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ABSTRACT OF DISSERTATION 

 

 

THE ROLE OF p53 IN POLYGLUTAMINE EXPANSION INDUCED 

NEURODEGENERATION 

 

 Polyglutamine expansion disorders are progressive neurodegenerative diseases 

that are caused by the pathological expansion of polyglutamine repeats.   Huntington’s 

disease (HD) is a polyglutamine disorder caused by the expansion of an existing 

polyglutamine tract in a novel protein, Huntingtin (Htt).  Oxidative stress has been 

implicated in the neural dysfunction observed in multiple neurodegenerative conditions 

including HD.  The tumor suppressor p53 is a multifunctional protein that has roles in 

the cell cycle, apoptosis and neurodevelopment.   The role of p53 in HD-associated 

neurodegeneration has been studied but not fully elucidated, nor has the role of p53 in 

oxidative stress toxicity been fully elucidated.  

 Here I present work that demonstrates polyglutamine expansion induced 

alterations to p53 stability, localization, and activity.  The transcriptional activity of p53 

was found to have a role in oxidative stress mediated as well as polyglutamine 

mediated neurotoxicity in vitro.  The expression of p53 was also altered in vivo in a 

mouse model of HD as well as in HD brain. 



Taken together, these data demonstrate a role for p53 in polyglutamine and oxidative 

stress toxicity.   
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Chapter One 

Introduction/Background 

 

Huntington’s disease 

 Huntington’s disease (HD) is a progressive neurodegenerative disease that 

affects about 1 in 20,000 people of European descent (Rubinsztein, 2002). It is 

autosomal dominant in nature and was first described in detail in 1872 by George 

Huntington.  In 1993, the genetic cause of Huntington’s disease (HD) was defined.  The 

Huntington’s Disease Collaborative Research Group (HDCRG)  identified the gene 

IT15, located on the short arm of chromosome 4, as the defective gene common to 

members of 75 families afflicted with HD. IT15 was found to have 67 exons, and code 

for a protein approximately 348 kD in size.  This protein was of  unknown function and 

had no relation to any known gene (HDCRG, 1993). Subsequently named huntingtin, 

this gene contains within exon 1, a region of CAG trinucleotide repeats.  HD occurs in 

individuals who have an unstable genetic insertion of repeating CAG, which code for 

glutamine, sequences.  Therefore HD is known as a trinucleotide repeat or 

polyglutamine expansion disease.  Normal individuals have between 9 and 35 

glutamines in the polyglutamine domain of the huntingtin gene (htt), whereas greater 

than 37 glutamines results in HD.  Polyglutamine expansion is a common mutation in at 

least 8 other neurodegenerative disorders including spinocerebellar ataxia 1 (SCA1),  

and spinal and bulbar muscular atrophy (SBMA) (Koshy et al., 1997;  Shahbazian et al., 

2001;  Zoghbi et al., 2000).  The polyglutamine expanded proteins that cause each of 

these diseases are unique to their individual disease, and have no known relationship to 
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each other, other than the region of polyglutamine expansion.  All of these diseases 

result in selective neurodegeneration. 

 The presence of polyglutamine expansion is thought to cause a deleterious 

gain of function in each of the polyglutamine disorders, which then directly causes 

increased neurotoxicity. For example, normal huntingtin protein (Htt) is required for 

embryonic development (Zeitlin et al., 1995).  This toxicity can be rescued by 

expression of  mutant Htt (Hodgson et al., 1996). Additionally, when wild-type htt is 

over-expressed in vitro, cellular toxicity in response to various stimuli is reduced (Ho et 

al., 2001;  Leavitt et al., 2001).  Htt  therefore appears to be an essential protein, and 

the polyglutamine expansion does not appear to inactivate it (Wellington et al., 1997;  

Zoghbi et al., 2000).  

 Age of onset and severity of HD is inversely proportional to the length of the 

polyglutamine expansion, with most affected people displaying symptoms in their 30’s 

or 40’s.  However, persons with very long polyglutamine repeats suffer early onset HD, 

even before the age of 20 (Koshy et al., 1997).  People with HD exhibit symptoms of 

chorea, or uncontrollable movements such as grimacing, flexing and unflexing of the 

fingers, and movement of the shoulders (Zoghbi et al., 2000).  Additional symptoms 

include slowness of voluntary movements and speech known as bradykinesia (Zoghbi 

et al., 2000). The reflex responses in HD patients are not affected.  Late stage patients 

have difficulty with swallowing and become dystonic, rigid, and bedridden.  In some 

patients, there are also psychiatric symptoms, including schizophrenia, mood disorders, 

and cognitive difficulties (Ho et al., 2001;  Naarding et al., 2001).  These data indicate 

that mutant Htt cause multiple neurophysiological disturbances.   
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Neurodegeneration in HD 

 The selective neurodegeneration see in HD affects mostly the corpus striatum 

(Vonsattel et al., 1985).  The corpus striatum consists of 3 regions of the brain, the 

caudate nucleus, the putamen, and the globus pallidus (Vonsattel et al., 1985). The 

neuropathology of HD is distinctive, highlighted by selective loss of striatal neurons, 

mostly in the caudate and putamen (Vonsattel et al., 1985).  The loss of these neurons 

results in atrophy of the striatum.  Other regions of the basal ganglia, such as the 

substantia nigra (SN), are reduced in size due to loss of striatal projections.  Neurons 

from the striatum project processes into other parts of the brain including the SN, to 

regulate signals from the SN.  Loss of these projections results in loss of SN volume.  

Some cortical and cerebellar atrophy have also been reported (Vonsattel et al., 1985). 

The majority of neurons lost in HD are medium spiny neurons, which are gamma -amino 

butyric acid (GABA) and glutamatergic neurons.  The NADPH (nictotinamide adenine 

dinucleotide phosphate) diaphorase neurons are relatively spared.  Upon autopsy, HD 

can be classified pathologically in Grades 0-4, based upon the severity of caudate 

atrophy (Vonsattel et al., 1985). Grade 0 brains have no appreciable neuron loss, 

whereas Grade 3 or Grade 4 brains have pronounced atrophy and neuron loss and 

exhibit increased astrogliosis, or increased growth of reactive astrocytes.   The 

classification of neuropathology generally correlates with progression of the disease.  

However, some Grade 0 patients exhibit clinical symptoms of HD (Vonsattel et al., 

1985).  This suggests that HD symptoms occur previous to, or occur independently of, 

widespread neural death.  This could suggest that neurons may be dysfunctional before 
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they die, and that loss of neurons is a byproduct of the disease, and not the cause of 

the disease phenotype.       

 Htt associates with itself as well as with other proteins, forming intracellular 

aggregates (IA’s).  IA’s have been observed in cell nuclei and cytoplasm of  postmortem 

human HD brains (Becher et al., 1998;  Turmaine et al., 2000).  Amino (N-) terminal 

fragments of expanded htt have been observed to aggregate in the nuclei and axons of 

post-mortem HD brain (DiFiglia et al., 1997).  In fact, only N-terminal fragments of htt 

have been observed in both nuclear and cytoplasmic IA’s (Cummings et al., 2000).  

Protein aggregates are much more common in dendrites than in the nucleus, and are 

more common in the cortex than in the striatum in HD brain (Gutekunst et al., 1999).  

These observations have been corroborated by studies in mice transgenic for full length 

human htt  or N-terminal fragments of htt (Hodgson et al., 1999;  Mangiarini et al., 1996) 

as well as in cell lines transfected with htt constructs (Cooper et al., 1998;  Steffan et al., 

2000;  Wang et al., 1999).  Studies incorporating polyglutamine fused to Green 

Fluorescent Protein (GFP) have also shown that pathological lengths of polyglutamine 

are sufficient to induce aggregate formation (Ding et al., 2002;  Moulder et al., 1999).  

These data have been corroborated in HD “knock-in” models where the full length 

mutant huntingtin is under the control of the native htt promoter (Li et al., 2001). In these 

mice, aggregates in the axons of primary striatal neurons transfected with N-terminal 

fragment of htt were found to inhibit axonal transport.  This inhibition took place prior to 

neural death, suggesting that aggregates inhibit neuronal function, which may 

eventually lead to death. In several models of polyglutamine disease, IA’s have been 

found to contain several different proteins.  These include ubiquitin , transcription factors 



 5

such as CREB (cyclic AMP response element binding protein) Binding Protein (CBP) 

(Nucifora et al., 2001;  Steffan et al., 2000) and p53 (Suhr et al., 2001) , as well as a 

p53 regulator, Mouse Double-Minute-Protein 2 (Mdm2) (Suhr et al., 2001).   

 The contribution of aggregates to neurotoxicity is unclear.  One possibility is 

that the nuclear aggregates are the toxic component of HD.  This hypothesis is 

attractive in that transcription factors have been found in protein aggregates (Li et al., 

2002;  Nucifora et al., 2001;  Suhr et al., 2001;  Yu et al., 2002), and dysregulation of 

CBP mediated transcription has been found in mouse and cellular models of HD 

(Igarashi et al., 2003;  Wyttenbach et al., 2001).  CBP binds to CREB, which binds to 

the cyclic AMP response element (CRE) and mediates many pathways necessary for 

neuronal homeostasis  (Freeland et al., 2001;  Jin et al., 2001).  Disruption of CREB 

signaling has been shown to lead to striatal neurodegeneration reminiscent of HD 

(Mantamadiotis et al., 2002) .  Taken together, these data indicate that loss of 

transcription plays direct role in HD associated neurodegeneration.   Some of the genes 

mediated by CBP include genes involved in growth signaling, such as retinoid receptor 

genes, and alterations in these pathways could be responsible for neuritic dystrophy 

observed in both mouse and human HD. Some studies have suggested that CBP, 

which also contains a polyglutamine repeat domain, is sequestered by protein 

aggregates, and that this depletes available nuclear CBP in HD and other polyglutamine 

disorders (McCampbell et al., 2000;  Nucifora et al., 2001).  However, other studies 

have found that CBP as well as other transcription factors , such as SP1 (Li et al., 

2002), bind to soluble htt, and that CBP is not depleted by htt aggregates  (Yu et al., 
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2002).  Alternatively, aggregates in the neurites may be toxic.  They could interfere with 

intracellular transport, such as in the model described above (Li et al., 2001).  

 

Oxidative Stress in HD 

 Oxidative stress has been implicated in the neural dysfunction and death 

observed in neurodegenerative conditions such as Alzheimer’s disease (AD) (Butterfield 

et al., 2002;  Butterfield et al., 2002;  Markesbery, 1997), Parkinson’s disease (PD) 

(Blum et al., 1997), as well as HD (Browne et al., 1999).  Oxidative stress has also been 

observed to be a major component of neural dysfunction and death following ischemic 

stroke and traumatic brain injury (TBI) (Kaya et al., 1999;  Martin et al., 2003;  Mattson 

et al., 2001). Cells normally produce free radicals as byproducts of aerobic respiration 

and other metabolic processes (Grunewald et al., 1999).  These free radicals include 

reactive oxygen species (ROS).  ROS are highly reactive oxidants and can have 

deleterious effects on cellular lipids, proteins, and DNA (Heales et al., 2002).  Cells 

normally have enzymes and coenzymes that act as antioxidants  (Keller et al., 1998;  

Reiter et al., 2002).  These are able to “neutralize” ROS and prevent them from causing 

damage (Heales et al., 2002).  Oxidative stress occurs when the cell can no longer 

mitigate the effects of ROS, resulting in pathology that can include oxidized DNA, lipids, 

and proteins (Atlante et al., 2001;  Mecocci et al., 1999) .  ROS  include the superoxide 

anion  (O2
-) , hydrogen peroxide (H2O2), nitric oxide (NO), and hydroxyl radical (HO·) 

(Keller et al., 2001).  The primary site of the production of these free radicals is the 

mitochondrion (Fleury et al., 2002).  Superoxide is produced within the mitochondrion at 

complexes I, II, III, and IV of the electron transport chain (Klein et al., 2003).  A single 
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electron is transferred from the electron transport chain at these sites to molecular 

oxygen.  The reaction of superoxide with H+ catalyzed by superoxide dismutase (SOD) 

produces H2O2 (Keller et al., 2001;  Klein et al., 2003).  H2O2 reacts with the transition 

metals Cu+ or Fe2+ via the Fenton reaction to produce the hydroxyl radical   .  NO is 

produced by nitric oxide synthase (NOS), which catalyzes the conversion of arginine to 

citrulline and NO (Deckel, 2001).  NO can react with superoxide to produce the 

peroxynitrite free radical (Deckel et al., 2001).   

 The effects of ROS on neuronal homeostasis have been extensively studied 

(Browne et al., 1999;  Jenner, 2003;  Markesbery, 1997).  ROS generation can result 

from excitotoxicity, perturbances in calcium homeostasis, or disruptions to oxygen and 

glucose levels during ischemia (e.g. stroke).  Elevations in intracellular calcium, such as 

that observed in glutamate excitotoxicity, can depolarize the mitochondrial membrane, 

resulting in the release of cytochrome C, which can lead to neural death (Mattson et al., 

2001). Oxidative stress can also lead to DNA damage, which can lead to neural death.  

One marker of this DNA damage is the modified nucleotide 8-hydroxy-2-

deoxyguanosine (8-OHdG), which has been shown to be produced  by peroxynitrite 

(Markesbery, 1997).  

 It has been hypothesized that oxidative stress mediates neuronal dysfunction 

or death in HD.  For example, DNA damage was detected in the form of 8-OHdG  in a 

mouse model of HD (Bogdanov et al., 2001).  Oxidative damage to mitochondrial DNA 

has also been observed in human HD (Polidori et al., 1999).  Increased lipid 

peroxidation has been observed in striatum of HD transgenic mice (Perez-Severiano et 

al., 2000), and is correlated with a decrease in superoxide dismutase (SOD) activity and 
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increased NOS activity (Perez-Severiano et al., 2002).  Decreased SOD activity would 

decrease H2O2 produced from excess superoxide.  Increased superoxide production in 

concert with increased NOS activity, would result in increased peroxynitrite levels.   In a 

chemical model of HD, treatment of rats with 3-nitropropionic acid, a complex II inhibitor, 

leads to striatal lesions, comparable to what is observed in HD  (Brouillet et al., 1999).  

In these models,  there is increased oxidative damage to DNA, membrane lipids, and 

proteins (Browne et al., 1999). Recent studies have demonstrated antioxidants promote 

neuroprotection, increased performance, and increased survival in animal models of HD 

(Feigin et al., 2002).  For example, treatment with the antioxidants coenzyme Q10 and 

remacemide improved survival and motor performance in mouse models of HD 

(Ferrante et al., 2002).  Additionally, an increase in brain weight attributable to 

decreased ventricle size was observed after treatment of mice with these compounds 

(Ferrante et al., 2002).  Lipoic acid, a compound that naturally occurs in mitochondria, 

has been shown to attenuate oxidative damage, was also shown to increase mean 

survival in two mouse models of HD (Andreassen et al., 2001).  Taken together, these 

data indicate a role for oxidative stress in mediating HD. and this may be alleviated by 

antioxidant therapy. 

   

p53 in HD 

The protein p53 has been implicated in a wide array of neurodegenerative 

disease and neural death due to injury (Blum et al., 1997;  de la Monte et al., 1998;  

Duan et al., 2002;  Kaya et al., 1999).  It is a pleiotropic protein with many functional 

roles in the cell (Bargonetti et al., 2002).  Originally, p53 was identified as an oncogene, 
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but is actually a tumor suppressor (Lane et al., 1979).   It was detected as a host protein 

that co-precipitated with the large T antigen of SV40 when cells were transformed with 

that virus (Lane et al., 1979) .  Additionally, this protein was immunoprecipitated with 

large T antigen in uninfected cells (Crawford et al., 1981;  DeLeo et al., 1979).  After 

twenty plus years, it has been found that p53 mutations are present in more than half of 

human cancers (Oren et al., 1999).  Acting  as a sequence specific transcription factor, 

p53 activates genes involved in cell differentiation (el-Deiry, 1998;  Maacke et al., 1997), 

apoptosis (el-Deiry, 1998), and the cell cycle (Flatt et al., 2000;  Winters, 2002). Cell 

cycle checkpoints that are activated in response to genomic damage or other stresses 

are mediated by p53. For example, the transcription of p21WAF1/CIP
, a protein that 

induces a G1 cell cycle arrest in response to DNA damage or other stresses, is 

mediated by p53 (Balint et al., 2001;  el-Deiry, 1998). The pro-apoptotic gene BAX  is up 

regulated by p53 (Morrison et al., 2000) and is involved in release of Cytochrome C 

from the mitochondrion (Scorrano et al., 2003).  Apoptosis protease activating factor-1 

(APAF-1), another transcriptional target of p53, is activated by Cytochrome C and 

promotes neuronal apoptosis through activation of a caspase cascade  (Fortin et al., 

2001).  Transcription of pro-apoptotic genes is mediated by p53 in response to 

excitotoxicity, trophic factor deprivation, or hypoxia, as well as in neurodevelopment 

(Miller et al., 2000;  Morrison et al., 2000;  van Lookeren Campagne et al., 1998) .  Not 

only does p53 induce pro-apoptotic genes, it also represses the promoters of genes that 

respond to growth signals (Fortin et al., 2001).  An array of promoters involved in 

promoting cell growth, including interkeukins 2, 4, and 6 as well as the insulin promoter, 

are repressed by p53.   
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 As a transcription factor, p53 is regulated by post-translational modifications.  

Examples of these modifications include phosphorylation and acetylation (Gu et al., 

1997;  Ito et al., 2001;  Vousden, 2002;  Woods et al., 2001).  These modifications are 

associated with changes in p53 activity (Ito et al., 2001), localization (Liang et al., 2001), 

and/or stability.  There are several regulatory domains in p53,  including an N-terminal 

transactivation domain, a nuclear localization sequence (NLS), nuclear export 

sequences (NES), an oligomerization domain, a sequence specific DNA binding 

domain, and a C-terminal regulatory domain (Balint et al., 2001;  Woods et al., 2001).  

Modification or interference with these domains, either through post-translational 

modification or protein interaction, can greatly alter p53 stability, localization, and 

activity (Ashcroft et al., 1999;  Gu et al., 1997;  McLure et al., 1998).  Because of its role 

in cell death and the cell cycle, p53 stability is tightly regulated.  The half-life of p53 is 

normally about 15 minutes.  Under normal conditions, p53 is bound by Mdm2 (Alarcon-

Vargas et al., 2002).  Mdm2 is an E3 ubiquitin ligase and targets p53 for proteolysis 

(Michael et al., 2003). Mdm2 may also sequester p53 away from the nucleus 

(Freedman et al., 1998). Mdm2 transcription is mediated by p53, which results in a 

negative autoregulatory loop (Barak et al., 1993;  Oren, 2003;  Vousden, 2002).  

However, in response to certain signals, such as DNA damage, p53 is phosphorylated 

on residues located within the region of Mdm2 association (Gao et al., 1999;  Shieh et 

al., 1999).  This has been suggested to attenuate the Mdm2-p53 interaction, resulting in 

reduced p53 proteolysis (Ashcroft et al., 1999;  Shieh et al., 1999).  

  Acetylation occurs on several lysine residues of p53 (Gu et al., 1997;  Vousden, 

2002).    The proteins that acetylate p53 are the histone acetyltransferases, or HAT 
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proteins (Prives et al., 2001).  These include  CREB Binding Protein (CBP), p300, and 

p300/CBP associated factor (P/CAF), which can also form complexes with p53 

upstream of target genes (Grossman, 2001).  The effect of p53 acetylation is unclear.  

Earlier data suggested that p53 DNA binding activity was increased as a direct result of 

acetylation (Gu et al., 1997).  Recently though, it has been reported that p53 acetylation 

activates transcription through the recruitment of other coactivators or transcription 

factors (Barlev et al., 2001). Over expression of histone deacetylase proteins has been 

shown to attenuate p53 transcriptional activity, which would be consistent with both 

models (Juan et al., 2000).  These observations are important for HD because 

treatment of   animal models of HD with histone deacetylase (HDAC) inhibitors have 

been shown to ameliorate the polyglutamine-dependent neurodegeneration observed in 

these animals (Steffan et al., 2001).  Additionally, in a cell model of SBMA, a disease 

caused by polyglutamine expansion within the androgen receptor gene (Zoghbi et al., 

2000), polyglutamine dependent cell death was attenuated by CBP over expression 

(McCampbell et al., 2000). These studies were aimed at studying the role of CBP in 

polyglutamine disease in the context of CBP sequestration in protein aggregates.  

However, due to the effects of acetylation on p53 activity or stability, it is reasonable to 

ask whether HDAC inhibition might also affect p53 activity in models of polyglutamine 

disease and what effect on neurotoxicity such alterations might have. 

 The role of p53 in neuronal apoptosis has been studied extensively (Mattson 

et al., 2001).  Characteristics of apoptosis include caspase activation, chromatin 

condensation and fragmentation, membrane blebbing, loss of cellular volume, and 

eventual phagocytosis (Zimmermann et al., 2001).  Neural death mediated by p53 has 
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been implicated in a variety of disease and injury models including AD (de la Monte et 

al., 1997),  PD (Blum et al., 1997;  Duan et al., 2002), amyotrophic lateral sclerosis 

(ALS) (de la Monte et al., 1998), ischemia (van Lookeren Campagne et al., 1998), 

excitotoxic injury (Culmsee et al., 2001;  Uberti et al., 1998;  Uberti et al., 2000), and 

traumatic brain injury (Kaya et al., 1999;  Napieralski et al., 1999).  Studies have 

suggested that neural apoptosis may be dependent on p53 transactivation of a variety 

of genes.  Some studies have used pharmacological inhibitors of p53, such as pifithrin-

α, which blocks p53 transcriptional activity (Culmsee et al., 2001;  Duan et al., 2002).  

Some of the genes implicated in p53 dependent neural apoptosis in both injury and 

disease models include APAF-1 (Fortin et al., 2001),  BAX (Blum et al., 1997;  Duan et 

al., 2002;  Zhang et al., 2002),  which code for proteins that have been implicated in 

oxidative stress mediated neurotoxicity.  

 The role of p53 in polyglutamine neurotoxicity has not been extensively studied.  

Several proteins were reported to aggregate with mutant Htt in  intracellular inclusions 

including  p53,   Mdm2, CBP, and ubiquitin (Suhr et al., 2001).  Thompson and 

colleagues (Steffan et al., 2000) also examined the relationship between Htt and p53 in 

non-neuronal cell lines that expressed htt. The proline rich region adjacent to the 

polyglutamine region of htt has been suspected to be involved in polyglutamine 

neurotoxicity  (Steffan et al., 2000).  Htt constructs were made with and without the 

proline rich region (Steffan et al., 2000).  It was observed that htt and p53 coaggregate 

in intracellular inclusions irrespective of the proline rich region (Steffan et al., 2000).  

Glutathione-S-transferase (GST) pulldown experiments utilizing GST-Htt fusion proteins 

demonstrated a direct interaction in vitro between mutant Htt and p53 that was 
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dependent on the proline rich region of htt.  However, this dependence was not 

observed in similar studies conducted in cell culture.  Additionally, p53 mediated 

transcription, e.g. that of p21WAF/CIP, was repressed in cells transiently transfected with a 

polyglutamine expanded htt construct.  CBP and was also observed to be in intracellular 

inclusions in this study.  The authors proposed a model whereby p53 mediated 

transcription was repressed due to the sequestration of CBP and other p53 coactivators 

by the inclusions.  Together these data indicate direct interaction between mutant Htt 

and p53 and that p53 mediated transcription may be altered in HD. 

Another study utilized cell lines derived from striatum of wild type or HD mice  

(Trettel et al., 2000).  The HD mice were knock in mice were polyglutamine expanded 

htt was substituted for the wild type gene.  Cell lines were immortalized using a 

temperature sensitive large T antigen from SV40 virus.  One of the observations made 

was that cells from HD mice had a longer doubling time.  Fluorescence Assisted Cell 

Sorting (FACS) analysis revealed that there was twice the DNA content in these cells, 

indicating blockage of the p53/SV40 large T antigen establishment pathway.   At 

restrictive temperature, there was 2 fold greater large T antigen in the mutant Htt cells 

but 6 fold greater p53 expression compared to wild type cells, suggesting that 

polyglutamine expansion had a role in cellular stress that stabilized or induced p53.  

These data are important for HD because these studies were conducted in striatal 

neurons, which are the neurons most affected in HD, and demonstrated elevated p53.    

 Another study was conducted in inducible mouse neural cell lines stably 

transfected with either an expanded N-terminal htt fragment (60Q and150Q) or 

nonpathological N–terminal htt fragment (16Q) (Jana et al., 2001).  Analysis of protein 
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expression revealed more p53 in the 150Q cell line than the 16Q cell line, that was 

dependent on polyglutamine expansion mediated deficits in protein degradation.  This 

increase was concomitant with increased levels of cytosolic cytochrome C, and cell 

death, suggesting a role for p53 in polyglutamine expansion mediated neural death.  

One of the hallmarks of polyglutamine expansion disease is the loss of dendritic 

spines from affected neurons.  Loss of dendritic spines results in a decrease in neural 

networking and is thought to contribute to neural dysfunction. For example, in a mouse 

model of SCA1, a polyglutamine expansion disease caused by expansion in the ataxin-

1 protein (Zoghbi, 1995),  Purkinje cells show a decrease in the number of dendritic 

spines (Shahbazian et al., 2001).  This may be analogous to abnormal neurite 

development observed in differentiated cells expressing polyglutamine expansion (Li et 

al., 1999;  Song et al., 2002;  Wyttenbach et al., 2001). SCA1 mice that did not express 

p53 were found to have less neuropathology than SCA1 littermates that express p53 

(Shahbazian et al., 2001).  These mice were heterozygous for the SCA1 mutation and 

homozygous for p53 deletion.    SCA1 mice that are homozygous for p53 deletion had 

no difference in cell number or in early motor performance.  There was no difference in 

p53 expression between wildtype and SCA1 mice. These data indicate that p53 has a 

role in SCA1 other than mediating cell death, perhaps by suppressing pathways that 

mediate neurite outgrowth.   

 DNA damage and oxidative stress increase p53 expression and activity 

(Geller et al., 2001) .  Because both of these occur in HD (Bogdanov et al., 2001;  

Deckel et al., 2002;  Feigin et al., 2002), it is likely they play a role in increased p53 

expression.  Taken together, these studies suggest that p53 is at least stabilized, if not 
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induced, in the presence of polyglutamine expansion.  Additionally, p53 has been 

implicated in various models of neuronal injury and death.  While the data in 

polyglutamine disorders indicate that p53 is stabilized, the role of p53 in the disease 

process is not clear. It may be made more active through other means than induction, 

such as modifications that make p53 more stable.  The role of p53 in oxidative stress 

has not been fully elucidated, especially with regard to HD.  Mitochondrial dysfunction 

has been implicated in HD and mutant Htt has been reported to directly interact with the 

mitochondrial membrane (Grunewald et al., 1999;  Panov et al., 2002;  Panov et al., 

2003).  Oxidative stress has been associated with p53 in neurons, and it is thought that 

neuron loss seen in HD may be partially mediated by oxidative stress.  So it would be of 

interest to study p53 in context of oxidative stress and HD, and see if a role for p53 in 

these processes can be determined.    

 Neural death in HD is clearly caused by polyglutamine expansion in htt and is 

likely mediated in part by oxidative stress.  My dissertation describes research that 

investigated two hypotheses.  First, polyglutamine expansion and oxidative stress 

induce alterations in p53 expression, stability, and activity.  Second, p53 plays a direct 

role in mediating oxidative stress toxicity, which is relevant to HD.  Experiments 

investigating polyglutamine expansion mediated alterations to p53 are described in 

Chapter 2, and experiments investigating the role of p53 in oxidative stress are 

described in Chapter 3.  The results of these experiments and how these data fit into 

what is known about HD, oxidative stress, and p53 are discussed in Chapter 4.  
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Chapter Two 

Polyglutamine induced changes to p53 expression, localization, and 

transcriptional activity 

 

 Previous studies have suggested that p53 may have a role in polyglutamine 

disorders (Jana et al., 2001;  Shahbazian et al., 2001;  Steffan et al., 2000;  Trettel et 

al., 2000). Mutant Htt has been shown to interact with p53 in one model of HD (Steffan 

et al., 2000) and the absence of p53 reduces the neuropathology seen in an SCA1 

mouse model (Shahbazian et al., 2001).  In this chapter, I describe research that 

investigated the hypothesis that polyglutamine expansion alters p53 expression, 

stability, and activity.  

I utilized SH-SY5Y cells, a human neural cell line, that stably express a fusion of 

Green Fluorescent Protein (GFP)  and either physiological or pathological lengths of 

polyglutamine (19-GFP and 56-GFP, respectively) (Ding et al., 2002).  The expression 

of p53 mRNA and p53 protein was analyzed, and p53 stability assessed in these cells.  

The intracellular localization of p53 was visualized using immunocytochemical 

techniques.  Additionally, post-translational modifications of p53 were noted, 

specifically, acetylation and phosphorylation.  The possible involvement of Mdm2, a key 

protein in p53 biology, was also investigated.  Mdm2 expression and localization were 

determined in 19-GFP and 56-GFP cells, and its interaction with p53 in these cells 

analyzed.  In order to determine how p53 is altered in vivo, I conducted additional 

experiments.  In these studies, I analyzed p53 expression in human HD brains as well 
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Figure 1.  Expression of p53 is altered in neural cells expressing polyglutamine 
expansion.   The expression of p53 protein was examined by Western blot analysis 
in undifferentiated (A) or retinoic acid differentiated (B) 19-GFP and 56-GFP 
expressing neural cells.  p53 mRNA expression of duplicate samples was examined 
by RT-PCR in undifferentiated (C) or differentiated (D) 19-GFP and 56-GFP cells.  
p53 mRNA expression was normalized to that of 18s rRNA.  Data shown are 
representative of results from 3 similar experiments. 

 

as in an HD mouse model.  To determine modifications to p53 in vivo, I examined 

mouse and human brains for acetylated and phosphorylated p53. 

 

p53 expression and stability 

The expression of p53 was examined in SY5Y cells that stably express 19-GFP 

or 56-GFP (Figure 1).  SY5Y cells express wild type p53, unlike many other tumor 

derived cell lines (Rodriguez-Lopez et al., 2001).  SY5Y cells utilized in this study were 

either undifferentiated or differentiated.  These cells can be differentiated with retinoic 
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acid. This induces a G1 cell cycle arrest and development of a neural phenotype  

(Tucholski et al., 2001) .  Undifferentiated 56-GFP expressing cells had approximately 

120% more p53 protein expression than 19-GFP cells (Figure 1A). Differentiated 56-

GFP cells had about 20 % more p53 protein expression than differentiated 19-GFP cells 

(Figure 1B). This data is not quantitative because there was no analysis conducted for 

loading.  For example, the expression of actin or some other “housekeeping” protein 

could have been analyzed to control for loading. However, I conducted these 

experiments several times, and the increase in p53 expression was always observed in 

56-GFP cells compared to 19-GFP cells. In differentiated 19-GFP and 56-GFP 

expressing cells, p53 mRNA expression was similar (Figure 1D).  However, p53 mRNA 

was elevated in undifferentiated 56-GFP cells compared to undifferentiated 19-GFP 

expressing cells (Figure 1C).  Because neurons are in a post-mitotic state in the brain, I 

decided to conduct subsequent experiments with terminally differentiated cells, except 

where noted.   

The level of p53 protein in the cell can be increased, or stabilized by either 

transcriptional activation of the p53 gene, or stabilization of the p53 protein (Alarcon-

Vargas et al., 2002;  Ashcroft et al., 1999).  Since p53 mRNA was not increased in 

differentiated 56-GFP cells, compared to 19-GFP cells, experiments were conducted to 

determine if p53 protein was stabilized in these cells.   Differentiated 19-GFP and 56-

GFP expressing SY5Y cells, as well as differentiated wild type SY5Y cells, were 

incubated with cycloheximide (Figure 2).  
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Figure 2.  p53 expression is altered in neural cells that express polyglutamine 
expansion.  Differentiated 19-GFP and 56-GFP cells were treated with 10 µM 
cycloheximide. Following treatment, the cells were collected at the times indicated 
(minutes, A) and p53 expression examined in 50 µg total protein by Western blot 
analysis (A).  Note the multiple bands observed for 56-GFP cells (arrow, A).  Bands 
were examined by dose densitometry and the percent control (0 minutes) of p53 
expression for 19-GFP and 56-GFP calculated (B).  The blot (A) and graph (B) are 
representative of 2 experiments. 

 

B. 

 

  Minutes

A. 

p53 
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Cycloheximide inhibits the translocase step of translation (Obrig et al., 1971), thereby 

halting the synthesis of new protein.  Lysates of 19-GFP and 56-GFP cells collected at 

various times after treatment with cycloheximide were analyzed for p53 protein 

expression.  The level of p53 decreased faster in 19-GFP (Figure 2A, left panel) 

expressing SY5Y cells than in 56-GFP cells (Figure 2A, right panel).  Levels of p53 

expression in both 19-GFP and 56-GFP cells were quantified by densitometry and 

plotted as percent control for each cell line (Figure 2B).  At 60 minutes post-treatment, 

in 56-GFP cells there was 68% of the p53 level observed in control.  However, in 19-

GFP cells after 60 minutes cycloheximide treatment,  there was 38 % of p53 observed 

in control cells.   These data suggest that polyglutamine expansion somehow stabilizes 

p53 protein, and that this accounts the increased preservation of p53.  In 56-GFP cells, 

a triple band was observed (arrow, Figure 2A).  The lower bands are consistent with 

p53 that has been phosphorylated.  Phosphorylation of p53 causes an electrophoretic 

shift, and data supplied by the manufacturer of an antibody to phosphorylated p53 that I 

used reported that phosphorylated p53 runs at 47kD.  It was also noted that with 

increasing time after cycloheximide treatment, there appeared to be a redistribution of 

p53 amongst the different bands (Figure 2B).  Specifically, the lowest band increased in 

intensity and the upper bands decreased in intensity. This could indicate that with 

increasing time following cycloheximide treatment, stable p53 is modified.  

Phosphorylation of p53 has been associated with increased stability of the protein, so 

this could explain the redistribution observed in Figure 2A (Shieh et al., 1997).   
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One protein that has a role in the normal turnover of p53 is Mdm2 (Alarcon-

Vargas et al., 2002;  Ashcroft et al., 1999;  Kubbutat et al., 1998).  Mdm2 functions as 

an E3 ubiquitin ligase and is known to mediate the proteolysis of p53.  Given that p53 is 

stabilized in 56-GFP expressing cells compared to 19-GFP cells or wildtype, I 

conducted experiments to determine if Mdm2 plays a role in p53 stability.  Mdm2 

expression was increased in 56-GFP cells compared to  

19-GFP cells (Figure 3).  Increased Mdm2 typically leads to increased turnover of p53 

Figure 3.  Mdm2 expression is altered in neural cells expressing 
polyglutamine expansion. Mdm2 expression was analyzed in a total of 50 µg 
protein from differentiated 19-GFP or 56-GFP cells.  Blot is representat i 
 of 2 similar experiments.   
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(Freedman et al., 1998;  Kobet et al., 2000;  Kubbutat et al., 1998).  These data taken 

together with the data in Figure 2 suggest that p53 is stabilized in 56-GFP expressing 

cells in the presence of increased levels of MDM2 compared to 19-GFP expressing 

cells.  

  Nuclear localization is required for p53 transcriptional activity (Vousden, 2002).  

Additionally, Mdm2 localization in the nucleus has a role in p53 stability (Freedman et 

al., 1998;  Kobet et al., 2000;  Kubbutat et al., 1998) . Because of these factors, I next 

analyzed the localization of p53 in human neural cells expressing 19-GFP or 56-GFP.   

In 19-GFP expressing cells, p53 was barely detectable, and localized throughout the 

cell (Figure 4A).  In 56-GFP, there was much higher p53 expression, but p53 was 

chiefly localized to the nucleus (Figure 4B).  The majority of Mdm2 was localized to the 

nucleus as well in 19-GFP cells  (Figure 4C).  There was consistently more p53 

immunoreactivity in 56-GFP cells compared to 19-GFP cells.  In 56-GFP cells, p53 was 

predominantly localized to the nucleus (Figure 4D).  These data, taken with the data in 

Figure 3, suggest that p53 coexists with increased levels of Mdm2, even though Mdm2 

normally mediates the degradation of p53.   

 To investigate the p53-Mdm2 interaction in 19-GFP and 56-GFP cells, I 

conducted immunoprecipitation (IP) experiments (Figure 5).  In 19-GFP cells, there was 

more interaction between p53 and Mdm2 than in 56-GFP cells.  Specifically, the 

intensity of the band representing Mdm2 that was precipitated with p53 antibody in 56-

GFP cells was 3.8% of the total Mdm2 protein in 56-GFP cells.  Mdm2 protein 

precipitated in 19-GFP cells was 7.9% of the total Mdm2 in 56-GFP cells. A comparison 

of Mdm2 precipitated in 19-GFP cells to total Mdm2 protein in 19-GFP cells was not  
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made.  Another measurement that would have been useful but was not conducted 

would be to determine the ratio of Mdm2 protein precipitated by p53 antibody to p53 

protein precipitated by the same antibody.  These measurements would have helped 

determine the fraction of Mdm2 interacting with p53 in 19-GFP and 56-GFP cells.  

Taken together, these data suggest that there is more Mdm2 expressed in 56-GFP 

cells, but there is also less interaction between Mdm2 and p53 in 56-GFP cells 

compared to 19-GFP cells.  Less interaction between p53 and Mdm2 could indicate that 

Figure 4. Polyglutamine expansion alters expression of p53 and Mdm2 in 
human neural cells. The expression of p53 (A, B) and Mdm2 (C,D) were 
analyzed  by immunocytochemistry in undifferentiated 19-GFP (A,C) and 56-GFP 
(C,D) expressing SY5Y cells under basal conditions.  Images are representative 
of results from at least 3 similar experiments.  Total magnification was 400X.   
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there is less Mdm2 mediated proteolysis of p53 in 56-GFP cells.  This would be 

consistent with the data that indicated that p53 was more stable in 56-GFP cells than in 

19-GFP cells (Figure 2). To evaluate the role of Mdm2 in polyglutamine toxicity, I 

utilized antisense oligonucleotides to reduce Mdm2 expression in 19-GFP and 56-GFP 

cells (Figure 6A).  Treatment of 56-GFP cells with antisense oligonucleotide reduced 

Mdm2 protein expression by approximately 40% (Figure 6A). Treatment of cells with a 

scrambled oligonucleotide had no effect on Mdm2 expression (Figure 6A).  Inhibition of  

 

 

Figure 5.  The interaction of p53 with Mdm2 is altered in polyglutamine  
expansion expressing cells. Lysates from 19-GFP and 56-GFP expressing cells 
(200 µg total protein) were incubated with p53 antibody and precipitated with 
Protein G coated sepharose beads.  Precipitated proteins were analyzed by 
Western blot to determine Mdm2 level. Molecular weight markers (MW) were 
used to identify Mdm2.  To demonstrate normal expression of Mdm2, a total of 50 
µg protein from 56-GFP lysate (Non-IP) was also analyzed.  Blot is representative 
of  2 experiments.
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Figure 6. Decreased expression of MDM2 is sufficient to increase neural cell 
toxicity in differentiated and undifferentiated neural cells. (A) Cells expressing 
56-GFP were analyzed for levels of MDM2 immunoreactivity 24 hours following 
treatment with vehicle (Cont), scrambled oligonucleotide (Scram), or MDM2 
antisense (Anti) oligonucleotides. The levels of cell death were quantified in 
undifferentiated (B) and differentiated (C) 19-GFP (19) and 56-GFP (56) expressing 
cells 24 hours following the administration of vehicle (Cont), scrambled 
oligonucleotide (Scr), or MDM2 antisense (Anti).  Data are the mean and SEM of 
results from at least 3 separate experiments. 
 *p < 0.05 compared with control values; **p< 0.05 compared with 19-GFP 
expressing cells. 

 
 
Figure 6. Decreased expression of MDM2 is sufficient to increase neural cell 
toxicity in differentiated and undifferentiated neural cells. (A) Cells expressing 
56-GFP were analyzed for levels of MDM2 immunoreactivity 24 hours following 
treatment with vehicle (Cont), scrambled oligonucleotide (Scram), or MDM2 
antisense (Anti) oligonucleotides. The levels of cell death were quantified in 
undifferentiated (B) and differentiated (C) 19-GFP (19) and 56-GFP (56) expressing 
cells 24 hours following the administration of vehicle (Cont), scrambled 
oligonucleotide (Scr), or MDM2 antisense (Anti).  Data are the mean and SEM of 
results from at least 3 separate experiments. 
 *p < 0.05 compared with control values; **p< 0.05 compared with 19-GFP 
expressing cells. 
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Mdm2 expression resulted in neural death in both differentiated and  

undifferentiated cells (Figure 6B, C), although the cell death was much greater in 56-

GFP cells compared to 19-GFP cells.  It did not appear that differentiation had an effect 

on sensitivity of antisense (Figure 6B, C), as 56-GFP cells with or without retinoic acid 

differentiation had similar amounts of death.  This was also observed in 19-GFP cells 

(Figure 6B, C).  Taken together, these data suggest that decreased Mdm2 is toxic for 

both 19-GFP and 56-GFP cells, but, much more toxic for 56-GFP cells.  Taken together 

with the earlier data, this would suggest that Mdm2 plays a role in mitigating 

polyglutamine expansion toxicity.   

 

p53 is modified in neural cells expressing polyglutamine expansion 

 Previous studies have suggested that post-translational modifications of p53 alter 

its interactions with other proteins, particularly Mdm2 (Ashcroft et al., 1999).  Two of 

these modifications are phosphorylation and acetylation (Gu et al., 1997).  Additionally, 

phosphorylation and acetylation of p53 have been suggested to alter p53 transcriptional 

activity (Gao et al., 1999;  Gu et al., 1997;  Shieh et al., 1997). To determine whether 

p53 was differentially acetylated or phosphorylated in the presence of polyglutamine 

expansion, lysates from 19-GFP and 56-GFP expressing cells were examined by 

Western blot analysis using antibodies that recognize either acetylated or 

phosphorylated p53.  Acetylation of p53 on Lysine 320 was observed in 56-GFP cells 

(Figure 7A), but little or no acetylated p53 was observed in 19-GFP cells (Figure 7A).  

Phosphorylation of p53 on Serine 15 was also detected in 56-GFP cells, with little or 

none detected in 19-GFP cells (Figure 7B).  However, there was also less p53 in 19-
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GFP cells compared to 56-GFP cells (Figure 1).  This could account for the decreased 

modified p53 observed in 19-GFP cells. 

  

Genetic Inhibition of p53 activity attenuates polyglutamine neurotoxicity 

 To address whether polyglutamine expansion mediated changes to p53 activity 

alter neural homeostasis, I utilized another neural cell line (PC12)  that stably expresses 

a p53 temperature sensitive mutant (ts p53 cells) that is deficient in DNA binding 

(Hughes et al., 2000). Mutant p53 is overexpressed at the restrictive temperature 

(39oC).  PC12 cells expressing ts p53 were transiently transfected with 56-GFP DNA 

(Ding et al., 2002).  As a control, cells that stably expressed only empty retrovector  

Figure 7.  p53 is modified in cells expressing polyglutamine expansion.  Lysates 
from differentiated 19-GFP and 56-GFP cells were analyzed by Western blot for 
expression of acetylated (A) and phosphorylated (B) p53. Acetylated p53 was 
detected with an antibody that recognizes p53 acetylated on lysine 320.  
Phosphorylated p53 was detected with an antibody that recognizes only p53 
phosphorylated on serine 15. Blots are representative of results from at least 3 
similar experiments. 
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Vector 

ts p53 

Figure 8.  p53 DNA binding activity is required for polyglutamine  
expansion induced neural death.  PC12 neural cells were stably transfected with 
either empty retrovector (vector cells, A-C) or a p53 temperature sensitive (ts p53) 
mutant deficient in DNA binding (ts cells, D-E). Both cell lines were transiently 
transfected with plasmid DNA encoding 56-GFP.  After incubation at the restrictive 
temperature for 48 hours, cell morphology and death were examined.  PC12 cells 
were visualized under phase contrast optics (A,D). Cell nuclei were visualized using 
Hoescht 33344, a dye that binds DNA.  Expression of 56-GFP was visualized using 
fluorescence optics (C,F) .  Note the aggregates in vector cells cells (C, arrow). 
PC12 cells, stably expressing empty retrovector (●) or ts p53 (●), were transiently 
transfected with 56-GFP.  Cell death was assessed by visualization of cell nuclear 
morphology with Hoescht stain (G). Data represents the percentage of cells with 
fragmented or condensed nuclei.  Error bars represent the S.E.M. of 6 cultures. Data 
shown is representative of 3 similar experiments.  Error bars represent S.E.M for at 
least 5 cultures.  ** p < 0.001 compared to vector cells 
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(vector cells) were also used.  Some cultures were also mock transfected. These 

cultures underwent the same transfection procedure without the addition of 56-GFP 

DNA.   After 48 hours of incubation at the restrictive temperature, expression of 56-GFP 

was observed in both vector and ts p53 cell lines (Figure 8C and 8F). Protein 

aggregates containing 56-GFP were observed in both vector (Figure 8C) and ts p53 

cells (data not shown) .  Diffuse expression of 56-GFP was also seen in vector cells 

(data not shown) and ts p53 cells (Figure 8F).  At that time, the cells were assayed for 

death by visualization of their nuclei with Hoescht stain (Figure 8B and 8E).  Cells were 

counted as dead if they had fragmented or condensed chromatin which are 

characteristics of apoptotic death (Zimmermann et al., 2001).  Cells that contained the 

empty vector had increased nuclear condensation and/or fragmentation following 

transfection with 56-GFP DNA (Figure 8G).   In contrast, cells that express the p53 

mutant had much less cell death (Figure 8G).  The amount of cell death seen in p53 

mutant cells was comparable to that seen in cells that were mock transfected (data not 

shown.  Neural death was alleviated in cells over expressing ts p53.  Taken together, 

these data suggest a role for p53 transcriptional activity in polyglutamine neurotoxicity. 

 

p53 in HD mice and human HD 

 The in vitro studies suggest that in neural cells p53 is altered in the presence of 

polyglutamine expansion, and that this has implications for neural homeostasis.   When 

p53 is unable to bind to DNA, polyglutamine neurotoxicity is  

attenuated as observed in the ts p53 expressing PC12 cells.  These studies were 

conducted in rodent cell lines.  The constructs used were fusions of  
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polyglutamine and GFP.  Polyglutamine fusions with innocuous proteins have been 

shown to induce characteristics similar to those seen in polyglutamine disorders (Marsh 

et al., 2000;  Ordway et al., 1997).  However, in order to examine alterations to p53 

expression in the context of HD, I sought to compare and contrast p53 expression and 

modification in vivo.  The expression of p53 was determined in an HD mouse model (R 

6/2) as well as in human HD brain.  Additionally, acetylated and phosphorylated p53 

were examined in HD mice and human HD brains.  R 6/2 mice are transgenic for an N-

terminal fragment of human htt containing the region of polyglutamine expansion 

(Mangiarini et al., 1996).  These mice are pre-symptomatic before approximately 8 

weeks of age, after which they develop a progressive neurological phenotype 

(Mangiarini et al., 1996).  These mice develop a resting tremor and seizure activity has 

been observed, evidence that there are neurophysiological abnormalities.  When 

suspended by their tail, R6/2 mice clasp their back feet whereas a wild type mouse will 

splay his limbs to steady itself.  They do not exhibit the neurodegeneration specific to 

the striatum as do human HD patients, but  brain size is decreased approximately 20% 

compared to age-matched controls.  Protein aggregates reminiscent of those seen in 

HD are also found in R6/2 brains (Davies et al., 1997).  Late in life (17 weeks), R6/2 

mice develop neurodegeneration of the cerebellum, cortex, and striatum.  There is 

condensation of the cytoplasm and nucleus, but no DNA fragmentation , which would be 

characteristic of nucleosomal cleavage , a marker for apoptotic death (Hickey et al., 

2003;  Turmaine et al., 2000).  

 The expression of p53 and modified p53 were examined in R6/2 mice. There 

appeared to be decreased p53 expression in 4 week old HD mice compared to control 
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mice (Figure 9A, left panel). There also appeared to be less p53 protein in the brains of 

10 week old HD mice compared to control    (Figure 9A, right panel). There appeared to 

be more phosphorylated p53 in 4 week old control mice compared to HD mice (Figure 

9B, left panel).  There was also more phosphorylated p53 in 10 week old control mice 

than in 10 week old HD mice (Figure 9B, right panel).  It was unclear if there was a 

change in phosphorylated p53 with age in either control or HD mice. In pre-symptomatic 

HD mice, there was slightly less acetylated p53 compared to control mice, though there 

was variability from animal to animal (Figure 9C, left panel).  There was no difference in 

acetylated p53 levels between HD and control mice of either age (Figure 9C, right 

panel), and it appears that acetylated p53 is increased with age in both HD and wild 

type mice.  Acetylated and phosphorylated p53 are associated with increased p53 

transcriptional activity.   It is unclear whether decreased level of phosphorylated p53 in 

HD mice is due to reduced p53 expression in these mice, or whether reduced p53 is 

due to reduced phosphorylation of p53.  Taken together, these data suggest that p53 

and phosphorylated p53 are more prevalent in control mice than in R6/2 mice, and that 

acetylated p53 is unchanged in symptomatic HD mice compared to control.  However, 

expression levels were not normalized to an innocuous protein such as actin or Β-

tubulin to account for loading differences in each lane, so it is difficult to determine how 

much difference there is for each p53 species between HD and control mice.  

 The expression of p53 was also examined in human HD and control brains 

(Figure 10).  The brains obtained from HD patients exhibited Grade 4 pathology, and 

the post-mortem interval was approximately 18 hours.  Brains with this pathology exhibit  
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Figure 9.  Expression of p53 and post-translational modifications to p53 
are altered in HD mice.   Lysates prepared from the cortices of either 
presymptomatic (4 week) or symptomatic (10 week) HD (R 6/2) or control mice 
were examined by Western blot analysis for (A) p53 (B) phosphorylated p53 
and (C) acetylated p53. For (C), the blot in A was stripped and then reprobed 
with acetylated p53 antibody.  Data shown represent 2 animals for each 
timepoint.  Blot is representative of 2 experiments. 
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severe loss of neurons in the caudate and pronounced astrogliosis (Vonsattel et al., 

1985).  The expression of p53 protein was detected in control brain, though the level 

varied from patient to patient (Figure 10A, left panel).  Little or no p53 was detected in 

HD brains (Figure 10A, right panel).   Phosphorylated p53 was detected in control 

brains, though levels varied from patient to patient (Figure 10B, left panel).  Brains from 

HD patients all expressed phosphorylated p53, though the level varied from patient to 

patient (Figure 10B, right panel).  All brains examined expressed acetylated p53, though 

there was consistently less in HD patients compared to control (Figure 10C).  The level 

of acetylated p53 varied from patient to patient in both control and HD patients.   Taken 

together, these data indicate a different pattern of expression in human HD than the in 

vitro studies conducted using polyglutamine-GFP constructs. With increasing 

polyglutamine expansion (HD patients), there was less p53 expression compared to 

control brains.  These data are in contrast to in vitro studies, where more p53 

expression was observed in 56-GFP expressing cells than in 19-GFP expressing cells 

(Figure 1A and 1B) 
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Figure 10.  The expression of p53 is altered in HD Brain.  Samples from 
the caudate of 4 control and 4 HD human brains were examined for p53 
expression. Western blot analysis was used to determine levels of p53 (A), 
phosphorylated p53 (B), and acetylated p53 (C). The blot in C was stripped 
and reprobed with p53 antibody to give the blot seen in A.   Blots are 
representative of 2 separate experiments.   
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Chapter Three 

Oxidative Stress Mediated Alterations to p53 Expression and Transcriptional 

Activity 

 

 Oxidative stress has been implicated in HD from several lines of evidence 

(Andreassen et al., 2001;  Perez-Severiano et al., 2002;  Polidori et al., 1999;  Schilling 

et al., 2001). Whether oxidative stress is a causal factor in HD, or a secondary effect of 

the disease is unclear.  Dysfunctions in energy metabolism and mitochondria have been 

suggested to lead to oxidative stress in HD (Browne et al., 1999).  Oxidative stress has 

been noted in animal models of HD that express polyglutamine expansion (Perez-

Severiano et al., 2000;  Wyttenbach et al., 2002). Oxidative stress has also been 

implicated in animals that develop HD-like neurodegeneration following treatment with 

3-nitropropionic acid and quinolinic acid (Kim et al., 2002;  Takahashi, 1999).  The 

hypothesis that oxidative stress plays a role in HD and chemical models of HD has been 

strengthened by studies showing that antioxidant therapy improves survival and motor 

skills in HD models (Beal, 2002;  Ferrante et al., 2002).  

  In order to address the hypothesis that p53 expression and activity is altered 

following oxidative injury, I utilized neural cells, both primary cultures and human neural 

cell lines. I used primary rat embryonic neuronal cultures (embryonic day 18 or E18). 

These cultures are of a mixed nature, containing several types of cells, both neuronal 

and non-neuronal (Keller et al., 1998;  Keller et al., 1999), and could perhaps better 

represent what is happening in the brain than immortal cell lines.    
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 To induce oxidative stress, I treated primary cortical rat neurons with hydrogen 

peroxide (H2O2) (Figure 11).  Exogenous H2O2 has been used to induce oxidative stress 

in a variety of cell types (Datta et al., 2002;  Ouyang et al., 2002;  Uberti et al., 1999), 

and causes p53 dependent apoptosis in glial cells (Datta et al., 2002).  Cultures were 

treated with H2O2 for 24 hours and their nuclei visualized with Hoescht stain.  Phase 

contrast visualization of the cells revealed dystrophic neurites in treated cells, a 

characteristic lacking in control cells (Figure 11A and 11C, respectively). Neurons were 

counted as dead if they had condensed (Figure 11D) or fragmented (Figure 11B) 

chromatin. Neurons were counted, and the percentage of dead neurons determined.  

H2O2 induced a dose-dependent increase in neural death (Figure 11E).  There was 

some variability from experiment to experiment, but 10 µM and 50 µM concentrations 

consistently yielded significant increases in neural death (Figure 11E, 13).  

To determine if p53 expression is altered in primary neurons treated with H2O2, 

lysates of primary neuronal cultures were examined by Western blot analysis.  There 

were time- and dose-related changes in p53 expression (Figure 12).  In most 

experiments, there was a modest increase in p53 levels, even with 1 µM H2O2 (Figure 

12A, B).  Dose densitometry was used to measure the intensity of relevant bands.  The 

percent of band density at each time point compared to control cultures (0 Hours) were 

calculated and plotted with respect to time (Figure 12B).   Surprisingly, even with the 

more lethal doses, such as  
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Figure 11.  H2O2 induces dose dependent neural death.  Cultured rat neurons 
were treated with the indicated concentrations of H2O2 for 24 hours. Control cells 
received no treatment (0 µM H2O2) (A,B).  Control (A) and treated (C, 10 µM H2O2) 
cells were visualized under phase contrast optics to assess cell type and morphology, 
Cell death was assessed in control and treated cells by visualization of cell nuclear 
morphology with Hoescht stain (B, D).  Data in (E) represents the percentage of 
neurons with condensed or fragmented (B,double arrow) nuclei.  Error bars 
represent the S.E.M. of 6 cultures. Data shown is representative of 3 similar 
experiments.  *p< 0.01 compared to control. ** p< 0.001 compared to 1µM H2O2. *** 
p<0.05 compared to 10 µM H2O2.  **** p< 0.05 compared to 25 µM H2O2 
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50 µM H2O2, there was often a return to basal p53 levels or even a reduction in p53 

expression after 24 hours (Figure 12B).  Overall, the data revealed that there were 

modest, transient increases in p53 expression in these cells, but never a very large 

increase, even with the higher doses.  

Although p53 expression was not greatly altered, even in the presence of H2O2 

induced cell death, p53 could still be involved with cell death if p53 transcriptional 

activity were increased. Transcriptional activity of p53 has been shown to be inhibited 

by the compound pifithrin-α (Komarov et al., 1999).  In one study, pifithrin-α  inhibited 

neuron loss following excitotoxic and genotoxic injury, as well as ischemic injury 

(Culmsee et al., 2001).   

The mechanism for p53 inactivation by pifithrin is unclear, although nuclear 

accumulation of p53 is reduced by pifithrin in liver cells (Schafer et al., 2003), which 

presumably prevents p53 from interacting with nuclear DNA.   Neurons were treated 

with H2O2 in the absence or presence of pifithrin.  Pifithrin reduced the neural death 

induced by H2O2 at both concentrations tested (Figure 13).   Taken together, these data 

suggest that oxidative stress induced by H2O2 induces dose dependent death in primary 

neurons.  This is mediated, at least in part, by p53 transcriptional activity, as 

pharmacological inhibition of p53 attenuates neural death.  It is unclear whether 

upregulation of p53 is responsible for neural death induced by H2O2, as p53 levels were 

not greatly changed, or an increase in p53 activity is responsible. 
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Figure 12.  H2O2 alters p53 expression in rat cortical neurons.  Rat cortical 
neurons were isolated from E18 embryos and cultured for 5-7 days.  Cells were 
treated with 1 µM,10 µM, or 50 µM of H2O2. At the indicated times after treatment, 
cells were collected and lysed.   Cell lysates of 50 µg total protein were examined for 
p53 expression by Western blot analysis (A).  Densities of bands corresponding to 
p53 were analyzed, percent control calculated for each dose, and plotted against 
length of treatment (B).  (A) and (B) are representative of 3 experiments. 
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Figure 13.  Pharmacological inhibition of p53 attenuates neural death induced 
by oxidative stress .  Cultured rat neurons were treated with the indicated 
concentrations of H2O2 for 24 hours in the absence (●) or presence (●) of 1 µM 
pifithrin.  Cell death was assessed by visualization of cell nuclear morphology with 
Hoescht stain.  Data represent the percentage of cells with fragmented or condensed 
nuclei.  Error bars represent S.E.M for at least 6 cultures. * p<0.05 compared to 10 
µM H2O2.  ** p < 0.001 compared to 50 µM H2O2. Graph is representative of 3 similar 
experiments. 

 

 

 Inhibition of p53 Attenuates H2O2 Mediated  Death in Neural Cells 

To further investigate the role of p53 activity in oxidative stress mediated neural 

death, a human neural cell line was utilized.  Undifferentiated SY5Y cells were treated 

with H2O2 in the absence or presence of pifithrin.  After 24 hours, cell death was 

analyzed by Hoechst staining.  H2O2 induced a dose-dependent death (Figure 14), 

which was inhibited by pifithrin at both tested concentrations.  Attenuation was 

incomplete, with less than a 20% decrease in neural death induced by 50 µM H2O2.  

There was approximately a 40% attenuation of neural death induced by 10 µM H2O2. 
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Since primary neurons are post-mitotic cells, I utilized retinoic acid differentiated 

SY5Y cells in similar experiments.  Similar to undifferentiated SY5Y cells and primary 

neurons, cell death was also attenuated by pifithrin (Figure 15).  There was no 

significant difference between control and 10 µM H2O2 with pifithrin, unlike in 

undifferentiated cells.  However, at the concentration tested, 10µM, there was 

approximately half of the cell death observed in undifferentiated cells (Figure 15).  

Taken together, these data indicate that H2O2 induces cell death in human neural cells 

as was observed in rat primary neurons.  Pharmacological inhibition of p53 

transcriptional activity attenuated H2O2 induced  

 

Figure 14.  Pharmacological inhibition of p53 attenuates cell death 
induced by oxidative stress in human neural cells.  Neural SH-SY5Y cells 
were treated with the indicated concentrations of H2O2 for 24 hours in the 
absence (●) or presence (●) of 1 µM pifithrin.  Cell death was assessed by 
visualization of cell nuclear morphology with Hoescht stain.  Error bars 
represent the S.E.M. of at least 6 cultures.   ** p < 0.002 compared to H2O2. 
Graph is representative of  3 similar experiments. 
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cell death.  These data suggest that there is a role for p53 transcriptional activity in 

oxidative injury mediated neural death.   

 

A Genetic Inhibitor of p53 Attenuates H 2 O2    nduced Death 

 A primary concern with using pharmacological inhibitors is that of specificity.   To 

further corroborate the data implicating p53 in oxidative stress mediated neurotoxicity, I 

utilized cell lines defective in p53 DNA binding 

Figure 15.  Pharmacological inhibition of p53 activity attenuates oxidative 
stress induced death of differentiated human neural cells.  Differentiated 
SY5Y cells were treated with 10 µM or 50 µM H2O2 in the absence (●) or 
presence (●) of 1 µM pifithrin.  Cell death was assessed by visualization of cell 
nuclear morphology with Hoecsht stain. Data shown represent the percentage 
of cells with fragmented or condensed nuclei.  Error bars represent S.E.M. of 6 
cultures. * p < 0.01 compared to control. ** p < 0.001 compared to 10 µM H2O2. 
 ## p <0.001 compared to 50 µM H2O2 without absence.  Graph is 
representative of 2 similar experiments.
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Figure 17.  Genetic inhibition of p53 DNA binding attenuates neural death 
induced by H2O2.  PC12 cells stably transfected with either empty retrovector 
(■), or a p53 mutant deficient in DNA binding (■), were treated with the 
indicated concentrations of H2O2 for 24 hours. Cell survival was determined by 
the MTT assay.  Percent cell survival compared to untreated cells was 
determined.  Error bars represent S.E.M. of 8 cultures.  **p < 0.001 compared 
to cells containing empty retrovector.  Graph is representative of 3 similar 
experiments. 

(Hughes et al., 2000) .  At restrictive temperature (39 oC), these cells over-express 

mutant p53, which effectively abrogates p53 mediated transcription. PC12 cells were 

treated with H2O2 for 24 hours and their nuclei visualized with Hoescht stain (Figure 16).  

PC12 cells that contained only the vector died in a dose dependent manner following 

treatment with H2O2.  However, cell death was almost completely blocked in cells 

expressing mutant p53. To further corroborate these data, cultures treated in the same 

way were analyzed for cell survival by MTT analysis.  The MTT assay measures the 

reduction of MTT [(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide], which 

Figure 16.  Loss of p53 DNA binding attenuates oxidative stress 
mediated neural death.  PC12 cells stably transfected with either empty 
vector (■) or a p53 mutant deficient in DNA binding (■), were treated with the 
indicated concentrations of H2O2 for 24 hours.  Cell death was assessed by 
visualization of cell nuclear morphology with Hoescht stain. Data represents 
the percentage of cells with fragmented or condensed nuclei.  Error bars 
represent S.E.M. for at east 6 cultures. * p < 0.01 compared to vector cells 
with no treatment.  ** p< 0.01 compared to vector cells treated with 10 µM 
H2O2 .  *** p<0.001 compared to vector cells treated with 10 µM H2O2.   
# p<0.01 compared to mutant p53 expressing cells treated with no treatment.  
## p< 0.001 compared to mutant p53 expressing cells treated with 10 µM 
H2O2. 
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Figure 17.  Genetic inhibition of p53 DNA binding attenuates neural death 
induced by H2O2.  PC12 cells stably transfected with either empty retrovector 
(■), or a p53 mutant deficient in DNA binding (■), were treated with the 
indicated concentrations of H2O2 for 24 hours. Cell survival was determined by 
the MTT assay.  Percent cell survival compared to untreated cells was 
determined.  Error bars represent S.E.M. of 8 cultures.   **p < 0.001 compared 
to cells containing empty retrovector.  Graph is representative of at least 3 
similar experiments. 

produces a blue-violet color.  The ability of cells to reduce MTT is a measure of cell 

viability.  MTT analysis of cell death indicated that neurotoxicity was attenuated greatly 

in cells that express ts p53 (Figure 17).  Taken together, these data indicate that p53 

transcriptional activity is a factor in oxidative stress induced neurotoxicity. These data 

taken with the pifithrin studies suggest a role for p53 transcriptional activity in mediating 

neural death following oxidative injury.  
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Chapter Four 

Discussion and Conclusions 

 

Expression and regulation of p53 

 The tumor suppressor protein p53 has a myriad of roles in the normal cell.  For 

example, p53 has roles in the cell cycle, neuronal differentiation and apoptosis.  Most of 

the literature on p53 has been in the context of its role in cancer.  At least 50% of 

human cancers are linked to mutations in p53 (Vousden, 2002).  Its role in 

neurodevelopment has been studied extensively as well (Miller et al., 2000).  Some 

studies have implicated p53 in neural trauma or neurodegenerative disease, although 

its role has not been fully elucidated.  The involvement of p53 in polyglutamine 

disorders has been suggested but not fully studied (Shahbazian et al., 2001;  Steffan et 

al., 2000;  Suhr et al., 2001;  Trettel et al., 2000).  Other transcription factors, however, 

including SP1 and CBP, have been studied in polyglutamine disorders.  Soluble, but not 

aggregated, mutant Htt has been found to interact directly with SP1, and in doing so, 

repress SP1 mediated gene transcription (Li et al., 2002) .  The genes affected include 

the nerve growth factor mediated pathways, which are responsible for neuritic outgrowth 

responsible for retinoid signaling, important pathways for maintaining 

neurohomeostasis.  Loss of these pathways leads to neural dysfunction and neurite 

retraction in a cell model of HD (Li et al., 2002;  Wyttenbach et al., 2001).  These events 

are also observed in human HD.  At present, it is unclear how the loss of CBP and SP1 

occur in HD. 
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 Since p53 is a potent regulator of the cell cycle and apoptotic pathways, p53 

expression and activity are tightly regulated by the cell (Alarcon-Vargas et al., 2002;  

Ashcroft et al., 1999).  When p53 is mutated, uncontrollable cell growth can result, 

leading to cancer.  If p53 is inappropriately active, then premature cell death can occur.  

In my studies, increased levels of p53 were present in the nucleus in cells expressing 

pathological lengths of polyglutamine (Figure 4B).  When p53 is activated, or induced, it 

is localized to the nucleus,  and nuclear export is minimized, befitting its role as a 

transcription factor (Vousden, 2002). This increase in p53 levels can be due to induction 

of the p53 gene, leading to production of p53 protein, or it can be due to stabilization of 

existing p53 protein.  Under normal conditions, p53 concentrations are relatively low 

due to its short half-life.  At the transcriptional level, p53 can be induced by a variety of 

insults, the best studied of which is genotoxic stress (Balint et al., 2001;  Shieh et al., 

1997;  Shieh et al., 1999;  Shieh et al., 2000;  Vousden, 2002).  The activity and stability 

of p53 is regulated by both post-translational modifications and interaction with other 

proteins.   In my studies, I found that p53 expression and activity were altered in vitro.   

In chapter 2 I described research aimed at investigating the hypothesis that p53 

expression and activity is altered in the presence of polyglutamine expansion.  In SY5Y 

neural cells, the p53 protein levels were greater in cells that expressed 56-GFP than in 

19-GFP (Figure 2).  Increases in p53 stabilization was not associated with increased 

mRNA abundance of p53 (Figure 1D).  Two pieces of evidence support this. When 

protein synthesis was halted, p53 protein was observed to be more stable in 56-GFP 

cells than in 19-GFP or wild type cells (Figure 2).  Additionally, levels of p53 mRNA 

were the same for 19-GFP and 56-GFP expressing cells (Figure 1B). 
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The stability of p53 is largely mediated through p53 interaction with Mdm2 

(Alarcon-Vargas et al., 2002).  Mdm2 has E3 ubiquitin ligase activity and ubiquitinates 

p53.  This can lead to localization of p53 to the cytosol where it is degraded by the 26S 

proteasome (Freedman et al., 1999).  Mdm2 is transcriptionally transactivated by p53 

(Barak et al., 1993),  thereby participating in a p53 mediated negative autoregulatory 

loop (Alarcon-Vargas et al., 2002;  Ashcroft et al., 1999;  Freedman et al., 1999). Mdm2 

has also been found to be important for regulation of p53 activity in neuroblastoma 

derived cell lines, such as the SH-SY5Y cells used in my studies (Rodriguez-Lopez et 

al., 2001). In my studies, Mdm2 expression was found to be higher in 56-GFP cells than 

in 19-GFP (Figures 3, 4C, 4D).  Mdm2 was localized chiefly in the nucleus, as revealed 

by immunocytochemistry (Figures 4C, D).  Mdm2 immunoreactivity was more intense in 

the nuclei of 56-GFP cells, consistent with the immunoblot data (Figures 4D and 3, 

respectively).  The expression of p53 was higher in 56-GFP cells and localized in the 

nucleus (Figure 4A), despite the increased expression of Mdm2 (Figure 3, 4B).  While 

the immunoprecipitation data was not convincing on its own, there did appear to be 

more interaction of Mdm2 with p53 in 19-GFP cells compared to 56-GFP cells.  More 

work needs to be done in the area of p53 protein-protein interaction, but it appears that 

there may be differences between the two cell lines.  Taken together, these data 

indicate that p53 is stabilized in the presence of increased Mdm2 levels in 56-GFP 

expressing cells, and that this may involve there being less interaction between Mdm2 

and p53 in 56-GFP expressing cells.  

 The mechanism behind this change in p53-Mdm2 interaction is unclear.  Recent 

studies have linked other protein interactions with either p53 or Mdm2 and p53 stability.  
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For example, the HAT protein p300 has been shown to interact with both Mdm2 and 

p53 (Grossman et al., 1998), and participates in Mdm2 mediated degradation of p53, 

perhaps through its own ubiquitin ligase activity (Grossman et al., 2003).  I did conduct 

experiments investigating the interaction between Mdm2 and p300, but the results were 

inconclusive (data not shown).  There is no difference in viability of SY5Y cells stably 

expressing 19-GFP or 56-GFP (Ding et al., 2002).  However, reduction of Mdm2 

expression with Mdm2 antisense oligonucleotides did result in significantly more cell 

death in untreated 56-GFP cells than in 19-GFP cells (Figure 6).  Treatment of cells with 

antisense oligonucleotides resulted in reduction of MDM2 expression of approximately 

40% (Figure 6A).  Concomitant with this decrease in Mdm2 expression, there was 

significant increase in cell death of 56-GFP cells compared to 19-GFP cells (Figure 6B, 

C).  There was also a small, but significant increase in cell death in 19-GFP cells.  

However, the 56-GFP cells had approximately 5 times the cell death of 19-GFP cells.  

With regard to HD, this could mean that, in the presence of polyglutamine expansion, 

interactions between p53 and Mdm2 would be altered, possibly causing alterations to 

p53 stability.  Loss of Mdm2 leads to greater death in 56-GFP, suggesting that Mdm2 

mitigates polyglutamine toxicity.  A mechanism for this could be that through some 

signaling pathway, p53 is stabilized in cells that express polyglutamine.  The 

mechanism that stabilizes the protein by definition protects p53 from degradation, 

probably by masking or modifying residues that are important for Mdm2 mediated 

ubiquitination.  One glaring example of this are the C-terminal lysines that are 

ubiquitinated.  Acetylation of these sites could prevent the ubiquitination of these sites. 
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Mdm2 is a transcriptional target of p53; Mdm2 expression increases with increases in 

p53 activity (Li, 2002 #1420).   

Mdm2 can also mediate p53 interaction with DNA.  Mdm2 associates with the 

amino terminal of p53 in the same region that contains p53 DNA transactivation 

domains (Oliner et al., 1993;  Wadgaonkar et al., 1999) .  This interaction can also 

inhibit p53 interaction with other transcriptional coactivators such as the HAT proteins 

(Grossman et al., 1998;  Wadgaonkar et al., 1999).   

In my studies, I found that p53 underwent modifications in vitro.  These included 

phosphorylation and acetylation in cells expressing pathological lengths of 

polyglutamine. Multiple serine and threonine residues of p53 can be phosphorylated in 

response to a variety of stimuli. (Ashcroft et al., 1999;  Balint et al., 2001;  Vousden, 

2002;  Woods et al., 2001;  Xu, 2003).  Phosphorylation of p53 has been associated 

with increased p53 transcriptional activity and increased p53 stability (Ashcroft et al., 

1999;  Li et al., 2002;  Shieh et al., 1997).  Phosphorylation at some sites may prevent 

or attenuate a protein-protein interaction.  Serine 15 of p53 lies within the region bound 

by Mdm2 (Alarcon-Vargas et al., 2002).  While the contribution of Serine 15 

phosphorylation to the p53 –Mdm2 interaction is not completely understood, there is 

consensus that this and neighboring sites probably contribute to both p53 stability and 

localization (Ashcroft et al., 1999;  Bargonetti et al., 2002;  Shieh et al., 1997).  It’s 

thought that phosphorylation of this and/or nearby sites attenuates the p53-Mdm2 

interaction (Shieh et al., 1997) .  The p53 N-terminal nuclear export sequence (NES) 

also lies within this region (Zhang et al., 2001).  So phosphorylation of Serine 15 and/or 

nearby sites may also serve to mask this site and promote p53 retention in the nucleus 
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(Zhang et al., 2001). In my studies, phosphorylation of p53 on Serine 15 was analyzed 

in human neural cells expressing 19-GFP or 56-GFP.  Though these experiments were 

not normalized to some other protein such as actin, there was consistently more 

phosphorylation at this site in 56-GFP expressing cells than in 19-GFP cells (Figure 7B). 

Phosphorylation of p53 on Serine 15 occurs in response to UV radiation or other 

inducers of DNA damage  (Shieh et al., 1997).  Oxidative stress has been associated 

with DNA damage in HD (Bogdanov et al., 2001), and could play a role in the increase 

in p53, possibly through phosphorylation of p53. 

Acetylation of p53 occurs on 6 different lysine residues including 320, 373, 381 

and 382 (Gu et al., 1997) (Grossman, 2001;  Liu et al., 1999).  The first site is acetylated 

by P/CAF and the latter by p300/CBP.  These HAT proteins typically are recruited to 

specific promoters to acetylate amino terminal regions of the core histone proteins.  This 

results in decompression of the DNA from the nucleosome, allowing the transcriptional 

machinery access to target genes.  HAT’s also acetylate p53 and it is thought that this 

also serves to recruit other transcriptional coactivators (Barlev et al., 2001;  Chan et al., 

2001).   Acetylation has been associated with increased transcriptional activity of p53, 

and with stabilization of the protein (Balint et al., 2001;  Grossman, 2001;  Li et al., 

2002).  

There was more acetylated p53 in 56-GFP cells than in 19-GFP cells (Figure 

7A).  It has been suggested that acetylation of p53 serves to stabilize p53 or increase its 

transcriptional activity.  Acetylation of p53 occurred on lysine 320, which is mediated by 

P/CAF,  as detected by a an antibody raised against p53 acetylated only on that 

residue.  P/CAF acetylation at lysine 320 was demonstrated to be inhibited by MDM2 
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association with P/CAF in one study (Jin et al., 2002).  Data from other studies found 

similar relationships between p300 and Mdm2 (Ito et al., 2001).  P/CAF is associated 

with p300 and CBP, and all 3 proteins promote p53 transcriptional activity.   

 It is interesting to note that  histone deacetylase inhibitors, as well as over 

expression of CBP, have been shown to ameliorate some aspects of polyglutamine 

neurotoxicity (McCampbell et al., 2001;  Steffan et al., 2001;  Taylor et al., 2003).  This 

is consistent with the hypothesis that neuronal dysfunction in HD is due to 

polyglutamine expansion mediated alterations to transcription.   CBP is a major part of 

the transcriptional machinery, as it mediates acetylation of histones.  CBP also 

acetylates p53 (Gu et al., 1997), and this could reveal a role for p53 in the dysregulation 

of transcription observed in HD.   CBP contains a polyglutamine region and it has been 

suggested that this region is important for interaction with mutant Htt.  CBP binds to 

phosphorylated CREB, which in turn binds to the cyclic AMP response element (CRE).  

CBP serves to acetylate histones, thereby decompressing the nucleosomes and 

allowing the transcriptional machinery to assemble at the appropriate promoter sites.   

CBP, along with p300 and P/CAF, serve as “bridges” to the Pol II enzyme (Chan et al., 

2001) .   Alterations to CBP function are most likely to cause disruptions to normal 

transcription (Chan et al., 2001).  Alterations to CREB and its regulators have been 

found to cause neurodegeneration reminiscent of HD (Mantamadiotis et al., 2002).  

Alterations of CRE- mediated transcription have been found in animal (Luthi-Carter et 

al., 2002) and cell models of HD  (Wyttenbach et al., 2001), as well as models of SBMA, 

a polyglutamine disorder caused by expansion of the polyglutamine region of the 

androgen receptor (McCampbell et al., 2000).  Changes in CRE-mediated transcription 
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can affect pathways involved in neural homeostasis.  For example, Brain Derived 

Neurotrophic Factor (BDNF) is regulated by CRE- mediated transcription, and was 

found to be downregulated in human HD brain (Ferrer et al., 2000).  BDNF has been 

found to be important for neural homeostasis, and is up regulated by wild type htt 

(Zuccato et al., 2001).  Treatment of an inducible cell model with cAMP, the second 

messenger that induces CRE mediated transcription, ameliorated some polyglutamine 

dependent deficiencies in an HD cell model, including neurite outgrowth and cell death 

(Wyttenbach et al., 2001).   Interactions between CBP and mutant Htt have been 

reported in several studies (Nucifora et al., 2001;  Steffan et al., 2000;  Yu et al., 2002).  

In one study, almost complete sequestration was reported in cell models, mouse 

models, and human brain (Nucifora et al., 2001).   Soluble CBP was greatly reduced in 

the brains of HD patients.  Reduced CBP reporter activity was also reported in cell 

models of HD and dentatorubral and pallidoluysian atrophy (DRPLA), another 

polyglutamine disorder caused by polyglutamine expansion of atrophin-1.   CBP over 

expression rescued polyglutamine expansion cell death in cell models of both diseases.  

Deletion of CBP resulted in pathology in cells expressing nonpathological lengths of 

polyglutamine.  In another study, CBP was also found to aggregate with mutant Htt in 

cell and mouse models of HD (Steffan et al., 2000).  This occurred concomitant with p53 

interaction with mutant Htt.  The mechanism of mutant Htt induced alterations to 

transcription is somewhat controversial.  Yu and colleagues found that even though 

CBP may be co localized with mutant Htt in the nucleus, it was not however depleted 

(Yu et al., 2002).  This study suggested that CBP interacted with soluble mutant Htt, 
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comparable to what was seen with SP1, which is another transcription factor that 

contains a polyglutamine region. 

 Mutant Htt constructs have been shown to interact with p53 in one study (Steffan 

et al., 2000).  In this study, p53 aggregated with mutant Htt in intracellular inclusions 

observed in cell models of HD.   Mutant Htt co-immunoprecipitated with p53 as well as  

with CBP.  Mutant Htt interaction with p53 was independent of the proline rich region of 

Htt in cells, although there was a requirement for the proline rich region in vitro.  

Additionally, p53 interaction with mutant Htt required the C terminal region of p53, a 

region that is highly regulated.   For example, the NES domains and tetramerization 

domains of p53 lie in this region (McLure et al., 1998).  Interaction of mutant Htt with 

p53 would alter p53 mediated transcription (Steffan et al., 2000).  This same group 

found that there was aberrant histone acetylation in cells that expressed a 

polyglutamine expanded mutant Htt fragment.  Treatment of animals transgenic for 

mutant htt with HDAC’s alleviated the neurodegeneration observed. It was found that 

HDAC’s also improved histone acetylation in these animals.  These data gives pause 

when one considers the effects maintaining acetylated sites on p53.  If acetylated p53 is 

active, and HDACs attenuate neurotoxicity, then active p53 in HD models may not be 

detrimental to cells.  Active p53 could be beneficial or may play no significant role in 

vivo.  This idea becomes more important when I discuss the in vivo studies I conducted. 

 Taken together, these data have lead researchers to investigate the use of 

HDAC inhibitors in potential clinical trials.   HDAC inhibitors have been found to alleviate 

polyglutamine neurotoxicity in animal and cell models (Steffan et al., 2001).  However, 

in light of our studies, it is likely that HDAC inhibitors may adversely affect p53 function.  
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HDAC inhibitors keep p53 acetylated and p53 mediated transcription active (Juan et al., 

2000).  It was also found that use of HDAC enzymes reduced p53 interaction with the 

BAX promoter.  BAX has been implicated in neural death and mitochondrial dysfunction 

(Fortin et al., 2001).  This data suggests that inhibition of HDAC would promote higher 

transcription of the BAX gene, which could be detrimental to neural homeostasis (Juan 

et al., 2000).  However, there was increased acetylation in 56-GFP cells compared to 

19-GFP cells, but this has no effect on cell viability (Ding, 2002 #403). 

 The expression, stability, and localization of p53 were altered in differentiated 56-

GFP cells.  Additionally, post-translational modifications were found to be increased in 

56-GFP cells.  Interactions between Mdm2 and p53 were found to be altered in 56-GFP 

cells.  Taken together, these data appear to support the hypothesis that p53 expression, 

stability, and localization are altered in a cell model of HD.  It remains to be seen what 

the mechanism of p53 stabilization in 56-GFP cells is, and what the ramifications of p53 

stability may be. 

 

Polyglutamine Expansion Alters p53 Expression and Activity in neural cells 

Transactivation of genes by p53 is dependent upon sequence-specific p53 

interaction with DNA  (Oren, 2003), so this data implies that p53 transcriptional activity 

may be higher in 56-GFP cells compared to 19-GFP cells.  However, this data only 

demonstrated increased interactions in vitro.  To determine if p53 DNA binding activity 

had a role in polyglutamine mediated neurotoxicity, a cell line expressing a ts mutant of 

p53 mutant was used (Hughes et al., 2000).  This mutation has been found to greatly 

inhibit p53 transcriptional activity, notably of p21Waf1/CIP1 protein, a protein responsible 
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for growth arrest following treatment of cells with Nerve Growth Factor (NGF) (Hughes 

et al., 2000).   Following treatment with NGF, cells that express ts p53 do not undergo 

cell cycle arrest, but do differentiate into a neuronal phenotype (Hughes et al., 2000).   

PC12 cells transiently transfected with 56-GFP were found to undergo cell death.  Cell 

death was greatly attenuated in cells that stably express ts p53 (Figure 9G).  This data 

indicates that transient transfection of cells with 56-GFP induces cell death that is 

dependent on p53 transcriptional activity.  The possibility that p53 could contribute to 

neural death in other ways besides transactivation of genes was considered.  Recent 

studies have shown that a fraction of p53 localizes to the mitochondrion following 

ionizing radiation, a classic inducer of p53, and binds with anti-apoptotic proteins of the 

BCL-2 family of protein (Manfredi, 2003;  Mihara et al., 2003).  This in turn leads to 

perturbations of the membrane and cytochrome C release, an event which precedes 

apoptosis.  This interaction also occurs through the DNA binding domain of p53, which 

is interesting because ts p53 is deficient in DNA binding (Mihara et al., 2003).  It may 

prove useful to examine localization of p53 in the ts p53 cells.  It might also prove useful 

to show that in vector cells transiently transfected with 56-GFP, p53 promotes the 

transactivation of pro-apoptotic genes such as BAX (Morrison et al., 2000) or APAF-1 

(Fortin et al., 2001), and these p53 mediated actions are attenuated in the ts p53 cells.   

The expression and localization of p53 were found to be altered in cells 

expressing pathological lengths of polyglutamine compared to cells expressing 

physiological lengths.  The data indicate that polyglutamine expansion in this model 

serves to stabilize p53.  Polyglutamine expansion induced neurotoxicity which was 

relieved by disabling p53 transcriptional activity (Figure 9).   Taken together, the data 
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agree with the hypothesis that polyglutamine expansion alters p53 expression, 

localization, and activity. There was stabilized expression of p53 and higher levels of 

modified p53 in 56-GFP cells compared to 19-GFP cells.   There were differences in 

p53-Mdm2 interactions and p53 localization in 56-GFP cells compared to 19-GFP cells.  

Mdm2 expression was highest in 56-GFP cells but Mdm2 interactions seemed to be 

lower than in 19-GFP cells.   Reduction of Mdm2 expression resulted in cell death that 

was much greater in 56-GFP cells than in 19-GFP cells. It would appear from the data 

that a role for p53 in HD can be elucidated.  Whether this role is mediation of neural 

death in HD remains to be seen.  It could be that p53 is not directly involved with neural 

death in polyglutamine diseases.  The data on this is very thin, but absence of p53 in a 

mouse model of SCA1, another polyglutamine disorder, demonstrated absence of p53 

did not affect cell number or motor performance (Shahbazian et al., 2001).  However, 

absence of p53 did reduce the amount of dendritic thinning seen in SCA1 mice.  

Dendritic thinning, also known as dearborization, is typical of SCA1.  This may reflect a 

contribution of p53 to other pathways other than the well known apoptotic pathways.   

 

p53 in the R 6/2 mouse 

 The experiments I’ve described served to investigate basic p53 biology in the 

presence of polyglutamine expansion in vitro.  In order to investigate the role of p53 in 

HD in vivo, p53 and modified p53 expression were examined in R6/2 mice, a model of 

HD, as well as in human HD brains. R6/2 mice express an N-terminal fragment of exon1 

of the human HD gene containing a polyglutamine region of 145 residues in length 

(Mangiarini et al., 1996).  This mouse develops a pathology at 8 weeks that is 
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somewhat reminiscent of human HD. Starting at approximately 7 weeks of age, 

intranuclear aggregates and inclusions within dystrophic neurites are observed in the 

brains of R6/2 mice (Davies et al., 1997). However, neurodegeneration is not specific to 

the striatum, but rather diffuse throughout the cortex and cerebellum as well.   Changes 

to nuclear morphology, including indentations of the nuclear membrane and an increase 

in nuclear pore density  have been observed (Davies et al., 1999).  Similar changes to 

nuclear morphology have been observed in human postmortem HD brain (Davies et al., 

1997).  A later study found that there is  non-apoptotic neurodegeneration that develops 

late in life (14 weeks) (Turmaine et al., 2000).  R6/2 mice also develop a progressive 

neurological phenotype that includes clasping behavior (inability to splay when 

suspended by the tail), and a movement disorder like that seen in persons with HD.  

There is a loss of body weight as well as decreased brain size compared to wildtype 

littermates.  Contrary to data in the SY5Y model, p53 expression was markedly less in 

the R6/2 mouse compared to wild type controls at 4 weeks and at 10 weeks of age 

(Figure 9A).  There was a slight decline in p53 expression at 10 weeks in HD mice 

compared to 4 weeks (Figure 9A).   

One explanation of the differences between the mouse and in vitro data is that 

there are differences in the polyglutamine constructs used and that this may influence 

interaction between p53 and polyglutamine expanded protein.   In the SY5Y studies, the 

constructs used was a fusion of GFP and a polyglutamine fragment (Ding et al., 2002).  

In the R6/2 mouse, the construct is an N-terminal fragment of polyglutamine expanded 

human mutant Htt.  Suhr and colleagues used similar fragments fused to GFP to 

demonstrate protein aggregation in human embryonic kidney 293 cells (HEK 293 cells) 
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transfected with htt constructs (Suhr et al., 2001).  When aggregates and cell lysates 

were examined by Western blot, it was found that p53 aggregated with mutant Htt.  

Additionally, it was found that the relative amount of sequestered p53 was 

approximately 3 fold greater than soluble p53.  The constructs were made preserving 

the polyproline region downstream of the polyglutamine region of the htt fragment.  This 

region has been suggested to play a part in mutant Htt –p53 interaction in vitro (Steffan 

et al., 2000).  However, in cell culture systems, there was no such dependence on the 

proline rich region. The proline rich region of p53 lies between amino acids 64 and 91. 

Repression of transcription by exogenous p53 of a reporter gene (multi-drug resistance 

gene or MDR-1, fused to luciferase) was examined by Steffan and colleagues in cells 

that lack endogenous p53.  They found that p53 effectively repressed transcription of 

MDR-1.  Interestingly, they found that mutant Htt fragments repressed MDR-1 

transcription as effectively as p53.  mSin3a has been shown to interact physically with 

the N-terminal region of p53 through amino acids 40-160.  This region contains the 

transactivation domain and the proline rich region.  Interaction of mSin3a with p53 has 

been shown to prevent MDM2 mediated proteolysis of p53, thereby stabilizing p53 

(Zilfou et al., 2001). Presumably this allows p53 to remain attached to promoters with 

mSIn3a for a longer period of time.  The interaction of p53 and mSin3a required amino 

acids 61-75 of p53.  This region lies within the proline rich region of p53, which is 

essential for p53 mediated apoptosis. However, mSin3a was also found by Steffan and 

colleagues to interact in vitro with mutant Htt in a polyglutamine length and Htt 

polyproline region dependent manner, although this was a weak interaction.  This could 

explain the differences between the in vitro and mouse studies I’ve conducted.  If 
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mSIn3a interacts with mutant Htt in vitro, this could disrupt the mSin3a mediated 

protection of p53 from Mdm2 directed proteolysis.   If mSIn3a normally protects a 

fraction of p53 protein from proteolysis, then disruption of the association would be a 

likely avenue for decreased p53 in R6/2 mice.  Mdm2 and p53 are both sequestered in 

cell models of HD,  (Suhr et al., 2001), so examination of relative levels of p53 and 

Mdm2 would be useful in mice.  Mdm2 was not examined in my analysis of R6/2 mice.  

The GFP constructs used in the in vitro studies do not contain a proline rich region.  

This could explain why there is more p53 in the 56-GFP cells, as these constructs lack 

the region of mSin3a interaction.  Experiments could be done in cell models of HD 

expressing human htt N-terminal fragments.  Experiments that might be informative 

would be immunoprecipitation experiments to show interactions between p53 and 

mSIN3a, p53 and Mdm2, and mSIn3a and htt.  Differences in cells expressing 

pathological and nonpathological polyglutamine expansion could be noted and 

contrasted to parallel experiments with GFP-polyglutamine fusions.  Additional 

experiments could investigate mSIN3a’s effects on p53 stability in cells expressing 

polyglutamine expansion similar to the mSIn3a –p53 interaction study (Zilfou et al., 

2001).  If my proposed model is valid, then these data would show that p53 is less 

stable in cells expressing pathological htt compared to cells expressing nonpathological 

htt.  This could help deduce why there is less p53 expression in HD mice than wild type 

mouse, and help elucidate the role of p53 in HD neurotoxicity.  

Phosphorylation of p53 at serine 392 has been shown to stabilize p53 tetramer 

formation (Liang et al., 2001).  Studies have indicated that p53 binds DNA as a tetramer 

(McLure et al., 1998), and stabilization of this complex may help in preventing nuclear 
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export of p53.  In HD mice, p53 was phosphorylated on Serine 392 less than in wild 

type controls (Figure 9B).   There did not appear to be an age dependent change in 

phosphorylation.  Phosphorylation of p53 tended to correlate with p53 expression in HD 

and wild type mouse, suggesting a possible contributing factor for p53 stability in HD 

mice.  In other words, when phosphorylation of p53 on Serine 392 is reduced, p53 is not 

maintained as a tetramer, and p53 stability goes down.  Another possibility is that in the 

normal mouse brain, p53 levels are maintained at a low level that is sufficient to prevent 

uncontrolled growth.    Acetylated p53 levels were similar in wild type and HD mice at 10 

weeks. (Figure 9C).  There was significant variability between the animals at 4 weeks, 

making a strict interpretation difficult.    

 

Human HD 

In human HD brains, p53 expression was notably less than in control brains 

(Figure 10A).  This pattern was repeated for both phosphorylated and acetylated p53 as 

well (Figure 10B and 10C, respectively).  At first observation, it would appear that p53 is 

down regulated in the caudate of HD brains.  However, these brains were all of Grade 4 

pathology.  At this level of pathology, most of the neurons of the caudate have been lost 

concomitant with greater astrogliosis (Vonsattel et al., 1985).  Most of the neural tissue 

is gone and there are approximately 30 % more astrocytes, which proliferate after or 

during neurodegeneration.  In control brains, there were marked levels of p53 as well as 

modified p53 species.  It must be noted that though p53 levels were barely detectable in 

HD brain, phosphorylated and acetylated p53 were also detected at very low levels 

compared to controls. This would imply that active, stable p53 is present in normal 
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human striatum.  One of the primary functions  of p53 is to maintain genomic stability 

and prevent aberrant  growth (Oren, 2003).  Interpreting the results in this experiment 

(Figure 10) is difficult.  Control brains are so different from HD brains with regard to 

resident cells in the caudate, that p53 expression data may be irrelevant to the disease.    

The data suggest that loss of p53 may bear responsibility for the neuropathology 

observed, and that in its normal function, p53 is beneficial for the brain, as well as the 

individual neuron.  In vivo, p53 serves different roles depending upon cellular and 

temporal context.  Blood cells such as lymphocytes are removed from the population 

through p53 dependent apoptotic death. During neurodevelopment, p53 mediated 

apoptosis removes up to 50 % of the neurons from the brain (Miller et al., 2000).  

Temporal and spatial distribution of p53 and p53 mediated pro-apoptotic genes are 

varied in neurodevelopment  (van Lookeren Campagne et al., 1998).   PC12 neural cells 

with Nerve Growth Factor (NGF) resulted in up regulation and nuclear localization of 

p53. This was followed by a  cell cycle arrest and neurite outgrowth (Hughes et al., 

2000).  Using the ts p53 expressing PC12 cells used in my studies,  they found that 

neuritic growth is not dependent upon p53 DNA transcriptional activity, but that cell 

cycle arrest is.  This data suggests that one function of p53 is to prevent aberrant 

reentry into the cell cycle, and that a neuron could remain differentiated even though 

p53 was inactive.  Inappropriate activation of some cell cycle components has been 

reported in neurodegenerative disorders.  A recent paper found that there is 

neurogenesis in the HD brain, even in very pathological cases (Curtis et al., 2003).  The 

cells detected were neural progenitor cells.  These cells proliferate and differentiate into 

neurons.  This has been observed in adult rat brains as well. If resident cells are 
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proliferating, then p53 function and activity presumably would be decreased compared 

to controls.  In that case, given the low levels of p53 in the mature brain already 

(Figures 9 and 10), p53 expression may fall below detectable levels.   

To determine the role of p53 in the neurodegeneration of HD it would be 

necessary analyze brains over the course of the disease. With the few brains analyzed 

in this study, and given the ethical constraints of analyzing human samples, it would be 

difficult to assess p53 levels in relevant portions of the brain during the course of HD.  

However, lymphoblasts from HD patients have been used to analyze the effects of 

mutant Htt during the course of the disease (Panov et al., 1999;  Panov et al., 2002).  

One study investigated the role of Htt mediated defects in mitochondrial calcium 

homeostasis (Panov et al., 2002).  These defects were seen in patients and mice early 

in disease progression. They found that there was a lower mitochondrial membrane 

potential in mitochondria isolated from lymphoblasts of HD patients and HD mice 

compared to controls.  This was associated with greater mitochondrial depolarization 

which was inhibited by cyclosporine A that inhibits mitochondrial permeability transition 

(MPT). Cells from HD patients were more vulnerable to MPT dependent apoptosis 

There was a direct interaction between htt and the mitochondrion (Panov et al., 1999).  

Perturbations of the mitochondrion are associated with oxidative stress, which is a key 

factor in HD .  Additionally, recent data have shown that p53 is also localized to the 

mitochondrion, though the evidence for this is still emerging (Manfredi, 2003;  Mihara et 

al., 2003).  Localization of p53 to the mitochondria of lymphoblasts from HD patients 

might be useful to study.  Regardless, the use of cells derived from human patients 

would be useful to study p53 biology in the context of human HD.  Experiments in these 
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cells could include examining the role of p53 in oxidative stress in an HD background 

and comparing that to normal patients.  It may be that differences would not be seen 

under basal conditions, but when the cells are under stress, i.e. staurosporine treatment 

observed in the Panov study. Also, it may be possible to study changes in p53 

expression and activity through the course of the disease.  One of the caveats to 

studying in vitro systems of HD is that most experiments last on the order of hours or 

days.  HD takes many years to manifest, and extrapolation of data from tissue culture or 

even animal models may be difficult.  One point made by Panov and colleagues (Panov 

et al., 2002), was that mitochondrial changes in membrane potential in HD patients 

were slight, but otherwise, mitochondria functioned normally in HD . A good example of 

this would be in my in vitro studies.  The expression of p53 was elevated in 56-GFP 

cells, yet 56-GFP cells are as viable as wild type or 19-GFP cells (Ding et al., 2002).  

However, transient transfection of PC12 cells with 56-GFP led to cell death which was 

attenuated by overexpression of a p53 protein deficient in DNA binding.  But if these 

changes are over the lifetime of a human, especially in a neuron that has to function for 

up to 100 years, then perhaps they could prove detrimental. Perhaps lymphoblasts from 

HD patients could be used to shed some light on p53 biology in HD in humans. 

 

 

 

p53 and oxidative stress 

Oxidative stress has been implicated in several neurodegenerative disease 

including HD (Bogdanov et al., 2001;  Browne et al., 1999;  Perez-Severiano et al., 
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2002).  Evidence for a role for oxidative stress in HD has been found in human patients 

(Browne et al., 1997;  Polidori et al., 1999) , animal models for HD (Bogdanov et al., 

2001;  Perez-Severiano et al., 2000), cellular models of HD (Wyttenbach et al., 2002), 

and chemical models of HD (Kim et al., 2002;  Tkac et al., 2001).  Oxidative damage to 

proteins, lipids, and DNA has been observed in all of these models (Bogdanov et al., 

2001;  Matthews et al., 1998).  Treatment of animals with the succinate dehydrogenase 

inhibitors 3-NP or malonate has been shown to produce energy depletion in animal and 

humans, as well as striatal lesions that are highly similar to those observed in HD. 

Humans that have accidentally ingested 3-NP develop neuropathology similar to that 

seen in HD.  These toxins also lead to production of ROS. Hence 3-NP and malonate 

have been used as experimental models of HD (Grunewald et al., 1999) .   As further 

evidence for the role of oxidative stress in HD, treatment of cellular (Wyttenbach et al., 

2002) or animal models of HD (Ferrante et al., 2000;  Ferrante et al., 2002) with 

antioxidants has been shown to ameliorate some of the pathology and neurophysiology 

of the disease.  In one study, for example, mice that expressed an N-terminal fragment 

of polyglutamine expanded human htt (HD-N-171-82Q) were treated with the 

antioxidant coenzyme Q10 (CoQ10).  CoQ10 is an essential cofactor of the electron 

transport chain and serves to neutralize ROS (Beal, 1999).  Additionally, mice were 

treated with remacemide, an N-methyl-D-aspartate (NMDA) receptor antagonist, which 

was used because of its attenuation of the effects of glutamate excitotoxicity.  Treated 

mice outperformed untreated mice in motor skills, and that they had greater body 

weight.  There was no difference in survival between treated and untreated mice.  

Another study investigated the effects of CoQ10 and remacemide on motor 
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performance, survival, and brain weight in R6/2 mice.  Motor performance was 

improved with COQ10 or remacemide, or both in combination.  Brain size is decreased 

approximately 20% in R6/2 mice compared to controls (Davies et al., 1997). Brain size 

was significantly increased in treated animals versus untreated mice, probably due to 

reduced ventricle size (Ferrante et al., 2000).  Enlarged ventricles are a characteristic of 

R6/3 symptomatic brain and result from degenerative neurons.  Metabolic impairment 

has been linked to HD, and can result in the production of ROS (Browne et al., 1999).  

Treatment of animals with creatine or cyclocreatine, substrates for creatine kinase, an 

enzyme that regulates the ATP/ADP ratio in the brain, reduced metabolic dysfunction 

and ROS production in 3-NP and malonate treated animals  (Andreassen et al., 2001).  

This was evidenced by lower levels of lactate production, reduced hydroxyl production, 

and reduced levels of 3-nitrotyrosine, a marker of peroxynitrite mediated protein 

oxidation.  

HD is associated with increased oxidative stress (Browne et al., 1999;  

Grunewald et al., 1999).  Oxidative stress is associated with increased p53 expression 

and p53 transcriptional activity in a variety of models of neural injury and disease  

(Bates et al., 1999;  Mattson et al., 2001).  Taken together, this suggests a possible role 

for p53 in HD neurotoxicity.  In Chapter 3 I described research aimed at investigating 

the hypothesis that alterations to p53 expression and/or activity mediated neural death 

induced by oxidative injury.  The expression of p53 was analyzed as well as the effects 

of genetic and pharmacological inhibitors of p53 transcriptional activity on neural death 

induced by H2O2.   I did not investigate a direct role for oxidative stress neurotoxicity, 
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but I did investigate the hypothesis that alterations to p53 expression and activity 

mediated neural death induced by oxidative injury.   

H2O2   induced dose dependent death in embryonic rat cortical neurons (Figure 

11, 13).  Analysis of p53 expression revealed elevated levels of p53 after 6 hours, with a 

decrease in expression after 24 hours (Figure 12).  This increase was noted with all 

concentrations tested.  There was some variation in the time course of p53 induction 

between experiments. Specifically, in some experiments treatment with 10 µM H2O2 

sometimes induced elevated p53 at earlier times than 1 µM H2O2.   

Since the magnitude of p53 induction was similar for all concentrations of H2O2, 

despite the dose dependent neural death, it is likely that neural death was not 

completely dependent upon p53.  Transcriptional activity of p53 has been in implicated 

in other models of oxidative stress (Duan et al., 2002).  Inhibition of p53 expression with 

p53 oligonucleotides was  shown to inhibit neural death following excitotoxic injury 

(Lakkaraju et al., 2001).  An inhibitor of p53, pifithrin-α, has also been shown to 

ameliorate the effects of ischemia and excitotoxicity (Culmsee et al., 2001).  

Cotreatment of H2O2 treated neurons with pifithrin resulted in attenuation of neural death 

(Figure 13).  There was not complete inhibition of cell death.  This could be for various 

reasons, including insufficient concentration of pifithrin, or production of survival factors 

by other cells in the culture.  There was no death attributed to pifithrin (Figures 

13,14,15).  The use of embryonic rat neuronal cultures was useful to study the induction 

of p53 expression and cell death, as well as the establishment that cell death was at 

least partially mediated by p53 transcriptional activity.  However, there may be 

differences in the role of p53 in rat and human.  Also, the primary cultures utilized were 
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of a mixed cell type nature, that is, they contained glial cells as well as neurons.  Glial 

cells, specifically astrocytes, are mitotic cells in culture, and the ratio of astrocytes to 

neural cells was variable from experiment to experiment.  And the induction of p53 in 

mitotic cells in response to oxidative injury is probably dissimilar to that of neurons.  This 

is a possible source of variability in p53 expression data.  To study the effects in a more 

relevant model to human conditions, human neural SY5Y cells were used.  This cell 

line, derived from human neuroblastoma cells, are unique from many other types of 

tumor derived cell lines in that they express wildtype p53.   

Comparable to studies in primary cultures, H2O2 induced neural death in SY5Y 

cells (Figures 15 and 16).  Cell death was attenuated, but not abrogated by pifithrin in 

undifferentiated cells.  Likewise, in differentiated SY5Y cells,   H2O2 induced a dose 

dependent increase in cell death.  Unlike differentiated cells, though, pifithrin blocked 

cell death induced by 10 µM H2O2 (Figure 16). There are two possible reasons for this.  

First, there could be differences in sensitivity of differentiated cells to pifithrin, compared 

to undifferentiated cells.  This was not tested.  Second, differentiated cells may have 

different pathways that are responsive to oxidative stress.   There may be less of a role 

for p53 in oxidative stress in undifferentiated neural cells.  Taken together the data in 

SY5Y cells demonstrated that p53 inhibition attenuates the cell death induced by 

application of H2O2. 

To corroborate data obtained with pifithrin, genetic inhibition of p53 was utilized. 

In PC12 cells, the role of p53 transcriptional activity in response to oxidative stress was 

investigated.   In control cells, treatment with pifithrin resulted in a dose dependent 

increase in cell death as determined by nuclear morphology and the MTT assay.  Cells 
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that over expressed ts p53, which was deficient in DNA binding, were resistant to this 

cell death (Figures 16 and 17).  This data suggests that p53 transcriptional activity has a 

role oxidative stress mediated neural death.  This distinction is important because it 

shows that p53 was not acting in some other role besides as a transcriptional activator.  

There are studies that have investigated p53 dependent apoptosis in the absence of 

p53 transcriptional activity (Bates et al., 1999).  For example, p53 interaction with anti-

apoptotic members of the Bcl family  has been shown to promote the release of 

cytochrome C from the mitochondrion (Mihara et al., 2003).  There are also reports of 

p53 interacting with other proteins, such as DNA helicases, which are involved in DNA 

repair (Wang et al., 2001).   It was found that p53 interacts with BLM, a DNA helicase 

that is implicated in Bloom syndrome, a disease characterized by cancer disposition.  

BLM interacted with the C-terminal region of p53.  Disruption of this interaction results in 

alterations to BLM function and aberrant growth, whereas deletion of the p53 DNA 

binding domain did not. Hence, p53 but not p53 transcriptional activity was required for 

apoptosis.  The in vitro studies I conducted don’t support this type of interaction in p53 

mediated apoptosis, as mutation of the DNA binding site attenuated cell death.  If p53 

mediated apoptosis was not dependent on transactivation of p53 dependent genes, but 

rather helicase –p53 interaction, then cell death would not have been reduced in ts p53 

cells unless the helicase mediated event was dependent upon p53 interaction with 

DNA.   

Taken together, the data presented in Chapter 3 suggests that p53 expression is 

altered following oxidative injury, and that p53 activity is increased.  This latter point was 

determined indirectly, as no measurement of p53 mediated transcription, i.e. using p53 
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reporter assays, was made.  However, in the presence of ts mutant p53 protein, cell 

death was largely abrogated.  This data fits in well with other studies utilizing either 

pharmacological or antisense approaches to elucidation of the role of p53 in neural 

injury and death(Culmsee et al., 2001;  Duan et al., 2002;  Lakkaraju et al., 2001).  In a 

chemical model of Parkinsonism, treatment of mice with the mitochondrial toxin 1,2,3,6-

tetrahydropyridine (MPTP), results in the production of BAX, which is transcriptionally 

activated by p53, as well as mitochondrial dysfunction and oxidative stress (Bates et al., 

1999;  Duan et al., 2002;  Morrison et al., 2000).  BAX has been implicated in neuronal 

death in several studies.  In mice pretreated with pifithrin, MPTP induced BAX 

production was decreased, and the mice had improved motor skills compared to mice 

treated with MPTP alone.  This study clearly implicated a role for p53 in oxidative stress 

resulting from mitochondrial dysfunction (Duan et al., 2002).  When treated with pifithrin, 

neurons were protected from apoptotic death induced by glutamate, amyloid-beta (a 

prime suspect in AD), and DNA damaging agents (Culmsee et al., 2001).  Additionally, 

mitochondrial dysfunction in neurons was attenuated by pifithrin following treatment with 

these agents, and BAX production and p53 DNA binding activity were reduced. Taken 

together these data fit with the in vitro studies I conducted.  Pifithrin attenuated cell 

death, suggesting that p53 was involved with H2O2 toxicity.  This was true at all 

concentrations tested and it was also true for all models tested, in both primary neuronal 

cultures and human neural cell lines.  These data were corroborated by the PC12 data 

where it was demonstrated that over expression of ts p53 attenuated cell death.  

Oxidative injury induced cell death and changes in p53 expression.   These data 

support the hypothesis that p53 plays a direct role in mediating oxidative stress toxicity.   
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The details of p53 involvement remain to be worked out.  Localization of p53 to the 

nucleus is almost assumed, due to the dependence of cell death on p53 transcriptional 

activity in primary neurons as well as in cell lines, but high resolution 

immunocytochemistry would be informative.   

Cell death in both 56-GFP PC12 cells and H2O2 treated cells was almost 

completely blocked in cells expressing the mutant p53, indicating that neural death was 

mediated by p53 transcriptional activity..  Oxidative stress has been implicated in HD 

(Beal et al., 1994;  Deckel et al., 2001;  Schilling et al., 2001), and investigating the 

mechanism of death in 56-GFP cells would be appropriate.  Taken together, the data 

demonstrates that p53 is altered in expression and activity in a model for oxidative 

stress.   Neural death is attenuated by inhibition of p53 transcriptional activity.  The 

possibility that a connection could be made between HD and p53 and oxidative stress is 

intriguing.   

 Constructing a model that describes all the interactions between p53, other 

proteins, and their effects on neural homeostasis would be a Herculean effort.  

However, a possible model of the interactions between polyglutamine expansion, 

oxidative stress, p53 and neural death associated with HD is presented in Figure 18.  

Oxidative stress can both induce and is induced by p53 activity.  Huntingtin has been 

shown to interact with the mitochondrion. Mutant huntingtin has been shown to affect 

mitochondrial homeostasis, which over the lifetime of a neuron could make it more 

vulnerable to other stresses (Panov et al., 2002).  Excitotoxic stress can also induce 

p53, and excitotoxicity has been suggested to have a role in HD  
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(Sieradzan et al., 2001;  Uberti et al., 1998).  A direct role for p53 in HD is difficult to 

elucidate at this point.  My studies have shown that p53 is stabilized in neural cells 

expressing polyglutamine-GFP fusion proteins.  Levels of modified p53 were higher in 

cells expressing 56-GFP than in cells expressing 19-GFP.  Mdm2 expression and 

nuclear localization was higher in 56-GFP cells, yet interaction with p53 was decreased 

compared to 19-GFP cells. Transient transfection of neural cells with 56-GFP induced 

neural death. This was attenuated by inhibition of p53 activity.  Oxidative stress 
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Figure 18.  There are many possible routes to HD through p53.  
Polyglutamine expansion, oxidative stress, and other stresses can activate 
p53 through upregulation or stabilization.  Oxidative stress can occur by p53 
dependent or independent means.  p53 can be stabilized by inhibition of 
Mdm2.   The activity of p53 can be increased through phosphorylation and/or 
acetylation of p53 (P,A).  Mitochondrial dysfunction is associated with 
oxidative stress and is possibly induced by polyglutamine expansion.  
Oxidative stress eventually can lead to neural death. 



 72

mediated neurotoxicity was also attenuated by inhibition of p53 activity.  These data 

together suggest a link between oxidative stress, p53, and polyglutamine neurotoxicity 

in an indirect way.   Further investigations will need to be done to dissect these 

interactions so that a more complete model can be elucidated.  

 

Future Directions 

The role of p53 in polyglutamine disorders was not elucidated in these studies, 

though some qualified statements can be made about p53 biology in a variety of 

polyglutamine expansion models.  Two hypotheses were tested in my studies.  First, 

polyglutamine expansion induces alterations in p53 expression, stability, and activity.  

Second, p53 plays a direct role in mediating some aspects of oxidative stress, which is 

relevant to HD.  

To investigate the first hypothesis, the expression of p53 and modified p53 was 

examined in 4 different models of HD, 2 in vitro and 2 in vivo.  These were a human 

neural cell model utilizing different lengths of polyglutamine fused to GFP, a rodent 

neural cell model, the R6/2 mouse model, and human HD brain.   The expression of p53 

was altered in each of these models; however, the alterations investigated were 

different from model to model. Transcriptional activity of p53 was implicated in neural 

death induced by transient transfection of 56-GFP.  Expression of p53 in 56-GFP cells 

was more stable than in 19-GFP cells, even in the absence of increased p53 mRNA in 

differentiated 56-GFP cells.  In the absence of protein synthesis, p53 was more stable in 

56-GFP cells, indicating that there could be less proteolysis of p53.  Mdm2 has ubiquitin 

E3 ligase activity and is a potent negative regulator of p53.  Mdm2-p53 interaction was 
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decreased in 56-GFP cells even though Mdm2 was up regulated and localized to the 

nucleus.  Treatment of 19-GFP and 56-GFP cells with Mdm2 antisense oligonucleotides 

caused increased cell death in both 19-GFP and 56-GFP cells, but with much greater 

death in 56-GFP cells (Figure 6).  I described differences between the polyglutamine-

GFP constructs I used and those used in other investigations that implicated p53 in HD 

(Steffan et al., 2000;  Suhr et al., 2001).  Future investigations could look at 

modifications to p53 in an htt background and how mutant Htt may or may not affect 

p53 activity.    

 

Future studies should investigate which pathways were induced in the PC12 cells 

by 56-GFP and mediated by p53.  Assays for BAX or APAF-1 expression (mRNA or 

protein or both), both p53 mediated genes, could be utilized in the existing PC12 cells 

lines.  In a chemical model of HD, p53 expression was found to be induced  (Qin et al., 

1999).  To show that p53 mediated transcription was altered by oxidative stress, 

antioxidants could be used.  If oxidative stress did induce p53, perhaps through DNA 

damage, then use of these reagents, such as coenzyme Q10, would attenuate 

production of these proteins.  Another possibility would be to examine mitochondrial 

function in mutant p53 and control PC12 cells after transfection with 56-GFP.  

Mitochondrial membrane potential has been shown to be altered in lymphoblasts from 

HD patients (Panov et al., 2002), so it may be useful to tie dysregulation of mitochondria 

in with p53 in human HD lymphoblasts, or another cellular model of HD. 

The expression of p53 protein was found to be altered in neural cells that were 

treated with H2O2. Whether this was due to induction of p53 or stabilization of p53 was 
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not determined.  The role of Mdm2 was not investigated with regard to oxidative stress, 

but would need to be determined in future studies.  Post-translational modifications 

would also be useful to study. These studies would reveal the regulatory elements of 

the p53 mediated response.  As discussed for the 56-GFP cells and PC12 cells, H2O2 

induced cell death could be studied in more detail with regard to p53.  It is clear that p53 

transcriptional activity had a role in H2O2 induced neural death.  It would be useful to 

know the pathways . 

 Pharmacological inhibitors of p53 have been used in cancer research.  The 

original study that described pifithrin found it to inhibit p53 dependent apoptosis 

following treatment with anti-cancer drugs or UV radiation (Komarov et al., 1999).  

Pifithrin has also been found to ameliorate some effects of neural injury and oxidative 

stress in vitro and in vivo (Culmsee et al., 2001;  Duan et al., 2002).  Quinolinic acid 

(QA), an NMDA receptor agonist, induces an HD like neuropathology, including striatal 

lesions in rats and man.  QA has been shown to induce oxidative stress in animals and 

in vitro cell cultures that is alleviated by antioxidant therapy (Cabrera et al., 2000).  QA 

was also found to induce p53 and p53 responsive genes in rats (Qin et al., 1999).  

Possible studies could investigate pifithrin mediated protection in QA treated rats.  

Pifithrin treatments could be given with and without antioxidant therapy.  If some 

oxidative stress induced by QA is p53 independent, then there should be at least an 

additive effect with both treatments.  Survival and behavioral studies could lead to 

estimations of the gross contribution of p53 to HD neurophysiology and 

neurophysiology.  More detailed neuropathological examination could reveal other 



 75

facets of the role of p53 in this model of HD.. For example, there may be less neural 

death in animals treated with pifithrin. 

 Similar studies could be conducted using transgenic mice such as the R6/2.  The 

data obtained in the present studies indicate less p53 protein expression in R 6/2 mice.  

However, this study did not address p53 activity in vivo.  One way to do that would be 

the use of pifithrin.   If p53 activity were important in disease pathology and/or 

physiology, then use of pifithrin may result in a decrease of neural atrophy observed in 

these animals.  We have obtained very preliminary data in this area.  Pifithrin treated R 

6/2 mice did not survive as long as untreated R 6/2 mice.  Interestingly, wild type mice 

treated with pifithrin lived and seemed unaffected.  The mechanism of pifithrin mediated 

death in R 6/2 mice is unclear, but a recent paper by Komarova and colleagues 

demonstrated pifithrin mediated reductions in the heat shock response and 

glucocorticoid signaling in mice and in vitro (Komarova et al., 2003). They found that 

these reductions were p53 independent.  Some connection has been made between the 

heat shock response, polyglutamine disorders,  and glucocorticoid signaling have been 

made (Komarova et al., 2003).  The data here is emerging, but perhaps with further 

investigation, we will be able to determine the cause of death in the R6/2 mice treated 

with pifithrin.  An intriguing possibility is that pifithrin will help reveal beneficial activities 

of p53 in the HD mouse.   
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Chapter Five 

Materials and Methods 

Cell Culture 

Cortical neurons were isolated from embryonic day 18 (E18) Sprague-Dawley 

rats as previously described (Keller et al., 1999).  Briefly, brains were removed from the 

embryos, stripped of meninges, and rinsed with twice with minimal essential medium 

(MEM).  Brains were incubated in 0.25% trypsin for 10 minutes at 37 oC.  Dissociated 

brains were triturated with a 10 mL pipette, filtered through a 40 µm cell strainer, and 

brought to 50 mL with complete medium. Complete medium consisted of 60% medium 

A (Neurobasal medium supplemented with B-27 and 1% (v/v) penicillin/streptomycin) 

and 40% medium B (MEM supplemented 2% (v/v) fetal bovine serum (FBS), N2 

supplement, and 1% (v/v) penicillin/streptomycin).  Brains were then pelleted by 

centrifugation at 1000 x g for 5 minutes.   Pelleted cells were then resuspended in 

complete medium at 1 brain/mL of medium.  Cells were plated at appropriate density on 

35 mm, 60 mm, or glass-bottom 35 mm dishes that had been previously coated with 

polyethyleneimine (PEI).  After 2 hours, the medium was replaced with fresh complete 

medium. Experiments were conducted after 5 days incubation in a 5% CO2 incubator 

(37 o C) to allow neurons to achieve post-mitotic neuronal phenotype. 

 Neural SH-SY5Y cells were purchased from American Type Culture Collection 

(ATCC) and stably transfected with 19Q-GFP and 56Q-GFP constructs (Moulder et al., 

1999), kindly provided by  Dr. Eugene Johnson (Washington University), as previously 

described (Ding et al., 2002).  Cells were maintained in a 5% CO2 incubator (37 o C) in 

MEM complete medium (Minimal Essential Medium, 10% (v/v) FBS, 1% (v/v) 
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penicillin/streptomycin, and 800 µg/mL G418).  For wild-type cells, G418 was omitted 

from the medium.   Cells were incubated for 5-7 days in retinoic acid, in order to 

differentiate into post-mitotic neuron phenotype.  All cells utilized were of fewer than 15 

passages.  .  For antisense treatment, cells were incubated with either MDM2 antisense 

(5´-GTT GGT ATT GCA CAT TTG CCT GCT C-3´; 50 nmol), or scrambled 

oligonucleotide (5´-TCT AAG TGT CGC TTA CTG GTC TGT C-3´; 50 nmol), and 

analyzed for MDM2 expression or cell death 24 hours following application. 

 PC12 cell lines were kindly provided by Dr. Kenneth E. Neet (Finch University of 

Health Sciences, Chicago Medical School).  The cell line stably expressed a 

temperature sensitive (ts) mutant p53 engineered in the lab of Dr. Moshe Oren 

(Weizmann institute of Science, Rehovot, Israel) that is defective in DNA binding.  The 

ts p53 gene was inserted into a retroviral vector under control of the cytomegalovirus 

promoter. The control cell line was stably transfected with retroviral vector without any 

insert (Barak et al., 1992;  Hughes et al., 2000).  At restrictive temperature, 39 (oC), 

mutant p53 is overexpressed, and acts a dominant negative, abolishing wildtype 

activity.   Cells were maintained as described (Hughes et al., 2000).   All experiments 

described were conducted at the restrictive temperature. 

 

HD Mouse Model 

 The R6/2 transgenic mouse model was used.  This mouse expresses mutant 

human huntingtin (htt) that contains ~1kb of human HD promoter region, exon 1 that 

carries the CAG-repeat expansion unit (Davies et al., 1997;  Mangiarini et al., 1996). 

These mice have polyglutamine repeats of 141 to 157 repeats.  They have a 
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progressive phenotype with disease onset at approximately eight weeks.  Mice younger 

than this exhibit limited neuropathology, including decreased brain weight, and htt 

immunoreactivity in the nuclei of cortical brain and striatum.  After age eight weeks, 

these mice develop the characteristic movement disorder of HD:  resting tremor, abrupt 

shuddering movements, and seizure.   They also develop a progressive 

neurophysiology and neuropathology including striatal nuclear inclusions, ubiquitin 

immunoreactivity, and nuclear membrane perturbances.  However, this neuropathology 

is not as specific as in human HD. Degenerate,  but not dead neurons, have been 

reported in both cortex and striatum (Turmaine et al., 2000).  For experimentation, 

brains were removed from euthanized mice and immediately cooled on dry ice.  Brains 

were stored at -80oC until use. 

 

Human Tissue 

Samples of caudate from HD brains and control brains (n=4) were obtained from 

the Harvard University Tissue Bank.  Brains had a postmortem interval of 18-24 hours.  

Samples were stored at -80oC.   

 

Analysis of Protein Expression 

 To study the stability of p53 in polyglutamine expressing cells, cells growing in 

60mm dishes were treated with 10 µM cyclohexamide to halt protein synthesis.  Cells 

were collected after 0, 5, 30, or 60 minutes, and p53 expression levels determined by 

Western blot analysis.  Adherent cells were scraped and collected in ice–cold 

phosphate-buffered saline (PBS) - containing protease inhibitor mixture (Western blot 
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buffer), and phosphatase inhibitor as described previously (Ding et al., 2002).  For 

analysis of brain tissue, a section was removed from the cortex (mouse) or caudate 

sample (human) and solubilized in Western blot buffer after being ground with a Dounce 

homogenizer. After determination of protein content, 50 µg of proteins were loaded onto 

a 7.5% polyacrylamide (50 µM Tris-HCl) gel and run at 100V for 60 minutes.  Proteins 

were transferred to a nitrocellulose membrane at 100V for 60 minutes.  After blocking at 

room temperature in 5 % nonfat milk in TBS –Tween -20, blots were incubated in 

primary antibody (1:1000) overnight at 4oC.  Phosphorylated p53 was detected in SY5Y 

cells with an antibody that recognizes p53 phosphorylated on Serine 15.  

Phosphorylated p53 was detected in lysates from mouse or human brain samples using 

an antibody that recognizes p53 phosphorylated on Serine 392.  Acetylated p53 was 

detected in all models studied using an antibody that recognizes p53 acetylated on 

Lysine 320.  Blots were washed in TBS-Tween-20 and then incubated in peroxidase 

conjugated secondary antibody (1:7500) for 1   hour.  The blots were washed in TBS-

Tween-20 and antibodies detected by Enhanced Chemiluminesence (ECL).   

 To determine relative expression levels, intensity of bands corresponding to the 

protein of interest were measured using Scion Image software.  To determine percent 

control intensity, band intensities were divided by the intensity of the relevant control 

band (i.e. 0 hours) and that quotient multiplied by 100.  To determine percent of Mdm2 

interaction with p53, Mdm2 band intensities were divided by the intensity of the 

unprecipitated Mdm2 band (Non-IP from 56-GFP cells) and then divided by 4, as there 

was 4 times as much total protein that was immunoprecipitated as unprecipitated 56-

GFP protein analyzed. 
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Immunoprecipitation 

Neural SH-SY5Y, 19-GFP, or 56-GFP cells were collected in Western blot buffer. 

A total of 200 µg protein was suspended in 250 µL Western blot buffer and incubated 

for 2 hours with 3 µL precipitating antibody.  A total of 25 µL of Fast Flow 4 Sepharose-

Protein G beads was added to the suspension and then rocked at 4 oC overnight.  All 

subsequent steps were conducted at 4oC. The beads were washed 3 times in Western 

blot buffer, and then resuspended in protein loading buffer.  After boiling for 5 minutes, 

the beads were pelleted and proteins loaded on a 7.5% polyacrylamide gel.  After 

electrophoresis, proteins were transferred to a nitrocellulose membrane and then 

blocked in 5 % nonfat milk (TBS- Tween-20) for 1 hour at room temperature.  Blots were 

incubated overnight at 4oC with antibodies diluted 1:1000 in 5% nonfat milk (TBS-

Tween-20).  After washing 3 times in TBS-Tween-20, blots were incubated in secondary 

antibody (1:7500) for 1 hour at room temperature.  After washing, proteins were 

detected by ECL. 

 

Immunostaining 

 To analyze localization of the protein of interest, immunostaining was performed.  

Cells grown on glass bottom dishes were fixed with 4% paraformaldehyde in PBS (10 

minutes), and permeabilized with TritonX - 100 (0.002%).  After washing and blocking 

steps (2% Horse Serum (v/v) in TBS), cells were incubated with primary antibody 

(1:500) overnight.  After further washing steps, were incubated with biotin-conjugated 

secondary antibody (1:500) for 1 hour.  Following washing of the cells, and incubation 
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for 1 hour with ABC complex containing horseradish peroxidase, antibody was detected 

using DAB.  Cells were visualized on a Zeiss Axiovert 200 microcope using bright-field 

and phase-contrast microscopy.  

 

Analysis of Neural Death  

 To determine neural survival, nuclear morphology was assessed. In the last hour 

of treatment, cells were treated with 1 µg/mL Hoechst 33342 stain, and visualized 

fluorescently using a Zeiss Axiovert 200 microscope.  Cells with fragmented or 

condensed nuclei were considered to be nonviable.  At least 300 cells in at least 6 

dishes were counted in each experiment and the percentage of nonviable cells 

determined.  Cells with no treatment (i.e. empty vector or no treatment) served as 

control.  Mean and standard error were determined for at least 6 cultures.   

 

p53 binding activity and neurotoxicity 

 To analyze the role of p53 DNA binding activity in polyglutamine neurotoxicity, 

PC12 cells expressing a mutant p53 ( ts p53) were utilized.  Cells were plated on PEI 

coated glass-bottomed 35 mm dishes and maintained for 2 days in PC12 at 39 oC in a 

5% CO2 incubator. Cells were then transiently transfected with 6 µg of the 56-GFP 

plasmid as described previously (Ding et al., 2002).  Briefly, plasmid DNA was 

suspended with Lipofectamine reagent in OptiMEM and incubated for 1.5 hours at room 

temperature. The medium was removed from the cells and replaced with OPTI-MEM 

prior to addition of plasmid DNA.  The cells were incubated at 39oC for 4 hours and then 
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the medium replaced with DMEM complete medium. After 48 hours, cells were treated 

with Hoescht 33342 stain and their nuclei visualized using fluorescence microscopy.  At 

least 300 cells in at least 6 dishes were counted in each experiment and the percentage 

of nonviable cells determined. Cells with mock treatment (i.e. incubated with OptiMEM 

alone) served as control.    

 Neural survival of PC12 cells was also analyzed by the MTT cell viability assay. 

The MTT assay measures the reduction of MTT [(4, 5-Dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide], which produces a blue-violet color.  The ability of cells to 

reduce MTT is a measure of cell viability. Growing neural cells were incubated with 0.1 

mg/mL MTT for 1 hour.  After removal of medium, cells were lysed with dimethyl 

sulfoxide (DMSO), transferred to a 96 well plate and their absorbance read in duplicate 

at 595 nm on an absorbance plate reader.  Cells with no treatment served as control 

and their mean absorbance set at 100% viability.  Mean and standard error were 

determined for at least 6 cultures.   

 

Statistical Analysis 

For experiments where neural death or cell survival was quantified, the mean 

and standard error of the mean for each experimental group were calculated.  

Differences between experimental groups were considered significant when p < 0.05 as 

determined by the student’s t-test. 
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