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ABSTRACT OF DISSERTATION 
 
 
 
 

TARGETING AXON GROWTH FROM NEURONS TRANSPLANTED 
INTO THE CENTRAL NERVOUS SYSTEM 

 
  

Damage to the adult mammalian central nervous system (CNS), either by 
traumatic injury or disease, usually results in permanent sensory and/or motor 
deficits.  Regeneration of neural circuits is limited both by the lack of growth-
promoting molecules and by the presence of growth-inhibitory molecules in the 
mature brain and spinal cord.  The research described here examines the 
therapeutic potential of viral vectors and neuronal transplants to reconstruct 
damaged neural pathways in the CNS.   
 Experimental neural transplantation techniques often fall short of 
expectations because of limited transplant survival and insufficient neurite 
outgrowth to repair connections and induce behavioral recovery.  These 
shortcomings are addressed in the current studies by virus-mediated expression 
of cell-specific neurotrophic and guidance molecules in the host brain prior to cell 
transplantation.  The initial proof-of-principle studies show that viral vectors can 
be used to create axon-guidance pathways in the adult mammalian brain.  With 
such pathways in place, subsequent transplantation of neurons leads to long-
distance, targeted outgrowth of neurites. 
 Application of this technique to a rat model of Parkinson’s disease 
demonstrates that circuit reconstruction leads to functional recovery.  For this 
study, rats were lesioned on one side of their brain with 6-hydroxydopamine to 
produce a hemiparkinsonian state.  The motor deficit was confirmed by 
amphetamine-induced rotation testing and spontaneous motor asymmetry 
testing.  The rats were then divided into experimental groups to receive lentivirus 
injections along a path between the substantia nigra (SN) and the striatum to 
express glial cell-line derived neurotrophic factor (GDNF), GDNF family receptor 
alpha-1 (GFRα1), netrin-1 or green fluorescent protein (GFP, control).  One 
group received combination injections of lenti-GDNF and lenti-GFRα1.  One 
week after virus injections, animals received transplants of embryonic midbrain 
dopaminergic neurons into their SNs.  They were tested for motor asymmetry 
every two weeks for a total of eight weeks and then brain tissue was harvested 
for immunohistochemical analysis.  Results demonstrate that virus-induced 



expression of GDNF and GFRα1 supports growth of dopaminergic fibers from 
cells transplanted into the SN all the way to the striatum, and these animals have 
a significant reduction in both drug-induced and spontaneous motor asymmetry. 
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Chapter One:  Introduction 
 

Wherein lies that marvelous power which enables the nerve fibers from very 
distant cells to make contact directly with certain other nerve cells…without going 
astray or taking a roundabout course?...I believe that one could…think of 
processes like the phenomenon called…chemotaxis.” 

-Santiago Ramón y Cajal, 1893 

Overview 
Damage to the adult central nervous system (CNS) by traumatic injury or 

disease presents an enormous challenge to medical practitioners and 

researchers.  The unfortunate truth is that many neurological disorders are still 

incurable, so neurologists are left with few options other than palliative care for 

their patients.  While a skilled surgeon may be able to reconnect a severed hand 

and effect satisfactory functional recovery, a severed spinal cord leads to lifelong 

disability.  Similarly, infarcted brain tissue does not heal after a stroke and the 

progressive loss of neurons to degenerative diseases such as Alzheimer’s, 

Parkinson’s, and amyotrophic lateral sclerosis is irreversible at this time.   The 

intractability of CNS damage is due to the sheer complexity and specificity of 

neural circuitry as well as the lack of growth-promoting cues and presence of 

growth-inhibitory molecules in the adult CNS environment.   

The specificity of neural connections was first elucidated as part of the 

neuron doctrine by Santiago Ramón y Cajal in the 1890’s (Shepherd, 1991). In 

addition to describing the neuron as the basic unit of the nervous system, the 

synapse (a term later coined by Charles Sherrington) as the location of signal 

transmission between neurons, and the unidirectional flow of signal within neural 

circuits, Cajal’s doctrine established that neural circuits are precise and 

predictable in their connections and activity (Cajal, 1995; Eccles and Gibson, 

1979).  These connections are formed as an animal develops, with axons 

extending sometimes over great distances to reach their unique targets.  With 

another enormous contribution to neuroscience, Cajal first described the 

“steering” behavior of axonal growth cones and proposed the neurotropic theory 

to explain their directional amoeboid movement, which he compared with 
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leukocyte chemotaxis (Sotelo, 2002).  More recently, specific molecular cues – 

both positive and negative - that direct axon growth during development have 

been identified.  With a more complete understanding of the growth-promoting 

environment of the developing nervous system, we will be better equipped to 

develop regenerative and repair strategies for injured adult nervous tissues.  

 

Development 
 As an embryo develops, the growth trajectories of nerve fibers are 

determined by physical constraints and specific molecular cues in the 

environment (Song and Poo, 2001).  The molecular guidance mechanisms may 

be roughly divided into four types: contact attraction (short-range), 

chemoattraction (long-range, diffusion-based), contact repulsion, and 

chemorepulsion (Tessier-Lavigne and Goodman, 1996).   If an axon must 

traverse a relatively long distance, its journey may be divided into shorter 

segments, punctuated by “choice points” where specialized cells provide 

attractive or repulsive cues to the growth cone.  Development of neural circuits is 

also stepwise, with earlier-growing axons - “pioneer axons”, which grow through 

a somewhat simpler histological landscape - providing a growth scaffold for the 

fibers that follow (Tessier-Lavigne and Goodman, 1996).   

 There is some disagreement about whether to classify certain molecules 

as attractive or repulsive when their effects may be more accurately described as 

“outgrowth-promoting” or “outgrowth-suppressing” (Baier and Bonhoeffer, 1994;  

Tessier-Lavigne and Goodman, 1996).  This is best demonstrated in vitro with 

collagen gel media, where the effect of a molecular gradient on axon growth may 

be separated from all other physical and chemical factors.  In such an 

experiment, an “outgrowth-promoting” molecule (i.e., a growth factor), presented 

in a gradient, will selectively accelerate and stabilize axons that are growing 

toward the higher concentrations.  Some argue that this should not be interpreted 

as a guidance effect, even though the end result is more axon growth toward 

rather than away from the gradient, because the growth factor did not cause 

individual axons to alter their growth trajectories (Baier and Bonhoeffer, 1994).  If 
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the resultant pattern of axon growth is most important, however, it may be 

unnecessary to separate attraction from growth-promotion or repulsion from 

growth inhibition (Tessier-Lavigne and Goodman, 1996). 

 Another complication with regards to classifying guidance molecules is the 

fact that whether a molecule is “attractive” or “repulsive” depends entirely on a 

growth cone’s response to it.  Some molecules act as both:  chemoattractants to 

certain neurons and chemorepellants to others.  Furthermore, an individual axon 

may alter its response to a guidance cue, from attraction to repulsion (or vice 

versa), based on regulation of receptor expression within the growth cone.  In 

fact, this is how axons are able to move toward an intermediate “choice point”, 

such as the midline of the developing spinal cord, and then move away from that 

point to their final destination on the contralateral side.  If axons did not possess 

this plasticity, they would simply stall at the first attractive location they reached 

and long-distance migration would be impossible due to constraints of diffusion 

(Tessier-Lavigne, 2004). 

 Several specific axon-guidance molecules have been identified and 

intensely studied since the early 1990’s.  With the previously-mentioned caveats 

in mind, these molecules may be classified as follows:  1) secreted, long-distance 

chemoattractants include Netrins, hepatocyte growth factor (HGF), the 

neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor 

(BDNF), neurotrophin (NT)-3 and NT-4/5, and morphogens Wnt and sonic 

hedgehog (Shh); 2) secreted, long-distance chemorepellants also include 

Netrins, plus Semaphorins, Ephrins, Slits, and bone morphogenic protein (BMP); 

3) contact repellants include Eph Ligands, transmembrane Semaphorins, and 

some extracellular matrix (ECM) molecules like tenascins; and 4) contact 

attractants include members of the immunoglobulin (Ig) superfamily of cell 

adhesion molecules (CAMs), Cadherins, and ECM molecules such as laminin 

(Reviewed in Tessier-Lavigne and Goodman, 1996; Song and Poo, 2001; Tucker 

et al., 2001; Dickson, 2002; Tessier-Lavigne, 2004; Chilton, 2006).  Each 

guidance molecule affects a growth cone by interacting with a unique cell-surface 

receptor, but the intracellular signaling cascades that are activated by different 
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signals may overlap - either enhancing or inhibiting one another - and the final 

common target is the cytoskeleton (Dent et al., 2003).  

 Growth cone dynamics are ultimately determined by cycles of 

polymerization and depolymerization of two cytoskeletal components: actin and 

microtubules.  Within a growth cone, actin filaments exist in two different states: 

tight bundles of parallel filaments that extend into distal filopodia, and a looser 

network of filaments in the proximal, veil-like lamellipodium (Dickson, 2002).  

Microtubules, which are important components of the cytoskeleton all along 

axons and dendrites, also extend into the growth cone.  During directional 

changes in axon growth, some microtubules extend into filopodia and align with 

elongating actin bundles – an interaction that may be essential for growth cone 

turning (Dent et al., 2003).  Positive growth cues along an axon’s path lead to 

actin polymerization and subsequent filopodial extension in the direction of those 

cues, while negative cues cause depolymerization and retraction of filopodia.  

Hence, there must be spatial asymmetry of molecular responses within a single 

growth cone as it navigates its environment: a front-to-back polarity is required 

for forward movement, and a right-to-left polarity is necessary for turning 

(Kamiguchi, 2006).   

 Axons can change their growth trajectories in response to gradients of 

diffusible guidance molecules as small as 0.1% across the diameter of the 

growth cone (Rosoff et al., 2004).  The mechanism by which such subtle 

differences in concentration may be transduced into directional growth cone 

responses is still being elucidated, but probably involves receptor-containing lipid 

rafts in the growth cone membrane (Kamiguchi, 2006), localized changes in 

protein synthesis and degradation (Campbell and Holt, 2001, Gallo and 

Letourneau, 2002), and spatiotemporal gradients of calcium ions within the 

growth cone (Henley and Poo, 2004; Gomez and Zheng, 2006).   

As previously mentioned, a growing axon must also be plastic in its 

responses to environmental cues.  For instance, in order to continue growing up 

a long-distance gradient of attractive molecules, it must adapt to the changing 

concentration and grow away from an area it previously found attractive (Gallo 
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and Letourneau, 2002).  This may occur by a process called adaptation (or 

desensitization), where a growth cone becomes temporarily unresponsive to a 

previously attractive guidance cue due to a decrease in cytosolic calcium 

signaling, followed by resensitization to slightly higher concentrations of the 

guidance cue, mediated by local protein synthesis and mitogen-associated 

protein (MAP) kinase signaling (Ming et al., 2002). 

 Repulsive guidance cues cause depolymerization of the actin cytoskeletal 

filaments and localized collapse of the neural growth cone.  Semaphorin 3A 

(Sema3A) is one example of a primarily repulsive guidance cue, and it exerts its 

effect on actin filaments through activation of the small guanine triphosphatase 

(GTPase) RhoA.  It has recently been demonstrated that mRNA encoding RhoA 

is transported preferentially to the growing tips of axons, and Sema3A signaling 

leads to local synthesis of the RhoA protein and subsequent actin disassembly 

(Wu et al., 2005).  Furthermore, the identification of functional RNA interference 

(RNAi) proteins in growth cones has presented a potential mechanism for local 

regulation of mRNA transcripts such as those for RhoA (Hengst et al., 2006). 

 Once a developing axon has navigated to its appropriate target location, 

the final step must be the formation of functional synaptic connections.  Like 

growth cone steering, synaptogenesis is a complex process involving cell-cell 

signaling, changes in protein expression, and alterations of intracellular 

microarchitecture.  In the target area, priming factors such as fibroblast growth 

factors (FGFs), Wnts, cholesterol and thrombospondin are secreted by both 

neurons and associated glial cells, directing the initiation of synaptic contacts 

(Pfrieger and Barres, 1996; Mauch et al., 2001; Waites et al., 2005).  More 

intimate contacts between axons and target dendrites result in contact signaling 

via cell adhesion molecules (CAMs), including members of the cadherin and 

immunoglobulin superfamilies (Yamagata et al., 2003).  The signaling cascades 

that are set in motion with CAM binding lead to the development of specialized 

structures that define the synapse:  presynaptic active zones and receptor-rich 

postsynaptic densities (Varoqueaux et al., 2006).  Finally, neuronal activity 



 6

probably determines the stability of newly-formed synapses, with non-functional 

synapses facing elimination (Waites et al., 2005).  

 

Regeneration in the Adult CNS 
 One idea promoted by Santiago Ramón y Cajal which turned out to be 

flawed was the assumption that the adult mammalian CNS is incapable of 

producing new neurons (Cajal, 1958). Recent research has led to the rejection 

of that assumption, which had acquired the status of dogma over the course of 

decades.  It is now accepted that new neurons are continuously produced in 

specific regions of the adult CNS, namely the subventricular zone (SVZ) of the 

lateral ventricles and in the subgranular zone (SGZ) of the hippocampal dentate 

gyrus (Reviewed by Ming and Song, 2005; Hagg, 2005; Shivraj Sohur et al., 

2006).  In the healthy adult brain, neurogenesis rarely occurs outside of these 

two regions.  After pathological insults or experimental manipulations of the CNS, 

however, neurogenesis may be stimulated in regions of the brain usually 

considered to be non-neurogenic (Magavi et al., 2000; Ming and Song, 2005; 

Shivraj Sohur et al., 2006).  The physiological significance of this neurogenic 

potential remains to be determined, however, and therapeutic harnessing of the 

potential is in the very early stages of investigation. 

 Another previously pervasive assumption was that injured neurons of the 

adult CNS are incapable of regenerative growth.  Francisco Tello, a student of 

Ramón y Cajal, countered that assumption by showing that adult CNS axons 

could sprout when peripheral nerve grafts were placed into the cerebral cortex 

(reviewed by Sotelo, 2002).  However, it wasn’t until the pivotal studies of 

Aguayo and colleagues in the late 1970’s that the intrinsic growth capacity of 

some adult CNS neurons was fully appreciated.  They demonstrated that injured 

neurons in the brainstem and spinal cord of adult rats could extend axons over 

distances greater than 30mm through a peripheral nerve bridge graft (David and 

Aguayo, 1981).  Since that time, much attention has focused on the 

environmental obstacles that prevent CNS neurons from realizing their 
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regenerative potential: a paucity of growth-promoting molecules and an 

abundance of growth-inhibitory molecules surrounding injured neurons. 

 The molecules that have been implicated as inhibitory to the regeneration 

of mature CNS neurons at an injury site include the myelin-associated molecules 

Nogo, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin 

glycoprotein (OMgp), the repulsive guidance molecules EphA4 and semaphorin 

3A, and extracellular matrix molecules such as chondroitin sulfate proteoglycan 

(CSPG) (Pasterkamp et al., 1999; Sandvig et al., 2004; Schwab et al., 2005; 

Goldshmit et al., 2006; Niclou et al., 2006; Yiu and He, 2006).  The expression 

and up-regulation of such molecules following injury is only half of the story, 

however.  It has also been determined that adult neurons respond differently to 

molecules such as MAG than embryonic neurons do.  At some point during 

development, some neurons switch their response to MAG from one of growth 

promotion to one of inhibition (DeBellard et al., 1996).  The secondary 

messenger molecule cyclic adenosine monophosphate (cAMP) has been shown 

to play an important role in determining such responsiveness:  young neurons 

have higher levels of cAMP and have a positive growth response to MAG, while 

adult neurons have lower levels of cAMP and have a negative response (Cai et 

al., 2001).  Another difference between adult and embryonic neurons is that the 

younger cells can respond to a low level of growth-promoting molecules by 

increasing their expression of receptors for such molecules, while adult cells 

normally do not (Condic, 2001).  Hence, the intrinsic properties of adult neurons 

must still be considered when tackling the problem of abortive regeneration in the 

CNS (Domeniconi and Filbin, 2005). 

 To promote regeneration after CNS injury, experimental approaches have 

included blocking or removing inhibitory molecules, providing growth-promoting 

molecules, providing growth-supportive substrates, increasing neuronal 

responsiveness to growth-promoting molecules and decreasing responsiveness 

to growth-inhibitory molecules.  Chondroitinase ABC, an enzyme that degrades 

the glycosaminoglycan (GAG) side chains of CSPG molecules, has been used to 

render injury sites in the CNS more permissive to axon growth and has led to 
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improved functional recovery in animal models (Barritt et al., 2006; Houle et al., 

2006; Massey et al., 2006).  Administration of a soluble function-blocking Nogo-

66 receptor (Nogo-R) fragment has shown efficacy in vivo, increasing axonal 

regeneration across a spinal cord lesion site after direct and transgenic 

administration (Li et al., 2004; Li et al., 2005).  Supporting the concept that cAMP 

levels determine growth responses to myelin-derived inhibitory molecules, 

injection of a cAMP analog into dorsal root ganglia (DRG) allows central axons of 

sensory neurons to regenerate into the spinal cord after a lesion (Neumann et al., 

2002; Qiu et al., 2002).  There is also evidence suggesting that a combinatorial 

approach – i.e., using cAMP and neurotrophic molecules - may be best to 

optimize the regenerative response following spinal cord injury (Lu et al., 2004).  

These studies and many others suggest that with careful molecular manipulation, 

injured neurons in the adult CNS may respond in a more “embryonic” way, 

allowing for extensive regeneration and functional recovery. 

 

Neuronal Transplantation 
 Experimental transplantation of exogenous neurons into adult mammalian 

brains was reported in the late 1800’s, but was not pursued as a potential 

therapy for CNS disorders until the 1970’s (Reviewed by Emsley et al., 2004).  

Transplanted cells may confer therapeutic benefits in two different ways: 1) by 

forming functional, reciprocal connections within the host brain or spinal cord, 

essentially replacing lost neural circuits, or 2) by producing neurotransmitters or 

neurotrophic/neuroprotective factors to enhance survival, regeneration and 

function of spared host neurons (Bjorklund et al., 2000; Emsley et al., 2004).  

Cells used for transplantation are always immature: derived either from 

embryonic dissections or in vitro expansions of neural stem/progenitor cells.  As 

discussed in the previous sections, their immature state means these cells are 

more likely to survive, grow, respond to environmental cues and successfully 

integrate into the host CNS. 

 Investigations into neural transplantation therapies are ongoing for many 

neurological disorders, including spinal cord injury, stroke, amyotrophic lateral 
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sclerosis, Huntington’s disease, and Parkinson’s disease.  Animal models of 

these injuries and diseases have revealed potential for transplantation, and early 

clinical trials have demonstrated the safety and feasibility of cell grafting into the 

human CNS.  The most benefit has been seen in cases where transplanted cells 

do not replace lost circuits, but rather can act in a supportive role, providing 

protective and restorative compounds to the injured tissue or producing and 

releasing neurotransmitters in a relatively unregulated manner.  This is the 

simpler task for grafted cells, and is sufficient in many cases to provide functional 

improvement for patients.  For instance, many spinal cord injuries are classified 

as “incomplete” – that is, there is partial sparing of ascending and descending 

white matter tracts after injury – so protecting these fibers and supporting new 

axonal sprouts from them is a reasonable job for transplanted cells (Reier, 2004).  

A more difficult task is to replace neurons that have been lost with appropriate 

axon growth, synaptic connections and functional integration into the host. 

 

Parkinson’s disease 

Research into cell transplantation for Parkinson’s disease (PD) began in 

the 1970s, when it was first determined (using intraocular grafts and then brain 

grafts) that embryonic neural tissue was best suited for surviving transplant 

procedures, extending neurites into host tissues, and forming synaptic 

connections (Olson et al., 1983; reviewed by Dunnett et al., 2001).  One problem 

that was encountered at the time was insufficient graft survival, mainly due to a 

lack of blood supply to the cells within a piece of transplanted tissue.  The 

development of a procedure to dissociate appropriate neurons into a suspension 

and deliver them to the host brain by stereotaxic injection helped to alleviate this 

problem (Bjorklund et al., 1980).  The cells used for transplant in animal models 

of PD were – and usually still are – dopaminergic neurons from the ventral 

mesencephalon (VM) of developing embryos. 

Most successful transplant studies, including human clinical trials, involve 

grafting of embryonic VM cells directly into the striatum of the host.  This ectopic 

graft placement avoids the problem of how to direct axonal growth long distances 
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from the original location (the substantia nigra, SN) to the appropriate target 

(striatum).  It has been shown in many laboratories that VM transplants into the 

striatum of parkinsonian animals can survive long-term, extend neurites into 

surrounding host tissue, make synaptic connections, respond to afferent 

stimulation, express enzymes for dopamine synthesis, release dopamine, and 

reverse some behavioral deficits (reviewed in Barker, 2002; Redmond, Jr., 2002).  

The survival of transplanted VM neurons is variable, however, and has been 

enhanced with various techniques, including repeated injections of GDNF 

adjacent to grafts (Rosenblad et al., 1996), co-transplant of neurospheres 

modified to produce GDNF adjacent to grafts (Ostenfeld et al., 2002), and ex vivo 

transduction of neurons with cDNA encoding human vascular endothelial growth 

factor prior to transplant (Casper et al., 2002).  Graft survival and striatal 

reinnervation were also improved by using a multiple-site microinjection 

technique to distribute the cells over a wider area (Nikkhah et al., 1994b).  

Success in the laboratory led to clinical trials of fetal tissue transplantation 

in PD patients, starting in Mexico and Sweden in 1988 (Madrazo et al., 1988; 

Lindvall et al., 1988). Since that time, it is estimated that 400 PD patients have 

received fetal tissue transplants, with 300 of those being published.  Variation in 

methods and results makes it difficult to compare these attempts, however, and 

much controversy still exists regarding the efficacy and safety of fetal tissue 

transplants in PD patients (Redmond, Jr., 2002).  Two double-blind, sham-

surgery-controlled randomized trials of fetal nigral tissue transplants were 

published in 2001 (Denver) and 2003 (Tampa) with somewhat disappointing 

results in each case (Freed et al., 2001; Olanow et al., 2003).  The primary 

outcome measure of these studies (a subjective global rating scale) revealed no 

significant difference between implant and sham-operated groups after one or 

two years.  By some other measures, there was clinical improvement in implant 

versus sham-operated patients in the Denver study, but only in the younger (<60 

years old) subgroup of patients.  In the same study, 5 patients (15%) with the 

greatest extent of tissue engraftment in the striatum (as determined by PET 

scans) developed severe dyskinesias (Freed et al., 2001; Greene and Fahn, 
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2002; Ma et al., 2002).  In the Tampa study, thirteen out of 23 grafted patients 

(56.5%) developed dyskinesias in during off-medication periods between 6 and 

12 months after grafting.  Most of the dyskinesias were considered mild, but 

three patients had severe dyskinesias and required corrective surgery.  There 

was no correlation between striatal fluorodopa uptake in the striatum and 

appearance of dyskinesias in this study (Olanow et al., 2003). 

In both animal models and human Parkinson’s patients, it has been 

determined that grafts of fetal nigral cells into the striatum, though often 

functional, do not result in a complete recovery of motor function (reviewed by 

Winkler et al., 2000).  Reinnervation and restoration of dopamine content within 

the striatum are not enough to repair what is broken in PD.  In fact, the results of 

one placebo-controlled clinical trial suggest that “too much” graft-induced striatal 

reinnervation may cause debilitating side effects, even when striatal dopamine 

levels do not exceed “normal” values (Freed et al., 2001; Ma et al., 2002).  This is 

not too surprising, given that in their natural location (the substantia nigra pars 

compacta, SNc), nigrostriatal dopaminergic neurons receive regulatory afferent 

input and release dopamine from their dendrites which then binds to other 

dopaminergic cells and the axon terminals of striatonigral projection neurons in 

the substantia nigra pars reticulata (SNr) (Cheramy et al., 1981; Robertson, 

1992).  These complexities of the striatal-nigrostriatal circuit are completely 

ignored when transplants are placed exclusively into the striatum.   In addition, 

most cells within a piece of embryonic VM are not developmentally destined to 

become nigrostriatal neurons.  Even some of the dopaminergic cells (A10 

neurons of the ventral tegmental area) do not normally innervate the striatum, but 

rather project to limbic and cortical regions.  Improper placement of these cells 

into the striatum may contribute to unwanted side effects (Isacson et al., 2003). 

 To explore the role of dopaminergic input to the SN itself, intranigral 

transplants of fetal VM cells have been carried out in 6-OHDA-lesioned rats 

(reviewed by Winkler et al. 2000).  While early attempts at this procedure failed 

due to the small transplant site and traumatic transplantation procedures, 

Nikkhah and colleagues used a microtransplantation approach that resulted in 
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extensive reinnervation of the SNr and some functional recovery (Nikkhah et al., 

1994a).  This study showed that intranigral grafts decreased rotational 

asymmetry caused by injection of dopamine agonists, but not that caused by 

amphetamine.  Other studies of intranigral VM transplantation have confirmed 

the attenuation of dopamine agonist-induced turning, and shown that some more 

complex behaviors may be partially restored (Olsson et al., 1995; Yurek, 1997).  

Intranigral transplants performed in MPTP-treated monkeys resulted in a “modest 

but detectable benefit” (Collier et al., 2002).  To determine whether reinnervation 

of both the SN and the striatum could result in additive functional benefits, some 

groups have performed simultaneous intrastriatal and intranigral grafts. This 

method seems to provide more behavioral benefits that striatal grafting alone, 

and one pilot clinical trial has already determined the safety and efficacy of 

double grafts in human PD patients (Olsson et al., 1995; Mendez et al., 1996; 

Mukhida et al., 2001; Mendez et al., 2002).  

 

Reconstructing the nigrostriatal pathway 

To truly restore the circuitry that is lost in PD, neurons that are 

transplanted into the substantia nigra should extend axons to the striatum.  The 

distance between the SN and the striatum, coupled with the inhibitory 

environment of adult CNS, makes it difficult to effect such axon growth (Schwab 

et al., 1993).  Successful reconstruction of the nigrostriatal pathway was 

accomplished in neonatal (postnatal day 3) rat brains previously lesioned with 6-

OHDA, using rat embryonic VM, but this has little clinical relevance, since PD 

only affects adults (Nikkhah et al., 1995).  In the adult rat, only xenografts of 

human or porcine tissue into the SN have resulted in some unaided long distance 

axonal growth within the medial forebrain bundle and the internal capsule, 

specifically toward and then into the striatum (Wictorin et al., 1992; Isacson et al., 

1995; Armstrong et al., 2002).  These studies suggest that although rat brain 

becomes less permissive to axon growth as it ages, growth is possible given the 

right conditions in the host and/or the donor tissue.  
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Attempts to reconstruct the nigrostriatal pathway in adult rat brains using 

allogenic tissue have relied on “bridging” techniques, that is, creating a growth-

supportive conduit between the SN and the striatum.  Wang and colleagues 

(Wang et al., 1996) grafted fetal VM tissue into 6-OHDA-lesioned SN 

immediately followed by injection of 100µg GDNF along a track from the SN to 

the striatum.  Compared to control animals (without bridge) or to animals that 

received a bridging injection of BDNF, the GDNF-bridged animals showed a 

significant decrease in amphetamine-induced rotational behavior 1-3 months 

after grafting.  TH+ fibers were found in the striatum at 3 months post-grafting, 

indicating that some transplanted neurons had extended axons to the target 

(Wang et al., 1996).  Also in 1996, Zhou and colleagues published a study 

wherein they bridged the SN transplant site to the striatal target using the 

excitotoxic compound kainic acid.  Kainic acid had been shown previously to 

increase the expression of growth-supportive molecules such as NGF and 

GDNF.  In this study, creating a bridge with kainic acid did result in some axonal 

outgrowth from the SN to the striatum, increasing dopamine within the striatum 

and ameliorating some behavioral deficits (Zhou et al., 1996).  Another approach 

to creating bridges from SN to striatum involves grafting of exogenous cells that 

provide a growth-permissive environment along the pathway.  Examples include 

bridges of dissociated striatal tissue (Dunnett et al., 1989), fibroblast growth 

factor (FGF)-4-secreting schwannoma cells (Brecknell et al., 1996), GDNF-

secreting Schwann cells (Wilby et al., 1999) and kidney tissue (Chiang et al., 

2001).  

While each of these bridge-graft studies reported growth of TH+ fibers 

from the SN to the striatum, coupled with improvement in amphetamine-induced 

rotation, the amount of striatal reinnervation remains too low to result in improved 

spontaneous motor behavior.  It has been estimated that at least 10-20% of 

normal striatal dopaminergic innervation (10-12,000 DA neurons in the normal rat 

striatum) is necessary to improve such behaviors, but only 3% is required to 

significantly reduce amphetamine-induced rotation (Kirik et al., 1998; Winkler et 

al., 2000).  The average number of axons to grow through the bridge in the study 
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by Wilby and colleagues was about 300, or 10% of the number of surviving 

grafted VM neurons (Wilby et al., 1999).  In order to see improved motor function 

that is clinically relevant, future studies will need to increase the number of 

grafted neurons that follow the nigrostriatal pathway and reinnervate the striatum.   

 

Viral Vectors for CNS application 
 One way to therapeutically alter the adult CNS environment is to utilize 

viral vectors to express neuroprotective or neurorestorative molecules.  The 

vectors may target exogenous cells to be transplanted into the brain (ex vivo 

therapy) or target the host brain cells directly (in vivo therapy) (reviewed by 

Davidson and Breakefield, 2003).  Therapeutic strategies of gene therapy may 

include decreasing the activity of a dominant-negative mutant protein by 

antisense oligonucleotides or RNA interference, replacing a missing protein in 

recessive genetic conditions, or providing general neural protection and support 

with neurotrophic factors, antioxidants or anti-apoptotic factors (reviewed by 

Costantini and Isacson, 2000; Trulzsch and Wood, 2004).  Used in conjunction 

with cell transplantation, viruses can alter cells to deliver molecules that enhance 

graft-cell survival and increase fiber outgrowth (Casper et al., 2002; Ostenfeld et 

al., 2002).   

 Several different types of viral vectors have been used successfully in 

experimental models to transfer genes into the CNS, including adenovirus, 

adeno-associated virus, herpes simplex virus, and lentivirus.  Decisions about 

which vector is best suited to a particular situation are based on factors such as 

safety, specificity of targeting, efficiency of transduction, the size of the 

transgene, duration of expression and whether regulation of expression is 

required.  Different vectors have different strengths and weaknesses in each of 

these areas and modifications may also improve characteristics such as 

transduction efficiency and host cell targeting (Costantini and Isacson, 2000; 

Davidson and Breakefield, 2003). 

Many CNS disorders have been targets of gene therapy, at least in 

experimental animal models, including Parkinson’s disease, Huntington’s 
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disease, amyotrophic lateral sclerosis, stroke, lysosomal storage diseases, 

chronic pain, malignant glioma and epilepsy (Costantini and Isacson, 2000; 

Davidson and Breakefield, 2003).   PD may be an optimal target for gene therapy 

due to the well-defined, localized nature of the neural degeneration (Bohn, 2000).  

Indeed, several studies have already focused on viral vector-mediated delivery of 

GDNF to protect or restore dopaminergic neurons that have been exposed to a 

toxic insult such as 6-OHDA (in rats) or 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP, in primates) (Bensadoun et al., 2000; Bjorklund et al., 

2000; Kordower et al., 2000; Kozlowski et al., 2000; McGrath et al., 2002; Palfi et 

al., 2002; Zheng et al., 2005).  Molecules other than GDNF have also been 

investigated as targets of gene therapy for PD, including enzymes involved in 

biosynthesis of dopamine, such as tyrosine hydroxylase, aromatic-L-amino-acid 

decarboxylase (AADC) and GTP cyclohydrolase I (Shen et al., 2000; Azzouz et 

al., 2002; Muramatsu et al., 2002).   Three Phase 1 clinical trials of gene therapy 

for PD patients are currently underway, each one utilizing adeno-associated virus 

(AAV), which is one vector known to have low immunogenicity, and is the only 

virus currently approved for clinical trials.  The genes being delivered to patients’ 

brains are glutamic acid decarboxylase (GAD) to the subthalamic nucleus 

(Neurologix), AADC to the striatum (Avigen) and neurturin to the striatum 

(Ceregene).  So far, no safety concerns have been reported, and neither have 

there been reports of efficacy (Dass et al., 2006). 

 

Aims of this dissertation research 
 The general goal of the experiments described in the following chapters is 

to develop a technique, using viral vectors and cell transplantation, to replace 

long neural tracts in the damaged adult mammalian CNS.  The viral vectors are 

used to modify the host environment in order to enhance cell survival and target 

axon growth from transplanted cells.  More specifically, my aims are: 
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1) To determine whether viral vectors may be used to create pathways to 

direct neurite outgrowth from a cell transplant site in the brain to a distant 

target location. 

2) To determine whether such a targeting technique may be applied to a 

Parkinson’s disease model and result in behavioral improvements after 

cell transplantation into the substantia nigra. 
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Chapter Two:  Targeting Axon Growth from Dorsal Root Ganglion Neurons 

  
Introduction 
 
Central nervous system (CNS) damage due to disease or injury may be repaired 

by neural transplantation, but only if certain obstacles are overcome.  Finding a 

safe, reliable source of cells for transplantation is both a scientific and an ethical 

challenge, but that is just the first step.   Once cells are prepared for 

transplantation, a sufficient number of neurons must survive the transplantation 

procedure and extend fibers – sometimes over long distances – to reach 

appropriate targets and replace damaged circuitry.  Transplantation experiments 

have produced promising results in animal models of spinal cord injury, 

amyotrophic lateral sclerosis, epilepsy, stroke, Parkinson’s disease and 

Huntington’s disease, and several clinical trials have already been conducted in 

these arenas (Bjorklund et al., 2000; Isacson et al., 2003).  In most cases so far, 

cell-replacement therapy is limited to local effects on host circuitry, because 

axons are unable to extend over long distances in the adult CNS.  This limitation 

is most likely due to two related issues: a lack of growth-promoting molecules 

and guidance cues in the adult host tissue, and the presence of inhibitory 

molecules, especially after injury (Aubert et al., 1995; Sandvig et al., 2004; 

Domeniconi and Filbin, 2005).   

Since neurons used for transplantation are usually fetal or stem cell-

derived, their intrinsic growth potential is high.  To take advantage of that 

potential, the host environment must be altered to more closely resemble the 

permissive milieu of the developing nervous system.   One way to effect such a 

change is to use viral vectors to overexpress growth-supportive molecules in 

neurons and glia of the host prior to transplantation.  Recombinant adenoviral 

vectors have proven to be safe and effective tools for gene transfer into the CNS 

(Smith and Romero, 1999; Gerdes et al., 2000; St.George, 2003).  We have used 

adenoviral vectors previously to over-express nerve growth factor (NGF) or 

fibroblast growth factor 2 (FGF-2) in the dorsal horns of adult rat spinal cords, 
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causing robust sprouting and regeneration of nociceptive sensory afferents 

through the inhibitory dorsal root entry zone (Romero et al., 2000, 2001).  These 

studies support the idea that adenovirus-induced expression of growth-

supportive molecules in the CNS can counterbalance inhibitory signals and 

encourage axon growth.   

The current study seeks to determine whether adenoviral vectors may be 

used to create guidance pathways for axons of transplanted neurons to follow to 

a distant target in the adult brain.  Previous work by Davies et al. showed that 

embryonic or adult dorsal root ganglion (DRG) neurons, when transplanted into 

the corpus callosum of adult hosts, could extend axons for several millimeters 

along the tract only if scarring from transplantation was minimal (Davies et al., 

1994, 1997). The fact that axon growth in the corpus callosum is possible yet 

constrained makes it an ideal location to test the effect of virus-induced protein 

expression on axon growth and pathfinding decisions in the CNS.  Since much is 

known about the chemoattractive and chemorepulsive molecules that influence 

the normal development of nociceptive sensory afferents, these neurons were 

chosen as our first test candidates.   

 

Methods 
 
Construction of adenoviral vectors 

Replication-defective, temperature-sensitive recombinant adenoviruses encoding 

NGF, FGF-2, semaphorin3a, and green fluorescent protein (GFP) were 

constructed as previously described (He et al., 1998; Romero and Smith, 1998; 

Tang et al., 2004) . All plaque-purified adenoviruses were examined for 

replication-competent adenoviruses by PCR and were amplified and purified by 

double cesium chloride gradient ultracentrifugation. The absolute concentration 

of viral particles was determined by optical absorbency, and the concentration of 

infectious particles (pfu) was quantified by viral hexon protein expression in 

infected HEK293 cells using the Adeno-X Rapid Titer kit (BD Biosciences).  

Expression of each protein by virus-infected U373 cells was confirmed by 
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Western blot 72h after transfection as previously described (Romero et al., 2000; 

Tang et al., 2004). 

 

Adenovirus injections 

Adult female Sprague-Dawley rats (retired breeders, Harlan) were used for all 

experiments.  Animals were maintained under conditions of controlled light and 

temperature, with food and water available ad libitum.  On the day of surgery, 

rats were anesthetized with a mixture of ketamine (67 mg/kg i.p.) and xylazine 

(6.7 mg/kg i.p.) and placed into stereotactic frames.  On that day and the day 

following, rats were given i.p. injections of monoclonal antibodies to block the T-

cell receptors CD4 (W3/25, 50µg) and CD45 (OX-22, 50µg), to suppress any 

immune response to the adenovirus (Romero and Smith, 1998).  For 

comparisons of guidance pathways, animals were randomly assigned to one of 

four treatment groups: 1) Ad-FGF-2 along the guidance pathway, Ad-NGF at the 

target, 2) Combination Ad-FGF-2/Ad-NGF along the pathway, Ad-NGF at the 

target, 3) Ad-GFP along the pathway, Ad-NGF at the target, or 4) Ad-GFP along 

the pathway and at the target (No NGF).  Guidance pathways were created by 

injecting each adenovirus every 1mm from a transplant site in the left lateral 

corpus callosum to a 90-degree turn into the contralateral striatum (target).  

Using bregma as a landmark, holes were drilled into the skull to allow injections 

at the following coordinates, all 0.3µm caudal, depths relative to dura:  transplant 

site, +2.8mm lateral (left side), -3.0mm deep; pathway within the corpus 

callosum, +/- 2.5mm lateral, -3.0mm deep, +/- 1.5mm lateral, -2.9mm deep and 

+/-0.7mm lateral, 3.2mm deep; pathway into striatum at -2.5mm lateral (right 

side), depths of 3.5mm and 4.0mm; striatal target, -2.5mm lateral, 4.5mm deep.  

For the semaphorin experiment, all animals received pathways of Ad-FGF-2/Ad-

NGF and striatal NGF targets, then half the animals received two 0.4µl injections 

of Ad-semaphorin3A 1mm dorsolateral from the pathway turning point at 3.2mm 

lateral, 2.2mm deep and 3.6mm lateral, 2.6mm deep.  For the cortical target 

experiment, the striatal path and target were replaced with injections at -2.5mm 

lateral, 2.5, 2.0 and 1.5mm deep.  Adenovirus concentrations were 5x106 pfu/µl, 
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except for combination Ad-FGF-2/Ad-NGF injections, where the Ad-NGF 

concentration was reduced to 1x106  pfu/µl for a 5:1 ratio of Ad-FGF-2 to Ad-

NGF.  Injection volumes ranged between 0.2 µl (Ad-NGF at transplant site) to 

2.0µl (Ad-NGF at striatal target), and increased along the pathway to create a 

gradient effect.  Volumes were injected at a rate of 0.4µl/min using a 10µl 

Hamilton syringe and a 30-gauge beveled needle, and the needle remained in 

place for 2 minutes at the end of each injection.  

 

DRG isolation and transplantation 

One week after adenovirus injections, DRG neurons were isolated from postnatal 

day 1 or 2 (P1-P2) Sprague-Dawley rat pups (timed-pregnant dams from Harlan).  

Each pup was quickly decapitated and DRGs were removed using sterile 

Dumont forceps and placed into Hank’s buffer containing 1% collagenase, kept 

on ice until all dissections were complete.  After a 20-minute incubation at 37ºC, 

DRGs were washed then trypsinized for 10 minutes at 37ºC, treated with DNAse 

and washed twice more with 10% fetal bovine serum in Dulbecco’s Modified 

Eagle Medium (FBS/DMEM), then triturated to disperse the ganglia into a cell 

suspension.  Cells were then plated out in 10%FBS/DMEM containing 50ng/ml 

NGF for 45 minutes at 37ºC to allow adhesion of Schwann cells.  Cells remaining 

in suspension were then spun down and washed in N2-supplemented media 

three times to eliminate FBS.  The number of live neurons per microliter was 

determined by treatment with trypan blue and counting on a hemocytometer.  

The final cell suspension was supplemented with NGF (50ng/ml) and kept on ice 

until transplant (up to 3 hours total).  Rats previously injected with adenovirus 

were re-anesthetized and their skulls exposed again at the transplant site 

(2.8mm lateral, 0.3mm caudal to bregma).  3000-5000 DRG neurons were 

injected with a Hamilton syringe/30-guage needle in a volume of <2µl 

(0.4µl/minute) into the left corpus callosum, 3mm below the dura.  The needle 

was left in place for 10 minutes, withdrawn 0.4mm, left for an additional 5 

minutes, then slowly retracted the rest of the way.   
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Immunohistochemistry and Quantification 

Rats were killed 3 weeks after DRG transplants by pentobarbital overdose and 

perfusion with cold saline followed by 4% paraformaldehyde.  Brains were 

removed and post-fixed in 4% paraformaldehyde overnight, then transferred to a 

30% sucrose solution for approximately two days, allowing brains to sink to the 

bottom of the vials before cryosectioning.  One in five coronal sections (30µm 

thick) through the transplant area were immunostained using a rabbit primary 

antibody to calcitonin gene-related peptide (CGRP; Jackson Labs; 1:10,000 

dilution), a biotinylated secondary antibody (goat anti-rabbit IgG, 1:600) and 

developed with a diaminobenzidine chromogen to visualize nociceptive neuronal 

cell bodies and axons.  For each animal, three sections in the 1:5 series (150µm 

apart) with the most CGRP+ cells or fibers were quantified for transplant survival 

or axon growth along the pathway by a blinded observer.  For cell survival, the 

total number of visible CGRP+ cell bodies at the transplant site were manually 

counted at 200x total magnification and summed over the three sections 

containing the most cells. Axons were counted manually at 200x total 

magnification at the following points along the pathway:  in the corpus callosum 1 

and 2mm from midline ipsilateral to transplant (mid -1mm, mid -2mm), in the 

corpus callosum 1 and 2mm from midline contralateral to transplant (mid +1mm, 

mid +2mm), in the contralateral striatum 0.5mm below the corpus callosum (c.c. -

0.5mm), and in the contralateral striatum 1mm below the corpus callosum (c.c. -

1mm).  To correct for differences in transplant size and survival, axon counts at 

the more distal path points were divided by a count closer to the transplant (mid-

2mm or mid-1mm).  For quantification of turning success with and without 

semaphorin expression adjacent to the turn, animals with fewer than 10 axons at 

the turning decision point (average over 3 sections) were eliminated from the 

analysis.  This led to elimination of 3 animals from each group.  Axons were then 

counted at distances relative to the needle track from the Ad-NGF target 

injection:  200µm past the track in the corpus callosum, and 200µm below the 

corpus callosum in the striatum. 
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Statistical Analyses 

To analyze cell survival, t-tests were used to compare groups without NGF at 

different time points and the +NGF group to each time point without NGF.  To 

determine whether the molecule(s) expressed along the pathways affected the 

number of axons at different points along the pathway, nonparametric statistical 

tests were employed to allow for smaller sample sizes (smallest group, n=3) and 

large variances that were observed within groups.  A Kruskal-Wallis test was 

used to determine if pathway composition affected axon count at each path point, 

and Mann-Whitney U-tests were subsequently used to determine which 

pathways were significantly different at those points.  For turning analysis with 

and without semaphorin, sample sizes were larger (n = 8 and 9, respectively) and 

an F-test confirmed equal variance, so a t-test assuming equal variance was 

utilized to compare those two groups.  Differences were considered statistically 

significant if p-values were less than or equal to 0.05. 

 

Results 
 
Transplant survival requires Ad-NGF injection at transplant site 

Initial experiments followed the injection scheme depicted in Fig. 2-1A, either with 

or without inclusion of a small-volume Ad-NGF injection at the transplantation 

site.  Expression pathways were constructed by injecting Ad-FGF-2 at several 

sites along the corpus callosum and down into the right striatum, where a larger 

volume of Ad-NGF was injected to create a target for growing axons.  One week 

after virus injections, DRG neurons were isolated from P1-2 rat pups and injected 

at the transplant site in the left corpus callosum. Immunohistochemical staining in 

test animals one week after transplant confirmed that FGF-2 was being 

expressed along the corpus callosum and that there was robust NGF expression 

in the target striatum.  Furthermore, CGRP+ axons had grown along the 

expression pathway, some following needle tracks that overshot the corpus 

callosum during virus injections leading to FGF-2 expression in the underlying 

striatum (Fig. 2-1 B-E).  After allowing two weeks for axon growth, 
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immunostaining of brain sections through the transplant site revealed good cell 

survival with NGF expression at the transplant site, but no visible CGRP+ cells in 

animals without NGF at the transplant site.  A subsequent time-course study 

showed the demise of most transplanted neurons within the first few days after 

transplant when no NGF support was provided (Fig. 2-2 A -D).  There was a 

significant drop in cell survival between days 1-3 (n = 4) and days 7-11 (n = 6, 

p=0.04), and then no CGRP+ cells could be found at two weeks in those animals 

lacking NGF at the transplant site (n = 3).  There was a significantly higher 

number of transplanted cells that survived for two weeks with NGF at the 

transplant site when compared to without NGF at any time point (p<0.05 vs. 1-3d 

No NGF; p<.001 vs. 7-11d No NGF). A statistical comparison could not be made 

at the 14-day time point because without NGF, the cell count was zero in all 

animals (no variance).  In all subsequent animals in this study, a small volume of 

Ad-NGF was injected at the transplantation site along with the pathway injections 

one week before transplant to ensure survival of transplanted cells.   

 

Axons do not cross midline without neurotrophin expression along path and/or at 

target 

To determine whether a pathway expressing neurotrophins is necessary for 

growing nociceptive axons to reach the target area in the contralateral 

hemisphere, pathways were created by injections of Ad-FGF-2 or a combination 

of Ad-FGF-2 and Ad-NGF (5:1 ratio) and compared to control pathways created 

by injections of Ad-GFP one week prior to DRG cell transplantation.  Every path 

included a small Ad-NGF injection at the transplant site to ensure transplant 

survival, and all but four GFP-pathway animals (GFP only) received Ad-NGF 

target injections in the contralateral striatum.  Three weeks after transplant, 

immunohistochemical staining for CGRP revealed that pathways expressing 

FGF-2 (n = 4) or a combination of FGF-2 and NGF (n = 8) supported robust, 

long-distance axon growth toward the target (Fig. 2-3 C, D).  All animals in these 

two groups had axons that grew at least 2mm beyond the midline into the 

contralateral hemisphere, and ten out of twelve had some turning of axons from 
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the corpus callosum into the target striatum (Fig. 2-3 I-M).  In animals that 

received Ad-GFP injections only along the path and at the target (n = 4), no 

axons crossed the midline in the corpus callosum, and only two had axons grow 

more than 1mm away from the transplant site (Fig. 2-3 A, E, F).  Out of three 

animals that had GFP pathways ending in an NGF target, only one had axons 

grow beyond the midline, with a few fibers turning into the contralateral striatum 

(Fig. 2-3B, G and H).  In the other two animals, axon growth stopped at or before 

the midline.   A Kruskal-Wallis test confirmed that the expression of 

neurotrophins significantly increased the number of CGRP+ fibers in the corpus 

callosum at 1mm and 2mm past the midline (mid +1mm, p = .006; mid + 2mm, p 

= .01) and at 0.5mm and 1mm below the corpus callosum in the target striatum 

(c.c.- 0.5mm, p = .03; c.c.-1mm, p = .05) after correcting for transplant 

size/survival (Fig. 2-3N).  Subsequent Mann-Whitney U-tests showed significant 

differences in axon number (p<0.05) at mid+1mm between the GFP-only group 

and both FGF2-expressing groups and between the GFP/NGF target group and 

both FGF2-expressing groups.  At mid+2 and at 0.5mm below the corpus 

callosum, significant differences were found between the GFP-only group and 

both FGF-expressing groups and between the GFP/NGF target group and the 

combination FGF+NGF/NGF target group.  At the furthest point quantified, 1mm 

below the corpus callosum, only the combination FGF+NGF/NGF target group 

showed a significant increase in axon number over GFP pathways both with and 

without NGF targets.  These results indicate that adenovirus-induced expression 

of FGF-2 and NGF can enhance and direct nociceptive axonal growth from 

transplanted DRG neurons over distances of at least 6mm, including a turn from 

white matter into grey matter, overcoming an otherwise inhibitory environment.  

 

Expression of a chemorepulsive molecule adjacent to turn in path enhances axon 

turning 

Since many axons continued to grow in the corpus callosum beyond the pathway 

turn (see Fig. 2-3J and L), we next tested the hypothesis that expression of a 

chemorepulsive molecule adjacent to the turning point could increase the number 
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of axons making the desired pathway choice.  As shown in Fig. 2-4A, the 

adenovirus injection scheme for this experiment included Ad-semaphorin3A (Ad-

sema) injections approximately 1mm from the turn in the dorsolateral direction.  

Control animals received the same pathway and target injections (Ad-FGF2/NGF 

and Ad-NGF, respectively), but did not have Ad-sema injections.  As in the 

previous experiments, DRG transplants were done one week after virus 

injections and animals were killed for histological analysis three weeks after 

transplant.  For this experiment, animals in which CGRP+ fibers did not make it 

as far as the pathway turning point in the contralateral hemisphere were 

eliminated from the analysis (three per group).  In the remaining animals, an 

observer unaware of treatment counted CGRP+ fibers that had continued past 

the target needle track in the corpus callosum and CGRP+ fibers that had turned 

down into the target striatum, averaged over three sections per animal.  The 

results show a significant increase in the proportion of axons that make the 

desired turn, from 51% to 77%, in animals with semaphorin expression adjacent 

to the turning point (no sema, n = 9, mean + SEM = 51 + 7%; with sema, n = 8, 

77 + 7%; p=.02, Fig. 2-4 B-F).  These data support the hypothesis that 

adenovirus-mediated expression of chemorepulsive molecules can help to 

selectively target axon growth from transplanted neurons. 

 

Cortical NGF expression leads to enhanced axon growth on brain surface 

An interesting observation in some animals was that many CGRP+ fibers grew 

up into the cortex on the target side, following the needle track from the Ad-NGF 

target injection, sometimes in greater numbers than those turning toward the 

striatum.  This is consistent with observations by Davies, et al., who described 

axon growth out of the corpus callosum into the host prefrontal cortex as a 

default pathway for transplanted CGRP+ DRG neurons (Davies et al., 1997).  

With this in mind, we altered the adenovirus injection scheme to see if greater 

numbers of fibers would choose that route if the NGF-expressing target was in 

the cortex rather than in the striatum.  Pathways were constructed with either a 

combination of Ad-FGF-2 and Ad-NGF (5:1) or Ad-GFP leading to the cortical 
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NGF target (Fig. 2-5A).  It was expected that with FGF/NGF pathways, axons 

would extend along the corpus callosum from the transplant, as before, and then 

turn up to reach the target area on the contralateral side.  Instead, the cortical 

expression of NGF greatly enhanced growth of CGRP+ fibers along the brain 

surface in the meninges (Fig. 2-5 F and K).  Many axons from transplanted cells 

grew upwards immediately and then along the brain surface, with some growing 

down again wherever there was a needle track from an injection that included 

Ad-NGF; that is, every needle track in the combination FGF/NGF pathways, and 

only the target needle track in GFP pathways (Fig. 2-5 B-M).  Growth within the 

corpus callosum was limited, but in animals with FGF/NGF pathways, 5 out of 6 

had some callosal axon growth all the way across to the target area (a distance 

of ~5mm).  Only one out of three GFP-pathway animals had growth that far in the 

corpus callosum – in the other two, axons stopped within 1.5mm of the 

transplant.  Axon counts within the corpus callosum were compared by Mann-

Whitney U-tests and found to be significantly higher at every path point 

(corrected for transplant size/survival) when neurotrophins were expressed in the 

corpus callosum, as compared to GFP-pathway animals (p<.05).  When growth 

within the corpus callosum was compared between animals with a cortical NGF 

target and animals with a striatal NGF target, the pathways leading to a striatal 

target contained significantly more CGRP+ fibers at midline +1mm, but 

neurotrophin-expressing pathways contained more fibers than GFP controls in 

both experiments (Fig. 2-5N).  The number of CGRP+ axons reaching each 

NGF-expressing target area (striatal or cortical) was similar, but with cortical 

targets, no difference existed between animals expressing neurotrophins along 

the corpus callosum and those expressing only GFP (Fig. 2-5O).  Obviously, 

many of the axons had followed an alternative pathway to the target, growing 

along the brain surface and avoiding the white matter of the corpus callosum 

altogether.  To be sure that the CGRP+ fibers observed in the meninges were not 

from NGF-induced sprouting of endogenous nociceptive fibers there, three 

control animals received the same Ad-FGF/NGF pathway injections and Ad-NGF 

cortical targets, but no DRG cell transplants.  In these animals, there were no 
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visible CGRP+ fibers at the brain surface or penetrating the cortex at any point 

after the same period of time (data not shown).  The results of this experiment 

underscore the fact that virus-mediated expression of neurotrophic molecules 

may help to tip the balance of axon guidance in one direction or another, but 

endogenous cues in the complex molecular environment of the host CNS are key 

players in directing growth from transplanted cells. 

 

Discussion 
 

The results presented here support the hypothesis that directed, long-

distance axon growth from transplanted neurons in the adult CNS may be 

achieved by virus-mediated expression of specific molecules with neurotrophic or 

chemotactic properties.  Such growth is possible even when the host tissue has 

been injured by the virus-injection and transplantation procedures.  As during 

development, the best axon targeting is achieved when positive cues are 

expressed along the desired pathway and in the target tissue and negative cues 

are expressed in adjacent areas to prevent unwanted turning or sprouting into 

non-target tissue.   The choice of molecules for this technique depends on the 

specific subpopulation of neurons to be targeted: in our study, nociceptive 

sensory neurons from the dorsal root ganglia.   

During embryonic development, growth cones on different sensory 

neuronal subtypes respond to different guidance cues, depending on which 

receptors they express.   Based on both in vitro and in vivo experiments, it has 

been determined that NGF acts as a chemoattractant for embryonic sensory 

axons expressing the high-affinity receptor tyrosine kinase Trk A (Gundersen and 

Barrett JN, 1979; Paves and Saarma, 1997; Tucker et al., 2001).   Adult sensory 

neurons are also able to alter their axon growth patterns in response to NGF, as 

we have shown previously that adenovirus-mediated overexpression of NGF in 

the dorsal spinal cord induces extensive sprouting of nociceptive afferent fibers 

throughout the dorsal horn and even into the ventral horn and lateral funiculus of 

adult rats (Romero et al., 2000).  In the setting of injury to the dorsal root, 
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lesioned axons that would normally not re-enter the spinal cord were stimulated 

to do so by virus-mediated NGF expression in the dorsal horn (Romero et al., 

2001).  This probably reflects the ability of neurotrophins to increase the intrinsic 

growth state of neurons and overcome inhibitory signals present in the adult CNS 

environment (Cai et al., 1999). Virus-mediated expression of FGF-2 in the spinal 

cord had a similar regenerative effect on sensory afferents after dorsal root 

injury, resulting in growth into the cord, consistent with the known neurite growth-

promoting effects of FGF-receptor activation (Williams et al., 1994; Romero et al., 

2001).  Based on these lines of evidence, we chose NGF and FGF-2 as our 

positive growth cues for transplanted postnatal DRG neurons in the adult rat 

corpus callosum, and both molecules improved axon targeting.   

Our data support the role of NGF as both a survival-enhancing and axon-

targeting molecule for postnatal nociceptive DRG neurons.  Without expression 

of NGF at the transplant site, the vast majority of CGRP+ neurons died within 

one week of transplant.  When Ad-NGF injections were included at the transplant 

site, many CGRP+ cell bodies were present at two weeks post-transplant.  Axon 

growth away from the transplant site and along the white matter tract was also 

greatly enhanced by prior injections of adenovirus encoding FGF-2 or a 

combination of FGF-2 and NGF along the corpus callosum.  With only Ad-GFP 

injections along the path and no NGF-expressing target in the contralateral 

hemisphere, no CGRP+ fibers grew as far as the midline, and only one out of 

three animals had contralateral fiber growth when the NGF target was present 

but the connecting pathway was GFP only.  These results differ from those of 

Davies et al. (1997), who demonstrated long-distance growth of CGRP+ fibers 

within the adult corpus callosum after DRG transplants without accompanying 

overexpression of growth-supportive molecules.  The discrepancy is most likely 

due to a difference in transplantation technique.  While we used a 30-gauge 

needle for virus injections and transplants, the Davies group used a 

microtransplantation method to minimize glial scarring (Davies et al., 1997).  In 

eventual clinical applications, it would be best to reduce the amount of tissue 

damage due to the cell transplantation procedure because resultant scarring 
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leads to expression of chondroitin sulfate proteoglycans (CSPGs) which are 

known to interfere with axon regeneration (Davies et al., 1999; Jones et al., 2003; 

Silver and Miller, 2004).  In this model, however, we demonstrate the 

effectiveness of preformed growth pathways in directing axon growth from 

transplants in spite of inhibitory signals present in the host tissue, which may be 

a factor when transplants are made into previously injured brains or spinal cords. 

With these encouraging results, we next sought to increase the proportion 

of axons that turned toward that target rather than continuing along the corpus 

callosum or growing up toward the cortex by expressing a chemorepulsive 

molecule, semaphorin3A, dorsolateral to the turn.  An extra stimulus is necessary 

in this situation since white matter may support axon growth that is parallel to, but 

not perpendicular to the tract, and crossover between white and grey matter is 

usually restricted by the cytoarchitecture (Crutcher, 1989).  Our choice of 

molecule for this purpose was again based on knowledge of sensory neuron 

development.  Centrally-projecting nociceptive DRG axons are prevented from 

overshooting their destination in the dorsal-most laminae of the embryonic spinal 

cord by expression of sema3A in the ventral cord.  (Messersmith et al., 1995).  

Peripheral sensory axons also have their growth pathways restricted by the 

presence of sema3A in surrounding, non-target mesenchymal tissue, and both 

central and peripheral semaphorin expression patterns are spatially and 

temporally regulated to coincide with the development of sensory nerve tracts 

(Giger et al., 1996; Masuda and Shiga, 2005).  Adult nociceptive sensory fibers 

are similarly repelled and prevented from sprouting by sema3A (Tanelian et al., 

1997; Tang et al., 2004).  Consistent with these findings, the expression of 

sema3A dorsal and lateral to the desired ventral turn in the guidance pathway 

increased the proportion of axons making the “correct” turning decision from 51% 

to 77%.   While expression of positive growth cues along a desired pathway 

helps to target axon growth, negative cues in the periphery prevent growth into 

non-target areas and thus improve accuracy in our model as in embryonic 

development. 
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An interesting observation in initial experiments was the growth of many 

CGRP+ axons from the corpus callosum up the needle tracks from Ad-NGF 

target injections, into the overlying cortex.  Even though the Ad-NGF was injected 

into the striatum, it is likely that a small amount of virus was pulled up the track 

as the needle was being withdrawn from the brain, leading to some cortical NGF 

expression.  This small amount of expression was apparently enough to 

encourage growth in that direction, possibly because the host environment in the 

cortex is inherently more growth-permissive than the striatum.  In fact, previous 

DRG transplants into the corpus callosum by Davies, et al. resulted in CGRP+ 

fibers turning up into the host cortex without any induced expression of 

neurotrophic factors (Davies et al., 1997).  Based on these observations, we 

altered the pathway-injection scheme to place the NGF target in the cortex 

contralateral to the transplantation site.  Our prediction was that axons would 

grow along the corpus callosum as before, and then the majority of the fibers 

would turn up toward the target.  Instead, the high cortical NGF expression 

directed most axon growth from the transplant site up to and along the brain 

surface, with some fibers diving down into cortical needle tracks where Ad-NGF 

had been injected.  The combination of NGF availability and the highly vascular 

nature of the leptomeninges may have led to this pathway decision, since 

endothelial basement membranes are a rich source of laminin.  Laminin, by way 

of integrin receptors, activates signaling pathways that overlap downstream with 

NGF signaling pathways, leading to further enhanced neurite outgrowth from 

sensory neurons (Liu et al., 2002; Tucker et al., 2005).  The results of this 

experiment highlight the importance of endogenous growth cues in the host 

environment for determining axon trajectories of transplanted neurons. 

 The current study provides evidence that preformed guidance pathways 

created by injection of viral vectors can direct axon growth from transplanted 

neurons to desired target locations.  Furthermore, the accuracy of targeting may 

be improved by judicious expression of chemorepulsive molecules in surrounding 

areas.  This technique could potentially improve outcomes in therapeutic 
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transplantation paradigms requiring axon growth over long distances and/or 

through inhibitory host tissue. 
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Figure 2-1:  Confirmation of expression of NGF and FGF-2 after adenoviral 
injections into the corpus callosum and striatum.  A) Schematic of injection 
protocol – Blue circles represent injection sites for Ad-FGF2, combination Ad-
FGF2/NGF or Ad-GFP (control);  Green circles represent Ad-NGF injections, 
small volume (0.2µl) at transplant site (arrow) in the left corpus callosum and 
large volume (2µl) at the target site in the right striatum.  Brown circles represent 
transplanted DRG neurons, injected one week after the adenoviral pathway.  B) 
Double immunostaining shows CGRP+ fibers (brown) growing along a pathway 
of FGF-2 expression (blue).  Higher magnification insets (C & D) depict axons 
following needle tracks from Ad-FGF-2 injections, which overshot the corpus 
callosum.  E) Immunostaining for NGF shows widespread expression in the 
target striatum. 
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Figure 2-2:  NGF expression at the transplant site is necessary for cell 
survival.   A-C) Representative CGRP-immunostained sections through 
transplant sites;  A) Transplant after 24h with no Ad-NGF; B) Transplant after 7 
days with no Ad-NGF; C) Transplant after 14 days with Ad-NGF at transplant 
site.  Scale bars = 200µm.  D) Counts of CGRP+ cell bodies at the transplant site 
1-14 days after transplantation.  For each animal, cell bodies were counted in 3 
sections separated by 150µm and added together (semi-quantitative method).  At 
14 days, there were no CGRP+ cell bodies found in any of the three animals 
lacking NGF expression at the transplant site – the small mark visible at that 
point in the graph is for illustrative purposes only.  Bars represent mean + SEM at 
each time point.  *p < 0.05.   
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Figure 2-3:  Virus-mediated expression of neurotrophic molecules along a 
pathway improves long-distance growth of axons toward a desired target.  
Representative CGRP-immunostained sections show nociceptive axon growth 
three weeks after DRG neuron transplants.  A) GFP pathway, no target; there 
was no CGRP+ fiber growth beyond the midline in any animals from this group.  
B) GFP pathway, NGF target in striatum; this section is from the single animal 
that showed CGRP+ fiber growth beyond the midline in this group.  C) FGF 
pathway, NGF target in striatum; there is ample CGRP+ fiber growth into the 
contralateral (target) hemisphere, to and beyond the pathway turning point within 
the corpus callosum.  D) FGF + NGF (5:1) combination pathway, NGF target in 
striatum; there is robust CGRP+ fiber growth into the contralateral hemisphere 
within the corpus callosum, with more successful turning into the target striatum.  
Scale bars in A-D = 1mm.  E & F) Higher magnification of boxed areas in A.  G & 
H) Higher magnification of boxed areas in B.  I & J, Higher magnification of boxed 
areas in C.  K & L) Higher magnification of boxed areas in D.  Scale bars in E-L = 
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200µm.  Areas pictured in E, G, I and K include the path point “midline +1mm”, 
which is quantified in the graph.  Areas pictured in F, H, J and L show the extent 
of CGRP+ axon growth toward the striatal target, with arrows indicating the most 
distal fibers.  M) Higher magnification of boxed area in L.  N) Average number of 
fibers counted at various distances along the pathway, divided by the number 
counted at 1mm left of midline (ipsilateral to transplant) to adjust for any 
differences in transplant size or survival.  Mid = midline; c.c. = corpus callosum.  
Mid +1mm and Mid +2mm are on the right side, contralateral to the transplant.  
Symbols represent means + SEM. *p < 0.05, **p < 0.01 (Kruskall-Wallis).  GFP 
only, n = 4; GFP/NGF target, n = 3; FGF/NGF target, n= 4; FGF+NGF/NGF 
target, n = 8.   
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Figure 2-4:  Expression of a chemorepulsive molecule adjacent to the 
pathway turning point increases the proportion of axons making the 
desired turn.  A,  Schematic of injection protocol, blue circles along corpus 
callosum represent Ad-FGF2/NGF injections, green circles represent Ad-NGF 
injections at the DRG transplant site (left) and striatal target (right), red circles are 
Ad-semaphorin injections (only in the +Sema group), and brown circles represent 
transplanted DRG neurons, injected one week after the adenoviral pathway.  B-
E, Representative sections immunostained for CGRP; without semaphorin (B & 
C), or with semaphorin (D & E) adjacent to the turn.  C & E are higher 
magnifications of boxed areas in B & D.  Scale bar in B = 500µm, scale bar in C 
= 200µm.  Arrows indicate mediolateral location of Ad-NGF target injection, 
asterisks (*) are in the corpus callosum beyond the pathway turning point. 
Arrowhead in E indicates macrophages within the corpus callosum (not CGRP+ 
staining).  F, Bars represent mean percent (+/- SEM) of CGRP+ fibers making 
turn: 77% with semaphorin, 51% without semaphorin; t-test *p=.02; n=8 with 
sema, n=9 without sema. 
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Figure 2-5:  NGF overexpression in the cortex leads to axon growth along 
the brain surface when neurons are transplanted into the corpus callosum.  
A, Schematic of injection protocol with cortical target: Blue circles along corpus 
callosum represent Ad-FGF2/NGF or Ad-GFP (control) injections, green circles 
represent Ad-NGF injections at the DRG transplant site (left) and cortical target 
(right).  Brown circles represent transplanted DRG neurons, injected one week 
after the adenoviral pathway.  B-M, Representative coronal sections after three 
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weeks’ growth, immunostained for CGRP.  B, GFP pathway, NGF target in 
cortex; asterisk (*) indicates area where axons are found growing up toward the 
brain surface in a separate section, shown in E; arrowhead points to CGRP+ 
fibers growing within the meninges, which have mostly pulled away from the 
brain parenchyma during tissue processing.  C & D, FGF+NGF (5:1) combination 
pathways, NGF target in cortex.  Two different animals from this treatment group 
are represented to illustrate variability in axon-pathfinding decisions.  The arrow 
in D points to CGRP+ axons growing up toward the brain surface, while the 
arrowhead in D points out dense fiber growth within the meninges;  Scale bars in 
B-D = 1mm.  E, A separate section from the same animal as B, showing where 
the CGRP+ axons have grown up from the transplant site toward the brain 
surface.  F, Higher magnification of area indicated by arrowhead in B, showing 
CGRP+ fiber growth within the meninges.  G & H, Higher magnification of boxed 
areas in B.  I & J, Higher magnification of boxed areas in C.  K, Higher 
magnification of area indicated by arrowhead in D, showing CGRP+ fibers within 
the pia and coursing down into the cortex.  L & M, Higher magnification of boxed 
areas in D.  Scale bars in E-J = 200µm.  N, Quantification of CGRP+ axon growth 
in control (GFP) pathways and FGF+NGF pathways at 1mm beyond the midline 
when the NGF-expressing target was either in the striatum or in the cortex.  
There is significantly more axon growth in FGF+NGF pathways than in GFP 
pathways for both injection paradigms, but fewer axons follow the corpus 
callosum pathway when the target is in the cortex because they choose the 
alternative route along the brain surface.  O, Quantification of CGRP+ axon 
growth into the target area, either halfway between the brain surface and the 
corpus callosum in the striatum (pictured in H, J & M), or 0.5mm below the 
corpus callosum in the striatum.  With the striatal target, there is a significant 
difference between GFP pathways and FGF+NGF pathways, but with the cortical 
target, axon growth along the brain surface to the target eliminates the difference 
between pathways.  Bars represent means + SEM. Mann-Whitney U-tests at 
each path point, *p < .05.  GFP/NGF, n = 3; FGF+NGF/NGF, n=4. 
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Chapter Three: Preliminary Studies with Nigrostriatal Dopaminergic 
Neurons 

 
Introduction 
 

Since Parkinson’s disease (PD) is caused by the selective degeneration of 

nigrostriatal dopaminergic neurons, the potential exists for alleviation of 

symptoms by rebuilding the nigrostriatal circuit.  This would require 

transplantation of healthy dopaminergic neurons into the substantia nigra (SN) 

and subsequent axon growth to and innervation of the striatal target.  Many 

previous studies have focused on neuronal transplantation for PD, both in animal 

models and in clinical trials, but the vast majority of these studies have involved 

transplantation of new neurons directly into the striatum (Reviewed by Winkler et 

al., 2000).  In this way, a new, internal source of dopamine is provided, 

eliminating the need for pharmacological dopamine replacement.  Unfortunately, 

such techniques only confer mild benefits, if any, and have also lead to 

distressing side effects in some human transplant recipients (Freed et al., 2001; 

Greene and Fahn, 2002; Ma et al., 2002).  These disappointing results may be 

due, at least in part, to the ectopic placement of the dopaminergic cells and 

concomitant lack of regulatory afferent input (Cheramy et al., 1981; Robertson, 

1992; Baker et al., 2000; Winkler et al., 2000).  In addition, fetal tissue 

transplants inevitably contain some cells that normally do not project to the 

striatum, so any connections that they make in that area will be aberrant and may 

cause side effects (Isacson et al., 2003).  It is therefore critical to pursue 

transplantation techniques that more closely approximate a reconstruction of the 

nigrostriatal pathway. 

The major challenge in attempting to rebuild this circuit is the sheer 

distance between the SN and the striatum, along with the difficulty that axons 

have in growing such distances through a mature CNS environment.  

Experiments addressing these issues have used the unilateral 6-

hydroxydopamine (6-OHDA) lesion model in adult rats, which creates a 
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“hemiparkinson” state by elimination of nigrostriatal neurons on one side of the 

brain.  To repair the damage, some groups have attempted “bridging” 

techniques, with dopaminergic cell transplants into the SN and various growth-

supportive substrates between the SN and the striatum, including embryonic 

striatal tissue (Dunnett et al., 1989), glial cell-line derived neurotrophic factor 

(GDNF) (Wang et al., 1996), fibroblast growth factor (FGF)-4-transfected 

schwannoma cells (Brecknell et al., 1996), GDNF-secreting Schwann cells (Wilby 

et al., 1999), and kidney tissue (Chiang et al., 2001).  Although some degree of 

graft-derived dopaminergic fiber growth along the pathway is reported in each of 

these studies, quantification of fiber growth and striatal innervation is minimal or 

absent, so it is difficult to interpret the success of each technique.  Furthermore, 

improvement in parkinsonian motor symptoms – the desired endpoint with 

nigrostriatal pathway reconstruction – is not addressed beyond amphetamine-

induced rotation scores in any study except Chiang’s, which does report 

improvements in postural asymmetry but still does not analyze spontaneous 

motor behavior (Chiang et al., 2001).  The best technique for rebuilding a 

functional nigrostriatal circuit, then, remains to be found. 

To avoid introduction of extra foreign cells along the nigrostriatal pathway, 

it makes sense to attempt a molecular approach for creating a supportive 

environment for dopaminergic axon growth.  One candidate molecule for such 

growth enhancement is GDNF, which is known to increase the survival, 

differentiation,  fiber outgrowth and dopamine release of fetal midbrain 

dopaminergic neurons both in vitro and in vivo (Lin et al., 1993; Stromberg et al., 

1993; Hudson et al., 1995; Johansson et al., 1995).  GDNF has been used 

successfully to increase the survival of fetal dopaminergic cell transplants in the 

6-OHDA-lesioned rat striatum (Rosenblad et al., 1996; Yurek, 1998; Ostenfeld et 

al., 2002) and shows some promise for increasing fiber outgrowth from 

dopaminergic cells transplanted into the lesioned SN (Wang et al., 1996; Wilby et 

al., 1999).  So far, there is no strong evidence supporting GDNF’s role as a 

chemoattractant for dopaminergic axons, but when combined with the GPI-linked 

glial cell line-derived neurotrophic factor receptor α1 (GFRα1) there is an 
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attractive guidance effect on other populations of GDNF-responsive neurons 

(sensory and sympathetic) (Ledda et al., 2002). Another molecule which acts as 

a chemoattractant guidance cue is netrin-1, which has recently been shown to 

have positive directional effects on neurite outgrowth from cultured dopaminergic 

neurons (Lin et al., 2005, 2006).   

Direct injection of any of these molecules may have a temporary positive 

effect on neurite outgrowth from dopaminergic neurons transplanted into the SN, 

but longer-term, stable expression may be more effective and would require a 

viral vector approach.  The study described in chapter two of this dissertation 

demonstrates the effectiveness of guidance pathways created by adenoviral-

vector-mediated expression of neurotrophins in enhancing and directing neurite 

outgrowth from transplanted dorsal root ganglion (DRG) nociceptive neurons.  

The current study aims to apply this technique to transplanted dopaminergic 

neurons in the 6-OHDA-lesioned rat brain.  Initial attempts to use adenoviral 

vectors in this model created unacceptable levels of brain damage due to the 

fragile nature of the lesioned striatum and the immunogenic potential of 

adenovirus, so this chapter describes the design and characterization of lentiviral 

vectors encoding GDNF, GFRα1, netrin-1 and green fluorescent protein (GFP), 

then describes initial experiments utilizing these vectors to direct dopaminergic 

neurite outgrowth in collagen-gel cocultures and along short, intrastriatal 

pathways in the 6-OHDA-lesioned rat brain. 

 
Methods 
 

Lentivirus construction and characterization 

The coding regions of an alternatively-spliced form of rat GDNF 

(GDNF555, NCBI reference # S75585.1), rat GFRα1 (NCBI reference 

#NM_012959, supplied by Amgen) and mouse netrin-1 (NCBI reference#  

NM_008744, supplied by Marc Tessier-Lavigne and Genentech) were each 

cloned into a lentiviral vector plasmid containing a flap sequence, 

cytomegalovirus (CMV) promoter, multiple cloning site, internal ribosome entry 
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site (IRES) sequence followed by the eGFP coding sequence and a woodchuck 

hepatitis virus post-transcriptional response element (WPRE).   A four-plasmid 

system was used to package the virus, ensuring that resultant virions were 

replication incompetent:  293FT cells were transiently transfected with 1) one of 

the above-mentioned vector plasmids, 2) a packaging plasmid encoding the HIV 

-1 Gag and Pol proteins, 3) an envelope plasmid encoding the vesicular 

stomatitis virus glycoprotein (VSV-G) to confer broad tropism and 4) a plasmid 

encoding the Rev post-transcriptional regulator that is required for Gag/Pol 

expression and virus production.  Packaged virus was collected 48 hours after 

transfection following a poly-L-lysine (PLL)/low-speed centrifugation protocol 

described by Zhang, et al (2001).  Briefly, cell media was collected, spun for 5 

minutes at 1000g, filtered and mixed with 0.5µg PLL per 10ml media, then 

incubated on ice for 30 minutes.  The media/PLL was then spun at 10,000g for 2 

hours, the supernatant aspirated, and the virus-containing pellet was 

resuspended in phosphate-buffered saline (PBS) containing 3mM spermine and 

0.3mM spermidine (cationic polyamines, to stabilize DNA).   

Viral titers were estimated using a commercially-available p24 ELISA kit 

(Retro-Tek HIV-1 p24 antigen ELISA, ZeptoMetrix Corporation).   Vector-

mediated protein expression was confirmed in vitro (transduced 293FT cells) by 

ELISA for GDNF (Promega) and by immunocytochemistry for GFRα1 and netrin-

1 (goat-anti-GFRα1, R&D Systems Inc., 1:100; chicken anti-netrin-1, Chemicon 

International, 1:100; donkey anti-goat Texas Red, Jackson ImmunoResearch 

Laboratories, 1:100; donkey anti-chicken Rhodamine RedX, Jackson 

ImmunoResarch Laboratories, 1:100).   Expression of GDNF in vivo was 

examined after three stereotactic injections of 2µl lenti-GDNF into the left 

striatum of 5 Sprague-Dawley rats.  The rats were killed by decapitation one 

week after virus injection, striatal tissue (3mm-thick slice) was harvested from 

both hemispheres and frozen quickly, and then proteins were extracted and 

subjected to ELISA for GDNF (Promega). 

Because some in vitro immunocytochemistry revealed “clumped” 

expression patterns, the ability of lenti-GFP to successfully transduce 293FT 
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cells was tested after sonication in a water-bath sonicator to break up clumped 

virus.  The sonicator basin was filled with water containing copious amounts of 

ice to prevent heating of the virus, and viral aliquots (in 0.5ml Eppendorf tubes) 

were sonicated for 0, 3 or 5 minutes.  Virus was then added to cultured 293FT 

cells at ~70 confluency, and GFP expression was observed 5 days later by 

fluorescence microscopy.  The extent of transduction and GFP expression was 

essentially unchanged with up to 3 minutes of sonication, so all subsequent viral 

aliquots were sonicated for 3 minutes prior to use. 

 

Collagen-gel coculture experiments 

Protein-expressing cell aggregates:  293FT cells were grown to ~70% 

confluency in 100mm cell culture dishes, and then 1 x 107 TU of lentivirus was 

added (after a 3-minute sonication of each viral aliquot to prevent clumping) to 

each plate as follows: 1) lenti-netrin, 2) lenti-GDNF, 3) lenti-GFRα1 and 4) lenti-

GDNF plus lenti-GFRα1 (1 x 107 TU each).  Each virus was mixed with 10ml of 

media then added to the cells.  Two days after the addition of virus, cell media 

was removed and the cells lifted off each plate with trypsin/EDTA, spun down 

and resuspended in fresh media.  Cells were counted with a hemocytometer and 

adjusted to a concentration of about one million cells per milliliter, then 3ml of 

each suspension was added to a sterile 10ml Erlenmeyer flask covered with a foil 

cap (4 flasks total).  Flasks were placed on a gyrating platform shaker set at 

approximately 90 rpm in a 37ºC humidified incubator with 5% CO2 for three days 

to allow aggregates to form. 

Dopaminergic cell harvest:  Embryos at day 14 (E14) were removed from 

a pregnant Sprague-Dawley rat and the ventral mesencephalic (VM) brain region 

was dissected out of each fetus and kept in ice cold, sterile, calcium- and 

magnesium-free buffer.  The tissue chunks were rinsed in fresh buffer several 

times, trypsinized (0.125% trypsin) for 10 minutes at 37ºC, and then rinsed again.  

Cells were then dissociated by trituration in .004% DNAse, layered over sterile 

FBS and pelleted out by centrifugation.  The resulting cell pellet was 

resuspended in Dulbecco’s modified Eagle Medium (DMEM)/Ham’s F12 
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(DMEM/F12, 1:1) with 5% fetal bovine serum (FBS) and 10U/ml penicillin, and 

cell density and viability was determined with trypan blue and a hemocytometer. 

Dissociated VM co-culture: [Note: This initial experiment was done prior to 

construction of the lentivirus, using previously-generated adenovirus (Ad-GDNF 

±Ad-GFRα1 or Ad-GFP) to transduce U373 cells in culture rather than lentivirus 

and 293FT cells as described above.]  Each well of a 24-well, poly-D-lysine-

coated culture dish was divided into equal quadrants by carefully marking the 

bottom of the dish.  Twenty microliters of the E14 VM cell suspension (~100,000 

cells) was then added to the center of each well (where the quadrant lines 

intersected) and cells were allowed to adhere for 4 hours at 37ºC.  Collagen 

media was prepared by mixing equal parts concentrated (2X) DMEM/F12 media 

and rat tail collagen along with N-2 supplement, 5% FBS, penicillin/streptomycin, 

then adjusting pH with 1N NaOH.  The collagen media was kept on ice to prevent 

gelling during preparation.  The dish containing the VM cells was then removed 

from the incubator and 250µl collagen media was added to each well, one or two 

previously-transfected U373-cell aggregates (expressing GDNF ± GFRα1 or 

GFP) were placed in the upper-left quadrant and the gel was allowed to set at 

37ºC for one hour.   Extra media (DMEM/F12/5%FBS) was added to each well 

once the gel had set, and then the cells were allowed to grow at 37ºC for three 

days. 

Re-aggregated VM co-culture:  As an alternative procedure, dissociated 

VM cells were re-aggregated following a method developed by Sortwell, et al. 

(2004) before co-culturing with transfected 293FT-cell aggregates.   Striatal 

oligodendrocyte-type-2 astrocyte (SO2A) conditioned media was generously 

supplied by Caryl Sortwell and used to resuspend VM cells for reaggregation.  

Three million VM cells were suspended in 2.5ml SO2A-conditioned media in a 

sterile 10ml Erlenmeyer flask covered with a foil cap.  The flask was placed on a 

gyrating platform shaker set at 90 rpm in a 37ºC, humidified incubator with 5% 

CO2 for three days to allow aggregates to form. 

Once both VM and 293FT-cell aggregates were ready, collagen gel media 

was prepared as described above.  250µl of collagen media was added to each 
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well of a 24-well culture dish, followed by one VM aggregate and one transduced 

293FT-cell aggregate positioned approximately 200-500µm apart.   The gel was 

allowed to set for 1 hour, then DMEM/F12/5% FBS media was added to each 

well.  Cultures were kept at 37ºC for three days to allow axon outgrowth from the 

VM cells. 

Immunocytochemistry:  After 3 days of growth, gels were fixed with an 

equal volume of 8% paraformaldehyde for one hour, washed, blocked with 5% 

normal goat serum (NGS) in PBS with 0.3% Triton-X (PBS/Tx) for 2 hours, then 

incubated in primary antibody to tyrosine hydroxylase (Mouse anti-TH, 

Chemicon, 1:1000) overnight at 4ºC.   After five 30-minute washes, gels were 

incubated in secondary antibody (Goat anti-mouse biotin, Chemicon, 1:600) 

overnight at 4ºC, then developed with using an avidin-biotin-peroxidase kit 

(VectaStain Elite, Vector Labs) followed by diaminobenzidine (DAB) long enough 

to visualize TH-positive dopaminergic fibers. 

Growth patterns in the dissociated VM experiment are described 

qualitatively due to difficulty in following individual axons from cell body to 

termination.  For quantification of neurite outgrowth in the re-aggregate 

experiment, a blinded observer counted the number of TH+ fibers growing in a 

trajectory toward or away from the 293 aggregate, based on a visual division in to 

quadrants.   

 

Intrastriatal pathway experiment 

 6-OHDA lesioning:  Adult female Sprague-Dawley rats (225-250g) were 

given unilateral 6-OHDA lesions of the nigrostriatal pathway as follows.   Each rat 

was anesthetized by inhalation of 2% halothane mixed with room air, positioned 

in a stereotaxic frame and the skull exposed.  Two injections of 3.0µg/µl 6-OHDA 

in 0.9% saline with 0.2% ascorbic acid were made at a rate of 1.0µl/min for 2 

min, in the vicinity of the medial forebrain bundle (AP-4.4, ML 1.2 relative to 

bregma, 8.4mm deep from skull level) and the rostral substantia nigra pars 

compacta (AP -5.3, ML 2.0, 8.4mm deep).  This procedure has been shown to 

produce complete lesions, with near complete dopaminergic denervation of the 
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ipsilateral striatum.  This denervation was confirmed 4-5 weeks after lesioning by 

amphetamine-induced rotation testing (>450 ipsilateral turns in 90 minutes). 

 Pathway injections and transplants:    Five weeks after lesioning, animals 

with verified lesions were given five injections of lentivirus encoding either GDNF 

(LV-GDNF, 6.72 x 105 TU/µl, n=5) or GFP (LV-GFP, 2.8 x 105 TU/µl, n=5) at 

2.8mm lateral to bregma, and depths from -5mm to -3mm (every 0.5mm) relative 

to the dura in the lesioned striatum.  Volumes of virus injected at the five sites, 

deepest first, were: 0.6µl, 1.0µl, 1.4µl, 1.8µl and 2.0µl.  One week after virus 

injection, ventral mesencephalon (VM) tissue was dissected from embryonic day 

14 (E14) rats and implanted as whole tissue chunks by a modified 22-guage 

spinal needle at the same coordinates as the viral pathway, except at 5.5mm 

deep relative to the dura (0.5mm below the deepest virus injection).  Two weeks 

after VM transplants, animals were killed and brains removed for IHC analysis.  

Coronal slices (30µm, cryostat sectioned) were stained using a mouse anti-TH 

monoclonal antibody at 1:4000 dilution (Chemicon), a biotinylated secondary 

antibody (goat anti-mouse IgG, Chemicon, 1:600), and developed with a 

diaminobenzidine chromogen.  Pictures of stained sections were taken at 20x 

total magnification with constant filter/exposure settings and analyzed using 

MetaMorph imaging software.  All pictures were thresholded at the same settings 

to highlight TH+ cells and fibers. Three square regions (500µm/side) were placed 

(1) just below the corpus callosum (cc), (2) just above the cc, and (3) at the top of 

the cortex, and one 2.5mm2 oval region was placed at the transplant site. The 

percent thresholded (TH+) area within each region was averaged over three 

sections per animal and then compared between treatment groups. 

 

Results 
 
Characterization of lentivirus 

Viral titers, as determined by p24 ELISA assay, were as follows: lenti-

GDNF, 1.2 x 106 TU/µl; lenti-GFRα1, 2.75 x 105 TU/µl; lenti-netrin-1, 8.3 x 105 

TU/µl; lenti-GFP, 5.5 x 105 TU/µl.  Every lentivirus also carried the gene for GFP 
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(following the IRES sequence), and GFP expression by lentivirus-transduced 

293FT cells was confirmed by fluorescent microscopy.  GDNF expression was 

confirmed by ELISA of media collected from 293FT cells transduced with lenti-

GDNF, after allowing one week for full expression of the GDNF protein.  To 

quantify in vivo expression of GDNF, 2µl lenti-GDNF was injected into 3 different 

spots in the left striatum of five unlesioned rats.  After allowing 10 days for protein 

expression, the rats were killed by decapitation, brains were collected fresh and 

both right (control) and left striata were subjected to protein analysis by GDNF 

ELISA.  An average of 0.5 ng GDNF/g brain tissue was detected in the right 

(uninjected) sides, and 0.73 ng GDNF/g in the left (lentivirus-injected) sides, with 

an average 51.6% increase in GDNF expression detected.  Lentivirus-induced 

expression of both netrin-1 and GFRα1 was confirmed by immunofluorescent 

staining of transduced 293FT cells in culture and in virus-injected brain tissue, 

but was not quantified.  Sample images are presented in Figure 3-1. 

 

Collagen gel co-cultures 

 In order to determine the chemotropic influence of GDNF (±GFRα1) and 

netrin-1 on primary dopaminergic neurons, cells expressing each protein and VM 

cells from E14 embryos were co-cultured in collagen-gel media.  Due to the non-

homogenous distribution of TH+ dopaminergic neurons in intact VM tissue 

pieces, dissected VM tissue was dissociated into a cell suspension before 

culture.  Preliminary experiments involved plating a drop of VM cell suspension 

into each well of a poly-D-lysine-coated 24-well plate and then overlaying the 

collagen gel media with an aggregate of virally transduced cells in one corner of 

each well once the VM cells had adhered to the plate bottom.  After allowing 

three days for axon growth, the cultures were fixed and stained for expression of 

TH.  Quantification of directional TH+ axon growth proved impossible, however, 

because many axons grew toward other TH+ cells and intertwined with those 

fibers, making it difficult to analyze their ultimate growth trajectory.  In a few 

instances where long TH+ axons could be traced, there was evidence of a 
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directional influence of cells producing GDNF (with or without GFRα1; Figure 3-

2). 
  

To avoid the problem of determining the starting point of each TH+ axon, 

the next experiment utilized E14 VM cells that had been dissociated and then re-

aggregated into spheres approximately 500µmm in diameter.  A VM aggregate 

was positioned about 500µm from a previously-transduced 293FT aggregate 

within collagen gel media and allowed three days for axon outgrowth.  The 

293FT cells were expressing GDNF, GFRα1, netrin or both GDNF and GFRα1.  

Quantification of TH+ axon outgrowth relative to the position of the 293FT cell 

aggregate is summarized in figure 3-3.  While there was a tendency for more 

TH+ axons to grow toward targets secreting netrin or GDNF with GFRα1, the 

difference in direction was not statistically significant for any treatment group 

(Figure 3-3D; Paired t-tests for proximal vs. distal: netrin, p=0.2, n=4; GDNF, 

p=0.8, n=6; GFRα1, p=0.5, n=3; GDNF + GFRα1, p=0.2, n=5). 

 

Striatal pathway 

 In order to determine the feasibility of in vivo targeting of axon outgrowth 

from transplanted dopaminergic cells, short intrastriatal pathways were 

constructed by multiple stereotactic injections of lentivirus encoding GDNF or 

GFP (controls) in animals previously lesioned with 6-OHDA to eliminate 

endogenous TH+ striatal fibers (Figure 3-4A and B).   One week after virus 

injection, E14 VM tissue was transplanted below the expression pathway in the 

ventral striatum.  After allowing two weeks for fibers to grow out of the 

transplants, brain tissue was harvested and immunostained for TH to determine 

the density of dopaminergic fiber growth along each pathway (Figure 3-4C and 

D).  Quantification of TH+ staining density in the transplant area and at 3 different 

points along the vertical expression pathway revealed that GDNF-expressing 

pathways contained significantly more TH+ fibers more distal points than GFP 

pathways.  To be certain that the observed effect was due to increased fiber 

growth along the pathway, and not simply due to increased survival of grafted 
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cells, TH+ fiber density at each path point was divided by the amount of TH+ 

staining within the transplant area (a reflection of dopaminergic cell survival and 

transplant density; Figure 3-5).   

 

Discussion 
 
 Viral vectors are useful tools which may be used to modify the 

environment of the adult CNS to make it more hospitable to neurite outgrowth.   

Such modification is critical to the success of therapeutic strategies that include 

neural transplantation for repair of CNS injury.  In the previous chapter, our lab’s 

development of viral vector strategies to support and target long-distance axon 

growth from transplanted cells is described.  Growth-supportive pathways 

created by multiple virus injections were shown to enhance axon growth from 

transplanted neurons from one side of the brain to the other, and even to steer 

the axons around a 90-degree turn from white matter into grey matter.  The work 

presented in this chapter serves as a bridge between development of that 

technique and a clinically-relevant application:  reconstruction of the nigrostriatal 

pathway in Parkinson’s disease (PD).   Previous cell-replacement strategies for 

PD have involved transplantation of dopaminergic cells into the striatum rather 

than into the substantia nigra (SN), where the cells normally reside (Winkler et 

al., 2000; Freed et al., 2001).  The distance between the SN and the striatum 

presents a huge obstacle to complete reconstruction of the circuitry that breaks 

down in PD – but this obstacle may be surmountable with the help of viral 

vectors. 

 In our early attempts at using viral vectors in the 6-OHDA-lesioned rat 

brain, we injected adenovirus encoding the GDNF protein.  This vector proved to 

be too damaging to the already-stressed brain, so we switched to a lentiviral 

vector system, which is known to be less damaging to the CNS (Jakobsson and 

Lundberg, 2006).  We produced three different lentiviruses utilizing a vector 

plasmid which contained a multiple cloning site (MCS) followed by an internal 

ribosome entry site (IRES) sequence and the coding sequence for green 
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fluorescent protein.   We separately cloned the coding sequences for GDNF, 

GFRα1, and netrin-1 into the vector, then generated and tested the lentiviruses 

for expression in vitro and in vivo.  GDNF and netrin-1 were chosen due to their 

previously-demonstrated neurotrophic and/or chemotropic effects on 

dopaminergic midbrain neurons (Lin et al., 1993; Stromberg et al., 1993; Hudson 

et al., 1995; Johansson et al., 1995; Lin et al., 2005).  GFRα1 was chosen for its 

potential to bind GDNF and present it in trans to growing axons expressing the 

RET receptor tyrosine kinase, creating a more directional effect than GDNF 

alone (Ledda et al., 2002).  

 The results of our collagen-gel coculture experiments fell short of 

statistical significance, but show a trend toward directional effects of netrin-1 and 

a combination of GDNF and GFRα1.  The lack of statistical significance may be 

due to technical difficulties with placement of the aggregates at consistent 

distances apart, insufficient expression of the transgenes by cell aggregates 

(especially since cells in the center of the aggregates may not survive well), and 

small sample sizes.   The experiment is currently being repeated to perfect the 

technique and increase sample sizes. 

 To quickly determine the effect of GDNF expression on dopaminergic 

neurite outgrowth in vivo, we generated short, vertical expression pathways with 

multiple lenti-GDNF injections in 6-OHDA-lesioned striata one week prior to 

transplanting fetal VM tissue below each path.   Our data indicate that the 

expression of GDNF increases the amount of TH+ fiber growth along the 

pathway at points 3-5mm away from the transplant when compared to control 

pathways created with lenti-GFP.  The question remains as to whether this is a 

true chemotropic effect, as axons naturally tend to grow along needle tracts in 

the brain – the expression of GDNF in the tract may only increase growth rather 

than steer it.  The ultimate conclusion, however, is unaffected:  virus-mediated 

expression of GDNF along the pathway results in much greater dopaminergic 

axon growth in that direction.  

 When trying to re-build pathways that nature builds during development, it 

makes sense to take advantage of natural cues.  For instance, fetal midbrain 
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dopaminergic neurons are built to respond to growth cues in the developing 

forebrain, and are repelled by cues in the hindbrain (Nakamura et al., 2000).  

Specific subpopulations of dopaminergic neurons – A9 neurons of the SN and 

A10 neurons of the ventral tegmental area – respond to different cues and 

therefore project to and make synaptic connections with different forebrain 

targets (Becq et al., 1999; Yue et al., 1999).  There is some evidence that such 

directional cues, while downregulated, still exist in the adult brain and can direct 

axon growth from certain types of transplanted fetal neurons to distant targets 

(Wictorin et al., 1992; Isacson et al., 1995; Isacson and Deacon, 1997; 

Armstrong et al., 2002).  So far, however, long-distance growth is limited to 

transplants from large, slowly-maturing animal tissue donors (human or pig) into 

adult animal hosts with relatively small brains, such as rats.  To elicit such growth 

from allogeneic transplants, some additional “push” is needed, but the framework 

is there to support growth in the proper direction.  Based on the preliminary data 

presented here, we propose that lentiviral-mediated expression of a growth-

supportive molecule such as GDNF (with GFRα1) or netrin-1 may provide the 

needed push to reconstruct the nigrostriatal pathway in adult parkinsonian brains. 
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Figure 3-1.  Lentivirus-mediated protein expression in vitro and in vivo.  A) 
293FT cells transduced with lenti-netrin and immunostained using chicken anti-
netrin-1 and donkey anti-chicken Rhodamine Red-X.  B) Slice of brain tissue 
from animal injected intracerebrally with lenti-GFRa1, stained with goat anti-
GFRa1 and donkey anti-goat Texas Red (stained cells are within the corpus 
callosum). 
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Figure 3-2.  Collagen gel co-cultures of transduced U373 aggregates and 
dissociated E14 VM cells, stained for tyrosine hydroxylase after 3 days of 
growth.  A) Schematic representation of cell placement within each well.  B) Well 
with GFP-expressing cell aggregate in the upper left and several TH+ VM cells 
with scant, random axon growth.  C & D)  Two different wells with GDNF-
expressing aggregates toward the upper left and evidence of directional influence 
on TH+ fiber growth.  Scale bars = 100µm. 
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Figure 3-3.  Collagen gel co-cultures of transduced 293FT cell aggregates 
and re-aggregated E14 VM cells after three days of growth.  A)  
Immunofluorescent staining of a 293FT aggregate transduced with lenti-GFRα1-
IRES-GFP, stained for GFRα1.  B) Sample gel stained for TH with VM aggregate 
near 293FT aggregate expressing GDNF plus GFRα1.  Arrowheads indicate TH+ 
fibers that have turned toward the target cells.  C) Sample gel stained for TH with 
VM aggregate near 293FT aggregate expressing netrin-1.  D)  Quantification of 
TH+ neurite outgrowth presented as ratio of fibers in the proximal vs. the distal 
quadrant relative to the target aggregate location (P/D).   
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Figure 3-4.  Striatal pathway injections and dopaminergic fiber growth.  A) 
Injection schematic – Lentivirus (encoding either GFP or GDNF) was injected 
along a vertical pathway as indicated in the 6-OHDA-lesioned striatum.  An E14 
ventral mesencephalon (VM) tissue chunk was transplanted below the pathway 1 
week later.  B)  Expression pathway as revealed by immunostaining for GFP 
(peroxidase/DAB).  Note the spread of expression within the corpus callosum.  C)  
Immunostaining for tyrosine hydroxylase (TH) reveals growth of dopaminergic 
fibers up the expression pathway in an animal injected with LV-GDNF prior to 
transplant.  D) Same staining as in C, this time in an animal injected with LV-
GFP.  TH+ cells survived and sent out fibers, but the fibers remained relatively 
localized to the transplant area. 



 56

 
 
Figure 3-5.  Quantification of TH+ fiber density along GDNF or GFP-
expressing pathways.  A) Representative section from a LV-GDNF animal, 
immunostained for tyrosine hydroxylase (TH), with illustrations of regions 
quantified for TH+ staining.  B)  Representative section from a LV-GFP animal.  
To compensate for any differences in transplant quality/survival, % values for 
regions 1-3 were divided by % values within the transplant region (t.p.).  Paired t-
tests (assuming unequal variance) reveal a significant increase in TH+ fiber 
density in regions 2 and 3 with GDNF treatment compared to GFP.  *p<.05; 
**p<.001; (n=5 each group). 
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Chapter Four:  Reconstruction of the Nigrostriatal Pathway 
 
Introduction 
 

Neuronal transplantation is a potential treatment for neurological disorders 

caused by the damage or degeneration of specific neural circuits in the central 

nervous system (CNS).  Parkinson’s disease (PD) is one such disorder, which 

affects approximately 1% of the population over the age of 65 and increases in 

prevalence with increasing age (Reviewed by Lang and Lozano, 1998; Dawson 

and Dawson, 2002).  The symptoms of PD, including bradykinesia, akinesia, 

rigidity, and resting tremor, are due to the progressive degeneration of the 

dopaminergic neurons of the nigrostriatal pathway.  The precise mechanism by 

which dopaminergic neurons are targeted and destroyed in PD has not yet been 

elucidated, in part because there are several subtypes of the disease – it may be 

heritable or sporadic, early or late onset, and slowly or rapidly progressing.  

Among the heritable forms, transmission of PD may be autosomal dominant, 

autosomal recessive, maternal, or may show anticipation through successive 

generations (Mouradian, 2002).    Mutations in three different genes have been 

identified thus far in familial PD, and the functions of these genes suggest one 

final common pathway for dopaminergic cell death: accumulation of toxic proteins 

due to inefficiency of the ubiquitin-proteasomal pathway (Chung et al., 2001; 

Mouradian, 2002).  In the more common, sporadic form of PD, substantial 

evidence implicates oxidative stress as a general mechanism of pathology, but 

the details remain to be worked out (Oertel and Hartmann, 1999; Maguire-Zeiss 

et al., 2005).  In the future, preventative therapies may be developed that target 

the products of causative genes or otherwise prevent oxidative damage and 

apoptosis. 

By the time a patient presents with parkinsonian symptoms, at least 80% 

of striatal dopamine has been depleted, and current therapy is aimed at replacing 

that dopamine to alleviate symptoms.  The gold standard for treatment of PD 

patients is administration of the dopamine precursor levodopa.  While levodopa 



 58

can profoundly improve a patient’s quality of life, its effectiveness tends to 

decrease over the course of the illness and the medication is often associated 

with debilitating side effects such as motor fluctuations (“on-off” and “wearing-off” 

phenomena), dyskinesias, and hallucinations (Lang and Lozano, 1998).  The 

side effects can be lessened by carefully monitoring the levodopa dosage and 

making corrections as necessary, but managing PD becomes increasingly 

difficult as more dopaminergic neurons succumb to the disease (Metman and 

Mouradian, 1999).  Other drugs, such as monoamine oxidase B inhibitors, 

anticholinergic agents, and dopamine agonists have also been used to treat 

parkinsonian symptoms.  The side-effect profiles of these drugs are less severe 

than levodopa’s, but they are also less effective in the long run, and usually 

require supplementation with levodopa (Lang and Lozano, 1998; Nyholm, 2006). 

Given the prevalence of Parkinson’s disease and the shortcomings of 

clinical treatments currently available, research into potential neuroprotective and 

neurorestorative therapies continues to be important.  Advances in basic 

research are made with the help of animal models of PD such as 6-

hydroxydopamine (OHDA)-lesioned rats.  6-OHDA is a catecholamine neurotoxin 

that is transported into dopaminergic and noradrenergic neurons.  Once inside 

these cells, it inhibits mitochondrial complexes I and IV, causing oxidative injury 

and cell death (Deumens et al., 2002).  Direct injection of 6-OHDA into the 

nigrostriatal pathway causes a selective, severe loss of these dopaminergic 

neurons.  Unilateral lesioning of the pathway leads to “hemiparkinsonian” motor 

deficits and results in predictable rotational behavior upon systemic injection of 

the stimulant amphetamine (ipsilateral rotation) or the dopamine receptor agonist 

apomorphine (contralateral rotation) (Deumens et al., 2002).  Quantification of 

rotational behavior provides an estimate of severity of the 6-OHDA lesion and 

can be used to determine success of neurorestorative techniques.  The unilateral 

nature of 6-OHDA lesioning also provides an internal control for histological 

comparisons.   

Many investigators have already explored neural transplantation as 

therapy for PD, both in the lab and in the clinic, but in most cases, dopaminergic 
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neurons are transplanted directly into their target – the striatum – rather than into 

their true origin, the substantia nigra (SN).  This leads to an incomplete recovery 

of function both in animal models and in human PD patients, because the 

transplanted neurons provide a dopamine source to the striatum but do not 

reestablish the degenerated neural circuit (Montoya et al., 1990; Winkler et al., 

2000).   In animal models only, some groups have attempted “bridging” 

techniques, with dopaminergic cell transplants into the SN and various growth-

supportive substrates between the SN and the denervated striatum, including 

embryonic striatal tissue (Dunnett et al., 1989), glial cell-line derived neurotrophic 

factor (GDNF) (Wang et al., 1996), fibroblast growth factor (FGF)-4-transfected 

schwannoma cells (Brecknell et al., 1996), GDNF-secreting Schwann cells (Wilby 

et al., 1999), and kidney tissue (Chiang et al., 2001).  Although some degree of 

graft-derived dopaminergic fiber growth along the pathway is reported in each of 

these studies, quantification of fiber growth and striatal innervation is minimal or 

absent, so it is difficult to interpret the success of each technique.  Furthermore, 

improvement in parkinsonian motor symptoms – the desired endpoint with 

nigrostriatal pathway reconstruction – is not addressed beyond amphetamine-

induced rotation scores in any study except Chiang’s, which does report 

improvements in postural asymmetry but still does not analyze spontaneous 

motor behavior (Chiang et al., 2001).  The best technique for rebuilding a 

functional nigrostriatal circuit, then, remains to be found. 

The current study examines the hypothesis that lentivirus-induced 

overexpression of growth-supportive molecules along a path between the SN 

and the striatum will help to guide the growth of axons from dopaminergic 

neurons transplanted into the SN of the 6-OHDA lesioned rat brain, resulting in a 

reestablishment of the nigrostriatal pathway and an amelioration of parkinsonian 

symptoms.  We compare pathways created with lentivirus encoding glial cell-line 

derived neurotrophic factor (GDNF), GDNF family receptor α1 (GFRα1), a 

combination of GDNF and GFRα1, netrin-1, and green fluorescent protein (GFP) 

for their effectiveness in improving dopaminergic neurite growth along the path, 

increasing innervation of the striatum and decreasing asymmetry in spontaneous 
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motor behavior.  In spite of high variance between animals and some brain 

damage from viral injections, the data show a significant increase in 

dopaminergic fiber growth from transplanted neurons along the created pathway 

when a combination of GDNF and GFRα1 was expressed there.  Further, 

asymmetry in spontaneous motor behavior was significantly decreased in 

transplanted animals that expressed either netrin-1 or a combination of GDNF 

and GFRα1 along the nigrostriatal pathway.  These data suggest that functional 

restoration of the nigrostriatal pathway is possible with intranigral grafting 

following creation of growth-supportive expression pathways between the SN 

and the striatum. 

 

Methods 
 
Lentivirus construction 

 Detailed methods for the construction and characterization of lentiviral 

vectors used in this experiment are presented in chapter three of this 

dissertation.  Briefly, the coding sequences for rat GDNF, rat GFRα1, and mouse 

netrin-1 were each cloned into a lentiviral vector plasmid containing a flap 

sequence, cytomegalovirus (CMV) promoter, multiple cloning site, internal 

ribosome entry site (IRES) sequence followed by the eGFP coding sequence and 

a woodchuck hepatitis virus post-transcriptional response element (WPRE).  

Control lentivirus was constructed with the same vector plasmid but without 

additional gene insertion.  A four-plasmid protocol and 293FT cells were used to 

package the lentivirus, and  purification of virus was accomplished using a poly-

L-lysine (PLL)/low-speed centrifugation protocol described by Zhang, et al 

(Zhang et al., 2001).  Viral titers, as determined by p24 ELISA assay, were as 

follows: lenti-GDNF, 1.2 x 106 TU/µl; lenti-GFRα1, 2.75 x 105 TU/µl; lenti-netrin-1, 

8.3 x 105 TU/µl; lenti-GFP, 5.5 x 105 TU/µl.   
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Animals 

Adult female Sprague-Dawley rats (225-250g) were used for this study 

and were housed two animals to a cage with ad libitum access to sterile food and 

water in the University of Kentucky’s Division of Laboratory Animal Resources 

facility. 

 

6-OHDA lesioning 

Rats were given unilateral 6-OHDA lesions of the nigrostriatal pathway as 

follows.   Each rat was anesthetized by inhalation of 2% halothane mixed with 

room air, positioned in a stereotaxic frame and the skull exposed.  Two injections 

of 3.0µg/µl 6-OHDA in 0.9% saline with 0.2% ascorbic acid were made at a rate 

of 1.0µl/min for 2 min, in the vicinity of the left medial forebrain bundle (AP-4.4, 

ML 1.2 relative to bregma, 8.4mm deep from skull level) and the left rostral 

substantia nigra pars compacta (AP -5.3, ML 2.0, 8.4mm deep).  This procedure 

has been shown to produce complete lesions, with dopaminergic denervation of 

the ipsilateral striatum.   

 

Amphetamine-induced rotation 

 Four and five weeks after lesioning, rats were injected with 2.5mg/kg D-

amphetamine in 0.9% saline (i.p.).  Immediately after injection, each animal was 

placed in a harness and enclosed in a clear plastic cylinder as part of the 

Rotamax-8 apparatus (Columbus Instruments, Columbus, OH).  The number of 

partial and full clockwise and counterclockwise rotations made by each rat in a 

90-minute test period was automatically recorded on an attached computer with 

Rotacount version 2.0 software.  Only animals that made at least 450 complete 

counterclockwise turns – equal to 5 turns/min – were used for the experiment, as 

this indicated a complete lesion of the ipsilateral nigrostriatal pathway.   

 

Cylinder tests 

 Animals determined to have complete lesions were further tested for limb-

use asymmetry during spontaneous motor behavior using the cylinder test 
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described by Schallert and Tillerson (1999).  Rats were placed individually into a 

clear plastic cylinder and videotaped for 3-5 minutes – as long as it took each 

one to touch the cylinder wall with a forelimb at least 20 times during 

spontaneous exploration of the environment.  Videotapes were analyzed by a 

person blinded to experimental design, and the number of wall touches made 

with the left, right or both forepaws were tallied.  A limb use asymmetry score 

was determined by dividing the number of touches with the left paw by the total 

number of wall touches (left, right, or both paws together).  A score of one would 

indicate complete asymmetry with use of left forepaw only. 

 

Virus injections 

 Rats that met the amphetamine-induced rotation inclusion criterion and 

had baseline cylinder tests completed were randomly assigned to receive 

lentiviral injections along the internal capsule between the SN and the striatum: 

lenti-GDNF (n=6 with transplant, n=4 without transplant), lenti-GFRα1 (n=3 with 

transplant), lent-GDNF + lenti-GFRα1 (n=7 with transplant, n=4 without 

transplant),  lenti-netrin-1 (n=6 with transplant), or lenti-GFP (control, n=5 with 

transplant).  Each rat was anesthetized by 2% halothane inhalation, placed in a 

stereotaxic frame, and its skull was exposed.  Holes were drilled at three 

anteroposterior (AP) locations along a line 2.4mm lateral to bregma on the 

animal’s left side:  -4.0mm, +0.2mm, and +4.6mm relative to bregma.  The hole 

at +4.6mm (most anterior) was elongated in the rostral direction in order to 

accommodate the angled needle.  Aliquots of virus were sonicated in an ice-

water bath for three minutes, stored on ice, and mixed by pipet trituration 

immediately prior to injection to minimize clumping of viral particles.  In order to 

follow the curved path of the internal capsule, three needle insertions were made 

at different angles relative to vertical measured from bregma with the needle set 

at the given angle:  0º (vertical) at -4.0mm AP, 17º at +0.3mm AP, and 49º at 

+5.8mm AP.  The latter two AP distances differ from the drill coordinates 

because they correct for the angle of the needle (the drill was always in the 

vertical position) and the curvature of the skull.  The depth (relative to the dura) 
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and volume of virus injections were as follows: Starting at -4.0 AP (0º), one 

injection was made at -8.0mm deep; Starting at +0.3mm AP (17º), 1µl at -5.3mm 

deep, 1.2µl at -4.3mm deep, and 1.4µl at -3.3mm deep; Starting at +5.8mm AP 

(49º), 0.6µl at -9.3mm deep, 0.8µl at -8.3mm deep, 1.0µl at -7.3mm deep, 1.2µl 

at -6.3mm deep, 1.4µl at -5.3mm deep, and 2.0µl at -4.3mm deep.  A diagram of 

this injection scheme is shown in Figure 4-1A. 

 

VM tissue harvest and transplantation 

 One week after virus injection, animals received transplants of embryonic 

day 14 (E14) ventral mesencephalon (VM) tissue.  Immediately prior to 

transplantation, embryos at day 14 (E14) were removed from a pregnant 

Sprague-Dawley rat and the ventral mesencephalic (VM) brain region 

(approximately 1mm x 1.5mm x 1mm) was dissected out of each fetus and kept 

in ice cold, sterile, calcium- and magnesium-free buffer until transplant.   Once 

each rat was anesthetized, a hole was drilled at -5.2mm AP and 2.4mm ML on 

the left side relative to bregma, and VM was implanted as a whole tissue chunk 

using a modified 22-guage spinal needle lowered to -8.6mm from skull level then 

pulled up to -8.4mm before ejecting the tissue.  Each tissue chunk was ejected 

slowly by depressing the needle’s plunger ~1mm every 20 seconds for a total 

distance of ~10cm (~3 minutes total).  The needle was kept in place for 5 

minutes after ejection, raised 0.4mm and kept there for another 5 minutes before 

slowly raising it all the way out of the brain to be sure the transplant remained in 

place. 

 Animals were kept alive for 8 weeks after transplant, with amphetamine-

induced rotation and spontaneous limb-use asymmetry (cylinder test) measured 

as described above every two weeks.  After the 8-week behavior tests, rats were 

over-anesthetized with pentobarbital and perfused with ice-cold saline followed 

by 4% paraformaldehyde (PFA) in phosphate buffer.  Brains were carefully 

removed and post-fixed overnight in 4% PFA at 4ºC then placed in a 30% 

sucrose solution at 4ºC until sinking to the bottom of the vial (2-3 days).  Brains 

were then halved in the sagittal plane, embedded in Tissue-Tek OTC compound, 
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frozen on dry ice, and sliced at 30µm parasagittally with a cryostat.  Brains were 

divided into 5 sets of serial sections for subsequent immunostaining and 

anatomical analysis. 

 

Immunohistochemistry 

 To visualize dopaminergic fiber outgrowth from transplanted neurons, 

brain sections were immunostained with a mouse monoclonal antibody to 

tyrosine hydroxylase (TH; Chemicon;1:4000) and a biotinylated secondary 

antibody (goat anti-mouse IgG; Chemicon; 1:600), and developed using an 

avidin-biotin-peroxidase kit (VectaStain Elite, Vector Labs) followed by 

diaminobenzidine (DAB) chromogen alone or DAB with nickel enhancement to 

better visualize fine fiber branching.  Some sections were also stained for the 

guidance molecule netrin-1 using a chicken anti-netrin-1 primary antibody (1:200, 

Chemicon International) and a biotinylated secondary antibody (goat anti-

chicken, 1:300, Chemicon), developed with the VectaStain Elite kit and NovaRed 

substrate (Vector Labs). 

 

Quantification and statistical analyses 

 All quantification was carried out by an observer blinded to treatment.  To 

quantify transplant cell survival and axon outgrowth, three sections were chosen 

per animal which met the following criteria: 1) contained transplanted TH+ cell 

bodies and 2) either had visible needle tracts from viral pathway injections OR 

were located in a similar anatomical location based on identifiable landmarks 

between 1.9 and 2.9mm lateral to bregma according to the rat brain atlas 

(Paxinos and Watson, 1986).  Sections that included the septum (too medial) or 

the entorhinal cortex/parasubiculum (too lateral) were not included in the 

analysis.  For cell survival, TH+ cell bodies were counted manually at 200x total 

magnification using a tally counter and an ocular grid to move methodically 

through the transplant area.  For axon outgrowth, the number of identifiable TH+ 

fibers was tallied at a distance of 2mm from the rostral edge of the transplant.  
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Cell counts and fiber counts were averaged over the three sections for each 

animal. 

 For comparisons of striatal dopaminergic innervation, digital photographs 

were taken that included the entire striatum in each section (20x total 

magnification) with a Nikon Coolsnap camera and MetaVue imaging software 

(Universal Imaging Corporation).  Initially, microscope, camera and threshold 

settings were chosen that were best for highlighting TH+ staining without 

including background noise.  Once the settings were chosen, they were strictly 

adhered to throughout the quantification process.  For each picture (still 3 

sections per animal), the striatal area was traced with the freehand drawing tool 

in MetaVue and the inclusive threshold setting was applied.  Measurements of 

region area, threshold area, and threshold area percent were logged to an Excel 

file.  The threshold area percent value was averaged over the three sections per 

animal. 

 

Results 
 
Transplant placement and survival 

 Animals were killed and brain tissue harvested 8 weeks after transplant 

and after all behavioral analyses were completed.  With immunostaining for 

tyrosine hydroxylase (TH), transplants were located in all but one animal (in the 

GDNF + GFRα1 group).  In that animal, the transplant may have been pulled up 

with the needle during the transplant surgery, so it was excluded from all 

analyses.  In the remaining animals, transplanted TH+ cell bodies were visible in 

the midbrain region, except in two cases where the whole tissue chunk had 

slipped in the rostral direction 1-2 mm – probably due to placement that was too 

deep, with the tissue slipping forward under the base of the brain and then 

adhering in a different location.   Counts of TH+ cell bodies revealed no 

significant differences between treatment groups for cell survival:  lenti-GFP = 59 

± 9.7; lenti-GFRα1 = 98 ± 24.1, lenti-GDNF = 105 ± 19.6, lenti-GDNF + lenti-

GFRα1 = 86 ± 30.7.  Data are means ± SEM; ANOVA p = 0.66. 
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Protein expression and dopaminergic fiber growth along NS pathway 

 Lentivirus-induced expression of the various proteins was confirmed in the 

experiment described in chapter three of this dissertation.  Figure 4-1B shows the 

pattern of GFP fluorescence after lenti-GFP injections along the path of the 

internal capsule.  This confirms that the calculated injection coordinates and 

angles are fairly accurate at targeting the internal capsule between the substantia 

nigra and the striatum at 2.4mm lateral to bregma. 

 Dopaminergic fiber outgrowth from transplants was variable, even within 

treatment groups, and there was evidence of tissue damage along the path of 

virus injection in many animals.  Even with damage, however, there was long-

distance TH+ fiber outgrowth in some animals, spanning the distance between 

the substantia nigra and the striatum.  Figure 4-2 shows TH+ fiber growth along 

the expression pathway in a lenti-netrin-1 treated animal.  The total distance of 

fiber growth is greater than 5mm.  To confirm that the netrin-1 protein was 

expressed along the virus-injected pathway, adjacent sections were 

immunostained with antibodies to netrin-1 (Figure 4-3), or double-immunostained 

for TH (nickel-enhanced DAB) and netrin-1 (NovaRed; Figure 4-4).  A brain 

injected with lenti-GDNF and lenti-GFRα1 is pictured in figure 4-5, 

immunostained for TH with nickel-enhanced DAB.  The nickel enhancement 

allows for better visualization of fine TH+ fibers, and the section in figure 4-5 

shows extensive axon growth and branching into the striatum in spite of a 

significant amount of tissue damage from the virus injections.  Quantification of 

axon growth along the nigrostriatal path was done by manual counting at a 

distance of 2mm from the rostral edge of the transplant averaged over three 

sections per animal.  Data are presented graphically in figure 4-5, with means +/- 

SEM.  Differences between groups are statistically significant only for the lenti-

GDNF plus lenti-GFRα1 with transplant group compared to either lenti-GFP with 

transplant (t-test p = 0.04) or lenti-GDNF plus lenti-GFRα1 without transplant (t-

test p = 0.03).  The lenti-GDNF with transplant group has, on average, almost as 

many TH+ fibers at 2mm as the combination group with transplant (40 for lenti-
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GDNF and 43 for lenti-G&G), but due to high within-group variance, the increase 

compared to the other treatment groups is not statistically significant. 

 

Striatal innervation 

 Reinnervation of the target striatum with dopaminergic fibers was 

quantified on sections stained for TH only, developed with nickel-enhanced DAB 

chromogen.  MetaVue image analysis software was used to threshold striatal 

regions and quantify TH+ staining.  Brain sections from two unlesioned (normal) 

animals were also stained for TH expression, revealing an average of 39% of the 

area of the striatum filled with TH+ fibers.  The highest group average for post-

treatment striatal innervation was in the lenti-netrin-1 group, with 5.0 ± 3.4% TH+ 

area (13% of normal).  An animal in the lenti-netrin group had the highest score, 

with 22% TH+ area in the striatum, as averaged over three sections (56% of 

normal).  Differences between groups are shown in figure 4-7 as mean ± SEM, 

and do not reach statistical significance due to high within-group variance. 

 

Behavior tests 

  Animals were tested for amphetamine-induced rotational asymmetry both 

prior to transplant and every two weeks following transplant.  All animals made a 

minimum of 450 ipsilateral turns the 90-minute test period (5 turns/minute) prior 

to treatment.  Pre- and 8-week post-transplant rotation scores are shown 

graphically in figure 4-8.  The only treatment group that showed a significant 

decline in amphetamine-induced rotation after 8 weeks was the lenti-GDNF + 

lenti-GFRα1 group (paired t-test p = .05).  Decreases in rotational asymmetry 

between pre-treatment and 8 weeks post-treatment are correlated to the amount 

of TH+ innervation in the striatum:  the higher the innervation, the greater the 

decrease in asymmetry, when data are pooled across treatments (Spearman 

rank correlation p = .007; figure 4-9). 

 Spontaneous motor behavior was also tested before and every two weeks 

after treatment using the cylinder test of Schallert and Tillerson (1999).  

Asymmetry in forelimb use during environmental exploration within a clear plastic 
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cylinder was quantified by an observer blinded to treatment.  Results for all 

treatment groups, including those with no transplants, are shown in figure 4-10 

as mean asymmetry ratio (left paw/total wall touches) ± SEM.  Within each 

treatment group, pre-treatment asymmetry scores were compared to 8-week 

post-treatment scores by a student’s t-test.  Significant decreases in asymmetry 

are seen in the netrin-1 + transplant group (p < .05) and in the GDNF + GFRα1 + 

transplant group (p< .01).  All other differences are statistically non-significant. 

 

Discussion 
 
 Cell replacement therapy for Parkinson’s disease has been the focus of 

many studies since about 1980, with transplantation of fetal midbrain cells 

making it as far as clinical trials (Bjorklund et al., 1980; Winkler et al., 2000; 

Freed et al., 2001).  In the majority of these studies, the cell grafts have been 

placed directly into the striatum to serve as a source of dopamine in that 

denervated target.  The goal of providing dopamine is achieved by such 

methods, but improvement in motor behavior in lab animals and clinical 

improvement in human transplant patients has been minimal.  It is likely that the 

ectopic placement of dopaminergic cells is partly to blame for this limited 

success, as the normal circuitry of the basal ganglia - including dopaminergic 

innervation of the substantia nigra (SN) - is not restored. 

 Some attention has been paid to this shortcoming of PD transplantation 

methods, and attempts have been made to restore connections within the SN 

and subthalamic nucleus (STN) as well as the striatum, with double- and triple-

graft approaches (Mendez et al., 1996; Mendez and Hong, 1997; Mukhida et al., 

2001; Mendez et al., 2002).  These studies demonstrated the importance of 

dopaminergic reinnervation of the other basal ganglia regions to achieve more 

complete behavioral recovery.  While intrastriatal transplants were necessary and 

sufficient for significant decreases in amphetamine-induced rotation scores in 

test animals, only animals receiving double (striatum + SN) or triple (striatum + 

SN + STN) grafts showed improvement in more clinically-relevant forelimb 
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akinesia tests (Mukhida et al., 2001).  While this work underscores the 

importance of dopaminergic connections within targets other than the striatum, it 

does not address the need for connections between those locations. 

 True reconstruction of the neural circuitry that is decimated in PD requires 

cell transplantation into the SN and subsequent neurite outgrowth and formation 

of synaptic connections in the distant striatal target.  The current study 

demonstrates the feasibility of such an approach using lentiviral vectors to create 

growth-supportive pathways between the SN and the striatum prior to intranigral 

fetal VM transplantation.  We provide evidence that this method can result in 

significant dopaminergic axon growth between the SN and the striatum, 

functional reinnervation of the striatum (assessed by amphetamine-induced 

rotation), and improvement in spontaneous motor behavior that have not been 

seen previously with bridging techniques.   

 The molecules that we expressed between the SN and the striatum were 

chosen because previous studies suggested that they had growth supportive 

and/or guidance effects on dopaminergic midbrain neurons.  GDNF has been 

shown to increase the survival, differentiation,  fiber outgrowth and dopamine 

release of fetal midbrain dopaminergic neurons both in vitro and in vivo (Lin et 

al., 1993; Stromberg et al., 1993; Hudson et al., 1995; Johansson et al., 1995).  

GDNF has been used successfully to increase the survival of fetal dopaminergic 

cell transplants in the 6-OHDA-lesioned rat striatum (Rosenblad et al., 1996; 

Yurek, 1998; Ostenfeld et al., 2002) and shows some promise for increasing fiber 

outgrowth from dopaminergic cells transplanted into the lesioned SN (Wang et 

al., 1996; Wilby et al., 1999).  So far, there is no strong evidence supporting 

GDNF’s role as a chemoattractant for dopaminergic axons, but when combined 

with the GPI-linked glial cell line-derived neurotrophic factor receptor α1 (GFRα1) 

there is an attractive guidance effect on other populations of GDNF-responsive 

neurons (sensory and sympathetic) (Ledda et al., 2002).  With this in mind, we 

chose to create pathways that combined expression of GDNF and GFRα1 

between the SN and the striatum.  Finally, we tested netrin-1 because it has 

recently been shown to have positive directional effects on neurite outgrowth 
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from cultured fetal or stem-cell derived dopaminergic neurons (Lin et al., 2005; 

Lin and Isacson, 2006). 

 Our data suggest that a combination pathway expressing GDNF and 

GFRα1 is the best choice for nigrostriatal circuit reconstruction, with netrin-1 also 

showing some promise.  The combination GDNF/GFRα1 group had significantly 

higher counts of TH+ fibers along the pathway, as well as significant functional 

improvement as evidenced by spontaneous motor behavior tests at 8-weeks 

post-transplant.  The netrin-1 group also had significantly improved spontaneous 

motor behavior at the 8-week time point, but TH+ fiber outgrowth was no different 

than controls.  Amphetamine-induced rotation scores did not change in any 

group except the GDNF/GFRα1 group, and in that case the decrease just 

reached statistical significance (p=.05).  Correlation analysis of rotation scores 

vs. TH+ fiber density in the striatum suggests that higher striatal reinnervation 

leads to greater reductions in amphetamine-induced rotational asymmetry.  

Previous studies have shown that amphetamine-induced rotational asymmetry 

can be eliminated with intrastriatal VM transplants, but is not changed by 

intranigral transplants, while scores of forelimb function are better improved by 

intranigral transplants (Mukhida et al., 2001).  Our results suggest that both of 

these functions may be improved with intranigral transplants and reconstruction 

of the nigrostriatal pathway. 

 In creating a guidance pathway between the SN and the striatum, we 

chose to follow the course of the internal capsule rather than making a straight 

line between the two points.  This approach was chosen because white matter 

tracts in the adult CNS have been shown to provide good pathways for long-

distance axon growth due to their physical properties, as long as the chemical 

environment is also supportive to such growth (Davies et al., 1994; Davies et al., 

1997; Raisman, 2004).  Previous studies in our lab have confirmed this, using the 

corpus callosum as a highway for axon growth between the two brain 

hemispheres (see Chapter 2).  Our preliminary experiments with intranigral VM 

transplants also showed that TH+ fiber outgrowth tended to follow the course of 

the internal capsule rather than other possible routes (data not shown).  The 
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lentiviral injection coordinates used in the current study attempted to follow the 

internal capsule’s curved path, but were not always successful at doing so.  In 

some animals, the needle tract from lentiviral injections was obviously rostral and 

ventral to the internal capsule (see Figures 4-2 through 4-4).  It is possible that 

modification of the injection protocol for future studies will further improve 

outcome. 

 While the results of this study are exciting and show great potential, there 

are some problems that need to be addressed.  First and foremost, the amount 

of brain damage seen in most animals secondary to virus injection is 

unacceptable.  This was determined to be due to carryover of poly-L-lysine into 

the viral suspension during the concentration step, and has since been 

eliminated with a modified virus production protocol.   Additionally, we see a 

significant amount of TH+ fiber sprouting within lesioned brains injected with 

lenti-GDNF (with or without lenti-GFRα1) in the absence of VM transplants.  In 

the current study, we did not determine the source of this sprouting – it may be 

coming from dopaminergic nuclei that are located more medially, such as the 

ventral tegmental area, or else from the contralateral hemisphere.  Future studies 

will determine the source of sprouting by applying retrograde tracing techniques, 

and will determine optimum placement and concentration of virus injections to 

minimize undesired fiber growth.  Improvement may be seen with a decreased 

ratio of lenti-GDNF:lenti-GFRα1 in combination pathways, but we will need to 

take care to not compromise fiber outgrowth from transplanted cells.  

 The results presented here, while still in preliminary in nature, show great 

potential for a lentivirus-based method of nigrostriatal pathway reconstruction.  

Using this approach, it is possible to reverse multiple behavioral deficits that 

occur in a rat model of Parkinson’s disease by restoring dopaminergic input in an 

anatomically-correct manner.  With continued refinement of the technique, it 

could provide a real therapeutic option for patients with Parkinson’s disease. 

 

 

Copyright © Kristine S. Ziemba 2007 
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Figure 4-1:  Lentivirus injection scheme.  A) Schematic diagram showing the 
location of lentivirus injection points and transplant location in the sagittal plane 
at 2.4mm lateral to bregma in the rat brain.  Background map from stereotaxic rat 
brain atlas of Paxinos and Watson (1986).  Blue circles represent lentivirus 
injections, with darker colors indicating a larger number of viral particles injected 
at the striatal end of the pathway.  VM = E14 ventral mesencephalon tissue 
chunk.  B)  A sample sagittal section from a brain injected with lenti-GFP, 
showing GFP expression (fluorescence) all along the pathway between the 
midbrain (lower right) and the striatum (upper left), with some spread of 
expression within the corpus callosum (top). 
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Figure 4-2: TH+ fibers extending between transplant site in the SN and the 
target striatum along a pathway created with LV-netrin-1.  8 weeks after 
transplant, brains were harvested, sliced in parasagittal sections and stained with 
a monoclonal antibody to tyrosine hydroxylase, developed with diaminobenzidine 
chromogen.  A) Low power composite photograph shows entire pathway; scale 
bar = 500µm.  B) Higher magnification of lower box in A, showing TH+ cell bodies 
and dense fiber outgrowth at the transplant site; scale bar = 200µm.  C) Higher 
magnification of middle box in A, showing TH+ fibers (and one TH+ cell that has 
migrated) along the nigrostriatal pathway; scale bar = 200µm.  D) Higher 
magnification of top box in A, showing TH+ fibers that have made it to the 
striatum; scale bar = 200µm    
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Figure 4-3: Netrin-1 expression along the virus-injected pathway confirmed 
by immunohistochemical staining.  This is an adjacent section from the same 
brain shown in figure 2 stained with an antibody to netrin-1 and developed with 
NovaRed.  A) Low magnification image showing most of the sagittal section, with 
evidence of endogenous netrin-1 expression, especially in the cortex and 
hippocampus, as well as along the LV-netrin-1 injected pathway (just 
rostral/ventral to the internal capsule).  Scale bar = 1mm.  B) Higher 
magnification of the boxed area in A.  The red spot in the lower left is probably 
due to some clumping of the virus on injection, but many netrin-1+ cells are also 
seen just adjacent to the internal capsule (white matter in upper right of photo). 
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Figure 4-4:  Double immunostaining showing TH+ fibers and netrin-1 
expression along the nigrostriatal pathway.  This is an adjacent section from 
the same brain shown in figures 2 and 3, stained with antibodies to both TH and 
netrin-1, then developed with DAB + Nickel enhancement (purple color, TH) and 
NovaRed (pink color, netrin-1).  A) Low magnification image, scale bar = 1mm.  
B) Higher magnification of boxed area in A; arrow points to a cell with high 
expression of netrin-1 with a thick bundle of TH+ axons growing over it. 
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Figure 4-5: TH+ fibers extending between transplant site in the SN and the 
target striatum along a pathway created with LV-GNDF & LV-GFRα1.  8 
weeks after transplant, brains were harvested, sliced in parasagittal sections and 
stained with a monoclonal antibody to tyrosine hydroxylase, developed with 
Nickel-enhanced diaminobenzidine.  A) Low magnification shows entire pathway, 
with evidence of tissue damage induced by the lentiviral injections, and some 
slippage of the transplant in the rostral direction.  However, there is robust TH+ 
fiber growth within the transplant, along the pathway and into the striatum.  Scale 
bar = 1mm.  B)  Higher magnification of the long box in A, showing extensive 
TH+ fiber growth even through damaged brain tissue.  Scale bar = 200µm.  C) 
Higher magnification of small box in A, showing dense TH+ fiber growth within 
the transplanted tissue chunk. 
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Figure 4-6:  Quantification of TH+ neurite outgrowth 2mm distal to the 
transplant site.  The number of TH+ fibers was counted and averaged over 
three sections in each animal by an observer blinded to treatment.  There is an 
increase in TH+ fiber growth along the lentivirus-injected pathway in both the 
GDNF and the GDNF plus GFRα1 treatment groups, but the increase is 
significant only in the combination group (p=.05 compared to without transplant 
and compared to GFP with transplant).  tp = transplant; G+G = lenti-GDNF plus 
lenti-GFRα1.  Data are means ± SEM. 
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Figure 4--7:  Quantification of dopaminergic striatal re-innervation.   
Dopaminergic innervation of the striatum was determined by thresholding images 
of brain sections immunostained for tyrosine hydroxylase.  The area of the 
striatum was outlined and the percent of that area filled with TH+ staining was 
measured and averaged over 3 sections per animal.  While there is a trend 
toward higher striatal innervation with lenti-GDNF plus lenti-GFRα1 and with 
lenti-netrin-1, differences between groups are statistically non-significant due to 
high within-group variation.  G&G = lenti-GDNF plus lenti-GFRα1.  Data are 
means ± SEM. 
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Figure 4--8: Quantification of amphetamine-induced rotation in the five 
treatment groups with transplants.  Pre-treatment and 8-week post-treatment 
scores are presented for the number of ipsilateral (counterclockwise) rotations in 
90 minutes after injection with 2.5mg/kg D-amphetamine in saline (i.p.).  The only 
significant change between the two time points is in the lenti-GDNF plus lenti-
GFRα1 group (G&G; paired t-test *p = .05).  Data are means ± SEM. 
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Figure 4-9:  Negative relationship between amount of striatal reinnervation 
and amphetamine-induced rotation scores.   There is a significant negative 
rank correlation between the amount of striatal innervation and the ratio between 
the 8-week rotation score and the pre-treatment rotation score across all groups.  
This confirms that a more successful re-innervation will likely result in further 
decreases in post-transplant rotational asymmetry.  G+G = lenti-GDNF plus lenti-
GFRα1. 
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Figure 4-10:  Quantification of spontaneous limb-use asymmetry in all 
seven treatment groups pre-treatment and 8 weeks post-treatment.  Limb 
use asymmetry in spontaneous cylinder wall-exploration was calculated by 
dividing left paw touches by total wall touches (right, left or both paws) in a 3-5 
minute test period.  An asymmetry score of 1 would indicate 100% left paw use.  
A significant decrease in asymmetry was found 8 weeks post-treatment in the 
netrin-1 + transplant group (*p<.05) and the GDNF + GFRα1 + transplant group 
(**p<.01).  G+G= lenti-GDNF plus lenti-GFRα1; tp = transplant.  Data are means 
± SEM.   
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Chapter Five:  General Discussion and Future Directions 
 

 The data presented in this dissertation represent an important step toward 

the goal of circuit reconstruction in the adult mammalian central nervous system 

(CNS).  By most measures, repair of CNS tissue that is destroyed by disease or 

injury is still impossible – a frustrating fact for patients who suffer strokes, spinal 

cord injuries, or the ravages of neurodegenerative processes, as well as for the 

neurologists who diagnose and care for them.  The body’s natural healing 

process is effective for most other injured tissues:  dead cells are removed, new 

cells are produced, and tissue architecture is reassembled sufficiently for 

recovery.  For more severe damage, surgical intervention – including organ 

transplantation – may be required.  Amazingly, even foreign parts can integrate 

successfully into the complex system of the human body, and transplant 

recipients may live near-normal lives in the care of competent physicians.  The 

CNS, however, functions on a different set of principles.  

Neuroscience research over the past two decades has shed light on the 

capacity of the central nervous system to adapt to change (neural plasticity) and 

even to produce new cells in certain brain regions (neurogenesis) (Bjorklund and 

Lindvall, 2000b; Kuhn et al., 2001; Curtis et al., 2003; Nudo, 2006).  

Unfortunately, however, new cells are not produced in sufficient quantities or in 

an effective enough manner to compensate for significant CNS damage.  

Consequently, cell-replacement strategies have been pursued as therapeutic 

options for conditions such as Parkinson’s disease, Huntington’s disease, stroke, 

amyotrophic lateral sclerosis and spinal cord injuries (Whittemore, 1999; 

Bjorklund and Lindvall, 2000a; Fricker-Gates et al., 2001; Bregman et al., 2002; 

Kondziolka et al., 2002; Bjorklund et al., 2003; Isacson, 2003; Reier, 2004; 

Emsley et al., 2004; Winkler et al., 2005; Goldman, 2005).  For neural circuit 

reconstruction – which would be necessary for complete functional recovery in 

most of these cases – transplanted cells must survive and integrate effectively 

into the host CNS: receiving afferent input and providing efferent signals, 

sometimes separated by long distances.  Since the adult mammalian CNS is 
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generally inhospitable to axon growth, circuit reconstruction that requires such 

growth is usually not successful, and is often not even attempted.  One of the 

main goals of our laboratory is to provide a technique for directing axon growth 

from neurons transplanted into the CNS to distant target locations, reestablishing 

functional neural circuits and allowing behavioral recovery. 

The basic concept behind the studies presented here is that local genetic 

manipulation of the host CNS may transform it into a permissive substrate for 

axon outgrowth from transplanted neurons.  Stereotactic injections of viral 

vectors are used to express specific molecules which act as neurotrophic, 

chemotropic or chemorepulsive signals in such a pattern as to precisely target 

neurite growth.  In chapter two, we prove the effectiveness of this approach in 

supporting axon outgrowth over distances of several millimeters in the adult rat 

brain, and in directing a 90-degree turn of the axons out of a white matter tract 

and into a pre-determined target location.  In this proof-of-concept study, we 

transplanted early postnatal dorsal root ganglion (DRG) sensory neurons into the 

corpus callosum of adult rats.  DRG neurons were chosen due to prior 

knowledge of neurotrophic and chemotropic molecules that support and direct 

the growth of those cells during normal development (Gundersen and Barrett, 

1979; Phillips and Armanini, 1996; Paves and Saarma, 1997; Tanelian et al., 

1997; Dontchev and Letourneau, 2002; Masuda and Shiga, 2005).  We 

constructed adenoviral vectors encoding such molecules (nerve growth factor, 

NGF; basic fibroblast growth factor, FGF-2; and semaphorin 3a) to create our 

axon-targeting pathways.  The adult corpus callosum was chosen as the 

transplantation site for ease of visualization of immunostained sensory axons and 

because prior work by Davies and colleagues showed that the white matter tract 

could support long distance axon growth from transplanted DRG neurons if non-

damaging injection protocols were strictly adhered to (Davies et al., 1994, 1997).  

Our data showed that by expressing a combination of NGF and FGF-2 all along 

the corpus callosum and NGF in the contralateral striatum we could direct 

sensory axon growth from DRG neurons transplanted into the corpus callosum 

on the left side of the brain, across the midline, and out of the corpus callosum 



 84

into the striatum in the right hemisphere.  This growth occurred in spite of some 

scarring due to the virus injections (confirmed by staining for chondroitin sulfate 

proteoglycans; data not shown) and axon targeting was improved by expressing 

semaphorin 3a adjacent to the pathway turn.  These last two points highlight the 

significance this study and how the results differ from the earlier work by Davies, 

et al:  first, we demonstrate the power of viral vectors to alter the host brain along 

a specific trajectory and support axon growth where inhibitory signals would 

otherwise prevent it; and second, we show that axon growth may be targeted 

more specifically with judicious expression of chemorepulsive molecules in the 

surrounding, non-target area. 

Chapters three and four of this dissertation describe our application of the 

virus pathway/transplantation targeting method to a rodent model of Parkinson’s 

disease (PD).  As previously mentioned, cell-replacement strategies for PD have 

already been attempted by many groups – in fact, such therapies have made it to 

the level of clinical trials for PD patients, but with unsatisfactory results (Freed et 

al., 2001; Olanow et al., 2003).  Since most previous studies (including both 

clinical trials) involved transplantation of fetal dopaminergic neurons directly into 

the striatum rather than into their ontogenetic niche in the substantia nigra (SN), 

it reasonable to attribute unfavorable results, at least in part, to this ectopic cell 

placement.  Cell grafts in the striatum do produce dopamine and can theoretically 

produce the same kind of behavioral improvement that pharmacological 

dopamine replacement (L-dopa) provides.  Similar to L-dopa administration, 

however, striatal cell transplants can cause severe motor side effects called 

dyskinesias which significantly decrease a patient’s quality of life (Freed et al., 

2001; Greene and Fahn, 2002; Ma et al., 2002; Olanow et al., 2003).  The 

combination of minimal functional recovery and unwanted side effects associated 

with intrastriatal dopaminergic cell transplants urges the development of an 

alternative grafting strategy with the goal of true restoration of the nigrostriatal 

pathway.  Our data so far suggest that such a goal is not out of reach. 

This lab is not the first to attempt nigrostriatal pathway reconstruction in a 

rodent model of PD, but previous attempts have left much room for improvement 
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(Dunnett et al., 1989; Wang et al., 1996; Brecknell et al., 1996; Wilby et al., 1999; 

Chiang et al., 2001).  Importantly, other studies of “bridging” methods 

(transplants in the SN and various growth-supportive materials between the SN 

and striatum) quantified only amphetamine-induced rotation as a reflection of 

functional improvement, and minimally or qualitatively demonstrated 

dopaminergic fiber growth between the transplant site and the target.  Our results 

include three significant positive findings:  1) expression of glial cell-line derived 

neurotrophic factor (GDNF) plus the soluble GPI-linked receptor GDNF family 

receptor alpha-1 (GFRα1) between the SN and the striatum significantly 

increases the number of dopaminergic fibers that grow out of transplanted cells 

and along the pathway, terminating in the striatum; 2) The same combination of 

molecules between the SN and the striatum (GDNF + GFRα1) with intranigral 

transplants leads to a significant decrease in amphetamine-induced rotation, 

indicating some functional reinnervation of the striatum; and 3) Transplants into 

the SN, when combined with lentivirus-induced expression of either GDNF + 

GFRα1 or netrin-1 along the nigrostriatal pathway, lead to recovery of 

spontaneous motor behavior, demonstrated by a decrease in limb-use 

asymmetry.  To our knowledge, this is the first study to show improvement in 

both types of behavior (drug-induced and spontaneous) with transplants only in 

the SN.   

Given these promising initial data, our lab is currently working to improve 

certain aspects of the experimental protocol.  First, the lentivirus-production 

method described in chapter three has been modified to eliminate possible 

carryover of contaminants into the viral suspension, which may have been 

responsible for considerable tissue damage in experimental animals.  

Additionally, we are working to determine the source of dopaminergic fiber 

sprouting in brains overexpressing GDNF in the absence of dopaminergic tissue 

transplants.  Such aberrant sprouting may interfere with behavioral improvement 

in transplanted animals and even cause unwanted side effects if functional 

synapses form randomly.  There are a couple of strategies that we could employ 

to decrease this sprouting: either decrease the concentration of lenti-GDNF 
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injected close to the SN to prevent diffusion into the adjacent ventral tegmental 

area (one possible source of wayward dopaminergic fibers), or express an 

inhibitory molecule in the adjacent regions to prevent fiber sprouting.  A likely 

candidate molecule for this approach would be slit-2, which has been shown to 

repel and inhibit dopaminergic axon growth in vitro (Lin et al., 2005; Lin and 

Isacson, 2006).  Finally, we may need to adjust the viral vectors in order to 

temporally control expression of GDNF, turning it off once reestablishment of the 

nigrostriatal pathway is complete to avoid potential metabolic side effects of 

overexpression such as down-regulation of tyrosine hydroxylase (Rosenblad et 

al., 2003; Sajadi et al., 2005; Winkler et al., 2006). 

With continued refinement, the methods described here have far-reaching 

potential.  As an evolutionarily “advanced” vertebrate species, humans do not 

have the ability to regenerate CNS tissue as our “primitive” fish and amphibian 

brethren do (Ferretti et al., 2003).  Developmental cues that direct the initial 

construction of our neural circuitry are no longer present in the same patterns in 

adults, so reestablishment of damaged circuitry cannot proceed in an orderly 

fashion without help (Harel and Strittmatter, 2006).  As we have demonstrated, 

such help can be in the form of patterned expression of guidance cues 

established by viral vector injections followed by transplantation of neurons with 

intrinsic growth potential.  For clinical applications, there are several possible 

sources of such neurons, including embryonic stem cells and neural precursor 

cells which may be differentiated and/or genetically modified prior to 

transplantation (Correia et al., 2005; Conti et al., 2006; Muller et al., 2006).  

Perhaps the most intriguing possibility for CNS repair, however, is the elimination 

of transplantation altogether in favor of manipulation of endogenous precursors 

to rebuild neural circuits. 

The adult mammalian brain, while relatively inefficient at self-repair, is now 

known to be capable of neurogenesis – contrary to almost a century of scientific 

dogma (Gross, 2000).  New cells are constantly produced in the anterior aspect 

of the subventricular zone (SVZ) of the lateral ventricles and in the subgranular 

zone (SGZ) of the hippocampus, providing new neurons to the olfactory bulb and 
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potentially contributing to structural plasticity and associative learning and 

memory (Ming and Song, 2005).   Interestingly, neural precursor cells have been 

found in many other brain areas – they just do not normally become neurons in 

situ due to restrictions imposed by the local microenvironment (Palmer et al., 

1995; Hagg, 2005; Sohur et al., 2006).  If isolated and given the right molecular 

cues in vitro, however, these precursors can give rise to mature astrocytes, 

oligodendrocytes and neurons.  Furthermore, in vivo manipulations such as focal 

induced injury stimulate formation of new, functional neurons in “non-neurogenic” 

brain regions (Magavi et al., 2000; Arlotta et al., 2003; Parent, 2003; Mitchell et 

al., 2004),.   

Using tools like viral vectors, one could imagine altering brain 

microenvironments to take advantage of endogenous neurogenesis for brain 

repair.  For Parkinson’s disease, there are conflicting reports regarding the 

presence of neural precursor cells in the substantia nigra (Lie et al., 2002; 

Frielingsdorf et al., 2004).  But even if the neurogenesis occurs at a distance 

from the required location of neuronal replacement, one could, in theory, target 

the migration of neural precursor cells as we have targeted axon growth in the 

studies described here.  The same concepts apply:  young cells with growth 

potential are equipped to respond to directional cues – in fact, many of the cues 

are redundant, controlling both neuronal migration and growth cone 

advancement by signaling mechanisms that affect cytoskeletal dynamics (Song 

and Poo, 2001).  Provide molecular signals in the proper locations, and the cells 

will respond accordingly.   

We are at an exciting time for neuroscience:  new secrets of the brain are 

being revealed and new technologies are being developed at an accelerated 

pace, so that the “holy grail” of CNS repair is closer to our grasp.  There are 

multiple avenues being explored, including gene therapy, cell transplantation, 

electrical stimulation, and neuropharmacology – any one, or a combination of 

which may hold answers to clinical challenges in neuroscience.  Just focusing on 

transplantation, sources of cells for CNS repair may be embryonic stem cells, 

bone marrow cells, umbilical cord blood or the damaged brain itself (Svendsen et 
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al., 1999; Newman et al., 2004; Sohur et al., 2006; Zhang et al., 2006).  The 

extent of brain damage and success of treatment may be tracked by increasingly 

sophisticated imaging techniques that distinguish fine alterations in brain 

metabolism (Zhang et al., 2006; Roberts et al., 2007).  With all the tools at our 

disposal, and the brain’s capacity for plasticity and self-renewal, nothing seems 

impossible. 
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