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sensors demonstrated excellent sensitivity to low concentrations of reducing and 
oxidizing gases at room temperature, which suggests the p-type semiconducting behavior 
of SWNTs.  The sensor recovery was found to be incomplete at room temperature in flow 
of nitrogen and air, thus possible solutions were investigated to enhance sensor 
performance.  The sensor operating principles and suggestions for possible future work 
are discussed.  The room temperature and air background functionality of the sensor 
suggest that SWNT is a promising gas sensing material for application in ambient 
conditions. 
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CHAPTER1: INTRODUCTION AND OVERVIEW 
 

1.1 Introduction 

1.1.1 A brief overview of chemical gas sensors 
 

By definition, a chemical gas sensor is a device capable of altering its physical 

properties (electrical conductance, capacitance, or mass) upon exposure to a gaseous 

chemical compound or mixture of chemical compounds.  The change in properties is 

observed as an electrical signal and then used to detect the species.  Generally, gas 

sensors are required to perform within required ambient and process conditions with fast 

response time and acceptable accuracy.  They must conform to size, weight, and cost 

constraints of individual applications and measure the properties within the required 

range over an acceptable lifetime.   

 

Gas sensors can be classified according to their operating principles as metal oxide 

semiconductor sensor, electrochemical sensor, gas sensitive field-effect transistors 

(FETs), solid electrolyte, pellistor catalytic gas detector, bulk and surface acoustic wave 

devices (BAW and SAW), and conducting polymer, etc.  The operating principle and 

features of a few most commonly used types will be briefly summarized in the next 

chapter.   

 

 Currently, chemical gas sensors find extensive applications in toxic and combustible 

gas monitoring, automobile combustion control, medical analysis and energy and drying 

operations markets.  The emerging markets include defense, consumer products, 

automobiles, wastewater treatment, and food and beverage processing, etc [1].  The entire 

US gas sensor market is projected to be over $2.8 billion in sales in 2008 [2].    

 

The major advantages of the commercially available gas sensors are low cost, small 

size and simplicity in function.  The size is typically measured in centimeters to 

micrometers and the cost is minimized by large scale, batch fabrication.  In contrast to 
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some of the conventional laboratory scale analytical instruments, for example, gas 

chromatography, ion mobility spectroscopy and mass spectroscopy; gas sensor devices 

require much simpler equipment to run an analysis and the cost of operation is much 

lower.  Gas sensor devices are effective in real-time in situ applications.           

1.1.2 Motivations and contributions 
 

Despite the attractive features listed in the previous section, gas sensors in the market 

do have some drawbacks which impair their long term performance.  The common 

concerns of most gas sensors are stability, reproducibility, selectivity and sensitivity [1].  

However, the specific objective of this dissertation is to address one of the major 

disadvantages of gas sensors, i.e., their lack of functionality at room temperature.  Most 

of the gas sensors in the market are operated at 200 to 600ºC thus a built-in heater is very 

common in the sensor structure.  Unfortunately the built-in heater will increase the design 

complexity and power consumption of the sensor device.  As a result, searching for new 

gas sensing materials with acceptable performance at room temperature has been an 

interesting research topic.   

 

Recently, carbon nanotubes (CNTs) have shown promise for gas sensing due to their 

high surface area and their capability to change electrical properties at room temperature 

upon exposure to different gases [3].  Gas sensing studies have been based either on 

single-walled carbon nanotubes (SWNTs) or on multi-walled carbon nanotubes 

(MWNTs).  In this dissertation both approaches were investigated for room temperature 

gas sensing application.  First, a highly automated gas sensor testing system was designed 

and implemented, which features a PC controlled gas delivery system, real time electrical 

signal measurement, data acquisition configuration, LabVIEW program and user-friendly 

interface.  Next, resistive and capacitive gas sensors based on vertically aligned MWNTs 

were fabricated and tested.  These aligned MWNTs were prepared by chemical vapor 

deposition (CVD) through anodized porous alumina oxide template (AAO).  The work 

described here is the first report to construct a gas sensor device based on this unique 

CNT structure.  A conference paper based on this work was accepted and presented at 

39th International Microelectronics and Packaging Symposium in October 2006.  Then, 
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the performance of a resistive sensor based on the mixture of low loading SWNTs and 

organic binder was studied.  To date, this is the lowest reported SWNT loading (1 wt %) 

for this type of sensor with excellent response.  A journal paper manuscript based on this 

part of the work has been submitted to Sensors and Actuators for peer review.  The main 

purpose of this dissertation is to evaluate MWNTs and SWNTs as gas sensing materials 

at room temperature.  

1.1.3 Collaborative activities 
 

The research covered in this dissertation is a part of the Advanced Carbon 

Nanotechnology Program (ACNP) which is financially supported by the Army Research 

Laboratory under the Cooperative Agreement Number W911NF-04-2-0023.  The 

synthesis of the nanotube materials described in chapter 3 was performed by Dr. Vijay 

Singh’s research group using the facilities at the Center for Applied Energy Research of 

University of Kentucky.  The collaboration with Dr. Singh’s group has produced several 

journal papers and conference papers, which are either accepted or under review.                                 

1.2 Overview of the Dissertation 

There are three major objectives in this dissertation.  The first objective is to review 

the major gas sensing technologies and recent development of carbon nanotubes for gas 

sensing applications.  The second objective is to fully describe the experimental and 

theoretical work on gas sensors based on both aligned multi-walled carbon naotubes and 

single-walled carbon nanotube powders.  The third objective is to analyze the 

performance and limitations of these carbon nanotube gas sensors, and suggest future 

improvements. 

 

Chapter 2 reviews the techniques and mechanisms of major gas sensors on the market, 

the emerging of carbon nanotubes as potential gas sensing material, and the development 

of carbon nanotube based gas sensing research.  The current status of gas sensors and gas 

sensing potentials of nanotubes are the motivations of this dissertation.   
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Chapter 3 briefly introduces the preparation and the features of the aligned 

MWNTs/AAO template.  Using the as-grown MWNTs/AAO template, resistive gas 

sensing tests demonstrate response to NH3 and CO2 at room temperature.  In chapter 3, a 

capacitive sensor design is described and the results of gas detection are presented.  The 

gas sensing mechanism of the MWNTs based capacitive sensor is explained and a sensor 

model is proposed.  The concept of inductor-capacitor resonant sensor is verified 

experimentally using both a commercial humidity sensor and MWNTs capacitive sensor. 

 

Chapter 4 describes a resistive gas sensor based on SWNTs.  The gas sensing material 

is prepared by mixing the SWNT powders with organic binder and then coating on the 

sensor platform.  After annealing, the sensor is employed to detect both reducing and 

oxidizing agents at room temperature.  The response demonstrated by the SWNT sensor 

indicates p-type semiconductor characteristic and great potential as room temperature gas 

sensing material.  The limitation of sensor recovery is illustrated and the detailed sensing 

and recovery mechanisms are discussed in chapter 4.  The techniques to improve sensor 

performance are applied and the results are demonstrated and explained.  Finally, the 

sensor performances in a background of air as well as temperature and humidity 

dependencies are discussed. 

 

In chapter 5, summaries for the entire dissertation are given and the possible 

directions for future research are identified.             
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CHAPTER2: LITERATURE REVIEW 
 

2.1 Introduction 

Chapter 2 reviews common gas sensor operating principles as well as advantages and 

disadvantages of each technology.  The exceptional physical properties of carbon 

nanotubes (CNTs) are described and explained as they pertain to the gas sensing 

application.  A brief review of the research of CNTs in the development of chemical gas 

sensing is provided in the last part of this chapter.      

2.2 Techniques and Mechanisms in Gas Sensing 

Table 2.1 lists some common health hazardous gases and human exposure limits 

recommended by U.S. Department of Labor [4].  One can see that the gas sensor 

detection limit for some extremely dangerous substances could be as low as 0.05 parts 

per million (ppm).  By utilizing various sensing materials and operating principles, the 

gas sensors in the market have satisfied most of the demands by industry.  In this section 

brief reviews are given for the most commonly used gas sensors and some of the key 

factors to evaluate sensor performance are introduced.        

2.2.1 Gas sensor characteristics 
 

Section 2.2.1 defines technological aspects used through out this dissertation to 

evaluate gas sensor characteristics and to compare sensor performance.   

 

Sensitivity is the ratio of the change in sensor output in response to the change in 

sensor input in the presence of target gas.  By definition if a sensor output y is related to 

the input x by the function y = f(x), then the sensitivity S(xa) at point xa is [5]: 

                                         ( )
axxa dx

dyxS ==                                                        (2.1)              

In this dissertation, for a resistive gas sensor, the sensitivity S is defined as: 
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              ( ) 100%
0
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−

=
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RR
S gas                                               (2.2) 

where R0 is the sensor resistance in the presence of carrier gas, Rgas is the sensor 

resistance in the presence of target gas, and S is the resistance sensitivity in percentage.  

The sensitivity S of a capacitive sensor in this dissertation is defined as: 

                      ( ) 100%
0

0 ×
−

=
C

CC
S gas                                                 (2.3) 

where C0 is the sensor capacitance in the flow of carrier gas, Cgas is the sensor capacitance 

in the presence of target gas, and S is the capacitance sensitivity in percentage.   

 

Response time is typically defined as the time for the output of a gas sensor to reach a 

certain percentage of full scale after being exposed to target gas.  For example, T90 = 60 

seconds means that it takes the sensor 60 seconds to reach 90% of its full scale output 

after being exposed to a full scale gas concentration.   

 

The time for the output of a gas sensor to return to its baseline value after the removal 

of the target gas is defined as sensor recovery time.  In the sensor industry it is usually 

specified as time to fall to 10% of steady state value after the removal of the measured 

gas.  Figure 2.1 shows an example of gas sensor response time and recovery time.   

 

Selectivity is the ability of a gas sensor to detect a target gas without being affected 

by the presence of other interference gases.  Most gas sensors are sensitive to a family of 

gases and it is difficult to produce a sensor specific to only one gas.  Moreover, 

temperature and humidity may also affect sensor performance.  A common practice for 

manufactures of gas sensors is to provide data indicating the changes of different gases 

on the sensor output in the presence of common interference gases.   

 

Repeatability is defined as the ability of a sensor to repeat the measurements of gas 

concentrations when the same measurand is applied to it consecutively under the same 

conditions.   
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The closeness between the calibration curve and a specified straight line is defined as 

linearity [5].  Generally the initial response of a gas sensor is nearly linear and it tends to 

saturate as the gas concentration increases.  A typical gas sensor response curve, which 

consists of near linear region, nonlinear region and saturation region, is shown in Figure 

2.2.  One can see that the sensor output provides better linearity at lower concentration 

than at higher concentration.          

 

Gas concentration is expressed as volume percent (%) or ppm (parts per million by 

volume) throughout this dissertation.  These are unitless expressions as they simply 

express the ratio of gases in relation to the balance or carrier gas, such as air or nitrogen 

(N2).  For example, 100 ppm NH3 in N2 means 100 parts of NH3 diluted in 999,900 parts 

of N2.   

 

2.2.2 Metal oxide semiconductor gas sensor 
 

Metal oxide semiconductor gas sensors were first developed by Seiyama and Taguchi 

in the 1960s.  Seiyama found the gas sensing effect of metal oxides [6] and later Taguchi 

brought semiconductor gas sensors based on metal oxides to an industrial 

product [7][8][9].  Therefore, a metal oxide semiconductor sensor is also known as 

Taguchi sensor.  Under suitable conditions many metal oxide semiconductor show gas 

sensitivity, including tin dioxide (SnO2), zinc oxide (ZnO), tungsten oxide (WO3), iron 

oxide (Fe2O3), and titanium dioxide (TiO2) [1].  Among them the most widely used 

material is SnO2 doped with small amounts of catalytic additives such as palladium (Pd) 

or platinum (Pt).  By choosing different catalyst and operation conditions, Taguchi 

sensors have been developed for various applications such as domestic safety (CO and 

methane), industry safety (NH3, O2, H2, and H2S), air quality control (CO2), and 

automotive (general air contaminants) [10].    

 

The basic structure of a 3-dimensional Taguchi sensor consists of a ceramic supporting 

tube with a platinum heater coil and a sintered semiconducting SnO2 coating on the 

outside as shown in Figure 2.3.  The schematic shows that the heater is embedded in a 
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ceramic tube and the semiconductor material SnO2 is deposited on the tube with two 

printed gold electrodes.  The purpose of the heater is to achieve the typical sensor 

working temperature range of 200-550˚C and the two gold electrodes are for the 

measurement of gas sensitive changes in electrical conductivity.  The sensitivity results 

from conductivity change caused by reactions occurring on the surface of SnO2 particles.  

2-dimensional, planar metal oxide semiconductor gas sensors are fabricated by using 

screen-printing techniques.  SnO2 films are printed to a thickness in the range of 50-500 

µm over interdigitated electrodes evaporated onto ceramic substrates.  A thin metal heater 

track is printed on the back side of the substrate.  Figure 2.4 shows the basic structure of a 

typical 2-dimensional planar SnO2 sensor [12].          

 

The operation principle of Taguchi sensor can be described as follows: when n-type 

semiconductor SnO2 is heated at a certain temperature in air, oxygen is adsorbed on its 

surface.  The majority carrier electrons in the metal oxide semiconductor are transferred 

to the adsorbed oxygen molecules as the result of following reaction: 

                                    
−− →+ OOe 22 2                                                   (2.4) 

The chemisorption of oxygen takes electrons out of semiconductor bulk, leave 

positive charges and form a space charge layer at the surface of SnO2.  At SnO2 grain 

boundaries, a space charge layer (potential barrier) prevents charge carriers from moving 

freely, therefore surface conductivity decreases.  Figure 2.5 describes the model of inter-

grain potential barrier and shows that the surface potential formed serves as a potential 

barrier against electron flow.  Since the sensing material, SnO2, is in the form of a 

compressed powder, i.e. sintered particles, the space charge induced by the oxygen 

adsorption can be a significant fraction of the whole grain; therefore the adsorption 

causes the resistance of the SnO2 film to increase considerably.   

 

When reducing gas molecules react with the adsorbed oxygen species at high 

temperature they oxidized and acting as electron donor during the reduction-oxidation 

process.  The reaction can be described as Eq 2.5 where R denotes reducing gas: 

                                          −− +→+ eROOR                                                 (2.5) 
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As the result, the surface density of negatively charged oxygen decreases, so the height of 

potential barrier at grain boundary is reduced along with the sensor resistance.   

 

The operating temperature for metal oxide semiconductor gas sensors is between 

200ºC and 550ºC [11].  There are two reasons why the sensor is operated at elevated 

temperatures.  First, at temperature below 100ºC the metal oxide surface will be covered 

by a layer of water molecules (ambient humidity) which prevents the reaction of the gas 

with the oxide surface.  Second, the reaction rate at the oxide surface will be very slow if 

operated at temperatures below 200ºC.  The advantages of metal oxide semiconductor 

sensors are their high sensitivity to most combustible gases including saturated 

hydrocarbons, NO and CO, simple sensor structures, fast response time, good reliability, 

and low production cost.  Disadvantageous are the relatively poor selectivity and high 

operation temperature.  The selectivity can be modified by doping the metal oxide with 

catalytic additives, by changing the operation temperature, or by modifying the grain size.  

As a consequence of high operating temperature the power consumption of metal oxide 

semiconductor sensor is relatively high.  A typical commercial Taguchi sensor has power 

consumption of approximately 800 mW.  This level of power consumption is too high for 

applications where battery operation is required.                 

2.2.3 Electrochemical gas sensor 
 

The operating principles of electrochemical gas sensors are the same as liquid 

electrolytic fuel cells.  They are based on the electrochemical oxidation or reduction of 

the analytic gas at a catalytic electrode surface.  Basically, they detect gases by producing 

a chemical reaction between the gas and oxygen contained in the sensor.  The reaction 

produces a small current, which is proportional to the concentration of the gas present.  

Commercial electrochemical gas sensors are used for a variety of applications including 

medical and gas purity application, air quality monitoring, industry control, and toxic gas 

monitoring.   

 

 The simplest form of a fuel cell electrochemical sensor and the schematic diagram of 

the cross section of a sensor structure are shown in Figure 2.6.  A typical electrochemical 
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sensor consists of a sensing electrode and a counter electrode separated by a thin layer of 

electrolyte.  The electrode is normally made of catalytic metal and the electrolyte is a 

concentrated, ion-conducting aqueous solution such as sulfuric acid or potassium 

hydroxide depending on the sensor chemistry [13].  External gases have relatively easy 

access to the sensing electrode whereas the counter electrode is located in the bulk of the 

electrolyte within the body of the sensor, where diffusion access by ambient atmospheric 

gases is severely restricted.  The diffusion barrier can be a capillary or a membrane and it 

controls the diffusion of reactant gas to the sensing electrode [14].  To measure the output 

current of the sensor, a load resistor connects the sensing electrode and the counter 

electrode to provide a voltage output across the load.   

 

The target gas present in the ambient air diffuses through the capillary inlet or the 

pores of hydrophobic membrane and then reacts on the catalytic sensing electrode surface 

at the three-phase boundary between the electrode, the electrolyte, and the gas.  The 

reaction causes the potential of sensing electrode to shift.  The reactions at the sensing 

electrode for several gases are as follows: 

                                  −+ ++→+ eHCOOHCO 2222                                          (2.6) 

                                 −+ ++→+ eHSOHOHSH 884 4222                                    (2.7) 

                                −+ ++→+ eHHNOOHNO 332 32                                        (2.8) 

                                −+ +→ eHH 222                                                                    (2.9) 

Simultaneously, the reactions at the counter electrode need oxygen molecules to complete 

the process: 

                                      OHeHO 22 244 →++ −+                                                      (2.10) 

Electrochemical reduction of a reactant gas at the sensing electrode is also possible, for 

example NO2 sensing: 

                                 OHNOeHNO 22 22 +→++ −+                                               (2.11) 

As the result of the potential difference between the sensing electrode and counter 

electrode, current will start to flow in the external circuit.  The current is sustained by 

electrochemical oxidation of the reactant gas at the sensing electrode and an equivalent 

amount of oxygen reduction at the counter electrode.  One can see from Eq 2.10 that an 
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oxygen supply must be provided to the counter electrode to maintain the current.  Oxygen 

is found dissolved in the electrolyte.  Replenishment of the oxygen used in the reaction 

can be provided by oxygen in the sample gas or by diffusion of oxygen through the 

housing of the sensor.  However for some particular applications such as indicated by Eq 

2.11, oxygen is not necessary for electrochemical sensor to maintain proper operation.   

 

The most attractive feature of electrochemical sensors is that they provide a direct 

relationship between the output signal and the target gas concentration, i.e., the output 

current is proportional to the gas concentration.  Electrochemical sensors also have the 

advantages that they operate at room temperature, are robust and have 1 to 2 years of life 

expectancy.  Electrochemical sensors require very little power to operate.  In fact, their 

power consumption is the lowest among all sensor types available for gas monitoring.  

Generally electrochemical sensors are quite sensitive to temperature therefore it is 

necessary to keep the sample temperature as stable as possible.  Oxygen detection by 

electrochemical sensing has the best selectivity whereas detections of other gases are 

subject to interference from background gases [13].     

2.2.4 Solid electrolyte – lambda sensor 
 

The best known solid electrolyte based gas sensor is zirconia (ZrO2) oxygen sensor, 

which is mainly used for monitoring the air-to-fuel ratio in combustion engines.  In the 

automotive industry, a zirconia oxygen exhaust sensor is also called a lambda sensor or 

lambda probe.  Figure 2.7 illustrates the basic structure of a simplified zirconia oxygen 

sensor.  The potential between the two electrodes depends on the ratio of the partial 

pressure of oxygen at each electrode, separated by the oxygen ion conductor zirconia.  

The chemical reactions (electron transfer) at each electrode are the same but in reverse, 

i.e. at one electrode the reduced form of the chemical particle is being oxidized (releasing 

electrons) and at the other electrode the oxidised form is being reduced (accepting 

electrons).  The reactions at the electrodes are as follows: 

                                            −− →+ 2
22 24 OOe                                                      (2.12) 

                                            2
2
2 42 OeO +→ −−                                                     (2.13) 
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The potential difference between two electrodes is defined by Nernst equation [1]: 
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where T is temperature, R is the gas constant, F is the Faraday constant, and P is partial 

pressure.  Therefore a higher concentration of oxygen on one side of the zirconia 

electrolyte leads to a potential difference which, according to the Nernst equation, is 

proportional to the ratio of the two oxygen concentrations. 

 

In order for a ZrO2 sensor to function properly, the zirconium dioxide is often doped 

with yttrium oxide (Y2O3) and heated above 500ºC [1].  Yttrium oxide dopants are able to 

create more defects so that the ionic conductivity is enhanced.  ZrO2 sensors can be 

tailored to have excellent O2 selectivity by choosing optimized electrode material.  

However, the limitation of its operating principle makes it impossible to use lambda 

sensor for lower temperature applications.              

2.2.5 Pellistor 
 

Pellistors, also known as catalytic combustion sensors, are detectors for combustible 

gases such as methane.  The sensing elements consist of small pellets of catalyst-loaded 

ceramic whose resistance changes in the presence of the target gas.  The term ‘pellistor’ 

is the combination of ‘pellet’ and ‘resistor’.  As shown in Figure 2.8, the typical pellistor 

sensing element consists of a platinum wire spiral supported within a porous alumina 

bead.  Particles of precious metal catalyst are added into alumina to accelerate the 

oxidation reaction.  There is a number of catalyst materials available, typically platinum 

or palladium, and they are carefully chosen to optimize sensor performance.  The 

platinum wire is used to heat the catalyst bead above 500ºC to facilitate the combustion 

reaction.  It also serves as resistance thermometer to measure the temperature of the 

catalyst bead [11]. 

 

The commercial pellistor system typically consists of a pair of sensing elements 

operated in a Wheatstone bridge circuit, referred to as a detector and compensator 
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(reference element).  The detector is a platinum wire spiral embedded within a bead of 

catalytic material (Figure 2.8).  The compensator is similar except that the bead is 

alumina without any catalytic material.  Oxidation occurs at approximately 500ºC when a 

combustible gas is present at the detector.  The burning increases the temperature of the 

element and the generated heat is transmitted to the platinum wire which causes the wire 

resistance to increase.  At the same time, the inert compensator stays at a constant 

temperature.  An electrical imbalance occurs in the bridge circuit and a voltage output is 

obtained.  The output voltage level depends on the type of the detected gas and it is 

normally proportional to the gas concentration.  

 

Pellistors are capable of detecting various combustible vapours and flammable gases 

at concentration as low as 500 ppm with relatively fast response times (20 seconds) [11].  

They have robust construction and life expectancy is of a few years.  However, they have 

high power consumptions (typically 350 mW) due to the elevated operating temperature.  

Another disadvantage of pellistors is that they tend to be ‘poisoned’ by volatile 

compounds which leave involatile oxidation products covering the catalyst surface 

impeding sensor performance.       

2.2.6 Gas sensitive FET 
 

Field-effect gas sensors are based on metal insulator semiconductor field effect 

transistor (MISFET) structures in which the metal gate is a gas sensitive catalyst such as 

platinum (Pt), palladium (Pd), and iridium (Ir).  MISFETs operate in a temperature range 

of 200ºC to 600ºC [1].     

 

The basic structure of a MISFET gas sensor is depicted in Figure 2.9 (adapted 

from [1]).  Conduction between the source and drain of the transistor is controlled by 

charge or potential on the gate electrode.  Charge present at the gate gives rise to a 

reflected charge induced in the channel and this modifies the conductance between source 

and drain.  Any process that changes either the charge on the gate or its potential will 

alter the conduction of the channel and this can be detected as an electrical signal.  A 

MISFET sensor with catalytic metal gate was first reported sensitive to hydrogen at 
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1975 [16].  In detection mode, hydrogen molecules decompose to H atoms by 

dehydrogenation on the catalytic metal gate surface.  The H atoms then diffuse to the 

metal/insulator interface and influence the charge in the semiconductor, thereby changing 

the drain source current.   

 

Since the dehydrogenation and catalytical process are temperature dependent, 

selectivity to different gases can be achieved by changing the operating temperature, the 

catalytic metal gate material, and the thickness and morphology of the gate metal [17].  

MISFET sensors can thus be made sensitive to a broad range of hydrogen-containing or 

polar compounds such as hydrogen [16], ammonia [18], hydrogen sulfide [19], and 

alcohol [20].  The sensors are stable and exhibit a relatively low sensitivity to moisture.  

Due to the well-established MISFET fabrication processes in the semiconductor industry, 

MISFET sensors can be manufactured in large batches with high reproducibility and low 

cost.   

 

Besides conventional MISFET, suspended gate FETs, which were first described by 

Blackburn et al. [21], are also popular for chemical gas sensing.  In the suspended gate 

FET (SGFET) the gate metal is suspended above the gate insulator (SiO2) by a narrow 

gap with access holes for gas molecules.  This construction makes it possible to develop 

gas sensors sensitive to gases other than hydrogen because the metal/gaseous-insulator 

interface is now freely accessible to the gas instead of the gas having to diffuse through 

the gate material as in the case of the Pd gate MISFET.  The basic structure of a SGFET 

is schematically described in Figure 2.10 [22].       

2.2.7 Others 
 

Conducting polymers have been used primarily as chemiresistor structures (Figure 

2.11), although their uses in acoustic wave devices, in suspended gate FETs, and as 

capacitive sensors have also been investigated [23][24][25][26].  The most commonly 

used polymers for gas sensing are those based on pyrrole, aniline, or thiophene 

monomers.  Chemiresistors based on conducting polymers can be fabricated by 

deposition of a thin polymer film on an insulating substrate with a narrow electrode gap.  
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While operating at room temperature, the adsorption of gases into the polymer matrix and 

the interaction with the matrix causes a change in the conductivity of the polymer.  The 

conductivity of the polymer is simply measured at a constant current or voltage, so called 

chemiresistor.  The advantages of conducting polymer gas sensors are room temperature 

operation, relatively high sensitivity, and simple sensor structure.  However, lack of 

reproducibility of fabrication, strong humidity interference, and the base line drift over 

time have been concerns associated with the further development of conducting polymer 

chemiresistor gas sensors.   

 

Acoustic wave gas sensors operate by monitoring the effect of adsorbed gas 

molecules on the acoustic wave propagation.  There are two types of acoustic wave 

sensors: bulk acoustic wave sensor (BAW) and surface acoustic sensor (SAW).  Both 

share a similar device structure which consists of a piezoelectric crystal substrate (such as 

quartz) coated with a coating for gas adsorption.  The adsorption of gas molecules 

changes the velocity of the acoustic wave hence the effect of wave propagation on the 

sensor frequency can be detected [14].  The schematic diagram of a basic SAW device is 

shown in Figure 2.12.  A pair of interdigitated (IDT) electrodes is patterned on a single 

piece of quartz coated with polymer film.  Acoustic wave propagation is stimulated by 

applying an a.c. voltage to one set of IDT (transmitter) and detected by a second set 

(receiver).  The delay between launching and receiving the wave depends on the velocity 

of the surface acoustic wave.  SAW is preferred over BAW in gas sensing applications 

because they can be operated at higher frequency (up to 300 MHz) to achieve higher 

sensitivity.  Typical detection limits of SAW sensors are 50 ppm for hydrogen, 10 ppm 

for H2S and 0.5 ppm for NO2 [27].                         

2.3 Properties of Carbon Nanotubes 

A considerable amount of research in new gas sensors has been carried out in order to 

meet the increasing demand for gas detection technologies.  Recent developments in 

nanotechnology provide the opportunity to dramatically improve sensor performance.  

Nanotechnology is referred to any process or product that involves sub-micron 

dimensions, but a more concise definition is any fabrication technology in which objects 
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are built by the specification and placement of individual atoms or molecules or where at 

least one dimension is less than 100 nm [28].  Since early the 1990s, research interest in 

nanotechnology has grown rapidly ranging from new high-performance nanomaterials to 

nano-scale electronics and Micro-Electro-Mechanical Systems (MEMS). The sensor 

research community has also benefited from nanotechnology, especially through the 

development of advanced nanomaterials.  One of the most widely studied new 

nanomaterials is carbon nanotube (CNT). 

 

Ijiima at the Japanese NEC Corporation first discovered CNTs in 1991 [29].  CNTs 

have special structures that are different from graphite and carbon fibers.  There are two 

types of nanotubes: single-walled carbon nanotubes (SWNTs) and multi-walled carbon 

nanotubes (MWNTs).  Single-walled nanotubes consist of a single layer of graphite sheet 

wrapped into a cylindrical tube seamlessly.  Multi-walled carbon nanotubes comprise an 

array of single-walled nanotubes that are concentrically nested like rings of a tree 

trunk [30].  The typical diameter of CNTs ranges from 1 to100 nm and lengths up to 

millimeters.  Carbon arc discharge, laser ablation of carbon, and chemical vapor 

deposition (CVD) on catalytic particles are the most commonly used methods for CNTs 

synthesis.   

 

SWNTs may be either metallic or semiconducting, depending on the direction in 

which the graphite sheet twists to form the seamless nanotube cylinder.  The diameter 

and helicity of a SWNT are characterized by the vector [31]: 

                                          ( )mnmanaC ,21 ≡+=                                              (2.15) 

where a1 and a2 are graphene lattice vectors and n and m are integers to represent 

nanotube type.  Depending on the appearance of the belt of the nanotube diameter, the 

nanotube is either armchair (n = m), zigzag (n = 0 or m = 0), or chiral (any other n and m).  

All armchair SWNTs and those with n-m = 3k (k is a non-zero integer), are metallic.  All 

others are semiconductors with the band gap inversely depend on the diameter [30]. 

 

A brief summary of some extraordinary electrical, mechanical and thermal properties 

of CNTs is provided in Table 2.2 [32].  With the nearly one-dimensional structures, 
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electronic transport in CNTs was found to take place through quantum effects and to be 

ballistic along the nanotube axis without scattering.  Consequently they are capable of 

conducting high current density without dissipating heat [33][34].  In theory, metallic 

CNTs can have a current density 1000 times higher than that of metals such as silver and 

copper [35].   

 

CNTs are excellent thermal conductors along the tube axis due to the effect of 

ballistic electron conduction.  Kim, et al. [36] reported a measured room temperature 

thermal conductivity of 3000 W/m·K for an individual MWNT, which is greater than that 

of natural diamond and the basal plane of graphite (~ 2000 W/m·K).  It is predicted that 

the thermal conductivity of CNTs could reach 6000 W/m·K at room temperature.  

Comparing this to copper, a metal well-known for its high thermal conductivity, CNTs 

offer a fifteenfold increase [35].  Superconductivity in CNTs has been observed at low 

temperatures.  For example, 0.55 K transition temperature for SWNTs with 1.4 nm 

diameters and 5 K transition temperature for those with 0.5 nm diameters have been 

reported [37][38].  

 

CNTs are one of the strongest and stiffest materials known, featuring high Young’s 

modulus and high tensile strength.  The mechanical strength is the result of the covalent 

sp2 bonds formed between the individual carbon atoms along the walls of CNTs.  Gao et 

al. [39] reported the calculated Young’s modulus for an individual (10,10) SWNT is 

approximately 0.64 TPa (1012 Pa), which is consistent with measured results [40].  Yu et 

al. measured a tensile strength of 63 GPa for MWNTs [41].  In comparison, the tensile 

strength of MWNT is approximately 50 times greater than that of high-carbon steel [42].   

 

  In recent years, the high mechanical strength and unique electrical properties of 

CNTs have attracted considerable interest for various applications utilizing individual or 

ensembles of CNTs including: as atomic force microscope (AFM) tips [43][44], field 

emission devices and displays [45][46], electromechanical actuators [47], CNT-based 

field effect transistors (CNTFET) [48][49][50][51], and CNT composite 

materials [52][53][54] etc.                 

http://en.wikipedia.org/wiki/Copper�
http://en.wikipedia.org/wiki/Thermal_conductivity�
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2.4 Development of Carbon Nanotubes as Gas Sensing Materials 

Since the year 2000, the potential for CNT chemical gas sensing applications has 

attracted extensive research effort for three significant reasons.  First, CNTs are surface 

reacting materials, i.e., they are composed entirely of surface atoms where adsorbed gas 

molecules can dramatically change CNT electrical properties at room temperature.  Next, 

the ballistic electronic transport along the CNT axis provides excellent transmission of 

the altered electrical signal to the external contact.  Third, the long-term performance of 

CNTs based sensor may be stable due to their chemically robust graphitic surface.  CNTs 

for gas sensing at room temperature are of great interest because most currently available 

sensors operate at elevated temperatures.  A brief review of research on CNTs for gas 

sensing is given in this section.  Due to the nature of this dissertation research, the 

discussion will focus on non-functionalized as-grown CNT based gas sensors.  

2.4.1 Conductance-based detection 
 

  The pioneer works by Kong, et al. [55] and Collins, et al. [56] were the first to 

report that the adsorption of certain gas molecules can dramatically change the electrical 

conductance of SWNTs. Kong and coworkers investigated individual p-type 

semiconducting SWNT as a resistive sensor for NO2 and NH3 detection at room 

temperature in air or argon.  They demonstrated that the oxidizing agent NO2 (an electron 

acceptor) causes the conductivity of p-type SWNT to increase while the reducing agent 

NH3 (an electron donor), causes a reduction in conductance [55].  The detection limit of 

their SWNT sensor was found to be ~ 2 ppm for NO2 and ~ 0.1% for NH3.  They 

concluded that the sensing mechanism is based on the charge transfer between the p-type 

semiconducting SWNT and electron-withdrawing NO2 and electron-donating NH3 gas.  

The recovery time of the sensor was found to be 12 hours and it was significantly reduced 

by heating the sample in air at 200ºC [55].  Using transport measurement and scanning 

tunneling spectroscopy, Collins and coworkers demonstrated that the electrical resistance, 

thermoelectric power and local density of states of SWNT are sensitive to air or oxygen 

exposure.  By alternating the medium between air (or oxygen) and vacuum, a reversible 

change in SWNT resistance was observed [56].  They attributed this variation in 
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resistance to the charge transfer between adsorbed oxygen molecules and SWNTs.  

However, in order to fully recover, the sample had to be heated above 110ºC for several 

hours in vacuum for oxygen to be desorbed [56].  The authors also suggested that any 

intrinsic properties measurement on as-prepared CNTs could be compromised by 

extrinsic air exposure (oxygen exposure).  Therefore they claimed that the electronic 

properties of a given nanotube are not only specified by its chirality and diameter but also 

depend on gas exposure history.     

 

Li, et al. investigated an SWNT based sensor for the detection of NO2 and 

nitrotoluene vapors at room temperature [57]. Randomly orientated SWNTs were 

dispersed in dimethylformamide (DMF) and drop-deposited on a sensor platform with 

interdigitated electrodes patterned on top.  The SWNT sensor responded in seconds to the 

presence of NO2 within the concentration range of 6-100 ppm while pure nitrogen was 

used as carrier gas for dilution and purging.  The conductance of the SWNT sensor was 

increased significantly by exposure to the oxidizing agent NO2.  Due to the high bonding 

energy between SWNT and NO2, the sensor recovered slowly with a recovery time on the 

order of 10 hours, which is consistent with the results reported by other researchers [55].  

Li and coworkers applied ultraviolet (UV) light illumination during recovery and 

successfully accelerated the recovery time to 10 min [57].  They reported that the UV 

illumination lowered the desorption energy barrier of CNTs thus facilitating the NO2 

desorption.  Chen, et al. were the first to discover the photo-induced molecular desorption 

in molecule-CNT systems [58].  They found that UV light induced desorption of oxygen, 

NO2, and NH3 molecules can drastically alter the electrical characteristics of 

semiconducting SWNTs.  Although the mechanism has not been fully understood, they 

suggested that the photodesorption in CNTs is a non-thermal process and wavelength 

dependent.  

 

Parallel theoretical studies have also predicted significant variation of the electronic 

properties of CNTs as the result of gas molecules adsorption.  Zhao, et al. have 

performed first principles calculations on the electronic properties of SWNT upon 

adsorption of various gas molecules, such as NO2, O2, NH3, N2, CO2, CH4, H2O, H2 and 
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Ar [59].  The authors found all molecules, either electron donor or electron acceptor, are 

weakly adsorbed on SWNT with small charge transfer.  They also obtained the 

equilibrium position, adsorption energy, charge transfer, and electronic band structures 

for SWNTs with various structures [59].         

 

Bradley and coworkers used SWNT field-effect transistor to detect NH3 through the 

shift of gate voltage [60].  They determined that the shift of gate voltage is due to the 

charge transfer between SWNT and adsorbed NH3 molecules.  Their experiments 

measured the amount of charge transfer to be approximately 0.04 electrons per NH3 

molecule [60].  Qi, et al. fabricated arrays of electrical devices with each comprising 

ensembles of SWNTs bridging metal electrodes for NO2 detection.  The sensor is capable 

of detecting NO2 at less than 1 ppb (parts per billion) concentration [61].  Their 

calculations indicate that NO2 binds to the SWNT surface with energy of 0.8 eV and 

withdraws approximately 0.1 electrons per molecule [61].  Chang and coworkers 

investigated the adsorption of NH3 and NO2 molecules on semiconducting (10,0) SWNTs 

through density function theory [62].  Their calculation shows that the binding energies 

are less than 0.5 eV for both molecules (0.18 eV for NH3 and 0.42 for NO2) [62].  

Therefore they claim that both NH3 and NO2 molecules bind to nanotubes by 

physisorption and the electron charge transfer is the major mechanism for the change of 

conductivity.   

 

Although most of the attention has focused on SWNTs for gas sensing, MWNTs do 

present one attractive feature with respect to SWNTs, i.e., low production cost.  Recently, 

there have been increasing numbers of reports on the studies of MWNTs for gas detection.  

Cantalini, et al. [63] reported the influence of the catalyst geometry on the growth of 

MWNTs and their electrical response to NO2 of 10-100 ppb concentrations at different 

operating temperatures ranging from 25 to 215ºC.  The resistive gas sensor was 

fabricated by PECVD depositing MWNTs on Pt interdigitated electrodes based on 

Si/Si3N4 substrate [63].  The maximum response was found at 165ºC and the sensor 

showed fast dynamic response and reproducible electrical properties.  Based on a similar 

sensor structure, Valentini and coworkers studied CH4 detection by MWNTs grown on a 
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Ni catalyst [64].  They demonstrated that oxygen molecules are chemisorbed when CNT 

walls contain defects and this caused the electrical response to CH4.  The authors also 

suggest that the semiconducting CNTs could be converted from p-type to n-type by 

adsorption of oxygen molecules at elevated temperature. 

 

Wang, et al. investigated the effect of MWNTs resistive sensor for NH3 detection at 

room temperature [65].  The sensor was fabricated by patterning Ti/Au electrode on top 

of ultrasonically dispersed MWNTs using evaporation and lift-off techniques.  They 

observed a significant decrease in sensor conductance upon exposure to 1% NH3 gas.  

The authors also demonstrated that the sensitivity is linearly proportional to the NH3 

concentration ranging from 10 to 200 ppm.  While in vacuum, the sensor required more 

than 6 hours at 250ºC to recover to baseline condition, therefore they conclude that the 

sensor response involved both physisorption and chemisorption [65].                                                         

2.4.2 Non conductance-based detection                     
 

Snow, et al. showed that the capacitance of SWNTs is sensitive to a broad range of 

chemical vapors [66].  Their SWNT sensor was fabricated by patterning Pd interdigitated 

electrodes on top of SWNT networks [66].  More importantly, they demonstrated that the 

capacitive SWNT sensor is sensitive to 0.5 s pulses of dimethyl methylphosphonate 

(DMMP), a simulant for chemical warfare agents [67].  The DMMP was diluted in dry 

air at a concentration of 500 ppm and the sensor response is dynamic and reversible.  

Snow and coworkers believe that the SWNT surface will generate a large fringing 

electrical field while applying a gate bias and this electrical field will then polarize the 

adsorbed molecules on the SWNT surface.  By calculation, they found that SWNTs 

capacitance was affected by both dielectric polarization and charge transfer upon 

exposure to chemical vapor molecules but the charge contribution is less than 10% [67].  

Therefore they attribute the capacitance response to field-induced polarization of surface 

dipoles.  They also demonstrated that the effect of humidity on the sensor response is 

negligible due to the weak interaction between water molecules and SWNTs. 
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Varghese, et al. applied an impedance spectroscopy method to investigate the gas 

sensing behavior of both capacitive and resistive MWNTs sensors at ambient 

temperature [68].  The capacitive sensor consists of gas sensing MWNT-SiO2 composite 

on top of insulating SiO2 layer and interdigitated electrodes.  The sensor was found 

sensitive to water vapor and NH3, with the response to water vapor being reversible.  

Varghese and coworker used an equivalent circuit model to simulate the sensor and the 

results indicated that chemisorption of gases on the surface of the p-type semiconducting 

MWNTs is the dominant sensing mechanism.  As a result the chemisorption induced 

charge transfer between MWNTs and gas molecules is responsible for the variation in 

capacitance [68].  An identical capacitive sensor was utilized to form an inductor-

capacitor (LC) wireless remote query gas sensor by the same team [69].  The fabricated 

sensor consists of a planar LC resonant circuit covered by a layer of SiO2 and the mixture 

of MWNTs and SiO2 [69].  Upon exposure to various gases, the complex permittivity of 

the MWNTs varies, therefore changing the resonant frequency of the sensor.  The sensor 

response was detected by measuring the impedance spectrum of a loop antenna used to 

monitor the sensor remotely.  Ong and coworkers demonstrated that the LC sensor 

response to CO2 and O2 is linear and reversible.  However both reversible and irreversible 

response was observed for NH3 detection [69], which indicated the presence of both 

physisorption and chemisorption. 

 

 Chopra and coworkers reported a gas sensor based on the downshift in resonant 

frequency of circular electromagnetic resonator for NH3 detection at ambient 

temperature [70].  The sensor was constructed by physically coating a copper resonator 

with either SWNTs or MWNTs using conductive epoxy.  The detection mechanism relies 

on the interaction between CNTs and the NH3 molecules, which results in a change in the 

resonant frequency of the sensor.  They describe that it is the change in the dielectric 

constant of CNTs that caused a shift in the resonant frequency of the resonator.  The 

resonant sensor demonstrated sensitivity to NH3 gas concentration as low as 100 ppm 

with a response-recovery time of 10 min, which is attractive considering the generally 

slow recovery of CNTs-based gas sensor [70].  They reported that the resonant sensor 

coated with SWNTs is more sensitive than the sensor coated with MWNTs and this 
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difference in nanotube sensing ability is consistent with the observation by others.  

Chopra and coworkers later reported using the SWNTs coated resonant sensor to detect 

the presence of other gases such as CO, N2, He, O2, and Ar [71].  They showed the sensor 

can be selective as to give different resonant frequency shifts to different gases.   

 

In summary, in the past 7 years CNTs have attracted a great amount of attention for 

potential applications in chemical gas sensing at room or moderate temperatures.  

Although the exact sensing mechanisms are not yet fully understood, it is commonly 

believed that sensing involves charge transfer and dielectric response.  Gas sensors based 

on SWNTs or SWNT composites detect the target gas by altering electrical conductance, 

and comprise the majority of the research work.  However gas sensing device based on 

MWNTs, operating by dielectric response or mass sensitive principles, has also been 

reported.  The challenges facing the development of CNTs based gas sensing devices 

need to be continuously addressed before practical applications can be realized.  The 

challenges include the development of inexpensive and reliable devices, reproducible 

sensor performance, reasonable selectivity and sensitivity, robust devices, and recovery 

ability.                                                 
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Table 2.1: Common health hazardous gases and their OSHA permissible exposure limit, 

adapted from [4].  

 

Substance OSHA Permissible Exposure Limits (ppm) 

ammonia (NH3) 50 

arsine (AsH3) 0.05 

bromine (Br2) 0.1 

carbon dioxide (CO2) 5000 

carbon monoxide (CO) 50 

chlorine (Cl2) 1 

chlorine dioxide (ClO2) 0.1 

diborane (B2H6) 0.1 

fluorine (F2) 0.1 

hydrogen chloride (HCl) 5 

hydrogen cyanide (HCN) 10 

hydrogen fluoride (HF) 3 

hydrogen selenide (H2Se) 0.05 

hydrogen sulfide (H2S) 20 

nitrogen dioxide (NO2) 5 

nitric oxide (NO) 25 

ozone (O3) 0.1 

phosphine (PH3) 0.3 

sulfur dioxide (SO2) 5 
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Table 2.2: Summary of important electrical, mechanical and thermal characteristics of 

carbon nanotubes, adapted from [32]. 

 
 

Electrical and mechanical characteristics of CNTs 

Electrical Conductivity Metallic or semiconducting 

Electrical Transport Ballistic, no scattering 

Energy gap (semiconducting) Eg [eV] ~ 1/d (nm) 

Maximum current density ~ 1010 A/cm2 

Maximum strain 0.11% at 1V 

Thermal conductivity 6000 W/m·K 

Diameter 1 – 100 nm 

Length Up to millimeters 

Young’s modulus 1000 GPa 

Tensile strength 63 GPa 
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Figure 2.1: Schematic description of gas sensor response and recovery. 
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Figure 2.2: Typical gas sensor output curve.  It consists of near linear, nonlinear and 

saturation regions.  
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Figure 2.3: Schematic diagram of the cross-section view for a 3-dimensional Taguchi gas 

sensor. 
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Figure 2.4: Schematic diagram of 2-dimensional planar metal oxide semiconductor gas 

sensor, adapted from [12]. 
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Figure 2.5: Model of inter-grain potential barrier in resistive metal oxide gas sensors. 
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Figure 2.6: Schematic diagram of the basic element of an electrochemical gas sensor. 
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Figure 2.7: Schematic diagram of simplified zirconium oxide sensor (lambda sensor). 
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Figure 2.8: Schematic diagram of the basic sensing element of a pellistor (catalytic gas 

sensor), adapted from [15]. 
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Figure 2.9: Schematic diagram of the gas sensitive metal insulator semiconductor field 

effect transistor (MISFET) device structure.  Vg represents the gate voltage, VD the 

applied junction bias, ID the drain current, adapted from [1]. 
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Figure 2.10: Schematic diagram of MOSFET sensor with a suspended gate (SGFET), 

adapted from [22]. 
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Figure 2.11: Schematic diagram of a conducting polymer based chemiresistor. 
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Figure 2.12: SAW sensor consists of a pair of interdigitated (IDT) electrodes and a quartz 

substrate. 
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CHAPTER3: GAS SENSORS BASED ON MWNTS 

3.1 Introduction 

CNTs have great potential for application as chemical gas sensing devices with 

excellent sensitivity and fast response time because of their special geometry (all surface 

reacting material) and their tendency to change electrical properties at room temperature 

in the presence of certain gases [55][56][57].  The majority of research works on CNTs 

for gas sensing materials are based on SWNTs.  The reasons that MWNTs have not been 

attractive for this application are low purity in CNTs volume, less semiconductor 

characteristics (most MWNTs are metallic) and hence low sensitivity [65].  However, 

MWNTs can be produced in large scale thus the production cost is much lower than 

SWNTs.  In recent years, the interest in MWNTs as potential gas sensing materials has 

increased [63][64][65][68][69][70].   

 

The investigation of MWNTs as potential gas sensing materials is discussed in this 

chapter.  A unique material structure aligned MWNTs arrays based on porous anodized 

alumina template, was utilized to construct resistive and capacitive gas sensing device.  

By anodizing aluminum foil or tape into porous anodized aluminum oxide (AAO) 

template, MWNTs are grown inside the porous matrix through CVD process.  The gas 

sensing devices are fabricated by depositing metal electrodes on the surface of MWNTs 

arrays.  As the sensor is exposed to target gas, either the conductivity or the complex 

permittivity of the CNTs varies, alters the resistance or capacitance of the sensor.  For 

example, the sensors have shown response to NH3 and CO2.   

 

The synthesis method of the aligned MWNTs, the design and fabrication of the sensor 

device, and the experimental procedure are described in the following sections.  The 

experiment results as well as the data analysis and discussions are also presented.   
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3.2 Experimental 

3.2.1 Fabrication of aligned MWNTs 
 

Aligned MWNT arrays were fabricated inside porous alumina templates which 

allowed for the control of spatial density and the aspect ratio of the nanotubes.  CNTs 

were then synthesized without the use of a catalyst and the tubes were open ended on 

both sides.  The aligned MWNTs were fabricated by Dr. Vijay Singh’s research group 

using a chemical vapor deposition (CVD) method and the synthesis techniques are briefly 

described here.  The technical details and most of the microscopic images in this section 

are provided by Dr. Singh’s group. 

 

First, porous alumina templates were prepared by anodizing high purity aluminum 

(Al) foil (~ 2 µm thickness) or tape (~ 10 µm thickness) in an oxalic acid medium at a 

voltage of 40-45V.  Anodizing was performed at constant voltages for a sufficient time to 

develop steady-state morphology in different concentrations of sulfuric acid or oxalic 

acid solutions.  The setup for Al anodization is schematically depicted in Figure 3.1.  

After cleaning and degreasing the Al foil or tape was used as anode and a Pt sheet was 

used as the cathode.  The anodization was completed after 40-50 min at room 

temperature [72].  The anodization process followed by pore opening which involves 

dipping the Al foil or tape in a solution with less oxide dissolving ability than the 

anodizing electrolyte [72].  Here they use phosphoric acid for pore opening.  By either 

varying the anodization voltage or varying the time duration of pore opening process, the 

diameter of the pore and the total area of the pores per unit surface area can be 

controlled.  Figure 3.2 shows the SEM images of porous anodized alumina template with 

different pore size.   

 

Next, aligned, open-ended MWNTs arrays were synthesized within the pores of the 

porous AAO templates using a CVD system.  The CVD system was based on a 96 mm 

diameter Lindberg furnace, with a specially designed gas-flow injector to minimize 

turbulent flow as described previously by Andrews, et al. in [73].  The CVD process for 

aligned MWNTs growth is similar except that, pure xylene was used as hydrocarbon 



 

40 

source and a stream of Ar/N2 was replaced with N2 gas [73].  The growth procedure was 

as follows: first, the sample was heated to 700ºC in N2 over the course of half hour; next, 

xylene was injected into the preheater (maintained at 250ºC) using a syringe pump.  As 

the xylene vapors emerged at the outlet of the preheater, a stream of N2 gas swept the 

vapors into the furnace (maintained at 700ºC) where xylene is decomposed to produce 

MWNTs within the nano-sized pores.  The growth of nanotubes was performed at 700ºC 

for 1-2 hours by pyrolysis of xylene without the need for any catalyst and thus 

simplifying the synthesis procedure.  The sample was then allowed to slowly cool in N2.   

 

  The nanotubes arrays were characterizes by scanning electron microscopy (SEM) 

and transmission electron microscopy (TEM).  The SEM observations in Figure 3.3 

indicate that products of CVD process are spatially well separated, free standing, and 

open-ended nanotubes protruding from both top and bottom surfaces of the AAO 

template.  TEM investigation further revealed the structure of multi-walled 

nanotubes.  Figure 3.4 shows the TEM images of MWNTs with 25 nm (A) and 2 nm (B) 

inner core diameters.  For the sample shown in Figure 3.4 (A), the outer diameter of the 

nanotube is 35 nm (wall thickness is 5 nm on both side and the inner diameter is 25 nm), 

which corresponds to the 35 nm pore diameter of the porous AAO sample MWNTs based 

on.  Similarly for the sample in Figure 3.4 (B) the outer diameter is 12 nm (5 nm wall 

thickness on both side and the inner diameter is 2 nm), which is consistent with the 12 nm 

pore diameter of the porous AAO template.  In fact, Dr. Singh’s group discovered that the 

MWNT wall thickness remains the same (5 nm on both side) for a given CVD reaction 

time.  The AAO pore diameter, MWNT inner core diameter, and MWNT wall thickness 

of a series nanotube samples are listed in Table 3.1.  These samples were synthesized by 

CVD for 1 hour duration.  The TEM observations indicated that the distance of two 

neighboring fringes is approximately 3.4 Å, which is in agreement with the inter-planar 

separation of graphite (3.35 Å).  It was believed that the nanotube growth is initiated by 

the walls of the AAO template, hence alumina acts as catalyst.           
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3.2.2 Resistive sensing with as-grown MWNTs 
 

Four-point-probe resistance measurement revealed that the surface of the as-grown 

aligned MWNTs/AAO template is not perfectly insulating, indicating the existence of 

conductive paths along the surface.  This observation is a contradiction from the design 

of the aligned MWNTs/AAO structure consisting of free standing MWNTs spatially well 

separated by electrical insulating alumina.  Amorphous carbon, a potential by-product of 

the nanotube growth CVD process, was observed previously by other researchers [74][75] 

and believed to be the cause of the existing conductive paths on the sample surface.   

 

The surface conductivity of the aligned MWNTs/AAO template was utilized to 

construct resistive sensor for preliminary gas testing.  Figure 3.5 illustrates the schematic 

diagram of the resistive sensor structure (Note: amorphous carbon is not shown) 

and Figure 3.6 shows its photograph.  Silver (Ag) electrodes with the thickness of 200 nm 

were deposited on both ends of the MWNTs/AAO template surface through a shadow 

mask using Kurt Lesker EPS-2000 thermal evaporator.  The shadow mask was prepared 

by cutting through a piece of transparency film using a Lambda Physik COMPex 102 

excimer laser system.  The dimension of the metal contact is 15 mm by 2 mm.  By 

monitoring its resistance variation, the response of the sensor to target gases at room 

temperature was determined.          

3.2.3 Capacitive sensing with plasma-etched MWNTs 
 

Although the amorphous carbon on the surface of as-grown aligned MWNTs/AAO 

templates formed conductive paths and was utilized to construct resistive sensors, they 

are undesirable in capacitive sensor design due to the possibility of shorting the 

capacitive electrodes.  As can be seen from the capacitive sensor design in Figure 3.7 (top 

view) and Figure 3.8 (cross-section view), the adjacent interdigitated capacitor (IDC) 

electrodes could be shorted in the presence of amorphous carbon.  In order to remove the 

amorphous carbon prior to sensor fabrication, the surface of the as-grown MWNTs 

sample was etched in O2 plasma for 6 min using a plasma etch system (Plasma-Preen 862 

by Plasmatic System).  Figure 3.9 shows the SEM images of MWNTs sample prior to 
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and after plasma etching.  One can see from Figure 3.9 (B) that plasma etching removed 

amorphous carbon from the sample surface while at the same time kept the majority of 

CNTs remain intact.  The surface of the plasma etched MWNT arrays was then 

confirmed to be insulating using four point probe measurement. 

 

An IDC consists of two planar lumped electrodes (Figure 3.7) which can be 

manufactured by conventional thin film or thick film deposition technologies.  Due to its 

simple structure and maximized three-phase interface between gas, electrodes and 

sensing material, IDC has been widely accepted as the basic electrode design for gas 

sensors.  Here the capacitive sensor was fabricated by depositing 200 nm thick Ag planar 

IDC electrodes on top of aligned MWNTs/AAO template through a shadow mask using 

Kurt Lesker EPS-2000 thermal evaporator.  The shadow mask with IDC pattern was also 

prepared by laser (Lambda Physik COMPex 102 excimer laser system) cutting through 

Al foil or transparency film.  The width of IDC electrode is 0.5 mm with 2 mm line 

spacing and the total dimension of IDC is 18 mm by 14 mm.  A photograph of a 

capacitive sensor based on plasma-etched MWNTs/AAO template is shown in Figure 

3.10.  The sensor response was evaluated by monitoring capacitance variation at room 

temperature in the presence of target gases.               

3.2.4 Inductor-capacitor resonant sensor 
 

The concept of inductor-capacitor resonant gas sensor, in which the sensing 

mechanism is based on the dielectric response of the sensing material, was reported by 

Ong and coworkers [69][76].  They fabricated the sensor by depositing a thin layer of 

MWNTs-SiO2 composite on a planar LC (spiral inductor and IDC) resonant circuit sensor 

platform as shown in Figure 3.11.  Upon exposure to target gases, the adsorption of gas 

molecules in the MWNTs-SiO2 layer alters its complex permittivity and therefore 

changes the resonant frequency of the sensor.  Sensor response can be determined by 

tracking the impedance spectrum of the LC resonant circuit.  A typical impedance 

spectrum of a LC resonant circuit is shown in Figure 3.12, where the resonant frequency 

f0 is defined as the frequency where the real part of the impedance reaches its maximum, 

and the zero-reactance frequency fz is defined as the frequency at which the imaginary 
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part of the impedance goes to zero.  The complex permittivity ( εr
* = εr

` - jεr
`` ) of the gas 

sensing coating (MWNTs-SiO2 composite) can be calculated from the measured f0 and fz 

by modeling the sensor as an RLC circuit (Figure 3.13) using standard circuit analysis 

techniques [69][77][78]: 
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where εr
` is the real part of the complex permittivity, εr

`` is the imaginary part of the 

complex permittivity, κ is the cell constant of the IDC, and L is the inductance of the 

spiral inductor.  Both κ and L can be calculated from the resonant circuit dimensions.  

The free space permittivity ε0 and the relative permittivity of the electrically lossless 

substrate material εs are known parameters.  As can be seen from Eq(3.1) and (3.2), the 

complex permittivity of the gas sensing material is directly proportional to the measured 

frequency f0 and fz.  Therefore by measuring the impedance spectrum of the LC sensor, 

the dielectric response of the sensing materials can be determined.  Furthermore, Ong and 

coworkers tracked the sensor response with a loop antenna, thus making the LC resonant 

sensor a possible candidate for wireless, remote query applications.  The LC resonant 

sensor design was assembled and verified in this dissertation using the MWNTs/AAO 

based capacitive sensor and a commercially available capacitive humidity sensor.          

3.2.5 Experiment setup 
 

 The sensor testing system is schematically depicted in Figure 3.14.  The sensor is 

placed inside a sealed glass test chamber and the variation of its electrical signal is 

monitored by an instrument.  Three electrical instruments have been used for sensor 

testing: Hewlett Packard 3478A digital multimeter for resistance measurement, Hewlett 

Packard 4192A impedance analyzer for capacitance measurement, or Hewlett Packard 

8753E network analyzer for impedance spectrum (LC resonant sensor) measurement.  

Nitrogen (N2) or compressed dry air is used as the carrier gas.  The target gases are either 

pure (CO2) or diluted by N2 (NH3, NO2, etc.).  A mass flow controller is used for mixing 
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the carrier and target gases and feed them into the test chamber at the desired 

concentrations and flow rates.  The gas flow rates and concentrations are varied with a 

Sierra Instruments dual channel mass flow system, which is controlled by LabVIEW 

software through a National Instruments USB-6009 Data Acquisition device (DAQ).  A 

computer was used for controlling the mass flow system and electrical instrument via a 

GPIB interface, as well as analyzing and processing the measurements.  The sensors were 

tested either at room temperature or at moderate temperatures up to 100 ºC.  A heater tape 

wrapped around the chamber and a power supply were applied to achieve the elevated 

temperature.  The relative humidity (RH) inside the test chamber was maintained at 9% 

by the flow of carrier gas.  Higher RH up to 90% can be achieved by a small portion of 

carrier gas bubbling through pure DI water, then feeding the water vapor into the test 

chamber.  In order to maintain the constant baseline reading, prior to each experimental 

session, sensors were baked in vacuum at 100°C for at least 2 hours to desorb gas 

molecules.                      

3.3 Results and Discussion 

3.3.1 Resistive response 
 

Ammonia (NH3) was selected as one of the target gases for the resistive sensor 

because ammonia is a reducing gas with a penetrating odor, and high concentrations are 

threat to human health.  The allowed long term concentration limit is 50 ppm [4].  

Immediate and severe irritation of nose and throat occurs at 500 ppm.  Extremely high 

concentrations (above 5000 ppm) are lethal within a few minutes.  Measuring NH3 

concentration is of great interest in four major areas, i.e., environmental gas analysis [79], 

automotive industry [80], chemical industry [81], and medical applications [81].  The 

most commonly used NH3 sensors are WO3 metal oxide semiconductor sensors, gas 

FETs with Pd catalytic gates, and conducting polymer sensors.  A lower detection limit of 

1 ppm has been demonstrated, however only the conducting polymer sensor can operate 

at room temperature [81]. 
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The response of MWNTs/AAO resistive sensor to 1% NH3 exposure is shown 

in Figure 3.15.  The sensor was placed inside the test chamber in the flow of N2 at the 

beginning of the experiment and the sensor resistance was monitored by a digital 

multimeter.  After the sensor reached the equilibrium condition, i.e. constant resistance 

reading, NH3 was introduced into the chamber and mixed as 1% in volume to the existing 

carrier gas N2 for 1 hour at room temperature.  The sensor was then allowed to recover in 

the flow of pure N2.  The result in Figure 3.15 shows that the sensor resistance increased 

over 7% in the presence of NH3 and decreased immediately after turning NH3 off.  Here 

the sensitivity S is defined as: 
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where RNH3 is the sensor resistance in the presence of NH3 gas, and RN2 is the sensor 

resistance in equilibrium condition.   

 

The increase of the sensor resistance in the presence of NH3 is believed to be the 

result of charge transfer between nanotubes and NH3 molecules [65][68][69].  When 

MWNTs are exposed to NH3 gas (reducing agent, i.e., electron donor), electrons are 

transferred from NH3 to MWNTs.  A space charge region is then formed at the surface of 

the semiconducting MWNTs and as a result, the conductivity is reduced.  Making use of 

the existence of amorphous carbon and electrical contacts on the surface of 

MWNTs/AAO template, resistance changes of the nanotubes can be measured to 

determine sensor response.  The resistance increase in the presence of a reducing agent is 

evidence that the MWNTs are p-type semiconducting [68].  One can see from Figure 3.15 

that the recovery of the sensor is incomplete and the recovery rate is much slower than 

the response rate.  This indicates that the adsorbed NH3 molecules can not be completely 

removed by the flow of carrier gas due to the bonding between nanotubes and gas 

molecules. 

 

Shown in Figure 3.16 is the measured sensor response to repeated 1% NH3 exposure 

at room temperature.  After the sensor reached equilibrium, the ambient inside the test 

chamber was cycled between 1% NH3 and pure N2 for a period of 10 minutes each.  The 
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recorded resistance change was plotted in Figure 3.16.  The data shows that the change of 

resistance followed the gas delivery pattern promptly.  The sensor response is reversible 

and the sensitivity stabilized at approximately 8%. 

 

As the concentration of NH3 increased, the sensitivity of the sensor increased 

accordingly as expected.  Figure 3.17 shows the measured sensor response to 5% NH3 

exposure.  During the first exposure period, the sensitivity of the sensor increased from 

6.1% to 16% when the NH3 concentration increased from 1% to 5%.  The data in Figure 

3.17 indicated that the sensor recovery was also incomplete for 5% NH3 exposure.  It 

seems that the baseline drift was caused by the residual NH3 gas molecules building up 

on the nanotubes.  This further proved that the bonding between MWNTs and adsorbed 

NH3 molecules is too strong to be completely removed by the kinetic energy of N2 flux 

during the sensor recovery.  Shown in Figure 3.18 is the sensor response to various 

concentrations of NH3.  The sensor sensitivity was plotted as a function of NH3 

concentration and the curve shows a linear fit.  The response to various NH3 

concentrations shown in Figure 3.18 was measured on the same sample and this is a 

different sample from the one shown in Figure 3.15, Figure 3.16, and Figure 3.17.  One 

can see that the sensitivities to same concentrations of NH3 are different for the two 

sensors.  It seems that this discrepancy in sensor response was caused by the uncontrolled 

coverage of amorphous carbon.  As a result, the amount of nanotubes exposed to ambient 

environment and available to interact with gas molecules varies sample to sample, thus 

causing the difference in sensor response.  The resistive sensor based on MWNTs/AAO 

template demonstrated a lower NH3 detection limit of 100 ppm as shown in Figure 3.19.  

The sensitivity to 100 ppm NH3 exposure is up to 0.75% at room temperature.  

 

The resistive sensor is also found to be sensitive to carbon dioxide (CO2).  CO2 

sensors are important in air quality monitoring [82], food and medicine package spoilage 

detection [76], and industrial process control [83].  To date, electrochemical, optical and 

metal oxide semiconductor sensors have been used for CO2 detection. 
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To test the CO2 response, after the sensor reached equilibrium the ambient inside test 

chamber was cycled between CO2 and N2 for 10 minutes each.  The measured sensor 

response to repeated CO2 exposure at room temperature is plotted in Figure 3.20.  The 

sensor shows reversible response and incomplete recovery.  The CO2 sensitivity (less 

than 4%) is much lower compared to the NH3 sensitivity by the same sensor shown 

in Figure 3.16 and Figure 3.17.  This indicates that MWNTs have a higher affinity for 

NH3 which is in agreement with the fact that NH3 is a much stronger reducing agent than 

CO2.  Figure 3.21 shows the room temperature humidity dependency of the sensor.  One 

can see that as the relative humidity (RH) inside test chamber varies, the sensor resistance 

alters correspondingly.  The result shown in Figure 3.21 indicates that the sensor 

performance could be highly affected by the ambient humidity levels.      

 

In summary, the resistive sensors based on as-grown MWNTs/AAO template have 

demonstrated the ability to detect NH3 and CO2 at room temperature and strong humidity 

dependency.  Being sensitive to reducing gases confirmed the p-type semiconductor 

characteristic.  The lower detection limit of NH3 is 100 ppm and the sensitivity shows a 

linear dependency on the concentration in the range of 1% to 5%.  The sensitivity for 

NH3 detection is much higher than that of CO2 detection, which is consistent with the 

reports elsewhere [69] and indicates that the nanotubes adsorb NH3 more easily than CO2 

molecules.  The sensor response is reversible in the multiple-cycled testing and partially 

recovered by the flow of N2.  The sensing and recovery mechanisms can be explained as 

follows: the observed resistance change is due to the adsorption of reducing gas 

molecules (NH3 and CO2) into either the core or the surface of the MWNTs.  The 

reducing agents inject electrons into p-type MWNTs and decrease the conductivity.  To 

date, the gas-MWNT bonding mechanisms have not been fully understood yet.  It is 

believed that gas molecules absorbed into MWNTs through a strong chemisorption and a 

weak physisorption.  During the sensor recovery stage, the weak electrostatic bond 

between MWNTs and physisorbed gas molecules are easily overcome by the kinetic 

energy of the flowing N2, therefore result in the release of the physisorbed gas molecules.  

On the other hand, the bond between MWNTs and chemisorbed gas molecules are too 

strong to be broken by the flow of N2.  As a result, there is a slow buildup of chemisorbed 
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gas molecules on MWNTs surface and therefore the sensor recovery is incomplete.  Due 

to the strong humidity dependency and uncontrolled nature of amorphous carbon 

coverage on the surface of as-grown MWNTs/AAO template, currently the as-prepared 

aligned MWNTs samples are practical only for preliminary gas sensing investigation 

instead of sensor device prototyping.                                         

3.3.2 Capacitive response 
 

The measured response of plasma etched MWNTs/AAO capacitive sensor to 1% NH3 

exposure at room temperature is shown in Figure 3.22.  After the sensor reached 

equilibrium in N2, the ambient inside the test chamber was cycled between 1% NH3 and 

pure N2 for periods of 10 minutes.  The variation of sensor capacitance was recorded by 

an impedance analyzer and plotted in Figure 3.22.  The data shows that the dynamic 

response of capacitance followed the gas delivery pattern promptly, i.e., the capacitance 

is sensitive to NH3 and allowed to recover in N2 ambient. One can see that the sensor 

response is reversible and the sensor capacitance increased in the presence of NH3 gas.  

The sensor recovery is incomplete but there is no evidence of NH3 gas molecule 

gradually building-up inside MWNTs/AAO template as found in resistive sensor 

response.  The sensitivity is in the range of 0.25% to 0.3%.  Here the sensitivity S is 

defined as: 
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Where CNH3 is the sensor capacitance in the presence of NH3 gas, and CN2 is the sensor 

capacitance in equilibrium condition.  As the concentration of NH3 was raised, the 

sensitivity increased accordingly as shown in Figure 3.23.  The concentration of NH3 was 

increased to 5% and as a result the sensitivity of the sensor increased to the range of 0.5% 

to 0.6%.  Once again, the response followed the presence of gas inside test chamber 

closely with a response time less than 2 minutes.  The sensor capacitance increased in the 

presence of 5% NH3 and recovered in pure N2 flux.   

 

Similar to the resistive sensor, the MWNTs/AAO capacitive sensor is also sensitive to 

CO2 as shown in Figure 3.24.  First, an equilibrium condition was achieved by soaking 
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the sensor in N2 ambient.  Next the sensor was exposed to CO2 and N2 alternately for 

periods of 10 minutes at room temperature.  The change of capacitance was monitored by 

an impedance analyzer and plotted in Figure 3.24.  One can see that the capacitance 

increased as the sensor was subjected to CO2 exposure and recovered in the ambient of 

pure N2.  The sensitivity of the first CO2 exposure cycle is as high as 1.2% but gradually 

decreased through out the duration of the experiment.  The data in Figure 3.24 also 

indicated that there was a gradual downward drift in the baseline capacitance.  It is 

believed that the baseline drift associated with the CNT sensor is the result of electrical 

noise characteristic of nanotubes.  As described by Collins and coworkers [84], carbon 

nanotubes generate a high level of 1/f noise.  The noise power density is inversely 

proportional to the measurement frequency as well as the number of nanotubes. 

 

In order to identify the active gas sensing materials of the capacitive sensor, the 

model of IDC and its building block - unit cell are investigated.  Figure 3.25 depicted the 

schematic description of the IDC and a unit cell.  By definition, the capacitance of an 

interdigitated capacitor is calculated by summing the 2-dimensional unit cell capacitances.  

The unit cell is shown in the highlighted area of Figure 3.25 A and in detail in Figure 

3.25 B.  Neglecting the edge effects, the total capacitance of the IDC is [85]: 

                                          ( )LNCC UCIDC 1−=                                                (3.5) 

where N is the number of unit cells and L is the length of the electrodes.  The capacitance 

CUC of a unit cell is composed of three partial capacitances C1, C2 and C3, as shown 

in Figure 3.25 B.  The capacitance of a unit cell is defined as [85]: 

                                                     321 CCCCUC ++=                                                (3.6) 

where C1, C2 and C3 are corresponding to permittivity ε1, ε2 and ε3 as shown in Figure 

3.25 B.  According to the sensor design which consists of IDC electrodes deposited on 

the surface of MWNTs/AAO template, ε1 and ε2 are identical and equal to the ambient 

permittivity inside the test chamber.  The permittivity ε3 is the permittivity of the 

MWNTs/AAO template.  Therefore C1 and C2 are determined by the ambient inside the 

test chamber and only C3 is directly related to the MWNTs.  In order to demonstrate that 

the MWNTs are the active sensing materials, first a control sensor was constructed by 

replacing the MWNTs/AAO template with a passive ceramic alumina substrate as shown 
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in Figure 3.26.  Identical IDC electrodes were then deposited on the surface of alumina 

substrate.  The unit cell of the control sensor is the same as the one shown in Figure 3.25 

B except that the MWNTs/AAO template was replaced by a passive ceramic substrate.  

The control sensor was then placed inside the test chamber and subjected to NH3 and CO2 

exposure as described earlier in this section.  The capacitance of the control sensor did 

not show any response.  The partial capacitances C1 and C2 are the same for both 

MWNTs sensor and the control sensor, and they are subjected to the same gas exposure.  

The only difference between these two sensors is C3 (i.e., ε3) therefore C3 is the only 

contribution in the capacitance change of MWNTs sensor and C1 and C2 are non-factors.  

This is the evidence that the permittivity ε3 is the only contribution for the variation of 

sensor capacitance upon exposure to target gases, thus confirming that the MWNTs/AAO 

template is the active sensing material. 

 

Next, second control sensor was fabricated and tested to further prove that it is the 

nanotube not the AAO of the MWNTs/AAO template causing the sensor response in the 

presence of gases.  The second control sensor is similar to the first one except that the 

passive ceramic substrate was replaced by a porous AAO template, which is the same as 

the one used for nanotube synthesis.  Thus the second control sensor is composed of IDC 

electrodes deposited on the surface of porous AAO template (Figure 3.26).  The only 

difference between the MWNTs sensor and the second control sensor is the presence of 

MWNTs.  The control sensor was then subjected to target gas exposure as described 

previously and, as expected did not show any response.  The experiment result with the 

second control sensor further demonstrated that the nanotubes inside the MWNTs/AAO 

template are indeed the active gas sensing materials and their interaction with the gas 

molecules alters the capacitance of the sensor during the experiments. 

 

Once the MWNTs were identified as the active sensing material for the capacitive 

sensor, the sensing mechanism was examined.  It has been demonstrated that the 

capacitance of the sensor increased in the presence of reducing agents such as NH3 and 

CO2.  Oxygen was selected as target gas to investigate the sensor response to an oxidizing 

agent.  After the sensor reached equilibrium in N2, the ambient inside the test chamber 
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alternated between O2 and N2 for a period of 10 minutes each.  The variation of sensor 

capacitance was recorded by an impedance analyzer and plotted in Figure 3.27.  One can 

see from Figure 3.27 that the capacitance increased in the presence of O2 and recovered 

in N2.  The initial sensitivity is approximately 0.26% and then gradually decreased during 

the experiment.  The fact that sensor capacitance increased in the presence of both 

reducing and oxidizing agents indicated that the dielectric effect, instead of charge 

transfer, is the dominant factor in the sensing principles.  

 

It is believed that the capacitance response of nanotubes to gas molecules is the 

combination of dielectric effect and charge transfer [67], i.e., it consists of contributions 

from both the dielectric and the charge effects of the adsorbed molecules: 
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Where the dielectric effect (the first term) is the result of the field-induced polarization of 

surface dipoles and the second term is the contribution of charge transfer between the 

nanotubes and adsorbed molecules.  The complex permittivity ε* of the gas sensing 

material MWNTs can be expressed as: 

                                               ''' εεε j−=∗                                                          (3.8) 

Where the real part ε' is directly related to the dielectric effect and the imaginary part ε'' is 

directly proportional to the conductivity σ as: 

                                                      ''
02 εεπσ f=                                                         (3.9) 

Where f is the measurement frequency and ε0 is the free space permittivity.  Thus the 

change in imaginary part ε'' is due to the charge transfer between the nanotubes and the 

adsorbed gas molecules. 

 

Ong, et al. [69] applied the mixture of MWNTs and SiO2 powder (mechanical binder) 

as active gas sensing material to construct an LC sensor which consists of a planar IDC 

and a spiral inductor.  They analyzed the response of the complex permittivity of the 

nanotubes in the presence of reducing (NH3 and CO2) and oxidizing agents (O2) 

respectively by monitoring the impedance spectrum.  Their data shows that both the real 

and imaginary parts of the CNTs’ complex permittivity are sensitive to the target gases 
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but the latter is much more sensitive.  Therefore they claimed that the sensor response is 

mostly composed of the contribution from the charge transfer between nanotubes and gas 

molecules, i.e., charge transfer induced conductance change is the principle gas sensing 

mechanism for their MWNTs gas sensor.  However, the in-depth investigation of our 

capacitive sensors based on MWNTs/AAO template revealed otherwise. 

 

In order to investigate the effect of target gas exposure on the complex permittivity of 

the MWNTs capacitive sensor, the capacitance of the IDC is modeled as a pure 

capacitive, conventional parallel plate capacitor.  The capacitance C is then expressed as: 
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Where A is the surface area of the plate and d is the distance between the two parallel 

plates.  Substitute Eq. 3.8 into Eq. 3.10, then capacitance can be expressed as: 
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The impedance Z of a pure capacitor is defined as: 
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where ω is angular frequency.  Therefore the admittance Y of the capacitor can be 

expressed as: 
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where G is conductance and B is susceptance of the capacitor.  Substitute Eq. 3.11 into 

Eq. 3.13 then the admittance Y can be expressed as: 
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As the result, conductance G is proportional to the imaginary part of complex permittivity 

ε`` as: 
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Susceptance B is proportional to the real part of complex permittivity ε` as: 
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One can see from Eq. 3.13 to 3.16 that by measuring capacitance C, conductance G and 

susceptance B simultaneously, the in-depth investigation of complex permittivity gas 

response is possible.  Thus the variation of susceptance B correlates with the dielectric 

effect and the change of conductance G is the direct reflection of charge transfer.  Figure 

3.28 and Figure 3.29 shows the measured C, B and G of the MWNTs/AAO capacitive 

sensor in the presence of NH3 (5%) and O2 respectively.  One can see that for both 

reducing and oxidizing agents, the capacitance response is solely determined by the 

variation of susceptance B and the effect of conductance change is negligible.  Therefore 

the experiment results shown in Figure 3.28 and Figure 3.29 indicate that the gas sensing 

mechanism of the MWNTs/AAO capacitive sensor is based on the dielectric effect, i.e. 

surface dipole polarization, instead of charge transfer.  This surface capacitance effect is 

believed to be caused by electric field radiating from IDC electrodes when the device is 

under test.  The electrical field produces a net polarization of the adsorbed gas molecules 

and the result can be detected as an increase in sensor capacitance in the presence of 

either reducing or oxidizing gas.   

 

A model of MWNTs/AAO capacitive sensor is developed and partially adapted from 

the work of Endres, et al [85].  The cross section view of the MWNTs capacitive sensor 

is shown in Figure 3.30.  The capacitance of an IDC is commonly calculated by summing 

all the unit cell capacitance CUC.  Neglecting edge effects, the IDC capacitance is: 

                                            ( )LNCC UC 1−=                                                 (3.17)   

Where N is the number and L is the length of the electrodes.  The capacitance CUC of a 

unit cell is the summation of three partial capacitances C1, C2, and C3 corresponding to 

the permittivity ε1, ε2 and ε3 as shown in Figure 3.30.  Thus: 

                                                 321 CCCCUC ++=                                              (3.18)  

Capacitance C1 and C3 can be calculated by conformal mapping of two semi-planes with 

permittivity ε1 and ε3 into two parallel plate capacitors.  C1 and C3 can be expressed by 

using a complete elliptic integral of the first kind K[x] as the transformation [85]: 
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Where dsep is the electrode separation and dcell is the width of a unit cell.  ε1 is the relative 

permittivity of the ambient gas encompass partial capacitance C1.  ε3 is the relative 

permittivity of the MWNTs/AAO template which depends on the pore structure of the 

porous AAO and εCNT.  The relative permittivity of the composite can be modeled as a 

linear combination of the individual relative permittivity weighted by respective volume 

fractions f [86], i.e., 

                        airairAAOAAOCNTCNTAAOCNT fff εεεεε ×+×+×== /3             (3.20) 

The volume between the electrodes is treated as a parallel plate capacitor C2: 

                                                     
sepd
hC 202 εε=                                             (3.21) 

Where h is the thickness of the electrodes and ε2 is the same as ε1. 

 

The model of the capacitance sensor indicated that the reduction of the electrode 

spacing dsep will increase the capacitance, reduce the signal-to-noise ratio, and hence 

increase the sensitivity of the sensor.  Currently, the IDC electrodes are patterned by 

physical metal deposition through a shadow mask.  However, the resolution limit of the 

shadow mask prohibited dsep to be less than 1 mm.  Therefore in order to reduce the IDC 

dimension, the technique of photolithography with much higher resolution is desired for 

the future improvement of the capacitive sensor performance.           

3.3.3 LC resonant sensor impedance response 
 

In order to verify the design of LC resonant sensor, a Vishay BCComponants 

capacitive humidity sensor was purchased from Digi-Key Corporation.  First the sensor 

was characterized in response to the change of relative humidity using the sensor testing 

system.  The result showed in Figure 3.31 A indicated that the capacitance of the sensor 

precisely followed the variation of relative humidity inside the test chamber.  The 
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measured characteristic of the sensor, i.e. capacitance as a function of relative humidity, 

is almost identical as claimed in its datasheet.  Next the capacitive humidity sensor was 

incorporated into a planar spiral inductor platform to form a pseudo LC resonant sensor.  

The structure of the spiral inductor is similar to the one shown in Figure 3.11 with a 

dimension of 40 mm in outer diameter, 25 mm in inner diameter, and 1 mm in electrode 

width.  The sensor platform was based on a passive ceramic substrate and the inductor 

electrodes were patterned using Heraeus C5729 gold conductor paste through an Accu-

coat 3230 screen printer (AREMCO Products).  The capacitive humidity sensor was then 

connected with the planar inductor to form a pseudo LC resonant humidity sensor and 

subjected to humidity test.  Since the inductance of the spiral inductor can be calculated 

by its geometry and the characteristic of capacitive humidity sensor is known, therefore 

the impedance spectrum and the resonant frequency of the pseudo LC resonant circuit 

can be calculated and predicted.  Figure 3.31 B shows the predicted and measured 

resonant frequency of pseudo LC resonant sensor in response to the relative humidity 

change.  The data indicated that the sensing behaviors of theoretical and measured LC 

sensor are in agreement with a difference in magnitude of the sensitivity.  The results 

verified the operating principles of the LC resonant sensor, however future investigation 

is needed to understand the cause of magnitude discrepancy in resonant frequency.   

 

A planar LC resonant sensor was constructed by replacing the component capacitive 

sensor with the MWNTs/AAO based capacitive sensor and in connection with the spiral 

inductor.  The impedance spectrum of this nanotube based LC sensor was monitored in 

the presence of target gases, however no response was observed.  It is believed that the 

response of MWNTs/AAO capacitor is not high enough for the resonant circuit to 

generate measurable impedance response.  Therefore the key to improve the LC sensor 

performance is to increase the sensitivity of the MWNTs based capacitive sensor.                   

3.4 Conclusion 

The synthesis method of MWNTs/AAO template was briefly discussed and the multi-

walled structure was confirmed by material characterization techniques.  Amorphous 

carbon was present on the surface of the as-prepared MWNT template and it was 
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believed to be the by-product of the nanotube growth process.  The as-prepared MWNT 

sample was incorporated into resistive sensor structure for conductance-based room 

temperature gas sensing test and its resistance is in response to the exposure of reducing 

agents NH3 and CO2.  The change of nanotube conductance is the contribution from 

charge transfer between nanotubes and the adsorbed gas molecules.  The demonstrated 

increased resistance of MWNTs/AAO material to reducing gas molecules served as the 

evidence of p-type semiconductor.   

 

Capacitive sensors were designed and fabricated by depositing interdigitated 

electrodes on the surface of plasma etched MWNTs/AAO templates.  The sensors 

showed response to both reducing and oxidizing agents.  The in-depth investigation 

revealed that the capacitive sensing mechanism is mainly based on the field-induced 

surface dipole polarization instead of charge transfer reported elsewhere.  The magnitude 

of the capacitive sensitivity is restrained by the IDC dimension, which is explained by a 

capacitive sensor model.  Advanced patterning techniques are desired to achieve finer 

IDC dimension, therefore to increase capacitance and to improve sensor performance.   

 

The inductor-capacitor resonant sensor design was verified by constructing and 

testing a pseudo LC sensor, which consists of a component capacitive humidity sensor 

and a thick film planar spiral inductor.  This pseudo LC sensor was then subjected to 

humidity variation and the sensor response is consistent with the calculated prediction, 

only with a discrepancy of magnitude in sensitivity.  The MWNTs based LC sensor did 

not show observable response upon exposure to target gas due to the relatively low 

capacitive sensitivity demonstrated by MWNT/AAO materials.   

 

In summary, the MWNTs/AAO templates have demonstrated promising aspect for 

potential room temperature gas sensing applications.  However, some major technical 

challenges have to be addressed, such as reproducibility, structural robustness and batch 

productivity, before further sensor prototyping investigations are undertaken.                             
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Table 3.1: The list of AAO pore diameter, MWNT inner core diameter, and MWNT wall 

thickness for a series of samples prepared for gas sensing experiment.  Data was provided 

by Dr. Vijay Singh’s group. 

 
 

AAO pore diameter 

(nm) 

MWNT inner core diameter 

(nm) 

MWNT wall thickness 

(nm) 

50 40 10 

35 25 10 

25 15 10 

12 2 10 
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Figure 3.1: Schematic diagram of the setup for Al anodization, adapted from [72]. 
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Figure 3.2: SEM images of the top view of anodized porous alumina (AAO) template 

with different pore size.  A of 45 nm and B of 75 nm.   
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Figure 3.3: SEM images of spatially well separated, aligned nanotube arrays growth 

within porous AAO template.  Where A shows the spatially well separated CNTs 

protrude through the surface of porous AAO template.  B and C shows the nanotubes are 

open-ended on both sides.  D shows the cross section of the CNTs containing AAO 

template.      
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Figure 3.4: TEM images show MWNTs with 25 nm (A) and 2 nm (B) inner core 

diameters in addition to 5 nm wall thickness. 
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Figure 3.5: Schematic diagram of the as-grown MWNTs based resistive gas sensor (top 

view).  The device was constructed by depositing metal contacts on the surface of the as-

prepared aligned MWNTs/AAO template.  Amorphous carbon is not shown.   
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Figure 3.6: The photograph of a resistive gas sensor based on as-grown, aligned 

MWNTs/AAO template. 
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Figure 3.7: Schematic diagram of the MWNTs capacitive gas sensor (top view).  The 

sensor was constructed by depositing IDC metal electrodes on the surface of plasma-

etched, aligned MWNTs/AAO template. 
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Figure 3.8: Schematic diagram of the MWNTs capacitive gas sensor (cross-section view). 
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Figure 3.9: The SEM images of the as-grown (A) and plasma-etched (B) MWNTs/AAO 

template.  It can be seen that the plasma etching removed the amorphous carbon from 

sample surface while kept the majority of the CNTs remain intact.   
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Figure 3.10: The photograph of a capacitive gas sensor based on the plasma-etched, 

aligned MWNTs/AAO template. 
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Figure 3.11: Schematic diagram of the LC resonant sensor (top view).  It consists of an 

IDC in connection with a spiral inductor.  The IDC is coated with the gas sensing 

material. 
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Figure 3.12: An illustrative measured impedance spectrum of LC resonant circuit.  The 

resonant frequency f0 is defined as the frequency where the real part of the impedance 

reaches its maximum, and the zero-reactance frequency fZ is the frequency where the 

imaginary part of the impedance crosses zero.   
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Figure 3.13: Equivalent circuit model of the LC resonant sensor.  The sensor is modeled 

as an RLC circuit. 
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Figure 3.14: Schematic description of the gas sensor testing system.  The sensor is placed 

inside a sealed glass chamber.  Nitrogen (N2) or compressed dry air is used as the carrier 

gas.  The target gases are either pure (CO2) or diluted by N2 (NH3, NO2, etc.).  A mass 

flow controller is used to mix the carrier and target gases and feed them into the test 

chamber at various proportions and flow rates.  The electrical instruments included a 

digital multimeter, impedance analyzer, or network analyzer depending on the types of 

electrical signal to be measured.   
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Figure 3.15: Measured resistance response when the MWNTs/AAO sensor is exposed to 

1% NH3 (in the flow of N2) for 1 hour at room temperature.   
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Figure 3.16: Measured resistance response when the MWNTs/AAO sensor is exposed to 

1% NH3 and pure N2 alternately for periods of 10 minutes at room temperature.  The 

sensor shows reversible response and incomplete recovery.     
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Figure 3.17: Measured resistance response as the MWNTs/AAO sensor is exposed to 5% 

NH3 and pure N2 alternately for periods of 10 minutes at room temperature.  The 

sensitivity has increased as expected.  The response is reversible and the sensor recovery 

is incomplete.   
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Figure 3.18: Measured response of the resistive sensor to various NH3 concentrations at 

room temperature.  The change in resistance with respect to the baseline was plotted 

versus the NH3 concentration.  The curve shows a linear fit. 
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Figure 3.19: Measured resistance response when the sensor is exposed to 100 ppm NH3 

and pure N2 alternately for periods of 10 minutes at room temperature.  Despite the 

relatively low sensitivity, the sensor shows reversible response and incomplete recovery. 
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Figure 3.20: Measured resistance response when the MWNTs/AAO sensor is cycled 

between CO2 and N2 for 10 minutes respectively at room temperature.  The sensor shows 

reversible response and incomplete recovery.     
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Figure 3.21: Measured resistance response as the MWNTs/AAO sensor was subjected to 

relative humidity (RH) variation at room temperature.  A strong humidity dependency 

was observed.  
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Figure 3.22: Measured capacitance response as the MWNTs/AAO sensor is exposed to 

1% NH3 and pure N2 alternately for 10 minutes periods at room temperature.  The 

response is reversible and the sensitivity is in the range of 0.25% to 0.3%.    
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Figure 3.23: Measured capacitance response as the MWNTs/AAO sensor is exposed to 

5% NH3 and pure N2 alternately for 10 minutes periods at room temperature.  The 

response is reversible and the sensitivity is correspondingly increased to the range of 

0.5% to 0.6%.  
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Figure 3.24: Measured capacitance response as the MWNTs/AAO sensor is exposed to 

CO2 and N2 alternately for 10 minutes periods at room temperature.  The response is 

reversible but the baseline is drifting down continuously.   
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Figure 3.25: Schematic description of the unit cell within a capacitive MWNTs sensor.  

Where A shows the simplified cross-section of the sensor and the highlighted unit cell is 

shown in detail in B.  The capacitance of a unit cell is composed of three partial 

capacitances, corresponding to permittivities ε1, ε2, and ε3.  
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Figure 3.26: Schematic diagram of the unit cell for MWNTs capacitive sensor and control 

sensors.  The choice of sensor platform material is MWNTs/AAO template for nanotube 

capacitive sensor, passive ceramic substrate for control sensor one and porous AAO 

template without MWNTs for control sensor two.   
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Figure 3.27: Measured capacitance response as the MWNTs/AAO sensor is exposed to 

O2 and N2 alternately for 10 minutes periods at room temperature.  The sensor response is 

reversible.  The data indicates that the sensor responses to oxidizing agent and reducing 

agent in the similar way, which implies that the sensing mechanism is dielectric based 

rather than conductance based.   
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Figure 3.28: Measured response of capacitance C, susceptance B, and conductance G in 

the presence of 5% NH3 gas.  The data indicates that the response of C is determined by 

susceptance B instead of conductance G.   
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Figure 3.29: Measured response of capacitance C, susceptance B, and conductance G in 

the presence of O2.  The data indicates that the response of C is determined by 

susceptance B instead of conductance G. 
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Figure 3.30: Schematic description of the model for the MWNTs/AAO based capacitive 

gas sensor.  Shown is the cross sectional view and some of the key parameters.  The 

length of IDC electrode L is not shown.    
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Figure 3.31: Measured response of the capacitive humidity sensor (A) and the calculated 

and measured resonant frequency of an LC humidity sensor in response to the change of 

relative humidity (B).   
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CHAPTER4: GAS SENSORS BASED ON SWNTS   
 

4.1 Introduction 

Both single-walled and multi-walled carbon nanotubes for gas sensing at room 

temperature have attracted great interest because most of the commercially available gas 

sensors operate at elevated (at least 200°C) temperatures.  Gas sensors based on MWNTs 

are discussed in chapter 3.  A low cost resistive gas sensor based on SWNTs for the room 

temperature detection of NO2 and NH3 is presented in chapter 4.  The sensor was 

fabricated by coating the interdigitated electrodes with the mixture of SWNTs and 

organic binder, thus SWNT networks covering the IDC electrodes.  The resistance of the 

sensor was monitored in the presence of various concentrations of NO2 and NH3 

(balanced by N2) at room temperature.   

 

The resistance of SWNTs sensor was found to be sensitive to both NO2 and NH3.  

The sensor demonstrated lower detection limits of 1 ppm for NO2 and 10 ppm for NH3 

with reversible and reproducible response.  At room temperature, sensor recovery was 

found to be slow and incomplete, therefore possible solutions were investigated to 

facilitate the recovery process.  The gas molecule adsorption and desorption mechanisms 

are discussed.  Sensor performance in the background of air instead of N2 is also 

investigated and discussed in preparation for the future device prototyping.            

4.2 Experimental 

4.2.1 Sensor fabrication 
 

The sensor electrodes were prepared by the technique of thick film screen printing.  

Au (C5729 lead free gold conductor paste, Heraeus) interdigitated electrodes were 

patterned on ceramic substrate (ADS-96R, CoorsTek) using an Aremco Accu-coat 3230 

screen printer.  Once patterned, the conductor paste was dried to evaporate the solvent at 

150ºC and then fired for 60 minutes with a peak temperature of 850ºC using an Intex 

TF76 infrared thick film firing furnace.   
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The SWNTs were purchased from Cheap Tubes Inc., USA [87].  These 90 wt% 

purified SWNTs have 1-2 nm outer diameter and 0.8-1.6 nm inner diameter with the 

length of 5-30 µm.  To prepare the low cost gas sensing material, 1 wt% SWNTs (lowest 

reported loading for this type of sensor) were dispersed in an organic binder α-terpineol 

(C10H17OH, Alfa Aesar) by 1 hour ultrasonic vibration.  A Thinky AR-250 planetary 

mixer was then used to obtain the well dispersed SWNT mixture by mixing for 10 

minutes at 800 rpm.  In order to obtain uniformly distributed gas sensing material on the 

sensor platform, spin-coating was chosen instead of screen-printing to apply the SWNT 

mixture.  The mixture of well-dispersed SWNTs and α-terpineol was then coated on the 

sensor platform by spin-coating for 30 seconds at 3500 rpm.  Next, the sample was kept 

in the infrared thick film firing furnace at 350ºC for 2 hours to burn off the residual 

organic binder [88][89].  Figure 4.1 shows the schematic description of the SWNTs based 

resistive sensor (top view).  Figure 4.2 shows that uniformly distributed SWNT network 

was achieved by spin-coating instead of screen-printing.                 

4.2.2 Resistive gas sensing and sensor recovery 
 

A total of 9 SWNT sensors were prepared, of which 5 were used for NO2 detection 

and 4 for NH3 detection.  Both NO2 and NH3 are foul smelling toxic gases, where NO2 is 

one of the most prominent sources of air pollution.  The immediately dangerous to life or 

health concentration of NO2 is 20 ppm and the OSHA permissible exposure limits is 5 

ppm [4].  The detection of NO2 and NH3 are of great importance for environmental 

protection, industrial control and medical applications.   

 

The sensor was kept in vacuum at 100ºC for 2 hours prior to each experiment session 

for the purpose of gas molecule desorption.  The SWNT sensor was then placed inside 

the test chamber in the flow of N2 gas until the equilibrium condition was obtained, i.e. 

the resistance measurement stabilized.  The response of sensor resistance to both 

reducing agent NH3 and oxidizing agent NO2 at various concentrations was monitored.  

Typical baseline resistance for the SWNT sensor ranged from 10 to 15 Ω.  Multiple-

cycled testing was also performed for each sample during which the ambient inside the 
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test chamber was alternated between pure N2 and the target gases with desired 

concentrations for periods of 10 minutes each.  The sensor response was evaluated by 

sensitivity S, which was defined as: 

100(%)
2

2 ×
−

=
N

Ngas

R
RR

S                                              (4.1) 

where RN2 is the resistance in the presence of carrier gas N2, and Rgas is the resistance in 

the presence of the target gas.  The sensor recovery was incomplete after the removal of 

the target gases.  In order to evaluate the methods to improve the sensor recovery, the 

effects of ultraviolet illumination and heating on sensor response were investigated.  In 

order to prepare for the future device prototyping work, the carrier gas N2 was replaced 

by the compressed air and the sensor performance in the background of air instead of N2 

was evaluated.  In this case, the sensitivity S was defined as: 

                   100(%) ×
−

=
air

airgas

R
RR

S                                              (4.2) 

where Rair is the sensor resistance in the presence of carrier gas air.  The dependency of 

the SWNT sensor to temperature and humidity in the ambient of air was also investigated.  

The experiment setup was previously described in detail in section 3.2.5.     

4.3 Results and Discussion 

4.3.1 NO2 detection 
 

The response of a SWNT resistive sensor to 10 ppm NO2 exposure is shown in Figure 

4.3.  The sensor was placed inside the test chamber in the flow of N2 at the beginning of 

the experiment.  The sensor resistance was monitored by a digital multimeter (Hewlett 

Packard 3478A).  After the sensor reached the equilibrium condition (constant resistance), 

NO2 was introduced into the chamber at a concentration of 10 ppm in addition to the 

existing carrier gas N2.  The sensor was exposed to NO2 for 30 minutes at room 

temperature and then allowed to recover in the flow of pure N2.  The result in Figure 4.3 

shows that the sensor resistance responded promptly to the presence of NO2.  The 

resistance was reduced by 11% in response to NO2 exposure and increased immediately 

upon the removal of NO2.   
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Shown in Figure 4.4 is the measured sensor response to repeated 10 ppm NO2 

exposure at room temperature.  After the sensor reached equilibrium, the ambient inside 

the test chamber was cycled between 10 ppm NO2 and pure N2 for periods of 10 minutes 

each.  The recorded resistance change is plotted in Figure 4.4.  The data shows that the 

change of resistance followed the gas delivery pattern promptly.  The dynamic sensor 

response is reversible and the sensor recovery in the flow of N2 is incomplete.  The 

incomplete recovery is attributed to the built-up of NO2 molecules on the surface of 

SWNTs.  As a result, the sensor shows an irreversible decrease in resistance throughout 

the duration of the experiment.   

 

Five SWNTs sensors were employed for the NO2 detection.  The response of all five 

sensors to various concentrations of NO2 gas is depicted in Figure 4.5.  The 

concentrations of NO2 varied from 1 ppm to 50 ppm and the data was based on the 

experiment results of 10 minutes NO2 exposure.  Shown in the plot is the average 

sensitivity of all five samples (with one standard deviation) as a function of NO2 

concentration.  One can see that the sensitivity of SWNTs sensors increases with an 

increase in the concentration of NO2 gas and demonstrated a lower detection limit of 1 

ppm.  Figure 4.5 indicated that the sensitivity was nearly a linear function of the NO2 

concentration.   

 

The response of the SWNTs sensor to NO2 is in agreement with trends reported 

elsewhere [55][57] and the sensing mechanism can be explained as follows.  Heat 

treatment (350ºC) applied during the sensor preparation to burn off organic residual have 

formed SWNT bundles of open-ended tubes, as described by Nguyen and coworkers [89].  

The possible adsorption sites for gas molecules in the bundles are, therefore, the inner 

channels of tubes, the external walls, the interstitial channel between the tubes within the 

bundles, and the grooves between two outer tubes of neighboring 

bundles [90][91][92][93][94].  Upon exposure, NO2 gas molecules are present at these 

adsorption sites and charge transfer from SWNTs to NO2 occurs.  Known as a strong 

oxidizer, NO2 has an unpaired electron [55] and this strong electron-withdrawing ability 
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results an increased conducting holes carrier concentration within SWNT bundles.  As 

can be seen from Figure 4.3, Figure 4.4 and Figure 4.5, the resistance of the SWNT 

sensor decreased in the presence of oxidizing agent NO2, which indicates that conducing 

holes are the majority carriers for these SWNTs.  Therefore SWNTs employed in this 

work demonstrate p-type semiconducting characteristic.   

 

As can be seen from Figure 4.4, room temperature sensor recovery in the flow of N2 

was incomplete as evidenced by an irreversible decrease in sensor electrical resistance.  

The incomplete recovery compromises the long term performance of the sensor.  In order 

to improve the sensor recovery, it is necessary to investigate the mechanism of gas 

molecule adsorption on SWNT in detail.  Although the exact binding mechanism 

between gas molecules and SWNTs is not yet fully understood, it is generally believed 

that it involves weak physisorption and strong chemisorption [69][95][96].  The 

reversible and irreversible responses observed with the SWNT sensors are consistent with 

adsorption of gas molecules present on SWNTs through both physisorption, i.e. non-

covalent Van der Waals force, and chemisorption, i.e. chemical bond through defect sites 

on SWNT surface.  The kinetic energy of flowing N2 breaks the weak electrostatic bonds 

between SWNTs and the physisorbed gas molecules during the sensor recovery 

(switching from target gas to pure N2).  The desorption of the physisorbed gas molecules 

causes the reversible SWNT resistance change.  At the same time, the stronger bonds 

between the chemisorbed gas molecules and SWNTs can not be overcome by the flow of 

N2, as a result the chemisorbed gas molecules build up through multiple-cycled test, and 

therefore an overall incomplete sensor recovery featuring irreversible resistance change is 

observed.     

4.3.2 NH3 detection 
 

The dynamic room temperature responses of SWNT sensor to NH3 exposure are 

shown in Figure 4.6 and Figure 4.7.  Shown in Figure 4.6 is the sensor response to 100 

NH3 for 30 minutes in the flow of N2.  The sensor was allowed to reach equilibrium 

condition first.  N2 diluted NH3 was then introduced into the test chamber and mixed with 

N2 at a concentration of 100 ppm.  The sensor was exposed to NH3 for 30 minutes and 
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then recovered in the flow of pure N2.  The change of sensor resistance was recorded and 

plotted in Figure 4.6.  One can see that the sensor responded promptly to the presence of 

NH3 and its resistance increased by approximately 2% in a period of 30 minutes.  The 

data of Figure 4.6 also shows that the resistance of SWNT sensor starts to decrease 

immediately upon removal of NH3, however the recovery is at a much slower rate 

compared to its response rate.  We have observed that even after several days keeping in 

air at room temperature, the SWNT sensors are still unable to fully recover from the 

detection of NH3 and NO2.   

 

The measured sensor response to repeated 100 ppm NH3 exposure at room 

temperature is shown in Figure 4.7.  After the sensor reached equilibrium, the ambient 

inside the test chamber was cycled between 100 ppm NH3 and pure N2 for periods of 10 

minutes each.  The recorded resistance change was plotted in Figure 4.7.  The data shows 

that the change of resistance followed the gas delivery pattern promptly.  The sensor 

response is reversible and the sensor recovery in the flow of N2 is incomplete.  Similar to 

the NO2 detection, there exists an irreversible drift in the sensor resistance which can be 

attributed to the built-up of NH3 molecules on the surface of SWNTs.        

 

Figure 4.8 shows the response of SWNT sensors to various concentrations of NH3 at 

room temperature.  The data was based on the experiment results of four sensors for 10 

minutes NH3 exposure.  The NH3 concentration varied from 10 ppm to 100 ppm.  Shown 

in the plot is the average sensitivity of all four sensors (with one standard deviation) as a 

function of NH3 concentration.  The sensor sensitivity increased with an increase in the 

concentration of NH3 and the lower detection limit is 10 ppm.  At lower concentrations 

(less that 50 ppm) the sensitivity slowly follows the increase of gas concentration 

whereas a rapid resistance increase is observed above 80 ppm.   

 

Given the possible p-type semiconducting nature of the SWNTs and the fact that NH3 

is a reducing agent (electron donor), sensor resistance increases in the presence of NH3 as 

expected.  The NH3 sensing mechanism is similar to the case of NO2 except that electron 

charges transfer from NH3 molecules to SWNTs.  The charge transfer caused a decrease 
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of the majority carrier (holes) concentration inside SWNTs and therefore an increase in 

resistance.  The increase of SWNT resistance in the presence of NH3 gas observed in this 

dissertation is consistent with the reports by other researchers [55][62][88][89].  The fact 

that its resistance increases in the presence of reducing agent NH3 (electron donor) and 

decreases in the presence of oxidizing agent NO2 (electron acceptor) serves as solid 

evidence of p-type semiconductor.  The demonstrated capability to alter its electrical 

resistance in the presence of target gases at room temperature make the SWNT employed 

in this work a promising gas sensing material.        

4.3.3 Effect of UV illumination on sensor recovery 
 

The resistive gas sensors based on SWNTs have been proved to be sensitive to low 

concentration NO2 and NH3 exposure as described in section 4.3.1 and 4.3.2.  However, 

the inability of SWNTs sensor to fully recover in time from gas detection has to be 

addressed before further investigation towards practical gas sensing application.  As 

stated previously, the incomplete sensor recovery is the evidence of partial gas molecules 

desorption from the active sensing materials SWNTs.  Degassing by the flux of pure N2 

does not entirely remove the adsorbed gas molecules from the SWNT sites; therefore the 

residual molecules caused the sensor resistance drift as shown in Figure 4.4 and Figure 

4.7.   

 

To improve the sensor recovery, extra energy source must be supplied to the 

chemisorbed gas molecules for them to overcome desorption energy barrier from SWNTs.  

Both photo-energy [58] and thermal-energy [88] are investigated to improve gas 

desorption and the effects of both treatments on SWNTs gas sensors are discussed in this 

dissertation. 

 

A Blak-Ray B-100AP ultraviolet (UV) lamp with a 365 nm wavelength was chosen 

as the photo-energy source to enhance the sensor recovery.  The SWNT sensor was once 

again subjected to 10 ppm NO2 exposure for 30 minutes at room temperature after 

reaching equilibrium in the flow of N2.  The UV illumination is applied immediately 

following the removal of NO2 therefore the sensor is allowed to recover under UV 
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illumination in addition to the flow of carrier gas N2.  The additional photo-energy is 

expected to break chemical bonds, therefore to cause more adsorbed NO2 molecules to 

gain enough energy degassing from SWNT sites and to enhance the sensor ability to 

recovery.  Figure 4.9 demonstrates that the UV illumination drastically improved the 

sensor recovery as expected.  One can see from Figure 4.9 that the addition of UV 

illumination results a ninefold improve in sensor recovery during a period of 20 minutes.  

The improved sensor recovery is the result of more adsorbed oxidizing agent molecules 

desorption from SWNT sites by gaining extra photo-energy.   

 

The data shown in Figure 4.10 is the evidence that UV illumination improves sensor 

performance during multiple-cycled NO2 exposure.  Similarly, the UV illumination was 

only applied during sensor recovery cycles, in addition to the flow of N2.  It is clearly that 

the sensor recovery was enhanced by the photo-induced gas molecule desorptions from 

SWNT sites as evidenced by a great amount of reduction in undesired resistance drift and 

an average of 2.59 times improvement of recovery.  One can see from Figure 4.10 that 

the sensor response was also improved by the addition of UV illumination.  The average 

relative sensitivity to 10 ppm NO2 exposure is increase by approximately 3 times by the 

introduction of UV illumination during sensor recovery.  The enhanced sensor response 

can be attributed to the “cleaning effect” of UV illumination during the each preceding 

recovery cycles.  More specifically, the photo-induced molecule desorptions during 

recovery create additional SWNT sites available for NO2 molecule adsorption for each 

following detection cycles, and as a result, an improved overall sensor performance. 

 

An important factor needs to be considered is the oxygen molecules adsorbed by the 

SWNTs whenever the sensor is exposed to air.  It has been reported that under ambient 

conditions, oxygen molecules adsorb by SWNTs with a binding energy of approximately 

0.25 eV [56][97].  The adsorbed oxygen molecules oxidize SWNTs by withdrawing one 

tenth of an electron per molecule [97].  These oxygen molecules can not be completely 

removed from SWNT sites at the beginning of the experiment simply by N2 flushing; 

therefore some of the SWNT adsorption sites are occupied by the oxygen molecules.  As 

UV illumination was introduced at the sensor recovery stage, both NO2 and oxygen 
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molecules gained the additional photo-energy to overcome the desorption energy barrier.  

As an oxidizing agent, the desorbing oxygen reduced the conducting hole carrier 

concentration of the p-type semiconducting SWNTs and caused an increase in the 

resistance of the sensor.  Eventually, oxygen molecule desorption enhanced the effect of 

NO2 gas molecules desorption and we believe the improved sensor recovery shown 

in Figure 4.9 and Figure 4.10 are the contributions of photo-induced molecular 

desorptions of both NO2 and O2.   

 

In an effort to minimize the effect of adsorbed oxygen on sensor response, a UV pre-

depletion procedure was applied at the beginning of the experiment. The sensor was 

exposed to UV illumination in N2 ambient for at least 30 minutes until an equilibrium 

condition was achieved, followed by 30 minutes NO2 exposure, and finally UV 

illumination as well as the N2 flush for recovery.  The result is shown in Figure 4.11 

(green curve) and the previous data from Figure 4.9 is re-plotted for comparison.  As can 

be seen from Figure 4.11, the UV pre-depletion induced oxygen desorption caused a 35% 

increase in sensor sensitivity, which indicates that more adsorption sites in SWNTs are 

available for NO2 molecules due to the “cleaning effect” of UV at the beginning of the 

experiment.  Similarly, the addition of UV illumination enhanced the sensor recovery and 

one can see from Figure 4.11 that the recovery has been improved by 5 times at the 

duration of 20 minutes. 

 

Figure 4.12 shows the effect of UV illumination on sensor recovery from NH3 

detection.  The result shows that the SWNT sensor slowly recovers from 30 minutes of 

100 ppm NH3 exposure in the flow of pure N2.  However, sensor resistance started to 

increase rather than decrease as soon as the UV lamp was turned on.  The unexpected 

resistance increase is again attributed to absorbed oxygen molecules desorption from 

SWNT sites under the influence of UV illumination.  The hole carrier concentration of 

semiconducting SWNTs was reduced by the photo-desorption of oxygen in competition 

with the increased hole concentration resulting from the desorption of reducing agent 

NH3 molecules.  The unexpected resistance increase shown in Figure 4.12 indicates that 

the effect of oxygen desorption dominates that of NH3 desorption, and as a net result UV 
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illumination has no positive impact on sensor recovery in the case of NH3 detection.  

Techniques other than UV illumination must be explored to enhance the sensor recovery 

from NH3 detection in consideration for future practical applications.                      

4.3.4 Effect of heating on sensor performance 
 

Thermal energy is another viable energy source to enhance the gas molecule 

desorptions from SWNT adsorption sites.  The SWNT sensors are heated in the presence 

of NO2 and NH3 gases and the sensor performance was monitored.  Since this dissertation 

is focused on the room temperature gas sensitivity of CNT materials, therefore the 

heating is limited to moderate temperature, i.e. 100ºC.  To heat the sensor, a heater tape 

was wrapped around the test chamber and a power supply was applied for the 

temperature control.  A thermocouple was connected into the test chamber to monitor the 

temperature of the sensor under test.  Constant temperature at 100ºC was maintained 

throughout the entire experiment procedure so its effects on sensor recovery as well as 

response were investigated. 

 

Figure 4.13 shows the effect of heating on sensor response and recovery in the 

presence of 10 ppm NO2.  One can see that after 30 minutes of NO2 exposure, the 

sensitivity was increased from ~ 12% to ~ 20% by heating the sensor, i.e. 66.7% increase 

in sensitivity.  The sensor recovery at 100ºC was improved by 3.5 times within 30 

minutes compared to the same sensor recovered at room temperature.  The data shown 

in Figure 4.13 are based on one of the SWNT sensors and similar results were found for 

all the other sensors.  It is obvious that the elevated temperature enhances the sensor 

response as well as recovery during NO2 detection.  The effect of heating on sensor 

performance upon repeated NO2 exposure is shown in Figure 4.14.  The temperature of 

the sensor was maintained at 100ºC constantly while the sensor was subjected to 

multiple-cycled 10 ppm NO2 exposure along with pure N2 for recovery.  One can see 

from Figure 4.14 that the heating has improved the sensor response by an average factor 

of 1.9 and the recovery by an average factor of 3.4 for all the individual cycles.  As the 

results, the sensor demonstrated an increased sensitivity and a reduced cumulative drift 

effect, which are important for long term sensor performance.   
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The improved sensor response can be attributed to the additional adsorption sites on 

SWNTs created by heating the sensor.  The addition of thermal energy induces more gas 

molecules to overcome the energy barrier and desorb from SWNT sites at the beginning 

of the experiment.  Consequently, more adsorption sites on SWNTs are created and 

available for the following NO2 detection cycle.  The sensitivity of the sensor is increased 

accordingly.  Next, the elevated temperature again caused more oxidizing gas molecules 

to desorb from SWNT site under the flow of N2.  As a result, the sensor resistance 

increases further toward its original value, thus an enhanced recovery.  The sensor 

response to various concentrations of NO2 at 100ºC is shown in Figure 4.15.  One can see 

that in comparison to the response at room temperature, heating caused a less linear 

correspondence between the sensitivity and the NO2 concentration beyond 20 ppm.   

 

Figure 4.16, Figure 4.17 and Figure 4.18 show the effects of heating on NH3 detection 

and recovery.  One can see from Figure 4.16 and Figure 4.17 that the sensitivity to 100 

ppm NH3 has been significantly increased by heating the sensor to 100ºC.  Based on the 

data in Figure 4.17, the sensor response and recovery has been increased by an average 

factor of 2.57 and 2.96, respectively, compared to the room temperature detection.  This 

reveals that more SWNT adsorption sites were created for adsorbing NH3 molecules by 

heating the sensor.  At the same time, the sensor recovery has also been improved; 

however the problem of sensor resistance drift still exists.  It seems that the enhancement 

of heating on sensor recovery from NH3 detection is not as effective as NO2 detection.  

This is believed due to the adsorption of oxygen molecules in the room ambient between 

vacuum baking and loading into the test chamber.  As described in section 4.3.3, SWNTs 

are oxidized immediately as soon as they exposed to air.  During the experiment, these 

oxygen molecules can not be completely released from adsorption sites by the flow of N2 

at room temperature.  With the help of thermal energy, more oxygen molecules desorbed 

from SWNTs during sensor recovery stage along with NH3 molecules.  However, the 

contribution of NH3 (reducing agent) desorption to the sensor will be neutralized by the 

contribution of oxygen (oxidizing agent) desorption.  Accordingly, the improvement of 

heating on sensor recovery from NH3 detection is not effective as NO2 detection.  Figure 
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4.18 shows the effect of heating on sensor response to various concentrations of NH3.  

The NH3 concentration varied from 10 ppm to 100 ppm.  It indicates that heating caused 

the NH3 sensitivity to increase more uniformly at various concentrations than the NO2 

dependence in Figure 4.15.                

4.3.5 Sensor performance in air  
 

In order to explore the possibility of device prototyping for practical applications, the 

characteristics of SWNT sensor in ambient condition were investigated by replacing the 

carrier gas N2 with compressed air.  Ultra low concentration of NO2 and NH3 detection 

was conducted at room temperature.  The effects of UV illumination and heating on 

sensor recovery in air, instead of N2 were studied.  Furthermore, the temperature and 

humidity dependency of the SWNT sensors were monitored and discussed.   

 

Figure 4.19 shows the sensor response to 10 ppm NO2 at room temperature in air 

instead of N2.  One can see that the resistance decreases in the presence of NO2 and 

partially recovered in the flow of air.  The variation of the sensor resistance promptly 

reflects the gas delivery pattern, i.e. alternating between 10 ppm NO2 and air.  The 

sensing characteristic under ambient condition shown in Figure 4.19 is in agreement with 

the sensor response with N2 background, which was demonstrated in Figure 4.4.  Similar 

result was found for NH3 detection as well.  Shown in Figure 4.20 is the measured 

resistance response when the SWNT sensor is exposed to 100 ppm NH3 and compressed 

air alternately for periods of 10 minutes each at room temperature.  The presence and 

removal of NH3 gas caused the sensor resistance to increase and decrease 

correspondingly.  Thus the NH3 sensing characteristic in air is consistent with its 

response in N2 background as discussed in section 4.3.2.  The demonstrated gas sensing 

capability in ambient condition makes the development of SWNT sensor one step closer 

towards a “working device” for practical applications.   

 

The gas detection results (Figure 4.19 and Figure 4.20) of SWNT sensors under 

ambient condition indicate that the sensor recovery is incomplete and the cumulative 

residual gas molecules caused undesired resistance drift on sensor response.  In order to 
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improve the sensor performance, the cumulative effect needs to be minimized.  

Section 4.3.3 and 4.3.4 discussed the investigation of UV illumination and moderate 

heating as the potential solutions to enhance sensor recovery.  The same procedures were 

applied to the SWNT sensors for the NO2 and NH3 detections under ambient 

condition.  Figure 4.21 shows the effect of UV illumination on sensor recovery from 10 

ppm NO2 exposure in air.  The UV illumination was applied during each recovery cycles 

in addition to the flow of air.  One can see that upon exposure, the sensor resistance has 

been increased by an average of 2% from its initial value, which seems caused by the 

“cleaning effect” of the UV illumination during the first recovery cycle, i.e. 0 to 10 

minutes in Figure 4.21.  The addition of UV illumination created more vacancy of 

adsorption site on SWNTs available for NO2 molecules hence increased sensor sensitivity.  

However, there is no evidence that the UV illumination drastically improves the sensor 

recovery under ambient condition, which is inconsistent with the experiment result based 

on N2 background, as described by section 4.3.3 and shown in Figure 4.10.  By replacing 

the carrier gas N2 with compressed air, the SWNTs are undergoing oxidization and 

cleaning at the same time during each recovery cycles.  Thus the extra cleaning effect 

caused by the addition of UV illumination most probably was offset by the adsorption of 

interfering gas molecules (for instance oxygen) on SWNTs, and as a result there is no net 

improvement in sensor recovery.  Hence the enhancement of SWNT sensor recovery in 

air by the addition of UV illumination is not as effective as in N2 background.   

 

The NO2 and NH3 detection in air by the SWNT sensor was also conducted at the 

elevated temperature.  The sensor was heated to and maintained at 100ºC throughout the 

experiments.  The effects of heating on sensor response and recovery for 10 ppm NO2 

and 100 ppm NH3 detection are depicted in Figure 4.22 and Figure 4.23 respectively.  

One can see that the heating has dramatically improved the response and recovery of the 

SWNT sensor under ambient condition.  For 10 ppm NO2 detection, heating caused an 

average increase by a factor of 2.6 for all the detection cycles, and an average increase by 

a factor of 6.7 for all the recovery cycles.  Similarly for the 100 ppm NH3 detection, there 

is an average 2.6 times increase in sensor response and fourfold improvement in recovery 

by heating the sensor at 100ºC.  The heating-induced enhancement in sensor response and 
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recovery demonstrated in Figure 4.22 and Figure 4.23 indicated that a built-in heater is a 

necessary element to achieve better sensor performance in future device prototyping 

work.   

 

The temperature and humidity dependency of the SWNT sensor was investigated 

under ambient condition.  Within 60 minutes, sensors were subjected to the variation of 

either temperature (25ºC to 100ºC) or relative humidity (10% to 95%), and the changes in 

their baseline resistances were monitored.  Based on the data obtained from all the 

SWNT sensors, we found that the baseline resistance has an average 5% variation due to 

the increase in temperature.  The dependency of SWNT resistance on ambient 

temperature has been demonstrated by Nguyen and coworkers [89].  They observed a 

slightly decrease in electrical resistance as the temperature increased from room 

temperature to 100ºC.  The decrease of the sensor resistance with an increase in 

temperature demonstrates semiconducting behavior of the SWNTs.  However, we witness 

both decrease and increase in the sensor resistance for our sensors.  This inconsistency in 

the variation of SWNTs resistance in response with the heat treatment needs further 

investigation in the future.  On the other hand, the increase in relative humidity causes an 

average 0.8% change in sensor resistance.  Hence the short term influence of humidity 

variation on the SWNT sensor is negligible.                                                       

4.4 Conclusion 

A SWNTs based resistive gas sensor was fabricated and tested for the detection of 

NO2 and NH3 at room temperature.  The lowest reported 1 wt% loading of SWNTs were 

mixed with organic binder to form active sensing material and then coated on the 

interdigitated sensor electrodes.  After annealing, the sensors were subjected to low 

concentration of NO2 and NH3 exposure while the variation of sensor resistance was 

monitored as the evidence of response.  The SWNT sensors demonstrated lower detection 

limit of 1 ppm for NO2 and 10 ppm for NH3.  In order to demonstrate the gas sensing 

functionality of SWNTs, a control sensor was prepared by spin-coated α-terpineol on 

IDC sensor platform, i.e., without nanotubes.  After annealing treatment, the electrical 

characteristic of the sensor appears to be an open circuit.  The observation based on the 
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control sensor proved that for SWNTs resistive sensors, the functionality was the result of 

nanotubes bridging adjacent interdigitated electrodes.  Therefore SWNTs are indeed the 

active gas sensing material.   

 

The decrease of resistance in the presence of oxidizing agent NO2 and the increase of 

resistance in the presence of reducing agent NH3 describe a p-type semiconducting 

behavior of the SWNTs employed in this work.  However, the sensor recovery at room 

temperature is incomplete, therefore causes undesirable resistance drift for the repeated 

gas detection.  The mechanism of sensing and recovery are discussed.  UV illumination 

and moderate heating are examined as potential solutions to improve sensor recovery 

performance.  The effects of UV and heating on sensor performance are described and 

explained.  The influence of oxidized SWNTs on the sensor performance is also 

presented and discussed.   

 

In preparation of future work of device prototyping, the performance of the SWNT 

sensor under ambient condition was investigated.  Carrier gas N2 was replaced by 

compressed air during the gas detection experiments.  The NO2 and NH3 detection of the 

SWNTs sensor in the air produced similar sensing characteristic as that in N2.  Once 

again, The UV and heating are applied to improve sensor performance and the 

mechanisms are discussed.  Furthermore, the temperature and humidity dependency of 

the sensor was investigated.    

 

In summary, the resistive gas sensor based on SWNTs demonstrated great potential 

for detecting NO2 and NH3 at room or moderate temperatures.  The advantages of the 

design include simple structure, very low nanotube loading, easy to measure and monitor, 

demonstrated functionality in air, and low humidity dependency.  On the other hand, the 

issue with the sensor recovery needs to be continuously addressed to improve the long 

term sensor performance.  The undesired resistance drift must be minimized in order for 

the sensor to function properly during the multiple-cycled gas detection applications.            
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Figure 4.1: Schematic description of SWNTs based resistive gas sensor (top view). 
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Figure 4.2: Microscopic views and SEM images indicated that uniformly distributed 

SWNTs network was achieved by spin-coating (B) instead of screen-printing (A).     

A

B



 

106 

 
 
 
 
 

-12

-10

-8

-6

-4

-2

0

2

0 10 20 30 40 50 60 70

Response of SWNT resistive sensor to 10 ppm NO
2

Sensitivity%
Se

ns
iti

vi
ty

 o
f R

es
is

ta
nc

e(
%

)

Time(min)

N
2

10 ppm NO
2
 on N

2

NO
2
 off

 
Figure 4.3: Measured resistance response as SWNT gas sensor is exposed to 10 ppm NO2 

(in the flow of N2) for 30 minutes at room temperature.   
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Figure 4.4: Measured resistance response as SWNT gas sensor is exposed to 10 ppm NO2 

and pure N2 alternately for periods of 10 minutes each at room temperature.  The sensor 

shows reversible response and incomplete recovery.    
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Figure 4.5: Measured response of SWNT gas sensors to various concentrations of NO2 at 

room temperature.  The data was based on the experiment results of 5 sensors for 10 

minutes NO2 exposure.  The NO2 concentration varied from 1 ppm to 50 ppm.  Shown in 

the plot are the average sensitivity of all 5 samples and 1 standard deviation.   
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Figure 4.6: Measured resistance response as SWNT gas sensor is exposed to 100 ppm 

NH3 (in the flow of N2) for 30 minutes at room temperature.   
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Figure 4.7: Measured resistance response as SWNT gas sensor is exposed to 100 ppm 

NH3 and pure N2 alternately for periods of 10 minutes each at room temperature.  The 

sensor shows reversible response and incomplete recovery.    
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Figure 4.8: Measured response of SWNT gas sensors to various concentrations of NH3 at 

room temperature.  The data was based on the experiment results of 4 sensors for 10 

minutes NH3 exposure.  The NH3 concentration varied from 10 ppm to 100 ppm.  Shown 

in the plot are the average sensitivity of all 4 samples and 1 standard deviation.   
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Figure 4.9: The effect of UV illumination on SWNT gas sensor recovery from 10 ppm 

NO2 exposure.  The red curve represents the sensor recovery in the flow of N2 only, i.e., 

without UV illumination.  The black curve represents the sensor response with UV 

illumination applied in addition to N2 purge during its recovery stage. 
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Figure 4.10: The effect of UV illumination on SWNT gas sensor recovery from 10 ppm 

NO2 exposure.  The red curve represents the sensor recovery in the flow of N2 only.  The 

black curve represents sensor recovery in the flow of N2 with UV illumination.  
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 Figure 4.11: The effect of pre-experiment UV illumination on SWNT gas sensor 

response and recovery to NO2 exposure.  The red curve represents the sensor recovery in 

the flow of N2 only.  The black curve represents sensor recovery in the flow of N2 with 

UV illumination.  The green curve depicts the effect of pre-experiment oxygen 

desorption by UV illumination.   
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Figure 4.12: The effect of UV illumination on SWNT gas sensor recovery from 100 ppm 

NH3 exposure.   
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Figure 4.13: The effect of heating at 100ºC on SWNT gas sensor response and recovery 

in the presence of 10 ppm NO2 for 30 minutes.  The red curve represents the sensor 

response at room temperature.  The black curve represents the sensor response at 100ºC.   
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Figure 4.14: The effect of heating at 100ºC on SWNT gas sensor performance upon 

repeated 10 ppm NO2 exposure.  The red curve represents the sensor response at room 

temperature.  The black curve represents the sensor response at 100ºC.   
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Figure 4.15: The effect of heating on SWNT gas sensor response to various 

concentrations of NO2.  The red data is the result at room temperature and the black one 

is the result at 100ºC.  The NO2 concentration varied from 1 ppm to 50 ppm.  Shown in 

the plot is the average sensitivity of all 5 samples and 1 standard deviation.       
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Figure 4.16: The effect of heating at 100ºC on SWNT gas sensor response and recovery 

in the presence of 100 ppm NH3 for 30 minutes.  The red curve represents the sensor 

response at room temperature.  The black curve represents the sensor response at 100ºC.   
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Figure 4.17: The effect of heating at 100ºC on SWNT gas sensor performance upon 

repeated 100 ppm NH3 exposure.  The red curve represents the sensor response at room 

temperature.  The black curve represents the sensor response at 100ºC.   
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Figure 4.18: The effect of heating on SWNT gas sensor response to various 

concentrations of NH3.  The red data is the result at room temperature and the black one 

is the result at 100ºC.  The NH3 concentration varied from 10 ppm to 100 ppm.  Shown in 

the plot is the average sensitivity of all 4 samples and 1 standard deviation.   
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Figure 4.19: Measured resistance response as SWNT gas sensor is exposed to 10 ppm 

NO2 and compressed air alternately for periods of 10 minutes each at room temperature.  

The sensor shows reversible response and incomplete recovery.    
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Figure 4.20: Measured resistance response as SWNT gas sensor is exposed to 100 ppm 

NH3 and compressed air alternately for periods of 10 minutes each at room temperature.  

The sensor shows reversible response and incomplete recovery. 
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Figure 4.21: The effect of UV illumination on SWNT gas sensor recovery from 10 ppm 

NO2 exposure in air.  The red curve represents the sensor recovery in the flow of 

compressed air only.  The black curve represents sensor recovery in the flow of 

compressed air with UV illumination.  

 

 
 
 



 

125 

 
 
 
 
 

-16

-12

-8

-4

0

0 20 40 60 80 100

The effect of heating on sensor response to 10 ppm NO
2
 in air 

Sensitivity_Air_100C%
Sensitivity_Air_RT%

S
en

si
tiv

ity
 o

f R
es

is
ta

nc
e(

%
)

Time(min)

NO
2

NO
2

NO
2

NO
2

NO
2

Air Air Air Air Air Air

 
Figure 4.22: The effect of heating at 100ºC on SWNT gas sensor performance upon 

repeated 10 ppm NO2 exposure in air.  The red curve represents the sensor response at 

room temperature.  The black curve represents the sensor response at 100ºC.   
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Figure 4.23: The effect of heating at 100ºC on SWNT gas sensor performance upon 

repeated 100 ppm NH3 exposure in air.  The red curve represents the sensor response at 

room temperature.  The black curve represents the sensor response at 100ºC.   
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CHAPTER5: SUMMARY AND FUTURE WORK 

5.1 Summary 

This dissertation investigated the potential of carbon nanotubes as gas sensing 

materials at room temperature.  An automated gas sensor testing system was designed 

and implemented, which features a PC controlled gas delivery system, real time electrical 

signal monitoring, data acquisition configuration, and LabVIEW programming.  Resistive 

and capacitive gas sensors based on aligned MWNTs were fabricated and tested.  It is the 

first report to construct a gas sensor device based on this unique CNT structure.  The 

performance of a resistive sensor based on the mixture of low loading of SWNTs in 

organic binder was studied.  To date, this is the lowest reported SWNT loading (1 wt %) 

for this type of sensor showing excellent response at room temperature. 

   

Both MWNTs and SWNTs based gas sensors were designed, fabricated and tested in 

detection of common hazardous gases at room temperature.  The carbon nanotubes 

employed in this work demonstrated p-type semiconducting characteristics and the 

sensors showed gas sensitivity at room temperature.  The operating principles of the 

sensors were discussed in detail and techniques to improve the sensor performance were 

investigated.    

5.1.1 Resistive sensing with aligned MWNTs 
 

The amorphous carbon induced surface conductivity of the as-grown aligned 

MWNTs/AAO template was utilized to construct resistive sensor for preliminary gas 

detection.  The results are as follows: 

• At room temperature, the resistance of the as-grown MWNTs/AAO template shows 

an increase of 7.3% in the presence of 1% NH3 gas for 60 minutes. 

• The as-grown MWNTs/AAO template demonstrates reproducible, reversible as well 

as irreversible response to repeated 1% NH3 exposure with an average sensitivity of 

5.09%. 
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• The sensitivity increases as the NH3 concentration increases.  An average sensitivity 

of 10.9% was observed as the sample was subjected to multiple-cycled 5% NH3 

exposure at room temperature. 

•  The sample shows response to the presence of 100% CO2 with an average 

sensitivity of 2.59%. 

• The recovery is slow and incomplete.  A strong humidity dependency was observed 

for the MWNTs based resistive sensor. 

• Due to the strong humidity dependency and uncontrolled coverage of amorphous 

carbon on the surface of the as-grown MWNTs/AAO template, currently this type of 

material is only employed for preliminary gas sensing investigation instead of sensor 

device prototyping.  

 

5.1.2 Capacitive sensing with aligned MWNTs 
 

The amorphous carbon on the surface of as-grown MWNTs was removed by the 

method of plasma etching.  Interdigitated capacitor was then patterned on the plasma-

etched MWNTs/AAO template to form capacitive sensor for room temperature gas 

detection.  The results are as follows: 

• The MWNTs capacitive sensor demonstrates reproducible and reversible increase 

in capacitance to 1% NH3 exposure with the sensitivity in the range of 0.25% to 

0.3%. 

• The sensitivity increases as the NH3 concentration increases.  An average 

sensitivity of 0.5% was observed as the sample was subjected to multiple-cycled 

5% NH3 exposure at room temperature. 

• The sensor also demonstrated sensitivity to the presence of CO2 and oxygen at 

room temperature. 

• The in-depth investigation of the sensor electrical properties reveals that the sensor 

response was determined by the dielectric response instead of charge transfer 

between MWNTs and adsorbates. 

• The magnitude of the capacitive sensitivity is restrained by the IDC electrode 

dimension, which is explained by the model of the capacitive sensor.  In order to 
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improve the sensitivity, either the longer IDC electrodes or shorter distance 

between adjacent electrodes is required.  Thus larger MWNTs/AAO sample size 

or finer pitch of IDC electrodes is essential to achieve better capacitive response.    

• The MWNTs/AAO templates have demonstrated promising aspect for potential 

room temperature gas sensing applications.  Some technical challenges have to be 

addressed, such as material reproducibility, structural robustness and batch 

productivity, in order to further investigate the possibility of device prototyping.                            

 

5.1.3 Resistive sensing with SWNTs 
 

Resistive sensors were fabricated by coating the interdigitated electrodes with the 

mixture of SWNTs (1 wt% loading) and α-terpineol binder.  The resistance of the sensor 

was monitored in the presence of various concentrations of NO2 and NH3 gas at room 

temperature.  The results are as follows: 

• The resistance of the SWNTs sensor undergoes drastic decrease in the presence of 

NO2.  It is decreased by an average of 11% in response to the exposure of 10 ppm 

NO2 within 30 minutes. 

• The sensor recovery is incomplete at room temperature.  The incomplete recovery 

caused an undesirable, irreversible response as the sensor was employed for 

multiple cycle NO2 detection. 

• The sensitivity is nearly proportional to NO2 concentrations with a lower detection 

limit of 1 ppm. 

• The sensor demonstrates a 2.1% resistance increase in the presence of 100 ppm 

NH3 at room temperature within 30 minutes. 

• In response to repeated NH3 exposure, the sensor shows both reversible and 

irreversible response.  The irreversible response is due to the incomplete sensor 

recovery. 

• The sensitivity increases corresponding to the increase of NH3 concentration.  The 

lower NH3 detection limit is 10 ppm. 

• The sensing mechanism of the SWNTs sensor can be explained by chemisorptions 

and physisorptions between nanotubes and gas molecules. 
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• The sensors demonstrate excellent sensitivity to both NO2 and NH3 in air as well as 

in N2, which is a promising aspect towards device prototyping in the future. 

• There is limited humidity dependency observed; however, the influence of 

temperature change on sensor performance needs in-depth study in the future.   

 

5.1.4 Techniques to improve SWNTs sensor performance 
 

The SWNT sensors demonstrate slow and incomplete recover characteristics, which 

in turn cause an undesirable drift of sensor resistance during the multiple-cycled gas 

detection.  This incomplete recovery impairs the effectiveness of the gas sensing 

functionality towards practical applications.  Hence UV illumination and moderate 

heating were investigated as the potential solutions to improve sensor recovery 

performance.  The results are as follows: 

• The UV illumination significantly enhanced the sensor recovery from NO2 detection.  

The improved recovery is attributed to the photo-energy induced molecular 

desorption from SWNT sites.  The adsorbed NO2 molecules gain photon-energy 

from UV, overcome the desorption energy barrier and released from adsorption sites 

on SWNTs. 

• During multiple-cycled NO2 detection, the pre-depletion “cleaning effect” of UV 

illumination during sensor recovery creates additional adsorption sites for NO2 gas 

molecules, and as a result, increased sensitivity.   

• There is no positive impact of the UV illumination on sensor recovery during NH3 

detection, which is attributed to the effect of oxidized SWNTs.  During recovery and 

under the impact of UV illumination, both NH3 and oxygen desorbs from SWNTs.  

The desorption of NH3 cause an increase of hole concentration in SWNTs, however 

it is counteracted by the desorption of oxygen which increases the electron 

concentration in nanotubes.  Therefore for NH3 detection, there is no enhancement in 

sensor recovery by the addition of UV illumination. 

• By heating the sensor to a moderate temperature of 100ºC, both sensitivity and 

recovery have been significantly improved in NO2 and NH3 detection.  Similar 
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observations were made when the gas detection was performed in air instead of N2 

ambient.   

    

5.2 Future Work 

There is substantial scope for carrying out further research that will extend the work 

presented in this dissertation.  A few possible future directions are suggested as following: 

• As discussed in section 3.3.2, the dimension of the IDC electrodes needs to be 

reduced in order to improve the gas sensitivity of the capacitive sensor which is 

based on MWNTs/AAO template.  However the patterning techniques currently 

employed, including laser cut shadow mask and conductor paste screen printing, 

have limitations.  In the future photo mask and photolithography could be upgraded 

options in consideration of the miniaturization process.   

• The MWNTs resistive sensors show significant humidity dependency whereas the 

influence of humidity on the SWNTs resistive sensor is negligible.  Further 

investigation is necessary to understand the mechanism and difference between them. 

• Selectivity is an important aspect of sensor characteristic and should be studied in the 

future, particularly how the NO2/NH3 gas sensitivity will be affected by the presence 

of interference gases.   

• A built-in heater could be incorporated into the existing SWNT sensor design.  A 

serpentine platinum heater can be patterned on the back side of the ceramic sensor 

substrate thus the sensor can be heated to moderate temperature during operation to 

achieve better performance.   

• A detailed investigation in the dependency of sensor performance on the SWNTs 

loading in sensing material would be necessary to gain better understanding of the 

sensing mechanism. 
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