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ISOLATION AND CHARACTERIZATION OF THE FOUR ARABIDOPSIS 
THALIANA POLY(A) POLYMERASE GENES 

 

Poly(A) tail addition to pre-mRNAs is a highly coordinated and essential step in 
mRNA maturation involving multiple cis- and trans-acting factors.  The trans-acting 
factor, poly(A) polymerase (PAP) plays an essential role in the polyadenylation of 
mRNA precursors.   The Arabidopsis thaliana genome contains four putative PAP genes.  
We have found, using in silico analysis and transgenic plants expressing GUS under the 
control of the four PAP promoters, that each of these genes is expressed in overlapping, 
yet unique patterns.  This gives rise to the possibility that these genes are not redundant 
and may be essential for plant survival.  To further test this, inducible RNAi and T-DNA 
mutagenized plants were obtained and analyzed.  Plants lacking all, or most, of each PAP 
gene product, due to RNAi induction, were not viable at any of the stages of plant growth 
tested.  Furthermore, T-DNA PCR analysis determined that no plants containing a 
homozygous mutation, were viable.  This data reveals that lack of any of the four PAP 
gene products has a significant effect on the plants ability of survive, thus indicating that 
each PAP gene is essential.  Finally, transient expression experiments with each of the 
full length PAP cDNAs fused to GFP showed that the PAP I, PAP II and PAP IV gene 
products are localized throughout the nucleus and within nuclear speckles.  The cellular 
localization of PAP III could not be determined.     
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CHAPTER ONE 
 

Literature Review 
 

 In the nucleus of eukaryotic cells, RNA polymerase II (Pol II) transcribes large 

pre-messenger RNAs (pre-mRNA) that extend between 100 to 4000 nucleotides beyond 

the 3’-end of the mature mRNA.  For these pre-mRNAs to be translated, they must first 

undergo post-transcriptional modifications including the addition of a 5’-7-methyl 

guanine cap, exon/intron splicing, addition of a poly(A) tail to the 3’-end in a non-

template dependant manner and subsequent transport of the mature mRNAs from the 

nucleus to the cytoplasm where they can be used as a substrate for translation.   

Almost all mRNAs in eukaryotes undergo polyadenylation.  The only known 

exceptions are the replication-dependent histone mRNAs in metazoan organisms, which 

have a 3’ stem-loop structure instead of a poly(A) tail (Marzluff and Pandey, 1988).  The 

addition of a poly(A) tail occurs in two steps that are tightly coupled by the basal 

polyadenylation machinery in vivo but can be experimentally uncoupled in vitro.  The 

first step requires the removal of the 3’-terminal non-coding fragment through an ATP 

dependent, endonucleolytic cleavage of the nascent transcript at a specific site in the pre-

mRNA.  This step is closely followed by polymerization of adenosine residues to the 

upstream 3’-OH of the 5’ cleavage product (Keller and Minvielle-Sebastia, 1997; Wahle 

and Kuhn, 1997; Zhao et al., 1999a; Figure 1.1).  Poly(A) tail lengths range from about 

75 residues in the yeast Saccharomyces cerevisiae to nearly 300 residues in humans 

(Butler et al., 1990; Wickens, 1990; Brawerman, 1981).  Efficient polyadenylation 

occurring at a specific location requires intricate interactions between cis signals on the 

nascent transcript and trans-acting factors contained in the multi-subunit polyadenylation 

complex (Minvielle-Sebastia et al., 1998; Wahle and Ruegsegger, 1999; Zhao et al., 

1999a).   

 3’-end processing is not only essential for the addition of the poly(A) tail, it is 

also coupled to other events in the nucleus such as transcription termination (Whitelaw 

and Proudfoot, 1986; Logan et al., 1987; Connelly and Manley, 1988), mRNA splicing 

(Niwa et al., 1990a; Niwa et al., 1990b; Boelens et al., 1993; Lutz et al., 1996) and 

mRNA export from the nucleus (Whitelaw and Proudfoot, 1986; Connelly and Manley, 
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1988).  The link between transcription and polyadenylation has been well studied and 

many associations have been found between these two processes.  The nucleotide 

sequences found on the nascent RNA signaling the site of polyadenylation are, in effect, 

also a transcription termination signal for Pol II.  Defects in these sequences bring about 

loss of mRNA 3’-polyadenylation as well as defective transcription termination, which 

leads to transcription read-through into downstream genes (Whitelaw and Proudfoot, 

1986; Connelly and Manley, 1988).  Through yeast mutational studies, several 

components of the polyadenylation apparatus have been shown to be required for correct 

Pol II termination (Dichtl et al., 2002a).  In mammalian cells, deletion of the C-terminal 

domain (CTD) of the largest subunit of Pol II devastated the cell’s ability to perform 

capping, splicing and polyadenylation, thus showing the critical interplay of these three 

major pre-mRNA processing events (McCracken et al., 1997).  Furthermore, direct 

interactions of polyadenylation factors with the Pol II CTD, as well as transcriptional 

factors, have been established both genetically and biochemically and in yeast, it was 

found that separate domains on individual protein factors were devoted to either 

transcription termination or polyadenylation signaling (Barilla et al., 2001; Dichtl et al., 

2002a; Kyburz et al., 2003; Aranda and Proudfoot, 2001; Sadowski et al., 2003; 

Licatalosi et al., 2002).  There is a highly coordinated link between polyadenylation, 

splicing and exon definition, particularly definition of the last exon where protein-protein 

interactions between splicing and polyadenylation factors occur at the polyadenylation 

signal (Robberson et al., 1990; Berget, 1995; Niwa et al., 1990a; Niwa et al., 1990b; 

Niwa and Berget, 1991a; Niwa and Berget, 1991b; Scott and Imperial, 1996; Cooke et 

al., 1999; Vagner et al., 2000; Cooke and Alwine, 2002; Boelens et al., 1993; Lutz et al., 

1996; McCracken et al., 2002).  Finally, the link between poly(A) tail addition and 

mRNA export from the nucleus to the cytoplasm has been demonstrated through the 

generation of yeast mutants defective in 3’-end processing.  These yeast strains not only 

show defects in polyadenylation but also reduced nuclear export of polyadenylated 

mRNAs and a decline in recruiting abilities for nuclear export factors (Hammell, 2002).  

  The poly(A) tail itself plays important roles in mRNA metabolism.  Ever 

changing environments require that cells be able to adjust mRNA levels quickly and 

efficiently.  One method to alter mRNA levels is through mRNA turnover and removal of 
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the polyadenylate tail.  This step is frequently the first and rate-limiting step of this 

process (Bernstein et al., 1989; Beelman and Parker, 1995; Boeck et al., 1996; Carpousis 

et al., 1999; Curtis et al., 1995; Ford et al., 1997; Lewis et al., 1995; Caponigro and 

Parker, 1995).  Regulated increases in the length of the tail have also been observed.  For 

example, tail lengths of vasopressin mRNAs can vary in a circadian type rhythm and can 

rapidly increase in times of dehydration in rats (Robinson et al., 1988, Carrazana et al., 

1988).  Polyadenylate tails also influence the efficiency of translation through 

interactions with the 5’-cap to help load the RNA onto the 40S ribosomal subunit and 

subsequently stimulate translation (Gallie, 1991; Craig et al., 1998; Proweller and Butler, 

1997; Preiss and Hentze, 1998; Tarun and Sachs, 1995; Sachs et al., 1997).  Regulation of 

gene expression, through the alternative usage of polyadenylation sites, can occur thus 

changing the capacity of coding or non-coding sequences in the 3’ region of the mRNA 

(Foulkes et al., 1993; Takagaki et al., 1996; Proudfoot, 1986).  

 

RNA Sequences Directing 3’-End Processing 

Sequences controlling location and efficiency of mRNA cleavage and 

polyadenylation are contained within the nascent transcript.  Surprisingly, such a 

seemingly simple process has been found to require intricate interactions between several 

cis-acting factors and a multitude of trans-acting proteins (Edmonds, 2002).  These cis-

acting signals are responsible for orchestrating the multi-subunit protein factors required 

for cleavage and polyadenylation.  The processes involved in polyadenylation have been 

well studied and appear to be universal, however, diverse organisms use apparatus with 

unique features to accomplish pre-mRNA 3’-end maturation.  

In mammals, at least 3 cis-elements on the nascent transcript are required to 

define the exact location of the cleavage site.  These core elements include the A-rich 

element consisting of the hexanucleotide sequence AAUAAA, the GU- or U- rich 

downstream element (DSE) and the site of polyadenylation (Figure 1.2).  There are also 

several auxiliary elements located upstream and/or downstream from these core elements.  

These signals are responsible for regulating the efficiency of 3’-processing through 

recruitment of regulatory factors and by assuring that the core is open and accessible to 

the polyadenylation machinery (Wahle and Keller, 1996; Zarudnaya et al., 2003).  70-
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90% of polyadenylated animal mRNAs contain the hexanucleotide AAUAAA, or an 

AUUAAA variant, located 10-30 nucleotides upstream of the cleavage site that is 

absolutely required for both the cleavage and polyadenylation steps in mRNA 3’ 

processing of most RNA transcripts (Fitzgerald and Shenk, 1981; Higgs et al., 1983; 

Montell et al., 1983; Wickens and Stephenson, 1984; Wickens, 1990; Manley, 1988; 

Wahle and Keller, 1992).  The variant AUUAAA directs cleavage, in vitro, with an 

efficiency of 66%, compared to the wild type AAUAAA level (Graber et al., 1999a; 

Graber et al., 1999b; Beaudoing et al., 2000; MacDonald and Redondo, 2002; Sheets et 

al., 1990; Proudfoot and Brownlee, 1976).  

The second, less conserved element of the core polyadenylation signal is the U-

rich or GU-rich DSE.  This signal is located within 50 nucleotides downstream of the 

poly(A) site (Proudfoot, 1991; Chen et al., 1995; Takagaki and Manley, 1997).  The 

distance between the hexanucleotide element and the DSE determines the effectiveness 

of a particular cleavage site on the RNA and the efficiency of the cleavage reaction 

(MacDonald et al., 1994, Mason et al., 1986; Cole and Stacy, 1985; Conway and 

Wickens, 1987; Sadofsky and Alwine, 1984; Simonsen and Levinson, 1983; Gil and 

Proudfoot, 1987; McDevitt et al., 1986).  It is not unusual for a polyadenylation signal to 

have more then one DSE (Chou et al., 1994; McDevitt et al., 1986; Gil and Proudfoot, 

1987). 

The site of cleavage, which ultimately becomes the point of poly(A) addition, is 

referred to as the poly(A) site.  While there is no strong consensus sequence in the area 

lying between the AAUAAA motif and the DSE, cleavage was found to occur on the 3’-

side of an A residue in ~70% of vertebrate mRNAs and, in 59% of all genes analyzed the 

pentultimate residue was a C residue (Sheets et al., 1990).  Thus, a CA dinucleotide 

usually characterizes the poly(A) site for most genes.  A few mammalian genes have 

been found to contain a U-rich area surrounding the CA dinucleotide that may play a role 

in determining the strength of the polyadenylation signal (Moreira et al., 1995; 

Brackenridge and Proudfoot, 2000).   

The core elements govern the site of cleavage and the efficiency of the 

polyadenylation reaction.  However, other auxiliary sequences found on the RNA 

molecule, along with the secondary structure of the transcript itself, can play important 
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roles in poly(A) site choice and efficiency.  For example, viral poly(A) sites commonly 

have a U-rich enhancer sequence located upstream of the AAUAAA element termed 

upstream sequence enhancers (USE) (Simonsen and Levinson, 1983; Bhat and Wold, 

1987; DeZazzo and Imperiale, 1989; DeZazzo et al., 1991; DeZazzo et al., 1992; Prescott 

and Falck-Pedersen, 1992,1994; Sittler et al., 1994; Silver Key and Pagano, 1997; 

Carswell and Alwine, 1989; Lutz and Alwine, 1994; Schek et al., 1992; Russnak and 

Ganem, 1990; Brown et al., 1991; Cherrington and Ganem, 1992; Valsamakis et al., 

1991).  A computer analysis found a large number of human genes with a high 

concentration of U-rich elements (USE) upstream of the AAUAAA signal (Legendre and 

Gautheret, 2003).   A G-rich, auxiliary downstream enhancer (AUX DSE) sequence 

located 3’ of the DSE has been described to positively influence the polyadenylation 

process in the SV40 L pre-mRNA and to be present in ~34% of mammalian poly(A) 

signals (Bagga et al., 1995; Bagga et al., 1998;  Chen and Wilusz, 1998; Lou et al., 1996; 

Lou et al. 1999; Arhin et al., 2002).  These sequences are thought to act as recognition 

sites for factors stabilizing the polyadenylation complex.  Negative regulatory elements 

have also been found upstream of the poly(A) sites for the U1A and the bovine 

papillomavirus late poly(A) sites and downstream of the poly(A) site in promoter-

proximal HIV-1 (Furth et al., 1994; Gunderson et al., 1994; Gunderson et al., 1997; Ashe 

et al., 1997). 

RNA secondary structure is also thought to play an important role in 

polyadenylation.  However, this aspect of 3’-processing has not been extensively studied.  

Preliminary results have demonstrated that secondary structures, along with the cleavage 

and polyadenylation signals, can enhance or retard cleavage site selection.  For example, 

chimaeric RNA containing the AAUAAA hexamer in a secondary structure had a much 

lower cleavage rate compared to pre-mRNAs in which this structure was absent (Chen 

and Wilusz, 1998).  In addition, both a stem loop structure containing the core poly(A) 

signals in the HIV-1 transcript and base pairing in hepatitis delta virus transcripts reduce 

polyadenylation efficiency (Klasens et al., 1999; Hsieh et al., 1994).  On the other hand, 

stem loop structures have been shown to enhance 3’-end processing.  In the murine 

immunoglobulin M secretory transcript, a stem loop structure containing a DSE is critical 

for positively regulating the poly(A) site (Phillips et al., 1999).  This up regulation is also 
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seen in human T-cell leukemia virus types 1 and 2 and bovine leukemia virus transcripts 

in which a stem loop structure brings together the AAUAAA signal and the cleavage site 

which are almost 300 nucleotides apart (Guntaka, 1993).  Interestingly, ~27% of pre-

mRNA sequences in a database containing poly(A) signals have the potential to form G-

quadruplexes which are structures made up of DNA or RNA containing clusters of G-

repeats that form four-stranded structures composed of stacked G-tetrads (Patel et al., 

1999;  Zarudnaya et al., 2002).  This structure has not been well studied and what effect it 

has on polyadenylation is not well understood at this time. 

Unlike mammalian cells, yeast polyadenylation signals have been more difficult 

to discern.  Yeast RNAs contain no highly conserved sequence motif equivalent to the 

AAUAAA hexanucleotide domain found in mammalian cells and the yeast signals that 

have been identified demonstrate a degeneracy more analogous to the USEs and DSEs 

found at mammalian polyadenylation sites (Humphrey et al., 1994; Guo and Sherman, 

1996a, 1996b).  Like mammals, the yeast Saccharomyces cerevisiae contains at least 

three different cis elements that contribute to the efficiency and accuracy of yeast 3’-end 

processing.  The UA-rich efficiency element (EE) is located at a variable distance 

upstream of the cleavage site and functions to enhance the strength of a polyadenylation 

site (Russo et al., 1991, 1993; Egli et al., 1995; Guo et al., 1995a; Henikoff et al., 1983; 

Henikoff and Cohen, 1984; Irniger et al., 1991; Irniger et al., 1992; Irniger and Braus, 

1994; Hou et al., 1994).  A somewhat conserved, A-rich positioning element (PE) is the 

yeast element most similar to the AAUAAA mammalian signal and is responsible for 

defining the site of cleavage to approximately 20 nucleotides downstream from it (Guo et 

al, 1995b; Guo and Sherman 1996a, 1996b; Graber et al., 1999a; Graber et al., 1999b; 

van Helden et al., 2000).  The third yeast 3’-end processing signal is the actual site of 

polyadenylation, which occurs most frequently at a PyA (Py = pyrimidine) sequence.  As 

is the case in mammals, the area flanking the PyA tends to be U-rich (Graber et al., 

1999a; Graber et al., 1999b; Bennetzen and Hall, 1982; Heidmann et al., 1994; Russo et 

al., 1993; Figure 1.2).  Variations in the number of U’s present in this area give rise to 

poly(A) signals of differing efficiencies (Graber et al., 1999a; Graber et al., 1999b; 

Bennetzen and Hall, 1982; Heidmann et al., 1994; Russo et al., 1993; Dichtl and Keller, 

2001).  General requirements for the sequences located downstream of the cleavage site 
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are not well understood.  While some genes require downstream signals for efficient 

cleavage, others seem not to be affected by deletions of nearly all downstream sequences 

(Hyman et al., 1991; Aranda et al., 1998; Egli et al., 1995; Hou et al., 1994: Peterson and 

Myers, 1993; Sadhale and Platt, 1992; Chen and Nordstrom, 1992).  Finally, the 

secondary structures around signal sequences have not been intensely studied in yeast, 

but for some yeast genes they may be important in regulating 3’-end formation (Hyman 

et al., 1991; Sadhale and Platt, 1992; Doktycz et al., 1998; Stumpf et al., 1996). 

In many yeast genes, a group of poly(A) sites can be located downstream of the 

efficiency and positioning elements.  In contrast, most mammalian genes have only one 

poly(A) site located 3’ of the AAUAAA (Aranda et al., 1998; Hegemann and Fleig, 

1993; Ryu and Mertz, 1989).  Interestingly, some yeast polyadenylation signals can 

function in either orientation (Sadhale and Platt, 1992; Aranda et al., 1998; Irniger et al., 

1991; Peterson and Mayers, 1993) and not only are efficiency and positioning elements 

degenerate, they are also redundant giving rise to extremely complex polyadenylation 

signals (Egli et al., 1995; Guo et al., 1995a; Henikoff et al., 1983). 

3’-end processing in plants is not as well defined as in mammals and yeast.  

However, the cis-elements have been well characterized for several plant genes (Hunt, 

1994; Li and Hunt, 1997; Wu et al., 1993; Rothnie, 1996; Graber et al., 1999a; Loke et 

al., 2005).  Like other organisms, the process of mRNA 3’-end formation in plants also 

requires at least three cis-acting elements, the near-upstream element (NUE), the far-

upstream element (FUE), both highly degenerate, and the cleavage site itself, which, like 

other organisms, consists of a PyA dinucleotide surrounded by a U-rich region (Rothnie, 

1996; Hunt, 1994; Graber et al, 1999b; Fig 1.2).  Plant genes often contain more than one 

NUE as well as multiple polyadenylation sites.  In this situation, each poly(A) site is 

controlled by a separate NUE (Wu et al., 1993; Dean et al., 1986; MacDonald et al., 

1991; Mogen et al., 1992).  The NUE, positioned ~10 to 30 nucleotides upstream of the 

cleavage site, indicates where cleavage will take place.  This signal is somewhat similar 

to the mammalian hexanucleotide sequence in that it can contain the AAUAAA motif but 

it can also be other related or unrelated sequences and may be as large as 10 nucleotides 

(Li and Hunt, 1995).  The U rich FUE, which may contain upwards of 100 nucleotides, is 

found approximately 100 nucleotides upstream of the cleavage site and aides in 
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determining the efficiency of the polyadenylation site (Hunt, 1994; Rothnie, 1996; Li and 

Hunt, 1997).  These elements can influence polyadenylation at more than one poly(A) 

site within a single gene.  NUE and FUE elements are modular and proper spacing 

between them is very important to their function (Wu et al., 1994; Rothnie et al., 1994).  

 Comparison of the cis-acting signals in mammals, yeast and plants demonstrates 

that the yeast and plant poly(A) signals are most similar in that both lack a DSE to 

promote cleavage efficiency as seen in mammals.  However, while the placements of 

each of the polyadenylation elements differ among these three organisms, there is some 

evolutionary conservation as each organism contains an A-rich sequence, a U-rich 

sequence and a site of polyadenylation surrounded by a U-rich region.  Also, it appears 

that spacing between these elements determines the rate of cleavage and polyadenylation 

at a specific poly(A) site.   

 

Nuclear mRNA 3’-end Cleavage and Polyadenylation Machinery 

Proper and efficient polyadenylation is an intricate process involving several 

protein complexes as well as at least three cis-acting RNA sequence elements.  In 1985, 

Moore and Sharp began to isolate and characterize components of the mammalian 

cleavage and polyadenylation machinery and were soon followed by Butler and Platt 

(1988) who purified and identified similar proteins in yeast.  These organisms showed a 

high degree of conservation in the machinery needed for mRNA 3’-end maturation 

although some differences were also found (Figures 1.3 and 1.4).  

Mammalian poly(A) tail addition occurs using a specific set of proteins for both 

cleavage and polyadenylation.  The machinery involved in the cleavage step includes the 

cleavage and polyadenylation specificity factor (CPSF), cleavage-stimulatory factor 

(CstF), cleavage factors Im and IIm (CF Im and CF IIm ), RNA polymerase II (Pol II) 

and poly(A) polymerase (PAP).  CPSF and PAP are also key players, along with poly(A)-

binding protein nuclear I (PABPNI), in polyadenylation (Minvielle-Sebastia and Keller, 

1999; Wahle and Ruegsegger, 1999; Zhao et al, 1999a; Figure 1.3).   

CPSF is a multimeric complex composed of 5 polypeptides.  The first four are 

identified by their molecular weights of 160, 100, 73 and 30 kDa (CPSF-160, CPSF-100, 

CPSF-70, and CPSF-30) (Christofori and Keller, 1988; Gilmartin and Nevins, 1989; 
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Takagaki et al., 1988, 1989; Bienroth et al., 1991, Murthy and Manley, 1992).  The fifth 

protein is called the factor interacting with PAP or FIP1 for short (Kaufmann et al., 2004; 

Figure 1.3).  CPSF-160 contains sequences resembling the RNP1 and RNP2 type motifs 

found in many RNA-binding proteins and is responsible for binding the AAUAAA signal 

found in mammalian polyadenylation signals (Jenny and Keller, 1995; Murthy and 

Manley; 1995; Gilmartin et al., 1995).  This interaction, however, is not stable and 

addition of PAP alone results in reduced enzymatic activity (Murthy and Manley, 1995).  

Only through interactions with the other four CPSF subunits, CstF and PAP, is a stable 

and processive complex formed on the RNA (Barabino et al., 1997; Bienroth et al., 1991; 

Jenny and Keller, 1995; Jenny et al., 1996; Murthy and Manley, 1992).  CPSF-160 also 

interacts with the CTD of Pol II suggesting that CPSF-160 not only aids in coordination 

and regulation of cleavage and polyadenylation, but it may also play a role in 

transcription termination (McCracken et al., 1997).  CPSF-100 and CPSF–73 show 23% 

identity and 49% similarity and appear to be closely related, but their functions are not 

well understood (Jenny et al., 1994; Jenny et al., 1996).  CPSF-100 has been shown to 

interact with symplekin which is thought to aid in assembly of CstF as well as the entire 

polyadenylation complex (Takagaki and Manley, 2000) and CPSF-73 has been shown to 

interact with CF IIAm (described below) (Takagaki and Manley, 2000; de Vries et al., 

2000).  Both proteins contain a β-CASP domain, which is found in other enzymes 

involved in nucleic acid cleavage (Callebaut et al., 2002).  This domain consists of a 

conserved zinc-binding motif that plays a central role in catalysis for these enzymes.  The 

β-CASP domain found in CPSF-100 and CPSF-73 make these subunits prime candidates 

for the, as of yet, unidentified nuclease responsible for cleavage of pre-mRNA before 

subsequent addition of the poly(A) tail.  CPSF-100, however, contains substitutions 

within this motif, which reduce the likelihood that this is the subunit responsible for 

cleavage.  On the other hand, CPSF-73 does not contain substitutions in this domain and 

therefore may be the elusive enzyme responsible for the actual cleavage of the RNA 

molecule during 3’-end maturation (Aravind, 1999; Callebaut et al., 2002).  Further 

evidence for this possibility has been revealed through UV-cross-linking experiments in 

which a protein with a similar molecular weight as CPSF-73 can be seen in the vicinity of 

the pre-mRNA cleavage site (Ryan et al., 2004).  CPSF-30 is thought to aid CPSF-160 in 
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the recognition of RNA substrates, through its interaction with the USE cis-acting factor, 

and to stabilize the polyadenylation complex through an interaction with PABPNI 

(described below; Chen et al., 1999).  The last subunit of the CPSF complex is FIP1 

(Kaufmann, et al., 2004).  This 66-kDa protein interacts with CPSF-30, CPSF-160, CstF-

77, PAP and with the poly(U) rich USEs in RNAs and is thought to help define the 

poly(A) site.  Binding of FIP1 to this cis-acting factor stimulates the activity of PAP with 

or without the AAUAAA motif.  However, the activity was not as high as that seen with 

the CPSF-AAUAAA interaction (Kaufmann et al., 2004).  

Cleavage-stimulatory factor (CstF) is a multi-subunit complex that interacts with 

the DSE as well as CPSF and is required for cleavage but not for poly(A) addition 

(Gilmartin and Nevins, 1989; Takagaki et al. 1992).  It is composed of three polypeptides 

of 77, 64 and 50 kDa (Gilmartin and Nevins, 1991; Takagaki et al., 1990; Takagaki and 

Manley, 1994; Figure 1.3).  CstF-77 bridges the other two CstF subunits and interacts 

with CPSF-160 and PAP to help stabilize the polyadenylation complex (Takagaki and 

Manley, 1994; Takagaki and Manley, 2000, Murthy and Manley, 1995).  CstF-64 is the 

subunit responsible for recognizing and binding the DSE of precursor RNA through an 

RNP-type RNA binding domain (Gilmartin and Nevins, 1991; Takagaki et al., 1992; 

Takagaki and Manley, 1997; MacDonald et al., 1994; Beyer et al., 1997; Wilusz and 

Shenk, 1988).  It also interacts with symplekin and a transcription factor termed positive 

cofactor 4 (PC4) (Takagaki and Manley, 2000 ; Calvo and Manley, 2001).  The final 

subunit, CstF-50, like CPSF-160, has been found to interact with the CTD of Pol II.   

These interactions further demonstrate the connections found between pre-mRNA 

transcription and polyadenylation (McCracken et al., 1997).  

Like CstF, cleavage factors I and II (CF Im and CF IIm) are required only for pre-

mRNA nucleolytic cleavage.  CF Im is composed of three major subunits of 68, 59 and 

25 kDa and a fourth minor subunit of 72 kDa (Figure 1.3).  The three larger subunits 

appear to be related, sharing similar amino acid domains and the three smaller proteins 

can be UV cross-linked to RNA substrates (Ruegsegger et al., 1996; Ruegsegger et al., 

1998).  In vitro, functional CF Im can be reconstituted using only the 68- and 25-kDa 

subunits.  However, due to the amino acid similarity between the three larger proteins, 

CF Im-72 and –59 may also be able to interact with CF Im 25 to constitute different 
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dimer isoforms of the CF Im complex (Takagaki et al., 1989; Ruegsegger et al., 1998).  

Gel retardation assays have shown that purified CF Im has a high affinity for RNAs 

containing polyadenylation signal sequences and may increase the stability of the 3’-end 

processing complex.  Kinetic assays of the cleavage reaction indicate that interactions of 

CF Im with the RNA substrate may be an early step in the assembly of the 3’-end 

processing machinery.  CF Im would then facilitate the recruitment of other processing 

factors (Ruegsegger et al., 1996; Ruegsegger et al., 1998).  The domain organization of 

CF Im-68 shows a strong similarity to the superfamily of RS-rich splicing factors. 

Interestingly, CF Im-72, -68 and –25 co-migrate with snRNP splicing factors in sucrose 

gradient and co-immunoprecipitate with U1 snRNP due to an interaction between CF Im-

25 and the U1 70K protein (Awasthi and Alwine, 2003).  These interactions again 

demonstrate the cohesiveness of mRNA 3’-end processing with other processes involved 

in producing a mature and functional mRNA molecule (Ruegsegger et al., 1998).  The 

second cleavage factor, CF IIm, remains somewhat elusive and thus far has not been 

purified to homogeneity.  Therefore, it has not been characterized to the extent of other 

cleavage and polyadenylation factors.  Fractionation and purification of HeLa cell nuclear 

extracts separated CF IIm into two components, CF IIAm, which is an essential part of 

RNA cleavage and CF IIBm, which is thought to play more of a stimulatory role in 

cleavage (de Vries et al., 2000; Figure 1.3).  Proteins identified in the CF IIAm fraction 

included CF Im, some splicing and transcription factors and Pcf11p and Clp1p, which are 

homologs of yeast proteins necessary for pre-mRNA 3’-end maturation (see below).  The 

role, if any, that each of these proteins plays in mammalian mRNA maturation is not yet 

clear, but research has shown that both are true subunits of CF IIAm and hClp1 bridges 

CF Im and CPSF (de Vries et al., 2000).  

RNA polymerase II (Pol II) is well known for its role in transcribing protein-

encoding genes.  However, the interactions of Pol II with proteins involved in other 

mRNA processing events, such as capping, splicing, cleavage and polyadenylation, 

requires the inclusion of Pol II as a necessary factor in these processes.  In general, these 

interactions take place through a unique domain protruding from the large subunit of the 

enzyme known as the carboxy-terminal domain (CTD).  The CTD consists entirely of 

repeats, 52 in mouse and humans, of the 7-amino-acid consensus sequences YSPTSPH  
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(Corden et al., 1985; Wintzerith et al., 1992).  The Serine 2 and Serine 5 residues undergo 

extensive phosphorylation and dephosphorylation during transcription and must be in the 

phosphorylated state to participate in 3’-end processing (Jacobs et al., 2004; Medlin et al., 

2003).  The CTD has been found to be an essential cleavage factor, binding specifically 

to CPSF-160 and CstF-50 (McCracken et al., 1997; Figure 1.3).  These interactions are 

thought to stabilize the cleavage complex and/or to have allosteric effects, which can 

stimulate 3’-end processing (Hirose and Manley, 1998; Stumpf et al., 1996; Fong and 

Bentley, 2001; Ryan et al., 2002).  

The enzyme actually responsible for adding adenosine residues to cleaved RNAs 

was first observed in the early 1960s and became known as poly(A) polymerase (PAP) 

(Edmonds and Winters, 1976).  In vertebrates, multiple forms of PAP mRNA are 

synthesized from a single gene by alternative splicing (Raabe et al., 1991; Wahle et al., 

1991; Thuresson et al., 1994; Ballantyne et al., 1995; Gebauer and Richter, 1995; Zhao 

and Manley, 1996).  The longest mRNA forms encode PAPs I (~82 kDa) and II (~78 

kDa), which are distinguished from each other by their C-terminal sequences (Raabe et 

al., 1991).  Other, shorter mRNAs (PAPs III, IV, V, and VI) arise from competition 

between alternative splicing and polyadenylation sites on the pre-mRNA precursor.  

However, the predicted protein products have not been found.  Functions of these shorter 

are not known at this time but they may be components of an autoregulatory mechanism 

(Raabe et al., 1991; Wahle et al., 1991; Ballantyne et al., 1995; Gebauer and Richter, 

1995; Zhao and Manley, 1996; Martin and Keller, 1996).  Of these five PAPs, PAP II is 

the predominant form in most cells (Martin and Keller, 1996; Martin et al., 1999) and is 

required for both cleavage and polyadenylation (Raabe et al., 1991; Wahle et al., 1991).  

This high fidelity enzyme incorporates AMPs onto the mRNA in a non-templated 

dependent manner and when isolated from the rest of the polyadenylation complex is able 

to synthesize a tail through non-specific polyadenylation (Manley, 1983; Moore et al., 

1986; Wahle, 1991; Zarkower et al., 1986).  The poly(A) tail arising from PAP alone is of 

unregulated length and can be added to any RNA.  In this case, the enzyme functions in a 

purely distributive manor, binding only one adenosine molecule per polymerization event 

(Edmonds, 1982).  Upon the addition of PABPNI (described below) or CPSF, the 

processivity of the enzyme increases to <10 nucleotides polymerized for each binding 
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event.  Only after the simultaneous addition of both PABPNI and CPSF can PAP 

synthesize a full-length poly(A) tail in a single processive event and at a specific 

polyadenylation signal (Bienroth et al., 1993).   

To gain a better understanding of the structure of mammalian PAP, Martin et al. 

(2000) crystallized a truncated bovine PAP in complex with divalent cations and a 

substrate analog, 3’-dATP.   At a 2.5-angstrom resolution, PAP was found to contain 

three domains including a highly conserved, N-terminal catalytic domain, a central 

domain and a C-terminal RNA-binding domain.  The catalytic domain is structurally 

homologous to the catalytic “palm” domain of other nucleotidyl transferases such as 

DNA polymerase β and kanamycin phosphotransferase (Davies et al., 1994; Pelletier et 

al., 1994; Sawaya et al., 1997) and consists of five-stranded mixed β-sheets and two α–

helices (Holm and Sander, 1995; Martin and Keller, 1996; Martin et al., 1999).  This 

domain includes three aspartate residues that are conserved among the nucleotidyl 

transferase superfamily and is the site of binding for ATP and metal ions (Holm and 

Sander, 1995; Martin and Keller, 1996; Zhao and Manley, 1996).  These aspartate 

residues, located at positions 113, 115, and 167, coordinate two Mn2+ metal ions and 

position them where the 3’-dATP molecules interact with the active site and catalyze an 

in-line attack of the RNA’s 3’-OH group on the α-phosphate of the incoming ATP 

(Wittmann and Wahle, 1997).  A central β-strand connects the catalytic domain to the 

central domain.  This central domain does not resemble pol β but does show structural 

similarity to the allosteric activity domain of ribonucleotide reductase R1.  This region is 

composed of a four-helix bundle and a three-stranded mixed β–sheet and is connected to 

the C-terminal domain through a hinge-like motif.  The C-terminal, RNA-binding, 

domain is a compactly folded globular domain that resembles an RNA-recognition motif 

fold and consists of a four-stranded antiparallel β–sheet, flanked by two helices to one 

side as seen in ribosomal protein S6, phenylalanyl-tRNA synthetase and sex-lethal 

protein (Lindahl et al., 1994; Goldgur et al., 1997; Handa et al., 1997; Martin et al., 

2000).  The domain responsible for RNA binding is located between amino acids 488 and 

508 (Martin and Keller, 1996).  This domain overlaps with the region needed for 

AAUAAA dependent activity (Thuresson et al., 1994), CPSF binding (Murthy and 

Manley, 1995) and encompasses a nuclear localization signal (NLS-1; Martin and Keller, 
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1996).  In most DNA- and RNA-binding proteins, an overlap is found between the NLS 

and the polynucleotide-binding domains.  NLS-1 together with a second NLS (NLS-2) 

about 140 residues downstream of the first are required for efficient localization of PAP 

to the nucleus (Dingwall and Laskey, 1991, Raabe et al., 1994).  The sequence 

surrounding NLS-2 is dispensable for both the catalytic activity and for the RNA 

substrate binding activity of PAP (Martin and Keller, 1996; Raabe et al., 1994; 

Zhelkovsky et al., 1995).  This C-terminal region also contains multiple phosphorylation 

sites for the cyclin-dependent kinase (cdk) p34cdc2-cyclin B.  It is through this 

phosphorylation/dephosphorylation that PAP is regulated during the cell cycle and oocyte 

maturation with enzymatic activity decreasing upon phosphorylation (Abuodeh et al., 

1998; Colgan et al., 1996; Colgan et al., 1998; Ballantyne et al., 1995).  The C-terminal 

69 residues of PAP hosts several protein-protein interactions including CF I-25 which is 

known to aid in the assembly of the polyadenylation machinery at the mRNA 3’-

processing site and could play an important part in the coordination of this assembly 

and/or the regulation of the PAP (Kessler et al., 1995; Kim and Lee, 2001) and with CFI 

through the 25 kDa subunit (Kim et al., 2001).  Amino acids 720 to 739 contain a PAP 

regulatory domain (PDR) that links polyadenylation to pre-mRNA splicing events via 

protein-protein interactions with splicing factors U1A and U2AF65.  These splicing 

factors have been well documented as PAP regulatory proteins when bound to the PDR  

(Boelens et al., 1993; Gunderson et al., 1994; Gunderson et al., 1997; Vagner et al., 2000) 

and with CFI through the 25-kDa subunit (Kim et al., 2001).  

Other active PAPs, arising from different genes, have been found and include an 

intronless, testis-specific, cytoplasmic PAP, named TPAP (PAPβ).  TPAP is expressed 

predominantly in round spermatids and thought to be involved in the additional extension 

of poly(A) tails of pre-existing mRNAs in haploid germ cells (Kashiwabara et al., 2000).  

Another PAP gene, neo-PAP, has been found in a human tumor cell cDNA library.  And 

finally, PAPγ, which is encoded by a separate gene, termed PAPOLG (Lee et al., 2000; 

Topalian et al., 2001; Kyriakopoulou et al., 2001).  Neo-PAP, an SRP RNA adenylating 

enzyme, is overexpressed in the nucleus of human neoplasms and unlike other 

mammalian PAPs, there is only one form of neo-PAP.  It is very similar to the active 

forms of PAP mentioned above, however, the CTD of neo-PAPs differs from these other 
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previously identified PAPs.  These differences give rise to alternatives in the 

phosphorylation states of neo-PAP and suggest that they are regulated by distinct 

mechanisms (Topalian et al., 2001).  PAPγ is a 90 kDa, nuclear localized isoform with 

similar sequences and exon/intron patterns to that of PAP (77-kDa) and it is thought to 

have resulted from gene duplication (Thuresson et al., 1994).  This enzyme was first 

purified as an SRP RNA adenylating enzyme, containing a PAP regulatory domain 

(PRD).  This gene acts very similar to the previously described PAPs.  However the CTD 

does differ to allow for different phosphorylation patterns (Perumal et al., 2001; 

Kyriakopoulou et al., 2001).  This gives rise to the possibility that each of these PAP 

isoforms performs a specific task within the cell and these tasks may be further regulated 

within different steps of the cell cycle. 

CPSF and PAP suffice for poly(A) addition to a pre-cleaved RNA substrate. 

However, rapid elongation and control of poly(A) tail length requires an additional factor, 

PABPN1 (Bienroth et al., 1993).  The 33-kDa PABPN1 contains a glutamate-rich N-

terminal domain, a single RNP domain in its middle region and an arginine-rich C-

terminal domain.  The protein tends to form oligomers and binds to the poly(A)tail with a 

minimum interaction site size of ~10-11nts (Nemeth et al., 1995; Wahle et al., 1993).  

Upon binding, a circular protein-RNA complex is formed which may control the length 

of the poly(A) tail (Wahle, 1995).  PABPN1 binds to PAP to tether it to the RNA and 

stimulate polyadenylation (Bienroth et al., 1993; Chen et al., 1999; Kerwitz et al., 2003).   

Although there are substantial differences between yeast and mammals in terms 

of the nature of the polyadenylation signal, a striking degree of conservation among 

trans-acting protein subunits utilized during mRNA 3’-maturation is seen between these 

organisms (Wahle and Ruegsegger, 1999; Zhao et al., 1997).  Fractionation of whole-cell 

yeast extracts has identified several distinct activities that contribute to the efficiency and 

accuracy of yeast 3’-end cleavage and polyadenylation (Chen and Moore 1992; Kessler et 

al., 1996).  Factors responsible for recognition of the poly(A) signal, accurate 

endonucleolytic cleavage and subsequent polyadenylation of the RNA precursor are 

cleavage factors I and II (CF I and CF II), polyadenylation factor I (PF I), poly(A) 

polymerase (Pap1p) and poly(A) binding proteins (Pab1p and Nab2p) (Lingner, 1991a, 

1991b; Hector et al., 2002).   A factor containing both CF II, PF I and other 
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polyadenylation subunits has been identified by affinity chromatography.  This factor can 

provide both CF II and PF I activities and has been designated the cleavage-

polyadenylation factor (CPF) (Ohnacker et al,. 2000; Figure 1.4).  

Cleavage Factor I (CF I) is responsible for recruiting the polyadenylation complex 

near the polyadenylation site.  The CF I complex is functionally analogous to mammalian 

CPSF in that it is necessary for both cleavage and polyadenylation.  However, their 

subunit compositions are different.  CF I can be separated into two activities, CF IA and 

CF IB (Kessler et al., 1996).  CF IA consists of four polypeptides identified as Rna14p 

(76 kDa), Rna15p (38 kDa), Pcf11p (70 kDa), and Clp1p (50 kDa; 

cleavage/polyadenylation protein 1) (Amrani et al., 1997a; Kessler et al., 1996; 

Minvielle-Sebastia et al., 1994; 1997; Preker et al., 1997).  The Rna14 gene gives rise to 

three unique transcripts generated through alternative polyadenylation sites within the 

same gene (Minvielle-Sebastia et al., 1991; Mandart and Parker, 1995) and the protein 

can be found in both the nucleus and the mitochondria (Bonneaud et al., 1994; Rouillard 

et al., 2000).  Its role in the mitochondria is not well understood at this time and will not 

be addressed in this review.  The Rna14p plays a similar role in yeast as that of CstF-77 

in mammals in that it forms a bridge between CF IB and CF IA by connecting Rna15p 

and Hrp1p (see below; Gross and Moore, 2001a; Takagaki and Manley, 1994).  

Interactions between Rna14p and a subunit of PF I, Pfs2p (described below), have also 

been observed (Gross and Moore, 2001a).  These interactions are thought to contribute to 

the binding strength and/or specificity of CF I.  Rna14p has also been shown to associate 

with the phosphorylated CTD of Pol II (Barilla et al., 2001).  Rna15p is the subunit 

responsible for the recognition of the A-rich positioning element (PE), which occurs 

through the RNP-type RNA-binding motifs found on Rna15p.  This interaction is 

strengthened when Rna15p is in complex with Hrp1p (see below) and Rna14p (Gross and 

Moore, 2001b; Minvielle-Sebastia et al., 1991; Takagaki and Manley, 1994).  The RNP-

type RNA-binding motifs are similar to those found in the mammalian counterpart of 

Rna15p, CstF-64, however, they cannot recognize the same RNAs (Takagaki and 

Manley, 1997).  Rna15p also interacts with a cell-cycle specific transcription factor 

Res2p, a factor required for transcription termination (Aranda and Proudfoot, 2001) and, 

like CstF-64, Rna15p also interacts with the transcriptional co-activators Mbp1 and Sub1 
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(PC4 in mammals; Calvo and Manley, 2001; Aranda and Proudfoot, 2001).  Pcf11p and 

Clp1p show similarity to subunits found in the mammalian CF IIm complex (hPcf11 and 

hClp1; de Vries, 2000).  Pcf11p interacts with both Rna15p and Clp1p (Amrani et al., 

1997a; Zhao et al., 1999a; Gross and Moore, 2001a) and with the CTD of Pol II (Barilla 

et al., 2001; Sadowski et al, 2003).  

CF IB contains only the 73-kDa polypeptide, Hrp1p (Kessler et al., 1997).  The 

HRP1 gene was previously identified as a gene encoding a protein involved in mRNA 

export that can be shuttled between the nucleus and the cytoplasm (Kessler et al., 1997). 

Its role in mRNA 3’-end maturation is recognizing and binding the UA-rich enhancer 

element through RNP-type RNA-binding motifs of which there are two, RNP1 and RNP2 

(Chen and Hyman, 1998; Kessler et al., 1997; Valentini et al., 1999; Henry et al., 1996; 

Minvielle-Sebastia and Keller, 1999).  Structurally, Hrp1p is related to the mammalian 

heterogeneous nuclear ribonucleoproteins (hnRNPs), a family of nuclear RNA-binding 

proteins (Weighardt et al., 1996; Kessler et al., 1997).  Hrp1p interacts with both Rna14p 

and Rna15p and is thought to play an important role in regulating cleavage site utilization 

(Kessler et al., 1997; Minvielle-Sebastia et al., 1998).  

The second cleavage factor (CF II) has been implicated in poly(A) site 

recognition through two of its four subunits, Yhh1p (150 kDa) and Ysh1p (100 kDa) 

(Stumpf and Domdey, 1996; Zhao et al., 1997).  The remaining subunits are Ydh1p (105 

kDa) and Pta1p (90 kDa) (Zhao et al., 1997; Zhao et al., 1999b).  Yhh1p, the yeast 

homolog of CPSF-160 (Stumpf and Domdey, 1996), is an RNA-binding protein 

hypothesized to be involved in U-rich cleavage/poly(A) site recognition, due to its 

preference to interact with U-rich sequences (Dichtl et al., 2002a; Dichtl et al., 2002b).  

This subunit was also found to interact with the CTD of Pol II, Ydh1p (see below), 

Rna14p, Pcf11p and weakly to Clp1p (Dichtl and Keller, 2001; Kyburz et al., 2003).  

Ydh1p and Ysh1p appear, like their mammalian homologs CPSF-100 and CPSF-73, 

respectfully, to be related (Zhao et al., 1997; Jenny et al., 1996).  Ydh1p, like Yhh1p, 

have been shown to interact with the CTD of RNA polymerase II and to play a role in 

cleavage/poly(A) site recognition (Dichtl and Keller, 2001; Dichtl et al., 2002a; Kyburz 

et al., 2003).  There are multiple interactions between the Ydh1p protein and other 3’-

processing subunits including Yhh1p, Ysh1p, Pta1p, Pfs2p and Pcf11p as well as itself.  

17 



 

These interactions could indicate that this subunit plays an important role in the assembly 

and structural order of the CPF complex and in associating yeast 3’-end processing with 

Pol II mediated transcription (Kyburz et al., 2003).  Ysh1p interacts with Clp1p, Pcf11p, 

and Yth1p (see below; Barabino et al., 2000; Kyburz et al., 2003).  The smallest subunit 

of CF II is a protein encoded by PTA1, initially identified as an essential gene affecting 

pre-tRNA processing (O’Conner, 1992; Zhao et al., 1999b).  Not much is known about 

the role Pta1p plays in mRNA 3’-end polyadenylation other than it interacts with Ydh1p 

(Kyburz et al., 2003).  Finally, Pta1p has also been shown to interact with the CTD of Pol 

II (Rodriguez et al., 2000). 

PF I, a multi-protein complex needed for poly(A) addition, but not for cleavage 

(Chen and Moore, 1992), contains Fip1p (factor interacting with poly(A) polymerase), 

Yth1p, Pfs1p or Mpe1p and Pfs2p (Preker et al., 1995, 1997; Ohnacker et al., 2000; Vo et 

al., 2001).  Fip1p, a 55 kDa protein and yeast homolog of the human Fip1, directly 

interacts with Pap1p (see below), Yth1p (see below), and weakly with Rna14p (Barabino 

et al., 1997; Preker et al., 1995).  Fip1p is the only protein known to directly interact with 

Pap1p and alone it can alter the processivity of this enzyme.  By blocking the access of 

Pap1p to the RNA substrate, Fip1p inhibits poly(A) extension, shifting Pap1p from a 

processive to a distributive mode of poly(A) synthesis (Preker et al., 1995; Zhelkovsky et 

al., 1998; Helmling et al., 2001).  Fip1p is also thought to aid in polyadenylation by 

tethering Pap1p to the CPF complex and to RNA through its interactions with Pfs2p and 

Yth1p (see below; Barabino et al., 1997; Barabino et al., 2000: Ohnacker et al., 2000) as 

well as to CF I through its interaction with Rna14p (Preker et al., 1995).  Yth1p (the yeast 

homolog of mammalian CPSF-30) interacts with Ysh1p, Pfs2p, Pfs1p and Fip1p (Preker 

et al., 1995; Barabino et al., 1997; Barabino et al., 2000; Ohnacker et al., 2000).  Like the 

CF II subunits, Yhh1p and Ydh1p, Yth1p is also able to identify U-rich sequences on the 

RNA molecule and appears to aid in cleavage site selection as well as polyadenylation 

(Barabino et al., 2000).  The 58 kDa, Pfs1p, short for polyadenylation factor I subunit, is 

thus far uncharacterized.  However, a protein preliminarily characterized under the name 

Mpe1p, is thought to be the Pfs1 protein previously identified.  This protein has been 

shown to interact with Pcf11p, a subunit of CF IA, but does not appear to be directly 

involved in the CPF complex.  However, it is required for specific cleavage and 
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polyadenylation of the pre-mRNA substrate (Vo et al., 2001).  The last subunit of the PF 

I complex is the 53 kDa protein Pfs2p (most likely yeast homolog to mammalian CstF-

50) and, like Pfs1p, it has not been well characterized.  Pfs2p interacts with Rna14p, 

Ysh1p and Fip1p forming a physical link between CF II-PFI and CF IA (Ohnacker, 

2000).  Interestingly, in the fission yeast Schizosaccharomyces pombe, Pfs2p has also 

been shown to play a role in chromosome dynamics.  Mutants of this gene product 

showed defects in chromosomal attachment to the mitotic spindle, giving rise to a 

chromosome missegregation, as well as defects in mRNA 3’-end processing (Wang et al., 

2005).  This new finding is a further demonstration of the multitude of interactions found 

between mRNA 3’-end processing factors and other cellular processes. 

The yeast poly(A) polymerase, Pap1p, is the enzyme that synthesizes the poly(A) 

tail and was the first 3’-end processing factor to be purified and identified from yeast 

(Lingner et al., 1991b; Patel and Butler, 1992).  Sequence comparisons show that the 

yeast and mammalian PAP proteins are very similar within the first 400 N-terminal 

amino acids, a region that contains the N-terminal catalytic domain, the central domain 

and the C-terminal RNA-binding domain (Martin and Keller, 1996; Ohnacker et al., 

1996).  Like its mammalian counterpart, the crystal structure of a truncated form of the 

enzyme (the N-terminal 537 amino acids), alone and in complex with 3’-dATP, has been 

generated (Bard et al., 2000).  When isolated from other proteins involved in mRNA 3’-

end maturation, Pap1p retains polymerase activity, however, unlike their mammalian 

counterpart that adds adenosine residues to the RNA primer in a distributive manor, the  

yeast Pap1p adds them in a processive manner giving rise to long, non-templated, 

stretches of adenosine nucleotides to an RNA primer at unspecified sites (Zhelkovsky et 

al., 1998).  It is only after the addition of Fip1p that Pap1p can function in a regulated and 

controlled fashion (Helmling et al., 2001).  Unlike the mammalian system, yeast Pap1p is 

not necessary for efficient cleavage of RNA (Mandart and Parker, 1995).   

Yeast, like mammals, controls poly(A) tail growth through poly(A) binding 

proteins.  In yeast, the major hnRNPs associated with the poly(A) tails of mRNA in both 

the nucleus and cytoplasm are Pab1p and Nab2p (70 kDa and 55 kDa respectfully) 

(Anderson et al., 1993; Adam et al., 1986; Setyono and Greenburg, 1981; Swanson and 

Dreyfuss, 1988; Hector et al., 2002).  In the nucleus, Nab2p and/or Pab1p are thought to 
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bind the poly(A) tail as it is being manufactured then, at some length, Nab2p and/or 

Pab1p suppresses the activity of Pap1p by preventing its further access to the RNA 

substrate.  Nab2p and/or Pab1p may also participate in mRNA export to the cytoplasm.  

In the cytoplasm, Pab1p binds the adenosine residues and helps to recruit a poly(A)-

specific nuclease (PAN) which deadenylates the poly(A) tail until a tail length of 50 to 90 

nucleotides is reached (Brown and Sachs, 1998; Deardorff and Sachs, 1997; Lowell et al., 

1992; Zhelkovsky et al., 1998; Hector et al., 2002).  PAN contains at least two subunits, 

Pan2p (127 kDa), which interacts with Pab1p, and Pan3p (76 kDa), which directly 

interacts with Pan2p (Boeck et al., 1996).  Deletion of either PAN gene results in an 

increase in mRNA poly(A) tail length as well as the loss of Pab1p-stimulated PAN 

activity (Boeck et al., 1996; Brown et al., 1996).  Pab1p remains associated with the tail 

and, with the translation initiation machinery, forms a ‘closed loop’ structure (Jacobson, 

1996) that promotes translation initiation by recruiting 40S ribosomal subunits and 

interacting with the initiation factor eIF4G which, directly bind to the cap-binding protein 

eIF4E (Tarun and Sachs, 1996; Tarun et al., 1997; Wells et al., 1998).  Pab1p can also be 

regulated by Pbp1p (Pab1p-binding protein).  Pbp1p may either suppress the activity of 

Pab1p or prevent the association of PAN with Pab1p (Mangus et al., 1998).  Once Pab1p 

is removed from the polyadenylate tail, deadenylation-dependent mRNA turnover begins 

(Tarun and Sachs, 1995, 1996; Tarun et al., 1997; Caponigro and Parker, 1995).  

Interactions of Pab1p and CF IA, specifically with Rna15p, have also been demonstrated 

(Minvielle-Sebastia et al., 1997; Amrani et al., 1997b).  

The interplay of RNA polymerase II with yeast mRNA 3’-end processing factors 

has been noted.  However, what influence each has on the other is not well understood.  

Pol II has not been identified specifically as a yeast mRNA 3’-end processing factor, as in 

mammals, and there have been no reports of the cleavage and polyadenylation steps 

being affected by mutations of Pol II.  On the other hand, mutations involving the 

poly(A) signals and/or mRNA 3’-end maturation machinery can result in transcription 

defects (Russo and Sherman, 1989; Birse et al., 1998; Greger et al., 2000).  Also, as 

mentioned above, there are several interactions involving the CTD of Pol II and yeast 

cleavage and polyadenylation subunits such as Pcf11p a subunit of CF IA and three 

subunits from CF II (Pta1p, Yhh1p and Ydh1p; Barilla et al., 2001; Rodriguez et al., 
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2000; Dichtl et al., 2002a; Dichtl et al., 2002b).  There is also a link between 3’-end 

processing machinery (Rna15p) and transcriptional co-activators (Sub1 and Mbp1) 

known to aid in initiation of transcription by Pol II (Aranda and Proudfoot, 2001; Calvo 

and Manley, 2001). 

Our understanding of the plant polyadenylation apparatus, compared to the 

mammalian and yeast systems, is not as well developed.  However, progress is being 

made and many plant genes have been found that encode proteins that share homology 

with mammalian and yeast polyadenylation factors (Arabidopsis Genome Initiative, 

2000; Table 1.1).  Recently, several protein-protein interactions have been found between 

some of these proteins. 

Plant poly(A) polymerase was first described in 1968 (Sachar) and has since been 

observed in many plant species such as maize, tobacco, wheat, spinach, pea and 

Arabidopsis (Mans and Huff, 1975; D’Alessandro and Srivastava, 1985; Burkhard and 

Keller, 1974; Kapoor et al., 1993; Verma and Sachar, 1994; Lisitsky et al., 1996; Das 

Gupta et al., 1995; Li et al., 1996; Hunt, 2000).  Some of the enzymes described represent 

chloroplast-localized PAPs involved in RNA degradation and will not be discussed 

further (Burkhard and Keller, 1974; Das Gupta et al., 1995, 1998).  The other types of 

plant PAPs are responsible for the addition of a polyadenylate tract to the 3’-end of 

cleaved mRNAs.  These PAPs differ in their apparent molecular weights and subunit 

structures but all have similar biochemical properties to each other and to the mammalian 

and yeast PAPs.  Multiple forms of these PAPs have been found in wheat and 

Arabidopsis (Sharma et al., 2002; Addepalli et al., 2004).  Protein column purification 

shows that germinated wheat embryos contain two forms of monomeric PAP (PAPI and 

PAPII) both ~65 kDa and both which are activated upon phosphorylation in nonspecific 

polyadenylation assays (Sharma et al., 2002).  Four PAP-encoding genes (PAP I-IV, 

corresponding to chromosomes I-IV) have been identified in Arabidopsis, each giving 

rise to a functional PAP as determined in non-specific polyadenylation assays (Hunt, 

2000; Addepalli et al., 2004).  These four proteins show a high degree of conservation 

with the bovine PAPs at their N-terminus (Figure 1.5) but the C-termini have few 

similarities among themselves or with other eukaryotic PAPs (Figure 1.6).  Three of the 

four enzymes (PAP I, PAP II and PAP IV) contain 700-800 amino acids (~83-95 kDa) 
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with a definable nuclear localization signal while the fourth (PAP III) is much smaller 

(482 amino acids, 57 kDa) and lacks the NLS.  RT-PCR analysis has shown that the four 

PAP gene products give rise to alternatively spliced forms within specific plant tissue 

indicating that alternative splicing may be an important regulator for gene expression 

(Addepalli et al., 2004; Figure 1.7).  Another type of regulation for these enzymes 

appears to be hormonal.  Gibberellic acid, when applied to embryo-less wheat half-seeds 

was found to stimulate PAP activity while abscisic acid and auxin both inhibited activity 

(Berry and Sachar, 1981; 1982; 1983).  cAMP, which has been reported to mimic 

hormones and to act as a second messenger in other plant systems, has also been shown 

to play a stimulatory role in PAP activity in Cicer arietinum (Chick pea) (Assmann, 

1995; Bolwell, 1995; Praveen et al., 1997; Praveen et al., 2000).  An interaction between 

at least one form of the chromosome II PAP and the recombinant Arabidopsis CPSF-100 

protein has been seen.  However, this interaction is unique to plants and has not been 

noted in other eukaryotic systems demonstrating the uniqueness of polyadenylation 

machinery among organisms (Elliott et al., 2003).  Mutations in the CPSF-100 or CPSF-

73 genes leads to embryo lethality and thus suggests that polyadenylation factors may 

also play roles in other plant processes (Meinke et al, 2003; Xu et al., 2004).  The 

Arabidopsis FY protein (a homolog of the yeast Pfs2p protein) helps to regulate 

flowering-time through an interaction with FCA, a flowering-time regulatory protein.  

This interaction gives rise to alternative polyadenylation of FCA-encoding RNAs, thus 

helping to control FCA expression levels (Simpson et al., 2003).  Another difference 

between the plant and mammalian system is observed in the Arabidopsis homologs to 

CstF-50 and CstF-77, in that the AtCstF-50 and –77 subunits do not interact as is seen in 

mammals.  However, the interaction between AtCstF-77 and –64 proteins is conserved 

(Takagaki and Manley, 2000; Yao et al., 2002).   

Poly (A) binding proteins have also been identified in Arabidopsis.  PAB3 was 

found to rescue a yeast strain mutated at the Pab1p Delta loci by delaying the onset of 

mRNA deadenylation (Chekanova and Belostotsky, 2003).  A second PABP, PAB5, 

which is restricted to pollen and ovule development and early embryogenesis, was also 

capable of rescuing a PABP deficient yeast strain (Belostotsky and Meagher, 1996).  
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Figure 1.1.  Eukaryotic mRNA Processing. 

 
Endonucleolytic cleavage between the AAUAAA and a U/GU rich region downstream 
produces an upstream fragment ending with a 3’- OH and a downstream fragment 
beginning with 5’-phosphate.  The polyadenylate tail is added to the upstream fragment 
and the downstream fragment is degraded (Adapted from Wahle and Keller, 1996).  
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Figure 1.2.  Depiction of a Simplistic Poly(A) Signal For Mammals, Yeasts and Plants. 

 
USE, auxiliary upstream enhancer; DSE, downstream element; EE, efficiency element; 
PE, positioning element; FUE, far-upstream element; NUE, near-upstream element; nt, 
nucleotide; CA and PyA, dinucleotide sequence where cleavage actually occurs on the 
3’-side (Adapted from Rothnie, 1996).    
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Figure 1.3.  Schematic Representation of the Mammalian mRNA 3’-End Processing 
Complex. 
 
The mammalian cleavage complex assembles through a combination of cis-elements and 
trans-acting factors (see text for details).  Subunits involved in individual factors are 
represented by unique color patterns specific for that factor. 
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Figure 1.4.  Schematic Representation of the Yeast mRNA 3’-End Processing Complex. 
 
The yeast cleavage complex assembles through a combination of cis-elements and trans-
acting factors (see text for details).  Subunits involved in individual factors are 
represented by unique color patterns specific for that factor. 
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Table 1.1.  Arabidopsis Genes Encoding Polyadenylation Apparatus Subunits. 
 
This set of data is annotated according to the mammalian and yeast polyadenylation 
factor subunit that corresponds to the Arabidopsis gene, and organized according to the 
relevant mammalian factor (e.g., CPSF, CstF, etc.  (http://www.uky.edu/~aghunt00/ 
polyA2010.html). 
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Figure 1.5.  Alignment of the Conserved Portion of the Four Arabidopsis PAPs with the 
Bovine PAP. 
 
The longest predicted amino acid sequences from the four Arabidopsis nPAP genes were 
aligned with each other and the bovine PAP sequence (Genbank accession CAA43782) 
using ClustalW and the alignments of the first 500 amino acids (approximately) displayed 
using MacBoxshade.  Amino acids that are identical in all five polypeptides are shaded 
black, with white lettering.  Positions that are similar and conserved are shaded gray, with 
black lettering.  The N-terminal nuclear localization signal of the bovine enzyme is 
underlined (Addepalli et al., 2004). 
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Figure 1.6.  Alignment of the C-Terminal Domains of the Four Arabidopsis PAPs with 
the Bovine PAP. 
 
The longest predicted amino acid sequences from the Arabidopsis nPAP genes on 
chromosomes I, II, and IV were aligned with each other and the bovine PAP sequence 
(Genbank accession CAA43782) using ClustalW and the alignments of the C-terminal 
200-300 amino acids (approximately) displayed using MacBoxshade.  Amino acids that 
are identical in all five polypeptides are shaded black, with white lettering.  The nuclear 
localization signal of the bovine enzyme is underlined with solid black lines, and the 
domain that interacts with U2AF is highlighted in bold with a thicker black line (Vagner 
et al., 2000; Addepalli et al., 2004). 
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Figure 1.7.  Alternative Splicing of PAP-Encoding mRNAs In Different Plant Tissues. 
 
Four hundred nanograms of total RNA isolated from the indicated tissue (denoted on the 
top: L – leaf, S – stem, R – root, F – flower) was analyzed by RT-PCR using primers that 
flank intron 6 for PAP I, PAP II and PAP IV and intron 5 for PAP III.  RT-PCR products 
were separated on agarose gels and visualized.  The direction of migration of the DNA is 
from top (negative) to bottom (positive).  Results obtained with primers specific for an 
Arabidopsis tubulin gene (At5g62690) are shown for comparison (Addepalli et al., 2004).   
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CHAPTER TWO 
 

Characterization of Promoter Expression Patterns Derived From Four Arabidopsis 
thaliana Poly(A) Polymerase Genes 

 

 

INTRODUCTION 

 

An essential step in mRNA maturation in eukaryotic cells is the accurate and 

efficient processing of the 3’-end of the primary RNA transcript, resulting in the addition 

of a poly(A) tail (Proudfoot, 1991).  This process has been shown to affect other cellular 

events such as transcription termination (Whitelaw and Proudfoot, 1986; Logan et al., 

1987; Connelly and Manley, 1988), mRNA splicing (Niwa et al., 1990a; Niwa et al., 

1990b; Boelens et al., 1993; Lutz et al., 1996) and mRNA export from the nucleus 

(Whitelaw and Proudfoot, 1986; Connelly and Manley, 1988).  The poly(A) tail itself 

appears to be involved in numerous aspects of RNA metabolism including mRNA 

nuclear export efficiency, message stability, and initiation of translation (Bernstein et al., 

1989; Beelman and Parker, 1995; Boeck et al., 1996; Carpousis et al., 1999; Curtis et al., 

1995; Ford et al., 1997; Lewis et al., 1995; Caponigro and Parker, 1995; Gallie, 1991; 

Craig et al., 1998; Proweller and Butler, 1997; Preiss and Hentze, 1998; Tarun and Sachs, 

1995; Sachs et al., 1997). 

Poly(A) polymerase (PAP) is the enzyme that catalytically adenylates pre-

mRNAs in mammals and yeast.  In vertebrates, multiple isoforms of PAP have been 

identified and, initially, two PAP forms were described, PAP I (70 kDa) and PAP II 

(83 kDa).  These two isozymes differ in their C-terminus and are generated by alternative 

splicing (Raabe et al., 1991; Wahle et al., 1991; Zhao and Manley, 1996).  In mammalian 

PAP I, the C-terminal region contains multiple phosphorylation sites and is important for 

cell cycle regulation and oocyte maturation (Abuodeh et al., 1998; Colgan et al., 1996; 

Colgan et al., 1998; Ballantyne et al., 1995).  Mammals also contain truncated forms of 

PAP mRNAs corresponding to the 5' half of the gene, but they are not translated in vivo 

(Wahle et al., 1991; Ballantyne et al., 1995; Gebauer and Richter, 1995; Zhao and 

Manley, 1996; Martin and Keller, 1996). 

31 



 

Our knowledge about mRNA 3’-end maturation in yeast and mammals greatly 

exceeds our understanding of this process in plants.  Due to the extended involvement of 

eukaryotic 3’-end processing and processing factors in other cellular events, our lack of 

knowledge about plant polyadenylation may hamper our understanding of many of these 

cellular processes.  Extensive investigation of the polyadenylation signals of several plant 

genes has been undertaken and we now have a firm grasp on the nature of these signals 

(Hunt, 1994; Wu et al., 1993; Rothnie, 1996).  Many plant homologs to yeast and 

mammalian polyadenylation trans-acting factors have been identified in databases (Table 

1.1) but little is known about their roles in 3’-end maturation or about their cellular and 

tissue localization or their biochemical natures.  To date, the most well studied plant 

polyadenylation factor is the catalytic enzyme PAP (Mans and Huff, 1975; D’Alessandro 

and Srivastava, 1985; Burkhard and Keller, 1974; Kapoor et al., 1993; Verma and Sachar, 

1994; Lisitsky et al., 1996; Das Gupta et al., 1995; Li et al., 1996; Hunt, 2000; Sharma et 

al., 2002; Addepalli et al., 2004; Berry and Sachar, 1981; 1982; 1983; Assmann, 1995; 

Bolwell, 1995; Praveen et al., 1997; Praveen et al., 2000; Elliott et al., 2003).  In 

Arabidopsis, PAP is coded by a gene family consisting of four members located on 

chromosomes I, II, III and IV.  The primary sequences of the proteins encoded by these 

genes (PAP I, PAP II, PAP III and PAP IV, respectively) show a high degree of 

conservation in the N-terminal 2/3 of the enzymes with each other as well as with the 

bovine PAP I but the C-termini show a large degree of variability among themselves and 

when compared to bovine PAP I (Addepalli, 2004; Figures 1.5 and 1.6).  Moreover, PAP 

III lacks this portion altogether (Addepalli et al., 2004; Figure 1.6).  This is the portion of 

the mammalian enzyme that is activated, upon phosphorylation, during the cell cycle 

(Abuodeh et al., 1998; Colgan et al., 1996; Colgan et al., 1998; Ballantyne et al., 1995).  

However, this does not rule out other mechanisms of cell-cycle regulation for the 

Arabidopsis PAPs.  This is demonstrated in the yeast PAP enzyme that can undergo cell 

cycle regulated phosphorylation and like the previously mentioned PAPs, this enzyme 

contains a unique C-terminal domain (Mizrahi and Moore, 2000).  

In Arabidopsis, previous Northern blot and RT-PCR analysis has shown that these 

genes are differentially expressed in various Arabidopsis tissues in unique and 

overlapping patterns (Figure 1.7).  Northern blot analysis showed that each of the four 
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PAP genes were expressed to a significant extent in flowers and that PAPs I, II and III 

were expressed, to varying degrees, in stems.  PAPs I, III and IV could also be found in 

the roots.  PAP III was the predominantly expressed PAP mRNA in the leaves.  

Furthermore, RT-PCR analysis demonstrated that alternatively spliced variants of these 

genes had unique expression patterns within these tissues (Figure 1.7).  This indicates 

that these splicing events may play a regulatory role in Arabidopsis PAP gene expression 

(Addepalli et al., 2004).  

To extend our understanding of these PAP gene expression profiles, we used an in 

vivo approach in which we fused the 5’ UTR from each PAP gene to the ß-glucuronidase 

(GUS) reporter gene then subsequently transformed these constructs into Arabidopsis 

plants and selected at least five transgenic T2 lines for each promoter construct for  

analysis.  Here we report the characterization of these Arabidopsis transgenic plant lines 

expressing GUS under the control of the four Arabidopsis PAP gene promoters.   
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RESULTS 

 

The PAP promoter::GUS Expression Construct and Transgenic Lines 

Preliminary Northern blot and RT-PCR analysis of the four Arabidopsis PAP 

gene products indicates that these genes appear to be regulated in a tissue specific manner 

(Addepalli et al., 2004).  Promoter regions, defined as the nucleotide sequence contained 

between the PAP start codon and the coding region of the proceeding gene, of the PAP 

genes were aligned using CLUSTALW  and no significant homology was found (data not 

shown).  To gain a better understanding of how these genes are expressed during plant 

growth and development, we produced at least five Arabidopsis lines expressing β-

glucuronidase (GUS) under control of the promoter of each of the four PAP genes.  The 

expression pattern of each promoter was monitored using GUS activity as a 

histochemical marker and evaluated in plants at various stages of growth (Figures 2.1, 

2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 and 2.10; Summarized in Tables 2.1, 2.2 and 2.3).  

Results obtained from each of the five Arabidopsis lines, for a single PAP promoter, 

showed similar results (not shown). 

 

PAP promoter::GUS Expression in One-Day-Old Embryos 

 Figure 2.3 shows GUS expression in cotyledons for the PAP I, PAP III and PAP 

IV promoters.  The PAP I and PAP IV promoters powered GUS expression throughout 

the cotyledons with the PAP I promoter showing slightly more GUS expression than the 

PAP IV promoter.  The PAP III promoter gave rise to GUS expression only in the 

cotyledon tips.  The PAP II promoter produced no GUS activity in one-day-old embryos.  

 

Expression of PAP promoter::GUS Constructs in Light-Grown Seedlings 

 The expression of the chimeric PAP promoter::GUS constructs in 6-day-old light-

grown seedlings is shown in Figure 2.4.  In these seedlings, the expression patterns of 

PAP I and PAP IV promoters were almost identical with GUS being expressed 

throughout the cotyledons and hypocotyls but confined to the vascular tissue in the 

radicle.  The most notable difference between these two promoters could be seen in the 

radicle.  Here the PAP I promoter was more active than the PAP IV promoter.  The PAP 
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II promoter was also active in the hypocotyls, cotyledon and radicles but, in the two latter 

tissues, expression was limited to the vascular tissue.  Compared to the PAP I and PAP 

IV promoters, the PAP II promoter was less active.  The PAP III promoter showed the 

most unique pattern with GUS being expressed strongly at the cotyledon tips and 

vascular tissue of the radicle but only slightly in the hypocotyl.  Interestingly, the PAP III 

promoter was the only one active in the radicle tip (Figure 2.4, PAP III inlay).  In the 

primary leaves, PAP I, PAP III and PAP IV promoters were active but to different 

degrees.  The PAP II promoter produced no significant GUS expression in this tissue 

while the PAP I and PAP IV promoters were active throughout the leaves.  The PAP III 

promoter was active only in the basal marginal region of primary leaves (Figure 2.5).       

 

PAP Expression in Mature Plants and Their Organs 

 To investigate the activities of the four PAP promoters in adult plants, PAP 

promoter::GUS transformed plants were grown in the greenhouse for 3 to 6 weeks and 

subsequently assayed for GUS activity.  The various reporter gene constructs were 

expressed in various tissues of the mature plants (as shown in Figures 2.6, 2.7, 2.8, 2.9 

and 2.10) and again displayed unique and overlapping gene expression patterns.  

 All four PAP promoters were active in the rosette leaves of 3 to 4-week-old plants 

(Figure 2.6).  The PAP I and PAP IV promoters were active throughout the leaves, 

especially in the vascular tissue and leaf petioles.  The PAP II promoter was also active in 

the leaf petioles and vascular systems but not to the extent seen with the PAP I and PAP 

IV promoters.  The PAP III promoter was most active in the petioles of the young leaves 

and young leaf tips.  Some light staining of the leaf vascular systems could also be seen. 

Figure 2.7 shows that the PAP I, PAP III and PAP IV promoters are active in the 

primary and secondary root systems.  The promoters from the PAP I and PAP IV genes 

showed very similar patterns, appearing to be confined to the vascular system with the 

PAP I promoter being the most active.  The PAP I plants also showed very light staining 

in the root tips (Figure 2.7, PAP I inlay) that was not seen in the 6-day-old seedlings 

(Figure 2.4).  The PAP III promoter was active throughout the root tissue excluding the 

elongation zone but was quite strong in the root tip itself (Figure 2.7, PAP III inlay).  The 

PAP II promoter was not active to a noticeable degree in the roots or root tips.   
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 A quite diverse expression pattern was observed among the various gene family 

members in flowers (Figure 2.8).  The PAP I promoter::GUS plants contained only light 

staining in the filament and vascular tissue of the petal.  The PAP II plants showed heavy 

staining in the style, receptacle and pedicel and only light staining of sepal vascular 

tissues.  The PAP III promoter activity was seen in the stigma and the pollen of mature 

anthers, but not immature anthers (not shown).  The PAP promoter most widely 

expressed in flowers was the PAP IV promoter, which was very active in pollen, sepals, 

style and stigma and lightly in the pedicel (not shown). 

Figure 2.9 shows that PAP IV is the most heavily expressed PAP gene family 

member in siliques and is found throughout the silique structures and was the only PAP 

to show GUS activity in the seed, confined to the funiculus (Figures 2.9 and 2.10).  PAP 

I, PAP II and PAP III promoters showed GUS activity in the abscission zone, in addition, 

PAP II had activity in the valve of the silique and PAP III in the stigma (Figure 2.9).  

To obtain an estimate of the relative levels of each of the four Arabidopsis PAP 

gene products, locus Ids, corresponding to each PAP, were used to query the 

Genevestigator Arabidopsis thaliana Microarray Database and Analysis Toolbox 

(Zimmermann et al., 2004).  Each of the PAP gene products was shown to accumulate in 

all developmental stages (Figure 2.11).  However, the PAP IV product accumulation 

levels are consistently at least twofold higher than those of the remaining PAPs.  The 

second highest accumulator was PAP I, followed by PAP II then PAP III.  A second 

analysis of accumulation by tissue rather than developmental stage produced similar 

results.  
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DISCUSSION 

 

 In mammals and yeast, poly(A) polymerases (PAPs) have been shown to play a 

vital role in polyadenylation of pre-mRNAs but little is known about their activities in 

plant polyadenylation reactions (Minvielle-Sebastia and Keller, 1999; Wahle and 

Ruegsegger, 1999; Zhao et al, 1999a).  Searches of public databases found four potential 

Arabidopsis PAP genes.  The proteins encoded by these genes show a strong resemblance 

to each other, especially at their N-termini.  Recombinant proteins for each were found to 

be active in non-specific polyadenylation assays indicating that they are each functional 

enzymes (Addepalli, 2004).  Previous studies have shown that the gene products for these 

four genes are expressed in a tissue specific manor and that alternative splicing can affect 

their expression patterns (Addepalli et al., 2004).  The physiological significance of 

having four PAP genes has yet to be determined.  When gene duplication occurs, there is 

the potential that the enzymatic properties of the isozymes are redundant.  On the other 

hand, these duplication events could lead to increased variation in the expression profiles 

of the individual enzymes in which each evolves differing enzymatic characteristics and 

roles within differing cells and or tissues throughout the life cycle of the plant.  

Microarray experiments (https://www.genevestigator.ethz.ch/; Figure 2.11) and previous 

RT-PCR analysis for these gene products have shown that these genes are expressed 

throughout the plant at specific lifecycle stages.  To shed light on the developmentally 

regulated expression patterns of the four Arabidopsis PAP genes, a visual global 

comparative of the PAP promoters, fused to a reporter gene, could allow us to follow 

expression changes, for each PAP promoter, during the development of a single plant.  In 

addition, this spatial-temporal analysis might offer clues that would help to determine if 

these genes share redundant or non-functional roles in the plant.  To carryout this study, 

we introduced GUS fusions containing DNA sequences located 5’ of the PAP protein 

coding regions into the Arabidopsis genome. 

We found that, while each PAP promoter::GUS construct shows a unique activity 

profile, there are several overlaps in their activity patterns.  All four of the PAP 

promoters powered GUS activity in seedlings, mature leaves, flowers, siliques, and seeds 

to varying degrees and location within these tissues (Tables 2.1, 2.2 and 2.3; Figures 2.4, 
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2.5, 2.6, 2.8, 2.9 and 2.10).  In embryos, seedlings and the rosette, the PAP I and IV 

promoters gave the highest GUS activity for all the tissues examined.  In embryos, GUS 

expression caused by these PAP promoters was restricted to the cotyledons (Figure 2.3). 

In seedlings and mature plants, expression was located throughout the cotyledon, 

hypocotyl, primary leaves and rosette leaves, especially in the vascular tissues, but was 

restricted to the vascular tissue of the radicle and roots (Figures 2.4, 2.5, 2.6 2.7).  These 

results paralleled expression results from digital northerns obtained from array/gene chip 

analysis (Figure 2.11).  Of the remaining two PAP promoters, PAP II showed no GUS 

activity in 1-day-old embryos and PAP III had GUS staining only at the tips of the 

cotyledons (Figure 2.3).  The PAP II and PAP III promoters also produced GUS activity 

throughout the seedling hypocotyl and radicle of about the same strength and in the 

vascular tissue of the cotyledon and rosette leaves with GUS staining being slightly 

stronger with PAP II than PAP III (Figures 2.4, and 2.6).  However, the PAP III promoter 

showed very strong GUS activity in the cotyledon leaf tip and, interestingly, was the only 

PAP promoter to show GUS activity in the radicle tip (Figures 2.4 and 2.6).  Comparison 

of these results with digital northerns paralleled findings for the PAP II promoter but not 

for the PAP III promoter.  While we showed GUS activity for the PAP III promoter in 

these tissues approximately equal to the PAP II promoter in many cases, digital northerns 

showed little to no expression in any of these tissues for the PAP III gene (Figures 2.4, 

2.6 and 2.11).  In the primary leaves and mature roots, the PAP II promoter showed no 

GUS activity while the PAP III promoter displayed GUS expression only in the basal 

marginal region of primary leaves and throughout the root tissue.  These results are 

exactly opposite to what was seen in digital northerns (Figures 2.5, 2.7 and 2.11).  In 

mature root tips, both the PAP I, which did not show GUS activity in the radicle tip, and 

PAP III promoters displayed GUS activity (Figures 2.4 and 2.7).  In flowers, GUS 

activity was seen in both male and female organs, as well as in basic floral structures 

such as petals, receptacle and pedicels (Figure 2.8).  In the filament and the vascular 

tissue of the petals, the PAP I promoter was the only promoter that gave rise to GUS 

activity.  For petals, digital northerns showed expression of PAP I, PAP II and PAP IV 

with PAP IV being the most highly expressed, followed by PAP II and then PAP I.  It 

also showed PAP II being expressed in the stamen, to similar levels as PAP I and PAP 
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III, but filament and anthers, individually, were not analysized.  Both PAP II and PAP IV 

promoters showed GUS expression in the style, sepals, and pedicel but at differing 

locations and to differing degrees.  In the these tissues, GUS expression from the PAP II 

promoter was very heavy in the pedicle but confined to the vascular tissue of the sepals 

and to the tip of the style whereas the PAP IV promoter showed GUS throughout the 

style and lightly in the pedicel.  The PAP II promoter showed GUS activity lightly in the 

vascular tissues of sepals and continued down into the receptacle was heavily stained.  

On the other hand, GUS expression from the PAP IV promoter was heavy throughout the 

sepal, especially in the vascular tissue but not including the receptacle.  Digital northerns 

showed that  PAP IV had the highest expression in all these tissues (Figures 2.8 and 

2.11).  In the stigma and anther, specifically the pollen, GUS activity for PAP III and IV 

promoters was noted.  However, GUS from the PAP III promoter was found only in 

immature pollen grains.  This echoes what was found in digital northerns and, in fact, this 

was one of only two places that digital northerns showed elevated expression levels for 

PAP III, the other being in the seed (Figures 2.8 and 2.11).  In siliques, the PAP IV 

showed the most GUS activity, which could be seen throughout the tissue.  The 

remaining PAP promoters had GUS expression in the abscission zone and, in the case of 

the PAP II promoter, in the valve region.  In digital northerns, PAP IV was expressed the 

highest followed by PAP I, PAP II and PAP III (Figures 2.9 and 2.11).  The PAP IV 

promoter was the only promoter showing GUS activity in seeds and limited to the 

funiculus.  This PAP was also seen in digital northerns, which also showed expression for 

the remaining PAPs (Figures 2.10 and 2.11) 

Promoter expression analysis and digital northerns confirm that each of the four 

Arabidopsis PAP genes is expressed throughout the plant tissues investigated.  However, 

comparisons between promoter activities of a specific gene to levels of products for that 

gene, using array/chip analysis, must be carefully considered.  In many cases, 

transcriptional activation of an endogenous promoter does not always give rise to a 

“stable”, endogenous gene product, nor does it shed light on the possibility of alternative 

splicing events of the gene products which could alter results found within digital 

Northern experiments depending on where the probe hybridizes.  Therefore, results from 

promoter activation studies may not always correlate with results obtained using 
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techniques that investigate gene products.  This being said, all we can do is note the 

similarities and differences with interest but remember that differences may be the result 

of the previously mentioned reasons.   

It was previously shown that each of the Arabidopsis PAP genes can give rise to 

products that have undergone alternative splicing (Figure 1.7) which, in the studies 

performed earliew, gave rise to mRNAs that would contain an early stop codon 

(Addepalli, 2004).  Therefore, we must take into consideration the idea that the products 

arising from transcriptionally active promoters may not give rise to products that are 

translated into functional proteins, or translated at all for that matter.  Some of these 

products may play more of a regulatory role within cells and deserves further 

investigation. Nevertheless, these studies show that the four Arabidopsis PAPs are 

potentially expressed throughout the plant in a temporal-spatial manner. 

Interestingly, the PAP gene whose product is the most dissimilar of the four 

PAPs, PAP III, was shown to have very little accumulation of gene product, in digital 

northerns (Figure 2.11) throughout much of the life cycle, except in the stamen and 

slightly in seeds.  However, PAP promoter::GUS analysis does not correlate with digital 

northerns.  These analyses have shown that the promoter of the PAP III gene is able to 

power GUS activity in different tissues and at different times throughout plant 

development and therefore may play several roles in plant growth and development and 

indicates that the PAP III gene is a functional gene.  Interestingly, this promoter was the 

only PAP promoter active in the radicle tips of 6-day-old seedlings (Figure 2.4) and could 

indicate that this PAP plays a role in regulating gravotropism and growth of the root.  

This portion of the root contains a quiescent center, located just behind the root cap 

consisting of four seemingly inactive cells.  Quiescent and meristematic cells are 

different in their sensitivity to environmental stresses such as radiation.  For example, 

meristematic cells stop dividing when exposed to x-rays while quiescent cells are 

unaffected by radiation and soon begin dividing to reform the meristem.  Cells in the 

quiescent center function as a reservoir to replace damaged cells of the meristem.  This is 

important because it organizes the patterns of primary growth in roots van den Berg et al., 

1995; van den Berg et al., 1997).  The PAP III promoter appeared to be active throughout 

all the stages of growth in a specific spatial pattern.  Because the PAP III promoter was 
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the only one of the four Arabidopsis PAPs to show GUS activity in these young roots, it 

may play an important role in the quiescent center and/or meristamic region that the other 

PAPs cannot fulfill.  

While the PAP III gene product is the least like the other Arabidopsis PAPs, it 

does have similarities with a cytoplasmic spermatocyte-specific PAP (TPAP) identified 

in mouse (Kashiwabara et al., 2000).  Like PAP III, TPAP lacks the C-terminal extension 

that contains the C-terminal phosphorylation sites and the nuclear localization signals in 

other mammalian PAPs (Figure 1.6).  We have shown, using digital northerns, that the 

PAP III gene product accumulates in the male organs of Arabidopsis and the PAP III 

promoter was able to induce GUS expression in mature pollen (Figures 2.8 and 2.11).  

While these findings do not directly link the PAP III gene to cytoplasmic gametogenic 

mRNA polyadenylation, it does allow for the possibility of a role for PAP III in this 

process and is an area deserving further investigation.  

It is obvious from these findings that these four Arabidopsis PAP genes are not 

simply duplications whose products perform redundant functions.  Each PAP gene 

promoter is expressed in a unique pattern that implies that each of the four Arabidopsis 

PAPs plays an important role within the plant.  While this work gives insights into the 

transcriptional expression patterns for these four genes, it does not consider other likely 

levels of control beyond the level of transcription that may also play important roles in 

the ultimate control of PAP activities for these four genes.  Assessment of function, i.e. 

confirmation of the specific reaction catalyzed by each of the genes, as well as the 

cellular location, poses an even greater challenge.  Promoter analysis can tell one whether 

a gene is transcriptionally active but it cannot identify which reactions the gene product is 

catalyzing.  To answer these questions, further studies are needed. 
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MATERIALS AND METHODS 

 

Plant Material  

 Arabidopsis thaliana ecotype Columbia was obtained from Lehle Seeds (Round 

Rock, TX) and used throughout this study.  Seeds were germinated and plants cultivated 

in the greenhouse until maturity with a 16-h light and 8-h dark regime at 22°C.  

 

Preparation of PAP Promoter Constructs and Plant Transformation 

To analyze promoter activity the nucleotide sequence between the ATG start 

codon and the coding regions of the upstream gene for each of the four Arabidopsis 

poly(A) polymerase genes (corresponding to the chromosome number each gene was 

located on), AtPAP I, AtPAP II, AtPAP III and AtPAP IV (At1G17980, At2G 25850, 

At3G06560, At4G32850, respectively) were amplified by PCR.  The PAP I, PAP II, PAP 

III and PAP IV promoters (734 bp, 781 bp, 2111 bp and 1041 bp respectively), upstream 

of the ATG start codon were amplified with the PI5’1SalI (5’-GTCGACGGGGTTTATT 

CAGATGCATTATTAG-3’) and PI3’1NcoI (5’-CCATGGCTATCCTACTTACTTTGC 

TCTTTTC-3’), PII5’1SalI (5’-GTCGACTTCACGCGCATGAGCAGACCA-3’) and 

PII3’1NcoI (5’-CCATGGGACAAGACGCGTAAACACTAGAAAA-3’), PIII5’1SalI 

(5’-GTCGACTTCCGATCAGAGAAGCAACGATCAA-3’) and PIII3’1NcoI (5’- CCAT 

GGCAGCTACGAAATTTTGAAAGAAAGT-3’) and PIV5’1SalI (5’-GTCGACTGGAT 

TCTAAAATAATAAAGTTTCCTCTCC-3’) and PIV3’1NcoI (5’-CCATGGCATAACA 

CGATTGATAATCCTTAAG-3’) primer sets, respectively (Table 2.4).  For PCR 

amplification, 25-50-ng total genomic DNA from wild type plants, 100-ng of primers, 

0.8-mM dNTPs, 5.0-µl of Ultra HF PCR buffer (Stratagene) and 2.5-units of Pfu Turbo 

DNA polymerase (Stratagene) were used in 50-µl PCR reactions.  PCR amplifications 

were run for 35 cycles of 92°C for 1 min, 55°C for 1 min and 72°C for 2 min. The 

amplification products were cloned into pGEM (Promega) and the inserts sequenced.  For 

the latter, sequencing reactions were carried out with the BigDye terminator kit and 

analyzed on an ABI 310 Genetic Analyzer (Applied Biosystems) following the 

recommendations of the supplier.  Sequence data were analyzed using MacVector 

software (Kodak).  The promoter fragments were excised from pGEM with SalI and NcoI 
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and cloned into SalI and NcoI digested pCAMBIA1303 vector (Figures 2.1 and 2.2).  

pCAMBIA is a binary vector designed for plant transformation and includes the GUSA 

reporter gene along with hygromyocin (Hpt) and kanamycin (Kan) selectable marker 

genes.  

 

Plant Transformation and Growth 

Expression constructs were transferred to Agrobacterium tumefaciens strain GV-

3850 and the helper plasmid PRK-2013 by tri-parental mating described by Schardl et al. 

(1987).  Arabidopsis thaliana plants, ecotype Columbia (COL), were transformed using 

the floral dip method as described by Clough and Bent (1998). These transformants were 

allowed to grow and seed in the greenhouse under long day conditions (22°C, 16-h light).  

Seeds were selected on germination medium containing 25-mg/L hygromyocin (Sigma).  

At least five independent homozygous T2 lines for each construct were examined for 

GUS expression.  Homozygous lines were identified by determining ratios of selective 

marker inheritance in T3 plants on hygromyocin-containing media.  

 

Histochemical Localization of GUS Expression 

Histochemical analysis of GUS activity in transgenic plants was performed 

essentially as described by Stomp (1992).  Plant tissues were incubated at 37°C for 24 h 

in a 100-mM sodium phosphate buffer (pH 7.2, 0.5-mM potassium ferrocyanide, 0.5-mM 

potassium ferricyanide, 0.1% Triton X-100) containing 0.1-mM 5-bromo-4-chloro-3-

indolyl glucuronide.  Subsequently, the samples were then transferred to 70% ethanol to 

remove the chlorophyll.  Data was recorded by photography (see the following section).  

 

Microscopy Techniques and Photography 

Zeiss Stemi SV11 and Zeiss Axioplan 2 microscopes were used for visualizing 

embryos as well as adult structures.  Photographs were taken using a Zeiss Axiocam 

MRc5 and visualized using AxioVision 4.1 software (Zeiss, Jena, Germany).  Images 

were processed using Adobe ImageReady software (version 2.0; Adobe Systems, San 

Jose, CA). 

 

43 



 

In Silico Analysis 

Locus identifiers were submitted to the Genevestigator Arabidopsis thaliana 

microarray database and analysis toolbox (Zimmermann et al., 2004) at 

https://www.genevestigator.ethz.ch, where they were assayed against 1434 

developmental and tissue-specific Arabidopsis microarray experiment results (Edgar et 

al., 2002; Rocca-Serra et al., 2003; Parkinson et al., 2005; Craigon et al., 2004). 
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Table 2.1.  GUS Activity Analysis For Each Arabidopsis PAP Promoter In 1-Day-Old 
Embryos. 
 
Results were obtained using GUS staining patterns observed in figure 2.3.  X - heavy 
stain; / - light stain.  
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Table 2.2.  GUS Activity Analysis For Each Arabidopsis PAP Promoter In 6-Day-Old 
Light Grown Seedlings. 
 
Results were obtained using GUS staining patterns observed in figures 2.4 and 2.5.  X - 
heavy stain; / - light stain; VT – vascular tissue; BMR - basal marginal region. 
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Table 2.3.  GUS Activity Analysis For Each Arabidopsis PAP Promoter In 3-6-Week-
Old Plants. 
 
Results were obtained using GUS staining patterns observed in figures 2.6, 2.7, 2.8, 2.9 
and 2.10.  X - heavy stain; / - light stain; VT – vascular tissue; MA – mature anthers. 
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Table 2.4.  Oligonucleotides used for cloning and sequencing. 
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Figure 2.1.  Schematic Representation of the T-DNA of the Plasmid pCAMBIA 1303. 
 
T-Border (Left) – left border repeat from C58 T-DNA; 35S poly A – 35S polyadenylation 
site; Htp II – hygromyocin resistance gene; 35S pro – CaMV 35S promoter, duplicated; 
pUC 18 MCS – pUC 18 multiple cloning site polylinker; lac Zα - lac Z alpha promoter; 
gus A - ß-glucuronidase A reporter gene; mgfp 5 - Aequoria victoria green fluorescent 
protein; NOS poly A – nopaline synthase 3’UTR polyA signal; T-Border (right) – right 
border repeat from C58 T-DNA (Adapted from Hajdukiewicz, et al., 1994). 
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Figure 2.2.  Schematic Representation of the Four Full-Length PAP::GUS Fusion Genes. 
 
Numbers at the end of each PAP promoter::GUS construct represents, in base pairs, the 
length of the promoter sequence as determined by  the length of the nucleotide sequence 
between the each PAP ATG start codon and the coding region of the upstream gene.  The 
restriction sites SalI and NcoI were added to the promoter sequences during PCR 
amplification.  These fragments were inserted into the SalI and NcoI digested pCAMBIA 
1303 vector then transformed into Arabidopsis via Agrobacterium mediated 
transformation using the floral dip method.  Seeds were selected on basic media 
containing hygromyocin.   
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Figure 2.3.  Analysis of GUS Activity In 1-Day-Old Seedlings of Arabidopsis Plants 
Transformed With PAP promoter::GUS Fusion Constructs. 
 
GUS activity was detected after an overnight reaction period in 1-day-old Arabidopsis 
plants harboring one of the four Arabidopsis PAP promoter regions (736 bp, 783 bp, 
2114 bp and 1834 bp, respectively) fused to GUS. 
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Figure 2.4.  Analysis of GUS Activity In 6-Day-Old Seedlings of Arabidopsis Plants 
Transformed With PAP promoter::GUS Fusion Constructs. 
 
GUS activity was detected after an overnight reaction period in 6-day-old T2 transgenic 
Arabidopsis seedlings harboring one of the four Arabidopsis PAP promoter regions (736 
bp, 783 bp, 2114 bp and 1834 bp, respectively) fused to GUS.     
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Figure 2.5.  Analysis of GUS Activity In Primary Leaves of 6-Day-Old Arabidopsis 
Plants Transformed With PAP promoter::GUS Fusion Constructs. 
 
GUS activity was detected after an overnight reaction period in primary leaves of 6-day-
old T2 transgenic Arabidopsis primary leaves harboring one of the four Arabidopsis PAP 
promoter regions (736 bp, 783 bp, 2114 bp and 834 bp, respectively) fused to GUS.   
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Figure 2.6.  Analysis of GUS Activity In Rosette Leaves of 3 to 4-Week-Old 
Arabidopsis Plants Transformed With PAP promoter::GUS Fusion Constructs. 
 
GUS activity was detected after an overnight reaction period in 3-4 week-week old T2 
transgenic Arabidopsis rosette leaves harboring one of the four Arabidopsis PAP 
promoter regions (736 bp, 783 bp, 2114 bp and 1834 bp, respectively) fused to GUS.  
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Figure 2.7.  Analysis of GUS Activity In Roots From 4-Week-Old Arabidopsis Plants 
Transformed With PAP promoter::GUS Fusion Constructs. 
 
GUS activity was detected after an overnight reaction period in 4 week-old T2 transgenic 
Arabidopsis roots harboring one of the four Arabidopsis PAP promoter regions (736 bp, 
783 bp, 2114 bp and 1834 bp, respectively) fused to GUS.  
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Figure 2.8.  Analysis of GUS Activity In Mature Flowers From 6-Week-Old Arabidopsis 
Plants Transformed With PAP promoter::GUS Fusion Constructs. 
 
GUS activity was detected after an overnight reaction period in 6 week-old T2 transgenic 
Arabidopsis flowers harboring one of the four PAP promoter regions (736 bp, 783 bp, 
2114 bp and 1834 bp, respectively) fused to GUS. Plant structures are denoted with 
arrows (F: filament; STY: style; R: receptacle; PED: pedicel; SP: sepal; STI: stigma). 
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Figure 2.9.  Analysis of GUS Activity In Siliques From 6-Week-Old Arabidopsis Plants 
Transformed With PAP promoter::GUS Fusion Constructs. 
 
GUS activity was detected after an overnight reaction period in 6 week-old T2 transgenic 
Arabidopsis siliques harboring one of the four Arabidopsis PAP promoter regions (736 
bp, 783 bp, 2114 bp and 1834 bp, respectively) fused to GUS.  
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Figure 2.10.  Analysis of GUS Activity In Seeds From 6-Week-Old Arabidopsis Plants 
Transformed With PAP promoter::GUS Fusion Constructs. 
 
GUS activity was detected after an overnight reaction period in 6 week-old T2 transgenic 
Arabidopsis seeds harboring one of the four Arabidopsis PAP promoter regions (736 bp, 
783 bp, 2114 bp and 1834 bp, respectively) fused to GUS.  
 

 

 

58 



 

 
 

 Figure 2.11.  Average Relative Intensity of the Four Arabidopsis PAP Gene Products.  
 
In silico analysis of the four Arabidopsis PAP gene product accumulations from 1434 
developmental gene chip experiments.  Results are given by developmental stage (X-
axis) and in terms of gene chip-normalized expression levels (Y-axis).  Expression levels 
are shown to scale.  Developmental stages are as follows 1, 1.0-5.9 days; 2, 6.0-13.9 
days; 3, 14.0-17.9 days; 4, 18.0-20.9 days; 5, 21.0-24.9 days; 6, 25.0-28.9 days; 7, 29.0-
35.9 days; 8, 36.0-44.9 days; 9, 45.0-50.0 days.  Analyses performed via the 
Genevestigator website https://www.genevestigator.ethz.ch.  
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CHAPTER THREE 
 

Effects of Silencing the Four Poly(A) Polymerase Gene Family Members 
in Arabidopsis thaliana 

 

 
INTRODUCTION 

 

 Most mRNAs originating within the nuclei undergo 3’-end polyadenylation 

during mRNA maturation.  This polyadenylation is a two-step reaction that involves 

RNA cleavage, at a specific site, then subsequent addition of a polyadenylate tract.  

Poly(A) tails play many important roles in RNA metabolism including facilitating 

nuclear export, increasing the efficiency of translation initiation, and mRNA stabilization 

in the cytoplasm (Bernstein et al., 1989; Beelman and Parker, 1995; Boeck et al., 1996; 

Carpousis et al., 1999; Curtis et al., 1995; Ford et al., 1997; Lewis et al., 1995; Caponigro 

and Parker, 1995; Gallie, 1991; Craig et al., 1998; Proweller and Butler, 1997; Preiss and 

Hentze, 1998; Tarun and Sachs, 1995; Sachs et al., 1997).  Accurate and efficient 3’-end 

polyadenylation, in both mammals and yeast, requires a multitude of trans-acting factors 

and can be coupled to transcription as well as other RNA-processing reactions (Wahle 

and Ruegsegger, 1999; Minvielle-Sebastia and Keller, 1999; Zhao et al., 1999a; 

Edmonds, 2002; Proudfoot, 2004; Zorio and Bentley, 2004).  Poly(A) addition is 

catalyzed by the enzyme poly(A) polymerase (PAP) a member of the nucleotidyl 

transferases family (Aravind and Koonin,1999; Holm and Sander, 1995; Martin and 

Keller, 1996).  In vitro, this enzyme can add adenylate residues to RNAs in a non-specific 

reaction in a non-constitutive fashion.  In biological systems, PAP associates with 

additional proteins to add the polyadenylate tract in a substrate specific, constitutive 

manner (Minvielle-Sebastia and Keller, 1999; Preker et al., 1997).  Polyadenylation has 

been well studied in both mammals and yeast.  However, in plants this process is not as 

well understood.  To further our understanding of mRNA maturation in plants, we have 

employed several molecular genetic techniques to determine what role PAP plays in 

overall plant development.   
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   Manipulation of plant metabolism through the use of molecular genetic 

techniques has been used since the isolation of the first cDNA encoding an enzyme in 

plants (Bedbrook et al., 1980), introduction of foreign DNA through the use of the 

Agrobacterium Ti plasmid (Hernalsteens et al., 1980) and the establishment of plant 

transformation techniques (Bevan, 1984; Horsch et al., 1985).  With these methods, plant 

lines can be developed that partially or completely lack the expression of specific gene 

products.  These plant mutants can be used to provide additional insights into functions of 

enzymes in metabolism and the essentiality of isozymes from multigene families.   

 Loss of function mutations in plants, mutated through the insertion of foreign 

DNA randomly within chromosomes, can be created using transposons (Sundaresen et 

al., 1995; Martienssen, 1998) or the T-DNA of Agrobacterium tumefaciens (Azpiroz-

Leehan and Feldmann, 1997).  Agrobacterium tumefaciens, the plant pathogenic 

bacterium, has been found to preferentially transfer part of its DNA, the T-DNA, into the 

transcribed regions, or in their vicinity, of a plant cells nuclear genome (Koncz et al., 

1989; Mathur et al., 1998; Lindsey et al., 1993).  T-DNA insertions, unlike those obtained 

from transposons, are physically stable through multiple generations and do not transpose 

subsequent to insertion (Radhamony et al., 2005).  T-DNA, in nature, encodes proteins 

necessary for biosyntheses of plant growth factors and bacterial nutrients (the opines), 

which are not necessary for T-DNA transfer.  In the laboratory, these genes can be 

replaced by any DNA, such as resistance markers and/or reporter genes, which can 

subsequently be introduced into the plant genome (Tinland, 1996) and used for gene 

identification based on reporter gene expression.  This method, unlike classical 

mutagenesis methods, eliminates the need for mutant phenotypes, which can be easily 

overlooked or difficult to obtain for redundant or essential genes (Springer, 2000).  Once 

plants containing the reporter genes have been isolated, various cloning or PCR-based 

strategies can be used to determine which gene contains the insertion. 

 T-DNA tagging has become a powerful tool in several ways; it allows large 

populations of genes to be mutagenized then subsequently allows for easier isolation of 

the tagged genes, through the use of reporter genes (Springer, 2000).  It also allows 

mutations within essential genes, which would lead to plant death in the homozygous 

state, to be maintained in heterozygous plants.  T-DNA tagging also has advantages over 
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other approaches for understanding gene function in that other methods may be 

correlative and may not prove a casual relationship between gene sequence and function.  

For example, microarray analysis can be used to understand gene expression regulation 

through the determination of the presence of a gene product, but factors other than 

mRNA levels may also determine the activity of a gene.  However, these in situ 

expression studies cannot prove a casual relationship between a gene sequence and its 

function.  On the other hand, null mutations for a gene of interest may allow insight into 

the effect of a gene’s absence on an organism’s ability to function. 

 A variety of methods have been developed to generate and isolate mutants in 

known genes of Arabidopsis by T-DNA insertional mutagenesis and, through these 

methods, large populations of tagged mutants are generated and screened for insertions.  

Furthermore, plant lines containing identified gene disruptions can now be obtained from 

these large insertion-mutagenized collections.  These plants can be tested for phenotypes 

that are caused due to the loss of function of the gene.  Surprisingly, many knockouts 

show no visible, directly scorable phenotypes, which is presumably due to partial and 

complete functional redundancy, as well as, the ability of higher plants to adapt to various 

stresses and constraints without undergoing morphological changes or due to our inability 

to detect slight physiological alterations in fitness (Bouche and Bouchez, 2001).   While 

there are limitations to what T-DNA insertional mutagenesis can provide alone, it can be 

an important companion to investigations aimed at determining the necessicity of specific 

genes and/or functions of individual genes in the whole organism  

 RNA interference (RNAi) has also become a powerful tool to knock out 

expression of specific genes in a variety of organisms.  RNAi is a form of homology-

dependent gene silencing common to fungi, animals, and plants (Bosher and Labouesse, 

2000).  Although some specifics of the silencing mechanism may differ between 

kingdoms, double-stranded RNA seems to be a universal initiator of RNAi (Bosher and 

Labouesse, 2000).  The essence of RNA-induced gene silencing is the delivery of double-

stranded RNA (dsRNA) into an organism, or cell, to induce a sequence-specific RNA 

degradation mechanism that effectively silences a targeted endogenous gene.  In plants, 

expression of self-complementary RNAs from introduced transgenic constructs has 
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proved to be a rapid and consistent initiator of RNAi for several genes in Arabidopsis 

thaliana (Chuang and Meyerowitz, 2000; Smith et al., 2000). 

 Because there are four PAP gene family members, each active in non-specific 

polyadenylation assays and expressed in unique and overlapping patterns (see chapter 2 

and Addepalli et al, 2004), we wanted to explore which, if any, of these isozymes were 

essential to plant development and viability.  Previous studies on promoter activity of 

each of the four PAP genes showed that each PAP is expressed in overlapping and unique 

patterns (see above).  However, it has not been determined if the enzymatic activities of 

the four PAP isozymes play redundant roles or if all four gene products are necessary for 

plant viability.  To address these questions and to further our understanding of the four 

PAP genes, we employed T-DNA insertion and RNAi techniques to eliminate or suppress 

each of these four gene products.  In each case, we found that loss of each of the four 

individual PAP gene products was lethal.  PCR genotyping of individual T2 T-DNA 

insertional mutants confirmed that homozygous mutant plants were not produced which 

strongly suggesting that each of these genes are necessary for plant growth.  This 

conclusion was also drawn from plants whose endogenous PAP gene products were 

eliminated, or drastically reduced, by the induction of PAP::RNAi expression.   Taken 

together, these results indicate that the four PAP gene products do not share redundant 

roles within Arabidopsis plants but that expression of each of these genes is essential for 

plant growth. 
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RESULTS 

 

Molecular Characterization of PAP T-DNA Insertion Mutants 

Analysis of the recently completed Arabidopsis genome has indicated that four 

PAP genes can be found in this model plant (Addepalli et al., 2004).  To investigate the 

functions of these genes and to determine if any of the four Arabidopsis PAP gene 

products are essential, we searched for mutants in public T-DNA insertion line 

collections.  At least one line for each PAP gene family member was identified in the 

SIGnAL T-DNA express database and obtained (Alonso et al, 2003; Table 3.1; Figure 

3.1).  T2 plants from these lines showed no obvious growth or developmental defects 

when compared to wild type plants grown under standard growth conditions suggesting 

that T-DNA insertions into the PAP genes did not affect normal plant growth.  To 

determine if the individual PAP genes are essential, a PCR genotyping assay was used to 

analyze at least 35 individual T2 plants from each line.  This analysis was carried out in 

two PCR reactions using gene-specific primers spanning the insertion site and a gene-

specific primer with a primer specific for the T-DNA insert (Table 3.1).  Each of these 

two primer combinations should give rise to one predictable PCR product from the single 

wild type allele in wild type plants or a single mutant allele in homozygous plants and 

two predictable PCR products, one from the wild type allele and one from the mutant 

allele, in heterozygous plants.  Results from PCR analysis of genomic DNA showed no 

plants that were homozygous for the insertion (Table 3.2).  The lack of any progeny 

homozygous for any of the T-DNA insertions suggests that the inactivation of each gene 

leads to plant death.  The lines for three of the PAP genes, PAP I, PAP II, and PAP IV, 

showed ratios of heterozygous to wild type close to 2:1 indicating that the insertions led 

to seeds that were either embryo lethal or unable to germinate.  On the other hand, lines 

with T-DNA insertions in the PAP III gene showed ratios closer to 1:1.  This ratio has 

been shown to be more indicative of a gametophyte lethal mutation (Howden et al., 

1998).     
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RNA Interference Analysis of PAP Genes 

To further substantiate the results found with the T-DNA lines that strongly 

indicate that each of the four PAP genes products are necessary for plant viability, we 

employed a second method of reducing or eliminating each of the endogenous PAP gene 

products, through selective degradation, known as RNA interference (RNAi).  Due to the 

possibility that each of the four PAP gene products are essential for basic cell function 

and development as suggested above, constitutive RNAi expression would prevent 

transformed plants from producing subsequent viable generations.  To overcome this 

potential problem, the inducible RNAi pTA7001 vector, requiring the topical application 

of dexamethasone for induction was used (Figure 3.2).  This system can allow for plants 

to grow “normally” until induction of the RNAi construct.  This also allowed us to 

observe effects of RNAi induction at different stages of post-germination plant 

development.  Because the PAP gene family members share substantial sequence identity 

within the first 2/3 of the N-terminal regions, PAP-specific nucleotide sequences arising 

from the 3’ part of the C-terminal protein coding region, in the case of PAP II, or the 

3’UTRs, for PAPs I, III and IV, (Table 3.3), were cloned into the dexamethasone 

inducible RNAi pTA7001 vector (see Methods).  These constructs, as well as the empty 

pTA7001 vector, were then individually introduced into wild type Arabidopsis plants, 

using the floral dip method of Agrobacterium mediated transformation.  The resulting 

seeds were germinated on selective media containing the antibiotic hygromyocin to 

isolate transformants (see Methods).  At least three plant lines for each PAP gene, except 

PAP II in which only one line was produced, was used for RNAi induction experiments.  

Plants from each line were transferred to soil then treated with the dexamethasone 

inducer every two to three days starting at or close to the 6-leaf stage.  New untreated 

plants were induced every week to determine what effects the loss of the endogenous 

gene would have on plants throughout various stages of development.  Before induction, 

no phenotypic differences were observed between the PAP::RNAi lines and the wild type 

plants at any stage of plant development, indicating that insertion of the RNAi construct 

into the plant genome itself did not produce noticeable effect on “normal” plant 

development and that subsequent observed changes were due to effects arising from loss 

of the endogenous RNA (Figure 3.3 and 3.4).  Within 2 weeks of continued induction, 
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PAP::RNAi lines stopped growing and began to show signs of decline throughout each 

developmental stage until plant death (Figures 3.3 and 3.4).   

Previously it was noted that the pTA7001 vector alone, without the addition of 

cloned DNA, could show negative effects on plant growth following dexamethasone 

treatment.  To address this concern, transgenic plant lines containing the empty pTA7001 

vector were induced with dexamethasone, alongside plants containing the PAP::RNAi 

construct.  Figures 3.3 and 3.4 show that alterations in plant growth did occur.  However, 

differences could be seen in the rate of decline in plant health between plants containing 

the empty vector and those containing the PAP::RNAi constructs.  Empty pTA7001 

plants undergoing induction beginning at, or close to the 6-leaf-stage, continued to 

display normal growth patterns for several weeks after the plants containing the 

PAP::RNAi constructs began to show altered growth patterns, compared to induced and 

uninduced control plants.  pTA7001 plants that were not induced until and after the 

bolting stage also showed signs of altered growth in rosette leaves but bolt growth, 

flowering, seed production and seed germination were not altered compared to control 

plants (Figures 3.3 and 3.4).  This was not the case for plants containing the PAP::RNAi 

constructs in which dexamethasone treatment led to plant death. 

 These results, taken with those found upon analysis of the T-DNA lines (see 

above), strongly suggest that eliminating, or substantially reducing, each of the PAP gene 

products is detrimental to plant health and that each PAP gene product is essential for 

plant viability. 

 

Analysis of Endogenous PAP RNA Levels in PAP-RNAi Plants 

The steroid-inducible system used in these experiments relies on the constitutive 

expression of GVG, a chimeric transactivator, which activates the expression of the gene 

cloned in front of the recognition site in the DNA upon binding the steroid (Aoyama and 

Chua, 1997).  Therefore, the possibility exists that overexpression of the GVG may cause 

non-target genes to be activated.  To verify that the repression of specific PAP gene 

expression was due the overexpression of the RNAi portion of the constructs and not 

because of the expression of the GVG chimeric transactivator (Aoyama and Chua, 1997), 

the expression of the PAP genes was monitored in the transgenic PAP::RNAi lines and 
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compared with lines transformed with the same vector (pTA7001) containing no PAP 

coding sequence and to wild type plants.  Also, to eliminate concerns that each of the 

PAP::RNAi constructs was affecting the levels of multiple PAP gene products, we 

performed RT-PCR analysis using total RNA prepared from each PAP::RNAi line to 

compare transcript levels of each PAP gene family member and wild type plants.  This 

analysis would also eliminate the possibility that the dexamethasone was affecting PAP 

RNA levels in plants lacking the RNAi insert.  Total RNA was isolated from wild type 

plants, as well as plants containing the PAP::RNAi or the empty pTA7001 vector, at the 

six-leaf-stage prior to induction.   RNA was again purified from these plant lines seven 

days after induction.  These RNAs were subjected to RT/PCR analysis using primers 

from the dissimilar 3’-regions of each PAP gene.  These primers had previously been 

found to be specific for each of the four PAP gene products (Addepalli, 2004, Table 3.3).  

These results are shown in Figure 3.5.  Amplification of the actin gene product was used 

as a constitutive control to show that equal amounts of RNA had been used.  PAP-RNAi 

lines showed a substantial decrease, or complete loss, in transcript levels for the 

endogenous PAP targeted by each particular PAP::RNAi construct when compared to the 

remaining PAPs and to PAP RNA levels in pTA7001 and wild type, induced and 

uninduced controls.  The three remaining PAP transcript levels remained consistent to 

PAPs found in wild type uninduced and dexamethasone treated control plants (Figure 

3.5).  These results eliminate the possibility that more than one PAP gene product was 

affected in plants containing the PAP::RNAi constructs from each of the four PAP genes 

and that dexamethasone was not responsible for loss of gene expression.  
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DISCUSSION 

 

 We attempted to address the function of the four PAP gene family members of 

Arabidopsis.  However, because each of the four PAP gene products shows high 

sequence identity, it is unclear whether the PAP homologues have overlapping or unique 

functions.  Prior PAP promoter expression studies have suggested that one or more of the 

PAPs could play redundant roles due to overlapping patterns of the four PAP 

promoter::GUS activities observed but no two PAP promoters shared identical expression 

profiles.  The data presented here offer insights into the importance of the four 

Arabidopsis poly(A) polymerase genes.   

We identified Arabidopsis plants containing independent T-DNA insertion alleles 

of the four Arabidopsis PAP genes.  Analysis of the progeny resulting from selfing plants 

heterozygous for each mutant allele did not identify a plant homozygous for the insertion 

for any of the mutant alleles.  However, PAP I, PAP II and PAP IV all showed a 

heterozygous to wild type ratio of 2:1, indicative of embryo lethal or seed viability 

mutations (Table 3.2 a).  Statistical analysis of this result, using the chi-square (X 2) test 

for goodness of fit, demonstrated that the observed results are in good agreement (P 

>0.05) with the phenotypic ratio of 2:1 for a single dominant nuclear gene (Table 3.2 b 

and c).  The Arabidopsis PAP III gene, mutated using T-DNA insertions, was unique in 

that it showed heterozygous to wild type ratios close to 1:1 (Table 3.2 a).  Statistical 

analysis using the chi-square test showed that these results were in agreement (P >0.05) 

with the phenotypic ratio of 1:1 (Table 3.2 b and c).  This ratio has been shown to result 

from gametophyte lethality, either male or female, due to the loss of the T-DNA 

containing homozygote plants, as well as half of the heterozygote plants.  It is unlikely 

that the PAP III gene product plays an essential role in both male and female 

gametogeneis for, if this were the case, the ratios would most likely be less than 1:1 due 

to the loss of both gametes which would confer full penetrant gametophytic lethality.  In 

this case, T-DNA would not be transmitted to the progeny at all and could not be detected 

in PCR screens.  Expansion and differentiation of germ cells requires intricate processes 

involving the regulation of many cellular changes.  These changes give rise to germ cells 

containing mRNA transcripts of varying lengths indicating that germ cell maturation 
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requires flexibility in gene expression and protein function.  This flexibility can arise 

through alterations in transcriptional initiation utilizing alternative start sites, exon 

splicing resulting in altered proteins, polyadenylation to control mRNA stability and 

translational timing (Walker et al., 1999).  This indicates that PAP(s) may play important 

roles in regulation of germ cell maturation.  Previous GUS expression analysis using the 

PAP III promoter indicates that PAP III is expressed in the stigma as well as in mature 

pollen (Figure 2.8; Table 2.3).  However, it is impossible to determine whether it is the 

male or female gametes lost in these lines without further studies involving reciprocal 

crosses between heterozygous and wild type plants.  

Arabidopsis seed development has been shown to be an intricate process 

involving an estimated 500 to 1,000 essential genes (McElver et al., 2001).  Also, a 

significant number of genes specifically expressed in anthers and/or pollen have been 

identified (Twell, 1994).  Arabidopsis PAPs have all been shown to possess nonspecific 

poly(A) polymerase activity (Addepalli et al., 2004; Hunt et al., 2000).  The loss of this 

enzyme, could lead to the loss of some, or all, of the predicted genes essential for 

gametogenesis and seed development.  The observation that three of the four Arabidopsis 

PAPs showed embryo lethal ratios, could indicate that each of the three PAPs are 

responsible for polyadenylating the genes necessary for seed development in either an 

overlapping or unique fashion and more detailed analysis will be necessary to determine 

which gene products each PAP polyadenylates.  While the PAP III protein appears to be 

involved in gametogenesis, it may also play a role in seed development as well and what 

role this protein plays in Arabidopsis vitality will also involve further experimentation.   

The inviability of RNAi::PAP plants lacking functional PAP gene products 

suggests that each member of the gene family has specialized unique and essential 

functions that apparently play important roles in plant vitality (Figures 3.3 and 3.4).  

Unfortunately, because of the lethality of the PAP homozygous mutants and the lack of 

any noticeable phenotype in heterozygous plants, we are unable to precisely determine 

for which functions these proteins are essential.  In mammal and yeast systems, PAPs 

have been identified as the enzyme responsible for adding polyadenylate tails to nascent-

mRNAs (Raabe et al., 1991; Wahle et al., 1991; Lingner et al., 1991b; Patel and Butler, 

1992).  In these systems, pre-mRNA polyadenylation has been shown to play many roles 
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in cellular and mRNA metabolism such as transcription termination (Whitelaw and 

Proudfoot, 1986; Logan et al., 1987; Connelly and Manley, 1988) mRNA splicing (Niwa 

et al., 1990a; Niwa et al., 1990b; Boelens et al., 1993; Lutz et al., 1996), mRNA export 

from the nucleus (Whitelaw and Proudfoot, 1986; Connelly and Manley, 1988), mRNA 

stability (Bernstein et al., 1989; Beelman and Parker, 1995; Boeck et al., 1996; Carpousis 

et al., 1999; Curtis et al., 1995; Ford et al., 1997; Lewis et al., 1995; Caponigro and 

Parker, 1995), efficiency of translation (Gallie, 1991; Craig et al., 1998; Proweller and 

Butler, 1997; Preiss and Hentze, 1998; Tarun and Sachs, 1995; Sachs et al., 1997), and 

regulation of gene expression (Foulkes et al., 1993; Takagaki et al., 1996; Proudfoot, 

1986; reviewed in chapter one).  The four Arabidopsis PAP enzymes are active and have 

been shown to add polyadenylate tracts to RNA in non-specific polyadenylation assays 

(Hunt, 2000; Addepalli, 2004) and may possibly play similar roles in Arabidopsis, as the 

enzymes of mammals and yeast.  If this is the case, the lethality, induced by loss of the 

PAP gene products, may occur due to the loss of polyadenylation of nascent-mRNAs.  If 

poly(A) tails play vital roles in other plant functions as, they do in yeast and mammals, 

these defects could interfere with many essential processes within the cell.  This 

argument is supported by the reports that mutations in other plant polyadenylation 

homologs, CPSF-100 and CPSF-73, lead to embryo lethality (Meinke et al., 2003; Xu et 

al., 2004)  

It is interesting that induction of the RNAi constructs for PAP I and PAP II 

showed a severe, down-regulation of these gene products but not a total loss of the 

transcripts after seven days of dexamethasone treatments (Figure 3.5).   Despite a small 

amount of gene expression remaining, these mutants were unable to survive 

dexamethasone treatment.  This indicates that these enzymes play critical roles in plant 

viability and that a total down-regulation of these genes is not necessary to lead to plant 

death.   

We have demonstrated in these studies that the four Arabidopsis PAPs are 

essential genes.  Each appears to play vital roles in seed development, as demonstrated by 

T-DNA mutational analysis and in cellular functions that are necessary for viability 

throughout the plant life cycle as demonstrated by RNAi analysis.  What role each 
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individual PAP plays within Arabidopsis is however, undetermined and will require 

future investigation. 
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MATERIALS AND METHODS 

 

Plant Material  

 Arabidopsis thaliana ecotype Columbia was obtained from Lehle Seeds (Round 

Rock, TX) and used throughout this study.  Seeds were germinated and plants cultivated 

in the greenhouse, until maturity, with a 16-h light and 8-h dark regime at 22°C.  

 

Seed Pools of T-DNA Mutants 

 Seed pools of T-DNA-mutagenized Arabidopsis thaliana, in the PAP I, PAP II 

and PAP III genes, were acquired from the Arabidopsis Biological Resource Center 

(Columbus, OH) or from the Sussman and Amasino laboratories at the University of 

Wisconsin-Madison, for PAP IV.  The mutant lines were allowed to self-pollinate and T2 

seeds were harvested and germinated in soil, in the greenhouse, under normal long-day 

growth conditions. 

 

Determination of Genotypes by PCR 

Genotyping for T-DNA mutants was performed on at least 35 T2 plants from each 

transgenic T-DNA line using a PCR based method.  Gene-specific and T-DNA specific 

(Lba1 for Salk T-DNA lines and p745 for WiscDsLox T-DNA lines) oligonucleotide 

primer sets were designed to determine if plants were homozygous wild type, 

homozygous mutant or heterozygous (Table 3.1).  DNA was extracted from leaves taken 

from 3-4-week old, soil grown plants using a rapid homogenization plant DNA extraction 

kit (Caragen) with the following modified protocol.  200-µl DNA lysis buffer (100-mM 

Tris-HCL, pH 8.0; 50-mM EDTA, pH 8.0; 500-mM NaCl) was added to 100-mg leaf 

tissue and homogenized in the provided homogenizer or with mortar and pestle then 

centrifuged 30 seconds at <10,000 RPM.  An additional 280-µl DNA lysis buffer was 

added along with 37.5-µl 20% SDS.  The sample was placed in a 65°C water bath for 10 

minutes.  94-µl 5M KAc was added and the sample was placed on ice for 5 minutes.  The 

samples were then centrifuged at >13,000 RPM for 5 minutes after which the supernatant 

was transferred to a clean 1.5-ml Eppendorf tube.  600-µl phenol/chloroform (1:1) was 

added and the samples were centrifuged 5 minutes at 12,000 RPM.  The supernatant was 
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removed and 360-µl of isopropyl alcohol was added.  The samples were centrifuged 10 

minutes at >13,000 RPM and the pellet was washed with 70% EtOH and allowed to air 

dry.  Finally, the pellet was resuspended in 30-µl of water.  For PCR amplification, 25-

50-ng of genomic DNA, 100-ng of each primer (Table 3.1), 2.5-µl of 50-mM MgCl2, 5-

µl of 2.5-mM dNTPs, 5-µl of 10X PCR buffer (Gibco/BRL) and 0.2-units of Taq DNA 

polymerase (Gibco/BRL) were used in 50-µl PCR reactions.  PCR amplifications were 

run for 35 cycles of 92°C for 1 minute, 55°C for 1 minute and 72°C for 2 minutes.

 

PAP::RNAi Plasmid Constructs  

 For PAP I::RNAi and PAP IV::RNAi constructs, a portion of the 3’ UTRs (225 

bp and 138 respectfully) were generated by PCR from wild type genomic DNA using the 

oligonucleotide primers PAPI 5’A RNAi (5’-CCCCTCGAGGCTAGCTGGCTTTTCCC 

TACATTGCCAAGAATCTC-3’) and PAPI 3’B RNAi (5’-AAAAAGCTTAGATCTGT 

GAAGTAAACTCAACCCAGACTTTTATTTAT-3’) for PAPI and PAPIV 5’ RNAi (5’-

CCCCTCGAGGCTAGCGAAGGTATAGGCAGAGAAAGCATTGGTGGTGGT-3’) 

and PAPIV 3’ RNAi (5’-AAAAGCTTAGATCTAAAGCATTCATCATCCAGACA 

TTATATAAATCATT-3’) for PAPIV (Table 3.3) and cloned into pGEM (Promega).  

The sense and anti-sense fragments were excised using XhoI-HindIII and BglII-NheI 

(respectfully, restriction sites were included in oligonucleotide primer sequence).   The 

sense fragment was cloned into SalI and HindIII sites of the pBluescript-RNAi vector.  

This construct was then digested with BamHI and SpeI and the anti-sense fragment was 

cloned into this site.  After amplification, this construct was digested with XhoI and XbaI 

to excise the sense/intron/anti-sense portion.  This fragment was then cloned in pTA7001 

digested with XhoI and SpeI.  PAP III::RNAi construct and the PAP II::RNAi plant lines 

were kindly donated by Dr. Arthur Hunt (University of Kentucky) and Dr. Quinn Li 

(Miami University).  

 

Plant transformation 

PAP::RNAi constructs, as well as the empty pTA7001 vector, were transferred to 

Agrobacterium tumefaciens strain GV-3850 and the helper plasmid PRK-2013 as 

described by Schardl et al. (1987).  The floral dip method as described by Clough and 
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Bent (1998) was used to transform Arabidopsis thaliana plants, ecotype Columbia 

(COL).  These transformants were allowed to grow and seed in the greenhouse under 

long day conditions (22°C, 16-h light).  T1, and subsequently T2, plants were selected on 

germination medium containing 25-mg/L hygromyocin (Sigma).  T2 plants resistant to 

hygromyocin were transferred to soil and grown in the greenhouse under normal growth 

conditions.  At least 3 independent homozygous lines, except for CH II in which only 1 

line was obtained, for each construct were treated with glucocorticoid.  Homozygous 

lines were identified by determining ratios of selective marker inheritance in T3 plants on 

hygromyocin-containing media.  

 

Glucocorticoid Treatments 

To induce the glucocorticoid-regulated transcriptional activator, dexamethasone 

(Sigma), an analog of glucocorticoid, was dissolved in 100% ethanol to a 25-µM 

solution.  For systemic induction, the plants were sprayed with a solution containing 25-

µM of dexamethasone onto the aerial portions of the plants.  T2 PAP::RNAi 

transformants, as well as pTA7001 control and wild type plants, at the 6-leaf-stage, were 

treated with dexamethasone every two to three days for 21 days with a new set of plants 

beginning dexamethasone treatment every seven days.  Control plants were sprayed with 

a solution containing 0.1% ethanol.  Plants were photographed using a Nikon Coolpix 

4300 digital camera and images processed using Adobe ImageReady software (version 

2.0; Adobe Systems, San Jose, CA). 

 

RT-PCR Analysis 

 Total RNA was isolated from plants at the 6-leaf-stage before and after 7 days of 

dexamethasone induction using Trizol (Invitrogen) per manufacture’s instructions.  First 

strand cDNA was made with oligo-dT using the ProSTARTM Ultra HF RT-PCR system 

(Stratagene) following the manufacturer’s specifications.  For PCR amplification, 1.5-µl 

of the first strand reaction, 200-mg of primers, 0.8-mM dNTPs, and 5.0-µl of Ultra HF 

PCR buffer (Stratagene) were used in 50-µl PCR reactions.  PCR amplifications were run 

for 20 cycles of 92°C for 1 minute, 55°C for 1 minute and 72°C for 2 minutes.   

Oligonucleotide primer sets for each PAP gene product were; PAP I -5’B (5’-
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GGGCCCGGGTATACCTGAGGACTTAGATTTATCACAGGACTCC-3’)/3’B (5’-

GGGGAATTCCGTATACTCCACGTCGTTTGGCCCAAAATCT-3’), PAP II – 5’421 

(5’-TTGGCTGAAATGGAAGAAGTGACTG-3’)/3’1020 (5’-AAACTGGAATTGCTC 

TGTCATAACAC-3’), PAP III – 5’2 (5’-GGATCCATTCCAAACAATGTAGATGTGC 

TTAATCCTTTC-3’)/3’2 (5’-GGGAATTCGTATAACCTCGCCTCTTGGCCCATAAT 

TT-3’), PAP IV – 5’I (5’-CCCGGGTGTGCCACAGGATCTGGATATCTC-3’)/3’B (5’-

ACGACGGTCCCAGACAGGAAATCCAAGCTC-3’), Actin 5’ (5’-CTCATGAAGA 

TTCTCACTGAGAGAGGTTAC-3’)/3’ (5’-TTAGAAGCATTTCCTGTGAACAATCG 

ATGG-3’) (Table 3.3).  The PCR products were visualized on 1.5% agarose gels.  
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Table 3.1.  Arabidopsis PAP T-DNA lines, location within the gene and oligonucleotides 
used for PCR analysis. 
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Table 3.2.  Segregation Analysis of Arabidopsis Plant Lines Containing T-DNA Inserts 
In the PAP Genes. 
 
(a):  Ratio of heterozygous to wild type; (b):  value calculated for the segregation ratio 
2:1* or 1:1**;  (c):  Calculated P value based on X 2.  P = 0.05 was chosen as a critical 
limit, such that the predicted ratio was not rejected for P values >0.05.  * indicates a 
significant ratio of heterozygous to wild type plants in a 2:1 (*) or 1:1 (**) ratio. 
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Table 3.3.  List of oligonucleotides used for cloning and sequencing. 
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Figure 3.1.  Schematic Diagram of T-DNA Insertions In the Four Arabidopsis PAP 
Genes. 
 
T-DNA insertions in Arabidopsis PAP genes were screened by PCR, using DNA from 
individual plants as templates with gene-specific primers and T-DNA primers.  Small 
arrows indicate direction of T-DNA inserts, filled boxes indicate exons, and white spaces 
indicate introns. 
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Figure 3.2.  Schematic Representation of the pTA7001 Vector. 
 
Structure of the pTA7001 plasmid within the left and right T-DNA borders.  A portion of 
the four Arabidopsis PAP cDNAs were cloned in both the sense and antisense 
orientations into the multiple cloning site of the binary plasmid pTA7001 vector 
(Aoyama and Chua, 1997; see Methods).  RB: right T-DNA border; 35S: 35S promoter 
of Cauliflower mosaic virus; GVG: glucocorticoid-inducible chimeric transcription 
factor; E9: pea rbcS-E9 polyadenylation sequence; NOS: nopaline synthetase promoter; 
HPT: hygromyocin phosphotransferase coding sequence; NOST: nopaline synthetase 
polyadenylation sequence; 6XUAS-46: GVG-regulated promoter; MCS: multiple cloning 
site; 3AT: rbcS-3A polyadenylation sequence; LB: left T-DNA border (Adapted from 
Aoyama and Chua, 1997). 
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Figure 3.3.  Comparison of Morphological Phenotypes of PAP::RNAi Mutants Treated 
With Dexamethasone Starting At the 6-Leaf-Stage. 
  
Top panel shows wild type and transgenic plants containing PAP::RNAi constructs or 
empty pTA7001 vector after treatment with 25-µM dexamethasone and 0.1% ethanol, 
every two to three days, starting at the 6-leaf stage.  Bottom panel shows wild type and 
transgenic plants containing PAP::RNAi constructs or empty pTA7001 vector after 
treatment with a solution containing 0.1% ethanol, every two to three days, starting at the 
6-leaf-stage.  Plants were photographed after 14 days of treatment.    
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Figure 3.4.  Comparison of Morphological Phenotypes of PAP::RNAi Mutants Treated 
With Dexamethasone After Bolting. 
  
Top panel shows wild type and transgenic plants containing PAP::RNAi constructs or 
empty pTA7001 vector after treatment with 25-µM dexamethasone and 0.1% ethanol, 
every two to three days, starting after plants had started to bolt.  Bottom panel shows wild 
type and transgenic plants containing PAP::RNAi constructs or empty pTA7001 vector 
after treatment with a solution containing 0.1% ethanol, every two to three days, starting 
after the plants had started to bolt.  Plants were photographed after 21 days of treatment.    
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Figure 3.5.  RT-PCR Analysis of the PAP::RNAi Transgenic Lines. 
 
Leaf tissue from the PAP::RNAi, pTA7001 empty vector transgenic lines and wild type 
plants was used to isolate RNA before and after dexamethasone treatment.  The RNA 
was then analysized by RT-PCR using primers specific for each PAP gene as well as 
actin control primers.  Panels A, B, C and D contain RT-PCR results from each of the 
four PAP::RNAi lines before and after dexamethaome treatment.  Panels E and F 
contains RT-PCR results for the empty pTA7001 vector transgenic line and wild type 
plants. 
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CHAPTER FOUR 
 

Cellular Localization of Arabidopsis Genes Encoding PAP Homologs 
 

 

INTRODUCTION 

 

The synthesis of pre-mRNA from DNA requires a series of highly synchronized 

and regulated events that take place in the nucleus of most eukaryotic cells.  These pre-

mRNAs are then transported to the cytoplasm and translated into polypeptides that are 

subsequently processed to become a mature folded protein.  The generation of a mature 

mRNA involves the addition of the 5’-methyl-GpppG cap structure, splicing, cleavage 

and synthesis of a poly(A) tail.  The signals necessary for the precise addition of the 

poly(A) tail, as well as the tail itself, play important roles in many steps involved in 

mRNA maturation including transcription termination (Whitelaw and Proudfoot, 1986; 

Logan et al., 1987; Connelly and Manley, 1988), mRNA splicing (Niwa et al., 1990a; 

Niwa et al., 1990b; Boelens et al., 1993; Lutz et al., 1996), mRNA export from the 

nucleus (Whitelaw and Proudfoot, 1986; Connelly and Manley, 1988), mRNA turnover 

(Bernstein et al., 1989; Beelman and Parker, 1995; Boeck et al., 1996; Carpousis et al., 

1999; Curtis et al., 1995; Ford et al., 1997; Lewis et al., 1995; Caponigro and Parker, 

1995), efficiency of translation (Gallie, 1991; Craig et al., 1998; Proweller and Butler, 

1997; Preiss and Hentze, 1998; Tarun and Sachs, 1995; Sachs et al., 1997), and 

regulation of gene expression (Foulkes et al., 1993; Takagaki et al., 1996; Proudfoot, 

1986).  

 Polyadenylation takes place in both the nucleus and the cytoplasm (Zhao et al., 

1999a; Ballantyne et al., 1995).  In the nucleus, virtually all newly synthesized mRNAs 

are polyadenylated but, on the other hand, cytoplasmic polyadenylation occurs on a 

subset of mRNAs carrying cytoplasmic polyadenylation signals.  In mammals and yeast, 

the processes involved in poly(A) tail addition have been extensively studied and many 

insights into the cis and trans acting factors necessary to produce a mature and accurate 

poly(A) tail have been identified.  However, compared to other eukaryotic systems, 

mRNA 3’-end formation and polyadenylation in plants is poorly understood.  
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Polyadenylation signals for several plant genes have been characterized and have led to a 

better understanding of the RNA sequences required for mRNA 3’-end polyadenylation 

(Hunt, 1994; Li and Hunt, 1997; Wu et al., 1993; Rothnie, 1996; Graber et al., 1999a; 

Loke et al., 2005).  However, many questions remain about factors needed to recognize 

these plant polyadenylation signals and about the overall 3’-end polyadenylation process.  

Recent completion of the Arabidopsis genome-sequencing project has allowed for the 

identification of potential plant homologs for most of the polyadenylation factors 

required for 3’-end processing in other eukaryotic systems (Table 1.1).  As of yet, many 

of these homologs have yet to be analyzed for their possible roles in plant 

polyadenylation. 

 In mammals and yeast, poly(A) polymerase (PAP) is a key component of the 

polyadenylation apparatus.  This enzyme is responsible for the catalytic addition of the 

polyadenylate tract to the 3’-end of the cleaved pre-mRNA and is required for both the 

cleavage and polyadenylation reaction (Raabe et al., 1991; Wahle et al., 1991; Zhao et al., 

1999a; Edmonds, 2002; Wahle and Ruegsegger, 1999; Colgan and Manley, 1997; Keller 

and Minvielle-Sebastia, 1997; Wahle and Kuhn, 1997).  Multiple PAP genes can be 

found in mammals as well as alternatively spliced transcripts arising from these genes 

(Lee et al., 2000; Kashiwabara et al., 2000; Kyriakopoulou et al., 2001; Perumal et al., 

2001; Topalian et al., 2001).  In Arabidopsis, four genes have been identified that encode 

possible poly(A) polymerases.  These genes reside on chromosomes I, II, III, and IV and 

have been designated PAP I, PAP II, PAP III and PAP IV, respectively (Addepalli et al., 

2004).  The products arising from each of these genes have been cloned and sequenced 

and their polypeptides analyzed.  Three of the four genes, PAP I, PAP II and PAP IV, 

give rise to proteins ranging in size from 700-800 amino acids and contain a putative 

nuclear localization signal (NLS; underlined in figures 1.5 and 1.6).  The fourth PAP, 

PAP III, produces a much smaller gene product of 482 amino acids and lacks an 

identifiable NLS as well as 200-300 amino acids from the C-terminal portion of the 

protein, compared to the other three Arabidopsis PAP proteins.  The PAP IV protein has 

previously been shown to localize to the nucleus of transformed tobacco leaf cells 

(Forbes, unpublished results).  The fourth PAP, PAP III, produces a much smaller gene 

product of 482 amino acids and lacks an identifiable NLS as well as 200-300 amino acids 
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from the C-terminal portion of the protein, compared to the other three Arabidopsis PAP 

proteins.  These findings suggested that the PAP III gene might have resulted from a gene 

duplication event and gives rise to a non-functional protein.  However, recombinant 

proteins for each PAP have been shown to possess non-specific PAP activity in vitro 

(Addepalli et al., 2004).  In mammals, a cytoplasmic PAP isoform, specific to the 

spermatocytes, has been identified that, like the Arabidopsis PAP III gene, lacks both the 

NLS and C-terminal region found in other PAPs (Kashiwabara et al., 2000).  In addition, 

previous studies (see above) have indicated that the PAP III promoter, as well as the 

remaining three PAP promoters, were able to power GUS expression in a unique spatial-

temporal pattern.  RNAi and T-DNA knockout plants also demonstrated that each of the 

four PAP genes is essential for plant viability.  

In this study, we have utilized the highly visible, internal fluorophores, GFP 

(green fluorescent protein) and DsRed, as reporter genes in an attempt to determine the 

cellular localization of the four Arabidopsis PAP proteins in onion epidermal cells.  

Using particle bombardment, we co-transformed onion epidermal cells with empty 

DsRed vector and vectors containing GFP attached to each of the four Arabidopsis PAPs.  

We found that the PAP I, PAP II, and PAP IV proteins are localized to the nucleus as 

expected but, more specifically, can localize as nuclear speckles as well as diffusely 

throughout the nucleoplasm.  Unfortunately, transformations containing PAP III::GFP 

constructs failed to give rise to viable cells and cellular localization could not be 

determined.  
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RESULTS 

 

Plasmid Construction 

 In order to evaluate PAP cellular localization, the pGDG binary vector (Goodin et 

al., 2002, Figure 4.1), which allows for a high level of transient expression of an 

autofluorescent protein, was fused, at the 3’ end, to each of the PAP protein coding 

sequences and introduced into onion epidermal cells by particle bombardment (see 

Materials and Methods).  The onion epidermis was used due to its large, living, 

transparent cells, ideal for visualizing autofluorescent proteins.  In addition, unlike green 

plant tissues, these cells have low levels of autoflourescence.  These constructs were co-

transformed with the empty vector, pGDR, expressing a red fluorescent protein (DsRed), 

as a control. 

 

PAP I, PAP II and PAP IV Proteins Are Localized to the Nucleus 

 Fluorescence microscopic studies of the transformed onion cells indicate that 

DsRed autoflourescence was found throughout the cells (Figures 4.2 A, 4.3 A and 4.4 A), 

whereas PAP I, PAP II and PAP IV proteins were localized to the nucleus as seen by the 

condensed spots of green fluorescence in panel B of figures 4.2, 4.3 and 4.4, respectively.  

Furthermore, while these PAPs were diffuse throughout the nucleoplasm, there were 

distinctive accumulations seen in structures reminiscent of those previously described as 

nuclear speckles (Figure 4.5; Nagatani, 2004; Tillemans et al., 2005; Docquier et al., 

2004).  The nuclear localization of the PAP proteins was identical with that of 4´,6-

diamidino-2-phenylindole (DAPI), which stains double-stranded DNA in the nucleus 

(Figures 4.2 C, 4.3 C and 4.4 C).  Over-laying the PAP::GFP images onto the DAPI 

images (Figures 4.2 D, 4.3 D and 4.4 D) demonstrate that the PAP I, PAP II and PAP IV 

proteins are exclusively localized in nuclei.  

 

Cellular Localization of PAP III Could Not Be Determined 

 Co-transformation of the PAP III::GFP construct with the empty DsRed control 

vector did not generate viable cells, unlike cells transformed with DsRed alone.  Five 

particle bombardment transformations of onion epidermal cells, with both the CH 

87 



 

III::GFP and pGDR vectors, produced no viable co-transformed cells.  On two attempts, a 

total of three cells were found expressing DsRed alone.  These results were compared to 

particle bombardment results using pGDR alone in which an average of 42 cells, per 

experiment, were found expressing DsRed.  This result indicates that overexpression of 

the PAP III gene product was detrimental to the onion cells.  Therefore, cellular 

localization of the PAP III gene product could not be determined using this method.    
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DISCUSSION 

 

 Processing of mRNA precursors is a critical step in gene expression.  These steps 

are comprised of an integrated series of reactions mediated by a large and complex set of 

protein factors (Zhao et al., 1999a; Edmonds, 2002; Wahle and Ruegsegger, 1999; 

Colgan and Manley, 1997; Keller and Minvielle-Sebastia, 1997; Wahle and Kuhn, 1997; 

Rothnie, 1996; Hunt, 1994).  Poly(A) polymerase, has been shown to play several critical 

roles in RNA processing.  It not only participates in endonucleolytic cleavage of pre-

mRNA and catalysis of poly(A) synthesis, it also interacts with other proteins that may 

help coordinate polyadenylation, splicing and exon definition (Robberson et al., 1990; 

Berget, 1995; Niwa et al., 1990a; Niwa et al., 1990b; Niwa and Berget, 1991a; Niwa and 

Berget, 1991b; Scott and Imperial, 1996; Cooke et al., 1999; Vagner et al., 2000; Cooke 

and Alwine, 2002; Boelens et al., 1993; Lutz et al., 1996; McCracken et al., 2002).  The 

polyadenylation reaction is intertwined with other steps involved in mRNA synthesis 

such as transcription termination (Whitelaw and Proudfoot, 1986; Logan et al., 1987; 

Connelly and Manley, 1988), mRNA splicing (Niwa et al., 1990a; Niwa et al., 1990b; 

Boelens et al., 1993; Lutz et al., 1996), mRNA export from the nucleus (Whitelaw and 

Proudfoot, 1986; Connelly and Manley, 1988), mRNA stability (Bernstein et al., 1989; 

Beelman and Parker, 1995; Boeck et al., 1996; Carpousis et al., 1999; Curtis et al., 1995; 

Ford et al., 1997; Lewis et al., 1995; Caponigro and Parker, 1995), efficiency of 

translation through interactions with the 5’-cap (Gallie, 1991; Craig et al., 1998; 

Proweller and Butler, 1997; Preiss and Hentze, 1998; Tarun and Sachs, 1995; Sachs et 

al., 1997), and regulation of gene expression, through the alternative usage of 

polyadenylation sites (Foulkes et al., 1993; Takagaki et al., 1996; Proudfoot, 1986).  

These examples demonstrate the significant role of polyadenylation in regulation and 

control of gene expression.  

 In Arabidopsis thaliana, in silico analysis has identified four potential PAP genes.  

Three of the four genes, PAP I, PAP II and PAP IV, contain ~750 amino acids and 

possess a putative nuclear localization signal (NLS; Underlined in Figure 1.5).  PAP III, 

on the other hand, appears to be much smaller, 482 amino acids, and lacks any 

recognizable NLS (Addepalli et al., 2004, Figure 1.6).  To determine if each of the PAP I, 
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PAP II, and PAP IV proteins were directed into the nucleus, we generated constructs 

containing each of the full-length proteins attached to GFP.  As expected, each of these 

proteins was localized throughout the nucleoplasm of onion epidermal cells (Figures 4.2, 

4.3 and 4.4).  Moreover, each of these PAPs was concentrated in speckles within the 

nucleus (Figure 4.5).  Several types of nuclear speckling structures have been identified 

and include cleavage bodies, Cajal/coiled bodies, splicing speckles and paraspeckles.  

The role of cleavage bodies is not yet fully understood but several factors involved in the 

mammalian cleavage and polyadenylation of pre-mRNAs have been localized to cleavage 

bodies and include symplekin, CstF and CPSF (Spector, 2001; Schul et al., 1996; 

Hofmann et al., 2002).  Cleavage bodies can overlap with, or are adjacent to, Cajal/coiled 

bodies (Schul et al., 1999).  Cajal/coiled bodies are found, most abundantly, in very 

transcriptionally active and proliferating cells in the vicinity of nucleoli (Gall, 2000).  It is 

within the Cajal/coiled bodies that the biogenesis of snRNPs takes place with the snRNPs 

subsequently being moved to the splicing speckles (Sleeman and Lamond, 1999).  

Splicing speckles are thought to be storage sites for mRNA splicing factors which can 

either be recruited from the speckles to sites of transcription or genes can be recruited to 

the vicinity of the speckles where mRNAs are then transcribed within the speckles 

(Lamond and Spector, 2003; Misteli et al., 1997; Shopland et al., 2003; Moen et al., 

2004).  In mammals, almost 200 proteins have been purified from splicing speckles and 

contain proteins involved in splicing including various snRNAs (small nuclear 

ribonucleic acids), snRNPs (small nuclear ribonucleoproteins), serine/arginine-rich 

proteins (SRps), and RNA polymerase II (Spector, 1993; Fu and Maniatis, 1990; Thiry, 

1993; de Jong et al., 1996; Misteli and Spector, 1997; Singer and Green, 1997; Saitoh et 

al., 2004; Rappsilber et al., 2002; Zhou et al., 2002; Neubauer et al., 1998; Hartmuth et 

al., 2002; Will et al., 2002; Jurica et al., 2002).  In addition to these proteins, the 

mammalian polyadenylation factors PABPN1 and PAP have been found in these domains 

(Calado and Carmo-Fonseca, 2000; Schul et al., 1998; Krause et al., 1994).  Paraspeckles 

are generally irregularly shaped bodies that are usually clustered together and are often 

closely adjacent to splicing speckles (Fox et al., 2002).  These domains are thought to 

play roles in transcription and RNA splicing as well as pre-mRNA processing as 

indicated by the localization of mammalian CF I to these areas (Dettwiler et al., 2004).   
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While it is interesting that polyadenylation factors are found in many of these 

bodies, it is not understood how they come together to accomplish poly(A) tail addition.  

In our studies, we have shown that the Arabidopsis PAP I, PAP II and PAP IV proteins 

localize, not only diffusely throughout the nucleoplasm, but to also as speckles within 

onion cell nuclei.  However, which body or bodies each of these PAPs localize to is not 

known and further experimentation will be required to answer this question.  

In contrast to the three larger PAP proteins, which contain an identifiable NLS 

and have been shown to enter the nucleus, PAP III lacks a predictable NLS.  However, 

not all proteins that are targeted to the nucleus contain a recognizable NLS.  In these 

cases, the NLS is not necessarily evident within the primary amino acid sequence, rather 

protein transport to the nucleus appears to occur at the level of the biochemical properties 

of the protein and to some degree on the proteins secondary structure (Endo et al., 1989; 

Hammen et al., 1994).  To determine if PAP III was also nuclear localized, we 

transformed onion epidermal cells with a construct containing the full-length PAP III 

protein attached to GFP.  However, unlike PAP I, PAP II and PAP IV, PAP III 

subcellular localization could not be determined by these studies.  Presumably, the 

overexpression of PAP III was detrimental to cellular functions and did not allow for 

viable onion cells.  While this cannot exclude PAP III from being a nuclear localized 

protein, a similar result was also observed in Drosophila in which in vivo overexpression 

of PAP during embryogenesis causes a dramatic elongation of poly(A) tails and a loss of 

specificity during cytoplasmic polyadenylation, which in turn, resulted in embryonic 

lethality.  In other words, regulation of the PAP level is essential for controlled 

cytoplasmic polyadenylation and cell viability (Juge et al., 2002).  The lack of the nuclear 

localization signal for the Arabidopsis PAP III gene and the similar result found upon 

overexpression of this protein, leading to lethality, as is seen in overexpression of the 

Drosophila cytoplasmic PAP suggests that PAP III may play a role in cytoplasmic 

polyadenylation within Arabidopsis cells.    

Subcellular localization is related to protein function in that, proteins have 

evolved to function optimally in a specific subcellular localization.  Therefore, the final 

destination of a protein, within cells, is crucial to its function.  Identifying the subcellular 

localization of the four Arabidopsis PAP proteins will help to specify where they are 
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targeted within cells and could aide in determining interactions with other proteins and 

small metabolites in their local environment.  Future studies will be necessary to fully 

understand the undoubtedly complex behaviors of each of these PAPs genes.  
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MATERIALS AND METHODS 

 

GFP and DsRed Fusion Constructs  

For transient GFP assays, the pGDG (GFP) fusion plasmid was used (Goodin et 

al., 2002).  Briefly, the coding region of the four Arabidopsis PAPs were amplified, using 

PCR, with the oligonucleotide primers 5’Sal I (5’-GTCGACATGGCTAGTGTCCAGCA 

AAATGGGCAACGG-3’ and 3’APA I (5’-GGGCCCTTACTTGCCATTGGTTTTGCC 

TAGAGACGT-3’) for PAP I, 5’16 Bgl II (5’-AGATCTATGGTGAGTACTCAACAAC 

GCACGGACG-3’) and 3’11 Bgl II (5’-AGATCTTCTGATTTGCATAAACCAATAAT 

GGGTT-3’) for PAP II, and 5’7 Sal I (5’-GTCGACATGGCTAGTGTCCAGCAAAATG 

GGCAACGG-3’) and 3’6 Bam HI (5’-GGATTCACATTTAACCTCCATACCATCAG 

CTTCTCT-3’)for PAP III, 5’ (Table 4.1) in the 5′ to 3′ direction using a full-length 

cDNA as template.  The PAP IV GFP clone was kindly donated by Kevin Forbes.  PCR 

products were subcloned into the EcoRV site of pGEM-T Easy (Promega), per the 

manufacturer’s instructions, and resulting clones were sequenced with T7 and SP6 

oligonucleotide primers.  PGEM-PAP clones were then digested with Sal I and APA I for 

PAP I, Bgl II for PAP II and Sal I and Bam HI for PAP III and the resulting fragments 

were ligated, into Sal I and APA I digested pGDG plasmid for PAP I, Bam HI digested 

pGDG plasmid for PAP II and Sal I and Bam HI digested pGDG plasmid for PAP III, by 

T4 DNA ligase (Invitrogen). Recombinants were sequenced with oligonucleotide primers 

3’120 (5’-AACATCTTGCAAGTGCTTCTCGAGCTCTCTT-3’) for PAP I, 3’1 (5’-GA 

CAGCATTTGCATCCTCCACCATCTGA-3’) for PAP II and 3’3 (5’-GTTAGACTA 

AAACACCTTCTGCCACAACGGTCCGTT-3’)for PAP III, to determine if the GFP 

fusions were in frame (Table 4.1).  For controls, pGDR (DsRed) (Gooding et al., 2002) 

empty vectors were co-localized with PAP::GFP constructs.  

 

Particle Bombardment 

 The fusion plasmids were introduced into onion epidermal skin cells by particle 

bombardment using a PDS1000 DuPont Bio-Rad Microprojectile delivery system (Bio-

Rad Laboratories) per the manufacturer’s instructions.  Briefly, 0.5-mg of gold 

microcarriers (1µm) per shot, were vortexed vigorously in 1-ml 70% ethanol (V/V) for 3-
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5 minutes and then allowed to soak for 15 minutes.  Microparticles were pelleted, ethanol 

removed, washed three times in 1-ml sterile water, and then resuspended in 15-µl sterile 

water.  To this, 2-µg of each DNA, 50-µl 2.5-M CaCl2 and 20-µl 0.1-M spermidine were 

added with constant vortexing.  Vortexing was continued for 3 minutes.  Microparticles 

were pelleted in microfuge for 2 seconds, supernatant removed, and the pellet washed 

with 140-µl of 70% ethanol, then 140-µl of 100% ethanol and finally resuspended in 12-

µl of 100% ethanol.  

For macrocarrier preparation, suspended microcarriers were spread in the center 

of macrocarrier (Biorad Labs, USA) and installed in the particle gun assembly per the 

manufacturer’s instructions.  For all experiments, a helium pressure of 1100 psi was 

selected.  The distance between rupture disk and macrocarrier was adjusted to 8-10 cm 

from the onion tissue.  Following bombardment, the tissue was transferred to T- agar 

media, incubated at 25°C and then analyzed 24-48 hours after bombardment.  

  

Detection and Photography of GFP/DdRed Expression and DAPI staining of Onion 

Epidermal Cells 

Localization of GFP and DsRed expression in onion cells was determined using a 

Zeiss Axioplan 2 microscope with a Zeisss AttoArc 2 light source.  Excitation and 

emission wavelengths for GFP, were 470-nm and 500-nm, respectively, and for DsRed 

these values were 550-nm and 590-nm, respectively, and for DAPI, 358-nm and 461-nm, 

respectively.  Transformed cells were then stained with 2.5-µg/ml 4´,6-diamidino-2-

phenylindole (DAPI) and 0.5% Triton X-100 in phosphate buffer saline (PBS) for 30 min 

at room temperature.  Photographs were taken using a Zeiss Axiocam MRc5 and 

visualized using AxioVision 4.1 software (Zeiss, Jena, Germany).  Images were 

processed using Adobe ImageReady software (version 2.0; Adobe Systems, San Jose, 

CA). 
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Table 4.1.  List of oligonucleotides used for cloning and sequencing. 
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Figure 4.1.  Depiction of the pGDG and pGDR Vectors. 
 
A.  Schematic representations of pGDG and pGDR.  LB (left border) and RB (right 
border) denote the borders of the T-DNA; Nopaline synthase (Nos polyA) are used as 
polyadenylation signals.  B.  Sequence of the multiple cloning site of pGDR.  Note that 
the PstI site can be used only in pGDG because the DsRed2 coding sequence contains a 
PstI site.     
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Figure 4.2.  Cellular Localization of PAP I::GFP. 
 
Fluorescence of onion epidermal cells co-expressing DsRed and PAP I::GFP constructs.  
(A) and (B) depict the autofluorescent protein DsRed and the nuclear localized 
fluorescence of PAP I fused with GFP, respectively.  (C) 4,6-diamidino-2-phenylindol 
(DAPI)-staining of the nucleus shown in (A) and (B).  (D) Merged image of panels (B) 
and (C).  The onion cell was transformed using particle bombardment. 
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Figure 4.3.  Cellular Localization of PAP II::GFP. 
 
Fluorescence of onion epidermal cells co-expressing DsRed and PAP II::GFP constructs.  
(A) and (B) depict the autofluorescent protein DsRed and the nuclear localized 
fluorescence of PAP I fused with GFP, respectively.  (C) 4,6-diamidino-2-phenylindol 
(DAPI)-staining of the nucleus shown in (A) and (B).  (D) Merged image of panels (B) 
and (C).  The onion cell was transformed using particle bombardment. 
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Figure 4.4.  Cellular Localization of PAP IV::GFP. 
 
Fluorescence of onion epidermal cells co-expressing DsRed and PAP IV::GFP 
constructs.  (A) and (B) depict the autofluorescent protein DsRed and the nuclear 
localized fluorescence of PAP I fused with GFP, respectively.  (C) 4,6-diamidino-2-
phenylindol (DAPI)-staining of the nucleus shown in (A) and (B).  (D) Merged image of 
panels (B) and (C).  The onion cell was transformed using particle bombardment. 
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Figure 4.5.  Distribution of Fluorescence Within the Nucleus of PAP I::GFP, PAP II:: 
GFP and PAP IV::GFP. 
 
Images of onion cell nuclei showing fluorescence of PAP I::GFP (A), PAP II:: GFP (B) 
and PAP IV::GFP (C) constructs.  The onion cell was transformed using particle 
bombardment. 
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CHAPTER FIVE 
 

Summary and Future Directions 
 

 

The regulated expression of genes is critical for all forms of life to effectively 

survive and thrive in their environments.  Gene expression may change in response to 

physical signals from the environment, interactions between species, and signals within 

an organism.  Altering DNA structure, transcriptional modifications, stability or 

translation of mRNA, and post-translational modification of proteins are all examples of 

the many levels of regulatory mechanisms employed by organisms.   

After transcription, pre-messenger RNA (pre-mRNA) must undergo substantial 

processing before it can be exported from the nucleus to the translation machinery.  This 

processing, as well as transcription itself, must be coordinated for efficient and regulated 

gene expression to occur.  Pre-mRNA processing events include capping, splicing and 

polyadenylation.  In addition, mRNA and protein diversity can arise through variations in 

post-transcriptional processing leading to multiple isoforms generated from single genes.  

Regulation of transcription, as well as mRNA stability and export, are important factors 

in regulating expression levels of a gene. 

 Polyadenylation has been shown to require a complex assembly of protein factors 

at the 3’-end of the pre-mRNA (Wahle and Ruegsegger, 1999; Zhao et al., 1999a).  The 

enzyme responsible for catalyzing the poly(A) tail is poly(A) polymerase (PAP).  This 

enzyme belongs to a family of related nucleotidyltransferases and is a single 

enzymatically active polypeptide (Wahle and Ruegsegger, 1999; Minvielle-Sebastia and 

Keller, 1999; Zhao et al., 1999a; Edmonds, 2002).  Poly(A) polymerases can be found in 

both the nucleus and cytoplasm of eukaryotic cells.  Cytoplasmic PAPs can add 

additional adenosine residues to mRNAs that had previously undergone polyadenylation 

in the nucleus.  This additional regulation of poly(A) tails has been found to be critical 

for diversity of developmental decisions (Wickens et al., 2000; Richter, 2000). 

Unlike poly(A) polymerases from plants, which are just beginning to be described 

(Hunt, 2000; Addepalli et al., 2004), poly(A) polymerases from yeast and mammals have 

been well characterized (Zhao, 1999a; Wahle and Ruegsegger, 1999;).  It has long been 
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known that PAPs exist in many plants species (Sachar, 1968; Mans and Huff, 1975; 

D’Alessandro and Srivastava, 1985; Burkhard and Keller, 1974; Kapoor et al., 1993; 

Verma and Sachar, 1994; Lisitsky et al., 1996; Das Gupta et al., 1995; Li et al., 1996; 

Hunt, 2000).  We have recently identified four PAP genes (PAP I-IV, corresponding to 

chromosomes I-IV) in Arabidopsis thaliana by in silico analysis of the Arabidopsis 

genome using bovine PAP data.  There is a high degree of amino acid conservation 

between the Arabidopsis PAPs and the bovine PAP especially in the N-terminal portions 

of the proteins but the C-termini show great variability when compared to each other and 

to the bovine PAP (Figures 1.5 and 1.6).  Three of the four PAPs (PAP I, PAP II and PAP 

IV) are 700-800 amino acids (~83-95 kDa) in size and contain a definable nuclear 

localization signal.  The fourth PAP (PAP III) appears much smaller (482 amino acids, 57 

kDa) and is missing the nuclear localization signal (Hunt, 2000; Addepalli et al., 2004; 

Figures 1.5 and 1.6).  Furthermore, each of the Arabidopsis PAP genes produce 

functional enzymes as demonstrated in non-specific polyadenylation assays and each is 

found in potentially alternatively spliced forms (Addepalli et al., 2004; Figure 1.7).  

Northern blot and RT-PCR analysis also indicate that these forms are differentially 

expressed in various plant tissues in unique and overlapping patterns (Figure 1.7).  These 

findings indicate that each of the PAPs may play an important and distinct role in the 

regulation of gene expression (Hunt, 2000; Addepalli et al., 2004).   

 Results presented here add to our understanding of the four Arabidopsis PAP 

genes.   In summary, gene expression analysis was done using in silico analysis and the 

fusion of the 5’ UTR from each PAP gene to the β-glucuronidase (GUS) reporter gene, 

which was subsequently transformed into Arabidopsis plants.  These results showed 

unique and overlapping gene expression profiles which imply that these genes are not 

redundant and may play unique roles within the plant (Chapter 2; Figures 2.3, 2.4, 2.5, 

2.6, 2.7, 2.8, 2.9, 2.10 and 2.11; summarized in Tables 2.1, 2.2 and 2.3).  These results 

were further substantiated in chapter three where analysis of gene knockout (T-DNA and 

RNAi) plant lines showed that each of the PAP gene products is necessary for plant 

viability (Table 3.3; Figures 3.3 and 3.4).  Finally, determination of cellular localization 

was attempted for the four PAPs.  PAP I, PAP II and PAP IV were all localized to the 

nucleus of onion epidermal cells (Chapter 4; Figures 4.2, 4.3, 4.4) and more specifically, 
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were localized within speckles of the nucleus (Figure 4.5).  Transformation of PAP 

III::GFP constructs lead to onion cell death and cellular localization of PAP III could not 

be determined.       

These results have given insights to the gene expression and essentiality for each 

Arabidopsis PAP gene but many questions remain to be answered.  The results from 

chapter two begin to address the expression profiles for the PAP genes but they do not 

allow for unique expression patterns of alternatively spliced variants.  To gain a full 

understanding of how each of these genes participates in polyadenylation and gene 

regulation, it is important to understand how each alternatively spliced transcript is 

expressed within the plant.  Two methods of determining these expression patterns that 

could be employed are in situ hybridization and further utilization of the gene chip 

technology.  In both cases, the first step would involve identifying and cloning each of 

the variants to be used as probes in these studies.  In situ hybridization can be used to 

detect individual nucleic acids using specific RNA probes in both individual cells as well 

as in tissue sections.  In the second strategy, alternatively spliced variants could be used 

as probes in microarray analysis.  This technology can distinguish transcripts that are up 

to 90% identical.  Therefore, using portions of the variants that are significantly unique 

between family members would allow for the expression pattern of each variant to be 

monitored.   

While both of these techniques could provide important clues to the expression 

patterns of each PAP gene, limitations do exist.  For example, isolating and cloning each 

of the alternatively spliced variants could prove to be very difficult and time consuming 

in that some forms of the gene products may be in low abundance, unstable or may only 

be produced at specific times during the life of the plant or at a specific location within 

the plant.  Also, particular environmental cues may lead to alternative forms that would 

not be present in plants unexposed to these specific environments.     

 Another interesting avenue of study and one that would provide insight into the 

regulatory mechanisms governing PAP gene and protein expression and function, is an in 

depth analysis of each of the PAP promoter regions.  Promoter regions are the DNA 

sequences, usually directly 5’ to the coding sequence, which are required for basal and/or 

regulated transcription of a gene and are generally known as cis-acting elements.  These 
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elements function as binding sites for effector proteins, called transcription factors (TFs).  

It is the interaction of suitable sets of TFs with the promoter sequence that allows for the 

transcriptional initiation complex to be formed (Zawel and Reinberg, 1995).  Many 

promoters are composed of modular units that convey specific functionality to the 

promoter in specific signaling pathways and in tissue specific manners (Firulli and Olson, 

1997).  Also, orientation and distances between the TF binding sites may affect 

transcription initiation (Klingenhoff et al., 1999; Kel et al., 1999).  

While there are many techniques available for this type of analysis, I will only 

discuss a few.  In silico analysis can be use to find known transcription factor binding 

sites and cis-acting elements but, in many cases, cannot take into account the flexibility 

of promoter modules.  Deletion analysis and saturation mutagenesis, in which a library of 

mutations within the promoter sequence is generated, could be used to identify and 

evaluate cis-acting elements within the promoter.  Finally, gel retardation assays could be 

used to determine whether a specific nuclear protein binds to a promoter fragment that 

contains different combinations of cis elements and, if so, determine if they bind to each 

element, one or none.  This type of analysis could aid in determining promoter modules.  

Unfortunately, these studies will not allow for a full understanding of the PAP promoter 

regions because regulation of transcription does not depend on cis elements alone.  The 

structure of the DNA itself can affect transcription by either allowing or preventing 

accessibility of the binding sites.  While the DNA structure can be predicted in silico, 

these predictions are still in their infancy.    

The exact role of each of the PAPs in Arabidopsis remains unclear.  Results from 

plants containing gene knockouts showed that each of the PAPs is essential for plant 

viability  (Chapter 3; Table 3.3; Figures 3.3 and 3.4) but further investigations are needed 

to determine the functions of each gene product.  T-DNA mutagenized plants with 

insertions in the PAP I, PAP II and PAP IV genes all showed segregation ratios of 2:1 

and for PAP III a 1:1 ratio was found (Table 3.3).  For PAP I, PAP II and PAP IV, the 2:1 

ratio suggests that these genes may be involved in embryo development or seed viability.  

As no homozygous plants were identified for these mutagenized genes, determining 

where the initial effect of the missing PAP gene product has on these homozygous plants 

will provide further insights on functions of these genes’ products.  The first step in 
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determining if homozygosity leads to embryo lethality or a mutation in seed viability is to 

observe T-DNA mutant plants to determine if abnormal embryos can be identified.  If 

abnormal embryos exist, then the mutation is probably embryo lethal.  To substantiate 

this hypothesis, single-embryo RT-PCR could be carried out to determine if abnormal 

embryos contain only the disrupted allele.  If this is the case, then these embryos are 

homozygous for the mutant PAP gene.  Abnormalities in these seeds can be investigated 

using microscopy to compare normally developing seeds to those that appear abnormal.  

These observations may provide insights into what stage of seed development was 

affected by lack of the PAP gene product.  If embryos appear normal, germination of the 

seeds can be carried out and ratios of germinated and un-germinated seeds can be 

obtained.  Homozygous seeds, lacking the functional PAP gene product, should constitute 

one fourth of the seed population.  These un-germinated seeds can also be tested using 

RT-PCR to confirm this result.  Further insights into when PAP genes are expressed 

during seed development can be done with RT-PCR using RNA extracted from wild type 

Arabidopsis seeds during different stages of development.   

In PAP III mutants, a segregation ratio of 1:1 (Table 3.3) was observed indicating 

that this may be a gametogenic mutation.  However, it is not known if this mutation is 

associated with male or female gametogenesis.  Promoter expression analysis of the PAP 

III promoter showed GUS expression in both the stigma and mature pollen (Figure 2.8; 

Table 2.3).  Therefore, we are unable to predict whether it is the male or female 

gametogenesis that is affected by the loss of the PAP III gene product.  To answer this 

question, reciprocal backcrosses between wild type plants and the T-DNA mutant lines 

will be required.  If transmission of the mutation is through the male, the backcross 

between wild type pollen and a heterozygous plant should give an F2 ratio of 1:1.  If the 

mutation were through the female, then this cross would only yield wild type plants. 

 Insights into gene regulation and function can also be found by determining the 

subcellular localization of the genes products.  Subcellular localization of proteins 

determines their ability to interact with other proteins in their local environments.  

Results from chapter four suggest that PAP I, PAP II and PAP IV localize to the nucleus 

of onion epidermal cells as was expected due to the presence of the nuclear localization 

signal found within the predicted gene products.  More specifically, these proteins could 
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be found throughout the nucleoplasm as well as in speckled bodies within the nucleus 

(Figures 1.6, 4.2, 4.3, 4.4 and 4.5).  Subcellular localization for PAP III, however could 

not be determined as transformation of PAP III::GFP (green fluorescent protein) 

constructs into onion epidermal cells presumably led to cell death due to over expression 

of the PAP III gene product (Chapter 4 results).  These results were obtained by fusing 

the full-length cDNA from each PAP gene to GFP.  Therefore, there exists the possibility 

that alternatively spliced variants from each gene may be localized to different areas 

within cells.  To determine if this is the case, these experiments would have to be 

repeated using these variants.  This may also allow for the determination of the PAP III 

gene product.  

 Further experiments to determine exactly where PAP I, PAP II and PAP IV are 

localized within the nucleus could also aide in determining where, and perhaps how, 

polyadenylation takes place within the nucleus.  Several structures have been identified 

within the nucleus that give rise to this type of speckling and include cleavage bodies, 

Cajal/coiled bodies, splicing speckles and paraspeckles (Chapter 4 discussion).  To 

determine were the PAP I, PAP II and PAP IV gene products localize within the nucleus, 

co-transformations with the PAP::GFP constructs and constructs containing proteins, 

specific for each nuclear structure, fused with a differing florescent protein, would have 

to be done.   

What role each of the four PAPs plays within the Arabidopsis plant and 

throughout its life cycle has yet to be fully understood.  However, due to the alternate 

splicing variants and the unique and overlapping gene expression profiles, their 

participation in polyadenylation and gene regulation will, more than likely, be complex 

due to the necessity for adaptation and survival in a multitude of environments.  This 

complexity allows the organism to quickly alter and finely control its responses to the 

environment and it is evident that continuing research on these four PAPs is needed in 

order to understand what role each plays in gene control.  

What might be the reasons for the existence of multiple PAP genes in Arabidopsis 

thaliana?  Perhaps each of the proteins contain distinctive properties that allow cells to 

fine tune the efficiency of 3’-end polyadenylation or to exercise greater control upon the 

poly(A) tail length of specific genes and thus provide additional regulations of RNA 
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stability.  On the other hand, each of the PAPs may be functionally equivalent to one 

another but permit specific quantitative controls of PAP levels in individual tissues and/or 

cell growth states.  PAP levels were shown to be tightly regulated (Zhao and Manley, 

1998).  Therefore, using more than one PAP may allow greater control under many 

unique conditions.  In this study, we found that each of the Arabidopsis PAP genes shows 

unique and overlapping expression patterns, each is essential for plant viability and the 

PAP I, PAP II and PAP IV gene products are localized within the nucleus. 
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