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Nano-manufacturing is receiving significant attention in industry due to the ever-growing inter-
est in nanotechnology in research institutions. It is hypothesized that single-step or direct-write 
nano-scale machining might be achieved by coupling nano-probe field emission with radiation 
transfer. A laser may be used to heat a workpiece within a microscopic region that encloses an 
even smaller nanoscopic region subjected to a focused electron beam. The electron-beam sup-
plies marginal heat sufficient to remove a minute volume of material by evaporation or sublima-
tion. Experimentally investigating this hypothesis requires an estimate of the power needed in the 
electron-beam. To this end, a detailed numerical study is conducted to study the possibility of 
using the nano-probe field emission for nano-machining. The modeling effort in this case is di-
vided into two parts. The first part deals with the electron-beam propagation inside a target 
workpiece. The second part considers the temperature increase due to the energy transfer be-
tween the electron-beam and the workpiece itself. A Monte Carlo/Ray Tracing technique is used 
in modeling the electron-beam propagation. This approach is identical to that of a typical Monte 
Carlo simulation in radiative transfer, except that proper electron scattering properties are em-
ployed. The temperature distribution inside a gold film is predicted using the heat conduction 
equations. Details of the various numerical models employed in the simulation and a series of 
representative results will be presented in this dissertation. 
 
KEYWORDS: Monte Carlo, Electron-Beam Processing, Radiative Transfer, Nano-Scale Heat 

and Energy Transfer, Electron-Phonon 
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PREFACE 
 

 The content of this dissertation involves thermal transport modeling at various time and length 

scales ranging from macro-scale to nano-scale levels. Most heat transfer theories and mecha-

nisms that are known thus far are typically applicable for bulk objects. As nanotechnology 

emerges and becomes one of the most active research topics, the characteristic time and length of 

the systems of interest are reduced tremendously. However, existing thermal theories including 

Fourier’s law and Ohm’s law are developed for modeling bulk systems where the specific details 

of heat carriers are not important. These theories are generally not applicable to thermal transport 

at the micro- or nano-scales. Theories based on specific details of energy carriers are now re-

quired to model micro- or nano-scale thermal transport. Such theories require the knowledge of 

the true physics concerning heat carriers and various scattering mechanisms. 

 

 This dissertation is divided into several chapters. The first chapter contains the description of 

the problem that is to be solved in this work. This includes the physical process that will be mod-

eled as well as the motivation for modeling such a problem. The entire modeling strategy in deal-

ing with the physical process will also be discussed. In the second chapter, the transport at the 

micro/nano-scale levels, particularly, the electron-beam propagation, the electronic thermal con-

duction, and the phonon transport will be dealt with. This is necessary for the comprehension of 

the content that will be further discussed.  

 

 Once the fundamentals of the heat carriers are unveiled in the first two chapters, we proceed to 

discussions about the solution methodology used in modeling these transport phenomena. There, 

one encounters the numerical methods and statistical simulations developed according to the 

governing equations for these heat carriers. All the basic numerical and simulation procedures 

will be given in this chapter, which we shall later refer to when we model the physical system of 

interest in the subsequent chapters. With all the fundamentals and numerical procedures given in 

the preceding chapters, we are now ready to tackle the problem of interest. In the following two 

chapters, applications of these principles and methods on the physical process we discussed in 

the first chapter are unveiled. Results of the simulations of the process will be depicted and dis-

cussed in these chapters as well. The final chapter of this dissertation is about conclusions of this 
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work and future works required to improve the modeling problems encountered in this work. 
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CHAPTER 1  
INTRODUCTION 

 

1 
1 

 The prosperity of the art of building small has led to the tremendous production of small de-

vices not visible to the naked human eye. Have you ever taken a peep and observed a chip inside 

a 10-year old computer? When comparing that chip to one inside a more modern computer, one 

would be surprised at how much the same chip has shrunk in size over the years owing to the 

fast-growing nanotechnology. Not surprisingly, both chips can store the exact same amount of 

information and perform the same tasks. This ability of building small has given birth to new 

storage media such as Digital Versatile Disc (DVD), which has a storage capacity of 4.7 giga-

bytes, more than 7 times the storage of a Compact Disc (CD). 

 

 Current technology has a good measure of success in producing these microstructures. One 

excellent example is that of the microprocessor which contains approximately 500,000 devices in 

an area of 1 cm2 (Ferry and Goodnick, 1997). The challenge is always there to push the limit of 

building small to the edge. Consequently, nanostructures have become the current target of all 

the researchers, and manipulating physics and chemistry at the nano-scale level has created 

nanotechnology. Just how small is a nanostructure? A one-hundred-nanometer device is about 

one-thousandths of the thickness of a human hair. In fact, it could span hundreds of atoms de-

pending on the type of material.  

1.1 The Motivation of Building Small 

 Material processing with high-power lasers is being used extensively in many industrial appli-

cations. They are being used to produce desired structures or patterns on material surfaces, in-

cluding micrometer size structures. Resolutions of these structures depend greatly on the incident 

spatial distribution of the beam. However, a laser can only be focused close to its wavelength due 

to the diffraction limit. This results in the limiting of the smallest resolution of the material proc-

essed by using a laser to more than a few hundred nanometers, or, about one-fourth to one-fifth 

of the laser wavelength. The typical wavelength of a laser used in material processing is on the 

order of hundreds of nano-meters. Hence, it is not possible to create nanometer-scale indenta-
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tions in the size of a few nano-meters using a conventional laser machining approach based on 

far-field optical arrangements. Even though x- or gamma-rays maybe used for nano-scale ma-

chining, the cost required for such applications is enormous.  

 

 An alternative approach for nano-machining could be achieved by using energized electrons 

bombarding the target solid and creating localized structural changes. Since electrons have wave-

lengths much smaller than that of photons, the diffraction effect does not play any role until a 

size of less than a nano-meter is reached. Focusing the electron-beam down to a few nano-meters 

can be achieved by using electromagnetic lenses (Egerton, 1996). 

 

 Nano-manufacturing is likely to receive significant attention in industry and research institu-

tions due to the ever-growing interest in nanotechnology. Nano-structures are usually manufac-

tured via a two-step process that generates a pattern (e.g. electron-beam lithography) and then 

develops the pattern (e.g. etching). Recently, the author’s group hypothesized that single-step or 

direct-write nano-scale machining might be achieved by coupling nano-probe field emission with 

radiation transfer (Vallance et al., 2003). A laser may be used to heat a workpiece within a mi-

croscopic region that encloses an even smaller nanoscopic region subjected to a focused electron 

beam. The electron-beam supplies marginal heat sufficient enough to remove a minute volume of 

material by evaporation or sublimation. The concept developed in this dissertation emerges as a 

result of the need of a model describing such a machining process at the nano-scale level. The 

goal of this dissertation is to focus on various theoretical models that describe nano-scale heat 

transfer, while the experimental works are being carried by other graduate students within the 

group.  

1.2 The Proposed Physical System – A Brief Information 

 Recently, Vallance et al. (2003) has proposed a nano-machining tool which is based on the 

field emission of electrons from a nano-probe. A schematic of the proposed physical system is 

depicted in Figure 1.1. The system is mainly comprised of an anode and a cathode. The anode is 

usually referred to as the workpiece since machining will be done on it, while the cathode is re-

ferred to as the machining tool or the nano-probe. Voltage is applied between the anode and the 

cathode, causing energized electrons to flow from the cathode to the anode. A possible nano-
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probe candidate for this application would be carbon nanotubes, which are well-known. A sam-

ple of the developed nano-probe, which is basically a long Tungsten probe with a carbon nano-

tube attached at the end of the probe, is depicted in Figure 1.2 (Trinkle, 2003). 

 

 The multi-walled carbon nanotubes (MWNTs), which are prepared by a carbon arc process 

where carbon nanotubes form as a bundle of nanotubes on the negative electrode (Ebbesen, 

1994), are generally comprised of 2 to 30 concentric graphitic layers with an outer diameter 

ranging from 10 to 50 nm (Saito, et al., 1998). The length to diameter ratio of a MWNT is typi-

cally in the order of 102 to 103. For instance, a MWNT with an outer diameter of 10 nm may 

have a length of 10 µm. The single-walled carbon nanotubes (SWNTs) were first discovered in 

an arc discharge chamber using a catalyst, such as Fe, Co, and other transition metals, during the 

synthesis process (Iijima and Ichihashi, 1993; Bethune et al., 1993). Compared to a MWNT, a 

SWNT is thinner with a diameter of about 1 to 1.4 nm (Saito et al., 1998). The structures of the 

carbon nanotubes have been studied using high-resolution transmission electron microscopy 

(TEM) and scanning tunneling microscopy (STM), and it is discovered that these nanotubes are 

cylinders derived from the honeycomb lattice (graphite sheet). Further discussions of the struc-

ture of a nanotube can be found in Burchel (1999).  

 

 It is discovered that when a potential difference is applied between the CNTs (cathodes) and 

an anode, the CNTs emit energized electrons. Generally, the SWNTs are worse emitters than the 

MWNTs (Bonard et al., 1999). Recently Fransen at al. (1999) investigated the electron field 

emission from the MWNTs. The MWNTs were mounted on tungsten tips and the emissions from 

these MWNTs were observed. In these experiments, the detector screen was located 5 cm away 

from the MWNTs. It was found that the maximum current extracted from a MWNT with a di-

ameter of 9 nm, was about 20 nA for a series of extraction voltages ranging from 550 V to 830 

V. This produced a power of 16.6 µW assuming the maximum current occurred at 830V. In addi-

tion, a current of 140 nA was detected at 1090 V for a MWNT with a diameter of 44 nm, which 

was equivalent to a power of 152.6 µW. 

 

 Bonard et al. (1998) also investigated the field emission properties of the MWNTs in their ex-

periments where the anode and cathode were separated by 1 mm, and a MWNT was mounted on 
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the gold tip. The MWNTs used were about 10 nm in diameter. A typical emission current of 1 

µA from a MWNT was detected for an applied voltage of 250 V which gave a power of 250 µW. 

They managed to extract a maximum current of 0.2 mA from a MWNT with an applied voltage 

of 600 V (a maximum power of 0.12 W), which lasted for a few seconds before the emission cur-

rent dropped significantly due to the meltdown of the MWNT and the gold tip. This meltdown 

was due to the extremely high temperature change at the tip of the MWNT as caused by the 

emission. A temperature change of nearly 3400 K could be possible at 0.1 mA for a 8-nm CNT 

at the tip, including the temperature change at 0.2 mA, as asserted by Bonard et al. (1998). 

 

 Despite the fact that CNTs emit significant power when a voltage difference is applied, the 

emitted electrons always follow an energy distribution, and this distribution tends to broaden as 

the voltage increases (Fransen et al. 1999). Apart from that, Saito et al. (1998) discovered a mag-

nification factor of 0.4x106 of the emitting area of a CNT for a separation distance of 3 cm be-

tween the CNT and the detector screen (based on the inner black spot on the screen as projected 

by an open-ended MWNT with an inner diameter of 5-10 nm). 

 

 Although experiments regarding the emission property of the CNTs have been performed over 

the years, the full range of applicability of these CNTs remains untested. For instance, the rela-

tionships between the maximum current extracted, the maximum voltage applied, the tube di-

ameter, and the magnification of the emitting area on the detector screen need to be addressed. 

Knowledge of these relationships will be required when choosing the appropriate CNTs later 

discussed in this work. 

1.3 Machining Via Electron Field Emission 

 The electron-beam processing uses electrons emission from an electron gun. This generates a 

large amount of energized electrons and projects these electrons onto the solid workpiece to 

achieve the desirable machining process. The key feature of this method is the use of electrons 

with large kinetic energies, thus penetrating the lattices of the solid and transferring their energy 

to the solid via inelastic collisions. This allows melting to be achieved and results in a desirable 

structure which can be manufactured. The typical energies of the electrons in an electron-beam 

process are in the order of tens of kilo-electron-volts (keV).  
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 Generally, when energetic electrons strike and interact with a solid material, they are scattered 

into other directions as a result of elastic and inelastic scatterings. Due to the size of an electron 

being extremely small, and the scattering nature of propagating electrons by the solid material, 

the accelerated electrons can easily penetrate the solid material through the lattices. Such pene-

tration depends heavily upon the initial energies of the electrons (see Eq. (1.1)). It is known that 

the electron-beam processing requires a highly energized electron-beam. Not only does this 

mean a large penetration depth for the propagating electrons, but it also implies that most of the 

energies of the penetrating electrons will be absorbed within the penetration depth (not the target 

surface). This makes the electron-beam processing inappropriate at the micro-scaled level even 

though the diameter of the incident electron beam is at the same scale. Therefore, an alternative 

method is to utilize the electron field emission from the CNTs instead of using an electron gun as 

employed in the traditional electron-beam lithography. 

 

 The electron-beam processing, as the name implies, uses electron bombardments between en-

ergetic electrons and the workpiece to transfer energies from the electrons to the workpiece. This 

processing therefore changes the shape or the properties of the workpiece. The physics of the in-

teraction between the propagating energetic electrons and the solid materials is very complex. As 

the electrons propagate inside the workpiece, they undergo a series of elastic or inelastic scatter-

ings. An elastic scattering refers to the redirection of the propagating electron, while an inelastic 

scattering not only redirects the propagating direction of the electron, but it also attenuates the 

energy of the electron. Electrons transfer their energy to the target material by means of inelastic 

scatterings. Inelastic scattering in this scenario can be classified as an event where an incident 

electron causes the ionization of the atom by removing an inner-shell electron from its orbit pro-

ducing a characteristic x-ray or an ejected Auger electron. In addition, inelastic scattering also 

includes the case where an electron collapses with a valence electron to produce a secondary 

electron (Joy, 1995). 

 

 Some useful features of the electron-beam processing include (a) the possibility of finely fo-

cused electron beams, (b) the feasibility of generating high-power-density electron beams, (c) the 

ability to deflect electron beams rapidly and highly accurately, and (d) the possibility of varying 
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electron energy with acceleration voltage, hence controlling the electron penetration range (Ta-

niguchi et al., 1989). The disadvantages include (a) the necessity for high vacuum to generate 

electrons and for work chamber (except for non-vacuum welding and electron reactive process-

ing), (b) the generation of harmful X-rays, and (c) the difficulty in processing electrical insula-

tors (Taniguchi et al., 1989). 

 

 There are two practical application areas of electron-beam processing. First is thermal process-

ing, which includes machining, welding, annealing, and heat treatment. The second application is 

reactive processing, such as electron-beam lithography, electron-beam polymerization and de-

polymerization (Taniguchi et al., 1989). Our objective in this research involves thermal process-

ing, specifically the machining process. The mechanisms described in the rest of the sections are 

devoted mainly to electron-beam machining.  

 

 The interactions between the electrons and a solid material had been investigated theoretically 

and experimentally by different researchers. . Some theoretical works include those by Archard 

(1961), Whiddington (1912) and Kanaya and Okayama (1972). Whiddington (1912) related the 

electron penetration range Rp (m) with the electron acceleration voltage V (Volt) and the mass 

density of the metal ρ (kg/m3), which is given by the following equation: 

 
2

p
aVR

ρ
= , (1.1) 

where a = 2.2×10-11 kg/V2-m2. This is the depth that the penetrating electrons can reach after they 

are incident on the target surface. This implies that most of the energies of the propagating elec-

trons would be absorbed in this range, but not on the surface of the workpiece. As a result, the 

heating of the surface of the target cannot be achieved via direct electron bombardments. It re-

quires conduction heat transfer from the adjacent layer of the solid material. Because of this phe-

nomenon in using the electron-beam processing, thermal machining at the micrometer scale 

(depth) cannot be successful, even though electrons can be formed into a fine beam of several 

micrometers in diameter. 

 

 Due to the complicated interactions between propagating electrons and the solid material, ob-

taining a physically realistic theoretical analysis is quite a challenging. For this reason, many re-
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searchers have adapted statistical approaches, such as the Monte Carlo Method (MCM) to simu-

late the processes. A MCM models the propagations of a large number of electrons inside a solid 

material based on certain probability distribution functions and then generates a solution accord-

ing to the scorings of these electrons. 

 

 As asserted by Taniguchi et al. (1989), even with a finely focused electron beam, processing a 

very small area using the beam is difficult to achieve due to the multiple scattering nature of the 

electron inside the solid material. This is proven by the results obtained by the MCM simulations 

(Shimizu et al., 1972; Joy, 1995). The challenge in this dissertation is to model the electron-beam 

processing using CNTs, which will increase the resolution of machining processing to an even 

smaller scale. 

 

 This research is interested in using the CNTs in nano-machining. To effectively remove atoms 

from the workpiece, a large amount of energy transfer from the carbon nanotube via electron 

bombardments is required. One way to overcome this setback is to preheat the workpiece to a 

certain temperature through a bulk heating, and then use a laser beam for subsequent localized 

heating. This heating will further increase the temperature of a specified location to nearly the 

melting point of the workpiece, where the electron bombardments occur, resulting in minimum 

energy required from the nanotube to process the material. Due to the fact that the electron-beam 

processing is done in vacuum conditions, the bulk heating can only be achieved by radiative or 

conductive transfer, but not convective transfer. This limits possible candidates for the bulk heat-

ing to laser or resistance heating.  

 

 The electron penetration depth on gold (ρ = 19,300 kg/m3) is about 1 nm for an applied volt-

age of 1kV and gold’s melting temperature is about 1336 K (see Eq. (1.1)). This value is rela-

tively low compared to that of tungsten on which the CNTs will be mounted (Vallance et al. 

(2001), therefore, gold will be first used as the workpiece. Due to the highly reflective property 

of gold in all the spectra except within the visible range, a laser beam with a visible wavelength 

will be used to heat the workpiece. Even though this research will focus its results mostly on 

aluminum, copper, silver, and gold, the approach presented in this work will not be limited to 

certain materials and lasers. 
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 Note that it is determined that the energy required to remove a single atom from most metals is 

about 1 x 10-18 Joule (which is equivalent to 10 eV) based on a simple calculation. This suggests 

that the emission energy from the CNTs alone could be sufficient to complete the removal proc-

ess. Yet, for the sake of completeness and confirmation, all three heating modes will be ac-

counted for in this work. 

 

 It is crucial to understand the structures of the system that are being considered so that appro-

priate approaches and measures can be chosen to monitor the heat transports. As it was previ-

ously emphasized, the solid target is assumed to be made of gold, silver, aluminum, or copper. 

These materials all have the face-centered cubic unit cell lattice structure. The orange spheres on 

the upper right corner in Figure 1.3 illustrate the lattice structure of a face-centered cubic unit 

cell comprising of 14 atoms. Each atom has a diameter of about 3-4 Å for the selected materials, 

therefore each cube in the figure represents a collection of atoms with dimensions of about 1 nm 

x 1 nm x 1 nm. In the figure, a SWNT with a diameter of about 1 nm and a MWNT with a di-

ameter of about 5 nm are shown. A SWNT has a cross-section area comparable to that of a cube 

(~1 nm2) while the cross-section area of a 5-nm MWNT is about 25 times of that. As one can 

see, the removal of the atoms can be achieved at the nano-scaled level using these CNTs when 

the emitted electrons from the CNTs are collimated to some extent. 

1.4 The Modeling Tasks 

 The goal of this dissertation is to perform theoretical modeling tasks on this problem, which 

will be used later to predict the specific requirements for the machinig probe, such as the current 

and the voltage, in order to facilitate the nano-machining process. The actual nano-machining 

experiments and details of the setup are not of concern in this dissertation. They are to be carried 

out independently by Hii (2006/2007). The following chapters will outline the various transport 

equations and the simulation technique used in modeling the electron-beam as well as the ther-

mal heat transport. Later, these techniques will be coupled to theoretically predict the behaviors 

of the nano-machining process. In each chapter, a series of results will be given to show the ac-

curacy of the sub-models.  
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Figure 1.1 The closeup schematic of the proposed machining process using electron 
field emission from a nano-probe. Note that the figure is not drawn to the correct 
scales of the objects. The actual size of the carbon nanotube (CNT) is about 50 nm in 
diameter while the optical fiber has a diameter of hundreds of micrometers. The fiber 
is considered to be infinite in extent compared to the nanotube. 
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Figure 1.2 Structure of probe tips and mounted carbon nanotubes (CNTs) for dem-
onstrating the feasibility of nano-scale machining. (a) Tungsten probe fabricated us-
ing electro-chemical etching, (b) Tungsten probe with mounted single CNT, (c) 
Enlarged view of the mounted CNT on the probe, and (d) Concentric walls in a multi-
walled carbon nanotube (MWNT). 

(a) (b) 

(c) (d) 
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Figure 1.3 The size comparison between a single-walled nanotube (SWNT), a 
multi-walled nanotube (MWNT), and the workpiece. The lattice structure of the 
workpiece shown is face-centered cubic (fcc). Examples of elements which possess 
fcc unit cells are silver (Ag), copper (Cu), and gold (Au).  
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CHAPTER 2  
TRANSPORT EQUATIONS 

 

2 
2 

 Many transport phenomena exist in this fascinating world. One of which, for instance, is the 

radiative transfer or the so-called photon transport. The heat originating from the sun is the most 

common radiative transfer that we encounter in our daily lives. The electromagnetic waves (or 

light) coming from the sun suffers attenuations after propagating through atmospheric layers. In 

terms of an engineering glossary, attenuations refer to the multiple-scattering and absorption of 

the photons and waves. Due to these intriguing natural absorption and scattering phenomena, the 

earth is protected against the scorching heat of the sun. Understanding the scattering behavior of 

these electromagnetic waves has led scientists and engineers to develop various diagnostic tools 

for analyzing structures of matter and processing materials. 

 

 Although there are many so called “particles” which behave as heat carriers, we will consider 

only electrons, phonons, and photons will be considered in this work. Electrons exist in all mat-

ter, they are quantum particles that orbit the nuclei of atoms. The two categories of electrons are 

inner-shell electrons and outer-shell electrons. The inner-shell electrons are bounded tightly to 

the nuclei, such electrons are not capable of “wandering” around in the matter. This results in 

both the nuclei and the inner-shell electrons usually being considered as a whole in most trans-

port phenomena. The inner-shell electrons may also be referred to as the bound electrons. Con-

versely, the outer-shell electrons can propagate nearly effortlessly around the matter. They are 

primarily responsible for heat or electrical transport in metals and partially in semi-conductors. 

Therefore, the outer-shell electrons1 are often called the conduction electrons as well. Among all 

other heat carriers, the wavelength of electrons is the shortest, which makes them the best candi-

date for nanometer-scale machining applications. 

 

 Similar to the electron-beam and photon-beam propagations, thermal (heat) conduction also 

involves the propagation of energy in the form of waves. If there is no resistance, the waves are 

able to propagate freely and the resultant effect is infinite thermal conductivity. Resistances to 

                                                 
1 Outer-shell electrons may also be named valence electrons. 
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waves usually come in the form of scatterings, whether they are elastic or inelastic. Elastic scat-

tering refers to re-direction of a heat carrier onto a different path without causing any alteration 

to its energy2. An inelastic scattering not only changes the path of the carrier, but also attenuates 

its energy assuming that the carrier possesses larger energy than its surroundings. 

 

 Generally speaking, there are two different species of heat carriers in solids; they are electrons 

and phonons. Electrons and phonons follow different dispersion relations3. They possess distinct 

characteristics and dictate the conduction behavior of a material. A material can be a conductor, 

semi-conductor, or insulator depending on the dispersion relations of the electrons and phonons. 

For a conductor, the main energy carriers are basically electrons since they propagate at veloci-

ties that are several orders larger compared to that of phonons. For a semi-conductor, the trans-

ports of both electrons and phonons are equally important in conducting heat. There exits how-

ever, band gaps4 in the electronic band structure where no electrons are allowed to have such en-

ergy states. Such gaps can often easily be overcome by electrons in the semi-conductors. When 

the band gaps are so large that electrons are not moving freely, the material is considered as an 

insulator. 

 

 The thermal conduction inside matter is greatly influenced by the characteristic time and the 

length of the object of interest, the mean free time of heat carriers, and the mean free path of heat 

carriers. Depending on these parameters the nature of the thermal wave propagation can vary 

from purely ballistic to completely diffusion-like, resulting in a temperature distribution that may 

vary significantly. The mean free time refers to the time interval between two successive colli-

sions suffered by an energy carrier while the mean free path is the distance corresponding to the 

time interval. They usually depend on the properties of the medium and the wavelength (or en-

ergy) of the carriers. Within the mean free time (or the mean free path), the energy carrier travels 

ballistic without being deflected out of its direction propagation. If one is interested in the trans-

port behavior within the time limit comparable to the mean free time of the heat carriers, then 

ballistic transport is to be expected. In the following sections, various transport models are stud-

                                                 
2 A change in energy also implies a change in the wavelength (or wave number). 
3 Dispersion relation for electrons is usually referred to as band structure. 
4 Band gap refers to a discontinuity in the energy spectrum of the carrier. 



 

16 

ied under different conditions. 

2.1 Wave Theories versus Particle Transport Modelings 

 There are two important parameters that need to be accounted for to correctly predict the be-

havior of the transport phenomena. These are the mean free path5 of the heat carriers and the 

characteristic length of the object of interest. Depending upon the ratio between these two, vari-

ous assumptions can be made about the nature of the transport. These assumptions would lead to 

the correct corresponding governing theory. The transport usually boils down to two approaches. 

The first is based on the wave theories and the second is based on the particle transport model-

ings.  

 

 Wave theories treat the propagations of particles, such as those of photons, electrons, and pho-

nons, as wavelike. This is where phases and amplitudes of the waves are considered after the 

scattering events and affect the outcome of the transport. Particles transport theories conven-

iently replace wave theories when the number of scattering events becomes increasingly signifi-

cant, and only the scattering rate and the mean free path of the scattering need to be considered,. 

One can find several wave theories including electromagnetic wave (light) theory, lattice wave 

theory, and matter wave theory. Most of the particles transport theories are derived from the gen-

eral form of the Boltzmann Transport Theory (see Section 2.3). The parameter that sets the wave 

theories and the particles transport theories apart is the ratio of the characteristics length ( ) of 

the object of interest to the wavelength of propagation (λ), Γ (i.e. Γ= /λ). If Γ is much larger 

than unity, then the particles transport theories can be used. As Γ approaches unity or less, the 

wave theories play more important roles in solving the energy transfer. 

2.2 Time and Length Scales 

 The time and length scales of the system dictate the theoretical assumptions that we made to 

solve the heat transports. Accordingly, there are two length scales that lead to the appropriate 

simplifications of the particle transport theories. They are the mean free path, Lmfp and the charac-

teristic size of a volume over which local thermodynamics equilibrium can be defined, Lr (Tien 
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et al., 1998). Generally, the latter is greater than the former (i.e. Lr > Lmfp). There are two time-

scales associated with with these length scales. These scales are the mean free time, τmfp and the 

relaxation time, τr.  Another important time scale is the collision time (duration of collision), τc. 

To be able to reach a local thermodynamics equilibrium, five to twenty collisions are needed. 

This corresponds to a maximum total collision time of 20 fs for the electrons (at Fermi energy) 

and 2 ps for the phonons in a metal (Majumdar, 1998). Since τr > τmfp >> τc, τr is much greater 

than 20 fs for electrons and 2 ps for phonons in a metal. This yields a value of Lr far exceeding 

20 nm for electrons and 2 nm for phonons, assuming the velocities of electrons and phonons are 

106 m/s and 103 m/s, respectively. This also suggests that local thermodynamics equilibrium 

cannot be assumed for electrons, but it might be achievable for phonons since the thickness of 

the workpiece considered here is in the order of tens of nanometers. It is assume that the time 

required for machining processes is much greater than any of the time scales stated. This makes 

the time-averaged assumption possible for the statistical particle transport equations.  

2.3 Boltzmann Transport Equation 

 When the amplitudes and phases of waves are not important in the energy transport, the trans-

port phenomena can be modeled using particle transport theory. The governing equation for the 

transport is the Boltzmann Transport Equation (BTE). The BTE describes the evolution of a par-

ticle probability distribution over time t, space r , and wave vector k  (f may relate to v or mo-

mentum p k= ), as quantum particles experience a series of scattering events and external 

forces. In the following derivation, the general form of the BTE is presented. In principle this is 

applicable to all energy carriers, including electrons, phonons, or photons, as long as the wave-

lengths of the carriers are small compared to the characteristic length of the object of interest. 

For example, the BTE should not be used to model energy transfer of a photon beam (i.e. laser) 

with a wavelength of 532 nm striking a 100-nm dielectric film. However, it is applicable if the 

photon beam is replaced with an electron-beam with wavelengths in the order of nanometers. 

 

 The rate change of a particle distribution f is balanced by the rate at which the distribution is 

increased or decreased due to collisions with other particles. The conservation equation follows 

                                                                                                                                                             
5 Mean free path is the distance that the heat carrier can travel without altering its path direction and/or energy. 
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(Ashcroft and Mermin, 1976; Ziman, 1964) that 

 
( ) ( ) ( ) ( )

col

f r,k,t f r,k,t f r,k,t f r,k,tr k
t t r t k t

⎛ ⎞∂ ∂ ∂ ∂ ⎟⎜∂ ∂ ⎟⎜+ ⋅ + ⋅ = ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ⎟⎜⎝ ⎠
. (2.1) 

The terms on the LHS are the change of f in time t, the rate of change of f due to advection in 

space r , and the rate of change of f due to momentum change while the RHS is the collision 

term. For the sake of simplicity, ( )f r ,k ,t  is abbreviated as f from this point on, however it is 

understood that f is a function of t, r , and k . The conservation of the particle distribution func-

tion can then be rewritten using the different notation as: 

 rk k
col

f fv f k f
t t

⎛ ⎞∂ ∂ ⎟⎜+ ⋅∇ + ⋅∇ = ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
. (2.2) 

Note that the group velocity of the particles is denoted as kv , which is typically a function of the 

wave vector k . The time evolution of the wave vector k , is due to the external applied fields or 

forces. This is valid for charged particles such as electrons when they are accelerated through the 

electric field. Although this term will be dropped out for the case where phonons or photons are 

the energy carriers, it shall be retained in this term for the completeness of the derivation.  

 According to semi-classical particle dynamics, the rate of change of k  as a result of the ap-

plied electric field E  and magnetic field H  is given as (Ashcroft and Mermin, 1976; Ziman, 

1960): 

 1 ext
k

Fek E v H
c

⎛ ⎞⎟⎜=− + × =⎟⎜ ⎟⎜⎝ ⎠
. (2.3) 

Inserting this expression into the conservation equation yields the general form of the BTE 

(Ashcroft and Mermin, 1976; Ziman, 1960): 

 ext
rk k

col

Ff fv f f
t t

⎛ ⎞∂ ∂ ⎟⎜+ ⋅∇ + ⋅∇ = ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
. (2.4) 

If the BTE is to be solved rigorously, the collision term can be evaluated using scattering prob-

abilities. The collision term refers to the rate at which the distribution is increased or decreased. 

In terms of the physical sense, the collision term consists of transitions (or scatterings) of quan-

tum particles from the wave vector k ′  into k  or from the wave vector k  into k ′ . This results in 
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the transition probabilities (or scattering probabilities) being properly accounted for. 

 

 For phonons and photons the collision term can be expressed as: 

 ( ) ( )  
k kcol

f W k k f W k k f
t ′ ′

⎛ ⎞∂ ⎟⎜ ′ ′ ′= → − →⎟⎜ ⎟⎜⎝ ⎠∂ ∑ ∑ . (2.5) 

In the right-hand side of Eq. (2.5), ( )W k k′ → denotes the rate of scattering from k ′ to k . The 

first summation is the rate of change of f due to the in-scattering of particles from various loca-

tions and directions, while the second is the rate of change of f caused by the out-scattering of 

particles. The collision term is slightly different for electrons since electrons are obliged to 

Pauli’s exclusion principle, which prevents two electrons with the same state from residing at the 

same location. In order for an electron to undergo a transition (or scattering) from k ′ to k , there 

must be an “empty slot” in the k  state to accommodate for this scattered electron. If a state is 

fully occupied by other electrons, then the distribution function f has a value of unity, otherwise, 

(1−f) represents the available probability. The collision term for electrons is then modified ac-

cordingly: 

 ( ) ( ) ( ) ( ) 1  1
k kcol

f W k k f f W k k f f
t ′ ′

⎛ ⎞∂ ⎟⎜ ′ ′ ′ ′= → − − → −⎟⎜ ⎟⎜⎝ ⎠∂ ∑ ∑ . (2.6) 

In its general form, the BTE is virtually intractable using analytical methods owing to the various 

independent variables and its integro-differential form. This is usually resolved by using the sta-

tistical methods such as the Monte Carlo method which are commonly used to simulate the 

propagation of quantum particles according the probability distribution functions. 

2.3.1 Relaxation-Time Approximation 

 Solving the BTE with the integral collision term as given above is not practical for some ap-

plications, resulting in approximations to the collision term being made. This is done so that the 

equation can become tractable analytically, if not, numerically. In order to determine an ap-

proximation for the collision term, we need to understand its significance and the function.  

 

 Without any simplifications, the collision term in the BTE is understood to be particle trans-

formations from one particular state to another. If one assumes that a large number of electrons 
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with different energy levels are “poured” into an isolated control volume, the electrons at the 

higher energy levels would tend to transfer excess energies to those at lower levels through colli-

sions. Over time the entire control volume would eventually come to thermal equilibrium. This is 

where the amount of energy transfer from electrons possessing higher energy to the lower ones 

and vice versa, are the same, resulting in an equilibrium distribution function eventually being 

achieved. According to the above observation, collisions of particles tend to restore equilibrium 

over a period of time. Based on this concept, a relaxation-time approach can be derived. 

 

 In the relaxation-time approach, it is assumed that the perturbed distribution function will 

eventually relax back to the equilibrium distribution function within a period of time. In terms of 

mathematical expression, the collision term is then approximated as: 

 
eq

col r

f f f
t τ

⎛ ⎞∂ −⎟⎜ =−⎟⎜ ⎟⎜⎝ ⎠∂
, (2.7) 

where eqf  is the equilibrium distribution and τr is the relaxation time needed to reach the equi-

librium state. The solution of f in the above first-order differential equation (if the partial deriva-

tive is replaced with ordinary derivative) can be expressed as: 

 ( )0
eq eq

r

tf f f f exp
τ

⎛ ⎞⎟⎜ ⎟= + − −⎜ ⎟⎜ ⎟⎜⎝ ⎠
. (2.8) 

Note that the solution for f in the above equation is of exponential decaying nature, meaning that 

if f is increased (or decreased) from its equilibrium distribution, it will decay (or grow) exponen-

tially to the original state with the relaxation time τr being the time constant.  

 

 Using the relaxation-time approximation, the specific details of the scattering process is lost. 

For example, the directional dependence of the transitions process is compromised, which may 

be critical in some applications. Nevertheless, this approximation transforms the BTE into a par-

tial differential equation instead of an integro-differential equation, and hence, the BTE becomes 

tractable. 

2.3.2 The Significance of the Distribution Function f 

 The BTE describes the evolution of the particle distribution function f. By solving the BTE we 
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gain the knowledge of how the particles are dispersed or distributed in time, space, and various 

directions. The f by itself may not yield any useful information, however, various physical quan-

tities can be derived from it by performing integrations of the function over the independent 

variables. The density of particles as a function of time and space can be retrieved by integrating 

the distribution function over the momentum space k : 

 ( ) ( )n r ,t f r ,k ,t dk= ∫ . (2.9) 

Similarly, the momentum density of particles can also be determined using f,  

 ( ) ( ) ( ) ( )p r ,t m k v k f r ,k ,t dk⎡ ⎤= ⎢ ⎥⎣ ⎦∫ . (2.10) 

where m is the mass and v is the velocity of particles. 

2.4 Intensity Form of Boltzmann Transport Equation 

2.4.1 Electron-Beam Transport Equation 

 In the field of the electron-beam processing, free electrons are the energy carriers. The energy 

of an electron is always characterized by its wave number k (k=2π/λ) instead of its frequency or 

wavelength. Unlike photons, free (propagating) electrons do not undergo absorption by other 

particles. This implies that inelastic scatterings change the energy of these carriers but dooes not 

attenuate the number of carriers. Therefore the wave number or the wavelength of the electrons 

changes as they undergo inelastic scatterings. From the computational standpoint, the scattering 

cross section changes once the energy of a propagating electron ensemble is altered. The govern-

ing equation for the electron-beam transport can be derived from the BTE.  

 

 It must be clear that propagations of quantum particles should indeed satisfy the BTE. This 

research is interested in the details of the scattering mechanisms and the transition processes. 

Hence, the BTE is to be solved rigorously without taking its moments. The distribution f by itself 

may not yield any useful information, therefore it is best to cast the BTE in terms of intensity. 

Before attempting to derive the intensity equation from the BTE, it is informative to know that 

an electron-beam consists of bundles of free electrons traveling along a given line of sight. In 

principle these free electrons have the same electronic properties of the free-electron model. 
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These properties do not have directional dependency since the electronic band structure is of a 

spherical parabolic type. Hence, the electron intensity can be defined as: 

 ( ) ( ) ( ) ( )1
4e e e e e e e e eˆ ˆI r ,s ,E ,t f r ,s,E ,t E D E v E

π
= , (2.11) 

where the electron density of states De and the electron velocity ev  are energy (or wave number 

k) dependent.  

 

 If we multiply the BTE by the electron energy, density of states, and group velocity, we obtain  

 
( )

( ) ( )
( )e e e e e e e eext

e r e e e e e e e ek
col

f E D v f E D vFv f E D v E D v f
t t

⎛ ⎞∂ ∂ ⎟⎜ ⎟+ ⋅∇ + ⋅∇ =⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠
. (2.12) 

Using the definition of electron intensity, the above equation can be re-written as 

 ( )e ext e
e r e e e e ek

col

I F Iv I E D v f
t t

⎛ ⎞∂ ∂ ⎟⎜+ ⋅∇ + ⋅∇ = ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (2.13) 

where it is understood that the intensity is a function of time, energy (or wave number), location, 

and direction. Note that the third term on the LHS of the equation needs to be expressed in terms 

of electron intensity. To do so, it is first written as: 

 ( ) ( ) ( )ext ext
e e e e e e e e e e e ek k k

F FE D v f f E D v f E D v⎡ ⎤⋅∇ = ⋅ ∇ − ∇⎣ ⎦ . (2.14) 

and then by replacing the gradient in wave vector with partial derivative in energy by using the 

definition of the group velocity, it is written as: 

 ( ) ( ) ( ) ( )ext e
e e e e e e e e ext e e e e ek k

e e

F If E D v f E D v F v f E D v
E E

⎛ ⎞∂ ∂ ⎟⎜⎡ ⎤ ⎟⋅ ∇ − ∇ = ⋅ −⎜ ⎟⎣ ⎦ ⎜ ⎟⎜∂ ∂⎝ ⎠
. (2.15) 

It can be shown that the following relation 

 ( ) ( )2 2
e e e e e e e e e

e e e

f E D v f E D v I
E E E
∂

= =
∂

, (2.16) 

holds for the spherical parabolic electronic band structure (or free-electron model). Thus, the 

electron intensity equation derived from the BTE is now given as: 

 ( ) 2e e e
e r e ext e e

cole e

I I Iv I F v I
t E E t

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟⎜ ⎟⎜⎟+ ⋅∇ + ⋅ − =⎜ ⎟⎜⎟ ⎟⎜ ⎜⎟⎜ ⎝ ⎠∂ ∂ ∂⎝ ⎠
, (2.17) 
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where the first two terms on the LHS describes the variation of intensity in time and in space 

while the third term is the energy gained or lost as a result of the external applied field on the 

electron-beam. Note that the electron intensity equation is written along a line of sight, thus, the 

collision term on the RHS of the equation can be interpreted as intensity lost or gained due to 

interactions of the electron-beam with the participating medium. Here the term interactions 

means elastic or inelastic scatterings of the electron beam. Scatterings result in re-directions of 

electron-beam intensity into and out of a given line of sight. The collision term should consist of 

in-scattering and out-scattering terms for both elastic and inelastic scatterings.  

 

 The out-scattering term that describes the intensity lost of electron-beam, both elastically and 

inelastically, can be expressed as: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 

 

1
4
1

4

inel inel
e e e eE

el el
e e e eE

d dEE E, , E , , I E, , ,t v E

d dE .E E, , E , , I E, , ,t v E

Ω

Ω

Ωσ Φ θ φ θ φ θ φ
π

Ωσ Φ θ φ θ φ θ φ
π

′ ′

′ ′

⎡ ⎤ ′ ′′ ′ ′− →⎢ ⎥⎣ ⎦

⎡ ⎤ ′ ′′ ′ ′− →⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫
 (2.18) 

Here the concept of phase function (denoted as Φe), is analogous to that of photons. It is used to 

describe the probability of scattering from one energy state to another and from one direction to 

another. The elastic phase function el
eΦ  is totally different from the inelastic phase function inel

eΦ  

since the inelastic scattering phenomena are rather distinct from the elastic scattering mecha-

nism. The factor of 4π in the expression is used for normalization purposes of the phase func-

tions. The out-scattering term can be further simplified by taking the scattering coefficients and 

intensities outside the integrals such that 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

 

 

4

4

inel
e inel

e e eE

el
e el

e e eE

E
v E I E, , ,t E, , E , , d dE

E
v E I E, , ,t E, , E , , d dE .

Ω

Ω

σ
θ φ Φ θ φ θ φ Ω

π
σ

θ φ Φ θ φ θ φ Ω
π

′ ′

′ ′

′ ′ ′ ′ ′− →

′ ′ ′ ′ ′− →

∫ ∫

∫ ∫
 (2.19) 

The above expression takes a simpler form as: 

 ( ) ( ) ( )inel el
e e e eE E v E I ,σ σ⎡ ⎤− +⎢ ⎥⎣ ⎦  (2.20) 

since 
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( )

( )

 

 

1 1
4
1 1

4

inel
eE

el
eE

E, , E , , d dE ,

E, , E , , d dE .

Ω

Ω

Φ θ φ θ φ Ω
π

Φ θ φ θ φ Ω
π

′ ′

′ ′

′ ′ ′ ′ ′→ =

′ ′ ′ ′ ′→ =

∫ ∫

∫ ∫
 (2.21) 

Alternatively, it can be written in terms of elastic and inelastic mean free paths as: 

 
( ) ( ) ( )

1 1
inel el e e
e e

v E I
E Eλ λ

⎡ ⎤
⎢ ⎥+−⎢ ⎥⎣ ⎦

, (2.22) 

based on the fact that the scattering coefficients are inversely proportional to the mean free paths, 

for instance, 

 ( )
( )

1 inel
e inel

e

E
E

σ
λ

= . (2.23) 

Similarly to the out-scattering term, the in-scattering of the electron-beam can be expressed as: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 

 

1
4

1
4

inel inel
e e e eE

inel el
e e e eE

d dEE E , , E, , I E , , ,t v E

d dE .E E , , E, , I E , , ,t v E

Ω

Ω

Ωσ Φ θ φ θ φ θ φ
π

Ωσ Φ θ φ θ φ θ φ
π

′ ′

′ ′

⎡ ⎤ ′ ′′ ′ ′ ′ ′ ′ ′ ′→⎢ ⎥⎣ ⎦

⎡ ⎤ ′ ′′ ′ ′ ′ ′ ′ ′ ′+ →⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫
 (2.24) 

This term is positive since in-scattering means contributions of electron intensity from all other 

directions. 

 

 Substituting the out-scattering and in-scattering terms into the electron-beam intensity equa-

tion yields 

 

( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1
4
1

4

e e
e r e ext e

e

ext einel el
e e e e e

e

inel inel
e e e eE

el el
e e e eE
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t E

F v
E E v E I I

E

d dEE E , , E, , I E , , ,t v E

d dEE E , , E, , I E , , ,t v E

Ω

Ω

σ σ

Ωσ Φ θ φ θ φ θ φ
π

Ωσ Φ θ φ θ φ θ φ
π

′ ′

′ ′

∂ ∂
+ ⋅∇ + ⋅

∂ ∂

⋅
⎡ ⎤=− + +⎢ ⎥⎣ ⎦

⎡ ⎤ ′ ′′ ′ ′ ′ ′ ′ ′ ′+ →⎢ ⎥⎣ ⎦

⎡ ⎤ ′ ′′ ′ ′ ′ ′ ′ ′ ′+ →⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

 (2.25) 

In this work, the above equation shall be termed, the electron-beam transport equation (EBTE). 

The EBTE is similar to the radiative transfer equation (RTE). Both equations are of integro-

differential type, which is typical in the particle transport theory. The EBTE is the BTE in its in-
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tensity form. No averaging effect over the electron energy (or wave number) spectrum has been 

embedded in the equation, therefore in its current form the EBTE is as general as it can be for the 

case where the free-electron model is assumed. This is justified for the electron-beam modeling. 

If there are no external forces applied to the electron-beam, then the EBTE reduces to: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
4
1

4

inel ele
e r e e e e e

inel inel
e e e eE

el el
e e e eE

I v I E E v E I
t

d dEE E , , E, , I E , , ,t v E

d dEE E , , E, , I E , , ,t v E

Ω

Ω

σ σ

Ωσ Φ θ φ θ φ θ φ
π

Ωσ Φ θ φ θ φ θ φ
π

′ ′

′ ′

∂ ⎡ ⎤+ ⋅∇ =− +⎢ ⎥⎣ ⎦∂

⎡ ⎤ ′ ′′ ′ ′ ′ ′ ′ ′ ′+ →⎢ ⎥⎣ ⎦

⎡ ⎤ ′ ′′ ′ ′ ′ ′ ′ ′ ′+ →⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

(2.26)  

2.4.2 Radiative Transfer Equation 

 In radiative transfer, quantum particles are photons, each having energy of hν for a given fre-

quency ν (or wavelength λ=c/ν). To derive the radiative transfer equation (RTE) describing the 

conservation of radiant energy along a line of sight of a beam propagating within an absorbing, 

emitting, and scattering medium, the radiative intensity is defined in terms of the photon distribu-

tion fν, the photon energy hν, the density of states Dν, and the speed of light c: 

 ( ) ( )
( )

4p

D p
I r , , ,t f r , p, , ,t h cν

ν νθ φ θ φ ν
π

=∑ .   (2.27) 

The subscript ν is used to indicate that the equation is for a given specific frequency (or wave-

length) which corresponds to a monochromatic laser beam. The summation is to be performed 

over all polarization branches. This implies that the change of polarization of photons is ignored 

in this case.  

 

 Multiplying Eq. (2.4) by the photon energy, the density of states, and the speed of light, and 

then performing the summation over all the polarization branches, allows the BTE to be cast in 

terms of the radiative intensity: 

 ( ) ( ) ( ) ( )
, ,

I v I W , ; , I , ,t W , ; , I r , , ,t
t
ν

ν ν ν ν ν ν
θ φ θ φ

θ φ θ φ θ φ θ φ θ φ θ φ
′ ′ ′ ′

∂ ′ ′ ′ ′ ′ ′ ′+ ⋅∇ = −
∂ ∑ ∑ . (2.28) 

To further simplify the BTE, the in-scattering term is rewritten as: 
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 ( ) ( ) ( ) ( )
4,

W , ; , I , ,t , ; , I , ,t dν
ν ν ν ν

Ωθ φ

σ
θ φ θ φ θ φ Φ θ φ θ φ θ φ Ω

π ′′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′=∑ ∫ , (2.29) 

where σν is the scattering coefficient and Φν is the phase function of the medium. The in-

scattering term contains all the contributions from within the solid angle Ω′. The out-scattering 

term can be given as 

 ( ) ( ) ( ) ( )
,

W , ; , I r , , ,t I r , , ,tν ν ν ν ν
θ φ

θ φ θ φ θ φ κ σ θ φ
′ ′

′ ′ = +∑ , (2.30) 

with κν being the absorption coefficient. Therefore, this yields the familiar form of the RTE: 

 ( ) ( )
4

I v I I , ; , I , ,t d
t
ν ν

ν ν ν ν ν ν
Ω

σ
β Φ θ φ θ φ θ φ Ω

π ′

∂ ′ ′ ′ ′ ′ ′+ ⋅∇ =− +
∂ ∫ . (2.31) 

Note that βν is simply the sum of κν and σν. This form of RTE assumes that the in-scatterings are 

elastic which means that a photon scattered with its energy (i.e., frequency) remains unaltered. 

This is not true in the case of Raman scattering. The out-scattering term includes the absorptions 

and re-emissions of photons, which are considered as inelastic scatterings. From the quantum 

mechanics point of view, the RTE asserts that the rate of change of the radiant energy of a 

propagating ensemble of photons in a given direction is equal to the amount of photons attenu-

ated, emitted along the direction, and in-scattered from all other directions into the given direc-

tion. One important thing to note for the radiative transfer is that the number of photons does not 

conserve. In other words, photons can be created and destroyed during inelastic scattering proc-

esses. Inelastic scatterings mean that the ensemble of photons is attenuated in terms of the popu-

lation of the photons, but not the frequency of the photons. This in turn reduces the energy of the 

entire ensemble. 

2.5 Moments of Boltzmann Transport Equation 

 The BTE can be transformed into a set of governing equations by taking various moments of 

the equation, conserving the particle number, momentum, and energy. By doing this, one can 

only obtain averaged effects of the overall system because the computed quantities are averages. 

The directional dependent of the scattering effect is conveniently removed after the integrations. 

Although the moments of the BTE remove specific details of scattering process, they still remain 

as one of the most frequently used approaches for research. This is because the overall effect is 
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preserved, the statistical average provided is manageable, and the directional dependent of the 

transport is not pronounced. In the procession of smaller and smaller scales, these two conditions 

may not hold at all. Under such circumstances, these moments may yield inaccurate results. In 

the following sections, brief derivations of various conservation equations from the BTE are 

given. Details of the derivations are available elsewhere (Snowden, 1988; Tomizawa, 1993), so 

they will not be repeated here. 

 

 The overall basic concept on these derivations is to cast the BTE into particle number, momen-

tum, and energy conservation equations and to remove the wave vector dependency of the BTE 

by taking various order moments of the BTE. If the BTE is multiplied by a function ψ and inte-

grate the entire equation over k , the following equation is obtained: 

 ext
rk k

col

Ff fv f f dk dk
t t

ψ ψ
⎛ ⎞ ⎛ ⎞∂ ∂⎟⎜ ⎟⎜⎟+ ⋅∇ + ⋅∇ = ⎟⎜ ⎜⎟ ⎟⎜⎜ ⎟⎜ ⎝ ⎠∂ ∂⎝ ⎠∫ ∫ . (2.32) 

This equation can be re-written in the following fashion using the simple differentiation rule as: 

 

( ) ( )

( )

ext
r rk k k

col

f Ff v f v f f dk
t t

f
f dk

t t

ψ ψ
ψ ψ ψ

ψ ψ

⎡ ⎤⎛ ⎞∂ ∂ ⎟⎜⎢ ⎥⎟− +∇ ⋅ − ⋅∇ + ⋅∇⎜ ⎟⎢ ⎥⎜ ⎟⎜∂ ∂ ⎝ ⎠⎣ ⎦
⎛ ⎞∂ ∂ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ∂ ∂⎝ ⎠

∫

∫
. (2.33) 

Equation (2.33) is the general moment equation for ψ (Duderstadt and Martin, 1979). For the 

following discussions, the spherical energy bands for the particle will be assumed. 

2.5.1 Continuity 

 The continuity equation for particle transport conserves the carrier density. It is obtained by 

taking the zeroth moment of the BTE with ψ = 1. Therefore, Eq. (2.33) becomes: 

 ( ) ext
r k k

col

Ff fdk v f dk f dk dk
t t

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎟⎜⎟ ⎡ ⎤ ⎟⎜ ⎜⎟+ ∇ ⋅ + ⋅∇ =⎟ ⎟⎜⎜ ⎜⎢ ⎥ ⎟⎟ ⎟⎣ ⎦⎜ ⎜⎜ ⎟⎜⎝ ⎠ ⎝ ⎠∂ ∂⎝ ⎠∫ ∫ ∫ ∫ . (2.34) 

Note that the average particle density, denoted as n, is given by: 

 ( ) ( )n r ,t f r ,k ,t dk= ∫ . (2.35) 

The first term on the LHS of the equation is simply the time derivative of the average particle 
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density: 

 f ndk f dk
t t t

⎛ ⎞∂ ∂ ∂⎟⎜ = =⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂∫ ∫ . (2.36) 

Before proceeding to simplify the other terms in the equation, it is important to examine the 

wave-vector dependent velocity, kv , which is the velocity of the particle. Here, it is assumed 

that: 

 k k kv v v′= + , (2.37) 

where kv  is an average velocity or the drift velocity of the particle, which shall be denoted as 

dv , while ( )k k ,Tv v′ =  is the random velocity due to thermal effects on the particle. The average 

velocity is expressed as follows: 

 
( )k

d k

v f dk
v v

fdk
= =

∫
∫

. (2.38) 

Therefore,  

 dk k ,Tv v v= + . (2.39) 

The drift component of the velocity can be viewed as the average velocity that the particles are 

supposed to possess if there are no thermal effects. The thermal effects cause the particle velocity 

to fluctuate around this drift velocity, which is called thermal velocity. However, the average 

thermal velocity over the distribution function is assumed to be zero (Tomizawa, 1993; Majum-

dar, 1998), that is: 

 ( ) 0k ,Tv f dk =∫ . (2.40) 

Also, note that: 

 ( )d dv f dk v=∫ , (2.41) 

since dv  is already an average quantity over the wave-vector spectrum. According to these ob-

servations, the second term on the LHS of Eq. (2.34) can be replaced by the product of the aver-

age drift velocity and the average particle density: 
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 ( ) ( ) ( )r r d r dk k ,Tv f dk v v f dk v n⎡ ⎤⎡ ⎤∇ ⋅ =∇ ⋅ + =∇ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ . (2.42) 

The third term on the LHS is zero. This is based on the fact that the divergence theorem can be 

used to replace the volume integral with surface integral, and the surface integral goes to zero 

since the integration is to be performed for a surface at a large wave vector where the function f 

goes to zero (see Snowden, 1988; Tomizawa, 1993). Thus, 

 0ext ext
k k

F Ff dk f dk
⎛ ⎞⎟⎜ ⎟⋅∇ = ⋅ ∇ =⎜ ⎟⎜ ⎟⎜⎝ ⎠∫ ∫ . (2.43) 

Hence, the zeroth moment of the BTE reads: 

 ( )r d
col

n nv n
t t

⎛ ⎞∂ ∂ ⎟⎜+∇ ⋅ = ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (2.44) 

where it is understood that the gradient is that of space r , and the velocity dv  is the averaged 

drift velocity which varies in space and time. The above equation is the particle number conser-

vation. The rate of change of particle concentration or density, which is the first term on the LHS 

of Eq. (2.44), and the in-coming and out-going particle fluxes (i.e., the second term on LHS of 

Eq. (2.44)) is equal to the rate of density generated due to collisions. 

2.5.2 Conservation of Momentum 

 The momentum conservation equation is obtained by taking the first moment of the BTE. 

Here, ψ is now the particle momentum, k kp mvψ = = . Again, referring to Eq. (2.33) and substi-

tuting the expression for ψ, the following momentum equation is obtained: 

 
( ) ( ) ( )k kext

r k k k k

col

mv f mv fFdk mv v f dk mv f dk dk
t t

⎡ ⎤ ⎛ ⎞⎛ ⎞∂ ∂ ⎟⎜⎟⎢ ⎥ ⎜⎡ ⎤ ⎟⎜⎟+ ∇ ⋅ + ⋅∇ =⎜ ⎟⎜⎢ ⎥ ⎟⎢ ⎥ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎜∂ ∂ ⎟⎝ ⎠ ⎜⎢ ⎥ ⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫ . (2.45) 

The first term on the LHS refers to the rate of change of the average momentum density, the sec-

ond term is the divergence of the flux density of average momentum of particle, and the last term 

is the flux density of average momentum due to external applied forces. The RHS is the rate of 

change of momentum due to particle collisions. The above equation shall be simplified starting 

from the first term on the LHS. Using Eqs. (2.39) and (2.40), it is observed that: 
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( ) ( ) ( )

( )k d
d dk ,T

mv f np
dk m v v f dk mv f dk

t t t t

⎡ ⎤∂ ∂∂ ∂⎢ ⎥ ⎡ ⎤= + = =⎢ ⎥ ⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∫ ∫ ∫ . (2.46) 

The second term on the LHS of Eq. (2.45) is rather complicated. It can be rewritten as: 

 

( ) ( )

( )( )
( )
( )

r rk k k k

r d ,i d , jk ,T ,i k ,T , j

r d ,i d , j d ,i d , jk ,T , j k ,T ,i k ,T ,i k ,T , j

r d ,i d , j k ,T ,i k ,T , j

r d ,i

mv v f dk mv v f dk

m v v v v f dk

m v v v v v v v v f dk

m v v v v f dk

mnv v

⎡ ⎤∇ ⋅ =∇ ⋅⎢ ⎥⎣ ⎦
⎡ ⎤=∇ ⋅ + +⎢ ⎥⎣ ⎦
⎡ ⎤=∇ ⋅ + + +⎢ ⎥⎣ ⎦
⎡ ⎤=∇ ⋅ +⎢ ⎥⎣ ⎦

=∇ ⋅

∫ ∫
∫
∫
∫

( )d , j k ,T ,i k ,T , jmv v f dk⎡ ⎤+⎢ ⎥⎣ ⎦∫

. (2.47) 

The RHS of the above equation are the kinetic and thermal energy tensors, respectively. For the 

sake of simplicity the off-diagonal elements of the thermal energy tensor shall be ignored. It is 

related to the temperature such that: 

 ( )B k ,T ,i k ,T ,ink T mv v f dk= ∫ , (2.48) 

for an ideal gas. Hence, it is observed that: 

 ( ) ( )r d ,i d , j r d ,i d , j Bk ,T ,i k ,T , jmnv v mv v f dk nv p nk T⎡ ⎤∇ ⋅ + =∇ ⋅ +⎢ ⎥⎣ ⎦∫ . (2.49) 

For the third term in Eq. (2.45), it can be simplified as: 

 ( ) ( )

( ) ( )

ext ext
k k k k

ext ext
k k k k

ext ext
k k k

F Fmv f dk mv f dk

F Fmv f dk f mv dk

F Fmv f dk f k dk

⎛ ⎞⎟⎜ ⎟⋅∇ = ⋅ ∇⎜ ⎟⎜ ⎟⎜⎝ ⎠

= ⋅ ∇ ⋅ − ⋅ ∇ ⋅

= ⋅ ∇ ⋅ − ⋅ ∇ ⋅

∫ ∫

∫ ∫

∫ ∫

. (2.50) 

Using the divergence theorem on the first term on the RHS of the above equation to transform 

the volume integral into surface integral, and performing the integration, the first term vanishes 

since f goes to zero for large k . Thus: 

 ( )ext ext
ext extk k k

F Fmv f dk f k dk F f dk nF
⎛ ⎞⎟⎜ ⎟⋅∇ =− ⋅ ∇ ⋅ =− ⋅ =−⎜ ⎟⎜ ⎟⎜⎝ ⎠∫ ∫ ∫ . (2.51) 

Collecting all these terms gives the following momentum equation (Snowden, 1988; Tomizawa, 
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1993): 

 
( )

( ) ( )
( )d d

r d d ext r B
col

np np
nv p nF nk T

t t

⎛ ⎞∂ ∂ ⎟⎜ ⎟+∇ ⋅ = −∇ +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠
. (2.52) 

After the transformation, dp  is the average particle drift momentum. It should not be confused 

with kp , which refers to wave vector dependent particle momentum. For convenience, the mo-

mentum conservation is usually written as: 

 ( ) ( )d d
r d d ext r B

col

P Pv P nF nk T
t t

⎛ ⎞∂ ∂ ⎟⎜ ⎟+∇ ⋅ = −∇ +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠
, (2.53) 

where ( )d dP np=  is the momentum density. 

2.5.3 Conservation of Energy 

 The energy conservation equation is derived by setting ψ to the energy of particles, which 

shall be denoted as kE . Note that kE  is a function of wave vector k , therefore all the time and 

space derivatives of it are zeros. Substituting kE  into Eq. (2.33) yields: 

 
( ) ( ) ( )k kext

r k k k k

col

E f E fFdk E v f dk E f dk dk
t t

⎡ ⎤ ⎛ ⎞⎛ ⎞∂ ∂ ⎟⎜⎟⎢ ⎥ ⎜⎡ ⎤ ⎟⎜⎟+ ∇ ⋅ + ⋅∇ =⎜ ⎟⎜⎢ ⎥ ⎟⎢ ⎥ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎜∂ ∂ ⎟⎝ ⎠ ⎜⎢ ⎥ ⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫ . (2.54) 

Similar to the derivation of the momentum equation, the first term on the LHS is the rate of 

change of the average energy density, the second term is the divergence of the average energy 

density flux, and the third term is the average energy generated due to the external forces. The 

first term on the LHS of the above equation can be expressed as: 

 
( ) ( ) ( )k

k

E f
dk E f dk nw

t t t

⎡ ⎤∂ ∂ ∂⎢ ⎥ = =⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦
∫ ∫ , (2.55) 

while the second term can be written as: 

 

( ) ( )

( ) ( ){ }
( ){ }

r rk k k k

r dk k k ,T

r d k k ,T

E v f dk E v f dk

E v f dk E v f dk

nv w E v f dk

⎡ ⎤∇ ⋅ =∇ ⋅⎢ ⎥⎣ ⎦

=∇ ⋅ +

=∇ ⋅ +

∫ ∫
∫ ∫

∫

. (2.56) 
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The second term on the RHS of Eq. (2.56) can be further simplified by assuming that: 

 

( )

( ) ( )

( )22

1
2
1
2
1 2
2

k k k

d dk ,T k ,T

d d k ,T k ,T

E m v v

m v v v v

m v v v v

= ⋅

= + ⋅ +

= + ⋅ +

 (2.57) 

and it is given as: 

 ( ) ( ) 221 2
2 d dk k ,T k ,T k ,T k ,T k ,T k ,TE v f dk m v v v v v v v f dk

⎧ ⎫⎪ ⎪⎡ ⎤⎪ ⎪= + ⋅ +⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
∫ ∫ . (2.58) 

The first term vanishes according to the condition given in Eq. (2.40). Again, it shall be assumed 

that only the diagonal elements of the thermal energy tensor are important and therefore the sec-

ond term reduces to: 

 ( ) ( )2
d d d Bk ,T k ,T k ,Tm v v v f dk mv v f dk nv k T⎡ ⎤⋅ = =⎢ ⎥⎣ ⎦∫ ∫ . (2.59) 

The third term on the RHS of Eq. (2.58) is related to the thermal heat flux, and it is expressed as: 

 
21

2 Tk ,T k ,Tm v v f dk q
⎧ ⎫⎪ ⎪⎪ ⎪ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

∫ . (2.60) 

As a result, Eq. (2.56) is given as: 

 ( ) ( )r r d d B Tk kE v f dk nv w nv k T q⎡ ⎤∇ ⋅ =∇ ⋅ + +⎢ ⎥⎣ ⎦∫ . (2.61) 

Turning our attention to the third term in Eq. (2.54) : 

 

( )

( )

ext ext
k k k k

ext ext
k k k k

ext k

ext d

F FE f dk E f dk

F FE f dk f E dk

F fv dk

nF v

⎛ ⎞⎟⎜ ⎟⋅∇ = ⋅ ∇⎜ ⎟⎜ ⎟⎜⎝ ⎠

= ⋅ ∇ − ⋅ ∇

=− ⋅

=− ⋅

∫ ∫

∫ ∫

∫

. (2.62) 

Gathering all the reduced terms, the energy conservation equation becomes (Snowden, 1988; 

Tomizawa, 1993): 
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( )

( ) ( )
( )

r d ext d r d B r T
col

nw nw
nv w nF v v nk T q

t t

⎛ ⎞∂ ∂ ⎟⎜ ⎟+∇ ⋅ = ⋅ −∇ ⋅ −∇ ⋅ +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠
, (2.63) 

where w is the average energy of the energy carriers and it is a function of time and space, and 

Tq  is the thermal heat flux. Note that the energy density is given as W nw= , thus one can write: 

 ( ) ( )r d ext d r d B r T
col

W Wv W nF v v nk T q
t t

⎛ ⎞∂ ∂ ⎟⎜+∇ ⋅ =− ⋅ −∇ ⋅ −∇ ⋅ + ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
. (2.64) 

2.5.4 Conservation of Thermal Heat Flux 

 Another conservation equation that can be extracted from the BTE is the heat flux conserva-

tion equation. This is done by defining k ,T k ,Tv Eψ =  where k ,Tv  and k ,TE  are the thermal velocity 

and energy, respectively. Note that the thermal energy is related to the thermal velocity as fol-

lows: 

 
21

2k ,T k ,TE m v= . (2.65) 

Substituting this into Eq. (2.33) yields 

 
( ) ( ) ( )k ,T k ,T k ,T k ,T

r k ,T k ,T k

col

v E f v E f
dk E v v f dk dk

t t

⎡ ⎤ ⎛ ⎞∂ ∂ ⎟⎜⎢ ⎥ ⎟⎡ ⎤ ⎜+ ∇ ⋅ = ⎟⎜⎢ ⎥ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟∂ ∂⎢ ⎥ ⎟⎜⎝ ⎠⎣ ⎦
∫ ∫ ∫ . (2.66) 

The external force term is conveniently omitted in the above expression for the sake of simplic-

ity. The equation shall be simplified term by term, starting from the first in the LHS. Note that 

the thermal heat flux can be expressed as (Tomizawa, 1993): 

 ( )T k ,T k ,Tq v E f dk= ∫ . (2.67) 

Using this expression, the first term on the LHS of Eq. (2.66) is: 

 ( ) T
k ,T k ,T

qv E f dk
t t

∂∂ ⎡ ⎤ =⎢ ⎥⎣ ⎦∂ ∂∫ . (2.68) 

The second term of Eq. (2.66) is: 

 ( ) ( ) ( )( )r r r dk ,T k ,T k k k ,T k ,T k ,T k ,T k ,TE v v f dk v E v f dk v v E v f dk⎡ ⎤∇ ⋅ =∇ ⋅ =∇ ⋅ +⎢ ⎥⎣ ⎦∫ ∫ ∫ . (2.69) 

The divergence of the integral can be reduced to: 
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 ( ) ( ) ( )r d r d T T Tk ,T k ,T k ,T k ,T k ,Tv E v f v E v f dk v q v q⎡ ⎤∇ ⋅ + =∇ ⋅ +⎢ ⎥⎣ ⎦∫ , (2.70) 

where Tv  is the average thermal velocity. Since the external force term has already been ne-

glected, it is preferable to ignore the drift velocity term as well. After collecting all the reduced 

terms for Eq. (2.66), the conservation of heat flux becomes: 

 ( )T T
r T T

col

q qv q
t t

⎛ ⎞∂ ∂ ⎟⎜+∇ ⋅ = ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
. (2.71) 

Since the effects imposed by the external forces and by the particle drift on the thermal heat flux 

are ignored in the derivation, this equation is best suited for describing photon or phonon trans-

port. In the case of electron transport, the above equation may deviate from the actual physics 

depending on the order of magnitude of the ignored terms. However, with the inclusion of the 

external forces and the drift velocity in the derivation, the equation is further complicated and 

may potentially become intractable. 

2.6 Macro-Scale Thermal Conduction 

 Thermal transport in bulk objects is usually termed macro-scale transport. Governing equa-

tions for this transport phenomena are considered to be the most simplified form of the BTE. 

Since the characteristic length scale of the bulk object far exceeds the mean free path of the heat 

carriers, most of the terms in the moments of the BTE can be neglected. Scales of such length 

determine that electrons and phonons are always in thermal equilibrium, considering that the re-

laxation time and length are much smaller than the characteristic behavior of the material. Since 

only a single temperature exists, the electrons and phonons are considered as a whole. The gov-

erning equations for the heat flow are then given by Eqs. (2.63) and (2.71), where the drift veloc-

ity and external forces are all negligible. They are: 

  r T T
col

W Wq S
t t

⎛ ⎞∂ ∂ ⎟⎜=−∇ ⋅ + +⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (2.72) 

 ( )T T
r T T

col

q qv q
t t

⎛ ⎞∂ ∂ ⎟⎜+∇ ⋅ = ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
. (2.73) 

It is assumed here that there are external neutral heat sources, denoted as ST, elevating the energy 

density of the carriers. The collision term is responsible for restoring thermal equilibrium. Since 

local thermal equilibrium exists between electrons and phonons, the collision term in the energy 
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conservation equation vanishes. The energy density, which is nw, refers to the combined energy 

density of electrons and phonons and it can be expressed as the product of the specific heat of 

electrons and phonons, C, and temperature, T. For macro-scale heat transport there is not a con-

cern with the detailed scattering mechanism in the collision term for the heat flux. So the relaxa-

tion-time approach is used (see Section 2.3.1) instead, and the following is obtained: 

 r T T
TC q S
t

∂
=−∇ ⋅ +

∂
, (2.74) 

 ( )T T
r T T

q

q qv q
t τ

∂
+∇ ⋅ =−

∂
. (2.75) 

The divergence of the product of the thermal velocity and the thermal heat flux can be reduced to 

account for the temperature variation in space. Referring back to Section 2.3.1,  

 ( ) ( ) ( )r T T r rk ,T k ,T k ,T k ,T k ,T k ,Tv q v E v f dk v f E v dk⎡ ⎤ ⎡ ⎤∇ ⋅ = ∇ ⋅ = ⋅∇⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ . (2.76) 

Since the characteristic length at macro-scale transport is much greater than the relaxation length 

of the heat carriers (i.e. electrons and phonons), the distribution function f should in fact con-

verge to the equilibrium distribution function, denoted as feq. This depends on temperature T. The 

integral can now be re-written as: 

 ( )
eq

eq
r rk ,T k ,T k ,T k ,T k ,T k ,T

fv f E v dk T v E v dk
T

⎛ ⎞∂ ⎟⎡ ⎤ ⎜ ⎟⋅∇ =∇ ⋅ ⎜ ⎟⎢ ⎥ ⎜⎣ ⎦ ⎟⎜ ∂⎝ ⎠∫ ∫ . (2.77) 

Since the thermal conductivity is defined as (Tomizawa, 1993): 

 
eq

T k k ,T k ,T k ,T

fk v E v dk
T

τ
⎛ ⎞∂ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠∫ , (2.78) 

and by assuming that the relaxation time for the thermal heat flux is constant, it can be written 

that: 

 ( ) T
r T T r

q

kv q T
τ

∇ ⋅ = ∇ . (2.79) 

Using this simplification, the energy and heat flux conservation equations for macroscopic ther-

mal transport become: 

 r T T
TC q S
t

∂
=−∇ ⋅ +

∂
, (2.80) 
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 T T T
r

q q

q k qT
t τ τ

∂
+ ∇ =−

∂
. (2.81) 

The above two equations form the so-called hyperbolic heat conduction, where it is diffusive in 

space but ballistic-diffusive in time. The hyperbolic heat conduction can be expressed in a single 

equation by taking the divergence of the heat flux equation and substituting the energy equation 

into it. The equation then takes the form: 

 ( )
2

2
T

q r T r T q
ST TC k T S

t t t
τ τ
⎛ ⎞ ∂∂ ∂ ⎟⎜ ⎟+ =∇ ⋅ ∇ + +⎜ ⎟⎜ ⎟⎜ ∂ ∂ ∂⎝ ⎠

. (2.82) 

The hyperbolic heat conduction can be reduced to parabolic heat conduction if the time of inter-

est becomes much greater than the relaxation time of the heat flux. Under such a condition, the 

transient term in Eq. (2.81) drops out and the Fourier law is obtained, that is 

 T T rq k T=− ∇ . (2.83) 

Inserting this into the energy conservation equation, the parabolic heat equation is then given as 

 ( )r T r T
TC k T S
t

∂
=∇ ⋅ ∇ +

∂
, (2.84) 

where the conduction is purely diffusive both in time and space.  

2.7 Micro-Scale Thermal Conduction 

 At the microscopic level, which ranges from micrometer to sub-micrometer length scales, 

electrons and phonons can exist at different thermal energy levels. In other words, local thermal 

equilibrium does not exist since electrons and phonons possess different temperatures. Typically, 

the thermalization process first occurs through electrons and then relaxation takes place between 

hot electrons and phonons until equilibrium is reached. There are quite a number of thermal 

models available for modeling the microscopic heat transport. Derivations of these models will 

be discussed in the following sections. 

2.7.1 Two-Temperature Model 

 Interactions between external sources of heating such as the photon- and electron-beams and 

the target workpiece involve the heating of electron gas inside the target workpiece causing the 

electron energy to elevate substantially when compared to the lattice energy. One way to model 



 

37 

this phenomenon is to separate temperature into two distinct components, namely the electron 

and lattice temperatures, though temperature may not be correct term to use. Such a model is re-

ferred to as the two-temperature model (TTM). The TTM neglects the kinetic-energy changes of 

electrons, and assumes interactions between electrons and phonons through a coupling constant 

G. 

 

 To derive the TTM the energy and heat flux conservations for electrons and phonons shall be 

written using Eqs. (2.63) and (2.71). These conservation equations are written as: 

 e e
r T ,e T

col

W Wq S
t t

⎛ ⎞∂ ∂ ⎟⎜=−∇ ⋅ + +⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (2.85) 

 ( )T ,e T ,e
r T ,e T ,e

col

q q
v q

t t
⎛ ⎞∂ ∂ ⎟⎜+∇ ⋅ = ⎟⎜ ⎟⎟⎜∂ ∂⎝ ⎠

, (2.86) 

 ph ph
r T ,ph

col

W W
q

t t
⎛ ⎞∂ ∂ ⎟⎜ ⎟=−∇ ⋅ +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠

, (2.87) 

 ( )T ,ph T ,ph
r T ,ph T ,ph

col

q q
v q

t t
⎛ ⎞∂ ∂ ⎟⎜ ⎟+∇ ⋅ =⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠

, (2.88) 

where subscripts ‘e’ and ‘ph’ denote electrons and phonons, respectively. The external heating 

source, ST, is assumed to be on electrons. By assuming that the object length far exceeds the re-

laxation lengths of electrons and phonons, these equations become: 

 e e
r T ,e T

col

W Wq S
t t

⎛ ⎞∂ ∂ ⎟⎜=−∇ ⋅ + +⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (2.89) 

 T ,e T ,e T ,e
r e

q ,e q ,e

q k q
T

t τ τ
∂

+ ∇ =−
∂

, (2.90) 

 ph ph
r T ,ph

col

W W
q

t t
⎛ ⎞∂ ∂ ⎟⎜ ⎟=−∇ ⋅ +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠

, (2.91) 

 T ,ph T ,ph T ,ph
r ph

q ,ph q ,ph

q k q
T

t τ τ

∂
+ ∇ =−

∂
. (2.92) 

Since electrons and phonons are transferring energy between each other, the collision term for 

electrons include energy lost to phonons while the collision term for phonons involves energy 

received from electrons. By using the relaxation time approach, the collision terms for electrons 

and phonons can be written as: 
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 ph ph ee
e

col e phcol

W T TW C
t t τ −

⎛ ⎞∂ −⎛ ⎞∂ ⎟⎜⎟⎜ ⎟=− =⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎜⎝ ⎠∂ ∂⎝ ⎠
, (2.93) 

where τe-ph is the relaxation time between electrons and phonons. By treating the energy density 

of electrons and phonons as a function of electron temperature and phonon temperature, respec-

tively, the governing equations are transformed into: 

 e phe
e r T ,e e T

e ph

T TTC q C S
t τ −

−∂
=−∇ ⋅ − +

∂
, (2.94) 

 T ,e T ,e T ,e
r e

q ,e q ,e

q k q
T

t τ τ
∂

+ ∇ =−
∂

, (2.95) 

 ph ph e
ph r T ,ph e

e ph

T T T
C q C

t τ −

∂ −
=−∇ ⋅ −

∂
, (2.96) 

 T ,ph T ,ph T ,ph
r ph

q ,ph q ,ph

q k q
T

t τ τ

∂
+ ∇ =−

∂
, (2.97) 

where ST is the volumetric heat generation caused by the external heating sources, C the heat ca-

pacity, and k the thermal conductivity. The above four equations shall be called the general TTM 

where the ballistic nature of electrons and phonons is maintained in the governing equations. The 

general TTM can be simplified to produce the so-called hyperbolic TTM, parabolic TTM, and 

even the dual-phase lag model (DPLM). 

 

 The hyperbolic TTM can be obtained from the general TTM by ignoring the heat propagation 

of phonons. This is usually justified when metals are dealt with since the thermal conduction of 

phonons is weak when compared to that of electrons. Thus, the set of four equations reduces to 

three: 

 e phe
e r T ,e e T

e ph

T TTC q C S
t τ −

−∂
=−∇ ⋅ − +

∂
, (2.98) 

 T ,e T ,e T ,e
r e

q ,e q ,e

q k q
T

t τ τ
∂

+ ∇ =−
∂

, (2.99) 

 ph ph e
ph e

e ph

T T T
C C

t τ −

∂ −
=−

∂
. (2.100) 

If the transient behavior of heat flux in the hyperbolic TTM is omitted, the parabolic TTM is 

formed.  
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2.7.2 Dual-Phase Lag Model 

 The hyperbolic TTM can be combined easily to yield the so-called dual-phase lag model 

(DPLM). This model describes the phonon temperature in a single governing equation. This 

model requires that all the thermal properties of electrons and phonons are to be considered con-

stant. Therefore, the two of the three unknowns need to be eliminiated from the governing equa-

tion. To do so, Eq. (2.98) is first differentiated with respect to time to obtain: 

 T ,ee e e T
e r e ph

e ph e ph

qT C C SC T T
t t t t t tτ τ− −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂∂ ∂∂ ∂ ∂⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎜ ⎜=−∇ ⋅ − + +⎟ ⎟ ⎟⎜ ⎜ ⎜⎟⎜ ⎟ ⎟⎝ ⎠ ⎟ ⎟∂ ∂ ∂ ∂ ∂ ∂⎜ ⎜⎝ ⎠ ⎝ ⎠
. (2.101) 

The divergence of Eq. (2.99) is taken to get: 

 T ,e T ,e T ,e
r r r r e

q ,e q ,e

q q k
T

t τ τ

⎛ ⎞ ⎛ ⎞∂ ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∇ ⋅ =−∇ ⋅ −∇ ⋅ ∇⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟∂ ⎜ ⎜⎝ ⎠ ⎝ ⎠
. (2.102) 

Substituting this equation into Eq. (2.101) and rearranging it gives: 

 T ,e T ,ee e e T
e r r r e e ph

q ,e q ,e e ph e ph

q kT C C SC T T T
t t t t tτ τ τ τ− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟⎜ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜=∇ ⋅ +∇ ⋅ ∇ − + +⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟⎜ ⎟ ⎟ ⎟ ⎟⎝ ⎠ ⎟ ⎟ ⎟ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (2.103) 

If the relaxation time of the electron heat flux, τq,e, is assumed constant, then: 

( )1 1e e e T
e r T ,e r T ,e r e e ph

q ,e q ,e e ph e ph

T C C SC q k T T T
t t t t tτ τ τ τ− −

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎜ ⎜= ∇ ⋅ + ∇ ⋅ ∇ − + +⎟ ⎟ ⎟⎜ ⎜ ⎜⎟⎜ ⎟ ⎟⎝ ⎠ ⎟ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎜⎝ ⎠ ⎝ ⎠
 (2.104) 

Note that the divergence of the electron heat flux can be eliminated by using the electron-energy 

equation given in Eq. (2.98) where 

 e phe
r T ,e e e T

e ph

T TTq C C S
t τ −

−∂
∇ ⋅ =− − +

∂
. (2.105) 

Thus, Eq. (2.104) becomes: 
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e e e e e
e e ph

q ,e e ph e ph

e phe T T
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q ,e q ,e e ph q ,e
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t t t t t
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τ τ τ τ
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−

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎜ ⎜− + −⎟ ⎟ ⎟⎜ ⎜ ⎜⎟⎜ ⎟ ⎟⎝ ⎠ ⎟ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎜⎝ ⎠ ⎝ ⎠

− ∂
= ∇ ⋅ ∇ + + +

∂

 (2.106) 

Next, the phonon energy equation (see Eq. (2.100)) is solved for the electron temperature: 
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 e ph ph ph
e ph

e

C T
T T

C t
τ −

⎛ ⎞∂⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠
. (2.107) 

Substituting this into Eq. (2.106) to eliminate the electron temperature yields: 

 

e ph ph ph ph
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e ph ph ph ph phe
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⎛ ⎞⎡ ⎤∂ ∂⎟⎜ ⎢ ⎥⎟⎜ ⎟ +∇ ⋅ ∇ + +⎟⎟⎜ ⎢ ⎥⎟⎟⎜ ∂ ∂⎟⎝ ⎠⎢ ⎥⎣ ⎦

. (2.108) 

For the case where the electron-phonon relaxation time, specific heats of electrons and phonons 

and electron thermal conductivity are constant, the equation takes the form: 
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3 2

3 2
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q ,e e ph ph q ,e e e ph ph ph ph
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⎛ ⎞ ∂∂⎟⎜ ⎟= ∇ + ∇ + +⎜ ⎟⎜ ⎟⎜ ∂ ∂⎝ ⎠

. (2.109) 

2.7.3 Electron-Phonon Hydrodynamic Model 

 By taking the zeroth-, first- and second-order moments of the Boltzmann transport equation 

which corresponds to continuity, momentum, and energy conservations, respectively, the so-

called hydrodynamic equations can be derived. The hydrodynamic equations are usually useful 

for simulating heat transport inside electrical devices in sub-micron scale resolution. However, 

by doing so, the variables such as distribution, velocity, and energy describing the heat carriers in 

the equations are replaced by the corresponding average quantities. For instance, the energy-

dependent velocity of the carriers are neglected and replaced by an averaged velocity. However 

the physics of the problem are still preserved. 

 

 The various conservation equations derived from the moments of the BTE are shown in Sec-

tion 2.4.2, and they are given by Eqs. (2.44), (2.52), (2.63), and (2.71). It is important to consider 

that electrically and thermally conducting material consists of electrons and phonons as energy 

carriers. Using moments of the BTE, continuity, momentum, and energy conservations for elec-
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trons are expressed as: 
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r d ,e e
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 (2.112) 

where it is assumed that an external electric field, E , is applied. The Fourier law of heat conduc-

tion is used for the sake of simplicity. Since Fourier’s law is applied, the assumption is that the 

characteristic length of the geometry far exceeds the mean free path and the relaxation length of 

electrons. It is also implied that heat conduction by electrons is not ballistic in time. The first 

equation enforces the particle conservation for electrons. This is where the rate of change of the 

electrons in time and space equals the rate of increase of electrons due to collisions. The second 

equation refers to electron momentum conservation. This is when the rate of change of the elec-

tron momentum in time and space is equivalent to the forces exerted by the electric field and by 

the electron pressure, as well as the rate of momentum gain or loss in collisions. The third equa-

tion represents the electron-energy conservation. This is where electron energies are conserved in 

time and space according to the energy supplied by the electric field, the work performed by the 

electron pressure, the divergence of heat flux, and the rate of change of energy due to collisions. 

 

 Similarly, these conservation equations can be written for phonons. However, the continuity 

equation does not apply for phonons since they can be created and destructed. In addition, the 

phonon thermal velocity is typically much greater than its drift velocity, implying that the pho-

non momentum conservation is not needed. Hence, all the terms related to the drift velocity of 

phonons are dropped out. As a result, energy and heat flux equations remain. Phonons are usu-

ally sub-divided into optical phonons and acoustic phonons (Ashcroft and Mermin, 1976; Ziman, 

1960). Optical phonons have essentially zero velocity while acoustic phonons propagate and 

conduct heat. According to the arguments above, the governing equations for optical and acous-

tic phonons are written as: 
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, (2.115) 

where the subscript ‘LO’ stands for optical phonons and ‘A’ for acoustic phonons. In order to 

present these equations in a simpler manner, the divergence term in the acoustic phonon heat flux 

equation is approximated by relating it to the phonon thermal conductivity and temperature gra-

dient, as previously shown in Section 2.6.  

 

 By using the concept of thermal conductivity, it is assumed that the object is “bulk” in size, 

enabling conductivity to be defined. By the same token, the internal energy of the phonons can 

be expressed as a product of the specific heat and temperature. In addition, the ballistic transport 

of phonons in time shall be ignored. Using these approximations, the above equations for phonon 

transport are transformed into: 

 LO LO
LO

col

T WC
t t

⎛ ⎞∂ ∂ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (2.116) 

 ( )A A
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⎛ ⎞∂ ∂ ⎟⎜=∇ ⋅ ∇ + ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
. (2.117) 

 Next, the various collision terms in the equations need to be addressed. The relaxation time 

approximation (see Section 2.3.1) will be used to determine these terms. It is important to first 

discuss what the energy transfer mechanisms are in this electron-phonon system before attempt-

ing to express them in terms of mathematical equations as well as the physics of the energy 

transfer. Due to the external applied electric field, electrons are accelerated where they gain addi-

tional energy from the force field. Since the electric field does not directly affect phonon energy, 

phonons remain cold while electrons are hot. Next, electrons start to relax by transferring excess 

energy to phonons until thermal equilibrium exists between them. Energy is also transferred be-

tween optical phonons and acoustic phonons. Following the detailed explanations given by 

Blotekjaer (1970), the various collision terms can be approximated as: 
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+ −⎛ ⎞ −∂ ⎟⎜ = +⎟⎜ ⎟⎜⎝ ⎠∂
, (2.122) 

where the electron momentum, d ,eP , and the average electron energy, We, are expressed as: 

 d ,e e e d ,eP m n v= , (2.123) 

 23 1
2 2e e B e e e d ,eW n k T n m v= + . (2.124) 

According to the above order, the first collision term corresponds to the number of electrons 

generated due to the incoming electrons from external sources. The second term describes the 

relaxation of the momentum between electrons, while the remaining three terms account for the 

energy exchange between electrons and phonons. The momentum relaxation is assumed to be 

fully isotropic. Collisions between impinging electrons from any external sources and electrons 

inside the material itself randomize momentum, resulting in no net momentum transfer during 

scattering. The premise of this assumption is based on the condition that the incoming electrons 

from the external sources are at the same energy level as the electrons inside the medium. The 

third term describes the energy exchanges between electrons and optical and acoustic phonons. 

The fourth term refers to interactions of optical phonons with electrons and acoustic phonons 

while the last term is the interactions acoustic phonons with electrons and optical phonons. 

 

 Replacing all the collision terms, electron momentum, and electron energy into the conserva-

tion equations with the above expressions, the following set of equations is obtained: 
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(LO-Phonon Energy) 
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∂
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Details of the derivations are given in Appendix A. The above equations are termed the electron-

phonon hydrodynamic equations. These are various conservation equations for the heat carriers. 

It is necessary to go over the physical meaning of each conservation equation and deduce some 

implications from them. 

 

 The electron continuity equation given in Eq. (2.125) refers to the electron number balance. 

This is the rate of increase of the electron concentration being equal to the rate of advection and 

diffusion plus the rate of electrons generated. In the electron momentum conservation (see Eq. 

(2.126)), it is observed that electron velocity tends to increase propagating through decreasing 

electric field, negative electron concentration gradient, and/or declining electron temperature 

gradient. The rate of the electron velocity relaxation (or the rate at which the electron reduces its 

velocity) is dictated by the momentum relaxation time, τm, and the rate of increase/decrease of 

the externally generated electron concentration, e,genn . It is normalized by the local electron con-

centration, ne. Note that the larger momentum relaxation time means longer time for the electron 

to reduce its velocity. In addition, when there is additional local electron concentration being 

generated, the rate of momentum relaxation is elevated by those electrons since an increasing 

electron concentration increases the frequency of electron-electron collisions. 
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 Proceeding to the electron energy conservation equation in Eq. (2.127), notice that the Joule 

heating term ( )e d ,een v E− ⋅  as expressed in the general electron energy equation (see Eq. (2.112)) 

does not appear in the equation after the simplification given in Appendix A. The Joule heating 

phenomenon is embedded in Eq. (2.127) even though it is not expressed explicitly in the equa-

tion. The same goes for the work done by the electron pressure ( )( )r d ,e e B ev n k T−∇ ⋅ . It would be 

rather difficult to point out the explicit physical meaning of each term in the current form of the 

electron energy equation. This claim shall be explored in the next paragraph. 

 

 The effects of electron concentration generation (or heating by external electrons) on the elec-

tron temperature seem to appear in the last three terms on the RHS of Eq. (2.127). One can in-

crease the electron temperature locally by imposing a strong localized heating source. This effect 

is given by the last of the three terms mentioned. Judging from the other two terms (i.e., 

( )( ) ( )2 3e,gen e e d ,e B e,gen e en n m v k n n T− ), it looks as if electron heating has mixed effects on the 

electron temperature. Increasing the rate of electron heating may increase or decrease the elec-

tron temperature depending on the ratio of average kinetic energy to local electron temperature. 

To clarify this, it should be noted that the average drift velocity of the electron decreases when 

the electron heating rate is large as asserted by the electron momentum equation (see Eq. 

(2.126)). Therefore, the combination of the increase in the electron concentration due to electron 

heating and the decrease in the average electron drift velocity decides whether the electron tem-

perature is elevated or not via the average kinetic energy. When electron concentration is in-

creased locally, the electron temperature shall decrease due to the increase in the electronic heat 

capacity. The product of one-third of the divergence of the electron drift velocity and tempera-

ture appears on the RHS of Eq. (2.127) as well. It is indecisive to draw any physical meaning on 

each of these terms alone. The effects of the Joule heating and the work done by the electron 

pressure are lumped together in those terms. 

 

 Attention shall be focused on the last two phonon energy equations. Based on the dispersion 

relation of phonons, optical phonons have essentially zero group velocity, while acoustic pho-

nons are capable of propagating through the medium (Ziman, 1960). Therefore the optical pho-

non energy equation (i.e., Eq. (2.128)) does not have the diffusion term. Optical phonons can 
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generally be viewed as intermediate energy storage between electrons and acoustic phonons. 

Therefore, the corresponding conservation equation consists of energy exchanges between these 

heat carriers. Optical phonons gain energy from electrons (both from average electron kinetic 

energy and thermal energy), as given by the first two terms on the RHS of Eq. (2.128). The last 

term describes energy exchange with acoustic phonons. The acoustic phonon energy equation is 

similar to the optical phonon energy equation except that there is a diffusion term that describes 

diffusion of acoustic phonon energy. 

 

 Until now, the electric field term in the momentum equation has not been addressed. The elec-

tric field can be obtained by examining the electric potential and the charge distribution in space. 

The relationship between these quantities is derived from Maxwell’s equations. The resultant 

governing equation is the Poisson equation. Snowden (1988) has provided a detailed discussion 

on how the Poisson equation is derived from the Maxwell equations, therefore, the same deriva-

tion shall not be repeated here. Instead, it will be assumed that the Poisson equation can readily 

be used, which is expressed as: 

 ( )2
e

e

eV n n
ε +∇ = − , (2.130) 

where n+ is the density of the positive charges in the material, and the electric field is expressed 

as 

 E V=−∇ . (2.131) 

As a result, the entire electron-phonon hydrodynamic equations are given by Eqs. (2.125), 

(2.126), (2.127), (2.128), (2.129), and (2.130). These equations are to be solved simultaneously 

in order to predict the electrical and thermal behavior of a system with electrons and phonons as 

energy carriers. 

 

 The momentum equation in the hydrodynamic equations can be further simplified to yield the 

so-called drift-diffusion approximation. This is where the velocity transient and inertia terms are 

neglected. The drift velocity vector of electrons can be conveniently expressed as: 

 ( )eff B eff
d ,e e e

e e e

e k
v E n T

m m n
τ τ

=− − ∇ , (2.132) 

where 
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Since the electron drift velocity is explicitly given, it can be substituted into the electron continu-

ity equation to yield: 

 ( ) ( )( )e B
eff e eff e e e,gen

e e

n ke n E n T n
t m m

τ τ
∂

− ∇⋅ − ∇⋅ ∇ =
∂

, (2.134) 

where the second term on the left-hand side represents the drift of electrons in and out of the sys-

tem while the third term includes the gains or losses due to the electron diffusion. 

 

 During the course of obtaining these governing equations, a number of assumptions have been 

made for the sake of simplicity. These assumptions are by no means unique. If one or more of 

the assumptions are removed, the hydrodynamic model will take a rather different form than the 

derived one. It will certainly raise the difficulty level of solving the model substantially. 
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Figure 2.1 The thermal transport phenomena at various scales (ranging from macro-
scopic levels to molecular levels) and the corresponding thermal transport models are 
depicted in the flow diagram. Note that this diagram is not unique since there are 
some other models that may fit one of the categories listed above. 
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CHAPTER 3  
MONTE CARLO METHODS 

 

3 
3 

 The Boltzmann transport equation (BTE) for any particle (e.g., electron, phonon, photon, etc) 

transport is difficult to solve due to the in-scattering nature of the transfer and the involvement of 

seven or more independent variables. Although there are some analytical/numerical approaches 

such as the discrete ordinates method and the spherical harmonics approximation that are capable 

of solving the integro-differential equation such as the BTE, extensive mathematical knowledge 

and lengthy derivations are required for one to acquire the solution. This is especially true when 

anisotropic scattering is involved. There is a relatively simple way of solving the BTE that re-

quires the use of one’s imagination and a little effort of derivations. The simple way makes use 

of a statistical approach called the Monte Carlo method (MCM). Although this method can be 

powerful in accounting for various complicated situations and conditions, it suffers statistical 

errors, usually requiring large number of statistical ensembles accompanied with a tremendous 

amount computational time to remedy. Nevertheless, with the improvement of computer speeds 

each year, the Monte Carlo Method will become more commonly applied in solving the BTE. 

 

 In the context of particle transport phenomena, a MCM refers to the simulation of the propaga-

tions of energy carriers such as photons and electrons inside a participating medium. This ab-

sorbs and scatters the carriers according to the transport equation. It is similar to playing the 

game of Monopoly(TM). To play the game correctly, one needs uniformly distributed dices, a 

good set of game rules, and a game board. In a MCM, one needs a uniformly distributed random 

number generator, correct scattering probabilities, and a grid system for storing the particle histo-

ries. At first glance, one often wonders how the randomness of the particle simulation can gener-

ate a correct solution to the transport equation. Strictly speaking, the simulation is not truly ran-

dom in the sense that particles or energy carriers travel according to the scattering probabilities. 

These are not random because they are derived based on the laws of physics. 

 

 Each bundle is comprised of lots of particles. The simulation procedures are as follows: First, a 

bundle is released in the medium from its initial location. Then according to some probability 

distribution functions, the path length and the direction of the bundle are determined. As the 
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bundle moves in the medium, a fraction of its intensity/energy is absorbed or scattered. Eventu-

ally, all of its energy is consumed (attenuated) or the bundle reaches the boundary and contrib-

utes to either reflection or transmission distribution. Figure 3.1 depicts sample trajectories of two 

statistical bundles as they propagate through a scattering medium. It is the contribution of many 

of these statistical bundles that provides the intensity distributions and solution to the governing 

equation. It is clear that a MCM treats propagating waves as discrete packets of quantum parti-

cles. The assumption that the wavelength of the propagating bundle is negligible compared to the 

characteristic length of the object is always implied. Should this assumption be violated, then the 

wave nature of particles needs to be considered.  

 

 The MCM has lots of different applications in the field of sciences. In this dissertation, the 

discussions shall be confined to the simulation procedures applicable to electron-beam transport, 

radiative heat transfer, and heat conduction in terms of electrons and phonons. The simulation 

procedures for the MCMs in electron-beam transport and radiative heat transfer are almost iden-

tical with a few exceptions. When it comes to the electron or phonon thermal conduction inside 

matters, the simulation becomes cumbersome since all the heat carriers must be accounted for 

simultaneously, meaning that all the statistical ensembles are launched at the same time, in order 

to determine the scattering properties in time and space. Such a simulation requires a tremendous 

amount of computer memory storage and computational time.  

 

 This chapter is devoted to basic simulation procedures of the MCMs since they are somewhat 

similar in the heat transport modes that are encountered in this work. Specific details about the 

scattering properties for different heat carriers will not included here as they will be discussed in 

other chapters. 

3.1 Cumulative Probability Distribution Function 

 The basic principle behind a Monte Carlo technique is the cumulative probability distribution 

function (CPDF). A CPDF of a variable is how frequently a given value of that variable occurs 

within a fixed function. As an example, consider a blackbody energy distribution over the wave-

lengths for a given temperature of 1000 K. The plot of the spectral emissive power distribution at 

the temperature is shown in Figure 3.2. The total emissive power of this object can be expressed 
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as: 

 
0

E E dλ λ
∞

= ∫  (3.1) 

and the amount of emissive power if the object emits within the spectral range of 0 - λ (e.g., λ = 

2 µm), which is the shaded area in the figure, is given as: 

 
0

C E d
λ

λ λ λ= ∫  (3.2) 

Therefore, the CPDF of the object which emits at a wavelength smaller than λ can be sampled as 

 CR
E

λλ =( )   (3.3) 

  

If R(λ) is replaced with a random number Ran, then the corresponding wavelength λ can be ob-

tained by inverting Eq. (3.3). Therefore, 

 Ranλ λ= ( )   (3.4) 

When this process is repeated for N times, a histogram for a range of λ drawn can be obtained. 

Normalizing this function by N and multiplying by E yields the original spectral emissive power 

function, Eλ, as N approaches infinity. 

 

 The above example can be viewed as a statistical means of representing the wavelength of a 

given object which radiates at a temperature of 1000 K. If only one wavelength is drawn from 

Eq. (3.4) using a random number, it will not represent the range of wavelengths that the object is 

supposed to emit. It would require a generous amount of statistical ensembles to truly represent 

the distribution, and that is the drawback of a statistical approach. Nevertheless, such an ap-

proach easily lends itself to solving the particle transport phenomena, which is described by the 

BTE. 

 

 It is already known how intensity or energy suffers attenuations (i.e., scatterings) along a line 

of sight according to the BTE. Therefore, we can apply the statistical concept to solving the BTE 

can be applied by simply “chopping” the intensity into a prescribed number of statistical ensem-
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bles and allowing each to travel in time and across space independently6 using the “rules” as-

serted by the BTE and the CPDFs derived from the scattering properties. For example, the inten-

sity form of the BTE for radiative transfer (that is, the RTE) states that intensity should be at-

tenuated exponentially; therefore, the probability of a statistical ensemble being attenuated must 

increase exponentially following the equation. The CPDFs will then statistically determine the 

scattering direction or the scattered energy of an ensemble when it encounters scatterings. Simi-

lar to the above example for statistically determining the emission spectrum of a blackbody ob-

ject, the results are meaningful only when a large number of statistical ensembles are traced. 

What a MCM really offers in this context is a statistical approximation to the solution of the BTE 

in time, space, energy spectrum, and/or directions. Having known the concept behind the MCMs, 

all that is needed to do next is to establish a tracking algorithm which simulates the propagations 

of these statistical ensembles.  

3.2 Monte Carlo Simulation for Particle-Beam Transport 

 Particle-beam transports that shall be referred to in this dissertation are electron- and photon-

beam transports. Both of those have been widely used as non-intrusive7 diagnostic tools. For ex-

ample, the most commonly used tool to visualize micro- or nano-scale structures is the scanning 

electron microscope (SEM). This microscope utilizes the reflected electrons from a specimen to 

construct images of the targets. Although there are some minor differences in comparing elec-

tron-beam scatterings to photon-beam scatterings, the basic MC simulation procedures discussed 

are applicable to both cases. In this chapter, the details of the scattering properties of electrons or 

photons will not be discussed. It is presumed that they are taken for granted. The derivations of 

these properties will be given in other chapters. 

3.2.1 Grid Preparation 

 Any space dependent numerical or statistical simulations require preparation of a grid. In any 

numerical method, physical domains are usually divided into grids to facilitate the discretization 

                                                 
6 It means that the propagation of a statistical ensemble will not interfere that of another, so interference effects are 
ignored. 
7 Non-intrusive tools mean that the powers of the beams used are not sufficient to cause structural damage to the 
specimen. Oppositely, the beams in this dissertation serve as intrusive tools to melt and subsequently evaporate the 
target. 
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process. In the case of statistical simulations, grids are used to collect histories of the propagating 

ensembles. In other words, they are used to tally the contributions of each statistical ensemble to 

various locations in space. These contributions, in a sense, can be regarded as raw data. When 

proper normalizations are utilized, they are transformed into useful statistical distributions corre-

sponding to the expected physical quantities. 

 

 There is a very distinct property of the grid used in the statistical simulation compared to the 

regular numerical simulation. The size of the grid possesses no effects on the accuracy of the sta-

tistical simulated results, but it does have an effect on the resolution of the distributions. The ul-

timate factors that control the accuracy of the simulation are actually the number of ensembles 

used and the number of runs performed. When either a coarse grid or a fine grid is used in the 

simulation, the resultant distribution is always fluctuating around the statistical mean distribu-

tion, provided that the number of statistical ensembles used in each case is sufficient. Using more 

grid points would produce resultant distributions at higher resolution. Unfortunately, it also 

means more statistical ensembles are required to reduce the statistical noises. 

 

 Since the histories of statistical ensembles are tallied within infinitesimal control volumes for 

the sake of normalizations, it is better to have grid points centered in each control volume instead 

of using four grid points to form a control volume.  

3.2.2 Random Number Generator 

 Another important requirement for a statistical simulation is a random number generator. A 

statistical method is like a “rolling dice” method where one randomly draws a number using the 

dice to decide the outcome. The random number generator needs to have a uniform probability 

for the range of numbers required, which is typically between 0 and 1. There are a handful of 

random number generators given in the literature. The details of each one will not be discussed 

within this work.  

 

 The FORTRAN language is used in coding all the algorithms in this dissertation. It has a built-

in random number generator, which goes by the syntax, ran(nseed). This random number genera-

tor requires a large odd integer number, denoted as nseed, to be initialized. This number will 
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change automatically after each time the function is called. However, in order to avoid an exact 

same series of random numbers being drawn, the initial nseed used in the algorithm should be 

different for different runs. One way to overcome this dilemma is to utilize the total number of 

seconds calculated using year, date and time as the nseed, since it would never be the same at 

any given moment.  

3.2.3 Outlines of the Simulation 

 There are two ways of approaching the simulation procedures. One is using the so-called con-

tinuous slowing-down approach (CSDA) and the other is the discrete inelastic scattering (DIS). 

Just as the names imply, the former treats inelastic scattering events as a continuous phenomenon 

where energy change corresponds to the distance traveled while the latter assumes the events 

discrete at which energy change depends on the type of scattering mechanism. The flowcharts of 

these two MCMs are available in Figure 3.3 and Figure 3.4. 

 

 A MCM simulation starts by setting up the grid system for storing the particle histories. The 

simulation proceeds with launching an ensemble of particles one after another, until the last 

number of ensembles is specified. Each ensemble is treated separately demonstrating that there is 

no interference factor between any two ensembles. The location and direction of launching the 

ensembles are defined according to the incident particle beam profile. The most common beam 

profiles used in the simulation are impulse (or point incident beam), flat (or uniform within a 

specified area), and Gaussian (i.e. exponential decaying). The location of launching the ensem-

bles needs to be sampled from its probability distribution, except in the case of the impulse beam 

profile. 

 

 The distance of interaction is determined next from a random number. The distance of interac-

tion is equivalent to the mean free path of an ensemble. This indicates the distance the ensemble 

can travel without being scattered. Once the distance of interaction is set, the ensemble is al-

lowed to propagate from its initial position to the next location following its initial direction. The 

ensemble is then checked for confinement within the defined control volume. If the condition is 

met, the ensemble is allowed to scatter, otherwise the contribution of the ensemble to either the 

transmission or the reflection is tallied. A new ensemble of particles would be initiated according 
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to the incident beam profile and launched from the appropriate location. If the ensemble is still 

confined within the medium, its weight (or energy) is updated (or attenuated) and its contribution 

to the absorption is tallied. Following the attenuation, the ensemble is tested for its remaining 

weight. If the energy of the ensemble becomes less than the tolerance, it is disregarded and a new 

ensemble is launched. If this is not done, then it suffers an elastic scattering and changes the di-

rection of propagation. The procedures are continually repeated until a new distance of interac-

tion is determined. Once the simulation is done the tallied particle histories are converted to the 

desired quantities such as the radial or angular reflectance and transmittance. 

3.2.4 Incident Beam Profiles 

 In this section, the normal incident beam profiles are discussed. They are the flat and Gaussian 

beam profiles. The particle launching location for a flat circular particle beam will first be deter-

mined. For a given source with strength of Λ incident to a circular area with a radius of r0, the 

beam profile can be written as: 

 ( )
2

0 0

0

 r
0  r

r r ,
B r

r .
Λ π⎧⎪ ∀ ≤⎪=⎨⎪ ∀ >⎪⎩

 (3.5) 

Note that if steady-state simulation is desirable then Λ can be the power of the beam. otherwise 

Λ would be amount of energy transferred as a function of time. The strength of the beam is not 

important in determining the launching of the particles. To obtain the CPDF of this beam profile, 

the principle discussed in Section 3.1 is applied and the following equation is obtained: 

 ( ) ( )
2

00

1 2
r rR r B r r dr

r
π

Λ

⎛ ⎞⎟⎜′ ′ ′ ⎟= =⎜ ⎟⎜ ⎟⎜⎝ ⎠∫ . (3.6) 

Introducing a random number, Ranr, the radius of launching particles for a flat incident beam 

profile is given as: 

 0 rr r Ran= . (3.7) 

Translating this into the Cartesian coordinate obtains the following: 

 ( )0 12r rx r Ran cos Ranπ= , (3.8) 

 ( )0 12r ry r Ran sin Ranπ= , (3.9) 

where Ranr1 is a second random number. 
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 For a Gaussian beam profile with a 1/e2 radius of r0, one can write: 

 ( )
2

2
0 0

2 2 rB r exp
r rπ

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟= − ⎜⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
. (3.10) 

Using the similar procedure as in the flat incident beam case, the radius for launching particles 

can be written as: 

 ( )0 1 2rr r ln Ran /= − − , (3.11) 

and therefore the following is obtained in Cartesian coordinate: 

 ( ) ( )0 11 2 2r rx r ln Ran / cos Ranπ= − − , (3.12) 

 ( ) ( )0 11 2 2r ry r ln Ran / sin Ranπ= − − . (3.13) 

3.2.5 Direction of Propagation 

 In a MCM simulation, there are fixed and moving frames of coordinates. The fixed frame of 

coordinate is simply the coordinate system that is used to define the grid or the geometry. As the 

name implies, it is stationary and serves as the reference for the moving coordinate frame. The 

moving frame of the coordinate is based on the direction of the propagation of the ensemble. It is 

defined such a way that the direction of propagation coincides with the z′-axis8 of the moving 

frame where the scattering polar angle is measured from this axis. 

 

 The direction cosines of the scattered ensemble must be calculated from the incident ones. It is 

easy for the isotropically scattering media since the probability of the isotropically-scattered pho-

tons is equal in all directions. Immediately after each scattering event, the direction cosines of 

the scattered particles are given as: 

 x cos sinµ ϕ Θ′ = , (3.14) 
 y sin sinµ ϕ Θ′ = , (3.15) 
 z cosµ Θ′ = , (3.16) 

where µ′x, µ′y, and µ′z are the scattered direction cosines in x-, y-, and z-directions, respectively. 

                                                 
8 An orthogonal coordinate system (i.e., x′y′z′) is used for defining the moving frame. 
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For the anisotropic case, the scattered direction cosines can be expressed in terms of the incident 

direction cosines (µx, µy, µz) and the scattering angles (Θ, ϕ): 

 ( )
21

x x z y x

z

sin cos sin cosΘ
µ µ µ ϕ µ ϕ µ Θ

µ
′ = − +

−
, (3.17) 

 ( )
21

y y z x y

z

sin cos sin cosΘ
µ µ µ ϕ µ ϕ µ Θ

µ
′ = + +

−
, (3.18) 

 21z z zsin cos cosµ Θ ϕ µ µ Θ′ =− − + . (3.19) 

3.2.6 Distance of Interaction 

 The distance of interaction, which is the path length that a bundle can travel without suffering 

any attenuation by the medium, can be derived from the intensity form of the BTE. The typical 

intensity form of the BTE follows that given in Section 2.4. Since this research is interested in 

the distance of interaction, the transient term can be neglected. In addition, the in-scattering 

terms are not required, because the tracing of many ensembles in various directions in space is 

being done and the in-scattering nature of the transport is automatically built-in in the simulation. 

When these terms in the equation are dropped, the intensity form of the BTE becomes: 

 dI I
ds λ

=− , (3.20) 

where λ is the mean free path and s is the propagation axis. The solution to this equation can be 

expressed as: 

 ( )0I I exp S λ= − , (3.21) 

where I = I0 at s = 0 is taken as the initial condition. According to this solution, the intensity is 

supposed to decrease exponentially along the path of propagation. Note that the exponential term 

in the above equation is actually the CPDF for the distance of interaction, ranging from 0 for S = 

∞ to 1 for S = 0, thus the CPDF is: 

 ( ) ( )R S exp S λ= − . (3.22) 

 

Continuous Slowing-Down Approach 

 

 In the CSDA, the distance of interaction that one needs is the elastic one. The argument behind 
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this hypothesis is that the particle continuously loses energy as it propagates. This means that the 

inelastic scatterings are included in this way. Consequently, the distance of interaction for inelas-

tic scattering is not required. The CPDF for an elastic scattering can be expressed using Eq. 

(3.22) as: 

 ( ) ( )el el elR S exp S / λ= − , (3.23) 

where λel is the elastic mean free path. Therefore, the distance of interaction is obtained when 

R(Sel) is replaced with a random number RanS, which yields: 

 ( )el el SS ln Ranλ=− . (3.24) 

 

Discrete Inelastic Scatterings 

 

 The DIS treats inelastic scattering events as discrete. This means that energy loss of a particle 

ensemble occurs at a determined interacting location. This is similar to that of an elastic scatter-

ing event. When this method is employed, the CPDF of both elastic and inelastic scatterings can 

be incorporated into a single equation, which is given as: 

 ( ) ( )eff eff effR S exp S / λ= − , (3.25) 

where λeff is the effective mean free path computed from both elastic and inelastic mean free path 

(i.e., λel and λinel, respectively): 

 1 1 1
eff el inelλ λ λ− − −= + . (3.26) 

Therefore, the distance of interaction is given as: 

 ( )eff eff SS ln Ranλ=− . (3.27) 

This is the distance a particle can travel before the elastic or inelastic scattering event occurs. 

3.2.7 Attenuation of Energy 

 

Continuous Slowing-Down Approach 

 

 The CSDA assumes that energy is absorbed continuously along the path of propagation. The 
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amount of absorption depends on the distance traveled by the particles. The larger the distance 

means more absorption. Such an approach ignores the specific details of the inelastic scattering 

mechanisms, which greatly simplifies the complexity of the problem. However, one needs to dis-

tribute the attenuated energy evenly along the propagation path in this approach. This means that 

the coordinates of various locations along the path traveled must be calculated in order to enable 

the operation if the absorption profile is desired. 

 

 One important quantity that is required to incorporate this effect into the MC simulation is the 

amount of energy absorbed per unit distance. For the electron-beam transport, it is quantified as 

dE/dS, which is the change of energy per unit change in distance (see Section 4.3). Except for 

photons, it is given in terms of the fraction of energy absorbed, and the fraction is expressed as: 

 ( )1 elexp Sκ− − , (3.28) 

where κ is the absorption coefficient. 

 

Discrete Inelastic Scatterings 

 

 In this approach, elastic and inelastic scattering events are discrete, and the distance of interac-

tion is given by Eq. (3.27). Upon interaction, a random number will decide an elastic or inelastic 

scattering event based upon the following equation. The electron will be scattered elastically if: 
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λ

−

−< . (3.29) 

Note that in radiative transfer, the above ratio is actually the scattering albedo, this is usually de-

noted as ω. If an inelastic scattering event occurs for photons, then the entire ensemble is as-

sumed to be absorbed by the medium. Except for electrons, the amount of kinetic energy loss 

needs to be determined from the probability of inelastic scattering per unit length and energy 

change (i.e., ( )1
ineld d Eλ ∆− ′ ). The CPDF for the amount of energy change is then expressed us-

ing this probability as: 

 
( ) ( ) ( ) ( )
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In the limits of the integration, the possible amount of kinetic energy loss of electrons ranges 

from none to the difference between the current kinetic energy E and the Fermi energy EF of the 

target material. 

3.3 Monte Carlo Simulation for Electron or Phonon Conduction 

 The transport phenomena inside matter, for instance, electron or phonon propagation due to 

thermal gradients or external electric field are discussed in this section. The MC simulations of 

this sort are usually considered to be more difficult and time-consuming when compared to the 

particle-beam transports. This is because the nature of the transport involves non-thermal equi-

librium phenomena and requires simulations of all the heat carriers simultaneously. The reason 

all the heat carriers need to be simulated at once is because the thermal condition of the materials 

depends upon these carriers. Depending on where these heat carriers are populated, some spatial 

spots on the simulation domain may be hotter than others. This governs the scattering rates of the 

heat carriers. As shown, the propagation of one heat carrier affects9 another through determina-

tion of the scattering rates. A schematic of the activities of these heat carriers inside the matter is 

given in Figure 3.5. The concept behind this type of simulation is the initializing of the heat car-

riers or the statistical ensembles at each control volume inside the medium and then launching all 

of them at once from their various locations. If the boundary of the domain is heated to a certain 

temperature, then additional heat carriers are injected from the boundary according to the prob-

ability distribution function. Depending upon the type of boundary any heat carrier that encoun-

ters the boundary may be absorbed or reflected. For a fixed-temperature boundary, the heat carri-

ers that cross the boundary are terminated (or absorbed); for an insulated boundary, it will be re-

flected. 

3.3.1 Grid Setup 

 The grid setup in this case is similar to that discussed in Section 3.2.1. In this case, the heat 

carriers are initialized within each control volume instead of originating from outside the me-

dium. The medium is divided into numbers of infinitesimal control volumes or elements. 

                                                 
9 It does not mean that wave interferences are present in the simulation. Remember that the particle transport theory 
always neglects the wave interference phenomena. These heat carriers are still independent from each other as far as 
the propagations in time and in space are concerned. 
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3.3.2 Initial Particle Distributions 

 Given a grid element or an infinitesimal control volume with volume VCV, the actual total 

number of conduction electrons contained inside at a specified temperature TCV under equilib-

rium can be found according to the following expression: 

 ( ) ( ) ( )
F

actual eq
e,CV CV CV CV

E

N T V f E,T D E dE
∞

= ∫  (3.31) 

or 

 ( ) ( ) ( )actual eq
e,CV CV CV i CV i

i

N T V f E ,T D E E∆= ∑  (3.32) 

Since during the simulation, it is often impossible to track that many electrons, a scaling factor is 

established for each statistical ensemble: 

 ( )
( )actual

e,CV CV
CV stati

e

N T
W T

N
=  (3.33) 

Each infinitesimal control volume or element is initialized with a total of Ne (= stati
eE ) number of 

conduction electrons. The electrons have energies distributed according to the Fermi-Dirac statis-

tics where E ≥ EF and Te is given. The Fermi-Dirac statistics are first approximated by a finite 

number of columns NE with a width of ∆E starting from the Fermi energy: 

 b F
E

E EN
E∆
−

=  (3.34) 

 ( ) E0 5  i 0, 1, , N 1i FE E i . E,∆= + + = −…  (3.35) 

Ne should be equal to the area under the curve, therefore each interval will have a number of 

electrons given by 

 e E1 1

0 0

N , i 0, 1, , N 1
E E

i i
e,i N N

j j
j j

f E fN
E f f

∆

∆
− −

= =

= = = −

∑ ∑
…  (3.36) 

3.3.3 Launching of Electrons 

 Electrons of each energy interval in each control volume are launched equally into all direc-

tions. This is done by using the isotropic scattering phase function. (Note: sufficient amount elec-

trons in each control volume need to be initialized so that all the neighboring elements when 
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launched will have a “taste” of the energy spectrum of the current launching control volume.) 

The isotropic scattering sampling is given as: 

 ( )1 1 2cos RanΘΘ −= −  (3.37) 
 2 Ranϕϕ π=  (3.38) 

Depending upon the energy of an electron, its speed varies according to: 

 ( ) 2Ev E
m∗=  (3.39) 

Electrons are set to travel within a pre-described time interval, namely ∆t. Therefore, each elec-

tron move from one location to another by following: 

 ( ) ˆr r v E t s∆⎡ ⎤′ = + ⎣ ⎦  (3.40) 

3.3.4 Non-equilibrium Fermi-Dirac Distribution 

 Throughout the simulation, what is actually known is the number of electrons in each control 

volume and their associated energies. After each time interval ∆t, the non-equilibrium electron 

distribution must be calculated in order to correctly predict the scattering rates and the Pauli’s 

exclusion principle. To do so, we tally the energy in each level is tallied by: 

 
1

e ,iN

i ,total i j
j

E E W
=

= ∑  (3.41) 

This should be given as: 

 ( )
1

e ,iN
non eq

CV i i i i ,total i j
j

V f E D E E E E W∆−

=

= = ∑  (3.42) 

Therefore, 

 ( )
( )
1

e ,iN

j
jnon eq

i CV i
CV i

W
f T ,E

V D E E∆
=− =
∑

 (3.43) 

Note that the following expression determines if fi is fully occupied: 

 ( )
1

e ,iN

j CV i
j

W V D E E∆
=

≤∑  (3.44) 
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3.3.5 Pseudo-Temperature Calculation 

 Somehow, the temperature in each control volume needs to be determined, in order to have a 

better indication of what the temperature would be if equilibrium is achieved. One way to do this 

is to use the equilibrium Fermi-Dirac statistics and account for the total electron energy inside 

the control volume. To determine the pseudo-temperature, we first compute the total energy per 

unit volume must be computed from the non-equilibrium distribution (Note: D(E) has unit of 

[1/m3-eV]). In order to have the identical total energy per unit volume, it is necessary to have: 

 ( ) ( )
0

eq i ,total
i i i i i

i element

E
E E f E D E

V
∆

∞

=

=∑  (3.45) 

Using the Fermi-Dirac statistics, the equation becomes: 

 
( )

1F

total

elementE F
eq

B element

ED E EdE
VE Eexp

k T

∞

=
⎡ ⎤⎛ ⎞− ⎟⎜⎢ ⎥⎟+ ⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎣ ⎦

∫  (3.46) 

To determine the temperature, the following equation must be considered: 

 ( ) ( )
0

1F

eq total
element

elementE F
eq

B element

ED E EF T dE
VE Eexp

k T

∞

= − =
⎡ ⎤⎛ ⎞− ⎟⎜⎢ ⎥⎟+ ⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎣ ⎦

∫  (3.47) 

One way to solve the above equation is via the method of false position (Wong, 2001). Assuming 

that both electrons and phonons always have the identical “temperature” the phonon distribution 

in computing the electron scattering rates will be evaluated at this pseudo-temperature. 

3.3.6 Scattering Rates 

 After traveling for a time interval of ∆t, the scattering rates for electrons in each energy level 

are computed. Since scattering rates depend upon the distribution of electrons in various energy 

levels, therefore (1-fi
non-eq) should be calculated for each energy level in each control volume. 

3.3.7 Probability of Scattering 

 The scattering rate P(E) indicate the frequency of collisions within a unit time for a given en-

ergy of E. Therefore, the mean free time τ for a particle (i.e. the free flight time without suffering 

any collisions) is the inverse of P(E). Accordingly, the cumulative probability distribution func-
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tion (CPDF) of the particle for not suffering any collision after time t is given as: 

 ( ) ( )R t exp t τ= − . (3.48) 

By replacing R(t) with a random number Ran, the free flight time for the particle corresponds to 

the following expression: 

 ( )t ln Ran
τ
=− . (3.49) 

Note that τ is usually a function of temperature, location, and energy of the particle. Conse-

quently, τ varies along the path that the particle travels. In order to account for the variation of 

properties of the medium along the path of propagation, the following must be considered:  

 ( )
i i

t ln Ran∆
τ

=−∑ , (3.50) 

instead of Eq. (3.49). The summation in the above equation is taken over the particle path in the 

direction of the propagation where (v⋅∆t) is a sub-distance of the entire length (v⋅t) that the parti-

cle is supposed to travel. The direction of the propagating particle remains unaltered unless the 

following condition is violated: 

 ( )
i i

t ln Ran∆
τ

≤−∑ . (3.51) 

3.3.8 Isothermal Boundaries 

 Electrons that hit an isothermal boundary will be thermalized. To account for the thermaliza-

tion of electrons, the “identity” of an electron is simply deleted (i.e. its energy upon impact is 

replaced). The electron will then be re-launched isotropically and its energy is sampled from the 

Fermi-Dirac statistics at the temperature of the boundary. 

 ( )
( )

( )

F

F

E

b
E

b
E

f E ,T dE

R E
f E ,T dE

∞

′ ′

=
′ ′

∫

∫
 (3.52) 

Replacing R(E) by a random number RanE, and inverting the equation to obtain E, leads to the 

energy that the electron should have after re-launching. Note that when the ensemble is re-
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launched, it now will have different number of electrons, meaning that Wj for this electron is 

based on the Tb. 

 ( ) ( ) ( ) ( )
F

actual eq
e,CV CV CV

E

N T A t f E,T v E n D E dE∆
∞

⎡ ⎤= ⋅ ⋅⎣ ⎦∫  (3.53) 

or 

 ( ) ( ) ( ) ( )actual eq
e,CV CV i CV i i

i

N T A t f E ,T v E D E E∆ ∆= ⋅ ∑  (3.54) 

During the simulation, it is often impossible to track that many electrons, therefore a scaling fac-

tor is established for each statistical ensemble: 

 ( )
( )actual

e,CV CV
CV stati

e

N T
W T

N
=  (3.55) 

3.4 Normalization of the Statistical Results 

 Whenever a Monte Carlo simulation is performed, histories of the simulated statistical ensem-

bles are obtained. This shall be referred to as the raw data since they do not contain any physical 

meanings. For instance, when a simulation of energy-beam propagation is performed with 1,000 

statistical ensembles, 100 numbers of them are deposited on a particular location in the medium. 

If another simulation with 10,000 statistical ensembles is carried out for the same structure, one 

finds that the number of ensembles deposited on the same spot increases to 1,000. This does not 

imply that the second simulation predicts that the deposition amount in terms of energy is more 

than in the first case. To compare the two, one needs to normalize the detected deposition with 

respect to the total number of statistical ensembles used. Therefore, the normalizations of raw 

data are required in order to deduce the physical quantities. 
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Figure 3.1 The zigzag trajectories of two particles in three dimensions generated us-
ing a Monte Carlo simulation are shown. The z-dimension of the medium is set to be 
10 units while x- and y-dimensions are infinite in extent. 
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Figure 3.2 The blackbody emissive power as a function of wavelengths at a tem-
perature of T=1000 K is plotted. 
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Figure 3.3 The flow diagram for the Monte Carlo simulation using the continuous 
slowing-down approach (CSDA) is depicted. 
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Figure 3.4 The flow diagram for the Monte Carlo simulation using the discrete ine-
lastic scattering (DIS) is depicted. 
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Figure 3.5 The schematic of propagations of particles between two plane-parallel 
surfaces with one being hot and the other cold. Particles inside the medium are 
propagating freely and encountering boundaries, and subsequently suffering thermali-
zation or condensation. The “hot” and “cold” particles are propagating and intermix-
ing through scatterings until thermal equilibrium is reached where the rate of generat-
ing “hot” particles is equal to that of “cold” particles. Note that “hot” particles refer to 
particles with higher energies when compared to its surroundings, while “cold” parti-
cles are the opposite. 
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Figure 3.6 Fermi-Dirac statistics for gold at a specified temperature 
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CHAPTER 4 
ELECTRON-BEAM TRANSPORT 

 

4 
4 

 In the context of the electron transport inside solids, analytical solutions are virtually impossi-

ble to obtain due to the complicated electronic band structures and the scattering probabilities. 

With the introduction of MCMs, realistic simulations of propagating electrons are therefore eas-

ily carried out to better understand the electron transport in such systems. Indeed, electron beam 

scattering phenomena inside solids have been routinely analyzed via MCMs, leading to high 

resolution recognition and visualization of nanostructures as done by scanning electron micros-

copy (SEM), transmission electron microscopy (TEM), and electron energy loss spectroscopy 

(EELS). 

 

 Unfortunately, solving the EBTE is unduly complicated due to the in-scattering nature of the 

equation. The intensity is to be integrated in the in-scattering term. The integration cannot be 

easily performed if the intensity is not known. To this end, researchers have been using Monte 

Carlo simulation to obtain a statistical solution to the EBTE. The drawback to using the Monte 

Carlo simulation is that it requires a relatively large amount of ensembles to reduce the statistical 

noise to a desired minimum level. This means that the computational time for the simulation is 

very long. Although the MC simulation has its weakness, its flexibility in dealing with complex 

geometries and physics often justifies the end results. 

 

 Since the basics of the simulation procedures of a MC simulation for a particle beam have 

been discussed in Chapter 3. The various scattering mechanisms of the electron inside a partici-

pating medium will now be discussed. This will be followed by an overview of the entire simula-

tion steps and the results of the various simulation cases. 

4.1 Various Scattering Mechanisms 

 The interactions between a propagating electron and the matter are very complex. When elec-

trons with high kinetic energy are impinged on a target material, they undergo various transition 

processes, which are often termed scatterings. These incident electrons are called the primary 
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electrons. Scatterings are divided into two main types. One is the elastic scattering while the 

other is the inelastic scattering. The elastic scattering means the alteration of the electron propa-

gating direction without changing its energy. The inelastic scattering refers to changes in both 

the energy and direction of the electron. However, the deflection caused by the latter case is usu-

ally small and negligible compared to the former case. 

 

 The elastic scattering of electrons is caused by the positively-charged nuclei of atoms. Unlike 

elastic scattering, there are a number of distinct modes of inelastic scattering of electrons that 

exist. The most common ones, which occur in all sort of matters, are: a) excitation of outer-shell 

electrons or conduction electrons, b) ionization of inner-shell electrons, c) generation of plas-

mons, d) phonon emission, and e) x-ray emission. The x-ray emission typically occurs when the 

electron energy is more than tens of kilo-electronvolts. In insulators and semiconductors, the en-

ergetic electrons can also lose energy by generating excitons. A schematic of the scattering 

mechanisms occurring for a penetrating energetic electron inside a material is depicted in Figure 

4.1. Next, these scattering mechanisms shall be examined one after another, starting from the 

elastic scattering. 

4.2 Elastic Scattering by an Atom 

 In the EBTE derivation, it is acknowledged that electrons can be scattered elastically and ine-

lastically. In this section, the elastic scattering of an electron is discussed. Elastic scattering re-

fers to deflections of electrons by positively-charged atoms where the atomic potential is 

screened by the coulomb cloud (or orbiting electrons). Although the direction of propagation of 

the electron is altered, the electron maintains its kinetic energy. There are two models available 

in describing this phenomenon. One is the Rutherford scattering model and the other is the Mott 

scattering model. The Mott model is usually preferred since it is valid at low electron energy 

compared to the Rutherford model. However, one can obtain an explicit expression for the elec-

tron scattering phase function in the latter model, which simplifies the simulation. 

 

 The elastic scattering of electrons is usually characterized by the differential elastic scattering 

cross section. This is defined as the flux of electrons scattered around an infinitesimal solid angle 

in a given direction with respect to the total incident electron flux. It is a directional and energy 
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dependent quantity. The scattering direction is always measured from the center core of the scat-

terer. When the differential cross section is normalized by its total cross section, the scattering 

phase function is obtained. In other words, one can view the differential cross section as the 

probability of an incident electron ensemble being scattered in a given direction. The differential 

elastic scattering cross section of electrons is typically determined by examining the interaction 

between the incoming wave function of an electron ensemble and the scatterer. This case in-

volves the atom with a known potential. Similar to most of the scattering phenomena for other 

quantum particles, the elastic scattering theory for electrons is established based on the assump-

tion that the scattered wave function is a large distance away from the scatterer. This is where the 

atomic potential vanishes. Such an assumption renders oneself the fact that the scattered wave 

function can be defined explicitly using a spherical wave. 

 

 The lengthy mathematical derivations of the differential elastic scattering cross section for 

electrons are available elsewhere (Kessler, 1976; Joy, 1995; Dapor, 2003), so it will not be re-

peated in this context. There are two distinct formulations for elastic scattering of electrons by an 

atom. The first is the relatively simple model based upon the first Born approximation where the 

electron spin and polarization are neglected. This results in the Rutherford scattering cross sec-

tion. The second formulation involves using the relativistic partial wave expansion accounting 

for the spin and polarization of electrons. The latter case is often referred to as the Mott scatter-

ing cross section. The Rutherford cross section works accurately for incident electrons with high 

kinetic energy because the first Born approximation is a high-energy approximation where the 

scattering is assumed weak and the scattered wave function has the similar form as the incident 

one. A typical criterion for using this model is (Dapor, 2003): 

 
2

2

02
eE Z
a

, (4.1) 

where E is the kinetic energy of the incident electron, e the electron charge, a0 the Bohr radius, 

and Z the atomic number of the target. The Rutherford model is best used in describing the elas-

tic scattering in gold for E > 85 keV. Unlike the Rutherford model, the Mott cross section is ap-

plicable for both low and high energy scattering. However, since both models assume that the 

effect of the vibrational motion of the atom on the kinetic energy of the electron is negligible, the 

Mott model should fail when the electron energy falls within the range of the vibrational energy 
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of the atom, which is typically less than 10 eV. 

4.2.1 Rutherford Cross Section 

 The differential elastic scattering cross section of the electron by a central potential without 

considering the spin of the electron and the polarization effect is given as (Egerton, 1996; Dapor, 

2003): 

 ( )
2

el
edC

f
d Θ

Ω
= , (4.2) 

where C denotes the scattering cross section, Ω the solid angle, and f the scattering amplitude. 

The scattering amplitude f can be expressed as (Dapor, 2003): 

 ( ) ( ) ( )2 0

2mf sin qr V r rdr
qΘ

∞
=− ∫ . (4.3) 

The variable q in the above expression refers to the difference between the wave vectors of the 

electron before and after scattering while V(r) is the potential of the atom as a function of radius 

r. A Wentzel-like potential is given as: 

 ( )
2Ze rV r exp

r a
⎛ ⎞⎟⎜=− − ⎟⎜ ⎟⎜⎝ ⎠

, (4.4) 

it can be shown that the differential cross section is expressed as: 
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el
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=
− +

, (4.5) 

with the screening parameter defined as: 

 
4 2 3

1 24

/me Z
E

α = . (4.6) 

The above cross section is the famous Rutherford cross section where it is explicitly expressed in 

terms of the atomic number, electron energy, and scattering angle. The differential scattering 

cross section can be converted into the so-called scattering phase function, which defines the 

probability of scattering in a given direction per unit solid angle. This is done by normalizing it 

with the total scattering cross section. Therefore, the phase function Φe for the elastic electron 

scattering can be written as: 
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where 
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The phase function above is such that the following normalization holds: 
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=∫ . (4.9) 

For the differential elastic cross section given by Eq. (4.5), the total elastic cross section is de-

termined to be: 
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. (4.10) 

Thus, the corresponding phase function is expressed as: 
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− +
. (4.11) 

Another form of the Rutherford differential cross section can be expressed as (Reimer and Kreft-

ing, 1976; Joy, 1995): 
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where the screening parameter is now given as:  
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The total elastic cross section in this case is given as: 
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The phase function is then expressed as: 
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It is easily shown that this phase function is exactly the same as that given by Eq. (4.11), al-

though the differential scattering cross sections have some minor differences.  

 

 The phase functions of gold as a function of scattering angle at various incident electron ener-

gies based on the Rutherford formulation are plotted in Figure 4.2. Here, the reference axis for 

the angles is the direction of propagation, meaning that the zero-degree angle refers to the direc-

tion of propagation. Notice that the elastic scattering profile becomes highly forward when the 

electron energy is increased. This implies that the angular deflection of the electron by an atom 

decreases in this case. However, when the electron energy is low, elastic scattering is more 

evenly distributed between the forward10 and backward directions. Figure 4.3 shows the elastic 

scattering phase function for different materials, namely copper, silver, and gold, with increasing 

atomic numbers in the given order. For a material with a higher atomic number, backward scat-

tering can be more pronounced when compared to another material with a lower atomic number. 

 

 Another quantity that can be derived from the differential elastic scattering cross section is the 

elastic mean free path. This describes the separation distance between two successive elastic 

scattering events. Since the total elastic scattering cross section refers to the effective scattering 

area for electrons by an atom, the mean free path can be obtained by taking the inverse of the 

product of the elastic scattering cross section and the number of atoms per unit volume. It can be 

written as: 

 ( )
( )

el
e el

a e,total

AE
N C E

λ
ρ

= , (4.16) 

where A is the atomic weight, Na the Avogadro number, ρ the density of the material, and 

(Naρ/A) the number of atoms per unit volume. Note that the elastic scattering coefficient is the 

inverse of the elastic mean free path as similar to Eq. (2.23). The elastic mean free path derived 

from the two different forms of the Rutherford scattering cross section is plotted in Figure 4.4. 

The elastic mean free path is a function of the electron energy for different materials. Both mod-

els yield the same mean free path profiles for different materials at low electron energies, yet 

they deviate from each other when the electron energy is high (i.e., E > 50 keV). 
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 The Rutherford scattering phase function shall be re-visited later in this chapter when the 

Monte Carlo simulation of the electron-beam transport is discussed. The derivations of the Mott 

scattering phase functions will be shown next.  

4.2.2 Mott Cross Section 

 The Rutherford scattering phase function offers a simple and convenient analytical expression 

for describing the elastic scattering phenomenon of electrons by an atom. However, due its basis 

on high-energy approximation, the phase functions predicted using this method often produce 

errors when it comes to a relatively low energy electron beam. In order to correctly represent the 

scattering phase functions for both the low- and high-energy electron beams, the Mott scattering 

cross section should be employed. The reason that the Rutherford model fails to predict the cor-

rect elastic scattering phase function is because the spin of the electron is neglected. The spin-

orbit coupling between the incident electron and the atom becomes important when the electron 

energy is low. This is incorporated in the Mott cross section through the Dirac equation. 

 

 The Mott elastic differential scattering cross section for an electron beam is typically given in 

the form of (Mott and Massey, 1965; Kessler, 1976; Czyzewski et al., 1990; Dapor, 2003): 

 
( ) ( )2 2

2 2
e eel i i

edC , ,E AB A Bf g fg f g
d A B
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∗ ∗ −
∗ ∗− +

= + + −
+

, (4.17) 

where the scattering factors f and g are generally functions of a scattering polar angle Θ and 

wave number of the incident electron beam k, and A and B describe the state of polarization of 

the beam (e.g. A=1 and B=1 yield transverse polarization, A=1 and B=0 or A=0 and B=1 refer to 

longitudinal polarization). Note that the third term in Eq. (4.17) represents the dependence of the 

cross section on the azimuthal angle (i.e. ϕ), and it vanishes for an unpolarized electron beam. 

Therefore, scattering of a (partially-) polarized beam generally depends on both Θ and ϕ, as well 

as the incident energy of the beam. 

  

                                                                                                                                                             
10 Forward direction usually refers to angles between 0° and 90° with respect to the propagating direction while 
backward direction covers angles from 90° to 180° assuming that azimuthal symmetry holds. 
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 The scattering factors are expressed in the following forms (Mott and Massey, 1965; Kessler, 

1976; Czyzewski et al., 1990): 
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∞
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Here, δl’s are the Dirac phase shifts, Pl’s and P∗
l’s are the ordinary Legendre polynomials and the 

associated Legendre polynomials, respectively. In the above expressions, k represents the wave 

number of the electron with energy E. They are related according to: 
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 The phase shifts are to be determined from the Dirac equation, which describes the relativistic 

behavior of an electron including its spin, the magnetic moment of the electron, and the spin-

orbit coupling. In order to satisfy the Dirac equation in the relativistic case, the wave function of 

the electron should have four components leading to a resultant of four simultaneous first-order 

partial differential equations (PDEs) as shown by Kessler (1976). These four PDEs can be trans-

formed into two coupled first-order ordinary differential equation (ODEs) (Mott and Massey, 

1965), which are given as: 
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( )2 11 0l
l l

dG r j
E V r mc F r G r

c dr r

±
± ±⎧ ⎫ +⎪ ⎪⎪ ⎪− + + + =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

, (4.21) 

 ( )( ) ( )
( ) ( )

( )2 11 0l
l l

dF r j
E V r mc G r F r

c dr r

±
± ±⎧ ⎫ −⎪ ⎪⎪ ⎪− − − + + =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

, (4.22) 

where V(r) is the atomic potential. The + solutions apply to the electron ‘spin up’ case while the 

– solutions apply to the electron ‘spin down.’ For the + and – cases, j takes the value –(l+1) and 

l, respectively. The asymptotic solution of G at large r requires that:  

 ( ) ( ) ( )l l l l lG r J kr cos Y kr sinδ δ± ± ±= − , (4.23) 

where lδ±  are the phase shift needed in computing the Mott cross section. The Dirac equations 

can be further reduced to the following first-order ODE by introducing the change of variables as 

proposed by Lin et al (1963): 
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 ( ) ( )
( )l

l l

sin r
F r A r

r
φ±

± ±= , (4.24) 

 ( ) ( )
( )l

l l

cos r
G r A r

r
φ±

± ±= . (4.25) 

Using the proposed transformation, the Dirac equations now read: 

   
21 2 2l

l l
l

dA j mccos sin
A dr r c

φ φ
±

± ±
± =− − , (4.26) 

 ( ){ }
212 2l

l l
d j mcsin E V r cos
dr r c c
φ

φ φ
±

± ±= + − − . (4.27) 

It is convenient to work with a dimensionless equation. Equation (4.27) can be non-

dimensionlized by letting: 

 em cr r
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠

, (4.28) 

 
e

kK
m c

= , (4.29) 

 2
e

EE
m c

= , (4.30) 

 ( )
( )

2
e

V r
V r

m c
= . (4.31) 

The dimensionless form of the equation is now expressed as: 

 ( )2 2l
l l

d j sin cosE Vdr r
φ

φ φ
±

± ±= + −− . (4.32) 

Note that there is no need to solve for lA±  given in the new variables as the phase shifts can be 

determined by matching the ratio of the derivative of lG±  to lG±  between the numerical solution 

of Eq. (4.27) and the required asymptotic solution as given in Eq. (4.23) at large r . This ratio 

can be easily obtained for the numerical solutions by coupling Eqs. (4.21), (4.24) and (4.25) 

leading to:  

 ( ){ } ( )11 1l
l

l

jdG E V r tan
G dr r

φ
±

±
±

+
=− − + − . (4.33) 

Going back to the asymptotic solution as in Eq. (4.23) shows:  
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( ) ( )
( ) ( )

1 l l l ll

l l l l l

KJ Kr cos KY Kr sindG
G dr J Kr cos Y Kr sin

δ δ
δ δ

± ±±

± ± ±

′ ′−
=

−
, (4.34) 

in the non-dimensional form where 2 2 1K E= − . The derivative of the Bessel function is given 

as (Arfken, 1985): 

 ( ) ( ) ( )1l l l
lJ Kr J Kr J Kr

Kr +′ = − . (4.35) 

The same relation applies to ( )lY Kr′  as well.  The phase shifts are determined by matching 

Eqs. (4.33) and (4.34) at large r  where ( ) 0V r ≈ , and they are given as (Czyzewski et al., 

1990): 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

1

1 1

1 1
l l l

l
l l l

KJ Kr J Kr E tan l j r
tan

KY Kr Y Kr E tan l j r

φ
δ

φ

±
+±

±
+

⎡ ⎤− + + + +⎢ ⎥⎣ ⎦=
⎡ ⎤− + + + +⎢ ⎥⎣ ⎦

. (4.36) 

In short, the Mott elastic scattering cross section has the form given in Eq. (4.17) in which the 

Dirac phase shifts are to be calculated. These phase shifts are determined by solving Eq. (4.32) 

for lφ±  at large r  where the asymptotic solution is reached using Eq. (4.36). However, solving 

Eq. (4.32) requires an initial value for lφ± , these can be obtained by simply employing the power 

series expansions for lφ±  and ( )V r  in r  near the origin and inserting them into the equation in 

which all the constant coefficients of the series are unveiled. The procedures are outlined in the 

following: 

 

 First, lφ±  and V(r) are expanded in terms of r: 11  

 
0

k
l k

k

a rφ
∞

± ±

=

=∑ , (4.37) 

 1

0

m
m

m

V b r
∞

−

=

=−∑ , (4.38) 

where ak’s and bm’s are constant coefficients. Substituting these approximations into Eq. (4.32) 

and gathering the coefficients of each corresponding power in r, ak’s and bm’s is determined as: 

                                                 
11 For the sake simplicity, the superscript “~” is dropped for the remaining discussion. 
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 0
02 bsin a

j
± =− , (4.39) 

 1 0
1

0

2
1 2 2

E b cos aa
j cos a

±
±

±

+ −
=

−
, (4.40) 

 
( )1 0 1 2

2
0

2 2 1
2 2 2

a sin a ja b
a

j cos a

± ± ±
±

±

− +
=

−
, (4.41) 

 
( ) ( )2

2 0 1 1 0 1 3

3
0

22 2 1 2 2 2 1
3

3 2 2

a sin a ja a cos a ja b
a

j cos a

± ± ± ± ± ±

±
±

⎛ ⎞⎟⎜− + − +⎟⎜ ⎟⎜⎝ ⎠
=

−
, (4.42) 

with the condition that: 

 00 2   if 0
2

a jπ±≤ ≤ < , (4.43) 

 0
32   if 0
2

a jπ
π ±≤ ≤ > . (4.44) 

Using the fourth-order Runge-Kutta method (Matthew and Fink, 1999), the solution of Eq. (4.32) 

can be approximated as: 

 
( )1 2 3 4

1

2 2
6i i

h f f f f
φ φ+

+ + +
= + , (4.45) 

where 

 ( )1 ,i if f r ,φ=  (4.46) 

 ( )2 12 2 ,i if f r h , h fφ= + +  (4.47) 

 ( )3 22 2 ,i if f r h , h fφ= + +  (4.48) 

 ( )4 3 ,i if f r h, hfφ= + +  (4.49) 

 ( ) ( )2 2jf r , sin E V r cos
r

φ φ φ⎡ ⎤= + − −⎣ ⎦ . (4.50) 

 

 The electron phase functions in gold computed at different electron energies using the Mott 

cross section are depicted in Figure 4.5. Notice that there are “humps” over the angular domain 

for scattering profiles at various electron energies. They are caused by the interferences between 

the scattered electron waves. The “humps” disappear when the incident electron energy becomes 

large, since scatterings are weak at various angles except close to the absolute forward direction 

(i.e. the zero-degree angle). The electron phase functions for three different types of atoms (i.e. 



 

83 

copper, silver, and gold) are given in Figure 4.6. In the high-energy regimen, there is a clear 

trend that backscattering increases when the atomic number increases, or if the atom becomes 

heavy. In other words, the magnitude of the phase function is higher for scattering angles larger 

than 90° for the heavy element. However, the trend disappears at low electron energies since 

overlappings of phase functions for different elements are quite frequent. 

 

 Figure 4.7 shows the comparison computed between the phase functions using the Rutherford 

scattering model and the Mott cross section. On a regular basis, the Rutherford model is a rea-

sonable approximation to the Mott model, however, this is not enough to yield physical accurate 

results. This will be evident in the electron-beam Monte Carlo simulation. The predicted elec-

tron-energy dependent elastic mean free paths using the Mott total elastic cross section for dif-

ferent metals are illustrated in Figure 4.8. Notice that the elastic mean free path for gold, a heav-

ier element compared to copper and silver, increases for electron energies smaller than 0.1 keV. 

This is different from those shown by copper and silver at low electron energies. It implies the 

importance of the spin-orbit coupling phenomena between the incident electron and the atom for 

a heavy element such as gold. It also shows that the trend of the elastic mean free path predicted 

using the Rutherford model is inaccurate for heavy elements as evident in Figure 4.9.  

4.3 Continuous Inelastic Scattering Approach – The Bethe Theory 

 Inelastic scatterings involve interactions between propagating electrons and electrons inside 

the matter. Describing the inelastic scattering phenomena accurately for the electron-beam 

propagation is a difficult subject for the modeling task since electrons can lose their kinetic ener-

gies in a number of ways within matter. Depending on the strength of the electron energy, the 

physical processes involved must be different. There are a number of theories and formulations 

available for describing electron energy losses of an energetic electron propagating inside a mat-

ter. In this section, the classical approach or the Bethe theory for accounting inelastic scattering 

based on continuous slow-down approach is discussed.  

 

 The Bethe theory treats the interaction between a propagating electron and electrons at rest 

based on classical interaction where quantum mechanical effects are not strongly present. Ac-

cording to this theory, a propagating electron is supposed to continuously lose its kinetic energy 
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along the path of propagation. The energy lost along the path is quantified by a quantity called 

the stopping power (usually denoted as dE/dS). This refers to the change of electron kinetic en-

ergy per unit length of propagation. To derive the stopping power of the electron, one usually 

starts by examining the repulsion force between a traveling electron and an electron at rest, and 

then determines the momentum transferred that is induced by this force when the electron passes 

over the other. After discovering the amount of momentum transferred from the propagating 

electron to another at rest, the electron stopping power can be obtained by integrating it over a 

suitable distance at which the momentum transfer is possible between the traveling electron and 

another electron orbiting the atom. It is important to also take into consideration the density of 

atoms and the atomic number. One can consult the paper by Bethe (1930) and the book by Dapor 

(2003) for the detailed mathematical derivations of the stopping power. The stopping power de-

rived via this method has the following form:  

 
42 1 166ae N ZdE . Eln

dS AE J
π ρ ⎛ ⎞⎟⎜=− ⎟⎜ ⎟⎜⎝ ⎠

, (4.51) 

where, Na the Avogadro number, ρ the density, Z the atomic number, A the atomic weight, E the 

kinetic energy of the incident electron, and J is the mean ionization energy. The above equation 

is the Bethe equation, which is valid for E > J. In an attempt to extend the applicability of the 

Bethe equation below the mean ionization energy, Joy and Luo (1989) modified the original Be-

the equation to: 

 ( )42 1 166 0 85ae N ZdE . E . Jln
dS AE J

π ρ ⎡ ⎤+=− ⎢ ⎥
⎢ ⎥⎣ ⎦

, (4.52) 

in order to match the data obtained by Tung et al. (1979) using a statistical model. This so-called 

modified Bethe equation is usually valid for E > 50 eV. 

 

 The Bethe equation is a relatively crude approximation for modeling the electron energy losses 

since propagating electrons are assumed to lose energy continuously along the traveling path and 

the ionization of electrons is treated as an averaged effect. Consequently, it is less accurate when 

compared to the case where inelastic scatterings are considered discretely in terms of the inner-

shell ionizations, the outer-shell excitations, and the plasma oscillations. 



 

85 

4.4 Discrete Inelastic Scattering Treatment – The Dielectric Theory 

 Another method of treating the inelastic scatterings is by using the dielectric the-

ory/formulation. The dielectric formulation uses the energy loss function directly derived from 

the experimental optical data and generates the differential inelastic scattering cross section ac-

cordingly. The energy loss function is a measure of responses to electrons and atoms in a me-

dium as a whole when exposed to an external disturbance, therefore it is typically more accurate 

compared to the other independent formulations. This is especially true when the electron energy 

is low. In this way, the inner-shell ionizations and the outer-shell excitations cannot be distin-

guished clearly. Nevertheless, it is a better approach in determining the inelastic scattering prop-

erties of electrons at low energy, considering that the inelastic electron scatterings are not cur-

rently well-understood at the low electron-energy regimen. 

 

 The double differential inelastic scattering cross section (or the probability for an inelastic 

scattering event to occur per unit length, energy change, and momentum change) formulated us-

ing this method is given as (Pines and Nozières, 1966): 

 
( ) ( )

2 1

0

11 1ineld Im
q,d dq a E q

λ
ε ωω π

− ⎡ ⎤
⎢ ⎥−= ⎢ ⎥⎣ ⎦

, (4.53) 

where a0 is the Bohr radius and  λinel is the inelastic mean free path. The imaginary part (denoted 

as Im[·]) of the negative inverse of the dielectric function ε(q,ω) in the equation describes the 

probability of energy loss. It is called the energy loss function. The incident energy of the elec-

tron is denoted as E while the amount of energy loss is given as ħω which shall be refered to as 

∆E. The energy loss function can be derived from extrapolating the optical dielectric constant as 

measured by experiments. 

  

 Equation (4.53) can be modified via the variable change to account for the Ω-dependent in-

stead of the q-dependent. This is achieved by using the energy and the momentum conservation, 

which are given as (E −∆E=E′) and ( k q k′+ = ), respectively. Using the cosine law and the 

parabolic free-electron band structure (i.e., E=(ħk)2/2m0), both the energy and the momentum 

conservation assert that: 
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( )

( )
2

2 2  cos 
2
q

E E E E E
m

∆ ∆ Θ= − − − , (4.54) 

where Θ is the angle between the incident and the scattered direction. Therefore, by multiplying 

Eq. (4.53) with dq/dΩ (i.e., dΩ=2πsinΘdΘ and dq/dΩ can be derived by differentiating Eq. 

(4.54)), the cross section transforms into: 

 
( ) ( ) ( ) ( )

2 1

2 2
0

11 1ineld Im E E E
q,d E d qa e E

λ
∆

ε ω∆ Ω π

− ⎡ ⎤
⎢ ⎥−= −⎢ ⎥⎣ ⎦

, (4.55) 

where the definition of the Bohr radius (i.e., a0=ħ2/me2) is used. 

 

 If the optical dielectric constant of a given matter is given as ε(ω0), then the q-dependent en-

ergy loss function reads: 

 
( ) ( )

0

0

1 1
Im Im

q,
ω

ε ω ε ωω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (4.56) 

where ω0 is the positive solution of the plasmon dispersion equation ωq(q,ω0)=ω, which is given 

as (Penn, 1987): 

 ( )
22

2 2 2 2

0

1
3 2q p p F p

qq, v q
m

ω ω ω ω
⎛ ⎞⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (4.57) 

or (Ashley, 1991; Kwei and Tung, 1986; Ritchie and Howie, 1977): 

 
2

02q p
q
m

ω ω= + . (4.58) 

In the above equations, ωp stands for the plasma frequency, vF is the Fermi velocity, and m is the 

electron mass. Using the quadratic rule, ω0 is obtained as: 

 
22 2 2

4 4 2
0

0

1 1 4 4
6 2 9 2

F
F

v q qv q
m

ω ω
⎛ ⎞⎟⎜ ⎟=− + − +⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (4.59) 

using Eq. (4.57), and: 

 
2

0
02

q
m

ω ω= − , (4.60) 

if the latter plasmon dispersion relation is employed. An example of the energy loss function of 
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gold is given in Figure 4.11 and its corresponding q-dependent energy loss function is depicted 

in Figure 4.12. 

 

 The probability of an electron suffering an inelastic scattering event per unit path length and 

per unit energy change is obtained through Eq. (4.53) after integration over all possible wave 

number q of the excited plasmons and using the energy and momentum transfer conservation. It 

is given as (Ding and Shimizu, 1996): 
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∫
, (4.61) 

when Eq. (4.57) is assumed, and (Ding and Shimizu, 1996): 
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∫ , (4.62) 

if Eq. (4.58) is used. In the above equations, q  is the positive solution of the dispersion relation 

ω = ωq( q ,ωp). Note that E = (ħk)2/2m and ∆E=ħω. Using Eq. (4.62), this probability for gold is 

plotted and given in Figure 4.13.  

 

 The inelastic mean free path of the electron can then be obtained by integrating the cross sec-

tion over all energy change where the Fermi energy EF is assumed to be the reference level (i.e. 

the primary electrons lose energies until they reach energy level EF). The inverse of the mean 

free path is given as: 

 
( )

( )
F 1

1

0

E E
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inel
d d E

d E
λ

λ ∆
∆

− −
− = ∫ . (4.63) 

Note that λinel depends on the kinetic energy of the electrons. Therefore, the electron stopping 

power can be estimated as: 

 ( )
( )

( )
F 1
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E E
inelddE E d E

dS d E
λ

∆ ∆
∆

− −

− = ∫ . (4.64) 
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The inelastic mean free path of hot electrons for gold is depicted in Figure 4.14. 

4.5 Electron-Phonon Scattering 

 The discussions about the electron-energy loss mechanisms up until now are classified as elec-

tron-electron collisions where the electron-beam interacts with electrons inside the matter. The 

electron-beam can lose energy by creating phonons or gain energy by absorbing phonons. The 

former is more probable than the latter in this case. Phonons are the energy quantas of lattice vi-

brations. There are two different types of phonons. The first type is the optical phonon while the 

second type is the acoustic phonon. If the creation of the optical phonon is assumed to be domi-

nant over the absorption of the optical phonon and the dispersion relation of the optical phonon is 

neglected, then the scattering probability per unit time is given as (Ganachaud et al., 1997): 
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, (4.65) 

where the Bose-Einstein distribution is:  
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B LO

n
exp

k T
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=
⎛ ⎞⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (4.66) 

and ε(0) is the static dielectric constant at low frequency and ε(∞) at high frequency. The elec-

tron-phonon mean free path can be obtained by dividing the above equation by the electron ve-

locity and taking the inverse of the quantity to yield: 
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. (4.67) 

4.6 Electron Reflection and Refraction at the Surface 

 When an electron encounters a surface between a vacuum and the material, it can be reflected 
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or refracted (or transmitted) depending upon the energy of the electron and the impinging angle 

with respect to the surface normal, due to the surface barrier of the material. A quantum me-

chanical expression for describing electron transmission from the material to vacuum is given as 

(Cohen-Tannoudji et al., 1977): 

 ( )
( )

( )

1 22
0 2

021 22
0

4 1
if 

1 1

0 otherwise

/
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U E cos
E cos U

T E, U E cos

β
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⎧⎪ −⎪⎪ >⎪⎪⎡ ⎤=⎨ + −⎢ ⎥⎪ ⎣ ⎦⎪⎪⎪⎪⎩

, (4.68) 

where U0 is the inner potential (which is the sum of the Fermi energy and the work function of 

the material), and β is the impinging angle with respect to the surface normal. If the electron is 

transmitted, then β will be altered to β′ following the expression below while its energy is re-

duced by U0 amount: 

 0E U sin E sinβ β′− = . (4.69) 

4.7 Monte Carlo Simulation Results and Verifications 

 In this work, two different Monte Carlo codes are implemented in order to account for the 

electron-beam propagation inside the material. One is with the Continuous Slow-Down Ap-

proach (CSDA) and the other is with the Discrete-Inelastic Scattering (DIS) method. Since the 

simulation procedures for these methods are well-described in Chapter 3, the details of these 

simulations will not be repeated. The properties used in the simulations follow those as described 

in the previous sections. The CSDA treats the elastic scatterings using the Rutherford cross-

section or the Mott cross-section (see Section 4.2). The inelastic scattering is accounted for by 

using the Bethe Theory as given in Section 4.3. As for the DIS method, the Mott scattering cross-

section and the dielectric theory are used to account for the elastic and inelastic scatterings, re-

spectively. Details of the dielectric theory are given in Section 4.4.  

 

 Since the Monte Carlo codes were built by the author for this research, the verifications of the 

codes are needed in order to ensure the validity of the simulations. The backscattering yields 

were calculated using the codes. Backscattering yields are defined as the total number of elec-

trons reflected back normalized by the total number of incident electrons. The simulation results 
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were compared with the various experimental results. All the data points from different refer-

ences are given in the database compiled by Joy (2001). Even though the variations of the ex-

perimental results are quite large, the computational results seem to coincide with most of them.  
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Figure 4.1 Various scattering mechanisms for an incident electron from the field 
emission source are depicted in this figure. The incident electron is considered pri-
mary while the excited atomic (either inner-shell or conduction) electrons are secon-
dary. As an energized electron originates from an external source to penetrate a mat-
ter, it loses its energy by undergoing different types of inelastic scattering mecha-
nisms and suffers deflections through elastic scatterings. Inelastic scatterings include 
excitation of plasmons, ionization of inner-shell electrons, and excitation of conduc-
tion electrons. 
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Figure 4.2 Rutherford scattering cross-section of electron by a gold atom at various 
scattering angles and different electron energies. Note that an electron tends to be 
scattered by the gold atom almost equally in the forward and backward directions at 
low energy. When the electron energy is high, scattering becomes highly forward, 
meaning that the angular deflection is relatively small. 
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Figure 4.3 Rutherford scattering cross-section of electron by different types of at-
oms, (i.e., copper, silver, and gold) at various scattering angles and different electron 
energies. Increasing the atomic number Z tends to enhance backscattering but it 
weakens forward scattering. 
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Figure 4.4 The elastic mean free path of electrons derived from the two different 
forms of the Rutherford scattering cross-section discussed in the text. R1 and R2 refer 
to the mean free paths derived using Eqs. (4.10) and (4.14), respectively. Both models 
yield the same mean free path at low electron energies but deviate from each other at 
high energies. The elastic mean free paths for different materials are also shown in 
the figure. 
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Figure 4.5 Mott scattering cross-section of electrons by a gold atom at various scat-
tering angles and different electron energies. Notice that there are “humps” over the 
angular domain for scattering profiles at various electron energies. They are caused 
by the interferences between the scattered electron waves. The “humps” disappear 
when the incident electron energy becomes large. This is because scatterings are 
weak at various angles, except when close to the absolute forward direction (i.e. the 
zero-degree angle). 
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Figure 4.6 The Mott elastic scattering cross section for various materials (i.e. cop-
per, silver, and gold) at various scattering angles and at two different electron ener-
gies. 
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Figure 4.7 Scattering cross-sections of electron computed by Rutherford’s model 
and Mott’s model at various scattering angles and different electron energies. It can 
be seen that the Rutherford model deviates significantly from the Mott model at low 
electron energy. 
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Figure 4.8 Elastic mean free path of electron at various electron energies for the 
Mott scattering model is given. 
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Figure 4.9 Elastic mean free path of electron at various electron energies for the 
Rutherford scattering model and the Mott scattering model. The Rutherford model 
always underestimates the elastic mean free path of electron. 
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Figure 4.10 The complex index of refraction of gold is shown. n is the real part while 
k is the imaginary part of the index. Data is obtained from Palik (1985). 
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Figure 4.11 The energy loss function of gold derived from the complex index of re-
fraction given in Figure 4.10 is illustrated. 
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Figure 4.12 The probability of energy loss for hot electrons as a function of incident 
kinetic energy E and momentum transfer in terms of wave number q in gold. 
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Figure 4.13 The probability of energy loss for hot electrons as a function of incident 
kinetic energy E and momentum transfer in terms of wave number q in gold. 
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Figure 4.14 The inelastic mean free path of hot electrons for gold. 
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Figure 4.15 Backscattering yields for various incident electron energies. The medium 
is assumed to have infinite thickness. 
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CHAPTER 5  
ELECTRON-BEAM INDUCED THERMAL CONDUCTION VIA CSDA12 E-BEAM MONTE 

CARLO AND FOURIER’S LAW 
 

5 
5 

 In this chapter, the main focus is on the thermal heat generation and the heat conduction phe-

nomena due to the electron heating. The electron-beam scatterings and the thermal conduction 

occuring inside the workpiece, due to the electron-beam, are considered in the modeling. Ab-

sorptions of photons by electrons inside the matter occur at the area of incidence when a laser 

beam at a given wavelength is used to heat a matter at micro/nano-scale levels. The transfer be-

tween the photons and electrons that is involved is in terms of energy alone. The momentum 

transfer is negligible because photons possess negligible momentum when compared to that of 

electrons. There are no additional perturbations to the electric field because photons are non-

charged particles. When an electron beam impinges a conducting target, the problem becomes 

even more complicated since electrons are charged particles. These charged particles create per-

turbation to the electric field of the material. The surface of the target may be charged positively 

or negatively depending on the properties of the material and the energy of the beam. This serves 

as a potential barrier which lowers the kinetic energy of subsequent incoming electrons. More-

over, electrons from an electron-beam typically have significant amounts of momentum. This 

why momentum transfers between these electrons and electrons inside the matter cannot be ne-

glected. 

 

 Before presenting any modeling of these phenomena, the transfer mechanisms involved in this 

process shall be explored. There are three physical phenomena present in this picture. They are 

electron-beam propagation, photon-beam propagation, and thermal conduction inside the target.  

5.1 Modeling the Unknowns 

 Although the machining process (i.e. nano-machining using a nano-probe) described is an in-

genious concept, the actual modeling of such a process is quite difficult and complicated. If this 

process were to occur within the “macro” world of engineers, then the task would be rather sim-

                                                 
12 CSDA stands for Continuous Slow-Down Approach. 
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ple since all the required material properties and the governing equations for thermal heat con-

duction are well-known and well-documented. However, when the entire dimension of the proc-

ess is reduced down to the nano-scale levels, the numerical modeling requires a further detailed 

understanding of the physics. 

 

 The most important aspect of this modeling task is to find the correct governing equation. It is 

rather difficult to estimate the nature of the transport without knowing the exact transport proper-

ties of the material of interest. If the transport phenomenon is of a wave nature, then the wave 

theory should be employed, if not, the particle transport theory can be followed. Since the inter-

est of this research is in modeling the nano-machining process using a nano-probe, it is expected 

that with the use of an electron-beam, a small well-defined area of the target material will un-

dergo evaporation, which will yield the material removal, and result in the machining process. 

The temperature involved in this process may range from the room temperature (i.e. 300 K) to 

the evaporation temperature (i.e. ~3000 K for metals)13, if the concept of temperature is still ap-

plicable at such a scale. Most of the properties known up-to-date as a function of temperature 

and air pressure are documented before melting temperature of the material. The transport prop-

erties beyond the melting temperature are unknown and not available even for the macro-scale 

thermal transport, not to mention at the nano-scale level. However, since the temperature range 

involved in this type thermal transport is considered wide and high, the thermal transport (or heat 

conduction) for the heated material is assumed to be diffusive due to the highly scattering of heat 

carriers caused by the highly-elevated temperature. Under such a condition, the intense scatter-

ings of the heat carriers cause the phase information of the particle waves to be unimportant. 

This will result in no need to utilize the wave theory, and the particle transport theory will be suf-

ficient. One of the best candidates for modeling the particle transport is the Boltzmann Transport 

Equation (BTE).  

 

 The BTE in its general form can be considered the best candidate for assuming that the range 

of the wavelengths of the heat carriers involved are much smaller than the physical dimension of 

                                                 
13 The evaporation temperature at macroscopic level is assumed here. Melting and evaporation temperatures for 
nano-structures are different from those defined at macro-scale level. They vary depending on the air pressure as 
well. Further details of the nano-scale melting will be provided by J. Sanchez. 
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the object of interest. Nevertheless, solving the general BTE is extremely difficult. One possible 

way of solving the equation is to use the Monte Carlo (MC) simulation. The drawback of this 

method is that it requires large computational costs and resources if the machining problem is to 

be solved rigorously. The two types of heat carriers involved are electrons and phonons. Elec-

trons are categorized into two kinds: a) primary electrons originating from the electron-beam 

and, b) the electrons inside the material itself. This means that there are three BTEs to be solved 

(i.e., two for electrons and one for phonons). The ultimate simulation would involve three MC 

simulations simultaneously and progressing dependently in time. This can be done provided that 

the required computer resources are readily available. 

 

 What is the real challenge of the modeling task for the nano-machining process if the MC 

simulation is the answer to the problem?  It should be understood that MC simulations can be 

quite powerful when it comes to solving complicated physical problems involving integro-

differential equations. This is true only if the physics are correctly implemented in the simulation 

procedures. It is very easy to construct a MC simulation and to create the “rules” for the heat car-

rier propagations based on some intuitive thinking. These “rules” may lead to unique resultant 

statistical distributions, which can be considered as the solution to the problem. However, a MC 

simulation is very similar to an experimental setup. It could produce errors and wrong results 

without the proper calibrations. This truth applies to all sorts of numerical modeling methods 

available that are for nano-scale level heat transport. This is because the fundamental research on 

the physics at such a scale is still early in its infancy.  

5.2 Modeling Thermal Conduction due to Single e-Beam Heating 

5.2.1 Problem Description and Assumptions 

 The origin of the coordinate frame is set at the point where the electron bombardments first 

occurred. Note that the y-axis is oriented perpendicular to the figure, pointing outward.  In mod-

eling the energy transfers to the workpiece, it is assumed that the workpiece is infinitely long in 

extensions in both x- and y- directions. Such assumption is justified if all the reflected, transmit-

ted, and absorbed electron energy distributions are well confined within the workpiece dimen-

sions. The thickness of the workpiece is denoted as L. As far as the distances between the CNT, 
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laser beam, and the workpiece are concerned, they are not as critical at this stage since they only 

affect the incident profiles of the electrons and photons at the boundaries. Those can easily be 

accounted for in the analyses later. For the sake of simplicity, a single CNT will be used for the 

machining process. The machining process involving multi CNTs will be included later. 

 

 Another important assumption to be made is the absolute purity of the material for the work-

piece. This means that the medium is homogeneous and is free of defects and cracks. Such an 

assumption simplifies the analyses in the heat transports. This is because electron, photon and 

phonon scatterings become extremely complicated when there are impurities in the medium. 

 

 As mentioned, there are three modes of heating in this problem: 1) an overall heating of the 

workpiece, which is denoted as the bulk heating, 2) a local heating using a laser beam to raise the 

energy of the location of interest, and 3) energy transfer to the workpiece by electron bombard-

ment using carbon nanotubes. To be able to model these three modes of heat transport, the cor-

rect and appropriate approaches need to be chosen. This choice strongly depends on the wave-

lengths of the energy carriers and time and length scales of the system. 

 

 The objectives are: a) to model the electron-beam transport, b) to predict the temperature field 

in the workpiece, and c) to determine the electron-beam power to effectively remove atoms from 

a workpiece. The end result is to achieve nano-machining. The sufficient number of energized 

electrons supplied per unit time (or current) needed to elevate local workpiece temperatures near 

the melting, evaporation, or sublimation temperature is necessary. It should be realized that the 

concepts of “melting,” “evaporation,” and “sublimation” at the nano-scale are used loosely here. 

They require further investigation, particularly in conjunction with detailed experiments. The 

models and predictions developed in this work will subsequently serve as experimental guide-

lines for finding suitable nano-probes for nano-machining. 

 

 A schematic of the problem is depicted in Figure 5.3. Two possible scenarios are considered. 

The first scenario uses only the electron-beam as the source of heating, which is illustrated in 

Fig. 1(a). In the second scenario auxiliary heating using a laser at the interface between the 

workpiece and the substrate is considered in addition to the electron-beam heating (see Fig. 
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1(b)). For the current investigation, the type of the electron source used in the simulations is ir-

relevant as long as the probe can emit sufficient amount of electrons without failing. In simplify-

ing the current investigation, it is assumed that there are no electron sources or drains imposed 

on the workpiece. Additional applied voltages across the workpiece would alter the propagation 

of penetrating electrons from the electron-beam and may also cause non-uniform joule heating 

within the workpiece. These details will be included in future models as joule heating can serve 

as a means of assisting the nano-machining process by providing additional heat beside the elec-

tron-beam and laser. 

 

 A thin gold film is chosen as the solid target (or workpiece). This is deposited on a 10-µm 

semi-transparent substrate (quartz). Both the workpiece and the substrate are assumed to have a 

radial dimension of 10 µm. The thickness of the gold film is considered to be either 200 nm or 

500 nm. Although in the experiments the actual thickness of the substrate could possibly be a 

few hundred micrometers thick, it would not affect the final results since the 10-µm quartz is “in-

finitely thick” with respect to heat waves (as well as a 100-µm quartz substrate). It is assumed 

that quartz does not absorb any radiant energy (i.e. it is transparent to the laser). A single electron 

source is considered to emit electrons, with predetermined initial kinetic energies, directly onto 

the top surface of the workpiece. A laser with a wavelength of 355 nm is chosen to heat the 

workpiece from the bottom of the substrate. The laser wavelength is selected to minimize reflec-

tion of the incident radiation, as gold reflects radiation significantly at wavelengths beyond 355 

nm. Although the workpiece and the laser are specified in the calculations, the numerical ap-

proach presented in this work is general and can be extended to other materials or laser wave-

lengths.   

 

 The origin of the coordinate frame is set at the point where electron bombardment occurs. A 

cylindrical coordinate system is used for the computations since both the electron-beam and the 

laser normally impinge on the workpiece and the solution will be axisymmetric along the z-

direction. The choice of distances between the electron-beam, the laser, and the workpiece are 

not so critical at this stage of simulations because they only affect the incident profiles of the 

electrons and photons at the boundaries. These parameters can easily be modified in later studies. 

The current interest focuses on material removal using a single probe, therefore only a single 
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electron-beam is used for the machining process. Machining paradigms based on multiple beams 

are under consideration, and these will be discussed in a future work. 

 

 In a vacuum, the only two possible heat transfer mechanisms are radiation and conduction. 

The emission of radiation from the workpiece at high temperatures is inevitable and needs to be 

considered. However, radiation heat transfer at nano-scale levels requires more detailed investi-

gation. The radiative properties (i.e. emissivity and absorptivity) at nano-scale, and temperatures 

beyond melting, are not readily available for gold. In addition, since the emission of radiation 

depends greatly on surface areas (which are extremely small in this problem), therefore they may 

not have any impact in the energy balance at all. For these reasons emission is omitted in this 

study.  

 

 It is assumed that the top of the workpiece, the bottom of the transparent substrate, and the side 

walls are considered insulated. The problem of this sort is naturally unsteady since there are no 

heat losses. In terms of the computational domain, the overall geometry is a dual layer of cylin-

ders. If the computed temperatures near the side wall of the cylinder are equal to the room tem-

perature, then the solution is physically equivalent to a plane-parallel workpiece with infinite 

side walls at room temperature.  

5.2.2 Grid Setup 

 The computational grid is expressed in cylindrical coordinates with the grid index m corre-

sponding to the radial direction r, and the grid index n corresponding to the axial direction z. The 

MC simulations for the electron-beam transport are performed in the uniform grid, which is the 

domain given by (r×z) = (R1×L1) and spans from m = 0 to NR1−1 and n = 0 to NL1−1. Since the 

boundary conditions are defined far away from the incident electron-beam and laser, the use of a 

uniform grid within the entire computational domain for the conduction problem would be im-

practical. To overcome this, the grid spacing is increased as it is moved away from the origin. 

Since the radial distribution of the laser would be larger than that of the electron-beam, the uni-

form grid is extended from (R1×L1) to ((R1+R2) × (L1+L2)) when the conduction is modeled. The 

extended uniform grid is then connected to the non-uniform grid with stretching factors in both 

r- and z-direction. The grid is set up so that the thickness of the workpiece is described as L1+L2 
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(i.e. n = 0 to NL1+NL2−1) while the thickness of the substrate is denoted as L3 (i.e. n = NL1+NL2 to 

NL1+NL2+NL3−1). The number of grid points required for the calculations, (i.e. NR1, NR2, NR3, NL1, 

NL2, and NL3) can be easily determined using the R’s, the L’s, and the ratios of the two adjacent 

grid spacing (particularly, the latter over the former) for the r- and z-directions. 

 

 A schematic of the grid structure used is given in Figure 5.4. Note that the thicknesses of the 

workpiece and the substrate are denoted as Lw and Ls, respectively. They are given as: 

 1 2wL L L= + , (5.1) 
 3sL L= . (5.2) 

The radial dimension of the workpiece is given by: 

 1 2 3obsR R R R= + + . (5.3) 

The numbers of grid points required for uniform-grid regions A and B are determined from the 

following expressions: 

 1
1z

LN
z∆

= , (5.4) 

 2
2z

LN
z∆

= . (5.5) 

As for region C, the grid spacings are stretched linearly (i.e. multiplied by a constant factor, ξ, 

consecutively) between adjacent grids along the z-direction, so that: 

 
3

3
1

zN
l

l

L z∆ ξ
=

= ∑ . (5.6) 

Note that L3 may not be precisely as specified by user because of the rounding error at the last 

stretched grid spacing. Therefore, if a 1-µm thick workpiece is desired, the actual length of the 

object will be slightly off depending on the stretching factor used. 

 

 Once all the required numbers of grid points are determined, the grid spacing and the coordi-

nate of each computational element in the z-direction follows: 

 1

0 1,
0 1,

w
n n
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z n , ,N
z

z n , ,N
∆

∆
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…
…

 (5.7) 
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Similarly, the grid spacing and the coordinate of each computational element in the r-direction 

can be obtained following those in the previous discussion. As a result: 
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where 1 2uni r rN N N= + , 3non rN N= , 1
1r

RN
r∆

= , 2
2r

RN
r∆

= , and 
3

3
1

rN
l

l

R r∆ ζ
=

= ∑ . Note that the 

stretching factor along the r-direction for the uniform-grid region is denoted as ζ. 

5.2.3 Monte Carlo Method (CSDA) for the Electron-Beam Transport 

 The distribution of energy deposited in a workpiece due to electron bombardment can be de-

termined using the Monte Carlo Method (MCM). For the case of electrons penetrating a work-

piece, a MCM simulates the propagation of electrons inside a workpiece based on cumulative 

probability distribution functions (CPDFs). The MCM treats an electron-beam as discrete elec-

trons. This is where all the electrons have equal energy. Each electron undergoes a series of elas-

tic and inelastic scatterings inside the workpiece. The histories of many propagating electrons 

form the resultant profile of absorbed energy.  

 

 MCM is used extensively for the solution of the Radiative Transfer Equation (RTE). However, 

the propagations of photons follow different scattering and absorption probability distributions 

than electrons (Wong and Mengüç, 2002; Wong and Mengüç, 2004). The scattering characteris-

tics of electrons in a solid target based on MCMs are well outlined in the literature (Murata et al., 
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1971; Shimizu et al. 1972; Joy, 1995; Wong and Mengüç, 2004).  

 

 The MCM simulation starts by initializing data including the number of ensembles, the loca-

tion of emission, the initial launching direction, etc. An ensemble represents a bundle of quantum 

particles (i.e. electrons or photons). Each ensemble is launched, one after the complete propaga-

tion of another, assuming that interferences between ensembles do not exist. The distance of in-

teraction, which is the distance the ensemble can propagate before interacting with the medium, 

is drawn according to the material properties of the medium. The ensemble is then moved from 

its current position to the next, covering the distance of interaction with its initial direction of 

emission. If it exits the medium, then it will either contribute to the reflection or transmission. If 

it does not exit, its weight or energy is altered accordingly and a new propagating direction is 

determined. The above procedures are then repeated with drawing another distance of interac-

tion. 
 

 The energy absorbed from the electron-beam is modeled as internal heat generation when solv-

ing the heat conduction problem. The result of the MCM simulations is the energy absorbed from 

the electron-beam at elements within the grid. The energy is adapted into a normalized energy 

density Ψm,n by dividing the absorbed energy by the volume of the element and the total energy 

of incident electron ensembles. It is mathematically expressed as: 

 
02

m,n
m,n

m m n enr r z N E
ψ

Ψ
π ∆ ∆

= , (5.11) 

where ψm,n is the total kinetic energy of electrons deposited at the (m,n) element, Nen is the total 

number of electron ensembles used (i.e. for the statistical MC simulation, not the actual number 

of electrons incident on the solid target), E0 is the initial energy of the electrons,  and the quantity 

2πrm∆rm∆zn is the volume of the (m,n) element. The internal heat generation at a given element 

(m,n), elec
n,mq , is then computed with the following expression: 

 elec
m,n m,nq EΨ= , (5.12) 

where E  is the input power of the electron-beam. 
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5.2.4 Auxilary Heating using Laser Beam 

 A collimated laser is considered for the additional heating of the workpiece within a specified 

radius Rlaser (see Figure 5.5). It is assumed that the substrate is transparent to the incident laser 

beam (i.e. no absorption within the substrate) while the metal layer is absorbing. Since the ab-

sorption cross-section in a metal is much larger than the scattering cross-section, the laser heat-

ing is analyzed in one dimension along the direction of incidence. 

 

 The Fresnel reflections at the mismatched interfaces (i.e. different indices of refraction) where 

the laser is incident need to be considered. For the normal incident case, the fraction of the inci-

dent radiant energy reflected, Ri→t, as the laser propagates from medium i to t, is given as (Hecht, 

1998): 

 t i t i
i t

t i t i

n n n nR
n n n n

∗

→

⎛ ⎞⎛ ⎞− −⎟ ⎟⎜ ⎜⎟ ⎟=⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜+ +⎝ ⎠⎝ ⎠
, (5.13) 

where in~ and tn~  are the complex indices of refraction of the incident and the transmitted media, 

respectively. In the simulations, the initial heat flux 0q ′′  of the laser beam propagating through the 

substrate is prescribed (see Figure 5.5). As the laser first hits the quartz-gold interface, a fraction 

of the heat flux, Rs→w (= 0.75) is reflected, while the remainder is transmited through the inter-

face. When the laser propagates within the gold film, its energy decreases exponentially with re-

spect to the distance traveled due to absorption. Therefore, the radiant heat flux as a function of 

depth in the z-direction within the radial area of incidence is given as: 

 ( ) ( ) ( )
s w 01 wL zq z R q e κ− −
→′′ ′′= − , (5.14) 

where κ is the absorption coefficient of the workpiece. The absorption coefficient is determined 

using the imaginary refractive index of the workpiece, nI,w, according to the expression (Modest, 

1993): 

 I,w

o

4 n
κ

π
λ

= , (5.15) 

where λo is the wavelength of the laser in vacuum. Normally, the incident photons are strongly 

absorbed within the first few tens of nanometers in a metal.  For a λo = 355 nm laser, κ of gold 

(i.e., nI,W = 1.848 (Palik, 1985)) is about 0.0654 nm−1 so that 95% of the penetrating photons are 
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absorbed within 46 nm into the gold film. The thickness of the film considered in this work is 

sufficiently large enough that the penetrating photons would never reach the other surface of the 

workpiece. Hence, there is no need to consider the interference effect between the incoming pho-

tons from one end and the reflected ones (if there is any) from the other. 

 

 To determine the amount of radiant energy per unit volume absorbed by a computational ele-

ment in the workpiece within a radius of Rlaser, the radiant heat flux is divided by the ∆zn and is 

expressed as: 

 
( )
n

n,m z
zq

q
∆

′′
=rad , (5.16) 

for m = 0, 1, …, NRlaser−1 and NRlaser is the radial index at Rlaser. 

5.2.5 Thermal Conduction Induced by Electron and Laser Beam 

 Heat conduction refers to the transport of energy by electrons and phonons. Electrons are the 

dominant energy carriers in metals while phonons are solely responsible for heat transport in in-

sulators. In semiconductors, both electrons and phonons are equally important. Phonons exist in 

all materials, and they serve as the main source of electron scattering in metals although their 

heat capacities are much smaller than those of electrons. In this problem, electrons originated 

from the electron-beam and photons from the laser penetrate the target workpiece. Therefore, 

significant amounts of energy and momentum are transferred to the electrons inside the work-

piece causing these electrons to become “hot” while the phonons remain “cold.” Through scatter-

ings between these propagating electrons and phonons, the incident energies are distributed (or 

conducted) within the workpiece. Both electrons and phonons eventually reach thermal equilib-

rium. 

 

 The mean free path and the mean free time of the energy carriers are important in the heat 

transport analysis (Majumdar, 1998). The mean free path of an energy carrier is the average dis-

tance that the carrier travels without involving any collision with other carriers. The mean free 

time of an energy carrier is the average time that the carrier is “free” (i.e. the time required to 

penetrate a distance equivalent to the mean free path). If the size of the physical domain far ex-

ceeds the mean free path, and the time scale is much larger than the mean free time, then macro-
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scopic model, such as Fourier’s law, are used to solve the heat transport phenomena. If the 

physical length scales are at the same order of magnitude as the mean free path or the observa-

tion time is comparable to the mean free time, then special attention should be paid to the propa-

gation of individual energy carriers, especially the collisions and scatterings between carriers 

(Cahill et al., 2003). 

 

 Mean free paths of electrons in materials are usually less than a few nanometers, and speeds of 

electrons are on the order of 106 m/s. Both the mean free paths and the speeds depend on the en-

ergies of the electrons (Ashcroft and Mermin, 1976). This leads to mean free times for electrons 

on the order of femto-seconds. Unlike electrons, mean free paths of phonons span from nanome-

ters to micrometers depending on the temperature. Their mean free times range from picoseconds 

to nanoseconds since phonons travel at about the speed of sound (i.e. 103 to 104 m/s) (Tzou, 

1997). In this work, the thicknesses of the gold film and the quartz substrate are 200 or 500 nm 

and 10 µm, respectively. For the metal where the electrons are of concern, the thickness consid-

ered far exceeds the electron mean free paths, therefore the transport behavior is spatially diffu-

sive-like. Due to the interest in machining within nano-second intervals, which is at a time-scale 

much larger than mean free times of the electrons, the ballistic behavior of electrons is not im-

portant. As a result, the electronic thermal conduction may be assumed to be macroscopic within 

the gold film. Unfortunately, because mean free paths for phonons can be comparable to the 

thickness of the workpiece depending on the temperature, questionable results are produced if 

the macroscopic approach is employed. In the context of this work, the temperature range (i.e. 

300 K-3129 K) involved is vast and mean free paths of phonons at the higher temperatures can 

easily be as small as a few nanometers or even less. This means that the phonon transport is 

likely to be diffusive. 

 

 Of the concerns regarding heat conduction at nano-scales, especially those for phonons, more 

detailed theoretical approaches and experiments are required to clarify and prove the validity of 

various approaches. This is beyond the scope of this work. Since temperatures in this application 

are high so that both the electron transport and the phonon transport can be diffusive, and since 

electrons play the major role in heat transport within metals (although electrons and phonons can 

exist at different temperatures), it is assumed the Fourier law is acceptable for the heat conduc-
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tion. Consideration of other models for more accurate electron-phonon transport will be carried 

out in future works. 

 

 The derivation of the energy balance for each element within the workpiece and the substrate 

is shown next. The heat generation term at each element (m,n) in the computational domain will 

include the sum of both the deposition of electron energy and the absorption of radiant energy: 

 elec rad
m,n m,n m,nq q q= + . (5.17) 

5.2.6 Fourier Heat Conduction – Energy Balance for an Element in the Workpiece or Substrate 

 The energy balance for each computational element is performed according to the convention 

described in Figure 5.6. Note that the non-uniform grid spacings are portrayed in the schematic. 

The energy balance for the uniform grid follows in a similar way except that all the ∆z’s (or ∆r’s) 

are constant. To be consistent, all the heat is assumed to be transferred into the node of interest, 

(m,n), and the heat generation term as a result of heating by external means (i.e. laser or electron 

beam) is denoted as stoE . The thermal properties (i.e. conductivity, k, heat capacity, C, and den-

sity, ρ) are assumed varying from one element to another due to the transient and spatial tem-

perature variation. 

 

 According to the Fourier law of conduction, the heat coming into a computational element is 

expressed as the the product of the thermal conductivity, k, the cross-sectional area, A, and the 

negative gradient of the temperature in the direction of interest. In terms of mathematical de-

scription, it is given as: 

 Q kA T=− ∇ .  (5.18) 

After accounting for the proper areas, the variation in thermal properties and the temperature 

gradient, heat propagates into the node (m,n) from all four directions, as discussed in Figure 5.6, 

and can be expressed as: 

 ( )
1

1 11
1 11 1

1

2 22
2

P Pm m m
m n m ,n m,nP P

m ,n m,n

r r rQ r z T T
k k

∆ ∆ ∆
π ∆

−

+ +−
−+ +

−

⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟= − + −⎜⎟⎜ ⎟⎜⎟⎜ ⎟⎜⎝ ⎠ ⎝ ⎠
,  (5.19) 
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where the superscript ‘P’ denotes the time step. Accordingly, the heat generation and the un-

steady energy terms are given as: 

 2gen m m n genQ r r z gπ ∆ ∆= , (5.23) 
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Note that at each new time step (P+1) the thermal conductivity for various nodes are unknowns. 

This is because temperatures at that particular instance are to be solved numerically. Therefore, it 

needs to be extrapolated based on the known previous value in such a way that: 

 1
P P P

P P Pm,n m,n m,n
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∆ ∆+
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. (5.25) 

The derivative of k in temperature can be easily determined using the data provided in the litera-

ture while the derivative of T in time is to be approximated as: 

 
1P P P

m,n m,n m,nT T T
t t∆

−∂ −
=

∂
. (5.26) 

Equation (5.25) applies not only to thermal conductivity but also to the specific heat and density 

of the material in the differenced equation. Hence, the energy balance for the element (m,n) 

reads: 

 1 2 3 4 gen stoQ Q Q Q Q E+ + + + = , (5.27) 

and additional simplifications lead to: 
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where:  
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Subsequently, the overall differenced equation for a node (m,n) is everywhere inside the work-

piece or the substrate but the interfaces between the two gives:  
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Depending upon the location of the node, all A’s are to be evaluated according to the correspond-

ing properties of the material. 

5.2.7 Fourier Heat Conduction – Energy Balance for an Element of the Workpiece and the Sub-
strate at the Interface of Two Distinct Materials 

 In the previous derivations, transient and spatial variations of the thermal physical properties 

were accounted for and the differenced equation for a computational element inside either the 

workpiece or the substrate was derived. The energy balance at the interface between the work-

piece and the substrate can be obtained in a similar fashion. It is necessary to take into considera-

tion the contact resistance between the two materials and to incorporate the correct thermal prop-

erties into the differenced equation. A schematic of the energy balance of a computational ele-
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ment of the workpiece one top of the substrate is depicted in Figure 5.7. 

 

 Note that the various terms in the energy balance equation are identical to those derived in the 

previous section except that 4Q  is to be modified to account for the contact resistance and the 

thermal properties of the substrate. It is expressed as: 
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Following the similar derivations as discussed, the energy balance equation for a node in the 

workpiece adjacent to that in the substrate becomes:  
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where  
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The subscripts ‘w’ and/or ‘s’ in the A’s require that the properties of the workpiece and the sub-

strate be used when calculating the coefficients, respectively. 

 

 For the case where the substrate element is of interest at the interface of the two materials, the 

energy balance equation for the element is similar to those given in Figure 5.6 with the exception 

that 3Q  needs to be modified. An illustration of the notations used is given in Figure 5.8. Ac-

cordingly, the energy balance equation for this node should read: 
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with 
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5.2.8 Fourier Heat Conduction – The System of Equations and Matrices 

 In order to solve the temperature distributions within the workpiece and the substrate, it is im-

portant to collect all the differenced equations for all the nodes and form the system of equations. 

For the sake of simplicity, the following quantities are defined as: 

 1 2 3 1r r r rN N N N= + + − ,  (5.46) 
 1 2 3 1z z z zN N N N= + + − , (5.47) 

The boundary conditions are given as: 
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 (5.48) 

When all the nodal equations are gathered, a system of equations can be constructed in the form 

of AT B=  where A is a (Nr×Nz)× (Nr×Nz) matrix. Details about matrices A and B can be found 

in Appendix A. 

 

 If the radiation interaction needs to be incorporated into the system, then the boundary condi-

tions will change accordingly. For any boundary exchanging radiant heat with the surroundings, 

the energy balance at the boundary should read: 
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Applying this to the top surface of the workpiece and discretizing the equation yield: 
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Note that the non-linearity in the temperature has been conveniently removed by assuming the 
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radiation loss is given by the previous time step P.  Next, the temperature at the node (m,n−1/2)  

shall be approximated as the mean value between two adjacent nodes, namely nodes (m,n−1) and 

(m,n), and it is expressed as: 
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As a result, the boundary condition at the top of the workpiece is given as: 
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5.2.9 Solving the System of Equations and Accounting for “Melting” and “Evaporation” 

 After discretizing the entire computational domain, the differenced equations for all the nodal 

points are collected to form a system of linear equations. It is given in matrix representation as: 

 BT D= , (5.54) 

where B is a (NR×NL)×(NR×NL) matrix, T  is the temperature field, and D  is known from the dis-

cretizations. This contains temperatures at the previous time step and heat generation terms at 

various nodes. Equation (5.54) is solved for T  using the point successive overrelaxation (SOR) 

numerical scheme (Matthews and Fink, 1999). 

 

 In order to properly account for “melting” and “evaporation”, the latent heats of fusion and 

evaporation need to be included in the solution scheme. In solving the system of equations, the 

point SOR sequentially solves the nodal temperature, which can be modified to account for 

“melting” and “evaporation.” In the current solution scheme, the code detects any nodal tempera-

tures beyond the prescribed “melting” or “evaporation” temperature at any given time step. If 

there are any nodal temperatures computed at a given time step beyond the specified tempera-

tures, the code re-solves the system of equations with those nodal temperatures fixed at either 

one of the temperatures, accordingly. After the temperature field is solved, the energy balance is 
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performed at each node to determine the heat generation term qgen. Each calculated qgen is the en-

ergy required to maintain that particular nodal temperature at the “melting” or “evaporation” 

temperature. Note that during this particular time step, energies are still supplied by electrons 

from the electron-beam to those nodes. A fraction (i.e. the calculated qgen) of the supplied energy 

is then used for sustaining the specified temperature while the rest is stored at the corresponding 

node to overcome the latent heat of fusion, followed by the latent heat of evaporation. 

 

 Once a node has enough latent heat, its temperature is allowed to increase at the next time step. 

The stored heat never exactly equals the specified latent heats of fusion and evaporation because 

of the increment time interval, so the energy supplied is fixed. Therefore, when an element over-

comes the latent heat at a given time step, the excess energy from the electron-beam is added to 

the same element at the next time step, preventing unrealistic energy destruction. 

5.2.10 Computational Parameters 

 In principle, the material properties such as the thermal conductivity, the specific heats, etc. 

are temperature-dependent. This is especially the case in this application where the variation of 

temperatures across the workpiece is large. They also may change depending upon air pressure. 

Unfortunately, these properties at temperatures beyond melting and at various air pressures are 

not readily available either theoretically or experimentally. Therefore, constant material proper-

ties at the ambient condition are used. In this work, gold is the selected workpiece, which has a 

density (ρw) of 19,300 kg/m3, a specific heat (Cw) of 129 J/kg-K, and a conductivity (kw) of 317 

W/m-K at room temperature. The melting temperature of gold is given as 1,336 K while its 

evaporation temperature is 3,129 K (Incropera and DeWitt, 1996). The complex index of refrac-

tion of gold at the wavelength of 355 nm is given as 1.74-i1.848 (Palik, 1985). Its atomic number 

(Z) and the atomic weight (A) are 79 and 196.97 g/mol, respectively. The corresponding mean 

ionization potential (J) is 0.790 keV (Joy, 1995). For the transparent substrate quartz is selected, 

which has a ρs = 2,650 kg/m3, Cs = 765.85 J/kg-K, and ks = 1.77 W/m-K (Incropera and DeWitt, 

1996). A typical value of 1.5 is assumed for the index of refraction of quartz (Modest, 1993).  

 

 The incident profile of the electron-beam is a Gaussian distribution with a 1/e2 radius of Relec-

tron (Jacques and Wang, 1995). In this work, two beam profiles are assumed. One of which is 
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with Relectron = 50 nm, and the second is twice the former (i.e. Relectron = 100 nm). The initial ener-

gies of electrons originating from the electron-beam are considered to be either 4 or 6 keV. All 

the temperature distributions are determined after about one nano-second (ns) of the machining 

process. 

5.2.11 Selection of Computational Time Steps, Grid Spacings and Tolerances 

 If very fine grid spacing were adapted in the simulations, a significant amount of computa-

tional time would be needed for both the Monte Carlo and the conduction heat transfer simula-

tions to converge. Since the computational domains for both models need to overlap, a finer grid 

on the MC simulation would lead to an over-refined grid for the conduction problem.  

 

 The computational grid requirements are determined after a number of preliminary numerical 

experiments are conducted. An effective grid scheme can be constructed where ∆r = 1.25 nm and 

∆z = 1.25 nm with 10% increases in the r- and 5% increases in the z-grid spacings starting from 

m = NR1+NR2 and n = NL1+NL2, respectively (see Figure 5.4). The size of the uniform grid is taken 

to be either (r × z) = (400 nm x 200 nm) or (400 nm x 500 nm) when the thickness of the gold 

film considered is 200 nm or 500 nm. These values keep the computational time reasonable 

while maintaining acceptable resolutions for the MCM predictions. A change of temperature in 

the order of 1 K is observed when halving the grid spacings, while still holding the other compu-

tational variables constant. Decreasing the grid stretching effect inflicts a temperature change of 

order 1 K. The ∆t’s in the various simulated cases are chosen in such a way that accurate (i.e. 

within Ο(1K)) temperature distributions are obtained. In addition, the convergent tolerance for 

the SOR scheme is chosen to be 10-6, guaranteeing a convergence of the temperature distribution 

to within Ο(1K). As a result, an overall uncertainty is expected in the order of 1 K for the tem-

perature field in all of the calculations.  

5.2.12 Normalized Energy Density Deposited Due to Electron Beam 

 Figure 5.9 depicts the electron energy deposited within gold as determined by the MCM for 

two selected beam profiles (i.e. Relectron = 50 nm and 100 nm) and two initial kinetic energies of 

electrons (i.e. E0 = 4 keV and 6 keV). Each of the sub-figures depicts the average result of five 

separate MC runs and the number of statistical ensembles was about 10 x106 for each run to en-
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sure smooth spatial distributions. One important observation is that by decreasing the incident 

E0, the peak amount of electron energy deposited per unit volume within the workpiece increases 

although the penetration depth decreases (see (a) and (c) in Figure 5.9). This may seem rather 

confusing since one might expect electrons with higher initial energy to deposit more energy per 

unit volume within the workpiece. Although more energy is deposited within the workpiece, it is 

distributed over a wider space since electrons penetrate deeper into the workpiece with higher 

initial energy. 

 

 Similarly, when the incident electron-beam profile is wide, the incident electrons are more dis-

persed compared to the case when the incident beam profile concentrates at the point of inci-

dence. Subsequently, this causes the dispersion of the electron energy absorbed within the metal 

over a wider range. Therefore, it is observed that the energy deposited per unit volume within 

gold in Figure 5.9(a) is less than that in Figure 5.9(b) near the axis of the incident beam. 

5.2.13 Temperature Distribution Due to Electron Beam 

 Using the normalized energy densities obtained from the MC simulations, the temperature dis-

tributions were determined with the Fourier law. Interest is in the material removal during a pe-

riod of about one nano-second. The conduction code runs until the element at the origin evapo-

rates (i.e. latent heat of evaporation is overcome and T > Tevap = 3129 K). The temperature distri-

bution due to the electron energy deposited within gold for the case where Rbeam = 100 nm and E0 

= 4 keV (see Figure 5.9(a)) is illustrated in Figure 5.10(a). The evaporated region is portrayed in 

the white color. The time required for evaporation to occur is found to be about t = 0.9 ns for an 

electron-beam power of 0.5 W. The required current, or the number of electrons needed per unit 

time equals 125 µA or 7.8 x 1014 electrons/s for a power of 0.5 W at 4 keV. Since a 500-nm gold 

layer on top of a 10-µm transparent substrate is assumed, the isotherms bend sharply at z = 500 

nm as the material properties change at the interface. Note that the figure only portrays the por-

tion of the computational domain where the highest temperatures exist. The element at the origin 

where evaporation occurs is removed as shown by a white spot in the upper left-hand corner. 

 

 Using the MC result given in Figure 5.9(b), the temperature distribution for an incident elec-

tron-beam of Relectron = 50 nm is computed and depicted in Figure 5.10(b). The power of the elec-
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tron-beam was 0.305 W and evaporation started at t = 0.7 ns. Note that the beam has less power, 

yet evaporation occured sooner when compared to the previous case (i.e. Relectron = 100 nm). This 

demonstrates that the required power for evaporation can be reduced when the beam is narrow. It 

also indicates that the temperature of gold film can be increased much faster at the origin if the 

electron-beam is more focused. If a wider machining area is desired, then a wider beam should 

be used even though this slows down the process and may require greater beam power.  

 

 Figure 5.10(c) shows the temperature distribution within gold film at t = 1 ns for an incident 

electron-beam of 6 keV with an input power of 0.615 W. It is obvious that increasing the applied 

voltage tends to spread the electron energy over a deeper range since the penetration depth is also 

increased. This elevates the input power required from the beam, nad is evident from the com-

parison between (a) and (c) in Figure 5.10. To compare the current required between the two (i.e. 

E0 = 4 keV versus 6 keV with the same Rbeam), the evaporation time should be identical in both 

cases. Therefore, it is essential to determine the required input power for the 6-keV beam needed 

to cause evaporation at t = 0.9 ns instead of 1 ns. An extra simulation with a beam power of 

0.625 W was performed, and it was determined that the evaporation time is at 0.8 ns. Assuming a 

linear relationship between the time for evaporation and the power, it takes approximately 0.62 

W for the 6-keV electron-beam to start evaporation at 0.9 ns as opposed to 0.5 W for the 4-keV 

one. This leads to a current of 103 µA for the former and 125 µA for the latter. The current re-

quired for achieving evaporation is actually reduced when the beam energy increases. However, 

this preliminary conclusion should not be generalized since there are other factors affecting the 

outcome, including the evaporation time and the thicknesses of the film. In-depth calculations 

and explorations are needed for further clarification of the affects of other parameters. 

 

 Note in Figure 5.10(c) that evaporation first occurs in the layers beneath the surface, creating 

the gold vapor, which is expected. It is clear from Figure 5.9(c) that the region with the highest 

density of energy deposited by the electron beam is not at the surface, but a few nanometers be-

neath it. However, the vapor is trapped inside the material since the surface has not been evapo-

rated. The instant the element at the origin is removed, the vapor is released, leaving a noticeable 

evaporated region as seen in the figure. Further examination on the temperature distributions re-

veals a similar trend in both (a) and (b) in Figure 5.10, except that the evaporated regions are 
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smaller. Though it may be informative to compare among the electron-beam powers or currents 

required for various cases to evaporate the exact volume and shape, it is impractical since the 

penetration depth varies depending on the incident kinetic energy of the electron-beam. 

5.2.14 Temperature Distribution Due to Electron-Beam and Laser 

 An alternative to reduce the power required from the CNT is to supply additional heat via a 

laser. To investigate this, additional numerical simulations were carried out. Figure 5.11 shows 

the temperature distribution obtained with laser heating for the same conditions used in Figure 

5.10(a). To be consistent with other cases, the result given here is at the instance where the ele-

ment at the origin evaporates. With the help of a laser heat flux of 5.09 µW/nm2 (= 0q ′′ ) incident 

on the bottom of the gold layer within an area of a radius of Rlaser = 300 nm measured from the z-

axis, the time required for evaporation is shortened from t = 0.9 ns (as in Figure 5.10(a)) to 0.5 

ns. By coupling the laser heat flux required, the incident area, and the Fresnel reflection when the 

laser first enters the vacuum-substrate interface, the laser power needed for this specific case is 

calculated to be about 1.5 W. Although this approach can reduce the power required from the 

electron-beam, the thickness of the workpiece is a limiting factor since the laser heats from the 

back of the workpiece. In addition, the absorption of radiant energy in a metal is strong, therefore 

the gold film thickness needs to be as small as possible in order for the laser heating to affect the 

material in the vicinity of the incident electron-beam. 

 

 For the simulation results depicted in Figure 5.12, the thickness of the gold layer is 200 nm. 

The specifications of the electron-beam and the laser remain the same as in Figure 5.11. In this 

case, the laser heating is more effective in reducing the power required from the electron-beam. 

Figure 5.12(a) is the temperature field at about 1 ns where evaporation occurs at the origin for a 

reduced electron-beam power of 0.25W, while Figure 5.12(b) depicts the time required for 

evaporation as a function of various powers of the electron-beam (with or without the use of a 

laser) for a 200-nm layer of gold film. One obvious observation from the figure is that the time 

of evaporation is reduced when the laser is employed for heating from the back of the workpiece. 

Notice that the evaporation time increases as the electron-beam power is decreased. For a strong 

electron-beam, using a laser would not be necessary since the evaporation time is so short. The 

workpiece starts to evaporate before the heat provided by the laser is conducted to the top. 
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 If both the electron-beam and the laser are directed towards the same point of incidence, the 

laser heating is used to its greatest advantage. This would require that both beams be obliquely 

oriented, which would require revisions to the model. This can be investigated in future work. 

5.2.15 Transient Temperature of the Origin 

 Figure 5.13 shows the transient temperatures of the element at the origin around an infinitesi-

mal radius of ∆r = 1.25 nm and a depth of ∆z = 1.25 nm, under different conditions. The descrip-

tions of the various cases can be found in the figure caption. In short, Case 1 sets the standard for 

the remaining four cases, Case 2 refers to a more focused electron-beam, Case 3 refers to the in-

clusion of laser heating, Case 4 refers to the reduced gold thickness with laser heating, and Case 

5 is for an electron-beam with higher incident kinetic energy. 

 

 It is observed that the transient curve shifts to the left as the electron-beam is focused narrower 

(see Cases 1 and 2), indicating that the transient temperature at the origin is always higher for the 

latter case. This shows that a highly-focused electron-beam is desired when elevating local tem-

peratures in this application, resulting in shortened evaporation time. When the laser heating is 

used simultaneously with the electron-beam, it has no effect on the temperature of the origin un-

til t = 0.15 ns at which the temperature starts to increase compared to that of the case where it is 

excluded (see Cases 1 and 3). The starting time for the laser to aid the heating process at the ori-

gin can be reduced by decreasing the thickness of the workpiece. This is evident from the tran-

sient curve of Case 4. Note that all the cases have the same input power for the electron-beam 

except the final case where the incident beam energy is lowered to 6 keV. This is because the 

computational cost required for the case where a 6-keV electron-beam of 0.5 W is used is rela-

tively expensive. The power was increased to 0.615 W to reduce the cost while maintaining the 

trend that the temperature at the origin, as heated by a lower-energy beam is lower at all time 

(see Cases 1 and 5). 

5.2.16 Comments 

 In this section, the possibility of achieving nano-scale machining on a thin metallic film depos-

ited on a transparent substrate was investigated. The effects of simultaneous electron and photon 
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processing were considered. The propagation of the electron-beam inside the gold film was mod-

eled using a MC simulation while the laser heating was treated as a one-dimensional problem. 

Both the electron and photon energy accumulated inside the workpiece were considered as heat 

generation in the conduction heat transfer model. The temperature field inside the workpiece was 

predicted. The results show that a power input of half-a-watt supplied from an electron-beam 

alone is sufficient enough to start local evaporation during about 1 ns. This can be achieved by 

using either a 4- or 6-keV electron-beam, provided the spatial distribution of the emitted elec-

trons from the electron-gun is no greater than 100 nm and closely resembles a Gaussian distribu-

tion. With the help of focused laser heating, the power required from the electron-beam can be 

reduced by a factor of 50% if the workpiece is sufficiently thin. Although a comprehensive theo-

retical frame work is presented here for predicting the power and current required for nano-scale 

machining, the model needs further modifications and improvements for applications to real sys-

tems. Some of these requirements are briefly outlined below.  

 

 The accuracy of the electron energy deposition profiles predicted using the MC simulation for 

the electron-beam transport can be further improved by employing a Discrete Inelastic Scattering 

Approach (DISA) (see Ding and Shimizu, 1996 for further details) instead of a Continuous 

Slowing-Down Approach (CSDA), which was adapted here. The DISA uses the experimental 

optical data for the workpiece to treat all the scattering events discretely, which is more accurate 

than using the stopping power as in the CSDA. This is especially true if the incident energy of 

the electron-beam is around 1 keV. The propagations of secondary electrons as a result of the 

inelastic scatterings (i.e. energy lost from the primary electrons of the electron-beam to the elec-

trons inside the workpiece) would further spread the incident energy from the electron-beam 

over a wider volume. This is not accounted for in the current MC model. 

 

 The radiation losses and the pressure- and temperature-dependent material properties need to 

be incorporated in the conduction modeling. When these effects are included, the required power 

for the electron-beam could either be lower or higher. If radiative losses were added, the required 

power would be higher since the workpiece would lose heat (if it is significant). However, it is 

known that materials become more temperature-resistant as the temperature increases, therefore 

it implies that heat loss by conduction at the heating region would be reduced. As a result, the 
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input power needed from the electron-beam would be reduced as well, which benefits the case of 

using only the electron-beam. 

 

 The use of the Fourier heat conduction model implies that both electrons and phonons are at 

the same temperature. This approximation needs to be replaced by a two-temperature model 

(TTM) (Tzou, 1997). The TTM allows electrons and phonons to exist at different temperatures. 

This is important because the electron-beam first transfers energy to electrons inside the work-

piece and then causes elevation of the electron temperature. Consequently, electrons exist at a 

temperature much higher than that of phonons. Interactions between electrons and phonons then 

establish equilibrium at which both immerse at a single temperature (Hohlfeld, 2000). 

5.3 Sequential Nano-Patterning Using Electron and Laser Beams – A Numerical Methodology 

5.3.1 Problem Description and Assumptions 

 In the previous modeling of laser assisted material processing using an electron-beam, the fea-

sibility of machining at nano-scale level was studied (Wong et al., 2004). The problem was simi-

lar to that given in Figure 5.14 except that the electron-beam was stationary and a simple 2-D 

axisymmetric assumption was employed. The electron-beam propagation inside the workpiece 

(i.e. a thin gold film) was modelled using a MCM, which treats electron energy losses continu-

ously along the path of propagation. The laser propagation was treated as a one-dimensional 

problem in a non-scattering medium since absorption of radiation is strong inside metals. The 

Fresnel reflection at the mismatched boundary between the substrate and the workpiece was 

taken into consideration. It was found that an electron-beam with a power of about 0.5 W was 

sufficient to initialize evaporation at nano-scale level within a nano-second. This requirement 

could easily be halved if a laser was used simultaneously. These observations were based on the 

premise that there were no radiation losses at the boundaries and material properties were not 

temperature-dependent.  

 

 In this section, these assumptions are removed and the solution of the electron-beam transfer 

and heat conduction problems are extended to a realistic 3-D case. In addition, temperature-

dependent thermophysical properties are considered, which change during the course of the pat-
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terning process. The problem presented is a time-dependent one the electron-beam is allowed to 

move from one location to another to create a desired pattern of nano-indentations.  

 

 The computational domain, which has a square cross-sectional area (Lx×Ly), consists of a 

workpiece and a transparent substrate where the former rests on top of the latter, as shown in 

Figure 5.14. The workpiece is assumed to be gold on which the electron-beam impinges from the 

top, while the laser heats it from the bottom. The substrate is assumed to be quartz and transpar-

ent to the incident laser. The thicknesses of the workpiece and the substrate are denoted Lw and 

Ls, respectively. The entire object is assumed to be placed inside a vacuum chamber.  

 

 An electron source is considered to emit electrons, with predetermined initial kinetic energies, 

directly onto the top surface of the workpiece. A laser with a wavelength of 355 nm is chosen to 

heat the workpiece from the bottom of the substrate. The laser wavelength is selected to mini-

mize reflection of the incident radiation. This is because gold reflects radiation significantly at 

wavelengths beyond 355 nm. In addition, a 355 nm wavelength corresponds to the third har-

monic of commercially available Nd:YAG lasers. The type of the electron source used in the 

simulation is irrelevant as long as it can emit sufficient focused electrons. In simplifying the cur-

rent investigation, it is assumed that there are no electron sources or drains imposed on the 

workpiece. Such additional applied voltages across the workpiece would alter the propagation of 

penetrating electrons from the electron-beam and may also cause non-uniform joule heating 

within the workpiece. 

   

 The 3-D Cartesian coordinate system is used in this case since the electron-beam is moved 

along the workpiece surface to create a desired pattern, and the solution will be entirely non-

symmetric. This feature makes the solution of the problem quite different and more realistic than 

the one presented in our previous approach (Wong et al., 2004). The selections of distances be-

tween the electron-beam, the laser, and the workpiece are not critical at this stage of simulations 

since they only affect the incident profiles of the electrons and photons at the boundaries. These 

parameters can easily be modified in later studies. It is assumed that the top of the workpiece, the 

bottom of the transparent substrate, and the side walls exchange energy with the surroundings via 

radiation transfer, and these effects are included in the heat conduction modeling. Temperature 
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dependent properties are considered throughout the simulations. However, we assume that the 

medium is homogeneous and free of defects and cracks. This is necessary for such fine applica-

tion purposes. Such an assumption simplifies the heat transfer analysis, as electron and photon 

scatterings become extremely complicated when there are impurities in the medium. 

5.3.2 Computational Methodology 

 To account for all three heat transfer phenomena simultaneously (i.e. electron-beam transport, 

laser propagation, and heat conduction) for relatively large dimensions of the geometry, the grid 

is stretched away from the origin at which the electron-beam first hits. Here, ‘relatively’ refers to 

the comparison between the spatial energy spread of the incident electron-beam and the overall 

dimension of the geometry. The structure of the computational grid employed is depicted in 

Figure 5.15. The grid spacings in all three directions are uniform at the center of the cross-

section area and near the top of the domain. The MC simulation for the electron-beam transport 

is performed within the uniform grid. Since the laser enters the geometry from the back through 

the transparent substrate, the grid in the depth direction is stretched starting from the interface 

between the workpiece and the substrate towards the bottom of the substrate. 

 

 The overall goal is to determine the transient temperature distribution of the material while the 

electron-beam and the laser are heating it and to observe the heating requirement to evaporate the 

material. The modeling of this problem involves three steps. First, the thermal energy deposited 

by penetrating energetic electrons inside the workpiece needs to be computed. It is assumed that 

the kinetic energy that electrons lose is converted instantaneously into thermal energy and stored 

in the workpiece. Second, the radiant energy absorbed by the workpiece from the incident laser 

is determined. Finally, all the thermal energy deposited in the workpiece via electron bombard-

ments and laser heating are considered as heat generation in the heat conduction equation. 

 

Energy Deposition due to Electron-Beam 

 

 The governing equation of the electron-beam propagation inside solids, which shall be called 

the Electron Transport Equation (ETE), closely resembles the Radiative Transfer Equation 

(RTE) including both extinction and in-scattering. The only difference between these two equa-
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tions is that the absorption and scattering properties of the medium vary according to the energy 

of the propagating electrons for the ETE. Once the energy of the electrons changes, the scattering 

probability in the governing equation changes as well. This is not the case for the RTE. This 

means that the ETE has to be solved in a dynamic fashion, because after each scattering event 

there is a new set of values for the properties. Casting in terms of intensity of electrons, the ETE 

can be written as (Wong and Mengüç, 2004): 

 
( ) ( )

( ) ( ) ( )
 

1 ˆ

1 , , ; , , , , ,
4

inel ele
e e e e

e

el
e e e

E

I s I E E I
v t

E E E I E t d

σ σ

σ θ φ θ φ θ φ
π ′Ω

′

∂ ⎡ ⎤+ ⋅∇ = − +⎣ ⎦∂

′ ′ ′ ′ ′ ′ ′ ′+ Φ Ω∑∫
. (5.55) 

The MC simulation used in the radiative transfer can be easily modified for electron-beam trans-

port. Details about these simulations are already outlined in this work (Wong and Mengüç, 

2004). The distribution of energy deposited in a workpiece due to the electron bombardment can 

be determined using such a MCM (Wong and Mengüç, 2004; Wong et al., 2004). The MCM 

used here simulates the propagation of electrons inside a workpiece based on probability distri-

bution functions and treats an electron-beam as discrete electrons, where all electrons have equal 

amount of energy upon entering the workpiece. Each electron undergoes sequential elastic and 

inelastic scatterings before exiting the medium or being absorbed. It is the contribution of all the 

remaining energy of the exited electrons that provides the reflected and absorbed energy of the 

incident electron beam.  

 

 In order to include the heating effect due to the energy deposition by electrons from the elec-

tron-beam in the heat conduction equation, the amount of heat generated in the elements exposed 

to the beam needs to be determined. Using the MCM, the energy deposited from the electron-

beam at any element (m,n,o) within the grid can easily be tallied. This energy (denoted as ψm,n,o) 

is then converted into a normalized energy density Ψm,n,o by dividing it by the volume of the 

element and the total energy of incident electron ensembles. This is mathematically expressed as: 

 
0en ENzyx onm

o,n,m
o,n,m ∆∆∆

ψ
=Ψ , (5.56) 

where Nen is the total number of electron ensembles used (i.e. for the statistical MC simulation 

purposes, not the actual number of electrons incident on the solid target), E0 is the initial energy 
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of the electrons, and the quantity ∆xm∆yn∆zo is the volume of the (m,n,o) element. The internal 

heat generation at a given element (m,n,o), elec
o,n,mq , is then computed using the expression: 

 o,n,mo,n,m Eq Ψ=elec , (5.57) 

where E  is the input power of the electron-beam.  

 

Absorption of Laser Energy 

 

 A collimated laser is considered for additional threshold heating of the workpiece within a 

specified radius Rlaser (see Figure 5.16). The assumption is made that the substrate is transparent 

to the incident continuous laser beam (i.e. no absorption within the substrate), while the metal 

layer is absorbing. Since the absorption cross-section in a metal is much larger than the scattering 

cross-section, the laser heating is analyzed in one dimension along the direction of incidence, and 

the scattering is neglected. The Fresnel reflections at the mismatched interface (i.e. due to differ-

ent indices of refraction) where the laser is incident need to be considered for accurate represen-

tation of laser heating. For the normal incident case, the fraction of the incident radiant energy 

reflected, Ri→t, as the laser beam propagates from medium i to t, is given as (Hecht, 1998):  

 
∗

→ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
it

it

it

it
ti n~n~

n~n~

n~n~
n~n~

R , (5.58) 

where in~  and tn~  are the complex indices of refraction of the incident and the transmitted media, 

respectively. In the simulations, the initial heat flux 0q ′′  of the laser is prescribed (see Figure 

5.16). As the laser beam first hits the quartz-gold interface, a fraction of the heat flux, Rs→w (= 

0.75), is reflected while the remainder is transmitted through the interface. When the laser propa-

gates within the gold film, its energy decreases exponentially with respect to the distance trav-

eled due to absorption. Therefore, the radiant heat flux as a function of depth in the z-direction 

within the radial area of incidence is expressed as: 

 ( ) ( ) ( )zLweqRzq −κ−
→ ′′−=′′ 0ws1 , (5.59) 

where κ is the absorption coefficient of the workpiece. The absorption coefficient is determined 

using the imaginary refractive index of the workpiece, nI,w, according to the expression (Modest, 

1993): 
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where λo is the wavelength of the laser in vacuum. Normally, the incident photons are strongly 

absorbed within the first few tens of nanometers in a metal.  For a λo = 355 nm laser, κ of gold is 

about 0.0654 nm−1 (corresponding to nI,W = 1.848 (Palik, 1998)) so that 95% of the penetrating 

photons are absorbed within 46 nm into the gold film. The thickness of the film considered in 

this work is large enough, so the penetrating photons would never reach the other surface of the 

workpiece. Hence, there is no need to consider the interference effect between incoming photons 

from one end and the reflected ones (if there are any) from the other. 

 

 For simulations, the amount of radiant energy (i.e. rad
o,n,mq ) absorbed per unit volume within a 

computational element in the workpiece is needed. To determine this value, the radiant heat flux 

is divided by the ∆zo and expressed as: 

 
( )

o
o,n,m z

zq
q

∆

′′
=rad , (5.61) 

for any index m in the x-axis and n in the y-axis inside the area heated by the laser, and o is the 

index of the element along the z-direction.  

 

Heat Conduction 

 

 Heat conduction refers to the transport of energy by electrons and phonons. Electrons are the 

dominant energy carriers in metals while phonons are solely responsible for heat transport in in-

sulators. In semiconductors, both electrons and phonons are equally important. Phonons are 

based on lattice vibrations and exist in all materials. They serve as the main source of electron 

scattering in metals, although their heat capacities are much smaller than those of electrons. In 

this application, electrons originating from the electron-beam and photons from the laser are as-

sumed to penetrate the target workpiece. A significant amount of energy and momentum are 

transferred to electrons inside the workpiece causing these electrons to become “hot” while the 

phonons remain “cold.” Through scatterings between these propagating electrons and phonons, 

the incident energies are distributed (or diffused) within the workpiece. Both electrons and pho-
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nons eventually reach thermal equilibrium. 

 

 It is hypothesized that thermal electronic heat conduction inside the workpiece in this applica-

tion is diffusive in space and time. The Fourier law of conduction should apply without signifi-

cant error (Wong et al., 2004). However, phonon transport in this case may not be entirely diffu-

sive depending on the temperature. The lower the temperature, the longer the wavelength of 

phonons which could easily exceed the object dimension in this problem. This would result in 

semi-ballistic or ballistic transport of the phonons inside the workpiece (Wong et al., 2004). Such 

thermal transport phenomena deviate significantly from the traditional diffusive heat conduction 

and cannot follow the Fourier Law. Despite the arguments, the Fourier law of conduction was 

chosen. The electron and phonon temperatures are treated as a whole and described using a sin-

gle temperature. This is the initial effort of modeling such a complicated transport phenomenon. 

In the next chapter, the electron temperature will be separated from the phonon temperature, al-

lowing the concept of the so-called two-temperature model to be incorporated into the modeling. 

Eventually, the electric field induced by the penetrating electrons will be considered as well by 

using the electron-phonon hydrodynamic approach. 

 

 The derivation of the energy balance for each element within the workpiece and the substrate 

is not outlined as they are fairly standard and well-known (Incropera and DeWitt, 1996). The ex-

ception is that the treatment of the heat generation term in each energy balance equation will in-

clude the sum of both the deposition of electron energy from the electron-beam and the absorp-

tion of radiant energy from the laser. Since material properties vary according to temperature, it 

is assumed that each computational element will be assigned different thermal properties, such as 

thermal conductivity and specific heat, based on its temperature at the previous time step. In ad-

dition, the radiation exchange between the surfaces of the entire object and the surroundings is 

also included to account for radiation losses. It is observed, however, that radiation losses are not 

significant enough to cause any changes in the temperature field. This is mostly due to the fact 

that the emitting and absorbing surface areas are extremely small. The system of equations de-

rived by collecting all the energy balances of each control volume is solved by using the point 

Successive Over-Relaxation (SOR) numerical scheme (Matthews and Fink, 1999).  
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 To properly account for melting and evaporation, the latent heats of fusion and evaporation 

need to be included in the solution scheme. The way these effects are incorporated in the SOR 

scheme is described in the previous section. Basically, the algorithm is constructed in such a way 

that once a given nodal temperature exceeds the melting or evaporating temperature, its tempera-

ture ceases to increase until the latent heat of fusion or evaporation is overcome. At the same 

time, the code determines the amount of heat needed to be supplied to that node in order to main-

tain it at the fixed temperature. It then subtracts it from the actual heat provided by the electron-

beam and the laser while the excess energy is stored for overcoming the latent heat. 

 

 In this section, cooling phenomena such as condensation and solidification are encountered 

since the electron-beam is moved from one location to another. Once the beam is re-positioned, 

the previously heated spot would cool since there is no energy source for sustaining the heating. 

Accounting for such effects is similar to that of melting and evaporation, except that the proc-

esses are reversed. The algorithms used for melting and evaporation are also used for condensa-

tion and solidification except that the processes are reversed. In other words, as a computational 

node cools to condensation/freezing temperature, it remains at the fixed temperature until all of 

its latent heat is lost. 

 

 After conducting extensive numeral simulations, what was observed was heating by the elec-

tron-beam tends to first evaporate layers beneath the surface since electrons are capable of pene-

trating deep into the material. However, computational elements that have temperatures beyond 

the evaporating temperature and enough latent heats of fusion and evaporation are considered 

trapped inside the material and they continue to increase their thermal energy. Only when the 

elements above them (up to the surface) are evaporated are those computational elements as-

sumed to go through evaporation and thus be removed. In the code, the evaporated nodes are as-

sumed to have zero thermal conductivity (i.e. insulated). There are two reasons for this assump-

tion. First, the observed radiation losses from the boundaries are negligible since the surface ar-

eas involved are extremely small. Second, free heat convection does not exist in vacuum condi-

tions and does not need to be accounted for. Hence, whenever a computational element at the 

surface is evaporated, the adjacent nodes are exposed to vacuum and their boundaries act as insu-

lated since there are no heat loss mechanisms, therefore it is mathematically correct to replace 
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the conductivity of the evaporated elements with zero value. 

5.3.3 Computational Parameters 

 In this work, an electron-beam of 0.25 W is assumed to achieve the nano-machining process. 

The electron-beam has an initial kinetic energy of 4 keV and a spatial Gaussian distribution with 

a 1/e2 radius of 25 nm, while the laser has a wavelength of 355 nm and a power of 0.35 W. The 

laser beam is assumed to be collimated within a radius of 150 nm, which is extremely difficult to 

achieve considering the wavelength of the laser. The reason for choosing such an extreme num-

ber is because the uniform grid that is used in the simulation has lateral dimensions of (350 nm × 

350 nm). This was necessary to maintain the computational costs within the limit of the current 

computing power. The laser heating needed to be within this grid to avoid excessive computa-

tional errors. Even though such a small radius of laser heating is considered, this assumption 

does not really affect the outcome of the current simulations. The entire computational domain is 

assumed to be within the laser heating zone, and even if a much larger laser heating domain is 

realized, the electron-beam based machining predictions would not be altered at all.  

 

 The simulations with the Monte Carlo approach are performed using ten-million electron bun-

dles in order to produce sufficiently smooth resultant statistical distributions. The final results 

reported below are the average of five such runs. Five nm for spatial grid size was used within 

the uniform grid. The grid size was then stretched beyond the uniform grid with a 10% increment 

with respect to the previous step size. The time step used in the simulation was set to 3.125 

femto-seconds (fs). Details and reasons for choosing such parameters are discussed below. 

 

 Since the interest is in material processing, the temperature range involved is large, ranging 

from the room temperature 300 K to the evaporating temperature 3129 K for gold. As a result, 

the material properties vary widely between these two limits. However, the thermal properties of 

gold beyond melting temperature are not readily available in the literature. For the sake of sim-

plicity, these properties are linearly extrapolated beyond the melting temperature based on the 

existing data points given in the literature. The material properties of gold and quartz, as a func-

tion of temperature, are shown in Figure 5.17. During the heating process, the substrate is as-

sumed to stay as solid (i.e. T <~2000 K for quartz).  
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 Note that all the properties mentioned and given in this work are at standard air pressure. Un-

der the ultra high vacuum condition, these properties ought to vary since atoms would not be 

packed as closely as they would be in atmospheric pressure. Unfortunately, this data, especially 

for gold, is not readily available in the literature, neither experimentally nor theoretically. The 

thermophysical data available for gold at temperatures beyond melting and at various vacuum 

conditions is extremely scarce and does not allow for a comprehensive sensitivity study. There-

fore, the predictions given in this work can be considered as conservative in terms of the power 

of the electron-beam required to evaporate gold, since the actual evaporating temperature of gold 

in vacuum is expected to be lower. 

 

 The simulations given below were carried out on a personal computer with an Intel Pentium 4 

processor of 3 GHz with a total of 2-GB memory, which is more than sufficient for this work. A 

typical run takes about three days, including both the Monte Carlo simulation and the heat con-

duction, on the dedicated computer depending on the time and space steps chosen. Eventually 

similar cases are expected to be run on more than one computer or even a cluster of computers.  

5.3.4 Results and Discussions 

 

Monte Carlo (MC) Simulations for Electron-Beam Transport 

 

 The results obtained from the MC simulation are discussed in the previous work (Wong et al., 

2004), where the effect of various input parameters such as the electron-beam energy, the spatial 

distribution of electrons, etc. on the electron energy deposition profile and the temperature distri-

bution was shown. Here, the electron-beam is used to pattern nano-holes which have sizes 

around 5-10 nm wide and deep while the laser acts as the additional heating mode in order to re-

duce the input power from the electron-beam. 

 

 Instead of making random nano-holes in the workpiece using an electron-beam, the attempt 

was made to create a more complex pattern, for which the letters ‘UK’ was chosen. However, 

there were several issues to be addressed in machining such a complex pattern. First, whenever a 
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region is evaporated by the electron-beam, the boundary of the geometry changes. The current 

MC simulation of the electron-beam propagation is based on the fact that the geometry remains 

intact throughout the entire process. Therefore, if the electron-beam were to impinge on or near 

the evaporated region, the electron energy deposition profile would be different compared to that 

before evaporation occurred. This would require a re-run of the MC simulation according to the 

new geometry. Since the change of the boundary could be dynamic in real time if the electron-

beam were dragged along the surface, this situation was avoided in this work as the simulation 

procedures could get fairly complicated and increase computational costs. 

 

 Using the spatial energy deposition profile of an electron-beam as calculated by the MC simu-

lation, the positions that the electron-beam needs for drilling were determined. This was done in 

order to create the UK pattern and to avoid any drilled nano-holes confining within the profile. 

Figure 5.18 shows all the electron energy deposition profiles at various locations. Note that there 

is only one electron-beam available at a time for machining, therefore the distribution shown in 

Figure 5.18 is a hypothetical situation where there exists 21 beams impinging on the workpiece 

at once. This is for visualization of various beam locations purpose only. 

 

Heating Sequences 

 

 Based on the numerous initial numerical experiments conducted, it was observed that the most 

effective way of using a laser in assisting the machining process was by preheating the work-

piece with the laser and without the electron-beam.  Due to the strong absorption of laser energy 

inside gold, direct radiant heating of the top surface of the workpiece (which is desired to lower 

the heat input from the electron-beam) would not be possible. The experimental approach that 

was adapted required the laser beam to enter the workpiece through the backside, therefore heat-

ing the top surface required a conduction mechanism. For this reason, it was discovered that the 

laser had to be turned on first to elevate the temperature of the workpiece, since it took time for 

the heat to conduct to the top surface. 

 

 The time required to initialize the thermal electronic heating remains arbitrary. The longer the 

heating process, the hotter the surface becomes, and the additional heat input required from the 
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electron-beam to create evaporation is further minimized. In the current analysis, once the top 

center of the workpiece reaches to a temperature of 700 K after being heated by the laser, the 

electron-beam is activated to achieve nano-scale evaporation on the surface. 

 

 The heating sequence considered here follows the numerical sequence depicted in Figure 

5.18(c). Upon the forming of a nano-hole, the electron-beam is switched off and moved instanta-

neously to the next location. In the actual experiment, there would be some delay in the heating 

process from one spot to another due to the mechanical or electrical control mechanism of the 

probe that produces the electron-beam. These details need to be discussed with the actual ex-

periments. The heating spots are separated far enough apart that two adjacent sequential electron 

beam profiles do not overlap. Therefore, by turning off the electron-beam and moving it to the 

next location, the beam will not interact with the voids created previously. 

 

 The temperature distribution of the workpiece and the substrate at 0.42 ns are depicted in 

Figure 5.19 where the laser is used to heat the workpiece for the first 0.12 ns. The temperature 

distribution given in Figure 5.19 is at the instant where the last nano-hole at the upper right cor-

ner is formed, so the temperature is high at that location right after the evaporation occurred. It 

should be pointed out that the dark blue dots within the high temperature field do not correspond 

to the lowest temperature given in the contour legend. They are evaporated regions or empty 

voids. 

 

 Figure 5.19(b) shows the top view of the workpiece where the desired UK pattern is clearly 

visible. However, it is observed that the nano-holes created are not uniform in size, some are 

wider than others. In order to visualize the depth of each structure, two cross-sections (i.e. A-A 

and B-B) of the workpiece are plotted in Figure 5.19(c) and Figure 5.19(d). The structures cre-

ated seem to be non-uniform in depth as well. One reason is the fact that the heating by the laser 

is non-uniform across the space resulting in a variation of heat received by each location in the 

space. However, this effect seems to be minor compared to that imposed by the electron-beam 

itself. Notice that the first nano-hole created for the letter ‘U’ is the smallest while the width and 

the depth of the subsequent ones increase along the A-A direction. Close examination of the 

structures created, reveals that the third, fourth and fifth holes are equal in size. When the elec-
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tron-beam turns perpendicularly to create the sixth and the seventh, the dimensions of the created 

structures appear to change once again, as portrayed in Figure 5.19(d). All of these imply that in 

order to create uniform structures in one constant direction using this approach, the first few 

would deviate from the others as the process progresses. As the direction changes, it alters the 

dimensions of the subsequent indentations due to the previously non-uniform local heatings at 

various spots. If both the electron-beam and the laser were to switch off after each indentation, 

and if the workpiece were permitted to cool down, then all the evaporated spots would be more 

uniform in size and depth provided the electron-beam and the laser are synchronized spatially as 

well as temporally. 

 

The Transient Behavior and Convergence Tests 

 

 The transient behaviors of various locations, namely points 1-5 and 17-21, on the surfaces of 

the workpiece are depicted in Figure 5.20. The laser is turned on for the first 0.12 ns until the top 

center of the workpiece reaches over 700 K and then the electron-beam is then activated. It can 

be seen in Figure 5.20(a) that the temperatures of all the points increase steadily during that in-

terval of time. When the electron-beam starts to bombard the workpiece, the temperature in-

creases drastically as a result of energy transfer from electrons to the material. During the course 

of the machining process in creating the pattern, the heating is highly localized at various loca-

tions during a given time period. Therefore, the surface of the workpiece experiences heating and 

cooling depending upon the location. This is evident in Figure 5.20(b). 

 

 The convergence tests for the numerical model of heat conduction have been carried out in this 

work in order to access the numerical errors. Both temporal and spatial convergence tests have 

been performed on the conduction model. The temporal convergence test is carried out by first 

computing results starting from a time step of ∆t =12.5 fs, and subsequently halving the time step 

to compare the difference between the two sets of results. The transient temperatures as a func-

tion of time steps at three different locations on the top surface are depicted in Figure 5.21. The 

transient temperatures computed using various time steps agree, implying that the errors due to 

the temporal discretization is negligible. This can be evident in Figure 5.21(a), which is the tran-

sient temperature at Point 1, the first targeted spot. For other targeted spots, for example, Points 
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10 and 21, the transient temperature profiles converge slower compared to that of Point 1, as il-

lustrated by Figure 5.21(b) and Figure 5.21(c). Overall, the transient temperature trends com-

puted using various time steps are identical. Since reducing the time step to obtain an extremely 

accurate temperature profile is not of interest here, therefore the results presented in the previous 

sections are based on a time step of 3.125 fs. 

 

 The spatial convergence test is rather difficult to perform compared to the temporal conver-

gence test. This is due to the way the machining sequence was implemented. The program is 

coded in such a way that the e-beam stops machining whenever a target element is entirely 

evaporated. It then proceeds to machine the next spot. This means that the machining process is 

accelerated when a smaller grid element is utilized and the evaporated region becomes smaller as 

well. This can be seen in the transient temperature profiles of Point 21 given for two different 

grid sizes in Figure 5.22(b) and Figure 5.22(c). However, the results demonstrate that the tran-

sient temperatures at various spots converge when Point 1 is being machined, as evident in 

Figure 5.22 for the first 0.15 ns. Based on this observation, using a spatial step size of 5 nm is 

sufficient to suppress the numerical errors caused by the spatial discretization. 

 

 Note that the time duration of the machining process proposed here is considerably small (i.e. 

less than 1 ns). It is always a concern whether or not one can have a sufficient number of elec-

trons to permit the use of a statistical approach such as the Monte Carlo method to model the 

electron-beam propagation in such a short period. A closer examination at the machining reveals 

that each target spot is typically exposed to the e-beam for about 0.02 ns before evaporation is 

achieved. For an electron-beam with a power of 0.25 W and an initial electron energy of 4 keV, 

the number of electrons supplied per unit time is roughly 4×1014 per second. The number of elec-

trons impinged on the target within 0.02 ns is about 7,800. In the simulations, tens of millions of 

statistical bundles have been used to reduce the statistical noise to a satisfactory level, even 

though the actual number of electrons available is much less than that. In dealing with this con-

cern, the Monte Carlo simulation was performed for a single electron beam with only 7,800 sta-

tistical bundles. As expected, the deposition distribution was not as smooth as that simulated us-

ing millions of bundles, however, the order of magnitude and the distribution itself were compa-

rable in both cases. This means that if an actual experiment is to be carried out, the evaporated 
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regions may not be as organized and clean as those predicted by the theory. Nevertheless, the 

overall machining trend predicted here shall prevail and serve as a moderate study tool for un-

derstanding nano-machining using electron beams. 

 

5.3.5 Comments 

 A methodology of using an electron-beam coupled with a laser for forming nano-structures in 

a sequential fashion is demonstrated numerically. A Monte Carlo Method used in typical radia-

tive transfer applications was transformed to model the electron-beam transport to determine the 

electron-energy deposition distribution rates within a thin gold film. A 355-nm wavelength laser 

was utilized as the additional heating source for aiding in the machining process. It is shown that 

by using this methodology a complicated pattern can be written within 0.5 ns actual time with an 

electron-beam of 0.25 W assisted by a 0.35 W laser. The dimensions of the pattern created are 

about 200 nm × 300 nm. This would not be possible if the laser was used alone since the lateral 

spread of photons at the given wavelength covers roughly the entire pattern. 

 

 The use of the Fourier heat conduction model implies that both electrons and phonons are at 

the same temperature. This approximation needs to be replaced by a two-temperature model 

(TTM) (Tzou, 1997). The TTM allows electrons and phonons to exist at different temperatures, 

which is important since the electron-beam first transfers energy to electrons inside the work-

piece, and then causes elevation of the electron temperature. Consequently, electrons exist at a 

temperature much higher than that of phonons. Interactions between electrons and phonons sub-

sequently establish equilibrium at which both immerse at a single temperature (Hohlfeld et al., 

2000). Future studies are planned to develop and incorporate this model with the Monte Carlo 

Method in electron-beam transport to describe the heating process more efficiently. 
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Figure 5.1 The schematic of the proposed machining process using electron field 
emission from a nano-probe is given. 
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Figure 5.2 Thermal transport mechanisms during electron- and laser-beam heating 
of a workpiece are illustrated. The region heated by photons originating from the la-
ser-beam, and electrons originating from the electron-beam do not overlap each other. 
This prevents heating of the electron-beam by the laser. 
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Figure 5.3 Schematic for the nano-scale machining process considered. A work-
piece is positioned on top of a substrate. The substrate is assumed to be transparent to 
the incident laser. Two different evaporation methods are considered: (a) Electron-
beam impinges perpendicularly on the top of the workpiece, and (b) Electron-beam 
and laser impinge normally on the workpiece at opposite directions. 
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Figure 5.4 The grid setup used in modeling the electron-beam transport, the laser 
propagation, and the heat conduction inside the workpiece. The grid is sub-divided 
into two zones: 1) A and B with uniform spacings in both r- and z-directions, 2) C 
and D with non-uniform spacings where the grid is stretched along r- and z-directions 
with independent factors. A is where the MC simulation in the electron-beam trans-
port is performed while B extends A uniformly in both r- and z-directions in order to 
account for the laser heating. The boundary conditions are (a) adiabatic at r = 0 due to 
symmetry and (b) adiabatic at r = R1+ R2+ R3, z = 0 and z = L1+ L2+ L3 since it is as-
sumed that there are no convection and radiation losses.  
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Figure 5.5 Schematic for the radiative transfer inside the workpiece. The impinging 
laser has a radial dimension of Rlaser and a wavelength of 355 nm. Since the absorp-
tion of radiant energy in a metal is strong, a 1-D radiation model with exponential de-
caying of radiant energy in the direction of propagation is employed. The scattering 
of photons is neglected. The complex index of refraction of gold is at the wavelength 
of the laser. Rs→w is the reflectivity at the interface between gold and quartz when the 
incident direction is from quartz to gold. 
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Figure 5.6 The energy balance of a computational element inside the workpiece or 
the substrate (except at the interfaces between the two) is given. Note that the non-
uniform grid spacings are portrayed in the schematic. The energy balance for the uni-
form grid follows similarly except that all the ∆z’s (or ∆r’s) are constant. To be con-
sistent, all the heat is assumed to be transferred into the node of interest, (m,n). The 
heat generation term as a result of heating by external means (laser or electron beam) 
is denoted as stoE . The thermal properties (i.e., conductivity, k, heat capacity, C, and 
density, ρ) are assumed varying from one element to another due to the transient and 
spatial temperature variation.  
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Figure 5.7 The energy balance of a computational element of the workpiece at the 
interface between the workpiece and substrate is depicted. The subscript ‘w’ refers to 
that of the workpiece while ‘s’ refers to the substrate. There exists a contact resistance 
between two different types of materials, here it is denoted as cR′′ . 
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Figure 5.8 The energy balance of a computational element of the substrate at the in-
terface between the workpiece and substrate is depicted. 
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Figure 5.9 Normalized electron energy Ψ × 109 (nm-3) (see Eq. (11)) deposited in-
side gold film. Results are obtained from the Monte Carlo simulation in the electron-
beam transport. The incident beam has a Gaussian profile in the r-direction with (a) a 
1/e2 radius of Relectron = 100 nm and the initial kinetic energy of E0 = 4 keV, (b) Relectron 
= 50 nm and E0 = 4 keV, and (c) Relectron = 100 nm and E0 = 6 keV. 
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Figure 5.10 (a) Temperature distribution (K) within gold film at t = 0.9 ns. The elec-
tron-beam impinges on the top of workpiece (i.e., z = 0). A Gaussian beam profile is 
considered with a 1/e2 radius of Relectron = 100 nm and an initial kinetic energy of E0 = 
4 keV. The power of the beam is set to Ė = 0.5 W. The ∆t used in the simulation is 
0.005 ps. The thicknesses of the workpiece and the substrate, which are gold and 
quartz, are assumed to be 500 nm and 10 µm, respectively. In the figure there is a 
sharp bending of the isothermal lines at z = 500 nm, which is where the two different 
materials interface. Note that this is the snapshot of the temperature field right at the 
moment when the first computational element nearest to the origin overcomes the la-
tent heat of evaporation and starts to evaporate. The small inset in the top right-hand 
corner portrays an up-close temperature field for the area of (r × z) = (120 nm × 120 
nm) near the origin. 



 

156 

 

 

 

 

 

 
 

 

Figure 5.10 (b) Temperature distribution (K) within gold at t = 0.7 ns using the 
same conditions in (a) except that Relectron = 50 nm, E0 = 4 keV, and Ė = 0.305 W.  
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Figure 5.10 (c) Temperature distribution (K) within gold at t = 1.0 ns using the 
same conditions in (a) but with Relectron = 100 nm, E0 = 6 keV, and Ė = 0.615 W. 
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Figure 5.11 Temperature distribution (K) within gold film at t = 0.5 ns. Both the 
electron-beam and the laser are considered. The input parameters are the same as 
those in Figure 5.10(a). The power of the laser is 1.5 W and it covers a radius of Rlaser 
= 300 nm from the z-axis. With the assistance from the laser, the time required for the 
first element at the origin to evaporate is improved from t = 0.9 ns (as in Figure 
5.10(a)) to 0.5 ns. 
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Figure 5.12 (a) Temperature distribution (K) within gold at t = 1 ns. Both the elec-
tron-beam and the laser heating are considered. The thickness of the gold film is re-
duced to 200 nm and the power of the electron-beam is set to 0.25 W. The rest of the 
input parameters follow those given in Figure 5.11. (b) The time required for evapo-
ration as a function of the input power from the electron-beam for the 200-nm gold 
film  
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Figure 5.13 Transient temperatures at the origin around an infinitesimal area with ra-
dius of ∆r = 1.25 nm and depth of ∆z = 1.25 nm. The first case is set as the reference 
at which the inputs for the electron-beam are Relectron = 100 nm, E0 = 4 keV and Ė = 
0.5 W. The gold film thickness is assumed to be 500 nm. The second case has the 
same inputs as the reference except that the beam is focused narrower with Relectron = 
50 nm. The third case is the same as the first case but with laser heating. The power 
of the laser used is 1.5 W. The fourth case has a gold film thickness of 200 nm while 
the rest of the inputs are the same as the third case. The electron-beam of the final 
case has Relectron = 100 nm, E0 = 6 keV and Ė = 0.615 W with the laser turned off. 
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Figure 5.14 The 3-D schematic of material processing using an electron-beam and a 
laser. 
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Figure 5.15 A sample of the structure of the grid. These are not the actual grid spac-
ings, they have been adjusted for display purposes. 
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Figure 5.16 Laser propagation inside the transparent substrate and the workpiece. 
The heat generation inside gold is assumed to be one-dimensional since absorption of 
photons is strong compared to scattering. 
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Figure 5.17 The thermal properties of gold and quartz as a function of temperature 
used in the simulations: (a) Specific heat of gold, (b) Thermal conductivity of gold, 
(c) Hemispherical emissivity of gold, (d) Specific heat of quartz, and (e) Thermal 
conductivity of quartz. The red data points (or symbols with a circle and a cross in-
side) are the extrapolated values. 

 



 

165 

 

 

 

 
 

Figure 5.18 Normalized electron energy deposition distributions (in units of nm-3) 
predicted using Monte Carlo Method in the electron-beam transport. (a) The intended 
machining locations for the electron-beam as to create the UK pattern are shown. 
Note that there is only one electron-beam used for machining and it is moved from 
one location to another. The figure shows an imaginary heat generation profile as if 
all of the heat generation profiles generated by the electron-beam at various locations 
are combined together. (b) The internal electron energy deposition profile, including 
that by the laser, is depicted. (c) The dimensions of the structures are given. (d) The 
dimension of the laser heating is illustrated. 
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Figure 5.19 Temperature distribution (K) of the workpiece on top of the substrate at 
0.42 ns after heated by the laser and then the electron-beam. The electron-beam is 
turned on after the laser heats the workpiece for about 0.12 ns. (a) The 3-D tempera-
ture distribution is given. (b) The top view of the geometry is depicted. (c) The A-A 
cross-section is shown. (d) The B-B cross-section is shown. 
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Figure 5.20 Transient temperature (K) of (a) Points 1-5, and (b) Points 17-21. 
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Figure 5.21 Transient temperature (K) of (a) Point 1, (b) Point 10, and (c) Point 21, 
as a function of various time steps. Each time step is half of its previous one. The uni-
form spatial step used here is 5 nm (=∆x=∆y=∆z) with a 10% increment for non-
uniform spatial steps. 
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Figure 5.22 Transient temperature (K) of (a) Point 1, (b) Point 10, and (c) Point 21, 
for spatial step sizes of 5 nm and 2.5 nm. The time step used here for both cases is 
about 10 fs. 
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CHAPTER 6  
ELECTRON-BEAM INDUCED THERMAL CONDUCTION VIA DIS E-BEAM MONTE 

CARLO AND THE TWO-TEMPERATURE MODEL 
 

6 
6 

 In the previous chapter, the possibility of nano-machining using an e-beam based on the Fou-

rier law of heat conduction and the Monte Carlo simulation based on the Continuous Slow-Down 

Approach (CSDA) was explored. In this chapter, the heating phenomena, and hence nano-

machining, inside a conducting object due to the injection of external hot electrons from a source 

using the electron-phonon conduction equations will be explored. In Chapter 5, the phonon and 

electron temperatures were assumed to be the same. Now, they will be separated into two differ-

ent temperatures, one for electrons and the other for phonons. 

 

 The Monte Carlo simulation used in this chapter is called the Discrete Inelastic Scattering 

(DIS) MC simulation as opposed to the Continuous Slow-Down Approach (CSDA) as employed 

in the previous chapter. The DIS method is considered to be more accurate that the CSDA since 

it employs the experimentally determined optical data to describe the scattering phenomena. The 

main difference between the two methods lies within the inelastic scattering treatment in the 

simulation procedures. The inelastic scattering events refer to the energy loss mechanisms for the 

propagating particles. The CSDA assumes that particle energy is lost along the traveling path, as 

the name implies, while the DIS method distinctively describes the particle energy loss at a ran-

domly drawn inelastic scattering distance (i.e. following some cumulative probability distribu-

tion). The simulation procedures are rather similar to those given in the CSDA. For further in-

formation regarding this method, the reader can refer to Section 3.2 where the details were given.  

6.1 The e-Beam Monte Carlo Simulation and the Two-Temperature Model (TTM) 

 Electron-beam induced thermal conduction was previously analyzed by coupling the MCM 

simulation in electron-beam and the Fourier law of heat conduction. The Monte Carlo/Fourier 

law approach did not account for the electron transport within the workpiece. An electron-

phonon model that distinguishes between the electron and the phonon temperatures, as opposed 

to the single-temperature approach found in the traditional heat equation will now be considered. 

The MCM simulation provides the electron-energy deposition profile, which then serves as the 
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heat source term in the heat diffusion equation. The MCM simulation used is the Continuous 

Slow-Down Approach (CDSA). This treats the energy loss of those penetrating electrons (from 

the electron-beam) inside the workpiece as continuous phenomena along the line of propagation. 

In this work, the problem is approached with different computational models. An alternative 

MCM simulation, which included secondary electron generations, replaced the CDSA in simu-

lating the electron-beam propagation. As a result, the temperature distribution could be computed 

accordingly. Details on these models are discussed in the following sections. 

6.2 Problem Descriptions 

 A single electron-beam impinging perpendicularly on a 3-D rectangular geometry (workpiece) 

is considered. A simple schematic of the problem is shown in Figure 6.1(b). When the electron-

beam hits the workpiece, “hot” electrons spread inside the workpiece, as depicted by the dark 

region in the figure. When these electrons transfer their energy to the workpiece, a high tempera-

ture region is created (i.e. the red shaded region in the figure). The target workpiece is assumed 

to have perfect lattice structures and be free from any sort of physical defect. The electron-beam 

has a Gaussian spatial distribution when incident on the surface of the workpiece. The workpiece 

has finite dimensions in all three directions, which are defined in section 3.3. The entire system 

is assumed to be placed inside a vacuum chamber. 

 

 In traditional Fourier law, there is no temperature difference between electrons and phonons 

because there is no differentiation between the two energy carriers. When the energized elec-

trons, which originated from the electron-beam, penetrate the workpiece, kinetic energies from 

these electrons are assumed to be transfered to both electrons and phonons simultaneously. In 

this work, a distinct difference between the electron and the phonon temperatures is assumed. 

When electrons from the electron-beam enter the target, energies are first transferred between 

these electrons and electrons inside the workpiece, elevating the electron temperature. Subse-

quently, the phonon temperature also increases through the electron-phonon collisions. 

6.3 Grid Setup 

 To solve this problem numerically, the electron-energy deposition profile is first developed 
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using a Monte Carlo simulation. This profile is treated as the heat source in the electron-

temperature equation. This equation is then coupled with the phonon-temperature equation, and 

both are solved simultaneously in order to predict the temperature distributions. The workpiece is 

assumed to be gold, and the electron-beam bombarded the target from above. To account for 

electron-beam transport and heat conduction for the relatively large dimensions of the geometry, 

the grid was stretched away from the origin. The ‘origin’ is where the electron-beam first hits 

and is located at the top center of the geometry. Here, ‘relatively’ describes the comparison be-

tween the spatial energy spread of the incident electron-beam and the overall dimension of the 

geometry. The structure of the computational grid employed is depicted in Figure 5.15. The grid 

spacing in all directions is uniform at the center of the cross-sectional area, as well as near the 

top of the domain. The MCM simulation for the electron-beam transport was performed within 

the uniform grid. The uniform grid section was chosen in such a way that the electron-energy 

deposition profile was well-confined within it. 

6.4 Electron-Beam Monte Carlo Method Simulation 

 In previous publications (Wong et al., 2004; Wong et al., 2006), a MCM simulation was 

adapted from the CSDA. The basics of this method are similar to a typical Monte Carlo simula-

tion in which ensembles are launched and forced to propagate according to certain cumulative 

probability distributions derived from the governing scattering phenomena. In this method, the 

propagating ensembles of electrons are assumed to lose kinetic energy along the path of propaga-

tion. The amount of energy lost is proportional to the distance traveled, and this amount is 

equally divided along the path. In this chapter, the MCM simulation used is slightly different, 

and it is called the Discrete Inelastic Scattering (DIS) method. The major difference between this 

method and the other one is the treatment of the inelastic scattering events while the procedures 

of simulating elastic scattering remain unaltered. As the name implies, the DIS method treats the 

inelastic scatterings as point scattering events. An inelastic scattering mean free path is em-

ployed. Ding and Shimizu (1996) outlined this method in an orderly fashion, and their proce-

dures were followed.  

 

 The simulation procedures of the DIS method are similar to that of the CSDA or any typical 

MCM simulation in particle-beam transport (Wong and Mengüç, 2004). The simulation starts by 
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sampling the launching location of the ensemble. The ensemble is then launched with its known 

initial energy, and later scattered continuously by the workpiece until its energy becomes low. 

The scattering distance includes both mean free paths of the elastic and inelastic scattering 

events. Upon arriving at the distance, a random number is drawn to decide the type of scattering, 

elastic or inelastic. After that, the scattering direction is determined according to the type of scat-

tering event. The cumulative probability distribution function (CPDF) of the elastic scattering is 

derived from the Mott scattering cross-section, while that of the inelastic scattering requires the 

use of the dielectric theory. 

 

 Another method of treating the inelastic scatterings is through the use of the dielectric the-

ory/formulation. The dielectric formulation directly employs the energy loss function derived 

from the experimental optical data, and generates the differential inelastic scattering cross sec-

tion accordingly. Since the energy loss function is a measure of the responses of electrons and 

atoms in a medium as a whole (when exposed to an external disturbance), it is typically much 

more accurate when compared to the other independent formulations. This is especially true 

when the electron energy is low. In this way, the inner-shell ionizations and the outer-shell exci-

tations cannot be distinguished clearly. Nevertheless, it is a better approach in determining the 

inelastic scattering properties of electrons at low energy. This takes into consideration that the 

inelastic electron scatterings are not currently well-understood at the low electron-energy regime. 

Details on these procedures are quite elaborate, and will therefore not be further expressed here. 

Interested readers are referred to the paper by Ding and Shimizu (1996). 

 

 In the modified MCM simulations, the secondary electrons are accounted for. Whenever an 

inelastic scattering event occurs, a secondary electron will be “born” if the amount of energy 

transferred to the electron inside the material is greater than the Fermi energy level. The propaga-

tions of these secondary electrons are treated in the same way to account for those of the primary 

electrons (i.e. electrons originated from the electron-beam). The electrons undergo a series of 

elastic and inelastic scattering events, and additional secondary electrons emerge due to energy 

transfer from these electrons. This cascade effect can prolong the simulation due to these addi-

tional simulated electrons. All the electron ensembles are allowed to propagate until they either 

exit the medium or their energies fall below that of the surface barrier. Further details of these 
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equations and simulation procedures can be found elsewhere (Ding and Shimizu, 1996).   

 

 The electron-energy deposition distribution within the workpiece can be obtained when all of 

the propagations of electron ensembles are terminated and recorded, in their respective locations. 

In the simulation, the energy of the electron ensembles is recorded while maintaining energy 

conservation at all times. After the MCM simulation is completed, the electron-energy distribu-

tion within the material is determined in terms of unit energy. Each computational element is 

normalized by the total amount of electron-energy supplied from the electron-beam and its ele-

mental volume accordingly. Therefore, in order to use this distribution later in the two-

temperature model, it was necessary to provide the power of the electron-beam or the emission 

current of the beam. This is because the voltage (which determines the initial kinetic energy of 

the electrons emerging from the electron-beam) is fixed when the MCM simulation starts. 

6.5 Two-Temperature Model 

 Interactions between external heating sources, such as the photon- and electron-beams, and the 

target workpiece involve the heating of electron gas inside the target workpiece. This causes the 

electron temperature to elevate substantially when compared to the lattice temperature. One way 

to model this phenomenon is to separate the temperature into two distinct components, namely 

the electron and lattice temperatures. Such a model is usually referred to as the two-temperature 

model (TTM) (Tzou, 1997). The TTM can be expressed as follows: 

 ( ) e phe
e e e e T

e ph

T TTC k T C S
t τ −

−∂
=−∇⋅ ∇ − +

∂
, (6.1) 

 ph ph e
ph e
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T T T
C C

t τ −

∂ −
=−

∂
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where subscript ‘e’ and ‘ph’ denote that of electrons and phonons, respectively. The C’s are the 

heat capacities of the energy carriers, and k is the thermal conductivity. The electron-phonon re-

laxation time is denoted as τe-ph . The first equation in the model is the electron-energy conserva-

tion equation, while the second is the phonon-energy equation. Note that the external heat gen-

eration term, denoted as ST, is included in the first equation. In this work, this heat generation 

term is the electron-energy deposition distribution obtained from the Monte Carlo simulation for 



 

175 

the electron-beam. The TTM is solved numerically using a finite-difference method where first-

order time and second-order space discretization schemes are used. The target material is 1 µm 

thick and 8.5 µm wide in both lateral directions. The properties used in the simulations are sum-

marized in Table 7.1. 

 

 In this work, the workpiece is assumed to be gold under vacuum condition (10-8 torr). There-

fore, the temperature range involved in these simulations is between room temperature and the 

sublimation temperature of the material. The melting temperature for gold is around 1336 K (In-

cropera and Dewitt, 1996), however, the sublimation temperature for gold is around 1080 K for a 

vacuum pressure of 10-8 torr (Honig, 1962). As a result, gold is likely to sublimate before melt-

ing is actually achieved. To implement this scenario in the TTM, the code is allowed to simulate 

the temperature field, starting from room temperature and elevating it to a temperature just below 

sublimation temperature. Once a computational element has reached the sublimation tempera-

ture, its phonon temperature is held fixed while the additional energy, supplied from the electron-

beam, is used to overcome the latent heat of sublimation. The electron-temperature equation is 

solved with the fixed phonon temperature at that given time step. After the solution is obtained, 

the amount of additional energy conducted from electrons to phonons is calculated by: 

 Energy stored as latent heat ph e
e

e ph

T T
C dt

τ −

⎛ ⎞− ⎟⎜ ⎟⎜=− ⎟⎜ ⎟⎟⎜⎝ ⎠
, (6.3) 

which is in units of energy per unit volume. This step is repeated until the element has enough 

latent heat of sublimation at which material removal starts occurring. The computer code is 

stopped whenever this happens, as the main goal is to find the power required to initiate material 

removal. 

6.6 Results and Discussions 

6.6.1 Electron-Energy Deposition Distributions 

 In numerical simulations, the electron-energy deposition profiles for various cases are first 

computed, as discussed in Section 6.4. These results are displayed in Figure 6.2 and Figure 6.3. 

A Gaussian-shaped incident beam profile is used for incident electrons with 1/e2 radius at Rbeam, 
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which varies from case to case. For the case shown in Figure 6.2, the initial kinetic energy of the 

electron-beam is 500 eV and Rbeam is 500 nm. The unit given in the figure is normalized with re-

spect to the total electron-energy supplied from the electron-beam and the corresponding volume 

of the infinitesimal element. A series of numerical experiments is carried out to find out that a 

20% grid stretching beyond the uniform grid is acceptable for the simulations. While it is possi-

ble to solve the problem in the cylindrical coordinate system, which would reduce the computa-

tion to two dimensions (the electron-beam impinges normally on the workpiece), it was decided 

to solve the problem in three dimensions, so that an oblique and/or moving incident electron-

beam could be easily implemented without imposing numerous modifications to future computa-

tional codes. 

 

 In a typical electron-energy deposition distribution, the deposition amount is usually at a 

maximum below the workpiece surface. This is evident in Figure 6.2 and Figure 6.3. In Figure 

6.3, the distributions are shown in the x-z plane for the ease of visualization, although they are 

actually in three dimensions. Two important parameters that can be adjusted in the code are the 

initial incident kinetic energy, E0, and the 1/e2 Gaussian radius, Rbeam, of the electron-beam. 

Figure 6.3(a) shows the case where E0 = 500 eV and Rbeam = 250 nm and the deposition amounts 

are in the order of 10-5 per unit nm3. When the radius of the beam is increased by two times (i.e. 

Rbeam = 250 nm → 500 nm), the deposition amounts drop to the order of 10-7 per unit nm3, as 

shown in Figure 6.3(b). This is as expected since electrons are more widely spread when the ra-

dius of the beam is broadening. This results in a wider spatial energy spread and lower deposi-

tion amounts. In Figure 6.3(c) and (d), the Rbeam is fixed while E0 varies. The deposition profiles 

start to shrink in the z-direction when the energy of the beam decreases. This is because the elec-

tron penetration depth becomes shallower when the initial kinetic energy is lower. However, the 

maximum deposition amount increases as the electron-beam energy is lowered. 

6.6.2 Thermal Heating and Sublimation Using an Electron-Beam 

 Using the electron-energy deposition distributions obtained in the previous section, the heating 

phenomena subjected to the electron-beam was simulated. In order to obtain accurate tempera-

ture simulations, various numerical experiments were carried out with the code. First, the time 

step was varied while holding other parameters fixed. It was found that a time step of 10-12 sec-
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onds is sufficient to obtain a converged temperature field. Similarly, the same investigations 

were done for the spatial steps, and dx, dy, and dz are determined to be 40 nm, 40 nm, and 0.25 

nm, respectively. As mentioned before in the discussion, the reasonable grid stretching in the 

simulation is 20%. 

 

 Figure 6.4 shows the typical temperature distribution of the workpiece as heated by the elec-

tron-beam. The figure depicts the instant snapshot of the electron-temperature field at a total 

elapsed time of 3 ns. The power of the electron-beam used in this case is 10 mA while the elec-

tron-energy deposition profile is given in Figure 6.3(b). The phonon-temperature is exactly the 

same as the electron-temperature plot. These temperatures are similar because both the electron-

temperature and the phonon-temperature converged into a single temperature after 3 ns of heat-

ing. The time that these two temperatures are the same, is the instance at which material removal 

begins to occur. In other words, the target workpiece, at this time, has reached the sublimation 

temperature and overcome the latent heat of sublimation locally. Therefore, for an electron-beam 

with an initial kinetic energy of 500 eV, a power of 10 mA, and a Gaussian beam radius of 500 

nm, the sublimation of a gold workpiece (with a dimension of 1 µm × 8 µm × 8 µm) is possible 

at 3 ns under vacuum pressure of 10-8 torr. This is a specific situation, and occurs only when all  

the above criteria are met. These numbers are determined from the various runs of numerical ex-

periments, and they fall within the computational time limits. For example, 1 µW as the power of 

the electron-beam could have been used. This delays sublimation until a time later than 3 ns. 

However, this may require weeks of computational time on a single PC computer (a Pentium 4 3 

GHz with 2GB of RAM). Expanding the code to parallel computing can be carried out in the fu-

ture. Current settings will permit the study of the basic behavior of heating phenomena due to an 

electron-beam, which lies within the goal of the current work. 

 

 Most of the electron-temperature and the phonon-temperature plots are similar in these figures, 

so plotting the 3-D contour of the temperature fields is not beneficial in understanding the heat-

ing behavior. Instead, the maximum transient electron-temperature and phonon-temperature were 

recorded and compared to various cases as the simulation progressed. These results are depicted 

in Figure 6.5. The computational parameters used in these results are the same as those discussed 

for Figure 6.4 (unless mentioned otherwise in the figure caption). A typical transient electron-
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temperature and phonon-temperature plot can be seen in Figure 6.5. The main thing to consider 

is that both electrons and phonons start to exhibit the same temperature profile when the time is 

beyond ~10 ps. This is expected because the electron-phonon relaxation time for gold is on the 

order of 0.1 ps or smaller, therefore electrons and phonons tend to reach equilibrium at a time 

much larger than that. Another phenomena observed from the computations is that when the 

temperature reaches the sublimation temperature (i.e. 1080 K), the phonon-temperature stays 

constant (while the electron-temperature increases) until the latent heat of sublimation is over-

come. All the profiles in the figure demonstrate this type of behavior due to the implementation 

of the code, although some profiles are difficult to visualize because of the scales of the axes. 

 

 By holding other computational parameters constant and varying the thickness of the work-

piece, one can observe how the workpiece thickness effects transient temperature behavior 

(Figure 6.5(a)). All transient electron and phonon temperature profiles for various thicknesses are 

identical until about 0.1 ns, at which point they start to deviate from one another. This deviation 

time implies that the boundary effect is not evident before 0.1 ns, when the heat waves are still 

emerging and propagating towards the boundary. Intuitively, it is expected that the material will 

sublimate faster for a thinner workpiece when compared to a thicker one. This can be seen in 

Figure 6.5(a) where the sublimation time increases as the thickness of the workpiece is increased 

from 500 nm to 2 µm.  

 

 The effect of the initial kinetic energy of the electron-beam on the transient behavior of the 

temperature is also examined. Three different choices of initial kinetic energy of the electron-

beam are considered: 350 eV, 420 eV, and 500 eV. These values do not significantly change the 

transient temperature profiles. The only effect the initial kinetic energy has on the transient be-

havior is that one can delay the sublimation in the workpiece by lowering the initial energy of the 

beam, as shown in Figure 6.5(b). Similarly, one can produce the same effect of delaying the sub-

limation by lowering the power of the electron-beam, which is evident in Figure 6.5(c). 

6.6.3 Comments 

 In this section, the details of heat transfer for the nano-scale machining due to field emission of 

electrons from a nano-scale probe have been simulated. The propagation of electrons in the 
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workpiece and their interaction with the lattice are considered separately by solving a MCM code 

for the electron-beam (via the Discrete Inelastic Scattering approach) and the two-temperature 

model for the electron-phonon equation. It was observed that a 500-eV electron-beam with a 1/e2 

Gaussian radius of 500 nm and a power of 10 mA is capable of sublimating gold under a vacuum 

pressure of 10-8 torr, where the gold workpiece dimensions are 1 µm × 8 µm × 8 µm. A brief pa-

rametric study was also outlined to understand the effects of these parameters on the transient 

behavior of the maximum temperature in the workpiece. It is important to note that the dimen-

sions of the workpiece were chosen to accommodate the computational resources. These num-

bers can be increased for larger workpieces, although increased computational resources will be 

required. 

  

 The numerical experiments revealed that for time-durations longer than approximately 50 ps, 

temperatures between electrons and phonons are always in equilibrium. This implies that the 

Fourier law of heat conduction is acceptable for machining times beyond this range.  
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Table 6.1  Computational parameters used in the simulation. 

  

Property References 
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Figure 6.1 (a) The close-up schematic of the proposed machining process using 
electron field emission from a nano-probe. Note that the schematic is not drawn to 
scale. The actual size of the carbon nanotube (CNT) is about 50 nm in diameter while 
the optical fiber may have a diameter of more than one hundred micron meters. The 
fiber is considered to be infinite compared to the nanotube. (b) The simple schematic 
of the case study of a workpiece as it is exposed to the electron-beam heating. 
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Figure 6.2 Electron-energy deposition distribution for Rbeam = 500 nm and E0 = 500 
eV is shown. The numbers given in the figure are in terms of normalized quantitie, 
per unit nm3. 
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Figure 6.3 Electron-energy deposition distributions for four different cases are de-
picted: (a) Rbeam = 250 nm and E0 = 500 eV, (b) Rbeam = 500 nm and E0 = 500 eV, (c) 
Rbeam = 500 nm and E0 = 420 eV, and (d) Rbeam = 500 nm and E0 = 350 eV. The num-
bers given in the figure are in terms of normalized quantitie, per unit nm3. 
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Figure 6.4 The electron-temperature distribution of the target workpiece in unit of 
Kelvin for Rbeam = 500 nm and E0 = 500 eV is shown. The power of the electron-
beam used is 10 mA, and the temperature profile shown is the snapshot at t = 3 ns. 
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Figure 6.5 The maximum transient electron temperature and phonon temperature 
for various cases are given. 
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CHAPTER 7  
ELECTRON-PHONON HYDRODYNAMICAL MODEL AND MONTE CARLO 

SIMULATION IN ELECTRONIC THERMAL CONDUCTION – FOUNDATIONS FOR 
FUTURE WORK 

 

7 
7 

 Another transport mechanism that this dissertation is interested in is the electron-phonon 

transport. The electron-phonon transport at the micro/nano-scale is very different from the tradi-

tional macroscopic view. One difference is that local thermal equilibrium in terms of electrons 

and phonons does not exist when it comes to nano-scale transport where electron transport and 

phonon heat conduction can no longer be described using the Fourier law. Another important 

observation for transport at nano-scale is that definitions for all those bulk properties of the 

transport become obsolete since they are established based on the existence of temperature, 

which may not exist at the nano-scale. 

 

 The properties that are ultimately required to facilitate modeling at nano-scale are the various 

rates of scattering or the probabilities of different transition processes for quantum heat carriers. 

Although one may be able to define “effective transport properties” to compare with the bulk 

ones, these “properties” are not required in the modeling itself. This is different from the macro-

scale modeling where they play a major role in predicting the physics. Certainly, in some cir-

cumstances, it is highly probable that one can establish curve-fitting models which use these “ef-

fective properties” to predict the overall behavior of the system, however, specific details of the 

energy carriers are often needed to explain the physics at nano-scale. That is where the “effec-

tive” quantities will fail. 

 

 In this chapter, we will discuss modeling electron-phonon transport phenomena at micro/nano-

regimen will be discussed. This will include the electron-phonon hydrodynamic equations that 

are used to describe the electrical and thermal behaviors of the metal semiconductor field effect 

transistors (MESFETs), and the construction of a Monte Carlo simulation to describe the elec-

tronic thermal conduction and to predict the so-called pseudo-temperature profiles of electrons at 

nano-scale. 
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7.1 Electrical and Thermal Modeling of MESFETs 

 Nano-machining involves propagations of electrons inside a target material, for instance, a 

semiconductor or a metal. These electrons possess huge momentums and energies initially when 

emitted from the electron gun. The collisions of these incoming energetic electrons with elec-

trons circulating atomic nuclei (i.e. outer-shell electrons and conduction electrons) and lattices 

(i.e. phonons) require consideration of momentum and energy transfers between these quantum 

particles. 

 

 Modeling such a problem requires a separation of the electron temperature from the phonon 

temperature since the electron temperature will be thrown far out of equilibrium. This happens as 

the incoming electrons from an electron source strike the workpiece transferring energy to elec-

trons inside the workpiece. Although the TTM and the DPLM are capable of differentiating the 

electron temperature from the phonon temperature, the momentums of electrons, and the electri-

cal behavior of the material are simply neglected. In addition, electrons are negatively charged, 

therefore the incoming electrons (i.e. originated from the electron gun) induce an electric field 

inside the material due to locally unbalanced positive and negative charges. This not only affects 

the electron propagations from within, but it also alters the energy transfers between electrons 

and phonons. A suitable candidate for modeling this problem is the HDM where all the thermal 

and electrical characteristics of the material are accounted for in the governing equations. 

 

 To solve this problem, a numerical HDM is required. The HDM frequently used for modeling 

semiconductor devices, is first developed numerically to ensure that the simulation produces the 

correct trend as given in the literature. Next, the developed numerical model will be modified to 

include momentum transfers between incident electrons from an electron gun and those inside 

the material. 

7.1.1 The Physical Domain 

 The physical domain under consideration in modeling a MESFET is given in Figure 7.1. The 

MESFET under consideration in this case consists of two layers. They are the active layer and 

the semi-insulating layer. The former is deposited on top of the latter. The active layer has an 

electron concentration in the order of 1017 cm−3. The semi-insulating layer is three orders less in 



 

188 

magnitude than that of the active layer. There are three terminals on top of the active layer. They 

are the source, the drain, and the gate terminals. Each terminal is 500 nm wide. The active layer 

has a thickness of 150 nm while the semi-insulating layer is 250 nm thick. It is assumed that the 

MESFET is made of Gallium Arsenide (GaAs). 

7.1.2 The Governing Equations 

 On way to describe the electrical behavior of a MESFET is by using the hydrodynamic equa-

tions, which are derived in Section 2.7.3. The details will be repeated here. For the electron flow, 

these equations consist of the Poisson equation, the electron continuity (or the charge conserva-

tion), the electron momentum conservation, and the electron energy conservation: 
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 The phonon thermal conduction in the MESFET involves the optical phonons and the propaga-

tion of the acoustic phonons. The governing equations for these two types of phonons are given 

as (see Section 2.7.3): 

(LO-Phonon Energy) 
( )2 3

2 2
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n k T Tn m vT T T
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−∂ −
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∂
, (7.5) 

(A-Phonon Energy) ( )
( ) ( )2 31
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e B A e LO A LOe e d ,eA

r A r A
A A e A A e A A LO A

n k T T C T Tn m vT k T
t C C C Cτ τ τ− − −

− −∂
= ∇ ⋅ ∇ + − −

∂
. (7.6) 

Details of the boundary conditions used for these equations are given in Figure 7.1. 

7.1.3 Electrical and Thermal Properties 

 The properties that one needs in order to solve the hydrodynamic equations are the various re-
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laxation times and the thermal conductivities for electrons and phonons. The relaxation times are 

typically derived from the Monte Carlo simulations. These values are obtained from several ref-

erences in the literature. The thermal conductivity of electrons can be expressed as (Majumdar et 

al., 1995): 

 ( )
2

2 5 e B m e
e

e

n k Tk r .
m

τ
∗= + , (7.7) 

where r is a parameter which varies depending on the material of interest. Note that the thermal 

conductivity of electrons is a function of the electron density, the electron momentum relaxation 

rate, and the temperature. Since all these quantities vary locally, the electronic thermal conduc-

tivity is a local property as well. 

 

 The electron momentum relaxation rate, τm, for GaAs as a function of the electron energy, we, 

can be determined using the following expression (Tomizawa, 1993): 

 ( )
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( )( )
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where 
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Here, NI is the impurity concentration in the layer in units of cm-3, and the values for C1, D1, wc 

and w0 are given as 2.9×1012, 1.7×1014, 0.3eV, and 0.039eV, respectively. The electron energy 

can be determined from its thermal and velocity components via the following equation: 

 23 1
2 2e B e e ew k T m v= + . (7.10) 

Note that the electron momentum relaxation time given above is for constant lattice temperature 

of 300K. For non-constant lattice temperature, it is assumed that the relaxation rate is inversely 

proportional to the lattice temperature such that: 
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Tomizawa (1993) also provides a similar expression for the electron-phonon relaxation rate 

given as: 
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where F1 and G1 are given as 0.4×1012 and 2.8×1012, respectively. 

 

 Carnez et al. (1980) provides some data regarding the electron momentum relaxation time and 

the electron-phonon relaxation time. However, it is not as explicit as those expressed by Tomi-

zawa (1993). Accordingly, both relaxation times are computed using the following formula: 
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Three curves/figures are provided by the authors, they are we versus Ess, vss versus Ess, and m* 

versus Ess. In order to determine the relaxation times, one first needs to know the electron en-

ergy, we. Using the figure plotted as we versus Ess, the quantity Ess can be determined. With Ess 

known, vss and m* can be obtained from the other two curves. Unfortunately, the source data for 

all those curves could not be obtained, therefore the figures were used as is and interpolated as 

needed to obtain the necessary data points, in order to determine the relaxation times. The results 

for the relaxation times according to the two sources are plotted in Figure 7.2 and Figure 7.3. 

 

 The expressions for the heat capacities of optical and acoustic phonons that were used in this 

work are given as (Majumdar et al., 1995): 
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where the values for θLO and θA are assumed to be 429K and 344K, respectively. 

7.1.4 Results and Discussions 

 In order to numerically predict the electrical and thermal behavior of MESFET, Eqs. (7.1)-

(7.6) need to be solved simultaneously, with all the properties listed above. For the sake of sim-
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plicity, it is assumed that electrons are first transferring energy to optical (LO) phonons, and the 

acoustic (A) phonons subsequently gain energy through the hot optical phonons. Hence, the elec-

tron-phonon relaxation time (i.e. τe-ph) given above is assumed to be the electron-optical phonon 

relaxation time (i.e. τe-LO). According to the governing equations, there are four parameters in-

volving the relaxation time. They are τm, τe-LO, τe-A, and τA-LO, which are the momentum, the elec-

tron-optical phonon, the electron-acoustic phonon, and the acoustic-optical phonon relaxation 

times, respectively. In deriving the governing equations, all these parameters are included for the 

sake of completeness. However, τe-A will be omitted in the following simulation since there is no 

information regarding the magnitude of this relaxation time. For τA-LO, 8 ps were chosen (Fushi-

nobu et al., 1995). The discretizations of the governing equations are given in Appendix D. Sys-

tems of equations are obtained and solved accordingly using the point successive-overrelaxation 

(SOR) numerical scheme. Solving equations of this kind may not be efficient using the SOR 

method, however at this point, the interest is in obtaining the solution. Increasing the speed of the 

convergence of the computational code can be done in future works.  

 

 In order to verify the validity of the numerical solution, the drain currents are computed for 

various drain voltages and gate voltages. The source voltage in this case is always fixed at 0 V in 

the simulation. For all the cases, the simulation is run until a steady-state condition is reached. 

The steady-state condition occurs when the source current and the drain current reach the same 

magnitude. Figure 7.4 depicts the drain current as a function of the drain voltage and the gate 

voltage. The lattice temperature (i.e. both the optical phonons and the acoutics phonons) is set to 

room temperature throughout the simulation and the entire MESFET. The reason for employing 

such an assumption is that the intention is to generate results that are comparable to the ones 

given by Yoganathan and Banerjee (1992) in order to verify simulation. Since it was impossible 

to obtain any publications that indicated standard experimental and numerical results, this verifi-

cation offers some degree of correctness in the simulation. The results given in the figure closely 

represent those obtained by Yoganathan and Banerjee (1992) in their publication. Sample figures 

for the electron temperature, the electron density, the potential, the electric field, the Joule heat-

ing rate, the current density, the optical phonon temperature, and the acoustic phonon tempera-

ture of the case where the drain voltage and the gate voltage are set to 3V and 0V, respectively, 

are given from Figure 7.5 to Figure 7.8. These are typical simulation results for a MESFET oper-
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ating at a given set of conditions. 

7.2 Electronic Thermal Conduction – A Monte Carlo Approach 

 Electron transport inside a semiconductor is a well-established research area due to the rapid 

development of electronic chips at the micro- or nano-scale size. In addition, most electron 

transports in these applications are studied at relatively low temperatures (i.e., a few Kelvin to a 

few hundred Kelvin). On the contrary, electron transport in noble metals at the nano-scale level 

is still under heavy investigation owing to the peculiar overlapping of the electronic band struc-

tures (see Figure 7.9). The overlapping behaviors of this kind present a major challenge in de-

termining the rates of scattering events for electrons, as well as for phonons. This is true even at 

low temperature applications where the Umklapp scattering processes are frozen out (Ashroft 

and Mermin, 1976; Ziman, 1960). In this section, the electron transport in thin gold films is in-

vestigated using a Monte Carlo Method (MCM) to better understand these mechanisms at nano-

scale level. The MC simulation procedures used in this case are discussed in Section 3.3, which 

will not be repeated here. The properties used in the simulation will be given. 

  

     In the following simulations, the parabolic band structure of gold is taken into consideration 

as well as the electron-electron scattering rates and the electron-phonon scattering rates. The 

scattering nature of electrons in gold is based on the selection rules presented according to the 

time-dependent perturbation theory. Using the MC simulations the electron transport phenomena 

is investigated inside gold at the nano-scale. The effectiveness of electron propagation inside 

gold are then evaluated based on the scattering rates. 

7.2.1 Electron Band Structure 

 The electronic band structure of electron in any material is obtained through solving the 

Schrödinger equation. The electronic band structures of transitional elements such as silver, cop-

per, and gold are generally complicated owing to the peculiar overlapping and the anisotropic 

characteristics of the d-bands. Incorporating these band structures, such as that of gold given in 

Figure 7.9, into the Monte Carlo (MC) simulation requires extensive computing resources and 

power. The numerical procedures involved are not difficult but they are tedious. In this work, the 

goal is to establish the Monte Carlo procedures for simulating the electron transport in a medium 
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or a solid with temperature variation as opposed to the charge transport in a constant temperature 

field. The approximations of the properties of solid are used. Accurate derivations of the medium 

properties can be carried out later to improve the accuracy of the MC simulation using the band 

structure given in Figure 7.9. In this work, a parabolic band structure with an effective electron 

mass is assumed and the band is supposed to be independent of the wave number, but not of the 

electron wave vector. It is given as: 

 ( )
2 2

2
kE k

m∗= , (7.17) 

where ħ is the Planck constant, k is the wave number, and m∗ is the effective mass of electron. In 

this case, m∗ is the effective mass of electron in gold which is 0.6515 mo and mo is the electron 

rest mass (i.e., 9.1095×10-31 kg). 

 

 In the simulation, electrons with energies larger than the Fermi energy, EF are allowed to 

propagate, otherwise, electrons with smaller energies than EF are assumed to be bonding strongly 

with atoms and not moving. 

7.2.2 Electron-Electron Scattering 

 There are two categories of electron-electron (e-e) scatterings: conduction14 electron-inner 

shell15 electron and conduction electron-conduction electron. It is a well-known fact that cou-

lomb forces of electrons pose long range effects and an electron is capable of influencing other 

electrons far from its current location. Thus, deriving the electron-electron scattering rate is un-

duly complicated and the subject is still under intensive investigations and studies. In this work, 

only the electron-electron (e-e) scattering among the conduction electrons as being the short 

range interaction is considered. Accordingly, such rate of scattering is expressed as (Ziman, 

1960):  

 ( ) ( ) ( ) ( )
1 1

2

1 1 1 1 1 1
2   e e k k k kP k ,k ;k ,k M k ,k ;k ,k k k k k g E E E Eπ

δ δ− ′ ′
′ ′ ′ ′ ′ ′= − + − + − + − ,(7.18) 

where M is the transition matrix element. To compute the e-e scattering as a function of the en-

                                                 
14 Note that conduction electrons or outer-shell electrons are electrons with energies larger than the Fermi energy, 
and behave as free electron-like. These are the electrons that are being simulated using the Monte Carlo approach.  
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ergy of a propagating electron, the following integrations are performed: 

 ( ) ( ) ( )( )
1 11 1 1 11 1e e e e k k kP k P k ,k ;k ,k f f f dk dk dk− − ′ ′

′ ′ ′ ′= − −∫∫∫ . (7.19) 

The integrations are performed using the assumption that the spherical parabolic electronic band 

structure prevails and refers to the analyses given by Ziman (1960). Thus, the scattering rate for 

the e-e N-processes is expressed as:  
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Similarly, the U-processes for e-e scattering is derived as: 
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For N-processes, Ξ2 ≈ 1 while Ξ2 ≈ 0.01 for U-processes. In the process of deriving the above 

expression, it is assumed that the scattering is absolutely elastic. This may not be entirely justi-

fied from the physical point of view for the electron-electron interactions. However, it shall be 

complied with, since deriving more realistic e-e scattering is a challenging task and requires 

more elaborated work.  

 

 The e-e scattering rate as a function of temperature for gold is depicted in Figure 7.10. The e-e 

scattering rates at different temperatures converge into a single curve for electron energy exceeds 

6.0 eV, as  the integral given in Eq. (7.21) converges to a single value regardless of the magni-

tude of Ek. Compared to the e-ph scattering rate near the Fermi energy, the e-e scattering rate is 

several orders smaller in magnitude, showing that the e-e interaction is not of importance for 

electron transport near Fermi level. 

                                                                                                                                                             
15 Inner-shell electrons are electrons packed closely with nuclei, combinations which are referred to as atoms and 
they are usually not able to propagate freely. 
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 In this work, it is assumed that there are no external sources being used, (i.e. short-pulsed laser 

or electron gun) that are capable of causing an energy increase of several electron-volts to elec-

trons. The simulation is performed for electrons with energy in the order of kBT above the Fermi 

level following the Fermi-Dirac statistics. 

7.2.3 Electron-Phonon Scattering 

 The electron-phonon (e-ph) interaction involves the collision of a propagating electron with an 

atom which leads to the creation or destruction of a phonon. This is where the electron can gain 

or lose energy. Accurate calculation of the electron-phonon scattering rate requires the actual 

electronic band structure. These procedures involved are usually quite tedious due to encounter-

ing complicated integrations, and the numeric evaluations of the scattering rates. With the as-

sumption of an isotropic, parabolic band structure, obtaining the electron-phonon scattering rate 

is relatively simple, as given by Ziman (1960). 

 

 Generally, the probability of electron-phonon scattering per unit time can be obtained from the 

time-dependent perturbation theory as (Ziman, 1960): 

 ( ) ( ) ( ) ( )
22    e ph q ,pk kP k ,k ;q, p M k ,k E E k k q gπ

δ ω δ− ′
′ ′ ′= − ± − ± − .  (7.24) 

Here, M is the scattering matrix element. The Bardeen’s self-consistent form for the scattering 

matrix element is emplyoed. Note that there are two delta functions appearing in Eq. (7.24). The 

first implies the energy conservation of the electron-phonon collision, while the second indicates 

the momentum conservation of the process. In the MC simulation, the scattering rate as a func-

tion of incident electron wave vector k  is required. This can be achieved by performing two in-

tegrations over the scattered electron wave vector k ′ and the entire phonon wave vector q  and 

then summing up the results for all three phonon polarization branches (i.e., two transverse and 

one longitudinal polarizations). The electron-phonon scattering rate becomes: 

 ( ) ( )( )1e ph e ph k
p k ,q

P k P k ,k ;q, p f dk dq− − ′
′

′ ′= −∑∫∫ . (7.25) 

Following the details given by Ziman and employing the isotropic, parabolic band structure as-

sumption, the expression for the scattering rate accounting for the electron-phonon Normal (N) 
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scatterings can be derived as: 
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while for the Umklapp (U) processes, it is determined as: 
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where ( )qP K  is the overlap factor and K = | k ′− k |. It is assumed that electrons are scattered 

only by phonons in the longitudinal branch and the scattering is elastic (i.e. | k ′ | = | k |).  This is 

fairly justified since the energy of a phonon in a metal is generally small compared to that of an 

electron. The above two expressions are evaluated numerically by using Bardeen’s form of over-

lap factor and Debye’s model for the phonon dispersion relation (i.e. ωq = vgq where vg is the 

group velocity of phonon) with a cutoff wave vector Q. The longitudinal phonon group velocity 

can be determined by finding the slope of the dispersion curve for the longitudinal branch given 

in the paper published by Singh and Prakash (1973). 

 

 The electron-phonon scattering rate for gold is depicted in Figure 7.11. Generally, the scatter-

ing rate increases as electron energy increases. Although it is not shown here, the scattering rate 

for N-processes increases rapidly for electron energy near the Fermi level, and then decreases 

gradually as energy increases. The further increases in all the curves beyond 6 eV (as portrayed 

by Figure 7.11) is because the possibility of U-processes occurring increases when the energy of 

electron becomes high. Details about N- and U- processes can be found elsewhere (Ziman, 1960; 

Ziman, 1964). 

7.2.4 Monte Carlo Simulation Results 

 Using the simulations, the range of applicability of the Fourier law for the steady-state thermal 

transport at nano-scale in thin metallic films can be determined. The temperature profiles for 

various thicknesses of gold films subject to isothermal boundary conditions are obtained using 

the simulation. The number of energy intervals used in the simulations is 20 and each has 50 

electron ensembles. Each computational element possesses a total of 1000 ensembles initially. 

The geometry is always set to be L × L × L where L is the thickness of the film that is divided 
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into 1000 computational cubic elements. As a result, the total number of ensembles in the entire 

domain adds up to 1,000,000. In the simulations, the time interval is chosen in a way that elec-

trons do not propagate through two computational elements at each time step. Several other runs 

with different computational parameters were performed and the results indicated that the above 

chosen values are sufficient enough to resolve reasonable temperature profiles where fluctuations 

in temperature are within 10 degrees or less. The computational time required for each simula-

tion was not documented. It was observed that a simulation requires several clock hours to reach 

a steady-state condition. In the following results, each temperature profile is constructed by cal-

culating the mean values of temperature at various film locations after 5 independent MC simula-

tions with standard deviations depicted as error bars in the figures.  

 

 The one-dimensional temperature profiles for gold thicknesses of 1 m and 100 nm are depicted 

in Figure 7.12. The straight lines in the figure illustrate the results that one would obtain if the 

Fourier law is used. The prediction of the linear temperature profile by the model for the thicker 

gold film shows the correct physical background of the model at the diffusion limit where the 

electron scattering probability is always 100 percent for any ensemble at any time. According to 

Figure 7.12, the heat transport is still diffusive in a 100-nm gold film, meaning that the Fourier 

law is still valid at such scale. This is not surprising given that the total electron collision rate is 

about 0.2 fs-1 near 300-400 K. This implies that the mean free time of electrons is approximately 

5 fs. On the average, electrons are capable of traveling at about 1 nm/fs. Therefore, the mean free 

path of electrons is roughly 5 nm. As expected, a film thickness of 100 nm should demonstrate 

diffusion-like heat transport. 

 

 The temperature profiles for film thicknesses of 1 nm and 10 nm are shown in Figure 7.13, 

where the semi-ballistic nature of the transport is evident. At such thicknesses, the temperature 

profiles no longer follow the Fourier law. Note that the temperatures near the upper edge start to 

decrease when the gold thickness decreases, while at the other end the temperature increases 

with decreasing film thickness. This suggests that the diffusive behavior of the film starts fading 

when the mean free path of electrons becomes comparable to the medium thickness, and where 

the ballistic nature of the electrons starts surfacing. Therefore, electrons are capable of transfer-

ring energy ballistically from one end to the other, causing the temperature near the upper 
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boundary to drop and the temperature near the lower surface to increase. 

 

 It can be said that at 1-10 nm regime the transport is semi-ballistic because some16 of the elec-

trons inside the gold with higher energy levels still “see” the medium as diffusive. In other 

words, their rate of collision is high. This is evident from the temperature profiles near the upper 

and lower edges. If the transport were completely ballistic, the temperature profile should be flat 

as that reported for phonons by Mazumder and Majumdar (2001). 

7.2.5 Comments 

 The Boltzmann transport equation is solved using a Monte Carlo approach to investigate the 

electronic thermal conduction in thin gold-films. Both the electron-phonon and electron-electron 

scattering rates are included in the simulations. These results show that a thin gold film of a 

thickness of 100 nm exhibits a diffusion-like heat transport due to the small mean free path (i.e. 

~ 5 nm) of electrons. The semi-ballistic nature of the electronic thermal transport is also captured 

using this statistical computational scheme. The results extended to 10 nm show that Fourier law 

loses its accuracy at such small scale.  

   

 

                                                 
16 Due to the high temperature at the upper boundary (i.e. 1300 K) and the Fermi-Dirac statistics at this temperature, 
high-energy electrons are still part of the transport mechanism. 
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Figure 7.1 (a) A two-dimensional view of a MESFET with an active layer deposited 
on top of a semi-insulating layer, and (b) the corresponding boundary conditions 
given in the figure. 
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Figure 7.2 The electron momentum relaxation rates as a function of electron energy 
for various electron concentrations are depicted. The relaxation rates are derived from 
the Monte Carlo simulation of the electron propagation. The material is Gallium Ar-
senide (GaAs) and the effective mass used in the simulation is 0.067m0, unless other-
wise specified. 
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Figure 7.3 The electron-phonon relaxation rates as a function of electron energy ob-
tained from two different sources are depicted. The relaxation rates are derived from 
the Monte Carlo simulation of the electron propagation. Note that there is a large dis-
crepancy between the results of the two simulations. 
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Figure 7.4 The drain current versus the drain voltage characteristic of a MESFET is 
shown. The lattice temperature is assumed to be constant, which is at 300 K. 
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Figure 7.5 The electron temperature field and the electron concentration inside the 
MESFET after 40 ns are illustrated. 
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Figure 7.6 The potential distribution and the electric field distribution inside the 
MESFET after 40 ns of running the simulation are given. 
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Figure 7.7 The Joule heating rate and the electron current density inside the MES-
FET after 40 ns of running the simulation are given. 
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Figure 7.8 The optical (LO) phonon temperature and the acoustic (A) phonon tem-
perature inside the MESFET after 40 ns are depicted. 
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Figure 7.9 The electronic band structure of gold is shown in this figure. Notice the 
peculiar overlapping between different bands. Such behavior enhances the difficulty 
in deriving the scattering rates and hence the relaxation rates. Source data is obtained 
from the address, http://manybody.nrl.navy.mil/esdata/database.html. 
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Figure 7.10 The electron-electron (e-e) scattering rate as a function temperature for 
gold as computed using Eqs. (7.26) and (7.27). 
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Figure 7.11 The electron-phonon scattering rate as a function temperature for gold as 
computed using Eqs. (7.26) and (7.27). 
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Figure 7.12 Temperature profiles for a film thickness of (a) 1 m, and (b) 100 nm 
demonstrating diffusion-like behavior and obeying the Fourier law of conduction 
(given as straight lines) 
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Figure 7.13 Temperature profiles for a film thickness of (a) 5 nm, and (b) 10 nm 
demonstrating semi-ballistic-like behavior at which the linearity of the Fourier law 
breaks down  
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CHAPTER 8  
CONCLUSIONS 

 

8 
8 

 This dissertation emerges as a result of motivation in modeling the nano-machining process 

using the electron field emission from a nano-probe. Various theoretical models ranging from 

macro- to micro-thermal heat transport in solids are studied and derived thoroughly from the 

Boltzmann Transport Equation (BTE) in the dissertation. Also, the Monte Carlo methods for 

various transport phenomena are completely outlined, which mostly dealt with the energy-beam 

propagation. All these theoretical models then served as “tools” to predict the heating phenom-

ena inside a workpiece when exposed to an energetic electron-beam.  

 

 The physical problem considered in this dissertation a workpiece exposed to an electron-beam. 

The electron-beam helps increasing the internal energy on a nano-scale area of the workpiece 

and subsequently induces melting and evaporation, or sublimation alone to deliver nano-

indentation. Modeling such a problem is quite challenging due to the fact that complicated gov-

erning equations are involved. The basic idea in tackling this problem is to first predict the elec-

tron-energy deposition profile using a Monte Carlo simulation for the electron-beam propagation 

inside the workpiece. This profile is then treated as the energy source for the thermal heat con-

duction equation. The main assumption is that the electron-beam propagation inside the material 

reaches a steady-state in a time duration that is much shorter than the response time of the mate-

rial. This is generally true since the energy transfer between the incoming electrons and the mate-

rial itself occurs within femto-seconds, while it takes pico- to nano-seconds for the material to 

conduct the heat away. 

 

 In this dissertation, two different Monte Carlo simulations in predicting the electron-beam 

propagation inside a solid have been developed. One is based on the Continuous Slow-Down 

Approach (CSDA) while the other is based on the Discrete Inelastic Scattering approach (DIS). 

Both are discussed in detail within the dissertation. Using these methods, the electron-energy 

deposition profiles for various initial electron-beam energies, ranging from kilo-electronvolts 

down to hundreds of electronvolts were able to be predicted. These profiles were then coupled 

separately with the Fourier’s law and the Two-Temperature Model (TTM), to determine the tem-
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perature within the workpiece as a result of exposing it to an electron-beam. The results showed 

that nano-machining is possible in the range of nano-seconds if the electron-beam has an incident 

power of 0.1-0.5 watt with an incident Gaussian area of hundreds of nano-meters in diameter. 

Details of the specifications of the beam and of the geometrical configuration are all given in the 

dissertation. The concept and the possibility of sequential nano-patterning using these numerical 

approaches were also demonstrated. 

 

 In the final chapter, the electron-phonon hydrodynamical model for a MESFET was discussed 

as well as the Monte Carlo simulation of temperature profile inside the material due to semi-

ballistic transport of electrons. The purpose for studying these models was to build a foundation 

for future works regarding the couplings between the models and the electron-energy deposition 

profiles. This will enable the consideration of the electrical and thermal response of the target 

workpiece simultaneously. 

 

 Another possible improvement to the simulation model in this dissertation will be to couple 

the electron-beam Monte Carlo method with the Monte Carlo method in electronic thermal con-

duction and phonon conduction. The use of the traditional heat equation is eliminated since the 

Monte Carlo method is utilized to predict the thermal response of the material. In this case, there 

will be three Monte Carlo simulations involved, and they are to be executed simultaneously. 

They need to be coupled correctly with the appropriate scattering cross-sections for electrons and 

phonons. Finally, the phonon energy equation in either the TTM or the hydrodynamical model is 

assumed to be diffusive in conducting the heat. The accuracy of the model can be further im-

proved by replacing the equation with the molecular dynamic simulation. 



 

214 

APPENDIX A  
SYSTEMS OF EQUATIONS 

 

 
1 

 In this appendix, the derivation of the matrix elements for the system of equations discussed in 

Section 5.2.8 is continued. Recall that: 

 w 1 2 1z zN N N= + − ,  (A.1) 
 uni 1 2 1r rN N N= + − ,  (A.2) 
 1 2 3 1r r r rN N N N= + + − ,  (A.3) 
 1 2 3 1z z z zN N N N= + + − , (A.4) 

and the numerical boundary conditions are given as: 

 

1 1
1 0

1 1
1 0
1 1

1 1

1 1
0 1

 0  1 1,
 0  1 1,
 0  1 1,

2   0  1 1
z z

r r

P P
,n ,n z

P P
m, m, r
P P

m,N m,N r

P P
N ,n N ,n z

T T n , , ,N
T T m , , ,N
T T m , , ,N

T T T n , , ,N .

+ +
−

+ +
−
+ +

− −

+ +
−

= ∀ = −
= ∀ = −
= ∀ = −

= − ∀ = −

…
…
…

…

 (A.5) 

In order to avoid carrying lengthy terms in the derivations, the following notations are assumed: 

 1 1 1 1
w 1w 2w 3w 4w1 m m m m n n n na A A A A− → + → − → + →= + + + + , (A.6) 

 1 1 1 1
s 1s 2s 3s 4s1 m m m m n n n na A A A A− → + → − → + →= + + + + , (A.7) 

 1 1 1 1
4w,s 1s 2s 3s 4w,s1 m m m m n n n na A A A A− → + → − → + →= + + + + , (A.8) 

 1 1 1 1
3w,s 1s 2s 3w,s 4w,s1 m m m m n n n na A A A A− → + → − → + →= + + + + . (A.9) 

Referring to Figure 5.4, the energy balance equations for nodes within the workpiece are ex-

pressed as follows: 

 ( )1 1 1 1 1 1 1
w 1w 3w 0 0 2w 1 0 4w 0 1 0 0 5w 0 0

m m n n P m m P n n P P
, , , , ,a A A T A T A T T A g− → − → + + → + + → +− − − − = + , (A.10) 

 ( )1 1 1 1 1 1 1 1
1w 1 0 w 3w 0 2w 1 0 4w 1 0 5w 0
m m P n n P m m P n n P P

m , m, m , m, m, m,A T a A T A T A T T A g− → + − → + + → + + → +
− +− + − − − = + , 

    1, 2, , 2  ;  0rm N n∀ = − =… ,    (A.11) 

 
( )1 1 1 1 1 1 1

1w 2 0 w 2w 3w 1 0 4w 11 1 0

1
5w 1 0 2w 0                                                                                             2

r r r r

r

m m P m m n n P n n P P
N , N , N , N ,

m m
N ,

A T a A A T A T T

A g A T

− → + + → − → + + → +
− − − −

+ →
−

− + + − − =

+ +
,(A.12) 

 ( )1 1 1 1 1 1 1 1
3w 0 1 w 1w 0 2w 1 4w 0 1 0 5w 0
n n P m m P m m P n n P P

,n ,n ,n ,n ,n ,nA T a A T A T A T T A g− → + − → + + → + + → +
− +− + − − − = + , 

  w   0  ;  1, 2, , 2m n N∀ = = −… ,   (A.13) 
 1 1 1 1 1 1 1 1 1

3w 1 1w 1 w 2w 1 4w 1 5w
n n P m m P P m m P n n P P

m,n m ,n m,n m ,n m,n m,n m,nA T A T a T A T A T T A g− → + − → + + + → + + → +
− − + +− − + − − = + , 

                                                           r w  1, 2, , 2  ;  1, 2, , 2m N n N∀ = − = −… … ,   (A.14) 
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 ( )1 1 1 1 1 1 1 1
3w 1 1 1w 2 w 2w 1 4w 1 1 1 5w 1r r r r r r

n n P m m P m m P n n P P
N ,n N ,n N ,n N ,n N ,n N ,nA T A T a A T A T T A g− → + − → + + → + + → +

− − − − − + − −− − + + − = +   

                                                  1
2w 02 m mA T+ →+ , r w  1  ;  1, 2, , 2m N n N∀ = − = −… , (A.15) 

 ( )
w w w w w w

1 1 1 1 1 1 1 1
3w 0 2 4w,s 1w 0 1 2w 1 1 4w,s 0 0 1 5w 0 1
n n P m m P m m P n n P P

,N ,N ,N ,N ,N ,NA T a A T A T A T T A g− → + − → + + → + + → +
− − − − −− + − − − = + ,  

  w  0  ;  1m n N∀ = = − ,    (A.16) 
 

w w w w w w w

1 1 1 1 1 1 1 1 1
3w 2 1w 1 1 4w,s 1 2w 1 1 4w,s 1 5w 1
n n P m m P P m m P n n P P

m,N m ,N m,N m ,N m,N m,N m,NA T A T a T A T A T T A g− → + − → + + + → + + → +
− − − − + − − −− − + − − = +

,  
                                                                    r w  1, 2, , 2  ;  1m N n N∀ = − = −… , (A.17) 

( )
w w w w w

1 1 1 1 1 1 1 1
3w 1 2 1w 2 1 4w,s 2w 1 1 4w,s 1 1 1r r r r r

n n P m m P m m P n n P P
N ,N N ,N N ,N N ,N N ,NA T A T a A T A T T− → + − → + + → + + → +

− − − − − − − − −− − + + − =   

                                                      
w

1
5w 1 1 2w 02

r

m m
N ,NA g A T+ →

− −+ + , r w  1  ;  1m N n N∀ = − = − ,(A.18) 

Similarly, the system of equations for the substrate is given as follows: 

 ( )
w w w w w w

1 1 1 1 1 1 1 1
3w,s 0 1 3w,s 1s 0 2s 1 4s 0 1 0 5s 0
n n P m m P m m P n n P P

,N ,N ,N ,N ,N ,NA T a A T A T A T T A g− → + − → + + → + + → +
− +− + − − − = + , 

  w   0  ;  m n N∀ = = ,     (A.19) 

 
w w w w w w w

1 1 1 1 1 1 1 1 1
3w,s 1 1s 1 3w,s 2s 1 4s 1 5s
n n P m m P P m m P n n P P

m,N m ,N m,N m ,N m,N m,N m,NA T A T a T A T A T T A g− → + − → + + + → + + → +
− − + +− − + − − = + , 

  r w   1, 2, , 2  ;  m N n N∀ = − =… ,     (A.20) 

 ( )
w w w w w

1 1 1 1 1 1 1 1
3w,s 1 1 1s 2 3w,s 2s 1 4s 1 1 1r r r r r

n n P m m P m m P n n P P
N ,N N ,N N ,N N ,N N ,NA T A T a A T A T T− → + − → + + → + + → +

− − − − − + −− − + + − =  

                                              
w

1
5s 1 2s 02

r

m m
N ,NA g A T+ →

−+ + , r w   1  ;  m N n N∀ = − = , (A.21) 

 ( )1 1 1 1 1 1 1 1
3s 0 1 s 1s 0 2s 1 4s 0 1 0 5s 0
n n P m m P m m P n n P P

,n ,n ,n ,n ,n ,nA T a A T A T A T T A g− → + − → + + → + + → +
− +− + − − − = + , 

  w  0 ;  1, , 2zm n N N∀ = = + −… ,    (A.22) 
 1 1 1 1 1 1 1 1 1

3s 1 1s 1 s 2s 1 4s 1 5s
n n P m m P P m m P n n P P

m,n m ,n m,n m ,n m,n m,n m,nA T A T a T A T A T T A g− → + − → + + − → + + → +
− − + +− − + − − = + , 

                                                    r w  1, 2, , 2  ;  1, , 2zm N n N N∀ = − = + −… … , (A.23) 
 

( )1 1 1 1 1 1 1 1 1
3s 1 1 1s 2 s 2s 1 4s 1 1 1 5s 1 2s 02

r r r r r r

n n P m m P m m P n n P P m m
N ,n N ,n N ,n N ,n N ,n N ,nA T A T a A T A T T A g A T− → + − → + + → + + → + + →

− − − − − + − −− − + + − = + +

, 
 r w  1  ;  1, , 2zm N n N N∀ = − = + −… ,    (A.24) 

 ( )1 1 1 1 1 1 1
3s 0 2 s 1s 4s 0 1 2s 1 1 0 1 5s 0 1z z z z z

n n P m m n n P m m P P
,N ,N ,N ,N ,NA T a A A T A T T A g− → + − → + → + + → +

− − − − −− + − − − = + , 

    0  ;  1zm n N∀ = = − ,    (A.25) 

 ( )1 1 1 1 1 1 1 1
3s 2 1s 1 1 s 4s 1 2s 1 1 1 5s 1z z z z z z

n n P m m P n n P m m P P
m,N m ,N m,N m ,N m,N m,NA T A T a A T A T T A g− → + − → + + → + + → +

− − − − + − − −− − + − − = + , 

  r  1, 2, , 2  ;  1zm N n N∀ = − = −… ,    (A.26) 

 ( )1 1 1 1 1 1 1
3s 1 2 1s 2 1 s 2s 4s 1 1 1 1 5s 1 1r z r z r z r z r z

n n P m m P m m n n P P
N ,N N ,N N ,N N ,N N ,NA T A T a A A T T A g− → + − → + + → + → +

− − − − − − − − − −− − + + − = +  

                                                            1
2s 02 m mA T+ →+ , r  1  ;  1zm N n N∀ = − = − , (A.27) 

Next, gather all the differenced equations and express them in terms of the matrix form, 
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AT B= , where A is a (Nr×Nz)×(Nr×Nz) matrix. Note that A is a sparse, five-band matrix and it is 

given as: 

 A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (A.28) 

The solid lines in the matrix mean that the elements are non-zeros while the circles refer to zeros. 

For the sake of simplicity, each non-zero band is labeled from number 1 to 5. The matrix A shall 

be expressed in the following compact format: 

 

1 

2
3

4
5
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1 1 1 1
w 1w 3w 2w 4w

1 1 1 1
1w w 3w 2w 4w

1 1 1 1
1w w 3w 2w 4w

1
1w w 2w

w

w

w

0 01
02

0
0

  
1
2

m m n n m m n n

m m n n m m n n

m m n n m m n n

m m m
r

r

r

r

r z

a A A A A
A a A A A

A a A A A
A a AN

N N
N N
N N

N N

− → − → + → + →

− → − → + → + →

− → − → + → + →

− →

− − − −→
− − − −→

− − − −⋅
− +→

⋅
⋅

⋅

⋅

⋅
⋅
⋅

→

+ →

+ →

⋅
⋅

⋅

⋅

⋅

⋅
⋅
⋅

⋅
→

1 1 1
3w 4w

1 1 1 1
3w w 1w 2w 4w

1 1 1 1
3w 1w w 2w 4w

1 1 1 1
3w 1w w 2w 4w

1 1 1 1
3w w 1w 2w 4w

1
3w

0
0

0

0

m n n n n

n n m m m m n n

n n m m m m n n

n n m m m m n n

n n m m m m n n

n

A A
A a A A A
A A a A A

A A a A A

A a A A A

A

+ → − → + →

− → − → + → + →

− → − → + → + →

− → − → + → + →

− → − → + → + →

−

− −
− − − −
− − − −

− − + −

− − − −

− 1 1 1
1w w 2w 4w

1 1 1 1
3w 4w,s 1w 2w 4w,s

1 1 1 1
3w 1w 4w,s 2w 4w,s

1 1 1 1
3w 1w 4w,s 2w 4w,s

1 1
3w,s 3w,s 1s

0
0

0

0

n m m m m n n

n n m m m m n n

n n m m m m n n

n n m m m m n n

n n m

A a A A
A a A A A
A A a A A

A A a A A

A a A

→ − → + → + →

− → − → + → + →

− → − → + → + →

− → − → + → + →

− → −

− + −
− − − −

− − − −

− − + −

− − 1 1
2s 4s

1 1 1 1
3w,s 1s 3w,s 2s 4s

1 1 1 1
3w,s 1s 3w,s 2s 4s

1 1 1 1
3s s 1s 2s 4s

1 1 1 1
3s 1s s 2s 4s

0
0

m m m n n

n n m m m m n n

n n m m m m n n

n n m m m m n n

n n m m m m n n

A A
A A a A A

A A a A A
A a A A A
A A a A A

A

→ + → + →

− → − → + → + →

− → − → + → + →

− → − → + → + →

− → − → + → + →

− −

− − − −

− − + −
− − − −

− − − −

− 1 1 1 1
3s 1s s 2s 4s

1 1 1 1
3s s 1s 2s 4s

1 1 1 1
3s 1s s 2s 4s

1 1 1 1
3s s 1s 4s 2s

1 1 1
3s 1s s 4s 2s

0

0

0
0 0

n n m m m m n n

n n m m m m n n

n n m m m m n n

n n m m n n m m

n n m m n n m

A a A A

A a A A A

A A a A A
A a A A A
A A a A A

− → − → + → + →

− → − → + → + →

− → − → + → + →

− → − → + → + →

− → − → + → +

− + −

− − − −

− − + −
− − − −
− − − − 1

1 1 1 1
3s 1s s 4s 2s

1 1 1 1
3s 1s s 2s 4s

0

0
0 0

m
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APPENDIX B  
SIMPLIFIED ELECTRON-PHONON HYDRODYNAMIC EQUATIONS  

 

 
2 

 In this appendix, the electron-phonon hydrodynamic equations given in Section 2.7.3 are fur-

ther simplified. The equations will be cast in terms of five independent variables. They are elec-

tron density ne, electron velocity vector ev , electron temperature Te, optical phonon temperature 

TLO, and acoustic phonon temperature TA. Recall that the electron-phonon hydrodynamic equa-

tions in terms of electron density ne, electron momentum d ,eP , electron energy We, optical pho-

non temperature TLO, and acoustic phonon temperature TA are expressed as: 

(e-Continuity) ( )e e
r d ,e e

c

n nv n
t t

⎛ ⎞∂ ∂ ⎟⎜+∇ ⋅ = ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (B.1) 

(e-Momentum) ( ) ( )d ,e d ,e
r d ,e d ,e e r e B e
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P P
v P en E n k T

t t

⎛ ⎞∂ ∂ ⎟⎜ ⎟+∇ ⋅ =− −∇ +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠
, (B.2) 

(e-Energy) 
( ) ( )
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e
r d ,e e e d ,e r d ,e e B e

e
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∂
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∂
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, (B.3) 

(Optical Phonon Energy) LO LO
LO

col

T WC
t t
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, (B.4) 

(Acoustic Phonon Energy) ( )A A
A r A r A

col

T WC k T
t t

⎛ ⎞∂ ∂ ⎟⎜=∇ ⋅ ∇ + ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (B.5) 

while the various collision terms are given as: 
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, (B.6) 
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Assume spherical parabolic electronic band structure. The electron momentum, d ,eP , and the av-

erage electron energy, We, are then given as: 

 d ,e e e d ,eP m n v= , (B.11) 

 23 1
2 2e e B e e e d ,eW n k T n m v= + . (B.12) 

Next, each conservation equation shall be examined independently. 

 

Electron Continuity 

 

By substituting the collision term for the continuity equation for electrons, it reads:  

 ( )e
r d ,e e e,gen

n v n n
t

∂
+∇ ⋅ =

∂
. (B.13) 

 

Electron Momentum Conservation 

 

Expanding the inertia term in the electron momentum equation yields: 

 ( )d ,e d ,e
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, (B.14) 

The left-hand side (LHS) of the equation can be re-expressed as: 
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Expanding the various terms produces: 

 ( ) ( ) ( )d ,ee
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where it is assumed that the effective mass of the electron, me, is constant. Using the continuity 

equation the LHS of the momentum equation becomes: 
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After equating this newly-derived LHS to the original RHS and dividing by (mene), the electron 

momentum equation reads: 
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Now substituting the collision terms, the following equation is obtained: 
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Electron Energy Conservation 

 

Expanding the electron energy advection term and the work done by the electron pressure and 

shuffling the terms give the electron energy equation in the following form: 
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The LHS of the equation is expanded accordingly as: 
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The LHS shall be simplified term by term by starting from the first left. Expanding the derivative 

in time, it reads: 
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Again, after substituting the continuity equation, the equation becomes: 
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( )

( )

3 3 1
2 2 2

1
2

e e
e B B e e d ,e d ,e d ,e r e e r d ,e

c

e e d ,e d ,e

T nn k k T m v v v n n v
t t

m n v v
t

⎡ ⎤⎛ ⎞⎡ ⎤∂ ∂ ⎟⎜⎢ ⎥⎢ ⎥+ + ⋅ − ⋅∇ − ∇ ⋅ + ⎟⎜ ⎟⎜⎢ ⎥⎢ ⎥ ⎝ ⎠∂ ∂⎣ ⎦ ⎣ ⎦
∂

+ ⋅
∂

. (B.23) 

Next, consider the second term in the LHS of the energy conservation equation as: 

 ( ) ( ) ( ) ( )3 3 1 1
2 2 2 2B e d ,e r e B e e d ,e d ,e d ,e r e e e d ,e r d ,e d ,ek n v T k T m v v v n m n v v v

⎡ ⎤ ⎡ ⎤⎢ ⎥⋅∇ + + ⋅ ⋅∇ + ⋅∇ ⋅⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
.(B.24) 

while the third term in the LHS remains as is. Combining all these expanded terms the entire 

LHS of the equation under consideration is given as: 

 
( ) ( )

( ) ( )

3 3 3 1
2 2 2 2

1
2

e e
e B B e d ,e r e e B e r d ,e B e e d ,e d ,e

c

e e d ,e d ,e d ,e r d ,e d ,e

T nn k k n v T n k T v k T m v v
t t

m n v v v v v
t

⎛ ⎞⎡ ⎤∂ ∂ ⎟⎜⎢ ⎥+ ⋅∇ + ∇ ⋅ + + ⋅ ⎟⎜ ⎟⎜⎢ ⎥ ⎝ ⎠∂ ∂⎣ ⎦
⎡ ⎤∂
⎢ ⎥+ ⋅ + ⋅∇ ⋅
⎢ ⎥∂⎣ ⎦

. (B.25) 

Using the electron-momentum equation the LHS of the electron-energy conservation equation is 

simplified into the following form: 

 
( ) ( )

( ) ( )

3 3 3 1
2 2 2 2

e e
e B B e d ,e r e e B e r d ,e B e e d ,e d ,e

c

d ,e e
e d ,e B d ,e r e e d ,e e d ,e d ,e

cc

T nn k k n v T n k T v k T m v v
t t

P nen v E k v n T v m v v
t t

⎛ ⎞⎡ ⎤∂ ∂ ⎟⎜⎢ ⎥+ ⋅∇ + ∇ ⋅ + + ⋅ ⎟⎜ ⎟⎜⎢ ⎥ ⎝ ⎠∂ ∂⎣ ⎦
⎛ ⎞ ⎛ ⎞∂ ∂⎟⎜ ⎟⎜⎟− ⋅ − ⋅∇ + ⋅ − ⋅⎜ ⎟⎜⎟⎜ ⎟⎜⎟⎜ ⎝ ⎠∂ ∂⎝ ⎠

. (B.26) 

Equating the newly-derived LHS to the RHS of the equation and dividing the equation by 

(3/2nekB), the entire electron-energy conservation has the following form: 

 

( ) ( )

( )

2 2 2
3 3 3

2 1
3 3

2
3

e e
d ,e r e e r d ,e r e r e

ce B e B

d ,e e e
d ,e e d ,e d ,e

ce B e e Bc

e,gen
e B

T Wv T T v k T
t n k n k t

P T nv m v v
n k t n n k t

W
n k

⎛ ⎞∂ ∂ ⎟⎜+ ⋅∇ =− ∇ ⋅ + ∇ ⋅ ∇ + ⎟⎜ ⎟⎜⎝ ⎠∂ ∂

⎛ ⎞ ⎡ ⎤ ⎛ ⎞∂ ∂⎟⎜ ⎟⎜⎢ ⎥⎟− ⋅ − − ⋅⎜ ⎟⎜⎟⎜ ⎟⎜⎢ ⎥⎟⎜ ⎝ ⎠∂ ∂⎝ ⎠ ⎣ ⎦

+

. (B.27) 

Substituting the collision terms into the equation yields: 
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( ) ( )

2

2 2
3 3

2 1 1 2
3 3

e e LO e A
d ,e r e e r d ,e r e r e

e B e LO e A

e,gen e,gene d ,e
e e,gen

m e LO e A e B e e B

T T T T Tv T T v k T
t n k

n nm v
T W

n k n n k

τ τ

τ τ τ

− −

− −

∂ − −
+ ⋅∇ =− ∇ ⋅ + ∇ ⋅ ∇ − −

∂

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟+ − − + − +⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (B.28) 

 

Phonon Energy Conservations 

 

There are no additional simplifications that can be applied for the two phonon energy equations, 

except substituting the collision terms into them. By doing so, one obtains: 

 
( ) ( )23 2 2 3 2e B e e d ,e B LO LO LO ALO

LO
e LO LO A

n k T / m v / k T / C T TTC
t τ τ− −

+ − −∂
= −

∂
, (B.29) 

 ( )
( ) ( )23 2 2 3 2e B e e d ,e B A LO LO AA

A r A r A
e A LO A

n k T / m v / k T / C T TTC k T
t τ τ− −

+ − −∂
=∇ ⋅ ∇ + +

∂
, (B.30) 

After dividing the equations by the corresponding specific heats and rearranging them, the fol-

lowing equations are obtained: 

 
( )2 3

2 2
e B LO ee e d ,eLO LO A

LO e LO LO e LO LO A

n k T Tn m vT T T
t C Cτ τ τ− − −

−∂ −
= − −

∂
, (B.31) 

 ( )
( ) ( )2 31

2 2
e B A e LO A LOe e d ,eA

r A r A
A A e A A e A A LO A

n k T T C T Tn m vT k T
t C C C Cτ τ τ− − −

− −∂
= ∇ ⋅ ∇ + − −

∂
, (B.32) 

 

Electron-Phonon Hydrodynamic Equations 

 

Now all the conservation equations are collected and the conclusion of the electron-phonon hy-

drodynamic equations consist of: 

(e-Continuity) ( )e
r d ,e e e,gen

n v n n
t

∂
+∇ ⋅ =

∂
, (B.33) 

(e-Momentum) ( ) 1 e,gend ,e B
d ,e r d ,e r e e d ,e

e e e m e

nv kev v E n T v
t m m n nτ

⎛ ⎞∂ ⎟⎜ ⎟+ ⋅∇ =− − ∇ − +⎜ ⎟⎜ ⎟⎜∂ ⎝ ⎠
, (B.34) 
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(e-Energy) 

( ) ( )

2

2 2
3 3

2 1 1
3

2
3

e e LO
d ,e r e e r d ,e r e r e

e B e LO

e,gen e d ,ee A

e A m e LO e A e B

e,gen
e e,gen

e e B

T T Tv T T v k T
t n k

n m vT T
n k

n
T W

n n k

τ

τ τ τ τ

−

− − −

∂ −
+ ⋅∇ =− ∇ ⋅ + ∇ ⋅ ∇ −

∂

⎛ ⎞− ⎟⎜ ⎟− + − − +⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟− +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

, (B.35) 

(Optical Phonon Energy) 
( )2 3

2 2
e B LO ee e d ,eLO LO A

LO e LO LO e LO LO A

n k T Tn m vT T T
t C Cτ τ τ− − −

−∂ −
= − −

∂
, (B.36) 

(Acoustic Phonon Energy) 
( )

( ) ( )

21
2

3
2

e e d ,eA
r A r A

A A e A

e B A e LO A LO

A e A A LO A

n m vT k T
t C C

n k T T C T T
C C

τ

τ τ

−

− −

∂
= ∇ ⋅ ∇ +

∂

− −
− −

, (B.37) 

These five transport equations are to be solved simultaneously in order to predict the transport 

phenomena inside an electron-phonon system. 
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APPENDIX C  
DERIVATION OF HDM FOR SEMICONDUCTORS 

 

 
3 

 The derivation of the HDM for semiconductors is similar to that of metals except that the gov-

erning equation for phonons is split into two, since there are two types of phonons existed in 

semiconductors (i.e., optical phonons and acoustic phonons). Therefore: 

(e-Continuity) ( )e e
e e

c

n nv n
t t

⎛ ⎞∂ ∂ ⎟⎜+∇⋅ = ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (C.1) 

(e-Momentum) ( ) ( )e e
e e e e B e

c

p pv p en E n k T
t t

⎛ ⎞∂ ∂ ⎟⎜+∇⋅ =− −∇ + ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (C.2) 

(e-Energy) ( ) ( )e e
e e e e e e B e e e,gen

c

W Wv W en v E v n k T q W
t t

⎛ ⎞∂ ∂ ⎟⎜+∇⋅ =− ⋅ −∇⋅ −∇⋅ + +⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (C.3) 

(LO-Phonons) LO e LO

c c

W W W
t t t

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟⎜ ⎜=− +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∂ ∂ ∂
. (C.4) 

(Acoustic Phonons) LOA
A

c

WW q
t t

⎛ ⎞∂∂ ⎟⎜=−∇⋅ − ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
. (C.5) 

The transformations of the electron continuity, momentum, and energy equations follow those 

given for metals, and they are expressed as: 

(e-Continuity) e e
e e e e

c

n nv n n v
t t

⎛ ⎞∂ ∂ ⎟⎜+ ⋅∇ =− ∇⋅ + ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, (C.6) 

(e-Momentum) ( ) 1e e e eB
e e e e

c ce e e e e e

v p v nkev v E n T
t m m n m n t n t

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟⎜ ⎜+ ⋅∇ =− − ∇ + −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∂ ∂ ∂
, (C.7) 

(e-Energy) 

( ) ( )

( )

2 2 2
3 3 3

2 1
3 3

2
3

e e
e e e e e e

ce B e B

e e e
e e e e

c ce B e e B

e,gen
e B

T Wv T T v k T
t n k n k t

p T nv m v v
n k t n n k t

W
n k

⎛ ⎞∂ ∂ ⎟⎜+ ⋅∇ =− ∇⋅ + ∇⋅ ∇ + ⎟⎜ ⎟⎜⎝ ⎠∂ ∂

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜⎢ ⎥− ⋅ − − ⋅⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠∂ ∂⎣ ⎦

+

, (C.8) 

Using the relaxation approximation, we shall express the various collision terms shall be ex-

pressed as: 

  e
e,gen

c

n n
t

⎛ ⎞∂ ⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∂
, (C.9) 
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 e e e e

c m

p m n v
t τ

⎛ ⎞∂ ⎟⎜ =−⎟⎜ ⎟⎜⎝ ⎠∂
, (C.10) 

 
( )23 2 2 3 2e B e e e B LOe

c e LO

n k T / m v / k T /W
t τ −

+ −⎛ ⎞∂ ⎟⎜ =−⎟⎜ ⎟⎜⎝ ⎠∂
. (C.11) 

 
( )LO ALO

LO
c LO A

T TW C
t τ −

⎛ ⎞ −∂ ⎟⎜ =−⎟⎜ ⎟⎜⎝ ⎠∂
. (C.12) 

Note that these collision terms are identical to those of metals, however electrons are expected to 

transfer energy first to optical phonons instead of the acoustic phonons. Substituting these colli-

sion terms into the all transport equations yields: 

(Poisson’s Equation) ( )2
e

e

eV n n
ε +∇ = − ; E V=−∇ , (C.13) 

 (e-Continuity) e
e e e e e,gen

n v n n v n
t

∂
+ ⋅∇ =− ∇⋅ +

∂
, (C.14) 

(e-Momentum) ( ) 1 e,gene B
e e e e e

e e e m e

nv kev v E n T v
t m m n nτ

⎛ ⎞∂ ⎟⎜ ⎟+ ⋅∇ =− − ∇ − +⎜ ⎟⎜ ⎟⎜∂ ⎝ ⎠
, (C.15) 

(e-Energy) 

( ) ( )

2 2

2 2
3 3

2 1 2
3 3 3

e phe
e e e e e e

e B e ph

e e e e e
e,gen e,gen

e e e LO B e e B e B

T TT v T T v k T
t n k

m v T m v n W
k n n k n k

τ

τ τ

−

− −

−∂
+ ⋅∇ =− ∇⋅ + ∇⋅ ∇ −

∂

⎛ ⎞ ⎡ ⎤⎟⎜ ⎢ ⎥⎟+ − − − +⎜ ⎟⎜ ⎢ ⎥⎟⎜⎝ ⎠ ⎣ ⎦

, (C.16) 

(LO-Phonons) 
( ) ( )23

2 2
e LO LO ALO e e e

LO e B LO
e LO e LO LO A

T T T TT n m vC n k C
t τ τ τ− − −

− −∂
= + −

∂
, (C.17) 

(Acoustic Phonons) ( )
( )LO AA

A A A LO
LO A

T TTC k T C
t τ −

−∂
=∇⋅ ∇ +

∂
, (C.18) 

including the Poisson equation for determining the electric field acting on the system. 
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APPENDIX D  
NUMERICAL DISCRETIZATION OF HDM FOR SEMICONDUCTORS 

 

 
4 

 In this appendix, the numerical discretizations of the hydrodynamic equations are shown. Ac-

cordingly, the hydrodynamic equations for semiconductors, particularly gallium arsenide, are 

expressed as: 

(Poisson’s Equation)  ( )2
D e

s

eV N n
ε

∇ =− − ; E V=−∇ , (D.1) 

(e-Continuity)  ( ) ( )( ) 0e B
m e m e e

e e

n ke n E n T
t m m

τ τ∗ ∗

∂
− ∇⋅ − ∇⋅ ∇ =

∂
, (D.2) 

(e-Momentum)  ( )m B m
e e e

e e e

e kv E n T
m m n
τ τ
∗ ∗=− − ∇ , (D.3) 

(e-Energy) ( ) ( )
2

1 2 2 1
3 3 3

e ee e LO
e e e e e e

e B m e LO B e LO

m vT T Tv T T v k T
t n k kτ τ τ

∗

− −

⎛ ⎞∂ −⎟⎜ ⎟+∇⋅ = ∇⋅ + ∇⋅ ∇ + − −⎜ ⎟⎜ ⎟⎜∂ ⎝ ⎠
, (D.4) 

(LO-Phonons) 
( ) 2

3
2 2

e LO e e eLO LO A
LO e B LO

e LO e LO LO A

T T n m vT T TC n k C
t τ τ τ

∗

− − −

−∂ −
= + −

∂
. (D.5) 

 (Acoustic Phonons) ( ) LO AA
A A A LO

LO A

T TTC k T C
t τ −

−∂
=∇⋅ ∇ +

∂
. (D.6) 

 

Poisson’s Equation 

 

In the following discretization, one assumes that the electrical permitivity is constant throughout 

the entire computational domain, therefore the Poisson equation becomes: 

 ( )
2 2 2

2 2 2 D e
s

V V V e N n
x y z ε

∂ ∂ ∂
+ + =− −

∂ ∂ ∂
, (D.7) 

and the differenced equation is given as: 

 
( ) ( ) ( ) ( )

( )

1 1 1 11 1 1 1
1 11 1

1 1 1 1

1 1
1

1

2 2 2 2

2

P P P PP P P P
i , j ,k i , j ,k i , j ,k i , j ,ki , j ,k i , j ,k i , j ,k i , j ,k

j ji i
i i i i j j j j

P P
i , j ,k i , j ,k

k
k k

V V V VV V V V
y yx xx x x x y y y y

V V V
z z z

∆ ∆∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆
∆ ∆

+ + + ++ + + +
+ −+ −

+ − + −

+ +
+

+

⎡ ⎤⎡ ⎤ − −− − ⎢ ⎥⎢ ⎥ ++ ⎢ ⎥⎢ ⎥ +
⎢ ⎥⎢ ⎥+ + + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

−
++

+ ( )
( )( )

1 1
1 1

12

P P
i , j ,k i , j ,k P

D e i , j ,kk
sk k

V e N nz z z∆ ε∆ ∆

+ +
− +

−

⎡ ⎤−⎢ ⎥
⎢ ⎥ =− −
⎢ ⎥+⎢ ⎥⎣ ⎦

. (D.8) 
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Continuity Equation 

 
 

The diffusion components of the continuity equation are given as: 

 
( ) ( )

( ) ( )

1 1

1
1

1
1 1

1

1
2

P P
e e e ei , j ,k i , j ,kdiffu B

j k ,x j k
e

i i
P P

m mi , j ,k i , j ,k

n T n Tky z J y z
m x x

∆ ∆ ∆ ∆
∆ ∆

τ τ

+ +

−
− ∗

−
+ +

−

−
=

⎛ ⎞⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (D.9) 

 
( ) ( )

( ) ( )

1 1

1
1

1
1 1

1

1
2

P P
e e e ei , j ,k i , j ,kdiffu B

j k ,x j k
e

i i
P P

m mi , j ,k i , j ,k

n T n Tky z J y z
m x x

∆ ∆ ∆ ∆
∆ ∆

τ τ

+ +

+
+ ∗

+
+ +

+

−
=

⎛ ⎞⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (D.10) 

 
( ) ( )

( ) ( )

1 1

1
1

1
1 1

1

1
2

P P
e e e ei , j ,k i , j ,kdiffu B

i k ,y i k
e j j

P P
m mi , j ,k i , j ,k

n T n Tkx z J x z
m y y

∆ ∆ ∆ ∆
∆ ∆

τ τ

+ +

−
− ∗

−
+ +

−

−
=

⎛ ⎞⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (D.11) 

 
( ) ( )

( ) ( )

1 1

1
1

1
1 1

1

1
2

P P
e e e ei , j ,k i , j ,kdiffu B

i k ,y i k
e j j

P P
m mi , j ,k i , j ,k

n T n Tkx z J x z
m y y

∆ ∆ ∆ ∆
∆ ∆

τ τ

+ +

+
+ ∗

+
+ +

+

−
=

⎛ ⎞⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (D.12) 

∆yj-1 

∆yj 

∆yj+1 

∆xi+1 ∆xi ∆xi-1 

diffu
x,J 1−

diffu
x,J 1+

drift
x,J 1+

drift
x,J 1−

drift
y,J 1−

diffu
y,J 1−

diffu
y,J 1+

drift
y,J 1+
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( ) ( )

( ) ( )

1 1

1
1

1
1 1

1

1
2

P P
e e e ei , j ,k i , j ,kdiffu B

i j ,z i j
e

k k
P P

m mi , j ,k i , j ,k

n T n Tkx y J x y
m z z

∆ ∆ ∆ ∆
∆ ∆

τ τ

+ +

−
− ∗

−
+ +

−

−
=

⎛ ⎞⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (D.13) 

 
( ) ( )

( ) ( )

1 1

1
1

1
1 1

1

1
2

P P
e e e ei , j ,k i , j ,kdiffu B

i j ,z i j
e

k k
P P

m mi , j ,k i , j ,k

n T n Tkx y J x y
m z z

∆ ∆ ∆ ∆
∆ ∆

τ τ

+ +

+
+ ∗

+
+ +

+

−
=

⎛ ⎞⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

. (D.14) 

For the drift components of the continuity equation, the upwind method will be utilized: 

 ( ) ( )1 1 1
1 1 21 1

P Pdrift P
j k ,x j k m e i / , j ,ki , j ,k i , j ,k

e

ey z J y z n E
m

∆ ∆ ∆ ∆ τ + + +
− −∗ − −

= , if 1
1 2 0P

i / , j ,kE +
− <  (D.15) 

 ( ) ( )1 1 1
1 1 2

P Pdrift P
j k ,x j k m e i / , j ,ki , j ,k i , j ,k

e

ey z J y z n E
m

∆ ∆ ∆ ∆ τ + + +
− −∗= , if 1

1 2 0P
i / , j ,kE +
− >  (D.16) 

 ( ) ( )1 1 1
1 1 2

P Pdrift P
j k ,x j k m e i / , j ,ki , j ,k i , j ,k

e

ey z J y z n E
m

∆ ∆ ∆ ∆ τ + + +
+ +∗=− , if 1

1 2 0P
i / , j ,kE +
+ <  (D.17) 

 ( ) ( )1 1 1
1 1 21 1

P Pdrift P
j k ,x j k m e i / , j ,ki , j ,k i , j ,k

e

ey z J y z n E
m

∆ ∆ ∆ ∆ τ + + +
+ +∗ + +

=− , if 1
1 2 0P

i / , j ,kE +
+ >  (D.18) 

 ( ) ( )1 1 1
1 1 21 1

P Pdrift P
i k ,y i k m e i , j / ,ki , j ,k i , j ,k

e

ex z J x z n E
m
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Collecting all the terms, the mass balance reads: 
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Separating terms between the current time step and the previous time step yields: 
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Note that the electric field at the intermediate of two nodal points, for example, between nodes 

(i,j,k) and (i−1,j,k), is given as: 
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Neumann boundary for both density and temperature at i+1/2 for diffusion component: 
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Dirichlet boundary for density and Neumann boundary for temperature at i+1/2 for diffusion 

component: 
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Dirichlet boundary for both density and temperature at i+1/2 for diffusion component: 
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Since the momentum relaxation time is typically a function of density and temperature 
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Neumann boundary for density at i+1/2 for drift component: 

 0drift
iJ+ = . (D.42) 

Dirichlet boundary for density at i+1/2 for drift component: 
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Momentum Equation 

 

The three velocity components can be evaluated as follows: 
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In the following derivations, the upwind method is used to discretize the inertia terms in the 

momentum equations. Here the various velocity components are assumed to be positive. 

(x-Momentum) 
( ) 1 e,gene ee,x B

e e,x x e,x
e e e m e

nn Tv kev v E v
t m m n x nτ

⎛ ⎞∂∂ ⎟⎜ ⎟+ ⋅∇ =− − − +⎜ ⎟⎜ ⎟⎜∂ ∂ ⎝ ⎠
, (D.57) 

 

( ) ( )
( )

( ) ( )

( )
( ) ( )

( )
( )

1 1 1

1 2 1 2 1 2 1 2

1 2

1 1
1 1 2 1 2 1

1 2
1

1 1 2

1 2

2

2

P P P P
e,x e,x e ,x e ,xPi / , j ,k i / , j ,k i / , j ,k i / , j ,k

e ,x i / , j ,k
i

P P
P e,x e,xi / , j ,k i / , j ,k

e ,y i / , j ,k
j j

e ,xP i / , j ,
e ,z i / , j ,k

v v v v
v

t x

v v
v

y y

v
v

∆ ∆

∆ ∆

+ + +

+ + + −

+

+ +

+ + + −

+
−

+ +

+

⎡ ⎤− −⎢ ⎥
+ ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤−⎢ ⎥
+ ⎢ ⎥

⎢ ⎥+
⎢ ⎥⎣ ⎦

+
( )

( ) ( )

( )

( )

( ) ( )

1 1

1 2 1

1

1 11 1
1 1

1 1

1 1 1

1 2 1
1

1 2

22

2

P P
e,xk i / , j ,k

k k

P PP P
e ei , j ,k i , j ,k i , j ,k i , j ,kB

e i i e i i

P P P
B e e ei / , j ,k i , j ,k i , j ,k

P
ie e i / , j ,k

v

z z

T Tke
m x x m x x

k T n n

xm n

∆ ∆

φ φ

∆ ∆ ∆ ∆

∆

+ +

+ −

−

+ ++ +
+ +

+ +

+ + +

+ +
+

+

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ −− ⎢ ⎥⎟⎜ ⎟⎜= − ⎢ ⎥⎟⎜ ⎟⎟⎜ + +⎢ ⎥⎝ ⎠ ⎣ ⎦

−
− ( )

1
1

1 2
1 1 2

1
P

Pe,gen
e,x i / , j ,k

i m e i / , j ,k

n
v

x n∆ τ

+
+

+
+ +

⎡ ⎤ ⎛ ⎞⎢ ⎥ ⎟⎜ ⎟− +⎜⎢ ⎥ ⎟⎜ ⎟⎜+⎢ ⎥ ⎝ ⎠
⎣ ⎦

, (D.58) 



 

233 

with the following assumptions that: 
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Electron-Energy Equation 

 

Rearranging the electron-energy equation gives: 
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Discretizing the equation using the first-order forward-differencing in time, the second-order 

centered-differencing in space for the diffusion term, and the first-upwind method for the advec-
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tion term, the following implicit-differenced equation is obtained: 
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The convective thermal currents (i.e., Th
eJ ’s) in the above expression are approximated using the 

first-upwind method, for example, along the x-direction: 
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The same discretization applies for the convective thermal currents along the y- and z-directions. 

 

LO-Phonon Energy Equation 

 

Reconfiguring the optical phonon energy conservation equation gives: 
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Note that for a first-order linear differential equation given as: 

 dT AT B
dt

+ = , (D.85) 

where A and B are constants, its solution is expressed as: 
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assuming that the initial condition is T0 at t0. Applying the solution to the optical phonon equa-

tion yields the following equalities: 
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In practice, A and B depend on T; therefore, the solution given above is invalid for such a case. 

However, the correct solution can be obtained numerically by iterating the solution (i.e., for the 

case where A and B are constants) while changing A and B according to the solution at the previ-

ous iteration until it converges. Alternatively, if A and B are known explicitly as a function of T, 

then the correct solution can be evaluated as: 
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where C, a constant, is to be determined from the given initial condition. 
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Similarly, the discretization of the phonon energy equation leads to the following differenced 

equation: 
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Acoustic Phonon Energy Equation 

 

Reconfiguring the phonon energy conservation equation gives: 
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Similarly, the discretization of the phonon energy equation leads to the following differenced 

equation: 
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APPENDIX E  
NUMERICAL DISCRETIZATION OF TTM 

 

 
5 

 In this appendix, the numerical discretization of the Two-Temperature Model (TTM) and the 

proposed algorithm are shown. According to Section 2.7.1, the governing equations for the TTM 

for metals are expressed as: 
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Discretizing both equations using the centered-difference approximation in space and the for-

ward Euler approximation in time leads to the following differenced equations: 
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Rearranging the second equation yields: 
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Now substituting it into the first equation leads to: 
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Notice that the first three terms on the right hand side of the equation represent the discretization 

of the equation if the implicit scheme were employed. Therefore, the last two terms are the addi-

tional errors introduced into the differenced equation when the phonon temperature at a previous 

time step is used in the electron energy conservation equation. Hence, they need to be minimized 

in order to reduce these errors. 

 

Pulsed Laser Source Term 

 

Here, a pulsed laser is considered. The pulse width of the laser is assumed to be a Gaussian pro-
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file. Without scattering, the source term for a laser pulse with Gaussian distributed temporally 

and spatially in xy-plane, and with energy exponentially decaying (i.e., absorbed by the medium) 

along the z-axis, can be written as: 
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, (E.7) 

where mq  is the maximum volumetric heat generation, tp the pulse duration of the full width at 

half maximum (FWHM), rp the spatial width at FWHM, and κ the absorption coefficient of the 

medium. In this case, the maximum power delivered by the pulse occurs at t = 2tp and centers at 

the xy-plane. To determine the maximum power delivered by the pulse in terms of the total en-

ergy Epulse of the pulse, Eq. (E.7) needs to be integrated over space and time (i.e., x, y, z, and t), to 

obtain Epulse, leading to the following expression: 
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Therefore, the mq  can be determined in terms of the pulse energy and properties of the Gaussian 

distribution: 
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Hence, the source term for the laser pulse is given as: 
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For a mismatched interface at which the laser is incident on, a factor of (1–R) needs to be in-

cluded in the source term since R fraction of the incident energy is reflected.  
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APPENDIX F  
BUILDING A CPDF TABLE FOR A MCM 

 

 
6 

 Often, it is difficult to have an explicit equation for determining the scattering direction for 

particles. Therefore, a table containing all the scattering data including the CPDF should be es-

tablished for determining the scattering angle for a given random number. This method can be 

used for obtaining the argument of a CPDF where it is difficult to invert analytically. For a given 

distribution Ζ(ξ) ranging from ξa to ξb, its CPDF can be expressed as: 

 
b

a a

R( ) ( )d ( )d
ξξ

ξ ξ

ξ Ζ ξ ξ Ζ ξ ξ′ ′ ′ ′= ∫ ∫ . (F.1) 

For the sake simplicity, we define the followings: 

 
a

( )d
ξ

ξ

γ Ζ ξ ξ′ ′= ∫ ,  (F.2) 

and 

 
b

a

( )d
ξ

ξ

η Ζ ξ ξ′ ′= ∫ . (F.3) 

The goal here is to evaluate R(ξ) as a function ξ and store them. Any numerical integration tech-

nique can be employed to solve γ and η. For example, to evaluate η using the Composite Simp-

son rule, [ξa, ξb] is subdivided into 2M subintervals of equal width: 

 
2

b ah
M

ξ ξ−
= . (F.4) 

By using ξk=ξa+kh for k=0, 1,…, 2M, η is approximated as: 

 ( )2 2 2 1 2
1

4
3

M

k k k
k

h ( ) ( ) ( )η Ζ ξ Ζ ξ Ζ ξ− −
=

≈ + +∑ . (F.5) 

After evaluating and storing both R(ξ)’s and ξ’s in a table, it is ready to be used for interpola-

tions. For a given random number Ranξ, we compare it with R(ξ)’s in the table and search for the 

case where Ranξ = R(ξ) by using the bisectional method instead of the sequential search. A final 

linear interpolation is required if Ranξ is in between two R(ξ)’s.  
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