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ABSTRACT OF DISSERTATION 
 
 
 
 

EFFECT OF DYSTROPHIN DEFICIENCY ON SELECTED INTRINSIC 
LARYNGEAL MUSCLES OF THE mdx MOUSE 

 
 

 The intrinsic laryngeal muscles are recognized as a highly specialized allotype of 
skeletal muscle. To date, much of the research examining the properties of this muscle 
group has been conducted on 2 primary muscles: the thyroarytenoid and posterior 
cricoarytenoid. Consequently, it is unknown whether the remaining intrinsic laryngeal 
muscles evidence this highly refined phenotype or if they retain a phenotype more similar 
to prototypical skeletal muscle.  
 The purpose of this study was to further define the biologic properties of the 
interarytenoid (IA) and cricothyroid (CT) muscles of the larynx using the dystrophin 
deficient mdx mouse model. Previous work in this model has demonstrated sparing of 
select craniofacial muscles in the disease. Interestingly, a vast body of literature also 
supports the uniqueness of these spared muscles in a number of other areas including: 
fiber types, motor unit size, proprioceptive mechanisms, myosin isoform expression, 
remodeling behaviors, and sarcomeric structure. It follows, then, that muscle response to 
dystrophin deficiency serves as a sensitive marker of a muscle’s level of biological 
specialization and its similarity to or departure from classic limb muscle. 
 Larynges and gastrocnemius muscles from 8 mdx and 8 C57BL control mice were 
examined histologically for typical markers of dystrophinopathy. Immunocytochemical 
testing examined the distribution of dystrophin and its homolog, utrophin, in control and 
mdx muscles. 
 Results demonstrated that despite the absence of dystrophin, the laryngeal 
muscles did not show the classic markers of disease. The mdx superior cricoarytenoid 
muscle (SCA; mouse counterpart of human IA) demonstrated no evidence of damage, 
inflammation, necrosis, or regeneration. The mdx CT evidenced subtle markers of 
regeneration (eg, slight increase in centrally nucleated fibers) but no evidence of 
degeneration. The authors concluded that the SCA was spared from the effects of 
dystrophin deficiency, while the CT was strongly protected. The results demonstrate that 
the SCA and CT muscles of the larynx possess a specialized nature that separates them 
from prototypical limb muscle.  



 

 Information from the study offers insight into the unique biology of the laryngeal 
muscles and holds implications for the translational study of voice and voice disorders.  
 
KEYWORDS: Dystrophin Deficiency, Larynx, Skeletal Muscle, Interarytenoid, 
Cricothyroid 
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CHAPTER 1 – INTRODUCTION 

 

The craniofacial muscles are a highly specialized and diverse set of skeletal 

muscles intricately involved in the processes of respiration, deglutition, sensation, and 

communication. From the very beginning of their development, these muscles make 

fundamental departures from prototypical limb skeletal muscle anatomy and physiology.1, 

2 These specializations permit the craniofacial muscles to meet the high-level functional 

demands required in the above activities. Much of the literature surrounding the 

craniofacial muscle phenotype has focused on the extraocular muscles; however, research 

has now identified special features in other craniofacial muscle groups, including the 

laryngeal muscles.3-10 

 The intrinsic laryngeal muscles have primary responsibilities in respiration, 

swallowing, airway protection, and phonation. The group is comprised of thirteen 

muscles (6 paired, 1 unpaired) which work in concert to adduct, abduct, tense, and relax 

the vocal folds.11, 12 In recent years, a growing body of evidence has emerged supporting 

the distinctive nature of these muscles.3, 4, 6, 7, 13-25 Key areas in which the laryngeal 

muscles diverge from prototypical limb muscle include: innervation,13, 14, 19, 20 contractile 

proteins,17, 18, 21-23, 26, 27 regenerative capacity,3, 6 sensitivity to disease and insult,4, 7, 25, 28-30 

and response to aging.24 Their level of specialization has led some to propose these 

muscles as a separate allotype of skeletal muscle.2  

However, a closer examination of the literature identifies that much of the 

research supporting the laryngeal musculature’s unique and highly refined biology has 

emerged from the study of 2, select laryngeal muscles: the adductory thyroarytenoid (TA) 

and the abductory posterior cricoarytenoid (PCA). While the intensive study of these 2 

muscles has yielded an abundance of information related to specializations within the 

larynx, it has, perhaps, failed to appreciate the biology of the broader group of intrinsic 

muscles. Two muscles, in particular, which have received little attention in the literature 

are the interarytenoid (IA) and cricothyroid (CT).  

The IA muscle is positioned in the posterior aspect of the larynx and is the 

primary adductor of the cartilaginous vocal folds.11, 12 As such, the IA is a vital 

contributor to laryngeal closure during swallowing, coughing, throat clearing, and 
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voicing.31 Available literature indicates that this muscle diverges from its laryngeal 

counterparts structurally as well as functionally. Contractile protein profiles of the IA are 

strikingly similar to those of classic limb muscle.32 Specifically, the IA shows a mosaic of 

the basic skeletal muscle myosin isoforms and the complete absence of the atypical, 

specialized isoforms observed in other laryngeal muscles, a finding which suggests that 

the IA’s contraction times are more indicative of limb, than laryngeal, muscle.32 Further, 

the IA is the only laryngeal muscle displaying muscle spindles, and consequently, the 

only laryngeal muscle relying upon the classic mechanisms of proprioception used by 

limb skeletal muscle.32 Similarly, the CT muscle, a primary regulator of vocal fold 

tension,12 shows marked departures from its sister laryngeal muscles. Embryologic 

origins of the CT are traced to the fourth branchial arch, whereas all other laryngeal 

muscles are traced to sixth arch.33 As cell lineage is an important contributor to muscle 

phenotype, some have suggested that the CT’s unique developmental history separates it 

structurally and functionally from laryngeal muscle.34 The CT also stands apart in terms 

of its contractile proteins. As with the IA, the CT displays a mixture of basic fast and 

slow myosins and an absence of specialized isoforms, a profile similar to that of fast limb 

muscle.17, 22, 35  

While the body of evidence pertaining to the IA and CT is limited relative to that 

of the TA and PCA, the above findings point to the possibility of phenotypic diversity 

among the intrinsic laryngeal muscles. The lack of a comprehensive examination of IA 

and CT biology has, to this point, made confirmation of diversity impossible. 

The purpose of this study was to further define the biological characteristics of the 

IA and CT muscles. While a number of methods are available to examine features of 

these muscles of interest, one model in particular serves as a sensitive indicator of a 

muscle’s level of specialization and its similarity to or departure from prototypical limb 

muscle. The mdx mouse model of dystrophin deficiency is the genetic equivalent of 

human Duchenne muscular dystrophy (DMD).36 The disease is a result of a spontaneous 

mutation of the Xp21 gene, which results in the absence of the cytoskeletal protein 

dystrophin.37, 38 In the absence of this pivotal support protein, the muscle’s cell membrane 

is subject to the mechanical forces of muscle contraction.38 Sarcolemmal tearing often 

results, permitting the entry of extracellular calcium into the muscle cell. High levels of 
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intracellular calcium trigger the activity of protein destroying enzymes and the 

subsequent destruction of the muscle fiber. Over time, the disease results in widespread 

necrosis and fibrosis throughout the muscle.38, 39  

Diseases of skeletal muscle, such as DMD, are expected to trigger their 

predictable pathological cascades across the entire class of skeletal muscle. When 

muscles paradoxically escape the cascade, questions are raised regarding their similarity 

to and/or departure from the prototypical skeletal muscle. Duchenne muscular dystrophy 

was once believed to affect all skeletal muscles; however, it has been realized that a few 

select muscles are spared, chief among these are the extraocular muscles and the 

thyroarytenoid, posterior cricoarytenoid, and lateral cricoarytenoid muscles of the 

larynx.4, 7, 25, 40 For reasons yet to be elucidated, these muscles retain normal structure and 

function in the absence of dystrophin. Interestingly, a vast body of literature also supports 

the uniqueness of these spared muscles in the areas of: fiber types, motor unit size, 

proprioceptive mechanisms, myosin isoform expression, remodeling behaviors, and 

sarcomeric structure.3, 4, 6, 7, 13, 15, 17-25, 41-45 It follows, then, that muscle sensitivity to DMD 

serves as a sensitive marker of a muscle’s level of biological specialization and its 

similarity to or departure from classic limb muscle. Recent studies suggesting that 

constitutive, biological differences separate DMD-affected and DMD-spared muscles 

appear to support this assertion.42 Examination of the IA and CT muscles with the mdx 

model can, therefore, provide insight into the biological properties of these muscles and 

offer researchers a better understanding of their similarity to or divergence from the 

prototypical limb muscle phenotype. 

Hence, the study examined the effects of dystrophin deficiency on the transverse 

IA and CT muscles of the larynx. The posterior cricoarytenoid (PCA) muscle of the 

larynx served as the spared muscle control, while the gastrocnemius served as the 

affected muscle control. For the initial phase of the study, serial 10-μm-thick cryosections 

of the above muscles were obtained. Histological sections were air-dried and stained with 

hematoxylin and eosin. Sections were later examined under light microscopy for 

evidence of muscle fiber degeneration (ie, inflammation, necrosis, and fibrosis) and 

attempted regeneration (ie, pleomorphic fibers, central nucleation). In the second phase of 

the study, dystrophic and normal mice were injected with Evans blue dye, a vital dye 
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used to assess the integrity of cell membranes. Approximately 18 hours after injection, 

the mice were killed, and tissues were collected as described above. Serial 10-μm-thick 

cryosections of the aforementioned muscles were fixed, washed, and mounted. The 

presence of Evans blue-positive fibers, indicating cell membrane disruption, was 

evaluated with fluorescence microscopy. Finally, a polyclonal antibody against 

dystrophin and monoclonal and polyclonal antibodies against utrophin were used to 

confirm the presence and/or absence of the vital proteins in mdx and control muscles.  

Results of the study will provide a more thorough understanding of the IA and CT 

muscles and a greater appreciation of the potential differences that exist among the 

intrinsic laryngeal muscles. Further, the in-depth investigation of these muscles will hold 

important implications for the study of medical conditions affecting the larynx and for the 

clinical management of voice and swallowing disorders.  

This chapter has offered an introduction to the intrinsic laryngeal muscles and has 

presented the rationale for this study. The following chapter reviews pertinent literature 

related to this study. Topics reviewed in the next chapter include: laryngeal muscle 

structure and function, laryngeal muscle specialization, evidence for laryngeal muscle 

heterogeneity, and history and use of the mdx mouse.  
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CHAPTER 2 – REVIEW OF THE LITERATURE 

Introduction 

Pertinent literature supporting this study is presented in 5 sections. In the first 

section, an overview of the craniofacial musculature is presented, including the 

musculature’s developmental origin, specialization, and deviation from prototypical limb 

skeletal muscle. In the second section, the intrinsic laryngeal musculature is examined in 

detail. The discussion reviews the basic structure and function of the intrinsic laryngeal 

muscles, the role of the laryngeal muscles in voice production, specialized features of the 

intrinsic laryngeal musculature, points of laryngeal muscle deviation from limb muscle, 

and evidence of diversity among the intrinsic laryngeal muscles. The third section 

reviews 2 muscles emerging as distinct among the laryngeal muscles:  the interarytenoid 

(IA) and the cricothyroid (CT). In this section, details of each muscle’s anatomy, 

morphogenesis, function, innervation, sensory mechanisms, and contractile properties are 

offered. Areas in which the muscles deviate from their sister laryngeal muscles are 

highlighted, and the functional implications of the deviations are noted. The importance 

of detailed study of the IA and CT is discussed. The fourth section presents the mdx 

model of dystrophin deficiency as the suggested model for study of the IA and CT. The 

section includes a description of the model, a discussion of its previous use, and a review 

of its use with the laryngeal muscles. The section concludes with comments on the 

implications of the study’s findings beyond this model of dystrophin deficiency. In the 

last section, the purpose of the study is presented, and hypotheses are shared. 

Implications of the study’s findings for the understanding of voice and voice disorders 

are discussed.  

Craniofacial Musculature 

Muscles of the craniofacial region represent a diverse group of skeletal muscles 

responsible for the processes of respiration, deglutition, speech production, vision, 

hearing, and the display of emotion. These muscles evidence a remarkable degree of 

specialization which permits their successful engagement in life-supporting functions. 

Because the functional demands placed upon craniofacial muscles differ from those 

imposed upon other skeletal muscles, the craniofacial muscles show marked anatomical 

and physiological deviations from prototypical limb skeletal muscle. The uniqueness of 
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the craniofacial muscle phenotype has led to their being described as “paradoxical” 

members of the skeletal muscle group1 and, more recently, to the search for and 

description of a separate craniofacial muscle allotype.46, 47 

The anatomical and physiological differences that exist between craniofacial and 

limb skeletal muscle are vast. Architectural differences related to muscle insertion 

patterns, muscle fiber size, and sarcomeric structure have been identified.2, 44, 45, 48-50 

Additionally, differences in contractile protein expression, mitochondrial content, motor 

innervation, and proprioceptive mechanisms have emerged. These later specializations 

produce functional differences in contraction times, tension generation, endurance, and 

precision of movement.2, 12, 14, 15, 19-23, 27, 43, 51-54 The exact mechanism of the distinctive 

phenotype has yet to be elucidated; however, it has been suggested that the diversity is 

established during morphogenesis and later regulated by muscle-group specific patterns 

of gene expression.1, 43, 46, 47  The consequences of the diversity between craniofacial and 

limb muscle are significant. The specialized phenotype permits the craniofacial muscle 

group to engage in extremely rapid and prolonged contraction, perform highly refined 

patterns of movement, escape the pathological cascade of some neuromuscular diseases, 

recover amid mechanical and neurological insult, and resist the influence of aging.2, 4, 5, 7, 

9, 10, 12, 25, 41, 43, 46, 55    

Interestingly, the above specializations are observed in some, but not all, muscles 

of the craniofacial region. The lack of universal specialization is not surprising given that 

the craniofacial muscles have been described as the most diverse set of muscles in the 

human body.1 However, one subset of the craniofacial muscles emerging as highly 

specialized is the intrinsic laryngeal muscle group. Muscles of this group are intricately 

involved in the life-sustaining functions of respiration, airway protection, swallowing, 

and vocalization. 

Laryngeal Musculature 

 The larynx is a sophisticated sphincteric structure with primary roles in the 

modulation of airflow during respiration, protection of the airway during swallowing, and 

production of voice in oral communication.56, 57 Structurally, the larynx is a jointed, 

cartilaginous tube covered by a mucosal layer. Housed within and protected by the 

cartilaginous framework are the paired vocal folds, which project toward one another in 
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the transverse plane.12 Movements of the cartilaginous larynx and membranous vocal 

folds are controlled by the action of the intrinsic laryngeal muscles, under the guidance of 

an exquisite mechanism of neuromuscular control.  

Overview of the Intrinsic Laryngeal Muscles 

 Muscles which have their origin and insertion on laryngeal cartilages are termed 

intrinsic laryngeal muscles.12 There are 13 muscles within this groupδ: 6 paired and 1 

unpaired.12 Contraction of these muscles modifies the relationship between the laryngeal 

cartilages, and thereby, alters the position, length, and tension of the vocal folds. Typical 

classification schemes place the muscles into 4 groups on the basis of function: vocal fold 

adductors, abductors, tensors, and relaxors.12 Three muscles play an adductory role: the 

lateral cricoarytenoid (LCA), the interarytenoid (IA), and the thyroarytenoid (TA). The 

paired LCA muscles course from the lateral aspect of the cricoid cartilage to the muscular 

process of the ipsilateral arytenoid cartilage. Contraction of the LCA rotates the vocal 

process of the arytenoid medially, and thereby, adducts the membranous vocal fold. The 

IA muscles are located in the posterior aspect of the larynx and are often discussed as 2 

separate muscles. The paired oblique IAs course diagonally from the base of one 

arytenoid to the apex of the opposing arytenoid. Their contraction yields medial 

movement of the arytenoid apices and corniculate cartilages and the closure of the 

superior aspect of the posterior glottis. The unpaired transverse IA muscle runs 

horizontally from the lamina of one arytenoid to the lamina of the contralateral arytenoid. 

Transverse IA contraction pulls the arytenoid bodies to midline, adducting the posterior, 

cartilaginous region of the glottis.11, 12 The final adductory muscle, the thyroarytenoid 

(TA), makes up the bulk of the true vocal fold complex. The TA is often discussed as 2 

separate muscles: the medially positioned vocalis and the more laterally positioned 

thyromuscularis.11, 12 The muscle attaches anteriorly to the angle of the thyroid cartilage 

just below the thyroid notch and posteriorly to the vocal process and fovea oblonga of the 

arytenoid cartilage.11, 12, 58 Contraction of the TA moves the thyroid and arytenoid 

cartilages into closer proximity, thereby, shortening and relaxing the folds.ϕ A single 

                                                 
δ The number of muscles within the larynx varies in the literature, pending the author’s 
perspective of the thyroarytenoid muscle as a single muscle or as two separate muscles: the 
vocalis and the thyromuscularis. 
ϕ Isometric contraction of the vocalis results in a tensing of the medial aspect of the vocal fold.  
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paired muscle is responsible for vocal fold abduction.11, 12 The posterior cricoarytenoid 

(PCA) muscles course from the posterior aspect of the cricoid cartilage to the muscular 

process of the ipsilateral arytenoid, creating a broad, fan-shaped distribution of muscle 

fibers. Contraction of the PCA causes lateral rotation of the vocal process and an 

associated movement of the folds away from midline. The final intrinsic muscle, the 

paired cricothyroid (CT), acts as the primary vocal fold tensor. The muscle originates 

along the anterolateral aspect of the cricoid cartilage and inserts into the thyroid cartilage 

as 2 separate units: the pars recta which courses vertically to insert along the inner aspect 

of the thyroid cartilage’s lower margin; and the pars oblique which courses superiorly 

and posteriorly to insert into the inferior horn of the thyroid. Contraction of the CT alters 

the perspective between the thyroid and cricoid cartilages, thereby, elongating and 

tensing the vocal fold.11, 12 Together these muscles offer the larynx a remarkable degree 

of versatility and sophistication of movement. Their level of functional refinement is 

perhaps best appreciated during voice production. 

Intrinsic Laryngeal Musculature in Voice Production 

Voice is the result of a highly refined interplay between the respiratory, 

phonatory, and resonance systems. During voice production the paired vocal folds are 

brought together at midline via the action of the adductory muscles. Subglottic air 

pressure from the exhaled air stream builds below the adducted and closed folds, 

eventually blowing open the membranous portion of the folds and permitting the release 

of an air pulse. Rapid changes in transglottal air pressure brought about by the glottal 

opening and the elasticity of the displaced tissue quickly return the membranous folds to 

midline. Subglottic pressure again builds below the folds, and the cycle is repeated.59 

Pressures from the supraglottic region help to maintain vocal fold oscillation.11, 60 

Upward movement of the air through the glottis causes the compression and rarefaction 

of air molecules above the glottis and associated changes in supraglottic air pressure. 

These supraglottal pressure modifications facilitate a “top-down” loading effect on the 

vocal folds which perpetuates their oscillatory motions.60 Beyond this basic mechanism 

of vibration, vocal fold tensors and relaxors fine tune the length and tension of the folds, 

permitting a wide array of vocal manipulations12 and enabling the voice to meet the 

demands of the emotional, acoustic, and physical environments. The above processes 
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require that the laryngeal muscles maintain an internal balance with one another as well 

as an external balance with the forces of the respiratory and supraglottic resonance 

systems. The highly refined phenotype of the intrinsic laryngeal muscles permits them to 

successfully meet these complex physiologic demands. 

Intrinsic Laryngeal Muscle Deviation from Limb Skeletal Muscle 

As with certain other skeletal muscles of the head and neck, the laryngeal muscles 

stand apart from prototypical limb skeletal muscle along several fronts, including their 

morphogenesis, innervation patterns, fiber size and architecture, myosin isoform 

expression, metabolic profile, regenerative capacity, response to disease, and pattern of 

aging.3, 4, 6, 7, 13-25  It is believed that the unique phenotype of laryngeal muscles has 

evolved to permit their successful participation in vital systemic functions, including 

modulation of upper airway airflow during respiration, provision of airway protection in 

swallowing, and fixation of thoracic cavity pressures for heavy lifting and defecation. It 

is further recognized that in a number of species, the specialization of laryngeal muscles 

has permitted the development of sophisticated systems of vocal communication. The 

sections that follow highlight the primary parameters along which the laryngeal muscles 

depart from prototypical limb muscle and discuss the relevance of these departures to 

laryngeal function. 

Morphogenesis 

Background. Laryngeal muscles possess a unique developmental history – 

standing apart from other craniofacial muscles as well as from muscles of the trunk and 

limbs.1, 57, 61, 62 Skeletal muscle throughout the body is formed from the paraxial 

mesoderm (PAM), regions of mesenchymal tissue extending on either side of the neural 

tube from the primitive streak rostrally to the tip of the notochord caudally.1, 61 The most 

rostral aspects of the PAM (pre-otic vesicle) which give rise to many of the craniofacial 

muscles do not segment during development, whereas caudal aspects (post-otic vesicle) 

which give rise to a portion of the craniofacial muscles and all trunk and limb muscles 

segment into 30+ distinct folds of mesenchymal tissue termed somites.57, 61, 63 The origin 

of skeletal muscle as either somitic or non-somitic is of note in considering the 

characteristics of muscle, as distinct patterns of gene expression have been observed on 

either side of the otic vesicle boundary. A discussion of craniofacial and limb/trunk 
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muscle development is offered below and is contrasted with the development of the 

intrinsic laryngeal musculature. 

General Craniofacial Muscle Development. Many of the craniofacial muscles 

emerge from the unsegmented PAM, and are, therefore, classified as non-somitic.1, 57, 61 

Specifically, extraocular muscles (EOM) innervated by the oculomotor nerve emerge 

from the axial prechordal mesoderm, a sparse assembly of mesenchymal cells located just 

beneath the rostral neural plate.57, 64 Remaining EOM arise from a more organized 

collection of tissue in the pre-otic region of the PAM. While not fully segmented, certain 

of these pre-otic cells coalesce into 7 pseudo-segmentations, referred to as 

“somitomeres.”57, 65 The 2 most rostral somitomeres yield the EOM.62 Neural crest cells 

found throughout the region migrate with the muscle precursors during development and 

yield the connective and neural tissues associated with the EOM.57 

Also emerging from the pre-otic unsegmented PAM are the branchial muscles.1 

These include muscles associated with the jaw, hyoid bone, and branchial skeletal 

structures (eg, masseter, temporalis, digastricus, buccinator, stylopharyngeus). As with 

the EOM, branchial muscle primordia are established in the somitomeres; however, 

unlike the EOM, these muscles continue their development within the branchial arch 

environment (arches 1-3).1, 57, 66 Neural crest cell on the surface of the branchial arch 

produce connective and neural tissues associated with the musculature.  

Tongue and Laryngeal Muscle Development. Just caudal to the otic vesicle, the 

somitic pairs develop into the skeletal muscles of the tongue, larynx, trunk, and 

extremities.57 Tongue muscles as well as the intrinsic laryngeal muscles arise from lateral 

borders of the most rostral somite pairs, termed the occipital somites.1, 62, 67, 68 During the 

development of these muscles, mesodermal cells of occipital somites migrate to form a 

bilateral hypoglossal cord. A portion of the muscle precursor cells within the cord 

migrate rostrally, joining with neural crest populations of the first three branchial arches 

to form the tongue musculature. Meanwhile, additional muscle precursor cells, move 

away form the cord and toward the laryngotracheal space. These cells become integrated 

into branchial arches 4 and 6 and later develop into the intrinsic laryngeal muscles.1, 62, 67, 

68 As with the extraocular and branchial muscles noted above, neural crest cells in the 

region produce the connective and neural tissues associated with the glossolaryngeal 
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musculature.57 This pattern of development involving progression from somitic to 

branchial arch phases is unique within the craniofacial muscle family. Indeed, the somitic 

origin of laryngeal muscle places it in line, embryologically, with muscles of the trunk 

and extremities; however, its involvement in the branchial arch system parallels that of 

the majority of craniofacial muscles. Consequently, the glossolaryngeal muscles often 

described as hybrids among the set of craniofacial muscles.1, 64  

Limb Muscle Development. Finally, the more caudal somite pairs of the PAM are 

grouped into cervical, thoracic, lumbar, sacral, and coccygeal regions and are precursors 

to muscles of the extremities.57 Progenitor cells from the dorsal aspect of the somites 

migrate to the region of interest. Once there the cells proliferate and differentiate into 

skeletal muscle.69   

Summary. The intrinsic laryngeal muscles possess a complex and unique 

developmental history. The occipital somites, from which these muscles emerge, sit on 

the border of the segmented-unsegmented boundary and progress through the branchial 

arch system, producing hybrid or mixed muscles with characteristics of both head and 

body skeletal muscle.1, 64  

Motor Innervation 

 The laryngeal muscles have long been recognized for their rich neural support 

from branches of the vagus nerve.13, 19, 20, 51, 70 The TA, LCA, PCA, and IA muscles 

receive primary innervation the recurrent laryngeal nerve (RLN),12, 70, 71 and, in a small 

percentage of cases, supplemental innervation from the internal and/or external branches 

of the superior laryngeal nerve (SLN).70  The CT stands alone in receiving its primary 

innervation via the external branch of the SLN. For all intrinsic muscles except the 

transverse IA, innervation from the above branches is unilateral. The unpaired nature of 

the transverse IA offers it the advantage of bilateral neural input from the RLN.70 

 Laryngeal muscles are highly innervated, characterized by motor units with only a 

small number of fibers per individual motor neuron.13, 19, 20, 51 While an exact ratio of 

fibers to a single motor neuron has not been established, it has been suggested that the 

ratio is far smaller than that reported in limb muscle (100-2000 fibers per motor neuron)72 

and perhaps comparable to that observed in the extraocular musculature (13-20 fibers per 

motor neuron).2 Most laryngeal muscle fibers possess a single neuromuscular junction 
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(NMJ); however, fibers with multiple NMJs have been reported in all laryngeal muscles 

innervated by the RLN (TA, IA, LCA, PCA).19 In these fibers, NMJs are generally 

scattered in a grape-like pattern along the middle 2/3 of the long axis of muscles.13, 19, 20 

This end-plate distribution is strikingly different from the single-NMJ, mid-muscle end 

plate zone typical of limb skeletal muscle.72 Interestingly, patterns of innervation for the 

laryngeal muscles are comparable to those identified within the highly specialized 

extraocular muscles.2, 19, 43  The exquisite nature of laryngeal muscle innervation speaks 

to the muscle group’s high level of specialization and its importance in the finely-tuned 

activities of respiration, swallowing, and voicing.  

Sensory Mechanisms 

 Sensory information from the larynx is conveyed via 2 branches of the vagus 

nerve: the SLN and the RLN. Somatic sensory information from mechanoreceptors, 

chemoreceptors, taste buds, and free nerve endings within the glottal and supraglottic 

mucosa are transmitted via the internal branch of the SLN; similar information from 

subglottic regions is transmitted via the RLN.71  Unfortunately, a thorough description of 

the larynx’s proprioceptive sense has proven more elusive. The presence of 

proprioceptive organs, such as the muscle spindle, within the laryngeal muscles has been 

a matter of much debate.14, 19, 73-79 Muscle spindles are small organs housed within 

skeletal muscle which respond to muscle stretch. During muscle contraction, spindles 

activate sensory neurons, which prompt alpha motor neurons of the associated muscle to 

respond to the stretch. Spindles are classically recognized by the presence of intrafusal 

fibers resting within a connective tissue capsule and surrounded by a neural network.80 

Early studies using histological staining methods consistently identified the organs in the 

intrinsic laryngeal muscles of humans.75-79 However, recent studies using more refined 

methods of examination have brought these earlier findings into question. More recent 

investigations on the topic are presented below.  

 Histologic and Immunocytochemical Studies of Laryngeal Proprioception. 

Studies of the TA. Brandon et al14 used immunohistochemical methods to consider 

spindle presence in human TA muscles. Larynges used in the study were excised during 

total laryngectomy procedures. The group employed antibodies against 2 specialized 

myosins isoforms (tonic myosin, neonatal myosin) commonly found in the intrafusal 
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fibers of spindles. Their study found no evidence of the specified myosins in the TA, 

leading to the conclusion that this primary muscle of the larynx was devoid of classic 

muscle spindles. Kersing and Jennekens81 used histologic staining to examine the TA 

muscles of 23 cadaveric and surgically excised larynges. Staining failed to identify 

spindles in the vocalis region of the TA in infant, middle-aged, and old-aged larynges, 

findings which supported the earlier work of Brandon et al. Interestingly, one recent 

study by Sanders disputes the above findings. The group stained 50-μm human TA 

muscle sections with hematoxylin and eosin. Spindles were defined based upon the 

following features: (1) round or oval structure, (2) a 2-layer external capsule, (3) a wide 

subcapsular space, (4) intrafusal muscle fibers in the inner capsule, and (5) nerve fibers 

surrounding the intrafusal fibers. The group identified spindles along the entire anterior to 

posterior aspect of the vocal fold, with the greatest concentration of spindles being in the 

fold’s superior medial compartment. Studies of the Other Intrinsic Muscles. Perie et 

al19 examined the motor and sensory innervation of 4 intrinsic laryngeal muscles in 

humans: TA, PCA, LCA, and CT. The group incubated 60-μm muscle sections in 5-

bromoindoxyl acetate, an indicator of cholinesterase activity. Nerve endings positive for 

cholinesterase activity were identified within connective tissue capsules, a finding 

suggestive of muscle spindles. However, the absence of intrafusal fibers near the capsules 

led the authors to propose that the structures represented another form of sensory receptor 

and not true muscle spindles. The authors concluded that the intrinsic laryngeal muscles 

did not rely on muscle spindles for proprioception. Finally, Tellis et al,32 used 

histochemical and immunohistochemical methods such as those used by Brandon et al to 

look for spindles in the human IA. Tonic and neonatal myosins typical of the spindle’s 

intrafusal fibers were identified throughout the muscle. Spindles were complex in design 

and morphologically distinct from classic limb spindles in terms of their connective tissue 

capsules, elongated extrafusal fibers, and peculiar change in orientation at the muscle’s 

insertion into the arytenoid cartilage. The authors concluded that spindles were present in 

the IA and that the unique morphology of these spindles made them remarkably sensitive 

to dynamic movement.  

Clinical Studies of Laryngeal Proprioception. Two recent studies have used 

servomotor-induced mechanical displacement of laryngeal cartilages to examine the 
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presence of laryngeal muscle stretch reflexes and have, thereby, indirectly considered the 

presence of muscle spindles. In the first of these studies, Andreatta et al82 used hooked 

wire electrodes to monitor laryngeal adduction responses from the feline TA during 

posterior displacement of the arytenoid cartilages. The experiment considered the TA’s 

response under 2 conditions: vocal fold mucosa intact and vocal fold mucosa removed. 

With mucosa intact, recordings from the TA showed consistent adductor responses; 

however, with mucosa removed, recordings of the TA’s adductor responses were 

markedly reduced in number and intensity. The authors concluded that mucosal 

mechanoreceptors, rather than classic muscle spindles, mediated reflexive activity of the 

TA. In a follow-up study, Loucks et al16 used hooked wire electrodes to record activity in 

the human TA, CT, and sternothyroid muscles during servomotor displacement of the 

thyroid cartilage. No TA or CT activity was identified simultaneous to the mechanical 

displacement, suggesting the absence of a stretch reflex in these laryngeal muscles. 

Interestingly, activity was identified in the extrinsic sternothyroid muscle during 

displacement. The authors proposed that the TA and CT were lacking in muscle spindles 

and that afferent feedback for voice control was mediated via other forms of sensory 

receptors within the larynx. 

Summary of Laryngeal Proprioception. Thus, debate continues as to the 

mechanism of proprioceptive feedback used by the laryngeal muscles. Those maintaining 

the presence of spindles highlight the importance of the organs in managing the refined 

biomechanics of voice production.73 However, those refuting their presence propose that, 

as a non weight-bearing organ, the larynx does not require afferent feedback to guide 

muscle response to stretch and external load2, 14 and that the proprioceptive sense for 

laryngeal movement is likely mediated outside of the muscle layer through the mucosal 

mechanoreceptors located in the posterior aspect of the larynx.16, 82 While the final word 

on laryngeal proprioception has not emerged, it appears clear that laryngeal sensory 

mechanisms do not parallel the well-defined mechanisms observed in limb muscle. 

Fiber Size 

 The laryngeal muscles have been identified as having smaller diameter fibers than 

prototypical skeletal muscle.19, 50, 83, 84 Sadeh et al50 examined the size of human CT, 

PCA, LCA, and vocalis muscles and reported an average diameter of 40-50µm. Rodeno 
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et al84 found similar results in their examination of the TA and PCA muscles. In their 

study, TA diameter ranged from 38µm to 39µm, while PCA fibers ranged from 43µm to 

47µm, pending fiber type. Finally, Perie et al19 reported slightly smaller fibers than the 

above authors, with mean diameters of 20-35µm for the TA, LCA, PCA, and CT. These 

fiber size estimations suggest that laryngeal muscles are small relative to limb muscle 

(35-75 µm)72 but comparable to that of extraocular muscle (20-50 µm).43  

The fiber size of skeletal muscles is critical, as it holds implications for the 

muscle’s mechanical properties. Studies conducted on small-diameter craniofacial 

muscles confirm that these muscles exert significantly lower levels of mechanical force 

than other skeletal muscles.52-54 These lower levels of force generation remain even when 

correction is made for fiber cross sectional area. Such differences in force generation are 

of note, as they have been suggested as a potential mechanism whereby laryngeal and 

other craniofacial muscles may be spared from select neuromuscular diseases.7, 25, 85, 86 

Contractile Properties  

 Skeletal muscle is often classified according to 2 key contractile properties:  speed 

of contraction and sustainability of contraction. These functional properties are 

determined by the muscle fiber’s myosin heavy chain (MyHC) composition and its 

method of energy production: two domains in which laryngeal muscles have proven to be 

distinctive. 

Myosin Isoforms. The MyHC is the primary determinant of the speed of muscle 

contraction.87 Three basic isoforms of myosin are commonly expressed in human skeletal 

muscle: MyHC-I yields slow contractions, whereas MyHC IIA and IIX produce rapid 

contractions.88 Additional isoforms (eg, MyHC-neonatal, MyHC-embryonic, and MyHC-

extraocular) are present in developing fibers and in the fibers of some specialized 

craniofacial muscles.89 Studies in non-human animal models reveal additional skeletal 

muscle isoforms89; however, of these, only the fast isoform, IIB is pertinent to the 

discussion that follows. Contractile speeds of the primary isoforms discussed above 

adhere to the following sequence, from slowest to fastest: I, IIA, IIX, IIB, and 

extraocular.89 

Laryngeal Myosin Expression. Laryngeal myosin expression varies across species 

in both the diversity and distribution of isoforms.90, 91 Animal Models. In animal models, 
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laryngeal muscles express Type I, IIA, IIX, and IIB myosins.35, 92-94 Specialized myosin 

isoforms (MyHC-extraocular, MyHC-IIL) capable of extremely rapid contraction have 

also been identified in laryngeal muscles of rats and rabbits.17, 18, 22 Of the laryngeal 

muscles, the TA has been the most widely studied in terms of its MyHC composition. 

Studies in rats and non-human primates suggest that the TA is nearly homogenous in its 

MyHC expression, being composed almost entirely of fast, type II myosins and the 

specialized MyHC-extraocular (MyHC-eo).83, 90, 92, 93 Authors have related the nearly 

universal display of fast isoforms in these animals to the muscle’s role as a glottal 

adductor. Interestingly, the canine model deviates from the above showing a 

heterogeneous display of myosins in the medial TA, an arrangement which could be 

beneficial in fine tuning the  muscle’s action to meet specific force needs.95 Studies 

considering muscle MyHC composition across various intrinsic laryngeal muscles have 

been rare. However, 2 studies conducted in rats suggest that the LCA and PCA muscles 

demonstrate profiles similar to that described above in the TA: a strong presence of 

MyHC-IIB and the scattered presence of MyHC-eo.22, 93  The above studies point to an 

exquisite mechanism for contractile speed in the intrinsic laryngeal muscles of some 

animals. Profiles such as those noted above are found in few other muscle groups, most 

notably the extraocular muscles.89 Human Models. Human laryngeal muscles evidence 3 

basic myosin isoforms (MyHC I, IIA, IIX). Unlike certain of the animal models described 

above, human laryngeal muscles display a combination of fast and slow isoforms within a 

single muscle, a feature which permits the muscle to recruit the specific combination of 

fibers most in keeping with the desired form of contraction. The exact combination of 

isoforms varies across laryngeal muscles and appears reflective of the muscle’s 

functional role and its requirement for contractile speed (ie, muscles responsible for 

glottic closure and airway protection demonstrate faster MyHC isoforms profiles than do 

abductors23, 84, 96). Work comparing human laryngeal and limb muscle suggest that some 

laryngeal fibers are capable of contractile speeds which far exceed those of limb 

muscle.21 Despite this apparent contractile advantage of laryngeal muscle over limb 

muscle, studies comparing laryngeal to extraocular muscles, indicate that myosin 

expression in the human larynx is not as refined as that of these other specialized 

craniofacial muscles.96  



 

17 

It should be noted that one study by Han et al97 reported the presence of an 

extremely rare, “slow tonic” MyHC in the human TA. This rare isoform produces a long-

lasting muscle contraction, rather than the classically observed twitch response to 

repeated stimulation,89 a feature believed to be important in functions requiring prolonged 

contraction. Prior to Han et al’s study, human expression of the isoform was believed to 

be limited to the extraocular musculature.89, 97 Expression of the isoform in human vocal 

folds reflects the TA’s remarkable potential for prolonged contraction, such as that used 

in voicing.97 

 The above findings reveal differences in laryngeal muscle MyHC composition 

between human and animal models (eg, presence of MyHC-eo and MyHC-IIB, 

uniformity of myosin expression within single muscles). More importantly, however, 

they demonstrate the refined and rapid nature of laryngeal muscles contraction relative to 

limb muscle contraction.  

Metabolism. The muscle’s method of energy production is the primary 

determinant of its ability to sustain contraction and resist fatigue.98 Energy for the muscle 

fiber can be produced via 2 pathways. In the oxidative pathway, oxygen and nutrients are 

delivered to the cell by the vascular system. These substances are taken up by the 

mitochondria where they are processed to produce ATP for muscle contraction. The 

efficient nature of this pathway (netting 36 ATP molecules per exchange) results in the 

muscle being able to sustain contraction for long periods of time. Other fibers rely upon 

glycolytic pathways of energy production. Glycolytic processes are faster than oxidative 

pathways and can transpire in the absence of oxygen; however, they yield only 2 ATP 

molecules per exchange. Thus, while capable of generating energy for rapid and forceful 

contractions, fibers using glycolytic pathways are generally less resistant to fatigue than 

oxidative fibers.98  

Studies considering metabolic profile of human laryngeal muscles have been 

conducted primarily on the TA and PCA muscles.50, 81, 84, 99 These studies suggest that 

both oxidative and glycolytic fibers are present within individual muscles. Differences in 

study methodology and methods of reporting make exact distributions of oxidative and 

glycolytic fibers difficult to ascertain; however, some basic conclusions have been drawn. 

Slowly contracting, oxidative fibers (fatigue resistant) have been identified at the TA’s 
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medial edge while more rapidly contracting, glycolytic fibers (fatigable) have been found 

in the muscle’s lateral aspect.90, 99 It has been suggested that this distribution is 

functionally advantageous, permitting the medial TA to engage in the sustained 

contractions required for speech production while ensuring the lateral TA’s ability to 

rapidly close the airway.90, 99 Interestingly, comparisons of the PCA and TA suggest that 

the PCA demonstrates a more oxidative profile than the TA.84 Some have proposed that 

the increased level of oxidative (fatigue resistant) metabolism in the PCA is reflective of 

the muscle’s continuous activity in modulating the glottal opening during respiration.84  

Finally, recent work conducted in animal models has suggested that 

nonpathological TA, PCA, and CT muscles demonstrate usually high densities of 

mitochondria when compared to limb skeletal muscle.83, 100 Similar findings have been 

observed in the extraocular muscles and have been related to the high oxidative activity, 

sophisticated vascularity, and requirement for fatigue resistance in these muscles.2 

Hinrichsen and Dulhunty100 have proposed a similar explanation for the elevated 

mitochondrial counts in laryngeal muscles. They suggest that continuous muscle activity 

during respiration dictates a need for fatigue resistance that far exceeds that required by 

typical limb skeletal muscle activities.  

Thus, the laryngeal muscles appear refined for prolonged contraction. Their 

ability to rapidly contract and resist fatigue sets them apart from other skeletal muscles 

and reflects the unique physiological demands placed upon them. 

Regenerative Capacity and Ability to Recover Post Insult  

 It has been well-established that prototypical limb skeletal muscle has the 

capacity to regenerate in the face of injury via the action of satellite cells.101 After 

myofiber injury, satellite cells progress from a quiescent state to an active state. Once 

active, the cells move to the site of injury, fuse with one another, and differentiate into 

the new myofiber.101 However, recent work in the extraocular and laryngeal muscles of 

rabbits suggests that myofiber remodeling is ongoing in these fibers in the absence of 

apparent fiber injury.3, 6, 41 Seminal work in this area by McLoon et al41 found evidence of 

continual myonuclear removal and addition in uninjured single fibers of rabbit 

extraocular muscles. Remodeling proceeded at a rate of one myonuclear addition per 

1,000 myofibers in cross section every 12 hours. Follow-up work by Goding et al3 
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identified similar patterns of uninjured fiber remodeling in rabbit TA and PCA muscles. 

The group estimated that myonuclear addition in the laryngeal muscles occurred at a rate 

of 2 myonuclei per 1,000 myofibers in cross section per 24 hours. These findings 

suggested that muscle precursor cells, generally quiescent in limb skeletal muscle, are 

strangely active and ever cycling in specialized craniofacial muscles. Authors of the 

above studies propose that the enhanced remodeling observed in these muscle may play a 

role in their recovery after insult and their resistance to age-related change.3, 41  

Along this same vein, the laryngeal muscles have long been recognized for their 

ability to survive and reinnervate following neurological insult.28, 102, 103 Following 

denervation of a vocal fold, reinnervation ensues in a portion of cases, even after 

extended periods of time.103 This striking ability to reinnervate has not been fully 

explained; however, it has been suggested that regenerating axons from the damaged 

nerve or supplemental innervation from the superior laryngeal nerve may play a role.102, 

103 More recently, work by Shinners et al6 has related the survivability of laryngeal 

muscles after neurological insult to the distinctive remodeling capacity discussed above.  

The group identified heightened levels of fiber remodeling immediately following RLN 

nerve section which were maintained for 24 weeks post injury. The authors concluded 

that it was the remarkable regenerative capacities of the muscles which facilitated their 

ability to survive and regenerate following neurological insult. Regardless of the precise 

mechanism at play, spontaneous reinnervation of the laryngeal musculature does not 

often restore normal vocal fold abduction and adduction. It does, however, appear to offer 

sufficient nerve input to prevent or impede severe muscle atrophy in a number of cases.11, 

28, 102-104 Such patterns of reinnervation and muscle maintenance post insult are not 

observed in limb skeletal muscle, where reinnervation is less common and denervation 

atrophy can be marked.105-107  

Sensitivity to Disease 

 Most neuromuscular diseases exert their pathological cascade universally across 

skeletal muscles. However, as previously noted, some craniofacial muscles respond 

paradoxically to neuromuscular diseases which target classic skeletal muscle. Preferential 

sparing of the extraocular muscles in Duchenne muscular dystrophy (DMD) and 

amyotrophic lateral sclerosis (ALS) and preferential involvement the muscles in 
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myasthenia gravis and mitochondrial myopathy have been well-established.2, 40, 43, 47, 85 

Similarly, early involvement of the laryngeal musculature in myasthenia gravis, bulbar-

manifesting ALS, and mitochondrial myopathy has been reported in the clinical 

literature29, 30, 108-110; sparing of the muscles in dystrophin deficiency has just recently 

been realized.4, 7, 25 Reasons for the laryngeal muscles’ paradoxical response to the above 

disease processes has not been fully explained. The early laryngeal manifestation of some 

disease processes appears to be a function of the preferential involvement of the cranial 

nerve nuclei responsible for laryngeal function.111 However, the mechanism of the 

group’s preferential sparing in dystrophin deficiency has not yet been determined. 

Current theories suggest that constitutive features of the laryngeal muscles (eg, exquisite 

remodeling capabilities, fiber types, refined calcium sequestration mechanisms, and/or 

lower levels of mechanical force generation during contraction)85, 86, 112, 113 may play a 

role.  

Patterns of Aging 

 An abundance of literature supports the remodeling of limb skeletal muscle in 

later life. Most notable among the age-related morphological changes are: a reduction in 

overall muscle mass,114, 115 a loss of Type I and Type II muscle fibers,116, 117 preferential 

atrophy of Type II fibers,117-119 fiber type grouping,114, 120 and infiltration of connective 

tissue.116 Functional consequences of the above changes include reduced speed,121 

force,121 strength,122-125 and endurance126 of muscle contraction. Examination of laryngeal 

muscle aging has been less comprehensive and limited primarily to the TA and PCA 

muscles. Yet, available literature suggests that laryngeal muscles do remodel as part of 

the aging process; however, often in ways that diverge from the above limb muscle 

patterns. While the typical reduction in overall muscle mass is evidenced in the human 

TA muscle,99, 127-129 specific fiber changes underlying the atrophy are unclear. Some 

authors point to a loss of Type I and II fibers,128 while others suggest a loss of Type I 

fibers99, 130 or Type II81 fibers only. Further, there appears to be a maintenance of Type II 

fiber size in human laryngeal muscles,84, 130 a finding contrary to that of limb muscle. 

Patterns of connective tissue infiltration in the laryngeal muscle have not been clearly 

defined; some authors report infiltration of the non-contractile tissue,81, 84, 99, 129 while 

others report no change in its distribution.130  Finally, methodological concerns have 
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prevented the study of age-related functional changes in human intrinsic laryngeal 

muscles; however, studies in rodent models suggest a reduction in contractile speed, 

force, and endurance with age,83 patterns similar to those observed in limb muscle.  

Summary of Laryngeal Muscle Specializations 

 The preceding discussion highlighted numerous points of laryngeal muscle 

departure from limb skeletal muscle. Areas of laryngeal muscle specialization are broad 

and include both structural and functional features. The gradual emergence of the above 

literature base has raised awareness of and appreciation for the laryngeal muscle 

phenotype. Research is currently ongoing to further define distinctive aspects of these 

muscles. 

Diversity within the Intrinsic Laryngeal Musculature 

The above discussion demonstrates that, as a group, laryngeal muscles depart 

from classic limb muscle in a number of respects. However, much of the literature 

demonstrating the exceptional phenotype of laryngeal muscles has been based upon the 

study of 2 key muscles: the TA, a primary adductor, and the PCA, a primary abductor. As 

a result, relatively little is known about other intrinsic laryngeal muscles. Moreover, due 

to the diversity of individual craniofacial muscles,1 what is known of the TA and PCA 

can not be easily generalized to their sister laryngeal muscles. Consequently, the intrinsic 

laryngeal muscles must be considered individually for their biological properties and 

their similarity to or departure from limb skeletal muscle. 

Two intrinsic laryngeal muscles which have received minimal attention in the 

literature but which make significant contributions to laryngeal function are the IA and 

CT. Previous work suggests that these muscles may be phenotypically distinct from their 

sister laryngeal muscles. Among the intrinsic muscles, the IA stands apart for its unpaired 

nature, bilateral RLN innervation, well-defined mechanisms of proprioception, and 

prototypical MyHC profile.32, 131, 132 These differences have led some to suggest that the 

IA may, in fact, be more closely aligned with typical limb skeletal muscle than with its 

laryngeal counterparts.32 Similarly, consideration of the CT suggests that this muscle 

deviates from other laryngeal muscles in its embryonic development, primary innervation 

source, contractile properties, and response to neuromuscular disease,4, 17, 22, 33-35, 94, 133-135 

facts which have led some to discuss the CT as a hybrid or transitional form of skeletal 
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muscle which shares properties of laryngeal, pharyngeal, and limb skeletal muscle.34, 135, 

136  The discussion that follows reviews the literature pertaining to the IA and CT. Each 

muscle is first considered for its basic structure and function. This overview is followed 

by a review of studies examining the muscle’s biological properties. Summary statements 

pertaining to the muscle’s distinctive features conclude each section. 

The Interarytenoid 

The IA muscles, located in the posterior aspect of the larynx, are composed of 

paired oblique fibers, which course from the muscle process of one arytenoid to the apex 

of the opposite arytenoid, and unpaired transverse fibers, which run from the posterior-

lateral margin of one arytenoid to the same point on the opposite arytenoid.12 The IAs 

function as vocal fold adductors, bringing together the posterior, cartilaginous region of 

the folds and allowing for full glottic closure.137-139 θ 

Morphogenesis 

The human IA originates in occipital somites 1 and 2 and then progresses through 

development in the branchial arch system.1, 57 At approximately the 4th week of gestation, 

mesodermic tissue in the ventral aspect of the foregut divides into 5 bilateral projections 

termed the branchial arches (arches 1, 2, 3, 4, 6).57 Each branchial arch is comprised of a 

mesenchymal core which is surrounded by neural crest cells and angiogenic 

mesenchyme. The core of the branches produces myoblast cells which will eventually 

develop into skeletal muscle. The IA forms from the mesoderm of the sixth arch. Also 

forming from the sixth arch are the TA, LCA, and PCA muscles and the recurrent 

laryngeal nerve, the source of innervation for the muscles.33, 57 

Function 

The function of the IA has been considered with electromyographic (EMG), in 

vitro, and in vivo investigations. Studies point to the muscle’s participation in phonatory 

as well as non-phonatory tasks. The results of these studies are detailed below. 

EMG Studies. Electromyographic studies are helpful in delineating the 

contribution of individual muscles to various functional tasks. Two EMG examinations of 

                                                 
θ Investigations of the IA have not differentiated between the transverse and oblique muscles.  
Therefore, in the discussion that follows, the transverse and oblique IAs are considered as a single 
muscle. 
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the IA were identified in the literature. Phonation. Gay et al140 used hooked wire 

electrodes to examine laryngeal muscle activity during variations of pitch, loudness, and 

vocal onset in 5 normal speaking adults. Comments related to IA activity were limited; 

however, the authors did report increased IA activity in some, but not all, subjects at high 

loudness levels. Interarytenoid activity was not related to control of pitch or vocal onset. 

In the second study, Hillel31 used monopolar fine-wire electrodes to track the behavior of 

the IA during sustained phonation, prolonged phonation, pitch elevation, and repeated 

vowel production. During sustained phonation and repeated production of vowels, TA 

and LCA muscles showed high levels of activity at onset of phonation which reduced in 

intensity after onset. The IA was slower to reach peak activity but remained active 

throughout the phonatory task. The author concluded that the TA and LCA were critical 

in positioning the folds for phonation, while isometric contraction of the IA was 

important in maintaining adduction throughout phonation. During prolonged phonation 

tasks aimed at examining the laryngeal response to reduced respiratory support at the end 

of phonation, IA activity increased at the end of voicing in all subjects. These results 

suggested the IA’s importance in securing and/or tightening glottal closure to enhance 

glottal efficiency. Interestingly, in some subjects, heightened TA and/or LCA activity 

was also observed during prolongation tasks, indicating that in a segment of the 

population, additional muscles are recruited to valve airflow in the face of reduced 

respiratory support. Finally, IA activity was unchanged during pitch elevation tasks, 

indicating no role for the muscle in this pitch control. Hillel concluded that the IA was 

primarily responsible for maintaining vocal fold adduction during sustained voice 

production.31 Swallowing and Other Sphincteric Functions. Only the aforementioned 

study by Hillel has examined IA participation in non-phonatory tasks. During 

swallowing, the IA showed an increase in activity approximately 20msec after the 

initiation of the swallow, supporting the muscle’s role as an important laryngeal adductor 

during swallowing. In addition, the muscle showed heightened activity during laryngeal 

closure for coughing, throat clearing, and production of the Valsalva maneuver.31 

Respiration. Hillel’s work found that the IA was not active during exhalatory tasks.31 

The muscle was active during inhalation, but only when subjects were engaging in 

vigorous, active breathing.  
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 In Vivo Studies. Three in vivo studies of IA function have been completed in the 

canine larynx. In the first of theses studies, Nasri et al138 stimulated IA and TA activity in 

tracheotomized and anesthetized dogs. Videostroboscopic images of laryngeal activity 

were recorded during muscle stimulation. Stimulation of the IA alone resulted in 

adduction of the vocal processes of the arytenoids, the presence of a mid-vocal fold gap, 

and the inability to initiate phonation. Similarly, stimulation of the TA alone yielded a 

bulging of the membranous fold, the presence of a sizeable posterior gap, and the 

inability to initiate phonation. Combined stimulation of the IA and TA yielded full 

adduction and closure along the entire vocal fold length and the ability to phonate. The 

authors concluded that the IA was necessary for closure of the posterior glottis and for 

the production of voice. In a later study, Nasri et al139 examined all 3 primary adductors 

(IA, TA, and LCA) in a group of tracheotomized dogs. Adductory force at the vocal 

processes of the arytenoids was recorded during stimulation of the adductory muscles in 

isolation. Force measurements showed the LCA to be the strongest of the adductors, 

followed by the TA, and finally the IA. The authors suggested that the IA was primarily 

involved in adduction of the vocal processes, acting as an accessory muscle to the TA and 

LCA. Finally, Choi et al137 used the canine model to examine function of the laryngeal 

adductors. The group electrically stimulated RLN branches leading to adductory muscles 

to determine the individual and combined contributions of these muscles to vocal fold 

adduction. They identified the TA as the primary adductor of the anterior, membranous 

folds; the LCA as the primary adductor of the region between the vocal processes; and 

the IA as the primary adductor of the posterior commissure between the arytenoid bodies. 

Choi and colleagues further demonstrated a correlation between IA activity and increases 

in subglottic pressure, intensity, and fundamental frequency. The authors concluded that 

the IA was critical in adducting the most posterior aspect of the glottis and in the 

subsequent building-up of subglottic pressure for vocal fold vibration. Interarytenoid 

influence on intensity and fundamental frequency was felt to be indirect and mediated via 

the muscle’s influence on subglottic pressure. 

 In Vitro Studies. Hirano and Kakita reviewed the work of colleagues (Hirano, 

1975; Koike et al,1975; Morio, 1976) performed on excised canine larynges.141 The 

researchers electrically stimulated individual laryngeal muscles and visually recorded still 
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images of alterations in vocal fold length, position, thickness, appearance, and stiffness at 

the time of stimulation. Interarytenoid stimulation resulted in adduction of the 

cartilaginous vocal fold. The muscle’s influence on the membranous, vibrating aspect of 

the vocal fold was minimal, consisting of a slight reduction in vocal fold length, a slight 

thickening of the fold’s edge, and a mild reduction in the fold’s stiffness. The authors 

concluded that the primary contribution of the IA was adduction of the posterior, 

cartilaginous aspect of the vocal folds.  

Summary of Function Studies. The above studies point to an important role of the 

IA in adducting the cartilaginous glottis for voice production, swallowing, and other 

sphincteric functions. Further, during phonation, the IA appears to acts in concert with its 

fellow adductors, the TA and LCA, to posture the folds for the onset of phonation, while 

the IA retains the posture for prolongation of the tone. 

Innervation 

The IA is privileged to have the most complex neural supply of all the laryngeal 

muscles.70  The transverse IA is the only unpaired muscle within the larynx, and 

consequently, the only laryngeal muscle receiving bilateral innervation from the recurrent 

laryngeal nerve.70, 131, 132 Additionally, in most cases the IA receives a degree of 

supplemental innervation from the internal branch of the SLN.70, 132 Specifically, this 

supplemental innervation is offered when the lower branch of the SLN joins the RLN to 

create a nerve plexus in the superior aspect of the IA.70, 132 This unique innervation 

pattern offers the transverse IA the benefit of continued neural input in the presence of 

unilateral recurrent laryngeal nerve injury,132 and a potentially heightened resistance to 

physical injury.32 Interestingly, the IA also demonstrates a more rich supply of multi-

innervated fibers (9% to 21% of fibers show multi-innervation) than other laryngeal 

muscles.19  

Sensory Mechanisms 

The IA also diverges from the intrinsic laryngeal muscles in its mechanism of 

proprioceptive feedback.32, 77, 78 Katto et al77 presented one of the earliest studies 

examining muscle spindles within the IA. The histological study was performed using a 

single human larynx removed during laryngectomy. Muscles block-stained with saturated 

uranyl acetate were viewed initially under light microscopy to determine the presence or 
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absence of spindles. When spindles were identified, ultrathin sections were cut, stained 

with uranyl acetate and lead citrate, and viewed under electron microscopy. The 

researchers identified spindles in the IA which were approximately 1/3 the size of those 

typically observed in limb muscle. Further, spindles of the IA possessed primary 

morphological differences from classic limb muscle spindles (ie, thinner connective 

tissue capsule, narrowed periaxial space, atypical intrafusal fiber appearance, atypical 

patterns of twisting and swelling at nerve endings), leading authors to conclude that 

spindles of the IA were refined to respond to both muscle stretch and pressure. A second 

study by Okamura and Katto was performed on human larynges removed during total 

laryngectomy.78 Initially, muscle sections from the IA, TA, PCA, LCA, and CT were 

stained with Lee’s methylene blue-basic solution and examined under light microscopy. 

Once spindles were localized, ultrathin sections were stained with toluidine blue in 

preparation for electron microscopy. Spindles were identified in all laryngeal muscles 

except the LCA. Within the IA, spindle presence was abundant, and most spindles were 

localized to the muscle’s central region. Unusual spindle morphology was again 

identified in the IA, and the authors concluded that spindles the IA were refined to 

convey both stretch and pressure information. Most recently, Tellis et al32 used 

histological and immunohistochemical (anti-neonatal polyclonal and anti-tonic 

polyclonal antibodies) methods to examine human IA muscles obtained from total 

laryngectomy cases. An average of 7 spindles was identified per IA, with most being 

localized to the mid-belly of the muscle. Spindles were complex in design and 

morphologically distinct from classic limb muscle spindles in terms of their connective 

tissue capsules, their elongated extrafusal fibers, and their peculiar orientation at the 

muscle’s insertion into the arytenoid cartilage. The peculiarity of the spindles led Tellis et 

al to suggest that spindles of the IA were unusually sensitive to dynamic muscle 

activity32, 77, 78.  

The above studies, which include both histological and immunocytochemical 

methods, point to the presence of muscle spindles in the IA. However, the spindles 

appear to be morphologically distinct from those classically observed in limb muscle. 

The authors of the above studies propose that spindles within the IA may be refined to 

offer the muscle maximal sensitivity to pressure, stretch, and complex movement. 
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Contractile Properties 

While myosin isoforms in laryngeal muscle has been an area of intense interest, 

the IA muscle has frequently been omitted from studies on this topic. However, 2 studies 

of myosin expression in the IA were identified in the literature. Human Studies. In the 

first study, Shiotani, Westra, and Flint used sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and Western blots to determine the MyHC distribution 

within the IA, TA, LCA, PCA, CT, and vocalis muscles. The IA was comprised of 21.5% 

MyHC I, 57.9% MyHC IIA, and 20.6% MyHC IIB.ϕ The IA’s MyHC composition was 

most similar to that of the LCA, a partner vocal fold adductor. Tellis et al32 examined the 

IA muscles of 5 human larynges excised during laryngectomy. Interarytenoid fiber types 

were determined by a combination of histochemical and immunocytochemical assays. 

Histochemical stains included myofibrillar ATPase (marker of fast vs. slow myosin 

isoforms), glyceraldehyde 3-phosphate dehydrogenase (marker of glycolysis), and 

succinate dehydrogenase (marker of oxidative phosphorylation). Immunocytochemical 

assays used monoclonal antibodies against basic and specialized myosin isoforms. The 

IA contained 35% Type I fibers, 45% Type IIA fibers, and 15% Type IIX fibers. Less 

than 5% of fibers co-expressed more than one MyHC, and no atypical isoforms were 

identified. The authors concluded that fiber types within the IA were similar to those of 

limb muscle and dissimilar to those reported in other laryngeal muscles. While studies of 

the IA’s contractile properties have been limited, current work shows an IA profile 

similar to that of limb muscle:  presence of Type I, IIA, and IIX fibers, the absence of 

coexpressing fibers, and the absence of atypical myosin isoforms.32  

Summary of the Interarytenoid Literature: Strengths, Limitations, and Future Directions 

The above review demonstrates a relative paucity of studies examining the 

biological features of the IA muscle. Available studies have focused primarily on the 

muscle’s gross structure, function, and innervation. The literature supports the IA as the 

primary adductor of the posterior larynx, contributing to the maintenance of laryngeal 

closure during voicing, swallowing, coughing, and throat clearing. Further, the above 

studies offer early evidence supporting the IA’s divergence from laryngeal muscle along 

                                                 
ϕ MyHC IIB is now known not to exist in humans. The MyHC IIB referred to in this study is 
likely correctly identified as MyHC IIX. 
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several fronts. First, the IA’s innervation has been described as the most sophisticated 

among the laryngeal muscles. The muscle’s unique bilateral support from the RLN, 

supplemental innervation from the SLN, and high percentage of multi-innervated fibers 

offer it a neurological advantage over its sister laryngeal muscles. Further, the muscle’s 

sensory mechanisms differ from that observed in most laryngeal muscles. At present, the 

IA is the only intrinsic laryngeal muscle where the presence of spindles is not under 

debate. Interestingly, IA spindles appear refined beyond those observed in limb muscle, a 

point which has led some to propose the dual mediation of stretch and pressure by these 

organs. Finally, IA fibers show the presence of MyHC I, IIX, and IIA, the absence of 

atypical myosin isoforms, and the absence of co-expressing fibers: a profile analogous to 

that of limb muscle, but divergent from that of laryngeal muscle.  

 Tellis et al32 were the first to comprehensively examine the IA and the first to 

comment on the muscle’s unexpected similarity to limb muscle. In their discussion, the 

authors highlighted the importance of further defining the phenotype of the IA in order to 

refine the clinical management of voice and swallowing disorders. Unfortunately, since 

that study, no additional examinations of the IA have been reported in the literature, and 

no further discussion of the IA’s divergent phenotype has ensued.  

The Cricothyroid 

 The CT is a two-bellied muscle coursing between the anterior aspects of the 

cricoid and thyroid cartilages. The muscle arises from the anterolateral arch of the cricoid 

cartilage, inserting into the thyroid cartilage as 2 separate units: the pars recta which 

courses vertically to insert along the inner aspect of the thyroid cartilage’s lower margin, 

and the pars oblique which courses superiorly and posteriorly to insert into the inferior 

horn of the thyroid.12  The more vertically positioned pars recta elevates the cricoid ring, 

whereas the diagonally positioned pars oblique retracts the entire cricoid cartilage relative 

to the thyroid. The combined action of the 2 bellies increases the distance between the 

angle of the thyroid and the vocal processes of the arytenoids, elongating and tensing the 

vocal folds. Because of its ability to manage vocal fold length and tension, the muscle 

plays a primary role in pitch control and a supportive role in vocal fold adduction.12, 34, 142  
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Morphogenesis 

As with the IA, cricothyroid muscle development is traced to the occipital 

somites. However, unlike its sister laryngeal muscles that emerge from the sixth branchial 

arch, the CT forms from the mesoderm of the fourth arch.  Also forming from the fourth 

arch are pharyngeal constrictors, select muscles of the tongue and palate, and the SLN, 

the primary innervation source for the CT.33 This origin sets the CT apart from the 

remaining intrinsic laryngeal musculature and has caused some to propose that the 

muscle is embryologically more closely aligned with the pharyngeal musculature than the 

laryngeal musculature.34  

Function 

Function of the CT has been examined using EMG, in vivo, and in vitro methods. 

Studies suggest CT activity during a myriad of phonatory and non-phonatory tasks.  

EMG Studies. Electromyographic studies have permitted investigators to examine 

the activity of the intrinsic laryngeal musculature of humans during the performance of 

vegetative and phonatory activities. Phonation: An early study by Yanagihara and von 

Leden143 examined CT activity as related to airflow, subglottic pressure, pitch, and 

intensity. Three males with normal voice control participated in the study. Cricothyroid 

activity was recorded during production of /a/ at varying pitch and loudness levels via a 

concentric needle electrode positioned in the left CT. The authors found heightened CT 

activity during production of high-frequency and high-intensity tones. The authors 

concluded that the CT regulated pitch and loudness by manipulating vocal fold tension 

and vocal fold resistance to the air stream. Gay and colleagues140 used hooked wire 

electrodes to examine the activity of the intrinsic laryngeal muscles during modifications 

in pitch, loudness, and vocal onset. The CT was identified as a key muscle of pitch 

elevation, acting in conjunction with the vocalis to control pitch in the chest and falsetto 

registers. Contrary to the findings of Yanagihara and von Leden, the CT did not make 

primary contributions to the control of intensity in this study. The CT also offered no 

contribution to the control of vocal onset. Hillel31 conducted perhaps the most 

comprehensive EMG examination of the intrinsic laryngeal musculature to date. 

Monopolar hooked wire electrodes were positioned in the laryngeal muscles of 12 normal 

speaking adults. The CT was most specifically active during pitch elevation. The 
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muscle’s participation in sustained phonation (modal register) varied across individuals. 

When the CT was active during sustained phonation, it remained engaged throughout 

phonation, showing phonatory behavior similar to that of the IA. The author concluded 

that the CT’s primary contribution to phonation was in the regulation of pitch. Finally, 

only one study has compared the activity of the pars recta and pars oblique segments of 

the CT during phonatory tasks. Hong et al144 placed hooked wire electrodes in the pars 

recta and pars oblique bellies of the CT in 8 adults status-post ipsilateral thyroid 

lobectomy. The investigators found simultaneous activity of the bellies at the onset of 

sustained phonation; however, the two bellies offered distinctive contributions related to 

vocal fold lengthening. The pars oblique was more active than its sister belly during the 

initial posturing and fine tuning of vocal fold length at the onset of speech, whereas the 

pars recta showed greater activity than the oblique during notable modifications of pitch. 

The authors suggested that the combined activity of the bellies guided the establishment, 

and later adjustment, of vocal fold length during voicing. Vegetative Tasks: Only one 

EMG study has examined CT activity in the activities on respiration and swallowing.31 

Hillel used monopolar hooked wire electrodes to track CT activity in 12 normal adults. 

During swallowing, the CT acted in synchrony with primary vocal fold adductors: the TA 

and LCA. These findings pointed to a potential role of the CT in glottic closure during 

the swallow. Cricothyroid function during respiration was variable across individuals. 

The muscle showed heightened activity during inspiration in all subjects tested; however, 

activity during exhalation in only a portion (44%) of subjects.  

In Vivo Modeling. In vivo studies of CT function have also contributed to the 

understanding of the muscle’s role in phonatory as well as non-phonatory tasks. 

Phonation. In an early study, Hirose et al145 electrically stimulated the TA, PCA, and CT 

muscles of tracheotomized cats. Single impulse stimulation of the SLN and RLN resulted 

in the development of vocal fold tension. Contraction of the CT in isolation yielded rapid 

tension development, whereas, contraction of the TA in isolation yielded slower and 

more prolonged tension development. The group concluded that the CT worked with the 

TA to manage fold tension, with the CT acting as the primary external controller of gross 

tension and the TA acting as an intrinsic regulator of fine tension. Several years later, 

Tanaka and Tanabe subglottically insufflated canine larynges to determine glottal 
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adjustments used in intensity control.74 Intrinsic muscle (CT, LCA, TA, and PCA) 

movements were simulated using mechanical retraction; sound pressure level, subglottic 

pressure, mean airflow rate, aerodynamic power, and glottal resistance were recorded 

during the simulated motion. The LCA and TA muscles were identified as the primary 

contributors to intensity. Cricothyroid activity contributed only slightly to intensity, 

adding, on average, only 0.2 dB to the tone. The authors concluded that the CT’s role in 

intensity control was minimal and mediated via its influence on vocal fold adduction. 

Hong and colleagues142 compared function of the pars recta and pars oblique in a canine 

model. The group tracked changes in fundamental frequency of vibration (Fo), intensity, 

subglottic, pressure, vocal fold length, and cricothyroid distance during stimulation of the 

pars recta and oblique. Stimulation of the pars recta yielded a greater increase in the 

frequency of vocal fold vibration than stimulation of the pars oblique; however, 

simultaneous stimulation of both branches brought about the most significant changes in 

Fo. The elevation in pitch was mediated via a two-part action of the CT upon the cricoid 

and thyroid cartilages. The pars recta displaced the thyroid on the cricoid along the 

vertical axis, while the pars oblique displaced the cartilages along their horizontal plane. 

The authors concluded that changes in cricothyroid joint position during pitch elevation 

were complex and multi-dimensional, the result of a coordinated effort of the pars recta 

and pars oblique to readjust the relationship of the cricoid and thyroid cartilages for vocal 

fold elongation. Respiration. Amis et al146examined the pharyngeal responses to CT 

activity during respiration. Muscle activity was induced via supramaximal electrical 

stimulation of the external branch of the SLN. Supraglottal and upper airway resistances 

were calculated; pharyngeal movement was tracked via computerized axial tomography. 

Cricothyroid contraction resulted in pyriform sinus dilation and an associated a reduction 

in supraglottic and upper airway resistance. The authors concluded that the CT served as 

a pharyngeal dilator during respiration. The same group later examined the CT’s 

influence on laryngopharyngeal geometry and airway resistance using the methods 

discussed above.147 Cricothyroid stimulation yielded: (1) lateral movement of the thyroid 

cartilage alae and subsequent dilation of the pyriform sinuses, (2) glottal lengthening, and 

(3) slight vocal fold movement toward midline. Subsequent reductions in supraglottic and 

upper airway resistance to airflow were observed. From the 2 studies, the authors 



 

32 

concluded that the CT played a role in widening the pharyngeal outlet and, consequently, 

reducing upper airway resistance to airflow during respiration. 

In Vitro Modeling. Hirano and Kakita reviewed the in vitro work of Hirano 

(1975), Koike et al (1975), and Morio (1976).141 The series of studies involved the 

electrical stimulation of individual laryngeal muscles in excised canine larynges. Changes 

in vocal fold position, length, thickness, appearance, and stiffness were recorded via still 

photographs taken superior and medial to the vocal folds. Stimulation of the CT resulted 

in: lowering of the vocal folds in the larynx, elongation and thinning of the vocal folds, 

sharpening of the vocal fold edge, and stiffening of the vocal fold’s 3 primary layers (ie, 

body, transition, and cover).  The authors concluded the CT exerted notable influence 

over vocal fold vibration by influencing vocal fold geometry and modifying the 

mechanical properties of the vocal fold layers during voicing. Hirano et al148 examined 

TA, LCA, CT, and PCA roles in glottic shaping in 10 male and 10 female cadaveric 

larynges. Ventricular folds and epiglotti were removed to enhance viewing of the glottal 

area, and larynges were positioned in a support frame. Nylon threads attached along 

various points of the laryngeal cartilages were manipulated to simulate muscle activity. 

Cricothyroid activity was simulated by a ventrocaudal pull on the superior aspect of the 

thyroid cartilage. The primary contribution of CT activity was elongation of the 

membranous vocal folds; however, a supportive role in vocal fold adduction and 

abduction was recognized. Interestingly, CT influence over vocal fold length was more 

pronounced in females. The authors proposed that the gender difference was due to 

increased cricothyroid joint mobility in females or an increased extensibility of the 

female vocal fold tissue.  

Summary of CT Function Studies. The above studies point to CT participation in 

phonation, swallowing, and respiration. It is, however, the CT’s contribution to voice 

production that has been of greatest interest to researchers. In phonation, the CT acts as 

an external regulator of vocal fold length and tension and as a vital contributor to vocal 

pitch. The muscle exerts additional influence over voicing by altering the mechanical 

properties vibrating vocal folds. The muscle’s action during vegetative activities has been 

less extensively examined; however, the evidence points to a role in inhalation, perhaps 

as a supraglottal and pharyngeal dilator.  
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Innervation 

 The CT is innervated by the external branch of the SLN.12 Hence, it is the only 

intrinsic laryngeal muscle receiving primary innervation from a source other than the 

RLN. As the external branch nears the larynx, it courses under the sternothyroid muscle 

before dividing to supply muscle fibers of the pars recta, pars oblique, and inferior 

constrictor.71 According to  DeVito, Malmgren, and Gacek,149 motor endplates of the 

human CT are randomly and widely distributed throughout the medial 2/3 of the muscle 

(anterior to posterior) and limited at the muscle’s extreme ends. The above pattern 

diverges from the narrow, mid-muscle band of motor end plates classically observed in 

limb muscle. The authors speculated that the CT’s unique innervation pattern was 

secondary to the geographic complexity of the muscle’s fibers and/or the possible 

presence of multiple neuromuscular junctions per muscle fiber. 

Sensory Mechanisms 

Histological Studies. Attempts to identify proprioceptive organs within the CT 

have been limited. Keene et al79 used hematoxylin and Bierbrich scarlet stain and the 

Romanes silver method to study the distribution of spindles across human intrinsic 

laryngeal muscles. While the group reported finding spindles in all laryngeal muscles, 

they indicated that spindles were particularly abundant in the CT and PCA. Raman and 

Devanandan used a modification of DeCastro’s silver technique to examine spindle 

presence in the intrinsic and extrinsic laryngeal muscles of bonnet monkeys.150 In 

contrast to Keene et al’s findings, the group found the intrinsic laryngeal muscles (CT, 

TA, PCA) to be devoid of spindles, while suprahyoid and infrahyoid extrinsic muscle 

controls evidenced the structure. Hence, the presence of spindles in the CT has yet to be 

determined. More recent histologic studies of laryngeal proprioception have not included 

the CT. Therefore, more sophisticated methods of muscle spindle identification have not 

been applied to this muscle group. 

Clinical Studies.  In an attempt to more clearly define laryngeal proprioception 

and particularly the mechanisms employed to track changes in vocal fold length, Loucks 

et al16 used hooked wire electrodes to record activity in the CT, TA, and sternothyroid 

muscles during servomotor displacement of the thyroid cartilage. Electromyographic 

activity in the CT and TA did not change during moments of mechanical displacement, 
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suggesting the absence of a stretch reflex within these intrinsic muscles. Interestingly, the 

investigators found opposing results in the extrinsic sternothyroid muscle. The authors 

concluded that the CT and TA were lacking in muscle spindles and that afferent feedback 

for voice control was mediated via other sensory receptors within the larynx.  

Thus, histological studies of the CT have been limited and have failed to offer a 

clear picture as to the presence or absence of spindles in the muscle. Recent clinical 

studies support the findings of Raman and Devanandan and suggest that proprioception 

for the CT is mediated without the muscle spindle. 

Contractile Properties 

 Myosin Isoform Profile. Animal Models.  Jung and colleagues94 used reverse 

transcription polymerase chain reaction (RT-PCR) to determine the precise RNA 

transcript levels of laryngeal MyHC isoforms. Specifically, the authors considered 

transcription levels for MyHC I, IIA, IIB, IIX, IIL, embryonic, and neo-natal in the rat 

larynx. The CT contained primarily fast isoforms: 72.1% MyHC IIX, 25.2% MyHC IIA, 

2.2% MyHC I, 0.4% MyHC IIB, and 0.04% embryonic and neonatal. The MyHC IIL (a 

fast myosin considered by some to be MyHC-eo) was not identified. Despite the 

abundance of fast isoforms, the CT was found to have among the slowest myosin profile 

of the laryngeal muscles examined. Rhee, Lucas, and Hoh35 compared myosin expression 

between the CT and TA muscles of rats. Monoclonal antibodies against MyHC-I, IIA, 

IIX, IIB, and extraocular were employed. The CT evidenced all forms of limb skeletal 

muscle fiber types in the following distributions: 61.2% MyHC IIX, 19% MyHC I, 

12.5% MyHC IIA, and 4.9% MyHC IIB. The TA demonstrated a faster profile consisting 

primarily of fibers expressing or co-expressing MyHC IIB, extraocular, and IIX. The 

authors concluded that the myosin heavy chain profile of the CT was unlike that of the 

TA, but analogous to that of classic limb muscle. Lucas et al17 used monoclonal 

antibodies against MyHC-eo to consider the isoform’s expression in rabbit CT and TA 

muscles. While the specialized isoform was identified in the TA, it was not found in the 

CT. The authors concluded that the CT possessed a rate of contraction more indicative of 

fast limb muscle than laryngeal muscle. Later work by Shiotani and Flint22 in the rat 

model supported the above results. Results of SDS-PAGE and Western blotting 

confirmed the presence of MyHC I, IIB, IIX, and IIA in the CT. MyHC-eo was identified 
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in some intrinsic laryngeal muscles (TA, PCA, LCA) but not within the CT. The group 

concluded that the CT stood apart from laryngeal muscles on 2 fronts: (1) it possessed the 

slowest myosin profile of the intrinsic laryngeal muscles examined in their study, and (2) 

it was the only laryngeal muscle devoid of MyHC-eo. The authors suggested that the 

CT’s departure from laryngeal muscle was secondary to its differing embryological 

origin and/or its differing source of primary innervation. Human Studies. Two groups 

have examined MyHC distribution across the primary intrinsic laryngeal muscles in 

humans. Shiotani et al23 used SDS-PAGE and Western blots to examine myosin isoforms 

in 6 cadaveric larynges. They defined CT myosin composition as 61.1% MyHC IIA, 

34.6% MyHC I, and 4.3% MyHC IIBφ, results which placed the CT alongside the PCA as 

the slowest of the laryngeal muscles. Finally, findings of Li et al96 supported the above 

study. The group used SDS-PAGE and Western blotting to examine myosin isoform 

expression in 5 cadaveric larynges. All laryngeal muscles except the IA were considered 

in the study. The authors found only MyHC IIA (60-65%) and I (30-35%) in the CT. The 

fastest of the basic human isoforms, MyHC IIX, was absent in the muscle. When 

comparing results across laryngeal muscles, the authors concluded that the CT 

demonstrated a slower profile than the group of laryngeal adductors.  

 Hence, studies in animal and human larynges point to the CT’s myosin heavy 

chain profile as slow relative to that of its sister laryngeal muscles but comparable to that 

of fast limb muscle. It has been suggested that this deviation from other laryngeal 

muscles may be a result of the muscle’s differing embryonic development and/or its 

differing mode of innervation.22 

Fiber Size and Arrangement 

 Four studies considering the fiber size of the CT relative to other laryngeal and 

limb skeletal muscles were identified in the literature. A study by Sadeh et al50 used 2 

human larynges obtained from laryngectomy to compare the fiber diameter of 4 intrinsic 

laryngeal muscles (CT, PCA, LCA, vocalis) to referenced fiber sizes of limb muscle. In 

both larynges, mean CT fiber diameter was 40μm, notably less than their referenced limb 

muscle diameter (60-70μm). Interestingly, in one specimen CT diameter was similar to 

                                                 
φ MyHC IIB is now known not to exist in humans. The MyHC IIB referred to in this study is 
likely correctly identified as MyHC IIX. 
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that of the PCA and vocalis muscles; however, in the second specimen, CT fibers were 

notably smaller than those of the vocalis (60μm). The study suggested that CT fiber sizes 

are generally similar to those of fellow laryngeal muscles but smaller than those of classic 

limb muscle. A second study used the canine model to compare fiber diameter across 4 

intrinsic laryngeal muscles: the CT, cricoarytenoid lateralis, cricoarytenoid dorsalis, and 

TA muscles.151 The largest fibers (38.19μm to 43.25μm) were found in the CT, whereas 

the smallest fibers (29.38μm to 32.05μm) were found in the TA. The study suggested that 

a degree of variability in fiber size exists across laryngeal muscles and that CT fibers 

appear to be largest in the canine larynx. Two additional studies have considered CT fiber 

diameters in the rat. Mean CT fiber diameters were similar to comparison laryngeal 

muscles (TA and PCA) and ranged from 15-30μm.135, 152 These studies suggest that the 

CT is comprised of small diameter fibers typical of the intrinsic laryngeal musculature. 

 Two studies have examined the arrangement of muscle fibers within the CT. In 

the first of these studies, Hyodo et al135 considered the myotendinous junctions of the CT 

and PCA muscles. Junctions in the PCA were conical with multiple longitudinal clefts, a 

simple, primitive architecture relative to classic limb junctions. The CT, however, 

demonstrated 2 forms of myotendinous junctions, one simple form as described above in 

the PCA and one more complex junction likened to that of limb muscle. The authors 

concluded that the CT was a transitional form of muscle, falling into a category between 

the more primitive laryngeal muscle phenotype and the more evolved limb muscle 

phenotype. A second study examined the network among individual fibers within the 

CT.152 Most fibers ran parallel to one another along the long aspect of the muscle; 

however, some fibers branched and interdigitated with nearby fibers. The result of the 

branching was a complex network of myomyous junctions not observed in classic limb 

muscle, but previously reported in cardiac, extraocular, and other laryngeal (ie, TA) 

muscles. The reason for this unique architecture is unknown; however, the authors 

suggest that it may offer the muscle a more refined and efficient pattern of contraction.152 

Sensitivity to Disease 

 Laryngeal muscles have been recognized for their early involvement in some 

diseases and their preferential sparing in others.4, 7, 25, 29, 30, 108-110 However, one recent 

study by Marques et al4 has suggested that laryngeal response to disease may vary across 
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muscle. The authors examined the effects of dystrophin deficiency on the medial TA, 

lateral TA, LCA, PCA, and CT muscles in 4 month (adult) and 18 month (aged) 

dystrophin deficient mdx and C57Bl/10 (control) mice. No evidence of myofiber 

degeneration or regeneration was observed in the medial TA, lateral TA, LCA, and PCA 

muscles. Interestingly, mild markers of disease (eg, central nucleation) were evidenced in 

the CT muscle of mdx mice. While percentages of central nuclei in the mdx CT (adult M 

= 9.3, SD 4.0; aged M = 18.0, SD = 1.5) did not approach those of the stereotypically 

affected tibialis anterior (adult M = 50.0, SD 1.0; aged M = 96.0, SD = 2.0), they were 

significantly higher (p < .05) than those observed in other mdx laryngeal muscles (range 

1.0 to 2.5) and in control CT muscles (adult M = 4.8, SD 1.1; aged M = 5.3, SD 1.1). The 

authors proposed that mild disease effects in the CT in the face of otherwise widespread 

laryngeal muscle sparing may have been secondary to the CT’s biochemical and/or 

structural differences from other intrinsic laryngeal muscles. 

Summary of CT Literature: Strengths, Limitations, and Future Directions 

Literature pertaining to the CT has focused primarily on the muscle’s function, 

contractile properties, and innervation. Available literature highlights a primary role for 

the CT in voice production and a supportive role for the muscle in respiration and 

swallowing. During phonation, the muscle acts as a primary external regulator of vocal 

fold length and tension, and consequently, a controller of vocal pitch.  

While functional roles of the CT have been well-defined, its biological properties 

have yet to be thoroughly described. Morphologically, the CT appears similar to other 

laryngeal muscles in its fiber size and general architecture. However, its morphogenesis, 

innervation, myosin heavy chain profile, contractile patterns, and sensitivity to disease set 

it apart from laryngeal muscle and place it more in line with pharyngeal and/or limb 

skeletal muscle. This highly unique phenotype of the CT has led some to classify it as a 

hybrid or transitional form of muscle. Unfortunately, comprehensive studies of the CT 

capable of thoroughly describing the muscle’s phenotype relative to other laryngeal 

muscles have not been completed. The CT plays a unique role within the larynx, acting as 

the sole modulator of static vocal fold tension. Its activity is required for the preservation 

of the vocal fold’s medial aspect and for proper glottal valving. Hence, an appreciation of 

this muscle’s biological properties and its response to disease and aging is critical. 
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Summary of the IA and CT Muscles 

The above review suggests the presence of heterogeneity among the intrinsic 

laryngeal musculature. Specifically, the literature intimates that the IA and CT muscles 

diverge from their sister laryngeal muscles and demonstrate a phenotype more similar to 

that of limb skeletal muscle. However, comprehensive investigations of IA and CT 

biology have not been performed to confirm this diversity. While a number of methods 

are available for further examining the biology of these muscles, one model, in particular 

– the mdx mouse model of dystrophin deficiency – has served as an indicator of a 

muscle’s level of specialization and its similarity to or departure from classic limb 

skeletal muscle. A description of the model, a review of its use, and a discussion of its 

application to the IA and CT muscles follow. 

The Model 

Duchenne muscular dystrophy is a genetic, lethal disease that results from the 

lack of the cytoskeletal protein, dystrophin.39 The disease was once believed to affect all 

skeletal muscles; however, recent work has identified the paradoxical sparing of some 

muscles, most notably the extraocular muscle group and the TA, PCA, and LCA muscles 

of the larynx.4, 7, 25, 40 The absence of the pathological cascade in these muscles highlights 

their uniqueness among skeletal muscle. In addition to their sparing in this disease, the 

extraocular and laryngeal muscles are recognized for their departures from limb muscle 

in the areas of: fiber diameter, fiber types, motor unit size, proprioceptive mechanisms, 

myosin isoform expression, remodeling behaviors, and sarcomeric structure.2, 41, 44, 47-49, 52 

Hence, response to dystrophin deficiency may serve as a sensitive marker of a muscle’s 

level of biological specialization and its similarity to or departure from classic limb 

muscle. Examination of the IA and CT muscles with this model will offer greater insight 

into their biological characteristics and level of specialization.  

The Rodent Larynx 

 The rodent larynx has been useful in the study of laryngeal biochemistry, 

vascularity, and neuromuscular function as well as in the examination of laryngeal 

response to irradiation, aging, and disease.22, 83, 153-158 Most laryngeal studies involving 

rodents have employed the rat model. As a result, the rat larynx has become the most 
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well-defined in the rodent family159-161 and, therefore, becomes basis for emerging study 

of the mouse larynx. 

The Rat Larynx: Gross Anatomy and Myology 

 Skeletal aspects of the rat larynx include the hyoid bone, epiglottis, thyroid 

cartilage, cricoid cartilage, and paired arytenoid cartilages.159-161 An additional, wing-

shaped alar cartilage has been identified in the anterior larynx near the base of the 

epiglottis.160, 161  The broad-faced thyroid cartilage encases other laryngeal cartilages 

laterally and ventrally and serves as the attachment for key intrinsic muscles. The ring-

shaped cricoid rests between the first tracheal ring and the thyroid cartilage and 

articulates dorsally with the caudal horn of the thyroid. Rostral and caudal aspects of the 

cricoid cartilage serve as attachment points for intrinsic laryngeal muscles. The paired, V-

shaped arytenoid cartilages articulate with the cricoid lamina. The arytenoids demonstrate 

three distinct processes: the muscular process which articulates with a rostral ridge of the 

cricoid cartilage; the vocal process which projects ventrally toward the thyroid lamina; 

and the corniculate process which projects anteriorly toward its counterpart on the 

opposing side. The muscular and vocal processes serve as key attachments for intrinsic 

muscles.159-161 

 The rat TA, CT, LCA, and PCA muscles are positioned as within the human 

larynx.160, 161 However, the rat larynx demonstrates two additional muscles not found in 

humans.160, 161 The first of these muscles courses from the alar cartilage anteriorly to the 

lateromedial aspect of the muscular process and cricoid cartilage posteriorly. The muscle 

has been termed both the alar cricoarytenoid muscle and the cricovocal muscle. 

Speculation as to its function as not been offered. The second muscle, termed the superior 

cricoarytenoid (SCA) and the rostral cricoarytenoid, courses posteriorly and medially 

from the lateral face of the arytenoid to the cricoid lamina’s midline tubercle.160, 161 

Authors suggest that the SCA muscle may function to draw the arytenoids toward one 

another at midline, in a fashion similar to that of the IA in humans. Interestingly, only 

one source has described the presence of a transverse arytenoid muscle in the rat.159 In 

1976, Hebel and Stromberg159 identified fibers coursing between the paired arytenoid 

cartilages in a manner similar to that of the transverse IA of humans. More recent works, 
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such as those noted above by Inagi et al160 and Kobler et al,161 have not identified this 

muscle.  

The Mouse Larynx 

 Investigations using the mouse larynx have been infrequent in the literature.4, 7, 25, 

162-164 A number of these studies have considered only superficial aspects of the larynx 

(eg, epithelium, taste bud function) and have not examined the skeletal and myologic 

aspects of the mouse larynx. Consequently, gross and fine aspects of mouse laryngeal 

anatomy remain largely unexplained.  

 Early descriptions of the mouse laryngeal framework indicate a hyoid bone, 

epiglottis, thyroid cartilage, cricoid cartilage, and paired arytenoid cartilages.165, 166 No 

defining works on mouse laryngeal myology could be identified in the literature. Two 

studies examining the effects of dystrophin deficiency on mouse laryngeal muscles did 

offer early information regarding the presence of certain muscles in the mouse model. 

Thomas and colleagues25 identified TA and PCA muscles in the mouse, while Marques et 

al4 identified the aforementioned muscles as well as the LCA and CT. Details of the 

muscles’ anatomy and positioning within the larynx were not described by either author. 

 Thus, the study of the mouse larynx remains in its infancy. In particular, laryngeal 

myology remains to be investigated and the presence, location, and properties of the 

intrinsic muscles described. 

Rodent Larynx: Summary 

While aspects of rat laryngeal structure continue to emerge, the generalization of 

this knowledge to the mouse larynx may be inappropriate. Anatomical differences in the 

presence and location of neck muscles have been confirmed across various rodent 

species.167 As a result, independent investigations of mouse laryngeal anatomy are 

needed to further define gross and fine aspects of the organ. 

History and Features of the mdx Mouse 

Dystrophin is a large (~400kd) cytoskeletal protein coded at gene locus Xp21.36, 38  

The protein is recognized as the pivotal member of the elaborate dystrophin-glycoprotein 

complex (DGC),39 which mechanically links the muscle fiber’s contractile filaments to 

the extracellular matrix,38, 168 as shown in Figure 2.1. Dystrophin is comprised of 4 

domains: (1) the N-terminus domain, which interacts with cytoskeletal actin filaments; 
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(2) the central-rod domain, which also interacts with cytoskeletal actin; (3) the cysteine-

rich domain, which binds to the membrane-spanning protein, β-dystroglycan; and (4) the 

C-terminus domain which interacts with 2 additional cytoskeletal protein families, the 

dystrobrevins and syntrophins.169 The linkage of the components in this way permits 

stabilization and support of the fragile cell membrane during muscle contraction.37, 38, 168, 

170 In addition to this support role, dystrophin has been implicated as playing a role in 

transmembrane signaling and in the regulation of intracellular calcium.37, 169 

Pathophysiology of DMD 

In DMD, a spontaneous mutation of the Xp21 gene results in the absence of 

dystrophin,37, 38 and the subsequent disruption of the DGC’s integrity.38, 169 Without the 

DGC’s structural support, the sarcolemma becomes vulnerable to the excessive 

mechanical forces applied by muscle contraction; focal sarcolemmal tearing often 

results.38 The loss of sarcolemmal integrity permits the influx of extracellular calcium 

into the muscle fiber and the subsequent activation of protein-destroying enzymes. 

Gradually, fiber necrosis results.39 Attempts at myofiber regeneration ensue, as evidenced 

by the presence of pleomorphic and centrally nucleated fibers. Over time, however, 

continued cycles of fiber degeneration and failed attempts at regeneration result in 

widespread fibrosis and fatty cell infiltration throughout the muscle.171  

In recent years, it has been argued that the mechanical theory described above is 

not sufficient to explain the pathological cascade associated with dystrophin deficiency.37, 

171 As a result, an additional theories related to calcium regulation have been proposed.171  

Some have identified the presence of dystrophin-controlled mechanosensitive calcium 

channels in the membranes of skeletal muscle.37, 172-174 In the absence of dystrophin, the 

channels remain open for prolonged periods and permit the entry of excessive amounts of 

calcium into the muscle cell. Consequently, intracellular calcium levels increase, and the 

enzyme-triggered fiber damage described above ensues.37 Others have suggested a 

calpain-triggered increase in calcium leak channel activity in dystrophin-deficient 

muscles.175, 176 Under this theory, extracellular calcium enters the muscle cell via leak 

channels, eventually triggering the action of proteases and the degeneration of the muscle 

fiber. 
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It is clear that high levels of intracellular calcium play a role in the 

pathophysiology of DMD. At present, however, researchers are unclear as to whether the 

high levels of intracellular calcium observed in dystrophin deficient muscles are a 

mechanism of the pathology, as suggested by calcium regulation theories, or a 

consequence of the pathology, as suggested by mechanical theories.  

The mdx Strain 

The mdx mouse strain is considered the standard animal model for the study of 

human DMD,36, 177 and muscle sections taken from human DMD and mdx specimens 

confirm the genetic equivalency of the 2 models.36 The mdx strain, first identified by 

Bulfield et al178 in 1984, was the result of a spontaneous mutation of the Xp21 gene 

location in the C57BL/10ScSn mouse. The mutation yields the impaired expression of 

full-length dystrophin in skeletal muscle.36 Histological markers of the disease (eg, fiber 

degeneration and regeneration, inflammation, fiber necrosis, centrally positioned nuclei) 

are present in the both mdx mouse and humans models; however, the mouse displays a 

milder clinical phenotype and a near normal lifespan.177 Since discovery of the mdx 

model of dystrophin deficiency, it has been successfully used in a number of 

investigations of the pathophysiology and treatment of DMD.42, 112, 177, 179-183 

The lifespan for the wild-type mouse is estimated at 24 months, but sexual 

maturity and the adult mouse form are identified by the 8th week.184  Histologic markers 

of the dystrophin deficiency (eg, fiber degeneration and regeneration) are evidenced in 

mdx mice by the 3rd to 4th week.177 By the 8th week, markers (eg, inflammation, protein 

destruction, and muscle regeneration) are clearly observed.181 As a result, the 8-week 

mouse has been used frequently in the study of dystrophin deficiency.7, 25, 42, 181 

Assays Used in the Study of Dystrophin Deficiency 

 A variety of histological and immunocytochemical assays are used to establish a 

muscle’s response to dystrophin deficiency. Histological assays examine the overall 

morphology of the muscle fiber and the integrity of its membrane, whereas 

immunocytochemical methods confirm the presence and/or absence of key proteins of the 

DGC. 
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Histologic Assays  

 Histological Staining. Muscle fibers affected by dystrophin deficiency evidence 

fiber degeneration and regeneration. Degeneration is recognized by the presence of 

inflammation, necrosis, fibrosis, and fatty infiltration, while regeneration is identified by 

the presence of centrally located nuclei and pleomorphic fibers.39, 105, 185 Basic histologic 

stains, such as hematoxylin and eosin,186 are used to examine these aspects of basic 

muscle fiber structure.  

 Hematoxylin and eosin staining is a commonly used stain for overall tissue 

morphology which clearly reveals the general structure of the tissue sample, including the 

presence and location of nuclei, fibrous and fatty tissue, inflammatory cells, and 

fibrosis.186 Hematoxylin stains cell nuclei blue/black, whereas eosin stains the cytoplasm 

and other cellular components in shades of pink, orange, and red. Classic hematoxylin 

and eosin protocols for frozen sections involve: tissue fixation, hematoxylin staining, 

eosin counter staining, dehydration in an ethanol series, tissue clearing, and mounting 

with an appropriate mounting medium.186, 187 Tissues stained with hematoxylin and eosin 

are then viewed under light microscopy for evaluation of markers of interest.  

 Hematoxylin and eosin staining has been a commonly used assay in the study of 

dystrophin deficiency.4, 7, 25, 86, 178 In the early stages of the disease process, affected 

muscles demonstrate central nucleation, inflammation, and necrosis. In the later stages, 

widespread fibrosis and fatty tissue infiltration are also observed. Spared muscle groups 

retain normal morphology across all ages tested, showing peripherally positioned nuclei 

and the absence of inflammation, fibrosis, necrosis, and fatty tissue collection.  

 Vital Dyes. Live cells have the capacity to manage the uptake and distribution of 

injected dyes, whereas, damaged cells do not.188 Vital dyes can, therefore, be used to 

assess the health and integrity of individual cells. Vital dye protocols call for the injection 

of dye into living animals, with the subsequent sacrifice of the animal approximately 18 

hours post injection. Muscle sections are prepared and evaluated under florescence 

microscopy to determine the dye’s retention in the extracellular space or its incorporation 

into the intracellular space.  

The vital dye Evans blue has been used previously in the mdx mouse to determine 

the integrity of the cell membrane.189, 190 Muscle responses to the dye are binary. 
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Unaffected fibers in control and spared muscles retain the dye in the extracellular space 

and show an absence of florescent fibers under fluorescence microscopy. However, 

affected muscles with a loss of sarcolemmal integrity are unable to restrict dye entry into 

the muscle fiber and consequently fluoresce brightly under microscopy. 

Immunocytochemical Assays 

 A variety of proteins of interest to researchers are not visible under basic light 

microscopy. Immunocytochemistry (ICC) uses antigen-antibody interactions to reveal 

cell and/or tissue components of interest.191, 192 Immunofluorescence is one form of ICC 

which uses fluorescent labels to localize the target molecules. In studies of dystrophin 

deficiency, these methods have been used to confirm the presence of the dystrophin in 

control muscle and its absence in mdx muscle, to identify the presence, absence, and/or 

re-localization of associated members of the DGC and to examine the inflammatory 

response to dystrophin deficiency.4, 7, 25  

Background. Antigens are proteins, carbohydrates, and lipid molecules that 

possess highly individualized binding sites, termed epitopes. Antibodies are serum 

proteins (immunoglobulin class) produced the humoral immune system, capable of 

identifying and linking with a specific antigen at its binding site. By locating the site of 

antigen-antibody binding, researchers can verify the presence of the antigen of 

interest.191, 192 In immunofluorescence, the site of antigen-antibody binding is recognized 

in one of 2 ways: direct methods which conjugate a florescent label to the primary 

antibody and indirect methods which apply a florescent secondary antibody against the 

primary antibody. Florescence microscopy excites the fluorescent probe to reveal areas of 

antigen-antibody binding, and thereby, the presence and distribution of the antigen.191, 192 

Methods related to the production and use of antibodies in ICC are reviewed below.  

Monoclonal Antibodies. Monoclonal antibodies used in ICC are homogeneous 

antibodies produced by a single B-cell line and capable of linking to a single epitope on 

the antigen of interest.193 For production, antigens are injected into a live animal 

prompting an immune response. Spleen cells are removed from the immunized animal 

and combined in vitro with an immortal myeloma cell line. A hybrid cell, sharing 

properties of the antibody and the immortality of the cell line, is produced. Hybrid cells 

are screened to identify those producing the specific antibody of interest; selected hybrids 
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are cloned for repeated production of the desired antibody.192 Characteristics of the 

monoclonal antibody are specified based upon the class of immunoglobulin (Ig) to which 

it belongs (IgA, IgD, IgE, IgG, or IgM) and the host animal in which the antibody was 

produced. As a result of the production process, monoclonal antibodies offer the 

advantages of consistency and homogeneity.193 Monoclonal antibodies against key 

components of the DGC have been used in previous studies of dystrophin deficiency to 

identify the presence or absence of dystrophin, to determine the integrity of the DGC, and 

to consider modifications of protein expression in response to the loss of dystrophin.4, 7, 25, 

112, 194-196  

Polyclonal Antibodies. Polyclonal antibodies are a complex mixture of serum 

proteins (immunoglobulins) produced by the immune system against a specific 

antigen.193 Polyclonal antibodies are produced by multiple B cell lines, and the resultant 

serum is a composite antibody capable of recognizing a variety of epitopes. For 

production, a host animal is presented with the antigen of interest, and an immune 

response ensues. Serum from the animal is harvested and purified to yield the polyclonal 

antibody. The generation of polyclonal antibodies from multiple B cell clones offers them 

a high degree of specificity, as they are able to link with multiple epitopes on the target 

antigen.193 Polyclonal antibodies for dystrophin have not been previously used in 

examining the effects of dystrophin deficiency on the laryngeal muscles. However, 

successful use of a rabbit polyclonal antibody against dystrophin in skeletal muscle 

(ab15277, Abcam, Cambridge, MA) has been reported recently in the literature.197 

Species Selection with Primary Antibodies. The species from which primary 

antibodies (monoclonal and polyclonal) are produced is an important consideration in 

immunological investigations. Primary antibodies generated from a species which is 

closely related, phylogenetically, to the species of study can yield an altered reaction to 

the antibody.193 As a result, selection of a phylogenetically diverse antibody-generating 

species is preferred.193  

Secondary Antibodies. In indirect ICC, a secondary antibody produced against the 

primary antibody is used to permit visualization and localization of the antigen-antibody 

binding site.191, 192 In immunofluorescent studies, the secondary antibody linking with the 

primary antibody is a fluorochrome, a molecule capable of absorbing radiation and 
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moving into an excited state. Excitation of the fluorochrome by a given wavelength of 

light causes repositioning of the fluorochrome’s electrons and the subsequent emission of 

a visible wavelength of light, generally longer than the exciting wavelength. Emitted light 

from the fluorochrome can be observed under fluorescent microscopy to localize the 

secondary antibody, and hence, the site of primary antibody-antigen binding. Critical 

characteristics of secondary antibodies that must be considered prior to use include: (1) 

the host animal in which the secondary antibody was produced, (2) the specific species 

against which the primary antibody was raised, and (3) the absorbance wavelength of the 

fluorochrome.191, 192  

Fluorescence Microscopy. Tissue specimens prepared using the above methods 

are examined under fluorescence microscopy. In this process, a beam containing all 

wavelengths of light is produced and passed through an initial, heat-absorbing filter. The 

light is then directed through additional filters which permit only the desired (exciting) 

wavelength of light to pass. Upon projecting through the tissue sample, the fluorochrome 

is excited as described above, and the microscope’s objective collects both the exciting 

and the emitted (fluorescent) wavelengths. The exciting wavelength is then filtered out, 

and the fluorescent wavelength is projected on to the viewer’s eye.198  

Immunocytochemistry in the Study of Dystrophin Deficiency. As noted above, ICC 

has previously been used to examine the presence and/or absence of dystrophin and its 

related DGC proteins and to monitor the inflammatory response in dystrophin 

deficiency.4, 25, 112, 194-196 In the first of these uses, ICC reveals an absence of dystrophin 

and other vital proteins of the DGC in dystrophin deficient muscles and the normal 

distribution of these proteins in control muscles. When used to track inflammation, ICC 

shows markers of the inflammatory response (eg, myeloperoxidase presence in activated 

neutrophils199) in affected mdx muscles and the absence of such markers in spared mdx 

muscles. 

Summary 

The combination of histological assays and ICC has provided researchers a broad 

view of a muscle’s response to dystrophin deficiency. Gross changes in tissue integrity 

and morphology as well as subcellullar changes in protein distribution are appreciated, 

helping to separate spared and affected muscle groups. 
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Previous Model Use in the Laryngeal Muscles 

Two studies have used the mdx mouse and the above assays to consider the effects 

dystrophin deficiency on laryngeal muscles. In the first study, Thomas et al7, 25 used 

histological methods and ICC to determine the effects of dystrophin deficiency on the TA 

and PCA muscles of 8-week old mdx mice. An examination of general morphology after 

hematoxylin and eosin staining revealed no evidence of muscle fiber degeneration or 

regeneration in the laryngeal and extraocular muscles. In contrast, notable disease 

markers (eg, fiber necrosis, fibrosis, and central nucleation) were widespread in the mdx 

gastrocnemius/soleus and diaphragm. Additionally, Evans blue dye staining showed an 

absence of dye-positive fibers in the mdx laryngeal and extraocular muscles and the 

presence of dye-positive fibers in the mdx gastrocnemius/soleus and diaphragm. The 

authors concluded that the TA and PCA muscles of the larynx were spared from the 

effects of dystrophin deficiency in the mdx mouse. 

Marques et al4 extended the above study by examining the influence of dystrophin 

deficiency on the medial TA, lateral TA, PCA, LCA, and CT muscles in adult (4 months) 

and aged (18 months) mdx mice. Using the same histologic assays employed by Thomas 

et al, the authors found no evidence of disease the medial TA, lateral TA, PCA, and LCA 

muscles of adult or old mice, while widespread fiber degeneration and regeneration was 

found in the mdx tibialis anterior muscle (stereotypically affected limb muscle). 

Interestingly, mild markers of disease (eg, central nucleation, Evans blue positive fibers) 

were observed in the CT in both age groups of mice examined; however, these effects 

were more pronounced in the aged group. While the disease effects on the CT did not 

approach the magnitude of those in the tibialis anterior, the authors proposed that the CT 

showed mild evidence of disease and a response to disease which differed from that of its 

laryngeal counterparts. 

Potential Mechanisms of Laryngeal Muscle Sparing 

The mechanism of extraocular, and now, laryngeal muscle sparing has not yet 

been elucidated. However, prominent theories suggest that either constitutive properties 

and/or adaptive mechanisms mediate the sparing. Primary theories are reviewed below.  

Muscle Fiber Types and Utrophin Upregulation. The DGC is comprised of a 

series of cytoplasmic, transmembrane, and extracellular proteins that link the muscle’s 
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cytoskeleton (ie, F-actin components) to the extracellular matrix and, thereby, provide 

support to the sarcolemma during muscle contraction (Figure 2.1).169 Dystrophin is a 

pivotal protein within the complex, linking to actin at its N-terminus domain and to β-

dystroglycan at its cysteine-rich and C-terminal domains. Dystrophin’s subsarcolemmal 

linkage to β-dystroglycan secures the sarcolemma’s glycoprotein complex. Consequently, 

the absence of dystrophin disrupts the entire DGC, and the link between cytoskeletal and 

extracellular structures is lost. It has been proposed, however, that muscles spared in 

DMD compensate for the absence of dystrophin through the overexpression of other 

structural proteins.42, 180, 195 One protein that has received much attention as a potential 

substitute is the dystrophin homolog utrophin. The 395 kDa protein has a structural 

sequence which is strikingly similar to that of dystrophin.200 As with dystrophin, utrophin 

possesses an actin-binding N-terminus domain, a central region of spectrin-like repeats, 

and a DGC-binding C-terminus domain.200 This structural similarity to dystrophin along 

most of the protein’s length makes it capable of mimicking dystrophin’s role as a link 

between cytoskeletal F-actin filaments and transmembrane components.195, 200, 201 In 

contrast to dystrophin, utrophin within skeletal muscle is classically found near the 

neuromuscular and myotendinous junctions of mature muscle fibers and near the 

sarcolemma of developing or regenerating fibers.202, 203 While utrophin is typically 

expressed in normal muscle throughout the body, some researchers report differences in 

utrophin expression and functioning across various muscle fiber types.42, 201 The 

implications of such differences for muscle physiology have not been fully elucidated and 

are a current area of study.  

Studies demonstrating an upregulation and sarcolemmal localization of utrophin 

in cases of dystrophin deficiency, 42, 180, 195, 204 a negative correlation between utrophin 

levels and DMD disease severity,205 an increase in muscle degeneration corresponding 

with the developmental decline of utrophin in early life,206 prevention of DMD 

pathological cascade with the application of utrophin,183 and the loss of disease protection 

in double knock-outs lacking both dystrophin and utrophin182 point to the homolog’s 

potential role in mediating the effects of the disease process. However, studies 

specifically examining utrophin expression in spared muscles (eg, extraocular and 

laryngeal) have failed to clearly show utrophin upregulation as the sole mechanism of 
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sparing. Thomas et al25 found no evidence of sarcolemmal localization of utrophin in 

spared PCA or TA muscles of mdx mice and concluded that factors other than utrophin 

replacement were at play in the sparing. Work by Porter et al42 in the EOM supported the 

above conclusions. Porter and his colleagues found that certain fiber types within mdx 

EOM had the unique ability to retain utrophin levels into their maturity and consequently 

the ability to retain the linkage between the muscle’s cytoskeleton and the sarcolemma. 

Interestingly, however, EOM fiber types which failed to demonstrate the utrophin 

retention ability were also spared from the effects of the disease, leaving the authors to 

conclude that factors other than utrophin retention / presence were responsible for EOM 

sparing.  

Thus, work continues to determine the role of utrophin in cases of dystrophin 

deficiency. The above studies point to a role for the dystrophin homolog in managing the 

disease cascade in some affected muscles; however, to date, they fail to support utrophin 

as the primary means of muscle sparing.  

Reduced Mechanical Strain. A second potential mechanism of sparing relates to 

the muscle fiber size and functional mechanics of spared muscle groups. The extraocular 

muscles are composed of notably small muscle fibers,48, 49 which possess greater surface 

to volume ratios than larger fibers. Consequently, smaller fibers are able to distribute the 

strain of contraction over a larger region of the sarcolemma. Some propose that the 

reduction in focal strain is advantageous to the weakened sarcolemma of DMD, 

preserving the integrity of the membrane in the absence of dystrophin.86 Further, the 

small fiber size extraocular muscles exert mechanical forces well below those of other 

skeletal muscles.52-54 These lower levels of force generation remain even when correction 

is made for fiber cross sectional area. Some have theorized that the reduced level of force 

generated by these smaller fibers places less stress and strain on the sarcolemma during 

contraction, and thereby, helps to preserve myofiber architecture in the absence of the 

supportive DGC.85, 86 However, some reject such an explanation of sparing. Porter et al42 

argue that the mechanical workload of extraocular muscles is significant and of sufficient 

magnitude to impose damage upon DGC-deficient sarcolemmas. Others deny mechanical 

explanations based upon the severe manifestation of the disease in the diaphragm,207 a 

muscle with relatively low mechanical stresses.208-210 Finally, some suggest that purely 
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mechanical explanations for sparing are becoming less likely, as the field appreciates a 

more complex, signaling and homeostatic function of the DGC.42 

Sarcoplasmic Reticulum Development and Mechanisms of Calcium Homeostasis. 

Some have considered patterns of calcium regulation as a potential mechanism of 

sparing. The loss of sarcolemmal integrity and the subsequent entry of extracellular 

calcium into the muscle fiber are the primary mechanisms leading of myofiber necrosis in 

DMD.39 One structure within the muscle cell, the sarcoplasmic reticulum, is capable of 

sequestering intracellular Ca2+ and storing it within an isolated compartment. The 

development and sophistication of the sarcoplasmic reticulum varies across muscle 

groups, with rapidly contracting muscles exhibiting more refined Ca2+ uptake systems 

than those with slower profiles.211 Interestingly, the spared extraocular muscles are 

rapidly contracting muscles that have been recognized for their well-developed 

sarcoplasmic reticulum and their exquisite ability to uptake free calcium.43, 113 The spared 

laryngeal muscles demonstrate contraction rates similar to those observed in extraocular 

muscles6 and can, therefore, be assumed to have similar mechanisms of Ca2+ handling.  

Interestingly, dystrophin-deficient extraocular muscles do not present with the 

classically observed increased levels of Ca2+ or with increased levels of the Ca2+ 

sequestering enzyme: Ca2+ ATPase.42, 112 To determine the degree to which normal 

calcium levels were explained by this unique mechanism of calcium handling or by the 

retention of sarcolemmal integrity, Khurana et al112 pharmacologically induced 

sarcolemmal injury in extraocular muscle fibers. Despite the disruption of integrity, the 

fibers maintained Ca2+ homeostasis. The authors concluded that the maintenance of 

proper levels of Ca2+ in the presence of a disrupted sarcolemma supported a superior 

mechanism of calcium handling rather than an intact sarcolemma as the means of sparing. 

However, later work by Porter et al42 contradicted the above study. Porter and colleagues 

found normal levels of Ca2+ and Ca2+ ATPase, as well as intact sarcolemmas in mdx 

extraocular muscles. The group concluded that calcium handling was not, therefore, a 

plausible explanation of sparing. The role of calcium handling in extraocular muscle 

sparing remains unresolved.  

Regenerative Capacity. Finally, some authors have offered that preferentially 

spared muscle groups possess greater regenerative capacities than affected muscles.41, 47 
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Under this model, all muscle groups experience the damaging effects of the disease 

process; however, spared muscles avert the full pathological cascade by engaging 

superior regenerative processes. Recent work by Shinners et al6 has shown that the 

laryngeal muscles, like extraocular muscles, do indeed possess remarkable regenerative 

abilities, a fact which may be interpreted as supporting this theory of sparing. However, 

studies of the spared laryngeal and extraocular muscles fail to demonstrate any markers 

of regeneration (eg, central nucleation, pleomorphic fibers) in dystrophin-deficient 

fibers.4, 7, 25 This finding suggests that regeneration is not ongoing within spared fibers,4, 7, 

25, 112 leaving the door open for alternative explanations of sparing.  

Summary. Thus, questions remain as to the mechanism of muscle sparing in 

DMD. Current work suggests that constitutive properties of the muscles, not 

compensatory strategies, mediate the sparing.42 Constitutive differences known to exist 

between spared and affected muscles that have been proposed as playing a role in sparing 

include: muscle fiber type distribution, muscle biochemistry, endoplasmic reticulum 

development and calcium sequestration ability, cell signaling patterns, and remodeling 

capabilities.41, 42, 212  Research into these areas will certainly continue as investigators 

work to uncover the specific muscle properties responsible for protection against disease. 

Translational Extensions from Use of the mdx Model 

 As use of the mdx model can aid in separating highly specialized muscle groups 

from prototypical groups, the study of muscle response to dystrophin deficiency has 

implications that reach beyond the consideration of the disease process. Study of the IA 

and CT using this model will permit the investigation of potential phenotypic diversity 

among laryngeal muscles and offer a more thorough understanding of the biological 

properties of the IA and CT muscles of the larynx. Findings from the study have the 

potential to make notable contributions to the clinical management of voice disorders. 

Voice disorders plague an estimated 6% of the general population of the United 

States.213 Studies conducted in treatment-seeking populations suggest that a significant 

portion of these disorders contain an element of laryngeal muscle dysfunction.214, 215 As 

discussed earlier, voice production is the result of a balanced and highly refined interplay 

between the intrinsic laryngeal muscles, the respiratory tract, and the supraglottal 

resonators.216 Perturbation of the system brought about by laryngeal pathology, 
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neuromuscular impairment, and/or learned patterns of muscle misuse has the potential to 

disturb this balance and trigger compensatory responses which further complicate the 

pathological sequela. Over the years, behavioral voice therapies have been applied to 

reduce aberrant patterns of laryngeal muscle behavior and restore normal patterns of 

intrinsic muscle control over the system.217-223  Many of these physiologic treatments 

have emerged from the skeletal muscle literature and have been founded upon 3 basic 

tenants: (1) programs of exercise can improve skeletal muscle mass, strength, and 

endurance; (2) laryngeal muscle is characteristic of the larger class of skeletal muscle; (3) 

laryngeal muscles are, as a group, are homogenous.  

A vast body of research conducted on limb skeletal muscle supports of the initial 

assertion.123, 224-231 Resistance exercise has been consistently related to improvements in 

limb muscle mass and strength,123, 224, 225, 228, 230 while endurance training has been 

associated with the shifting of limb muscle metabolic profiles toward a more oxidative, 

fatigue-resistant form.227, 229, 231 However, research supporting the final 2 principles has 

proven more elusive. In fact, a growing body of evidence supports the fact that certain 

members of the intrinsic laryngeal muscle group deviate significantly from the classic 

profile of skeletal muscle.3, 4, 6, 7, 13-15, 18-23, 25, 27, 51, 96 Differences in neural support, 

contractile protein composition, methods of energy production, and regenerative capacity 

raise questions as to the appropriateness of generalizing limb skeletal muscle literature to 

this highly specialized muscle group. Finally, the above research argues against the 

presence of a single laryngeal muscle phenotype.4, 17, 32, 34, 35 Within the larynx, there 

appears to be a duality of muscle phenotypes: one form characteristic of the larger class 

of prototypical limb skeletal muscles and one form highly specialized and divergent from 

classic muscle. As a result, the universal application of exercise principles across these 2 

broad phenotypes may be inappropriate.  

 The realization of laryngeal muscle deviation from limb muscle and the 

recognition of heterogeneity among the laryngeal muscles may make the blanket 

application of limb muscle rehabilitation principles to the laryngeal muscles 

inappropriate. Determining the phenotype of individual laryngeal muscles will be an 

important step in identifying specific muscular targets for therapy.  
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Purpose Statement 

The purpose of this study was to use the mdx mouse model of dystrophin 

deficiency to further demonstrate the biological characteristics of the IA and CT muscles. 

These specific muscles were selected for study because of their previously demonstrated 

deviations from other laryngeal muscles and their functional importance in voice 

production. Information from the study will be helpful in further defining the biological 

properties of the IA and CT and in determining their similarity to or divergence from 

limb skeletal muscle. Additionally, the study’s findings will be helpful in considering the 

presence of phenotypic diversity within the intrinsic laryngeal muscle group. In time, an 

improved understanding of individual laryngeal muscle biology will be important in 

further defining the biomechanics of voice production, the potential laryngeal response to 

neuromuscular disease and/or impairment, and expected laryngeal muscle response to 

medical and/or behavioral treatments.  

Sparing of the muscles would point to their similarity to laryngeal muscles and 

the preservation of their important contribution to respiration, swallowing, and voicing in 

DMD. However, indicators of pathology in the dystrophin-deficient IA and CT muscles 

would highlight their similarity to limb skeletal muscle and suggest heterogeneity among 

the intrinsic laryngeal muscles. Mild evidence of pathology within the IA and CT, such as 

that found in earlier studies of the masseter and the CT,4, 9 would support the 

categorization of these muscles as hybrid forms of skeletal muscle, evidencing features of 

both limb and specialized muscles.  

Finally, as mouse laryngeal anatomy has not been clearly defined, a secondary 

purpose of this study was to define the myology of the mouse larynx and to identify 

anatomical and functional counterparts of the human IA and CT muscles for study.  

Hypotheses 

 The study will test the primary hypothesis that the mouse counterparts of the IA 

and CT muscles are affected by dystrophin deficiency. Specific null and alternative 

hypotheses under investigation in the study are detailed below.  

Null Hypothesis 1. Qualitative, histological assessment of the mdx IA, or its counterpart, 

will show no evidence of pathology (ie, fibrosis, necrosis, pleomorphism, Evans blue dye 

infiltration). 
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Alternative Hypothesis 1. Qualitative, histological assessment of the mdx IA, or 

its counterpart, will show evidence of pathology (fibrosis, necrosis, 

pleomorphism, Evans blue dye infiltration). 

Null Hypothesis 2. Qualitative, histological assessment of the mdx CT will show no 

evidence of pathology (eg, fibrosis, necrosis, pleomorphism, Evans blue dye infiltration). 

Alternative Hypothesis 2. Qualitative, histological assessment of the mdx CT will 

show evidence of pathology (eg, fibrosis, necrosis, pleomorphism, Evans blue dye 

infiltration). 

Null Hypothesis 3. There will not be a significantly greater percentage of centrally 

positioned nuclei in mdx IA, or its counterpart, than in the IA control. 

Alternative Hypothesis 3. There will be a significantly greater percentage of 

centrally positioned nuclei in the mdx IA, or its counterpart, than in the IA 

control. 

Null Hypothesis 4. There will not be a significantly greater percentage of centrally 

positioned nuclei in mdx CT than in the CT control. 

Alternative Hypothesis 4. There will be a significantly greater percentage of 

centrally positioned nuclei in the mdx CT than in the CT control. 

The above hypotheses will be tested using the mdx model reviewed in this chapter. In the 

following chapter, the study’s methodology will be considered in detail. Animals and 

experimental assays selected for study are presented, and methods of data analysis are 

discussed.  
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Figure 2.1. Model of the dystrophin-glycoprotein complex. In DMD, the absence of 
dystrophin results in disruption of the entire complex and subsequent disruption of 
sarcolemmal integrity.  
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CHAPTER 3: METHODOLOGY 

In Chapter 2, the literature supporting this study and the rationale behind this 

study were discussed. The purpose of this study was to determine the effects of 

dystrophin deficiency on the IA and CT muscles of the larynx. The study was designed to 

offer additional insight into the physiology of the IA and CT muscles and their similarity 

or dissimilarity to laryngeal muscle through use of the mdx mouse model of dystrophin 

deficiency. In the section below, the methodology used in this study is reviewed. 

Animals 

Use of experimental animals was approved by the Institutional Animal Care and 

Use Committee at the University of Kentucky. Six C57BL/6J mice were obtained from 

Jackson laboratories for a preliminary investigation of mouse laryngeal anatomy. For the 

primary investigation, an additional 16 mice (8 C57BL/10SnJ; 8 C57BL/10Sc-Sn-Dmd 

mdx/J) were obtained from Jackson Laboratories  

Preliminary Investigation of Mouse Laryngeal Anatomy 

Eight to twelve-week old male C57BL/6J (n = 6) were obtained from Jackson 

Laboratories. Mice were euthanized by CO2 asphyxia. Whole larynges were quickly 

dissected. For consideration of gross anatomy, three larynges were dissected and viewed 

from the anterior, posterior, lateral, and mid-sagittal aspects under a Nikon SMZ1500 

stereotactic microscope (Nikon, Inc., Melville, NY). Larynges were then transferred to a 

Nikon E600 microscope (Nikon Inc., Melville, NY). Brightfield illumination was used 

along with supplemental external lighting. Select images were captured with a Spot RT 

digital camera (Diagnostic Instruments, Inc., Sterling Heights, MI) and a PowerMAC G4 

computer (Apple Computer, Inc., Cupertino, CA) equipped with Spot RT software 

version 4.0 (Diagnostic Instruments, Inc., Sterling Heights, MI). All views were analyzed 

by a muscle physiologist, a speech physiologist, and two speech-language pathologists 

with expertise in laryngeal anatomy. Consensus was reached prior to the identification 

and labeling of laryngeal structures. 

Three larynges were quickly embedded in an optimal cutting temperature 

medium, and frozen in 2-methylbutane cooled to its freezing temperature with liquid 

nitrogen. Serial 10-µm thick frontal, sagittal, and transverse sections of whole larynges 

were collected. Frozen sections were later stained with hematoxylin and eosin186 and 
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examined under a Nikon E600 microscope (Nikon Inc., Melville, NY).  Serial images 

within each plane were captured with a Spot RT digital camera (Diagnostic Instruments, 

Inc., Sterling Heights, MI) and a PowerMac G4 computer (Apple Computer Inc., 

Cupertino, CA) equipped with Spot RT software, version 4.0 (Diagnostic Instruments, 

Inc.).  

Stored serial images from each of the planes of study were examined by a muscle 

physiologist, a speech physiologist, and 2 speech-language pathologists with expertise in 

laryngeal anatomy to determine the presence and location of laryngeal cartilages and the 

intrinsic laryngeal muscles. Information obtained from these views was combined with 

knowledge gained during the examination of whole larynges to formulate a description of 

mouse laryngeal muscle structure and function. At each point, consensus was reached 

among group members before inclusion of the feature in the final model. Results from the 

preliminary investigation were used to select muscles for study in the primary 

investigation.  

Primary Investigation 

Eight-week old male C57Bl/10SnJ (n = 8) and C57BL/10ScSn-Dmd mdx/J mice 

(n = 8) were obtained from Jackson Laboratories. The mdx mouse strain is the result of a 

spontaneous X-linked mutation of the C57BL/10ScSn strain178 resulting in impaired 

expression of the full-length dystrophin in skeletal muscle.36 The mdx mouse strain is 

considered to be the standard animal model for the study of human Duchenne muscular 

dystrophy (DMD)177 and was, therefore, the strain of choice for this investigation. The 

wild type C57Bl/10SnJ was used as control.ϕ  

Eight-week old (adult) mice were selected for study, following a model 

established in other published studies of the mdx mouse.181, 182 The mouse strain 

evidences muscle damage at 3-4 weeks of age and significant inflammation and muscle 

regeneration are evidenced by 8 weeks.181, 182 The only muscle known to worsen with 

aging beyond the 8-week point is the diaphragm.207 As a result, 8-week mice permitted 

assessment of disease markers.  

                                                 
ϕ The C57BL/10SnJ and C57BL/10ScSn are minor substrains of C57BL. Both strains are 
considered appropriate controls for the mdx mutation. 
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Four skeletal muscles were considered. The IA and CT muscles were the 

experimental muscles used in the study. The PCA was examined because of its 

documented status as a spared muscle. The gastrocnemius displays the classic 

pathological cascade of DMD, and its inclusion permitted the comparison of the 

laryngeal muscles to a stereotypically affected muscle group. 

Mice were euthanized by CO2 asphyxia. Whole larynges and the gastrocnemius 

muscle were quickly dissected, embedded in an optimal cutting temperature medium, and 

frozen in 2-methylbutane cooled to its freezing temperature with liquid nitrogen. 

Histology and Immunocytochemistry 

 Four mdx and four control mice were used for histological and 

immunocytochemical investigations. Serial 10-µm thick sagittal and transverse sections 

of whole larynges were collected to permit cross-sectional examination of the IA (or 

murine counterpart), CT, and PCA muscles. (Sagittal cuts provided the IA and CT in 

cross section, whereas transverse cuts offered the PCA muscle in cross section.) Finally, 

10-µm thick cross sections of whole gastrocnemius muscles were collected. For each 

histological or immunocytochemical assay, slides from the above muscle groups were 

processed concurrently to allow for the comparison across muscles.  

Morphology 

For overall morphology and central nuclei counts (a marker of fiber 

regeneration105, 185),  2 slides (3-5 sections per slide) were selected from each muscle (CT, 

IA counterpart, PCA, gastrocnemius) from each mouse (4 control and 4 mdx) for a total 

of 64 slides. Slides were stained with hematoxylin and eosin.186 After staining, slides 

were dehydrated in an ethanol series, cleared with xylene, mounted in Permount and 

viewed with a Nikon E600 microscope (Nikon Inc., Melville, NY).  Images were 

captured with a Spot RT digital camera (Diagnostic Instruments, Inc., Sterling Heights, 

MI) and a PowerMac G4 computer (Apple Computer Inc., Cupertino, CA) equipped with 

Spot RT software, version 4.0 (Diagnostic Instruments, Inc.). To determine the 

percentage of nuclei in the central position, the total number of muscle fibers and the 

number of fibers with centrally positioned nuclei were counted in control and mdx CT 

(full muscle, all fields), transverse IA (full muscle, all fields), PCA (full muscle, all 

fields), and gastrocnemius muscles (3-5 random fields per muscle). The quantitative 
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analysis was performed by 2 trained personnel blinded to the experimental conditions. 

Training of personnel was provided by the primary investigator (LBT) previously trained 

in nuclei counting in the Department of Physiology. Twenty-percent of fields were 

randomly selected for examination by both raters to determine inter-rater reliability.232-235 

Sarcolemmal Integrity  

Live cells are capable of controlling the uptake and distribution of injected dyes, 

whereas damaged cells are not.188 Consequently, vital dyes can be injected into a living 

animal and its distribution can be assessed to determine the integrity of cell membranes. 

In this study, the vital dye Evans blue (Sigma Chemical Corp.) was used to examine 

sarcolemmal integrity in control and mdx mice.189, 190 The clear and binary results 

associated with Evans blue (emission of a bright red signal when activated by green light 

in fluorescence microscopy189) indicated that a sample size of 4 animals per group was 

appropriate for testing of this parameter. Dye was injected into 4 control and 4 mdx mice 

(50mg/kg body weight, i.p.). Animals were sacrificed approximately 18 hours after 

injection.236 Whole larynges and gastrocnemius muscles were quickly dissected, 

embedded in an optimal cutting temperature medium, and frozen in 2-methylbutane 

cooled to its freezing temperature with liquid nitrogen. Unfixed muscle sections (cut as 

per the above description) were mounted with SlowFade Gold Antifade reagent 

(Invitrogen, Carlsbad, CA) and examined by fluorescence microscopy to determine the 

extent of intracellular dye incorporation.236 Infiltration of dye into the muscle cell 

indicated a loss of sarcolemmal integrity, and maintenance of the dye in the extracellular 

space confirmed the presence of an intact cell membrane. Photographs were taken under 

standardized exposure settings within muscle groups to permit comparison of dye 

infiltration across control and mdx animals.  

Immunocytochemistry 

Immunocytochemical assays were used to: (1) document the presence and general 

distribution of dystrophin in control and mdx mice, and (2) consider the potential 

compensatory sarcolemmal re-localization of utrophin in spared muscles.  

Dystrophin was examined using a rabbit polyclonal antibody against dystrophin 

(ab15277) purchased from Abcam Incorporated (Cambridge, MA). Ten-μm thick frozen 

sections of control and mdx muscles were rehydrated in PBS and incubated with the 
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primary antibody (diluted 1:100 in PBS/Tris/goat serum) in a humid chamber at 4°C 

overnight; negative controls were rehydrated and incubated with non-immune serum 

(PBS/Tris/goat serum) under the same conditions. After washing in PBS, 

immunoreactivity was visualized by incubation for 1 hour at room temperature with 

AlexaFluor 555 goat anti-rabbit IgG secondary antibody (Invitrogen, Carlsbad, CA) 

diluted 1:100 in PBS. After washing, sections were fixed in 2% paraformaldehyde in 

PBS, rinsed with PBS, and mounted with SlowFade Gold antifade reagent (Invitrogen, 

Carlsbad, CA). Sections were visualized under fluorescence microscopy, and 

qualitatively considered for protein presence and distribution. Negative controls (no 

application of the primary antibody) were used to document the extent of non-specific 

binding of the secondary antibody. Photographs were taken under standardized exposure 

settings within muscle groups to permit comparison across mdx and control animals. A 

second run conducted as described above was used to confirm the results of the initial 

experiment.  

The dystrophin homolog, utrophin, was considered using both monoclonal and 

polyclonal antibodies. A mouse monoclonal antibody against utrophin’s N-terminus 

domain (DRP3/20C5) was purchased from Abcam Laboratories (Cambridge, MA). Ten-

μm thick frozen sections of control and mdx muscles were fixed in 2% paraformaldehyde 

in PBS and rinsed with PBS/Tris. To control the reaction of the mouse tissue to the 

mouse monoclonal antibody, sections were blocked with Histomouse BEAT blocking 

solutions (Invitrogen, Carlsbad, CA). After blocking, sections were rinsed with PBS/Tris 

and incubated with the primary antibody (1:10 in PBS/Tris/goat serum) and an α-

bungarotoxin-Alexa Fluor 488 conjugate (Invitrogen, Carlsbad, CA) double label (1:500 

in PBS/Tris/Goat) in a humid chamber at 4°C overnight. Use of the double label 

permitted identification of neuromuscular junction sites192 and the localization of 

utrophin relative to those sites. Negative controls were incubated with non-immune 

serum in place of the primary antibody. After washing with PBS, immunoreactivity was 

visualized by incubation for 1 hour with Texas Red secondary antibody (Invitrogen, 

Carlsbad, CA) diluted 1:200 in PBS/Tris/goat serum. Sections were rinsed in PBS/Tris, 

mounted with SlowFade Gold antifade reagent (Invitrogen, Carlsbad, CA), visualized by 

fluorescence microscopy, and qualitatively considered for protein presence and 
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distribution. Negative controls (no application of the primary antibody) were used to 

document the extent of non-specific binding of the secondary antibody. A second run 

conducted as described above was used to confirm the results of the initial experiment.  

A goat polyclonal antibody (sc-7459; Santa Cruz Biotechnology, Santa Cruz, CA) 

against utrophin’s C-terminus domain was also used. Ten-μm thick frozen sections of 

control and mdx muscles were rehydrated in PBS and blocked in 4% goat serum for 1 

hour. Sections were then incubated with the primary antibody (1:50 in PBS/Tris/goat 

serum) and an α-bungarotoxin-Alexa Fluor 488 conjugate (Invitrogen, Carlsbad, CA), 

Eugene, OR) double label (1:500 in PBS/Tris/Goat) in a humid chamber at 4°C 

overnight. Use of the double label permitted identification of neuromuscular junction 

sites192 and the localization of utrophin relative to those sites. Negative controls were 

rehydrated and incubated with non-immune serum under the same conditions. After 

washing in PBS, sections were incubated in AlexaFluor-350 donkey anti-goat IgG 

secondary antibody (Invitrogen, Carlsbad, CA) for 1-hour at room temperature. After 

washing in PBS, sections were fixed in 2% paraformaldehyde in PBS and mounted with 

SlowFade Gold antifade reagent (Invitrogen, Carlsbad, CA). Sections were visualized by 

fluorescence microscopy, and qualitatively considered for protein presence and 

distribution. Negative controls (no application of the primary antibody) were used to 

document the extent of non-specific binding of the secondary antibody. A second run 

conducted as described above was used to confirm the results of the initial experiment.  

Data Analysis 

Overall Morphology 

Each muscle was considered under light microscopy for the presence or absence 

of salient markers of the disease process, including: inflammation, fibrosis, necrosis, fatty 

infiltration, and pleomorphism. Examination of the features was qualitative, and findings 

were supported visually with photographs.  

Central Nucleation 

Two raters blind to the purpose of the study viewed photographs of each muscle 

for the purpose of counting central nuclei. The rater counted the total number of fibers in 

the image (IA, CT, PCA - full muscle, all fields; gastrocnemius – 3 to 5 random fields per 

muscle) and the number of fibers with centrally positioned nuclei. Mean percentages of 
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central nuclei were compared across control and mdx samples within each muscle group 

using the Wilcoxon Rank-Sum Test, the non-parametric equivalent of the independent t-

test .237 The non-parametric option was selected due to heterogeneity of sample size and 

heterogeneity of variance across muscle groups. The Wilcoxon Rank-Sum test is based 

upon ranked data. As such, nuclei counts for control and mdx samples within each muscle 

group (gastrocnemius, CT, IA counterpart, and PCA) were listed, ranked, and then re-

allocated to their original mdx or control classification.237, 238 When control and mdx 

groups were equal in size, the test statistic (Ws) was equal to the smaller summed rank. 

When control and mdx groups were not equal in size, the test statistic (Ws) was equal to 

the sum of ranks in the group containing fewer samples. Interpretation of the test statistic 

was based upon its conversion to the z-score.238 For the conversion, sample sizes were 

used to determine the mean (Ws-bar) and standard error (SEws) of the test statistic. 

Results of these calculations were then entered into the following equation to calculate 

z.238  

     Ws – Ws-bar 

z  =          

     SEws 

 

Alpha levels for all one-tailed non-parametric tests were set at 0.05, indicating 

significance if the observed z-scores exceed 1.645. All calculations were performed using 

SPSS 15.0 (SPSS Inc., Chicago, IL).  

Inter-rater reliability for central nuclei counts was determined using the intra-class 

correlation coefficient, two-way mixed model.239 The coefficient determines the 

proportion of variance in an observation that is attributable to between-rater variability in 

scores.240 The correlation is appropriate for use with continuous data and is preferred to 

Pearson’s r when sample size is small (n < 15). Variations of the intra-class correlation 

coefficient are available, and the optimal version of the statistic is chosen based upon the 

conditions of the raters and the observations in the study. The two-way mixed model 

(single measure, absolute agreement) was selected for this study, as the coefficient was 

comparing a fixed set of raters on a random set of observations.239 Interpretation of the 

coefficient is based upon a maximum value of 1.0, indicating perfect agreement among 
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raters.240 For the purpose of this study, 20% of the photographs used in determining 

central nucleation were randomly selected for examination by both raters; the coefficient 

was then calculated based upon the raters’ central nuclei measures on the selected set of 

tokens. The criterion of 20% of the total token sample for reliability calculation was 

selected based upon reliability methods recently published in the speech-language 

pathology literature.232-235 All calculations were performed using SPSS 15.0 (SPSS Inc., 

Chicago, IL).  

Sarcolemmal Integrity 

Muscles were examined under fluorescence microscopy to determine the location 

of Evans blue dye relative to the cell membrane. A visual assessment of each muscle 

identified the presence or absence of fluorescent dye within the fiber. Muscles evidencing 

dye penetration into individual fibers were classified as having a disrupted sarcolemmas 

(dystrophic), whereas muscles retaining dye in the extracellular space were classified as 

intact (unaffected). The results of dye testing were expected to be binary, with dystrophic 

muscles evidencing Evans blue positive fibers and unaffected muscles showing no 

positive fibers. Consequently, qualitative methods involving the visual examination of 

muscle cross sections were considered appropriate for analysis. Results were supported 

visually with photographs.  

Immunocytochemistry 

Muscles were examined under florescence microscopy to qualitatively evaluate 

the presence and distribution of dystrophin and utrophin in control and mdx muscles. 

Negative controls (no application of primary antibody) were used to mark the extent of 

nonspecific binding. Fluorescence of the secondary antibody beyond that observed in the 

negative controls indicated the presence of the target protein in the sample. 

 This chapter has provided an overview of the study’s methodology. In the 

following chapter, results of the study are detailed. 
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CHAPTER 4: RESULTS 

 In the previous chapter, the methods used in this investigation were presented. In 

this chapter, results of the histological and immunocytochemical assays are reviewed.  

Preliminary Investigation 

 Three mice larynges were examined under an Olympus SZX9 stereomicroscope 

(Olympus, Center Valley, PA) to define the gross anatomy of the mouse larynx. All 

larynges were viewed by a muscle physiologist, speech physiologist, and 2 speech-

language pathologists with expertise in laryngeal anatomy. During viewing, portions of 

the larynx were systematically removed by the muscle physiologist to permit viewing 

from superficial to deep aspects of the larynx. Select portions of the larynx were further 

examined at 40X under a Nikon E600 microscope (Nikon Inc., Melville, NY) using 

supplemental illumination positioned above the stage. Images were photographed with a 

Spot RT digital camera (Diagnostic Instruments, Inc., Sterling Heights, MI) and a 

PowerMac G4 computer (Apple Computer Inc., Cupertino, CA) equipped with Spot RT 

software, version 4.0 (Diagnostic Instruments, Inc.). Further, 10-μm thick serial 

cryosections of 3 additional mouse larynges were obtained in the sagittal, horizontal, and 

frontal planes. Serial sections within each plane were stained with hematoxylin and 

eosin186 and later viewed under a Nikon E600 microscope (Nikon Inc., Melville, NY). 

Images were captured as described above and considered by the aforementioned group of 

investigators to gain an appreciation of mouse laryngeal anatomy.  

Framework 

The larynx was bordered caudally by the signet-shaped cricoid cartilage. Ventral 

and rostral to and jointed with the cricoid cartilage was the shield-shaped thyroid 

cartilage. Paired cornu projected in the rostral and caudal directions along the dorsal 

aspect of the cartilage. The relationship between the thyroid and cricoid cartilages was, 

therefore, similar to that observed in the human larynx. Further, bilateral arytenoid 

cartilages articulated with the cricoid lamina dorsally. Arytenoid cartilages were 

characterized by a vocal process which projected caudally toward the thyroid angle and a 

muscle process which projected laterally. Patterns for these processes were similar to that 

observed in the human larynx. Arytenoid apices demonstrated a notable arch toward the 

dorsal aspect of the larynx. The epiglottis originated along the interior of the thyroid 
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cartilage and projected rostrally toward the hyoid bone as observed in the human larynx. 

A U-shaped cartilage, previously described by shape in the mouse162 and as the alar 

cartilage in the rat,160 was observed ventrally, just rostral to the vocal folds and caudal to 

the epiglottis. Corniculate and cuneiform cartilages present in the human larynx were 

unable to be appreciated in the mouse from the views obtained (Figures 4.1 - 4.6). 

Musculature 

Posterior cricoarytenoid, LCA, and TA muscles were positioned as in the human 

larynx and were presumed to function as their counterparts in humans (Figures 4.4, 4.5, 

and 4.7). Cricothyroid muscles were notable along the lateral aspect of the laryngeal 

complex. More dorsal fibers of the CT coursed perpendicular to the long edge of the 

vocal fold, while more caudal fibers coursed at a slightly oblique angle with respect to the 

folds. In contrast to the CT’s more vertical orientation in the human larynx, the murine 

CT coursed more horizontally between the thyroid and cricoid cartilages (Figures 4.4 and 

4.8). This orientation of the murine CT suggested that the muscle works to move the 

thyroid upon the cricoid in a shearing, rather than rocking, motion. Finally, the IA muscle 

was not identified in the mouse larynx. A thin muscle was observed coursing from the 

medial aspect of the dorsal face of the arytenoid cartilages to a midline prominence on 

the rostral aspect of the cricoid lamina. The angle of fibers ranged from a near horizontal 

course in those fibers originating from the lower aspect of the arytenoid cartilage to an 

oblique course in fibers originating from the superior aspect of the arytenoid (Figures 4.9-

4.11). The position and direction of fibers suggested that the muscle played a role in 

drawing the arytenoid bodies to midline and tilting of the arytenoid apices toward 

midline. It was proposed that this dual action would result in complete adduction of the 

cartilaginous vocal fold and would serve the role of the transverse and oblique IA fibers 

observed in humans. The novel muscle appeared similar to the superior cricoarytenoid 

(SCA) muscle described in the rat and was, therefore, labeled the SCA muscle by the 

investigators.ψ  

 

 

                                                 
ψ This murine counterpart of the IA is hereafter referred to in this document as the superior 
cricoarytenoid or SCA muscle. 
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Additional Observations 

Aryepiglottic folds were positioned as in the human larynx and marked the entry 

into the laryngeal vestibule (Figure 4.5). A small, recessed area was noted at the midline 

of the ventral wall of the larynx. The pouch, located just rostral to the vocal fold and 

caudal to the epiglottal base, was bordered by the alar cartilage described above (Figure 

4.6). These findings confirmed a previous notation of the sac by Nakano and Muto.162 

The ventricular fold and ventricle were absent in the mouse (Figure 4.3). 

Primary Investigation 

Histology 

Overall Morphology 

Muscles from control and mdx mice were examined histologically after staining 

with hematoxylin and eosin. Control gastrocnemius muscles showed large, regular fibers 

with peripheral nuclei. By contrast, dystrophin-deficient gastrocnemius muscles were 

pleomorphic and demonstrated notable areas of inflammation, necrosis, and fibrosis. 

Control laryngeal muscles (PCA, CT, SCA) showed small, regular fibers with 

peripherally-positioned nuclei. Laryngeal muscles of mdx mice also showed small, 

regular fibers with peripheral nuclei: mdx PCA, CT, and SCA muscles did not evidence 

the pathological changes of inflammation, fibrosis, and fatty infiltration obvious in the 

mdx gastrocnemius (Figures 4.12 and 4.13). 

Central Nucleation 

 Random samples from control and mdx mice were examined for nuclei position 

(single sample of each muscle from each mouse, 3-5 random fields for gastrocnemius, 

full muscle all fields for PCA, CT, and SCA). In mature muscle fibers, nuclei are located 

in the periphery of the fiber.185 However, in regenerating muscle fibers, such as those 

observed in limb and respiratory skeletal muscles affected by DMD, nuclei are positioned 

centrally.105, 185 Wilcoxon Rank-Sum tests were conducted for control-mdx comparisons 

of central nucleation percentages within each muscle group. Results indicated that the 

mdx gastrocnemius (n = 16) had significantly higher percentages of central nucleated 

fibers than control gastrocnemius muscles (n = 16), W = 136.00, z = -4.826, p < .000, 

suggesting the presence of ongoing fiber regeneration in mdx gastrocnemius muscles. 

mdx PCA, CT, and SCA muscles did not show significantly higher percentages of central 
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nucleation than their control muscle counterparts. The results indicated no evidence of 

increased muscle regeneration in dystrophin-deficient laryngeal muscles (Tables 4.1 - 4.2 

and Figure 4.14). 

 It should be noted that in some cases the central nuclei percentages (Table 4.1) are 

higher than those previously reported for control and mdx skeletal muscle. Elevated 

percentages were felt to be a factor of: (1) use of a more liberal definition of central 

nucleation in this study and (2) difficulty obtaining strict cross-sectional cuts of the 

laryngeal muscles.  

Inter-Rater Reliability. Twenty percent of histologic images used in the 

determination of central nucleation were randomly selected and examined by both raters. 

Inter-rater reliability was assessed using the intraclass correlation coefficient (two-way, 

mixed model; single measure). Results demonstrated a high degree of agreement between 

raters (Intraclass Correlation Coefficient = .978).  

Sarcolemmal Integrity 

 The vital dye Evans blue was used to assess sarcolemmal integrity. In dystrophin-

deficient gastrocnemius muscles, numerous clusters of Evans blue-positive fibers were 

found throughout the muscle, indicating a lack of sarcolemmal integrity. In addition, mdx 

strap muscles of the neck (dissected and embedded en bloc with the larynx) showed 

multiple clusters of dye-positive fibers. However, the PCA, SCA, and CT muscles of 

control and mdx mice and the gastrocnemius and strap muscles of control mice did not 

evidence Evans blue positive fibers. In these cases, the dye did not penetrate the 

sarcolemmal boundary and remained, instead, in the extracellular space (Figure 4.15). 

These results verify the sarcolemma’s loss of integrity in mdx leg and strap muscle and its 

retention in mdx laryngeal muscles. 

It should be noted that non-distinct areas of dye collection were observed in 

anterior aspects of the CT. These areas were examined by a muscle physiologist (FH) 

with 18 years of experience and were determined to be an artifact. These collections of 

dye were light in comparison to dye-positive fibers observed in affected gastrocnemius 

and strap muscles. Further, the areas of dye collection were non-distinct and were not 

confined to the interior of muscle fibers.  
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Immunocytochemistry 

Dystrophin 

 Dystrophin was identified along the perimeter of the sarcolemma in 

gastrocnemius and laryngeal muscles of control mice but was absent in the corresponding 

muscles of mdx mice. Sparse evidence of non-specific binding of the secondary antibody 

to mdx tissue was identified in some sections; however, clear peripheral demonstration of 

the protein was not present as in control muscles. These results verify the presence of the 

protein in both leg and laryngeal muscles of control mice and its absence in both muscle 

groups in mdx models (Figure 4.16).  

Utrophin 

 With use of the goat polyclonal antibody against utrophin, labeling was identified 

along the perimeter of the cell membrane in control gastrocnemius and laryngeal 

muscles. Areas of labeling did not correspond with the location of neuromuscular 

junctions. Limited evidence of non-specific binding of the secondary antibody to mdx 

gastrocnemius and laryngeal tissue was identified in some sections; however, clear 

localization of the protein to NMJ sites or the sarcolemmal boundary was not observed in 

mdx muscle (Figure 4.17).  

The above results showing utrophin localization along the cell membrane of 

control tissue and a lack of utrophin labeling in mdx tissue suggested potential cross-

staining with dystrophin, a concern previously reported in the literature.202 Consequently, 

monoclonal antibodies against utrophin were used to achieve a more specific protein 

response.  

A mouse monoclonal antibody against utrophin revealed utrophin localization at 

the NMJs of control gastrocnemius muscles. In mdx gastrocnemius muscles, utrophin was 

delocalized from NMJs and identified along the perimeter of some fibers. mdx 

gastrocnemius fibers showing sarcolemmal utrophin were present in clusters across the 

muscle. Utrophin was not identified at NMJ sites of control or mdx laryngeal muscles. 

Sparse non-specific binding of the secondary antibody was observed along the perimeter 

of some control and mdx laryngeal fibers, a finding likely secondary to the staining of 

extraneous proteins or the staining of dystrophin (in control muscle), a protein with a 

high degree of homology to utrophin.  
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To consider the potential cross-staining of dystrophin with the monoclonal 

antibody, the investigator used a Basic Local Alignment Search Tool (BLAST) to 

compare the utrophin amino acid sequence targeted by the monoclonal antibody with 

other mouse proteins. Utrophin antibody (DRP3/20C5; Abcam, Cambridge, MA) targets 

the first 261 amino acids of human utrophin. Hence, this portion of the human protein 

was considered using the SwissProt database. Results showed a 79% positive match 

between the amino acid sequence targeted by the monoclonal antibody against utrophin 

and murine dystrophin, indicating a high potential for dystrophin cross-staining with the 

monoclonal antibody used in the study.  

Results in Relation to Hypotheses 

 This study tested the main hypothesis that the mdx SCA and CT muscles would be 

affected by dystrophin deficiency. Results as they pertain to specific hypotheses are noted 

below. 

Hypothesis 1 

Null. Qualitative, histological assessment of the mdx IA, or its counterpart, will 

show no evidence of pathology (ie, fibrosis, necrosis, pleomorphism, Evans blue dye 

infiltration). 

Alternative. Qualitative, histological assessment of the mdx IA, or its counterpart, 

will show evidence of pathology (fibrosis, necrosis, pleomorphism, Evans blue dye 

infiltration). 

Results. Results of histological tests showed no evidence of fibrosis, necrosis, 

pleomorphism, or Evans blue dye infiltration in the SCA muscle of the mdx mouse. The 

null hypothesis was retained. 

Hypothesis 2 

Null. Qualitative, histological assessment of the mdx CT will show no evidence of 

pathology (eg, fibrosis, necrosis, pleomorphism, Evans blue dye infiltration). 

Alternative. Qualitative, histological assessment of the mdx CT will show 

evidence of pathology (eg, fibrosis, necrosis, pleomorphism, Evans blue dye infiltration). 

Results. Results of histological assays demonstrated no evidence of fibrosis, 

necrosis, pleomorphism, or Evans blue dye infiltration in the CT muscle of the mdx 

mouse. The null hypothesis was retained. 
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Hypothesis 3 

Null. There will not be a significantly greater percentage of centrally positioned 

nuclei in mdx IA, or its counterpart, than in the IA control. 

Alternative. There will be a significantly greater percentage of centrally 

positioned nuclei in the mdx IA, or its counterpart, than in the IA control. 

Results. Results showed that the percentage of centrally positioned nuclei in the 

mdx SCA was not significantly greater than the SCA control. The null hypothesis was 

retained. 

Hypothesis 4 

Null. There will not be a significantly greater percentage of centrally positioned 

nuclei in mdx CT than in the CT control. 

Alternative. There will be a significantly greater percentage of centrally 

positioned nuclei in the mdx CT than in the CT control. 

Results. Results showed that the percentage of centrally positioned nuclei in the 

mdx CT was not significantly greater than the CT control. A two-fold, but non-significant 

increase in central nucleation was observed in this muscle. The null hypothesis was 

retained.  

 Thus, the results of the study demonstrated the SCA and CT muscles of the mouse 

larynx are spared from myonecrosis dystrophin deficiency. Interestingly, the mdx CT 

showed subtle histologic changes (ie, increased central nucleation), indicative of 

increased regeneration.  
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Table 4.1. Percentage Centrally Nucleated Fibers by Muscle 
            
 
Muscle   N          Mean Percent    SD  
   (# sections rated) Central Nucleated Fibers  
            
 
Gastrocnemius 
 
 Control  16         3.93              3.08 
 
 mdx   16       65.93   7.99 
 
PCA 
 
 Control  3         7.13   3.83 
 
 mdx   4         4.88   2.14 
  
SCA  
 
 Control  4        5.33  3.01 
 
 mdx   4        1.60  1.62 
 
CT 
 
 Control  4        5.83  4.30 
 
 mdx   4       11.63  2.76 
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Table 4.2. Wilcoxon Rank Sum Statistics for Control-mdx Muscle Comparisons 
             
 
Muscle Group n Mean Ranks  Observed z Significance 
______________________________________________________________________  
 
Gastrocnemius         -4.826       <.000        
 
 Control 16       8.50            
 
 mdx  16     24.50 
 
PCA          -.707          .313 
 
 Control  3      4.67 
 
 mdx   4      3.50  
 
SCA                     -1.89          .045 
 
 Control  4      6.13       
 
 mdx   4      2.88 
 
CT          -1.73          .058 
 
 Control  4       3.0       
 
 mdx   4       6.0 
 
             
 



 

73 

 

 

Figure 4.1. Hematoxylin and Eosin Staining of Mouse Larynx Viewed from Superior 
Aspect (40X). Image shows the ring-shaped cricoid cartilage (stained purple) bordered 
posteriorly by the esophagus. 
 

 

 
 



 

74 

 
 
Figure 4.2. Hematoxylin and Eosin Staining of Mouse Larynx Viewed from Superior 
Aspect (40X). Image shows thyroid cartilage bordering the anterior larynx and bilateral 
arytenoid cartilages positioned posteriorly. Vocalis (VOC) and muscularis portions of the 
thyroarytenoid are visualized coursing from the thyroid to arytenoid cartilages.  
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Figure 4.3. Superior View of C57BL Mouse Larynx (40X). Image shows thyroid 
cartilage and arytenoid cartilages positioned as in the human larynx. Bilateral TA 
muscles are observed coursing between the thyroid cartilage (TC) and arytenoid 
cartilages. Note: Ventricular folds and ventricle absent in the mouse model.  
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Figure 4.4. Hematoxylin and Eosin Staining of Mouse Larynx Viewed along a Sagittal 
Cut (40X). Image illustrates positioning of thyroid, cricoid, and arytenoid cartilages as in 
the human larynx. Attachment of the TA, LCA, and PCA muscles to the muscle process 
(MP) of the arytenoid is appreciated. Extreme anterior aspect of CT muscle is observed 
coursing between cricoid and thyroid cartilages.  
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Figure 4.5. Posterior View of Laryngeal Inlet (40X). Image illustrates bilateral arytenoid 
bodies in adducted position (center of image) and bilateral muscle processes (MP) 
projecting laterally. Base of the epiglottis is observed at the entry to the laryngeal inlet, 
and inlet is bordered by the aryepiglottic folds (AEF). Bilateral PCA muscles are 
observed coursing from the cricoid lamina to the muscle processes of the arytenoid 
cartilages.  
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Figure 4.6. Mid-sagittal Image of C57BL Mouse Larynx (40X). Bilateral TA muscles are 
observed coursing posteriorly on either side of the images’ focal point. The U-shaped alar 
cartilage and laryngeal pouch are positioned at midline, just superior to the TA muscles.  
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Figure 4.7. Sagittal View of C57BL Mouse Larynx (40X). Photograph taken after 
removal of the lateral portion of the thyroid lamina. View shows TA muscle coursing 
anteriorly from the muscle process (MP) of the arytenoid cartilage toward the thyroid 
cartilage. Fibers of the LCA muscle (cut-away) are observed at their attachment to the 
muscle process of the arytenoid. PCA muscles are viewed coursing inferiorly from their 
attachment to the muscle process.  
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Figure 4.8. Anterior Larynx Viewed from Sagittal Cut (40X). Thyroid (TC) and cricoid 
cartilages (CC) are viewed at their anterior articulation. CT muscle observed coursing 
between the thyroid and cricoid cartilages. A strap muscle of the neck (thyrohyoid) is 
noted superior to the CT.  
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Figure 4.9. Posterior View of Larynx (40X) Showing Bilateral Arytenoid Cartilages 
(adducted). Portion of bilateral PCA muscles are observed at bottom of image. Bilateral 
SCA muscles are observed at their origin along the posterior aspect of the arytenoid 
cartilages (AC).  
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Figure 4.10. Mid-sagittal Image of SCA. Note SCA muscle positioned along the posterior 
aspect of the arytenoid cartilage (40X). PCA muscle noted at bottom of image.  
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Figure 4.11. Hematoxylin and Eosin Staining of Mouse Larynx Viewed from Sagittal Cut 
(40X). Image illustrates SCA positioned at the posterior aspect of the arytenoid cartilage 
(Aryt). 



 

84 

 
 
Figure 4.12. Hematoxylin and Eosin Staining of Gastrocnemius Muscles (20X). A. 
Control gastrocnemius shows normal gastrocnemius morphology with rectangular muscle 
fibers and peripheral nuclei. B.C. mdx gastrocnemius evidences fibrosis, pleomorphic 
fibers, and central nuclei.  
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Figure 4.13. Hematoxylin and Eosin Staining of Control (A, B, C) and mdx (D, E, F) 
Laryngeal Muscles (40X). Control CT (A), SCA (B), and PCA (C) and mdx CT (D), SCA 
(E), and PCA (F) fibers demonstrate peripheral nuclei and consistent fiber size and shape.  
  



 
 
 
 

 
 

Figure 4.14. Central Nuclei Counts for Control and mdx Muscles of the Hindlimb and Larynx. Mean percentages of 
central nuclei (a marker of fiber regeneration) were elevated in the mdx gastrocnemius, while they remained 
unchanged in mdx laryngeal muscles.  
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Figure 4.15. Results of Evans Blue Dye Testing. Pictures demonstrate the effects of 
Evans Blue dye injection on control and mdx gastrocnemius (A, F), neck strap muscle (B, 
G), cricothyroid (C, H), superior cricoarytenoid (D, I), and posterior cricoarytenoid (E, J). 
Frames F and G illustrate that dye penetrated the sarcolemma and rested within the 
intracellular space of affected muscles (mdx gastrocnemius, mdx strap). Dye did not 
penetrate the sarcolemma of control muscles (frames A – E) or mdx laryngeal muscles 
(frames H, I, J). The results demonstrate the maintenance of sarcolemmal integrity in mdx 
laryngeal muscles. Gastrocnemius photos taken at 20X, laryngeal muscles at 40X. 
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Figure 4.16. Dystrophin Distribution. Immunocytochemisty of gastrocnemius (A, E), 
cricothyroid (B, F), superior cricoarytenoid (C, G), and posterior cricoarytenoid (D, H) 
muscles. Control muscles (left) show the presence of dystrophin in the sarcolemmal 
boundaries of muscle fibers. mdx muscles fail to show dystrophin. Gastrocnemius photos 
taken at 20X, laryngeal muscles at 40X. 
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Figure 4.17. Utrophin (Polyclonal) Distribution. Immunocytochemistry of laryngeal 
muscles (40X) using a polyclonal antibody against utrophin (blue labeling). 
Neuromuscular junctions are labeled as green. In control laryngeal muscles, utrophin 
labeling is noted along the sarcolemmal boundaries of fibers. Utrophin labeling did not 
correspond with the neuromuscular junction sites in control muscle. In mdx laryngeal 
muscle, sarcolemmal utrophin labeling was notably reduced, and labeling did not 
correspond with neuromuscular junction sites. Findings suggest the cross-labeling of 
dystrophin by the polyclonal utrophin antibody. Gastrocnemius photos taken at 20X, 
laryngeal muscles at 40X. 
  
 

 



 

90 

 
 
Figure 4.18. Utrophin (Monoclonal) Distribution. Immunocytochemistry of control (left) 
and mdx (right) muscles using a monoclonal antibody against utrophin (red labeling). 
Neuromuscular junctions are labeled in green. Control gastrocnemius muscles (A) show 
utrophin localized to NMJ sites, while mdx gastrocnemius muscles (E) show sarcolemmal 
localization of utrophin. In control CT (B), SCA (C), and PCA (D) muscles, utrophin is 
not present at NMJ sites. Finally, mdx CT (F), SCA (G), and PCA (H) muscles do not 
demonstrate sarcolemmal utrophin patterns as observed in the mdx gastrocnemius. 
Gastrocnemius photos taken at 20X, laryngeal muscles at 40X. 
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CHAPTER 5: DISCUSSION 

Results indicate that the SCA muscles of the larynx are spared from the 

pathological consequences of dystrophin deficiency in the mdx mouse. These results 

parallel those of earlier studies showing sparing of the TA, PCA, and LCA muscles.4, 7, 25 

Further, the findings suggest that the SCA muscle possesses a refined mechanism of 

sarcolemmal management comparable to that of the well-studied TA and PCA muscles.  

Findings also suggest significant disease protection in the CT muscle. The mdx 

CT evidenced subtle morphologic changes, characterized by percentages of central nuclei 

that were twice that of control muscles. While the increased presence of centrally 

nucleated fibers in the mdx CT was not significant per non-parametric statistical 

treatment, the increase did approach significance (p = .058) and similar increases were 

not observed in the CT’s sister laryngeal muscles. The increased central nucleation was 

noted in the absence of fibrosis, necrosis, inflammation, and sarcolemmal disruption. 

This pattern of increased central nucleation in the absence of myofiber degeneration is a 

pattern previously described in mildly affected craniofacial muscles,9, 85 suggesting a 

minimal disease effect in this muscle. 

Findings of the current study add to the literature knowledge of the SCA, its 

response to disease, and its level of biological similarity to other laryngeal muscles. 

Results for the CT support a 2007 study4 showing subtle changes within the mdx CT and 

raise questions as to areas of biological or mechanical difference between the CT and 

other laryngeal muscles. 

In the sections that follow, findings related to the SCA and CT are discussed in 

relation to previous reports of their biological properties. Thoughts as to the muscles’ 

properties, level of specialization, and contribution to laryngeal function are offered. 

The SCA 

The investigator hypothesized that the IA, or its counterpart in the mouse larynx, 

would be affected by dystrophin deficiency. The hypothesis was based upon previous 

work showing the IA to be similar to limb musculature in its contractile protein profile 

and proprioceptive mechanisms.32, 77, 131 The investigator theorized that the IA’s 

similarity to limb muscle in these areas would translate into a similar response to 

dystrophin deficiency. The findings of the study, however, disproved this hypothesis.  
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The finding of SCA sparing is novel to the current study; however, it parallels the 

results of previous studies showing sparing of the intrinsic laryngeal muscles emerging 

from the sixth branchial arch (TA, PCA, LCA).4, 7, 25 Thomas et al7, 25 were the first to 

examine the effects of dystrophin deficiency on the intrinsic laryngeal muscles, 

identifying the sparing of the TA and PCA muscles. Marques and colleagues4 confirmed 

the sparing of the TA (medial and lateral aspects) and PCA muscles and added to the list 

of spared muscles the LCA.  

Implications Regarding the Nature of the SCA 

The results of this study showing specialized sarcolemmal management of the 

SCA, considered in the light of previous studies of the posterior adductor,32, 77 suggest 

that the SCA is a “blended” muscle, possessing some features of prototypical skeletal 

muscle and other specialized features capable of protecting it from the pathological 

cascade of dystrophin deficiency. The mixed nature of the IA/SCA may be explained by 

one or both of the following points: (1) the differentiation between classic limb skeletal 

muscle and specialized laryngeal muscle is not explicit and some muscles may be 

“blended,” sharing properties of both classic and specialized muscle, and/or (2) features 

of the IA/SCA (and other laryngeal muscles) differ across species and IA similarity to 

limb muscle identified in humans may not be generalized to rodent musculature. Each of 

these possibilities is discussed in more detail below.  

Ambiguity of “Classic” vs. “Specialized” Muscle 

In recent years, certain of the craniofacial muscles (eg, extraocular, masseter, 

intrinsic laryngeal) have been presented as highly specialized forms of skeletal muscle 

that deviate from classic (ie, limb) muscle in many key respects.1, 2, 5, 24, 241 In fact, some 

have proposed that these muscles may represent a different allotype of skeletal muscle.2 

Chief among the areas of craniofacial deviation and specialization are: myosin isoforms, 

metabolic properties, innervation patterns, regenerative capacity, sarcomere structure, and 

response to disease.2, 3, 5, 7-10, 13-20, 22-25, 41, 44, 85, 241 Select craniofacial muscles, such as the 

TA, PCA, and extraocular muscles, benefit from all of the aforementioned features.2, 3, 7, 

17, 19, 22-25, 41, 44 However, the findings of this and other studies suggest that other 

craniofacial muscles possess some, but not all, of the features. For instance, the SCA 

demonstrates a response to disease which is characteristic of specialized muscle but 
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myosin isoforms and innervation patterns representative of classic muscle.32 Conversely, 

the masseter demonstrates mild effects of dystrophin deficiency9 but myosin isoforms 

characteristic of highly specialized muscle.8 These findings show that the separation 

between classic skeletal muscle and specialized muscle is not explicit and that certain of 

the craniofacial muscles may be best considered as “blended” muscles whose degree of 

specialization is driven by the level and type of functional demand placed upon them. 

The characterization of the SCA as a blended muscle suggests that the muscle’s 

level of specialization does not meet that of the TA and PCA muscles. While the SCA 

possesses a mechanism of sarcolemmal management similar to that of other laryngeal 

muscles, it maintains contractile speeds and proprioceptive features comparable to that of 

limb muscle.32, 77 This unique nature may be reflective of the muscle’s important role in 

positioning and holding the arytenoid cartilages at midline for voicing, an action 

requiring strength and endurance, rather than speed and refined motion. 

Finally, recognition of the blended nature of many craniofacial muscles may be of 

great importance in the study of muscle sparing in dystrophin deficiency. The study of 

blended (classic + specialized) muscles, such as the SCA, may help researchers rule out 

prototypical features (ie, myosin isoforms, innervation) as contributory to the sparing and 

may, thereby, aid them in concentrating their efforts on other specialized muscle features. 

Generalization across Species 

Studies of the SCA/IA and its properties are rare. The current study highlighting 

the specialized nature of the murine SCA in response to disease is the only study to 

describe specialized features in this primary glottal adductor.  Interestingly, all other 

studies demonstrating the muscle’s similarity to prototypical limb muscle have been 

conducted in humans.32, 77, 78 Thus, the possibility exists that the adductory muscle may 

retain different properties across species. It may follow then that the IA/SCA’s level of 

specialization in humans and other animal models may differ secondary to the functional 

demands placed upon the larynx across models.   

The CT 

Marques and colleagues4 were the first to examine the CT’s response to 

dystrophin deficiency. The group used methods similar to those applied in the current 

study to examine the effects of dystrophin deficiency on the lateral TA, medial TA, PCA, 
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LCA, and CT muscles. While sparing was identified in the lateral TA, medial TA, PCA, 

and LCA muscles, the CT evidenced mild markers of fiber damage (ie, Evans blue 

positive fibers) and regeneration (ie, increased percentage of central nuclei). Within the 

CT, significant differences in the percentage of centrally nucleated fibers between control 

and mdx muscles were found at both 4 and 18 months. Markers of degeneration (eg, 

sarcolemmal disruption, inflammation) were more pronounced at 18 months. The authors 

concluded that the CT showed a mild and delayed response to dystrophin deficiency. 

Findings from the current study supported the work of Marques et al; however, slight 

differences in study findings should be discussed. 

Results of the current study showed central nucleation shifts in the mdx CT 

similar to those observed in the Marques et al study (ie, mdx CT showing 2 to 3- fold 

increase over control CT); however, it did not identify markers of degeneration in the 

muscle. Slight differences in the findings of the two studies may be explained by methods 

used by investigators. First, Marques et al4 examined adult (4-month) and old (18-month) 

mice, while the current study examined 8-week mice. As markers of degeneration appear 

delayed in the CT, the current study’s use of the 8-week model may have limited its 

appreciation of degenerative changes which transpire later in the lifespan. Further, 

differences in the percentage of centrally nucleated fibers between control and mdx 

muscles were significant in the work of Marques and colleagues but non-significant (p = 

.058) in the current study. It is likely that the smaller sample size in this study and the 

requirement for non-parametric statistics made its statistical treatments less sensitive to 

group differences in central nucleation. 

Interestingly, mild and delayed disease effects, such as those identified in the CT 

have also been noted in other craniofacial muscles, most notably the masseter and 2 

accessory extraocular muscles, the levator palpebrae superioris and the retractor bulbi.9, 85 

In each of these mildly affected muscles, the primary marker of pathology was an 

increased occurrence of centrally nucleated fibers, indicating increased rates of fiber 

regeneration. Typical markers of degeneration (ie, inflammation, necrosis, fibrosis) 

associated with the disease were not observed or were observed only in late stages of the 

disease. The finding of increased regeneration in the absence of widespread degeneration 

has not been fully explained; however, it may be proposed that mildly affected muscle 
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groups possess regenerative abilities that outpace apoptotic or necrotic degeneration and, 

thereby, preserve the overall morphology of the muscle. 

Further, if findings of slight, delayed disease effects within the CT are proven 

correct, the nature of the CT becomes a matter of some interest in the study of dystrophin 

deficiency. As with the EOM group, the group of intrinsic laryngeal muscles would 

possess both spared and mildly involved muscles and would offer an excellent 

mechanism for the study of muscle response to disease. Indeed, the systematic 

comparison of divergent muscles within a single muscle group could offer significant 

insight into factors associated with preservation and factors associated with pathology. 

Implications Regarding the Nature of the CT 

Mild involvement of the CT led Marques et al4 to discuss the CT as a blended, or 

mixed, muscle which shared the properties of laryngeal and prototypical limb skeletal 

muscle. Such representations of the CT have been recorded previously in the literature. 

Hyodo et al135 found variable forms of myotendinous junctions in the CT, some 

characteristic of laryngeal muscle and others characteristic of limb muscle. The authors 

concluded that the CT was a transitional muscle, sharing properties of both limb and 

laryngeal muscle. In addition, a number of studies examining the myosin heavy chain 

composition and contractile speeds of the CT have placed it more in line with fast limb 

muscle than with laryngeal muscle.17, 22, 35 Authors identifying the CT’s divergence from 

its sister muscles have suggested an embryological foundation for the differences.22 The 

CT emerges from the fourth branchial arch, whereas all other intrinsic laryngeal muscles 

develop from the sixth arch.33 Such a history places the CT more in line, 

developmentally, with pharyngeal muscles than with other laryngeal muscles.34 The 

implications of this divergent embryology are unknown; however, it raises the possibility 

that the CT may differ from other laryngeal muscles in its developmental programming 

and patterns of gene expression and that the search for mechanisms of muscle protection 

should begin at the genetic level.  

Finally, some have suggested that muscle response to dystrophin deficiency is a 

factor of a muscle’s mechanical requirements.85, 86 If the CT’s differential response is 

considered from a purely mechanical viewpoint, several important questions are raised. 

First, does the finding of slight involvement of the CT suggest that the muscle possesses a 
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different, and perhaps less refined, sarcolemmal management system than its sister 

laryngeal muscles? Results of ICC assays show similar patterns of dystrophin staining in 

the CT and other laryngeal muscles and suggest that at least this component of the DGC 

is shared between the CT and its sister muscles. However, other components of the DGC 

(eg, β-dystroglycan, sarcoglycans, etc.) were not examined in this study, and the 

possibility of differences in those proteins across laryngeal muscles remains to be 

examined.  

  The CT’s differential response also raises questions as to its mechanical 

requirements and properties. For instance, does the CT’s role as the primary lengthener 

and external tensor of the vocal folds result in mechanical requirements or stressors that 

exceed those of other laryngeal muscles? Additionally, is the CT’s design more or less 

able to handle load than other laryngeal muscles. Functional studies of the CT are limited 

and are primarily centered on its speed of contraction. However, a 2007 study does 

suggest that the CT and TA muscles differ from other laryngeal muscles in their 

mechanical properties.242 Hunter and Titze have identified lower levels of stiffness in the 

CT and TA relative to the primary group of adductors/abductors (LCA, IA, PCA), a 

finding which may hold implications for the CT’s load-bearing capacity. Consideration of 

this mechanical difference in light of the current study’s findings suggests that 

mechanical properties of the CT may play a role in its differential response to dystrophin 

deficiency and that additional studies of the muscle’s mechanics are indicated. 

Finally, any discussion of CT mechanics and its possible relationship to disease 

effects should be considered in light of the current debate on muscle mechanics and 

response to dystrophin deficiency. It has been proposed for some time that variable 

disease effects across muscle groups arise due to differences in the mechanical stress 

placed upon the muscles during contraction.85, 86 The small fiber size and reduced load of 

the EOM52-54 as well as the realization of milder disease effects in distal muscle groups 

(eg, toe)180 appear to support this mechanical explanation of sparing. However, the severe 

manifestation of the disease in the diaphragm, a muscle with low mechanical stress,208-210 

indicates that a purely mechanical explanation is unlikely. Thus, the debate continues as 

to the role of muscle mechanics in the pathophysiology of the disease. Until a definitive 
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answer emerges on mechanical explanations for sparing, it will be important to consider 

the mechanics of differentially affected muscles, including those of the CT.  

Mechanisms of Sparing and Protection 

 The finding of selected intrinsic laryngeal muscle sparing and protection in 

dystrophin deficiency raises the question of the mechanism of sparing. While a number of 

theories of sparing have been proposed in the literature (see Chapter 2 for a description of 

key theories), one theory of sparing – utrophin upregulation – was investigated as part of 

this study.  

Utrophin Upregulation 

Utrophin is the structural homolog to dystrophin.200, 202 The protein’s structural 

similarity to dystrophin along key domains makes it capable of acting as dystrophin to 

link cytoskeletal actin to the extracellular matrix.200, 243 This property has led some to 

suggest that utrophin may act as a substitute for dystrophin in DMD and that it may be 

responsible for the preferential sparing of some muscle groups.180, 183, 195 Findings from 

the current study, however, failed to demonstrate re-localization of utrophin to the 

sarcolemma in spared mdx laryngeal muscles. Consequently, the study did not support 

utrophin upregulation as the primary mechanism of laryngeal muscle sparing. It should 

be noted that mdx CT muscles showed a clearer perimeter staining for utrophin than mdx 

PCA and SCA muscles (Figure 4.18), suggesting the possibility of sarcolemmal utrophin 

in this muscle. However, the perimeter staining was not identified in all positive sections 

and was not appreciably different from the pattern observed in some CT negative 

controls. Consequently, the author proposes that perimeter staining in the CT likely was 

the product of non-specific binding of the secondary antibody and suggests that 

alternative methods (ie, Western blotting) be used in the future to further evaluate 

utrophin upregulation in the mdx CT.  

While this and other studies have failed to support utrophin upregulation as the 

sole explanation for sparing, a review of the DMD literature indicates that the dystrophin 

homolog is involved in some manner in the disease process. In fact, studies suggest that 

the protein’s expression may be modified in both affected and spared muscle groups. 
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Utrophin Upregulation in Affected Muscles 

Studies of dystrophin deficiency show marked increases in utrophin expression 

and sarcolemmal localization of the protein in affected muscle groups ,182, 195, 205, 244 

adaptations believed to occur post-transcriptionally.244 Immunocytochemical assays of 

dystrophin deficient muscles show staining of utrophin at the perimeter of muscle fibers 

in a pattern indicative of dystrophin. Curiously, this pattern of localization appears 

restricted to select clusters of fibers within affected muscles. According to Porter and 

colleagues,182 the modified distribution of the protein in these muscles does not prove 

biologically significant, as it fails to halt the pathological cascade. Interestingly, other 

studies showing an inverse relationship between naturally occurring utrophin levels and 

disease severity180, 183, 195suggest that utrophin’s role may be biologically important, 

limiting the impact of disease. 

Thus, the exact role of utrophin upregulation in affected muscle is unclear. A 

review of the studies suggests that the protein attempts to replace dystrophin at the 

sarcolemma but that the compensatory response is, in large part, inadequate and unable to 

halt progression of the disease.182 Work continues to better define the role of utrophin in 

affected muscle groups, with hopes of someday applying the protein as a therapeutic 

agent in the disease.180, 183, 195, 243, 245-247  

Utrophin Expression in Spared and Protected Muscle Groups 

 The current study and a previous study of the laryngeal muscles25 fail to 

demonstrate widespread sarcolemmal localization of utrophin in dystrophin deficient 

laryngeal muscle. Consequently, the studies argue against utrophin upregulation as the 

sole mechanism of laryngeal muscle sparing. However, work conducted on other 

protected muscle groups, most notably the extraocular muscles, suggests that the protein 

does play a role in the sparing of some fibers. Two studies, in particular, highlight the 

complex nature of utrophin involvement in extraocular muscle sparing.  

In contrast to the laryngeal findings noted above, sarcolemmal localization of 

utrophin has been identified in intact (ie, spared) extraocular muscle fibers of mdx mice.42 

Specifically, upregulation was noted in 3 of the 6 specialized EOM fiber types: orbital 

singly innervated, global multiply innervated, and orbital multiply innervated. The 

preservation of a normal phenotype in fibers exhibiting sarcolemmal utrophin pointed to 
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a potential rescuing role for utrophin in these fibers. Interestingly, other intact extraocular 

fibers, belonging to the remaining classes of EOM fibers, did not evidence sarcolemmal 

utrophin, a finding which suggests an alternative mechanism of sparing in these fibers. 

These results point to a fiber-type specific role for utrophin in the EOM, whereby some 

spared fiber types engage utrophin as a dystrophin substitute and other fibers engage an 

alternative mechanism. 

In another elegant study, Porter et al182 examined EOM characteristics in three 

mouse models: the dystrophin deficient mdx mouse, a single utrophin knock-out mouse, 

and a double utrophin/dystrophin knock-out mouse. The EOM of dystrophin-deficient 

mice and utrophin-deficient mice showed no evidence of pathology. However, the EOM 

of utrophin/dystrophin deficient double-knock out mice evidenced severe markers of 

disease. Interestingly, select muscle fibers within affected EOM remained spared in the 

double knock-out. The preserved fibers belonged to extraocular fiber types previously 

described as: global multiply innervated, orbital singly innervated, and orbital multiply 

innervated.43 Results again suggested that the role of utrophin in muscle sparing is 

complex and perhaps specific to fiber type.  

Thus, the role of utrophin in muscle sparing remains largely unresolved. Work 

conducted in the EOM suggests that the protein is a factor in sparing, but that its role is 

mediated by fiber type. Further, these studies demonstrate that additional, yet to be 

defined, mechanisms of sparing are at play in some muscle fiber types. Unraveling the 

mystery of utrophin’s role in dystrophin deficiency remains a priority for many.42, 179, 180, 

182, 183, 245, 246 Unfortunately, scientists are just beginning to appreciate the complexity of 

this protein and the implications of its complexity for the study of dystrophin 

deficiency.201, 204, 244, 248  

Utrophin Complexity and Implications for Study 

Utrophin is ubiquitously expressed throughout the body.204, 249 In skeletal muscle, 

the protein is recognized in the vasculature, peripheral nerves, and neuromuscular 

junctions of mature fibers and at the sarcolemma of developing or regenerating fibers.202 

Specific patterns of the protein’s expression in muscle are, however, highly complex, 

varying across body tissues,204 across muscle fiber types,201, 250 and across the lifespan.202 
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Such intricate expression patterns prove challenging to investigators searching for altered 

patterns of the protein’s expression in disease processes.  

In addition to the varied expression patterns noted above, recent work reveals that 

both full-length and short forms of the protein exist. Two full-length forms, identified as 

utrophin-A and utrophin-B, have been described.251 In skeletal muscle, utrophin-A is 

localized to the NMJ and peripheral nerves, whereas utrophin-B is identified within 

capillaries of the endomysium.244 While the two utrophin forms may be co-expressed in 

some tissues, they are differentially regulated.251 These independent patterns of regulation 

are clearly evidenced in dystrophin deficient models, where utrophin-A shows notable 

upregulation in response to disease and utrophin-B expression remains unchanged. Such 

findings show the complex nature of utrophin expression in disease and highlight the 

importance of developing and using utrophin-A and -B-specific antibodies in the study of 

dystrophin deficiency. 

Future Studies of Utrophin in Laryngeal Muscles 

The exact role of utrophin in dystrophin deficiency remains to be elucidated. 

While the current study did not show re-localization of utrophin in ICC assays performed 

on spared muscles, follow-up investigations of utrophin expression in the laryngeal 

muscles are warranted for several reasons: (1) to define normal patterns and levels of 

utrophin expression in this muscle group, (2) to consider variability in utrophin 

expression across muscle fiber types, and (3) to ensure the specific tracking of utrophin-A 

and B patterns in the laryngeal muscles. 

Allotype-Based Perspectives on Sparing 

 Muscle response to dystrophin deficiency has been shown to vary widely across 

muscle groups – from severe progressive involvement in the limb and diaphragm, to mild 

involvement in some craniofacial muscles (eg, masseter), to complete sparing in a 

number of extraocular and intrinsic laryngeal muscles. Such patterns of response 

correspond strongly with 3 allotypes of skeletal muscle – limb/diaphragm, masticatory, 

and extraocular – previously discussed by Porter et al.182 In fact, Porter has proposed that 

allotype-specific features may be central to determining a muscle’s response to disease, a 

position that has piqued interest in the unique features of spared muscle groups.  
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Multiple specializations (eg, regenerative capacity, myosin isoforms, innervation 

patterns) of the extraocular phenotype have been presented.2, 43 It has been suggested that 

certain of these refinements evolved to permit the EOM to meet demands for constant 

activity, rapid contraction, and exquisite motor control. Curiously, because of their role in 

respiration and airway protection, the laryngeal muscles share many of these same 

functional demands and many of these same biologic properties.3, 14, 15, 17-19, 22, 24, 35  

Attempts to link muscle sparing to constitutive, allotype-specific features have 

proven fruitful in some areas. For instance, it is now recognized that utrophin expression 

in skeletal muscle is related to fiber type and oxidative capacity,42, 182, 201 two areas of 

extraocular and laryngeal muscle specialization. Such knowledge has helped researchers 

focus their study of utrophin in spared and affected muscles. Additional allotype-specific 

features have been offered as potential links to sparing (eg, continuous myofiber 

remodeling, calcium management systems, developmental programming).5, 41, 112 As of 

yet, however, none have been definitively tied with muscle protection in DMD. Thus, the 

search continues to identify the specific allotypic features responsible for sparing and 

protection. The recent realization of laryngeal muscle sparing may facilitate this research, 

as areas of extraocular and laryngeal phenotypic similarity will make clear targets for 

study. 

Embryologic Links to Sparing 

It has been suggested that muscle sparing in DMD may be attributed to the 

differing patterns of gene expression found in muscles emerging from the highly 

specialized, non-somitic head mesoderm.5, 9 Curiously, however, the intrinsic laryngeal 

musculature is somitic in nature and yet spared in the disease process. This realization 

points to the fact that genes governing the sparing are not isolated to non-somitic tissues 

and widens the search for genes contributing to the sparing. Future investigations of 

genetic links to muscle sparing should include regions where gene expression of the 

somitic laryngeal muscles overlaps those of the non-somitic extraocular muscles.  

Summary Remarks on Sparing 

To date, the majority of studies examining mechanisms of muscle sparing have 

been conducted on the EOM. Such studies propose that effects of disease are averted in 

these muscles either via properties that prevent the disease’s progression (ie, constitutive 
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properties) or via properties that permit exquisite adaptation to the disease (ie, adaptive 

properties). Recent studies on EOM point away from sparing as an adaptive response to 

deficiency and toward sparing as a consequence of biological specialization.42 If 

constitutive properties are foundational to a muscle’s response to dystrophin deficiency, 

the realization of laryngeal muscle sparing may facilitate the search for a mechanism of 

sparing, as it permits the identification of shared areas of extraocular and laryngeal 

divergence from classic limb muscle.   

Implications 

Laryngeal Muscle Diversity and Its Implications for Laryngeal Function 

 Findings from this study suggest that the SCA muscles of the mouse are spared 

from the effects of dystrophin deficiency, while the CT muscles remain strongly 

protected. Previous studies showing sparing of the highly-specialized TA and PCA 

muscles4, 7, 25 of the larynx suggest that the SCA possesses a sarcolemmal management 

system which is comparable to that of its sister muscles and unlike that of prototypical 

limb muscle. Conclusions regarding the nature of the CT’s support system are less clear; 

however, findings would suggest that the significant level of protection offered the 

muscle speaks to specialized support system in this muscle as well.  

At the onset of the study, the author raised the question of diversity within the 

laryngeal musculature. The results of this and other studies suggest that subtle variations 

do exist within the group of intrinsic muscles, with some muscles showing a more refined 

phenotype than others. In regard to the IA/SCA, previous studies have shown that fiber 

types and proprioceptive patterns in the IA/SCA are less specialized (ie, more typical) 

than those of the TA and PCA and have, consequently, described the muscle as 

prototypical skeletal muscle.32 However, the SCA’s response to dystrophin deficiency 

suggests that the muscle is more refined than classic skeletal muscle and that it should be 

considered more fully for its biological specialization.  

Similarly, the CT has shown fiber types and muscle organization patterns that are 

less specialized (ie, more typical) than the TA and PCA and more like classic skeletal 

muscle. The results of this study, however, show that while the CT’s response to 

dystrophin deficiency may be slightly less sophisticated than that of its sister laryngeal 

muscles, it is markedly more advanced than that of classic limb/respiratory muscle. Such 
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findings suggest that the biologic mechanisms of the CT should be further examined 

relative to limb and laryngeal muscle. 

DCG Organization of Laryngeal Muscles 

The study identified the presence of dystrophin along the sarcolemma of both 

control gastrocnemius and control intrinsic laryngeal muscles. These results indicate 

similar patterns of dystrophin expression in leg and laryngeal muscles of 8-week old 

C57BL mice and suggest that the laryngeal muscles may possess a mechanism of 

sarcolemmal management similar to that found in leg muscles.  

However, results of the current study bring into question patterns of utrophin 

expression in laryngeal muscles. Utrophin was not present at the NMJ sites of control 

laryngeal muscle fibers, as would be expected in mature skeletal muscle and as was 

clearly demonstrated in control gastrocnemius muscles. Sparse non-specific staining was 

identified around the sarcolemmal boundary of some control laryngeal muscle fibers; 

however, this staining was felt to be a consequence of the non-specific binding of the 

secondary antibody to extraneous proteins or to dystrophin, a protein with a high degree 

of homology to utrophin. Thus, the current study did not identify expected patterns of 

utrophin localization in laryngeal muscles.  

In an attempt to interpret the unexpected results of utrophin staining in healthy 

laryngeal muscle fibers, the investigator was limited by the fact that utrophin distribution 

had not been previously described in these muscles. It is, therefore, unknown whether the 

laryngeal muscles exhibit a pattern of utrophin distribution similar to or divergent from 

other skeletal muscle. The identification of the protein at the NMJ in control 

gastrocnemius muscles in the current study suggests that procedural issues with the 

antibody were not a factor in the unexpected laryngeal muscle staining and that utrophin 

expression within the larynx demands further and more in-depth study. 

Immunocytochemistry methods used in the study are qualitative in nature and not 

sufficient to quantify potential low-levels of the protein. Consequently, more advanced, 

quantitative methods, such as Western blotting, should be applied to the study of utrophin 

in laryngeal muscles. Indeed, the need for further examination of utrophin is supported by 

the results of recent Western blotting in this laboratory failing to demonstrate utrophin in 

the PCA and TA muscles of rats (F.H. Andrade, personal communication, February 1, 
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2008). Finally, if continued study of utrophin in laryngeal muscle supports a unique 

expression pattern, it will be important to consider avenues for studying additional DGC 

components (eg, β-dystroglycan, sarcoglycans) and their expression in the laryngeal 

musculature. 

Murine Model in Laryngeal Study 

 Over the years, animal models have played a significant role in the study of 

laryngeal structure and function. Rodent (ie, rat) models have helped to elucidate the 

myosin heavy chain composition and metabolic features of the laryngeal muscles.15, 22, 35, 

83, 156 Feline and primate models have increased the field’s understanding of the neural 

aspects of laryngeal function.82, 150, 252-255 Finally, canine models have permitted the study 

of laryngeal biomechanics and the testing of promising laryngeal surgeries.133, 242, 256-262 

However, it has not been until recently that the mouse model has been considered for its 

potential contributions to laryngeal study.4, 25 Recent studies examining laryngeal muscle 

response to dystrophin deficiency and the current study’s anatomical description of the 

murine larynx have opened the door for a broader use of the murine model in the study of 

laryngeal response to disease.  

Because of its amenability to genetic engineering, the mouse has long been 

recognized as the premiere model for the study of human disease.263 At present, mouse 

models of hundreds of diseases and conditions are available.263 These models offer 

researchers a tool for further examining disease processes and a mechanism for testing 

potential therapeutic interventions. The introduction of the mouse model for laryngeal 

study will permit researchers an improved understanding of this unique organ and its 

response to a number of diseases.  

The opportunities for study in this area are extensive. A number of disease 

processes (eg, myasthenia gravis, Parkinson’s disease) produce highly characteristic 

voice and swallowing symptoms. At present, the precise neuromuscular mechanism(s) by 

which some diseases bring about early and distinctive voice and swallowing changes is 

unclear. Transgenic study using the mouse model will allow the field to better appreciate 

the laryngeal response to these diseases. In addition, a number of conditions have yet to 

be considered for their effect on laryngeal function. As rates of chronic disease continue 
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to rise, it will be important that the field understands potential changes in laryngeal 

structure and function with disease.  

Clinical Implications 

Voice and Swallowing Concerns Associated with DMD 

Discussion of speech and voice changes in DMD has been limited; however, a 

1961 study by Mullendore and Stoudt reported the presence of a “dystrophic voice” in 

children with DMD. The exact nature of the voice concerns was not discussed. The 

results of this study suggest that voice abnormalities such as those reported in the above 

study are likely secondary to a compromised respiratory support system rather than to 

laryngeal dysfunction. With the completion of this study, all intrinsic laryngeal muscles 

have been examined for their response to dystrophin deficiency, and all have shown 

protection against the disease. In contrast, the respiratory musculature required to support 

voice production is severely affected by DMD. Consequently, it can be assumed that 

vocal difficulties associated with DMD rest outside the laryngeal complex and most 

likely correspond with deterioration of the respiratory musculature.  

Similarly, oropharyngeal and esophageal dysphagia has been reported in 

individuals with DMD.264-266 However, the results of this study would point to an 

etiology of swallowing impairment external to the larynx. A review of research in the 

field supports this assertion. Typical swallowing concerns in DMD involve oral, 

pharyngeal, and esophageal concerns and include: increased oral phase time, difficulty 

chewing, difficulty in bolus propulsion, reduced pharyngeal contraction, increased 

pharyngeal residue, heartburn, vomiting, and esophageal constriction.264-266 These 

concerns, often presenting in the mid-teens, are commonly attributed to reductions in 

tongue and pharyngeal constrictor muscle strength and alterations in the musculature of 

the esophagus.265, 266 Interestingly, reports of choking and aspiration-related pneumonias 

are uncommon in this population.266 These findings again support the fact that 

swallowing difficulties associated with DMD are not linked to deficits in airway 

protection at the level of the larynx but to structural and functional changes in other 

aspects of the digestive tract.   
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Laryngeal Muscle Physiology and Vocal Rehabilitation  

In recent years, management of voice disorders has shifted from a symptomatic to 

a physiologic approach.267-269 Certain of the physiologic methods work to restore normal 

patterns of muscle use via laryngeal exercise.218, 267 Such methods have been patterned 

after approaches used in physical therapy for the treatment of conditions involving the 

limb musculature and assume a similar physiology and training response across muscle 

groups.268 The current study adds to the growing base of research demonstrating marked 

differences between limb and laryngeal muscle and raises questions as to the laryngeal 

musculature’s potential for responding to traditional exercise programs. The continued 

development of this new generation of voice therapy will rely upon a more thorough 

understanding of normal laryngeal muscle physiology, its degree of plasticity, and its 

patterns of remodeling post exercise, areas heretofore unexamined.  

In skeletal muscle, muscle remodeling relies upon the activity of satellite cells, 

generally quiescent mononucleated cells which become active when fiber remodeling is 

required. Differences in the activity levels of these cells have been demonstrated across 

muscle groups,3, 5, 41, 55 and these differences are believed to underlie variability in 

remodeling capacity across muscles.55  The laryngeal muscles have recently been 

identified as one muscle group demonstrating non-typical regenerative and remodeling 

behavior.3 As a consequence, remodeling patterns typically observed and expected in 

limb skeletal muscle following exercise can not be easily generalized to laryngeal 

muscle. Consequently, as concepts of laryngeal muscle exercise and physiologic 

therapies emerge, the study of laryngeal muscle remodeling and its capacity for plastic 

change with exercise will be essential. This line of research has the potential to offer 

biological support to current treatment methods or guide the field toward alternative 

approaches to vocal rehabilitation. 

Mechanisms of Vocal Aging  

Age-related changes in voice are well documented.270-277 It is believed that 

changes in vocal pitch, loudness, and quality seen in the elderly correspond with age-

related alterations within the vocal fold and across the laryngeal mechanism at large.81, 

128, 130, 278-290 At present, however, molecular mechanisms underlying laryngeal 

remodeling with age are not clearly defined. A review of the aging literature suggests that 
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much of the research has focused on age-related modifications of the vocal fold 

mucosa.278-280, 287, 289 While recent years have brought an interest in vocal fold muscle (ie, 

TA muscle) aging,24, 81, 83, 130, 282, 284 minimal attention has been given to other intrinsic 

laryngeal muscles. Consequently, the examination of intrinsic laryngeal muscle 

remodeling with age emerges as a priority area of research.  

Certainly, aging of various biological systems is best understood in the context of 

normal anatomy and physiology. The current study offers an improved understanding of 

the normal biology of 2 rarely studied intrinsic laryngeal muscles. As information from 

this and other studies like it emerges, the foundation will be laid for the study of age-

related change in the laryngeal musculature and its possible contribution to vocal aging. 

Limitations 

 Methods used in this study were consistent with currently accepted protocols for 

examining sparing in dystrophin deficiency; however, some procedural limitations were 

observed.  

Muscle Sections 

Laryngeal muscle sections were collected in a manner that permitted all 3 muscles 

of interest (ie, PCA, SCA, CT) to be obtained from a single larynx. Whole larynges were 

mounted in OCT for cryosectioning. Larynges were initially approached from the lateral 

aspect. Ten-μm thick cryosections of the CT (sagittal plane) were obtained until the 

muscle’s most medial aspect was observed. Sectioning continued along this plane until 

most proximal SCA was fully sectioned and the distal SCA was observed. The larynx 

was then re-mounted with OCT and approached from the subglottic aspect. Ten-μm thick 

transverse sections were taken through the extent of the PCA. The above approach 

allowed the acquisition of all muscles from a single organ and reduced by half the 

number of animals required for the study.  

The above method permitted clear cross sections of the PCA. However, because 

of the angled nature of the SCA, early sections of the muscle obtained near the muscle’s 

attachment to the posterior arytenoid were not in strict cross section; later sections of the 

SCA obtained near the muscle’s insertion with the cricoid cartilage were in well-defined 

cross section. Finally, fibers of the CT changed angle from the muscle’s posterior to 

anterior aspect, resulting a portion of fibers being cut at an angle and a portion being cut 
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in strict cross section. Certain of the histologic tests used in this study require (eg, 

counting of central nuclei) that fibers be viewed in cross section. The angled nature of the 

SCA and CT within the larynx limited the number of strict cross-sections which could be 

obtained. As a result, judgment of central nucleation may have been limited by the 

muscle view presented. High rates of interrater reliability do, however, suggest that the 

views examined were sufficient to permit accurate judgment of nuclei position. 

Finally, the cutting of larynges as described in the above paragraphs resulted in 

only a small section of the PCA remaining for sectioning after acquisition of the SCA. As 

PCA response to dystrophin deficiency had been documented in two previous studies, 

including one in this laboratory, the decision was made to ensure adequate sampling of 

the CT and SCA and accept smaller samples/sections from the PCA. It was concluded, 

however, that samples of PCA were adequate to permit examination of the muscle’s 

overall morphology, percentage of centrally positioned nuclei, sarcolemmal integrity, and 

protein presence and distribution.  

Utrophin Antibodies 

Utrophin upregulation was examined in this study as a potential mechanism of 

laryngeal muscle sparing. Utrophin is a large, cytoskeletal protein with notable similarity 

to dystrophin.200 The protein presents along the perimeter of immature or regenerating 

muscles fibers and at the NMJ of mature fibers.202  

During the completion of this study, the investigator used both polyclonal and 

monoclonal antibodies against utrophin. Unfortunately, within the monoclonal category, 

only mouse monoclonal antibodies were available. The use of mouse antibodies on 

mouse tissue was considered problematic, as using primary antibodies generated from a 

species which is closely related, phylogenetically, to the species of study often yields an 

altered reaction to the antibody.193 To deal with these concerns, the investigator used a 

special blocking solution (BEAT Blocking Solution; Invitrogen, Carlsbad, CA) prior to 

the application of the monoclonal antibody. Despite the incorporation of the blocking 

step, some images contained higher than preferred levels of non-specific binding. To 

better deal with this concern, primary and secondary antibodies were prepared in a 10% 

PBS/Tris/goat serum base. The additional goat serum reduced non-specific binding and 

offered a more clear appreciation of the protein’s distribution.  
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Concerns also arose with the goat polyclonal antibody against utrophin. By the 

nature of their formation, polyclonal antibodies are less specific than their monoclonal 

counterparts. Consequently, staining with polyclonal antibodies often yields high levels 

of non-specific binding and significant background staining. In the current study, the 

polyclonal antibody against utrophin showed strong staining along the perimeter of the 

muscle fiber in control tissue, in a pattern similar to that observed with dystrophin. 

Perimeter staining was markedly reduced in mdx muscle. Such patterns were present in 

both leg and laryngeal muscle. These findings pointed to the antibody’s cross-labeling of 

dystrophin and its lack of acceptable levels of specificity for the target protein. 

Hence the study suggests that currently available antibodies against utrophin are 

not adequate to permit highly specific staining of the protein in murine models. As 

utrophin has been identified as a replacement for dystrophin in some muscles affected by 

dystrophin deficiency, the identification of a high quality antibody against utrophin 

produced in an animal other than the mouse will be an important step in the continued 

study of the protein’s role in neuromuscular disease processes. 

Use of the Animal Model 

 The mdx mouse is recognized as the standard animal model for the investigation 

of dystrophin deficiency; however, differences do exist in the between mouse and human 

models. Whereas the genetic mutation and pathophysiology of the disease is comparable 

in the two models, mice demonstrate a milder phenotype, fewer functional deficits, and a 

near normal lifespan.177 Consequently, some may argue that the gold standard for the 

investigation of the effects of DMD on specific muscle groups would be the human 

model. 

 Unfortunately, at present, the delicate nature of the larynx prohibits study of the 

disease’s effects in the human organ. The intrinsic laryngeal muscles are small, delicate 

muscles positioned within and around a cartilaginous framework. Biopsy of the muscles 

is challenging for several reasons. First, because of their location within the laryngeal 

complex, the muscles are difficult to access for biopsy. Further, certain of the muscles 

(eg, bilateral TA muscles) are part of the layered vocal fold structure and, thereby, one 

aspect of the complex waveform achieved during vocal fold vibration. Penetration of the 
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delicate superficial layers of the vocal fold during biopsy may result in vocal fold 

scarring and subsequent limitations in the vibratory waveform required for voice.  

 Thus, until scientific advances permit the biopsy of human laryngeal muscles, the 

mouse model of dystrophin deficiency remains the model of choice for the study of this 

muscle group. Readers of the research should be aware of limitations in the use of the 

model, including differences in disease severity across models, differences in laryngeal 

anatomy across models, and potential differences in muscle specialization across models 

brought about by differing functional requirements for the system. 

Concluding Remarks 

 The laryngeal muscles offer significant contributions to breathing, swallowing, 

and voicing. In recent years, a wealth of research has emerged demonstrating the 

sophisticated nature of these muscles and giving them a distinctive standing among the 

wider group of skeletal muscles.  

However, select muscles within the intrinsic laryngeal muscle group have 

received minimal attention in physiology circles. Consequently, little is known about 

these muscles, their level of specialization, and their behavior relative to other laryngeal 

muscles. Because the laryngeal muscles work together in a delicate balance to perform 

the above activities, it is imperative that the biologic properties of all laryngeal muscles 

be appreciated. This study addressed this void in laryngeal muscle biology literature and 

examined the biologic properties of 2 rarely studied muscles: the IA and the CT.  

Findings of the study demonstrate that the IA and CT, like other laryngeal 

muscles, possess a refined mechanism of sarcolemmal management which permits them 

to resist the effects of dystrophin deficiency. Considered in light of previous research on 

the IA and CT, the findings lead the author to propose these muscles as “blended” in 

nature, sharing the properties of highly specialized craniofacial muscles and the 

properties of prototypical limb muscle. The realization of this “blended” phenotype 

within the larynx indicates that the laryngeal muscles are a biologically diverse set of 

muscles uniquely equipped to perform both life-sustaining and life-enhancing functions.  

As the basic sciences move to further define the features of individual laryngeal 

muscles, the translation of findings to the clinical arena must remain a priority. Indeed, 

millions suffer each year from voice conditions, a number of which include a muscular 
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component.214, 216, 291-293 Clinicians working to enhance the laryngeal function of these 

individuals rely upon physiologically sound methods to reverse or retard pathology. As 

interest in laryngeal muscle biology grows, the foundation for physiologic voice therapies 

is being laid. However, additional work will be required and will emerge with continued 

discussion between the clinical and basic sciences.  
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