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ABSTRACT OF DISSERTATION 
 
 
 
 

KHATRI-RAO PRODUCTS AND CONDITIONS FOR THE 
UNIQUENESS OF PARAFAC SOLUTIONS FOR IxJxK ARRAYS 

 
 

One of the differentiating features of PARAFAC decompositions is that, under 

certain conditions, unique solutions are possible. The search for uniqueness 

conditions for the PARAFAC Decomposition has a limited past, spanning only 

three decades. The complex structure of the problem and the need for tensor 

algebras or other similarly abstract characterizations provided a roadblock to the 

development of uniqueness conditions. Theoretically, the PARAFAC 

decomposition surpasses its bilinear counterparts in that it is possible to obtain 

solutions that do not suffer from the rotational problem. However, not all 

PARAFAC solutions will be constrained sufficiently so that the resulting 

decomposition is unique. The work of Kruskal, 1977, provides the most in depth 

investigation into the conditions for uniqueness, so much so that many have 

assumed, without formal proof, that his sufficient conditions were also necessary.  

 

Aided by the introduction of Khatri-Rao products to represent the PARAFAC 

decomposition, ten Berge and Sidiropoulos (2002) used the column spaces of 

Khatri-Rao products to provide the first evidence for countering the claim of 

necessity, identifying PARAFAC decompositions that were unique when 

Kruskal’s condition was not met. Moreover, ten Berge and Sidiropoulos 

conjectured that, with additional k-rank restrictions, a class of decompositions 

could be formed where Kruskal’s condition would be necessary and sufficient.



Unfortunately, the column space argument of ten Berge and Sidiropoulos was 

limited in its application and failed to provide an explanation of why uniqueness 

occurred. On the other hand, the use of orthogonal complement spaces provided 

an alternative approach to evaluate uniqueness that would provide a much richer 

return than the use of column spaces for the investigation of uniqueness. The 

Orthogonal Complement Space Approach (OCSA), adopted here, would provide: 

(1) the answers to lingering questions about the occurrence of uniqueness, (2) 

evidence that necessity would require more than a restriction on k-rank, and (3) 

an approach that could be extended to cases beyond those investigated by ten 

Berge and Sidiropoulos.  
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1. MULTILINEAR MODELS

1.1 An Introduction 
When dealing with a set of observations for several variables, researchers in 

psychometrics and chemometrics have used Principal Component Analysis 

(PCA), Multidimensional Scaling (MDS) or Factor Analysis to attempt to identify 

underlying characteristics.  

Multilinear models originated in psychometrics, a field of study concerned   

with psychological measurement. In particular, research in psychometrics   

involves measurements of knowledge, abilities, attitudes, and personality traits. 

Traditionally, the instruments used to provide such measurements involve many 

variables, variables which are analyzed in order to discover underlying 

characteristics that might better represent the data relationships of particular 

cases.  

A simple example of a problem in psychometrics would be to determine what 

underlying characteristics contributed to a consumer preferring a particular 

product, bread for example. Several attributes may be involved in the preference 

of bread and it would be difficult to capture these in a single question. Therefore, 

it might be of interest to collect data on certain sensory attributes such as the 

texture, taste, density, color, and look of bread for various types of breads. For 

each consumer, the goal would be to explore the underlying characteristics for 

preferences in bread. Such a problem is known as bilinear, where two ways 

(bread types and sensory attributes) are explored. However, the results obtained 

from evaluating this bilinear problem would only be useful for describing the 

underlying factors in preferring bread for an individual consumer. If this same 

“experiment” is carried out on several consumers or raters, the problem adds an 

additional way and becomes a multilinear problem. 

In addition to psychometrics, the use of multilinear models has found 

increasing popularity in the area of chemometrics. Although the principles are the 

same, the application of multilinear models in chemometrics has a different 

perspective than that of psychometrics. In chemometrics, the multilinear data 

structure emerges naturally from physical science.  

                                               1
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Fluorescence spectroscopy offers a primary example of the applicability of the 

multilinear model. By definition, fluorescence spectroscopy measures the 

absorption or emission of particles from a sample as a function of wavelengths of 

energy (Leurgans and Ross, 1992). Multilinear models are ideal for these 

scenarios as the data are known to naturally follow a multilinear (Parallel Factor) 

model. In these types of problems an analyte at different concentrations is 

evaluated (Smilde, Bro, Geladi, 2004). When the analyte is excited at different 

wavelengths, particular wavelengths of spectra are emitted. When chemist work 

with several samples or different concentrations, the typical fluorescence model 

is equivalent to the multilinear (Parallel Factor) decomposition. Thus, the three 

ways of spectroscopic data might be wavelengths, emission or absorbance, and 

concentration. The data structure found in chemometrics suggests PARAFAC 

modeling, and applications of these techniques can provide chemists with unique 

descriptions of the underlying chemical make-up of particular samples. 

When dealing with bilinear data, a set of observations for several variables, 

researchers in psychometrics and chemometrics have used Principal Component 

Analysis (PCA), Multidimensional Scaling (MDS) or factor analysis to attempt to 

identify underlying characteristics. However, it is well known that these methods 

do not provide decompositions so that one can identify a unique set of underlying 

characteristics. In other words, taking for example bread preferences, two 

researchers could analyze a consumer’s opinions on bread preferences and 

obtain two equivalent decompositions with completely different interpretations 

about what characteristics lead to bread choice. This is commonly referred to as 

the rotational problem. As will be discussed in the following sections, the use of 

certain types of multilinear models avoids the rotational problem of traditional 

psychometric and chemometric analysis tools. 

1.2 The Bilinear Problem 
While it is well known that principal components analysis suffers from a 

problem with rotational invariance, insofar as the concept of “plane of closest fit” 

is uniquely defined, while the basis for that plane is not, this is not what is 

typically meant by the rotation problem when the term is used in the context of 
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multilinear uniqueness research.  In fact, it could even be conjectured that there 

is perhaps a fair amount of confusion on this point in the literature. The aim of 

this section is to dispel some of that confusion.  Indeed, it is important that the 

nature of the much maligned bilinear inadequacy be articulated since the 

problem being addressed in this dissertation is, in essence, the analogous 

problem for multilinear decompositions.  While there are many ways to frame this 

bilinear problem, being particularly cognizant of the forthcoming discussion, the 

perspective presented below was chosen. 

The singular value decomposition of  nxpX  can be written as 

 where 
t t

nxp nxp pxp pxp nxp pxp
ˆ⎡ ⎤ ⎡= ≡⎣ ⎦ ⎣X A C B A B ⎤⎦

t t
pxp= =A A B B I , and .  

Typically, determining the component directions matrix  B  is the goal, and this is 

commonly said to be the solution to the principal components problem.  The 

connections to PCA are not hard to see.   

pxp px1diag( )=C c

Assuming  is mean centered, the sample covariance matrix, , 

associated with  is , which implies, of 

course, that .  Hence, the diagonal entries of  (the square of the 

singular values) are the eigenvalues of S  and the columns of  the 

corresponding eigenvectors and we have the traditional solutions to the PCA 

problem.  Notice also, that 

nxpX pxpS

nxpX t t t t
pxp = = =S X X BC A ACB BC2 tB

2=SB BC 2C

B

t ˆ= = ≡XB ACB B AC A  fills the classical role of the 

score matrix.   

The rotation problem associated with the decomposition of can be better 

understood by noting that 

nxpX

nxpX  can also be written as follows: 

(1.1)                           

[ ] ( )
[ ]

t

nxp nxp pxp pxp

t

nxp pxp pxp

t-1
nxp pxp pxp pxp pxp

t-1t

t
B

ˆ

⎡ ⎤= ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡= ⎤⎣ ⎦ ⎣

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎣ ⎦

X A C B

A C B

A C T T B

ACT B T

AT BT

⎦  
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for any invertible matrix .   Hence, an alternative decomposition of pxpT nxpX  with 

transformed  and  is obtained, and, therefore,  emerges as an equally 

good candidate for the component directions.  Of course, the decomposition of 

the covariance matrix  is trivially the same as before in spite of the fact that 

there are uncountably infinitely many ways to decompose 

Â B BBT

pxpS

nxpX .  So, on the one 

hand, strictly speaking, there is not a problem with PCA in this context.  However, 

at issue is the decomposition of nxpX , and the clear ambiguity associated with the 

solution to that bilinear problem.  In the literature on multilinear uniqueness 

issues, the PCA rotation problem is somewhat inappropriately, or at the very 

least “loosely”, used to refer to this decomposition ambiguity. 

It is also very instructive to look at the nature of the alternative decomposition 

given in (1.1). Indeed a careful look will help tremendously with an understanding 

of logic of the subsequent work in this dissertation, as well as provide a nice 

preview of the history of this problem.  In essence, nxpX  has been decomposed 

as follows: 

(1.2)                          [ ] ( ) ( ) [ ]
t-1 tt

nxp Bdiag( )⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎢ ⎥⎣ ⎦
X ACT B T A c T BT . 

Hence, nontrivial transformations have been applied to (the rows of) B  and 

, and an equivalent decomposition resulted.  With multilinear 

models there is more than one 

(diag( )=C )c

nxpX  matrix available, more than one rater,  to use 

the consumer preferences example given earlier.  Therefore, the analogous 

problem in multilinear analysis is to decompose all of the matrices: 

(1.3)                          ( ) [ ]t
k kdiag( )⎡= ⎣ ⎤⎦X A c B , where . ( )1 2 k=C c c cL

One could argue that that there are two ways to frame the “uniqueness” issue in 

the context of (1.3).  Perhaps the most direct analogy would be to place 

transformations on the rows of A , , and B ( )kdiag( )c  so that the transformations 

cancel as in bilinear decompositions: 

(1.4)                          [ ] ( )( ) [ ]1 t-1 t
k A A k Bdiag( )

−⎡ ⎤= ⎢ ⎥⎣ ⎦ BX AT T c T BT  
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and ask the question as to whether such transformations exist, and under what 

conditions it can be shown that the only such transformations that exist are 

somehow only “trivial”.   Likewise, one could argue that a rational analogy to (1.2) 

would be to first absorb a transformation on the  term: kc

(1.5)                          [ ] ( ) [ ]t
k A k Cdiag( )⎡ ⎤= ⎣ ⎦ BX AT c T BT . 

Early work in the area of uniqueness would incorporate these representations 

of  and will be discussed in later sections. However, it turns out that the key to 

uniqueness would lie with (1.5) while those who employed (1.4) would be led 

down the wrong path. 

kX

Although there are certain multilinear models which offer the possibility of 

uniqueness, unlike bilinear methods where hopes of uniqueness are abandoned, 

this is not the only, or even main, benefit. One of the attractions of multilinear 

models is that it is possible to explore data as it naturally occurs, in a higher 

dimensional structure. Two main decompositions are available to those exploring 

higher dimensional data through multilinear modes: PARAFAC and Tucker3.  

The main advantage of the PARAFAC decomposition is the possibility of 

uniqueness while the main advantage of the Tucker3 decomposition is the ability 

to describe rich interactions. PARAFAC decompositions, under certain 

conditions, can provide solutions that are unique or do not suffer from the 

rotational problems of its bilinear predecessors. However, not all multilinear data 

can be decomposed using PARAFAC. In some cases, it is necessary to employ 

the Tucker3 decompositions, which cannot claim uniqueness. Although the focus 

of this dissertation will be to investigate the PARAFAC decomposition and the 

constraints that impose uniqueness, for completeness, the Tucker3 models will 

be described in following the introductory sections. 

1.3 Theoretical Background 
Extensions of and analogies to the well-known bilinear paradigms have 

created a substantial literature on so-called multiway structure-seeking methods.  

The conceptual similarity to bilinear methods is indicated in the schematic below, 

wherein a cube of data is decomposed into two components, each of which 
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consists of three “profiles” (e.g. raters, bread type, and sensory attributes), which, 

taken as triples, are assumed to characterize the cube (Figure 1.1).   

 
ty

pe
s 

attributes

raters 

First 
Component

= 

ty
pe

s 

attributes

raters 

Second 
Component

Data Error 

attributes

ty
pe

s 

raters 

attributes

ty
pe

s 

raters 

++

Figure 1.1 Example Trilinear Schematic 
 

As was mentioned above, such techniques originated in psychology, but 

some of the most important contributions to understanding and application have 

come from within chemometrics, in particular from within florescence 

spectroscopy  (see e.g. Bro, 1997; Burdick, 1995; Leurgans & Ross, 1992; 

Mitchell and Burdick, 1994; Rayens & Mitchell, 1997; Sanchez & Kowalski, 1988, 

1990; Wold, et. al., 1987; Bro, 1999; Bro & Heimdal, 1996).  An extensive 

reference list is available courtesy of Professor Rasmus Bro of the Chemometrics 

Group at the Royal Veterinary and Agricultural University in Denmark on the web 

at http://www.optimax.dk/chemobro.html and from the Three-Mode Company 

at http://www.fsw.leidenuniv.nl/~kroonenb.   Although the field is far from 

unified, with several different multiway models and even different methods of 

implementing those models, the literature is growing in statistical sophistication 

and the successes of many applications are undeniable and intriguing.  

1.3.1 Tensor Algebras 
Traditionally, the theoretical description of multilinear models depended on a 

basic understanding of tensor algebras. Just as linear algebra provided clear 

definitions for bilinear methods, tensor algebra offered the means to clearly 

describe the structure of trilinear and higher-way models. However, tensor 

algebras are more abstract and lack the familiarity of linear algebra. Ironically, 

although tensor algebras provided clear definitions of higher-way models, users 
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of multilinear models were slow to embrace this mathematical language that 

helped to provide a framework for interpreting multilinear models. The hesitancy 

to adopt the tensor algebra paradigm is in part responsible for the lack of 

progress in the investigation of properties and uniqueness characteristics with 

these decompositions.    

Recent developments, however, have allowed the characterization of 

multilinear models without the use of tensor algebras. Although these newer 

representations will be used throughout the latter chapters of the dissertation, 

tensor algebras will be used to provide the first definitions and descriptions of 

multilinear models. Consistent with Burdick (1995), the description of these 

models is given elegantly with tensor algebras, providing details that may be 

missed with other techniques. Additionally, the use of tensor algebras to define 

multilinear models is fundamental to understanding the history and appreciating 

the progress of research in multilinear methods. 

Hence, the technical overview of multiway methods will be presented by 

discussing trilinear methods from this abstract perspective.  Extensions to higher-

way arrays are straightforward but notationally cumbersome.  Burdick’s notation 

is used in the following. 

First, a definition of the tensor product of two vectors and a tensor product of 

a vector and a matrix is given.  Arrangement of coordinates in the definition is 

somewhat arbitrary.  However, the following will suffice: 

 

Definition 1.1  Let a be a vector in Iℜ  and b a vector in Jℜ .   

• A tensor product of a and b is given by . Let  

be a vector in  and X be an I×  matrix.   

⊗ ta b = ab t
11 1Kc cc = ( )K

Kℜ J

• A tensor product of X and c is given by ( )11 12 1K I JK
c c c

×
⊗ =X c X X XL . 

• If, in fact, , then = ⊗X a b ( )11 12 1K I JK
c c c

×
⊗ = t t tX c ab ab abL   
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Definition 1.2  Let  and .  A tensor product of U and V, denoted by 

U V, is the vector space consisting of all linear combinations of a b where 

a∈U and b∈V.  

IU ⊂ ℜ JV ⊂ ℜ

⊗ ⊗

 

This idea is easily extendible to more than two vector spaces. It is not hard to 

check that if dim (U) = R and dim (V) = S, then dim (U⊗ V) = RS. 

 

Typically, a bilinear errors-in-variables model employed to extract structure 

from  has the form of IxJX IxJ IxJ IxJ= +X S N , interpreted as a signal matrix added to 

a noise, or error matrix.  The issue becomes how one decides to model the 

structure in the signal matrix.  Cosmetically different perspectives lead to 

identical bilinear models, but to very different multilinear models.  To see this, 

assume that the S can be written as the sum of R rank one matrices.  That is, 

one might assume that there exist vectors { } { }I J
r r and ⊂ ℜ ⊂ ℜa b such that: 

(1.6)                          
R

r r
r 1=

= ⊗∑X a b

If both { } { }I
r r and ⊂ ℜ ⊂ ℜa b J

J

are linearly independent then X will have rank 

R. Similarly, one might adopt the perspective that there exist subspaces 

, with dim (U) = dim (V) = R, such that: IU  and  V⊂ ℜ ⊂ ℜ

 (1.7)                          U V∈ ⊗X
Decompositions (1.6) and (1.7) are equivalent, and each suffers equally from 

a well-known lack of uniqueness.  For instance in (1.6), there are uncountably 

infinitely many vectors  and  that can describe X equally well from the point 

of view of decomposition.  Hence, interpretations of the vectors  and  

become as much an act of faith as an analytical exercise. This is analogous to 

the rotational problem defined in the previous section.  

ra rb

ra rb

When (1.6) is extended to higher-way data structures, the so-called PARAllel 

FACtor model (PARAFAC) emerges. Throughout the dissertation, the noise 

matrix will be ignored when representing the PARAFAC solution. For the 

purposes of discussing uniqueness, the noise matrix is typically not included, and 
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the PARAFAC solutions are presented as if the data array could be decomposed 

without error. 

 

Definition 1.3 The PARAFAC model presumes there exist vectors { } I
r ⊂ ℜa , 

{ } J
r ⊂ ℜb , and { } K

r ⊂ ℜc such that: 

(1.8)                         , where X represents the array. 
R

r r
r 1=

= ⊗ ⊗∑a b cX r

 

One can think of these R tensor algebra products as representing the relative 

influences of R underlying latent characteristics that define the array.  For 

instance, if the array was structured according to the bread example as bread 

types, sensory attributes, and raters, then the vectors  and  represent the 

relative influence of factor r on the type and rater modes, while the vector  

contains the weights of the  factor for each of the k sensory attributes. From 

(1.8) it can easily be seen that each element of X can be written as the sum of 

the relative influences of each of the factors on the bread type, the 

ra rb

rc
thr

thi thj rater, and 

the  sensory attribute, or . Notice that for each element, 

regardless of the attribute,  represents the contribution of the factor to the 

bread type and the 

thk
R

ijk ir jr kr
r 1

x a b
=

= ∑ c

ir jra b thr

thi thj  rater. For the  sensory attribute, this product is 

multiplied by . Thus, the whole influence of a factor on raters and types is 

proportionally adjusted for the influence on attributes. In other words, the 

influence of the factors is adjusted in parallel proportion by the elements of . 

thk

krc

rc

The extension of (1.7) defines the so-called Tucker3 model.

 

Definition 1.4  
The Tucker3 model presumes that there exist subspaces 

, with dim (U) = RI JU ,  V , and W⊂ ℜ ⊂ ℜ ⊂ ℜK
U, dim (V) = RV, and dim (W) = 

RW, such that U V W∈ ⊗ ⊗X . 
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Notice, these two models are quite different.  In particular, under rather 

general conditions, the PARAFAC model lays claim to a useful form of 

uniqueness (Kruskal, 1989), while the Tucker3 model cannot (Comments by 

Burdick on paper by Leurgans & Ross, 1992).      

This representation of S is useful in the more complex case when UR M=  

factors can be extracted from the bread type mode, VR P=  factors exist in the 

rater mode, and  factors can be found in the sensory attributes mode. As 

in the case of parallel factors, the factors in each of the modes contribute a 

relative influence on the elements. Unlike parallel factors, however, the existence 

of factors within each of the modes will necessarily require that the factors be 

interrelated. Continuing the representation as before, where , , and 

. The vector  represents the relative influence of the  bread type 

factor on the elements of the types mode, corresponds to the relative influence 

of the  rater on the elements of the raters mode, while the vector contains 

the weights of the  sensory attribute factor for each of the k sensory attributes. 

WR = Q

q

g

m U∈a p V∈b

q W∈c ma thm

pb

thp qc

thq

From (1.9), X is any linear combination of vectors of the form , 

and an element from this array can be written as , 

where the coefficient  represents the relative weights of the relationships 

among the factors. In this form, it is obvious that the whole influence of a 

particular factor will not merely change proportionally as sensory attributes vary, 

but will be dependent on the influences of factors from each of the other two 

modes. In general there are many analogous extensions that lead to slightly 

different mixed factors models. 

m p⊗ ⊗a b c

M P Q

ijk im jp qk mpq
m 1 p 1 q 1

x a b c
= = =

= ∑∑∑

mpqg

1.3.2 The Matrix Representation of PARAFAC 
Although the representation of PARAFAC using tensor algebras is beneficial 

from a conceptual perspective, most of the work in PARAFAC and uniqueness 

has used what is known as the matrix representation.  Consider again the tensor 
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representation, , where 
R

I J K r r r
r 1

× ×
=

= ⊗ ⊗∑a b cX { } I
r ⊂ ℜa , { } J

r ⊂ ℜb , and 

{ } K
r ⊂ ℜc .   

 

Definition 1.5 The relative influences of the  factor for a particular way form a 

vector of weights. These weights can be referred to as loadings as a way to 

describe the variations of relative influence from one point to the next.  

thr

 

Definition 1.6 If the vectors of loadings are combined to form a matrix, the matrix 

is called a loading matrix. 

 

Therefore, returning to the bread example, combining the loadings for the 

bread types could result in the loading matrix { }1= RA a aL .  Likewise, the 

vectors of { }1=B b bL R  describe the variations of relative influence from one 

rater to another, and the vectors of { }1=C c cL R describe the variations of 

relative influence from one sensory attribute to the next. 

If one thinks of X as composed of K I×  matrix slabs,J kX , then it is easy to 

show that this representation of X is equivalent to the presumption that 

, for k , where t
k k=X AC B =1,…,K k k1diag(c c )kR=C L   (Figure 1.2).  The 

loading matrices A and B are common to every slab kX , while the diagonal 

matrix is specific to each kC kX slab. Thus, the is known as the core matrix. kC

 

 
Figure 1.2 Matrix Representation of PARAFAC 

 
K 

Xk 

X =  
I 

 
J 
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 An R-component decomposition amounts to the specification of the loading 

matrices, ,  and I R×A J R×B K R×C .  Intuitively, using PCA-like language, one can think 

of the columns of A as the common scores, the columns of B as the common 

directions, and the columns of C as the relative weights that distinguish the slabs 

in the C direction.  It is important to note that the model presumes that such 

matrices exist, that is, that the specified decomposition is possible. Typically, 

uniqueness results in the literature have been derived in the presence of this 

presumption.  

1.4 An Example 
Even though multilinear models can be viewed as an extension of more 

familiar bilinear methods, the paradigm of tensor algebras or weighted matrix 

representations may not be as familiar. Thus, it is useful to have an example to 

illustrate the types of questions that can be addressed by such models.  In truth 

there are many perspectives on multilinear models that could be adopted in this 

example, much the same way as one could choose to emphasize variance 

summary or structure interpretation with an elementary introduction to principal 

components.  However, for the purposes of this example, an approach that is 

similar to that utilized in multidimensional scaling (MDS) will be adopted.  Of 

course this will make more or less sense depending on the familiarity with MDS. 

In the beginning sections of this chapter, an example on consumer 

preferences for bread was introduced. This scenario will be further explored and 

the results of a PARAFAC decomposition will be provided. In this example five 

different breads were baked in replicates giving a total of ten samples, and eight 

different judges assessed the breads with respect to eleven different attributes.  

These data were kindly provided by Prof. Magni Martens, from the Royal 

Veterinary and Agricultural University (KVL) in Denmark and come from a 

student project in Sensory Science.  They were popularized as an example of 

multilinear models by Prof. Rasmus Bro, also from KVL and a pioneer in the field.  

The schematic in Figure 1.3 illustrates how the data would be typically arranged 

into a 10 by 11 by 8 data cube.  The ratings or assessment measures are the 

numerical entries in each slab or slice of the cube. 
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Figure 1.3 Bread Example Schematic 

 

A typical question one might ask with such data is “Do the judges differ in 

their ratings depending on the sensory attribute being rated?”  A common, and 

trivial, univariate approach might focus on a single sensory measure (or average 

all sensory measures) and then average across breads and use a simple 

ANOVA to address the question.  Conversely, a multivariate approach might first 

employ a MANOVA.  But it is worth noting that the Bread dimension does not 

exhibit 10 replications on the same bread (samples) but rather 2 replications on 

each of 5 different breads.  Hence, that dimension is not the usual sample 

dimension and, hence, the two procedures mentioned above are not quite right.  

With the ANOVA one could argue that, in effect, two separate dimensions 

(sensory variable and bread type) have been collapsed in order to facilitate the 

univariate analysis, while with the MANOVA perhaps one dimension (bread type) 

has been unfortunately collapsed.  Indeed, it is common in multilinear analysis for 

there to be no dimension that corresponds to a sampling dimension. 
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Figure 1.4 Principal Component Weights on Collapsed Bread Data Cube (1) 

 

The absence of a sampling dimension does not preclude an analysis of 

structure by way of a typical bilinear method such as principal components 

(PCA).  For instance, one could collapse the data across breads (say, by 

averaging) and then do a PCA on the resulting 11 (sensory measures) by 8 

(judges) data matrix.  Looked at as an 11 x 8 data matrix, one would naturally 

address the question above by extracting the first principal component weight 

vector, or corresponding vector of loadings, and a plot of these weights 

(loadings) might reveal suggested differences in the judges (Figure 1.4).  

Conversely, looked at as an 8 x 11 data matrix, one could address the 

question above by, perhaps, extracting the first two PCA scores and plotting 

them for each of the 8 judges, being careful to look for groupings, similarities and 

differences among the judges in that score plot (Figure 1.5). Both the weights 

and the scores were generated from auto-scaled data and both suggest that 

Judges 1, 3, 4, 5 and 8 are somehow different from Judges 2 and 6.            
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Figure 1.5 Principal Components Scores on Collapsed Bread Data Cube (2) 
 

Fitting a simple multilinear (three-way, in this case) model yield similar 

constructs, but does not force the collapsing over dimensions.  There are 

cosmetically different, but mathematically equivalent ways to motivate such a 

model.  As mentioned above, this example attempts to capture the intuition 

provided by multidimensional scaling in general and “individual scaling” 

(INDSCAL) in particular.  With this perspective on the analysis we would naturally 

presume a common underlying group score plot, say, a common score plot for all 

judges viewed as a group (Figure 1.6). 

The actual group score plot from fitting the trilinear model is presented in that 

figure.  But individual judges can have different weights applied to this common 

plot to produce their personal score plots.  These weights shrink or stretch the 

dimensions for the particular individual (Figure 1.7). 
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Figure 1.6 Depiction of Common Scoreplot for Judges as a Group 
 

 
Figure 1.7 Depiction of Specific Scoreplots for Judges 

                                               16



In the plot of the 8 judges’ weights (Figure 1.8), it appears that the weighting 

patterns for Judges 2, 6, and 7 are very similar.  Additionally, it is possible to see 

the stretching and shrinking of groups maps that occur for the individual judges 

or raters. The diagonal line represents the common group map so that if a point 

fell on this line, the judge would have a group map that was the same as the 

overall group map (Figure 1.6). Here, it appears that Judge 8 tends to have a 

group map that is similar to common one. However, Judge 5 does not fall near 

this diagonal line, her group map would considerably stretch the common one. 

 

 
Figure 1.8 Judges’ Weighting Patterns from Trilinear Model Fit 

 

Figures 1.9 and 1.10 point to where these differences between the two 

groups of judges seem to lie with respect to the measured sensory variables. 

Indeed, it is reassuring that the broad-brush conclusions provided by the bilinear 

analysis are supported by the trilinear analysis where no collapsing was 

necessary. 
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Figure 1.9 Interpretation of Judges’ Weighting Patterns 

 

 
Figure 1.10 Grouping of Judges on Sensory Measures 
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This kind of application would be a very typical use of multilinear models in 

psychometrics, even though the example here is more slanted toward food 

science.  Again, these models are preferred by many over bilinear alternatives 

because exploratory analysis is still possible without collapsing across 

dimensions.  In addition, the claim to uniqueness enjoyed by multilinear models 

is also perceived as a major advantage. The issue of uniqueness is one that will 

be explored in the chapters that follow. However, before headway can be made 

into new perspectives it is important to understand how early uniqueness results 

evolved into the uniqueness results used today. 

1.5 Literature Review: Uniqueness of the PARAFAC Decomposition 
 

One of the differentiating features of PARAFAC decompositions is that, under 

certain conditions, unique solutions are possible. The search for uniqueness 

conditions for the PARAFAC Decomposition has a limited past. Until recently, the 

complex structure of the problem and the need for tensor algebras or other 

similarly abstract characterizations provided a roadblock to the development of 

uniqueness conditions. Theoretically, the PARAFAC decomposition surpasses its 

bilinear counterparts in that it is possible to obtain solutions that do not suffer 

from the rotational problem. However, not all PARAFAC solutions will be 

constrained sufficiently so that the resulting decomposition is unique. Although 

strides have been made to identify the types of PARAFAC solutions that will be 

unique, as reviewed in the following paragraphs, much about the conditions 

needed for uniqueness is still unknown. 

Mathematical insights into the uniqueness properties of PARAFAC 

decompositions were originally discussed by Robert Jennrich and published in 

Harshman, 1970. In his proof, Jennrich showed that a unique solution would exist 

if an I× array was decomposed into square loading matrices, each with R 

measures. However, Harshman was able to find empirical evidence to suggest 

that although these conditions were sufficient, they were not minimal. Operating 

in the I×  case with full-column rank loading matrices, Harshman showed that 

J×K

J×2
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if no two columns of the loading matrix C were proportional, the solution was 

unique without requiring the loading matrices to be square.  

As evidenced by these first approaches, developing conditions for uniqueness 

would involve a discussion on the relationship of the rank of the loading matrices 

and properties of the columns. To that end, Kruskal (1977) developed the notion 

of k-rank (although the actual term was coined by Harshman and Lundy) as a 

means to investigate uniqueness. 

 

Definition 1.7  
Let X be a matrix. The k-rank of X is the largest value of k such that every 

collection of k columns in X is linearly independent.  

 

Kruskal’s key result, to be discussed in detail later, was that the loading 

matrices (A, B, and C) obtained from the parallel factor decomposition would be 

uniquely identified if , where  was the k-rank of a matrix 

A, and so on. To date, his work remains the most extensive in the search for 

criteria; and his resulting condition is generally accepted as the climax of 

uniqueness research. Consequently, other uniqueness results have stemmed 

from his constraint on the k-ranks of the loading matrices in the hopes of 

developing a set of necessary conditions.   

A B Ck k k 2(R 1+ + ≥ + ) Ak

Developments in uniqueness conditions were slow to evolve in the years after 

Kruskal’s theorem. A few results of note appeared in the early nineties. Leurgans 

and Ross (1993) and Krijnen (1993) made advances in terms of the linear 

independence of the columns. The work of Krijnen would prove particularly useful 

as he was able to prove that a necessary condition for uniqueness was that the 

k-rank of all loading matrices must be at least 2. 

In the last few years, aided by the introduction of Khatri-Rao products by Bro 

(1998) discussed later, a resurgence of interest in uniqueness results and 

Kruskal’s condition has ensued. In 2000, Sidiropoulos and Bro expanded 

Kruskal’s result by I J generalizing the result to include multiway arrays. Liu 

and Sidiropoulos (2001) demonstrated that a necessary condition for uniqueness 

K× ×
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was that the columns of the Khatri-Rao products be linearly independent, a 

crucial element to the ideas and perspectives that will be presented in the 

chapters that follow. However, even with the advent of new interest and 

progress, Kruskal’s result remains the optimal set of conditions for the 

uniqueness of PARAFAC decompositions. 

To that point, in the absence of true necessary and sufficient conditions, 

many users of multilinear models have applied Kruskal’s condition as if it were 

indeed necessary and sufficient, an idea that was deposed by ten Berge and 

Sidiropoulos in 2002. By producing alternative solutions when Kruskal’s condition 

was not met, necessity was shown when the number of factors was two or three 

(R = 2 or R = 3). In the case of four factors (R = 4), however, uniqueness was 

achieved even when Kruskal’s condition was not. Hence, the long assumed 

necessity of Kruskal’s condition was disproved.  

ten Berge and Sidiropoulos conjectured that more than k-rank was needed to 

define necessary conditions for uniqueness and suggested that Kruskal’s 

condition might be made necessary if the loading matrices were constrained to 

have k-rank equivalent to rank. It is at this conjecture, the latest work in the 

search for uniqueness conditions, that this dissertation begins.  

The remaining chapters of the dissertation will provide the necessary 

background to evaluate the work of ten Berge and Sidiropoulos, starting with a 

detailed review of the early work of Harshman and Kruskal given in Chapter 2. 

Chapter 3 will describe the new representation of PARAFAC solutions and the 

methodology provided by ten Berge and Sidiropoulos in 2002 to evaluate the 

necessity of Kruskal’s condition. A critical investigation of the results from ten 

Berge and Sidiropoulos will also be included in Chapter 3. In Chapter 4, an 

alternative approach, stemming from the work of ten Berge and Sidiropoulos, will 

suggest that the identification of uniqueness would require additional measures 

other than rank and k-rank alone. Finally, Chapter 6 includes general comments 

(for all R) regarding uniqueness, suggesting different directions than current 

literature proposes.  

Copyright © Heather Michele Clyburn Bush 2006 
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2. THE EARLY YEARS: HARSHMAN AND KRUSKAL

2.1 PARAFAC Uniqueness 
The bilinear methods that preceded PARAFAC allowed transformations so 

that many alternative solutions provided the same decomposition but different 

interpretations, as described in Chapter 1. Thus, theoretical solutions achieved 

from bilinear methods were considered questionable and far from unique. The 

introduction of PARAFAC provided by Harshman (1970), however, not only 

provided an alternative method which preserved the structure of higher 

dimensional problems but also a means of analysis which did not fundamentally 

suffer from the rotational problem of the bilinear methods. In fact, for particular 

cases, PARAFAC solutions could be considered unique. 

Imperative to the investigation of uniqueness is the definition of alternative 

PARAFAC solutions. It is critical to understand in what sense alternative 

PARAFAC solutions are different from the original. An alternative PARAFAC 

solution is obtained by transforming the loading matrices by post-multiplying by 

transformation matrices, synonymous to the rotational problem in the bilinear 

setting. However, not all  transformations result in the same degree of 

modification. Transformation matrices that are permutation-scale do not 

transform the PARAFAC solution so that the alternative is truly different from the 

original. 

 

Definition 2.1 (Harshman, 1972, paraphrased) 
A matrix is permutation-scale if it can be written as the product of a nonsingular 

permutation matrix and diagonal matrix, and as such, has exactly one nonzero 

element in each row and column. 

 

Permutation-scale transformations of the original loading matrices simply 

rearrange and scale the columns so that alternative loading matrices are not truly 

different from the original loading matrices. Thus, alternative PARAFAC solutions 

created from permutation-scale transformations are considered to be equivalent 

to the original PARAFAC solution. Consequently, if the only alternatives that can 
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be formed are simply permutation-scale versions of the original, the PARAFAC 

solution is considered unique.  

The history of PARAFAC and the search for uniqueness is a short one, 

spanning a little more than three decades. Even so, it is not a simple task to set 

out a chronology of the history. The progress of PARAFAC has not followed a 

sequence of linear events which shaped its history but has benefited from many 

different players with different emphases and perspectives. Thus, the evolution of 

PARAFAC is more of a tangled web of trial and error, failures and successes, 

making it difficult for those new to the area to simply start from the beginning. 

Much of the entanglement can be attributed to the complexity of the problem, 

making it difficult to set forth simple definitions and all-encompassing theorems. 

However, finding an appropriate definition for what it means to be unique is a 

critical first task and must be undertaken before attempting to search for which 

conditions would constrain a PARAFAC solution to be unique.  

Both Professor Richard Harshman and Professor Joseph Kruskal were major 

contributors to the definition of uniqueness. Professor Richard Harshman 

developed the idea of parallel proportional profiles and presented the first 

theorems for uniqueness. Professor Joseph Kruskal provided a modification to 

Harshman’s uniqueness definition and the most general set of conditions for 

uniqueness to date. His treatment of PARAFAC solution uniqueness in 1977 

remains the gold standard in the field. Additionally, due to the success of 

Kruskal’s results, many have applied his theorem as if it were a set of necessary 

and sufficient conditions (ten Berge and Sidiropoulos, 2002). 

The interest for this dissertation began with a review of Harshman’s 1972 

paper on PARAFAC uniqueness. Harshman proposed that Jennrich’s earlier 

conditions, presented in Harshman’s 1970 work, were too restrictive and sought 

to provide evidence that uniqueness could be obtained with fewer conditions. 

Harshman suggested that when the array was I×  and two of the matrices had 

full column rank, the PARAFAC solutions would be unique when the columns of 

the loading matrices were not proportional. Although the conditions offered by 

Harshman were indeed sufficient for uniqueness, deeper investigation of his 

J×2
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proof revealed an issue with the logic. Hence, as will be discussed later in the 

chapter, the 1972 work did not provide formal proof for Harshman’s uniqueness 

conditions. While Harshman’s proof did not provide formal evidence, his intuition 

was correct. As eluded to in Chapter 1, the application of the transformation to 

the diagonal matrix as in equation (1.4) would hinder the search for uniqueness 

conditions. Kruskal, however, would focus attention on alternatives where the 

transformation was multiplied to the vector before diagonalization as in (1.5) and 

would later provide a more encompassing set of conditions.  

The work of both Harshman and Kruskal will be presented in the sections that 

follow. In addition to the presentation of the theorems and definitions from 

Harshman and Kruskal, the disadvantage and resulting problems of utilizing a 

representation which applied transformations to the diagonal matrix will be 

described. A description of Harshman and Kruskal in this context has not been 

found in the literature to date. Finally, it will be seen that Harshman’s 1972 

conditions could be evaluated for uniqueness using Kruskal’s theorem. Thus, 

Kruskal’s proof provided the formal evidence to support Harshman’s intuition. 

2.2 Harshman (1972) 
 Although the 1972 results of Harshman did not provide formal evidence for 

uniqueness, the magnitude of his contributions is enormous and cannot be 

ignored, and his conjectures for uniqueness were later shown to be true. 

2.2.1 The Set-Up 
 Before providing a theorem for sufficient conditions for PARAFAC solution 

uniqueness, Harshman informally defined, what was meant by uniqueness.  

 

Definition 2.2 (Harshman, 1972, paraphrased) 
A PARAFAC solution is unique if every alternative PARAFAC solution is 

composed of loading matrices that are permutation-scale versions of the 

originals. 
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With a definition of PARAFAC uniqueness in place, Harshman proposed a 

theorem for uniqueness when the array had dimension I J . Additionally, 

Harshman required that two of the loading matrices, A and B, have full column 

rank. Thus, the matrix A with dimension I

2× ×

R× would have rank of R. Likewise, the 

loading matrix would also have rank = R. J×RB

 
Definition 2.3 (Harshman, 1972): 
Assume that (A,B,C) are the loading matrices of an R-component PARAFAC 

solution for the array X, where A and B are full-column rank, and the matrix C 

has two rows, such that  and t
1 1X = AC B 2 2

tX = AC B . Additionally, assume that 

 are the loading matrices of an equivalent alternative R-component 

PARAFAC decomposition of the array X so that 

(A,B,C)%% %

t
1 1X = AC B%% %  and , 

where and . 

2 2
tX = AC B%% %

AA = AT%
BB = BT%

AT  and  are square, nonsingular linear 

transformation matrices. If  has distinct diagonal elements, 

BT
P

1 2C = C C-1
AT  and  

are permutation-scale matrices. 

BT

 

The implication of Harshman’s theorem was that imposing a condition on the 

rows of C restricted the nonsingular linear transformations to permutation-scale 

matrices, so that alternative solutions would, in a sense, be only trivially different 

from the original. By Definition 2.2, the theorem provided a sufficient condition for 

PARAFAC solution uniqueness when the array was of dimension I×  and two 

of the loading matrices had full-column rank. 

J×2

 However, a thorough review of his proof revealed the disadvantage of 

applying the transformation as in (1.4), to the diagonal matrix. Transforming the 

diagonal matrix resulted in inadvertently assuming that AT  and were 

permutation-scale matrices.  Again, this was not to say that the theorem was 

untrue.  Five years after the publication of Harshman’s uniqueness theorem, the 

problem was approached from a slightly different perspective by Kruskal (1977). 

The conditions offered by Kruskal were much more global and encompassed any 

BT
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PARAFAC solution of dimension I× and as such could be applied to 

Harshman’s scenario to identify sufficient conditions when the array had 

dimension I×  and the solution had two component matrices with rank of R.   

J×K

J×2

Under Harshman’s constraints, Kruskal’s condition was used and verified that 

the matrix with two rows would indeed need to have non-proportional columns in 

order for the PARAFAC solution to be unique. In other words, a sufficient 

condition for uniqueness would be that the elements of  were distinct 

as Harshman suspected.  A detailed explanation of the problems of applying the 

transformation to the diagonal matrix will be presented, followed by description of 

Kruskal’s sufficient conditions for uniqueness. Finally, it will be shown how the 

application of Kruskal’s condition to the problem posed by Harshman provided 

formal evidence to Harshman’s claim.  

P
1 2C = C C-1

2.2.2 Issues in the proof 
The fundamental problem with Harshman’s proof was in the set-up of the 

alternative PARAFAC solution, which led him to inadvertently assume what he 

was trying to prove.  The critical difference between Harshman’s representation 

of the alternative PARAFAC solution and the representation of others that would 

follow was in the application of the transformation matrices. Similar to later 

approaches, the transformation matrices were applied by post-multiplying AT  and 

 to A and B, respectively. However, the transformation of the third matrix is 

complicated by the representation of the PARAFAC solution. In order to see 

where the problem occurred, it will be necessary to present a portion of his 

argument.  

BT

Consider the form of the alternative decomposition k k
tX = AC B  for k = 1, 2, 

where and . In the proof, Harshman used the equality of 

 and  to solve for 

AA = AT%
BB = BT%

t
1 1X = AC B%% % t

1 1X = AC B AT  and , such that  

and , had right inverses. Therefore,  and 

BT t t -
A 1T = C A (A ) Cm% 1

1

1
2

t t -
B 2T = C B (B ) Cm%

A A
− =1T T I B B

− =1T T I  

were inserted into the original decomposition to obtain ( )-1-1 t t t
k A A k B BX = AT T C T T B . 
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Substituting  and  into the above decomposition yielded 

, which was then set equal to 

AA = AT%
BB = BT%

( )=
-1-1 t t

k A k BX AT C T B% %
k k

tX = AC B%% % . Using the 

nonsingularity of  and B , Harshman found that A% % ( )-1-1 t
k A k BC = T C T% .  

The traditional PARAFAC representation, described in detail in Chapter 1 

involves a diagonal R×R  matrix sandwiched between an I× matrix and an R×  

matrix. The diagonal matrix is formed from diagonalizing a row of the K× matrix. 

Harshman applied the transformations directly to the diagonal matrix sandwiched 

between the two full column rank matrices. The transformations were placed in 

this way so that the alternative PARAFAC solution and the original PARAFAC 

solution would be the same. In order for the alternative PARAFAC solution to be 

equivalent to the original, these transformations would need to “cancel out” so 

that the two PARAFAC solutions would produce the same array.  

R J

R

The alternative PARAFAC solution, k k
tX = AC B%% % , was by definition a 

PARAFAC solution. Therefore, the PARAFAC structure would be mandated, and 

the matrix in the middle would necessarily be diagonal. Thus, ( )-1-1 t
k A k BC = T C T% , 

the matrix in the middle,  would be a diagonal matrix.  Therefore, the pre-

multiplication by A
−1T  and post-multiplication by the inverse of  would preserve 

the diagonal structure of . However, the diagonal structure of  would only 

be preserved if both 

t
BT

kC kC

A
−1T  and ( ) 1−t

BT had exactly one nonzero element in each row 

and column. Consequently, by definition, AT  and would have to be 

permutation-scale matrices. Although Harshman had supposed that these 

transformation matrices were arbitrary orthogonal matrices, he unknowingly 

required that they be permutation-scale, the conclusion of his uniqueness 

theorem. 

BT

Unfortunately as soon as ( )-1-1 t
k A k BC = T C T%  was required to be diagonal, the 

form of AT  and  was implicitly assumed to be permutation-scale. Perhaps not 

mindful of this, Harshman proceeded to reason that the distinct elements of 

BT
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P
1 2C = C C-1  would force the transformation matrices to be permutation-scale.  

However, it was the diagonal form of  and  and not a condition on the 

columns of C that determined the structure of 

1C% 2C%

AT  and . Applying the 

transformations to the diagonal matrix will always limit transformations to 

permutation-scale matrices so that the diagonal structure will be preserved. 

Accordingly, any approach to find uniqueness conditions that applied the 

transformations directly to  would suffer from this same problem.  

BT

kC

kC

2.3 Kruskal 
The results offered by Kruskal in his 1977 work are very impressive, and the 

theorems and mathematical descriptions of PARAFAC solutions he developed 

form the foundation for essentially all treatments of PARAFAC uniqueness. 

The first contribution of Kruskal was to re-formulate the definition of 

uniqueness provided first by Harshman. The definition posed by Kruskal defined 

alternatives where uniqueness occurred and was in essence the same as 

Harshman’s definition. Both definitions had the premise that uniqueness occurred 

when alternative  PARAFAC solutions were only formed from component 

matrices that were permutation-scale versions of the original. The difference, 

however, was that Kruskal applied the transformations to each of the loading 

matrices. Hence, Kruskal applied the transformation directly to the vector before 

it was diagonalized, preventing the diagonal structure from restricting the 

transformation. 

 

Definition 2.4 (Kruskal, 1977 paraphrased)  

Matrices (A,B,C) are equivalent to matrices (A  if , , 

and , where 

,B,C)%% %
AA = AΠΛ BB = BΠΛ

CC = CΠΛ A B C R R×=Λ Λ Λ I  and  is a permutation matrix. When the 

only alternative representations (of the same rank) have the form , where 

Π

(A,B,C)%% %

A B C R R×=Λ Λ Λ I  and Π  is a permutation matrix, the solution is unique. 
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Although the difference seems subtle, the ramifications are substantial. 

Harshman had applied the transformations to the two loading matrices and the 

diagonal matrix. Transforming the diagonal matrix instead of the loading matrix 

would always constrain the transformation matrices to be permutation-scale. 

However, by transforming each of the loading matrices, including the core matrix, 

more arbitrary transformation matrices could be considered and conditions for 

uniqueness could truly be investigated.  

It should be noted that when the transformations are permutation-scale the 

two strategies are equivalent. Harshman and Lundy (1984) showed that when 

uniqueness occurred, it would not matter if the permutation-scale transformation 

was applied to the diagonal matrix or to the loading matrix. However, for 

investigating uniqueness, the use of Kruskal’s definition and applying 

transformations to the loading matrix C would prevent the diagonal form of  

from dictating the type of transformations allowed. Thus, with this more accurate 

definition of uniqueness it was possible for Kruskal to pursue and provide 

conditions for the uniqueness of PARAFAC solutions.  

kC

2.3.1 The Set-Up 
As previously discussed, the definition of uniqueness posed by Kruskal 

considered transformations to the original component matrices; however, these 

transformations would essentially “cancel out” when considered in the solution. 

Hence, alternatives were only permuted and scaled versions of the original 

matrices, but the PARAFAC solutions were equivalent. 

In addition to the definition of uniqueness, Kruskal needed to define a concept 

with the same flavor as Harshman’s non-proportional columns. However, Kruskal 

was not only interested in the proportionality of the columns but the linear 

dependencies among the columns. Kruskal was able to characterize a measure 

of the linear independence of the columns of a matrix, Definition 1.7. The largest 

number of columns that can be grouped together so that the group forms a 

linearly independent set is the k-rank of a matrix. Harshman and Lundy (1984) 

later named this measure k-rank. 
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The idea of k-rank was that considering every combination of columns would 

result in a set with k columns such that the k columns were linearly independent, 

but the addition of one more column would create linear dependencies. 

Therefore, a matrix with full column rank would have a k-rank equal to the 

number of columns. The idea of k-rank is somewhat abstract and reduced row 

echelon forms can be used as a tool to better understand the concept. 

Additionally, reduced row echelon forms will be visited later and will prove to be 

valuable as Kruskal’s condition is further investigated.  

A matrix with four columns, where three of the columns are linearly 

independent and the fourth column is created by summing the three linearly 

independent columns, could be represented as  

(2.9) 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

α β γ α β γ
α β γ α β γ
α β γ α β γ

+ +⎛ ⎞
⎜ ⎟+ +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

. 

The reduced row echelon form of (2.1) would be  

(2.10) . 
1 0 0 1
0 1 0 1
0 0 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The k-rank of (2.2) is 3 or the number of nonzero elements in the column not 

involved in the identity partition.  

Considering a numerical example, the matrix  has k-rank of 2. 

This can easily be seen by considering the reduced row echelon form of the 

matrix, . The two 1’s in the last column indicate that the last column 

was created by summing the first two columns.   

2 1 7 1
5 4 6 9
1 3 2 4

−⎛ ⎞
⎜
⎜
⎜ ⎟
⎝ ⎠

⎟
⎟

⎟
⎟

1 0 0 1
0 1 0 1
0 0 1 0

⎛ ⎞
⎜
⎜
⎜ ⎟
⎝ ⎠

It was suggested by Jennrich that the size of the matrix was essential to 

uniqueness, and Harshman suggested that the key was proportionalities among 
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columns. It turned out that the key concept was k-rank, at least for providing 

conditions which would be sufficient for uniqueness. 

 

Theorem 2.2 (Kruskal, 1977 paraphrased) Let the k-rank of a matrix M be 

represented by k( . If , where R is the number of 

factors, the PARAFAC solution is unique. 

M) 2R+2≥k(A) +k(B) +k(C)

2.4  Kruskal’s condition with Harshman’s criteria 
Harshman’s proof and the problems with applying the transformations to the 

diagonal matrix instead of the entire loading matrix had not been explained; 

therefore, until now, there was not a need to verify the claims Harshman made in 

his 1972 work. However, the task of validating Harshman’s assertions is made 

easy since Kruskal’s theorem can simply be applied to the Harshman scenario, 

two loading matrices with rank = R and the third matrix with 2 rows.  

Since two of the loading matrices have full-column rank, the k-rank of each 

matrix is R and the k-ranks sum to 2R. From Kruskal’s theorem, a PARAFAC 

solution was unique when . Applying Kruskal’s condition 

to Harshman’s scenario implied that 

2R+2≥k(A) +k(B) +k(C)

2 2R R+2+ ≥k(C)  or that . 

Harshman required that the matrix C had only two rows. Therefore the maximum 

rank of the matrix C is 2. The k-rank of a matrix is at most the rank of the matrix. 

Hence, the k-rank of C is at most 2. Thus, according to Kruskal, Harshman’s 

PARAFAC solution would be unique if 

2≥k(C)

2=k(C) .  

Recall that Harshman concluded that the PARAFAC solution would be unique 

if  had distinct elements or the columns of C were non-proportional. 

The idea of non-proportionality of the columns was tantamount to assuming that 

the k-rank of C was at least 2. If two columns of a matrix were proportional, then 

the largest number of columns that could be grouped together so that the group 

of columns was linearly independent was one. Hence, the k-rank of a matrix with 

proportional columns was 1. Thus, under Harshman’s scenario, his criteria of 

distinct element diagonal elements of  was equivalent to requiring the 

k-rank be equal to 2.  

P
1 2C = C C-1

-1P
1 2C = C C
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Hence, Harshman’s ideas on uniqueness were verified by the application of 

Kruskal’s theorem. Krijnen (1993) would later show that Harshman’s intuition 

regarding the necessity of the non-proportionality of columns was correct by 

proving that  for all loading matrices M was a necessary condition for 

uniqueness. 

2≥k(M)

2.5 Conclusions 
In addition to providing the notion of proportional parallel profiles and 

PARAFAC, Harshman also laid the conceptual groundwork for uniqueness 

conditions. However, it was Kruskal who produced the most beneficial results for 

the pursuit of uniqueness conditions. The idea of k-rank and the subsequent k-

rank conditions are considered to be the pinnacle of uniqueness research to 

date. No other work had been able to provide a more universal set of sufficient 

conditions or more valuable perspective of PARAFAC solution uniqueness. 

  As mentioned in Chapter 1, after the work of Kruskal, the work in the area of 

uniqueness was stymied for almost three decades. The exploration for additional 

or supplemental uniqueness conditions had been hindered by the algebraic 

subtleties found in Kruskal’s proof technique. However, in recent years, the 

interest in pursuing uniqueness conditions has been renewed, most likely 

spawned from the introduction of a new representation of the PARAFAC solution. 

More contributions in the search for uniqueness conditions have emerged and 

provided novel approaches, approaches that begin with the application of 

Kruskal’s theorem. 
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3. A PARADIGM SHIFT IN UNIQUENESS RESEARCH
Since the work of Kruskal over twenty years ago, little had been 

accomplished in terms of providing a less restrictive set of conditions for 

uniqueness. The greatest obstacle to determining more liberal conditions for 

uniqueness was the form of the PARAFAC solution. Traditionally, there were two 

methods for representing a PARAFAC decomposition: tensor algebras and 

matrix notation. Both of these methods were described in Chapter 1. Tensor 

algebras have been avoided by most in describing PARAFAC decompositions, 

while matrix representations have been widely employed and dominate 

uniqueness literature. As explained in Chapter 1, the matrix representation 

describes the data arrays as a series of stacked matrices or slabs. The matrix 

representation of a PARAFAC solution consists of two loading matrices which 

are common to each slab and a diagonal matrix which contains the differentiating 

weights of each slab. Although intuitive, the matrix representation of the 

PARAFAC solution is mathematically awkward and suffocated efforts to finding 

necessary and sufficient conditions for uniqueness.  

The greatest strides towards identifying conditions for uniqueness were made 

by Kruskal (1977). Offering the most rigorous and formal treatment of PARAFAC 

solution uniqueness, Kruskal was able to provide the least restrictive set of 

criteria for uniqueness to date, described in Chapter 2. However, Kruskal was 

only able to give formal proof that the condition was sufficient for uniqueness. 

Even so, in the absence of necessary and sufficient conditions, Kruskal’s 

sufficient uniqueness condition has been assumed to be and applied as if it were 

necessary as well as sufficient (ten Berge and Sidiropoulos, 2002). Again, the 

mathematical complexity that the PARAFAC solution structure imposed made it 

difficult to offer theoretical proof to deny or support the idea of necessity. 

However, a new perspective was provided in the representation of the PARAFAC 

decomposition through the application of Khatri-Rao products. With a new 

PARAFAC solution structure, the old complications in investigating uniqueness 

were mitigated. 
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3.1 The Set-up 

3.1.1 Khatri-Rao Products   
Previous uniqueness results used the matrix representation of the PARAFAC 

solution as repeated loading matrices, A and C, combined in various weights by 

the rows of B, or . These = t
j jX AB C jX  matrices were then stacked to compose 

the array X. The Khatri-Rao (KR) product, introduced in the PARAFAC paradigm 

by Bro (1998), was a mathematical tool that allowed the PARAFAC solution to be 

discussed as the stacked array X instead of considering the individual 

 matrices that composed the array.  = t
j jX AB C

 
Definition 3.1 (Bro 1998, McDonald 1980, Rao & Mitra 1971)  

The KR product of two matrices A and B, represented as ( )A Bo , was defined as 

the column-wise Kronecker product of A and B such that 

[ ]
× × ×

×

⎡ ⎤= ⎣ ⎦
= ⊗ ⊗

t t
I R J R 1 1 R R IJ R

1 1 R R IJ R

A B vec(a b ) vec(a b )

(a b ) (a b )

o L

L
  

 

Therefore, the array X could be specified as , and it could easily 

be seen that this specification of the PARAFAC solution was equivalent to the 

vertical stacking of the  matrices to form the array X. To demonstrate 

this, consider that the matrix  

= t(A B)CX o

= t
j jX AB C

jX  was defined as 

1r jr 1r 1r jr Kr
r r

Ir jr 1r Ir jr Kr
r r

a b c a b c

a b c a b c

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑
j

I×K

X

L

M M M

L

⎥
⎥

, so that the array would consist of a 

vertical stacking of these k matrices, .  

KIJJ

1

X

X

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= MX
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Therefore, 

1r 1r 1r 1r 1r Kr
r r

Ir Jr 1r Ir Jr Kr
r r

a b c a b c

a b c a b c
×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑
IJ K

X

L

M

L

; and equivalently, 

1r 1r 1r 1r 1r Kr
r r

Ir Jr 1r Ir Jr Kr
r r

a b c a b c

a b c a b c
×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑
t

IJ K

(A B)C

L

o M

L

. 

With the utilization of KR products, the PARAFAC solution was no longer 

encumbered by the awkwardness of loading matrices combined by weights from 

a third loading matrix. Instead, the PARAFAC solution could now be viewed as 

simply the outer product of two matrices. It was now possible to investigate 

uniqueness in terms of the properties and theorems provided by linear algebra.  

3.1.2 The Application of Column Spaces (ten Berge and Sidiropoulos) 
The KR product representation of the PARAFAC solution as ( ) t= A B CX o , 

suggested that the columns of X were linear combinations of the columns of the 

KR product  ( ) orA Bo ( ) ( ) ( )1 2 IJxKk⎡ ⎤= ⎣ ⎦A B c A B c A B cX o o L o  . Hence, the 

columns of X were generated as combinations of the columns of . Since 

the column space of a matrix is defined as the set of all combinations of the 

columns of the matrix, the column space of the KR product ( consists of all 

combinations of the columns of 

(A Bo )

)A Bo

( )A Bo . Hence, the array X would have columns 

that were elements of the column space of ( )A Bo . A basis for this column space 

is, of course a set of linearly independent spanning vectors. 

Liu and Sidiropoulos (2001) were able to show that a necessary condition for 

uniqueness was that the KR product had full-column rank, and so discussions of 

uniqueness conditions would be confined to the subset of PARAFAC solutions 

where the rank of the KR product was equal to the number of columns. 

Therefore, since a necessary condition for uniqueness was that the columns of 
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the KR product were linearly independent, the columns of ( )A Bo  form a linearly 

independent set of R vectors, or were a basis for the column space of ( ) .  A Bo

Consequently, as explained by ten Berge and Sidiropoulos (2002), any other 

basis in KR product form that existed for the column space of (  would form 

an alternative KR product that could be used to form an alternative PARAFAC 

solution. For a complete alternative PARAFAC solution that would reproduce the 

array X, it was only necessary to choose the third loading matrix to be the 

projection matrix that resulted from projecting the columns of the alternative basis 

onto the column space of X. It was important to note, however, that in order for 

this alternative basis to result in an alternative PARAFAC solution, the vectors of 

the basis had to be in KR product form. The alternative solution was non-unique 

if the matrices that composed the KR product were not permutation-scale 

versions of A and B. On the other hand, the alternative solution was unique if the 

only KR basis that would reproduce the array was comprised of permutation-

scale versions of the original KR product. Thus, the non-uniqueness or 

uniqueness of a PARAFAC solution depended on whether or not a KR basis for 

the column space of ( , which was not composed of permutation-scale 

versions of the original loading matrices, could be found. 

)

)

A Bo

A Bo

3.1.3 Symmetry 
The symmetry of the PARAFAC decomposition had long been established as 

a property of PARAFAC. Although the idea of symmetry had only been applied in 

the matrix representation, and not Khatri-Rao product representation, of 

PARAFAC decompositions, the symmetry of solutions would follow from the 

equivalence of the two representations.  

A PARAFAC decomposition could be represented as , where A, 

B, and C were loading matrices with dimensions I

= t(A B)CX o

R× , , and KJ R× R× , 

respectively. Therefore, the resulting X was an array with dimension IJ K× . 

However, it was possible to rearrange the elements of the array such that it had 

dimension , resulting in a solution of the form . This IK J× t(A C)Bo
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rearrangement could be continued for every permutation of the loading matrices 

A, B, and C. All such arrangements were considered equivalent. This ability to 

rearrange the loading matrices is popularly referred to as symmetry of the 

PARAFAC decomposition. Hence, by symmetry  if and only if 

 if and only if . Therefore, the arrangement of 

loading matrices in a PARAFAC solution had no effect on whether the solution 

was unique or non-unique.  

× = t(A B)CIJ KX o

J× = t(A C)BIKX o I× = t(B C)AJKX o

3.1.4 Simplification of Loading Matrices (ten Berge and Sidiropoulos) 
ten Berge and Sidiropoulos (2002) sought to investigate the properties of the 

column spaces of the KR products to provide insights to Kruskal’s uniqueness 

theorem (Theorem 2.2). Of course, the KR products of loading matrices offered a 

variety of possibilities. ten Berge and Sidiropoulos, however, were able to reduce 

the myriad of KR product options by considering loading matrices in simplified 

form or, more formally, Reduced Row Echelon Form (RREF). Loading matrices 

with the same rank and k-rank would share the same RREF, differing only in the 

values of the coefficients involved in the linear combination of the columns. By 

utilizing RREF, ten Berge and Sidiropoulos were able to classify matrices and KR 

products into classes and evaluated the uniqueness of these classes. 

The justification for working with matrices in RREF was provided informally in 

the 2002 publication. Although the principles for simplification were simple ideas 

from linear algebra, they had only been colloquially applied to trilinear models. 

The following theorems regarding reduced forms are provided as formal support 

to the claims presented by ten Berge and Sidiropoulos. An underlying 

assumption to the utilization of RREF was that the matrix structure of an 

alternative loading matrix would be the same as the original loading matrix. In 

other words, a PARAFAC solution with loading matrices having a particular set of 

ranks and k-ranks would not be considered an alternative if the ranks and k-

ranks were different from the original. 
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Theorem 3.1 if and only if , for nonsingular 

matrices S. 

=t
kAC B AC B%% % t

k
t

k=t
kSAC B SAC B%% %

 

Proof 3.1 By the definition of nonsingular matrices, − =1S S I . Therefore,  

=t t
k kAC B AC B%% % −⇔ =1 t t ⇔ =t t

k kSAC B SAC B%% %
k kS SAC B AC B%% %

t
k

.  

 

Theorem 3.2  if and only if , where  

was a diagonalization of the row of UC, for any invertible matrices S, T, and U. 

=t
kAC B AC B%% % ( ) ( )*

k
*=

tt
kSAC TB SAC TB%% % *

kC

thk

 

Proof 3.2 By Theorem 3.1, =t t
k kAC B AC B%% % ⇔ =t

kSAC B SAC B%% % t
k

k

k

k

. Likewise, 

. By the symmetry property of 

PARAFAC solutions, . By 

Theorem 3.1, . By 

the symmetry property of PARAFAC solutions, 

. Therefore, 

=t t
k kAC B AC B%% % ⇔ =t t t t

kSAC B T SAC B T%% %

= ⇔ =t t t t t t t t
k k kSAC B T SAC B T C(SA) B T C(SA) B T% %% % % %

= ⇔ =t t t t t t t t
k k k kUC(SA) B T UC(SA) B T UC(SA) B T UC(SA) B T% %% % % %

k= ⇔ =t t t t t t t t
k kUC(SA) B T UC(SA) B T SA(UC) B T SA(UC) B T% %% % % %

=t t
k kAC B AC B%% % ( ) ( )* *⇔ =

tt
k kSAC TB SAC TB%% % .  

 

Thus, PARAFAC solutions could be multiplied by nonsingular matrices and 

the uniqueness of the solution would be unaffected. Reduced row echelon forms 

are created by pre-multiplying a matrix by a particular nonsingular matrix. The 

result of this pre-multiplication is a matrix where the linear combinations and 

dependencies are observable. Additionally, matrices with linearly dependent 

rows will have reduced row echelon forms with rows of zeroes. These linearly 

dependent rows are redundant and can be removed since they do not affect 

uniqueness or non-uniqueness. Therefore, since Reduced Row Echelon Forms 

were found by the pre-multiplication of nonsingular matrices, a discussion of 

uniqueness with simplified matrices, or those in RREF, was analogous to 

considering matrices that had been pre-multiplied by nonsingular matrices.  
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The idea of working with simplified forms afforded ten Berge and Sidiropoulos 

an approach to examining the KR products and the ensuing PARAFAC solutions. 

The realization that simplified forms would provide the essence of the KR 

products allowed ten Berge and Sidiropoulos to analyze the structure of 

PARAFAC solutions, an analysis that had been inhibited by the mathematical 

complexities of considering the many possibilities of loading matrices in an 

awkward structure. 

3.1.5 Denying Kruskal to Show Necessity (ten Berge and Sidiropoulos) 
The use of KR products to aid in representing the PARAFAC solutions was a 

pivotal change in the way uniqueness had been approached. Most importantly, 

KR products removed the mathematical “mystery” that had cloaked PARAFAC 

solutions so that simpler ideas from linear algebra could be used to investigate 

decompositions and alternatives. ten Berge and Sidiropoulos further facilitated 

the research of PARAFAC solution uniqueness in the application of simplified 

forms to summarize classes of loading matrices, KR products, and solutions. 

With the framework for discussing PARAFAC solution uniqueness in place, it was 

possible to evaluate the seminal theorem for uniqueness, Kruskal’s k-rank sum 

condition.  

The details of ten Berge and Sidiropoulos’ approach using KR products and 

simplified forms will be outlined in the following sections. However, it is important 

to understand the general approach before delving into the details of column 

spaces and alternative KR products.  

The approach of ten Berge and Sidiropoulos was similar to others before - 

begin with Kruskal’s k-rank condition and expand from there. However, unlike 

previous uniqueness discussions, ten Berge and Sidiropoulos looked at cases 

where Kruskal’s condition was not met, when k( ) k( ) k( ) 2R 2+ + < +A B C . 

Kruskal’s k-rank condition was a sufficient condition for uniqueness; meaning that 

when the condition was met, the PARAFAC solution was unique. Prior to the 

work of ten Berge and Sidiropoulos, it had been assumed by some, conjectured 

by others, always without formal proof, that Kruskal’s condition was also 

necessary. The necessity of Kruskal’s condition would mean that a PARAFAC 
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solution was unique only if k( ) k( ) k( ) 2R 2+ + ≥ +A B C . ten Berge and 

Sidiropoulos suggested that it was possible to determine the necessity of 

Kruskal’s condition by considering cases where the condition failed, or where 

. Finding a unique PARAFAC solution with loading 

matrices having k-ranks such that k(

k( ) k( ) k( ) 2R 2+ + < +A B C

) k( ) k( ) 2R 2+ + < +A B C , would establish 

uniqueness when Kruskal’s condition was not met. Such a PARAFAC solution 

would act as a counterexample to the belief that unique PARAFAC solutions 

existed only if Kruskal’s condition was met, negating the claim that the sufficient 

condition was also necessary. 

Hence, ten Berge and Sidiropoulos applied the ideas of KR products and 

column spaces to investigate whether or not alternative PARAFAC solutions 

would exist when Kruskal’s k-rank condition failed. As described in Chapters 1 

and 2, only alternatives that were not permutation-scale versions of the originals 

would show non-uniqueness. It should be noted that the work of ten Berge and 

Sidiropoulos was the first to investigate specific cases where Kruskal’s condition 

failed. Until the introduction of KR products, moving outside of Kruskal’s condition 

had been a daunting task and any attempts to do so did not see sufficient return. 

Thus, the fact that ten Berge and Sidiropoulos were able to describe specific 

cases where Kruskal’s condition failed was an accomplishment in itself.  

3.2 The ten Berge and Sidiropoulos Method (tBSM) 
The ten Berge and Sidiropoulos Method (tBSM) sought to describe the 

uniqueness or non-uniqueness for a class of PARAFAC solutions where 

Kruskal’s condition was not met. When alternative solutions that were not 

permutation-scale transformations of the original solutions were found, then non-

uniqueness was confirmed. If all of the solutions for a particular class had 

alternatives that were non-unique, Kruskal’s condition would be necessary and 

sufficient for that set of solutions. If, however, only permutation-scale alternatives 

could be found for a set of solutions, Kruskal’s condition would not be necessary 

for that set of solutions. In order to determine the uniqueness or non-uniqueness 
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of these sets of solutions, the tBSM utilized the KR product representation of the 

PARAFAC solution as well as the employment of simplified forms.  

Thus, the solutions dealt with in the tBSM would be simplified PARAFAC 

solutions which used the KR product structure. Additionally, the tBSM 

incorporated two existing necessary conditions that had been found for 

uniqueness. The first was that no loading matrix could have k-rank less than 2 

(Krijnen, 1993). The second, found by Liu and Sidiropoulos (2001), required that 

the columns of the KR product be linearly independent.   

3.2.1 The KR Product with Matrices in Simplified Form 
A matrix in simplified form, or reduced row echelon form, was shown to be 

partitioned into an identity matrix with dimension (Rank x Rank) and a matrix of 

elements of rank (Rank x (R-Rank)), where R represents the number of columns. 

Therefore, any two matrices in simplified form could both be partitioned into two 

matrices: the identity partition, denoted as I*, and the element partition, denoted 

as . When the matrix had at least one column, the loading matrix would not 

be full-column rank. By definition, a matrix with deficient column rank would have 

one or more columns which were linear combinations of other columns in the 

matrix. The k-rank of a matrix, defined in Chapters 1 and 2 as the maximum 

number of columns which could be combined so that the set of columns were 

linearly independent. One of the properties of matrices with deficient column rank 

in reduced form was that would be composed of the coefficients involved in 

the linear combinations of the columns. Hence, for a particular column of , the 

number of nonzero elements would indicate the number of columns that were 

combined to form the other columns. Therefore, the smallest number of nonzero 

elements in a column of would indicate the k-rank of a matrix. Since the 

matrix  had the same number of rows as the rank of the unreduced matrix, 

when k-rank < rank there would exist zeroes in the columns of . In fact, there 

would be exactly rank – k-rank elements that were zero in at least one of the 

columns of . 

mE mE

mE

mE

mE

mE

mE

mE
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The KR product of any two matrices is simply the column-wise Kronecker 

product of the two matrices. Therefore, the resulting KR product of any two 

matrices in simplified form will have some columns that were created from the 

Kronecker product of the identity partition of each of the two matrices. Let i* = 

min (dim(I*1), dim(I*2)). Hence, the KR product will have i* columns with one 

element equal to 1 and the others 0. Therefore, the column space of the KR 

product would be partially defined by these i* columns. The remaining R i *−  

columns will have elements in Kronecker product combination from the other 

partitions, and may or may not have an effect on the column space of the KR 

product depending on where the elements align in relation to the 1’s in the i* 

columns. Elements from the  partition that do align with the 1’s in the i* 

columns may be replaced without impact on the column space of the KR product. 

mE

This property would be utilized by ten Berge and Sidiropoulos to determine 

alternative forms. On the other hand, elements aligned with 0’s in the i* columns 

could not be replaced without affecting the column space of the KR product. 

These KR products would have to be treated differently in order to determine 

alternatives. 

3.2.2 Strategies for Determining Alternative KR Products with Column 
Spaces  

A fundamental component to these strategies and to the strategies described 

later in the dissertation is the idea of the symmetry of the decomposition. In order 

to de-emphasize whether the A, B, or C matrix is being discussed, loading 

matrices will simply be referred to as , , and . This convention will be 

used throughout the remainder of the dissertation. 

1M 2M 3M

The tBSM was to determine alternative KR products where the column space 

of the original KR product and the alternative KR product were the same. Hence, 

ten Berge and Sidiropoulos began with loading matrices in reduced form, found 

the KR product and sought to alter the KR product so that the column space 

would not be affected. The tBSM employed essentially two strategies for finding 

alternative KR products. The first was to swap out elements that would not 

change the column space and the second was to multiply transformation 
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matrices to the KR product. Although these two strategies were effective for all 

the cases that arose for R = 3, they were not sufficient for describing all of R = 4. 

Hence another more ad-hoc method would have to be imposed. This alternative 

method will be described in a later section. 

The first strategy of replacing elements in the KR product was employed 

when elements aligned with the 1’s in the i* columns and could be replaced 

without influencing the column space. In cases where replacing elements led to 

an alternative KR product that was not a permutation-scale transformation of the 

original, it was established that an alternative KR form with the same column 

space as the original existed. Hence, the KR product could then be separated 

into two loading matrices which were alternative, non-permutation-scale versions 

of the originals, violating claims of uniqueness. 

In other cases where there was not alignment with 1’s in the i* columns, 

replacing the elements altered the column space, and it was necessary to 

employ the second strategy. The second strategy incorporated the matrix 

structure of the third matrix or the matrix not involved in the KR product. When 

the original third matrix, for example , was nonsingular, the simplified form 

would be the identity matrix with R rows and R columns. In this case, the 

columns of the alternative KR basis would also be combined by an alternative 

nonsingular matrix such that . Since was assumed to 

be nonsingular,  and spanned the same space. Consequently, 

any nonsingular matrix W could transform  into , or 

. A PARAFAC solution would be unique if the only matrix 

W that transformed  into was permutation-scale. Hence, if a 

matrix W could be found that was not a permutation-scale matrix, an alternative 

KR product that was not a permutation-scale version of the original would have 

been discovered. Consequently, the loading matrices of this KR product could be 

identified and two alternative, non-permutation-scale loading matrices would 

result, yielding evidence that the PARAFAC decomposition was non-unique. 

3M

= t
1 2 1 2(M M ) (M M )M% % %o o 3

o

3M

1 2(M M )o 1 2(M M )% %o

1 2(M M )o 1 2(M M )% %o

=1 2 1 2(M M )W (M M )% %o

1 2(M M )o 1 2(M M )% %o
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The tBSM was able to identify whether alternative, non-permutation scale KR 

products existed, answering the question of uniqueness for the PARAFAC 

solution in certain cases. In the tBSM, the column space of the KR product 

involves only two of the three loading matrices. If these two matrices can be 

transformed using non-permutation-scale matrices, then the PARAFAC 

decomposition cannot be unique. It only remains a linear algebra exercise to find 

the alternative third matrix needed to complete the alternative PARAFAC 

solution. However, if the investigation of the KR product results in 

transformations that can only be permutation-scale, uniqueness of the PARAFAC 

decomposition cannot be determined without the consideration of the third 

matrix. Even though the investigation of column spaces could only evaluate two 

matrices at a time, answering the question of uniqueness would require the 

consideration of all three loading matrices in a PARAFAC solution. However, the 

symmetry property would prove to be very helpful in using the findings from pairs 

of loading matrices and their KR products to identify unique PARAFAC solutions. 

3.2.3 Using Alternative KR Products to Identify Uniqueness 
For every three-way PARAFAC solution, there would be six possible KR 

products formed from six pairwise permutations of the loading matrices. From the 

symmetry of PARAFAC solutions, it would be sufficient to consider only the 

combinations, which resulted in three pairwise combinations of loading matrices 

and three subsequent KR products. The tBSM, using either strategy 1 or strategy 

2, considered a single combination of matrices and once an alternative that was 

not a permutation-scale version of the original was found, all PARAFAC solutions 

having loading matrices with the same matrix properties as the ones in the pair 

were identified as non-unique. As will be discussed in the following sections, with 

the exception of two cases when the loading matrices had four columns, the 

evaluation of these pairs showed that non-permutation-scale transformations 

were possible in every case. 
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3.2.3.1 The tBSM when R = 3 

The tBSM began with the case where a PARAFAC solution resulted in 

loading matrices with three columns, or R = 3. The only PARAFAC solutions 

considered were where Kruskal’s condition failed, that is when 

. In this case, only two types of PARAFAC solutions 

were possible: one with matrices having rank and k-rank of 2 and the other 

where two of the matrices had k-rank and rank of 2 and the other had rank and k-

rank of 3. In both of these cases, one of the pairwise combinations would involve 

the two matrices with rank and k-rank of 2. The tBSM utilized strategy 1 and 

found that KR products formed from two matrices with k-rank and rank of 2 would 

have an alternative that was not permutation-scale. Thus, when all of the loading 

matrices had rank and k-rank of 2 the resulting KR products would all have 

alternatives which preserved the column space but were not permutation-scale.  

2 3k( ) k( ) k( ) 2R 2+ + < +1M M M

Hence, the PARAFAC solution with three loading matrices with rank and k-

rank of 2 would be non-unique. When the third matrix had rank and k-rank of 3, 

or had full-column rank, one of the pairwise combinations would involve matrices 

with k-ranks of 2 and 3. However, one of the combinations of matrices would 

involve the matrices with k-ranks of 2. It was already established that the 

resulting KR product with two matrices with k-rank = 2 had an alternative KR 

product with the same column space. Thus, the PARAFAC solution with two 

loading matrices having ranks and k-ranks of 2 and one with k-rank = rank = 3 

was also non-unique.  In summary, the tBSM resulted in the following for R = 3: 

• Limiting cases to 2 3k( ) k( ) k( ) 2R 2+ + < +1M M M  limited the size of k-rank 

(and rank); 

• Every form of the KR product allowed alternatives that were not 

permutation-scale transformations; and, 

• Only two RREFs needed to be considered. 

In conclusion, the symmetry of PARAFAC solutions facilitated the 

investigation of only one of the KR product pairs. Since the arrangement of the 

loading matrices in a PARAFAC solution had no effect on uniqueness, it was only 

necessary to identify one pairwise combination of loading matrices that would 
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result in a KR product with an alternative having the same column space as the 

original. Thus, the tBSM was used to identify all the types of PARAFAC solutions 

for R = 3 where Kruskal failed. Since every solution where 

 was found to have KR products that were not 

permutation-scale transformations, it was established for R = 3 that only 

PARAFAC solutions where 

2 3k( ) k( ) k( ) 2R 2+ + < +1M M M

2 3k( ) k( ) k( ) 2R 2+ + ≥1M M M +  would be unique. 

Hence, the tBSM was able to demonstrate that Kruskal’s condition was 

necessary and sufficient for R = 3. 

3.2.3.2 The tBSM when R = 4 

Since the tBSM was able to establish the necessity of Kruskal for R = 3, it 

was applied for R = 4 in order to further investigate if the assumption of Kruskal’s 

condition as necessary and sufficient for all R was valid. The tBSM utilized the 

same strategies as in R = 3, considering KR products and determining whether 

or not alternatives which preserved the column space would exist.  

The tBSM achieved similar results as in the case where R = 3, finding at least 

one KR product for every PARAFAC decomposition where the alternative loading 

matrices were not restricted to be permutation-scale versions of the originals. 

However, for two of the PARAFAC decompositions discussed by ten Berge and 

Sidiropoulos, non-uniqueness was not identified using column spaces. One of 

the decompositions was composed of one matrix with full-column rank and two 

with k-rank of 2 and rank of 3. The column space approach of ten Berge and 

Sidiropoulos demonstrated that decompositions of this form could be unique. The 

other decomposition was composed of three matrices which all had k-rank = rank 

= 3. In this case, the column space approach failed to offer evidence of 

uniqueness or non-uniqueness. These two decompositions will be investigated in 

detail in the remaining sections of this chapter. 

Consider the class of PARAFAC solutions where two of the matrices had k-

rank of 2 and rank of 3, and the 0 in the last column of both matrices occurred in 

different rows. In this case, when the third matrix had full column rank or k-rank = 

rank = 4, it was found that the alternatives were restricted to permutation-scale 

                                               46



versions of the original. Although the k-ranks of these loading matrices summed 

to 8 which was less than 2R + 2 = 10, the PARAFAC solution was identified as 

unique. Hence, uniqueness was discovered when Kruskal’s condition was not 

met. Therefore, by definition, Kruskal’s condition was not necessary for R = 4. 

However, ten Berge and Sidiropoulos noticed that when the zero of the last 

column was in the same row position, non-uniqueness resulted.  

From this discrepancy, ten Berge and Sidiropoulos hypothesized that the 

position of the zero had something to do with uniqueness or non-uniqueness of 

the PARAFAC solution. When k-rank and rank were equal, the non-Identity 

partition of the reduced form would have all non-zero elements. Thus, ten Berge 

and Sidiropoulos chose to focus on PARAFAC solutions where rank and k-rank 

were equivalent. Additionally, since there were no zero elements to consider, 

only one reduced form resulted for each k-rank, reducing the number of cases 

that would need analysis.  

The strategies employed by ten Berge and Sidiropoulos were applied to the 

cases where k-rank = rank to determine whether solutions were unique or non-

unique. Except for the case, mentioned earlier, where the k-ranks of all three 

loading matrices were 3, the application of the tBSM suggested that PARAFAC 

solutions were non-unique when k-rank = rank and R = 4. For the case where k-

rank = rank = 3 for all three loading matrices, the strategies employed by the 

tBSM were not applicable.  

The first strategy of replacing elements was not appropriate when the KR 

product was formed from two matrices with k-rank = rank = 3 because the 

column space was not preserved. ten Berge and Sidiropoulos explained that the 

second strategy would not apply because it required that one of the matrices be 

full column-rank or k-rank = rank = 4. Therefore, the tBSM could not be applied to 

evaluate uniqueness. Thus, ten Berge and Sidiropoulos offered another 

approach, presented in the appendix of the 2002 paper, to determine the 

uniqueness of the PARAFAC solution having three loading matrices with k-rank 

and rank of 3.  It is important that their “appendix method” be addressed since it 

led to conjectures for all R. 
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3.2.4 Strategy 3 (The Appendix Method)  
Since each of the strategies in the tBSM failed when every KR product pair 

combination resulted in a scenario where the third matrix must be singular and 

the elements in the KR product could not be replaced, ten Berge and 

Sidiropoulos had to construct an alternative approach to determining uniqueness. 

Although this method was presented without formal proof, the ten Berge and 

Sidiropoulos offered a numerical example to demonstrate that it could be used to 

show that PARAFAC solutions were non-unique in the case where R = 4 and the 

ranks and k-ranks of all three loading matrices were 3.  

3.2.4.1 The Theory of the Appendix Method 

The method presented in the appendix made use of a series of simplifications 

in order to reduce the complexities involved with the KR product and PARAFAC 

solutions. The first simplification that was made was to transform the loading 

matrices so that two of the loading matrices had identical forms.  

Thus, and  were transformed from Reduced Row Echelon Form to 

, where the weights from the Reduced Row Echelon 

Form of  and were reassigned and incorporated into the weights in the 

Reduced Row Echelon Form of the third matrix, . Therefore, 

, where x, y, and z were the combined weights of all three 

loading matrices. Finally, some elementary row operations were performed on 

 for continued simplification.  

1M 2M

1 0 0 1
0 1 0 1
0 0 1 1

⎡ ⎤
⎢= = ⎢
⎢ ⎥⎣ ⎦

1 2M M ⎥
⎥

⎥
⎥

2

1M 2M

3M

3

1 0 0 x
M 0 1 0 y

0 0 1 z

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

3M

The next simplification that was made was to assume that two of the 

alternative loading matrices were equal, or that . This simplification was a 

natural result from the simplification that  and were transformed into two 

matrices with identical forms. 

=1M M% %

1M 2M
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A further modification to the problem was in the creation of the general form 

for . The first row of the  matrix was composed of all 1’s. This requirement 

of a row of 1’s prevented the alternative loading matrix  from having columns 

that were permutation-scale versions of the columns of , and similarly for  

and . Thus, the two alternative loading matrices were represented by 

.  

1M% 1M%

1M%

1M 2M%

2M

2 1 2 3 4

1 2 3 4

1 1 1 1
g g g g
h h h h

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

1M M% %

The KR product was then created by taking the column-wise product of  

and  . The array X was created from the loading matrices , , and , 

such that . Thus, an alternative PARAFAC solution 

demonstrating non-uniqueness would exist if , where 

1M%

2M% 1M 2M 3M

1 2= t
3(M M )MX o

= t
1 2(M M )MX % % %o 3

[ ] ×
=t

3 4 3
M u | v | w% . Assuming the equality of X and  , the problem was 

further simplified by removing all redundant rows from and the 

corresponding rows from the array X. The resulting had all distinct rows.  

t
1 2(M M )M% % %o 3

3

3

3

1 2(M M )% %o

1 2(M M )% %o

Additional simplifications were made by considering the linear dependencies 

of the rows. The first two columns of the array X were non-proportional; and, 

since , the column vectors u and v from the loading matrix  

were non-proportional as well. The first two columns of the reduced array X had 

zero elements in the first three positions, indicating that the first three rows of 

were orthogonal to the column vectors u and v when . 

Thus, in order for , the first three rows would be linearly 

dependent. Using the definition of linear dependence, it was found that 

= t
1 2(M M )MX % % %o 3M%

1 2(M M )% %o = t
1 2(M M )MX % % %o

= t
1 2(M M )MX % % %o

i i i igh g hλ δ= + ,  for some scalar λ and δ. Therefore, another 

simplification was made by replacing the elements in the last row of  and  

i 1, ,4= K

1M% 2M%
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by i
i

i

gh
g 1

λ
λ

=
+ −

, when ig 1 λ≠ −  and removing the third row of which 

was linearly dependent on the first and second rows.  

1 2(M M )% %o

Thus, the KR product of  and  could be represented in terms of 1’s and 

, , so that determining  and  simply required determining , 

. In order for , the  must be chosen so that X is in the 

column space of . ten Berge and Sidiropoulos found that the orthogonal 

complement space of  was spanned by vectors of the form 

1M% 2M%

ig i 1, ,4= K 1M% 2M% ig

i 1, ,4= K = t
1 2(M M )MX % % %o 3 ig

1 2(M M )% %o

1 2= t
3(M M )MX o

[ ]0.5w 0.5w yz xz xyα α= − + − − tn , where w xy xz yz xyz= + + +  and α 

was an arbitrary scalar. Therefore, the method to find  was to find where the 

columns of were orthogonal to the vector n.  

ig

1 2(M M )% %o

After making another simplification by allowing 2λ =  and rewriting a column 

of as 1 2(M M )% %o ( ) ( ) ( ) ( ) ( )2 2 2 2
i i i i i i i ig g 1 2g g 1 g 1 g g 1 4g2⎡ ⎤= + + + +⎣ ⎦

t
i

g ho , it 

was possible to solve for  such that ig ( ) 0=t
i

n g ho , i,i 1, ,4∀ = K . Additionally, 

since each column of was identical except for the index i, it was 

possible to ignore the index i and simply find all roots to the quadratic equation 

that resulted from 

1 2(M M )% %o

( ) 0=tn g ho  or to find the roots of 

, where 4 3 2
4 3 2 1 0c g c g c g c g c 0+ + + + =

4

3

2

1

0

c xz
c 0.5w 2xz
c 2w xz 4xy yz
c 1.5w 2yz
c yz

α

α

=

= − + +

= − + + +

= − − +

=

. 

Since α was allowed to be any arbitrary scalar, it was assumed that 0α ≠ , 

and the problem of solving for roots was again simplified by dividing the 

coefficients of the polynomial by α. This division resulted in new coefficients for 

the polynomial,  
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4

3

2

1

0

xzc

0.5w 2xzc 1

2w xz 4xy yzc

1.5w 2yzc 1

yzc

α

α

α

α

α

=

− +
= +

− + + +
=

− +
= −

=

. 

When α → ∞ , these coefficients would tend to  

4

3

2

1

0

c 0
c 1
c 0
c 1
c 0

=

=

=

= −

=

, 

so that the polynomial became ( )3g g 0− = , which had roots 1, -1, and 0. For 

the fourth root, the well-known Vieta formula was used and as α → ∞ , this root 

would tend to depending on the sign of xz.  ±∞

It was shown that for large α, the roots of the polynomial would be distinct 

nonzero real roots and could be used to complete the rows of . The 

resulting columns were then orthogonal to n and could be transformed by 

elementary row operations to form a Vandermonde matrix, which is nonsingular 

when the roots are distinct. Hence, the columns of were orthogonal to n 

and were linearly independent, and so the columns of X were contained in the 

column space of . It only remained to find a matrix  so that 

.  

1 2(M M )% %o

1 2(M M )% %o

1 2(M M )% %o 3M%

1 2 1 2= =t t
3 3(M M )M (M M )MX % % %o o

Since the KR product was created from loading matrices that were 

not permutation-scale versions of  and , it appeared that a PARAFAC 

solution with k-rank = rank = 3 for all loading matrices was non-unique. In order 

to demonstrate this further, a numerical example was presented. 

1 2(M M )% %o

1M 2M
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3.2.4.2 The Numerical Application of the Appendix Method 

In the numerical example, x 1= , y 2= , and z 9= . The arbitrary scalar α was 

chosen large enough, 5.5, so that the roots of the polynomial were distinct, 

nonzero, and real. The roots that resulted were 

[ ]2.8080 1.9257 1.1925 0.3102− − . 

Thus, the remaining rows of the matrices  and were completed using 

these roots so that  

1M% 2M%

1 1 1 1
2.8080 1.9257 1.1925 0.3102
1.4748 4.1606 12.3911 0.4735

⎡ ⎤
⎢ ⎥= = − −⎢ ⎥
⎢ ⎥⎣ ⎦

1 2M M% % . 

Furthermore, using , the matrix   was found by solving 1 2= t
3(M M )MX o 3M%

{ }2 2 2

−

×

⎡ ⎤= ⎢ ⎥⎣ ⎦

1t t t
3 1 1 1

4 3
M (M M ) (M M ) (M M ) X% % % % % % %o o o . With this , and , a 

PARAFAC solution was found such that . Because 

the loading matrices  and were not permutation-scale versions of  and 

, the PARAFAC solution was deemed non-unique.  Additionally, alternative 

roots for the polynomial with larger α were found to demonstrate that the roots of 

the polynomial did indeed tend to 1, -1, 0, and 

1M% 2M% 3M%

1 2 1 2= =t t
3 3(M M )M (M M )MX % % %o o

1M% 2M% 1M

2M

±∞ . 

3.2.4.3 Problems with the Appendix Method 

There were several issues within the appendix method that ten Berge and 

Sidiropoulos failed to address. Greater investigation of these issues revealed 

problems with the appendix method and numerical example that could not be 

ignored. In fact, these issues brought into question whether the appendix method 

was appropriate for solving the uniqueness question in the k-rank = rank = 3 for 

all loading matrices. Furthermore, it was also discovered that the numerical 

example suffered from numerical complexities that mislead ten Berge and 

Sidiropoulos into believing the question regarding uniqueness had been 

answered in this case. 
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The issues that arose upon further investigation will be discussed in detail 

below. In summary, the problem with the appendix method was that allowing 

α → ∞  caused inconsistencies in other aspects of the solution. Further, even 

with a small α, as in the numerical example, there was evidence to suggest that 

all of the loading matrices did not possess k-rank = 3. It will be shown that the 

appendix method actually suggested a solution for the case where at least one of 

the alternative loading matrices did not share the same matrix structure as the 

original(s). This resulting case was not the case intended; and, as a 

consequence, left the issue of uniqueness for solutions with k-rank = rank = 3 for 

all loading matrices unresolved. 

3.2.4.4 Problems with the Underlying Theory of the Appendix Method 

The first issue with the appendix method was in the choice of the vector n, the 

vector form that spanned the orthogonal complement space of the array. At this 

point, the array X was reduced to a ×5 3  matrix. The orthogonal complement 

space of such a matrix would have 2 basis vectors. For example, two linearly 

independent vectors that span the space could be [ ]1 1 1 0 0 0= − tn  and 

2
w z z0

xy x y
⎡−

= ⎢
⎣ ⎦

tn 1⎤
⎥ .  The authors created the vector form, n, as a linear 

combination of these two basis vectors, that is ( ) ( )10.5w xyα− + + =2n n n

t
3

. Thus, 

ten Berge and Sidiropoulos were able to find one vector, n, so that all vectors 

orthogonal to n would form a subspace that necessarily contained the columns of 

the array X.  

Thus, solving for  so that the columns of were orthogonal to n 

provided a linear subspace that contained the columns of . 

Therefore, all that remained was to find  so that 

, which was done easily by projecting onto the 

column space of . Hence it was possible to consider only one vector 

instead of two because the matrix  could be forced to make the equality, 

ig 1 2(M M )% %o

1 2= t
3(M M )MX o

3M%

1 2 1 2= =t
3(M M )M (M M )MX % % %o o

1 2
t
3(M M )Mo

3M%
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1 2 1 2= =t
3(M M )M (M M )MX % % %o o t

3

t
3

, hold. The authors failed to note, however, that 

composing the matrix  such that  might have 

affected the matrix structure of .  

3M% 1 2 1 2= =t
3(M M )M (M M )MX % % %o o

3M%

The second issue requiring attention involved the arbitrary scalar α. The 

inclusion of an arbitrary α in the linear combination of the , , vectors 

provided ten Berge and Sidiropoulos with a dial, so to speak, so that real roots 

would result from the polynomial. The existence of a solution did not rely on the 

value of α to increase to infinity. In fact, as was shown in the numerical 

application, 

in i 1,2=

5.5α =  worked adequately to insure real roots. However, the 

concept of allowing α → ∞  resulted in several contradictions that should have 

been addressed.  

First, with respect to the vector n, allowing α → ∞  would create larger and 

larger weights on the vector. Consequently, the vector n would no longer be a 

linear combination of the two vectors and , but a scaled version of the single 

vector . Second, ten Berge and Sidiropoulos noted that as 

1n

1n 2n

1n α → ∞ , the 

polynomial of interest became ( )3g g− , with roots 1, -1, and 0. Therefore, i∃ such 

that . ten Berge and Sidiropoulos had previously noted that ig = −1 i
i

i

gh
g 1

λ
λ

=
+ −

, 

when ig 1 λ≠ − . With the choice of 2λ = , this suggested that . However, 

as 

ig ≠ −1

α → ∞ , such that . Additionally, the fourth root was found to 

increase (or decrease) to 

i∃ ig → −1

±∞  when α → ∞ . Regardless of the choice of λ, when 

the fourth root is substituted for , the  that resulted was in indeterminate 

form. Therefore, the  and that resulted from 

ig ih

1M% 2M% α → ∞  would not be plausible 

loading matrices. In the same vein, ten Berge and Sidiropoulos used the idea 

that as long as the roots were real and nonzero, the columns of would 

be linearly independent. However, as 

1 2(M M )% %o

α → ∞ , one of the roots tended to 0, which 

contradicted the idea that the roots were nonzero.   
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These discrepancies contributed to a misleading alternative solution, which 

was evident after greater inspection of the numerical application of the appendix 

method.   

3.2.4.5 Problems with the Numerical Example 

In the numerical application, 5.5α = . Obviously, the choice of this α was far 

from one that tended to infinity. However, it was chosen so that the roots of the 

polynomial would be real. The loading matrices that resulted from this choice of α 

were . Although the roots, 

found in the second row of  and , were far from those that would be 

observed as α tended to infinity, the third row of  and already exhibited a 

pattern consistent with roots tending towards -1. As expected with roots of -1, the 

elements on the third row corresponding to the root of -1.1925 was the largest. 

The large value would yield larger values once the KR product of  and was 

calculated. In order for an alternative PARAFAC solution to exist using , 

an appropriate matrix  had to be found so that . 

The matrix that resulted from projecting the columns of onto the column 

space of X was 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−==

4735.0
3102.0
1

3911.12
1925.1
1

1606.4
9257.1
1

4748.1
8080.2
1

~~
21 MM

1M~ 2
~M

1M~ 2
~M

1M~ 2
~M

)MM( 21
~~

o

3
~M t

3
t
3 M)MM()MM(M ~~~

2121 oo ==X

)MM( 21
~~

o

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
−

=

9053.03123.00067.1
0797.00873.00732.0
1631.02386.01239.0
1781.01610.00573.0

~ t
3M . 

Although the values were not extreme, ten Berge and Sidiropoulos failed to 

consider that all of the elements in the third row of  (third column of ) were 

approaching 0. Also overlooked was the position of the larger values that 

resulted from finding the KR product of  and . Interestingly, the larger 

values in  aligned with the values in  that were approaching 0, a 

t
3M% 3M%

1M% 2M%

1 2(M M )% %o t
3M%
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consequence of relying on the matrix  to obtain the columns of the array X. 

Although the case of interest purported to have R = 4, or four columns, the way in 

which it was solved forced one column of  to have elements with very small 

values, bringing into question whether the number of columns was truly four.  

3M%

3M%

Since the application of the appendix method was a numerical example, it 

was difficult to assess the matrix structure of the alternative loading matrices. In 

general, the idea of k-rank in a numerical setting was an abstract concept, and so 

verifying the k-rank of  would prove complicated. In theory, the Reduced Row 

Echelon form of a matrix should provide an indication of the linear dependencies 

among the columns. Although this was very useful when the matrices of interest 

were in symbolic form, considering the Reduced Row Echelon form of actual 

matrices was muddied by numerical intricacies.  

3M%

Specifically, in this particular numerical application it was believed that the 

true matrix structure was masked by the complexity of working with values that 

were quite small. Ignoring that the matrix  might not have the appropriate 

number of columns, the Reduced Row Echelon Form of  was considered. 

Using the method suggested by ten Berge and Sidiropoulos, sub matrices of  

were used to determine the Reduced Row Echelon form. In the explanation of 

simplified forms, ten Berge and Sidiropoulos noted that only matrices with 

nonzero determinants could be used to find the Reduced Row Echelon form of a 

matrix.  

3M%

3M%

3M%

However, when considering sub matrices of , very small determinants 

resulted, (0.000142, 0.00116, -0.0118, 0.005296). Although these values were 

very close to 0, the reduction was continued and resulted in three forms with 

weights of [8.2, -37.3, -83.2], [4.57, 10.2, 0.1225], [0.098, -0.448, -0.012], and 

[0.219, -2.232, -0.027], respectively. In each of these cases, one of the weights 

was considerably smaller than the other two, and k-rank < 3 was suspected.  

3M%

In order to investigate the k-rank of , MAPLE was employed. The weights 

obtained with the reduction suggested by ten Berge and Sidiropoulos were 

3M%
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exactly those found using MAPLE and the ReducedRowEchelonForm function. It 

was possible, however, to use the ReducedRowEchelonForm function in MAPLE 

while leaving the x, y, and z in symbolic form. Hence, the final computations to 

calculate the weights was not performed, and it was possible to view the 

underlying fractions that composed the final weights that resulted when x, y, and 

z were assigned values. Using the submatrix with the largest determinant, the 

three weights that resulted from leaving the x, y, and z in symbolic form involved 

numerators consisting of a polynomial with very small coefficients. In the case of 

the first weight, the largest coefficient was on the order of , which should 

have been treated as 0, resulting in a zero weight. The denominator for this 

weight was composed of coefficients with slightly larger values so that when the 

x, y, and z were assigned values, the numerical computation masked the fact 

that the numerator was essentially 0.  The values are not as small in the second 

and third weight, and it could be argued that one of these might result in a truly 

nonzero weight.  

910−

Hence, in addition to fewer than four columns, the use of MAPLE suggested 

that the k-rank of  might be less than 3. Further evidence for less than four 

columns and k-rank < 3 could be seen when considering larger α. ten Berge and 

Sidiropoulos used a much larger α, 

3M%

1005.5α = , to demonstrate the asymptotic 

nature of the roots, finding that this α resulted in roots of 

[ ]111.1607 1.0362 1.0039 0.0173− − . 

However, ten Berge and Sidiropoulos did not present what effect composing 

the  and  matrices from these roots would have on , which would be 

needed to complete the equation . The resulting 

, in fact, would be  

1M% 2M% 3M%

1 2 1 2= =t
3(M M )M (M M )MX % % %o o t

3

t
3M%

0.00001 0.00016 0.28577
0.01686 0.01746 0.96419
0.00003 0.00003 0.00003
1.01689 0.01759 0.03577

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

t
3M% . 
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The effect of the root closest to -1 was even greater here, as the elements of 

the third row of  (third column of ) could be considered 0, suggesting that 

the matrix structure of  would have fewer than four columns and was not 

equivalent to . Again using MAPLE and unassigned x, y, and z, choosing the 

same submatrix as before, the weights that resulted had even smaller 

coefficients in the numerator than the case where 

t
3M% 3M%

3M%

3M

5.5α = , indicating that the 

issue of matrix structure worsened as α tended to infinity.  

As additional evidence to the problem with matrix structure as α → ∞ , the 

numerical solution was ignored and a more generic solution with large α was 

considered. With very large α, the roots of the polynomial were 1,-1, 0 and N, 

where N was a large number. It was already assumed that  

1 2 3 4

31 2 4

1 2 3 4

1 1 1 1
g g g g

2g2g 2g 2g
g 1 g 1 g 1 g 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + + +⎣ ⎦

1M% . 

The Reduced Row Echelon Form of this matrix was  

 := R

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

1 0 0
−  +  −  +  +  +  −  − g4 g1 g2 g3 g2 g4 g2 g2 g1 g3 g4

2 g1 g4
2 g4 g1 g3 g4 g3

( )−  + g2 g1 ( )−  + g3 g1 ( ) + g4 1

0 1 0 −
 −  −  +  −  +  +  − g4

2 g2 g4 g3 g4 g1 g2 g3 g1 g4 g3 g2 g4
2 g2 g1 g3 g4 g1

( ) − g2 g3 ( ) + g4 1 ( )−  + g2 g1

0 0 1
( )−  + g4 g1 ( ) − g2 g4 ( ) + g3 1
( ) + g4 1 ( )−  + g3 g1 ( ) − g2 g3

. Substitution of the roots 1, -1, 0, and N resulted in a Reduced Row Echelon 

form for   of 1M%

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

1 0 0  + 2 N 2 N2

2 ( ) + N 1
0 1 0 0

0 0 1 −
( )−  + N 1 ( )−  − N 1

 + N 1 . 
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The implication of this reduced form was that  had k-rank<3, indicating that 

as α tended to infinity, the matrix structure of  and  tended to diverge from 

that of  and .  

1M%

1M% 2M%

1M 2M

3.2.5 Conclusions and Lessons Learned from the tBSM 
The issues discovered in investigating the appendix method of ten Berge and 

Sidiropoulos should call into question the validity of using this method to assess 

the uniqueness of a PARAFAC solution. Hence, the conclusions that ten Berge 

and Sidiropoulos made when the appendix method was applied to the case 

where all loading matrices had rank and k-rank of 3 were not justified. Therefore, 

the question of whether or not Kruskal’s condition was necessary and sufficient in 

the case where R = 4 and k-rank = rank was left unanswered. Additionally, the 

case where all matrices had k-rank of 3 needed to be evaluated before any 

conclusions could be made regarding the class of PARAFAC solutions where k-

rank = rank. Thus, the conclusion that Kruskal’s condition was necessary and 

sufficient in the case where R = 4 and k-rank = rank was premature, and should 

not be made until the case where the rank = k-rank = 3 for all three loading 

matrices was decided. It would be necessary to employ a new method to truly 

determine whether PARAFAC solutions would be unique or non-unique. 

3.3  A Strategy for Identifying Uniqueness 
 One of the essential challenges of understanding the literature, past and 

current, was extracting a clear and unambiguous definition of what is meant by 

the uniqueness of a PARAFAC solution.  This clarity is critical, obviously, for a 

rigorous mathematical treatment of the topic.  The structure of the PARAFAC 

solution had morphed from one which considered the individual “slabs” of the 

array to one that represented the entire array. Although the definition of 

uniqueness and equivalent matrices would be maintained, a new strategy for 

investigating uniqueness, which encompassed this new representation, would be 

needed. 

Prior to this dissertation, the literature only hinted at extending the definitions 

of equivalent matrices and uniqueness to KR products. Whereas the original 
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definitions focused on matrices, new definitions would need to focus on KR 

products. However, it is easy to see that the definitions are synonymous.  

The definitions of equivalent matrices and uniqueness were given in the 

previous chapter. In summary, a PARAFAC decomposition was unique if and 

only if all alternative PARAFAC solutions were comprised of alternative loading 

matrices that were permutation-scale versions of the original loading matrices, 

where the scales were multiplicative inverses, i.e. the alternative loading matrices 

were defined as M M , =i i iΠΛ% i,i 1, ,3∀ = K  and Π  was a permutation matrix and iΛ  

were diagonal matrices such that ×=1 2 3 R RΛ Λ Λ I .  

These definitions, and Kruskal’s theorem for uniqueness, focus on the 

individual loading matrices and not the KR product. Even though it will be shown 

that there is no difference in considering individual matrices or KR products, for 

completeness a definition of uniqueness incorporating KR products will be given. 

 

Definition 3.2 A PARAFAC solution was unique if and only if all possible KR 

products of the alternative loading matrices were permutation-scale versions of 

the respective KR products of the original loading matrices, i.e. , 

, and  were permutation-scale versions of , , 

and , respectively. 

1 2(M M )% %o

1 3(M M )% %o 2 3(M M )% %o 1 2(M M )o 1 3(M M )o

2 3(M M )o

 

In order to show that the KR product definition and the traditional loading 

matrix definition for uniqueness were equivalent, it would be necessary to show 

that permutation-scale alternative KR products would result if and only if 

alternative loading matrices were permutation-scale transformations.  

 

Theorem 3.3  if and only if  and 

, where Π  was a permutation matrix and

1,2=1 2 1 2(M M ) (M M )ΠΛ% %o o =1 1M MΠΛ%
1

%

2
%=2 2M M ΠΛ%

1,2Λ  represents the diagonal 
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matrix where the entries are the product of the respective diagonal elements from 

the diagonal matrices  and 1Λ% 2Λ% . 

 

Proof 3.3 Sufficiency: Without loss of generality, consider the column of 

, denoted as . By the definition of Khatri-Rao products, 

 was composed from the columnwise Kronecker product of  and , 

or , where  represents the column of the matrix 

. Therefore, consider . Since , 

was equivalent to a permuted and scaled column of . 

Without loss of generality, let this be the  column of  and scaled by 

the scalar θ. Hence, ve . Therefore,  J, the number 

of rows in , equivalencies of the form , would exist. 

Alternatively written, 

thr

1 2(M M )% %o r1 2(M M )% %o

r1 2(M M )% %o 1M% 2M%

rvec( ) =t
(1)r (2)r 1 2m m (M M )% %% % o n( )rm% thr

nM% vec( )t
(1)r (2)rm m% %

1,2=1 2 1 2(M M ) (M M )ΠΛ% %o o

vec( )t
(1)r (2)rm m% %

1 2(M M )o

thq 1 2(M M )o

c( ) vec( )θ=t
(1)r (2)r (1)q (2)qm m m m% % t

2M (1)ir (2) jr (1)iq (2) jqm m m mθ=% %

(1)ir (2) jq

(1)iq (2) jr

m m
m m

θ=
%

%
, j∀ . Hence, 

(1)ir (2)2q (1)ir (2)Jq

(1)iq (2)2r (1)iq (2)Jr

m m m m
, ,

m m m m
θ θ= =

% %
L

% %
or  (2)1q (2)2q (2)Jq

(2)1r (2)2r (2)Jr

m m m
m m m

= = =K
% % %

 . Since all the 

ratios of the form (2) jq

(2) jr

m
m%

 were equivalent, without loss of generality, the elements 

of the  column of  could be represented as thq 2M

(2)2q (2)2q (2)2q (2)2q
(2)1r (2)2q (2)3r (2)Jr

(2)2r (2)2r (2)2r (2)2r

m m m m
m m m m

m m m m
⎡ ⎤

= = ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦

t t
(2)q (2)rm m% % %L

% % % %

⎛ ⎞

⎝ ⎠
%

1
%

2
%

. 

Hence, this column of was simply a scaled version of another column of .  2M 2M%

This argument could be repeated for every column of and , and similar 

arguments would follow for  and . Hence, by definition,  and 

, where Π  was a permutation matrix and 

2M 2M%

1M 1M% =1 1M MΠ∆%

=2 2M M Π∆%
1Λ%  and  were diagonal 

matrices that contained the appropriate column scaling scalars on the diagonal. 

2Λ%
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Necessity: The same permutation matrix Π  was applied to both  and , 

rearranging the order of the columns. Although the column of  and 

would not necessarily be in the same column position in the permutated 

transformation, the new column position of the column of  would be the 

same as the new position of the column of . The column  of  the Khatri-

Rao product of  and was obtained by taking the columnwise Kronecker 

product of the columns of columns  and . Although the column of  

and column of  were in new positions, these columns would still be 

combined by columnwise Kronecker to form a column in the Khatri-Rao product 

of the permutated matrices. In other words, when the permutation transformation 

was applied to  and , the column positions within each of the matrices 

changed, while the relative positions of the columns in  and  were 

preserved.  

1M 2M
thr 1M

2M
thr 1M

thr 2M thr

1M 2M
thr 1M 2M thr 1M

thr 2M

1M 2M

1M 2M

Thus, the Khatri-Rao product of  and  would still have a column that 

consisted of the columnwise Kronecker product of the column of  and 

column of , however it would not necessarily occur in the column of  

. In fact, the new column position of the columnwise Kronecker product 

of the column of  and column of  would be located in the same new 

position as the permuted column. Hence, the order of the columns of  

would be permuted in the same way the columns of  and were permuted. 

1M 2M
thr 1M

thr 2M thr

1 2(M M )o

thr 1M thr 2M
thr 1 2(M M )o

1M 2M

Hence, . Similarly, post-multiplying and  by 

diagonal matrices simply scaled the columns of  and . Hence, the  

column of  would be scaled by the diagonal element of  and permuted 

to a new column position. Likewise, the  column of  would be scaled by the 

diagonal element of  and permuted to the same new column position of the 

column of . Hence, the resulting Khatri-Rao product of the scaled and 

=1 2 1 2(MΠ M Π) (M M )Πo o 1MΠ 2M Π

1M 2M
thr 1M thr 1Λ

thr 2M
thr 2Λ
thr 1M
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permuted columns of  and would consist of the columns of  that 

had been rearranged and scaled by the product of the respective diagonal 

entries of  and , or 

1M 2M 1 2(M M )o

1Λ 2Λ 1,2=1 1 2 2 1 2(MΠΛ M ΠΛ ) (M M )ΠΛo o , where 1,2Λ  

represents the diagonal matrix where the entries are the product of the 

respective diagonal elements of 1Λ  and 2Λ .  

  

Theorem 3.4 The current definition of uniqueness is equivalent to a new 

definition based on KR products, Definition 3.2. 

 

Proof 3.4 The traditional definition of uniqueness stated that every alternative 

loading matrix must be a permutation-scale version of the original. Therefore, the 

KR products formed from these alternative loading matrices would be 

permutation-scale versions of the KR products formed from the original loading 

matrices, by Theorem 3.3. Thus, every alternative KR product would be a 

permutation-scale version of the original KR product. Analogously, Definition 3.2 

stated that every possible alternative KR product would be permutation-scale 

versions of the original KR products. Again, by Theorem 3.3, KR products that 

were permutation-scale transformations would be formed from loading matrices 

that were permutation-scale versions of the original loading matrices.  
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4. CONSTRAINTS FROM ORTHOGONAL COMPLEMENT SPACES 

Although the tBSM offered novel insights to PARAFAC decompositions and 

uniqueness, the use of column spaces fell short in providing definitive 

uniqueness answers outside of R = 3, where decompositions with k-rank<rank 

were possible. The reasons the tBSM was unable to determine conditions for 

uniqueness in R = 4 were twofold. First, the method of employing column spaces 

was dependent on either requiring the third matrix to be full column rank or being 

able to substitute out elements for alternatives. Eventually, ten Berge and 

Sidiropoulos came to a scenario where both of these methods were unhelpful. 

Secondly, and more importantly, although the use of column spaces identified 

uniqueness or non-uniqueness, the method was unable to answer why. The 

suggestion that the position of the zero in the RREF was a factor was the only 

explanation that considering column spaces could offer. Also, ten Berge and 

Sidiropoulos were discouraged from considering k-rank < rank due to the many 

decompositions that could result.       

4.1 Advantages of the Orthogonal Complement Space Approach (OCSA) 
Although the use of column spaces in the tBSM supplied a venue to explore  

uniqueness that had previously been obstructed, the use of column spaces 

provided a partial glimpse into the story of uniqueness and PARAFAC. In fact, 

the use of column spaces to identify when a vector was in a subspace was 

somewhat imprecise. An alternative method to the tBSM’s column space 

argument is to consider the orthogonal complement (OC) to the column space of 

the KR product. The use of OC spaces provides a clearer way to discuss 

whether or not a vector is in a particular subspace and affords a more obvious 

method for inducing constraints. The use of the OC to provide these constraints, 

as opposed to just reasoning directly about what it meant to be a linear 

combination of a spanning set for the KR column space, presented evidence for 

differences between uniqueness and non-uniqueness conclusions.  

 Using OC spaces over direct column space reasoning offers the additional 

advantage in that the method does not fail for larger k-rank, as in the 
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decomposition with four columns and three loading matrices with rank and k-rank 

equal to 3. Finally, the utilization of the OC space to the column space of the KR 

product provided an opportunity to view patterns in the KR products, patterns 

which would lead to theorems and conclusions regarding OC spaces, the 

constraints imposed, and conditions for uniqueness. For convenience, the use of 

OCs to generate constraints will be referred to as the OCSA (Orthogonal 

Complement Space Approach). 

4.2 The Logic of Using Orthogonal Complement 
The relationship between the column space and the OC to the column space 

of a matrix, M, can be represented by  

(4.11) ( )( ) ( )
⊥

= tM MC N , 

where  and  denote the column space of M and orthogonal 

complement to the column space of M, respectively. The null space of a matrix, 

represented by , consists of all vectors y such that M

( )MC ( )tMN

( )tMN ty = 0. This identity 

implies that all vectors orthogonal to are elements of the . The tBSM 

purported to use the ideas of column spaces to investigate the KR product, 

. The use of the OCSA will also investigate the column space of 

, but will do so by studying the orthogonal complement of the column 

space. 

t( )MN ( )MC

1 2(M M )o

1 2(M M )o

Similar to the tBSM, the utilization of OC spaces also incorporated the 

premise that an alternative KR product would have the same column space as 

the original, or . From equation (4.1), it is easy to see that 

the column space problem translates to one which considers OC spaces  

C( ) C( )=1 2 1 2M M M M% %o o

(4.12) ( )( ) ( ) (( )
⊥

= = t
1 2 1 2 1 2M M M M M M% %o o oC C N )

)

. 

Therefore, it is possible to impose constraints on the columns of ( )by 

requiring that the columns be orthogonal to . Any KR product with 

1 2M M% %o

( t
1 2(M M )oN
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columns orthogonal to  would possess the same column space as 

.  

( t
1 2(M M )oN )

1 2(M M )o

4.3 Applying Orthogonal Complement Spaces 
The setup for applying OC spaces to discover constraints for alternative 

PARAFAC decompositions is similar to that of ten Berge and Sidiropoulos. 

Obviously, the structure of the PARAFAC solution will need to utilize the KR 

product form; and necessary conditions such as full-column rank of the KR 

products and at least k-rank of 2 for all loading matrices will be assumed. 

Additionally, the same symmetry properties of PARAFAC solutions would be 

employed. Finally, the idea of using simplified forms would be used to facilitate 

the investigation of the uniqueness and OC spaces.  

4.3.1 Finding Constraints 
As in the tBSM, the Reduced Row Echelon Forms (RREFs) for each original 

loading matrix were used, with arbitrary variables used whenever the entry was 

not a 0 or 1. KR products could then be formed as the columnwise Kronecker 

product of these generic RREF matrices, representing the original loading 

matrices from a PARAFAC solution. The tBSM sought to find alternative KR 

products that preserved the column space of the original KR product. Non-trivial 

transformations that preserved the column space implied non-uniqueness. The 

OCSA had the same intent, to identify alternatives with the same column space 

as the original KR product. However, the OCSA sought constraints that would 

restrict the columns of the alternative KR product to a particular subspace, the 

column space of the original KR product. As will be discussed later, these 

constraints will be used to identify whether non-trivial transformations are 

possible. The OC constraints, that restricted alternative KR products to have the 

same column space as the original, were obtained by finding basis vectors for 

the null space of the original KR product transposed. 

Using applications from linear algebra, it was noted that finding basis vectors 

to the null space of the rows of the KR product would be equivalent to finding 

basis vectors orthogonal to the column space of the KR product. These basis 
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vectors could then be used to form constraints on general alternative loading 

matrices. The alternative loading matrices are made general by considering 

matrices with symbolic entries that reflect the same rank, k-rank, and number of 

columns as the original loading matrices. The inner products of the OC basis 

vectors and the columns of the alternative KR product are then found, set to 0, 

and arbitrary elements of the loading matrices solved for, providing a set of 

constraints on the elements of alternative loading matrices.  

 Using the OCSA, it was possible to identify the types of constraints that 

would dictate permutation-scale transformations, a detail that had been alluded 

to in the switching elements strategy of the tBSM. Based on the structure of the 

constraints produced by the OCSA, it was possible to identify whether or not 

transformations other than permutation-scale were allowable for all classes of 

PARAFAC decompositions, unlike in the tBSM where the rule only applied to the 

switching of elements strategy. Two types of constraints resulted: constraints 

which combined elements of the loading matrices so that it was possible to 

separate the constraints according to the respective loading matrix and 

constraints which combined the elements in such a way that it was impossible to 

parse the elements out into individual constraints for each loading matrix. It turns 

out that the constraints which can be separated force permutation-scale 

transformations while those which cannot be separated allow non-trivial 

transformations. 

4.3.2 Applying Constraints to Identify Uniqueness in PARAFAC solutions 
Evaluating the constraints that resulted from considering a single KR product 

and the OC to the column space of the KR product did not supply the entire 

uniqueness story for a particular decomposition. The constraints which evolved 

from the application of the OCSA only provided insights to the alternatives for the 

KR product or two of the loading matrices. In order to discuss PARAFAC 

decomposition uniqueness, the other loading matrix would have to be 

incorporated as well, as will be seen in the following sections. 

 In Chapter 3, Definition 3.2, based on Kruskal’s idea of equivalent matrices, 

offered a definition of uniqueness in the KR product setting. Consequently, a 
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PARAFAC decomposition will be unique if and only if every pairwise combination 

of loading matrices results in KR products that have alternatives which are 

restricted to permutation-scale transformations of the original. Hence, it would be 

necessary to evaluate each KR product combination before the determination of 

uniqueness could be made. Any PARAFAC decomposition where the constraints 

obtained from the OCSA suggested permutation-scale alternatives for every 

pairwise combination of loading matrices is defined as unique. Consequently, if 

at least one of the pairwise combinations of loading matrices had constraints 

such that alternatives were not restricted to be permutation-scale 

transformations, the PARAFAC decomposition would be non-unique.  

As in the tBSM, if all decompositions in a class were found to be non-unique 

when Kruskal’s k-rank sum condition was not met, Kruskal’s condition would be 

necessary and sufficient for that class. However, with the application of the 

OCSA, it is possible to explore decompositions where ten Berge and 

Sidiropoulos could not. In the following sections it will be shown that the 

perspective of the OCSA and the new decompositions that could be evaluated 

are crucial to offering a justification for why decompositions are non-unique. 

4.4 The Application of the OCSA for Specific R 
The OCSA was used to investigate both PARAFAC decompositions where 

the tBSM had been applied and for PARAFAC decompositions where no 

determination of uniqueness had been made. For the cases where the tBSM had 

already been employed to evaluate PARAFAC decomposition uniqueness, the 

OCSA provided confirmation for most of the results obtained by ten Berge and 

Sidiropoulos. However, in the case where the tBSM was unable to address the 

question of uniqueness - R = 4 and the k-rank and rank of all three loading 

matrices were 3 - the OCSA contradicted the results of the appendix method.  

Unlike the tBSM, the OCSA did not suffer from requiring substitution or 

needing the third matrix to have full-column rank. Thus, the OCSA was able to 

definitively answer the uniqueness question for R = 4 and k-rank = rank. 

Additionally, the systematic approach of considering pairwise combinations of 

loading matrices permitted the evaluation of cases where k-rank < rank. Where 
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ten Berge and Sidiropoulos had been overwhelmed by variations of reduced 

forms, the OCSA was able to tabulate the results for each of the KR product 

cases and determined uniqueness for PARAFAC decompositions for R = 4 and 

k-rank < rank. Finally, the OCSA provided rationalization for when to expect 

alternative KR products that were permutation-scale versions of the original. 

While the tBSM was limited by the use of column spaces and unable to provide 

insights as to why uniqueness occurred for some KR products and not for others, 

the OCSA offered that uniqueness was rooted in the constraints of the OC space 

and not simply in the position of the zero. 

 Keeping with current strategies in the evaluation of uniqueness, the OCSA 

was employed for specific R. Cases (in R = 3 and R = 4) that had been 

investigated, at least in part are presented in this chapter. PARAFAC 

decompositions with R = 5 and R = 6, which had not been explored, are 

discussed in Chapter 5. 

 As in the tBSM, the evaluation of the KR products was performed when 

Kruskal’s sufficient condition was not met. For each pairwise KR product 

resulting from loading matrices outside of Kruskal’s condition, the resulting basis 

vectors of the OC space were described and used to impose constraints on the 

alternative forms of the loading matrices. The constraints were then studied to 

determine whether or not the restriction of permutation-scale alternatives would 

be imposed. In the following sections of this chapter and Chapter 5, the results 

for each value of R will be presented in tables listing the various combinations of 

the k-ranks and ranks for two of the three loading matrices involved in the KR 

product. Due to the symmetry of PARAFAC decompositions, it is not necessary 

to list every pairwise permutation of ranks and k-ranks. Thus, only the 

combinations needed to evaluate all PARAFAC decompositions for a given R are 

displayed in the tables.  

After the constraints obtained by employing the OCSA were evaluated, it was 

possible to compose all possible PARAFAC decompositions where Kruskal’s 

condition was not met. By the definition of uniqueness, a PARAFAC 

decomposition is unique if every pairwise combination of alternative loading 
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matrices formed a KR product that was a permutation-scale version of the 

original. Hence, the tables are used to assess uniqueness by considering each of 

the pairwise combinations of the three-choose-two loading matrices. When every 

pairwise combination of the three loading matrices results in constraints that 

restrict alternatives to be permutation-scale versions of the original, uniqueness 

is established. On the other hand, when any of the combinations suggest that 

alternative loading matrices are allowed to be transformed by matrices other than 

permutation-scale, non-uniqueness is identified.  

4.5 What the constraints showed for R = 3 
The case where R = 3 was one of the cases evaluated by ten Berge and 

Sidiropoulos (2002). The use of column spaces to evaluate the potential 

alternative forms resulted in proving that Kruskal’s sufficient condition was also 

necessary for R = 3. The application of the OCSA would confirm these results. 

When considering the PARAFAC decompositions for R = 3, the options for 

loading matrices were restricted by k-rank, the number of columns, and the 

requirement that the sum of the k-ranks for all of the loading matrices had to be 

less than . For all investigations of uniqueness, it is assumed 

that the k-ranks of all loading matrices are at least 2, a necessary condition for 

uniqueness. Since R was equal to 3, every loading matrix had exactly three 

columns. Given that there were only three columns and, by definition, k-rank ≤ 

rank, the loading matrices would be restricted to cases where k-rank was 

equivalent to rank. Consequently, the possibilities for the loading matrices when 

R = 3 were k-rank = 2 and k-rank = 3. 

2R 2 6 2 8+ = + =

4.5.1 Evaluating the KR products (R = 3) 
Each of the distinct pairwise combinations of loading matrices that could 

result when R was equal to 3 and Kruskal’s condition was not met, were 

evaluated using the OCSA. The KR product for each of these combinations was 

found and the basis vectors of the orthogonal complement to the column space 

were obtained. The basis vectors were then applied to the columns of a KR 

product formed from alternative, arbitrary loading matrices with the same matrix 

                                               70



properties of the original. The constraints that resulted were then examined to 

determine if alternative forms would be restricted to permutation-scale 

transformations. 

4.5.1.1 KR Products: k-ranks of 2 

For the first case, where the k-ranks were both 2, there was only one basis 

vector for the OC to the column space of the KR product, imposing only one 

constraint. Imposing this constraint did not require that alternative KR products 

be permutation-scale transformations (Table 4.1).  

4.5.1.2 KR Products: k-rank of 3 

However, in the case where one of the matrices had k-rank of 2 and the other 

3, 3 basis vectors resulted. Only one of these vectors contained a term that was 

a constraint element consisting of values from the last column of the loading 

matrix with k-rank of 2. This constraint was sufficient to force alternative KR 

products to be permutation-scale versions of the original (Table 4.1). 

 

Table 4.1 Pairwise Combinations of Loading Matrices 
k-rank (M1) k-rank (M2) rank(M1) rank(M2) P/S Only? 

2 2 2 2 No 
2 3 2 3 Yes 

 

In studying the constraints that resulted from the OCSA, it was observed that 

the only case that restricted alternatives to be permutation-scale transformations, 

had a sum of the k-ranks (and ranks) greater than or equal to R 2 . The size 

of the k-ranks (and ranks) in this scenario would reduce the options for the third 

loading matrix in the PARAFAC solution. The premise for investigating these 

PARAFAC solutions was that Kruskal’s condition was not met, or that the sum of 

the k-ranks for the three loading matrices was less than 8. To keep from 

obtaining Kruskal’s condition when the sum of the k-ranks for two of the loading 

matrices was 5 or greater, the third matrix would need to have deficient column 

rank, i.e. a k-rank of 3 would invoke Kruskal’s sufficient condition for uniqueness.  

5+ =
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4.5.2 Evaluating the PARAFAC solutions (R = 3) 
The definition for uniqueness required that all of the loading matrices be 

considered to determine the uniqueness of a PARAFAC decomposition. 

However, since only decompositions where the k-ranks of the three loading 

matrices summed to less than R+2 were allowed, the examination of the 

necessity of Kruskal’s condition would restrict the options for these loading 

matrices. The limited number of columns for R = 3 also restricted the 

combinations of rank and k-rank. As mentioned in the previous section, options 

for the third matrix would be limited to cases where k-rank was equal to rank. As 

a result, two types of matrices were candidates for the third loading matrix in the 

decomposition, one with k-rank = rank of 2 and one with k-rank = rank of three.  

4.5.2.1 The PARAFAC decomposition: k-rank of 2 

For the first case, where two of the loading matrices had k-rank equal to 2, if 

the third matrix had k-rank = 2 as well, the PARAFAC solution would be non-

unique since all permutations of two loading matrices would result in KR products 

that were not limited to permutation-scale transformations (Table 4.1).  

4.5.2.2 The PARAFAC decomposition: k-ranks of 2, 2, & 3 

When two of the loading matrices had k-rank of 2 and the third matrix had k-

rank of 3, the KR product formed from matrices with k-rank of 2 and 3 would 

result in a KR product that was restricted to permutation-scale (Table 4.1). 

However, since there would be two matrices with k-rank and rank of 2, that 

combination would result in a KR product with alternatives that were not 

permutation-scale transformations (Table 4.1). Therefore, since one of the 

combinations allowed a non-permutation-scale transformation of the KR product, 

the PARAFAC solution would also be non-unique.  

4.5.3 PARAFAC Decomposition Uniqueness Conclusions (R = 3) 
When R = 3, the OCSA was able to identify that all PARAFAC solutions, 

where the k-ranks of the loading matrices summed to less than 8, were non-

unique. The investigation of the constraints, found by considering the OC to the 
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column space of the KR product, confirmed the results found by ten Berge and 

Sidiropoulos. 

4.6 What the Constraints Showed for R = 4 
Unlike the case when R was equal to 3, the options for loading matrices was 

much more varied for R = 4. In fact, for ease in evaluation the loading matrices of 

the PARAFAC decompositions were divided into 2 classes: all loading matrices 

had k-rank = rank and at least one loading matrix had k-rank < rank.  

The first class was previously evaluated for uniqueness by ten Berge and 

Sidiropoulos, in part, by considering the column space of the KR products formed 

by two loading matrices. Even so, the case where all of the loading matrices had 

k-rank of 3 had not been satisfactorily evaluated. Additionally, with the exception 

of one rank/k-rank combination, conditions for uniqueness in the latter class 

remained unexplored. 

For R = 4, each of the possible pairwise combinations for k-rank and rank, 

where Kruskal’s sufficient condition for uniqueness failed, were evaluated in 

detail (Table 4.2). The determination of whether or not permutation-scale 

alternatives were allowed was possible in each of the combinations. In one of the 

combinations, different RREFs led to different conclusions about allowable 

transformations. In this case, also presented by ten Berge and Sidiropoulos, it 

will be shown that uniqueness will depend on a factor other than k-rank. 

 

Table 4.2 Pairwise Combinations of Loading Matrices (R = 4) 
k-rank (M1) k-rank (M2) rank(M1) rank(M2) P/S Only? 

2 2 2 2 No 
2 2 2 3 No 
2 2 3 3 Yes/No1

2 3 2 3 No 
2 3 3 3 Yes 
2 4 2 4 Yes 
2 4 3 4 Yes 
3 3 3 3 Yes 
3 4 3 4 Yes 

1Only permutation-scale transformation depends on the number of OC constraints 
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4.6.1 Evaluating KR Products  (R = 4, k-rank = rank) 
The case of matrices where k-rank = rank was investigated by ten Berge and 

Sidiropoulos by manipulating the column spaces of the possible KR products. 

With the exception of one PARAFAC solution, the tBSM was able to identify non-

uniqueness for this class of PARAFAC solutions. Although the tBSM was able to 

recognize non-uniqueness, it was unable to characterize what caused certain 

solutions to be unique and others not.  

The application of OCSA for k-rank = rank when R = 4, would prove to be a 

better approach than the tBSM by 

• Identifying uniqueness or non-uniqueness for the entire class of 

PARAFAC solutions where k-rank = rank; 

• Discern whether Kruskal’s condition was necessary and sufficient for k-

rank=rank; and, 

• Formulate necessary and sufficient conditions for uniqueness. 

Every possible pairwise loading matrix combination, and the resulting KR 

products, were analyzed using the OCSA. For each combination, it was possible 

to examine whether the constraints would force alternatives to be permutation-

scale transformations.  

The descriptions that were developed attempt to evaluate the properties of 

the basis vectors of the OC to the column space of the KR products. Each KR 

product was described in terms of the following: 

• The number of basis vectors in the OC space; 

• The number of basis vectors that contain constraint elements; and, 

• A description of the constraint elements. 

Additionally, after considering the OC basis vectors associated with each 

pairwise combination of loading matrices, a third matrix was considered so that 

the uniqueness of a PARAFAC decomposition could be decided. 

4.6.1.1 KR products: k-ranks of 2 and 2 

When both loading matrices had k-rank and rank of 2, the dimension of the 

KR product was , resulting in no OC space basis vectors. With no 4 4×

                                               74



constraints from the OC space, any alternatives were possible and were not 

limited to only permutation-scale transformations. 

 

Result 4.1 For KR products with k-ranks of 2 and 2 the following was found: 

• The OC space was empty 

• No vectors with constraint elements resulted 

• No constraints resulted. 

4.6.1.2 KR products: k-ranks of 2 and 3 

For loading matrices with k-ranks of 2 and 3, the number of basis vectors for 

the OC space of the columns of the KR product was 2, and each of the vectors 

contained constraint elements. One vector contained one element, a ratio of 

values from both loading matrices; while the other vector contained two 

elements, a ratio with elements from both and a ratio with elements from only the 

loading matrix with k-rank=2. The constraints that resulted from these two vectors 

did not force alternative KR products to be permutation-scale transformations.  

 

Result 4.2 For KR products with k-ranks of 2 and 3 the following was found: 

• Two OC space basis vectors resulted 

• Two vectors with constraint elements resulted 

• Two constraint elements formed from elements from both matrices and 

one constraint element formed from elements of only one matrix resulted. 

4.6.1.3 KR products: k-ranks of 2 and 4 

Since the matrices were in reduced row echelon form, the matrix with k-rank = 

rank = 4 would be the identity matrix. Hence, all of the constraint elements would 

be imposed from the matrix with k-rank of 2. In this case, 4 basis vectors for the 

OC space resulted. Of these four basis vectors, two contained one constraint 

element, ratios with values from the loading matrix with k-rank = 2.  
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Result 4.3 For KR products with k-ranks of 2 and 4 the following was found: 

• Four OC space basis vectors resulted 

• Two vectors with constraint elements resulted 

• Two constraint elements from only one matrix (k-rank = 2) resulted. 

The constraints imposed by these basis vectors were sufficient to require that 

alternative KR products and the corresponding alternative loading matrices be 

permutation-scale transformations.  

4.6.1.4 KR products: k-ranks of 3 and 3 

This KR product was of particular interest since ten Berge and Sidiropoulos 

were unable to employ their strategies, element replacement and use of a 

nonsingular third matrix, for investigating column spaces and had to rely on the 

more questionable appendix method. Therefore, this would be the first evaluation 

of the general KR product for loading matrices with k-ranks of 3.  

In this case, there were 5 basis vectors for the OC to the column space of the 

KR product. All five of these vectors contained constraint elements. Three of the 

five vectors contained ratios comprised of elements from both loading matrices. 

The remaining vectors contained ratios as well, one vector containing a ratio from 

only the elements of one loading matrix and the other vector a ratio from the 

other loading matrix.  

 

Result 4.4 For KR products with k-ranks of 3 and 3 the following was found: 

• Five OC space basis vectors resulted 

• Five vectors with constraint elements resulted 

• Three constraint elements formed from elements from both matrices and 

two constraint elements formed from elements of only one matrix resulted. 

 

The constraints offered from these basis vectors were enough to force 

alternative loading matrices and KR products to be permutation-scale 

transformations of the originals. Thus, the question of permutation-scale 

alternatives was answered for these KR products. 
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4.6.1.5 KR products: k-ranks of 3 and 4 

For the last combination where k-rank = rank, the reduced form of the matrix 

with k-rank = 4 was the identity matrix, and only the matrix with k-rank of 3 would 

contribute constraint elements. Even so, the constraints that resulted were 

enough to limit alternative forms to be permutation-scale alternatives. Eight basis 

vectors resulted from considering the OC to the column space of this KR product, 

two of which contained constraint elements. Each of these two vectors contained 

exactly one ratio of elements from the loading matrix with k-rank of 3. 

 

Result 4.5 For KR products with k-ranks of 3 and 4 the following was found: 

• Eight OC space basis vectors resulted 

• Two vectors with constraint elements resulted 

• Two constraint elements from only one matrix (k-rank = 3) resulted. 

4.6.2 Evaluating PARAFAC Decompositions (R = 4, k-rank = rank) 
For R = 4, ten Berge and Sidiropoulos only presented a detailed evaluation 

for the cases were k-rank and rank were equivalent, and their method was not 

appropriate when all the ranks and k-ranks of the three loading matrices were 3. 

The OCSA, however, was able to analyze each of the KR products that resulted 

when k-rank = rank. Additionally, by considering the KR products that resulted 

from pairwise combinations of matrices, it was possible to employ Definition 3.2 

for uniqueness and identify uniqueness or non-uniqueness for every PARAFAC 

decomposition having equivalent k-rank and rank.  

When the k-rank = rank, the pairwise combinations of k-ranks for loading 

matrices , where Kruskal’s sufficient condition would not be met, were 

(2,2), (2,3), (2,4), (3,3) and (3,4). In order to determine whether or not the 

PARAFAC decomposition was unique, the third matrix would also have to be 

considered. For each of the pairwise combinations, all of the options for the third 

matrix, where Kruskal’s condition was not met, would need to be evaluated in 

order to determine whether or not the decomposition was unique. Including a 

third matrix would mean evaluating all of the three-choose-two KR products for a 

( , )1 2M M
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particular PARAFAC decomposition. Therefore, for a given PARAFAC solution, 

with three loading matrices, the three pairwise combinations (three KR products) 

would have to be explored to determine if all of the KR products were restricted 

to permutation-scale alternatives. When every KR product had alternatives 

restricted to permutation-scale transformations, the PARAFAC solution would be 

identified as unique. 

4.6.2.1 PARAFAC Decompositions: A KR Product with k-ranks of 2 and 2 

 For a PARAFAC decomposition having two loading matrices with k-ranks of 

2 and 2, any third loading matrix with k-rank equal to 2, 3, or 4 could be 

considered without causing the sum of the k-ranks for the matrices to exceed 10 

or 2R+2. The evaluation of KR products in the previous section determined that a 

KR product formed from two loading matrices with k-rank = rank = 2 had 

alternatives that were not restricted to permutation-scale transformations (Table 

4.2). By the definition of uniqueness, a PARAFAC solution was non-unique if any 

pairwise combination of loading matrices resulted in a KR product with 

alternatives that were not limited to permutation-scale transformations. 

Therefore, any PARAFAC solution where two of the loading matrices had k-rank 

= rank =2 would be non-unique. The details of identifying non-uniqueness for 

each of the PARAFAC solutions when two of the loading matrices have k-rank = 

rank = 2 are given in the following paragraphs. 

In the case where, the third matrix had k-rank of 2, all three matrices have k-

rank of 2 and the only KR product to consider was one composed of matrices 

with k-rank = rank = 2. There were alternative KR products for this case that were 

not permutation-scale versions, which implied that the PARAFAC solution was 

non-unique.  

For a third matrix with k-rank of 3, the resulting pairwise combinations would 

be (2,3) and (2,2). Again, in both cases, the constraints obtained by considering 

4.6.2.1.1 The PARAFAC decomposition: k-ranks of 2, 2, and 2 

4.6.2.1.2 The PARAFAC decomposition: k-ranks of 2, 2, and 3 
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the OC space did not impose permutation-scale as the only transformation for 

alternative KR products; and, so, the PARAFAC solution was non-unique. 

For this final case, the resulting pairwise combinations of loading matrices k-

ranks were (2,2) and (2,4). In Table 4.2 it can be seen that the KR product 

composed of loading matrices with k-ranks of 2 and 4 is constrained to be a 

permutation-scale transformation. However, since the KR product comprised of 

two loading matrices with rank and k-rank of 2 was not constrained to be a 

permutation-scale transformation, the PARAFAC solution was non-unique.  

4.6.2.1.3 The PARAFAC decomposition: k-ranks of 2, 2, and 4 

4.6.2.2 PARAFAC decompositions: A KR Product with k-ranks of 2 and 3 

In this case, the third loading matrix could have k-ranks of 2, 3, or 4.The case 

where two of the loading matrices had k-ranks of 2 and 3 was also found to have 

alternatives that were not permutation-scale versions of the original in the 

previous section where KR products were evaluated. Therefore, by the definition 

of uniqueness, any PARAFAC solution which had two loading matrices with k-

rank = rank and k-ranks of 2 and 3 would be non-unique. The process of 

determining PARAFAC solution uniqueness when two of the loading matrices 

had k-ranks of 2 and 3 are described in the paragraphs below. 

The case where the third matrix had a k-rank of 2 was already investigated 

above; and, since both KR products formed from loading matrices with k-ranks of 

(2,2) and (2,3) had alternatives that were not constrained to be permutation-scale 

transformations, the PARAFAC solution was found to be non-unique.  

When the third matrix had a k-rank of 3, the resulting pairwise combinations 

of k-ranks were (2,3) and (3,3). Although the KR product created from two 

matrices with k-rank of 3 yielded alternatives that were only permutation-scale 

transformations, the KR product with matrices having k-ranks of 2 and 3 were 

4.6.2.2.1 The PARAFAC decomposition: k-ranks of 2, 2, and 3 

4.6.2.2.2 The PARAFAC decomposition: k-ranks of 2, 3, and 3 
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allowed to have alternatives that were not permutation-scale. Therefore, the 

resulting PARAFAC solution was non-unique.  

The final decomposition involved a third matrix with k-rank = 4, resulting in 

pairwise combinations of (2,4), (3,4), and (2,3). The KR products with k-ranks of 

(2,4) and (3,4) yielded OC constraints that only permitted permutation-scale 

transformations (Table 4.2). However, the KR product with k-ranks of (2,3) did 

not have these restrictions, making this PARAFAC decomposition non-unique. 

4.6.2.2.3 The PARAFAC decomposition: k-ranks of 2, 3, and 4 

4.6.2.3 PARAFAC decompositions: A KR product with k-ranks of 3 and 3 

In this case, the third matrix would be limited to having a k-rank of 2 or 3. A 

third matrix with k-rank of 4 would meet Kruskal’s condition for uniqueness, 3 + 3 

+ 4 = 10 ≥ 2R + 2. The PARAFAC decompositions with KR products involving 

matrices with k-ranks and ranks of 3 were especially interesting because the 

tBSM had been unable to provide a means of investigating uniqueness when the 

third loading matrix also had k-rank = 3. After careful review, the appendix 

method employed by ten Berge and Sidiropoulos was to be inadequate, leaving 

the question of uniqueness when all three loading matrices had k-ranks of 3. 

 When the third matrix had k-rank of 2, the possible combinations were (2,3) 

and (3,3), and it was found that the KR product resulting from two matrices with 

k-ranks of 2 and 3 could have alternatives other than permutation-scale 

transformations (Table 4.2). Hence, a PARAFAC solution with k-rank = rank and 

loading matrices with k-ranks 2, 3, and 3 would be non-unique.  

In the case where all the matrices had rank and k-rank equal to 3, the only 

pairwise combination that resulted was when both loading matrices had rank and 

k-rank equal to 3. The evaluation of such KR products using the OCSA, 

demonstrated that the constraints imposed by the OC basis vectors would forced 

alternative KR products to be permutation-scale versions of the original. 

4.6.2.3.1 The PARAFAC decomposition: k-ranks of 3, 3, and 2 

4.6.2.3.2 The PARAFAC decomposition: k-ranks of 3
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Therefore, every pairwise permutation of the loading matrices resulted in a KR 

product with only permutation-scale alternatives; and, by definition, the 

PARAFAC solution was unique.  

The only k-rank = rank scenario where the tBSM failed to provide definitive 

results were decompositions where the k-ranks of all matrices were 3, requiring 

the use of an alternative approach that incorrectly suggested non-uniqueness. 

The alternative method, the appendix method, was fully discussed in Chapter 3 

and demonstrated the error in using numerical examples to evaluate uniqueness. 

The bigger issue at hand, however, is that ten Berge and Sidiropoulos used the 

findings in the appendix method to make a general statement about PARAFAC 

decompositions where k-rank = rank and R = 4.   

Since the tBSM had shown all other k-rank = rank PARAFAC decompositions 

to be non-unique, the only missing piece to showing Kruskal’s condition 

necessary and sufficient was the case where the k-ranks were 3, 3, and 3. 

Hence, the incorrect conclusion of non-uniqueness in this case caused ten Berge 

and Sidiropoulos to incorrectly conclude that Kruskal’s condition was necessary 

and sufficient for R = 4 and k-rank = rank. The OCSA, however, was not impeded 

by the same problems that ten Berge and Sidiropoulos encountered when using 

column spaces (or solving for polynomials) and was able to finally show that such 

a PARAFAC solution would be unique. Hence, Kruskal’s condition could not be 

necessary and sufficient for R = 4 and k-rank = rank.  

4.6.2.4 PARAFAC decompositions: A KR Product with k-ranks of 3 and 4 

Finally, in the case where the PARAFAC decomposition involved two loading 

matrices with k-ranks of 3 and 4, the only option for the third matrix was a k-rank 

of 2, otherwise Kruskal’s sufficient condition would be invoked. In this final case, 

the pairwise combinations were (2,4), (3,4) and (2,3), a repeat of an earlier 

scenario which was identified as a non-unique PARAFAC solution.  

4.6.3 PARAFAC Decomposition Uniqueness Conclusions (k-rank=rank) 
ten Berge and Sidiropoulos concluded that when R = 4 and k-rank was 

equivalent to rank, Kruskal’s condition for uniqueness would be necessary and 
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sufficient. However, by the OCSA, it was possible to determine that PARAFAC 

solutions, when all k-ranks were 3, would be unique. Finding uniqueness when  

k-rank = rank invalidated ten Berge’s and Sidiropoulos’ conjecture of necessity. 

To see this, consider that since this decomposition was shown to be unique, 

uniqueness occurred outside of Kruskal’s condition. Thus, PARAFAC 

decompositions were not unique only when the sum of the k-ranks was at least 

2R + 2 and Kruskal’s condition could no longer be considered necessary for R=4 

and k-rank = rank. Even so, in addition to determining uniqueness, it would be 

possible to use the OCSA to identify additional conditions so that Kruskal’s 

uniqueness condition could be necessary and sufficient for certain cases in R=4. 

These additional conditions will be described in detail in later sections. 

4.6.4 Evaluating KR Products (k-rank < rank) 
With the exception of an example to show that Kruskal’s condition was not 

necessary for R = 4, the class of PARAFAC decompositions where a matrix had 

deficient k-rank (k-rank < rank) was not investigated for uniqueness. The one 

case that ten Berge and Sidiropoulos did investigate hinted that the reduced 

forms offered many permutations within a particular rank and k-rank, and the 

investigation was halted. However, by considering the pairwise combinations and 

the KR products, the task of investigating uniqueness for k-rank < rank was much 

less daunting. Further by analyzing the OC spaces of these KR products, it was 

possible to gain a better understanding of uniqueness and when it would occur. 

When R = 4 and k-rank < rank, by the properties of k-rank, the loading 

matrices would have k-rank less than 4. However, a necessary condition for 

uniqueness was that k-rank was at least 2. Thus, the only case for R = 4 where 

k-rank < rank was when k-rank = 2 and rank = 3. In order for PARAFAC solutions 

to be in the class of solutions where k-rank < rank, at least one of the loading 

matrices would need to have k-rank of 2 and rank of 3. 

The loading matrices with a rank of 3 and a k-rank of 2 have simplified forms 

with a 0 located in exactly one of the rows of the last column. For example, 
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1

2

1 0 0
0 1 0
0 0 1 0

⎛ ⎞
⎜
⎜
⎜ ⎟
⎝ ⎠

a
a ⎟

⎟

⎟
⎟

. From the structure of RREF, the last column provides the 

location of the coefficients for the linear combinations of the two linearly 

independent columns. The rationalization for this is attributed to deficient column 

rank. Since the k-rank of the loading matrix was 2, any two columns could be 

combined as a linear combination to form one of the others. Hence, when the 

RREF for this matrix is obtained, exactly one 0 is located in the last column to 

represent which column is not needed in the linear combination. Therefore, the 

matrix could have 3 different RREFs based on which row the 0 was located: 

, , and . Accordingly, for 

each KR product that involved the loading matrix with k-rank < rank, every 

variation of the RREF would also have to be considered. ten Berge’s and 

Sidiropoulos’ realization of this was a primary reason for opting to investigate 

only cases where k-rank and rank were equivalent.  

1

2

1 0 0
0 1 0
0 0 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

a
a

1

3

1 0 0
0 1 0 0
0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

a

a
2

3

1 0 0 0
0 1 0
0 0 1

⎛ ⎞
⎜
⎜
⎜ ⎟
⎝ ⎠

a
a

As in the case of k-rank = rank, each KR product will be described in terms of 

the following: 

• The number of basis vectors in the OC space; 

• The number of basis vectors that contain constraint elements; and, 

• A description of the constraint elements. 

4.6.4.1 KR Products: k-ranks and ranks were {2,3} and {2,2} 

The loading matrix, with k-rank and rank of 2, would not have variations in the 

structure of its RREF. The loading matrix with k-rank of 2 and rank of 3 would 

have three variations, resulting in a total of three KR products. However, for this 

KR product, regardless of the position of the 0, the OC space had 2 basis 

vectors.  

When the 0 was located in the first or second rows of the last column of the 

second loading matrix, only one of these vectors had constraint elements, ratios 
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located in two positions. One ratio combined terms from both matrices and one 

combined terms from the matrix with rank and k-rank of 2.  

On the other hand, when the zero was located in the last or third row of the 

loading matrix, the number of basis vectors with constraint elements was two, 

and not one. Instead of two ratios in one vector, however, each vector had one 

ratio. One vector contained the ratio which combined elements from the two 

loading matrices and the other vector contained the ratio which consisted only of 

elements from the matrix with k-rank and rank equal to 2.  Thus, regardless of 

the position of the zero, two similar constraints resulted. In all three cases the 

constraints that resulted from using these basis vectors resulted in alternative KR 

products that were not permutation-scale versions of the original KR product.  

 

Result 4.6 For the KR product composed of matrices with {k-rank, rank} of {2,3} 

and {2,2} the following was found: 

• Two OC basis vectors resulted 

• Depending on the position of the zero, one or both contained constraint 

elements 

• One constraint element contained elements from both matrices and one 

contained elements from only one. 

4.6.4.2 KR Products: k-ranks and ranks were {2,3} and {2,3} 

Of all the cases when k-rank < rank for R = 4, this case proved to be the most 

intriguing. First noted by ten Berge and Sidiropoulos, this case was used as a 

counterexample to Kruskal’s necessity for R = 4. Additionally, this case 

suggested that something “bigger” than k-rank was responsible for uniqueness. 

In order to have k-rank = 2 and rank = 3, the last column of the RREF for 

each loading matrix had to contain exactly one zero element. The placement of 

this zero element resulted in nine different KR products and nine different sets of 

basis vectors for the OC to the column space of the KR products. Each set of 

basis vectors contained 5 vectors.  
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If the zeroes in the last column of the two loading matrices were located in the 

same row for each loading matrix, only one of the vectors would contain 

constraint elements. If, however, the zeroes were located in different rows for 

each of these two loading matrices, two of the five vectors would contain 

constraint elements. With the zeroes in the same row positions, the single vector 

with constraint elements contained one ratio, comprised of the elements from 

both loading matrices. When the zeroes were in different row positions, however, 

two constraint elements resulted, one ratio in each of the two vectors. The ratio in 

one of the vectors was comprised of elements from both matrices while the ratio 

in the other vector was comprised of elements from only one of the loading 

matrices.  

Consider two examples, one with the zeroes located in the same row position 

and one with the zeroes located in different row positions.  

 

Example 1 For the two matrices with zeroes in the same row position the RREFs 

are  and . A set of basis vectors for 

 could be 

1

2

1 0 0
0 1 0
0 0 1 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1M
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a
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⎟

)( t
1 2(M M )oN
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1
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1 0 0 1
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0 1 0 0
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0
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⎢ ⎥

⎥⎢ ⎥
⎢ ⎥⎣ ⎦

.  

When these basis vectors are used in the inner product, the OC constraint 

that results is 2 1 2 1

1 2 1 2

h g b a = 
h g b a

. These constraints form a ratio where the elements 

cannot be separated into constraints on the individual loading matrices.  
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Example 2 For the two matrices with zeroes in different row positions, examples 

of the RREFs are  and . A set of 

basis vectors for  could be 
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.  

When these basis vectors are applied to arbitrary alternatives with similar 

matrix structures, the OC constraints that result are 1 1 1

2 2 3

g a h b= ,  = 
g a h b

1

3

. Two OC 

constraints result, each providing restrictions on a single loading matrix.  

In the case where there were two basis vectors with constraint elements, the 

constraints limited alternatives to be permutation-scale transformations only. 

However, when only one vector contained a single ratio of elements from both 

loading matrices, alternative KR products were not constrained to be 

permutation-scale transformations.  

 

Result 4.7 For the KR product composed of matrices with {k-rank, rank} of {2,3} 

and {2,3} the following was found: 

• Five OC basis vectors resulted 

• Same or different row position of the zero: one or two contained constraint 

elements, respectively 

• Same or different row position of the zero: one ratio or two separable 

constraint elements resulted, respectively. 
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4.6.4.3 KR Products: k-ranks and ranks were {2,3} and {3,3} 

Again in this case, the matrix with k-rank = 2 and rank = 3 would need exactly 

one of the elements in the last column of the RREF to be zero. The other matrix 

had equivalent k-rank and rank, so no zero was needed and no variations of the 

KR product form existed. 

Regardless of the placement of this zero value, five basis vectors resulted 

and three of these contained constraint elements. Also, each of these three 

vectors contained exactly one ratio which consisted of elements from the loading 

matrices. When the zero was located in the first or second row of the matrix with 

k-rank = 2 and rank = 3, one ratio was comprised of elements from each of the 

loading matrices, one ratio was comprised of elements from the loading matrix 

with k-rank = rank = 3, and the last ratio was comprised of elements from the 

other loading matrix. However, when the zero was located in the last, third, row 

of the loading matrix with k-rank = 2 and rank = 3, two of the ratios were 

comprised of elements from both loading matrices and the other ratio was 

comprised only of elements from the loading matrix with k-rank = rank = 3. 

Additionally, one of the ratios comprised of elements from both matrices included 

the two elements which composed the ratio consisting of elements from only the 

loading matrix with equivalent rank and k-rank. Hence, after simplifying the 

constraints, the pattern of constraints that was found when the zero was located 

in the first or second position was the same as when the zero was located in the 

third row position of the last column. 

 

Result 4.8 For the KR product composed of matrices with {k-rank, rank} of {2,3} 

and {3,3} the following was found: 

• Five OC basis vectors resulted 

• Three contained constraint elements 

• One constraint element had elements from both loading matrices and two 

constrain elements had elements from only one loading matrix. 

For all of these sets of basis vectors, the constraints were enough to restrict 

alternative KR products to be permutation-scale transformations.  
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4.6.4.4 KR Products: k-ranks and ranks were {2,3} and {4,4} 

Finally, the last scenario in which k-rank < rank occurred when one of the 

matrices had k-rank of 2 and rank of 3 and one of the loading matrices had k-

rank = rank = 4. Here, the full-column rank of one of the loading matrices would 

mean that the RREF would be the identity matrix. Thus, while the loading matrix 

with k-rank = 4 would help to increase the number of basis vectors for the OC 

space, any constraint elements would involve only the matrix with k-rank < rank.  

In this case, there were eight basis vectors for the OC space. However, only 

one of these vectors contained a constraint element, a ratio comprised of the 

elements from the loading matrix with k-rank = 2 and rank = 3. The constraint 

from the OC to the column space of this KR product was enough to confine 

alternatives to be permutation-scale transformations.  

 

Result 4.9 For the KR product composed of matrices with {k-rank, rank} of {2,3} 

and {4,4} the following was found: 

• Eight OC basis vectors resulted 

• Regardless of the position of the zero, one vector contained a constraint 

element 

• The constraint element was composed only from the matrix with k-rank=2. 

 

For R = 4 and k-rank < rank only one of the pairwise combinations resulted in 

a KR product where both of the loading matrices had deficient k-rank. 

Accordingly, this same KR product was the only instance where two separate 

descriptions of the null vectors and conclusions regarding alternatives occurred. 

For all other cases, where at least one matrix had k-rank = rank, the conclusions 

concerning alternative forms and the description of the constraints did not vary 

with the position of the zero. 

Hence, the class of KR products created from loading matrices with deficient 

k-rank were completely described. However, at this point, these descriptions 

were limited to discussing the constraints and alternative KR products for 

pairwise combinations of loading matrices. The uniqueness, or non-uniqueness, 
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of a PARAFAC solution could not be evaluated until the third matrix was 

considered. 

4.6.5 Evaluating PARAFAC decompositions (k-rank < rank) 
When k-rank < rank and R = 4, every PARAFAC decomposition must have at 

least one matrix with k-rank = 2 and rank = 3. With the exception of the case 

where two matrices had k-rank < rank and a third had full-column rank, this class 

of PARAFAC solutions had not been analyzed to determine uniqueness. The 

PARAFAC decompositions for each combination of matrices are presented 

below and assume that at least one of the matrices in the KR product have k-

rank < rank. Thus, to distinguish between the different KR products when k-rank 

< rank, only one of the loading matrices in the KR product needs to be identified. 

Hence, in the underlined headings that follow, the k-rank and rank displayed refer 

to the loading matrix that is joined with a matrix with k-rank of 2 and rank of 3 to 

form the KR product. For each of these KR products, the various third matrices 

and the resulting PARAFAC decompositions were analyzed for uniqueness by 

considering whether every pairwise combination resulted in KR products with 

alternative forms that were not permutation-scale alternatives. 

4.6.5.1  PARAFAC decompositions: k-rank and rank of 2 and 2 

In the case where the second matrix had rank = k-rank = 2, the third matrix 

could have {k-rank, rank} combinations of {2,2}, {2,3}, {3,3}, or {4,4}. All resulting 

PARAFAC solutions were identified as non-unique. The solutions were found to 

be non-unique since a KR product composed of two matrices with k-rank and 

rank combinations { } { }( )k( ),r( ) , k( ),r( )1 1 2 2M M M M  of ({2,2},{2,2}), ({2,2},{2,3}), and 

({2,2}, {3,3}), respectively, had been found to have KR products with alternatives 

that were not restricted to be permutation-scale transformations (Table 4.2).  

4.6.5.2 PARAFAC decompositions: k-rank and rank of 2 and 3    

The next set of PARAFAC solutions would have two matrices with k-rank = 2 

and rank = 3 and a third matrix with {k-rank, rank} combinations of {2,2}, {2,3}, 

{3,3}, or {4,4}. This set of PARAFAC decompositions was particularly interesting 
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as the decision regarding whether the KR product was allowed permutation-scale 

transformations depended on the number of resulting constraints, or to use 

terminology from ten Berge and Sidiropoulos, the positions of the zeros. 

Additionally, it was with this KR product that ten Berge and Sidiropoulos were 

able to show that Kruskal was not necessary for R = 4. 

With the exception of one PARAFAC decomposition, where the third matrix 

had k-rank = rank = 2, the uniqueness identification for all other PARAFAC 

solutions would depend, as suggested by ten Berge and Sidiropoulos, on the 

position of the zeroes. However, considering OC spaces could provide greater 

insight. The difference between the KR products, consisting of matrices with k-

rank = 2 and rank = 3, with zeroes in the same position versus different positions 

was in the constraints requiring the column spaces to be equivalent. In the case 

where the zeroes were in the same position only one basis vector contained one 

constraint element, formed from elements from both matrices. On the other hand, 

when the zeroes were in different positions, two OC basis vectors contained 

constraint elements, one a ratio of elements from both matrices and the other a 

ratio of elements from only one matrix. Therefore, if only one of the OC basis 

vectors contained one constraint element, that pairwise combination of loading 

matrices would have a KR product with alternatives that were not limited to 

permutation-scale. However, if two of the OC basis vectors each contained one 

constraint element, the resulting KR product would be composed of alternatives 

that were restricted to be permutation-scale versions of the originals. 

PARAFAC solutions with a third matrix having k-rank = rank = 2 would be 

non-unique since KR products formed from matrices with matrix properties of 

{2,3} and {2,2} did not limit alternatives to permutation-scale transformations.  

In the case where the third matrix also had k-rank = 2 and rank = 3, the 

PARAFAC decomposition would be unique if each KR product had OC basis 

vectors with two constraint elements (in two vectors). Otherwise, if any two of the 

4.6.5.2.1  PARAFAC decomposition: k-ranks and ranks of {2,3}, {2,3}, {2,2}

4.6.5.2.2 PARAFAC decomposition: k-ranks and ranks of {2,3}, {2,3}, {2,3}
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loading matrices formed a KR product with OC basis vectors with only one 

constraint (in one vector), the loading matrices would have alternatives that were 

not simply permutation-scale transformations, making the PARAFAC solution 

non-unique.  

If the third matrix had k-rank = rank = 3, the pairwise combination of the third 

matrix with any of the matrices with k-rank = 2 and rank = 3 would result in KR 

products where the alternatives were forced to be permutation-scale 

transformations. Consequently, the uniqueness or non-uniqueness of the 

PARAFAC solution would rest on the combination of the two loading matrices 

with k-rank = 2 and rank = 3. If the KR product created from this combination of 

matrices resulted in two constraint elements in two basis vectors of the OC 

space, the PARAFAC solution would be unique. Conversely, if there were only 

one constraint element in a single basis vectors of the OC space, the PARAFAC 

solution would be non-unique.  

The last option for the third matrix in this case was the example used by ten 

Berge and Sidiropoulos to show that Kruskal’s condition was not necessary for R 

= 4. In fact, it was the only scenario where k-rank < rank had been evaluated for 

uniqueness. ten Berge and Sidiropoulos were the first to note the phenomenon 

that the row position of the zeroes for the two loading matrices with k-rank = 2 

and rank = 3 had an impact on the conclusion of uniqueness for the PARAFAC 

solution when the third matrix had full-column rank. However, other than 

recognizing that the position of the zeroes had something to do with uniqueness 

or non-uniqueness, no further explanation for the uniqueness or non-uniqueness 

of the PARAFAC solution was given.  

The utilization of OC spaces, however, did provide an answer to the question 

as to what was really different between the PARAFAC solutions and could be 

utilized to comment on uniqueness. Since the KR product of two loading matrices 

with k-rank of 2 and 4 and rank of 3 and 4, respectively, had alternatives limited 

4.6.5.2.3 PARAFAC decomposition: k-ranks and ranks of {2,3}, {2,3}, {3,3}

4.6.5.2.4 PARAFAC decomposition: k-ranks and ranks of {2,3}, {2,3}, {4,4}
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to permutation-scale versions, the uniqueness of a PARAFAC solution would 

depend on the KR product formed from two matrices with k-rank = 2 and rank = 

3. In fact, uniqueness would depend on whether or not the basis vectors for the 

OC to the column space of the KR product formed from loading matrices with k-

rank = 2 and rank = 3 had one or two constraint elements in one or two basis 

vectors. If two constraint elements were present in two basis vectors, the solution 

would be unique; and if only one constraint element in only one basis vector was 

present, the solution would be non-unique.  

4.6.5.3 PARAFAC decompositions: k-rank and rank of 3 and 3 

One last additional scenario for PARAFAC decompositions, which has yet to 

be covered by the other cases, was when one of the loading matrices had k-rank 

= 2 and rank = 3, another loading matrix had k-rank = rank = 3, and the third 

matrix had k-rank = rank = 3 or k-rank = rank = 4.  

In this case, the PARAFAC solution would be unique. Every pairwise 

combination of the three loading matrices with k-rank and rank combinations 

{ } { }( )k( ),r( ) , k( ),r( )1 1 2 2M M M M  of ({2,3},{3,3}), ({2,3},{4,4}), and ({3,3},{4,4}) would 

result in KR products with constraints that limited alternative loading matrices to 

be permutation-scale versions of the original.  

4.6.5.3.1 PARAFAC decomposition: k-ranks and ranks of {2,3}, {3,3}, {4,4}

4.6.6  PARAFAC Decomposition Uniqueness Conclusions (k-rank < rank) 
PARAFAC solutions where one of the matrices had deficient k-rank offered 

the richness necessary to decipher what underlying property was contributing to 

uniqueness or non-uniqueness. The case where two of the loading matrices had 

deficient k-rank was the first scenario where two KR products composed of 

loading matrices with the same matrix properties (same k-rank, especially) had 

two different conclusions concerning uniqueness. The investigation of the OC 

space basis vectors provided an explanation, more general than k-rank, as to 

when uniqueness would occur. The use of the OCSA made possible the 
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identification of uniqueness for PARAFAC solutions when at least one of the 

matrices had deficient k-rank. 

4.6.7 PARAFAC Decomposition Uniqueness (for all of R = 4) 
It was now possible to identify, for the entire class of R = 4, the uniqueness of 

PARAFAC decompositions (Table 4.3). Kruskal’s k-rank sum condition would be 

considered necessary in addition to sufficient if no PARAFAC decomposition 

could be found that was unique when the condition was not met. Since there 

were cases where uniqueness was determined without imposing Kruskal’s 

condition, it was established that Kruskal’s condition was not necessary for all of 

R = 4, even when k-rank and rank were equivalent. Moreover, it was now 

possible to formulate a condition based on the information gained from 

considering the OC to the column space of the KR products so that necessary 

and sufficient conditions would be available for R = 4. 

 

Table 4.3 PARAFAC Decomposition Uniqueness for R = 4 

 

k-rank (M1) rank(M1) k-rank (M2) rank(M2) k-rank (M3) rank(M3) Uniqueness?
2 2 2 2 2 2 No 
2 2 2 3 2 2 No 
2 2 3 3 2 2 No 
2 2 4 4 2 2 No 
2 2 3 3 4 4 No 
2 3 2 3 2 2 No 
2 3 3 3 2 2 No 
2 3 4 4 2 2 No 
3 3 3 3 2 2 No 
3 3 4 4 2 2 No 
2 3 2 3 2 3 No/Yes 
2 3 3 3 2 3 No/Yes 
2 3 4 4 2 3 No/Yes 
3 3 3 3 2 3 Yes 
3 3 4 4 2 3 Yes 
3 3 3 3 3 3 Yes 
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4.6.8 Correcting the claims made by ten Berge and Sidiropoulos 
The additional condition of k-rank = rank had been applied by ten Berge and 

Sidiropoulos so that Kruskal’s condition would be necessary and sufficient for a 

particular class of decompositions where R = 4. However, the conclusion that 

PARAFAC solutions would be non-unique when all matrices had k-rank = rank 

was erroneously achieved when ten Berge and Sidiropoulos relied on their 

appendix method. The OCSA did not suffer from the same limitations as the 

tBSM or the appendix method and made clear that the case where all three 

loading matrices had k-rank = rank = 3 was unique.  

Thus, it is not enough to require k-rank=rank. When k-rank=rank and rank is 

large, a unique decomposition is possible. In order to construct a class where all 

decompositions are non-unique when Kruskal is not met, the size of the ranks 

must be limited. Moreover, with the development and application of the OCSA, it 

is possible to determine uniqueness or non-uniqueness for all PARAFAC 

solutions in R = 4, regardless of the relationship of k-rank and rank. Hence, after 

correcting ten Berge and Sidiropoulos’ claim about the class of decompositions 

where k-rank = rank, the next task would be to analyze the results for R = 4 and 

develop necessary and sufficient conditions for uniqueness when R = 4. 

Therefore, by the OCSA, it would be possible to offer necessary and sufficient 

conditions for R = 4 where none had existed. 

4.6.8.1 Necessary and Sufficient Conditions for R = 4 and k-rank = rank   

From Table 4.2 and Table 4.3, it was obvious that when k-rank = rank and the 

sum of the ranks for any pairwise matrix combination was less than R + 2, the 

PARAFAC solution would be non-unique. Therefore, when the pairwise sum of 

the ranks was at least R + 2 and k-rank=rank, the PARAFAC decomposition was 

unique. This is true when Kruskal’s condition is not met as well as when it is met. 

Thus, a necessary and sufficient condition for uniqueness when R = 4 and k-

rank=rank is that all of the pairwise sum of the ranks are at least R + 2. 

 

                                               94



Result 4.10 A PARAFAC solution where R = 4 and k-rank = rank is unique if and 

only if  for all ii jr( ) r( ) R 2+ ≥ +M M j≠ .  

4.6.8.2 Necessary and Sufficient Conditions for all of R = 4 

For R = 4, regardless of the equality of rank and k-rank, the obvious problem 

to the necessity of Kruskal’s condition occurred for PARAFAC decompositions 

where two of the loading matrices had k-rank<rank (shaded lower section of 

Table 4.3). A variety of comments could be made regarding these solutions.  

Each of these PARAFAC solutions had every pairwise combination of loading 

matrices where the sum of the ranks was greater than or equal to R + 2 = 6. 

Based solely on this observation, it would be possible to state that non-

uniqueness was sure to occur for R = 4 when any pairwise combination of the 

loading matrices had ranks that summed to less than R + 2 = 6, as was stated for 

the class of PARAFAC solutions when k-rank = rank. However, this still ignored 

the PARAFAC solutions where uniqueness depended on the number of 

constraint elements / constraint vectors in the OC basis (or the position of the 

zero in the loading matrices). In order to incorporate these PARAFAC solutions, 

an additional condition when two of the loading matrices had k-rank < rank would 

have to be considered. Thus, for R = 4, uniqueness would not occur when any of 

the following were true: 

 At least two of the loading matrices had ranks that summed to less than   

R + 2 = 6; or, 

 When two of the loading matrices had k-rank<rank and only one 

( ) constraint element. i i jmin(r( ) k( ),r( ) k( ))− −M M M M j

It should be noted that when Kruskal’s condition was not met, no PARAFAC 

decomposition could have two matrices with k-rank<rank. Additioanlly, only one 

decomposition {(2,3), (4,4), (4,4)} had k-rank<rank when Kruskal’s condition was 

met. In this case, all of the pairwise sum of the ranks were at least R + 2 =7. 

Therefore, when fewer than two of the loading matrices have k-rank<rank, the 

PARAFAC decomposition will be unique if and only if each of the pairwise sum of 

the ranks is at least R + 2. When at least two of the loading matrices have k-
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rank<rank, then the decomposition is unique if and only if he pairwise sum of the 

ranks is at least R + 2 and there is more than one 

( ) OC constraint. i i jmin(r( ) k( ),r( ) k( ))− −M M M M j

 

Result 4.11 A PARAFAC solution where R = 4 and fewer than two of the loading 

matrices have k-rank < rank is unique if and only if i jr( ) r( ) R 2+ ≥ +M M  for all 

. i j≠

 
Result 4.12 A PARAFAC solution where R = 4 and two of the loading matrices 

have k-rank < rank is unique if and only if i jr( ) r( ) R 2+ ≥ +M M  for all i  and the 

number of basis vectors with constraint elements is greater than one or 

. 

j≠

2min(r( ) k( ),r( ) k( ))− −1 1 2M M M M
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5. CONSTRAINTS FROM OC SPACES (R = 5 AND R = 6) 

The investigation of the necessity of Kruskal’s k-rank sum condition had been 

limited to the cases where R was 3 or 4. The approach of ten Berge and 

Sidiropoulos had been unable to answer the question of uniqueness for all 

decompositions where R = 4. The OCSA, on the other hand, had been able to 

succinctly evaluate all the possible PARAFAC decomposition forms for R = 4, 

adding understanding to why some solutions were unique while others were not. 

In an attempt to identify whether or not the same trends occurred for R larger 

than 4, cases where R was 5 and 6 were evaluated. Until this dissertation, 

general PARAFAC decompositions forms that did not meet Kruskal’s k-rank sum 

condition had not been investigated for uniqueness. The results of applying the 

OCSA to PARAFAC decompositions with 5 and 6 columns are presented in this 

chapter.  

5.1 What the Constraints Showed for R = 5 (k-rank = rank) 
PARAFAC solution uniqueness when Kruskal’s sufficient condition for 

uniqueness was not met was not investigated by ten Berge and Sidiropoulos for 

R = 5. Therefore, the OC to the column space of the various KR products would 

be the first assessment of uniqueness for R = 5.  

For PARAFAC solutions with R = 5, the increased number of columns 

increased the number of variations when k-rank < rank. More importantly, 

however, the increased number of columns increased the complications of 

investigating alternative forms. With larger ranks and smaller k-ranks, the 

complexity of the problem grows to one that needs to be handled through 

computation. Unfortunately, the computational techniques needed to correctly 

quantify alternative solutions are unavailable at this time. Therefore, the 

subsequent discussions about PARAFAC solution uniqueness will be limited to 

the case where k-rank = rank. Even so, the discourse concerning uniqueness 

was the first thorough review of uniqueness when Kruskal was not met for R > 4. 

Additionally, the principles presented here for k-rank = rank will be applicable for 

evaluating the cases that could result with PARAFAC solutions with deficient k-
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rank and demonstrate that the answer to uniqueness does not lie simply with k-

rank conditions. 

For the cases where the KR product was formed by loading matrices where 

the k-rank and the ranks were equivalent, a similar pattern as R = 4 and k-rank = 

rank emerged (Table 5.1). The details and descriptions for each of these KR 

products were presented in the following pages where each KR product was 

described in terms of the following: 

• The number of basis vectors in the OC space; 

• The number of basis vectors that contain constraint elements; and, 

• A description of the constraint elements. 

Finally, for each of these KR products, a third matrix was considered and 

decisions on uniqueness were determined for the resulting PARAFAC solutions. 

 

Table 5.1 Pairwise Combinations of Loading Matrices (k-rank=rank) 
k-rank (M1) k-rank (M2) rank(M1) rank(M2) P/S Only? 

2 2 2 2 No 
2 3 2 3 No 
2 4 2 4 No 
2 5 2 5 Yes 
3 3 3 3 No 
3 4 3 4 Yes 
3 5 3 5 Yes 
4 4 4 4 Yes 
4 5 4 5 Yes 

 

5.1.1 Evaluating KR Products 
Before proceeding to the specific cases where R = 5 and k-rank = rank, 

lessons from R = 4 were employed and the class where k-ranks and ranks were 

equivalent was further subdivided. The class of matrices where the sum of the 

ranks of the loading matrices was less than R+2 = 7 was considered separately 

from the cases where the KR products were composed of loading matrices with 

ranks which summed to 7 or more. The class of KR products with ranks summing 

to less than 7 would include KR products with loading matrices with k-ranks of 
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(2,2), (2,3), (2,4), and (3,3). The class of KR products where the ranks summing 

7 or more would include the loading matrices with k-ranks of (2,5), (3,4), (3,5), 

(4,4), and (4,5). 

5.1.1.1 KR Products: k-ranks of 2 and 2 

The first case in this class for R = 5, where both loading matrices have k-rank 

and rank equal to 2, resulted in no constraints. Thus, like in the case where R = 

4, KR products composed of two matrices with k-rank = rank = 2 could have 

alternatives that were not restricted to permutation scale alternatives. 

 

Result 5.1 For the KR product composed of matrices with k-ranks of (2,3) the 

following was found: 

• The OC resulted in the empty set, therefore,  

• No vectors contained constraint elements 

• No constraint elements were formed  

5.1.1.2 KR Products: k-ranks of 2 and 3 

In this case, there was only one basis vector for the OC to the column space 

of the KR product. The vector, however, contained three constraint elements 

from the two loading matrices: two ratios with elements from both loading 

matrices and one ratio with only elements from the loading matrix with k-rank = 2. 

Even so, these constraints were not sufficient to limit alternative loading matrices 

to be permutation-scale transformations.  

 

Result 5.2 For the KR product composed of matrices with k-ranks of (2,3) the 

following was found: 

• One OC basis vector resulted 

• One vector contained constraint elements 

• Two constraint elements formed from both loading matrices and one 

formed from the elements of only one 
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5.1.1.3 KR Products: k-ranks of 2 and 4 

The next case considered was where the loading matrices had k-ranks of 2 

and 4. All three of the basis vectors for the OC to the column space of the KR 

product contained constraint elements. In fact, two of the three vectors contained 

two sets of constraint elements or ratios. In each set, one ratio was comprised of 

elements from both loading matrices while the other contained only elements 

from the loading matrix with k-rank = 2. The third vector contained only one ratio 

which was formed from elements from both loading matrices and did not force 

permutation-scale alternatives. 

 

Result 5.3 For the KR product composed of matrices with k-ranks of (2,3) the 

following was found: 

• Three OC basis vectors resulted 

• All three vectors contained constraint elements 

• Three constraint elements were formed from elements from both loading 

matrices and two were formed from the elements of only one 

5.1.1.4 KR Products: k-ranks of 3 and 3 

Finally, the last case where both loading matrices had k-rank = rank = 3, 

resulted in four basis vectors for the OC to the column space of the KR product. 

Each of these four vectors contained two constraint elements which were ratios 

composed of elements from both loading matrices. As in the other k-rank cases 

for this subclass, the alternative loading matrices were not limited to permutation-

scale versions of the originals. 

 

Result 5.4 For the KR product composed of matrices with k-ranks of (3,3) the 

following was found: 

• Four OC basis vectors resulted 

• All four vectors contained constraint elements, two in each 

• Eight constraint elements were formed from both loading matrices  
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5.1.1.5 KR Products: k-ranks of 2 and 5 

In the first case, where k-ranks were 2 and 5, five basis vectors resulted. Of 

these five basis vectors, 3 contained constraint elements, ratios formed form 

elements of the loading matrix with k-rank of 2. Of course, since these KR 

products were evaluated using loading matrices in RREF, the matrix with k-rank 

of 5 would simply be the identity matrix and could not contribute any values to the 

KR product or the basis vectors for the OC space. These constraints were 

sufficient to require that all alternative forms be permutation-scale 

transformations.  

 

Result 5.5 For the KR product composed of matrices with k-ranks of (2,5) the 

following was found: 

• Five OC basis vectors resulted 

• Three vectors with constraint elements resulted 

• All three constraint elements were formed from elements from one of the 

loading matrices  

5.1.1.6 KR Products: k-ranks of 3 and 4 

In the case where the KR product was formed from two matrices with k-ranks 

of 3 and 4, both matrices would have elements that could contribute to the basis 

vectors of the OC space. In this case, all seven basis vectors contained 

constraint elements. Five of these vectors contained only one ratio of elements, 

while two contained two ratios of elements. For the five vectors with only one 

ratio, three of these vectors/ratios contained values from both matrices. The 

other two vectors with only one ratio, each had a ratio consisting of values from 

only one of the loading matrices; one had a ratio consisting of elements from the 

matrix with k-rank = 3 and the other had a ratio of values from the matrix with k-

rank = 4. Both of the final two vectors with two ratios had one ratio with elements 

from the matrix with k-rank = 3 and one ratio with elements from both loading 

matrices. These constraints did impose that all alternative forms be permutation-

scale transformations.  
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Result 5.6 For the KR product composed of matrices with k-ranks of (3,4) the 

following was found: 

• Seven OC basis vectors resulted 

• Seven constraint vectors resulted 

• Five constraint elements were formed from elements from both loading 

matrices and four were formed from the elements of only one 

5.1.1.7 KR Products: k-ranks of 3 and 5 

When one loading matrix had k-rank of 3 and the other k-rank of 5, only the 

matrix with k-rank of 3 would contribute values to the constraints formed from the 

basis vectors of the OC space. Four out of ten of these vectors contained 

constraint elements from the matrix with k-rank = 3, which limited alternatives to 

be permutation-scale transformations.  

 

Result 5.7 For the KR product composed of matrices with k-ranks of (3,5) the 

following was found: 

• Ten OC basis vectors resulted 

• Four vectors had constraint elements 

• Four constraint elements were formed from elements of the loading matrix 

with k-rank = 3 

5.1.1.8 KR Products: k-ranks of 4 and 4 

When both of the matrices had k-ranks of 4, each of the eleven basis vectors 

containing exactly one ratio composed of elements from the loading matrices. 

Seven of these eleven ratios had elements from both loading matrices, while the 

remaining four basis vectors had ratios involving elements from only one of the 

loading matrices, two from one and two from the other. Again, as in all the 

previous cases, the constraints imposed by these ratios required that all 

alternative forms be permutation-scale transformations.  
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Result 5.8 For the KR product composed of matrices with k-ranks of (4,4) the 

following was found: 

• Eleven OC basis vectors resulted 

• Eleven vectors had constraint elements 

• Seven constraint elements were formed from elements from both loading 

matrices and the other four were formed from elements from only one 

loading matrix 

5.1.1.9 KR Products: k-ranks of 4 and 5 

Finally, the last case in this subclass occurred when one of the loading 

matrices had k-rank = 4 and the other had k-rank = 5. Three of the fifteen basis 

vectors contained constraint elements from the loading matrix with k-rank of 4. 

Although each of these vectors contained only one ratio, the resulting constraints 

would force alternative KR products to be comprised of loading matrices that 

were simply permutation-scale versions of the originals.  

 

Result 5.9 For the KR product composed of matrices with k-ranks of (4,5) the 

following was found: 

• Fifteen OC basis vectors resulted 

• Three vectors had constraint elements 

• Three constraint elements were formed from elements of the loading 

matrix with k-rank = 4. 

5.1.2 PARAFAC Decomposition Uniqueness (R = 5, k-rank = rank) 
The pairwise combinations of loading matrices and the resulting KR products 

could now be used to evaluate when PARAFAC solutions with loading matrices 

with k-rank = rank were unique. The details of the process of identifying 

uniqueness were given for the case where R = 4. Each KR product that could be 

formed from the loading matrices of a PARAFAC solution were evaluated. When 

every KR product had alternatives that were restricted to permutation-scale 

transformations, uniqueness was determined. On the other hand, when any KR 
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product of a PARAFAC solution was not restricted to permutation-scale 

transformations, non-uniqueness was established. 

The PARAFAC solutions that were possible when all loading matrices had k-

rank = rank and the sum of the k-ranks for the three matrices did not reach or 

exceed 2R+2 were listed, with conclusions concerning uniqueness, in Table 5.2.  

 

Table 5.2 PARAFAC Decomposition Uniqueness for R = 5, k-rank = rank 
k-rank (M1) rank(M1) k-rank (M2) rank(M2) k-rank (M3) rank(M3) Uniqueness?

2 2 2 2 2 2 No 
2 2 3 3 2 2 No 
2 2 4 4 2 2 No 
2 2 5 5 2 2 No 
3 3 3 3 2 2 No 
3 3 4 4 2 2 No 
3 3 5 5 2 2 No 
4 4 4 4 2 2 No 
4 4 5 5 2 2 No 
2 2 5 5 3 3 No 
3 3 3 3 3 3 No 
3 3 4 4 3 3 No 
3 3 5 5 3 3 No 
4 4 4 4 3 3 Yes 

 

Considering only the class of PARAFAC solutions where the k-rank = rank for 

all loading matrices, it was shown that imposing the additional condition that k-

rank = rank would not cause Kruskal’s condition to be necessary and sufficient. 

As in the case where R = 4, another condition would be needed.  

5.1.3 Necessary and Sufficient Conditions for Uniqueness 
From Table 5.2, it appeared that most PARAFAC decompositions when k-

rank = rank and R = 5 were non-unique. However, the PARAFAC decomposition 

where the k-ranks were 4, 4, and 3 was found to be unique. This same pattern 

was seen in the case where R = 4 and k-rank = rank. From Table 5.1 and Table 

5.2, it was obvious that when k-rank = rank and the sum of the ranks for any 
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pairwise matrix combination was less than R + 2, the PARAFAC solution would 

be non-unique. Therefore, when the pairwise sum of the ranks was at least R + 2 

and k-rank=rank, the PARAFAC decomposition was unique. This is true when 

Kruskal’s condition is not met as well as when it is met. Thus, a necessary and 

sufficient condition for uniqueness when R = 5 and k-rank=rank is that all of the 

pairwise sum of the ranks are at least R + 2. 

 

Result 5.10 A PARAFAC decomposition where k-rank = rank and R = 5 is 

unique if and only if 2)()( +≥+ Rrr ji MM  for all ji ≠ . 

 
It is important to note here that this is the same conclusion achieved for R = 3 

and R = 4. The most recent approaches in this area have focused on evaluating 

individual cases for R and making conjectures that might extend to all R. To that 

point, it appears that the condition on the sum of the ranks will provide a 

necessary and sufficient conditions for uniqueness for all R when k-rank=rank.  

5.2 What the Constraints Showed for R = 6 (k-rank = rank) 
Prior to this work, the uniqueness of PARAFAC solutions have not been 

evaluated for R = 6. Below, the case where R = 6 and k-rank = rank was 

evaluated using the OC to the column space of the KR product. First, the KR 

products for each of the pairwise combinations were analyzed by investigating 

the constraints formed from the basis vectors of the OC space. After conclusions 

regarding alternatives were made, all three loading matrices of a PARAFAC 

solution could be assessed to identify whether or not the solution would be 

unique. 

5.2.1 Evaluating KR products 
For each of the KR products where k-rank = rank, the basis vectors for the 

OC space were described. Included in the description of the basis vectors would 

be the number of vectors with constraints and the number and type of constraint 

elements that resulted. Depending on the constraints that resulted, the 

alternatives could be restricted to permutation-scale transformations (Table 5.3).  
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Table 5.3 Pairwise Combinations of Loading Matrices (k-rank = rank) 
k-rank (M1) k-rank (M2) rank(M1) rank(M2) P/S Only? 

2 2 2 2 No 
2 3 2 3 No 
2 4 2 4 No 
2 5 2 5 No 
2 6 2 6 Yes 
3 3 3 3 No 
3 4 3 4 No 
3 5 3 5 Yes 
3 6 3 6 Yes 
4 4 4 4 Yes 
4 5 4 5 Yes 
4 6 4 6 Yes 
5 5 5 5 Yes 
5 6 5 6 Yes 

 

As in the case where R = 5, for ease in evaluating the differences in OC 

constraints, the KR products were divided into two classes:  

• KR products where the sum of the ranks of the loading matrices was 

less than R+2 = 8, and 

• KR products where the sum of the ranks of the loading matrices was at 

least R+2 = 8. 

5.2.1.1 KR products: k-ranks of (2,2) or (2,3)  

In both cases where the k-ranks of the loading matrices were 2 and 2 or 2 

and 3, no orthogonal basis vectors resulted. Thus, no constraints were found for 

the alternative KR products with these matrices. Hence, for both types of KR 

products, alternatives were not restricted to be permutation-scale 

transformations. 

 

Result 5.11 For the KR product composed of matrices with k-ranks of (2,2) and 

(2,3) the following was found: 

• No OC basis vectors resulted 

• None contained constraint elements 

• No constraint elements were formed. 
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5.2.1.2 KR products: k-ranks of 2 and 4 

In this case, the two basis vectors contained constraint elements from both 

matrices. Each vector contained three constraint elements; two were ratios 

formed from elements from both matrices, while one was a ratio containing only 

elements from the matrix with k-rank of 2.  

 

Result 5.12 For the KR product composed of matrices with k-ranks of 2 and 4 

the following was found: 

• Two OC basis vectors resulted 

• Both contained constraint elements 

• Four constraint elements were formed from elements from both matrices 

and two were formed from elements of the matrix with k-rank of 2. 

Alternative forms composed of loading matrices with these matrix properties 

were not limited to permutation-scale transformations.  

5.2.1.3 KR product: k-ranks of 2 and 5 

The next k-rank combination possible was when the k-ranks were 2 and 5. 

Again, in this case, alternatives were not restricted to be permutation-scale 

alternatives. Four basis vectors resulted for these KR products and all had 

constraint elements in the form of ratios. Three of the four vectors had two ratios: 

one with elements from both matrices and one with only elements from the matrix 

with k-rank of 2. The last vector had only one ratio but it was comprised of 

elements from both loading matrices.  

 

Result 5.13 For the KR product composed of matrices with k-ranks of 2 and 5 

the following was found: 

• Four OC basis vectors resulted 

• Four vectors had constraint elements 

• Four constraint elements were formed from elements of both matrices and 

three elements were formed from elements of only one. 
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5.2.1.4 KR products: k-ranks of 3 and 3 

In the next scenario, where both matrices had k-rank = 3, all three of the basis 

vectors contained constraint elements. In fact, each vector contained three ratios 

composed of elements from both loading matrices.  

 

Result 5.14 For the KR product composed of matrices with k-ranks of 3 and 3 

the following was found: 

• Three OC basis vectors resulted 

• Three vectors had constraint elements 

• Nine constraint elements were formed from elements of both matrices. 

The constraints imposed by these ratios were not sufficient to restrict alternative 

forms to be permutation-scale transformations.  

5.2.1.5 KR product: k-ranks of 3 and 4 

Likewise, in the case where one of the loading matrices had k-rank = 3 and 

the other had k-rank = 4, the constraints from considering the OC space did not 

require alternatives to be permutation-scale alternatives. In this case, all six of 

the basis vectors contained constraint elements. Two of these vectors had three 

ratios, two of which were created from elements of both matrices and one with 

only elements from the loading matrix with k-rank = 3. The remaining basis 

vectors had two ratios each, and both ratios contained elements from both 

loading matrices.  

 

Result 5.15 For the KR product composed of matrices with k-ranks of 3 and 4 

the following was found: 

• Six OC basis vectors resulted 

• Six vectors had constraint elements 

• Twelve constraint elements were formed from elements of both matrices 

and two elements were formed from elements of only one. 
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The remaining cases where k-rank = rank involved matrices where the 

pairwise sum of the ranks was greater than or equal to R + 2 = 8. In each of 

these remaining cases, the conditions imposed by the elements obtained by 

evaluating the orthogonal complement to the column space of the KR product 

were enough to restrict all alternative forms to be permutation-scale versions of 

the original.  

5.2.1.6 KR products: k-ranks of 2 and 6 

For loading matrices with k-ranks of 2 and 6, four of the six basis vectors for 

the OC to the column space of the KR product had constraint elements. Each of 

these four vectors contained a single ratio comprised of elements from the 

loading matrix with k-rank of 2. Alternative forms where the loading matrices had 

k-rank of 2 and 6 were found to be restricted to permutation-scale versions of the 

originals.  

 

Result 5.16 For the KR product composed of matrices with k-ranks of 2 and 6 

the following was found: 

• Six OC basis vectors resulted 

• Four vectors had constraint elements 

• Four constraint elements were formed from elements of the matrix with k-

rank of 2. 

5.2.1.7 KR products: k-ranks of 3 and 5 

In the case where the k-ranks were 3 and 5, all nine basis vectors contained 

constraint elements. Four of these vectors each contained two ratios, one with 

elements from both and one with elements from the loading matrix with the 

smaller k-rank. The other five vectors contained only one ratio; three of these had 

elements from both matrices, while the other two had ratios comprised of 

elements from the matrix with k-rank of 3 and k-rank of 5, respectively.  
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Result 5.17 For the KR product composed of matrices with k-ranks of 3 and 5 

the following was found: 

• Nine OC basis vectors resulted 

• Nine vectors had constraint elements 

• Seven constraint elements were formed from elements of both matrices 

and six were formed from elements from only one matrix. 

5.2.1.8 KR products: k-ranks of 3 and 6 

The next case evaluated was when the loading matrices had k-ranks of 3 and 

6. Twelve basis vectors resulted from considering the OC to the column space of 

the KR product, of these twelve, six contained constraint elements from the 

matrix with k-rank = 3.  

 

Result 5.18 For the KR product composed of matrices with k-ranks of 3 and 6 

the following was found: 

• Twelve OC basis vectors resulted 

• Six vectors had constraint elements 

• Six constraint elements formed from the loading matrix with k-rank = 3. 

5.2.1.9 KR products: k-ranks of 4 

In the case where both of the loading matrices had k-rank = 4, ten basis 

vectors resulted. All ten of these vectors contained two constraint elements, 

ratios consisting of elements from both of the loading matrices.  

 

Result 5.19 For the KR product composed of matrices with k-ranks of 4 and 4 

the following was found: 

• Ten OC basis vectors resulted 

• Ten vectors had constraint elements 

• Twenty constraint elements with elements from both loading matrices 
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5.2.1.10 KR products: k-ranks of 4 and 5 

When one loading matrix had k-rank = 4 and the other k-rank = 5, fourteen 

basis vectors resulted, all with constraint elements. Three of these vectors had 

two ratios, one with elements from both loading matrices and one with elements 

from only the matrix with k-rank = 4. The remaining eleven vectors contained only 

one ratio each. Seven of these eleven had a ratio with elements from both 

loading matrices, two had elements from only the loading matrix with k-rank = 4, 

and two had elements from only the matrix with k-rank = 5.  

 

Result 5.20 For the KR product composed of matrices with k-ranks of 4 and 5 

the following was found: 

• Fourteen OC basis vectors resulted 

• Fourteen vectors had constraint elements 

• Ten constraint elements were formed from elements of both loading 

matrices and seven had elements formed from only one loading matrix. 

 

5.2.1.11 KR products: k-ranks of 4 and 6 

With k-ranks of 4 and 6, six of the resulting eighteen basis vectors had one 

ratio containing elements from the loading matrix with k-rank = 4. 

 

Result 5.21 For the KR product composed of matrices with k-ranks of 4 and 5 

the following was found: 

• Eighteen OC basis vectors resulted 

• Six vectors had constraint elements 

• Six constraint elements formed from the loading matrix with k-rank of 4. 

 

5.2.1.12 KR products: k-ranks of 5 

For the KR product composed of loading matrices where both k-ranks were 5, 

all nineteen basis vectors contained one ratio of elements from the loading 
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matrices. Thirteen basis vectors contained a ratio consisting of elements from 

both loading matrices, three vectors had a ratio with elements from only one of 

the loading matrices, and three vectors had a ratio with elements from the other 

loading matrix.  

 

Result 5.22 For the KR product composed of matrices with k-ranks of 5 and 5 

the following was found: 

• Nineteen OC basis vectors resulted 

• Nineteen vectors had constraint elements 

• Thirteen constraint elements were formed from elements of both loading 

matrices and six had elements from only one matrix. 

5.2.1.13 KR products: k-ranks of 5 and 6 

Finally, when the loading matrices had k-rank = 5 and k-rank = 6, only four of 

the twenty-four basis vectors had constraint elements from the matrix with k-rank 

= 5. Each of these four vectors contained only one ratio.  

 

Result 5.23 For the KR product composed of matrices with k-ranks of 5 and 6 

the following was found: 

• Twenty-four OC basis vectors resulted 

• Four vectors had constraint elements 

• Four constraint elements were formed from elements of the loading matrix 

with k-rank of 5. 

5.2.2 PARAFAC Decomposition Uniqueness (R = 6, k-rank = rank) 
Utilizing the results of investigating the constraints obtained by the OCSA for 

each of the KR products where k-rank = rank, it was possible to ascertain which 

PARAFAC solutions would be unique and which would be non-unique when k-

rank = rank. By considering all possible pairwise combinations of two loading 

matrices, it was possible to utilize Table 5.3 to determine whether or not all 

pairwise combinations would result in alternative KR products that were restricted 

to permutation-scale transformations only (Table 5.4).  
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Table 5.4 PARAFAC Decomposition Uniqueness for R = 6, k-rank = rank 
k-rank (M1) rank(M1) k-rank (M2) rank(M2) k-rank (M3) rank(M3) Uniqueness?

2 2 2 2 2 2 N 
2 2 3 3 2 2 N 
2 2 4 4 2 2 N 
2 2 5 5 2 2 N 
2 2 6 6 2 2 N 
3 3 3 3 2 2 N 
3 3 4 4 2 2 N 
3 3 5 5 2 2 N 
3 3 6 6 2 2 N 
4 4 4 4 2 2 N 
4 4 5 5 2 2 N 
4 4 6 6 2 2 N 
5 5 5 5 2 2 N 
5 5 6 6 2 2 N 
3 3 3 3 3 3 N 
3 3 4 4 3 3 N 
3 3 5 5 3 3 N 
3 3 6 6 3 3 N 
4 4 4 4 3 3 N 
4 4 5 5 3 3 N 
4 4 6 6 3 3 N 
5 5 5 5 3 3 Y 
4 4 4 4 4 4 Y 
4 4 5 5 4 4 Y 

 

5.2.3 Necessary and Sufficient Conditions for Uniqueness 
For k-rank = rank and R = 6, most PARAFAC solutions were non-unique. 

However, when the sum of each pairwise combination of ranks equaled or 

exceeded R+2 = 8, the PARAFAC solution was unique. Thus, k-rank = rank 

would not make Kruskal’s sufficient condition necessary for R = 6. On the other 

hand, when the pairwise sum of the ranks was at least R + 2 and k-rank=rank, 

the PARAFAC decomposition was unique. This is true when Kruskal’s condition 
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is not met as well as when it is met. Thus, a necessary and sufficient condition 

for uniqueness when R = 6 and k-rank=rank is that all of the pairwise sum of the 

ranks are at least R + 2. 

 

Result 5.24 A PARAFAC solution where k-rank = rank and R = 6 is unique if and 

only if  for all2)()( +≥+ Rrr ji MM ji ≠ . 

 

Thus, in all of the cases considered, R = 3, 4, 5, and 6, the same conditions 

for uniqueness were found when k-rank=rank. For many years, uniqueness was 

thought to be directly linked with the k-rank of the loading matrices. While this is 

still true, the reason necessary and sufficient conditions have been so elusive is 

that considering k-rank does not reveal the entire picture. Even though these 

results point to uniqueness conditions for the cases where k-rank = rank, these 

same methods could be applied to investigate cases with deficient k-rank. 

Additionally, with the advent of some computational tools it will be entirely 

possible to apply the OCSA to determine uniqueness for all the cases for a 

particular R. As will be discussed in the final chapter, it is expected that the 

application of this technique for k-rank < rank will answer much of the question 

about uniqueness as it will be possible to look at cases that appear similar but 

have differing uniqueness results and OC constraints.     
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6. THEOREMS FOR RANK, K-RANK, AND OC CONSTRAINTS  
From the results that were observed for R = 3, 4, 5, and 6 for k-rank = rank, it 

was shown that a condition on the pairwise sums of ranks was necessary and 

sufficient for uniqueness. As demonstrated in these cases, when the sum of the 

ranks of two loading matrices reached or exceeded R+2, it was possible to 

invoke Kruskal’s condition, and so uniqueness, with particular third loading 

matrices. In other cases, non-uniqueness was found because the pairwise sum 

of the ranks was less than R+2. Thus, it would appear that understanding 

uniqueness and developing general necessary and sufficient conditions for 

uniqueness when k-rank=rank would depend on the differences between 

solutions where the sum of the ranks in the KR product achieves R+2 and where 

it does not. Specifically, what matrices are allowable when the sums do not 

achieve R+2 and when the sums were R+2 and greater.  

The following theorems help in this search and could prove to be very useful 

as the approach in this dissertation is extended for general R, where k-rank = 

rank.  Additionally, as computational advances are made, these theorems should 

also provide the basis for developing a set of conditions for general R without 

restricting k-rank to be equivalent to rank. By providing the theoretical foundation 

of how these KR products differ with respect to OC constraints, the first steps for 

obtaining conditions for uniqueness, possibly necessary and sufficient conditions 

for uniqueness, for any R have been made. 

The first section of proofs provide general information about the types of 

loading matrices that can result when considering ranks that are restricted by the 

R+2 condition. In the second section, theorems are offered for the connections 

between the rank arguments and OC constraints for general R. Finally, 

uniqueness is addressed for general R, providing theoretical evidence that ten 

Berge and Sidiropoulos’ conjecture regarding k-rank = rank decompositions is 

not correct. 

6.1 Concepts of ranks, k-ranks, and OC constraints 
In general, larger ranks seemed to supply enough constraints so that 

alternative forms were limited to permutation-scale transformations. The 

                                               115



rationalization for this could also be found in the theory of OC spaces. As the 

ranks (or the number of rows in the RREFs) increased, the product of the two 

ranks would also increase. Since the number of basis vectors for the OC space 

was the difference between this product and the number of columns (R), as the 

rank increased so would the number of basis vectors for the OC to the column 

space of the KR product. When the k-rank was equivalent to the rank and rank < 

R, each basis vector would contain at least one constraint vector. Thus, for k-

rank = rank < R, the number of constraints would increase as the number of 

basis vectors increased. Similarly, the increase in rank and dimension of the OC 

space, would increase the constraints in other KR product cases as well. The 

increased number of constraints on the alternative forms would limit the 

alternatives to permutation-scale transformations. Therefore, it appeared that 

conditions for uniqueness would need to incorporate ranks.  

However, k-ranks must also be considered, as noted by Kruskal and others 

that have pursued uniqueness conditions. The k-rank of a matrix had a direct 

impact on the number of constraint elements that were contained in the OC basis 

vectors. The patterns found in considering the OC space basis vectors with 

constraints suggested that, although k-rank had served as an indicator for 

uniqueness, it was too general of a concept to provide necessary and sufficient 

conditions for uniqueness. Even so, the k-rank of a matrix would be related to the 

constraint elements that appeared in the OC basis vectors, and considering the 

basis vectors in addition to k-rank might provide the detail needed to offer 

necessary and sufficient conditions for uniqueness. Therefore, it would be 

necessary to link the relationship of k-rank, rank, OC basis vectors, and 

constraint elements together.  

The results presented in the previous chapters described the OC space basis 

vectors, the resulting constraints, and their effects on uniqueness. Although 

these results were presented for specific R, the following theorems will prove 

certain properties for all R. From the results presented in Chapters 4 and 5, 

certain trends and properties became obvious in the OC constraints that resulted. 
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These trends and properties are best described by grouping the KR products into 

three types: 

• KR products with k-rank = rank and the sum of the ranks totaling to less 

than R+2 , when the maximum rank is less than R 

• KR products with one of the loading matrices with k-rank = rank = R and 

the other with k-rank = rank < R. 

• KR products with k-rank = rank and the sum of the ranks are at least R+2 

when the maximum rank is less than R. 

Finally, using the results for KR products where k-rank = rank and the sum of the 

ranks is R+2 or greater, it will be possible to prove, for all R, that k-rank = rank 

will not make Kruskal’s sufficient condition necessary. Future work in uniqueness 

will need to consider OC constraints and the resulting conditions on rank, and the 

work presented here will help to lay the groundwork for those who follow. 

6.2 Theorems on the allowable ranks of loading matrices  
For the sum of the ranks of two loading matrices that achieved R+2 or 

greater, Theorem 6.1 will show that when the largest rank of a loading matrix is 

not equivalent to the number of columns, the other loading matrix must have rank 

greater than 2. It has already been assumed that all loading matrices have a k-

rank of at least 2, a necessary condition for uniqueness (Krijnen, 1993). 

Therefore, when the maximum rank does not reach R, the other loading matrices 

would have to be more than 2 in order to reach R+2. 

 

Theorem 6.1 Let r  and r( , then 

. 

( ) max(r( ),r( ),r( )) R= <i i j kM M M M ) r( ) R 2+ ≥ +i jM M

r( ) 2>jM

 

Proof 6.1 Since , r(r( ) r( ) R 2+ ≥ +i jM M ) R 2 r( )≥ + −j iM M . Assuming,  

r( ) max(r( ),r( ),r( )) R= <i i j kM M M M , then R 2 r( ) R 2 R 2+ − > + − =iM  or r( . 

 

) 2>jM
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For the sum of the ranks of two loading matrices that does not reach R+2, 

Theorem 6.2 demonstrates that both of the matrices in the sum have deficient 

rank or rank < R.  

 

Theorem 6.2 Let  and r( , then 

 and r( . 

r( ) max(r( ),r( ),r( ))=i i jM M M kM

kM

jM

) r( ) R 2+ < +i jM M

r( ) R<iM ) R<jM

 

Proof 6.2 Let . Since , 

. A necessary condition for uniqueness, which had already 

been assumed, was that . By definition, the k-rank of a matrix was 

at least the rank of a matrix, or k

r( ) max(r( ),r( ),r( ))=i i jM M M r( ) r( ) R 2+ < +i jM M

r( ) R 2 r( )< + −iM

k( ) 2, m≥ ∀mM

( ) r( )≤mM Mm

M M M ) r( ) R

. Hence, if the lower bound on the 

k-rank of a matrix was 2, then r . Therefore, 

. Hence, r . Since 

, r(

( ) 2, m≥ ∀mM

r( ) R 2 r( ) R 2 2 R< + − ≤ + − =i jM M ( ) R<iM

r( ) max(r( ),r( ),r( ))=i i j kM ≤ <j iM M , so r( ) R<jM .  

 

Consequently, the ranks that formed the sum, whether it was R+2 and greater 

or less than R+2, would be of certain sizes. Limiting the sum of the ranks to be 

less than R+2 would necessarily force the ranks of the loading matrices to be 

smaller, and allowing the sum to be R+2 or more would allow for the ranks to be 

larger. Additionally, for k-rank = rank and Kruskal’s sufficient condition 

unsatisfied, the ranks of the loading matrices would be restricted further, as seen 

in Theorem 6.3. 

 

Theorem 6.3 For r( ) k( )=m mM M , m,m 1,2,3∀ = , let 

 and k(r( ) max(r( ),r( ),r( )) R= =i i j kM M M M ) k( ) k( ) 2R 2+ + <i j kM M M + , then 

 and . r( ) R<jM r( ) R<kM
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Proof 6.3 Let .When Kruskal’s condition was 

not met, k( . A necessary condition for uniqueness, 

which had already been assumed, was that k . Therefore, 

. Consequently, since 

, . It was assumed that r , therefore, 

. Hence, r(

r( ) max(r( ),r( ),r( )) R=i i j kM M M M =

) k( ) k( ) 2R 2+ + < +i j kM M M

( ) 2, m≥ ∀mM

k( ) k( ) 2R 2 k( ) 2R 2 2 2R+ < + − < + − =i j kM M M

r( ) k( ), m= ∀m mM M r( ) r( ) 2R+ <i jM M ( ) R=iM

r( ) r( ) R r( ) 2R+ = + <i j jM M M ) R<jM . Likewise, in a similar approach it 

could also be shown that r( ) R<kM .  

6.3 OC Spaces and KR products 
The relationship between the number of basis vectors in an OC space and 

the number of rows in a matrix was a relatively simple idea from elementary 

linear algebra, but had not heretofore been applied to KR products. The number 

of basis vectors for the OC space was based on the product of the ranks.  

The loading matrices investigated in the OCSA (and the tBSM) were in 

reduced form. Therefore, the number of rows in each matrix was equivalent to 

the rank of the matrix. When the KR product was formed from these matrices, the 

number of rows that resulted in the KR product would be jr( ) r( )⋅iM M . Thus, the 

number of basis vectors in the OC space would be directly related to the product 

of the ranks of the loading matrices.  

Regardless of k-rank, when KR products were created from any loading 

matrices with the same ranks, the same number of OC space basis vectors 

would result. Hence, when the KR product was formed from loading matrices 

having k-rank = rank, the number of basis vectors would be the same as KR 

products formed where k-rank < rank but the ranks were the same. Therefore, a 

KR product formed from loading matrices with k-ranks summing to R+2 or more 

would have the same number of OC basis vectors as a KR product formed from 

loading matrices with k-ranks summing to less than R+2 but with the same ranks 

summing to R+2 or more.  

Hence, it was noted that any differences in permutation-scale restrictions 

between two sets of matrices with the same ranks would not be due to 
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differences in the number of basis vectors, but in the constraint elements within 

those basis vectors. Thus, the ranks of the loading matrices, the size of their 

sum, and the constraint elements became of particular interest when trying to 

determine uniqueness for PARAFAC solutions. Therefore, theorems were 

created and proved to provide some general information regarding loading 

matrices and the sum of their ranks. 

 

Theorem 6.4 The number of basis vectors in the OC space of j i(M M )o  is 

r( )r( ) Rη = −i jM M . 

 

Proof 6.4 The dimension of a space is equivalent to the number of basis vectors. 

Also, the OC space of a matrix consisted of all x such that . In the case of 

KR products, the OC space of interest was the OC to the column space of 

0=Mx

j i(M M )o . Hence, all vectors x, where 0=t
j i(M M ) xo , comprised the OC space to 

the column space of j i(M M )o . The size of t
j i(M M )o  was  and, per 

the assumption that KR products were full column-rank, the 

r( )r( ) R×i jM M

( )r R=t
j i(M M )o . 

Therefore, from linear algebra, the number of basis vectors in the OC to the 

column space of j i(M M )o  was r( )r( ) R−i jM M .  

 

Although the above theorem was simply an application of a well-known 

principle in linear algebra to matrices in KR product form, the relationship of 

constraint elements and number of basis vectors had not been explored. The 

following theorems are presented to define, for all R, the number of OC space 

basis vectors that contain constraint elements. The theorems will define the 

number of basis vectors with constraints when the maximum rank of the loading 

matrices is less than and equal to R, Theorems 6.5 and 6.10, respectively. 

Additionally, theorems will be given that define the number of constraint vectors 

that result when the sum of the matrices are less than R+2, at least R+2 but 

maximum rank < R, and at least R+2 but maximum rank = R. These theorems 
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are the first of their kind and will help to provide a path for determining conditions 

for uniqueness. 

 

Theorem 6.5 For r( ) k( )=m mM M , m,m 1,2,3∀ = , and 

, the number of basis vectors in the OC to the 

column space of 

r( ) max(r( ),r( ),r( )) R=i i j kM M M M <

j i(M M )o with constraint elements from either matrix  or iM

jM was r( )r( ) Rη = −i jM M .  

 

Proof 6.5 In the case where r( ) k( )=m mM M , m,m 1,2,3∀ = , and r( ) R<iM , the 

matrices  and iM jM had R r( )− iM and R r( )− jM columns with elements from  

and 

iM

jM , respectively. Additionally, because rank and k-rank were equivalent and 

, there were no elements equal to 0 in these 

columns. Hence, there would be at least R

r( ) max(r( ),r( ),r( )) R=i i j kM M M M <

r( )− iM  columns without any 0 entries. 

As a consequence, no rows of j i(M M )o  would contain all 0 elements. Therefore, 

no columns of t
j i(M M )o would be comprised of all 0 elements, and so none of the 

basis vectors of the OC to the column space of j i(M M )o , or the null space of 

t
j i(M M )o , would be unit null vectors. Hence, all basis vectors for the null space of 

t
j i(M M )o  would contain at least one constraint element or combination of 

constraint elements from  or . Theorem 6.4 established that the number of 

basis null vectors for the OC to the column space of 

iM iM

j i(M M )o  was 

r( )r( ) Rη = i jM M − . Therefore, for r( ) k( )=m mM M , m,m 1,2,3∀ = , and r( ) R<iM , the 

number of basis vectors in the OC to the column space of j i(M M )o  with 

constraint elements from either matrix  or is r(iM iM )r( ) R−i jM M .  

 

The pairwise sum of loading matrix ranks were evaluated in three classes: 

sums less than R+2; sums greater than or equal to R+2 where a loading matrix 
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had full-column rank; and, sums greater than or equal to R +2 where the loading 

matrices were not full-column rank. For each of these sets of loading matrices 

the following results were found: 

• A bound on the number of OC space basis vectors was obtained  

• A bound on the number of basis vectors with constraint elements was 

obtained 

• Necessary and sufficient conditions for when the bounds would be 

achieved were defined 

Utilizing the elementary theorems presented above, it was possible to provide 

theoretical remarks on whether or not KR products would be limited to 

permutation-scale transformations, and ultimately whether PARAFAC solutions 

were unique.  

 

Theorem 6.6 For r( ) k( )=m mM M , m,m 1,2,3∀ = , if r( , then ) r( ) R 2+ < +i jM M

r( )r( ) R 2R 3η = − <i jM M − . 

 
Proof 6.6 A necessary condition for uniqueness, which had already been 

assumed, was that k . Since r( ) 2, m≥ ∀mM ( ) k( ), m= ∀m mM M , . 

Additionally, under these conditions, it was found in Theorem 6.2 that 

. Therefore, let r(

r( ) 2≥jM

r( ) max(r( ),r( ),r( )) R=i i j kM M M M < ) 2 ρ= +jM , where 

0 R 3ρ≤ ≤ − . The bounds for ρ were established by requiring . 

Since there could only be positive integer number of columns, R, 

. Hence if r(

2 r( ) R≤ <jM

2 r( ) R 1≤ ≤jM − ) 2 ρ= +jM , 0 R 3ρ≤ ≤ − . Also, it was assumed that 

. Therefore, rr( ) r( ) R 2+ < +i jM M ( ) R ρ< −iM . From Theorem 6.4, 

r( )r( ) Rη = i jM M − . By substitution,  

r( )r( ) R (R )r( ) R

(R )(2 ) R

ρ

ρ ρ

− < − −

= − + −
i j jM M M

. 

Consider that (R )(2 )ρ ρ− + is a second degree polynomial. For any R, 

max((R )(2 ))η ρ ρ< − + . The maximum of this polynomial in ρ would be achieved 
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at R 2ρ = − . However, ρ was constrained to be less than or equal to R 3− . 

Hence, with this constraint, the maximum was achieved at R 3ρ = − , and 

3(R 1) R 2R 3.η < − − = −   

 

Theorem 6.7 For , r( ) k( )=m mM M m,m 1,2,3∀ = , if r( ) r( ) R 2+ < +i jM M , then the 

number of basis vectors in the OC to the column space of j i(M M )o with constraint 

elements from either matrix  or iM jM was less than 2R 3− . 

 

Proof 6.7 The maximum rank for a loading matrix must be less than R by 

Theorem 6.2. By Theorem 6.4, it was established that the number of basis 

vectors in the null space of t
j i(M M )o , or OC to the column space of j i(M M )o , 

with constraint elements from either matrix  or iM jM was r( )r( ) Rη = −i jM M . From 

Theorem 6.6, it was found that under these conditions 2R 3η < − . Since the 

number of basis vectors in the OC to the column space of j i(M M )o with constraint 

elements from either matrix  or iM jM was η, the number of basis vectors in the 

OC to the column space of j i(M M )o with constraint elements from either matrix  

or 

iM

jM was less than .  2R 3−

 

Theorem 6.8 For , r( ) k( )=m mM M m,m 1,2,3∀ =  where the maximum rank of a 

loading matrix is less than R, the number of basis vectors in the OC to the 

column space of j i(M M )o  with constraint elements from either matrix  or iM jM is 

less than 2R  if and only if r(3− ) r( ) R 2+ < +i jM M . 

 

Proof 6.8 Theorem 6.6 showed that if r( ) k( )=m mM M , , and 

, then 

m,m 1,2,3∀ =

r( ) r( ) R 2+ < +i jM M 2R 3η < − , which established sufficiency. It was 

assumed that 2R 3η < − , which implied that r( )r( ) R 2R 3− < −i jM M  or that 
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r( )r( ) 3(R 1)< −i jM M . Hence, 3(R 1)r( )
r( )

−
<i

j

M
M

. By substitution, this implied that 

3(R 1)r( ) r( ) r( )
r( )

−
+ < +i j

j

M M M
M j . For any R, the rhs of this inequality was a function 

of r( )jM . The lhs of the inequality, r( ) r( )+iM Mj , would always be smaller than the 

r( )

3(R 1)max r( )
r( )

⎛ ⎞−
+⎜⎜

⎝ ⎠j
jM

j

M
M ⎟⎟ . Since this function must bound the sum of the ranks of the 

two loading matrices, certain restrictions must be applied. The first is that the 

rank of r( )jM  must not be R or greater, which is assumed in the statement of the 

theorem.  The second is that the 
r( )

3(R 1)max r( )
r( )

⎛ ⎞−
+⎜⎜

⎝ ⎠j
jM

j

M
M ⎟⎟ cannot exceed r( )jM +R 

since the sum of the ranks of the two matrices must be less than R. Therefore, 

taking into consideration these limits, the maximum is achieved at two values of 

r( )jM , R-2 and 3. Thus, substituting in for 
r( )

3(R 1)max r( )
r( )

⎛ ⎞−
+⎜ ⎟⎜ ⎟

⎝ ⎠j
jM

j

M
M

 yields 

, which satisfies necessity.  r( ) r( ) R 2+ < +i jM M

 

Theorem 6.9 For r( ) k( )=m mM M , m,m 1,2,3∀ = , if  and  

, then 

r( ) 2≥jM

r( ) max(r( ),r( ),r( )) R= =i i j kM M M M Rη ≥ . 

 

Proof 6.9 From Theorem 6.4 it was found that the number of basis vectors in the 

OC to the column space of j i(M M )o  was r( )r( ) Rη = −i jM M . Substitution of the 

values for r  and  resulted in ( ) R=iM r( ) 2≥jM 2R R Rη ≥ − = .  

 

Theorem 6.10 For r( ) k( )=m mM M , m,m 1,2,3∀ = , if  and  

, then the number of unit basis vectors in the 

OC to the column space of 

2 r( ) R≤ <jM

r( ) max(r( ),r( ),r( )) R=i i j kM M M M =

j i(M M )o  is equal to ( )( )r( ) r( ) 1⎡ ⎤−⎣ ⎦j jM M . 
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Proof 6.10 By Theorem 6.9, in this case, the number of basis vectors in the OC 

to the column space of j i(M M )o was greater than or equal to R. Also, unit vectors 

would occur whenever a row of j i(M M )o , and so a column of t
j i(M M )o , 

contained all 0 elements. Therefore, for each column of t
j i(M M )o  comprised of 

all 0 elements, a unit vector would result. The KR product, j i(M M )o , was 

composed of R columns and r( )r( )j iM M rows. It was assumed that 

 and r( ) max(r( ),r( ),r( )) R= =i i j kM M M M r( ) min(r( ),r( )) R= <j i jM M M . Hence, the 

first r( )jM columns of j i(M M )o  would be the columnwise Kronecker product of 

columns from identity matrices, which would result in a column of only one 

nonzero entry, a 1. Therefore, the remaining R r( )− jM  columns of j i(M M )o  would 

be created from the columnwise Kronecker product of columns from  and iM jM . 

Since r ,  the elements in the last R r( ) k( )=m mM M m,∀ ( )− jM columns of jM  would 

all be constraint elements. Also, because r( ) R=iM , ×=i RM I R , an identity matrix, 

and had no constraint elements. Hence, while the first r( )jM columns of j i(M M )o  

would have no constraint elements, the last R r( )− jM columns would hold all the 

r( )jM  constraint elements of jM . In fact, due to the nature of columnwise 

Kronecker products, a constraint element from jM  would occur in rows at R 

intervals from the last constraint element of jM , starting with the r( ) 1+jM  row 

and column of j i(M M )o . Let  be an element on the diagonal in the row of i
rm thr

jM . Since , . To create the last R r×=i RM I R 0i
rm ≠ ( )− jM  columns of j i(M M )o , the 

last R r( )− jM columns of  and iM jM would be used. Therefore, a constraint 

element would occur in the last R r( )− jM  columns of j i(M M )o  whenever 

, was aligned with the constraint elements in the last i
rm , r r( ) 1, R= +jM K

R r( )− jM columns of jM . Since ×=i RM I R  and the lastR r( )− jM columns of jM  were 

all nonzero, each of the last R r( )− jM  columns of j i(M M )o  would contain exactly 
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r( )jM  constraint elements. Also, because ×=i RM I R , the rows of j i(M M )o with 

these constraint elements would not overlap with rows containing other constraint 

elements Therefore, there would be r( )(R r( ))−j jM M rows of j i(M M )o with 

constraint elements from jM . In addition, these rows with constraint elements 

would not overlap with any row created from the columnwise Kronecker product 

of columns from  and the identity partition of iM jM . Hence, there were r( )jM  

rows containing only one nonzero, non-constraint element that resulted from 

combining columns of identity matrices and r( )(R r( ))−j jM M  rows with constraint 

elements. In total, there were r( ) r( )(R r( ))+ −j jM M Mj  rows that contained at least 

one nonzero element. Hence, the KR product, j i(M M )o , had r( rows, )r( )iM Mj

r( ) r( )(R r( ))+ −j jM M Mj  with at least one nonzero element. Therefore, 

 rows had all zero elements. 

Hence, the OC to the column space of 

r( )r( ) r( ) r( )(R r( )) r( )(r( ) 1)− + − = −i j j j j j jM M M M M M M

j i(M M )o would have ( )( )r( ) r( ) 1⎡ ⎤−⎣ ⎦j jM M  

unit basis vectors.  

 

Theorem 6.11 For r( ) k( )=m mM M , m,m 1,2,3∀ = , if   and 

, then the number of basis vectors in the OC to 

the column space of 

2 r( ) R≤ <jM

r( ) max(r( ),r( ),r( )) R=i i j kM M M M =

j i(M M )o with constraint elements from  or iM jM  

was . ( )(R r( ) r( ) 1⎡ ⎤− −⎣ ⎦j jM M )
 

Proof 6.11 By Theorem 6.10, there are ( )( )r( ) r( ) 1⎡ ⎤−⎣ ⎦j jM M  unit basis vectors in 

the null space of t
j i(M M )o . From linear algebra, the total number of basis vectors 

in the OC to the column space of j i(M M )o  would be . If a basis 

vector was not a unit vector, then it would contain at least two nonzero elements. 

These elements would have resulted from the Khatri-Rao product of  or 

r( )r( ) R−i jM M

iM jM  

and would be used to impose constraints on loading matrices from alternative 
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PARAFAC solutions. Therefore, if a basis vector was not a unit vector, then it 

was a vector with constraint elements from  or iM jM . Hence, the number of basis 

vectors in the null space of t
j i(M M )o  with constraint elements was 

. By substitution of r , the number of 

basis with constraint elements was 

( ) ( )(r( )r( ) R r( ) r( ) 1− − −i j j jM M M M ) ( ) R=iM

( )( )R r( ) r( ) 1− −j jM M . Since Hence, 

 of the basis vectors have constraint elements from  or ( )(R r( ) r( ) 1− j jM M )− iM

jM .  

 

Theorem 6.12 For r( ) k( )=m mM M , m,m 1,2,3∀ = , and 

,  if r(r( ) max(r( ),r( ),r( )) R= <i i j kM M M M ) r( ) R 2+ ≥ +i jM M , then 2R 3η ≥ − . 

 

Proof 6.12 It was assumed that r( ) R<iM  and r( ) r( ) R 2+ ≥ +i jM M . Therefore, 

. Hence, by substitution, . The 

rhs of the inequality was a function of r(

r( ) R 2 r( )≥ + −iM jM jr( )r( ) r( )(R 2 r( )≥ + −i j jM M M M

)jM , where 2 r( ) R 1≤ ≤ −jM . Therefore, 

would always be greater than or equal to the r( )r( )iM Mj ( )min r( )(R 2 r( )+ −j jM M , 

which was achieved at R+2. However, 2 r( ) R 1≤ ≤ −jM . Thus, with the constraint 

of , the minimum was achieved at R  such that 

. Hence, 

2 r( ) R 1≤ ≤jM − 1−

r( )(R 2 r( ) 3(R 1)+ − ≥ −j jM M r( )r( ) R 2R 3η = − ≥ −i jM M .  

 

Theorem 6.13 For r( ) k( )=m mM M , m,m 1,2,3∀ = , and 

, if r(r( ) max(r( ),r( ),r( )) R= <i i j kM M M M ) r( ) R 2+ ≥ +i jM M , then the number of 

basis vectors in the OC to the column space of j i(M M )o with constraint elements 

from either matrix  or iM jM  is greater than or equal to 2R 3− . 

 

Proof 6.13 By Theorem 6.4, it was established that the number of basis vectors 

in the OC to the column space of j i(M M )o  with constraint elements from either 
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matrix  or iM jM  was r( )r( ) Rη = i jM M − . From Theorem 6.12, it was found that 

under these conditions 2R 3η ≥ − . Since the number of basis vectors in the OC 

to the column space of j i(M M )o  with constraint elements from either matrix  or iM

jM  was η, the number of basis vectors in the OC to the column space of 

j i(M M )o with constraint elements from either matrix  or iM jM  was greater than or 

equal to 2R .  3−

 

Theorem 6.14 For r( ) k( )=m mM M , m,m 1,2,3∀ =  and 

, the number of basis vectors in the OC to the 

column space of 

r( ) max(r( ),r( ),r( )) R=i i j kM M M M <

j i(M M )o with constraint elements from either matrix  or iM jM  is 

greater than or equal to 2R 3−  if and only if r( ) r( ) R 2+ ≥ +i jM M . 

 

Proof 6.14 From Theorem 6.12, it was found that if  then r( ) r( ) R 2+ ≥ +i jM M

2R 3η ≥ − , which established sufficiency. Therefore, to establish necessity, it 

was assumed that 2R 3η ≥ −  or that r( )r( ) R 2R 3− ≥ −i jM M . Thus, 

3(R 1)r( )
r( )

−
≥i

j

M
M

. By substitution, this implied that 3(R 1)r( ) r( ) r( )
r( )

−
+ ≥ +i j

j

M M M
M j , 

which was a function of r( )jM . The minimum of 3(R 1) r( )
r( )

−
+ j

j

M
M

 was R 2+ . 

Hence, r( , which supplied necessity.  ) r( ) R 2+ ≥ +i jM M

6.4 Theorems and Uniqueness 
Using the theorems presented above, it was possible to form theoretical 

results regarding PARAFAC decomposition uniqueness and OC space basis 

vectors. First, for PARAFAC solutions where k-rank = rank, the number of OC 

space basis vectors with constraint elements was used to identify when KR 

products would have alternatives that were or were not limited to permutation-

scale transformations.  
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The theoretical results, presented when (1) the pairwise sum of the ranks is at 

least R+2 and the maximum rank is less than R and (2) the pairwise sum of the 

ranks is less than R+2, are used, with the definition of uniqueness, to show that 

the additional condition of k-rank = rank was not able to limit the set of PARAFAC 

solutions so that Kruskal’s condition would be necessary and sufficient. 

 

Theorem 6.15 For r( ) k( )=m mM M , m,m 1,2,3∀ =  and 

, if the number of basis vectors in the OC to the 

column space of 

r( ) max(r( ),r( ),r( )) R=i i j kM M M M <

j i(M M )o with constraint elements from  or iM jM  was greater 

than or equal to , then no alternative KR basis for the column space of 2R 3−

j i(M M )o  that was composed of non-permutation-scale versions of  and iM jM  

existed. 

 

Proof 6.15 Under the conditions of equivalent rank and k-rank and 

, in Theorem 6.5 it was shown that the number 

of basis vectors in the OC to the column space of 

r( ) max(r( ),r( ),r( )) R=i i j kM M M M <

j i(M M )o  with constraint 

elements from  or iM jM  was equivalent to r( )r( ) Rη = −i jM M ; and, under those 

same conditions, in Theorem 6.12, η was found to be greater than or equal to 

. By Theorem 6.14 it was shown that 2R 3− 2R 3η ≥ −  if and only if 

when r( ) r( ) R 2+ ≥ +i jM M r( ) k( )=m mM M ,  and 

. Therefore, the ranks were equivalent to the k-

ranks and r( , which implied that k( . By 

applying Kruskal’s condition (Theorem 2.2), no alternative KR basis for the 

column space of 

m∀

r( ) max(r( ),r( ),r( )) R=i i j kM M M M <

) r( ) R 2+ ≥ +i jM M ) k( ) R 2+ ≥ +i jM M

j i(M M )o  that was composed of non-permutation-scale versions 

of  and iM jM  existed when k( ) k( ) R 2+ ≥ +i jM M . Thus, when r , ( ) k( )=m mM M m∀  

and r( ,no alternative KR basis for the column space of ) r( ) R 2+ ≥ +i jM M j i(M M )o  

that was composed of non-permutation-scale versions of  and iM jM  existed. 
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Finally, this implied that when r( ) k( )=m mM M ,  and 

, if the number of basis vectors in the OC to the 

column space of 

m,m 1,2,3∀ =

r( ) max(r( ),r( ),r( )) R=i i j kM M M M <

j i(M M )o with constraint elements from  or iM jM  was greater 

than or equal to , then no alternative KR basis for the column space of 2R 3−

j i(M M )o  that was composed of non-permutation-scale versions of  and iM

jM existed.  

 

Theorem 6.16 For r( ) k( )=m mM M , m,m 1,2,3∀ =  and 

, the PARAFAC solution would be unique if all 

of the basis vectors from the OCs to the column spaces of all of the resulting KR 

product permutations had 

r( ) max(r( ),r( ),r( )) R=i i j kM M M M <

2R 3−  or more vectors with constraint elements from 

either of the two matrices in the KR product. 

 

Proof 6.16 From Theorem 6.15, it was established that, under the conditions of 

,  and rr( ) k( )=m mM M m,m 1,2,3∀ = ( ) max(r( ),r( ),r( )) R= <i i j kM M M M , if the 

number of basis vectors in the OC to the column space of j i(M M )o with constraint 

elements from  or was greater than or equal to iM 2R 3− , then no alternative KR 

basis, composed of non-permutation-scale versions of  and iM jM ,for the column 

space of j i(M M )o  existed. Therefore, if every KR product permutation of , iM jM , 

and  resulted in a transpose such that the OC to the column space had 

 or more basis vectors with constraint elements, no alternative KR basis, 

composed of non-permutation-scale versions of the loading matrices, for the 

column space of any of the KR products would exist. By the definition of 

uniqueness, a PARAFAC solution was unique if all KR product permutations of 

loading matrices, had no alternative KR basis, composed of non-permutation-

scale versions of the loading matrices, for the column space of the KR product 

existed. Hence, a PARAFAC solution where all KR product permutations of the 

kM

2R 3−
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loading matrices had transposes such that the resulting OC spaces consisted of 

 or more basis vectors with constraint elements, would be unique.  2R 3−

 

Theorem 6.17 For r( ) k( )=m mM M , m,m 1,2,3∀ = , Kruskal’s condition is not 

necessary and sufficient. 

 

Proof 6.17 Suppose that Kruskal’s condition was necessary when 

, . For rr( ) k( )=m mM M m,m 1,2,3∀ = ( ) k( )=m mM M , m∀ , the necessity of the 

condition implied that PARAFAC uniqueness would occur only if Kruskal’s 

condition was met or only when k( ) k( ) k( ) 2R 2+ + ≥i j kM M M +

<

. The necessity of 

Kruskal’s condition when rank was equal to k-rank could only be denied if 

uniqueness could be established for solutions with r , , and 

. From Theorem 6.16, PARAFAC solutions are 

unique, when k-ranks and ranks are equivalent, if 

 and all of the basis vectors from the Null 

spaces of all the transposes of the resulting KR product permutations had 

( ) k( )=m mM M m∀

k( ) k( ) k( ) 2R 2+ + < +i j kM M M

r( ) max(r( ),r( ),r( )) R=i i j kM M M M

2R 3−  

or more vectors with constraint elements. Theorem 6.14 showed that requiring 

 or more basis vectors to have constraint elements was equivalent to 

requiring . Since each KR product permutation had a 

transpose where the Null space had 

2R 3−

r( ) r( ) R 2+ ≥ +i jM M

2R 3−  or more basis vectors with constraint 

elements, , r( ) r( ) R 2+ ≥ +i jM M i j, i 1,2,3, j 1,2,3∀ ≠ = = . It was assumed that 

 and r( ) r( ) r( ) 2R 2+ + < +1 2 3M M Μ r( ) k( )=m mM M , m∀ . Thus, the only remaining 

loading was to show that there existed loading matrices such that each of the 

pairwise sums of ranks was at least R+2 and r( ) r( ) r( ) 2R 2+ + < +1 2 3M M Μ .  

Suppose that r  and ( ) r( ) R 2+ = +2 3M M r( ) max(r( ),r( ),r( )) R= <1 1 2 3M M M M . 

Therefore, . Adding r  to each side of the equation 

preserved equality so that r

r( ) R 2 r( )= + −2 3M M ( )1M

( ) r( ) r( ) R 2 r( )+ = + + −1 2 1M M M M3

3

. It was also 

assumed that  so that r . Hence, r( ) max(r( ),r( ),r( )) R= <1 1 2 3M M M M ( ) r( )≥1M M
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r( ) r( ) 0− ≥1 3M M  and r( ) r( ) r( ) R 2 r( ) R 2+ = + + − ≥ +1 2 1 3M M M M . Similarly, 

and r( ) r( )≥1 2M M r( ) r( ) r( ) R 2 r( ) R 2+ = + + − ≥ +1 3 1 2M M M M . Thus, 

, . Further, since it was assumed that 

, 

r( ) r( ) R 2+ ≥ +i jM M i j, i 1,2,3, j 1,2,3∀ ≠ = =

r( ) max(r( ),r( ),r( )) R= <1 1 2 3M M M M R r( ) 0− >1M , which could be rewritten as 

. Since r , 

. Rearranging the elements in the inequality 

resulted in r .  

R r( ) R 2 (R 2)− > + − +1M ( ) r( ) R 2+ = +2 3M M

R r( ) r( ) r( ) (R 2)− > + − +1 2 3M M M

( ) r( ) r( ) 2R 2+ + < +1 2 3M M Μ

Therefore, uniqueness had been established when rank and k-rank were 

equivalent and k , or when Kruskal’s condition was 

not met. Hence, uniqueness in the absence of Kruskal’s condition implied that 

Kruskal’s sufficient condition was not necessary.  

( ) k( ) k( ) 2R 2+ + < +1 2 3M M Μ
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7. DISCUSSION AND FUTURE RESEARCH
Necessary and sufficient conditions for the uniqueness of PARAFAC 

solutions had long been sought ever since Harshman introduced the idea of 

parallel proportional profiles. Kruskal’s seminal work in the area provided 

sufficient conditions that quieted the pursuit of conditions for almost three 

decades. The search, however, was reopened when Bro introduced the idea of 

KR products (1998) and Liu and Sidiropoulos (2001) offered necessary 

conditions for uniqueness with KR products. However, it was the use of KR 

products and simplified forms, employed by ten Berge and Sidiropoulos, that 

provided the groundwork for truly investigating Kruskal’s condition and the 

somewhat abstract concept of k-rank.  

Although ten Berge and Sidiropoulos offered a method that proved adequate 

in refuting the idea that Kruskal’s k-rank sum condition was necessary as well as 

sufficient, their approach was not entirely successful in providing additional 

conditions so that Kruskal’s k-rank condition would be necessary and sufficient. 

Additionally, and more importantly, the investigation of column spaces failed to 

provide answers as to why some PARAFAC solutions were unique and others 

were not. Especially troublesome to ten Berge and Sidiropoulos was that k-rank 

appeared to be lacking in providing answers to the question.  

OC spaces, however, were able to illuminate the differences that existed 

between PARAFAC solutions where the loading matrices had the same k-rank 

and rank but different uniqueness conclusions. In addition, exploring the 

constraints that arose from the OC spaces offered necessary and sufficient 

conditions for PARAFAC solution uniqueness. 

The use of OC spaces laid a foundation so that the examination of PARAFAC 

decompositions could be reduced to evaluating the pairwise combinations of 

loading matrices and provided a simplified method for evaluating uniqueness. 

The limitation of the OCSA and the tBSM came in evaluating PARAFAC 

solutions with a large number of factors, or large R and k-rank < rank. However, 

whereas the tBSM and the direct use of column spaces did not offer a methodical 

approach to the problem, the OCSA provided a straightforward and systematic 
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approach, needing only a more computational strategy for evaluating k-rank. The 

difficulty with large R and deficient k-rank is rooted in the many combinations of 

RREFs that result from having k-rank < rank. Although the number of these 

combinations was not insurmountably large, evaluating the many alternative 

possibilities for each of these combinations became increasingly complex.  

The greatest factor contributing to the complexity was maintaining the matrix 

properties of alternative loading matrices. As experienced by ten Berge and 

Sidiropoulos, results could be misleading if the alternative matrices did not have 

the appropriate matrix properties. Identifying whether or not an alternative 

loading matrix had the appropriate k-rank became an overly difficult task. In order 

to utilize OC spaces for the evaluation of uniqueness for larger R and k-rank < 

rank, it would be necessary to computationally evaluate alternative solutions for 

k-rank.  

To date, there are no mechanisms available to weed out alternative loading 

matrices with inappropriate k-rank. Future research in the uniqueness of 

PARAFAC decompositions will need to incorporate a computational tool to 

evaluate k-rank for alternative loading matrices in RREF. Additionally, the tool 

could be employed to produce the various RREF for loading matrices with k-

rank<rank as well as selecting appropriate alternative loading matrices for 

evaluation. Thus, one of the remaining roadblocks to uniqueness conditions 

would be to develop a strategy for examining the many alternative possibilities for 

large R and k-rank < rank. 

Many of the KR products composed of matrices with small ranks were found 

to have non-permutation-scale alternatives, while most of the cases with large 

ranks were limited to permutation-scale transformations. Necessary and 

sufficient conditions for all R appear to be rooted in the evaluation of the OC 

spaces. Although the mathematical principles needed to find and prove the 

necessary and sufficient conditions for uniqueness are well outside the scope of 

this dissertation, the investigation of specific cases suggests that OC spaces 

could finally provide an avenue for finding these conditions. 

Copyright © Heather Michele Clyburn Bush 2006 
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