α1-

AR selective agonist,  in the presence of propranolol (1 uM) and rauwolscine 

(0.1 uM) to block any effects due to β- or α2-ARs. There is a triphasic response 

with an initial increase in LVP, dP/dT, HR and CF followed by a rapid decrease 

then a sustained increase. The rapid decrease falls below baseline pressure of 

about 10-20 mm Hg but is transient, only last about  2-3 sec, and is not different 

in normal versus transgenic (Figure 1B).  The sustained increased in pressure is 

taken as the point of comparison for inotropic responses. 

Comparisons of the phenylephrine response between normal and 

transgenic are shown in Table 3. There are significant differences between the 

transgenic and normal hearts in all cardiac parameters except coronary flow with 

addition of phenylephrine (10 uM). Although all parameters increase due to 

phenylephrine stimulation in the transgenic, the values are below those normally 

seen in the control mice. Heart rate increases 23% in the normal hearts whereas 

there is only a 10% increase in the transgenic hearts. Indices of contractility 

such as developed pressure and +dP/dT show greater increases in the normal 

hearts (45% and 66%, respectively) compared to transgenic hearts (14% and 
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22%, respectively). Myocardial relaxation as assessed by –dP/dT followed the 

same trend with a 74% increase in the normal hearts compared with  19% in the 

hearts from transgenic animals. Coronary flow tended to increase in the 

transgenic heart (likely due to the decreased pressure) but this was not 

significant.   

 

α1-AR subtype mediation of inotropy. To determine the α1-AR subtype 

responsible for the observed phenylephrine effects, we used 5-methlyurapidil at a 

dose (1 nM), which is about 100-fold selective against the α1A-AR subtype. Figure 

2 shows the phenylephrine-response in both control and transgenic hearts in the 

presence of 5-methylurapidil (1 nM). There are no significant differences between 

the transgenic and normal hearts in any of the cardiac parameters with this 

treatment, suggesting that the α1A-AR selective antagonist equalized the two 

systems. 

 

Phenylephrine response in isolated myocytes. To determine if a 

decrease in the drug-induced inotropic response was also apparent in isolated 

myocytes, we measured changes in myocyte cell-length as an index of 

contractility (Fig. 3). Increasing amounts of phenylephrine resulted in a 

concentration-dependent increase in myocyte contractility (≈65%) in the normal 

myocytes whereas there was no increase and even a significant decrease in 

myocyte contractility in the transgenic myocytes. This suggests that the 

transgenic myocyte has no positive but a negative inotropy. To assess possible 

changes in the β-AR response, changes in myocyte length with increasing 

concentrations of isoproterenol can be seen in Figure 4. As isoproterenol 

concentration increases , there is an increase in myocyte contractility (≈200%) in 

the normal myocytes with similar results in the transgenics. 

 

To determine if there were changes in the α1-AR subtype protein 

population, as suggested by the data, we first attempted to perform competition 

ligand binding studies to determine the percentage of high and low affinity sites. 
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There are no high avidity antibodies available to determine protein expression.  

However, since the total α1-AR population in the mouse heart is very low  (86 

fmoles/mg membrane protein, Figure 5), this was not feasible to simultaneously 

discriminate accurately two receptor populations. We then decided to perform 

differential saturation binding studies using phentolamine at a concentration of 

100 uM which would block all the α1-AR subtypes. This experiment would 

determine the total α1-AR population.  The experiment is then repeated with a 

selective concentration of the α1A-selective blocker, 5-methylurapidil , used at the 

same concentration as in the functional studies (1 nM). The specific binding 

would then determine the α1B-AR population.  Since it has been previously 

shown that the α1D-AR is not present in the heart or is present at very low 

numbers, as determined by binding (26), the difference between the total and 

α1B-AR densities would determine the amount of α1A-AR present. Normal and 

transgenic hearts had total α1-AR Bmax values of  86 + 11 and 99 +  9  

fmoles/mg membrane protein, respectively (Figure 5). This difference between 

normal and the transgenic heart is not significant. The affinities of the radioligand 

for the membrane preparations were also not significantly different between 

groups (in pM; 150 ± 11 for normal and 140 ± 16 for the transgenic). However, 

the α1B-AR density increased in the transgenic 72.5 ± 13 versus 40.3 ± 3.5 

fmoles/mg, consistent with the over-expression of this receptor in the heart.  This 

leaves the α1A-AR population in the transgenic at 26 fmoles/mg compared to 46 

fmoles in normal hearts. This represents about a 70/30 ratio of the α1B/α1A 

populations in the transgenics while the normal mice has a 50/50 ratio. 
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Discussion  
Our results indicate that the systemic over-expression of a constitutive 

active mutant (CAM) α1B-AR in the murine myocardium leads to a functional 

change in the inotropic, chronotropic and lusitropic response to phenylephrine 

compared to normal hearts. These differences could be eliminated by the α1A-AR 

antagonist 5-methylurapidil  and supported by decreases in α1A-AR density by 

saturation binding. These results suggest that the over-expression of the α1B-AR  

leads to a down-regulation of the α1A-AR, ultimately resulting in the observed 

functional and decreased changes in response to phenylephrine. 

The inotropic response to α1-AR stimulation has been studied in a variety 

of animal species and preparations. However, the responses have considerable 

variation (for review, see 13).  Positive inotropy to α1-AR agonists have been 

found in whole heart and muscle strips from rat, rabbit, guinea pig, hamster and 

dog. However, α1-AR mediated negative intropy has recently been described in 

mouse muscle strips and isolated myocytes (15, 18, 20, 25). The predominant 

subtypes in the myocardium are the α1A- and α1B-AR subtypes with densities 

varying according to species (19), cardiac region (29) and developmental stage 

(5).  The mouse heart has been documented to contain the lowest levels of α1-

ARs.  While we report α1-AR density levels of approximately 80-90 fmoles/mg, 

previous reports are in the 5-10 fmole/mg range (14, 26).  This difference may be 

due to our use of radioactive iodine which has a higher specific activity and 

greater sensitivity than tritium and our purer membrane preparation which 

removes most of the contaminating myosin with the KCl wash.   

There have been a number of pharmacological studies looking at the 

effects of the various subtypes on myocardial function (reviewed in 11). Using 

antagonists (WB-4101, 5-methylurapidil and CEC, chloroethylclonidine) to isolate 

the contributions of the subtypes, these studies postulate that both the α1A- and 

α1B-AR subtypes contribute to the positive inotropic effect of α1-AR stimulation. 

One possible drawback of these pharmacological studies is the lack of subtype 

selectivity of these antagonists for these receptors. We decided to use a genetic 
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approach in combination with a pharmacological one to determine the 

contribution of the α1B-AR subtype to myocardial function.  We took a unique 

approach in creating transgenic mice using the isogenic mouse promoter to drive 

systemic over-expression of the α1B-AR (33). Overexpresssion is mild, with no 

signficant changes in α1-AR density but resulted in a 50% increase in the α1B-AR 

population (Fig. 5). This is distinctly different from the heart-targeted transgenics 

of the α1A- and α1B-AR (10, 14, 17) which display dramatic over-expression of the 

receptors (100-fold) and are only expressed in the myocyte. Since vascular 

fibroblasts have recently been shown to contain α1-ARs (7), it is possible that 

heart fibroblasts as well as the endothelium and smooth muscle cells may 

contain α1B-ARs and be involved in paracrine functions to release factors that 

contribute to the inotropy. We have recently shown that α1-ARs subtypes may be 

involved in the paracrine functions of IL-6 (9), which are associated with cardiac 

function. In this regard, we cannot rule out other contributing factors to the 

negative inotropy, but since the responses were equalized by 5-methylurapidil 

and α1A-AR binding sites were decreased, the mechanism of action is likely 

through compensatory effects on the α1A-AR. 

Baseline cardiac parameters (DP, +/-dP/dt, CF) from transgenic animals 

were comparable to those in normal hearts suggesting that the systemic over-

expression of the α1B-AR did not affect basal function. This confirms the finding 

of previous studies (1) where even 100-fold heart-targeted over-expression of 

wildtype α1B-AR did not result in any change in basal parameters (LV systolic 

pressure, +/-dP/dt). However, using the same mouse model, the studies of Grupp 

et al. (10) did produce a lower basal LV function. 

 Stimulation of α1-AR’s with phenylephrine resulted in an increase in all 

cardiac parameters (DP, HR, dP/dt and CF) in both transgenic and normal 

hearts. In both groups, phenylephrine elicited a triphasic response (brief positive 

inotrophy followed by brief negative inotrophy and then sustained positive 

inotrophy). This is the first study to show this type of triphasic response in the 

whole murine heart1. However, this triphasic response is consistent with previous 
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findings found in isolated rat papilliary muscle (21), mouse cardiac trabeculae 

(15) and now the isolated mouse heart (27). The mechanism of the triphasic 

response has not been clearly established. It has been proposed in rat papilliary 

that the negative inotropic effect is mediated by the α1A-AR subtype and the 

positive inotropic responses are mediated by both the α1A- and α1B-AR subtypes 

(28). In the mouse trabeculae, both subtypes are thought to mediate the negative 

phase, but there is no positive inotropy but only a partial recovery from the 

negative inotropy, again mediated by both α1-AR subtypes (15). This is 

contrasted with the α1A-AR transgenic, which showed dramatic increases in 

inotropy (14).  Interestingly Nishimaru et al. (20) showed that in isolated mouse 

right ventricle, phenylephrine stimulation results in a sustained negative inotrophy 

mediated by enhanced Ca2+ efflux through the Na+/Ca2+ exchanger.  The most 

recent work of Turnbull et al.(27) utilized the α1A/B double knockout mice. 

Convincingly, they show that the α1A/B double  knockout did not have any 

phenylephrine-induced positive inotropy but only a sustained negative inotropy, 

which could be reversed with BMY7378, suggesting that the α1D-AR was 

responsible for the negative inotropy. Moreover, since trabeculae from these 

animals did not show any phenylephrine response, the data suggests that the 

α1D-AR was located in the coronary vasculature and the observed decreased 

coronary flow caused the negative inotropy. This interpretation would also be 

consistent with our results which show similar intensities of the transient negative 

inotropy between normal and transgenic mice (Fig. 1B) which would have 

maintained equal α1D-AR densities.  

We did performed similar isolated tissue experiments (data not shown) 

and found that in the isolated mouse right ventricle a sustained negative inotropic 

response is observed with phenylephrine stimulation. However, in the isolated 

myocyte, phenylephrine does induce a positive inotropic effect (Fig. 3). The 

whole heart mouse model of α1B-AR over-expression of Akhter et al. (1) and 

Grupp et al. (10) also show positive α1-AR mediated inotropy, but isolated mouse 

myocytes have also been described to have negative intropy (25). The 



 

 145 

discrepency between the two systems (isolated or intact heart and myocyte vs 

isolated ventricular tissue) cannot be attributed to different perfusate solutions or 

temperatures since they were consistent between our two preparations. One 

possiblity is that the frequency of stimulation may be responsible for the 

difference. It has been shown that frequency of pacing can affect the response of 

tissues to phenylephrine (3), and tissue/myocyte preparations are stimulated at 

significantly lower frequencies (0.33 Hz – 1Hz) than the spontaneously beating 

heart. However, this does not account for our own differences between the 

isolated heart and tissue-bath studies. Another possibility is the localization of the 

α1-AR subtypes , which could be differentially distributed in various heart regions. 

These studies await use of green flourescent-tagged receptor transgenics since 

high avidity antibodies are not yet available. Nevertheless, repeatable and 

opposite results in α1-AR mediated inotropy is observed depending upon the 

system used.  Another likely and disturbing possibility is that the α1-AR subtype 

distribution may change upon the removal of the organ. This has precedence in 

guinea pig liver studies in which the α1-AR subtype switched (α1A- to α1D-AR) 

from  the removal to the isolation of the heptacytes (8). The only consistent 

explanation is that whole or intact heart studies produce an α1-AR mediated 

positive inotropy in the mouse (1, 10,1 4, 27)  while tissue and/or myocyte 

preparations  may produce the negative inotropy (15, 20, 25), suggesting that 

whole heart studies may be more physiologically relevant. 

In this study, we found that the sustained increase in inotropic response to 

phenylephrine in the transgenic hearts is significantly less than that found in the 

normal hearts. This result was unexpected since α1B-ARs have been implied to 

have a positive inotropic response to phenylephrine in whole heart. However, our 

work is consistent to Grupp et al., (10) that demonstrated an impaired left 

ventricular contraction in the heart-targeted wild type α1B-AR model.  One 

possibility that could explain this phenomenon was that over-expression of the 

α1B-AR may have altered the expression levels of the other α1-AR subtypes. 

Indeed, there is some precidence in the literature that this is possible. Prolonged 

incubation with norepinephrine which causes hypertrophy in normal rat myocytes 
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also causes the α1B- and α1D-AR to decrease while the α1A-AR increases (24). 

Deng et al., (6) have shown that there is crosstalk between α1A- and α1B-AR’s in 

neonatal rat myocardium,  whereby knocking out the α1B-AR with CEC caused a 

potentiation of the α1A-AR response. In our studies, the α1A-AR antagonist 5-

methylurapidil eliminated the functional differences between the transgenic and 

normal hearts for the effects on cardiac contractility, suggesting that the α1A-AR 

was responsible. The results correlated to the loss of α1A-AR binding sites. These 

results suggest that α1A-AR levels are decreased in the transgenic hearts and 

that this subtype is responsible for the differences in cardiac responsiveness 

observed between the transgenic and normal hearts to phenylephrine. This result 

would be consistent to the heart-targeted transgenic α1A-AR results (14) which 

suggests that the α1A-AR is a potent mediator of positive inotropy in the mouse 

myocardium.  

The α1-ARs have prominent effects on cardiac function. In this 

communication, we show that the major positive inotropic activity for this subtype 

family resides in the α1A-AR. Other work has also implicated the α1B-AR as being 

involved in positive inotropic effects. Our data do not support this. Indeed, we 

demonstrate that over-expression of a constitutively active α1B-AR is associated 

with a negative effect on myocardial contraction. The mechanism underlying 

these effects does not appear to be a direct linkage of the α1B-AR to negative 

inotropic pathways.  Rather, the α1B-AR appears to interfere with the activity of 

receptors, such as the α1A-AR that mediates positive inotropic responses. Thus, 

via mechanisms that remain to be elucidated, there is molecular cross talk 

between the α1B-AR and receptors coupled to positive inotropic responses that 

result in a decrease in contractile function. Thus, we propose that the role of the 

α1B-AR is to negatively modulate contractile activation through indirect 

mechanisms and that tonic unregulated activation of the α1B-AR has the potential 

to lead to contractile dysfunction and pathophysiology. This is supported by data 

from the cardiac-targeted transgenics as well as from our own systemic over-
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expression model which show that these mice develop contractile dysfunction 

and hypertrophy (34).  

The role of the α1B-AR in the myocardium is unlikely to be only a modifier 

of the α1A-AR. Distinct differences are present when constitutively active 

receptors of the α1A- and α1B-AR respectively, were transfected into the cardiac 

murine myocyte cell line (HL-1). In this study, they demonstrate that the α1A-AR 

subtype preferentially couples to cardiac-specific atrial natriuretic factor gene 

expression, while the α1B-AR preferentially couples to activation of mitogen-

activated protein kinase, Ets-like transcription factor-1 and serum response 

element signaling pathways (16).  This implicates the α1B-AR as being involved in 

mitogenic signals or remodeling scenarios as is proposed for the vasculature 

(reviewed in 23). We also published an oligonucleotide microarray study of the 

changes associated with α1B-AR mediated gene expressions in the hearts of the 

same transgenic animals used this study (31). We found changes in the gene 

expressions for growth, Src-related signals, development, cell-cycle, apoptosis 

as well as inflammation, consistent with the role of this subtype in growth, 

development and potential for pathology. 

In conclusion we have shown that over-expression of the α1B-AR does not 

lead to any basal functional changes in the isolated heart. However with α1-AR 

stimulation, we see a depressed response from the transgenic hearts compared 

to controls. We attribute this difference to a decrease in α1A-AR expression levels 

in the transgenic hearts. Therefore, we suggest that the α1B-AR does not 

modulate cardiac contraction directly but may be a negative modifier of positive 

inotropy. 
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Footnotes: 
1While our work was in revision, the work of Turnbull et al., 2002 was published 

ahead of print, describing similar findings. 
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Table 1: Baseline Physiological Parameters.  
 
Parameters   Normal (n=6)  Transgenic 
(n=8) 
 
Age (weeks)   37 + 1   39 + 1 
Body Weight (g)   39 + 2   28.3 + 2 * 
Dry Ht. Wt. (g)   0.19 + 0.01   0.15  + 0.02 
Ht. Wt./Body Wt. (mg/g) 5.0  + 0.3   5.6  + 0.3 
CF/Ht. Wt. (ml/g)   10.44  + 0.55  11.20  + 0.47 
________________________________________________________________________ 

Values are Mean ± SEM; Ht, heart; WT, weight; CF, coronary 
flow;  
* = P < 0.05 versus normal. 
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Table 2: Baseline Cardiac Parameters.  
 

Parameters   Normal (n=6)  Transgenic 
(n=8) 
 
HR (bpm)    345 + 11   354 + 12 
DP (mmHg)   93 + 7   89 + 5  
+dP/dT (mmHg.ms-1)  2.86 + 0.37   2.74  + 0.14 
- dP/dT (mmHg.ms-1)  1.72  + 0.16  1.68  + 0.11 
CF (ml.min-1)   2.08  + 0.19  1.98  + 0.25 

__________________________________________________________________________ 

Values are Mean ± SEM; HR, heart rate; DP, developed pressure;         

+ dP/dT, maximal rates of the rise and fall in ventricular 

pressures; CF, coronary flow. 
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Table 3: Changes in Cardiac Parameters with the Addition 
of Phenylephrine (10 uM).  
 
Parameters   Normal (n=6)  Transgenic 
(n=8) 
 
HR (bpm)    23 + 2%   10 + 3%* 
DP (mmHg)   45 + 10%   14 + 5%*  
+dP/dT (mmHg.ms-1)  66 + 14%   22 + 7%* 
- dP/dT (mmHg.ms-1)  74  + 18%   19 + 8%* 
CF (ml.min-1)   45  + 12%   59 + 32% 
_________________________________________________ 

Values are mean % change from its own baseline ± SEM; HR, heart rate; 

DP, developed pressure; + dP/dT, maximal rates of the rise and fall in 

ventricular pressures; CF, coronary flow. * , P < 0.05 versus normal. 
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Figure Legends 

Figure 1: Recorded changes in cardiac parameters after the addition of 
phenylephrine (10 uM).  A, Recorded changes in various cardiac parameters of a 

normal mouse heart are obtained using the Powerlab data acquisition system. 

Cardiac parameters are measured off-line at the end of the experiment. The 

preparation was allowed to stabilize for 30 minutes prior to the start of the 

experiment. Propranolol (1 uM), and rauwolscine (0.1 uM) were administered 20 

min before the administration of phenylephrine. Phenylephrine (10 uM) was 

infused for a period of 10 min. LVP, left ventricular pressure; CPP, coronary 

perfusion pressure; dp/dt, rise and fall in ventricular pressure; BPM, beats per 

min; CF, coronary flow. B, changes in LVP observed in normal (top) and 

transgenic (bottom) after phenylephrine infusion. The transient negative inotropy 

was similar in both samples. 

 
Figure 2: Changes in cardiac parameters after the addition of 
phenylephrine  
(10 uM) in the presence of 5-Methylurapidil (1 nM). The preparation was 

allowed to stabilize for 30 min prior to the start of the experiment. Propranolol (1 

uM), rauwolscine (0.1 uM) and 5-methylurapidil (1 nM) were administered 20min 

before the administration of phenylephrine. Phenylephrine (10 uM) was infused for 

a period of 10 min. Cardiac parameters are measured off-line at the end of the 

experiment. Light bars, normal mice; dark bars, transgenic mice; DP, developed 

pressure; + or - dp/dt, the maximum rise and fall in ventricular pressure; HR, heart 

rate.  Results are mean % change ± SEM (n=6 in both groups).  

 

Figure 3: Changes in myocyte cell-length with increasing phenylephrine 
concentrations. Myocytes are incubated on a laminin-coated glass coverslip in 

a recording chamber and imaged with a charge-coupled device camera.  

Changes in cell length were quantified by an edge-motion detection with a video 

dimension analyzer. The effect of increasing concentrations of phenylephrine (1 
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nM to 10 µM) on the changes in cell length was analyzed in normal (n=24 

myocytes from 3 hearts), and transgenic (n=25 from 4 hearts) mice. Results are 

mean % change ± SEM; *, P < 0.05 versus normal. 

 

Figure 4: Changes in myocyte cell-length with increasing isoproterenol 
concentrations. Myocytes are incubated on a laminin-coated glass coverslip in 

a recording chamber and imaged with a charge-coupled device camera.  

Changes in cell length were quantified by an edge-motion detection with a video 

dimension analyzer. The effect of increasing concentrations of isoproterenol (1 

nM to 10 µM) on changes in cell length was analyzed in normal (n=24 myocytes 

from 3 hearts), and transgenic (n=25 from 4 hearts) mice. Results are mean % 

change ± SEM; *, P < 0.05 versus normal. 

 

Figure 5.  αααα1-AR subtype density in normal and transgenic hearts. 

Membranes were prepared as described from individual mouse hearts. Total α1-

AR density was determined by saturation binding experiments using the 

nonselective α1-AR-antagonist 125I-HEAT as the radioligand and phentolamine 

(100 uM) to determine non-specific binding. α1B-AR density was determined by 

performing the identical saturation study with the α1A-AR selective blocker, 5-

methylurapidil (1 nM).  The α1A-AR population was determined by subtracting the 

α1B-AR density from the total α1-AR pool. Bmax was determined using the non-

linear regression analysis of GraphPad Prism.  Bars represent the mean Bmax ± 

SEM (n=6-8). *, P < 0.05 versus normal. 
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Figure 1A 
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Figure 1B 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Appendix G 
Contributions to papers 

 
Zuscik, M.J., Chalothorn, D., Hellard, D., Deigham, C., McGee, A., Daly, C.J., Waugh,  
D.J.J., Ross, S.A., Gaivin, R.J., Morehead, A., Thomas, J.D., Plow, E.F., McGrath, J.C., 
Piascik, M.T., and Perez, D.M.  (2001)  Hypotension, Autonomic Failure and Cardiac  
Hypertrophy in Transgenic Mice Overexpressing the α1B-Adrenergic Receptor.  J. Biol.  
Chem.  276: 13738-13743. 
 
Responsible for generation of the data on the carotid mean arterial pressure (Figure 4). 
 
 
 
 
Ross, S.A., Chalothorn, D., Gonzalez-Cabrera, P.J., Yun, J., Gaivin, R., McCune, D.F.,  
Papay, R., Rorabaugh, B., Piascik, M.T., and Perez, D.M.  The Role of the α1B- 
Adrenergic Receptor in the Inotropic Response of the Mouse Myocardium.  In revision at  
Am. J. Physiol. 
 
Responsible for generation of the data related to myocyte contraction (Figures 3 and 4). 
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