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ABSTRACT OF DISSERTATION

CREATION OF A BACTERIAL MUTAGENICITY ASSAY
HIGHLY SENSITIVE TO DIALKYLNITROSAMINES

Although dialkylnitrosamines are environmentally significant carcinogens, the use of

short-term bioassays to assess the mutagenic potential of these compounds remains

problematic.  The Ames test, a mutagenicity assay based on the reversion of Salmonella

typhimurium histidine auxotrophs, is the most widely used bioassay in genetic

toxicology, but the traditional Ames tester strains are largely insensitive to

dialkylnitrosamine mutagenicity.  I have constructed several mutagenicity tester strains

that co-express combinations of full-length human cytochrome P450 2E1, rat cytochrome

P450 reductase, and human cytochrome b5 in S. typhimurium lacking ogt and ada

methyltransferases (YG7104ER, ogt-; and YG7108ER, ogt-, ada-).

These new strains are susceptible to dialkylnitrosamine mutagenicity in the absence of an

exogenous metabolic activating system (S9 fraction).  Mutagenicity is dependent upon

the coexpression of P450 2E1 with P450 reductase and is similar or greater than that

obtained with the parental strains in the presence of S9 fraction from ethanol-induced rat

liver.  Coexpressing human cytochrome b5 with cytochrome P450 2E1 and cytochrome

P450 reductase potentiates the mutagenicity observed with dialkylnitrosamines. These

strains were sensitive to nitrosamines with varying alkyl side chains, including

dimethylnitrosamine, diethylnitrosamine, dipropylnitrosamine, and dibutylnitrosamine.

Mutagenicity decreased with alkyl chain length, consistent with the stringency of the

ada-encoded enzyme for methyl and ethyl DNA adducts.  These new strains may prove

useful in the evaluation of nitrosamine contamination of food and environmental samples,



and may serve as useful tools in investigating the molecular properties of proteins in the

cytochrome P450 monooxygenase system.
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CHAPTER ONE

Background

The Ames Assay

One of the greatest challenges facing modern science is developing diagnostic and

predictive assays to determine the safety of substances in humans.  Issues including

accuracy, sensitivity, selectivity, and reproducibility must be carefully weighed when

evaluating or developing appropriate models for human safety.  Technical ease of use,

economics, and easily quantifiable results can also have an influence on the adoption of

methodologies.  Each of these factors has played a role in the wide acceptance of

bacterial-based mutagenicity assays.

The earliest useful bacterial mutagenicity assays were reversion or forward mutation

assays developed using Escherichia coli.  Initially, there was great excitement concerning

the use of these assays in predicting human carcinogenicity.  However, as scientists

began to further understand the process of chemical mutagenicity and carcinogenicity the

limitations of these bacterial assays soon became apparent.

In the late 1960s and early 1970s, Bruce Ames, Ph.D., applied his knowledge of the

histidine operon in the Salmonella typhimurium LT-2 strain to the development of the

first widely-accepted, in vitro, bacterial-based mutagenicity assay.  The Ames test, as it

became known, utilized the chemically induced reversion of histidine auxotrophs as an

indicator of mutagenic potential.  Ames and his colleagues produced a number of S.

typhimurium his¯ mutants that could be reverted to his+ prototrophy by either frameshift

or base pair mutations.  The genotypes of these strains are listed in Table 1.  The

frameshift strains are derivatives of an acridine dye-induced –1 base pair frameshift

mutation, hisD3052 [1].  The base pair substitution strains are derived from the hisG428

and hisG46 mutants [1].  In order to increase the sensitivity of these S. typhimurium

strains to chemical mutagens, several other genes were altered including uvrB, gal, and

rfa.  The uvrB deletion eliminated the endogenous excision repair system, thereby

increasing the susceptibility of these strains to mutagens.  The gal and rfa mutations
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removed the polysaccharide side chain of the lipopolysaccharide (LPS) cell wall,

resulting in a nonpathogenic bacterial cell more permeable to test compounds.

Further modification of some tester strains included introduction of plasmid pKM101,

which contains the mucAB operon. The mucAB (mutagenesis, UV, and chemical) genes

encode two proteins of the SOS response responsible for mutagenesis promotion [2]. The

SOS response describes an adaptive reaction to DNA damage in prokaryotes mediated by

more than 20 genes, most of which are involved in functions that promote the survival of

DNA-damaged cells [3]. The MucA (16 kDa) and MucB (46 kDa) members of the SOS

family are proteins which increase mutagenesis by interacting with the DNA replication

apparatus and enable the conversion of lesions into mutations via replicative bypass.

Replication bypass allows the cell to finish chromosome replication despite severe,

replication-blocking DNA damage that would otherwise be lethal.  Two of the most

commonly used Ames test S. typhimurium strains, TA98 (which detects frameshift

mutations) and TA100 (which detects base-substitution mutations), contain pKM101.

Another important component of the Ames test was the addition of rat liver homogenates,

particularly from animals treated with substances that induce cytochrome P450 (CYP)

enzymes, to the assay mix.  These homogenates provided a source of metabolic enzymes

that activated promutagens to their reactive form, thus making the assay more relevant to

in vivo mammalian models of carcinogenicity.  Later modifications included the use of

rat or human microsomes [4, 5], S9 fraction (postmitochondrial supernatant remaining

after centrifugation at 9,000 g) [4, 5], cell extracts from human CYP-expressing cell lines

[6-8], or purified human liver enzymes [9].

The traditional Ames test (detailed in Figure 1) gained wide acceptance in the 1970s and

has become the most widely used screening tool for mutagenicity in the chemical and

pharmaceutical industries.  The primary force behind the extensive use and popularity of

the Ames test and other bacterial mutagenicity assays (Table 2) has been their ease of

use, low costs, and their initial promise of qualitative predictability for cancer in rodents

and, by extension, humans.  Over the past few decades, a tremendous number of
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compounds have been examined using the Ames test.  Depending upon the number and

nature of substances examined, the positive predictivity of carcinogenicity using the

Ames test can range from 69-100%, while the concordance of these compounds to cancer

in rodents can vary from 61-66% (detailed in Table 3) [10].

The difficulty of the Ames test, as it is traditionally performed, to accurately predict human

mutagenicity and carcinogenicity highlights some of the significant problems with this assay.

Of greatest relevance to human risk assessment is the use of laboratory rats as a source of the

activating enzyme preparation.  A rapidly expanding body of evidence indicates that rodent CYPs

and other activating enzymes are poor models for the corresponding human enzymes [11].

Examples of  species differences in CYP-catalyzed metabolism include the activation of the 7,8-

diol of benzo(α)pyrene by CYP3A enzymes in humans and CYP1A1 in the rat [12]; the

inactivation of dinitropyrenes by CYP3A enzymes in humans and CYP1A enzymes in the rat [13];

and the inability of human CYP1A2 to activate the pneumotoxin 3-methylindole, in contrast to the

high activity obtained with mouse CYP1A2 [14].  To circumvent these species-specific differences,

the S9 fraction can be prepared from human liver, but for many investigators this is not feasible due

to the difficulty of human tissue procurement.  Moreover, the CYP content is usually low and is not

amenable to experimental induction in notable contrast to rats.

A second disadvantage to this system is the undefined nature of the S9 fraction.  This high-speed

supernate of a liver homogenate contains the cytosolic and microsomal (endoplasmic reticular)

fractions, from which nuclei and mitochondria have been removed by sedimentation.  The enzyme

and cofactor composition of this crude preparation is only poorly understood. Consequently, the use

of this “black box” mixture tells the investigator nothing about which enzymes are responsible for

the activation of a given test compound, nor about the chemical modification that converts the

substance to an active mutagen.  In an effort to more narrowly delineate the enzymes involved in

the activation of many mutagens, some groups have substituted the microsomal fraction for the S9

preparation [15-18].  However, the endoplasmic reticulum remains a complex mixture of enzymes,

including multiple forms of CYP, and has not assisted investigators in better defining complex

biotransformations and sequela.  Purified liver enzymes have also been used in systems

reconstituted with coenzymes and cofactors to activate mutagens [9, 19, 20].  This method has the
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advantage of defining which liver enzymes are responsible for activation of a given chemical;

however, the purification of human enzymes is labor intensive, limited by the availability of human

liver tissue, and limited by the ability to purify the active form of a given human enzyme.  Thus,

although this approach is valuable, it is not generally appropriate for routine testing of chemicals by

most laboratories.

A third disadvantage to the traditional Ames test is the obligate metabolic activation of mutagens

outside the bacterial cell.  This activation must be followed by the transport or diffusion of these

highly reactive, short-lived intermediates across the bacterial cell wall, the periplasmic space, and

finally the cell membrane in order to react with the bacterial DNA inside the cell.  This arrangement

of barriers to cellular entry is a dubious model for other mammalian cells such as hepatocytes or

epithelial cells, although the DNA in eukaryotic cells is also compartmentalized within the nucleus.

For instance, it has been found that addition of benzo(α)pyrene-7,8-diol-9,10-epoxide, the ultimate

mutagen of benzo(α)pyrene, to the culture media of a DNA repair-deficient mammalian cell line

expressing CYP1A1 was considerably less cytotoxic than the addition of the 7,8-diol, which is

metabolized to the diol-epoxide by CYP1A1 [21].  This argues that the endogenously produced

alkylating species are substantially more toxic than those produced outside the cell.  Of particular

relevance to this dissertation, the mutagenicity of nitrosamines is greatly enhanced in mammalian

cells expressing either CYP2A3 or CYP2E1 [22, 23], as compared to the relatively weak

mutagenicity obtained with these compounds in the traditional Ames test [24-32].  This exogenous

activation also requires larger doses of mutagen to achieve an effect, which can be problematic in

estimating true genotoxic doses [33].  Exposure time to the mutagen is also limited by the

“metabolic lifetime” of the S9 fraction, which is determined by the supply of cofactors and the

maintenance of active enzymes.

Cytochrome P450 Metabolism

As mentioned in the text above, the cytochrome P450 enzymes can be considered a

confounding variable in the predictability of the Ames test.  CYP enzymes constitute a

superfamily of heme monooxygenase enzymes found in a number of species from

bacteria to humans [34].  CYPs were named after their ability to bind carbon monoxide,

which resulted in a unique absorbance spectrum with a maximum absorption at 450 nm
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[35].  Individual CYPs are named by the abbreviation CYP followed by the family

number of the gene which encodes the enzyme (e.g. CYP17, CYP21) [36].  Families, by

definition, are CYP gene sequences with >40% identity.  This family number can be

followed by a subfamily designation indicated by a capital letter (e.g. CYP3A, CYP2E).

Subfamily members have >55% sequence identity.  An Arabic numeral following the

subfamily designation (e.g. CYP3A4, CYP2E1) denotes individual members of a

subfamily.  Members must differ in their sequences by more than 3%.

P450s are involved in the metabolism of many drugs, endogenous compounds, and

xenobiotics.  They are capable of catalyzing a number of different reactions including

hydroxylation, peroxidation, epoxidation, deamination, N-, O- and S-dealkylation,

sulfoxidation, desulfuration, dehalogenation, and N-oxide reduction.  Their substrates are

as diverse as their catalytic ability.  Endogenous substrates include steroids, fatty acids,

and prostaglandins, but P450s also commonly metabolize foreign substances such as

organic solvents, drugs, ethanol, pesticides, and alkyl and aryl hydrocarbons.  P450-

mediated reactions typically follow this basic formula: RH + O2 + 2e� → R-OH + H2O.

Driving the catalytic cycle of CYP is an important protein named NADPH-cytochrome

P450 reductase (CPR).  CPR is an integral membrane flavoprotein that catalyzes the

transfer of electrons from NADPH to P450 and is essential to the function of the

microsomal CYP system.  CPR is unique in that it is one of only three mammalian

enzymes known to contain both flavin adenine dinucleotide (FAD) and flavin

mononucleotide (FMN), the other being various forms of nitric oxide synthase and

methionine synthase reductase.  In addition to CYPs, CPR is also capable of transferring

reducing equivalents to several other heme proteins, such as cytochrome c, heme

oxygenase, and cytochrome b5.  CPR was first observed in whole liver in 1950 and in

microsomes by Strittmater and Velic in 1956 [37, 38].  CPR has been identified in a

number of species and exhibits a high degree of sequence identity across species.

Detailed studies of the mechanism of electron flow through CPR have demonstrated that

electrons from NADPH are transferred first to FAD and then to FMN before being
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transferred one by one to the heme of CYP.  These electrons can be used at two points in

the reaction cycle: once early in the cycle reducing the ferric (3+) iron atom to a ferrous

(2+) state, and later in the cycle by reducing the oxy complex to a peroxy complex.

CYPs and CPR work in concert to oxidize substrates, such as nitrosamines, into their

mutagenic forms.

Human Enzymes in Bacterial Systems

In an effort to better emulate human metabolism and increase the relevancy of results in

bacterial mutagenicity assays, investigators have expressed human xenobiotic-

metabolizing enzymes in bacterial tester strains (summarized in Table 4).  Indeed, there are

now numerous examples of enhanced cytotoxicity and mutagenicity in test systems in which the

activating enzymes are expressed within the target cell [11, 33, 39-41].  A large number of

mammalian biotransformation enzymes have been expressed in bacteria, including those

responsible for phase I and phase II type metabolism [40]. The expression of these

enzymes in the appropriate tester strain has greatly increased the utility of these assays.

Even non-bacterial systems that combine the expression or “over-expression” of a

particular mammalian biotranforming enzyme with a specific genetic target are becoming

increasingly popular tools in genotoxicity assessment.

Bacterial assays have the advantages of being easy to perform, a good vehicle for

heterologous enzyme expression, low in cost, amenable to high-throughput technology,

and benefit from a large, extensively validated, historical database.  Bacterial assays

suffer from issues such as the need for expression of coenzymes and the relevance of the

bacterial DNA target to human risk assessment.  Mammalian cell-based systems, on the

other hand, address these limitations, but can be problematic to culture, difficult to

maintain enzyme expression, and require extensive validation prior to accepting the data

as reliable.

N-nitrosamines in the Ames Test

N-nitrosamines are a sizeable and varied family of natural and synthetic compounds

having the general formula (R1)(R2)N-N=O.  Characteristically liquids, oils, or volatile

solids, nitrosamines and their precursors are widely distributed in the environment.
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Humans are commonly exposed to these compounds via a variety of sources including

air, soil, water, and diet.

The potency of nitrosamines in causing acute tissue injury and death varies significantly.

Structure and molecular weight play a large role in determining the acute toxicity of

nitrosamines.  Small molecular weight dialkylnitrosamines tend to be the most potent of

this chemical class in terms of acute lethality, while the larger molecular weight cyclic

nitrosamines are the most well tolerated at acute doses.  The single-dose, oral LD50 of

nitrosamines in rats can range from 20 to greater than 5000 mg/kg, with most compounds

having an LD50 of between 150 and 500 mg/kg [42].  The liver is the chief organ

damaged upon exposure to low molecular weight nitrosamines, commonly causing

centrolobular necrosis with hemorrhage [43].

Despite the disturbing effects of acute nitrosamine exposure, chronic exposure remains

the most studied and most relevant to human risk assessment.  As with the acute toxicity

of nitrosamines, the impact of structure and molecular weight on the chronic potency of

nitrosamines can be profound.  The low molecular weight dialkylnitrosamines tend to be

more potent mutagens and carcinogens than the complexly branched, high molecular

weight nitrosamines.  Chronic exposure of nitrosamines has similar effects on a wide

variety of species.  Approximately 90% of 300 tested nitrosamines caused tumor

formation in laboratory test animals [44, 45].  Animals studied included mammals, birds,

fish, and amphibians.  Of the approximately 40 animal species tested, none were resistant

to nitrosamine carcinogenicity.

Many dialkylnitrosamines are potent mutagens and carcinogens in rodents as well as

powerful alkylating agents in humans [46-48].  Humans are exposed to

dialkylnitrosamines from a variety of sources including tobacco products, preserved

meats, alcoholic beverages, and industrial solvents [49, 50].  Nitrosamines may also

contribute to human cancer and there is particular concern that tobacco specific

nitrosamines are causative agents in human lung, esophageal, and oral cancer [51].

Nitrosamine effects have been demonstrated in 29 organs.  The tissue affected appears to
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be dependent upon structure of the compound, the dosage, and route of administration.

The predominant sites of tumor formation include the liver, kidney, esophagus, pancreas,

stomach, gut, urinary bladder, nasal cavities, brain and nervous system, oral cavity, lungs,

heart, skin, and hematopoetic system.

Despite the well-documented mutagenicity and carcinogenicity of dialkylnitrosamines in

mammals, the exact mechanism of nitrosamine activation and resulting carcinogenicity

remains controversial.  Despite the debate concerning the precise sequence of electronic

and molecular rearrangements and the exact nature of the final mutagenic species, there is

strong evidence in the literature for the basic nature of the reaction (Figure 2) [52]. The

metabolism of small molecular weight dialkylnitrosamines initially involves the

enzymatic hydroxylation of the carbon atom immediately adjacent to the N-nitroso group

(α-carbon) by members of the cytochrome P450 family (namely CYP2E1 or CYP2A6)

[53-55].  This oxidation results in an unstable product (α-hydroxydialkylnitrosamine) that

rapidly decomposes to an aldehyde and a diazohydroxide.  The latter dissociates to a

diazonium hydroxide and ultimately to a carbonium ion and molecular nitrogen. The

diazohydroxide and subsequent intermediates are highly electrophilic. Their major

reaction is with water yielding an alcohol, but they also react with DNA to produce a

variety of alkylated DNA bases.  Detoxification by denitrosation competes with this

metabolic activation process [56]. The denitrosation is also catalyzed by P450 and results

ultimately in the production of nitrite, an aldehyde, and a primary amine [57, 58].  It is

generally believed that the highly reactive carbonium ion is the ultimate alkylating agent

and mutagen, preferentially reacting with DNA at the O6 position of guanine residues

[59].  The methylated DNA damage is then misrepaired resulting in a G:C → A:T

transition and, ultimately, carcinogenicity [60].

Members of the cytochrome P450 family of enzymes were first associated with

nitrosamine metabolism in 1973 when it was demonstrated that carbon monoxide and

monochromatic light at a wavelength of 450 nm could severely inhibit the demethylation

of dimethylnitrosamine (DMN) by mouse liver microsomes [15].  Tu, et al., was the first

to implicate CYP2E1 (then known as P450 LM3a, P450et, or ethanol-inducible P450) as
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the chief enzyme responsible for metabolizing DMN by examining the rate of DMN

demethylation in purified liver microsomes isolated from ethanol-treated rats [57].  This

observation was also seen in rabbits [54] and humans [61].  More recently, CYP2A6 has

also been associated with the metabolism of nitrosamines in humans [62].

Historically, the utilization of bacteria-based assays to predict the mammalian

mutagenicity of nitroso compounds, particularly N-nitrosamines, has proven difficult [24,

25, 27-32, 63, 64].  N-nitrosamines, known carcinogens in rats and suspected carcinogens

in humans, commonly yield negative results in the traditional Ames test. Indeed, this

problem was apparent as early as 1977 when Meselson and Russell found that the

correlation between compounds found to be mutagenic in the Ames test to those which

are known to be carcinogenic in rats dropped from 0.94 to 0.36 when nitroso compounds

were considered [65].  These data highlight the problematic nature of using in vitro

models to predict in vivo mutagenicity and carcinogenicity.

Overview of Rationale and Objectives

The efficacy of a predictive in vitro bacterial model for nitrosamine mutagenicity is

reliant on many variables including: (a) the homologous metabolism of the promutagen to

its active, mutagenic form, (b) the concentration of the mutagenic species in the test

system, (c) the fraction of the mutagenic species which permeates into the tester strain,

(d) the fraction of the mutagenic species which produces DNA adducts, (e) the fraction of

the DNA adducts that are not repaired, (f) the efficiency of each DNA adduct at

generating mutations, and, (g) the probability that the mutation will occur at a site which

leads to a phenotypic change [32].  Issues with components of each of these factors have

plagued the efforts of investigators in utilizing bacterial-based systems to predict the

mutagenicity of nitrosamines.  I will attempt to identify the chief confounding factor(s)

involved in this process and propose a new test system which alleviates the obstacles to a

bacterial-based mutagenicity assay that is sensitive to nitrosamine mutagenicity.

Given variables above, careful experimentation is required to establish the role and

impact of each factor or series of factors on the process of nitrosamine mutagenicity in
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bacterial assays.  Each variable outlined above plays a critical role.  A test system devoid

of any one of these factors would be insensitive to the mutagen.  As described in the

preceding pages, the traditional Ames test is a relatively poor predictor of the

carcinogenic potential of nitrosamines in humans, even in the presence of mammalian

liver S9 fractions or microsomes.  Traditional means of inducing rat liver CYP enzymes

prior to the Ames test, such as administration of Aroclor 1254 (a complex mixture of

polychlorinated biphenyls) or a mixture of phenobarbital and beta-naphthoflavone,

typically fail to increase the level of CYP2E1 in rat liver microsomes or S9 [18].  In fact,

uninduced rats characteristically have higher levels (on a percentage basis) of CYP2E1

present in the liver [66].  Even when high levels of mammalian CYP2E1 are present in

the assay mix, the evaluation of nitrosamine mutagenicity remains problematic [66, 67].

This observation leads one to believe that the factors of homologous metabolism and

mutagenic species concentration mentioned above are essential, however, their impact is

minimal on DMN mutagenicity in the bacterial test system.

It is known that the variables of mutagenic species permeation and the nature of the

ultimate mutagen mentioned above also have an impact on nitrosamine mutagenicity due

to the increased mutagenicity seen with DMN in acidic media.  Early in vitro studies also

revealed that the half-life of the α-hydroxydimethylnitrosamine could be extended from

several seconds to several minutes by lowering the pH of the surrounding medium from

7.4 to 6.5 [68].  This observation was applied to the Ames test using nitrosamines with an

increase in mutagenicity when the assay was performed at a pH of 6.5 [69].  It is thought

that increasing the lifetime of intermediates increases their chance of transportation or

diffusion into the cells.  Another approach to increasing the amount of active metabolite

within a cell is to express the activating enzymes within the target cell itself.  Prior to

metabolism, nitrosamines are comparatively non-reactive and can more easily cross the

cell wall and membrane.  If CYP2E1 were expressed within the target cell membrane,

nitrosamines would be metabolized within the cell in close proximity to the target DNA

without the need for transportation or diffusion into the cell.  Prokaryotic organisms

inherently lack the metabolic machinery necessary to metabolize nitrosamines.
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Nitrosamines are not mutagenic, per se, but must be activated by liver enzymes such as

CYP2E1 and CYP2A6, in order to react with DNA [62].

The fraction of DNA adducts that are repaired during the mutagenic process has not been

fully investigated despite early work recognizing the role of repair in nitrosamine

mutagenicity.  Indeed, as early as 1977 Pegg documented the importance of O6-

demethylase activity in rat liver after DMN treatment [70].  In that study, the alkylation

of liver DNA was examined after administration of DMN to Sprague-Dawley rats.  The

amounts of O6-methylguanine and 7-methylguanine were measured in liver DNA at 4 and

24 hours after treatment. Pegg observed a linear relationship between 7-methylguanine

levels and dose of the nitrosamine at both timepoints. In contrast, the corresponding

levels of O6-methylguanine were not directly proportional to dosage but were less than

expected.  Evidence was obtained to support the hypothesis that these results were due to

an enzymatic removal of O6-methylguanine from liver DNA.  More recently, Yamada, et

al., constructed two bacterial strains derived from the popular S. typhimurium TA1535

Ames tester strain that lack the ada and ogt genes [71].  The ada and ogt genes code for

two O6-methylguanine DNA methyltransferases that repair alkylation damage in DNA.

These new strains give investigators an opportunity to explore the roles DNA repair plays

in nitrosamine mutagenicity.  The new strains also reveal that the efficiency of each DNA

adduct at generating mutations is not a rate-limiting factor in determining nitrosamine

mutagenicity given that methylating agents that require no metabolic activation, such as

N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), elicit a strong mutagenic response in the

bacteria.

Insuring that a mutation will occur at a site that leads to a phenotypic change also plays a

crucial role in nitrosamine mutagenicity; however, the currently available bacterial tester

strains have already been optimized to insure that mutations will occur at such “hot

spots” [72, 73].  It is doubtful that any further alterations in the bacterial genome would

result in more sensitive strains in this regard.
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It should also be noted that the enzymatic activity of CYP2E1 could be augmented by

cytochrome b5, a heme-containing coenzyme capable of providing reducing electrons to

the heme of CYP enzymes.  The interactions between CYP2E1 and cytochrome b5, and

the effects of cytochrome b5 on the CYP2E1-mediated metabolism and associated

mutagenicity of nitrosamines are only poorly understood.

In order to produce an assay that optimizes nitrosamine mutagenicity by addressing the

aforementioned variables, three objectives are proposed for the studies described herein.

Objective #1: Express human CYP2E1 and CPR in an appropriate bacterial tester

strain for nitrosamine mutagenicity assessment.

Objective #2: Determine the mutagenic potency of dimethylnitrosamine,

diethylnitrosamine, dipropylnitrosamine and dibutylnitrosamine in the

CYP2E1/CPR coexpressing tester strains.

Objective #3: Examine the effect of cytochrome b5 coexpression on nitrosamine

mutagenicity in the CYP2E1/CPR coexpressing tester strains.
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his D6610 his D3052 his G46 hisG428 LPS Repair R-factor
TA90 TA1538 TA1535 rfa uvrB - R
TA97 TA98 TA100 rfa uvrB + R

TA1978 TA1975 rfa + - R
TA110 TA94 TA92 + + + R

TA1934 TA1950 + uvrB - R
TA2410 + uvrB + R

TA89 TA1964 TA1530 gal uvrB - R
TA2641 TA2631 gal uvrB + R

TA102 rfa + + R

Histidine Mutation
Table 1: Genotypes of common Ames tester strains

Adapted from Maron and Ames, 1983 [73].
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Assay Name Bacterium Mutation Type LPS Excision Repair Genetic Target Mutator Plasmid Reference

Ames test S. typhimurium reversion rfa uvrB/uvr+ his pKM101 Maron, et al., 1983

WP2 test E. coli reversion rfa, rfa+ uvrA trp pKM101 Venitt, et al., 1984

K12/343/112 E. coli reversion/forward rfa, rfa+ uvrB several pKM101 Mohn, et al., 1984

AraR test S. typhimurium forward rfa uvrB arabinoseS pKM101 Ruiz-Rubio, et al., 1985

SOS Chromotest E. coli induction rfa uvrA SOS response None Quillardet, et al., 1985

Umu test S. typhimurium induction rfa uvrB SOS response None Oda, et al., 1985

MX100 E. coli reversion rfa uvrA arg pKR11 Kranendonk, et al., 1996

Table 2: Common Bacterial Mutagenicity Assays

Adapted from Kranendonk, et al., 2000 [40].
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Table 3: Comparison of group statistics between 73 42 115
chemical databases and within their combination chemicals chemicals chemicals
Ames test positives (%) 33 29 32
Carcinogenic in rodents (%) 60 56 59
Positive predictivity (%) 83 100 89
Negative predictivity (%) 51 62.00 55
Sensitivity (%) 45 52 48
Specificity (%) 86 100 91
Concordance with rodent cancer (%) 62 73 66
Significance of association (P  value) 0.004 <0.001 <0.001
Taken from Fetterman, et al, 1997 [10].
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Table 4: Mammalian biotransformation enzymes expressed
in bacterial mutagenicity tester strains

Enzyme Form Species Bacterium Genetic Target Ref
Glutathione-S-transferase

GSTT5-5 rat S. typh. his  reversion Their, et al., 1993
GSTT5-5 rat S. typh. umu  induction Oda, et al., 1996
GSTT5-5 rat S. typh. his  reversion Their, et al., 1995
GSTT5-5 rat S. typh. umu  induction Shimada, et al., 1996
GSTA1-1 human S. typh. his  reversion Simula, et al., 1993
GSTP1-1 human S. typh. his  reversion Simula, et al., 1993
GSTT1-1 human S. typh. his  reversion Their, et al., 1996

N-acetyl transferase
NAT1 human S. typh. his  reversion Grant, et al., 1992
NAT2 human S. typh. his  reversion Wild, et al., 1995
OAT bacterial S. typh. umu  induction Oda, et al., 2001

Cytochrome P-450
CYP1A1 human E. coli arg  reversion Kranendonk, et al., 1999
CYP1A1 human S. typh. umu  induction Oda, et al., 2001
CYP1A2 human S. typh. his  reversion Josephy, et al., 1995
CYP1A2 human E. coli lac  reversion Kranendonk, et al., 1999
CYP1A2 human S. typh. umu  induction Oda, et al., 2001
CYP1A2 human E. coli arg  reversion Kranendonk, et al., 1998
CYP2A6 human S. typh. his  reversion Kushida, et al., 2000
CYP2A6 human S. typh. his  reversion Kamataki, et al., 2000
CYP3A4 human S. typh. his  reversion Kranendonk, et al., 1999
CYP3A4 human S. typh. umu  induction Oda, et al., 2001
CYP3A5 human S. typh. his  reversion Kranendonk, et al., 1999
CYP1B1 human S. typh. umu  induction Oda, et al., 2001
CYP2C9 human S. typh. umu  induction Oda, et al., 2001
CYP2D6 human S. typh. umu  induction Oda, et al., 2001
CYP2E1 human S. typh. his  reversion Cooper, et al., 2000
CYP2E1 human S. typh. his  reversion Kamataki, et al., 2000
CYP2E1 human S. typh. umu  induction Oda, et al., 2001

Sulfotransferase
HSTa rat S. typh. his  reversion Glatt, et al., 1998
PSTIV rat S. typh. his  reversion Glatt, et al., 1998
HSST human S. typh. his  reversion Glatt, et al., 1998

HP-PST human S. typh. his  reversion Glatt, et al., 1998
M-PST human S. typh. his  reversion Glatt, et al., 1998

EST human S. typh. his  reversion Glatt, et al., 1998

Adapted from Kranendonk, et al., 2000 [40].
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Test
substance

Bacteria

S9 mix Mix with
top agar

Plate on His selective agar

Low

Medium

High

Doses

Incubate for 48-72 hours
Figure 1: The Ames test procedure.  The appropriate bacterial strain is mixed with the test
substance and S9 fraction, then allowed to incubate at 37°C for 30 minutes.  Molten top
agar is then added to the mixture and spread on histidine-deficient agar plates.  Colonies
are counted after the plates are allowed to incubate for 48-72 hours at 37°C.  The number
of colonies that form is directly proportional to the mutagenic potential of the test
substance.
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Figure 2: Mechanism of dimethylnitrosamine (DMN) metabolism by CYP2E1.
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CHAPTER TWO

Construction of a Nitrosamine-Responsive Salmonella

Test System Expressing CYP2E1 and P450 Reductase

RATIONALE

Nitrosamines are potent mutagens and carcinogens in rodents as well as powerful

alkylating agents in humans [46-48].  Nitrosamines are not mutagenic, per se, but must

be activated by liver enzymes such as CYP2E1 and CYP2A6, in order to react with DNA

at the O6 position of guanine residues [59, 62].  The methylated DNA damage is then

misrepaired resulting in a G:C → A:T transition resulting in, ultimately, carcinogenicity

[60].

In order to better evaluate the carcinogenic risk associated with nitrosamines, I have

created a bacterial reversion mutagenicity assay based on the Ames test [5, 73].

Commonly used Ames test strains, such as TA1535 and TA100, are only weakly

sensitive to dialkylnitrosamine mutagenicity [5, 32, 74].  As mentioned previously in this

work, many factors may contribute to this weak response.  One overlooked cause of

dialkylnitrosamine insensitivity in the traditional Ames assay may be the robust DNA

repair enzymes present in the standard Ames strains.  Most tester strains contain the

genes ogt and ada that code for methyltransferase proteins capable of repairing the

alkylation damage to DNA created by dialkylnitrosamines.  The ogt gene encodes a

constitutive, 19 kDa methyltransferase capable of repairing alkylation damage to the O6

position of guanine and the O4 position of thiamine [75].  The product of ada is an

inducible, 39 kDa methyltransferase which demethylates O6-methylguanine, O4-

methylthiamine and methylphosphotriester [76].  Consequently, the use of bacterial

strains with intact bacterial DNA repair systems could yield misleading results in

mutagenicity assays given the differing DNA repair characteristics and activities of these

bacterial enzymes in comparison to their mammalian counterparts.  Of particular interest

to this work, standard Ames strains, including TA1535, are proficient at repair of

methylated DNA and thus resistant to nitrosamine mutagenicity.  The repair of these

types of mutations appears less efficient in mammalian cells [77].
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The following describes the construction of two S. typhimurium strains that express the

full-length genes for human CYP2E1 and its electron-transfer partner, CPR.  CYP2E1

and CPR were expressed in several of the YG71XX strains created by Yamada, et al.,

which lack the ogt and/or ada methyltransferases involved in DNA repair [71].  By

coexpressing enzymatically active CYP2E1 and CPR in methyltransferase-deficient tester

strains, I am able to demonstrate sensitivity to dialkylnitrosamine mutagenicity even

when used in the absence of an exogenous activating system (S9 fraction).

MATERIALS AND METHODS

Bacterial Strains and Plasmids

Bacterial strains and plasmids used in this chapter are described in Table 5.  Dr. T.

Nohmi (National Institute of Health Sciences, Tokyo, Japan) graciously provided S.

typhimurium strains YG7104 (ogt-) and YG7108 (ogt-, ada-).  Strain TA1535 was

obtained from Dr. Bruce Ames (Department of Molecular and Cell Biology, University

of California, Berkeley, CA).  Plasmids for human CYP2E1 and rat CPR expression were

created as described elsewhere [78].  Plasmids were introduced into the bacterial strains

via electroporation.  Fresh transformants were selected for each mutagenicity assay by

growth on Luria-Bertani nutrient agar plates containing 100 µg ampicillin/mL.

Analysis of Enzyme Expression

Bacterial membranes were prepared as previously described [79].  CYP2E1 and CPR

expression was confirmed by spectroscopic and biochemical analyses.  Proteins were

separated by 10% SDS-PAGE and electrophoretically transferred to nitrocellulose

membranes.  The immunoblots were probed with sheep polyclonal antibody to rabbit

CYP2E1 and sheep polyclonal antibody to rabbit CPR (kindly provided by Dr. Minor

Coon, Department of Biological Chemistry, University of Michigan).  P450 expression

was also verified via CO difference spectrum; P450 reductase expression was quantified

by means of cytochrome c reduction (assuming specific activity of 3 µmol/min/mL = 1
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nmol CPR/mL) [80].  Enzymatic activity could not be reliably quantified in whole cells

or membrane isolates (Appendix A).

Mutation Assays

Reversion assays were performed as described [81].  Freshly transformed single bacterial

colonies were picked and grown overnight in Oxoid Nutrient Broth No. 2 with 100

µg/mL ampicillin at 37°C and shaking at 250 rpm.  Growth at lower temperatures had no

effect on the mutagenicity of dialkylnitrosamines (data not shown).  Cultures were

induced with 1 mM isopropyl-beta-D-thiogalactopyranoside (IPTG) at 10 hours post-

inoculation.  S9 fraction from Aroclor 1254- and ethanol-induced male Sprague-Dawley

rats was purchased from Molecular Toxicology (Annapolis, MD).  The preincubation

assay technique (30 min) was used in all experiments requiring S9.  Preincubation time,

temperature and pH had no effect on dialkylnitrosamine mutagenicity with assays

utilizing CYP2E1 and CPR coexpressing strains (data not shown).  All assays were

performed in triplicate.  Revertant colonies were counted after 72 hours.  See Appendix A

for additional details on development of this assay.

RESULTS

Coexpression of CYP2E1 and P450 reductase in S. typhimurium

CYP2E1 expression in the three S. typhimurium strains was between 17 and 20

nmoles/liter culture as determined from isolated membrane preparations (Table 6) and

was similar to levels obtained previously with the pINIIIompA3 vector [78].  CPR was

expressed at a ratio of 1:2 CYP:CPR.  Immunoblots confirmed the expression of each

protein in these strains (Figure 3).

P450-Expressing Strains are Sensitive to Dialkylnitrosamine Mutagenicity

Dimethylnitrosamine (DMN) was unable to elicit a mutagenic response in strains

TA1535, YG7104 and YG7108 in either the presence or absence of 4% Aroclor1254-

induced S9 (data not shown).  Increasing the concentration of Aroclor1254-induced S9 to
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10% had no effect on DMN mutagenicity, but did increase the number of spontaneous

revertants in each strain.  The use of 4% ethanol-induced S9 did yield a mutagenic

response to DMN in YG7104 and YG7108 strains, although the level of spontaneous

revertants increased in these strains to 50 and 250 revertants/plate, respectively (Figure

4).  Strain TA1535 remained insensitive to DMN.  Increasing the concentration of

ethanol-induced S9 to 10% dramatically increased the number of spontaneous revertants

in YG7104 and YG7108 to unacceptable levels (over 500 per plate).  TA1535 exhibited a

satisfactory spontaneous background (approximately 25 revertants/plate) but remained

insensitive to DMN mutagenicity.

DMN produced a dose-dependent increase in mutagenicity in both strains YG7104ER

and YG7108ER in the absence of S9 (Figure 5) indicating that the coexpression of

CYP2E1 and CPR could substitute for an exogenous activating system in these strains.

In contrast to the methyltransferase-deficient strains, the coexpression of CYP2E1 and

CPR in TA1535 revealed no increase in sensitivity to DMN mutagenicity.  The level of

spontaneous revertants in the ER strains is only slightly higher than that seen in the native

strains (Table 5) and well below that seen in experiments with the native strains and

ethanol-induced S9.  As shown in Figure 6, the mutagenicity of DMN was dependent

upon the simultaneous coexpression of CYP2E1 and CPR.  Strains expressing CYP2E1

alone were only slightly more sensitive than the CYP2E1 non-expressing strains

YG7108, YG7108V and YG7108R.  The mutagenicity of DMN in YG7104ER and

YG7108ER was inhibited in a dose-dependent manner by the addition of ethanol, a

potent inhibitor of CYP2E1 (Figure 7).

Diethylnitrosamine (DEN) mutagenicity closely resembled that of DMN with

YG7108ER being the most sensitive and TA1535ER being non-responsive to the

mutagen (Figure 8).  While cytotoxicity was observed with DEN in strain YG7108ER at

concentrations above 10 µmol/plate, strains YG7104ER and TA1535ER were viable up

to 100 µmol of DEN.  The sensitivity of strains YG7104ER and YG7108ER to

dipropylnitrosamine (DPN) (Figure 9) and dibutylnitrosamine (DBN) (Figure 10)

mutagenicity was very similar.  No mutagenic response was seen in strain TA1535ER for
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either compound.  DPN was cytotoxic at concentrations above 50 µmol/plate in strain

YG7108ER and 100µmol/plate with strains YG7104ER and TA1535ER, whereas DBN

exhibited this effect at concentrations above 10 µmol/plate for YG7108ER and 50

µmol/plate for strains YG7104ER and TA1535ER.

DISCUSSION

The creation of short-term, in vitro genotoxicity assays utilizing heterologously expressed

human xenobiotic metabolizing enzymes has been of great interest in recent years [39].

Various systems have been constructed using CYPs, CPR, CYP/CPR fusion enzymes and

acetyltransferases expressed separately or in combination in many different genetic

backgrounds [82-90].  Each of these systems has shown sensitivity to test compounds

without the need for S9.

This chapter shows the establishment of a reliable, easy-to-use, bacterial reversion assay

that is sensitive to dialkylnitrosamines.  In the past, the Ames test had to be heavily

modified in order to elicit a mild mutagenic response to dialkylnitrosamines.  These

alterations included such modifications as changing the pH of the assay [91],

preincubating with the mutagen [24], using uninduced or alternatively induced S9 [28],

using the S9 from different mammalian species [28], using concentrated microsomes

instead of S9 [69], pretreatment with sub-threshold concentrations of nitrosamines [92],

or a combination of these modifications [69].  This heterologously expressed human

enzyme bacterial reversion assay offers greater sensitivity to dialkylnitrosamines than

previous assays without the need for extensive procedural modifications.

This chapter has shown that S. typhimurium strains YG7104ER and YG7108ER express

CYP2E1 and CPR simultaneously and that this concurrent expression is critical for

nitrosamine mutagenicity.  The mutagenicity of all nitrosamines investigated occurred in

a dose-dependent fashion without the addition of S9.  Moreover, this mutagenicity was

inhibited by ethanol, a potent inhibitor of CYP2E1.  Thus, these results support the view
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that intracellular CYP2E1 and CPR can metabolically activate dialkylnitrosamines and

cause mutation within the cell.

The genotoxic potency of the nitrosamines in both YG7104ER (ogt-) and YG7108ER

(ogt- and ada-) was DMN>DEN>>DPN>DBN.  This order is repeated when examining

the specificity of the ogt and ada enzymes for the repair of alkylated DNA adducts [93].

Given the insensitivity of the TA1535ER strain, it is evident that the ogt and ada

methyltransferases are highly efficient in the repair of dialkylnitrosamine-induced DNA

damage and thereby prevent the incorporation of heritable mutations.  Furthermore, it is

clear that even relatively low expression of the appropriate activating enzymes is

sufficient to give a robust mutagenic response when expressed in a suitable genetic

background.

The difference in sensitivity between TA1535ER and YG7104ER reveals the role ogt

plays in repairing DNA damage.  ogt demonstrated an ability to repair a broad range of

alkylation damage with a preference for methyl and ethyl adducts.  This agrees with past

characterizations of the S. typhimurium ogt enzyme where it was shown that ogt- mutants

were most sensitive to treatment with N-methyl-N'-nitro-N-nitrosoguanidine and N-ethyl-

N'-nitro-N-nitrosoguanidine, which are methylating and ethylating agents, respectively

[71].  In these experiments, there was no increased sensitivity to propyl or butyl adducts

in YG7108ER when compared to YG7104ER, indicating that the ada methyltransferase

has a stringent preference for methyl and ethyl adducts.  Thus, the repair of longer chain

adducts, as generated with DPN and DBN, appears to be largely dependent on the activity

of the ogt methyltransferase, consistent with its reported role [76].  A recent study from

Kamataki et al [87] similarly reported enhanced mutagenicity of short chain nitrosamines

in strain YG7108 expressing a truncated human CYP2E1 with CPR.  This group did not

examine mutagenic activation with strain YG7104 and thus could not differentiate the

roles of the two methyltransferases (ogt and ada) in nitrosamine adduct DNA repair in

vivo.
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This study is complementary to a growing body of evidence that demonstrates that

recombinant Ames strains are viable alternatives to exogenous mammalian enzyme

preparations for mutagen activation [82, 88, 89, 94].  Although many of these past studies

have focused chiefly on the CYP1A2-mediated mutagenicity of heterocyclic amines, they

reveal the great potential of coexpressing CYPs with CPR in mutagenicity tester strains

possessing the appropriate DNA repair background.

In conclusion, I have demonstrated that sensitivity to dialkylnitrosamine mutagenicity

can be achieved by coexpressing human CYP2E1 and CPR in methyltransferase-deficient

S. typhimurium strains YG7104 and YG7108, thereby eliminating the need for

mammalian tissue homogenates (S9) for nitrosamine activation.
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TABLE 5.  Bacterial strains and plasmids used in this study

Strain or Plasmid Characteristics

Spontaneous

Revertants Reference

Strains  

  S. typhimurium  

    TA1535 hisG46 rfa uvrB 20-25 [73]

    TA1535ER TA1535 with plasmid pIN3ER 20-25 this chapter

    YG7104 hisG46 rfa uvrB ogtST::Cmr 30-40 [71]

    YG7104ER YG1704 with plasmid pIN3ER 30-40 this chapter

    YG7108 hisG46 rfa uvrB ogtST::Cmr adaST::Kmr 40-45 [71]

    YG7108V YG7108 with plasmid pIN3 40-50 this chapter

    YG7108R YG7108 with plasmid pIN3R 40-50 this chapter

    YG7108E YG7108 with plasmid pIN3E 40-50 this chapter

    YG7108ER YG7108 with plasmid pIN3ER 45-55 this chapter

  

Plasmids  

  pIN3

pINIIIompA3; a pBR322-based expression vector with

cleavable ompA signal peptide upstream of the cloning site

[95]

  pIN3R pIN3 vector expressing CPR [78]

  pIN3E pIN3 vector expressing CYP2E1 [78]

  pIN3ER pIN3 vector expressing CYP2E1 and CPR  [78]
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TABLE 6.  CYP2E1 and CPR Quantitation

Strain CYP2E1 Contenta CPR Contenta

TA1535ER 20 ± 2 41 ± 2

YG7104ER 18 ± 4 37 ± 2

YG7108ER 17 ± 3 36 ± 2

aUnits are nmol/L, means ± standard deviations; n = 3.
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A B C D E

Figure 3: Immunoblot of CYP2E1 (lower arrow) and P450 reductase (upper arrow)

expression in bacterial membrane fractions of YG7104 and YG7108.  A, YG7104; B,

YG7104ER; C, YG7108ER; D, purified CYP2E1; E, purified CPR.  Lanes containing

membrane fraction were loaded at 50 ìg of total protein per lane.
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Figure 4: Mutagenicity of DMN in native tester strains with 4% ethanol-induced S9.

Squares, TA1535; circles, YG7104; triangles, YG7108.  Data points are the mean of

three triplicate experiments; error bars indicate standard error.  These strains gave no

mutagenic response in the presence of 4% and 10% Aroclor-induced S9 (data not shown).
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Figure 5: DMN mutagenicity in CYP2E1 and P450 reductase coexpressing strains.

Squares, TA1535ER; circles, YG7104ER; triangles, YG7108ER. Data points are the

mean of three triplicate experiments; error bars indicate standard error.
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Figure 6: Both CYP2E1 and P450 reductase must be present simultaneously in order for

YG7108 to be sensitive to DMN mutagenicity.  Squares, YG7108R; circles, YG7108E;

triangles, YG7108ER.  Data points are the mean of three triplicate experiments; error

bars indicate standard error.  Like YG7108R, strains YG7108 and YG7108V (not shown)

were also insensitive to DMN mutagenicity.
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Figure 7: Ethanol inhibition of DMN mutagenicity in CYP2E1 and P450 Reductase

coexpressing strains.  Squares, YG7104ER; triangles, YG7108ER.  Data points are the

mean of three triplicate experiments; error bars indicate standard error.  Data are

represented as percentage of control response (50 ìmol DMN for YG7104ER, 363

revertants/plate; 5 ìmol DMN for YG7108ER, 355 revertants/plate) in the absence of

ethanol.  Bacteria were incubated for 15 minutes with ethanol at 37° C prior to addition

of DMN.
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Figure 8: DEN mutagenicity in CYP2E1 and P450 reductase coexpressing strains.

Squares, TA1535ER; circles, YG7104ER; triangles, YG7108ER.  Data points are the

mean of three triplicate experiments; error bars indicate standard error.
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Figure 9: DPN mutagenicity in CYP2E1 and P450 reductase coexpressing strains.

Squares, TA1535ER; circles, YG7104ER; tiangles, YG7108ER.  Data points are the

mean of three triplicate experiments; error bars indicate standard error.
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Figure 10: DBN mutagenicity in CYP2E1 and P450 reductase coexpressing strains.

Squares, TA1535ER; circles, YG7104ER; triangles, YG7108ER.  Data points are the

mean of three triplicate experiments; error bars indicate standard error.
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CHAPTER THREE

Influence of Cytochrome b5 on the CYP2E1-Mediated Mutagenicity of Nitrosamines

RATIONALE

Cytochrome b5 is a ubiquitous, 17 kDa electron transfer protein capable of accepting and

transferring a single electron at a redox potential of 20 mV.  Cytochrome b5 is found in

all tissues, except erythrocytes, in a membrane-bound form.  It provides electron-

reducing equivalents that drive a number of reactions including fatty acid desaturation,

fatty acid elongation, plasmalogen biosynthesis, cholesterol biosynthesis, and CYP

monooxygenations [96].

Despite years of research, the exact role of cytochrome b5 in CYP reactions is only poorly

understood.  It has been shown that cytochrome b5 can stimulate, inhibit, or have no

effect on CYP substrate metabolism and that these activities depend on the specific

isozyme, the substrate, and the assay conditions for any given reaction.  It is thought that

cytochrome b5 stimulates most CYP reactions via donation of the second electron needed

to drive the CYP monooxygenase cycle [97].

The previous chapter addressed the coexpression of CYP2E1 and CPR in

methyltransferase-deficient strains of Salmonella typhimurium, resulting in two bacterial

strains sensitive to the mutagenicity of small molecular weight nitrosamines [98].  Given

the often-ambiguous role of cytochrome b5 in CYP metabolism, the newly developed

human CYP2E1/CPR coexpressing bacterial strains presented a unique opportunity to

examine the influence of cytochrome b5 on a specific CYP2E1-mediated reaction in a

physiological system.

The CYP2E1-mediated metabolism of dialkylnitrosamines is of particular interest given

the ubiquitous presence and widespread exposure of nitrosamines to the human

population [49, 50].  Nitrosamines are not intrinsically mutagenic but must be activated

by liver enzymes such as CYP2E1 or CYP2A6 in order to react with DNA [62].  Small
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molecular weight, symmetric dialkylnitrosamines are commonly metabolized in this

manner [52].

This chapter describes the construction of two methyltransferase-deficient S. typhimurium

strains that express the full-length genes for human CYP2E1 and its electron-transfer

partners, CPR and cytochrome b5.  By coexpressing cytochrome b5 with CYP2E1 and

CPR, I was able to demonstrate dialkylnitrosamine mutagenicity in a system even more

sensitive than previous CYP2E1/CPR coexpressing systems or assays that employ

exogenous activating enzymes (S9 fraction).

MATERIALS AND METHODS

Bacterial Strains and Plasmids

Bacterial strains and plasmids used in this study are described in Table 7.  Dr. T. Nohmi

(National Institute of Health Sciences, Tokyo, Japan) graciously provided S. typhimurium

strains YG7104 (ogt-) and YG7108 (ogt-, ada-).  The pIN3ER plasmid for human

CYP2E1 and rat CPR expression was created as described elsewhere [78].  Human

cytochrome b5 cDNA was kindly provided by A. W. Steggles (Northeastern Ohio

university).  pIN3b5 was created via insertion into the pIN3 vector multiple cloning site

of a human cytochrome b5 PCR fragment with XbaI and HindIII sites engineered

upstream and downstream of cytochrome b5 cDNA, respectively.  This resulted in the

removal of the ompA signal peptide and introduction of a full-length, human cytochrome

b5 cDNA immediately downstream of the lpp-lac promoter.  pIN3b5ER (Figure 11) was

created by PCR amplification of the CPR cDNA from pIN3ER with a forward primer

which introduced a HindIII site upstream of the CPR cDNA.  This fragment was then

digested with HindIII and inserted into the HindIII site immediately upstream of the

cytochrome b5 cDNA in pIN3b5.  The newly formed pIN3Rb5 was then linearized with

XbaI.  The CYP2E1 cDNA was then removed from pIN3ER with XbaI and inserted

upstream of the CPR and cytochrome b5 cDNAs in the linearized pIN3Rb5.  pIN3ERb5

(Figure 11) was created by amplifying the cytochrome b5 cDNA from pIN3b5 via overlap
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extension PCR in the presence of CPR cDNA.  The PCR fragment was then digested with

NheI and HindIII and inserted into the pIN3ER vector linearized with NheI and HindIII.

Plasmids were introduced into the bacterial strains via electroporation.  Fresh

transformants were selected for each mutagenicity assay by growth on Luria-Bertani

nutrient agar plates containing 100 µg ampicillin/mL.

Analysis of Enzyme Expression

Bacterial membranes were prepared as previously described [79].  Immunoblots

confirmed the expression of CYP2E1 and CPR in YG7108ER (Figure 3), YG7108b5ER

(Figure 12), and YG7108ERb5 (Figure 12).  Cytochrome b5 expression was confirmed in

strains YG7108b5ER and YG7108ERb5 via immunoblotting as well (Figure 13).

Proteins were separated by 10% SDS-PAGE and electrophoretically transferred to

nitrocellulose membranes.  The immunoblots were probed with sheep polyclonal

antibody to rabbit CYP2E1, sheep polyclonal antibody to rabbit CPR (kindly provided by

Dr. Minor Coon, Department of Biological Chemistry, University of Michigan) and goat

polyclonal antibody to rabbit cytochrome b5 (Oxford Biomedical Research, Oxford, MI).

CPR expression was also quantified by means of cytochrome c reduction (assuming

specific activity of 3 µmol/min/mL = 1 nmol cytochrome P450 reductase/mL) [80].

Values are given in Table 8.  Spectral quantification and enzymatic activity of CYP2E1

and cytochrome b5 could not be reliably quantified in whole cells or membrane isolates

(Appendix A).

Mutation Assays

Reversion assays were performed as described [81].  Freshly transformed single bacterial

colonies were picked and grown overnight in Oxoid Nutrient Broth No. 2 with 100

µg/mL ampicillin at 37°C and shaking at 250 rpm.  Growth at lower temperatures had no

effect on dialkylnitrosamine mutagenicity (data not shown).  Cultures were induced with

1 mM IPTG at 10 hours post-inoculation.  Preincubation time, temperature and pH had
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no effect on mutagenicity in assays that did not utlize S9 (data not shown).  All assays

were performed in triplicate.  Revertant colonies were counted after 48 hours.  See

Appendix A for additional details on development of this assay.

RESULTS

Coexpression of CYP2E1 and CPR in S. typhimurium

Unfortunately, CYP2E1 expression was unable to be spectrophotometrically quantified in

the YG7108ER, YG7108b5ER, and YG7108ERb5 strains (Appendix A).

Spectrophotometric determination of cytochrome b5 was also inconclusive given the high

background absorbance of other bacterial cytochromes.  Immunoblots, however,

confirmed the expression of CYP2E1 and CPR in strains YG7108ER (Figure 3),

YG7108b5ER (Figure 12), and YG7108ERb5 (Figure 12).  Cytochrome b5 expression

was also confirmed via immunoblotting in strains pIN3b5ER and pIN3ERb5 (Figure 13).

Cytochrome b5-Expressing Strains are More Sensitive to Dialkylnitrosamine

Mutagenicity

As described in Chapter Two, DMN was able to elicit a dose-dependent mutagenic

response in the CYP2E1 and CPR coexpressing strain YG7108ER in the absence of an

exogenous metabolic system [98].  The sensitivity to DMN dramatically increased when

human cytochrome b5 was expressed via insertion of the b5 cDNA upstream of the ER

fragment (Figure 14).  When the b5 cDNA was inserted downstream of the ER fragment,

DMN mutagenicity increased only slightly.

DEN mutagenicity closely resembled that of DMN with YG7108b5ER being the most

sensitive and YG7108ERb5 being only slightly more sensitive to the mutagen (Figure

15).  Strain YG7108b5ER was also more sensitive than YG7108ERb5 to DPN (Figure

16) and DBN (Fig. 17) mutagenicity, with both b5-expressing strains remaining more

sensitive than the non-b5-expressing strains.
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DISCUSSION

There have been many recent advances in the creation of short-term, in vitro genotoxicity

assays utilizing heterologously expressed human xenobiotic metabolizing enzymes [39].

Many bacterial-based systems have been created using expressed human

biotransformation enzymes [82-90].  Each of these systems has shown sensitivity to test

compounds without the need for S9.

In this chapter, the effect on nitrosamine mutagenicity of coexpressing human

cytochrome b5 with human CYP2E1 and rat CPR was examined. The coexpression of

human cytochrome b5 into the established YG7108 strains expressing human CYP2E1

and rat CPR presented ideal opportunity to examine the effect of this enzyme in vivo on

nitrosamine metabolism.  Most studies scrutinized the role of cytochrome b5 in in vitro

models.   For instance, purified rat liver cytochrome b5 added to human TK-143

microsomes coexpressing human CYP2E1 and CPR has been shown to lower the Km of

DMN demethylation from 31 µM to 22 µM and increase Vmax 2.2-fold [99].

Complementary studies have shown that Km values are increased and Vmax values are

decreased for 7-ethoxycoumarin O-deethylation when b5 is omitted from the NADPH-

supported CYP2E1-reconstituted systems [100].  This effect is also observed with DMN

and DEN in reconstituted rat CYP2E1 systems supplemented with rabbit cytochrome b5

[67].

This chapter has demonstrated that S. typhimurium strains YG7108b5ER and

YG7108ERb5 express cytochrome P450 2E1, CPR, and cytochrome b5 simultaneously

and that the presence of cytochrome b5 greatly increases nitrosamine mutagenicity in

these cells.  The mutagenicity of all nitrosamines investigated occurred in a dose-

dependent fashion without the addition of S9.  Moreover, this mutagenicity was inhibited

by ethanol, a potent inhibitor of CYP2E1.  Thus, these results support the view that

addition of intracellular cytochrome b5 can increase the CYP2E1-meditaed metabolism of

dialkylnitrosamines in vivo and cause mutation within the cell.  Nearly identical results

were obtained when coexpressing cytochrome b5 with CYP2E1 and CPR in the YG7104

(ogt-) tester strain (data not shown).
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The genotoxic potency of the nitrosamines in all strains was DMN>DEN>>DPN>DBN.

The magnitude of the cytochrome b5 mutagenic enhancement decreased with increasing

alkyl chain length.  The augmentation of CYP2E1-mediated nitrosamine metabolism has

been shown in vitro to diminish with longer alkyl side chains [101].

This chapter is complementary to other recent work coexpressing cytochrome b5 with

human P450s and P450 reductase [102].  The development of these coexpression systems

is a valuable tool in investigating the role of cytochrome b5 in vivo.  In addition, the

creation of the bacterial tester strains used in this study provides researchers with

extremely sensitive tools for studying CYP2E1-mediated mutagenicity and adds to a

growing body of evidence that demonstrates that recombinant Ames strains are viable

alternatives to exogenous mammalian enzyme preparations for mutagen activation [82,

88, 89, 94].

In conclusion, I have demonstrated that human cytochrome b5 dramatically increases the

sensitivity to dialkylnitrosamine mutagenicity of YG tester strains by coexpressing

human CYP2E1, CPR and cytochrome b5 simultaneously within the cell.
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TABLE 7.  Bacterial strains and plasmids used in this study

Strain or Plasmid Characteristics

Spontaneous

Revertants Reference

   S. typhimurium

    YG7108 hisG46 rfa �uvrB �ogtST::Cmr �adaST::Kmr 40-45 [71]

    YG7108ER YG7108 with plasmid pIN3ER 45-55 [98]

    YG7108b5 YG7108 with plasmid pIN3b5 35-45 [103]

    YG7108b5ER YG7108 with plasmid pIN3b5ER 45-55 [103]

    YG7108ERb5 YG7108 with plasmid pIN3ERb5 45-55 [103]

Plasmids

  pIN3 PINIIIompA3; a pBR322-based expression vector

with cleavable ompA signal peptide upstream of the

cloning site

[95]

  pIN3ER PINIIIompA3-based expression vector with

cleavable ompA signal peptide upstream of the

human CYP2E1 and rat CPR cDNAs

[98]

  PIN3b5 pINIIIompA3-based expression vector, with the

ompA signal peptide removed, containing the

human cytochrome b5 cDNA

[103]

  PIN3b5ER pIN3ER-based plasmid with human cytochrome b5

cDNA inserted upstream of the CYP2E1 and CPR

cDNAs

[103]

  PIN3ERb5 pIN3ER-based plasmid with human cytochrome b5

cDNA inserted downstream of the CYP2E1 and

CPR cDNAs

[103]
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TABLE 8.  CPR Quantitation

Strain P450 Reductase Contenta

YG7108ER 38 ± 3

YG7108b5ER 45 ± 2

YG7108ERb5 40 ± 3

aUnits are nmol/L, means ± standard deviations; n = 3.
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Figure 11:  Plasmid maps of pIN3b5ER and pIN3ERb5.  These 11-kb plasmids contain

cDNAs for human cytochrome b5, human CYP2E1, and rat CPR on the pINIIIompA3

expression vector.[95]  Expression is driven by the lpp-lac fusion promoter (lpp-lac

PO>), under control of the lacI repressor protein, and thus is inducible by IPTG.  Amp+

encodes â-lactamase for ampicillin-resistance; ORI represents the plasmid origin of

replication; and lpp trm is the transcription terminator sequence from the lpp gene.

pIN3b5ER

Xba I
HindIII

Xba I

Nhe I

HindIII
Age I

lpp-lac PO>

b5

CYP2E1

Reductase

lpp trmlac I

ORI

Amp+

pIN3ERb5

Xba I

Xba I

Nhe I

HindIII
Age I

lpp-lac PO>

CYP2E1

Reductase

b5
lpp trm

lac I

ORI

Amp+



45

a      b      c      d      e

Figure 12: Immunoblot of CYP2E1 (lower arrow) and CPR (upper arrow) expression in

bacterial membrane fractions of the YG7108 strains.  (a) YG7108; (b) YG7108b5ER; (c)

YG7108ERb5; (d) purified CYP2E1; (e) purified CPR. Lanes containing membrane

fraction were loaded at 100 ìg of total protein per lane.
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  a      b      c      d      e

Figure 13: Immunoblot of cytochrome b5 expression (arrow) in bacterial membrane

fractions of the YG7108 strains.  (a) Purified cytochrome b5; (b) YG7108; (c)

YG7108ER; (d) YG7108b5ER; (e) YG7108ERb5.  Lanes containing membrane fraction

were loaded at 120 ìg of total protein per lane.
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Figure 14: Effect of cytochrome b5 expression on DMN mutagenicity in YG7108 tester

strains. Squares, pIN3ER; circles, pIN3b5ER; triangles, pIN3ERb5.  Data points are the

mean of three triplicate experiments; error bars indicate standard error.
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Figure 15: Effect of cytochrome b5 expression on DEN mutagenicity in YG7108 tester

strains. Squares, pIN3ER; circles, pIN3b5ER; triangles, pIN3ERb5.  Data points are the

mean of three triplicate experiments; error bars indicate standard error.



49

0 1 2 3 4 5
0

100

200

300

400

500
pIN3ER
pIN3b5ER
pIN3ERb5

[DPN] in µµmol/plate

R
ev

er
ta

nt
s/

pl
at

e

Figure 16: Effect of cytochrome b5 expression on DPN mutagenicity in YG7108 tester

strains. Squares, pIN3ER; circles, pIN3b5ER; triangles, pIN3ERb5.  Data points are the

mean of three triplicate experiments; error bars indicate standard error.
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Figure 17: Effect of cytochrome b5 expression on DBN mutagenicity in YG7108 tester

strains. Squares, pIN3ER; circles, pIN3b5ER; triangles, pIN3ERb5.  Data points are the

mean of three triplicate experiments; error bars indicate standard error.
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CHAPTER FOUR

Summary and Conclusions

The research presented in this dissertation has focused on three particular objectives:

1. Express human CYP2E1 and CPR in an appropriate bacterial tester

strain for nitrosamine mutagenicity assessment.

2. Determine the mutagenic potency of dimethylnitrosamine,

diethylnitrosamine, dipropylnitrosamine and dibutylnitrosamine in

the CYP2E1/CPR coexpressing tester strains.

3. Examine the effect of cytochrome b5 coexpression on nitrosamine

mutagenicity in the CYP2E1/CPR coexpressing tester strains.

Objective #1: Express human CYP2E1 and CPR in an appropriate bacterial tester

strain for nitrosamine mutagenicity assessment.

Summary and Conclusion.  The difficulty in assessing the mutagenic risk of

nitrosamines in humans using bacterial-based assays can be chiefly attributed to many

issues, chief among them:  (a) the lack of nitrosamine-metabolizing enzymes homologous

to human CYP2E1 in bacterial tester strains; and (b) the lack of bacterial tester strains

responsive to the ultimate mutagen in nitrosamine metabolism.  The simultaneous

expression of full-length human CYP2E1 with full-length rat CPR in methyltransferase-

null bacterial tester strains created a system in which the mutagenic potential of

nitrosamines could be assessed and quantified.  The expression of CYP2E1 and CPR was

detected in membrane fractions by immunoblot.  The immuno-detected proteins migrated

in SDS-PAGE at the same rate as their respective purified standards.  The enzymatic

activity of CYP2E1 in recovered membranes was shown to be 18 and 17 nanomoles per

liter of cells in strains YG7104ER and YG7108ER, respectively.  The amount of
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cytochrome c reduction in YG7104ER membranes corresponded to 37 nanomoles of

CPR per liter of cells, while YG7108ER revealed 36 nanomoles of CPR per liter,

confirming the expression of enzymatically active, heterologous CPR within the tester

strains.

The mutagenicity of DMN was dependent upon the presence of both CYP2E1 and CPR

(either at high levels in ethanol-induce rat liver S9, or expressed within the cell) in the

methyltransferase-deficient bacterial tester strains. Native tester strains (ogt+/ada+) alone

or in the presence of Aroclor 1254-induced S9, or tester strains with vector only or CPR

only were not sensitive to DMN mutagenicity.  Methyltransferase-null tester strains

expressing CYP2E1 only were weakly responsive. Furthermore, the mutagenicity

observed with DMN in strains YG7104ER and YG7108ER was inhibited by ethanol, a

potent inhibitor of CYP2E1.  These observations not only strongly support the

requirement for methyltransferase-deficient tester strains for assessing nitrosamine

mutagenicity, but also show that nitrosamine mutagenicity can be sensitively assessed in

strains simultaneously expressing of both CYP2E1 and CPR without the need for an

exogenous metabolic activating system.

Objective #2: Determine the mutagenic potency of dimethylnitrosamine,

diethylnitrosamine, dipropylnitrosamine and dibutylnitrosamine in the

CYP2E1/CPR coexpressing tester strains.

Summary and Conclusion.  The double-deletion mutant YG7108ER (ogt- and ada-)

was approximately ten-fold more sensitive to DMN mutagenicity than the single-deletion

mutant YG7104ER (ogt-), reaching roughly 350 revertants/plate at 5 micromoles and 50

micromoles of DMN, respectively.  Similar sensitivity was shown with nitrosamines of

increasing alkyl chain length.  Overall, the genotoxic potency of the nitrosamines in both

YG7104ER and YG7108ER was DMN > DEN >> DPN > DBN.  Not surprisingly, this is

the same order (methyl > ethyl >> propyl > butyl) observed when examining the

specificity and efficiency of the ogt and ada enzymes for the repair of alkylated DNA



53

adducts [71, 104].  This work reinforces the need for methyltransferase-deficient tester

strains for the highly sensitive assessment of the mutagenicity of alkylating agents.

Objective #3: Examine the effect of cytochrome b5 coexpression on nitrosamine

mutagenicity in the CYP2E1/CPR coexpressing tester strains.

Summary and Conclusion.  I have demonstrated that expressing cytochrome b5 in

YG7104ER and YG7108ER increases the sensitivity of these strains to nitrosamine

mutagenicity.  It has been shown in vitro elsewhere that cytochrome b5 can decrease the

Km of CYP2E1-mediated DMN demethylation from 31 micromolar to 22 micromolar,

while increasing Vmax 2.2-fold [99].  Figure 18 graphically demonstrates the impact of

cytochrome b5 expression on DMN mutagenicity in the YG7108 methyltransferase-null

S. typhimurium tester strain.  Strain YG7108b5ER is approximately 100-fold more

sensitive to nitrosamine mutagenicity than its cytochrome b5-deficient YG7108ER

counterpart.  Strains YG7108ER and 7108b5ER also have a much lower spontaneous

reversion rate than their YG7108 parent strain in the presence of ethanol-induced S9,

imparting a much higher degree of resolution in assays utilizing these strains.  This high

degree of resolution is essential when examining low doses or low potency mutagens.

The findings in chapter three provide further in vivo evidence of the significant impact of

cytochrome b5 on CYP2E1-mediated DMN metabolism using a physiological outcome.

Significance of this Work

The creation of short-term, in vitro genotoxicity assays utilizing heterologously expressed

human xenobiotic metabolizing enzymes has been of great interest in recent years.  With

the advent of genomics and synthetic combinatorial chemistry, the number of new

chemical entities being created is increasing at an amazing rate.  Each of these substances

will need to be evaluated for safety in order to be approved for use in humans.  To

effectively assess the risk associated with these new entities, reliable predictive assays are

essential.  The low cost, speed, reproducibility, flexibility, robustness, and sensitivity of

bacterial-based assays make them ideally suited for this task. As the use of these assays
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increase, the need for test systems not reliant upon exogenous sources of mammalian

liver preparations becomes imperative.  This dissertation describes an assay that can

assist in fulfilling this need.  The assays described herein accurately and sensitively

predict the mutagenic potency of a traditional problematic class of compounds in a highly

reproducible fashion.

Although the most obvious impact of this new assay is its utility in establishing the

mutagenic potential of chemical entities, its other uses may result in a more profound

impact on science.

Potential Uses for the Described Assay

Metabolism studies.  While the work described herein was limited to some small

molecular weight dialkylnitrosamines, its use could easily extend to the mutagenicity and

cytotoxicity assessment of other CYP2E1 substrates.  CYP2E1 substrates comprise a

myriad of small molecular weight substances.  Such compounds include acetaminophen,

acetaldehyde, benzene, styrene, 1,1,1-trichlororethane, 1,2-dichloropropane, carbon

tetrachloride, chloroform, ethylene dibromide, ethylene dichloride, halothane,

methylchoride, methylene dichloride, vinylchloride, and trichloroethylene, most of which

are hepatotoxic [105].

One benefit of this assay is its ability to measure in vivo metabolism rates using a

quantifiable physiologic outcome (bacterial mutation frequencies).  Given the high

resolution observed with the CYP2E1/CPR/Cyt b5 assay described earlier, it is reasonable

to assume investigators could apply this established system to examine other

cytochromes P450 that are effected by the presence of cytochrome b5 (e.g. 1A2 and 3A4).

The exact manner in which cytochrome b5 effects the different P450 enzymes remains

unclear [97].  There is some dispute concerning whether the assistance afforded by

cytochrome b5 is purely via allosteric effects on CYP and CPR protein stability, or if the

electron-transferring capabilities of cytochrome b5 play a role. Examining CYP/CPR/holo

b5 versus CYP/CPR/apo b5 strains would enable an investigator to address the nature of

these interactions in more detail.
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The role of cytochrome b5 could also be further examined by coexpressing a P450

enzyme in combinations with CPR, cytochrome b5, and cytochrome b5 reductase.

Cytochrome b5 reductase catalyzes the reduction of two molecules of cytochrome b5

using NADH as the physiological electron donor.  A strain coexpressing CYP,

cytochrome b5, and cytochrome b5 reductase would metabolize substrates in a purely

NADH-driven manner in contrast to the NAPDH-driven metabolism seen in the

CYP/CPR/cyt b5 strains.  Comparing the mutation rates of two such tester strains at a

given mutagen concentration would provide insight into the contribution of each of these

nucleotide reductants.

An investigator could also use the described assay as a positive selection mechanism in

targeted random mutagenesis studies of the CYP/CPR/cytochrome b5/cytochrome b5

reductase enzymatic system.  Targeted random mutagenesis (id est, the use of

ambiguously synthesized oligonucleotide sequences to generate random amino acid

sequences in proteins), or “directed evolution,” is an increasingly valuable tool in

molecular biology [106, 107].  However, the sheer number of possible individual proteins

that can be produced even when randomizing small oligonucleotide sequences can

severely limit the practicality of this potentially powerful tool of molecular biology.  In

order to limit the number of useful clones generated by this process, an investigator

requires effective positive and negative selection pressures.  The assay described herein

could be useful in such investigations since the bacteria require a metabolic event

resulting in chemical mutagenicity in order to proliferate.  Negative selection pressure

exists in the form of histidine-deficient media, id est, metabolically competent enzymes

are required in the assay to activate mutagens and revert the bacteria to histidine

prototrophy.  The promutagen provides the positive selection pressure.  By adjusting the

levels of promutagen present in the assay, one can select for clones expressing enzymes

with increased metabolic rates.

For example, an investigator would first choose a section of the CYP (or CPR, or

cytochrome b5, or cytochrome b5 reductase) enzyme to be randomized.  Targeted
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randomized mutagenesis followed by whole plasmid amplification would create a large

number of mutant plasmids each with an individual, random sequence.  Most mutations,

presumably, would result in a random protein with diminished functionality (when

compared to the native sequence) or a total loss of function.  However, a small number of

the random proteins may have increased metabolic activity.  These clones could be

selected via transfection of the randomized plasmids into the bacterial tester strain

followed by treatment with relatively low concentrations of promutagen.  If the

investigator exposed the bacteria with the highest possible no observable effect dose and

the assay yielded more revertants than native enzyme-expressing controls at a similar

dose, one could assume that the revertants contained random forms of the enzyme

capable of metabolizing the mutagen more readily than its native form.

Similarly, an investigator could use this methodology as a restoration-of-function assay.

For instance, if a known alteration in the nucleotide sequence of a protein knocks-out

enzyme activity, one could randomize the sequence in the effected region, generate

random plasmids as outlined above, transfect the tester strains with the random plasmids,

and then dose the strains at a known mutagenic concentration of a chemical mutagen.

The mutagen provides positive selection pressure on the system and only those mutations

that restore function will metabolize the mutagen, thus growing in the histidine-selective

agar.

Characterization of polymorphisms.  A number of specific CYP enzymes, including

CYP2E1, are expressed in several different forms in the population [108].  Some forms of

a given enzyme often vary from the native nucleotide sequence at a single allele.  Single

nucleotide polymorphisms (SNPs) are capable of exhibiting vastly different

pharmacokinetic characteristics than the native form.  Using this assay, the metabolic

differences of these different polymorphic forms could be examined and quantified in a

physiological system.  Indeed, this technique has already been utilized to examine the

effects of CYP2A6 polymorphisms on the susceptibility of Japanese populations to

nitrosamine-mediated cancer susceptibility [87].
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Characterization of antioxidants.  In addition to determining the mutagenic potential of

CYP-metabolized compounds, the assays described in this work could be used to assess

and quantify the protective effects of antioxidants or other inhibitors of the mutagenicity

process.  Of particular interest to this work, ascorbic acid, and green tea, which contains

many uncharacterized polyphenolic antioxidants, have been shown to inhibit the

mutagenic and carcinogenic potential of nitrosamines [109-111].
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Figure 18: The effect of different exogenous and heterlogously expressed metabolic

activating systems on DMN mutagenicity in YG7108 tester strains.  Squares, TA1535

with ethanol-induced S9; inverted triangles, YG7108 with ethanol-induced S9; triangles,

YG7108ER with no exogenous metabolic activating system; diamonds, YG7108 with no

exogenous metabolic activating system.  Data points are the mean of three triplicate

experiments; error bars indicate standard error.
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Appendix A

There is often a great deal of “unsuccessful” experimental results that go unreported or

underreported in scientific research.  This phenomenon has seemingly increased in

modern times due to two factors: 1) high impact research journals place a premium on

reporting data that supports a hypothesis, rather than a null hypothesis; and, 2) the current

competitive nature of scientific research strongly encourages investigators to publish their

data in such journals.  It is important to note that the lack of reporting these data in

scientific journals does not lessen their potential impact on science.  Indeed, sharing such

data could only improve scientific endeavors by increasing research efficiency.  If such

information were readily available, “failed” experiments would be less likely to be

repeated, thus saving valuable resources.

In an effort to give the reader a better understanding and appreciation of the assay

development process required to produce the this body of work, I would like to give a

brief overview of the plasmids, bacterial tester strains, and miscellaneous assay protocol

variations which yielded bacterial assays not sensitive to nitrosamine mutagenicity.

Plasmids

Early in the development of a nitrosamine-sensitive bacterial-based mutagenicity assay, it

was thought that the levels of CYP2E1 and CPR were rate-limiting within the cell.  In

order to address this issue, a number of plasmids (Table 9) were examined in widely used

bacterial tester strains (Table 10) for their ability to express human CYP2E1 and rat CPR.

Strains utilizing the pJL2 vector were first examined for nitrosamine mutagenicity.  The

pJL2 vector is a high copy number plasmid derived from pKK223-3.  pJL2 was created

by insertion of a translational enhancer element and ribosome binding site between the

EcoR1 and Pst1 sites of pKK223-3 and substitution of the pBR322 origin of replication

with that from the pUC series of plasmids, to increase plasmid copy number [112].  The

enhancer element is based on that of the bacteriophage T7 gene 10 element.  The vector

uses the tac promoter and thus expression is IPTG-inducible.  Strains utilizing the pJL2
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vector for CYP2E1 and CPR expression were not sensitive to nitrosamine mutagenicity.

Additional efforts were made to increase CYP2E1 expression since, at the time, it was

thought that CYP2E1 expression was rate-limiting in nitrosamine mutagenicity.

In addition to the vector above, a number of different expression plasmids were created

using the pIN3 vector.  pIN3 is a pBR322-derived plasmid that uses the lpp-lac promoter

and is thus IPTG-inducible. pIN3 was created by introducing the outer membrane protein

A (ompA) coding region into the cloning site [95].  Translation is highly efficient due to

the use of the ompA translation initiation region (ompA is one of the most abundant

proteins in bacteria) [113].  There are three cloning sites at end of the ompA signal

peptide that can be used for cDNA insertion; however, the cDNA coding sequence must

be in-frame with the signal peptide sequence.  pIN4 is a high-copy version of pIN3 in

which the pBR322 origin of replication is replaced by the origin from the pUC series of

plasmids [79].  The expression of CYP2E1 and CPR in E. coli and S. typhimurium strains

using these plasmid vectors is described elsewhere [79]: while expression of CYP2E1

and CPR was higher in the pIN4 strains (28 and 83 nmol/L, respectively) when compared

to the pIN3 strains (17 and 48 nmol/L, respectively), pIN4-containing strains

demonstrated a dramatic decrease in viability in S. typhimurium and were thus not

suitable for use in mutagenicity assays.  Bacterial strains must be able to reliably produce

a viable “bacterial lawn” (a hazy bacterial film that is visibly present on selective media

which indicates cell viability) in the assay in order to yield meaningful results.  The

integrity of this “lawn” is important to demonstrate that the cells are viable and thus able

to mutate in response mutagen exposure.

After development of the YG tester strains described in Chapters 2 and 3, it was observed

that the pIN3 expression vector yielded optimal results in the nitrosamine mutagenicity

assays.  The bacterial cells were viable, had a low spontaneous reversion rate, and were

sensitive to nitrosamine mutagenicity.
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Nitrosamine Insensitive Bacterial Tester Strains

Since the advent of the Ames test, a number of bacterial tester strains have been

developed differing in species, genotype, and plasmid content (reviewed in Tables 1 and

2).  Each strain exhibits its own specificity and selectivity towards mutagens.  This is

largely dependent upon the number and type of DNA repair enzymes that were deleted

from their genome in an effort to create more sensitive tester strains. During the early

development of the assay described in Chapter Two, a number of these strains were

examined (Table 10).  None of the strains listed in Table 9 were sensitive to nitrosamine

mutagenicity in the presence of Aroclor 1254-induced S9 or when transfected with any of

the plasmids described in Tables 5 and 7.

The insensitivity of the strains in Table 10 to nitrosamine mutagenicity emphasizes the

critical role the ogt and ada methyltransferases have in nitrosamine mutagenicity.  The

strains listed in Table 10 are diverse in the number and type of genomic DNA repair

enzyme deletions.  The traditional Ames TA tester strains all carry the uvrB deletion.

The uvrB deletion effects nucleotide excision repair by eliminating the protein which

interacts with uvrA to form a dimer capable of detecting alterations in the DNA helix

caused by DNA damage.  uvrB also has endonuclease activity essential for excising the

damaged DNA from the genome.

The E. coli WP2 strains also eliminate the endogenous excision DNA repair process via

deletion of the uvrA protein, resulting in strains similar to the traditional Ames S.

typhimurium TA strains.  The WP2hcr strain has an additional deletion of lon11, an ATP-

dependent serine protease capable of degrading proteins umuD and umuC which

contribute to error-prone DNA repair in E. coli.  WP67 varies from its WP2 parent by

having an additional deletion of polA1.  polA1 codes for DNA polymerase A1 which has

5'-3' exonuclease proof-reading capability.  The IC strains were also derived from WP2.

The IC203 strain is similar to WP2, but lacks the OxyR gene.  OxyR codes for a DNA

binding transcription factor that activates the expression of antioxidant enzymes such as

catalase, glutathione reductase, and alkyl hydroperoxidase.  IC204 was derived from

IC203 and has the umuDC deletion.  IC206 was derived from IC204 and contains all of
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its genomic deletions plus the deletion of MutY which codes for a glycosylase capable of

repairing 8-oxoguanine lesions.  Many of the aforementioned strains also carry the

pKM101 plasmid, described earlier in Chapter One.

Despite the many genomic deletions of miscellaneous DNA repair enzymes, none of

these strains were sensitive to nitrosamine mutagenicity, even when harboring the

pIN3ER expression plasmid.  This observation highlights the significance of the ogt and

ada methyltransferases.

Assay Manipulations

As described in the Materials and Methods section of Chapters One and Two, the assay

described in this work was unresponsive to several different assay manipulations.  As is

the case with most assay development, many different conditions and reagents were

investigated during assay optimization.

One of the first difficulties encountered in developing the assays described in Chapters

Two and Three, was the inefficient transformation of the tester strains.  Several

methodologies of chemical transformation utilizing calcium chloride and rubidium

chloride where ineffectual in yielding transformants.  Electroporation was necessary for

transfecting the plasmids used in this work.  The problems encountered with transforming

the cells appeared to be cell line dependent.  Typical results from electroporating 1 µL of

pIN3ER (10 ng DNA/mL) into 25 µL of electrocompetent bacterial stock using a Gibco

BRL Cell-Porator E. coli Pulser set on “medium” (2.5KV) would be 160 colonies/plate

for the YG7104 strain and 80 colonies/plate for the YG7108 strain.  It is also important to

note that only freshly electroporated tranformants behave well in the assay.

Transformants that are cultured then frozen yield spurious results in the mutagenicity

assay and loose their viability (i.e. they do not reliably produce a “bacterial lawn”).

These observations are clearly linked to freezing the strains.  Cultures that are

continuously maintained (i.e. never frozen, but freshly inoculated each day into new

media) experience upward drift in their spontaneous reversion rates in addition to loosing
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sensitivity to nitrosamines in the mutagenicity assay.  These observations require freshly

electroporated cells for each mutagenicity experiment.

It has been shown elsewhere that heterologous CYP expression in bacteria can be

increased by lowering the culture temperature from 37º C to 30º C, extending culture

times from 24 hours to 48 hours, and lowering the shaking speed during orbital

incubation from 250 rpm to 150 rpm [114].  Reducing the temperature of the cultured YG

pIN3ER cells to increase CYP2E1 expression had no impact on the sensitivity of these

cells to nitrosamines, suggesting that CYP2E1 levels were not rate-limiting for

mutagenesis.  Extending culture times prior to the assay also had no impact on

nitrosamine sensitivity; however, it resulted in an increase in the number of spontaneous

revertants for each strain.  Lowering the rotation rate of the cultures resulted in noticeably

lower bacterial cell titers.  Combining all three alterations to culture conditions resulted in

cultures not appropriate for mutagenicity assays due to low cell titers and high than

acceptable (2x normal) spontaneous revertant rates.

Other efforts to increase CYP2E1 and CPR expression in the YG tester strains proved to

be detrimental to the integrity of the assay detailed in Chapters Two and Three.  For

instance, growing tester strains in liquid media other than Oxoid Nutrient Broth No. 2,

including Luria-Bertani broth or Terrific broth, resulted in unacceptable spontaneous

revertant rates.  Increasing the concentration of antibiotics in the culture medium in an

effort to select for cells with well-expressed plasmids had a negative effect on cell

viability and did not increase the sensitivity of the YG tester strains to nitrosamine

mutagenicity.  Also, the addition of delta-aminolevulinic acid (ALA), a heme precursor,

has been shown to increase the expression of some CYP enzymes in bacteria [115];

however, its addition to the culture media had no effect on nitrosamine mutagenicity.

It was observed that the optimal nitrosamine mutagenicity from the YG pIN3 tester

strains was obtained from cultures that were induced with 1 mM IPTG 12 ± 2 hours after

inoculation into Oxoid Nutrient Broth No. 2.  Cultures induced prior to this time point
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generally did not reach acceptable cell concentrations for the assay.  Cultures induced

after this period were less sensitive to nitrosamine mutagenicity.

Other investigators, especially those who use liver S9 fractions, have shown that reducing

the pH of the preincubation mix or increasing the preincubation time increases

nitrosamine mutagenicity in bacterial assays.  Changes in the pH of the preincubation

(from 5.0 to 9.0) mix of the assay described in Chapters Two and Three had no effect on

the sensitivity of the strains to nitrosamine mutagenicity.  In fact, preincubation is not

necessary in the described assay.  These observations are not unexpected given that the

assay does not rely on exogenous activation of the promutagens.

It should also be noted that preincubating the VB agar plates prior to the addition of the

bacteria/mutagen/top agar mix to room temperature or 37º C is critical to the integrity of

the agar plates for scoring.  Molten top agar mix is maintained at 45º C and its addition to

refrigerated agar plates can cause uneven top agar distribution and results in plates that

are difficult to score due to uneven colony distribution.

In the traditional Ames test, plates were normally scored 24 hours after addition of the

top agar; however, this is not the ideal time point for scoring colonies produced in this

assay.  Due to slower growth of the YG pIN3 strains (presumably due to the metabolic

load of expressing heterologous proteins) it is ideal to wait 48 - 60 hours before counting

colonies.  Not all colonies are reliably noticeable at the 24 or 36 hour time point.

Allowing colonies to form for over 60 hours may result in the colonies becoming too

large (i.e., the colonies may grow together and make individual colony distinction

difficult).

Considerable effort was expended in attempting to obtain CO difference spectra for the

bacterial strains with plasmids pIN3b5ER and pIN3ERb5; however, all attempts to

reliably produce a CO difference spectrum on whole YG cells or membrane fractions

were unsuccessful.  Obtaining meaningful metabolism data attributable to the expressed

CYP2E1 in whole YG cells or isolated membranes also proved difficult.  Methodologies
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detecting the metabolism of p-nitrophenol and aniline colorimetrically, and

chlorzoxazone electrochemically where included in these efforts.  It also proved difficult

to obtain spectra from whole cells or membrane fraction demonstrating the expression of

cytochrome b5 in these strains.  It is thought that low protein expression, coupled with

interference from other bacterial heme proteins including cytochromes d and o,

contributed to this observation.  Attempts to utilize differing concentrations of potassium

chloride to selectively subtract the absorbance due to bacterial cytochromes were also

unsuccessful.
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Table 9: Plasmid vectors used in assay development.

Plasmid Features Reference

pJL2 High copy vector derived from pKK223-3 [116]

pIN3 Low copy vector derived from pBR322 [79]

pIN4 High copy number vector derived from pIN3 [79]
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Table 10: Bacterial tester strains used in assay development.

Strain Organism Genotype Plasmid Reference

TA1535 S. typhimurium hisG46, rfa, uvrB none [1]

TA100 S. typhimurium hisG46, rfa, uvrB pKM101 [1]

TA7001 S. typhimurium hisG1775, rfa, uvrB pKM101 [117]

WP2 E. coli uvrA, trp-65 none [118]

WP2hcr E. coli lon11, uvrA, trp-65 none [118]

WP67 E. coli polA1, uvrA, trp-65 none [118]

IC203 E. coli OxyR, uvrA, trp-65 pKM101 [119]

IC204 E. coli umuDC, OxyR, uvrA, trp-65 pKM101 [119]

IC206 E. coli MutY, umuDC, OxyR, uvrA, trp-65 pKM101 [119]
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