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ABSTRACT OF DISSERTATION 
 
 

ANISOTROPIC POLARIZED LIGHT SCATTER AND MOLECULAR FACTOR 
COMPUTING IN PHARMACEUTICAL CLEANING VALIDATION AND BIOMEDICAL 

SPECTROSCOPY 
 
 

Spectroscopy and other optical methods can often be employed with limited or no sample 
preparation, making them well suited for in situ and in vivo analysis.  This dissertation focuses 
on the use of a near-infrared spectroscopy (NIRS) and polarized light scatter for two such 
applications: the assessment of cardiovascular disease, and the validation of cleaning processes 
for pharmaceutical equipment. 

There is a need for more effective in vivo techniques for assessing intravascular disorders, 
such as aortic aneurysms and vulnerable atherosclerotic plaques.  These, and other 
cardiovascular disorders, are often associated with structural remodeling of vascular walls.  
NIRS has previously been demonstrated as an effective technique for the analysis of intact 
biological samples.  In this research, traditional NIRS is used in the analysis of aortic tissue 
samples from a murine knockout model that develops abdominal aortic aneurysms (AAAs) 
following infusion of angiotensin II.  Effective application of NIRS in vivo, however, requires a 
departure from traditional instrumental principles.  Toward this end, the groundwork for a fiber 
optic-based catheter system employing a novel optical encoding technique, termed molecular 
factor computing (MFC), was developed for differentiating cholesterol, collagen and elastin 
through intervening red blood cell solutions. In MFC, the transmission spectra of chemical 
compounds are used to collect measurements directly correlated to the desired sample 
information. 
 Pharmaceutical cleaning validation is another field that can greatly benefit from novel 
analytical methods.  Conventionally cleaning validation is accomplished through surface residue 
sampling followed by analysis using a traditional analytical method.  Drawbacks to this approach 
include cost, analysis time, and uncertainties associated with the sampling and extraction 
methods.  This research explores the development of in situ cleaning validation methods to 
eliminate these issues.  The use of light scatter and polarization was investigated for the detection 
and quantification of surface residues.  Although effective, the ability to discriminate between 
residues was not established with these techniques.  With that aim in mind, the differentiation of 
surface residues using NIRS and MFC was also investigated. 
 
KEYWORDS: near-infrared, biomedical spectroscopy, process analytical technology, polarized 
light scatter, cleaning validation 
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Preface 

Motivation 

The development of novel analytical technologies that are rapid and robust is of interest to 

analysts across a number of different fields.  In many cases the direct analysis of samples without 

prior sample preparation or even transportation to the laboratory bench is highly desirable.  The 

continuous qualitative or quantitative monitoring of materials on a production line represents a 

prime example.  In other cases, such as the in vivo analysis of vascular disease pathologies, it is 

absolutely essential.  These situations require innovative approaches to instrumental 

development.  At the same time, there are practical considerations such as instrumental 

complexity and cost effectiveness that constrain prospective solutions.  This dissertation aims to 

demonstrate that relatively simple instrumentation coupled with or motivated by chemometric 

data analysis techniques can be successfully applied to two distinct problems of this nature.  

Spectroscopy and other optical techniques are ideally suited for in situ and in vivo applications, 

and the methods used to approach these problems are encompassed in this sphere. 

There is tremendous need for novel instrumental techniques in the field of biomedical 

spectroscopy and imaging.  Developing effective techniques for the early detection of potentially 

lethal vascular conditions is of critical importance.  One objective of this work was to 

demonstrate the potential utility of near-infrared spectroscopy (NIRS) for analyzing vascular 

tissue.  To this end, the use of NIRS was explored for the analysis of excised aortic tissues from 

a murine knockout model for abdominal aortic aneurysm, which builds upon an established 

foundation of NIRS for biomedical applications.  The early detection of vulnerable 

atherosclerotic plaques is another area of critical importance where extensive research has been 

done using an array of modalities but no reliable means have yet been developed.  The potential 
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effectiveness of near-infrared spectroscopy (NIRS) for this purpose has been previously 

investigated but in vivo application still remains to be demonstrated.  There are significant 

limitations to the application of traditional instrumentation for this purpose.  The necessity to 

employ small fiber optics limits the optical throughput.  Of greater importance is the problem 

associated with data collection in a flowing blood stream environment.  The unstable positioning 

of the optical delivery and detection device (i.e., catheter tip) greatly hinders the capacity to 

collect useful spectroscopic data. 

 A potential solution to these limitations can be found in the area of integrated sensing 

and processing (ISP).  The aim of ISP is physical replication of multivariate data processing 

methods at the transducer level of instruments.  Potential advantages of this methodology include 

the reduction of computational and data storage burdens, significantly reduced data collection 

times, and rugged instrumentation.  In this work an ISP approach called molecular factor 

computing (MFC) was investigated as the basis for a NIRS-based catheter system for diagnosing 

vulnerable plaques.  In MFC, the transmission spectra of chemical compounds are used to collect 

measurements directly correlated to the desired sample information.  MFC has the potential to 

overcome the limitations described above in the application of NIRS for in vivo analysis.  The 

utility of the very same methodology can be seen in pharmaceutical applications as well.   

The field of process analytical technology (PAT) has experienced a surge in growth 

within the pharmaceutical industry as a result of new Food and Drug Administration regulations 

and initiatives.  The primary goal in PAT is the incorporation of quality control throughout the 

entire manufacturing process to establish a “quality by design” paradigm.  This goal is being 

realized by the application of at-line and in-line sensors at critical points in the manufacturing 

process capable of providing real-time qualitative/quantitative assessments during production.  

 xii 



The ideal PAT tools sought for these applications are simple, rugged, cost effective instruments.  

The same drawbacks with traditional instrumentation as described previously are also relevant in 

this environment, namely large data volumes, time consuming analysis and the need for rugged 

instrumentation suitable for a process environment.   One area in pharmaceutical manufacturing 

where PAT solutions are being sought is in the validation of cleaning procedures.  This is of 

critical importance for multi-product facilities to ensure that potentially dangerous cross 

contamination of active pharmaceuticals is avoided.  The desire for rapid in situ methods for 

detecting surface residues is great since conventional approaches are time consuming and often 

result in lengthy downtimes for processing equipment.  Toward this goal the use of light scatter 

and polarization was investigated for the detection and quantification of surface residues on glass 

and stainless steel surfaces.  In these studies, the utilization of chemometric techniques 

demonstrated that effectiveness could be achieved with simple instrumentation.  However, the 

ability to discriminate between residues was not established with these techniques.  To address 

this issue, the ISP approach of MFC in the NIR spectral region was investigated for 

discriminating surface residues. 

 

Content Summary 

The organization of this dissertation was chosen to present the material in a fluid manner.  As 

described above, the research in this dissertation was devoted to two distinct applications.  There 

are three core sections representing the bulk of this document devoted to background material 

and each of the applications.  An inclusive introductory chapter, covering all the material, was 

avoided for continuity purposes.   There are, however, several parallel themes among the 

methods used in these applications: NIR spectroscopy, chemometrics, and MFC.  The first 
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chapter and section in this dissertation serves as in introduction to these three subjects.  The 

fundamental principles of NIR spectroscopy are covered first.  Next, a presentation of the 

chemometric methods used throughout the work is given.  Finally, a discussion of MFC 

concludes chapter 1.  The next two sections of the dissertation are each devoted to one of the 

applications: biomedical spectroscopy and pharmaceutical cleaning validation.  Each of these 

sections is prefaced by an introduction to the application followed by chapters covering the 

research pertaining to those applications. 

 Section 2 is devoted to biomedical spectroscopy, and the application of NIR spectroscopy 

as a potentially useful tool in the analysis of intravascular disorders is the focus.  Chapter 2 

presents research on the use of traditional NIR in the analysis of aortic tissue sections of a 

murine knockout model of abdominal aortic aneurysms.  Presented in chapter 3 is preliminary 

work toward the development of a novel NIR catheter system based on MFC for in vivo 

diagnosis of vulnerable atherosclerotic plaques.  Specifically, the differentiation of the plaque 

components collagen, elastin and cholesterol through red blood cell solutions is presented. 

 Section 3 is devoted to pharmaceutical cleaning validation, and the development of rapid 

methods for in situ determination of surface residues.  Chapter 4 presents research on the use of 

laser light scatter to quantify protein residues on glass surfaces.  Chapter 5 explores an extension 

of this work by examining the polarization of scattered light from a broadband source for the 

detection and quantification of surface residues on stainless steel surfaces.  Finally, in chapter 6 

the application of NIR spectroscopy and MFC for detecting residues on glass and stainless steel 

surfaces is presented.     
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Section I: Background 

 

Chapter One – Near-Infrared Spectroscopy, Chemometrics and Molecular Factor Computing 

 

Near-Infrared Spectroscopy 

The discovery of the near-infrared (NIR) region of the electromagnetic spectrum can be traced to 

the astronomer William Herschel in 1800.  However, its practical application was not realized for 

more than one and half centuries until the pioneering work of Karl Norris in the 1960’s.1, 2  Since 

then, with the introduction of novel instrumentation and data processing techniques 

(chemometrics), NIR spectroscopy has rapidly grown as a valuable analytical method for both 

qualitative and quantitative applications in a diverse range of fields that includes agriculture, 

food processing, pharmaceutics, fuel, remote spectral imaging and biomedical spectroscopy.3, 4  

The increasing popularity of NIR in these and other fields is in part a result of several advantages 

NIR spectroscopy offers over traditional analytical methods.  These include: limited or no 

sample preparation/pretreatment; simultaneous multi-component determination; application in a 

wide variety of sample matrices; non-destructive analysis; penetration depth of radiation into 

samples; the ability to determine chemical as well as physical properties; and rugged 

instrumentation that can be implemented in-line.  The following is a brief discussion of the 

principles of NIR spectroscopy and the reader is referred to several excellent sources for 

thorough treatments.3-5 

 Absorption bands in the NIR spectral region are dominated by harmonics and 

combinations of the fundamental vibrations of -OH, -CH, -NH, and –SH functional groups.  The 

energy band from 780 – 2500 nm (12820 – 4000 cm-1) is generally described as the NIR band, 

1 



but harmonics and combinations of the abovementioned functional groups are observed from  

approximately 700 to beyond 3000 nm.  The fundamental occurrence and characteristics of NIR 

absorption bands can be understood by considering anharmonicity in molecular vibrations.  For 

simple diatomic molecules in the gas phase, the fundamental molecular vibrations of can be 

determined using Hooke’s Law (Equation 1.1): 

( )
21

21

2
1

mm
mmk

c
+

=
π

ν  1.1 

where ν is the vibrational frequency, c is the speed of light, k is a force constant, and m1 and m2 

are the two masses.  The simple harmonic oscillator model is a useful first approximation in 

understanding molecular vibrations.  The potential energy as a function of atom displacement for 

a classical model (i.e., balls on a spring) can be approximated according to Equation 1.2: 

2

2
1 krVr =  1.2 

where Vr is the potential energy, k is a force constant, and r is displacement.  This equation 

describes the continuous curve of the harmonic potential in Figure 1.1 (A) as function of atom 

displacement from the equilibrium position (re).  From quantum mechanics it is known that 

molecular vibrations do not assume a continuous energy profile but instead can only occupy 

discrete energy levels.  For the simple quantum harmonic oscillator, these energy levels are given 

by Equation 1.3: 

νυυ hE ⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1  1.3 

where En is the energy associated with the υth quantum level, υ is the vibrational quantum 

number, h is Planck’s constant, and ν is the fundamental vibrational frequency.  This model 

implies that the energy difference between any two adjacent vibrational levels is always the same 

2 



as demonstrated with the discrete energy levels of the harmonic oscillator in Figure 1.1 (A).  

Furthermore, transitions between non-adjacent energy levels (i.e., Δυ = ± 2,3...) are forbidden in 

this model.  Unfortunately the quantum harmonic oscillator model is not sufficient for real 

molecular vibrations and the determination of absorption bands in the NIR region is far from 

straightforward. 

 A more realistic approximation to describe molecular vibrations is based on the 

anharmonic oscillator.  The potential energy of molecular vibrations in diatomic molecules can 

be described by the Morse function (Equation 1.4): 

( )( )21 erra
er eDV −−−=  1.4 

where Vr is the potential energy, De is the dissociation energy of the bond, r is the distance 

between atoms, re is the equilibrium bond distance, and a is a constant associated with the 

molecule.  This equation describes the continuous curve of the anharmonic potential in Figure 

1.1 (B) as a function of atom displacement from the equilibrium position (re).  Again, this curve 

is representative of a classical balls-on-a-spring model.  A quantum mechanics model of the 

Morse equation gives vibrational energy levels described by Equation 1.5: 

2

2
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2
1
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where χm is the anharmonicity constant of the vibration and the other terms are as described 

above.  The discrete energy levels derived from this equation are shown for the anharmonic 

oscillator in Figure 1.1 (B).  This model of molecular vibrations is much more realistic than the 

harmonic oscillator and actually agrees remarkably well with the fundamental vibrations of non-

rotating diatomic molecules.  Its utility is limited for more complicated molecules except as a 

conceptual tool.  Several aspects of the quantum anharmonic oscillator model are of particular 

3 



significance, though.  In contrast to the harmonic oscillator, the energy difference between 

adjacent vibrational levels is not constant and decreases with increasing υ.  In addition, the model 

predicts transitions of Δυ = ± 2 and higher and it is these multi-level energy transitions that are 

the origin of NIR overtone bands.  Finally, under the assumptions of the anharmonic model, 

vibrational modes are no long independent and can interact with each giving rise to combination 

bands, which are the other dominant feature found in the NIR region. 

 There are a number of additional factors that influence the occurrence and properties of 

NIR absorption bands.  Other interactions such as intermolecular hydrogen bonding and dipole 

interactions alter the vibrational energy states, which result in the shifting of (and in some cases 

the generation of) NIR absorption bands.  In addition, Fermi resonance plays an important role in 

combination bands with fundamental vibrations of very similar energies.  This causes a NIR 

band to split into two bands of higher and lower energy instead of simply occurring at the sum of 

the two frequencies.  The result of this complex array of interactions is characteristically broad 

absorption bands with frequencies occurring at imprecise multiples of the fundamentals.  Figure 

1.2 shows the typical locations of absorption bands from overtones and combinations of the most 

common functional groups that are active in the NIR spectral region.  The probabilities for 

transitions corresponding to overtone and combination bands are significantly smaller than 

fundamental vibrations in the mid-IR and absorption bands are typically 10 – 1000 times weaker 

in comparison.  This imposes considerable sensitivity limitations to NIR spectroscopy from the 

view of classical spectroscopy.  However, this aspect of NIR is one of the reasons that make it a 

popular and useful analytical method, permitting the direct analysis of solids and liquids, which 

can be highly absorbing or scattering, with little or no sample preparation using transmission or 

reflectance measurements.  Even for simple systems, though, NIR spectra are characterized by 

4 



broad, highly overlapping bands and classical spectroscopic analysis is very difficult and often 

impossible for these data sets.  As a result, the practical application of NIR spectroscopy 

necessitates the use of multivariate statistical and mathematical modeling techniques, which is 

the focus of the field of chemometrics, the topic of the following section. 

 

Chemometrics 

There is no strict description of the field of chemometrics, but the International Chemometrics 

Society’s (ICS) definition is reasonably comprehensive: “Chemometrics is the science of relating 

measurements made on a chemical system or process to the state of the system via application of 

mathematical or statistical methods.”   A vast array of techniques is encompassed by 

chemometrics for a diverse range of applications including, but not limited to, experimental 

design, optimization, calibration (regression), signal processing and pattern recognition.  In this 

section, only the specific chemometric techniques used in this work will be covered.  These 

techniques include several data preprocessing techniques and the following data analysis 

methods: multiple linear regression (MLR), principal component analysis (PCA), principal 

component regression (PCR), partial least squares regression (PLS), and linear discriminant 

analysis (LDA).  Finally, several performance metrics for evaluating calibration and 

classification models will be presented.  The discussions are more conceptually focused and only 

concise mathematical formulations of the algorithms are presented.  When convenient, the 

application of these methods to spectroscopic data sets is introduced for clarification.  The reader 

is referred to several excellent sources for rigorous presentations of these and other chemometric 

methods.6-12 
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Preprocessing Methods.  As the name suggests, data preprocessing involves the manipulation of 

a data set prior to the application of other data processing procedures, the results of which are the 

principal goal.  Many data preprocessing methods exist with a number of different objectives that 

include data cleaning (e.g., noise removal, outlier detection), normalization or scaling, 

transformations (e.g., estimating derivatives), and data reduction.  Several preprocessing 

methods were used in this work and a brief discussion of them will be presented here. 

 Mean Centering and Autoscaling.  Mean centering is one of the simplest preprocessing 

techniques and simply entails subtracting the mean value of each variable from the entire data 

set.  Mean centering removes the constant background component from the data while leaving 

the underlying variation in the data intact.  One result in relation to multiple regression models is 

that regression coefficients are easier to interpret and the intercept term is removed in models 

derived from mean centered data.  Autoscaling (also known as z-scoring or standardizing) is a 

similar in that the variables are also mean centered, but, in addition, the variables are scaled to 

unit variance.  Autoscaling is occasionally superior to mean centering when looking at a 

spectroscopic data set from a single instrument, but is often essential when integrating data from 

different methods with dramatically different variable ranges.  Two of the statistical methods 

described below, PCA and PLS, require that the data be preprocessed by mean centering or 

autoscaling. 

 Multiplicative Scatter Correction (MSC).   MSC is a preprocessing method developed to 

correct for spectral variations arising from path length and particle size differences by removing 

both additive and multiplicative effects from the data.  This technique is widely applied in NIR 

spectroscopy.13, 14  Due to the fact that NIR is often used to analyze samples (including solids 

and turbid liquids) with little or no pretreatment, path length and particle size differences are 
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common.  Scatter correction is carried out with respect to the mean spectrum across the entire 

data set.  For each spectrum, a least squares regression is performed based on Equation 1.6: 

ii xbax +=  1.6 

where xi is the ith wavelength of the spectrum being corrected, ix  is the ith wavelength of the 

mean spectrum, and a and b are regression coefficients representing the additive and 

multiplicative components, respectively.  A single set of regression coefficients is computed over 

the entire spectrum, and the scatter correction is accomplished according to Equation 1.7: 

( )
a

bxx i
MSCi

−
=,  1.7 

where xi,MSC is the scatter corrected value at the ith wavelength.  For an illustrative demonstration, 

a collection of NIR spectra from geological samples before and after MSC are presented in 

Figure 1.3. 

 Cubic Splines for Smoothing and Derivative Approximation.  Splines are a popular 

mathematical tool for interpolation capable of modeling arbitrary functions by means of 

piecewise polynomials.15, 16  Functions are subdivided into sufficiently small intervals so that 

relatively low degree polynomials provide good approximations.  In addition, the polynomials 

are defined in such a way that they blend together smoothly, and the composite function (i.e., a 

spline) has several continuous derivatives.  A specific type of spline, known as the cubic 

smoothing spline, was used in this work for the purposes of noise removal and derivative 

approximation.  For a discrete valued function y = f(x), the cubic smoothing spline (S) is defined 

to minimize W according to Equation 1.8: 

[ ] ( ) ( ) dxxSyxSW
n

i i

ii 2

1
2

2

1)(
∫∑ ′′−+

−
=

=

ρ
σ

ρ  1.8 
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where n is the number of discrete data points, σi is the uncertainty associated with yi, ( )xS ′′  

denotes the second derivative of S, and ρ is a “smoothing” parameter with a range of 0 to 1.  The 

first term in Equation 1.8 is analogous to a squared error term (weighted by the uncertainty) as 

encountered in least squares fitting.  The second term in Equation 1.8 is an integral over the 

square of the second derivative, which essentially quantifies the curvature of the spline.  The two 

terms are contradictory and the tradeoff is determined by the smoothing parameter ρ.  As ρ 

decreases the spline increasingly diverges from the data values and becomes smoother.  Note that 

at the ρ = 0 limit, the first term drops out and the second term is minimized when the derivative 

is 0 across the range of x, which is a straight line.  Presented in Figure 1.4 are examples of 

smoothed and second derivative spectra from a cubic smoothing spline fit to a synthetic spectrum 

of overlapping Gaussians with white noise added.     

Multiple Linear Regression (MLR).  MLR (also known as inverse least squares) is a 

straightforward extension of simple univariate linear regression and is used to generate a 

quantitative relationship between a group of predictor variables and a response:  

εβββ ++++= nnxxy K110  1.9 

where y is the response, xi are predictors, βi are regression coefficients, and ε is the residual.6, 9, 11  

Note that additional terms, such as powers (xi
k) or cross-terms (xixj), can be included and the 

model remains linear even though the function may not be a straight line.   For a data set of 

known responses and predictors, the linear model can be expressed in matrix form according to 

Equation 1.10: 

εXby +=  1.10 

where y (m×1) is the column vector of responses, X (m×n) is the matrix of predictors, b (n×1) is 

the unknown column vector of regression coefficients, and ε (m×1) is the column vector of 
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residuals.  For a unique solution to exist, m must be larger than n.  Equation 1.11 provides the 

least squares estimate of the regression coefficients ( ): b̂

( ) YXXXb T1T −
=ˆ  1.11 

where XT denotes the transpose of X, and ( ) 1TXX −  denotes the inverse of .  This solution is 

only attainable when X is of full rank.  The equation is useful theoretically but in practice has 

poor numerical properties and more robust methods are generally used. 

XXT

 For a typical spectroscopic data set we are often confronted with the situation of having 

significantly more variables than samples (m<n).  One solution to this dilemma is the selection 

of a subset of variables to constrain n to be smaller than m.  This approach is used frequently in 

practice but is not without drawbacks.  In spectroscopic data, for instance, the absorbance values 

in a spectrum at multiple wavelengths tend to vary together with changing constituent 

concentration.  This effect is known as collinearity, and causes instability in the mathematical 

solution.  Another drawback is that the removal of variables from the model discards potentially 

useful information.  Finally, determination of an optimal subset of variables, especially when 

thousands may be available, presents considerable difficulties.  An alternative to the problem of 

too many variables involves factor-based approaches for dimensionality reduction.  One such 

approach is principal component analysis, a discussion of which follows.  

Principal Component Analysis (PCA).  PCA is a mathematical procedure involving a linear 

transformation of multivariate data from one coordinate system into another and is typically used 

as a dimensionality reduction tool for preprocessing and exploratory data analysis.6, 9-11, 17  The 

traditional method of calculating the PCs involves the eigenvalue decomposition of the 

covariance matrix of the data matrix.  A more computationally efficient algorithm for computing 
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the PC transformation is based on the singular value decomposition (SVD).  Let X denote an 

m×n real valued matrix.  There exist matrices U, S, and V such that: 

TUSVX =  1.12 

where U (m×m) is an orthonormal matrix with columns composed of the left singular vectors, S 

(m×n) is the matrix of singular values, VT (n×n) is an orthonormal matrix with columns 

composed of the right singular vectors.  If m>n, typically only the first n columns of U are 

calculated and S is and n×n diagonal matrix of singular values.  By convention the singular 

values are sorted by magnitude with the largest located in S1,1 (upper left corner).  An important 

aspect of the SVD that pertains to PCA is that X(k), defined in Equation 1.13: 

( ) ∑
=

=
k

i
iii

k

1

TvsuX  1.13 

 where ui, si, and vi are the ith column vectors of the U, S, and V matrices is the closest rank-k 

matrix to X in a least squares sense.  If a data matrix X of m observations (rows) and n variables 

(columns) is mean centered with respect to the columns, there is a direct correspondence to 

principal components calculated from the covariance matrix.  In particular, each column vector ui 

represents a PC score, the corresponding singular value si,i is proportional to the variance 

captured by that PC, and the corresponding row vector vi , typically referred to as a loading, is 

the quantitative relationship between the original variables and the PC.  The first PC accounts for 

the maximum amount of variation in the data set.  Successive PCs account for the maximum 

amount of remaining variation in the data set with the constraint that each of these PCs are 

orthogonal to the previous ones. 

 For high dimensional data sets it is often the case that the intrinsic dimensionality is far 

less than the number of variables, and is generally related to the complexity of the system.  For 

spectroscopic data sets this can be loosely related to the number of components contributing to 
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the spectrum.  For a simple mixture of non-interacting species following Beer’s Law ideally 

across the spectral range, the number of significant PCs would be equivalent to the number of 

components (as long as concentrations were not highly correlated) and the remaining PCs would 

be attributable to random variations (e.g., noise).  However, this is very rarely the case with real 

data and often the exact composition of a sample matrix is unknown to being with.  There are 

several of methods for estimating the number of significant PCs, such as the scree test, but it is 

often necessary to use a trail-and-error approach or validation in practice.  Principal component 

regression (PCR) is used several times in this work and refers to PCA applied as a preprocessing 

step before MLR.  The reduced dimensionality and orthogonality of the principal component 

space addresses the issues of underdetermined systems and collinearity in MLR.  

Partial Least Squares (PLS).  The goal of PLS is analogous to PCR and MLR, namely to build a 

quantitative model for a response from a group of predictors (i.e., Equation 1.9).  It is a factor 

based method similar to PCR, however, the approach to factor extraction from data sets differs.  

In PCR, a data set is decomposed into a set of scores and associated loadings independently of 

the responses.  The scores are then regressed against the responses in order to obtain the 

calibration.  In contrast, PLS extracts factors from the data set that are also relevant to responses.  

Specifically, PLS performs a iterative simultaneous decomposition of the data matrix and vector 

of responses with factors extracted to explain as much of the covariance between them as 

possible.  The decomposition arrives at the factorizations in the following equations: 

ETPX T +=  1.14 

FUQY T +=  1.15 

where X (m×n) is the matrix of predictors, Y (m×k) is the vector of responses, T (m×p) and U 

(m×p) are matrices of scores (referred to as latent variables or latent vectors), PT (p×n) and QT 

11 



(p×k) are the matrices of loadings for X and Y, respectively, and E (m×n) and F (m×k) are 

residual matrices for X and Y, respectively.  A variable number (p) of latent vectors are extracted 

from the data, and p is generally determined from a cross-validation or external validation 

procedure.  There are two main variants of PLS algorithms: PLS1, which calculates separate PLS 

models for each constituent, and PLS2, which calculates a single model for multiple constituents.  

A number of different algorithms have been developed for extracting latent variables from data 

set, but the classic approach is called the nonlinear iterative partial least squares (NIPALS) 

method.18-23  The NIPALS and other PLS algorithms are more elaborate than PCA and, for the 

sake of brevity, the mathematical formulation will not be presented. 

 Due to the fact that PLS extracts information directly related to both the predictor and 

response data it is often described as being more straightforward in application than PCR.  After 

the decomposition of the data in PCR, an optimal subset of variables for the prediction of 

responses must still be determined.  However, with conscientious application, similar calibration 

results can be obtained from both methods.  In this work, PLS was used as a discriminant method 

in one study.  PLS discriminant analysis (PLS-DA) is essentially the application of the traditional 

PLS method except that binary classification data is used in place of a continuous response 

variable.  

Linear Discriminant Analysis (LDA).  LDA is a statistical tool used to generate linear models 

for the discrimination of two or more groups from multivariate data.6, 24  LDA is categorized as a 

supervised classification method as it requires that class information of the samples be known to 

generate a model.    The formal goal of LDA is to maximize the objective function JW, defined in 

Equation 1.16: 
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where W is the matrix of discriminant function vectors and SB and SW are the between-class and 

within-class scatter matrices, respectively.  For a data set with c classes, ni samples in each class, 

and N total samples over all classes, these matrices are defined in the following equations: 
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where ix  denotes the mean of the ith class, denotes the jth sample of the ith class, and µ 

denotes the global mean over all classes.  A cursory examination of the objective function in 

Equation 1.16 reveals that discriminant functions in LDA are sought to maximize between class 

scatter while minimizing within class scatter.  The solution to Equation 1.16 can be found by 

formulating and solving it as a generalized eigenvalue problem:   

ijx

kWkkB wSwS λ=  1.21 

where wk is the kth discriminant function (eigenvector), with associated eigenvalue λk.  For a data 

set with c classes, there is a maximum of c-1 possible discriminant functions (i.e., non-zero 

eigenvalues) in the solution and their significance is associated with the magnitude of the 

eigenvalue.  Solving Equation 1.21 requires SW is to be non-singular, which necessitates that at 

least as many samples are present as predictors in the model.  In addition, collinearity in 
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predictors can lead to an unstable solution.  Similar to MLR, these aspects pose significant 

limitations when the number of predictors is larger than the number of samples, as often the case 

with spectroscopic data.  As with MLR, the application of PCA prior to LDA provides a 

solution, and that approach was used in this work. 

 LDA results in a collection of discriminant functions, also known as canonical variables 

(CV), that provide a new multi-dimensional space optimized for the discrimination of two or 

more classes.  An example of synthetic two-class bivariate data is presented in Figure 1.5, which 

shows the contrast between the principal components and canonical variable derived from the 

same data.  The decision criterion to determine whether samples belong to a particular class is 

not established by the discriminant functions.  A potential solution to this problem is to define 

rigid linear decision functions between classes.  Presented in Figure 1.6 are canonical variables 

derived from LDA of a synthetic 3 class data set.  The dotted lines represent various possible 

linear decision functions for subdividing the discriminant function space into classes.  The choice 

of these functions is fairly arbitrary and an infinite number of collections exist that could 

effectively separate the data points defined by the 3 classes.  The problem with this methodology 

can be seen when several unknown samples, represented by ‘X’s in the figure, are considered, 

which do not appear to belong to any of the 3 classes.  These samples may be classified into one 

or more of the classes based on the linear decision functions.  This dilemma can be avoided if we 

define a classification boundary as demonstrated by the solid line for Class 1 in the figure.  The 

conventional method to accomplish this is to determine a multi-dimensional standard deviation 

(MSD) based on Mahalanobis distance.25  Although effective, there are shortcomings to 

Mahalanobis distance, which include the assumption that the data are normally distributed and 

computational instability when the number of dimensions is near the number of samples.  An 
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alternative approach to determining MSDs that avoids these issues is the BEST algorithm, which 

is discussed in the following section.  

Bootstrap Error-adjusted Single-sample Technique (BEST).  The BEST algorithm is based on 

the statistical technique of bootstrapping, which is broadly categorized as a resampling method 

for statistical inference.26-30  Bootstrapping is used for estimating a distribution by sampling with 

replacement from the original sample usually for the purposes of estimating uncertainties for 

population parameters (e.g., mean, median, regression coefficients).  Advantages of bootstrap 

methods include the lack of parametric assumptions and efficacious results with limited numbers 

or samples or when parametric inference is extremely difficult or impossible.  In the BEST 

algorithm, the bootstrap is used to estimate multi-dimensional standard deviations of a sample 

population.31-34  Let P represent all possible samples of a particular population from an n-

dimensional space R (rows of P represent samples, and columns of P represent independent 

variables).  P* is a discrete realization of P based on a calibration set T (m×n) of m samples that 

is chosen once to represent as nearly as possible all the variations present in P.  P* is calculated 

using a bootstrap procedure and has parameters C (1×n) and B (k×n), where C = E(P) is the 

expected value of P (i.e., mean) and B is the Monte Carlo approximation to the bootstrap 

distribution with k bootstrap replicates.  The number of bootstrap replicates (k) included in B is 

somewhat arbitrary, but should be significantly larger than the number of samples.  In this work, 

a range of 2000-5000 was used for k.  The steps up to this point comprise the calibration phase of 

the BEST algorithm. 

The estimation of the MSD of a new test spectra X (1×n) is found by first mapping the 

rows of B on to CX , the vector connecting C and X, by orthogonal projections.  A directionally 

dependent skew adjustment is made along CX based on a comparison of the expectation value C 
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and the median of T projected onto CX .    The integral over the hyperspace R is calculated from 

the center of P outward and the result is an asymmetric standard deviation along the hyperline 

connecting C and X.  Equation 1.22 defines the standard deviation in the direction of X, and 

equation 1.23 defines the standard deviation in the opposite direction: 
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Performance Metrics.  The effectiveness of the modeling methods just described can be assessed 

using various metrics.  In general, metrics useful for evaluating regression models have limited 

applicability for classification models and vice versa.  The measures used in this work for these 

two types of predictive models are described here. 

 Regression Models.  For multiple regression models, regression coefficient significance 

was determined using T-tests and overall model significance using F-tests.  Predictive 

performance of regression models was estimated using a leave-one-out-cross-validation 

(LOOCV) procedure where a sample is removed from the data set entirely, the model is 

calibrated on the remaining samples and then used to predict the sample left out.  This process is 

repeated for each sample in the data set.  The LOOCV predictions were assessed by examining 

the coefficient of determination (r2) as well as the standard error of estimate (SEE) and standard 

error of prediction (SEP), defined as: 
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where  denotes the known or reference value,  denotes the estimate of  in the regression 

model,  denotes the predicted value of from the LOOCV routine, n is the number of 

samples, and k is the number of variables in the regression model.  A significant different 

between SEE and SEP typically indicates over-fitting in the regression, and F-tests are performed 

to determine if the SEE and SEP differed significantly. 

iy iŷ iy

LOOiy ,ˆ iy

 Classification Models.  As opposed to the continuous response of a regression model, 

classification model predictions are often representative of a binary decision (i.e., the sample 

belongs to a class or does not).  To evaluate the performance of classification models, the three 

metrics defined below were used. 

Accuracy 
FNFPTNTP

TNTP
+++

+
=  1.26 

Precision 
FPTP

TP
+

=  1.27 

Recall 
FNTP

TP
+

=  1.28 

where TP denotes true positive, TN denotes true negative, FP denotes false positive, and FN 

denotes false negative.  These metrics are somewhat complementary in nature and the collective 

result provides a good indication of model effectiveness.  Accuracy is a measure of overall 

effectiveness taking all outcomes into account, precision measures of the effectiveness of the 

model when any class assignments are designated, and recall measures the effectiveness of the 
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model to classify samples only with respect to the correct class.  These values are reported as 

percentages in this work, as is customary.   

 

Molecular Factor Computing 

The following is a concise introduction to the molecular factor computing (MFC) concept and 

the reader is referred to several sources for a comprehensive treatment.35-37  Modern 

hyperspectral imaging techniques are able to collect unprecedented amounts of data in short 

periods of time.  Reduction of these volumes of data from physical fields to high-level useful 

information is accomplished by multivariate data analysis techniques such as principal 

components analysis and partial least squares regression.  Depending on instrument and sample 

complexity, the complete data collection and analysis process can be computationally intensive 

and time consuming.  Integrated sensing and processing (ISP) is one approach receiving 

increased attention to simplify both instrumentation and computational analysis in these and 

other applications.  In ISP, the data collection phase is no longer a passive constituent of the 

multivariate analytical process.  Instead, the acquisition of useful information about the samples 

being analyzed is incorporated into the physical data collection phase.  The nature of optical 

spectroscopy makes it an excellent technique for exploiting of the ISP paradigm.  The ISP 

approach to optical spectroscopy involves tailoring the optical spectrum to encode high-level 

information about the samples in the sensing stage.  The current availability and ongoing 

development of optical materials and instrumentation provides numerous approaches for 

practical application.  Potential advantages of this methodology include smaller data volumes, 

shorter collection and analysis time, simpler and more rugged instrumentation and high optical 

throughput. 
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In traditional multivariate calibration methods, information is extracted from raw 

physical fields (i.e., spectra, chromatograms, etc.) by way of statistical and mathematical 

modeling techniques such as principal component (PC) and partial least squares (PLS) 

regression.38, 39  Many of these techniques are factor-based where a weighting process of the raw 

data is utilized to reduce the original variables to a small number of informative components.  In 

optical spectroscopy, the factor approach of these multivariate methods can be emulated during 

data collection by weighting the intensity of different wavelengths of light across a broad optical 

band.  Theoretical treatments toward this objective can be found in the literature.35, 40-42  One of 

the first methods devised to apply this methodology, termed optical signal processing (OSP), 

employed a grating to disperse wavelengths into a spatial dimension followed by a variable 

optical transmission mask to pass weighted spectroscopic information, with the integrated 

intensity collected by focusing the light transmitted through mask onto a single element 

detector.41  A more recent approach for the practical application of this technique is based on the 

fabrication of thin film solid-state interference filters, called molecular optical elements (MOEs), 

which are carefully designed to transmit a weighted optical signal across a specified wavelength 

band.  Several practical applications of this methodology in near-infrared and UV-VIS 

spectroscopy have been reported.40, 43-45  Although quite effective, one drawback to this method 

is the high cost of filter manufacture, which requires the deposition of many alternating layers of 

high- and low-refractive index materials of precise thicknesses.  The complexities in filter design 

and economics of the thin-film deposition techniques involved result in a nearly equivalent cost 

to produce one application-specific filter or hundreds.  This translates into a cost effective 

solution when the assay has a sufficient number of end-users, but otherwise it may be cost 

prohibitive. 
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Alternatively, molecular absorption filters can be used as mathematical factors in spectral 

encoding to create a factor-analytic optical calibration in a high-throughput spectrometer, which 

we term molecular factor computing (MFC).  In MFC, the transmission spectrum of the 

molecules used as filters replicate the weighting procedure of factor-based multivariate signal 

processing methods, such as principal-component (PC) and partial-least-squares (PLS) 

regression.  One or more molecular filters are used to produce detector signals that are highly 

correlated to the desired sample information.  The collection of this small number of detector 

responses, termed molecular factors, for a particular sample make up a “spectrum” that can then 

be processed using traditional multivariate methods to derive the desired information.  This 

approach provides a multiplex advantage (versus a dispersive instrument) by simultaneously 

collecting a broad spectrum of light using a single detector, as well as an optical throughput 

advantage because it does not require a slit to achieve resolution.  In addition, a filter-based 

approach provides a more rugged construction compared to complex scanning instruments with 

many moving parts.  Potential applications of this methodology are abundant.  Our group has 

previously demonstrated its application in the NIR spectral region for the determination of 

ethanol concentrations in water.36, 37     

We will now revisit factor based multivariate methods, PCA in particular, data to help 

clarify MFC theory.  As applied to spectroscopic data sets, these methods aim to transform 

information contained in the multidimensional space defined by the individual wavelengths (i.e., 

the Cartesian coordinate system) into a more efficient or useful application specific factor space.  

The coordinates of a spectrum in this new space are generally referred to as scores, and for a 

linear transformation such as PCA, they are related to the original spectrum by the relationship: 

nnxfxfxfScore +++= K2211  1.29 
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where xi is the intensity (e.g., absorbance, transmittance) at the ith wavelength, fi is the coefficient 

quantifying the contribution of the ith wavelength to the score, and n is the total number of 

wavelengths in the spectrum.  The determination of the coefficients (f) in Equation 1.29 for 

factor based methods is largely dependent upon the desired outcome.  For example, PCA extracts 

factors based on the amount of variance accounted for in the spectral data set, while PLS extracts 

factors based on the amount of covariance between spectra and the property(s) of interest.  It is 

also possible to weight each wavelength in a spectrum optically using the absorbance of 

molecules, which is the aim of MFC.  Ignoring source intensity and detector response, the 

coefficients (fi) in Equation 1.29 are based on the transmission spectrum of the components used 

as molecular filters.  The “scores” in this case, are simply the voltage recorded on the detector by 

integrating the total light through the sample and filter over a broad wavelength band. 

Referring again to PCA, the transformation from spectral data to scores can be 

represented in matrix notation as: 

XFS =  1.30 

where S (m×p) is the matrix of scores with each row corresponding to a sample, F (n×p) is the 

matrix of loadings (coefficients from Equation 1.29), with each column corresponding to a 

principal component, X (m×n) is the matrix of spectral data, with each row corresponding to a 

sample spectrum, and m, n, and p are the number of samples, wavelengths and PCs, respectively.  

In relation to the SVD presentation of PCA, S and F here correspond to US and V, respectively, 

in Equation 1.12.  In MFC, the counterpart to F is a matrix of the transmission spectra of the 

filter compounds.  Note that in PCA, the X matrix and can be composed of either 

transmission/reflectance or absorbance values and is preprocessed in some fashion (mean 

centered at least).  In contrast, MFC is constrained to transmission/reflectance values and raw 
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spectra as there are no optical analogs to collecting direct absorbance measurements or 

preprocessing the sample spectrum.  MFC scores are also a function of the emission spectrum of 

the light source and the response of the detector, and a more realistic formulation of equation 

1.29 for MFC would be:  

nnnn xfRIxfRIxfRIScore +++= K22221111 1.31 

where Ii and Ri are the intensity of the light source and response of the detector, respectively, at 

ith wavelength, and the other terms are as described previously.  Similarly, equation 1.30 can be 

adapted to take these factors into account if the data matrix X is transformed by the element-by-

element scaling of each spectrum with the emission spectrum (I) and detector response (R) 

vectors. 

 The next step in the development of an MFC method is to determine the necessary filter 

molecules to achieve the desired result.  One possibility is to select filter molecules with aim of 

replicating the weights in a regression vector derived from PCR modeling or other multivariate 

techniques.  There are several reasons why this approach is not a practical solution.  In order to 

model a principal component, the loading must be divided into complementary segments 

representing the positive and negative coefficients.  Each of these filters is composed of one or 

more bands where transmission is desired separated by bands where complete absorption is 

required (i.e., bands where transmission is desired in the complementary filter).  Using molecular 

species for absorption, this is an especially difficult task.  Moreover, while loading vectors from 

multivariate methods have “spectrum like” characteristics, they are far more abstract, and 

emulating these features with molecular absorption is complex.  Simulations during the 

preliminary development of the MFC technique demonstrated that for a relatively narrow 

spectral region (i.e., a few hundred nanometers or less), it would be feasible to approximate a 
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regression vector with molecular absorption; however, the number of chemical components for a 

reasonable representation would be excessively high in many cases. 

Another approach to filter selection in MFC is objective based.  In any multivariate 

statistical method, the ultimate goal is the end result, such as quantitative prediction of an analyte 

or classification of a sample.  Applying PCR and PLS methods to the same data set can produce 

statistically equivalent models in terms of predictive performance with different regression 

vectors.  The utility of an MFC method results from the scores collected from a sample.  The 

effectiveness of a given set of molecular filters can be estimated by processing (e.g., building a 

regression or classification model) simulate scores based on equation 1.31.  Filter selection is 

then directed by searching a library of transmission spectra for components that provide the 

optimal performance.  In this work, a library of NIR transmission spectra from 1923 compounds 

(John Wiley & Sons, Inc.) was used to simulate MFC filters.  Ideally, we want the fewest 

number of filters that provides acceptable performance for the desired application.  The 

development of filter selection algorithms to achieve this purpose for regression and linear 

discriminant models was the focus of other research in this group.36, 37  The method used in this 

work involved the pre-filtering of the library using genetic algorithms followed by a step-wise 

selection procedure.  The instrumentation used in this work for MFC data collection will be 

covered in later chapters. 

 

 

 

 

Copyright © Aaron Andrew Urbas 2007 
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Chapter One Figures 

 

 

Figure 1.1: Potential energy functions representative of the simple harmonic (A) and 

anharmonic (B) oscillators. 
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Figure 1.2: NIR functional group/spectrum correlation chart.  This chart serves as an 

approximate guide for NIR band assignments by functional group. 
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Figure 1.3: An example of a NIR spectral data set of geological samples before (top panel) and 

after (bottom panel) multiplicative scatter correction (MSC). 
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Figure 1.4: An example of smoothing and second derivative approximation using a cubic 

smoothing spline on a synthetic spectrum composed of overlapping Gaussians with white noise 

added.
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Figure 1.5: An example of synthetic two class (designated by ‘×’ and ‘o’) bivariate data 

demonstrating the contrast between principal components and the canonical variables for 

identical data.  Principal components are defined to maximize the variance captured while 

canonical variables are defined based on class separation.
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Figure 1.6: An example of canonical variables derived from LDA of a synthetic 3 class data set.  

Dotted lines represent possible linear decision lines for class separation.  The X’s represent 

potential test samples that do not appear to belong to any of the 3 sample populations.  A 

decision boundary based on a multi-dimensional standard deviation (MSD), represented by the 

solid ellipse, provides a better alternative. 
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Section II: Biomedical Spectroscopy 

 

Atherosclerosis is a chronic inflammatory process with complications that are the leading cause 

of death in western societies, claiming the lives of approximately 450,000 annually in the U.S. 

alone.46-48  Extensive research has been done to determine the complex pathophysiology of 

atherosclerosis, although mechanisms for various aspects are still being elucidated.  A number of 

chemical and structural changes in the vessel wall during the development and progression of 

atherosclerosis have been identified.  Among these are an increase in retained lipoproteins49, 50, 

and their subsequent oxidation49, 51, 52 in the subendothelial matrix.  Recruitment of monocytes 

and the eventual development of lipid-laden macrophages (foam cells) are another hallmark of 

the early atherosclerotic process.53, 54  Proliferation and phenotypic changes in smooth muscle 

cells are seen as well.55, 56  The advanced atherosclerotic lesion may be characterized by 

accumulation of extracellular lipid, development of a lipid rich necrotic core, formation of a 

fibrous cap, and calcification.  Although not completely understood, the vulnerability of 

atherosclerotic plaques to rupture has been studied extensively.57-60  The thin-cap fibroatheroma 

is the most widely recognized vulnerable plaque, and is loosely characterized by a thin fibrous 

cap (< 65 µm) that is rich in inflammatory macrophages and covers a large lipid pool.57, 59, 61, 62   

Collagen and elastin are major structural components of vessel walls.  Changes in the 

quantity and distribution of these components in the vessel walls take place during vascular 

remodeling in the development of atherosclerosis and other vascular disorders, such as 

aneurysm.  The local content of collagen and elastin correlates with histological and biochemical 

properties of normal aorta, atherosclerotic plaques and infiltration of inflammatory cells.63-68  

Collagen degradation in the fibrous cap of atherosclerotic plaques is implicated in vulnerability 
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by reducing the mechanical strength of the cap, which leads to plaque rupture.  By inference, 

elastin deficiency can aid in locating atherosclerotic plaques with fibrous caps, which are 

composed primarily of smooth muscle cells and collagen. 

Abdominal aortic aneurysms (AAAs) represent potentially life-threatening conditions 

that occur in up to 10 percent of the aged populations in industrialized nations.  An aneurysm is 

broadly defined as a permanent localized dilatation of an artery.  AAAs arise due to substantial 

remodeling of the extracellular matrix and are frequently accompanied by atherosclerosis.  They 

may be manifested by catastrophic rupture, signs of pressure on other viscera or an embolism 

originating in the aneurysmal wall, but most are asymptomatic.  Collagen and elastin have been 

widely implicated in aneurysm formation, progression, and rupture.  The most prevalent 

structural modification associated with human AAAs that has been reported is a reduction in 

elastin concentration in the aortic wall.69-75  A common histochemical observation in these 

studies has been the gross alteration in the organization and deposition of elastin in aneurysmal 

walls.  Significant correlations between reduced elastin concentration and AAA diameter have 

been observed.72  Alternatively, other studies have shown that reduction in elastin concentration 

is essentially complete prior to dilation is AAAs.74, 76  One proposed mechanism for reduced 

elastin concentrations is degradation or loss brought about by elastolysis.69-71, 74  Other work has 

reported that elastin content in the vessel walls of AAAs actually increases.75, 77  In these studies, 

a 2.5-fold increase in elastin content was found in AAAs versus normal aortic samples of equal 

length.  This increase, however, was accompanied by a significantly greater increase in total 

matrix proteins, which suggests that reduction in elastin content is at least in part due to dilution.  

These results and work by others suggest that an important mechanism in AAA formation is the 

regulation of matrix macromolecule synthesis.75, 77, 78   
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 Increased collagen concentration is another matrix modification that has been widely 

observed in human AAAs.71-73, 75, 79  Modifications in collagen organization and deposition have 

been correlated to rupture in human AAAs.70, 72, 74, 79  It is widely believed that organization and 

deposition of elastin plays a fundamental role in aneurysm formation, but the causal or 

compensatory relationship between collagen and AAAs is still being elucidated.  Although there 

are noticeable differences in the findings of these studies, it is evident that increases in the 

collagen to elastin ratio are a general observation in AAAs.   

   

  

32 



Chapter Two – Near-Infrared Spectrometry of Abdominal Aortic Aneurysm in the ApoE-/- 

Mouse 

 

Introduction 

A number of murine animal models have been developed in recent years to mimic 

atherosclerosis80 and abdominal aortic aneurysm81 (AAA) in humans.  Techniques for 

monitoring the onset, progression, and regression of these processes in murine models could 

provide valuable pathophysiological insights into the disease processes.  In addition, these 

analytical methods may be useful in assessing the effectiveness of possible treatments. 

Diffuse reflectance Near-Infrared (NIR) Spectroscopy has proven to be a useful 

technique for identifying chemical content of biological species.82  NIR spectroscopy is based on 

the absorbance of light by organic molecules and allows detailed analysis of chemical 

composition.  NIR can provide rapid, simultaneous, multicomponent, non-destructive chemical 

analysis of biological tissues.  Little or no sample preparation is required, and molecular 

information as well as gross biological and physical properties can be derived from the spectra.  

Biological applications of NIR spectroscopy include monitoring systemic and cerebral 

oxygenation and identifying plasma constituents including glucose, total protein, triglycerides, 

cholesterol, urea, creatinine, and uric acid.83-87  Our group has reported on the use of NIR 

spectroscopy to classify human aortic atherosclerotic plaques and to identify cholesterol, HDL, 

and LDL in arterial wall samples.88-90 

This work describes preliminary research to determine the feasibility of using near-

infrared spectroscopic methods to monitor atherosclerosis and aneurysm in mice aortas.  The 

physiological alterations described above for these vascular disorders provide a potential means 
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to monitor them in vivo.  The ultimate goal of this research is the eventual development of a 

novel fiber optic probe capable of near-infrared spectral analysis in vivo. 

 

Materials and Methods 

Mice. The animal model has been detailed elsewhere91, and a brief description will be presented 

here.  Infusion of angiotensin II (Ang II) into mature apolipoprotein E-deficient (apoE-/-) mice 

promotes an increase in the severity of aortic atherosclerotic lesions and the formation of 

abdominal aortic aneurysms.  The formation of aneurysms in the animal model is independent of 

arterial blood pressure and lipoprotein profiles; however, it requires the hyperlipidemic 

background and is dependent on Ang II dose and gender (males develop aneurysms at a greater 

incidence than females).  Female apoE-/- mice (backcrossed 10 X into the C57BL/6J 

background) were obtained from The Jackson Laboratories (Bar Harbor, ME).  All mice were 

maintained under barrier conditions.  Water and normal laboratory diet were available ad 

libitum.  All procedures involving animals were approved by the Institutional Animal Care and 

Use Committee at the University of Kentucky. 

Ang II Infusion. Alzet osmotic minipumps (Model 2004; ALZA Scientific Products, Mountain 

View, CA) were implanted into apoE-/- mice (n = 6) at 6 months of age.  Pumps were filled either 

with saline vehicle (control group, n = 2) or solutions of Ang II (Sigma Chemical Co., St. Louis, 

MO) that delivered (subcutaneously) either 500 (medium dose group, n = 1) or 1000 (high dose 

group, n = 3) ng/min/kg of Ang II for 28 days.  At this point, the mice were sacrificed. 

Tissue Preparation. Aortic tissue was removed from the ascending aorta to the ileal bifurcation 

and placed in 4% paraformaldehyde in PBS overnight at room temperature.  The intimal surface 

was exposed by a longitudinal cut through the inner curvature down the whole length of the 
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aortic tree.  Each aortic sample was cut into 6 roughly equal sections resulting in 36 total 

samples.   

Instrumentation and Spectra Collection. NIR spectra were collected with a FLEX (Bran and 

Luebbe, Elmsford, NY) spectrophotometer.  Each sample was placed on an ordinary microscope 

slide for analysis.  The samples were not immersed in solution during spectra collection.  The 

instrumental setup allowed for the entire tissue sample to contribute to the NIR signal.  NIR 

reflectance measurements were made at 20 wavelengths between 1445 and 2350.  Absorbance 

values were obtained as log(1/R). Continuous spectra were obtained by a cubic spline fitting 

routine (Speakeasy Computing Corp., Chicago, IL) from the absorbance values.  The spectral 

data were scatter corrected prior to data analysis.  Spectra from a control group and a high dose 

group tissue sample are presented in Figure 2.1 for comparison.  The chemical composition of 

the tissue samples between groups is similar, and as a result the gross appearances of the two 

spectra are similar. 

Collagen to elastin ratios for tissue samples were obtained by freeze-fracture scanning 

electron microscopy (SEM) by Industrial Analytical Services Incorporated (Leominster, MA).  

Detailed information on this technique can be found in the literature.92, 93  To determine collagen 

to elastin ratios three SEM images were obtained for each sample corresponding to the inner and 

outer membranes and a cross section of the aortic wall.   

Data Analysis. Analytical software was written in Mathematica 4.1 (Wolfram Research, Inc., 

Champaign, IL).  Principal components analysis (PCA) and principal components regression 

(PCR) were used to analyze the data.  A brief explanation of these techniques will be presented 

here, but a detailed description can be found in the literature.94, 95  PCA transforms a large 

number of correlated variables into a new set of uncorrelated factors, reducing the dimensionality 
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of the data set by a linear transformation of the coordinate system.  The principal components 

(PCs) are structured so that the first few describe most of the variation in the original variables.  

The first PC contains information from the constituent(s) that contributes most to the total 

spectral variation in the data set.  The second PC is orthogonal (i.e., uncorrelated) to the first and 

describes the maximum amount of remaining variation after removal of the first PC.  Additional 

PCs, orthogonal to the previous ones, describe progressively smaller contributions to the spectral 

variation.  In general, the first few PCs contain the desired information, and the remaining PCs 

describe insignificant constituents and noise.   

 PCR was used to construct calibration models to predict Ang II dose.  PCR is an inverse 

least squares regression technique that fits the PC scores of the calibration data to the dependent 

variables.  A leave-one-out cross validation routine was used in this work to assess the capability 

of predicting Ang II dose in mice aortas with NIR spectra.      

 

Results and Discussion 

The spectra were investigated first by PCA to examine the relationships between the samples.  

The first two PCs accounted for approximately 89% of the variation in the data set, and a plot of 

PC 1 vs. PC 2 is presented in Figure 2.2.  As seen in the figure, the spectral separation among the 

different groups is significant.  Also evident, is the relatively minor variation between spectra 

within each group.  This is true between mice, as well, in the control and high dose groups, 

which contain 2 and 3 mice aortas, respectively.  Since the medium dose group contained 

samples from a single mouse, this relation can not be established.  The ability to predict Ang II 

dose from the NIR spectra was examined using PCR.  The SEP provides a global estimate of the 

prediction capabilities of the method.  The SEP for Ang II dose depends on the number of PCs 
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used in the model.  The first two PCs provided the optimum prediction models, and the SEP for 

Ang II dose by PCR was 37 ng/min/kg (SEE 26 ng/min/kg, r2 = 0.99, f0.01 significance).   

 Collagen to elastin ratios in the samples were estimated using SEM to see if a correlation 

could be found between the NIR spectra and a histological marker.  The range of collagen to 

elastin ratios obtained for the samples was 1.4 to 4.5 and is shown versus Ang II dose in Figure 

2.3.  A trend apparent in the data is a general increase in collagen to elastin ratio with increasing 

Ang II infusion (r2 = 0.85).  Comparison of this data with the NIR spectra illustrates that the 

within group variation is greater in the collagen to elastin ratios than in the NIR spectra.  Two 

factors that likely contribute to the observed discrepancies are the limited scope of the SEM 

imaging, and the fact that collagen and elastin are not the only components contributing to the 

NIR spectra.  The entire aortic sample contributes to the NIR spectra, including significant 

contributions from lipids.  SEM sampling was limited to three SEM images from the inner and 

outer membranes and a single cross section of the vessel were obtained.     

This work presents a macroscopic study of arterial changes in mice aorta by NIR 

spectroscopy.  Figures 2.4 and 2.5 demonstrate that collagens and elastin have distinctive near-IR 

spectra.  Collagens I and III are the principal collagens of the aorta.  Figure 2.2 suggests that 

diffuse alterations occur in the aortic walls of Ang II infused apoE-/- mice, and that these changes 

can be observed with NIR spectroscopic analysis of intact tissue.  The better correlation between 

the near-IR spectra and Ang II dose than between the near-IR spectra and the collagen-to-elastin 

ratio suggests that there is more occurring in the aortas than collagen/elastin changes and the 

near-IR spectra detect these additional chemical changes.  This suggestion is not surprising given 

that near-IR spectra show contributions at some level from virtually every organic compound in 

any tissue.  Though the data are limited, they also indicate that the NIR identifiable 
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characteristics of the aorta are consistent between mice within the same treatment group (this 

cannot be established with respect to the medium dose group, however, because the tissue 

samples came from a single mouse).  Together, the results support the development of a catheter 

and extended-use fiber-optic implant for use in the blood vessels of mice and suggest 

wavelengths that might be important to monitor. 

In an effort to determine which spectral changes in the aortas were associated with 

collagens I and III and elastin composition changes, a set of sample mixtures of collagens I and 

II and elastin was prepared using pure lyophilized standards.  Figure 2.6 shows the composition 

of each of the prepared sample standards, with the pure collagen I (C1) standard in one corner of 

the triangle, the pure collagen III (C3) in another corner of the triangle, and finally the pure 

elastin in the remaining corner of the triangle.  The concentrations of each constituent in the 

standard mixtures were set at 0, 25, 50, 75 or 100% of each lyophilized protein.  The vertexes 

represent all possible combinations of mixtures in the percentages given (a total of 15 mixtures 

including the pure corner standards).  The center (i.e., group mean, or GM in the Figure 2.6) 

would represent a mixture of one-third of each protein, but this sample was not actually prepared 

in the set. 

The reflection spectra of the 15 mixtures were compared to the reflection spectra of the 

36 aorta sections be mean-centering the spectra of the mixtures and the spectra of the aortas.  The 

difference spectra between each standard sample spectrum and the mean spectrum of the 

strandard samples were calculated.  Likewise, the difference spectra between each aorta section 

spectrum and the mean spectrum of the aorta sections were also calculated.  The aorta difference 

spectra were then averaged for the control, low-dose, and high-dose Ang II groups.  Finally, the 
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difference spectra of the standards and the averaged aorta sections were the correlated using 

equation 2.1: 

∑ ∑
∑= 2

2
2
1

21

ss
ss

r  2.1 

where s1 is a spectrum from the set of standards and s2 is a spectrum from the set of aorta 

sections.96 

 The correlations between the average control group spectrum and each standard sample 

spectrum ranged between ± 0.97.  The highest correlation was with the 50, 50, 0% (collagen I, 

collagen III, elastin) standard.  The correlations between the average low-Ang II dose group 

spectrum and each standard sample spectrum ranged between ± 0.99.  The highest correlation of 

the average spectrum of the low-Ang II dose group was with the pure elastin (0, 0, 100%) 

standard.  The correlations between the average high-dose group spectrum and each standard 

sample spectrum ranged between ± 0.87.  The highest correlation was with the pure collagen I 

(100, 0, 0%) standard.  These correlations suggest that much of the variations in aorta spectra 

with Ang II dose can be attributed to changes in collagen and elastin composition.  The locations 

of the mean control (C), low-dose (L), and high-dose (H) Ang II aortic sections are shown in 

figure 2.6.  The H, L, and C points are interpolated to the location of maximum correlation to the 

standards.  The spectra of the most highly correlated standard samples, and each treatment group 

is shown in Figure 2.7.  The correlation between the aortic sections and the standard mixtures is 

highest for the control and low-dose Ang II groups in Figure 2.7.  The observation that the 

changes in the spectra of the standard mixtures to not add up perfectly to the changes found in 

the aortas also suggests that there is more occurring in the aortas than collagen/elastin changes 

and the near-IR spectra detect these additional chemical changes.  The majority of these 
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additional changes appear to be in the C−H stretching overtones that usually correspond to an 

increase in trans or saturated lipids. 

This study is limited in several respects.  The small number of mice (6) used as the source 

of the 36 aorta sections limits the observable variation in the data set.  The lack of detailed 

histological data for the samples prevents the association of the spectra with specific tissue 

pathologies and comparison of pathologies between samples.  Previous work with the animal 

model demonstrated an increased severity of atherosclerosis and the formation of aortic 

aneurysms with Ang II infusion.91  It was assumed that similar alterations occurred in this 

population contributing to the spectral trends observed in the data set.  Studies with larger, more 

diverse populations are necessary to better investigate the spectral trends and variation between 

mice. 

 

Conclusion 

Near-IR spectra are distinctive for proteins in the blood vessel wall (specifically collagens and 

elastin).  The ability of near-IR spectrometry to collect useful spectra in aqueous environments 

may make it useful for proteomics in vivo.  The results of this study suggest that NIR 

spectroscopy is a potentially useful technique for investigating vascular changes and protein 

composition associated with abdominal aortic aneurysm in a mouse model of the disease.  These 

results support an expanded study in the future to correlate NIR spectra with chemical 

compositions and histological features in mice aortas. 

 

Copyright© ACS Publications. Aaron Urbas, Michael W. Manning, Alan Daugherty, Lisa A. 

Cassis, and Robert. A. Lodder. Analytical Chemistry. 2003, 75, 3318-3323. 
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Chapter Two Figures 

 

Figure 2.1: Examples of the near-IR spectra obtained from aorta sections of a high Ang II dose 

(1000 ng kg-1 min-1) mouse and control mouse. 
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Figure 2.2: First two principal components of the near-IR spectra of the aorta data set.  H 

denotes the spectra from aortic sections of the high-dose (1000 ng kg-1 min-1 Ang II, n = 18 

samples), L denotes the spectra from aortic sections of the low-dose mice (500 ng kg-1 min-1 Ang 

II, n = 6 samples), and C denotes the spectra from aortic sections of the control mice (saline, n = 

12 samples). 
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Figure 2.3: Collagen to elastin ratios versus Ang II dose in mice aortas determined by SEM 
analysis. 
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Figure 2.4: Near-IR spectra of collagen standards.  Collagen I and collagen III are the principal 

collagens of the aorta.  The spectra of the four collagens are distinctive, suggesting that 

simultaneous multicomponent analysis of the collagens is possible. 
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Figure 2.5: Near-IR spectrum of elastin standard.  Elastin has a unique spectrum that 

differentiates it from the collagens. 
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Figure 2.6: Diagram showing the composition of each of the prepared sample standards.  The 

pure collagen I (C1) standard is in one corner of the triangle, the pure collagen III (C3) is in 

another corner of the triangle, and the pure elastin (E) in the remaining corner of the triangle.  

The concentrations of each of the three constituents in the standard mixtures were set at 0, 25, 

50, 75, or 100% of each lyophilized protein.  The vertexes in the triangle represent all possible 

combinations of protein mixtures in the percentages given (a total of 15 mixtures including the 

pure corner standards).  GM, the group mean, is the center of the triangle and represents a 

mixture of 1/3 of each protein. 
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Figure 2.7: Spectra of the most highly correlated standard mixture of collagens and elastin and 

mean aorta spectrum for each treatment group: (top left) control group (saline infusion); (top 

right) low dose, 500 ng kg-1 min-1 Ang II; (bottom) high dose, 1000 ng kg-1 min-1 Ang II.  The 

spectra in each treatment group are distinctive.  The correlation between the aortic sections and 

the standard mixtures is the highest for the control and low dose Ang II groups. 
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Chapter Three – Molecular Factor Computing Near-Infrared Spectroscopy for Differentiating 

Cholesterol, Collage and Elastin through Red Blood Cell Solutions 

 

Introduction 

Extensive research has been conducted in the past two decades to develop methods for in vivo 

vascular imaging with a variety of aims including improved understanding of disease 

pathologies, monitoring therapeutic intervention, and early detection of potentially life 

threatening localized disorders (e.g., aneurysms, atherosclerotic plaques).  One area that has 

received particular attention has been the early detection of vulnerable atherosclerotic plaques 

prior to vascular thrombosis and occlusion that lead to acute ischemic events.97-106  The primary 

distinction between imaging modalities is whether they are invasive or noninvasive techniques.  

The ideal imaging system would be noninvasive and capable of structural and biochemical 

characterization of all atherosclerotic plaques; unfortunately, no such technique exists to date.  

The general consensus is that, for the near future, an effective system will require two or more 

complementary techniques.  Among noninvasive techniques, magnetic resonance imaging (MRI) 

has received the most attention as a potentially useful tool in vulnerable plaque detection.107-112  

However, much of the research has been done in vitro and in vivo studies remain in the 

experimental stages.  Trends point toward the need for an invasive approach (i.e., catheter) for 

effective plaque characterization.112     

A number of invasive catheter-based methods are currently in use or under investigation.  

The leading technology at the present time is intravascular ultrasound (IVUS), which is based on 

the transmission and detection of high frequency sound waves.98, 99, 113-118  IVUS has been shown 

to effectively distinguish between lipid core, fibrous cap, surface thrombus and calcification.  
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Extensive studies have been conducted on IVUS for plaque characterization and the 

determination of optimal therapeutic intervention but so far it has not been demonstrated to 

reliably detect unstable plaque or specific chemical changes.   Optical coherence tomography 

(OCT) has also received a great deal of attention for plaque characterization.119-122  OCT is an 

analogous to IVUS but uses an infrared source as opposed to sound.  Tissue penetration is not as 

great as IVUS, but OCT can provide up to a two order of magnitude improvement in spatial 

resolution.  OCT has been shown to useful in the detection of lipid pools and determination of 

fibrous cap thickness, but does not detect specific alterations in local elastin and collagen 

composition.  Though powerful, the drawbacks to IVUS and OCT are primarily that the methods 

do not provide specific biochemical information, such as inflammatory cell content or collagen 

and elastin distribution, about the plaque surface. 

Several approaches to address these issues have also been investigated but all are still in 

the developmental stages.  Studies have shown that thermal heterogeneity of atherosclerotic 

plaques, attributed to activated inflammatory cells, are correlated with plaque disruption and 

thrombosis.123-126  Thermography, which measures the local temperature of vascular tissue, has 

been proposed as a potential means for detection plaque vulnerability.124, 127, 128  Spectroscopic 

methods have the potential to provide specific information about the chemical composition in 

atherosclerotic plaques due to the wealth of information obtainable from multivariate spectral 

data sets.  Raman spectroscopy has been demonstrated as a useful technique for discriminating 

between a variety of plaque components in vitro129, 130, and several studies have shown the 

potential for in vivo application.131, 132   Fluorescence methods have also shown promise for 

detection of plaque components.133  Specifically, in vivo studies have demonstrated the detection 

of macrophages and foam cells using this technique.134-136  Near-infrared (NIR) spectroscopy has 
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been demonstrated as a useful tool for characterizing plaque components.137, 138  In addition, the 

detection of cholesterol in aortas with a catheter system using NIR has also been reported.139  

The particular strength of the spectroscopic techniques just described is in their potential for 

qualitatively and quantitatively assessing biochemical constituents of plaques.  However, the 

potential for three-dimensional, depth resolved imaging, as can be obtained with IVUS and OCT, 

of plaques in vivo is quite limited with current technologies.  Their utility can be significantly 

enhanced when used in concert with other catheter-based instruments.    

The following research represents preliminary work toward the development of a NIR-

based catheter system using the novel optical encoding technique of molecular factor computing 

(MFC).  Typical drawbacks to current spectroscopic based catheter systems is time consuming 

data collection and the need for the optical delivery system (i.e., fiber probe tip) to be in direct 

contact with the vessel wall.  In this work we explore the use of MFC for differentiating plaque 

components (specifically cholesterol, collagen, and elastin) through red blood cell solutions.  The 

potential advantages for this type of approach include significantly faster data collection and the 

ability to analyze the vessel wall without being in contact.  This could provide a means for 

mapping vessel walls continuously instead of targeting a small number of specific points.     

 

Materials and Methods 

Traditional NIR Data Collection.  The sample targets were created by encasing pure samples of 

cholesterol (Sigma-Aldrich, St. Louis, MO), collagen (Type I, Sigma-Aldrich) and elastin 

(Sigma-Aldrich) in cylindrical recesses (1 cm diameter, 2 mm deep) in anodized aluminum 

blocks.  Ordinary microscope cover slips were permanently affixed to the blocks as windows to 

seal the samples inside.  Traditional near-infrared diffuse reflectance spectra of the sample 
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targets were collected from 1100-2500 nm using a scanning monochromator with an external 

reflectance probe as described previously.88, 90  Aliquots of rabbit red blood cell (RBC, 10%) 

solutions (Lampire Biological Laboratories, Pipersville, PA) were placed between the target and 

the window to simulate data collection through blood.  RBC solutions were used in place of 

whole blood because the solutions are more stable and do not clot.  The path length through RBC 

solutions was varied from 0.1 to 1.0 mm by placing the targets on a manual vertical translation 

stage (Melles Griot, Carlsbad, CA) while keeping the reflectance probe fixed.  A schematic of 

the instrumental setup is presented in Figure 3.1.  The resulting NIR spectra (n=26 for each 

component: cholesterol, collagen, elastin) were dominated by water absorption peaks and 

baseline offsets arising from the variable RBC solution path lengths.  Two spectral regions 

(1150-1300 nm and 1640-1820 nm) were identified for discrimination of the samples by 

examining the second-derivative spectra.  Figure 3.2 presents the mean second-derivative spectra 

from each group of samples.  These two regions of the second-derivative spectra were more than 

sufficient to discriminate between the samples. 

MFC Filter Selection.  The details of molecular filter selection are described elsewhere36, 37 and 

only a brief description is presented here.  The chemicals used as molecular optical filters were 

found by searching a library of near-infrared transmission spectra from 1923 compounds (John 

Wiley & Sons, Inc., Hoboken, NJ).  The library consisted of two spectra for each compound 

collected on slightly overlapping NIR regions, 952-1587 and 1388-2630 nm, with shorter path 

lengths used in the longer wavelength region.  The two bands of interest in Figure 3.2, 1150-

1300 nm and 1640-1820 nm, show markedly different degrees of reflectance is this system so it 

was decided to treat these separately in the MFC chemical selection routines.  Molecular factor 

scores were simulated by calculating the dot products between transmission spectra from the 
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NIR library and the raw NIR reflectance spectra collected using the scanning monochromator.  

The simulated molecular factor scores allowed for a preliminary evaluation of the effectiveness 

of the chosen filter components.  Note that two significant factors were not considered in these 

simulations, the spectrum of the broadband source and the detector response.  A high degree of 

collinearity was observed in the simulated scores and was attributed to similarities in 

transmission spectra among chemicals and the dominant baseline differences observed in the raw 

reflectance data.  To identify useful chemicals for MFC, the library was first filtered using a 

genetic-algorithm-linear-discriminant-analysis technique related to one described in the literature 

for variable selection for partial-least-squares regression.140, 141  Approximately 200 compounds 

remained after filtering and a step-wise variable selection algorithm based on linear discriminant 

analysis was used to select eight MFC filters for differentiating the plaque chemical samples.  

The goal in the MFC filter-selection phase of this work was to develop a pathlength-independent 

model for differentiating the plaque chemical samples.  The shorter wavelength region (1100-

1350 nm) provided much better classification of the targets in the simulation, so chemicals from 

this region alone were selected.  The disparity between the two regions was attributed to the 

significantly lower signal level through longer path lengths of the RBC solutions in the 1640-

1820 nm band.  Eight chemicals were selected for use as MFC optical filters: phenyl-hydrazine 

(PH), 2-dimethylbutyric acid (DMBA), 2,5-dihydrofuran (DHF), ethyl iodoacetate (EIA), 

tetramethylurea (TMU), thiopheneethanol (TE), 2,2-diethoxypropane (DEP), dicyclohexyl 

phthalate (DCP).  Dicyclohexyl phthalate (DCP) was in powder form and dissolved in CCl4 (0.5 

g/mL).  All chemicals were purchased from Sigma-Aldrich (St. Louis, MO). 

MFC Data Collection.  A schematic of the instrumental setup used for MFC data collection is 

presented in Figure 3.3.  A 250-W tungsten-halogen broadband source (Model 621, McPherson 
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Inc., Chelmsford, MA) with a 1000-nm long pass filter (Thorlabs, Newton, NJ) was used as the 

NIR source.  The source beam was modulated with an optical chopper (Model SR540, Stanford 

Research Systems Inc., Sunnyvale, CA) before coupling to a 200-µm core optical fiber.  The 

beam was exposed to the MFC optical filters using an aligned pair of collimating lenses (Model 

74-VIS, Ocean Optics Inc., Dunedin, FL).  A step-indexed cuvette tray was built in-house to 

permit the selection of cuvettes in the beam path.  All cuvettes used were 1 cm path length 

optical glass.  The sample targets were placed on a vertical translation stage as done for the 

traditional data collection described above.  The termination end of the source fiber was fixed 

perpendicular to the target surface.  A sealed 1 mm × 1 mm PbS detector was positioned adjacent 

to the fiber.  Both the fiber termination and the PbS detector were submerged in RBC solutions 

as described above.  For each of the eight MFC filters, the signal was integrated for three 

seconds.  In this fashion, each sample factor “spectrum” consisted of 8 data points.  Total data 

collection time for a single plaque chemical sample was approximately one minute.   

Measurements were taken with fiber tip-to-sample surface distances of 0 (fiber in contact with 

cover slip), 0.25 and 0.50 mm.  Eighteen spectra were collected for each plaque chemical sample 

type (6 at each path length) giving a total of 54 MF spectra in the data set. 

Data Analysis.  All data analysis was performed using Matlab 7.0 (Mathworks, Inc., Natick, 

MA).  Linear discriminant analysis (LDA) and principal component analysis (PCA) routines 

were written by the authors.  PLS discriminant analysis (PLS-DA) was used for building 

classification models from the MFC data set.  For the simulated and real MFC data sets, the data 

were preprocessed by autoscaling.  The PLS-DA analysis was done using the PLS Toolbox (Ver. 

3.5, Eigenvector Research, Inc. Wenatchee, WA) in Matlab.  The performance of PLS-DA 

classification models was assessed by examining several metrics: Accuracy, Precision, and 
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Recall.  In addition to the classification models for discriminating components, estimates of the 

detection limits for binary mixtures of these components were also calculated.  The estimates 

were based on an extension of the BEST metric for sub-cluster detection with sample 

populations that has been described previously.33, 34, 142-144   

 

Results and Discussion 

Plots of the two significant canonical variables from LDA of the short wavelength region (1150-

1300 nm) of the traditional NIR data (second-derivative spectra) and the simulated MFC data 

from the same region are presented in Figures 3.4 and 3.5, respectively.  Figure 3.4 demonstrates 

that the samples can be clearly differentiated with traditional NIR data.  The results from the 

simulated MFC data in Figure 3.5 demonstrate that, in principal, MFC should be able to achieve 

similar results using 8 chemical filters.  Presented in Figure 3.6 are the two significant canonical 

variables for the actual MFC data collected through blood using the 8 chemical filters.   

PLS-DA provided better classification accuracy than LDA for this data set and was 

therefore used for the subsequent processing of the data.  PLS-DA models were built for 

classifying each type of sample based on the autoscaled MFC data.  In all models, six latent 

variables provided the optimal classification accuracy.  Due to the relatively small number of 

samples, the PLS-DA models were evaluated using a leave-one-out cross validation procedure.  

The cross-validation results are presented in a confusion matrix in Table 3.1.  Several useful 

measures for evaluating the performance of the classification model are included in the table.  

The metrics for each classification model appear in the corresponding column of predictions in 

the confusion matrix for each sample type.  In general, the cholesterol and collagen models 

performed fairly well while the elastin model was somewhat inferior.   
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 It is apparent in Figures 3.4-3.6 that the separation of the three sample types observed in 

the simulation is diminished in the actual prototype instrument.  There are several factors that 

likely contribute to the disparity between the simulated and the actual MFC performance.  First, 

the instrumentation used for MFC data collection is still in the prototype stage.  Electronic noise 

sources in instruments nearby were substantial, and relocation of the prototype soon to a new lab 

and/or a better choice of optical modulation frequency should improve the group separations.  

Although not comprehensively investigated, the MFC instrument showed more instrumental drift 

than the scanning monochromator used for traditional data collection.  Rudimentary studies with 

the broadband source (e.g., 1000 nm filter in place but no MFC chemicals present) exhibited 

detector signal drift as high as 4% over one minute, which was the approximate time required to 

collect an MFC spectrum in this work.  The drift problem was largely overcome using a double-

beam design in the scanning monochromator system, and a similar approach should be used in 

the MFC spectrometer.  To further increase signal in the monochromator system, the reflectance 

probe used an integrating sphere and had a 1 cm sample window aperture.  In contrast, a 200-µm 

core fiber was used in the MFC instrument for light delivery, accompanied by a 1-mm2 capture 

area from the PbS detector.  The fiber probe dimensions in the MFC instrument were more 

consistent with use in a catheter than the dimensions of the monochromator instrument. 

As noted in the Experimental section, several factors directly affecting MFC were not 

considered during the initial chemical selection phase.  These included the broadband source 

emission spectrum, the PbS detector response, the pass-band spectrum of the 1000-nm long-pass 

filter, and the optical characteristics of the fiber used.  The most significant deviation of the 

actual experiment from the theoretical model developed for the simulations resulted from the fact 

that a band pass filter was not available to isolate the 1100-1350 nm band of interest.  With a 
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1000 nm long-pass filter the majority of the signal measured on the detector arises from this 

region.  However, the contribution from light of longer wavelengths, primarily the region 

between the two strong water bands, is considerable.  In addition, the radiance of the tungsten-

halogen source and the sensitivity of the PbS detector are not flat across the near-infrared 

spectrum.  The spectral output of the source was available, however, the response of the actual 

PbS detector used was not so an estimate was used based on typical PbS detectors.  Ultra-low 

OH optical fiber was used and the transmission spectrum is essentially flat across the near-

infrared region employed here.  For comparison with the data collected, more realistic MFC 

scores were simulated by a convolution of the following: source spectral radiance, estimated 

detector sensitivity, transmission spectra of the eight MFC filters and the reflectance spectra of 

the samples over the 1100-2200 nm range.  LDA was applied to these scores and the two 

significant canonical variables are presented in Figure 3.7.   Comparison of Figures 3.5 and 3.7 

demonstrates that the efficacy of the model suffers with the updated data set of simulated MFC 

scores, which agrees better with the experimental MFC data. 

The experimental MFC data were then analyzed to estimate the limits of detection 

through blood for each component in binary mixtures of two components.  For a particular 

component, this was performed by translating the sample population mean of another component 

towards this sample population’s mean until the two clusters could not be differentiated using the 

BEST sub-cluster detection algorithm.  The relative distribution about the mean of the sample 

population being translated was maintained in this procedure.  The estimates of the detection 

limits in binary mixtures determined by this procedure are given in Table 3.2.  For a specific 

element in this table, the reported detection limit is the percent composition of the column 

component that can be detected in a binary mixture with the component in the corresponding 
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row.  Note that the table elements are not necessarily symmetric (i.e., the estimate of the amount 

of cholesterol detectable in collagen is not the same as collagen in cholesterol.) 

 

Conclusion 

This work demonstrated the potential of molecular factor computing near-infrared spectroscopy 

for differentiating biological components through a complex sample matrix.  The ability to 

discriminate cholesterol, collagen and elastin samples through red blood cell solutions of varying 

pathlength with good accuracy using this method was established.  This work supports the 

continued development of a spectroscopic catheter based system for the in vivo analysis of 

vulnerable atherosclerotic plaques and other vascular diseases. 
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Chapter Three Tables 

 
Table 3.1: Classification results of the MFC experimental data from PLS-DA.   
 

Predicted Class True Class Cholesterol Collagen Elastin 

Cholesterol 18 0 5 

Collagen 0 16 5 

Elastin 3 3 15 
94.4% 90.7% 75.9% 
85.7% 84.2% 60.0% 

Accuracy 
Precision 

Recall 100% 88.9% 83.3% 
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Table 3.2: Estimated detection levels of each component in binary mixtures by MFC. 
 

Estimated Component Detection Level Component Cholesterol Collagen Elastin 

Cholesterol X 19% 23% 

Collagen 16% X 29% 

Elastin 20% 29% X 
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Chapter Three Figures 

 

 
 
 
Figure 3.1: Instrumental setup for traditional near-infrared spectroscopic analysis. 
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Figure 3.2: Mean second-derivative spectra of cholesterol, collagen and elastin through red 
blood cell solutions.  The spectral regions shown here (1150-1300 nm: left panel, 1625-1825 nm: 
right panel) allow for differentiation between the components with solutions of red blood cells in 
the optical path. 
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Figure 3.3: Instrument schematic of the molecular factor computing near-infrared spectrometer 
used in this work. 
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Figure 3.4: Canonical variables from the second-derivative near-infrared spectra of the sample 
targets in the 1150-1350 nm range.  
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Figure 3.5: Canonical variables from the simulated MFC data of the eight chemical optical 
filters.  This simulated data assumes an optical bandpass of 1100-1350 nm. 
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Figure 3.6: Canonical variables from the experimental MFC data using the eight selected 
chemical optical filters.  

65 



 
 
Figure 3.7: Canonical variables from the updated simulated MFC data to account for the 

extended optical pass band (1100-2200 nm), the spectral irradiance of the light source and the 

detector response.
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Section III: Pharmaceutical Cleaning Validation 

 

Cleaning validation is a methodology used to ensure the effectiveness of cleaning procedures to 

remove residues from manufacturing equipment to predetermined levels of acceptability and 

represents a critical aspect in the operation of multi-use pharmaceutical facilities.  The primary 

goal of cleaning validation is to eliminate cross contamination between active pharmaceutical 

ingredients (APIs) that can lead to potentially harmful consequences for the drug recipients, but 

the removal of other substances such as solvents, micro-organisms, detergents and excipients is 

also of concern.  Acceptable residue limits are generally based on the potency/toxicity of the API 

and are typically specified in mass/area dimensions (µg/cm2 being customary).  The conventional 

approach to cleaning validation utilizes either direct (swabs) or indirect (rinse matrix) methods to 

sample surface residues.  This is followed by analysis using a traditional analytical technique, 

with HPLC based methods making up the majority.  Although effective, these methods are not 

without shortcomings that include cumbersome manual sampling, incomplete analyte recovery 

(from both surfaces and swabs), repeatability issues, difficult method validation (particularly 

with rinse matrix methods) and time consuming analysis.  The last of these, analysis time, is of 

particular consequence as down times during changeover periods can be up to several days while 

equipment is being cleaned and validated. 

There has been a renewed interest in the development of new cleaning validation 

methods that are rapid and economical while maintaining or improving effectiveness compared 

to conventional approaches.  This interest has been prompted in part by an increased 

attentiveness from regulatory bodies145-147 and the encouragement of innovation brought about 

by the FDA’s process analytical technologies (PAT) initiative.148, 149  The FDA broadly defines 
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PAT as “a system for designing and controlling manufacturing through timely measurements 

(i.e., during processing) of critical quality and performance attributes for raw and in-process 

materials and processes, with the goal of ensuring final product quality”.  The principal goal in 

PAT is the incorporation of quality control throughout the entire manufacturing process to 

establish a quality by design paradigm.  In concert with the PAT initiative, the FDA relaxed it’s 

historically strict constraints on acceptable quality control methods (>80% of pharmaceutical 

assays are HPLC based) in an effort to facilitate PAT integration.  The pharmaceutical industry 

has viewed the PAT initiative as a means of achieving better quality assurance but at the same 

time productivity improvements and reduction in operating costs.  As a result, there has been a 

surge in the promotion of and investment in new technologies to accomplish these goals.  Several 

strategies for the realization of PAT objectives have been particularly emphasized:  the 

development of rapid process analytical chemistry (PAC) techniques for in-line and at-line 

measurements; utilization of multivariate statistical tools (chemometrics); and real-time 

information management systems for process control.     

 Several analytical methodologies have been proposed as PAC approaches to 

pharmaceutical cleaning validation.  One method that has grown in popularity in recent years is 

total organic carbon (TOC) analysis.150-152  In addition to faster analysis time, TOC is a non-

specific method that allows for simpler method development compared to HPLC.  The non-

specific nature of TOC necessitates a worst-case interpretation of the outcome, though, where all 

carbon content is assumed to derive from the API or cleaning agents even when harmless 

excipients may be present.  In addition, TOC requires an aqueous solvent that limits its 

applicability.  Current applications of TOC typically involve surface swabbing for residue 

sample, but it is increasingly being promoted for in-line use, where automated processing by 

68 



sampling from a rinse matrix is performed.  More recently, ion mobility spectrometry (IMS) has 

been introduced as a potentially useful method for cleaning validation applications.153-155  IMS 

offers a rapid analysis time compared with HPLC without sacrificing chemical specificity as in 

TOC.  While the selectivity achieved by IMS is not as good as that of HPLC, it may be sufficient 

for most cleaning validation applications, but this remains to be demonstrated in specific 

applications.  IMS requires surface swabbing, which requires an additional solvent extraction 

step, or a rinse matrix for residue sampling.  In general, the uncertainties associated with the 

residue sampling steps in cleaning validation protocols are significantly greater than the inherent 

uncertainty associated with the analytical methods. 

An ideal validation technique for cleaning procedures would be an automated, rapid, in 

situ, multi-component analysis of the surface.  The limitations and uncertainties associated with 

the swab and rinse matrix sampling techniques could be overcome with this type of 

instrumentation.  Photonic methods have the potential to provide this type of assay.  Recent work 

using mid-IR spectroscopy has resulted in the development of a fiber optic-based spectrometer 

capable of direct spectroscopic surface analysis by way of a grazing-angle reflectance sampling 

head.156-159  Reported assessments of the device have demonstrated low detection limits for 

surface contamination as well as improved accuracy compared with a traditional swab-based 

HPLC approach.  Drawbacks with this approach include cumbersome instrumentation and cost.  

The following three chapters detail efforts toward the development of competing in situ cleaning 

validation technologies.  The use of light scatter and polarization for detecting and quantifying 

surface residues on glass and stainless steel surfaces is explored.  While effective, chemical 

selectivity with these methods is limited.  To address this issue, the use of NIR spectroscopy and 

MFC is also investigated.         

69 



Chapter Four – Quantification of Albumin (BSA) on Glass by Laser Scatter for Cleaning 

Validation 

 

Introduction 

This work represents initial investigations to develop a multi-functional spectral analyzer capable 

of illuminating a spot or area on a surface and examining the returned light for multiple 

spectroscopic phenomena.  Multiplexing spectroscopic techniques offers the potential to create 

an accurate surface scanning instrument capable of multi-component analysis with wide 

applicability in cleaning validation and other areas.  This idea was partly inspired by a similar 

device, a multi-functional active excitation spectral analyzer (MAESA), developed for materials 

characterization on planetary probes.160  The focus of the present work is the prediction of 

Bovine Serum Albumin concentrations on the surface of glass by examining the scatter from an 

incident HeNe laser beam (632.8 nm).   

Lord Rayleigh determined that the irradiance of the scattered radiation is given by 

Equation 4.1: 
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where α’ is the polarizability of the particle in m3, λ is the wavelength of incident radiation, θ is 

the angle between the incident and scattered ray, E0 is the incident beam irradiance, and d is the 

distance from the center of the scattering to the detector, and η0 is the refractive index of the 

solvent.  For measuring the scatter from molecules in solution, the substitution in Equation 4.2 

can be made: 
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where M is the molecular weight, N is Avogadro’s number, and ( c∂∂ /η ) is the refractive index 

change of the solution with concentration.  For a sample with concentration, c, and Nc/M 

particles per unit volume, substitution into Equation 4.1 yields Equation 4.3 for the scattered 

radiation per unit volume: 
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where the variables are defined as above. The system described by Equation 3 is different from 

that studied in this work, but provides insight into the factors involved in scattering at surfaces.  

For cleaning validation applications, several of the terms in Equation 3 are particularly 

important.  The solvent in this case has been evaporated, and the volume is nearly two-

dimensional.  At low BSA concentrations, most of the interactions in a scattering event are with 

the glass surface.  As the concentration increases, the probability of interactions with adjacent 

BSA molecules increases.  This situation can viewed in a simple way as a molecule in a 

“solvent” of like molecules.  In this view, ( c∂∂ /η ) is still applicable and introduces a quadratic 

dependence on concentration for scattered radiation.  This phenomenon was observed and as a 

result quadratic regression models were used, providing significantly better predictive models.  

The M term is also important, and shows that the amount of light scatter increases with 

molecular weight.  Finally, the λ4 term exemplifies the inverse dependence on wavelength and 

the fact that sensitivity to particle detection can be increased by using shorter wavelength light. 
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Materials and Methods 

Materials. The Bovine Serum Albumin (BSA) used in this work was obtained from Sigma-

Aldrich (St Louis, MO).  The microscope slides used were Teflon printed 24.4 by 16.7 mm 

single oval well slides obtained from Electron Microscopy Sciences (Fort Washington, PA).  All 

other reagents used were of analytical grade.   

Sample Preparation. A series of dilute solutions of varying BSA concentration were prepared in 

volumetric flasks by dissolving dry BSA in deionized water.  For each slide sample, a 200-μL 

aliquot was taken from the appropriate BSA solution and spread as evenly as possible into the 

well on the slide surface and allowed to dry.  In this fashion, a series of slides were prepared with 

known average surface BSA concentrations.  A total of 11 slides were prepared with surface 

BSA concentrations ranging from 0-20 μg/cm2. 

Instrumentation. A schematic of the instrumental setup used in this work is presented in Figure 

4.1.  A 10-mW helium-neon (HeNe) laser with a 632.8 nm nominal wavelength (Spectraphysics, 

Eugene, OR) was used as the source to generate light scatter from the slide samples.  A white 

image plane was placed in the path of the scattered light to provide a fixed background for 

imaging.  The laser and image plane were separated by approximately 1 m with the slides placed 

0.3 m from the laser.  A spatial filter was placed in the beam path before interaction with the 

slide surface to eliminate stray light output from the source.  An aperture in the image plane 

allowed the bulk of the laser light (i.e., the unscattered portion of the light) to pass through to a 

beam dump.  This provided a significant improvement in sensitivity to scattered photons by 

limiting the dynamic range of the scattering signal to be captured by the A/D.  An Olympus D-

520 Zoom digital camera (Olympus Optical Co., LTD., Tokyo, Japan) was used to collect the 

light scattering images and was fixed at approximately 45° to the image plane and 0.7 m away.         
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Data Collection. Light scatter images were collected in a raster fashion from the slide surfaces 

by mounting the slides on a translation stage while keeping the rest of the instrumentation fixed.  

The translation stage provides precise, reproducible locations and allows direct comparison of 

light scatter images from different locations on the slide surface and between different slides.  A 

preliminary study was carried out to optimize the angle of the laser with respect to the slide 

surface.  For this investigation, the angle of the slide in the path of laser (i.e., θ in Figure 4.1) was 

varied with twenty images collected at each position.  Only three samples (0, 0.80, and 20.0 

μg/cm2) were used for this initial study due to large volumes of data generated.  For quantitative 

studies, thirty images were collected from each slide.  All images were collected as 1600 X 1200 

pixel JPEGs.  Examples of light scatter images from two slides are presented in Figure 4.2.  

Data Analysis. Due to computer memory constraints, images were resampled to a smaller size 

for some investigations.  The effect of image size (i.e., resolution) on prediction accuracy was 

investigated and will be discussed below.  Prior to analyzing images, one-dimensional data 

vectors were obtained by extracting the red channel from the reconstructed RGB bitmaps and 

aligning rows of the image end to end.  An example of the data vector extracted for the light 

scatter image in panel A of Figure 4.2 is presented in Figure 4.3.  The image was resized to 400 

X 300 pixels prior to data extraction.  To reduce data dimensionality, principal axis 

transformations were performed for quantitative analysis of BSA concentrations on the slide 

surfaces.  As mentioned in the introduction, quadratic fitting models were used for regression.  A 

thorough treatment of these techniques can be found elsewhere.94, 95  For the angle optimization 

experiments, image group separation was examined by the Bootstrap Error-adjusted Single-

sample Technique (BEST).  This method is used to determine multi-dimensional distances of 

73 



individual samples in standard deviations from a population.  A thorough treatment of this 

technique can be found in the literature.31-33, 161   

 

Results and Discussion 

Laser Beam Angle. The angle (θ) of the laser beam to the slides surface was investigated to 

maximize the between-group separation of light scatter images from three of the slide samples 

(0, 0.80, and 20.0 μg/cm2).  The result of this process is an improvement in sensitivity.  Light 

scatter images were collected on the three slides at 90, 60, 45, 30, and 15°.  Angles below 15° 

could not be investigated because of significant interfering light scatter caused by the edges of 

the Teflon printed wells on the slides.  Group separation was examined by finding the average 

BEST distance between the image groups for each slide.  BEST distances were calculated by 

treating the images from one slide as a population and finding the average distance to the 

individual images of the other groups. 

The results of this analysis are presented in Table 4.1.  The column labels identify the 

slides being compared, where the first slide is treated as the population and the distances are 

found to each of the images from the second slide.  For example, “Blank vs. Low” gives the 

average BEST distances of the 0.80 μg/cm2 slide images to the group of blank slide images.  

Note that the treatment of each group as a population will generate two sets of distances between 

each of the slide samples at each angle.  Although not universal, there is a trend toward increased 

separation as the angle decreases.  The two exceptions to this occur when finding distances from 

the 0.80 μg/cm2 (Low) slide groups.  These show an initial decline in average BEST distance to 

the other samples as the angle decreases.  Below 45°, though, the group separation increases 

again.  The most important observation drawn from the table is that the average separation 
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reaches a maximum in all but one of the comparisons at 15°.  In the one exception to this (Blank 

vs. High), the separation is more than adequate at 15°.  This angle was selected for the 

subsequent quantitative BSA determinations. 

Image Resolution. The effect of image resolution on the BSA prediction accuracy was studied 

by finding the standard error of predictions (SEP) at a number of different image sizes.  Images 

were resized individually and all thirty images for each sample were averaged.  BSA 

concentrations were predicted for each slide by cross-validation using principal component 

regression.  The SEP versus image size is presented in Figure 4.4.  As seen in the figure, the 

prediction accuracy remains relatively stable down to an image size of 25 X 19.  Here the 

prediction error begins to increase and reaches a maximum when the mean pixel value is used for 

each image.  For all of the multi-dimensional data sets (i.e., all image sizes except the mean pixel 

value) two principal components were significant in the regressions.  These results demonstrate 

that knowledge of the spatial distribution of the light scatter significantly improves prediction of 

BSA concentration on the slide surfaces with the instrumental setup used in this work.  The 

improvement when the spatial distribution of light scatter is considered at sufficiently high 

resolution is approximately an order of magnitude. 

 Studying the effect of image size as done here was an attempt to simulate data collection 

at lower resolution.  The block-averaging used here to resize images is a crude method with 

respect to image efficacy in a visual sense.  Several other image resizing methods were also 

investigated, including nearest-neighbor and interpolation routines.  The prediction accuracy for 

all of these methods was comparable with the block-averaging method at higher image 

resolutions but was significantly worse in general at resolutions below 25 X 19.  Regardless of 

the method employed, it was clear that the initial image resolution of 1600 X 1200 was 
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considerably greater than necessary.  More complex systems, with multiple analytes present, will 

likely require higher resolution imaging in conjunction with other spectroscopic techniques to 

achieve acceptable precision and accuracy. 

Number of Points Sampled on Glass Surface. In the investigation of image resolution, all thirty 

images from each slide sample were averaged to generate a single representative BSA-

distribution image for each sample.  Prediction accuracy was next investigated as a function of 

the number of light-scattering images averaged to generate each BSA-distribution image.  For 

this study, images were resized by the block-averaging method to a resolution of 800 X 600 

pixels.  A variable number of images were drawn at random without replacement from the 

groups of thirty images.  These sub-samples were averaged for each slide and the SEP was found 

by cross-validation using principal component regression.  To gauge the uncertainty in the SEP, 

the procedure was repeated 10 times for each sub-sample size.  The number of images drawn 

was varied from 1 to 25.  The average SEP versus the number of images in the sub-samples is 

presented in Figure 4.5.  Note that the SEP is also included for the average of all thirty images.  

No error bars are present for this point, however, because there is only one possible sample.  As 

evident in the figure the SEP, as well as the uncertainty in the SEP, decreases as the number of 

images averaged increases.  These results are expected because of the likelihood of uneven BSA 

distribution on the slide surfaces, so averaging light-scattering images from more locations on 

the slide’s surface will generate a better representative BSA distribution image.  The conclusions 

drawn from Figure 4.5 are in part confounded by the fact that the samples are all drawn from the 

same populations.  As the number of images sampled increases, the probability that images 

appear in multiple replications increases.  This repetition has a more significant influence on the 
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observed trend of decreasing uncertainty in the SEP as the sample size increases than on the 

observed concurrent trend of decreasing SEP. 

 The uneven BSA distribution on the surfaces can be visualized by examining the light 

scatter images in relation to their collection points on the slide surface.  To reduce complexity, 

the average red pixel value for each image was used to provide a rough estimate of the BSA 

present at a given location on the slide surface.  These values were arranged in a grid according 

to their sampling location.  A smooth two-dimensional spline surface was fit to the data to 

approximate the distribution of BSA in the slide well.  Figure 4.6 is an example of this for the 

slide sample with an average surface BSA concentration of 4.8 μg/cm2.  The values of the spline 

surface approximation at the sampling locations (black dots in the figure) are within 3% of the 

actual values.  The figure demonstrates the irregular distribution of BSA on a slide and 

exemplifies the need to sample numerous locations in order to get an accurate prediction for the 

average concentration. 

Prediction of total BSA concentration on each slide surface using the averages of all 

thirty light-scattering images gives ng/cm2 errors.  Figure 4.7 is a graph of the true versus 

predicted BSA concentration using all light-scattering images.  To further illustrate the 

conclusions from the earlier section on image resolution, the predicted concentrations are plotted 

for both 800 X 600 (black) and 50 X 37 (red) pixel image sizes.  The differences between the 

results for the two resolutions are imperceptible in the graph for several of the samples, and quite 

small for the others.  For the 800 X 600 images, the SEP and average SEE are 0.154 and 0.114 

μg/cm2, respectively (cross validated using the F-test at p = 0.05).  For the 50 X 37 images, the 

SEP and average SEE are 0.135 and 0.098 μg/cm2, respectively (cross validated using the F-test 

at p = 0.05). 
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The major limitation to this work is that BSA was the only component present on the 

slide surfaces.  Plans for future work include analyzing multi-component systems containing 

APIs, excipients, and cleaning agents.  It is highly unlikely that single wavelength light scatter 

will be sufficient to characterize such systems completely, and therefore development of a 

hyperspectral MAESA device will be pursued.  Other spectroscopic techniques including 

polarization modulation and luminescence will be studied in addition to light scatter.  These 

techniques should help in the  analysis of contaminants on other surfaces such as stainless steel. 

 

Conclusion 

This work demonstrated that examination of laser light scatter can be used to quantify BSA 

concentrations on glass surfaces.  Analysis of the spatial distribution of light scatter provided 

improved prediction accuracy compared to the prediction by the amount of light scatter alone for 

the instrumental setup employed in this work.  When time is limited, if faced with a choice 

between collecting higher resolution scattering images or sampling more locations on a glass 

surface, the time is better spent sampling more locations on the surface.  In addition, the 

sensitivity to low concentrations of BSA can be enhanced by decreasing the incident angle of the 

laser beam with respect to the glass surface. 

   

 

 

 

Copyright© 2003 IM Publications. Aaron A. Urbas and Robert A. Lodder. NIR News. 2003; 

14(2): 22-24. 
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Chapter Four Tables 

 

Table 4.1: Mean BEST distances between image groups for selected samples at various laser 
beam angles to the slide surface. 
 

BEST Distances, Mean (±SD) 
Angle (°) Blank vs. 

Low 
Blank vs. 

High 
Low vs. 
Blank 

Low vs. 
High 

High vs. 
Blank 

High vs. 
Low 

90 1.616 ± 
1.074 

3.299 ± 
0.863 

5.713 ± 
4.158 

6.927 ± 
1.991 

3.991 ± 
2.876 

2.768 ± 
0.416 

60 2.504 ± 
1.377 

5.366 ± 
0.839 

4.134 ± 
2.548 

5.457 ± 
0.932 

3.647 ± 
0.870 

3.158 ± 
0.555 

45 2.623 ± 
1.180 

6.062 ± 
0.797 

2.571 ± 
2.103 

4.262 ± 
0.653 

4.135 ± 
0.887 

3.773 ± 
0.852 

30 2.895 ± 
0.750 

6.479 ± 
1.191 

4.283 ± 
3.061 

6.265 ± 
1.092 

4.319 ± 
0.475 

3.551 ± 
0.517 

15 4.341 ± 
2.120 

5.888 ± 
0.935 

6.020 ± 
3.540 

7.105 ± 
0.715 

7.268 ± 
1.120 

5.709 ± 
0.877 
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Chapter Four Figures 

 

 
 
Figure 4.1: Instrumental setup (top view) used to collect light scatter images from slide surfaces. 
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Figure 4.2: Examples of individual light scatter images collected from two slide samples: 0.8 
μg/cm2 (panel A) and 20.0 μg/cm2 (panel B). 
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Figure 4.3: An example of a data vector extracted from a light scatter image by retaining only 
the red channel of an RGB image and representing the two-dimensional image as a vector.  This 
data was extracted from the image shown in panel A of Figure 4.2. 
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Figure 4.4: The SEP for BSA concentration as a function of the resolution of the light scatter 
images.
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Figure 4.5: The SEP for BSA concentration as a function of the number of locations sampled to 
generate a representative average image for an individual slide. 
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Figure 4.6: Estimation of the distribution of BSA in the well of a slide sample with an average 
surface BSA concentration of 4.8 μg/cm2.  Light scatter is indicate by color, increasing from blue 
(least scatter) to red (most scatter), and is estimated by finding the average red pixel value for 
each image.  Increased scatter is interpreted as an approximation to BSA concentration at a given 
location.
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Figure 4.7: True versus predicted BSA concentration using the average of all 30 light-scattering 
images for each slide at two different image resolutions: 800×600 (black) and 50×37 (red).  The 
dotted line corresponds to a perfect correlation. 
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Chapter Five – Anisotropic Polarized Light Scatter Imaging for Pharmaceutical Cleaning 

Validation 

 

Introduction 

The previous chapter demonstrated the use of laser light scatter for the detection of surface 

residues on glass.  Although this method potentially offers detection limits at pharmaceutically 

relevant concentrations the utility of it quickly becomes limited when other sources of light 

scatter exist.  The discrimination between contamination in the presence of surface 

imperfections, such as roughness or abrasions, is largely unachievable by examining light scatter 

alone.  The previous investigation involved unblemished glass surfaces with surface 

contamination as the principal scattering source.  This type of surface is not necessarily 

representative of a typical situation encountered in pharmaceutical cleaning validation.  Polished 

stainless steel is the predominant material used in the manufacture of pharmaceutical processing 

equipment.  A significantly greater amount of scatter is expected from these surfaces due to 

increased surface roughness and the lack of transparency compared to glass.  In addition, scatter 

arising from abrasions must be taken into account in a realistic application. 

Optical scattering has proven to be a valuable technique for the characterization of 

smooth surfaces such as mirrors, optics and silicon wafers.162  In these applications, light scatter 

is primarily used to identify deviations from ideal conditions, locate defects and characterize 

surface roughness.  More recent studies have shown that the polarization of scattered light can be 

used to identify the scattering source.163-171  These investigations have been aimed at the 

discrimination between light scatter from surface roughness, subsurface defects and particle 

contamination on smooth surfaces.  The applications for which these methods are being explored 
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include testing of optical materials, silicon wafers, patterned semiconductors and optical storage 

media.  In general, the manufacturing tolerances associated with these surfaces are much more 

stringent in comparison with what is expected in pharmaceutical equipment but the results in the 

optics and electronics industry provide a foundation for the pharmaceutical objective.  

Mathematical treatments of polarized light scatter in these works are daunting and normally 

necessitate the use of simple theoretical systems to obtain predictions.  Typical models of 

polarized light scatter from particles on surfaces involve models of single spherical or slightly 

non-spherical particles on smooth surfaces, with the additional constraints that the particles are 

sufficiently smaller than the wavelength of light and multiple photon interactions with particles 

are ignored.  The resulting models generally exhibit dependencies on particle shape, size, 

refractive index and wavelength.  Consequently, experimental investigations to substantiate these 

models are typically carried out using particles of uniform size and shape with monochromatic 

radiation incident on sufficiently small surface areas, which is usually accomplished with laser 

sources.  Models that are more complex have been developed or extended for studying light 

scatter from surfaces with more intricate systems that incorporate irregular particle shapes as 

well as agglomerates, but polarization has generally been ignored until quite recently.172-177 

This work represents a preliminary investigation into the use of polarized light scatter for 

pharmaceutical cleaning validation applications.  The specific aim of this study is to establish its 

potential utility from an experimental standpoint using a system that is representative of a 

realistic cleaning validation application.  The investigations here were motivated by studies 

demonstrating that the light scattered from p-polarized light incident on a surface at an oblique 

angle has a polarization that is dependent on the scattering source.167-169, 178  In particular these 

studies have shown that the polarization of out-of-plane light scatter shows directional 
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dependency that can be used to differentiate between roughness, subsurface defects and 

particulate contamination on the surface.  In this work, a simpler instrumental setup is employed 

than what is used in typical light scatter experiments.  Collimated white light from a broadband 

source is used for illumination.  To facilitate a quantitative determination of surface residues, a 

substantially greater surface area (a 6.5×4.6 cm ellipse) is illuminated than in traditional setups, 

where point illumination by laser sources is generally used.  In the end, illuminating a larger area 

can significantly speed up the cleaning validation process.  The scattered light is imaged with a 

digital camera to maintain the spatial dimensions of the surface.  This instrumental setup 

introduces two compromises in the polarization data gathered.  First, the use of broadband 

illumination confounds the wavelength information.  Second, imaging of the surface results in 

light being collected in a significantly broader angular band compared with single element 

detectors.  In spite of these compromises, the effectiveness of the instrumentation for residue 

detection is demonstrated. 

 

Materials and Methods 

Instrumental Setup.  A schematic diagram of the instrumentation used in this work is presented 

in Figure 5.1.  A Xe Arc Lamp with a UV cut-off filter was used as the broad band visible light 

source.  Note that this choice was simply due to availability, and any suitable broadband visible 

light source (e.g., tungsten-halogen) should suffice.  Linear polarizers were used at the source 

and imaging points (Edmund Optics, Barrington, NJ).  For all investigations the angle and 

polarization of the incident light beam were fixed.  Figure 5.1 shows that if the stainless steel 

plate defines the x-z plane (the z-plane being perpendicular to the page), the incident beam lay in 

the x-y plane at a 45º angle to the steel plate surface.  The incident beam was polarized in the x-y 
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plane, perpendicular to the stainless steel surface (i.e., p-polarized).  The beam diameter 

(circular) was approximately 4.6 cm resulting in an elliptical illumination spot on the surface 

with major and minor axes of 6.5 and 4.6 cm.  Images were collected using a Nikon D70 digital 

camera (Nikon Inc., Melville, NY) and 38-75 mm zoom lens (Tamron Inc., Commack, NY).  

The f/stop was fixed at f/11 and ISO sensitivity to 100 for all investigations while the shutter 

speed was varied to control exposure.  It was necessary to maximize depth of field in the images 

due to the orientation of the camera in relation to the steel surface.  This f/stop was chosen to 

achieve good depth of field while maintaining a reasonable exposure time.  The maximum 

exposure was 1 s for these investigations.  Images were recorded in raw Nikon 12-bit format.   

Surface Preparation.  All surfaces used in this work were grade 318 near-mirror polished (grain-

free) stainless steel plates.  To produce more realistic surfaces that were similar to what might be 

encountered in pharmaceutical process equipment, defects were introduced using sand paper 

(various grit sizes) to score the surface.  Clean surfaces were prepared by scrubbing the plates 

with a residue-free cleaner, thoroughly rinsing with deionized water followed by ethanol, and 

allowing the plates to dry.  Aspirin residues (acetylsalicylic acid) on the plate surfaces were used 

for most of the investigations in this research.  After a method was developed for detecting 

aspirin residue, the method was applied to additional residues including: ethanol-deposited 

acetaminophen and ibuprofen; powder samples of aspirin, acetaminophen and ibuprofen; 

fingerprints; an industrial chain lubricant (L716, Radiator Specialty Company, Charlotte, NC); 

and a mineral oil-based food grade lubricant (Petrol-Gel, McGlaughlin Oil Company, Columbus, 

OH).  Aspirin, ibuprofen and acetaminophen were obtained from Sigma-Aldrich (St. Louis, 

MO).  When reported, average surface concentrations were approximated by dividing the total 
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residue deposited by the average spot-size area.  Additional details about the residue deposition 

procedures are given below.    

Imaging Angle Optimization.  During the preliminary angle optimization phase of this research, 

imaging was carried out at θr = 30, 60 and 90º in the plane of incidence.  Although not depicted 

in the schematic, which portrays imaging in the plane of incidence (Φr = 0), out of plane imaging 

was performed at Φr = 15 and 30º above the beam plane at the same 3 angles.  At each camera 

orientation, images were collected at 10º polarization phase steps from -90 to 90º relative to the 

incident polarization (19 total images).  Due to the varying intensity of light at different imaging 

angles, shutter speeds of 1/8-1/2 s were used.  Variation in shutter speed did not significantly 

detract from the objective, which was to examine the relative intensity between steel and residue.  

For this phase, 8 µL aliquots of a fixed concentration of aspirin in ethanol solution were pipetted 

on clean stainless steel plates giving average residue spot diameters of 2.3 cm (2.1 – 2.6 cm 

range) and approximate surface concentrations of 75 µg/cm2.  The relative intensity of scatter 

from the two sources was estimated by isolating the portions of the image covered by each.  

Figure 5.2 shows examples of isolated spots for images from two different angles (left panel: θr = 

90º, Φr = 0º; right panel: θr = 30º, Φr = 30º) with intensity calculated by averaging pixels inside 

the red ellipse for aspirin and between the red and blue ellipses for steel.  The values for each 

source were normalized by dividing the intensity over all analyzer angles by the maximum value.  

Note that this does not isolate the sources entirely because the steel underlying the aspirin 

residue contributes to the image.  This will be discussed in more detail below. 

Fixed Angle Imaging.  The optimal imaging angle determined from the preceding investigation 

was θr = 30, Φr = 30º.  In addition, imaging was performed at only two polarization angles, -90 

and -60º relative to the source polarization, which corresponded to the minimum and maximum 
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relative intensities between the steel plates and aspirin residue.  Note that the -90 and 90º 

polarizations are identical and correspond to crossed-polarizers.  To increase signal-to-noise 

ratio, dynamic range and sensitivity seven images were collected at each polarization with 

different exposure times.  A composite image was generated from these by averaging the 

intensity at each pixel over all exposures that exhibited an intensity in the range 160 – 3920 on a 

12-bit scale (i.e., 0-4095), the contributions weighted to account for exposure.  The difference 

between the two composite images was taken for further processing.  In addition, the images 

were cropped to remove the edges of the illuminated spot on the surface due to intensity 

inconsistencies and distortions.  The first aim of this investigation was a quantitative study of 

aspirin residue.  Twelve µL aliquots of varying aspirin concentration were deposited on clean 

plates resulting in average spot diameters of 2.9 cm (2.4-3.3 range) and an approximate surface 

concentration range of 0.05 – 100 µg/cm2.  Data was collected on four replicate samples of nine 

concentrations in this range in addition to 30 clean samples giving a total of 66 samples. 

 The application of this method for detecting residues other than aspirin was carried out 

using the same imaging procedure.  By an analogous ethanol deposition method as previously 

described, samples were prepared with residues of acetaminophen and ibuprofen with surface 

concentrations of 12.5 µg/cm2.   For the following samples, surface concentrations were 

unknown and the aim was merely to determine if the residues could be detected with this 

method.  Dry samples (i.e., without solvent deposition) of these two compounds as well as 

aspirin were prepared by dispersing powder on the surfaces and “smearing” the residue with a 

dry Kimwipe (this was necessary to promote adhesion since the plates were vertically mounted).  

Similarly, samples with the lubricants were prepared by depositing the substances on Kimwipes 

first then smearing the surface.  Lastly, plates with fingerprints were prepared. 
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Data Analysis.  All data analysis was performed using Matlab 7 (Mathworks, Inc., Natick, MA).  

Two different regression models for the quantitative aspirin residue study were compared.  The 

first method was a univariate least-squares regression using a pixel intensity summation above a 

designated threshold as the dependent variable.  For the second method, principal component 

regression (PCR) models were built using the distributions of pixel intensity from the difference 

images.  Finally, linear discriminant analysis (LDA) was used to investigate differentiation 

between clean samples and samples with aspirin residue.  Thorough treatments of PCR and LDA 

can be found in the literature.6, 17, 24  

 

Results and Discussion 

The graphs of the normalized intensities for stainless steel (solid lines) and aspirin residue 

(dashed lines) at Φr = 0, 15 and 30º are presented in Figures 5.3, 5.4 and 5.5, respectively.   

Examination of the data from imaging in the plane of incidence (Figure 5.3) demonstrates that 

the trends in intensity from the scattered light of steel and aspirin residue are essentially the same 

for all three angles and provides no means to differentiate the scatter arising from the two 

sources.  In contrast, the divergence of intensity from the two sources becomes readily apparent 

in the out of plane data at Φr = 15º and θr = 30º (see Figure 5.4).  The trends for θr = 60 and 90º 

in this figure are not as symmetric as the in plane data but at θr = 30º the minimum for steel 

occurs at a -70º analyzer phase shift relative to the incident polarization while the apparent 

minimum for aspirin occurs at -80º.  For out of plane imaging at Φr = 30º and θr = 30º (Figure 

5.5) the disparity becomes even more pronounced with the minimum for steel occurring at a -60º 

analyzer phase shift while the apparent minimum for aspirin still occurs at -80º.  The reference to 

apparent minima in relation to aspirin is used because the intensity measurements are 
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confounded by the contributions of both aspirin and the underlying steel.  The combined effect of 

this is clearly seen as the minimum of the steel intensity shifts relative to aspirin, resulting in the 

profile of aspirin broadening and skewing.  Furthermore, visual examination of the images 

suggests that the actual minimum for aspirin residue occurred at -90º (i.e., crossed polarizers) 

regardless of the imaging angle.  To decrease data collection time and computational demands 

for further studies it was decided to reduce imaging to two polarizations.   

A comprehensive scan of the polarization range results in considerable information 

redundancy and a pair of suitably chosen angles should provide sufficient discriminatory 

capability between the scatter sources.  The angles were chosen by examining the intensity ratio 

between aspirin and steel across the polarization range.  Presented in Figure 5.6 is the ratio of 

normalized intensities of aspirin to steel at Φr = 30º.  At θr = 30º we find that the -60 and -90º 

analyzer polarizations yield the maximum and minimum relative intensities across the data set 

(Φr = 0 and 15º included) and these were selected for subsequent data acquisition.              

Imaging with this polarization pair was performed on the 36 aspirin samples of various 

concentration and 30 clean samples.  The normalized experimental pixel distributions from the 

difference images of this data set are presented in Figure 5.7.  The abscissa has been cropped to 

[-400,400] to facilitate comparison but the full range was [-964,591].  The clean surface data 

resembles a negatively skewed extreme value distribution179 while the aspirin residue shows this 

underlying distribution with the addition of a very broad, flat density toward a positive 

difference.  This distinction between the distributions provides a rudimentary means for 

differentiation between the sources.  Applying an appropriate threshold to the image difference, 

pixels attributed to scatter from steel can be removed.  An exact threshold is somewhat arbitrary 

and the initial selection was zero, which corresponded to a cumulative distribution value of 
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0.9985 for the clean surface samples.  A schematic of the application of this processing 

procedure to an individual sample is presented in Figure 5.8 (aspirin surface concentration of 5 

µg/cm2).  Additional examples of images processed with this threshold method from clean 

surfaces and surfaces with different concentrations of aspirin residue are shown in Figure 5.9. 

Two approaches to building regression models for aspirin surface concentration were 

evaluated.  Data for the univariate method were generated by a summation of the pixel 

distribution above the defined threshold with each pixel count weighted by corresponding 

difference value.  Other strategies as well as different thresholds were considered for univariate 

models but no significant improvements in results were found.  For the PCR models, the raw 

pixel distributions were used as data vectors and the data set was mean-centered prior to 

principal components analysis.  Eight PCs were included in the optimal model accounting for 

98.1% of the total variation.  The cross-validation results from these two methods are presented 

in Figure 5.10 for comparison.  The global SEPs for the two models (7.86 and 3.36 µg/cm2 for 

the threshold and PCR model, respectively) demonstrate the improved prediction offered by the 

PCR model but do not reveal the complete picture.  If the predictions from the clean samples and 

aspirin residue samples are examined separately we find a trade-off between the two models with 

better predictions for the threshold model on the clean samples (SEP = 0.91 versus 1.98 µg/cm2) 

but a 3-fold improvement for the PCR model on the residues (SEP = 3.81 versus 11.29 µg/cm2). 

The prediction results are supported by several observations.  The threshold was defined 

specifically for the clean surface data so it could be expected to perform well on those samples.  

However, significant overlap between the collective distributions of clean and aspirin 

contaminated surfaces exists (see Figure 5.7) and thus an effective threshold necessitates the 

removal of useful information related to the contamination.  The distributions of individual 
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samples reveal other trends not evident in the collective samples.  Presented in Figure 5.11 are 

example distributions of several clean surface samples (top panel) and of the four replicate 

samples with 25 µg/cm2 aspirin residue (bottom panel).  The disparities in peak location and 

shape amongst clean samples likely account for the increased prediction error for the PCR model 

on these samples.  From visual comparison there is a definite correlation between peak 

broadening and increasing surface deterioration, however the source of the inconsistency with 

peak location has not been elucidated at this point.  The aspirin samples display much more 

variation than the clean surfaces.  Because the examples are of the same surface concentration, 

the differences must be attributed to differences in distribution of the residue on the surface, 

particle sizes, or other film characteristics.  The trends in these data provide a rationale for the 

relatively large number of PCs required (8) to build an effective calibration in spite of the fact 

that this is one-constituent chemical system. 

Examination of the prediction results reveals that the limits of detection for the above 

regression methods were approximately 5 µg/cm2.  The actual concentration range investigated 

included samples 2 orders of magnitude less than this.  To investigate if this was the true 

detection limit an LDA model was developed for differentiating clean from aspirin contaminated 

surfaces with the concentration information ignored.  From the LDA model using 8 PCs the first 

discriminant function was significant (p = 4.91×10-19, we are limited to one discriminant function 

because only two groups are present), however the first two are presented in Figure 5.12 for 

graphical purposes.  As seen in the figure the aspirin contaminated surfaces are differentiated 

from the clean surfaces with the exception of the 0.05 µg/cm2 samples.  The 2.5 and 0.5 µg/cm2 

samples that were previously below detection limits are resolved in this figure suggesting that it 

may be possible to reduce detection limits by an order of magnitude.  This result is not 
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remarkable because the regression models are minimizing the global error in a least-squares 

fashion.  The least-squares approach is biased against very low concentration samples when high 

concentrations are present. 

The final investigation was somewhat cursory with the aim of determining if the method 

developed could detect other potential surface contaminants.  Images were collected and 

processed using the simple threshold method for the samples described above in the 

Experimental section.  Examples of the processed images for each of these samples are shown in 

Figure 5.13.  Although detection limits and quantification capabilities cannot be determined from 

these data it is clear that all of the residues studied were detectable.  One aspect not discussed in 

this work is the differentiation of compounds on a surface or in a mixture.  Exploratory studies 

with acetaminophen, ibuprofen and several common pharmaceutical excipients displayed very 

similar trends to aspirin suggesting that discrimination would be difficult.  The detection of 

surface residues in this work is essentially accomplished by the elimination of scatter arising 

from the underlying steel surface.  The lack of chemical specificity, though, is not necessarily a 

weakness.  If the method is sufficient for determining the presence of the target analyte(s) at 

pharmaceutically relevant concentrations the resulting data could be interpreted in a worst-case 

scenario approach similar to that used in TOC analysis for cleaning validation applications.  This 

carries with it the advantage of simpler method development but in contrast to TOC does not 

require aqueous solubility and allows for in-situ analysis, which alleviates other issues such as 

surface adhesion and the uncertainties associated with analyte recovery from swabs.  The results 

of this work are promising and certainly justify a more thorough investigation of this 

methodology, both experimental and theoretical, for cleaning validation. 
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Conclusion 

This work demonstrated the potential of polarized light scattering measurements for 

pharmaceutical cleaning validation applications.  The ability to detect residues of several APIs at 

pharmaceutically relevant concentrations as well as several other contaminants of interest on 

polished stainless steel surfaces with varying extents of wear was established.  The prospect of 

quantifying surface residues was also established with the accurate determination of ethanol 

deposited aspirin residues on these surfaces.  These results support future investigations into the 

use of this method for pharmaceutical cleaning validation.  The relatively simple instrumentation 

used in this investigation suggests that the development of a rugged, portable instrument capable 

of in-situ surface analysis for cleaning validation applications is feasible. 
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Chapter Five Figures 

 

 
 
 
Figure 5.1: Schematic of the instrumentation used for polarized light scatter imaging. 
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Figure 5.2: Example images from two different imaging angles (left panel: θr = 90º, Φr = 0º; 
right panel: θr = 30º, Φr = 30º).  Scattered light intensity was estimated for steel and residue by 
isolating the image sections inside the red ellipses and between the red and blue ellipses.   
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Figure 5.3: Normalized intensity of steel (solid lines) and aspirin residue (dashed lines) from 
imaging in the plane of incidence (Φr = 0) at θr = 30, 60 and 90º. 
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Figure 5.4: Normalized intensity of steel (solid lines) and aspirin residue (dashed lines) from 
imaging at Φr = 15 º for θr = 30, 60 and 90º. 
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Figure 5.5:. Normalized intensity of steel (solid lines) and aspirin residue (dashed lines) from 
imaging at Φr = 30 º for θr = 30, 60 and 90º.  
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Figure 5.6: Ratio of the normalized intensities of steel and aspirin residue from Figure 5.5 (i.e., 
from imaging at Φr = 30 º for θr = 30, 60 and 90º). 
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Figure 5.7: Normalized experimental pixel distributions from the difference images of clean 
steel (solid-line, n = 30) and aspirin contaminated surfaces (dashed-line, n = 36).  
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Figure 5.8:. Example of the image processing procedure using an image pair from a 5 µg/cm2 
aspirin residue sample.  Note that the raw images (upper left and right corners) are RGB images 
at the longest exposure time. 
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Figure 5.9: Examples of processed image pairs using the zero threshold for several aspirin 
contaminated (upper images) and clean surfaces (lower images).  Surface concentrations of 
aspirin residue are denoted in the images. 
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Figure 5.10: Cross-validated prediction results from the quantitative aspirin residue study for 
both calibration methods investigated: univariate threshold model (blue), PCR model (red).  
Error bars are plotted at ± 1 standard deviation. 
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Figure 5.11: Examples of raw pixel distributions from individual clean (top) and aspirin 
contaminated (bottom) surfaces. 
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Figure 5.12: LDA results from aspirin quantification data for discrimination between clean and 
contaminated surfaces.  Note that only the first discriminant function is significant and the 
second has been included for graphical purposes. 
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Figure 5.13: Examples of processed image pairs using the zero threshold for different surface 
residues: ethanol deposited residues of aspirin (A), acetaminophen (B) and ibuprofen (C) at 
surface concentrations of 12.5 µg/cm2; dry smear deposited residues of aspirin(D), 
acetaminophen(E) and ibuprofen (F); fingerprint (G); industrial chain lubricant (H) and food 
grade lubricant (I).  Note that surface concentrations are known for only the ethanol deposited 
samples. 
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Chapter Six – Near Infrared Spectroscopy and Molecular Factor Computing for Pharmaceutical 

Cleaning Validation 

 

Introduction 

The previous two chapters detailed research on the use of light-scatter and polarization 

phenomena for the detection of surface residues on glass and stainless steel.  The applicability of 

a light-scattering method is limited if surface imperfections, such as abrasions.  Examining the 

polarization of scattered light can permit the discrimination between contamination and surface 

imperfections.  Although these methods demonstrated detection limits at pharmaceutically 

relevant concentrations they lack chemical selectivity.    To address the selectivity issue, the 

present research investigates the use of NIRS for in situ cleaning validation applications.  Near-

infrared spectroscopy (NIRS) has been widely used in the pharmaceutical industry and is the 

most prevalent analytical method being explored for PAT applications.180-183  However, very 

little work has been done to evaluate its capabilities for cleaning validation.  One recent 

application has been reported that successfully employed NIRS to directly analyze swab samples 

of mineral oil residues without a solvent extraction step.184  NIR can provide rapid, 

multicomponent chemical analysis with limited or no sample preparation.  Our group has 

reported on the use of NIRS in a diverse range of pharmaceutical applications including dermal 

absorption of drugs185, 186, identification of enteric coated tablets142, testosterone quantification in 

thin-film composites187, monitoring powder blend homogeneity188, formaldehyde induced 

crosslinking in gelatin capsules189, 190 and moisture uptake in intact pharmaceuticals.161, 191  In 

this work NIRS was used in the qualitative differentiation of several active pharmaceuticals and 

excipients on stainless steel and glass surfaces.  The first objective was to demonstrate that 
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traditional NIRS could be used to differentiate surface residues.  Using a dispersive 

spectrometer, NIR reflectance spectra were collected from pure samples of different components 

deposited on stainless steel plates.  The aim of this investigation was not method development 

but instead to establish that NIRS is capable of analyzing residues in-situ.  For this methodology 

to be applicable to in-situ cleaning validation a rugged, portable instrument is necessary.  

Although portable full-spectrum NIR spectrometers exist, they sacrifice S/N and sensitivity that 

are necessary for this type of application.  Although the eventual development of a suitable 

instrument similar to the mid-IR spectrometer mentioned previously is feasible, filter-based 

spectrometers also have potential to provide these capabilities.  Filter-based instruments are 

inherently rugged and have already found wide use as process analytical tools in the 

pharmaceutical industry.183, 192, 193               

 The second objective of this research was to demonstrate that MFC based NIRS is 

applicable to pharmaceutical cleaning validation.  A discussion of this methodology can be found 

in Chapter 1, and the potential application of it for evaluating the vulnerability of atherosclerotic 

plaques was presented in Chapter 3.  In this work, MFC data, using transparent polymer sheets as 

molecular filters, were used to differentiate residues of active pharmaceuticals and excipients on 

glass surfaces to establish the potential of MFC for cleaning validation.  In contrast to the 

traditional NIRS study, glass surfaces were used to allow collection of transmission 

measurements because a prototype MFC instrument for reflectance measurements is still in 

development. 

 

113 



Material and Methods 

Traditional NIR Data Collection.  Pure samples of the active pharmaceuticals naproxen, 

ibuprofen, aspirin (acetylsalicylic acid) and acetaminophen as well as the common 

pharmaceutical excipients lactose and magnesium stearate were obtained from Sigma-Aldrich 

(St. Louis, MO).  NIR diffuse reflectance spectra of the pure samples are presented in Figure 6.1 

and have been offset for comparison.  Sample surfaces were prepared by depositing ethanol 

solutions of single components on 6 cm2 polished stainless steel plates (Grade 316).  The 

solubility in ethanol of the active pharmaceuticals is sufficient at the concentrations used, 

however, lactose and magnesium stearate are essentially insoluble.  For these components, 

mixtures with ethanol were prepared and temporary suspensions were produced by agitation 

immediately prior to surface deposition.  The specific aim of this study was qualitative 

identification of the residues so the surface concentrations were not determined during sample 

preparation.  Furthermore, only the average surface concentration over plate surfaces was known 

and the uneven residue distribution made determination of the actual surface concentration in the 

spot illuminated of the spectrometer difficult.  The range of average surface concentrations of the 

components for this study was approximately 0 – 1000 µg/cm2.  NIR reflectance spectra in the 

1100-2500 nm wavelength range were collected from the surfaces using an Infraalyzer 500 

spectrometer (Bran and Luebbe, Elmsford, NY).  Ten samples of each component were analyzed 

in addition to 12 blanks resulting in a total of 72 spectra in the data set.  The NIR reflectance 

spectra of the minimum and maximum concentration samples for the four active pharmaceuticals 

and a blank are presented in Figure 6.2 for comparison.  Examples of the two excipients were 

omitted but are similar.    
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MFC Data Collection.  A schematic of the instrumental setup used for MFC data collection is 

presented in Figure 6.3.  Due to the additional complexity associated with a reflectance setup, 

this study was conducted using transmission spectroscopy and glass surfaces instead of stainless 

steel.  The broadband output from the Infraalyzer 500, which included the broadband source, 

1650 nm longpass filter, optical chopper and fiber optics, was used as the light source.  In 

contrast to previous MFC investigations, a simplified approach to molecular filters was used 

which employed readily available transparent polymer sheets.  Again, the purpose of this study 

was not method development but to demonstrate the applicability of MFC for cleaning validation 

purposes so optimal molecular filters were not selected from a NIR library as described in 

previous works.  Clear polymer sheets with nominal thickness of 0.125-inches of the following 

were used: polycarbonate, polymethyl methacrylate (PMMA), polyethylene terephthalate glycol 

(PETG) and polyvinyl chloride (PVC) (K-Mac Plastics, Wyomin, MI).  The transmission spectra 

of the filters were measured over the 1100-2500 nm wavelength range and are presented in 

Figure 6.4.  The use of the 1650 nm longpass was due to the relatively minor absorption below 

1600 nm for the filters coupled with fact that the majority of the distinguishing spectral features 

of the compounds under investigation are above 1600 nm.  A subset of the components used in 

the traditional NIRS study was chosen for this study: aspirin, acetaminophen, lactose and 

magnesium stearate.  Samples were prepared as described above except that 10 cm2 borosilicate 

glass plates were used.  Transmission measurements (0.5 s integration time) were recorded for 

each of 4 molecular filters as well as a filter-less measurement giving 5 total data points for each 

sample.  Ten samples of each component and 12 blanks were analyzed resulting in a total of 52 

samples in the MFC data set.  Presented in Figure 6.5 are the raw MFC data if the left panel and 

the MFC data after standard normal variate (SNV) transformation and mean centering.  

115 



Data Analysis.  All data analysis was performed using Matlab 7 (Mathworks, Inc., Natick, MA).  

Traditional NIRS data was preprocessed by approximating 2nd derivatives using cubic smoothing 

splines15 then normalized to unit vector length.  MFC data were preprocessed with the standard 

normal variate (SNV) transformation followed by normalization to unit vector length.  

Classification models were developed using principal components analysis (PCA) to reduce data 

dimensionality and/or remove collinearity between variables followed by linear discriminant 

analysis (LDA) to generate discriminant functions.  A thorough treatment of these statistical 

techniques can be found in the literature.6, 17, 24  The Boot-strap Error-adjust Single Sample 

Technique (BEST) metric was used for non-parametric estimation of class distributions in the 

LDA models.  The BEST metric provides a multi-dimensional standard deviation (MSD) similar 

to Mahalanobis distance but does not assume that populations are normally distributed and 

instead uses a non-parametric boot-strap estimation of the population density.  BEST MSDs from 

leave-one-out cross-validation routines were used to determine classification accuracy of the 

models.  A thorough treatment of the BEST metric can be found in the literature32, 142, 194.  The 

performance of classification models was assessed by examining several standard metrics: 

Accuracy, Precision, and Recall. 

 

Results and Discussion 

Traditional NIRS Data.  Including the blank samples there are 7 classes present in the data set, 

which limits the potential number of discriminant functions from LDA to 6.  Examination of the 

PCA results suggested that 8 PCs were sufficient to describe the data, accounting for 98.3% of 

the total variation.  The results from LDA using 8 PCs showed 6 discriminant functions were 

statistically significant (p < 0.00001).  Plots of the first 4 canonical variables (discriminant 
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functions) are presented in Figure 6.6.  The separation between groups and relatively compact 

clusters is evident in the plots.  The cross-validated prediction results from this data are presented 

in a confusion matrix in Table 6.1.  Included in the table are several performance metrics (i.e., 

accuracy, precision and recall) based on the individual class results.  Pooling the results of the 

complete data set gave the following global performance measures: 99.4% accuracy, 100% 

precision and 95.8% recall.   

Erroneous results across the global cross-validation were limited to two false negatives, 

one each for aspirin and acetaminophen, which accounts for the relative disparity of the recall 

metric versus accuracy and precision.  For these two samples, the cross-validated MSDs from 

their appropriate classes was 3.98 and 5.06 std. dev., while the closest distance to any other 

group was 15.01 and 18.44 std. dev., respectively.  This indicates that the samples may be 

outliers or that the population variance is not adequately captured by the samples present and 

therefore the 3 std. dev. cutoff is not appropriate.  Examination of the ibuprofen cluster in the 

lower panel of Figure 6.6 (canonical variables 3 and 4) suggests that the misclassified sample 

from that group may signify an outlier but more data would be required to confirm this.   

The relative distances between component clusters were investigated by finding the average 

MSD from each sample to each group using the cross-validation data.  This data is presented in 

Table 6.2.  The table is arranged so that the elements in a particular row represent the average 

MSD of the samples in the row’s class designation to each of classes listed in the columns.  The 

diagonal elements represent the average intragroup MSDs.  Note that the data in the table is not 

symmetric about the diagonal (for example the average MSD from blank samples to the 

naproxen group, 3.54, is markedly different from that of naproxen samples to the blank group, 

32.29).  Excluding the intragroup diagonal elements, examination of the table reveals that almost 
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all of the maximum row and minimum column elements correspond to the blank group.  The 

large values in the blank column result from the relatively minor spectral variations among clean 

surface spectra, which results in a compact sample population compared to the “dirty” surface 

spectra, which cover a range of concentrations for each of the residues.  The relatively small 

values in the blank row result from the fact that as the concentration of any residue diminishes 

the spectra are approaching that of the clean surface more so than the other components. 

MFC Data.  As in the traditional NIRS data set, the maximum number of possible discriminant 

functions was found to be statistically significant (p < 0.01), however the number is reduced to 4 

since 2 components were removed in this data set.  Plots of the 4 canonical variables are 

presented in Figure 6.7.  The separation between groups is apparent in these plots, particularly in 

the first two canonical variables; however, it is not as significant in comparison with the 

traditional NIRS data.  The same cross-validation procedure described above was performed on 

this data set and the results are presented in Tables 6.3 (confusion matrix) and 6.4 (average 

MSDs between groups).  Pooling the prediction results of the MFC data set gave the following 

global performance measures: 98.1% accuracy, 100% precision and 90.4% recall.  Erroneous 

results were once again limited to false negatives (5 in total), which accounts for the noticeably 

diminished recall rate compared to traditional NIRS.  The average MSDs data in Table 6.4 

demonstrate that the separation between groups as a whole is similar to NIRS (mean off diagonal 

elements in Tables 6.2 and 6.4 are 14.11 and 10.61, respectively), however, the trends in the data 

are somewhat different. 

 The efficacy of the MFC data for classification of the surface residues was better than 

expected.  In contrast to previous work, the molecular filters used in this study were not 

specifically selected for the application.  Examination of Figure 6.5 shows that the relative 
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intensities between filters for the raw MFC data (top panel) is virtually identical between 

samples.  This is because, aside from a baseline offset, the data is dominated simply by the total 

intensity differences of the light transmitted by the filters.  The effect of this is to waste the bit-

range of the analog-to-digital converter.  Despite these drawbacks, the results support a more 

thorough investigation of the MFC methodology for cleaning validation applications.  

Subsequent studies will address some of the instrumental limitations just described.  In addition, 

the determination of limits of detection, linearity and analysis of mixtures are necessary.  

 

Conclusion 

This work demonstrated the potential use near-infrared spectroscopy in pharmaceutical cleaning 

validation applications.  The ability to accurately discriminate between in-situ residues of several 

active pharmaceuticals and excipients at varied concentrations on polished stainless steel 

surfaces using NIRS was established.  However, in-situ surface analysis in a realistic 

environment using this technique would require rugged, portable instrumentation with limited 

sacrifices in terms of performance.  These requirements present a barrier to the use of traditional 

full-spectrum NIRS devices.  To address this issue, this work also demonstrated that molecular 

factor computing data in the near-infrared spectral region, comprised of only 5 measurements, 

was sufficient to discriminate between surface residues on glass with good accuracy despite the 

lack of optimization for this application.  Together, these results support future investigations 

into the use of these methods for pharmaceutical cleaning validation. 

 

 

Copyright © Aaron Andrew Urbas 2007 
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Chapter Six Tables 

Table 6.1: Classification results of the traditional NIR reflectance data from cross-validated 
LDA models and the BEST metric. 
 

Predicted Class True Class Clean NAP IBU ASP ACE LAC MAG 
Clean 12 0 0 0 0 0 0 
NAP 0 10 0 0 0 0 0 
IBU 0 0 9 0 0 0 0 
ASP 0 0 0 9 0 0 0 
ACE 0 0 0 0 10 0 0 
LAC 0 0 0 0 0 10 0 
MAG 0 0 0 0 0 0 10 

100% 100% 98.6% 98.6% 100% 100% 100% 
100% 100% 100% 100% 100% 100% 100% 

Accuracy 
Precision 

Recall 100% 100% 90% 90% 100% 100% 100% 
 
*/ NAP denotes naproxen; IBU, ibuprofen; ASP, aspirin; ACE, acetaminophen; LAC, lactose; 
MAG, magnesium stearate. 
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Table 6.2: Average BEST MSDs between each class from cross-validated LDA models using 
traditional NIR reflectance data.* 
 

Class Clean NAP IBU ASP ACE LAC MAG 
Clean 1.52 3.54 5.26 6.90 3.79 6.06 8.10 
NAP 32.29 1.25 7.21 7.74 6.79 6.82 8.53 
IBU 24.78 10.68 1.41 8.07 10.92 10.17 10.49 
ASP 41.45 14.23 11.13 1.85 12.12 11.11 11.43 
ACE 14.30 5.70 6.12 7.24 1.55 6.76 7.43 
LAC 60.63 12.54 11.41 11.49 16.13 1.21 11.73 
MAG 68.21 19.05 14.74 13.73 20.93 13.26 1.38 

 
*/ NAP denotes naproxen; IBU, ibuprofen; ASP, aspirin; ACE, acetaminophen; LAC, lactose; 
MAG, magnesium stearate. 
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Table 6.3: Classification results of the MFC transmission data from cross-validated LDA models 
and the BEST metric. 
 

Predicted Class True Class Clean ASP ACE LAC MAG 
Clean 12 0 0 0 0 
ASP 0 9 0 0 0 
ACE 0 0 9 0 0 
LAC 0 0 0 8 0 
MAG 0 0 0 0 9 

100% 98.1% 98.1% 96.2% 98.1% 
100% 100% 100% 100% 100% 

Accuracy 
Precision 

Recall 100% 90% 90% 80% 90% 
 
*/ ASP denotes aspirin; ACE, acetaminophen; LAC, lactose; MAG, magnesium stearate. 
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Table 6.4: Average BEST MSDs between each class from cross-validated LDA models using 
MFC data.* 
 

Class Clean ASP ACE LAC MAG 
Clean 1.60 12.70 8.21 8.48 15.60 
ASP 48.32 2.11 6.15 9.76 23.13 
ACE 38.80 5.74 2.21 5.14 11.59 
LAC 15.09 9.87 5.84 2.40 10.99 
MAG 7.67 12.32 5.32 4.62 1.71 

 
*/ ASP denotes aspirin; ACE, acetaminophen; LAC, lactose; MAG, magnesium stearate. 
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Chapter Six Figures 
 
 

  
 
 
Figure 6.1: Diffuse reflectance near-IR spectra of pure samples of several APIs (naproxen, 
ibuprofen, aspirin, and acetaminophen) and excipients (lactose and magnesium stearate). 
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Figure 6.2: Examples of near-IR reflectance spectra from a clean polished stainless steel plate 
and plates contaminated with the APIs naproxen, ibuprofen, aspirin, and acetaminophen.  Two 
spectra are shown for each API, which represent the minimum (solid line) and maximum (dashed 
line) concentration samples from the data set.  
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Figure 6.3: Instrument schematic of the molecular factor computing near-infrared spectrometer 
used in this work. 
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Figure 6.4: Transmission spectra of the polymers used as molecular filters in the work: 
polycarbonate, polymethyl methacrylate (PMMA), polyethylene terephthalate glycol (PETG), 
and polyvinyl chloride (PVC).  Note that a 1650 nm longpass filter was used in the collection of 
MFC data.  
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Figure 6.5: The raw MFC data set (top panel) and the data set after applying the standard normal 
variate transformation and mean centering.  In contrast to the traditional near-IR data set, 
transmission measurements were collected for this data from surface residues on glass plates.  
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Figure 6.6: Graphs of the first four canonical variables from the traditional near-IR data set 
consisting of reflectance spectra from varying surface concentrations APIs and excipients on 
polished stainless steel plates.  The legend in the top graph (CV 1 vs. CV 2) applies to the bottom 
graph (CV 3 vs. CV 4). 
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Figure 6.7: Graphs of the first four canonical variables from the transmission MFC data set of 
APIs and excipients on glass plates. The legend in the top graph (CV 1 vs. CV 2) applies to the 
bottom graph (CV 3 vs. CV 4). 
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Conclusion of Dissertation 

The cumulative work contained in this dissertation was aimed at demonstrating that relatively 

simple instrumentation coupled with or motivated by chemometric data analysis techniques can 

be successfully applied to solving challenging analytical problems.   The demand for such 

techniques can be driven by different motivations.  For invasive biomedical spectroscopy and 

imaging applications, such as a coronary catheter, the effectiveness of traditional instrumental 

designs is greatly diminished.  For this type of application, the development of novel 

instrumentation is critical for achieving the desired aims.  To this end, the potential application 

of MFC in a NIR-based catheter system for diagnosing vascular diseases was demonstrated.  

Specifically, the differentiation of biological components with significance in abdominal aortic 

aneurysm and vulnerable atherosclerotic plaques was achieved through intervening red blood 

cell solutions. 

The demand for similar techniques in pharmaceutical applications is driven by different 

motivations.  Traditional instrumentation is often applicable to the problems at hand, but 

alternative techniques that are rapid, cost effective, and rugged are highly desirable.  The 

validation of cleaning procedures represents one such area where conventional analytical 

techniques are effective but suffer greatly in terms of efficiency.  Toward this goal light scatter 

and polarization imaging were investigated for the detection and quantification of surface 

residues on glass and stainless steel surfaces.  The discrimination between different residues was 

not established with these techniques, but this is not necessarily a significant drawback.  If 

further investigation shows that a wide variety of substances can be detected at pharmaceutically 

relevant concentrations, a worst-case interpretation of the results could yield a powerful cleaning 

validation tool.   To address situations where residue discrimination is desired, the use of NIR 
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spectroscopy and MFC was demonstrated for the differentiation of pharmaceutical components 

on glass and stainless steel surfaces.     
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