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ABSTRACT OF DISSERTATION 

 

 

DEVELOPMENTAL FMRI STUDY:  FACE AND OBJECT RECOGNITION 

 

 Visual processing, though seemingly automatic, is complex.  Typical humans 

process objects and faces routinely.  Yet, when a disease or disorder disrupts face and 

object recognition, the effects are profound.  Because of its importance and complexity, 

visual processing has been the subject of many adult functional imaging studies.  

However, relatively little is known about the development of the neural organization and 

underlying cognitive mechanisms of face and object recognition.  The current project 

used functional magnetic resonance imaging (fMRI) to identify maturational changes in 

the neural substrates of face and object recognition in 5-8 year olds, 9-11 year olds, and 

adults.  A passive face and object viewing task revealed cortical shifts in the face-

responsive loci of the ventral processing stream (VPS), an inferior occipito-temporal 

region known to function in higher visual processing.  Older children and adults recruited 

more anterior regions of the ventral processing stream than younger children.  To 

investigate the potential cognitive basis for these developmental changes, researchers 

implemented a shape-matching task with parametric variations of shape overlap, 

structural similarity (SS), in stimulus pairs.  VPS regions sensitive to high SS emerged in 

older children and adults.  Younger children recruited no structurally-sensitive regions in 

the VPS.  Two right hemisphere VPS regions were sensitive to maturational changes in 

SS.  A comparison of face-responsive regions from the passive viewing task and the VPS 

SS regions did not reveal overlap.  Though SS drives organization of the VPS, it did not



 

explain the cortical shifts in the neural substrates for face processing.  In addition to VPS 

regions, results indicated additional maturational SS changes in frontal, parietal, and 

cerebellar regions.  Based on these findings, further analyses were conducted to quantify 

and qualify maturational changes in face and object processing throughout the brain.  

Results indicated developmental changes in activation extent, signal magnitude, and 

lateralization of face and object recognition networks.  Collectively, this project supports 

a developmental change in visual processing between 5-8 years and 9-11 years of age.  

Chapters Four through Six provide an in-depth discussion of the implications of these 

findings.   

 

 

KEYWORDS:  neuroimaging, visual processing, development, ventral processing 

stream, structural similarity processing 
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Chapter One:  Face and Object Recognition 

I.  Introduction 

Facing a Life without Recognition 

During the average human life span, we are exposed to and are required to process a 

myriad of faces and objects.  As a result, lack of competent face and object recognition skills 

may hamper functioning in society.  Seizures, meningitis, traumatic brain injuries, ischemia, 

heredity, and degenerative diseases can produce visual processing deficits in adults and children 

such as difficulties in object recognition (visual agnosia) (Farah, 1990; Moore & Price, 1999; 

Moscovitch, Winocur, & Behrmann, 1997b) and/or face recognition (prosopagnosia) (Bentin, 

Deouell, & Soroker, 1999b; Stiers & al., 2001; Stiers, De Cock, & Vandenbussche, 1999). For 

some developmental prosopagnosias there is no known etiology (Bentin, Deouell et al., 1999b; 

de Gelder & Rouw, 2000a).  Whether acquired or congenital, agnosias can hinder activities of 

daily living and social interactions (Barton, Cherkasova, Press, Intriligator, & O'Connor, 2003; 

Duchaine & Nakayama, 2005; Humphreys & Riddoch, 2003; Kress & Daum, 2003).  

Prosopagnosia is rare but studies show that similar perceptual deficits and adverse social 

affects may occur in a more well-known group of disorders, autism spectrum disorders (ASD).  

Though individuals with an ASD present with a wide range of characteristics and levels of 

severity (Folstein & Rosen-Sheidley, 2001) (see review Eigsti & Shapiro, 2003); lack of interest 

and attention to the human face are hallmark symptoms (Cohen & Volkmar, 1997).  Aversion to 

the human face and related social impairments in individuals with an ASD may be founded on 

the use of aberrant perceptual strategies for object and face processing (Hubl et al., 2003; Lopez, 

Donnelly, Hadwin, & Leekam, 2004; Mottron & Belleville, 1993).  Atypical perceptual 

strategies in ASD occur at many levels of face processing.  For instance, a mark of normal 

perceptual differences in face and object processing is the face inversion effect.  The inversion 

effect refers to the finding that typical adults perform more poorly on inverted faces than on 

upright faces and upright and inverted non-face stimuli in recognition tasks.  This 

disproportionate interference suggests a disruption of relational processing strategies (e.g. 

distance between eyes) and an increased reliance on facial features or parts for recognition 

(Bartlett & Searcy, 1993; Carey & Diamond, 1994; Tanaka & Farah, 1993, 2003).  In ASD 

children, face recognition performance is less affected by inversion than in non-autistic peers 

 1



 

(Hobson, Ouston, & Lee, 1988; Tantam, Monagham, & Nicholson, 1989).  The absence of a 

strong face inversion effect in ASD subjects supports a featural bias for face perception.  This 

featural bias in ASD individuals extends to non-face stimuli as evidenced by their superior 

perception of object parts (Jolliffe & Baron-Cohen, 1997; Shah & Frith, 1983).  A featural bias 

in individuals with an ASD indicates atypical rather than absent relational processing (Hubl et 

al., 2003; Joseph & Tanaka, 2003; Lopez et al., 2004; Teunisse & de Gelder, 2003).  Atypical 

relational processing has been attributed to abnormal visual search strategies (Hubl et al., 2003; 

Teunisse & de Gelder, 2003), attention shifting difficulties (Casey, Winner, Benbow, Hayes, & 

DaSilva, 1993; Courchesne, Townsend, Akshoomoff, Saitoh, & al., 1994), and uncharacteristic 

selective attention to face parts (i.e. a preference for the mouth as opposed to the eyes) (Joseph & 

Tanaka, 2003).  The perceptual dysfunctions found in ASD extend beyond the general 

identification problems in prosopagnosics to a range of pragmatic impairments including 

difficulties interpreting facial expressions and using contextual information for appropriate social 

responses (Hadjikhani et al., 2004; Ozonoff, Pennington, & Rogers, 1990; Teunisse & de Gelder, 

2003).  Some neuroimaging studies suggest that structural and functional brain abnormalities are 

the basis of the socially crippling perceptual deficits characteristic of ASD (Critchley, Daly, 

Phillips et al., 2000; Pierce, Haist, Sedaghat, & Courchesne, 2004; Pierce, Muller, Ambrose, 

Allen, & Courchesne, 2001; Schultz et al., 2000) (see review Boddaret & Zilbovicius, 2002; 

Rumsey & Ernst, 2000) though not all data support this idea (Volkmar & al., 1989).  

Collectively, however, research on autism and related disorders supports abnormal perceptual 

processing (Hobson et al., 1988; Hubl et al., 2003; Joseph & Tanaka, 2003; Lopez et al., 2004; 

Tantam et al., 1989) the nature and neural substrates of which need further clarification. Hence, 

evidence of disruptions in the day-to-day lives of children and adults suffering with agnosias and 

ASD motivate the need to study the perceptual processes and corresponding neural correlates of 

face and object recognition.    

Visual Processing and The Ventral Processing Stream  

Because of their impact on our daily lives, face and object processing have been studied 

for decades.  To thoroughly investigate the visual processing of faces and objects, scientists use a 

variety of behavioral, neuroimaging, and electrophysiological techniques.  The ventral 

processing stream (VPS) is at the core of these investigations.  The VPS is a functional brain 

region involved in visual recognition (Damasio, Damasio, & Van Hoesen, 1982; Desimone, 

 2



 

Schein, Moran, & Ungerleider, 1985; Gauthier, Skudlarski, Gore, & Andersen, 2000; Goodale & 

Milner, 1992; Gorno-Tempini & Price, 2001; Haxby et al., 1999; Joseph & Gathers, 2003; 

Kanwisher, McDermott, & Chun, 1997; Malach et al., 1995; Milner & Goodale, 1995).  It 

consists anatomically of the lingual, fusiform, and inferior temporal gyri.  Neurons in the VPS 

are specialized for processing object features including shape, color, texture, and orientation 

(Desimone et al., 1985; Komatsu & Ideura, 1993; Livingstone & Hubel, 1988).  Though the 

general anatomical boundaries and cellular components are known, the functional organization 

and corresponding cognitive mechanisms of the VPS are not yet fully understood.  A review of 

the literature reveals three unresolved questions regarding the VPS and visual processing: 

 

 1.)  What is the functional architecture of the VPS in regards to visual processing? 

2.)  What principle cognitive mechanism(s) shape VPS functional architecture? 

3.)  What is the course of functional development in the VPS? 

 

 The present work was designed to investigate these questions.  Here pertinent theories 

and findings in literature will be discussed followed by an explanation of the focus and methods 

of this project as they relate to the continuing controversies regarding the cognitive and neural 

bases of face and object processing.   

II.  Background 

1.) What is the functional architecture of the VPS? 

From lesion studies and brain imaging studies of healthy adults, two main hypotheses 

emerge concerning the functional organization of the VPS. First, some studies suggest that the 

VPS is organized into groups of neurons (modules) that function in the recognition of specific 

categories (Downing, Jiang, Shulman, & Kanwisher, 2001; Duchaine, 2000; Duchaine & 

Nakayama, 2005; Kanwisher et al., 1997; Kanwisher, Stanley, & Harris, 1999; Kendrick, da 

Costa, Leigh, Hinton, & Peirce, 2001; O'Craven & Kanwisher, 2000; Spitzer, Kwong, Kennedy, 

Rosen, & Belliveau, 1995).  For example, neuroimaging studies have identified a cortical area 

dedicated to face processing (Fusiform Face Area) (Kanwisher et al., 1997), another to body 

parts (Extrastriate Body Area) (Downing et al., 2001), another to scenes (Parahippocampal Place 

Area) (Epstein, Harris, Stanley, & Kanwisher, 1999), another to letters (Gros, Boulanouar, 

Viallard, Cassol, & Celsis, 2001; Polk & Farah, 1998), and yet another to word forms (Leff et al., 
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2001; Petersen, Fox, Snyder, & Raichel, 1990). The idea of dedicated brain modules is termed 

domain-specific organization.  Second, other studies posit distributed patterns of brain activation 

in the VPS with overlapping neural substrates among categories, implying a domain-general 

organization (Gauthier, Behrmann, & Tarr, 1999; Haxby et al., 2001; Joseph, Partin, & Jones, 

2002).  Support for both of these views is discussed here. 

Domain-Specific Organization  

Prosopagnosia  

Neuropsychological, neuroimaging, and electrophysiological studies of patients suffering 

from categorical recognition impairments constitute much of the evidence for domain-specific 

functional organization of the brain.  A number of prosopagnosia cases claim dissociations 

between impaired face recognition and intact to relatively intact non-face recognition (Barton et 

al., 2003; Barton, Press, Keenan, & O'Conner, 2002; Bentin, Mouchetant-Rostaing, Giard, 

Echallier, & Pernier, 1999; de Gelder, Bachoud-Levi, & Degos, 1998; de Gelder & Rouw, 

2000a; Duchaine, 2000; Duchaine & Nakayama, 2005; Farah, Levinson, & Klein, 1995; Farah, 

Rabinowitz, Quinn, & Liu, 2000; Farah, Wilson, Drain, & Tanaka, 1995; Hasson, Avidan, 

Deouell, Bentin, & Malach, 2003; Kress & Daum, 2003; Marotta, Genovese, & Behrmann, 2001; 

McNeil & Warrington, 1993; Rossion et al., 2003).   A minority of child and adult-onset 

prosopagnosias are limited to face perception deficits (Bentin, Deouell, & Soroker, 1999a; 

Bentin, Deouell et al., 1999b; Bentin, Mouchetant-Rostaing et al., 1999; de Gelder & Rouw, 

2000a; Duchaine, 2000; Duchaine & Nakayama, 2005; Kress & Daum, 2003). 

Neuropsychological testing reveals that many prosopagnosic subjects are impaired in other areas 

of cognition including visuo-spatial skills (Barton et al., 2003; Duchaine, 2000), central auditory 

processing (Duchaine, 2000); reading (Ariel & Sadeh, 1996; Barton, Zhao, & Keenan, 2003; 

Rossion et al., 2003); and verbal and non-verbal memory (Barton et al., 2003; Barton et al., 

2002). However, recognition deficits in prosopagnosics are primarily face-specific with 

essentially normal performance on low-level vision and general object recognition tasks (de 

Gelder et al., 1998; de Gelder & Rouw, 2000a; Duchaine, 2000; Hasson et al., 2003; Kress & 

Daum, 2003; Marotta et al., 2001; Rossion et al., 2003) (c.f. Ariel & Sadeh, 1996; Barton et al., 

2003; Barton et al., 2002; Campbell, 1992; McNeil & Warrington, 1993; Young & Ellis, 1989).  
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Findings from functional magnetic resonance imaging (fMRI) investigations of 

prosopagnosia support face-specific abnormal VPS activation patterns in patients relative to 

control subjects (Hadjikhani & de Gelder, 2002; Marotta et al., 2001; Rossion et al., 2003) (c.f. 

Hasson et al., 2003).  Prosopagnosic patterns differ from normal patterns in two primary aspects.  

Unlike controls, prosopagnosics fail to produce significantly greater activation for faces than 

other non-face stimuli.  In addition, face stimuli fail to significantly activate face-responsive 

fusiform regions (e.g. Kanwisher, 1997) identified in controls (Hadjikhani & de Gelder, 2002; 

Marotta et al., 2001). 

Similarly, event-related potentials (ERPs) in prosopagnosics provide evidence for 

domain-specificity.  Whereas fMRI data provide the location of neural activity, ERP’s reflect the 

timing of neural functions.  In individuals with normal functioning perceptual processes, a 

negative going component in the human electroencephalogram termed the ‘N170’ is specifically 

amplified for faces compared to other stimuli (Eimer, 1998, 2000).  In contrast, the differential 

activation of the N170 between face and non-face stimuli is reduced or absent in congenital and 

adult-onset prosopagnosia patients (Eimer & McCarthy, 1999; Kress & Daum, 2003).  In other 

words, the lack of a face-specific N170 response in individuals with face processing deficits 

indicates that typical face processing, in contrast to non-face object processing, relies upon more 

specific neural activity.   

 Though these investigations offer some support for functionally selective domains, data 

from pure cases of prosopagnosia (Bentin, Deouell et al., 1999a; Duchaine, 2000; Duchaine & 

Nakayama, 2005; Kress & Daum, 2003; Rossion et al., 2003), in which no other recognition 

deficits exist, provide the strongest argument for domain specificity (Gauthier, Behrmann et al., 

1999).  The existence of a face processing deficit in the absence of any non-face recognition 

deficits, and vice versa, would indicate that face processing is specialized and may rely on 

unique neural substrates.  Such a double dissociation of face-specific and non-face specific 

recognition deficits would serve as evidence for domain-specific neural substrates.  However, 

considering all the interconnections of the brain, pure cognitive deficits of any kind are rare.  

Prosopagnosia is no exception.  In a behavioral study comparing face processing with six other 

object categories, Duchaine and Nakayama tested seven prosopagnosia patients presenting with 

intact object recognition skills (2005).  Though considerable heterogeneity existed, reaction 
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times and performance measurements for all subjects indicated differential processing of faces 

from all other stimulus classes tested.  Pure face recognition deficits in these subjects imply a  

reliance on separate cognitive processes for faces and objects.  Though Duchaine & Nakayama’s 

behavioral findings make a strong case for differential processing of objects and faces, evidence 

of cortical dissociation is also needed to argue a domain-specific VPS organization. 

Using fMRI tasks to ascertain neural correlates of face and object recognition in a pure 

prosopagnosic, Rossion and colleagues provide support for face-specific processing regions 

(2003).  Extensive neuropsychological testing of their subject, patient P.S., revealed deficits in 

face but not object recognition and naming.  In a one-back fMRI task, control subjects and P.S. 

were required to detect repetitions of faces and within-class non-face object stimuli.  All subjects 

produced significantly greater activation for objects than faces in bilateral parahippocampal 

regions.  Also, as in controls, the right middle fusiform gyrus of P.S. was significantly activated 

for the comparison of faces versus objects.  Other neuroimaging data in normal individuals 

verify activation of the right mid-fusiform gyrus for face stimuli relative to non-face stimuli 

(Kanwisher et al., 1997). In addition to the right mid-fusiform area, a significant face versus 

objects response occurred in the right inferior occipital gyrus (IOG) of normal subjects, a 

damaged area in P.S.’s brain.  Thus, control subject data revealed a well-localized bilateral object 

recognition system in the parahippocampal gyrus distinct from face recognition substrates  

in the right mid-fusiform and inferior occipital gyri.  Furthermore, impaired face recognition and 

a lesioned, non-functional IOG in P.S. in conjunction with strong faces versus objects signals in 

the IOG of controls indicated a specific sufficient and necessary face processing region. 

Behavioral testing of pure prosopagnosics suggests face and object recognition involve 

different cognitive mechanisms.  Imaging data from a prosopagnosia study testifies to separate 

neural correlates for face and object recognition.  Together, these findings signify that face 

recognition is specialized and, potentially, localized to a specific cortical region.  However, a 

comparable case of pure non-face recognition impairment must exist to verify a double 

dissociation of neural processes for face and object recognition.  
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Other Disorders 

Clinical cases of spared non-face recognition and impaired face recognition contribute to 

the idea of domain-specific regions of the VPS.  To further the argument regarding domain-

specific modules, multiple reports exist of patients with problems recognizing and naming 

particular object categories.  Reviews (see Capitani, Laiacona, Mahon, & Caramazza, 2003; 

Caramazza & Shelton, 1998; Forde & Humphreys, 1999; Humphreys & Forde, 2001; Tyler & 

Moss, 2001) provide a synopsis of evidence for recognition impairments at broad levels of 

categorization (i.e. living and non-living things).  Individual cases within these broad groupings 

of more specific category impairments (i.e. deficits in fruit and vegetable recognition but not in 

animal recognition (Farah & Wallace, 1992), provide additional evidence for a modular VPS.  

However, as with prosopagnosia, category exclusive deficits, presenting the strongest argument 

for domain-specificity, are rare (Capitani et al., 2003).  Such a case is that of CK.  CK presented 

with severe object agnosia accompanied by dyslexia; however, he had no deficits in face 

processing.   When processing numerous versions of face stimuli (i.e. cartoons, degraded and 

fractured), CK’s performance on neuropsychological tests was comparable to that of normal 

subjects (Moscovitch, Winocur, & Behrmann, 1997a).  Only when the task involved a face 

stimulus whose parts were made of objects did CK’s performance vary significantly from that of 

the control.  CK recognized the stimulus as a face but, unlike controls, he did not express a 

consistent awareness that the face was composed of objects.  These results indicate a perceptual 

impairment in object but not face processing – a case of object-specific agnosia. Together, cases 

of face-specific and object-specific agnosia provide evidence of a double dissociation between 

face and object recognition implying two distinct processing systems.  However, neuroimaging 

evidence of disparate face and object substrates in a case of non-face agnosia is needed to fully 

support a domain-specific VPS. 

In addition to case studies of agnosia, three fMRI studies in autistics provide some basis 

for category-specific VPS functional organization.  When individuals presenting with autism or 

an ASD viewed neutral faces (Pierce et al., 2001; Schultz et al., 2000) and emotional faces 

(Critchley, Daly, Phillips et al., 2000), abnormal patterns of activation relative to controls 

emerged  in fusiform regions previously identified as the fusiform face area (FFA) (Kanwisher et 

al., 1997).  Pierce and colleagues report a seemingly paradoxical find in their fMRI face versus 

shape perception task.  Performance, as measured by reaction time and error rates, did not 
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statistically differ between autistics and controls.  In contrast, imaging data revealed reduced 

responses in the face-sensitive fusiform and inferior occipital regions in autistics relative to 

controls.  Though performance measures indicate autistics process faces normally, their 

functional patterns support the use of aberrant perceptual strategies.  In controls, face processing 

consistently recruited particular neural substrates, anterior fusiform regions, whereas, in autistics, 

face processing did not correspond to any consistent area of activation but rather was 

characterized by idiosyncratic brain activation patterns.  Similarly, Schultz et al. report atypical 

neural correlates for face processing in high functioning individuals with an ASD (2000).  One 

group of ASD subjects and two matched control groups participated in a fMRI face and 

subordinate level object perception task.  The brain patterns of both normal groups revealed face 

versus object responses in the fusiform gyrus and object versus face responses in the inferior 

temporal gyrus (ITG).  In contrast, the same inferior temporal region in ASD subjects was 

significantly activated by the face versus object condition.  A between-groups analysis indicated 

control subjects produced greater fusiform activation for faces than the ASD group.  Behavioral 

data provided inconclusive support for brain response patterns as only one of the two control 

groups performed significantly better on face discrimination than the ASD group.  Though 

behavioral data from the Pierce et al., and Shultz et al., studies fail to shed light on the cognitive 

face processing mechanisms used by individuals with an ASD, they do provide data on the 

neural substrates of normal versus abnormal face processing.  In this study, as in the 

aforementioned fMRI investigation, normal subjects consistently activate a fusiform region 

during face processing tasks.  These same neural substrates for face processing are not evident in 

individuals with autism and related disorders.   

In their study of emotional face perception in autistics, Critchley and colleagues provide 

behavioral and functional data that support atypical face processing in autistics and strengthen 

arguments for face-specific neural substrates in normal face processing (2000).  Using neutral 

and emotional (i.e. happy, sad, angry) face stimuli in an fMRI task of explicit and implicit 

memory, the authors report significantly greater errors in autistic than normal controls on the 

explicit memory task.  Poorer performance by autistics than their normal peers on an emotional 

face discrimination task corresponds with functional findings.  Compared to the controls, 

autistics do not produce significant activation in the right fusiform gyrus during the emotions 

face memory task.   Again, face processing in normal controls consistently recruits similar 

 8



 

regions in the fusiform gyrus whereas face processing in individuals with an ASD is atypical in 

its functional organization.  Together, these studies of ASD indicate that a face-responsive neural 

substrate in the fusiform gyrus is involved in normal face processing.  

Normal Healthy Adults 

Though studies of lesions and disorders provide insight, alone, they can not provide a 

sufficient explanation of typical VPS organization. Because brain damaged patients may differ in 

performance or processing routes from normal subjects (de Gelder, Frissen, Barton, & 

Hadjikhani, 2003; de Gelder & Rouw, 2000b) and because brain damage generally has poor 

anatomical definition (Gorno-Tempini, Wenman, Price, Rudge, & Cipolotti, 2001), research 

must be conducted in healthy, normal subjects for an accurate assessment of normal functional 

organization. Fortunately, information in normal healthy adults abounds.  A broad range of 

category divisions have been investigated using an equally broad range of techniques.   

Functional imaging studies of healthy adults have identified category-specific neural 

correlates including but not limited to the following classifications: 1. non-living (Chao & 

Martin, 2000; Leube, Erb, Grodd, Bartels, & Kircher, 2001; Martin, Wiggs, Ungerleider, & 

Haxby, 1996) and 2. living things (including living things relative to tools) (Martin et al., 1996; 

Perani et al., 1999); 3. faces (Andrews & Schluppech, 2004; Gorno-Tempini & Price, 2001; 

Kanwisher et al., 1997; Kanwisher et al., 1999; Nakamura, Kawashima et al., 2000; Puce, 

Allison, Gore, & McCarthy, 1995; Sergent, Ohta, & MacDonald, 1992); 4. body parts (Downing 

et al., 2001); 5. places and scenes (Gorno-Tempini & Price, 2001; Kohler, Crane, & Milner, 

2002; Nakamura, Kawashima et al., 2000); 6. letters (Gros et al., 2001; Polk et al., 2002); and 7. 

words (Cohen, Jobert, Le Bihan, & Dehaene, 2004).  Many of these categories, such as living 

and non-living stimuli, are studied in normal healthy adults in response to the aforementioned 

cases of related category-specific deficits.  In healthy adults, researchers consistently find left 

hemisphere correlates for non-living items regardless of task or contrast stimuli.  For example, in 

naming, viewing, and matching tasks, tools (non-living stimuli) have been contrasted with other 

object stimuli as well as with stimuli of living things.  Via positron emission tomography (PET) 

(Martin et al., 1996; Perani et al., 1999) and fMRI technology (Chao & Martin, 2000), left 

premotor, left middle temporal, and left posterior parietal regions have been identified as neural 

substrates for tools.  In addition to neural correlates of non-living things, neural substrates for 
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living things are also reported (Leube et al., 2001; Martin et al., 1996).  In a fMRI semantic 

categorization task, the right fusiform gyrus, middle temporal gyrus, and inferior frontal gyrus 

were significantly activated in response to living versus non-living word categories (Leube et al., 

2001).  Fusiform activation in response to living stimuli (i.e. animals) versus non-living stimuli 

(i.e. tools) was also reported by Perani et al. (1999) though in the opposite hemisphere.  Thus, 

separate cortical processing regions for non-living and living things in normal functioning 

individuals support the argument for domain-specificity. 

Beyond the superordinate category levels of living versus non-living things, researchers 

report neural substrates dedicated to processing more specific taxonomic categories.  Multiple 

imaging studies employing a wide variety of tasks report a neural correlate for face processing, a 

mid-anterior fusiform area, called the fusiform face area (FFA) (Kanwisher et al., 1997).  PET 

studies using same/different matching tasks, (Gorno-Tempini & Price, 2001) discrimination tasks 

(Nakamura, Kawashima et al., 2000), and passive-viewing tasks (Sergent et al., 1992) report 

significantly greater responses to faces than comparison stimuli in the mid-fusiform gyri.  

Functional MRI investigations also report a similar face-sensitive region where faces produce 

significantly greater activation than hands (Kanwisher et al., 1997), houses (Kanwisher et al., 

1997), scrambled stimuli (Kanwisher et al., 1997; Puce et al., 1995), and scenes (Kanwisher et 

al., 1999).  Despite the orientation (Kanwisher et al., 1997; Kanwisher, Tong, & Nakayama, 

1998), the type (i.e. mooney faces) (Andrews & Schluppech, 2004), or the degree of familiarity 

(Gorno-Tempini & Price, 2001; Nakamura, Kawashima et al., 2000) of the face stimulus, the 

mid-fusiform region is consistently activated by face stimuli relative to other categories.  Though 

other regions have been identified as face-responsive and may serve as neural correlates for face 

processing (Gauthier, Tarr et al., 2000; Puce et al., 1995), consistency across studies, contrasting 

categories, and stimulus presentation provide strong evidence for the mid-fusiform region, 

particularly the right mid-fusiform (Gorno-Tempini & Price, 2001; Kanwisher et al., 1997; 

Nakamura, Kawashima et al., 2000), as a neural correlate of face processing.   

Similar to faces, evidence exists for a cortical region specialized to visually process body 

parts.  In a passive-viewing fMRI experiment, Downing et al. isolated a right lateral occipital 

region that was highly responsive to body parts relative to other stimuli (i.e. whole faces, face 

parts, whole objects, object parts, and mammals) whether body parts were presented as line 

drawings, photos, silhouettes, or stick figures (2001).  This “extrastriate body area” (EBA) is 
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presumed a dedicated neural module for visually processing body part stimuli.  In addition to 

neural correlates of face and body part processing, cortical regions have been shown to respond 

preferentially to places and scenes.  Using PET (Gorno-Tempini & Price, 2001; Nakamura, 

Kawashima et al., 2000) and fMRI (Epstein et al., 1999; Kohler et al., 2002), the bilateral 

“parahippocampal place area” (PPA) (Epstein et al., 1999) has been repeatedly identified as 

responding significantly more to buildings and scenes than other stimuli.  Cortical regions for 

letter and word processing have also been identified.  In a fMRI passive viewing task with 

strings of consonants, digits, and shapes as stimuli, Polk et al. found a left fusiform region more 

sensitive to letters than digits (2002).  In another passive viewing fMRI task, Gros and 

colleagues identified a similar left hemisphere neural substrate for single letters (2001).  An 

active matching task produced the same results (Polk et al., 2002).  Beyond letters to words, PET 

(Leff et al., 2001; Petersen et al., 1990) and fMRI (Cohen et al., 2004) research indicate visual 

word form areas located in the region of the left occipito-temporal junction.  The existence of 

letter and word-responsive regions indicates postnatal category-specific development of the 

cortex.  Collectively, these neuroimaging findings in normal, healthy individuals support lesion 

study data indicating a domain-specific functional organization of the cortex. 

In addition to imaging studies, physiological studies (Bentin, Allison, Puce, Perez, & al., 

1996; Liu, Higuchi, Marantz, & Kanwisher, 2000) have identified face-responsive cortical 

regions in normal adults.  Using event-related potentials (ERPs) to assess neural responses to 

human faces, animal faces, and objects, Bentin and colleagues reported a negatively deflected 

potential to the onset of face stimuli at 170ms post-stimulus (N170).  This N170 consistently 

occurred in response to human face stimuli whether faces were upright, inverted, familiar, or 

unfamiliar.  Thus, ERP studies indicate a temporal correlate for face processing in conjunction 

with confirmation from fMRI and PET studies of a spatial correlate for faces.  To evaluate both 

spatial and temporal correlates of face and non-face stimuli in normal adults, Liu et al. used 

magnetoencephalography (MEG) (2000).  An M170 response to photos of faces corresponded to 

the 170ms potential of ERP studies and the occipito-temporal locus of fMRI studies.   

 At a different level, single-neuron recordings have revealed category-specific responses 

to faces, natural scenes, houses, and animals in human medial temporal cortex (Krieman, Koch, 

& Fried, 2000).   Supporting single-cell findings of category differentiation, Fried and colleagues  
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found single neurons in the same medial temporal area that discriminated faces from inanimate 

objects (1997).  Thus, in healthy adults, neuroimaging and physiological data point to the 

existence of a domain-specific modular organization of visual processing. 

Normal Healthy Children 

 At the inception of this project, developmental neuroimaging and physiological literature 

regarding the functional organization of the ventral processing stream in normal children was 

limited. The majority of research concerning the neural correlates of face and object processing 

has been conducted in adults and in impaired children (i.e. autistics and developmental 

prosopagnosics) (Bar et al., 2001; Downing et al., 2001; Haxby et al., 1994; Kanwisher et al., 

1997; Kendrick et al., 2001; Nakamura, Honda et al., 2000; Sergent et al., 1992).  Though  

developmental imaging literature in face and object processing is increasing, information on the 

subject is still minimal.  Here, the few new and existing studies relevant to the functional 

development of normal face and object processing in children are discussed. 

 In addition to our findings explained in detail later in this work (see Chapters 4-6), two 

functional magnetic resonance imaging studies of normal face and object processing 

development exist. Most recently, Aylward et al. (2005) focused on activation patterns in the 

fusiform gyrus for two age groups of children (younger, 8-10 years and older, 12-14 years) 

viewing two categories of stimuli, faces and houses.  A significantly greater response to faces 

than houses emerged in the bilateral fusiform gyri of the older children but not in younger 

children.  These results suggest an increase in categorical differentiation and, therefore, an 

increase in domain-specificity with age.   Second, Passarotti and colleagues used a face-matching 

task to compare VPS patterns of functional activation in children ages 10-12 years and adults 

(2003).  Their results indicated that children had a more distributed pattern of activation (i.e. 

more activation lateral and anterior to the classically defined fusiform face area) in the fusiform 

gyrus than adults.  From the data, it may be concluded that the basic functional organization of 

the VPS continues to adapt and become more specialized with age.  Thus, evidence of a 

developmental decrease in the distribution of neural activation within a stimulus category and 

maturational increases in differentiation between categories may be seen as supporting an 

increasingly domain-specific neural network. 
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 A limited number of electrophysiological studies have also explored the development of 

face and object processing.  As indicated in the fMRI data, the functional organization of the 

VPS may undergo specialization with age.  In their infant ERP study, de Haan and colleagues 

used a passive viewing procedure to investigate the development of cortical specialization in face 

processing (de Haan, Pascalis, & Johnson, 2002).  ERPs were recorded while six month olds and 

adults viewed human and monkey face stimuli in upright and inverted orientations.  In adults, a 

face-specific negative going potential, the N170, was unique in its response to upright human 

faces.  In contrast, no infant potentials demonstrated sensitivity to species and orientation of 

faces.  In a study of 3 month and 12 month old infants, Halit, de Haan, and Johnson evaluated 

two face-sensitive infant ERPs (N290 and P400) for maturational changes in the specificity 

(2000).  In response to monkey and human faces, both face sensitive components increased in 

their specificity for human faces by 12 months.  No specificity was seen at three months.  

Together, these developmental differences in specificity indicate a narrowing of neural processes 

for face processing.  As these studies were limited to face processing, their results can only speak 

to developmental specialization within the category of faces.  Conversely, Carver et al. 

investigated the maturation of face processing relative to object processing across three age 

groups (18-24 months, 24-45 months, and 45-54 months) using pictures of familiar and 

unfamiliar faces and toys as stimuli (2003).  Results revealed that children’s responses to 

familiar and unfamiliar faces but not objects varied as a function of age. The youngest children 

showed greater ERP responses to familiar faces than unfamiliar whereas the oldest children 

showed greater responses to unfamiliar faces.  Twenty-four to forty-five month old children 

showed no differential responses to faces.  From their findings, Carver and colleagues concluded 

that developmental changes in processing are unique to faces relative to toys.  Thus, face 

processing is special and specialized within the VPS. 

Investigations in Other Species 

Neural correlates of face and object recognition have been examined in other species.  

Primate studies also exist that support selective modules of visual processing.  A population of 

inferior temporal cortex cells in the brains of the rhesus Macaque produced a selective response 

to faces (Wang, Tanifuji, & Tanaka, 1998) and a subset of these cells responded selectively to 

specific facial features (Perrett, Rolls, & Caan, 1982).  In addition to monkeys, evidence for 
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domain-specificity is reported in studies of sheep.  Using single-cell recordings, Kendrick et al. 

explored the possibility that sheep have specialized face processing regions (2001).  The sheep 

data indicated small populations of cells in the temporal and medial prefrontal cortices encoded 

faces as opposed to other visual stimuli.  Thus, domain-specific organization is supported across 

species. 

“Specific” Summary 

 In disordered human brains and normal brains of humans, monkeys, and sheep, domain-

specificity has been investigated using a wide range of techniques.  Proponents for a modular 

VPS neural blueprint build their models of the mind on the basis of evolutionary history 

(Capitani et al., 2003).  Domain-specific regions are a plausible response to the need for quick 

and efficient processing of the environment for survival (Capitani et al., 2003).  Therefore,  

domains for faces (Kanwisher et al., 1997), places (Epstein, DeYoe, Press, Rosen, & Kanwisher, 

2001), inanimate biological objects (e.g. vegetables and fruits) (Capitani et al., 2003), and 

artifacts (e.g. tools) (Martin & Weisberg, 2003; Moore & Price, 1999) seem logical explanations 

for the findings discussed above.     

Domain-General Organization 
From the extent of literature presented here, it would seem that domain-specificity has 

much support.  However, domain-generalists cite weaknesses and contrary evidence and 

explanations.   

Prosopagnosia 

As in the case of domain-specificity, findings from some lesion and disorder studies 

support a domain-general system (Damasio et al., 1982; Damasio, Tranel, & Damasio, 1990; de 

Gelder & Rouw, 2000b; Gauthier, Curran, Curby, & Collins, 2003).  In fact, Gauthier, 

Behrmann, and Tarr argue that current prosopagnosia literature lacks evidence for pure face 

versus non-face impairments citing multiple prosopagnosia cases in which deficiencies existed in 

both face and object processing (1999) (c.f. Duchaine & Nakayama, 2005).  To support their 

criticism, Gauthier and colleagues tested two prosopagnoiscs for true categorical deficits. 

Comparing two prosopagnosics with controls on object discrimination tasks (objects were from 

multiple categories, face and non-face), the investigators found that, unlike controls, subject 
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performance was more affected by manipulations within category domains than between 

categories.  The finding of impaired recognition performances at the subordinate level across 

many categories rather than impaired recognition of one-specific category (i.e. faces) challenges 

the neuropsychological evidence for domain-specificity, specifically the existence of a face-

specific module. 

  Similarly, by examining reported cases of recognition defects, Antonio Damasio (1990) 

noted that most recognition breakdowns occurred at the subordinate level irrespective of 

categorical boundaries or lexical labels.  From this, he concluded that the recognition system was 

not organized on the basis of conceptual categories but around sets of shared perceptual features 

and interactions (Damasio, 1990).  In yet another case, Barton and colleagues studied perception 

in three patients with developmental prosopagnosia and found that, though all were deficient on 

face matching tasks, their impairments were not limited to faces (2003). All three subjects also  

had trouble on other “within-category” judgments.  Thus, the prevalence of convoluted rather 

than pure agnosias along with findings of within-category deficits contribute to a more general 

rather than domain-specific theory of VPS organization. 

Other Disorders 

 Capitani, et al. (2003) conducted an exhaustive review of the clinical cases of semantic 

category-deficits (with the exception of developmental cases) and found little reliable evidence 

supporting category-specific agnosia or anomia.  Overall, the clinical cases revealed a 

disproportionate impairment in one category versus another rather than the presence of a 

selective impairment.  Of the seventy-nine complete and useable cases the authors reviewed, 

sixty-one were disproportionately impaired for biological categories and eighteen were 

disproportionately impaired for artifacts.  Results of Capitani et al.’s review concur with 

Gauthier and others prosopagnosia findings that cases of category-specific object processing 

deficits are frequently accompanied by deficits in other categories.  Furthermore, in attempting to 

define what categories are involved in specific deficits, Capitani et al. proposed a very broad 

classification including animate objects, inanimate biological objects, and artifacts.  These broad 

groupings are composed of overlapping classes of objects and members of these groupings can 

be filed in more than one category (e.g. faces are both animate and biological).  Thus, such  
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minimal evidence for true domain-specific deficits in accounts of object recognition along with 

impaired face recognition support overlapping rather than compartmentalized organization of the 

ventral processing stream.  

Normal Healthy Adults 

Among visual recognition studies in healthy adults, several investigations support 

overlapping face and object neural networks rather than domain-specific modules. For example, 

in an fMRI study using houses, chairs, and faces, Ishai et al. (1999) found cortically distributed 

rather than segregated regions for face processing.  Distinct VPS regions responded 

preferentially to each category (i.e. 3 face regions, 1 house region, and 1 chair region) yet each 

region also responded significantly to the other classes of stimuli. Ishai and colleagues concluded 

that recognition processing was not restricted to maximum responsive regions but distributed 

across cortex with each category having its own differential pattern of responses in the VPS 

(Ishai et al., 1999).  

As further support for domain-general organization, several studies found category-

sensitive rather than category-selective neural responses. In a visual matching positron emission 

tomography (PET) study using famous versus non-famous buildings and faces results indicated 

significant activation of the right fusiform gyrus, the “fusiform face area”, by all types of faces 

(Gorno-Tempini & Price, 2001).  But this same area was also activated by pictures of buildings. 

Activation of the right fusiform gyrus by buildings as well as faces implicates a sensitive but not 

selective response in this region.  Similarly, another study determined the extent to which regions 

associated with face processing were selective for faces by examining fMRI responses to human 

faces, dog faces, houses, and scrambled images (Blonder et al., 2004).  Blonder et al. (2004) 

concluded that the lateral fusiform gyrus, an area corresponding to the fusiform face area (e.g. 

Kanwisher, 1997), was face sensitive but not face selective as it responded significantly to both 

faces and houses.    

  Furthermore, sensitive rather than exclusively selective activation of the visual 

processing system as a whole is supported by an fMRI study involving matching inverted and 

upright houses and faces. This study defines selectivity as relative differences in the response to 

these two categories and not relative to other visual stimuli. Based on this definition, the study 

identifies multiple bilateral areas of “selectivity” for houses and faces, including areas within the 
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fusiform gyri and the occipital lobe (Haxby et al., 1999).  Multiple regions of selectivity for each 

type of stimulus are indicative of connected regions or processing pathways -- not individual 

processing modules.  Also, the authors reported that both face-selective and house-selective areas 

were activated (degrees of significance varied) by inverted forms of the opposing stimuli and that 

face-selective regions responded less to upright faces than house-selective areas responded to 

upright houses (Haxby et al., 1999).  In other words, “selective” areas are numerous for each  

stimulus and their selectivity is based on graded amounts of activation between houses and faces 

rather than exclusive activation. This supports Ishai and colleagues’ conclusion that overlapping 

regions function in the similar processing of objects and faces.  

These neuroimaging studies have documented sensitive neural substrates which respond 

differentially to multiple stimulus categories rather than responding exclusively to one category.  

Discrepancies in these findings with data supporting domain-specificity may be founded in the 

definition and assessment of “selective activation” (Joseph et al., 2002).  Frequently, brain 

imaging studies fail to address the distinction between a selective and a differential response to 

stimuli.  Selective activation refers to a statistically significant response to one condition relative 

to all other experimental conditions and all other conditions produce statistically equivalent 

responses to one another.  In other words, a selective brain region responds exclusively to one 

experimental condition (i.e. face-selective regions produce only a significant response to faces 

and no other stimuli).  Differential activation, in contrast, is defined by a statistically greater 

response to one condition relative to all others but one or more of the other conditions also 

generate a response greater than baseline.  For example, a face-differential region is more 

responsive to faces than other categories but not exclusively responsive to faces. Selective 

activation is the basis for domain-specific views whereas differential responses support the 

domain-general account of functional organization. Thus, it is critical that functional imaging 

studies carefully distinguish among different activation patterns.  The common use of analysis 

techniques, subtraction and conjunction, limited in their assessment of differential brain patterns 

(Joseph et al., 2002) may be the basis for controversial findings of category-specific regions.  

Further assessment of data may be needed to verify truly selective neural substrates.  
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Primate Studies 

Again, interspecies studies contribute to the controversy surrounding the functional 

organization of the VPS.  A study of rhesus monkeys in which “face-selective” superior temporal 

cells were surgically removed, found general visual impairments rather than face-specific deficits 

(Eacott, Heywood, Gross, & Cowey, 1993) indicating general processing regions in which face 

and object neural correlates overlap. 

“General” Summary 

Strong arguments for each side of the neural architectural debate exist.  From these 

investigations, it is apparent that the question of how the VPS is organized is yet unresolved 

across health, age, and species.  If the collection of existing data indicates a domain-general 

organization of the VPS, then what, if not category, determines the functional organization 

underlying face and object processing?   

 Gauthier and colleagues proposed an experienced-based expertise model for these 

regional variations in neural sensitivity to stimuli.  Using novel objects called greebles, Gauthier 

et al. found increased fMRI signal in the mid fusiform gyrus (i.e. the fusiform face area, 

(Kanwisher et al., 1997) as expertise for the stimuli increased.  Thus, this area was not 

selectively involved in face processing (Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999) but 

amplitude of signal was related to experience with the category.  Applying this to the findings of 

Ishai (1999), Haxby (2001), Blonder (2004) and others (Chao, Haxby, & Martin, 1999) expertise 

explains graded sensitivity to faces, houses, and chairs, stimuli humans frequently encounter in 

the environment.   

2.) What are the underlying cognitive mechanisms? 

Face processing:  Are Faces Special? 

Are faces like other classes of objects or are they unique? Not only does a debate exist regarding 

the functional organization of visual processing in the VPS but, the cognitive mechanisms that 

drive face and object processing are also debated. There is division among face perception 

researchers on the topic of whether or not faces are special. Adult studies and studies of face 

processing disorders, as discussed previously, contribute to both sides of this argument.  

Developmental data deepen the controversy.  In contrast to the relatively limited number of 
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healthy developmental fMRI studies, behavioral information regarding infant and child face 

processing is prevalent. However, results and interpretations are varied. In addition to the 

aforementioned literature supporting face-specific deficits (prosopagnosia) and face-selective 

brain regions (e.g. FFA, Kanwisher et al., 1997), three lines of evidence exist for the argument  

that faces are a special category of stimuli:  1.) infant preferences for faces; 2.) differential 

effects for face and object recognition with orientation; and 3.) face-specific developmental 

changes in recognition performance. 

Newborns show a preference for face-like patterns versus other patterns (Johnson & al., 

1991; Morton & Johnson, 1991).  Based on this and other behavioral findings, Farah and others 

propose that infants and children have a “face” mechanism (1996; 2000; Johnson & al., 1991; 

Morton & Johnson, 1991) (and possibly a neural module) that directs their attention to faces.   

However, other researchers interpret the newborn’s face preference to indicate the existence of a 

general perceptual mechanism pre-wired for specific visual patterns (Turati, 2004). 

In addition, those who argue that faces are a special category of stimuli emphasize that 

faces are disproportionately affected by orientation relative to other non-face stimuli.  Scientists 

refer to this orientation phenomenon as the face inversion effect.  Many interpret poorer 

recognition performance on inverted faces relative to other orientation and stimuli as a 

qualitative difference in face and object processing (Bartlett & Searcy, 1993; Carey & Diamond, 

1977; Carey & Diamond, 1994; Diamond & Carey, 1986; Freire, Lee, & Symons, 2000; Maurer, 

Le Grand, & Mondloch, 2002; Murray, Rhodes, & Schuchinsky, 2003; Searcy & Bartlett, 1996; 

Tanaka & Farah, 1993; Valentine, 1988; Young, Hellawell, & Hay, 1987).  Though, most 

investigators agree that the inversion effect does denote differential processing between faces 

and objects, some argue that the differences are quantitative not qualitative in nature (Maurer et 

al., 2002; Reed, Stone, Bozova, & Tanaka, 2003; Want, Pascalis, Coleman, & Blades, 2003).  

Whether qualitative or quantitative, the differences in face and object processing revealed by the 

face inversion effect become more pronounced with age (Diamond & Carey, 1986).  This 

developmental difference supports the third line of evidence that faces are indeed special. 

  Proponents of the special status of faces cite that cognitive mechanisms for face 

recognition change from childhood to adulthood, whereas processing of objects remains 

relatively constant across one’s lifespan (Farah, 1996; Ward, 1989). Unlike the controversy 

surrounding face recognition, much research supports the conclusion that object recognition is 
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similar in childhood and in adulthood.  Developmental studies indicate the presence of adult-like 

mechanisms for categorization in 3 to 4 month old infants (Quinn, Eimas, & Tarr, 2001).  Also 

like adults, at three months, infants display sensitivity and selective attention to information 

relevant to 3-D structural processing (Bhatt & Bertin, 2001; Bhatt & Waters, 1998).  

Furthermore, Ward (1989) documents the use of adult-like object recognition strategies by 5 

years of age.  However, controversy exists over the similarity of face recognition among these 

age groups. Still other studies in healthy and disordered individuals deny category-based 

perceptual processing differences in children and adults.  Those who oppose the “special” status 

of faces explain age-related changes in face recognition skills as functions of expertise or the 

maturation of general cognitive factors such as attention and memory rather than developmental 

changes in perceptual processing mechanisms (Baenninger, 1994; Gilchrist & Mckone, 2003; 

Pellicano & Rhodes, 2003; Pezdek, Blandon Gitlin, & Moore, 2003; Turati, 2004; Want et al., 

2003). 

In the midst of these two opposing views, how is one to determine if the “special” status 

of categories and, therefore, domain-specificity exists? Ramsey and Langlois (2002) make note 

of two criteria that must be met before assigning a “special” label to faces:   

1.)  a specific mechanism must exist that directs an individual’s attention toward 

faces (more than toward non-face stimuli) and that processes facial information  

2.)  individuals must respond to faces in a qualitatively different manner than to 

other non-face stimuli  

These two conditions can be applied to face and non-face categories to address the 

question of “specialness” and underlying processing mechanisms.  In addition to behavioral 

criteria, neuroimaging and physiological investigations can be used to assess the claims of 

category-specific mechanisms and corresponding neural substrates.   

Faces Are Special 

Innate Face Mechanism 

Does a specific mechanism exist that directs an individuals attention toward faces and 

that processes facial information?  

Even in infancy faces are special.  Newborns prefer faces over other objects (Goren, 

Sarty, & Wu, 1975; Mondloch & al., 1999; Nelson, 1987) (see review Nelson & Ludemann, 
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1989).  For example, Goren et al. (1975) and later Johnson et al. (1991) found that within 30 

minutes of birth newborns track schematic faces farther than other non-face stimuli.  From this 

preference for faces, Johnson et al. (1991) speculated that even at birth faces have an advantage 

over other non-face stimuli so that infants are born with an innate face mechanism that 

predisposes them to attend to facial patterns (Morton & Johnson, 1991).  This mechanism is 

known as CONSPEC.  In theory, CONSPEC uses inputs from a lower functioning subcortical 

region of the brain, the retinotectal pathway.  In addition, Johnson et al. found that the infant’s 

preference to faces disappears at 1-2 months and reappears by 2-3 months.  Based on this 

preference phenomenon, they proposed a second more mature face-specific mechanism, 

CONLERN.  Unlike CONSPEC, CONLERN is mediated by higher cortical functions via the 

retinocortical pathway and develops from experience with faces. 

The existence of this innate mechanism for face processing is also supported by a 

developmental prosopagnosia study in which a 16-year old individual, Adam, who sustained 

brain damage one day after birth presented with a disproportionate impairment in face to object 

recognition (Farah et al., 2000).  Neuropsychological testing revealed that Adam identified real 

objects without difficulty.  In contrast, he performed with difficulty on photos and line drawings 

of objects, particularly line drawings of living things (i.e. animals and plants). Hence, though 

Adam’s object recognition system was compromised, it was functional. On the other hand, 

Adam’s face recognition system was non-functional.  Face recognition tasks revealed a profound 

impairment with Adam unable to identify any familiar or famous faces.  In their investigation, 

Farah et al. (2000) concluded that the lack of compensation for face processing by the existing 

object recognition system indicated a distinct and innate face-specific mechanism.   

Human infant studies, lesion studies, as well as studies in other species indicate innate 

visual recognition pathways.  In their comparison of the visual structures and pathways in 

amphibian, avian, rodent, and primate species, Sewards and Sewards (2002) confirmed the 

existence of an innate subcortical visual recognition system used to overtly discriminate 

biologically relevant objects.  In the first few months of a primate’s life (human and non-human) 

visual object recognition shifts entirely from this innate subcortical system to an experienced-

based cortical system.  Seward and Seward’s review is in line with Morton & Johnson’s proposal 

of innate face-specific mechanisms. From each of these studies one can recognize the theme that 

faces are special – innately special.    
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Qualitative Differences – Inversion Effect 

Do individuals respond to faces in a qualitatively different manner than to other non-face 

stimuli?   

Studies of infant face preferences are only a small portion of the evidence for the special 

status of faces.  The idea that faces are processed differently from objects is also supported by 

studies of orientation effects on faces versus other non-face stimuli. From around ten years to 

adulthood, inversion affects recognition of faces more than other object stimuli (Yin, 1969)  

implying that face processing varies from object processing.  In addition to inversion, other 

experimental manipulations (e.g. composite effect) (Carey & Diamond, 1994) indicate that the 

type of information used for face recognition differs from that used for object recognition.         

Several hypotheses exist concerning face processing and all of these have empirical 

support. The feature hypothesis (or analytical hypothesis) proposes that faces are perceived and 

remembered based on individual attributes (e.g. nose, mouth, eyes) without regard to 

relationships among the attributes (Cohen, 1998).  Two other hypotheses are referred to as 

“relational.” Unlike the feature-based hypothesis, the holistic hypothesis stresses an advantage 

for recognizing the face part in the context of the whole face rather than in isolation (Tanaka & 

Farah, 2003).  The holistic hypothesis proposes that faces are recognized based on a certain 

perceptual “wholeness” where features and inter-featural information are perceived as a single 

entity, a gestalt representation (Baenninger, 1994; Farah & al., 1998; Tanaka & al., 1998; Tanaka 

& Farah, 1993).  In addition to holistic processing, configural processing is also relational rather 

than featural.  Two types of configural information exist -- first order (general relational order of 

features, e.g. eyes above nose and nose above mouth) and second order (spatial relationships 

between features, e.g. distance between eyes or distance from nose to mouth) (Diamond & 

Carey, 1986).  The configural hypothesis of face processing proposes that faces are 

distinguished from one another on the basis of their second order information.  First order 

configural information is common to all faces but second order information is unique to each 

individual face.  With regards to these hypothesis, inversion has been shown to differentially 

affect relational (i.e. holistic and configural) processing (Bartlett & Searcy, 1993; Carey & 

Diamond, 1977; Carey & Diamond, 1994; Diamond & Carey, 1986; Freire et al., 2000; Maurer 

et al., 2002; Murray et al., 2003; Searcy & Bartlett, 1996; Tanaka & Farah, 1993; Valentine, 

1988; Young et al., 1987).  The phenomenon of poorer recognition performance on inverted 
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versus upright stimuli is known as the inversion effect (see Valentine, 1988).  Inversion disrupts 

relational processing and faces are more vulnerable to inversion than other non-face categories 

(Yin, 1969).  Therefore, face recognition relies more on relational processing than does object 

recognition.  These processing differences determined by orientation imply that face and object 

recognition mechanisms are qualitatively different (Murray, Yong, & Rhodes, 2000). 

Qualitative Developmental Changes 

 Developmental changes documented in face processing but absent in object processing 

point to the uniqueness of faces. In their initial studies, Carey and Diamond demonstrated a shift 

in unfamiliar face recognition capabilities between six and ten years of age (1977; Diamond & 

Carey, 1977).  Performing equally well on upright and inverted house and face recognition 

memory tasks, six-year-olds showed no evidence of the face inversion effect.  In contrast, 10 

year old children performed better on upright than inverted faces (Carey & Diamond, 1977).  A 

similar inversion effect was not seen in object processing at any age.  In the same study, the 

authors tested children’s recognition performance by manipulating features (i.e. distracting 

versus helpful paraphernalia) on model faces.  Six year olds but not 10 year olds were easily 

fooled by the feature changes.   Based on the two experiments, Carey and Diamond credited the 

lack of an inversion effect in younger children to feature-dependent recognition of unfamiliar 

faces whereas the occurrence of a face inversion effect in older children indicated an age-related 

reliance on relational information for face processing.  These data resulted in the “encoding 

switch” hypothesis which proposed a mechanistic change in face recognition from a feature-

based to a configural strategy around 10 years of age.  Similarly, Schwarzer (2000) proposed 

different mechanisms of face recognition for upright stimuli in children and adults.  To 

differentiate between relational and featural face processing strategies, Schwarzer tested 7 year 

olds, 10 year olds, and adults on a category learning test.  Participants learned to place schematic 

faces in one of two categories based on feedback regarding either a featural or relational 

characteristic.  Following the learning phase, subjects were tested on additional versions of either 

inverted or upright face stimuli.  Based on the subjects’ categorization assignments, Schwarzer 

could identify whether a featural or relational strategy was used.  She reported that 7 year olds 

preferred featural processing of faces in both orientations while 10 year olds and adults preferred 

relational processing for upright faces (Schwarzer, 2000). Furthermore, adults processed inverted 
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faces featurally.  Schwarzer’s category learning task with faces was an adaptation from a 

developmental object processing study by Ward (1989).  Ward found a featural dominance in 

non-face object processing from 5 years to adulthood. Thus, no developmental shifts occurred 

for visual processing of non-face objects.  As a group, these studies point to a developmental 

shift unique to face processing mechanisms.   

In a series of later studies, Carey & Diamond modified their hypothesis.  Using the 

composite task in which the top-half of a face from one person is combined with the bottom half 

of another person’s face, Carey and Diamond assessed recognition naming performance in 6 year 

olds, 8 year olds, and adults (1994).   In the task, composite and non-composite faces appeared in 

upright and inverted orientations.  As composite stimuli produce new face configurations, the 

authors reasoned that poorer performance on composite than non-composite tasks infers the use 

of relational processing.  In contrast, featural processing, unaffected by the creation of new 

configurations, is evidenced by similar performance on composite and non-composite trials.  

Results indicated that 6-year olds, 10-year olds, and adults used relational processing for upright 

faces.  The use of relational information for upright face recognition in six year olds conflicted 

with Carey and Diamond’s earlier conclusion that younger children (less than 10 years) used 

featural processing for upright faces.  Inversion findings, however, were similar between the two 

studies.   Six year olds continued to perform equally well at either orientation implying some 

reliance on featural processing whereas 10 year olds and adults continued to perform better on 

upright than inverted stimuli implying the use of relational processing.  In light of their finding 

that children as young as six years of age use relational information for upright face recognition, 

Carey and Diamond explained the age-related inversion effect as an experienced-based bias for 

relational processing of normally-presented upright faces.  In other words, the “norm-based” 

encoding switch involves an increased reliance on relational processing relative to experience 

with a prototypical face.   In line with these more recent findings of Carey & Diamond, 

Thompson et al. showed that 7-month old children may be sensitive to second order relational 

properties of faces (2001).  This study implies that even very young children have the capacity to 

use second order relationships in face processing.  Thus, children are capable of relational 

processing but the extent to which they implement it when viewing faces differs from adults. 

Additional studies have noted this developmental shift in face processing mechanisms from a 

greater reliance on features in childhood to a greater reliance on relational information 
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(configural/ holistic) in adulthood (Carey & Diamond, 1994; Freire & Lee, 2001; Freire & Lee, 

2003a; Mondloch, Geldart, Maurer, & Le Grand, 2003; Mondloch, Le Grand, & Maurer, 2002; 

Schwarzer, 2000).  In summation, developmental studies support the special status of faces by 

demonstrating that processing mechanisms for faces, unlike those for non-face objects, undergo 

maturational changes.   

Faces Are Not Special 

If faces are not special then what explanations can be found for infant preferences, 

orientation effects, and developmental shifts?  Proponents of domain-general cognitive theories 

speak of quantitative differences in face and object processing due to the maturation of general 

cognitive abilities and experience-based expertise rather than different mechanisms.   

Innate Perceptual Mechanism  

 Despite evidence in infant, lesion, and interspecies studies, the domain-specific idea that 

there is an innate brain mechanism devoted to processing faces is not universally supported.  

Many researchers support a face-preferential response in newborns (Goren et al., 1975; Johnson 

& al., 1991; Valenza, Simion, Cassia, & Umilta, 1996) (c.f. Easterbrook & al., 1999) but the 

interpretation of this preference for faceness is controversial.  In contrast to a visual system 

innately tuned to faces, newborns’ systems may be tuned to general properties of perceptual 

processing.  Turati et al. explored the idea of a domain-general explanation for infant face 

preferences by monitoring newborns’ looking times to two different nonspecific perceptual 

properties typical of faces but found in other non-face stimuli, up-down asymmetry and 

congruency (2004).  For up-down asymmetry patterns more elements occur in the upper than 

lower part of a stimulus shape.  For congruency, the greater number of inner elements is located 

in the widest part of a stimulus shape.  Results demonstrated that an up-down asymmetry not 

faceness guided infants looking preferences.  This implies that infants are predisposed to 

particular visual patterns not to particular visual categories.  Hence, Turati et al. argue for an 

innate perceptual mechanism and against an innate face mechanism.  

Quantitative Differences – Inversion Effect 

Not only does the special status of faces hinge on the existence of a face-specific 

processing mechanism but this mechanism must be qualitatively different from that of other 
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object categories.  As mentioned previously, many studies support a qualitative difference in the 

processing of faces relative to other object stimuli (Bartlett & Searcy, 1993; Carey & Diamond, 

1977; Carey & Diamond, 1994; Diamond & Carey, 1986; Freire et al., 2000; Maurer et al., 2002; 

Murray et al., 2003; Searcy & Bartlett, 1996; Tanaka & Farah, 1993; Valentine, 1988; Young et 

al., 1987).  This qualitative difference in face processing is based primarily upon studies of 

orientation effects on faces versus other non-face stimuli.   Face recognition performance is  

differentially hampered by stimulus inversion and inversion effects relational (holistic and 

second-order configural) processing.  Therefore, faces are deemed special in that face 

recognition involves more relational processing than other object categories.  However, data 

exists to the contrary. 

Three lines of reasoning explain opposing findings to qualitative processing differences 

between faces and objects (Gauthier, Anderson, Tarr, Skudlarski, & Gore, 1997; Maurer et al., 

2002; Reed et al., 2003; Want et al., 2003).  First, stimulus inversion has been accepted as a 

standard test for determining qualitative processing differences based on the assumption that 

inversion affects relational processing.  Under this assumption, claims have been made that faces 

alone are disproportionately affected and therefore, are a unique category (Yin, 1969).  However, 

Maurer, LeGrand, & Mondloch reject the inversion test as the gold-standard of quality changes 

in processing mechanisms citing that the inversion of faces interferes with first-order and 

second-order configural processing as well as holistic and even featural processing (2002).  

Thus, the inversion effect alone in not sufficient for determining a particular type of face 

processing nor can it attest to the processing differences between faces and objects (Maurer et 

al., 2002).  Secondly, in proclaiming that faces are special, many studies have investigated 

inversion effects in faces only and have failed to investigate inversion effects on other object 

categories (Want et al., 2003).  Without a comparison basis, changes in face recognition can not 

be credited as face-specific. A third, and related, oversight often exists in the investigations of 

face processing.  Not only do many studies fail to test other non-face categories, but those studies 

that include objects often fail to make direct stimulus comparisons by constraining object 

categories to those in which, like faces, exemplars are structurally similar to each other (Gauthier 

et al., 1997; Maurer et al., 2002; Reed et al., 2003; Tarr, 2003).  The following studies have 

addressed these deficits and found quantitative rather than qualitative distinctions in face and 

object processing mechanisms.  
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Using response classification techniques, Sekuler et al. (2004) determined the perceptual 

strategies underlying processing for upright and inverted faces.  The response classification 

technique reveals the parts of a stimulus used to make a decision by introducing variations of 

external noise on a trial by trial basis and measuring response bias.  Though this study found  

significantly greater impairments on inverted than upright faces, no qualitative processing  

differences coincided with orientation.  For both upright and inverted face discrimination, results 

indicated that participants used highly localized regions near the eyes.  Thus, efficiency not 

strategy varied with orientation. 

By discrediting the idea that face inversion produces qualitative changes in processing 

strategies, Sekuler et al. provided data for the argument that faces are not special.  However, their 

investigation was limited to effects within the category of faces.  In a prior study, Gauthier and 

Tarr challenged the idea of a face-specific region and corresponding mechanism by testing 

subjects’ performance on inverted and upright novel objects called greebles (1997).  Greebles, 3-

D computer generated complex objects, are visually similar in regards to the number and 

configuration of their parts. In this way, like faces, greebles are a homogenous group of stimuli 

(Gauthier & Tarr, 1997).  Results revealed an inversion effect for greebles similar to that of 

faces.  This disruption of object recognition by inversion, contributes to evidence against a 

qualitatively unique face mechanism.  Gauthier proposed that experience within a homogenous 

class of stimuli rather than taxonomic category explained the special status of faces.  

Findings by Reed and colleagues further discredit the special status of faces.  Recognition 

performance of upright and inverted faces, houses, and body positions was compared using a 

same/different behavioral task (2003).  This study compared face and non-face object classes as 

well as a direct comparison of two object categories with structurally similar exemplars (i.e. 

faces and body positions).  In contrast to the Gauthier and Tarr study of novel objects (1997), 

subjects were not trained on the task.  Reed et al. found that while houses differed from the other 

two categories, inversion affected recognition of faces and body positions similarly (2003).  

Faces and body positions are distinctly different categories but possess similar within class 

characteristics.  Thus, this finding refutes the existence of a face-specific mechanism and points 

rather to a mechanism based on experience and / or structural similarity. 
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Quantitative Developmental Changes     

Across developmental face studies, findings support maturational changes in recognition.  

However, as in adult inversion studies, scientists disagree whether changes are qualitative (Carey 

& Diamond, 1977; Carey & Diamond, 1994; Schwarzer, 2000) or quantitative (Baenninger, 

1994; Itier & Taylor, 2004a, 2004b; Pellicano & Rhodes, 2003; Pezdek et al., 2003; Sangrigoli & 

de Schonen, 2004) in nature.  As previously established, faces are not special if there is no 

qualitative difference between face and object processing.  In one behavioral and two ERP 

studies involving upright, inverted, and contrast-reversed unfamiliar face stimuli, Itier and Taylor 

investigated the role of configural changes in development and the effects of memory on face 

recognition from eight to sixteen years of age (2004a; 2004).  Behavioral and ERP results on an 

n-back repetition task revealed an improvement in upright face recognition with age as well as an 

age-related improvement on negative and inverted faces.  Contrary to other studies (Carey & 

Diamond, 1994; Schwarzer, 2000), the inversion effect, occurring in 8 year olds, did not increase 

with age.  Based on the finding of an early inversion effect, Itier and Taylor inferred the 

emergence of configural processing by 8 years of age.  Furthermore, as the inversion effect did 

not increase with age, the authors argued against an encoding shift.  Analysis of the repetition 

aspects of the task revealed improved memory and reaction time with age.  Thus, Itier and Taylor 

suggest a quantitative change in face processing with age based on maturation of working 

memory processes.   

 Quantitative changes in face processing have also been ascribed to attention maturation. 

In a paraphernalia study, children, four to seven years of age, participated in a series of face 

recognition tasks (Freire & Lee, 2001).  Using face stimuli differing in either featural or second-

order configural information, Freire & Lee found that 4 year olds and 7 year olds performed well 

on featural and configural trials (2001). In the learning target/non-target face recognition task, 

Friere and Lee found that inclusion of paraphernalia diverted attention away from the face itself.  

In addition, paraphernalia effects were greater in younger children than older children. Together, 

Friere and Lee’s findings indicate that developmental changes in attention, rather than perception 

mechanisms, may contribute to age differences in face recognition.  Thus, developmental studies, 

both physiological and behavioral, provide evidence for quantitative rather than qualitative 

differences in face processing with age.  Their findings imply developmental differences based  
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on changes in general cognitive mechanisms such as memory (Itier & Taylor, 2004a, 2004b; Itier 

& Taylor, 2004) and attention (Freire & Lee, 2001; Freire & Lee, 2003a) as opposed to changes 

in perceptual mechanisms. 

Similarly, in another face recognition study, Baenninger found no developmental 

differences in face recognition styles between children (six and eleven years) and adults (1994).  

Direct manipulation of the internal configuration of faces in a forced choice matching task 

revealed that eight year olds, eleven year olds, and adults used configural information for face 

recognition.  Using a similar task, Baenninger kept facial configurations constant but 

manipulated features by removing them.  Removing features had little negative effect on 

recognition for any age group.  Together these experimental results indicate that both children 

and adults have a tendency to rely on configural cues more than featural cues during face 

recognition tasks.  Though face processing styles appear to be similar across development, 

Baenninger does report age differences in performance.  The author attributes age-related face 

recognition performance differences, in the presence of similar face processing strategies, to 

potential developmental differences in characteristics such as memory, motivation, attention, and 

experience.    

Other studies suggest experience-based quantitative changes in face processing with age.   

In a part-whole face recognition task, Pellicano and Rhodes (2003) found that four-year old 

children use holistic processing for face recognition.  Though their overall performance was 

poorer than adult performance, four and five year old children, like their adult counterparts, 

recognized upright faces better in the whole than in the part condition.  Pellicano and Rhodes’s 

data (2003) in accord with other data, support qualitatively similar face processing from five 

years to adulthood.  The finding that children performed more poorly on upright face recognition 

than adults is in line with findings from other developmental studies (Baenninger, 1994; 

Diamond & Carey, 1977); and may indicate differences in levels of face expertise (Bruce et al., 

2000; Diamond & Carey, 1986). 

In support of expertise-based quantitative changes in the visual recognition system de 

Haan, Pascalis, and Johnson (2002) compared infant and adult N170 components in response to 

upright and inverted human and monkey face stimuli.  In the study, infants did not show the 

same degree of cortical activation during face processing as adults.  Rather, adult N170s were 

sensitive to species and orientation while 6 month infant responses only showed sensitivity to 
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species.  The presence of an orientation response in adults but not in infants may be linked to 

experience.  In general, 6 month-old infants have encountered the human face many times.  

However, at 6 months, an infant’s experience with the upright human is not as extensive as that 

of an adult.  Thus, a sufficient amount of experience with upright faces in adults may drive the 

specialized N170 for inverted faces that is absent in infants.  Other studies support the idea of an 

experience-driven N170 sensitive to inversion (Halit et al., 2000; Rossion et al., 2000). 

In addition to interspecies stimuli, studies using faces of other races also demonstrate 

developmental changes in face processing based on experience.  Some experimenters observed 

increasing cross-race or non-native effects with age as the observer’s abilities to discriminate 

between two faces differing in race from his/her own race were inversely proportional to the 

observer’s age (Chance, Turner, & Goldstein, 1982; Sangrigoli & de Schonen, 2004).  Chance 

and colleagues examined performance in Caucasian subjects six to twenty years of age on the 

recognition of Caucasian and Asian faces (1982).  Based on accuracy results, superior 

recognition for native race (Caucasian) than other race faces (Asian) appeared after seven years 

of age.  The emergence of this non-native effect indicates faces processing changes based on 

exposure to stimuli.  In another developmental investigation of the non-native effect, Sangrigoli 

and de Schonen explored the role of experience in processing inverted faces (2004).  Children 

three to six years old and adults participated in a forced choice task where face recognition was 

tested according to the categories of race (Caucasian versus Asian) and orientation (upright 

versus inverted).  Adult findings confirmed a cross-race effect and an inversion effect.  The 

inversion effect was greater for native race faces supporting the idea that the inversion effect is 

related to degree of expertise with the stimuli (Diamond & Carey, 1986).  For children, inversion 

and non-native effects increased between three to five years of age.  Also, children older than 3 

years showed a significant interaction of race and orientation with greater error rates for inverted 

native faces than inverted non-native stimuli.  This development of a race x orientation 

interaction indicates experience-based changes in face processing.  Collectively, studies using 

faces of other species and other races tap into changes that support an expertise basis for 

quantitatively different processing of faces and objects. 
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Summary of the “Special” Debate 

Faces are and are not special.  Recognizing which argument is more valid is difficult 

considering the amount of literature supporting each.  Even for those who argue against the 

special status of faces, it appears that faces may be a special stimulus category based on their 

frequency in and relevancy to our everyday lives.  Proponents and opponents of the special status 

of faces seem to agree that face recognition performance is to some degree experience-

dependent.  

Object Processing 
An object’s shape is critical to its recognition.  This idea comes from the discovery that 

neurons in cat cortex are sensitive to boundaries of dark and light and are organized in columns 

according to orientation preferences (Hubel & Wiesel, 1959).  With this discovery, Hubel and 

Wiesel found that the visual system is sensitive to edges (1959).  Thus, it follows that a visual 

system that responds to edges is ideal for recognizing object shape.  Based on this idea, Marr and 

Nishihara proposed that visual recognition of objects functioned on an early detection system 

that built complex 2-D shape representations from edge information – a primal sketch (1978). 

Using this primal sketch, information about depth and orientation were added to form 3-D 

shapes.   

Another well-known theory of object recognition based on shape is Biederman’s 

Recognition-by-Components (RBC).  In contrast to holistic face recognition models, Biederman 

proposes that object recognition occurs by decomposition of the object into its basic parts  (eg. 

Geons, 1987).  For recognition, these parts and their spatial arrangements are then matched to 

structural descriptions (three dimensional compositions of an objects shape) in one’s memory 

(Biederman, 1987).  While some investigations support Biederman’s breakdown of structural 

components for object processing (similar to the feature-based face recognition hypothesis) 

(Ward, 1989), others have shown that configural processing also occurs in object recognition 

(Davidoff & Roberson, 2002; de Gelder & Rouw, 2000a; Reed et al., 2003).  Thus, as discussed 

in detail in the following section, objects, like faces, may be recognized using featural and 

configural processing.  However, unlike face recognition, developmental changes in object 

recognition have not been documented.  
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Are Objects Special? 

If faces are special, are other object classes unique?  Turati et al. showed that newborns 

orient to general perceptual patterns of objects not specifically to face stimuli (Turati, 2004).  

Other evidence exists that object recognition occurs early in life.  For example, infants correctly 

perceive an object’s size despite changes in distance (size constancy) and discriminate between 

object stimuli (Slater, Field, & Hernandez-Reif, 2002).  Furthermore, the mechanisms of 3-D  

object processing, object segregation, and featural relations (orientation of attributes) are 

available in infancy (Bertin & Bhatt, 2001; Bhatt, Bertin, & Gilbert, 1999; Bhatt & Waters, 

1998).  These recognition skills indicate that object processing, like face processing, emerges at 

birth. 

Though face and object processing both exist early in human life, it has been thought that 

object recognition engages primarily a featural or parts-based mechanism (Carey & Diamond, 

1994; Ward, 1989) while face recognition relies on relational information.  One piece of 

evidence for featural processing of objects is the inversion effect.  Unlike faces which have a 

pronounced inversion effect, inverted object stimuli are only somewhat more difficult to 

recognize than upright objects (Carey & Diamond, 1994; Yin, 1969).  Because the face inversion 

effect is interpreted as a disruption of relational processing (Carey & Diamond, 1994; Farah, 

Tanaka, & Drain, 1995), the relatively small object inversion effect implies object recognition 

does not rely on a relational mechanism.   

However, recent evidence suggests that object recognition is not limited to featural 

processing but, like face recognition, also involves configural processing.  Some studies have 

found a significant inversion effect in non-face stimuli (de Gelder & Rouw, 2000b; Diamond & 

Carey, 1986; Gauthier & Tarr, 1997; Reed et al., 2003).  In their study of prosopagnosic patient 

LH, de Gelder & Rouw noted similar performance on inverted faces and objects (2000a).   

Unlike normal adults, LH performed superiorly on inverted stimuli, faces and objects, as 

compared to upright stimuli (de Gelder & Rouw, 2000b).  This finding was referred to as the 

superior inversion effect.  From this finding, the authors concluded that configural information is 

elicited in non-face stimuli recognition as well as face stimuli recognition and that the inversion 

effect alone is not a sufficient test for category-specific processing (de Gelder & Rouw, 2000b).  

In addition to evidence from this lesion study, two studies in normal functioning healthy 

individuals have noted configural processing in body positions (Reed et al., 2003) and animals 
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(Davidoff & Roberson, 2002).  In an adult behavioral study, Reed et al. investigated the effects 

of inversion on three classes of stimuli, faces, body positions, and houses (2003).  They found 

that real body positions, like faces but unlike houses, produced an inversion effect.  As inversion 

has been shown to disrupt configural processing, the authors interpreted their findings to mean 

that bodies, a non-face object class, may be processed configurally.  As discussed previously, a 

greater face inversion effect in older children and adults is taken as evidence for increased 

configural face processing with age.  Based on that idea, Davidoff & Robertson, examined the 

performance of children, ages 5 to 16 years, and adults on upright and inverted part and whole 

animal stimuli (2002).  Overall, children did not reach adult levels of performance on whole 

stimuli and all ages performed more poorly on inverted whole animal stimuli than other stimuli x 

orientation conditions.  The disproportional effect of development and inversion on whole 

animal recognition, similar to face recognition data, was interpreted as evidence for configural 

processing in animal recognition.  Thus, existing data supports featural and configural 

mechanisms for faces and objects. 

 These findings indicate that face and object processing are potentially similar. However, 

face recognition also involves holistic processing (Tanaka & Farah, 1993, 2003).  Thus, holistic 

processing may mark the qualitative difference between face and object perception.  If faces are 

special indeed, then reason would implicate that objects would not use a holistic processing 

mechanism.  To discern holistic from featural processing, Tanaka and Farah designed three 

forced-choice tasks in which participants identified face parts in the context of the whole face or 

in isolation. Using this same design, the authors tested three other stimulus categories as 

controls:  scrambled faces, inverted faces, and houses.  Tanaka and Farah found holistic 

processing was unique to upright faces compared to the other stimulus conditions (1993).  Other 

studies also noted that holistic processing was not recruited for object recognition but limited 

solely to face stimuli (Moscovitch & Moscovitch, 2000; Tanaka & al., 1998).  In a series of four 

same-different matching tasks, Tanaka et al. used selective attention and masking paradigms to 

discern holistic from featural mechanisms in face processing (1998).  Selective attention was 

used to test for the featural processing of faces.  Subjects made a same/different recognition 

judgment after being cued to focus on a particular face part.  For this task, “different” face 

stimuli were modified by one or more face parts.  In the other three experiments, masking during 

a same/different task was used to differentiate between holistic and featural processing of upright 
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faces versus words, inverted faces, and houses.  Masks of parts and masks of the complete 

stimulus were created for each condition.  Tanaka and colleagues reasoned that if upright face 

recognition relied on holistic processing, the whole stimulus mask would produce more 

interference than the parts mask.  In the case of featural processing, the opposite masking effect 

would occur.  Other stimulus types were masked and tested as controls.  Cumulatively, results 

indicated that upright faces were processed more holistically than other stimuli tested.  

Moscovitch and Moscovitch tested holistic versus featural face processing via a recognition task 

involving fractured and whole versions of upright and inverted faces (2000).  In each of these 

experiments, holistic processing was distinguished from featural processing.  In contrast, 

functional MRI investigations of global and local shape processing revealed evidence of holistic 

grouping processes for non-face objects (Grill-Spector et al., 1999; Hasson, Hendler, Bashat, & 

Malach, 2001; Kourtzi & Kanwisher, 2000).  Thus, substantial evidence exists for holistic 

processing of faces but a debate remains as to whether holistic processing is employed in object 

recognition (McKone, Martini, & Nakayama, 2003; Tanaka & Farah, 2003). 

Though objects and faces may share similar inceptions, the question remains as to 

whether or not objects and faces access all of the same processing mechanisms to the same 

degree (i.e. featural, configural, and holistic).  In addition to potential differences in mechanisms, 

face processing may also be unique from general object processing in regards to maturation.  

Unlike the controversy surrounding face recognition, much research supports the conclusion that 

object recognition is similar in children and adults. In fact, Bower notes “it would be fair to say 

that, from early on in life, infants perceive these attributes (size, shape, color, identity) of objects 

more or less like adults” (Bower, 2002).  Object recognition studies indicate similarities between 

adults and infants by at least 5.5 months of age in mechanisms of 3-D object processing, object 

segregation, and featural relations (orientation of attributes) (Bertin & Bhatt, 2001; Bhatt et al., 

1999; Bhatt & Waters, 1998).  Also, in a behavioral study by Ward (1989) at age five years, 

children demonstrated predominately analytical processing (processing which concentrates on 

individual attributes of an object) of non-face stimuli like their adult counterparts (c.f. de Gelder 

& Rouw, 2000b).  Even in three and four-month old infants, performance in a perceptual 

categorization of cat and dog silhouettes corresponded well with adult performance (Quinn et al., 

2001).  In addition, infants, like adults, determined identity of objects not only at a basic level 

using silhouettes, but also categorized objects using similarity of surface attributes and bound 
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contours (Quinn et al., 2001).  Therefore, not only do infant and child studies support similar 

object recognition processing among infants, children, and adults but evidence of a similar shape 

processing mechanism for object recognition exists. In contrast to face recognition data, much 

object recognition data implies that infants, children, and adults use similar processes.  Different 

developmental trajectories for face and general object processing may be attributed to potential 

differences in holistic processing.  

3.)  What is the Course of VPS Development?  

Related to the debates concerning VPS functional organization and underlying cognitive 

mechanisms are the questions of VPS development.  When do face and object processing 

develop?  What inputs are necessary and what is already hard-wired?  Is there a critical window 

of development?  Is there plasticity?  Can compensation occur?   

As previously discussed, controversy exists as to whether the functional organization of 

the VPS is early determined (i.e. innate) (Farah et al., 2000; Gilchrist & Mckone, 2003; Johnson 

& al., 1991; Morton & Johnson, 1991) or changing and maturing with learning and experience 

(Carver et al., 2003; Gauthier & Nelson, 2001; Passarotti et al., 2003).  Farah et al. argue for an 

innate face mechanism and cortical region distinct from object processing.  Thus, the 

developmental course proposed by Farah et al. (2000) is the existence of separate, relatively 

unchanging, parallel channels devoted to the processing of different stimulus categories.  

Researchers supporting this domain-specific course of VPS development cite neuroimaging 

evidence of categorical modules for faces, places, human bodies, and letters (Downing et al., 

2001; Kanwisher et al., 1997; Krieman et al., 2000; Nakamura, Kawashima et al., 2000; O' 

Scalaidhe, Wilson, & Goldman-Rakic, 1997; O'Craven & Kanwisher, 2000; Polk & Farah, 1998; 

Puce et al., 1995).   In addition, lesion studies cite the lack of compensation, the function of one 

region or system being taken over by another, as evidence for innately specialized brain regions 

(Farah et al., 2000).  The idea for dissociated channels of object and face recognition implies that 

the organization of the VPS is specified in the genome, is not altered by experience, and is not 

adapted in response to need. 

  In contrast, others support a changing and maturing VPS in which need and experience 

influence visual perceptual development (Turati, 2004).  The idea is that children, having less 

sensory experience than adults, may use similar systems for all object processing (face and non-

face stimuli).  However, with age, experience with objects increases and more distinct processing 
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may occur for sub-ordinate classifications, resulting in the development of discrete systems for 

more refined processing of object classes including faces.  In other words, applied to the VPS, 

the middle fusiform gyrus can be “fine-tuned by experience with any object category” (Gauthier, 

Tarr et al., 1999).  This experience tuning or perceptual narrowing has been proposed and 

supported in developmental studies of language and has some support in the realm of visual 

processing.  In fact, recent investigations imply that face-processing skills and corresponding 

neural correlates narrow with development and are fine-tuned with age (Pascalis, de Haan, & 

Nelson, 2002; Passarotti et al., 2003).  Thus, the middle fusiform gyrus may begin as a general 

processor in infancy with overlapping categorical processing of objects that, with exposure and 

experience over time, is honed into more distinct regions of processing in adulthood.  

Timing is Everything:  Early Development and Plasticity 
In addition to the course of VPS functional and cognitive development, the general 

developmental course of vision is critical to face and object recognition.  There is evidence of 

plasticity or adaptability of the brain in the primary visual cortex (V1) and visual association 

cortex.  Though sub-regions of the lateral occipital complex in the VPS normally respond to 

visual and tactile information (Amedi, Jacobson, Hendler, Malach, & Zohary, 2002), studies also 

demonstrate auditory-derived responses in the VPS of blind individuals.  For example, in 

congenital and early-onset blind humans, V1 activation in tactile (e.g. Braille reading) and 

auditory discrimination tasks indicates cross-modal plasticity of the VPS (Buchel, Price, 

Frackowiak, & Friston, 1998; Cohen et al., 1997; Kujala, Alho, & Naatanen, 2000; Weeks et al., 

2000).  In a comparison of congenitally blind subjects versus sighted subjects, Weeks et al. 

demonstrated a visual to auditory cross-modal plasticity.  Using PET technology, the authors 

found responses to an auditory localization task in association areas of the right occipital cortex 

in the blind but not sighted individuals (Weeks et al., 2000).  Similarly, using transcranial 

magnetic stimulation (TMS) to temporally disrupt cortical function in the occipital region, Cohen 

et al. found distorted tactile perceptions in early blind subjects but no effects on controls (1997).  

Hence, visual regions of the cortex display some plasticity.   

The mechanisms of plasticity are shown to differ depending on the time frame of the 

disorder.  In a PET study of Braille reading and auditory word processing, activation occurred 

for both tasks in the visual cortex of blind subjects whether their deficit was congenital or 

followed puberty (Buchel et al., 1998).  This study indicates that plasticity changes may occur 
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even after childhood.  In other cross-modal plasticity studies, early-onset (prior to 5 years) blind 

individuals showed evidence of occipital activation to tactile stimuli equivalent to visually-

produced activation in non-blind controls whereas late-onset (later than twelve years) blind  

subjects had no VPS activation relative to the other two subject groups (Chen, Cohen, & Hallett, 

2002; Cohen et al., 1999).  Findings of restricted cortical function in late onset blindness indicate 

a critical period of plasticity in which the developing brain is more capable of acquiring a 

specific ability than the adult brain.  Based on the studies above, the critical period for optimal 

cross-modal plasticity in the VPS appears to be younger than five years old.  These studies, 

though cross-modal, demonstrate the existence of a critical period of functional plasticity for the 

VPS.   

However, findings from deficits in visual acuity and perception indicate less intra-modal 

plasticity and a much earlier window of opportunity for optimal development.  In a fMRI study 

of adult amblyopic subjects versus controls, Lerner and colleagues investigated the effects of 

early visual deprivation on the visual system (2003).  Amblyopia, a developmental visual 

disorder occurring in early childhood, is characterized by reduced acuity and sensitivity contrast 

in one eye.  For separate stimulation of each eye, participants wore red-green glasses to view red 

and green colored pictures of famous and unfamiliar faces and buildings.  In the magnet, subjects 

performed a one-back memory task and a recognition/categorization task.  The activation maps 

corresponding to the affected eye in the amblyopic subjects revealed significantly reduced 

activation in face-related regions of visual association cortex relative to controls.  In contrast, in 

amblyopics, no significant reduction of activation occurred in building-related areas for either 

eye.  These face-specific deficits were not present in primary visual cortex.  Lerner et al. 

concluded that early visual input is critical to the normal development of higher-order visual 

regions, particularly face processing areas.  In another study, patients treated for congenital 

bilateral cataracts had severe impairments in configural but not featural face processing (Le 

Grand, Mondloch, Maurer, & Brent, 2001).  Similar to the amblyopic study results (Lerner et al., 

2003), this study cites the importance of early visual experiences to the normal development of 

face processing but further identifies the deficit as configural.  Also, in a behavioral study, 

Mondloch et al. (2003) determined that early visual experience (birth to 2 months) was necessary 

for the development of normal holistic processing and sensitivity to second-order relations but 

not for face detection and first-order processing.  
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The importance of early visual experience for the development of normal cortical 

processing in humans is in agreement with Hubel and Wiesel’s well-known visual deprivation 

studies in cats (1959).  Using single cell recordings, Hubel and Wiesel found normal distribution 

of ocular dominance cells in primary visual cortex.  To discern the effect of visual experience on 

visual cortex development, Hubel and Wiesel closed one eye of the cat early in life and allowed 

the cat to mature to adulthood. Electrophysiological recordings revealed very few cells were 

driven by stimuli presented to the reopened eye.  Thus, the deprived eye was functionally 

disconnected from the visual cortex.  Furthermore, the effect was permanent.  Hubel and Wiesel 

found little to no recovery.  In addition, no functional cellular changes were evident when the 

same experiment was performed on an adult cat.  Hence, Hubel and Wiesel concluded that there 

is a critical period of development in which visual experience determines how visual cortex is 

wired (Purves et al., 2001). 

From these and other studies (Bentin, Deouell et al., 1999a; Gregory, 2003; Innocenti, 

Kiper, Knyazeva, & Deonna, 1999) normal visual development in childhood appears to play a 

vital role in VPS development.  However, the specific role remains unclear.  Though many of 

these studies imply visual input between birth and 6 months of age is most critical to the 

development of face processing, evidence further indicated a specific break-down in the 

development of relational processing.  As maturation of face recognition is slow (Mondloch et 

al., 2003) and face recognition occurs at the subordinate level (Tarr, 2003) adverse effects of 

early visual deprivations on relational processing may reflect deficits in expertise-based 

recognition rather than categorical-based recognition.  Thus, as evidenced by the effects of early 

visual deprivation, plasticity of the VPS for visual recognition is limited.  Understanding the 

normal course of VPS development and the potential for plasticity may provide the basis for 

therapeutic (Innocenti et al., 1999) and pharmacological intervention for prevention and 

treatment of disorders involving face and object processing deficits.   

III.  Current Research Focus 

 The existing debates and gaps in the literature concerning development, functional 

organization, and underlying cognitive processing of face and object recognition in school-aged 

children serve as the driving force behind this research project. To date, visual recognition and 

the ventral processing stream have been studied extensively in human adults but pediatric  
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neuroimaging data are just recently being gathered.  Though face and object recognition have 

been well-researched, the developmental courses of these recognition processes during early, 

middle, and late childhood have received relatively little attention (Want et al., 2003). 

Thus, this research project focuses on the development of the functional organization and 

underlying cognitive mechanisms of face and object recognition in children five to eleven years 

of age.  Age ranges for the child groups corresponded to ages investigated in published 

behavioral face and object studies (Carey & Diamond, 1994; Schwarzer, 2000; Ward, 1989).  

Using neuroimaging and behavioral methods of investigation, I address three major questions: 

 

 1.  What are the neural correlates for face and object recognition in children?   

                   in adults?  (Chapter 4) 

 2.  By what mechanism(s) are faces and objects processed?  (Chapter 5) 

 3.  What developmental changes occur? (Chapters 4-6) 

 

Though changes from five to eleven years may not be as distinct, and arguably not as 

critical as brain development at younger ages, the more discrete differences in these age groups 

reflect fine-tuning of visual processing that are nevertheless important in the maturation of the 

visual recognition system. 

The establishment of normative data on the development of the ventral processing stream 

and corresponding cognitive processes is important in understanding the neurobiology of both 

normal and abnormal visual processing.  So that, in the words of autistic authorTemple Grandin 

(Grandin, 1995): 

 

“. . . as more educators and doctors understand these differences, more children with autism (and 
other visual processing deficits) will be helped  . . . at younger ages.” 
 

Copyright © Ann D. Gathers 2005 
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Chapter Two:  Project Overview and Preliminary Experiments 

 

In the current project, functional MRI and behavioral methods were used to determine the 

neural correlates and corresponding cognitive mechanisms involved in the typical development 

of face and object recognition.  Functional MRI, a relatively recent neuroimaging method, 

provides structural anatomical correlates of neural behavior.  Using fMRI, researchers 

simultaneously record patterns of brain activity and behavioral responses associated with 

particular cognitive tasks.  The link between brain activity and behavioral responses provides a 

map of mental processes.  Thus, in the present work, fMRI provides a means of mapping 

developmental changes in brain functions associated with the maturation of cognitive functions. 

In regards to other functional neuroimaging techniques, fMRI offers two distinct 

advantages. Unlike its forerunner, positron emission tomography (PET), fMRI is non-invasive.  

PET relies on the injection of radioactive tracers to measure metabolic changes in glucose 

associated with brain function whereas fMRI uses an endogenous contrast agent, natural changes 

in blood oxygenation levels over time, to identify brain activity.  In the brain, blood oxygen 

levels change in response to neuronal activity. As neuronal activity increases there is an increase 

in the ratio of oxygenated to deoxygenated blood.  Deoxygenated blood is highly paramagnetic.  

As neural activity increases in a region, the surplus of oxygenated blood interferes with the 

paramagnetic properties of unbound hemoglobin in deoxygenated blood resulting in an increased 

MR signal.  This blood-oxygenation-level dependent effect (BOLD) serves as the basis for 

fMRI.  Therefore, because it provides a non-invasive method for localizing brain activity, fMRI 

is the method of choice for our developmental study of healthy children and adults. 

 A second advantage of fMRI over other modes of neuroimaging is its good spatial 

resolution. In addition to PET, electroencephalography (EEG) and magnetoencepalography 

(MEG) are used to evaluate brain function.  EEG and MEG, methods of measuring rapidly 

changing electromagnetic properties of brain activity by placing devices outside the skull, are 

less invasive than PET.  These electromagnetic techniques are valuable for determining the 

timing of brain processes but provide poor spatial information (Huettel & Song, 2004).  Because 

we wanted to identify unique maturational changes in the neural correlates of face and object  
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processing, we chose to use fMRI in this study for its superior spatial resolution.  Overall, fMRI 

provided us with a non-invasive method for mapping spatial changes in brain activity as a 

function of development in normal, healthy subjects. 

Preliminary Studies 

Three previous adult visual recognition studies (Preliminary Studies 1-3) serve as the 

foundation for the current experiments.  Overall, findings from these adult studies challenged the 

idea of domain-specificity in the VPS and introduced a new impetus for VPS architecture.  

Faces, objects, and letters produced differential not selective responses to categories in the adult 

VPS (Joseph & Gathers, 2002; Joseph, Piper, & Gathers, 2003) pointing to a distributed rather 

than modular VPS architecture.   

These results implied that taxonomic category failed to explain the basis for the VPS 

functional blueprint.  Instead, another idea was proposed – a structural similarity mechanism.  

Structural similarity refers to the degree of structural overlap (i.e. shape overlap) between 

competing stimuli.  In other words, a structural similarity mechanism implies that VPS neural 

substrates are sensitive to variations in object structure rather than taxonomy.  The structural 

basis of VPS organization was tested using fMRI tasks manipulating structural overlap in pairs 

of animal and shape stimuli (Joseph & Gathers, 2003).  The details of these preliminary 

investigations are discussed here.   

Preliminary Study 1:  Face and Object Localizer 

In this fMRI study, we questioned the existence of a VPS module responsive solely to 

face stimuli (Joseph & Gathers, 2002).  A conservative hypothesis testing approach (Joseph et 

al., 2002) was used to determine if VPS regions responded in selective, graded, or conjoined 

fashions.  A selective response would involve significant activation by one stimulus category 

relative to fixation and other stimulus categories and responses to all other stimulus categories 

would not be significantly greater than fixation.  In other words, regions showing a selective 

response would be activated exclusively by the category of interest.  Graded activation refers to 

statistically greater activation by one category than one or more others but at least two categories 

produce a response statistically greater than that of fixation.  For example, a face-graded region 

would respond to faces significantly more than to other objects and baseline but also other 

objects would produce a statistically significant response in the region relative to baseline.  For a  
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conjoined response, two or more stimulus categories produce significant activation in a region 

relative to fixation yet statistically equivalent to one another.  Thus, conjoined regions would 

produce statistically equivalent responses to potentially multiple stimulus types. 

Participants  

Thirteen normal, healthy adult volunteers (five males, mean age 20.8 years, 8 right-

handed) with normal or corrected-to-normal vision were compensated for their participation.  

Data from four subjects were omitted from further analyses due to excessive head motion.   

Design and Procedure   

In the MRI scanner, adults passively viewed gray-scale photos of natural objects (N), 

manufactured objects (M), and unfamiliar faces (F).  This nine-minute face and object localizer 

task (Joseph & Gathers, 2002) consisted of nine pseudorandomized task blocks, 3 for each 

category (F, M, N), interleaved with eight fixation blocks (17.8 sec each).  Each block consisted 

of 30 randomly ordered stimuli presented for 1000ms each and followed by a fixation crosshair 

for 400ms. See Figure 2.1.  To encourage attention to the task, subjects were instructed to press 

the button under their right index finger each time a picture appeared but not to respond to 

fixation.  We analyzed the data collected using the logical combination approach (Joseph et al., 

2002) to identify selective, graded, and conjoined brain patterns as defined above.   Details of the 

approach are outlined in Chapter Three and Appendix A. 

Results and Discussion   

Brain activation patterns revealed an extensive conjoined response in the fusiform gyrus 

for faces and objects relative to visual fixation.  No selective responses occurred for any single 

stimulus category. Shared (co-localized) rather than dissociated neural substrates implied no 

module existed in the adult VPS exclusive to face processing.  Thus, we did not find support for 

categorically-driven neural organization of the VPS.  In Chapter 4 of the current project, the 

same passive localizer task was used to investigate the degree of category selectivity in the VPS 

of children.  The main goal of Chapter 4 was to identify developmental changes in the VPS 

neural correlates of face and object processing from 5 years to adulthood. 
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Preliminary Study 2:  Object and Letter Processing  

 Some investigators support a domain-specific functional organization of the human 

cortex.  Previous studies imply that different stimulus categories such as faces (Kanwisher et al., 

1997), body parts (Downing et al., 2001), and letters (Gros et al., 2001; Polk et al., 2002), or 

word forms (Leff et al., 2001; Petersen et al., 1990) recruit category-specialized regions of the 

cortex during visual processing.  In contrast, we hypothesized a domain-general organization in 

cortical regions responsible for visual processing.  As in the previous studies, we used objects 

and letters, as well as visual noise for a control condition, to examine the extent of similar and 

dissociated neural resources recruited for recognition (Joseph et al., 2003).  We proposed that 

object and letter recognition would recruit similar neural regions to an equal degree. 

Participants  

Thirteen right-handed, English speaking adults (8 females, mean age 26.4 years) 

participated in the fMRI experiments.  All subjects had normal color vision and normal or 

corrected-to-normal visual acuity.  No histories of psychological or neurological illnesses were 

reported.  Two sets of data were omitted due to anatomical abnormalities in one subject and 

reports of letter reversal by another subject. 

Design and Procedure   

Twenty-six upper and lower case versions of letters from the English alphabet were used 

for letter stimuli.  Fifty-one line drawings of animals were used for object stimuli.  Visual noise 

stimuli were derived from pixilated forms of the letters and objects.  An asterisk served as visual 

fixation. 

Each subject participated in three experimental runs.  Each run consisted of nine task 

blocks (42 sec) interspersed with nine fixation blocks (block 1 = 12.7, 2-8 = 18.7 sec).  For each 

run, three task blocks occurred in pseudorandom order for each of the three stimulus types 

(objects, letters, noise).  Each task block contained 21 randomly ordered stimulus trials.  Each 

trial was presented for 200 ms followed by a fixation for 1800 ms.  For runs 1 and 2, subjects 

passively viewed the stimuli.  In run 3, participants were instructed to silently name objects and 

letters and ascribe the name “blob” to visual stimuli.   
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FMRI data was analyzed with MEDx software (Sensor Systems, Sterling VA).  The 

logical combination approach (Joseph et al., 2002) was used to identify selective, graded, and 

conjoined regions of activation for each of the four stimulus conditions:  letters, objects, noise, 

and fixation.   

Results and Discussion   

Conjoined activation of letters and objects, co-localized and statistically equivalent in 

magnitude, occurred in the left fusiform and inferior frontal gyri while letter-selective responses, 

exclusive to letters, presented in the left inferior parietal lobule and left insula.  Though letter and 

object processing are not completely shared considering the presence of selective activity in the 

left inferior parietal lobule, the presence of conjoined rather than selective activation in the left 

fusiform gyrus argues for some similar cognitive basis in letter and object processing and against 

category-specific modules in the VPS.  Similar to Preliminary Study 2, the current work explores 

the extent of shared and dissociated neural correlates for objects (manufactured and natural) and 

faces in the VPS (Chapter 4) and in other cortical regions (Chapter 6) from childhood to 

adulthood.  

Preliminary Study 3:  Structural Similarity Mechanism   

The goal of this study was to determine if fMRI responses in the fusiform gyrus were 

driven by differences in shape or structural similarity (SS) among objects rather than by strict 

category distinctions (Joseph & Gathers, 2003).  Structural similarity was based on the similarity 

or overlap of structural descriptions.  Structural descriptions are abstract representations of the 

components of objects specified by sizes of the components as well as spatial arrangement of the 

components (Biederman, 1987).  In a same/different perceptual matching task, we parametrically 

varied degrees of SS between two objects within the same category.  If structural processing is a 

principle organizing factor in the fusiform gyrus, we predicted fMRI signal in this region would 

be modulated by our manipulations of SS.  In particular, we hypothesized that more anterior 

regions of the fusiform would be responsive to high SS processing while relatively more 

posterior regions would be sensitive to low SS processing.  
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Participants   

In Experiment 1, twelve healthy, right-handed adults were scanned.  Two were omitted 

for motion and image artifacts.  The remaining ten consisted of 5 males and 5 females (mean age 

28 years).  In Experiment 2, five subjects were omitted from the original 16 scanned due to 

motion and image artifacts.  Data from eleven healthy adults (5 females, mean age 24 years, 9 

right-handed) were submitted to further analyses.  For both experiments, subjects had normal or 

corrected-to-normal vision and no histories of psychological or neurological illnesses.   

Design and Procedure   

In Experiment 1, subjects completed two functional runs of an animal matching task.  

Line drawings of animals from several different classes served as stimuli.  Pairs of animal stimuli 

were assigned to one of four SS levels (12 pairs per level) based on a previous rating study 

(Joseph, 1997) with SS1 representing little overlap in the animals’ structures and SS4 

representing a great degree of structural overlap. Subjects were asked to discern if the two 

stimuli in each pair were the same animal. Matching pairs were “same” animal pairs varying 

only in orientation while non-matching pairs were “different” animal pairs parametrically varied 

across the four similarity levels.  Stimulus pairs low in SS consisted of animals having very 

different body shapes such as ‘toad versus dolphin’.  In contrast, high SS pairs included animals 

with similar body shapes and features.  For example, at high SS levels subjects viewed the 

stimulus pair ‘dog versus horse’ in which both animals had elongated, cylindrical bodies, four 

legs, visible ears, and tails.  See Figure 2.2a.  Behavioral and fMRI signal change responses were 

recorded.    

 In Experiment 2, subjects completed three experimental runs:  animal matching, shape 

matching, and a passive-viewing face and object localizer task.  The animal matching was the 

same as in Experiment 1 and the localizer task is described above (Preliminary Experiment 1).  

The shape stimuli were twelve line drawings of 3-D shapes from a previously published report 

(Biederman, 1987) in which the shapes were classified along four dimensions including: curved 

or straight edge of the cross-section, rotational or rotational and reflectional symmetry of the 

cross-section, constant or expanded size of the cross-section along the longitudinal axis, and  
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straight or curved longitudinal axis of the shape.  Shape pairs were assigned to one of three SS 

levels (10 pairs each) as determined by the number of dimensions in which the two shapes 

overlapped.  See Figure 2.2b. 

For the matching tasks, subjects were asked to discern if the two stimuli in each pair were 

the same animal or shape.  In the animal matching task, matching pairs were “same” pairs 

varying in exemplar and left/right orientation while non-matching pairs were “different” pairs 

parametrically varied across the similarity levels and potentially differing in left/right orientation.  

For the shape matching task, matching pairs were the “same” exemplars varying only in 

orientation whereas non-matching pairs were “different” stimuli parametrically varied across 

similarity levels and orientation.  Subjects were taught to press a button under their index finger 

for “same” responses and under their middle finger for “different” responses. Stimuli appeared 

simultaneously as one picture above a fixation point and one below.  Each pair appeared for 400 

msec followed by a 1600 msec fixation.  

Results and Discussion   

 For the behavioral results of both animal and shape stimuli, response times and error rates 

increased as SS increased (Figure 2.3). Post-test naming revealed animals (mean name 

agreement, M = 85.2 % , SD = 15.9 %) but not shapes (M = 35.6 %, SD = 22.3 %) were 

meaningful and nameable.  Thus, these behavioral results implied a structural similarity effect 

existed for objects regardless of semantic content.  For fMRI responses, left midfusiform regions 

were responsive to high SS in animal and shape tasks.  Low SS activation common to both 

stimulus types occurred in the right lingual gyrus.  Overall, fMRI signal changes indicated a 

pattern of greater sensitivity to high SS in anterior-mid fusiform regions and greater sensitivity to 

low SS in posterior VPS regions (Figure 2.4).  Behavioral and fMRI responses suggested the 

possibility of a structurally sensitive object processing mechanism.  Because fMRI responses in 

the fusiform gyrus were driven by different demands on processing object structure, category 

distinctions may not be the only organizing principle for the fusiform gyrus.  These results argue 

against categorical specialization within the fusiform gyrus in adults.  Instead, these studies 

suggest that mid-fusiform areas are activated by categories other than faces and that the fMRI  
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response in these regions is modulated by structural object processing.  This evidence served to 

motivate the experiments in Chapter 5 which examine the relationship between structural 

processing and fMRI responses in the child’s brain. 

Pediatric Pilot Studies 

Building on these adult studies, the current experiments in Chapters 4 through 6 explore 

VPS functional architecture and the possibility of a structural-based visual recognition 

mechanism in children.  However, prior to the current experiments, two pilot studies, one 

behavioral and one functional MRI, were conducted to address concerns about performance and 

feasibility. 

Pilot Study 1: Pediatric Behavioral Responses  

Prior to the current developmental experiments, a behavioral study provided information 

regarding optimal design for different age levels in regards to accuracy, reaction time, and 

emotional responses.  

Participants   

Fifteen normal, healthy children (5 -11 years) and 15 normal, healthy adults participated 

in the behavioral tasks.  Subjects had normal color vision and normal or corrected-to-normal 

visual acuity.  As a measure of cognitive function, receptive and expressive language skills were 

tested and found to be within normal limits for 12 children and all adults (i.e. age equivalent 

norm was equal to or greater than -1 standard deviation of the chronological age). 

Design and Procedure  

Subjects performed multiple runs of face-matching and animal-matching tasks using a 

serial response box attached to a Dell Computer running E-prime 1.0, Beta 5.0 (Psychology 

Software Tools, Pittsburgh, PA).  These tasks were 5 minute versions of those described in 

Preliminary Experiment 3 with a few design exceptions.  Stimuli were pairs of animals and pairs 

of faces.  Structural similarity (SS), the degree of three dimensional shape overlap between 

stimuli, served as the independent variable while reaction time (RT) and error rates served as 

dependent measures.  Pairs of animals and faces were assigned to one of three SS levels.  To 

equate for performance across age groups, exposure duration of stimuli was manipulated across 

blocks.  We identified optimal stimulus presentation time for both children and adults to perform 
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with acceptable accuracy (greater than chance) and minimal anxiety on task (Bookheimer, 2000; 

Casey, Giedd, & Thomas, 2000).  Stimuli were presented for 500ms, 1000ms, 1500 ms, 2000ms 

or 2500ms per task block. The fixation time varied in accordance with stimuli presentation time 

for a total response time of 3000ms per trial. Adults and children were divided into subgroups 

and each subgroup performed 3 blocks of each task with stimuli presentation rates of 500, 1000, 

and 1500ms or 1500, 2000, and 2500ms.  

Results and Discussion   

 Adults commented on the rapidity of stimulus presentation rate at 500ms but completed 

the task with 88% accuracy whereas, at 500ms and 1000ms, children’s performance measures 

were 64% and 71% accuracy respectively.  In addition, the 500ms and 1000ms rates caused  

emotional distress in some children too anxious to complete the tasks.  After testing at all six 

presentation rates, 2500ms was found to be the optimal stimulus duration to accommodate 

children (81% accuracy) and adults (94% accuracy).  

In addition to equating for accuracy across age groups, we evaluated age differences 

regarding the performance measure of RT.  In Figure 2.5, we collapsed reaction time and error 

data across durations.  Despite a general tendency for significant differences in reaction time and 

error rates, overlap in performance did occur between some children (n=11) and adults (n=15).  

(Data from 1 child was excluded due to poor behavior and 3 others were excluded based on 

screening test scores & /or near-chance performance on tasks.)  Thus, this preliminary study 

provided information supporting the feasibility of equating task performance (error and RT) 

across ages.  

 This study also provided information concerning structural processing across categories.  

In Figure 2.6, where data is collapsed across durations, log reaction time is depicted as a function 

of SS for matched (“same”) pairs and unmatched (“different”) pairs.  As parametric manipulation 

occurred only within “different” pairs, assessment of same/different functions verified the use of 

SS processing.  The functions for “different” pairs indicated similar processing for animal and 

face stimuli in adults but differences in categorical processing in children.  In adults, reaction 

times for “different” face and animal stimuli pairs followed a pattern of increasing RT with  
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increasing SS.  However, in children, reaction times for “different” face stimulus pairs did not 

reflect SS processing, as RT did not systematically increase with increasing SS.  Therefore, face 

processing in adults but not in children was based on a structural similarity mechanism. 

Pilot Study 2: Pediatric Functional Study 

In addition to the behavioral pilot study, a functional pilot study provided evidence of 

project feasibility and potential developmental changes in the neural correlates of face and object 

processing (Gathers & Joseph, 2003b). 

Participants   

Seven normal, healthy children volunteers ages 5-11years (3 males, 4 females, mean age 

8 years) participated in the current study.  All children completed the experiments.  No emotional 

distress was reported.  Data from one subject was omitted due to excessive motion artifact. 

Design and Procedure  

 In the scanner, subjects completed three experimental runs: (1) a face and object localizer 

task run and two runs of a shape-matching task (similar to shape-matching task in Preliminary 

Study 2b).  We only report results from the localizer task.  The localizer task design and  

procedures were the same as the adult localizer design and procedures in Preliminary Study 1.  

As in Preliminary Study1, face localizer data were analyzed using the logical combination 

approach (Joseph et al., 2002) to identify selective, graded, and conjoined activation patterns. 

Results and Discussion  

A group analysis was performed on the imaging data.  Following data preprocessing, 

paired t-tests of mean conditions were used to establish contrasts for face-preferential, face-

selective, face-object-graded, and face-object-conjoined statistical maps.  Overlays of face-

preferential (blue), face-object graded (yellow), face-object conjoined (red) are seen in the 

images in Figure 2.7a.  Though extensive face-object conjoined activation occurred in the VPS it 

should be noted that this group analysis involved a small sample size including multiple age 

levels of children.  Results of this pediatric pilot analysis were compared to our adult studies 

(Preliminary Study 1).  See Figure 2.7b.  In both children and adults, most of the responses in the 

fusiform gyrus were explained by a conjoined activation for faces, natural objects and 
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manufactured objects.  Face preferential areas in children were almost completely explained by a 

graded response to faces and objects.  In adult fusiform regions, face preferential  

activation overlapped with face-graded responses but not with face-selective responses. Thus, in 

children and adults much of the face responsive fusiform regions were involved in processing 

information associated with many different visual categories.   

 In general, VPS organization appeared similar for school-aged children and adults.  

However, developmental differences in activation patterns did occur.  Minimal face-selective 

regions emerged in both children and adults.  These face-selective regions were different in the 

two age groups – in children, a face-selective area emerged in the left posterior fusiform and in 

adults, face-selective regions emerged in the left insula, left hippocampal region, the left 

cerebellum, and the right inferior frontal gyrus.  Though these findings did not exclude the 

possibility of a face module and domain-specificity, they support developmental changes in face 

processing and the neural correlates associated with faces.  Furthermore, no manufactured- or 

natural-selective regions of activation occurred in children as compared with adults 

(manufacture-selective activation occurred in the right calcarine sulcus and right middle occipital 

and natural-selective activation occurred in the left temporal pole).  These maturational 

differences in category-selective activation support potential developmental changes in the  

neural correlates and of visual processing from childhood to adulthood.  Thus, child performance 

and imaging results from our functional pilot study support the feasibility and relevance of the 

current developmental project. 

Collectively, these preliminary adult studies and pilot pediatric studies serve to motivate 

the present set of experiments.  The following chapters will extend the ideas and results 

discussed in this chapter to determine the typical neural and cognitive features of face and object 

recognition in children five to eleven years of age and to ascertain developmental changes from 

childhood to adulthood.  In particular, Chapter 4 will focus on the VPS organization in children 

and adults for face and object recognition processing.  Chapter 5 will explore the idea of a 

structural similarity processing mechanism for objects and faces across development.  Finally, 

Chapter 6 will go beyond findings in the VPS to include maturational changes in neural 

correlates for face and object processing throughout the brain.  

 

Copyright © Ann D. Gathers 2005 
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Figure 2.2.  Example stimuli for animal and 3-D shape matching tasks.  (A) Sample 
animal pairs for each of the four levels of structural similarity (SS1-SS4).  Mean SS 
ratings for “different” trials in last column.  (B)  Sample 3-D shape pairs for each of the  
three SS levels (SS1-SS3) with SS criteria for different pairs in final column.  
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Figure 2.3.  Preliminary Study 3.  Behavioral measures of structural similarity (SS). 
Adult RT’s and Err’s as a function of SS for “same” and “different” trials. (A) 
Experiment 1, Animal-Matching Task (B) Experiment 2a, Animal-Matching Task (C) 
Experiment 2b, Shape-Matching Task.  Error bars reflect within-group confidence 
intervals.  Copyright 2003 Psychonomic Society, Inc. 
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-26      -24 -22 -20 -18 -16
Talairach z coordinate 

Figure 2.4.  Preliminary Study 3.  Functional results of group-averaged OT regions (-26 to -16mm inferior to a plane through the 
anterior and posterior commissures) modulated by structural similarity (SS).  Animal-Matching Task (A) Experiment 1 and (B) 
Experiment 2 and Shape-Matching Task (C) Experiment 2.  Yellow voxels represent significant increases in fMRI signal with 
increasing SS levels and blue voxels represent a signal increase with decreasing SS levels.   
Copyright 2003 Psychonomic Society, Inc. 
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Figure 2.5.  Pilot Study 1.  Boxplots of performance overlaps in (A) reaction 
times (RTs) and (B) error rates (Err) of child and adult groups.  Average log RT 
and percentage errors collapsed  across all stimulus presentation durations. 
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Figure 2.6.  Pilot Study 1.  Reaction times (RTs) as a function of SS for “same” and 
“different” trials.  (A) Adult RTs averaged across durations for animals (left) and faces 
(right).  (B) Child RTs averaged across durations for animals (left) and faces (right).  Error 
bars reflect within group confidence intervals. 
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Figure 2.7.  Face localizer task group analysis.  Using the logical combination 
approach (Joseph, Partin, and Jones, 2002), we isolated face-preferential activation 
(blue), face-object graded activation (yellow), and face-object conjoined activation 
(red).  (A) Pediatric group map represents multiple age levels.  n = 6 (mean age 8 
years).  (B)  Adult group map from Preliminary Study 1 for comparison.  n = 13.  
Taliarach z coordinates of -24 to -20 mm inferior to a plane through the anterior and 
posterior commissures. 
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Chapter Three:  Materials and Methods 

 

 In this chapter, we discuss the details of the materials and methods used for the 

experiments in Chapters Four through Six.  Experimental designs and stimuli are described as 

well as behavioral and functional MRI analyses.  Initial screening and testing procedures were 

performed on all participants.  All three experimental chapters (4-6) involve the passive-viewing 

face localizer task.  In addition, Chapter 5 includes a same/different shape-matching task.   

Initial Screening and Testing  

Prior to participation in the project, potential subjects were screened for eligibility.  

Exclusion criteria included adverse health conditions and factors affecting normal cognitive 

functioning on the required tasks. Upon arrival at the lab, eligible subjects underwent further 

screenings and testing.  Visual acuity was tested using the Snellen eye chart.  Subjects also 

participated in color vision (HRR color plates) and handedness (an adaptation of the Edinburgh 

Handedness Survey) testing.  Using the Peabody Picture Vocabulary Test (Dunn & Dunn, 1997) 

and the Expressive Vocabulary Test (Williams, 1997), we assessed receptive and expressive 

language skills respectively as a measure of general cognition.  Children gave written assent and 

parents provided written consent in accordance with the guidelines of the University of Kentucky 

Institutional Review Board. Adults gave written consent prior to participation.  

Face Localizer Task Design and Procedure 

 Subjects completed a 9-minute run consisting of eight fixation (fix) blocks interleaved 

with nine, 42-second, pseudo-randomly ordered task epochs: 3 each of human faces (F), natural 

objects (N, fruits and vegetables), and manufactured objects (M, tools and everyday objects).  

Within each task block, 30 randomly-ordered stimuli appeared for 1000 msec each followed by a 

fixation cross for 400 msec.  Sixty grayscale photographs scanned from a high school yearbook 

served as face stimuli. Grayscale photographs of 30 natural and 30 manufactured objects were 

obtained from Photodisc CD (Photodisc, Seattle, WA) or scanned from The MacMillan Visual 

Dictionary (Corbeil & Archambault, 1992).  During task blocks, participants viewed the face and 

object pictures and pushed a button each time a picture appeared. During fixation blocks, 

volunteers fixated a single crosshair presented for 18 seconds (baseline). (See Figure 2.1)  
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Pictures were projected onto a screen using an LCD projector connected to a Dell Computer 

running E-prime 1.0 (Psychology Software, Pittsburg, PA) and participants viewed the stimuli 

(visual angle of 6.74 degrees) via a mirror on the head coil.  Computerized training preceded the 

experiment to ensure subjects could perform the task.  

fMRI Data Acquisition and Preprocessing 

A Siemens Vision 1.5 T magnet equipped with a head coil and a T2*-weighted gradient 

echo sequence was used for functional image collection (40 ms echo time, 64 x 64 matrix, 230 

mm field of view, 46 3-mm slices with a 20% gap acquired in ascending order, 6s repetition 

time).  These parameters allowed whole brain coverage with 3.6 mm3 voxels.  For the face 

localizer task, seven volumes were collected per task epoch and three volumes per fixation 

epoch.  In the shape-matching task, eight time points were collected per task epoch and two time 

points per fixation epoch. 

Medx software (Sensor Systems, Sterling, VA) was used for all functional imaging 

analyses.  For the face localizer task, after the first three fixation volumes of each participant’s 

time series were discarded, the remaining 87 functional images were motion corrected using 

automated image registration (AIR).  For the shape-matching task, the first two fixation volumes 

were discarded and the remaining 88 were submitted to motion correction.  In Chapters Four and 

Six, functional runs were discarded when the center of intensity of a volume was not corrected to 

within .2 mm of the first time point. Using root mean squared error (RMSE) as a measure of 

head motion, repeated-measures ANOVAs indicated significant interactions of head motion 

(before and after correction) and age (children v. adults): children had more motion before 

correction than adults for anterior-posterior [F(1,27) = 5.2, p<.031] and superior-inferior [F(1,27) 

= 5.3, p<.03] planes, but these differences did not persist after motion correction.  For our data 

analyses in Chapter 5, functional runs were discarded when the center of intensity of a volume 

was not corrected to within .4 mm of the first time point.  Using root mean squared error 

(RMSE) as a measure of head motion, repeated-measures ANOVAs indicated significant 

interactions of head motion (before and after correction) and age (children v. adults) in the 

superior-inferior plane [F(2, 30) = 7.9, p<.002]: children had more superior-inferior motion 

before correction than adults [F(1,31) =8.9, p<.006] but age differences in head motion did not 

persist after motion correction [F(1,31) = .015, p<.904]. 
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Three-dimensional spatial filtering was applied to the motion corrected time series 

(Gaussian FWHM = 6 mm3; kernel size 9 pixels) and the images underwent global intensity 

normalization to scale the voxel intensities to a mean of 1,000.  High pass filtering was applied 

to the data (Butterworth filter period =120s).  As in other developmental fMRI studies (Kang, 

Burgund, Lugar, Petersen, & Schlaggar, 2003), all brains were spatially normalized to the same 

standardized space (SPM99 EPI template) (Woods, Cherry, & Mazziotta, 1992).  Spatial 

normalization warps brains into Talairach space so that all brains are the same size and shape for 

comparison. 

Group Face Localizer Analysis 

Group analyses of the face localizer tasks were conducted for data in each experimental 

chapter.  For group analyses, individual brains were warped into a standardized space for the 

detection of common activity within groups and global differences between groups.  Four 

condition mean images for the four experimental conditions (F, M, N, fix) were computed for 

each subject and then spatially normalized using warp algorithms of AIR, yielding images with 2 

mm3 resolution.  For each age group (5-8 years, 9-11 years, and adults), paired t-tests with 

subjects as a random effect yielded twelve group statistical maps which were converted into z 

maps: F>M, F>N, F>fix, fix>M, fix>N, fix>F, N>M, N>F, N>fix, M>N, N>F, and N>fix. To 

test for specific brain activation patterns using logical combination (Joseph et al., 2002) the z 

maps were combined using logical operators (AND = &, OR = |, NOT = ~) in the image 

calculator of Medx.  Refer to Appendix A for details.  

Individual Face Localizer Analysis 

Individual analyses of the face localizer data were performed in Chapters Five and Six.  

Because normal developing children may use different cognitive strategies or neural networks to 

perform a task, we conducted individual subject analyses to identify variability that might be lost 

in a group analysis (Gaillard, Grandin, & Xu, 2001a).  For individual analyses, unpaired t-tests of 

stimuli conditions (F, M, N, fix) produced the 12 unique contrasts of interest (z maps).  As in the 

group analysis, we conducted further analyses using the logical combination approach (Joseph et 

al., 2002).  
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Pediatric Shape-Matching Task Design and Stimuli

For the shape-matching task (Figure 3.1), 12 three-dimensional line drawings known as 

geons (Biederman, 1987) were used as stimuli. Non-matching stimulus pairs or “different” trials 

were created by determining the number of shared non-accidental properties between two 

shapes. See Figure 2.2b.  Shared non-accidental properties were classified along four 

dimensions:  1.) edge of the cross section (straight or curved); 2.) symmetry of the cross-section 

(rotational, reflectional, or both); 3.) size of the cross section along the longitudinal axis 

(expanded or constant); and 4.) edge of the longitudinal axis (straight or curved) (Biederman, 

1987).  Ten stimulus pairs were created for each of three structural similarity (SS) levels, with 

SS1 indicating one shared non-accidental property and SS3 indicating three shared properties.  

Within each 9- minute functional run, 9 pseudorandomly ordered task epochs (3 of each SS 

level), were interleaved with 8 fixation blocks. Each epoch consisted of 30 pseudorandomly 

ordered stimuli presented for 2500 ms each followed by a fixation crosshair presented for 500 

ms.  Each epoch contained “different” pairs representing only one SS level while “same” pairs 

were randomly assigned to each block. Fixation blocks consisted of a stationary black cross-hair 

centered on a white background. Participants were instructed to view the pictures and push a 

button beneath their index finger each time they saw a “same” pair and to push a button beneath 

their middle finger each time they saw a “different” pair.  Before entering the scanner, 

participants viewed “same” shape pairs for as long as they needed to learn correct matches and 

then had 24 practice trials.  Training reduced ambiguity about what constituted a stimulus match 

and provided assurance that the pediatric subject could perform the task.  

Adult Shape-Matching Task Design and Stimuli   

The adult and child face localizer task were identical.  However, for shape-matching, 

adults completed only one twelve-minute functional run with 12 task blocks and a stimulus 

presentation time of 400ms/pair followed 1600ms of fixation.  Fixation and shape stimuli were 

identical to those in the pediatric design.  As with child participants, training preceded scanning 

to ensure that adults understood the task.   
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FMRI Shape-Matching Analysis  

 For the shape-matching task, 10 condition mean images (three repetitions of three 

experimental conditions -- SS1, SS2, SS3 – plus a fixation mean) were computed for each run for 

each subject and then spatially normalized yielding images with 2 x 2 x 2 mm resolution. These 

images were averaged across runs for a subject and submitted to subsequent analyses.  To test for  

activation patterns driven by the parametric manipulation of SS, two cross-correlation analyses 

were performed.  As with face localizer data, shape-matching data was assessed at the group and 

individual levels.  

Group Shape Analysis   

The group-level time series was cross-correlated with two distinct reference waveforms: 

1.)  one waveform to determine areas showing fMRI-signal increases with high SS levels, and 2.) 

one waveform to determine areas showing a greater fMRI signal with low SS levels. From the 

cross-correlation analyses, clusters of activation modulated by SS levels served as regions of 

interest (ROIs).  Within each ROI, percent signal change for each SS level (SS level – fixation) 

for each subject was submitted to a repeated measured ANOVA to assess the effect of SS on 

fMRI signal within each cluster. Finally to compare child and adult activation, ROI clusters were 

overlaid onto the SPM T1-weighted anatomic brain template.  ROI’s reported were significant 

for the group-level cross-correlation (z > 2.33, p < .01) and showed consistent effects across 

subjects in the repeated measures ANOVA (p < .05).  

Individual Shape Analysis 

Using the same reference waveforms as in the group analyses, individual subject cross-

correlations were performed to determine what brain regions were modulated by SS.  Like the 

group analysis, resulting clusters were thresholded at a z score of 2.33 (some at 1.64 in cases 

where few clusters were detected at z > 2.33) and served as ROIs.  As in the face localizer task, 

individual analyses provided information on inter-subject variability. 

 

Copyright © Ann D. Gathers 2005 
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Figure 3.1. Shape-matching task design & example stimuli for “different” trials.  
“Different” pairs within a block are dedicated to one level of structural similarity (SS).  
SS1 = least similarity.  SS3 = greatest similarity. 
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Chapter Four:  Developmental shifts in cortical loci for face and object recognition 

 

Summary 

Information on normal functional organization and development of the ventral processing 

stream in 5-11 year old children is minimal. The present fMRI study identified neural correlates 

for face and object processing in children 5-8 and 9-11 years, with data from a similar adult 

study (Joseph & Gathers, 2003) used for comparison. All age groups showed face-preferential 

activation in the ventral processing stream, but adults and children 9-11 years showed face-

preferential loci near the classically defined fusiform face area, whereas children 5-8 years 

showed this activation in the posterior ventral processing stream. In addition, the degree of 

category-selectivity in other brain regions increased with age. Collectively, these developmental 

changes may reflect fine-tuning in visual recognition processes based on learning and 

experience. 

Introduction 

 As discussed in Chapter 1, the ventral processing stream is a functional pathway in the 

primate brain that supports visual recognition.  The functional organization of this pathway 

remains a controversial topic. Studies of damaged and healthy adult brains (Damasio, 1990; 

Haxby et al., 2001; Joseph & Gathers, 2002; Kanwisher et al., 1997) yield two divergent 

hypotheses concerning the functional architecture of the ventral processing stream. One view 

posits that ventral processing stream organization is based on neural specializations, or modules, 

dedicated to the processing of particular categories (Kanwisher et al., 1997).  An opposing view 

is that the ventral processing stream is characterized by overlapping regions sensitive to the 

recognition of multiple categories (Haxby et al., 2001; Joseph & Gathers, 2002).  In support of 

the modular view, the fusiform face area, an anterior region of this pathway, appears to be 

specialized for face recognition (Kanwisher et al., 1997).  However, in support of neural 

generalization, our previous adult study demonstrated that the fusiform face area was not 

selective for faces but exhibited a graded response in which faces produced a greater response  
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than did objects, but objects produced a statistically greater response than baseline (Joseph & 

Gathers, 2002).  In fact, face-selective responses, those in which categories other than faces did 

not activate the region significantly more than baseline, were absent within this processing 

stream.  

Further controversy focuses on whether the functional organization of the ventral 

processing stream is predetermined and early-established (Farah et al., 2000; Gilchrist & 

Mckone, 2003; Morton & Johnson, 1991) or sculpted by experience and learning over time 

(Gauthier & Nelson, 2001; Pascalis & Slater, 2003).  Farah (2000) and Gilchist and McKone 

(2003) propose early-established (prior to age 3) face and object recognition systems whereas 

both Carver et al. (2003) and Passarrotti et al. (2003) suggest changing neural architecture from 

childhood to adulthood.  To delineate the neural correlates of face and object recognition at 

different developmental stages, we compared brain activation patterns of children 5-8 years, 9-11 

years, and adults who passively viewed blocks of faces, natural objects, and manufactured 

objects, similar to tasks implemented in previous studies (Joseph & Gathers, 2002; Kanwisher et 

al., 1997).  One goal of the present study was to examine the cortical locus of face responsive 

regions throughout development.  The classically defined fusiform face area falls in the anterior 

fusiform gyrus but a posterior locus is also often reported (Joseph & Gathers, 2002; Kanwisher et 

al., 1997).  To isolate the fusiform face area, we defined face-preferential activation as a 

statistically stronger response to faces than to both object categories and to baseline but object 

responses were not statistically constrained relative to baseline.  Our question was whether the 

classically defined fusiform face area (i.e. a face-preferential response in the anterior fusiform 

gyrus) emerges in all age groups.  Based on other developmental fMRI studies of face processing 

(Gilchrist & Mckone, 2003), language (Holland & al., 2001; Schlaggar & al., 2002), and 

working memory (Thomas et al., 1999) that confirm similar cortical regions of activation in 

school-aged children and adults, it is likely that the functional organization of the ventral 

processing stream is stable across the ages we are studying.  

 Another goal was to determine whether face-preferential activation is exclusive for faces 

(face-selective) or whether other object categories (i.e. manufactured and natural objects) also 

activate face-preferential regions to a statistically significant degree relative to baseline (graded-

activation).  If face-preferential activation is not exclusive for faces, then it should spatially  
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overlap more with face-graded activation than with face-selective activation, as previously 

reported in adults (Joseph & Gathers, 2002).  We tested the developmental stability of these 

functional activation profiles from 5-11 years of age. 

A final goal was to determine whether developmental changes are unique to a particular 

object category (i.e. faces, natural objects, and manufactured objects).  To that end, we also 

isolated brain regions that were selective for natural or manufactured objects and compared the 

degree of category-selectivity across age groups. 

Participants 

Child Subjects 

Twenty-nine 5-11 year old healthy children (18 males, 11 females, mean age 8.3 years) 

with no significant medical histories were compensated for participation. All volunteers had 

normal visual acuity, were fluent in English, and showed a right-hand preference based on the 

Edinburgh Handedness Survey. Receptive and expressive language skills were within normal age 

limits as determined by the Peabody Picture Vocabulary Test (Dunn & Dunn, 1997) and the 

Expressive Vocabulary Test (Williams, 1997).  Three children did not complete the study. Data 

from six other participants were omitted due to excessive head motion.  Thus, data from 20 

subjects (12 males, 8 females, mean age 8.8) were submitted to further analyses.  

Adult Subjects 

Nine adults (five males, mean age 20.8 years, one left-handed) with normal or corrected-

to-normal vision and no significant medical or psychological conditions participated in a 

previously published study (Joseph & Gathers, 2002).  The adult data were submitted to 

additional analyses and used to compare with the pediatric data in this study. 

Results  

 To localize the fusiform face area, we isolated face-preferential activation in all three age 

groups. Adults showed two bilateral foci of face-preferential activation in the ventral processing 

stream; one focus in the classically defined fusiform face area [anterior aspects of the fusiform 

gyrus in Brodmann’s Area (BA) 37 and a more posterior fusiform locus in BA 18, as we 

previously reported (Joseph & Gathers, 2002) (Figure 4.1a).  Children nine to eleven years 

showed face-preferential activation in the right anterior fusiform gyrus (BA 37; x = +42, y = -56,  
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z = -22), close to the classically defined fusiform face area (Figure 4.1b). Face-preferential 

activity in children 5-8 years emerged in the right (BA 17; x = +28, y = -96, z = -14) and left 

occipital gyri (BA 18; x = -32, y = -85, z = -19) as shown in Figure 4.1c.  

As in our previous study (Joseph & Gathers, 2002), we were interested in whether face-

preferential regions are better characterized by graded or selective responses to faces to assess 

the degree of specialization in the fusiform face area.  In all three age groups, face-preferential 

activation (blue voxels in Figure 4.1) overlapped primarily with face-graded responses (yellow 

voxels) and minimally with face-selective activation (red voxels).  A repeated-measures 

ANOVA examined the effect of overlap (preferential-graded v. preferential-selective) and age on 

the number of voxels that overlapped throughout the brain. Extent of face-preferential and face-

graded overlap (19.5% of preferential voxels were also graded voxels) was greater than extent of 

face-preferential and face-selective overlap [2.3%; F(1,26) =14.6, p<.001].  Neither the age 

effect nor the Age x Overlap interaction was significant.  Hence, the functional characteristics of 

face-preferential regions do not change after age five.  Moreover, face-preferential activation, 

including the classically defined fusiform face area, does not reflect specialized activation for 

faces. 

Although the ventral processing stream did not show category-selective activation, the 

degree of category-selectivity increased with age in other regions of the brain.  Five to eight year 

old children had no selective activation for any object category whereas children 9-11 years had 

selective activation for each category: natural objects (right inferior parietal lobe, bilateral 

middle frontal gyri), manufactured objects (left temporal pole, right inferior frontal gyrus), faces 

(left inferior frontal gyrus).  Adults also showed distinct regions of category selectivity: natural 

objects (left superior parietal lobule, left temporal pole), manufactured objects (right calcarine 

sulcus, right middle occipital gyrus), and faces (left hippocampus). Although these selective 

brain regions were small and few, percent of face-selective voxels throughout the brain relative 

to the total number of voxels for face-graded, conjoined, and object-selective activation 

increased from 0% in children 5-8 years to .14% in children 9-11 years to .41% in adults. 

Finally, we defined conjoined activation as statistically equivalent responses to all 

stimulus categories in our study relative to each other, and significantly different responses for 

each category relative to baseline. This non-category specific activation dominated other task-

relevant forms of activation for all three age groups. For adults, 84% of total activated voxels 
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were conjoined (i.e. relative to all six profile types combined), 89% for children 9-11 years, and 

74% for 5-8 year old children. The bulk of conjoined activation fell within the ventral processing 

stream.  

Discussion 

The present study contributes several new findings to our understanding of ventral 

processing stream development. First, only adults and children ages 9-11 years showed face-

preferential responses near the classically defined fusiform face area, whereas 5-8 year old 

children only showed face-preferential responses in the posterior ventral processing stream. 

These differences in cortical locus for face processing are not due to greater head motion in 

children because corrected head motion was equivalent for all age groups. Instead, changes in 

ventral processing stream locus for face processing may be due to a variety of developmental 

factors. Shifts in face-preferential loci may result from maturation of neural pathways and 

connections. For example, visual recognition may be facilitated by connections to the frontal 

lobe (Bar, 2003; Vogels, Sary, Dupont, & Orban, 2002),  a later developing region of cortex 

(Luna et al., 2001).  Hence, shifts may occur in the neural architecture of the ventral processing 

stream to accommodate maturation of frontal lobe connections. In addition, behavioral studies 

(Carey & Diamond, 1994; Schwarzer, 2000) have suggested developmental changes in cognitive 

mechanisms for face recognition. Interestingly, around 10 years of age, children display more 

adult-like strategies for face recognition (Carey & Diamond, 1994). Our data suggest that this 

change in cognitive processing may be accompanied by an anterior shift in the ventral processing 

stream locus for face recognition because only adults and 9-11 year old children activated the 

anterior fusiform gyrus during face recognition, whereas younger children did not. 

 Second, the functional activation profiles of face responsive brain regions did not change 

with age. Specifically, for all age groups face-preferential activation in the ventral processing 

stream significantly overlapped with face-graded activation but never with face-selective 

activation. Although the cortical locus of face-preferential activation changed with age, regions 

showing face-preferential responses did not show exclusive responses for faces. Rather, other 

object categories also activated these regions to a significant degree. In addition, neither fMRI  
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signal strength nor variability changed systematically across development. Five to 8 year old 

children produced stronger fMRI signals in some regions than adults, and between-subject 

variability in signal strength (reflected by standard error bars in Figure 4.1d-f) was not markedly 

different across age. 

Third, no category selective regions emerged within the ventral processing stream but 

they emerged in other brain regions for children 9-11 years and for adults.  The emergence of 

category-selective clusters with age may be due to plasticity driven by learning and experience 

(Gauthier & Nelson, 2001).  Moreover, other studies suggest that “category-selective” processing 

may require recruitment of cortical regions other than the ventral processing stream (Vogels et 

al., 2002).  The present data support this by showing that much of the ventral processing stream 

in childhood as well as in adults was explained by conjoined and graded activity, both of which 

reflect non-category specific responses. An alternative explanation for the failure to find 

selective activation in the 5-8 year old children is that the cortical locus for category-selective 

activation is more variable at this age and is, thus, more difficult to detect in group-averaged 

maps. In fact, another developmental fMRI study reports more distributed VPS processing in 

children than in adults (Passarotti et al., 2003).  However, this variability in and of itself may 

reflect fine-tuning of neural circuitry with development of expertise.  

We (Joseph & Gathers, 2003) and others (Gauthier, Tarr et al., 1999) have suggested that 

face-preferential responses in the ventral processing stream may not reflect taxonomic category 

distinctions per se, but instead reflect a process of differentiating members of object categories 

that are highly perceptually similar or similar in shape. We have further suggested that if more 

perceptual differentiation is required (as in face recognition), then a relatively more anterior 

ventral processing stream locus of activation will emerge. Hence, an anterior shift in the ventral 

processing stream locus for face processing with age may support more skilled perceptual 

differentiation of objects that are highly similar (Carey & Diamond, 1994) in shape, such as 

faces. This anterior shift may emerge around the time that face processing skills become more 

adult-like (around 10 years of age). 

 

Copyright © Lippincott Williams & Wilkins 2004 
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   (D) 

Figure 4.1.  Two axial slices of ventral brain regions in (A) adults, (B) 9-11 years and (C) 5-8 years. 
MNI space z-coordinate in the upper right corner. Face-preferential activation (blue); face-graded 
activation (yellow); face-selective activation (red). Percentage fMRI signal change as a function of 
age and condition (F, M, N) is shown for one region (white circle) in each age group: (D) right 
fusiform gyrus BA (37) region in adults; (E)  right fusiform gyrus BA (37) region in 9-11 years; (F) 
right occipital gyrus BA (17) region in 5-8 years. Error bars reflect standard error of the mean.  
Copyright 2004 Lippincott Williams & Wilkins.  
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Chapter Five:  Neural Correlates of Structural Similarity Processing Emerge in the Human 

Ventral Processing Stream After Eight Years of Age 

 
Summary 

The current set of experiments used fMRI to investigate maturational changes in the 

functional organization of the VPS responsive to a structural similarity (SS) mechanism of object 

recognition.  Imaging and behavioral data were collected during a visual recognition task in 

which 5-8 year olds, 9-11 year olds, and adults made same/different judgments for shape pairs 

with parametrically varied levels of SS.  Error rates from combined same/different trials 

indicated sensitivity to SS modulation across all age groups.  Performance was worse for 

children and adults on the highest SS pairings (SS3) compared to lower SS pairs.  Developmental 

differences existed in bias measures.  Criterion settings for high SS pairs grew increasingly 

liberal with age, reflecting maturational changes in processing strategies.  Imaging data revealed 

that bilateral VPS regions sensitivity to high SS emerged after eight years of age whereas no 

VPS regions showed sensitivity to low SS at any age. Bias and functional results together 

indicate the changes in SS processing strategies and corresponding neural substrates after age 

eight.  In a second set of experiments, SS brain images were compared with data from the 

passive face and object viewing experiment in Chapter Four.  Based on the high structural 

resemblance among human faces, we hypothesized that SS played a role in the development of 

face recognition.  The results did not support our hypothesis.  

Introduction 

As discussed in the preceding chapters, the functional organization of the ventral 

processing stream (VPS) is controversial and has been attributed to multiple factors including:  

taxonomic category (Kanwisher et al., 1997), level of categorization (superordinate, basic, and 

subordinate) (Gauthier et al., 1997), expertise (Gauthier, Skudlarski et al., 2000), and relational 

(holistic, configural, global) versus featural (piece-meal, analytical, local) processing (Lerner, 

Hendler, Ben-Bashat, Harel, & Malach, 2001; Moses et al., 2002).  Structural processing offers 

another possible mechanistic explanation for VPS functional organization (Gerlach, Aaside et al., 

2002; Gerlach, Law, & Paulson, 2004; Joseph & Gathers, 2003; Price, Noppeney, Phillips, & 

Devlin, 2003).  In the current chapter, we investigate the development of the VPS from a 

structural processing standpoint and pose two experimental questions:  1.) Do age-related 
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changes occur in the VPS neural substrates of structural processing? 2.) Do functional changes in 

structural processing explain developmental shifts in the VPS neural correlates for face 

processing?   

Object Recognition – Structural Processing Theories 

In most theories of object recognition (Biederman, 1987; Humphreys, Riddoch, & 

Quinlan, 1988; Marr & Nishihara, 1978), structural processing refers to the existence of an 

intermediate, pre-semantic stage of object processing involving visual shape representations. 

According to Biederman’s Recognition-By-Components Theory (RBC) (Biederman, 1987), 

shape representations are three dimensional abstract object forms called structural descriptions.  

Each structural description can be dissected into primitive volumetric components called geons.  

It is the unique combination of type, size, and spatial arrangement of geons that characterize an 

object’s identity (Biederman, 1987).  In another account of object recognition, Edelman and 

colleagues propose that the relative shape similarity between objects rather than an object’s own 

unique shape representation determines identity (Edelman, 1995; Edelman, Bulthoff, & Bulthoff, 

1999; Edelman & Duvdevani, 1997).  In other words, new external objects are compared to a 

small, diverse set of learned prototypes (i.e. active landmarks) and “recognized” based on the 

amount of resemblance between the objects and the prototypes.  Though these theories differ in 

many ways, both theories pose abstract shape representations as the basis of object recognition.  

A Structural Explanation for Category-Specific Deficits 

Across studies, researchers have emphasized the role that structural characteristics of 

stimuli play in the organization of the cortex for visual processing (Arguin, Bub, & Dudek, 1996; 

Damasio et al., 1982; Humphreys & Riddoch, 2003; Joseph & Gathers, 2003; Price, Noppeney et 

al., 2003; Price, Winterburn, Giraud, Moore, & Noppeney, 2003; Tranel, Damasio, & Damasio, 

1988; Tranel, Damasio, & Damasio, 1997).  As noted in Chapter 1, category-specific recognition 

deficits corresponding to lesions in specific cortical regions serve as evidence for taxonomic 

organization of the VPS.  However, Damasio suggested that, though deficits and corresponding 

lesions support differentially dedicated neural processing, neural systems are not dedicated to 

processing conceptual categories but rather to processing perceptual properties of stimuli 

(Damasio, 1990).  In their analysis of lesion data, Damasio and colleagues concluded that the 

face recognition impairment, prosopagnosia, was not limited to faces but extended to any 

visually ambiguous stimuli where visual ambiguity was defined by members of a group of 
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stimuli sharing similar forms (Arguin et al., 1996; Dale & Buckner, 1997; Damasio et al., 1982; 

Gaffan & Heywood, 1993; Humphreys & Riddoch, 2003; Price, Noppeney et al., 2003; Price, 

Winterburn et al., 2003; Tranel et al., 1988; Tranel, Damasio et al., 1997).  Other studies of face 

and non-face agnosia support Damasio’s suggestion of a structural similarity (SS) basis for 

visual processing (Arguin et al., 1996; Gaffan & Heywood, 1993; Humphreys & Riddoch, 2003; 

Tranel et al., 1988).  An investigation of visual processing revealed faulty processing of 

structural knowledge in a man with a “living-things” agnosia and bilateral inferior temporal 

damage (Arguin et al., 1996).  Using line drawings of fruits and vegetables in a picture/word 

matching task, the authors found that the gentleman failed to process shape features necessary to 

identify the target among structurally related stimuli.  This finding was verified by similar 

performance on a visual recognition task involving controlled manipulations of shape stimuli 

dimensions (i.e. curvature and linearity).  Taken together, these studies imply a structural 

similarity (SS) basis for object recognition where structural similarity refers to the degree of 

differentiation between two structural descriptions.  

Studies of Structural Processing in Healthy Adults 

Behavioral (Tranel, Logan, Frank, & Damasio, 1997) and imaging studies (Gerlach, Law, 

Gade, & Paulson, 2002; Gerlach et al., 2004; Joseph & Gathers, 2003; Price, Noppeney et al., 

2003; Tranel et al., 2003) of unimpaired subjects provide further support for a structurally-driven 

visual recognition system.  Others also investigated the impact of structural similarity (visual 

ambiguity or homomorphy) on visual recognition in normally functioning adults (Tranel, 

Damasio et al., 1997; Tranel, Logan et al., 1997).  The authors proposed seven possible factors, 

including familiarity and SS, which may determine visual processing dissociations.  Normal 

subjects rated stimuli from multiple categories (i.e. animals, fruits/vegetables, tools, vehicles, 

and musical instruments) on each of the seven factors.  Analysis of the ratings indicated that high 

SS accounted for a large extent of visual recognition distinctions.  Thus, behavioral data of 

normal subjects support an SS basis for apparent category-related dissociations in visual 

recognition.   

In a PET study, Tranel et al. identified occipito-temporal correlates of animal naming 

from the auditory presentation of the animals’ sounds (2003). Based on their previous findings, 

they reasoned that recruitment of the visual association cortex by the task reflected top-down 

retrieval of physical structure knowledge about the animal being named.  Similarly, using PET, 
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Price and colleagues found that the lateral occipital complex, a structurally sensitive object 

processing region in the VPS, was differentially activated by varying degrees of structural 

similarity inherent to living versus non-living object categories (2003).  Therefore, PET studies 

have produced evidence for a structurally-based organization within the VPS. 

Using fMRI with adult participants, we investigated the effect of structural similarity 

(SS) on VPS neural activity by parametrically varying the amount of structural overlap (low to 

high similarity) between two object stimuli (pairs of animals or pairs of three dimensional 

shapes).  As subjects performed a same/different matching task on these SS pairs, we measured 

fMRI signal changes, reaction times, and error rates.  Reaction times and error rates increased as 

a function of SS indicating structural demands on object processing.  Corresponding imaging 

data revealed neural correlates of structural processing with activation by low SS in posterior 

ventral processing stream (VPS) regions and sensitivity to high SS in mid-anterior VPS regions 

(Joseph & Gathers, 2003).  In addition, mid-anterior fusiform regions, in close proximity to 

regions previously identified as specialized for face recognition (i.e. the fusiform face area, 

Kanwisher et al., 1997), were sensitive to high structural similarity.  Thus, a structurally-driven 

recognition system is a reasonable alternative to categorically-driven functional organization of 

the VPS in adults.  

The Importance of Structure in Object Processing 

Behavioral and imaging literature in normal and disordered adults emphasizes the 

importance of structure in object processing.  As mentioned at the beginning of this chapter, the 

idea of structural representations is central to most object recognition theories.  Shape is an 

important aspect of perception.  Even newborns show evidence of simple form perception.  For 

example, using a novelty preference task, Turati et al. found that newborns rely on shape 

similarity to form broad categories of geometric shapes (2004) and, in a similar task, Slater et al. 

discovered infants were sensitive to changes in angle (i.e. obtuse or acute) (1991).  Similarly, 

infants are sensitive to the same cues that adults use to derive three-dimensional images.  Three 

month old children detect differences in shading (Bhatt & Waters, 1998) and selectively attend to 

holistic combinations of line intersections in 3-D static images (Bhatt & Bertin, 2001).  At 4.5 

months infants use shape similarities and differences to individuate objects in occlusion events 

(Wilcox, 1999) and, beginning as early as 18 months, a shape bias is linked to object naming 

(Landau, Smith, & Jones, 1998; Samuelson & Smith, 1999). Though these findings indicate that 
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structure is important in human object perception, these data do not predict whether infants and 

young children use shape information to the same degree as adults.   

Evidence that Development “Shapes” Object Recognition 

 To ascertain the function of an early-established shape-sensitive object recognition 

system, many behavioral studies have investigated the development of structural processing.  

Early cognitive studies indicate that children and adults differ in their perception of shape.  

Piaget and Inhelder found that three and four year olds failed to perceive Euclidean relations 

when asked to draw simple shapes (1948).  Not until nine or ten years of age did children code 

metric distances to produce accurate representations of geometric forms.  These developmental 

changes in geometric concepts indicated that young children use spatial relations in a 

fundamentally different way than adults.  Another marked difference in shape perception 

between children and adults was reported by Gibson et al. (1962). The authors found that four 

year olds, unlike 8 year olds, did not discriminate between curved and straight lines to 

distinguish among variations in letter-like forms.   

More recent studies also support maturational changes in structural processing.  In a 

series of object recognition experiments, Abecassis and colleagues used perceptual rating, 

memory and matching tasks to investigate what dimensional strategies children and adults use 

for object discrimination and identification (2001). Similar to the Gibson et al. finding in 8 year 

olds (1962), the authors found that adults extract dimensional information such as curvature and 

parallelism for perceptual similarity judgments.  Furthermore, in line with Piaget and Inhelder’s 

(1948) account of spatial relationship development, results indicated that adults used metric 

relationships to perform similarity ratings.  Using memory and matching tasks, the authors found 

that when identifying objects, children and adults do not represent shape dimensions in the same 

manner.  There is a developmental transition from a perceptual similarity continuum to 

categorical representations of dimensions.  These developmental changes may be due to  

increased selective attention to stimulus differences (Gibson, 1969) or a learned dimensional 

value weighting strategy (i.e. classifying stimuli according to a particular dimension such as 

curvature to facilitate identity judgments) (Smith & Evans, 1989). 

Developmental changes in selective attention to shape are noted in other object 

recognition studies.  In general, a maturational shift in attention to shape has been noted in 

various naming tasks (Gershkoff-Stowe & Smith, 2004; Landau, Smith, & Jones, 1988). Overall, 
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these studies reported the existence of a shape bias that increases with age.  In another object 

naming task, Smith found qualitative changes in object recognition from 17 months to 25 months 

of linked to category learning.  When tested with real objects and caricature shapes of the same 

objects (composed of geon-like parts), young children with limited vocabulary did not recognize 

the caricatures.  Smith attributed this inability to recognize caricatures to the lack of an abstract 

structural representation.  In contrast, children with slightly more advanced vocabulary 

performed well on caricature shape recognition.  Hence, she inferred that shape representations 

are developmental products of category learning (Smith, 2003).  Whether attention or learning is 

involved in the shaping of structural representations from childhood to adulthood, from these and 

other studies, there are reasons to believe that children and adults process structure differently. 

Current Investigations   

Based on this supposition, we ask two questions in the current investigation: 1.) Do 

changes in the neural substrates of structural similarity processing occur with age? 2.) Can 

developmental changes in face processing be explained by structural processing?  Though the 

development of structural processing has been investigated from a behavioral standpoint, to our 

knowledge, no previous functional imaging studies have focused on developmental changes in 

the neural correlates of structural object processing.  In the current study, we sought to determine 

if changes in a structural-based mechanism could account for the development of VPS 

organization. Children 5-8 years and 9-11 years of age participated in a shape-matching fMRI 

experiment similar to our previous adult study (Joseph & Gathers, 2003).  Again, we 

parametrically varied the degree of structural similarity (low SS to high SS) within 3-D shape 

pairs.  Children decided if two simultaneously presented shapes were the same.  In the present 

analyses, we evaluated and compared pediatric data to adult findings to determine if the 

functional activation in the VPS of children during visual object processing, as in adults (Joseph 

& Gathers, 2003), is modulated by structural similarity.   

 In addition to examining maturational changes in shape processing, we evaluated the 

face-sensitive VPS regions of children and adults for indications of SS processing.  Based on 

data supporting structurally driven functional organization of the VPS for visual recognition, we 

proposed a structural similarity mechanism for face processing.   To test our proposal, we 

overlaid our shape-matching results with results from a passive face and object-viewing task.  

Applying the logical combination analysis to the passive viewing task (Joseph et al., 2002), we 
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isolated face-preferential regions characterized by statistically greater fMRI signal to face stimuli 

than non-face object stimuli and baseline.  Considering that faces are highly similar in their 

overall structure, we reasoned that an overlap of face-preferential regions with neural correlates 

sensitive to structural similarity, in particular high SS, would confirm a structural rather than a 

categorical basis for face processing.    

We expected developmental differences in structural similarity processing to explain 

developmental shifts in face processing loci.  Behavioral and physiological measures have shown 

that face processing undergoes developmental changes (Carey & Diamond, 1977; Carey & 

Diamond, 1994; R.J. Itier & M.J. Taylor, 2004; Maurer et al., 2002; Mondloch et al., 2002; 

Mondloch et al., 2003; Pellicano & Rhodes, 2003; Schwarzer, 2000; Want et al., 2003).  To date, 

neuroimaging data provide further support for age-related changes in face processing (Aylward 

et al., 2005; Gathers, Bhatt, Corbly, Farley, & Joseph, 2004; Joseph, Gathers, Liu, Corbly, & 

Whitaker, submitted; Passarotti et al., 2003).  Previously, we identified developmental shifts in 

face-preferential (face-sensitive) regions in children ages 5-8 years, 9-11 years, and adults 

participating in a passive face and object viewing task.  Face-preferential activation occurred in 

bilateral posterior VPS regions of 5-8 year olds, while 9-11 year old children recruited more 

anterior right fusiform regions, and adults activated bilateral posterior and anterior regions of the 

VPS.  The face preferential regions identified in the right anterior fusiform of adults and 9-11 

year olds corresponded with a high SS processing region identified in a previous adult study 

(Joseph & Gathers, 2003).  No such regions were identified in 5-8 year olds.  Thus, we 

hypothesized that as children mature they increasingly rely on structural differentiation for face 

processing.  Here we discuss our findings regarding SS development in the VPS and their 

relevance to face processing development.    

Participants 

Child Subjects 

 Twenty-nine 5-11 year old healthy children (18 males, 11 females, mean age 8.3 years) 

with no significant medical histories were compensated for participation. All volunteers had 

normal visual acuity, were fluent in English, and showed a right-hand preference based on the 

Edinburgh Handedness Survey. Receptive and expressive language skills were within normal age 

limits as determined by the Peabody Picture Vocabulary Test (PPVT) (Dunn & Dunn, 1997) and 

the Expressive Vocabulary Test (EVT) (Williams, 1997).  Three children did not complete the 
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study. Data from three other participants were omitted due to excessive head motion. Thus, data 

from 23 subjects, subdivided into ten 5-8 year olds (8 males, mean age 7.4 years) and thirteen 9-

11 year olds (6 males, mean age 10.7),  were submitted to further analyses.  

Adult Subjects 

Sixteen adults with normal or corrected-to-normal vision and no significant medical or 

psychological conditions participated in a previously published study (Joseph & Gathers, 2003).  

Data from 6 participants were omitted due to excessive head motion or image artifacts. The 

remaining data from 10 adults (5 males, mean age 24.5 years, 9 right-handed) were submitted to 

additional analyses and compared with the pediatric data in this study.   

Results  

Behavioral Results   

For the shape-matching task, we assessed error rates (Figure 5.1), reaction times (Figure 

5.2), sensitivity and bias (Figure 5.3a & b).  Only correct log reaction times (RT) within three 

standard deviations of the group mean were submitted to further analyses. We evaluated the 

effect of same/different trials on error rates and reaction times.  Considering that no parametric 

manipulation of SS occurs on “same” trials (“yes” responses), assessment of same/different 

functions verifies affects of experimental manipulations.  In addition, same/different response 

functions may provide information regarding potential maturational differences in processing 

strategies (Gathers, Bhatt, & Joseph, 2004).  We submitted our data to a mixed, two-way, 

repeated-measures ANOVA in which SS level (SS1-SS3) and Same/Different responses (yes and 

no) served as within-subject factors and Age (5-8 years, 9-11 years, and adults) served as the 

between-subjects factor.  Overall, error rates [F(2,56) = 25.8, p < .000] and reaction times 

[F(2,54) = 37.2, p < .000]  increased with increasing SS levels.  In addition, the main effect of 

same/different responses was significant for error rates [F(1,28) = 36, p < .000] and reaction 

times [F(1,27) = 45.5, p < .000] as was the interaction of Same/Different x SS level for both 

measures ([F(2,56) = 34.9, p < .000] and [F(2,54) = 13.4, p < .000] respectively). As expected, 

error rates and reaction times increase as a function of SS level for “different” responses but not 

for “same” responses verifying our manipulation of SS.  This is consistent with other studies that 

manipulated SS (Humphreys et al., 1988; Joseph & Farley, 2004; Joseph & Gathers, 2003; 

Joseph & Proffitt, 1996).   
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For the main effect of age, reaction times [F(2,27) =37.6, p < .000], but not error rates 

[F(2,28) = .89, p < .422], decreased as a function of age with adults taking less time to respond 

than both child groups.  Thus, children were slower to respond than adults but their overall error 

rates were not significantly different than adults.  Hence, the absence of a main effect of age for 

errors revealed that our shape-matching experiment was equated for performance, in regards to 

accuracy, across age groups.  Overall, reaction time and error rate results indicated that adults 

respond faster than children at the expense of more errors. 

The three-way interaction of SS level x Same/Different x Age was significant for error 

rates [F(4,56) = 4.5, p < .003].  For “different” pairs, all ages show an effect of SS in error rate 

(see Figures 5.1 and 5.2).  In children and adults, similarity judgments were more difficult for the 

most structurally similar pairs.  All ages produced more errors at SS3 than other SS levels with 

adults demonstrating the greatest increase in errors from SS2-SS3.  Thus, error data indicated 5-8 

year olds, 9-11 year olds, and adults used a structural similarity mechanism for the current shape-

matching task.  The same three-way interaction was not significant for reaction time [F(4,54) = 

1.7, p < .168].  Figures 5.3 and 5.4 depict two-way ANOVA results for reaction times.    

 Higher sensitivity measures indicate greater discrimination between “same” and 

“different” stimuli.  A sensitivity measure of .5 indicates chance performance – no 

discrimination between “same” and “different” stimuli.  Bias measures, ranging from -1 to 1, 

reflect criterion settings.   Negative bias values indicate a liberal criterion to respond “same” and 

positive values indicate a conservative criterion to respond “different”.  Overall, highly similar 

pairs (SS3) were associated with poor discrimination between “same” and “different” pairs 

[F(2,27) = 55.1, p < .000] and a tendency to respond “same” [F(2,27) = 71.9, p < .000].  Poorer 

discrimination at SS3 than SS1 is consistent with the main effects of level in error rates.  The 

main effect of age was not significant for sensitivity [F(2,28) = .727, p < .603].  Thus, overall, 

adults and children discriminate equally well.  For all ages, the most structurally similar pairs 

were the most difficult to discriminate.  However, the analysis of bias indicated significant 

changes in criterion settings with age [F(2,28) = 5.5, p < .010]. The interaction of SS level x Age 

was also significant for both sensitivity [F(4,54) = 6.9, p < .000] and bias [F(4,54) = 6.7, p <  
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.000].  For adults, simple main effects indicated an increasingly liberal bias for SS3 trials 

compared to SS1 and SS2.  Overall, adults were less sensitive and more liberal in their high SS 

responses than both child groups (see Figure 5.5).  Bias and sensitivity were not correlated (r = -

.042). 

Imaging Results 

VPS Regions Modulated by SS within Each Age Group 

 In our shape-matching design, we parametrically varied structural similarity to identify 

brain regions involved in processing structural descriptions.  Using cross-correlation analysis, we 

isolated the regions more sensitive to high SS and low SS in each age group.  From all age 

groups, a total of forty-eight possible regions indicating sensitivity to SS, known as regions of 

interest (ROIs), were identified; twenty ROIs in 5-8 year olds, fourteen ROIs in 9-11 year olds, 

and fourteen in adults.   

To verify the effect of SS on fMRI signal, we submitted each ROI to a one-way repeated 

measures ANOVA with SS Level (percentage signal change = (SS level –baseline)/baseline) as 

the within-subject factor.  Twenty-one of the forty-eight clusters survived as significant at p<.05 

or significant at p<.09 for the effect of SS level on signal magnitude including seventeen linear 

(systematic) and four non-linear (non-systematic) functions.  Here, we focused on regions with 

only linear changes in signal magnitude.  Tables 1 and 2 identify the fourteen ROIs sensitive to 

high SS and the three ROIs sensitive to low SS respectively.  None of the three clusters sensitive 

to decreasing SS were within the VPS.  For regions sensitive to increasing SS, only five fell 

within the VPS and only four of those were linear increases (see Table 5.1).   

Four of the VPS clusters in this study were similar to regions previously identified as 

sensitive to high SS (for either shape or animal stimulus pairs) in adults (Joseph & Gathers, 

2003).  Within the 9-11 year old group, we found one right fusiform cluster (x = 44, y = -64, z = 

-14) and one left mid-anterior fusiform locus (x = -53, y = -45, z = -29) sensitive to high SS.  The 

left fusiform cluster occurred just lateral to that of a previously identified left mid-fusiform (x = -

37, y = -49, z = -24) site sensitive to high SS in adults for an animal-matching task (Joseph & 

Gathers, 2003).  In the current adult group, one left mid-anterior fusiform region (x = -50, y = -

58, z = -20) appeared that was comparable to the 9-11 year old fusiform site and to a previously 

identified SS region (Joseph & Gathers, 2003).  Our results also indicated a previously identified 
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posterior region modulated by SS in the right inferior occipital gyrus region (x = 37, y = -81, z = 

3).  In addition, a posterior left fusiform region (x = -47, y = -72, z = -18) lateral to a previous 

shape-sensitive region (Joseph & Gathers, 2003) was significant for the effect of SS; however, it 

did not have a linear function.   

In general, the number of structurally modulated clusters within the VPS increased with 

age.  Five to eight year olds had no shape-sensitive VPS clusters whereas 9-11 year olds and 

adults had VPS clusters sensitive to high SS processing.  The VPS clusters found in 9-11 year 

olds and adults were similar to clusters from other adult structural similarity studies (Joseph & 

Gathers, 2003).  From these results, it appears that structurally sensitive object processing in the 

VPS develops after 5-8 years of age.  Furthermore, based on the absence of VPS clusters 

sensitive to low SS at all ages, the VPS plays a role in high SS processing rather than low SS 

processing with maturation.  

Other Regions Modulated by SS within Each Age Group  

 Based on previous reports that visual processing recruits networks throughout the cortex 

(Gathers & Joseph, 2003a; Joseph & Farley, 2004; Joseph & Gathers, 2003), we expected to find 

cortical areas outside of the VPS (e.g. frontal and parietal regions sensitive to high SS) involved 

in SS processing in children and adults.  In addition, from other findings (Chapter 6), we 

predicted developmental changes in extra-VPS regions with children activating more clusters 

beyond the VPS than adults.  Again, we report only regions with statistically significant linear 

increases or decreases in fMRI signal as a function of SS level.  

 Three ROI’s from the 5-8 year old group, two frontal regions sensitive to high SS and 

one cerebellar region sensitive to low SS, survived the one-way ANOVA.  Of the five 9-11 year 

old clusters that survived the one-way ANOVA, all were significant for high SS and were 

located in frontal and parietal regions.  Analysis of adult shape sensitivity in other cortical 

regions revealed two right hemisphere ROIs sensitive to high SS, one superior frontal and one 

superior parietal cluster.  Adults also produced two left ROIs significant to low SS, a left 

cerebellar region and a left superior frontal region.  In general, frontal activation sensitive to high 

SS was significant within each age group.  However, parietal activation was specific to 9-11 year 

olds and adults.  Furthermore, adult clusters beyond the VPS followed a pattern of lateralization  
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with all high SS sensitive regions in the right hemisphere and all low SS sensitive regions in the 

left hemisphere.  For 5-8 year olds and adults, low SS activity occurred in cerebellar regions, 

though in different hemispheres. 

Developmental Changes in Structurally-sensitive Regions  

To clarify the developmental roles of the seventeen ROIs significant for a linear main 

effect of SS level, we performed mixed repeated-measures ANOVAs with SS level (SS1 to SS3) 

as the within-subject factor and Age (5-8 year olds, 9-11 year olds, and adults) as the between-

subjects factor.  As seen in Tables 5.1a and 5.2a, our mixed ANOVAs yielded four ROIs with 

significant (p<.05) or marginally significant (p<.09) main effects of age, five ROIs with 

significant or marginally significant main effects of SS level, and seven ROIs with significant or 

marginally significant SS Level x Age interactions.  Based on other developmental data from our 

lab (Gathers, Bhatt, Corbly et al., 2004) [Chapter 4; see Chapter 6], we expected to find regions 

in which signal was a function of age and regions in which signal was a function of SS level 

(Joseph & Gathers, 2003).  For the purpose of this study, however, we focused on clusters with 

significant SS level x Age interactions (see Tables 5.1, 5.2, and 5.3) to assess developmental 

changes in neural correlates for structural similarity.  Simple main effects of SS at each age level 

were performed on clusters with significant SS level x Age interactions.  In general, we found 

seven cortical regions associated with maturational changes in structural processing, two within 

the right VPS -- one mid-fusiform locus (p<.064) and one inferior occipital locus (p<.056).  See 

Figure 5.6.  In all but one cluster significant for the interaction of SS level x Age, significant or 

marginally significant simple main effects of SS were found for older children indicating a shift 

in SS processing between 9-11 years of age.  

Beyond the VPS, a maturational pattern emerged in which both groups of children used 

frontal regions and older children used parietal regions for high SS discrimination (Figure 5.7).  

Discrimination of low SS occurred in posterior cerebellar areas for older children and adults.  All 

surviving frontal and parietal clusters were sensitive to increasing structural similarity.  Three 

frontal regions survived the between-groups analysis with significance for the interaction of SS 

level x Age including one left superior frontal region (x = -7, y = 14, z = 68) and two right 

hemisphere clusters (middle and inferior frontal) [F(4,60) = 2.6, p<.046; F(4,60) = 3.3,  p<.016].   
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Overall, we found age-related changes in functional activation patterns for structural 

processing in the VPS and other cortical regions.  One VPS and five non-VPS regions showed 

significant or marginally significant simple main effects of SS in older children suggesting a 

maturational shift in structural processing around 9-11 years of age. In addition, cortical shifts 

occur in SS processing with frontal and parietal regions used for high SS processing in childhood 

and cerebellar regions active in processing low SS in adults.   

Face-Sensitive VPS Regions Modulated by SS 

 In addition to identifying SS responsive areas, we used a passive face and object viewing 

task to isolate face sensitive (face-preferential) regions in each group.  As in previous analyses 

(Gathers, Bhatt, Corbly et al., 2004; Joseph & Gathers, 2002), we distinguished face preferential 

regions as areas in which faces produced a statistically greater response than other non-face 

object stimuli and baseline.  Face-preferential regions were isolated based on reports in other 

studies of a face processing VPS region (e.g. the fusiform face area) (Kanwisher et al., 1997).  A 

goal of this study was to investigate development and function of the FFA in regards to structural 

processing.  Therefore, we limited our face preferential analyses to the ventral processing stream.   

Following cluster isolation, one-way repeated measures ANOVAs and post-hoc t-tests 

were conducted to verify face-preferential profiles.  Under these criteria, only three adult face-

preferential regions survived.  Neither child group produced VPS face-preferential clusters that 

withstood the ANOVA and subsequent post-hoc t-tests.  In adults, posterior VPS face-

preferential clusters occurred bilaterally including clusters in the fusiform and lingual gyri.  A 

left posterior fusiform (x = -32, y = -77, z = 14) cluster corresponded with previously reported 

face-preferential regions isolated in adults (Joseph & Gathers, 2002).  Overlay results of face-

preferential and structurally-sensitive regions revealed no significant shared regions within the 

VPS for these posterior adult clusters.  In children 9-11 years of age, face-preferential activation 

and high SS responses shared a mid-fusiform region (x = 46, y = -60, x = -18) similar to a 

previously identified face sensitive region in the same age group (Gathers, Bhatt, Corbly et al., 

2004).  However, this region of overlap did not survive the one-way ANOVA and post-hoc t-

tests for the face-preferential profile.  Thus, in these analyses, sensitivity to high SS did not 

provide a mechanistic explanation for face processing in children or adults.  
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Discussion 

In our current analyses, we explored the idea of a structural similarity mechanism as the 

basis for visual object recognition across development.  Our two primary objectives were: (1) to 

identify developmental changes in the behavioral and functional correlates of structural 

similarity processing in children 5-8 years, 9-11 years, and adults and (2) to investigate the 

possibility of a structural mechanistic basis for face-sensitive processing regions (FFA) in 

development.  

Behavioral Evidence of Developmental Changes in SS Processing 

In general, behavioral measures indicate that similar to adults, children use a structural 

similarity mechanism for shape processing.  Measures of error rates and sensitivity reflect a 

direct influence of structural manipulation on behavior in both children and adults.  However, 

fMRI activation indicates developmental changes in the neural correlates of structural similarity 

processing from 5 years to adulthood.  The apparent disparity of error and sensitivity measures 

with fMRI measures in regards to mechanistic and functional evidence of developmental changes 

in SS processing may be explained by measures of bias.  Though children and adults both use SS 

processing, the strongly liberal bias of adults at SS3 compared to both groups of children 

indicates that adults may employ a different criterion setting for processing highly similar shapes 

than children. Thus, our fMRI measures in conjunction with our bias measures imply 

maturational changes in structural similarity processing that may be contributed to age-related 

changes in strategy.   Maturational changes in strategies involving visual processing are not 

unfamiliar.  Using feature and conjunction search tasks and an object classification task, Ruskin 

and Kaye investigated developmental changes in object processing in three groups of children:  

ages 5-6 years, 7-8 years, and 11-12 years (Ruskin & Kaye, 1990).  Their results indicated that 

developmental differences in processing efficiency led younger subjects to use a different visual 

classification strategy than 11-12 year olds.   

Some might argue that our results reflect design differences rather than maturational 

changes.  In our current study, stimulus presentations did differ for adults (400ms) and children 

(1500 ms) with total possible response times of (2000ms) and (3000ms) respectively.  However, 

other data from our lab imply stimulus duration does not affect findings related to SS processing.  

In an unpublished animal-matching study, we tested adults on four levels of SS and three levels 
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of exposure duration (200, 400, or 1900 ms).  We found that exposure duration did not alter the 

reaction times or error rates associated with SS.  In a similar published work, behavioral trends in 

the main effect of SS for RT and sensitivity were preserved at multiple durations (Joseph & 

Farley, 2004). Furthermore, in a developmental behavioral study in which experimental designs 

were equivalent between age groups (stimulus durations were 2500 ms followed by 500ms 

fixations), we again found strategic differences in adults and children (Gathers, Bhatt, & Joseph, 

2004).  In this same/different matching study where SS was parametrically varied for animal 

(object) and face stimuli, 6-8 year old children and adults had similar criterion setting for faces 

but not for animals.  For animals, children were more conservative relative to faces and adults 

were more liberal.  Hence, our current findings are not attributed to design discrepancies but 

reflect true developmental changes in SS processing linked to age-related changes in criterion 

settings.   

Evidence of Developmental Changes in SS Processing in the VPS 

Our current imaging analyses reveal unique patterns of structurally significant neural 

activity for 5-8 year olds, 9-11 year olds, and adults.  Younger children produce no significant 

SS activation in the VPS.  However, for older children (9-11 years) and adults, bilateral ventral 

processing stream regions are sensitive to high structural similarity.  Though older children 

activate more anterior VPS regions relative to adults, both groups have a similar pattern of 

activation.  Older children and adults have functional regions in the VPS sensitive to high SS 

object processing whereas younger children show no functional differentiation for SS in the 

VPS.  These findings agree with face recognition data indicating more adult-like visual 

processing by 10 years of age (Carey & Diamond, 1994).  

At first, our results seem to contradict other developmental object processing studies that 

report shape processing from infancy to adulthood.  For example, in an object categorization 

study, Ward (1989) found that five year old children demonstrated predominately analytical or 

piece-meal processing of non-face stimuli similar to adults.  In light of this and other reports that 

present evidence of structural mechanisms as early as infancy (Bertin & Bhatt, 2001; Bhatt et al., 

1999; Bhatt & Waters, 1998; Quinn et al., 2001), one might predict no developmental differences 

in structural object processing.  However, as mentioned previously, though even newborns are 

sensitive to shape, other studies indicate that children and adults use different shape recognition 

strategies (Abecassis et al., 2001; Gershkoff-Stowe & Smith, 2004; Gibson et al., 1962; Landau 
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et al., 1998; Piaget & Inhelder, 1948; Smith, 2003). Recent studies have shown that object 

recognition involves some aspect of relational processing in addition to analytical processing 

(Davidoff & Roberson, 2002; de Gelder & Rouw, 2000b; Reed et al., 2003).  If object 

recognition involves relational processing to some degree and if relational processing develops 

with age (Carey & Diamond, 1994; Freire & Lee, 2001; Freire & Lee, 2003a; C. J. Mondloch et 

al., 2003; Mondloch et al., 2002; Schwarzer, 2000) or experience (see Diamond & Carey, 1986; 

Gauthier & Tarr, 1997; Rhodes, Brennan, & Carey, 1987) then our findings of developmental 

changes in structural similarity processing are potentially related to changes in relational 

processing (Piaget & Inhelder, 1948).  

Though the interpretation of our findings may be arguable, our study is not the first to 

reveal developmental changes in the functional organization of the VPS.  Another developmental 

fMRI study confirmed age-related changes in the functional neural correlates of visual 

recognition (Aylward et al., 2005). Aylward et al. (2005) examined activation patterns in the 

fusiform gyrus for two groups of children (younger, 8-10 years and older, 12-14 years) viewing 

two categories of stimuli, faces and houses.  In the older children, faces produced a significantly 

greater response than houses in the bilateral fusiform gyri.  This differential response was absent 

in the younger children.  Aylward interpreted the results to suggest an increase in categorical 

differentiation with age.  In light of our current findings however, we propose that the greater 

fMRI response by faces than houses in the fusiform gyrus of 12-14 year olds may be attributed to 

a maturational increase in sensitivity to structural similarity rather than to taxonomic category.  

The idea of structurally-driven developmental changes in face processing forms the basis for our 

second objective (see discussion section The Role of Structurally Similarity in Face Processing). 

One could dispute that the lack of VPS regions responsive to SS in younger children is 

due to thresholding and signal magnitude differences among age groups (Gaillard et al., 2000). 

Though no structurally-sensitive regions appeared in the VPS of 5-8 year olds, a left superior 

frontal region sensitive to high SS was significant (Figure 5.7).  Furthermore, as seen in Figure 

5.7, the signal magnitude for younger children is sometimes greater than that of older children 

and adults.  Thus, thresholding is not an explanation for absence of structurally sensitive VPS 

regions in 5-8 year olds.  Our fMRI results appear to reflect true developmental changes in 

structural processing from five years of age to adulthood.  
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Potential Hemispheric Roles in SS Processing and Maturation 

Data from both older children and adults revealed bilateral activity for high SS stimulus 

pairs.  Per evaluation of their Talairach coordinates, these SS sensitive VPS regions are in the 

proximity of the lateral occipital complex (LOC), an area known to function in shape recognition 

(Grill-Spector, Kushnir, Edelman, Itzchak, & Malach, 1998; Grill-Spector, Kushnir, Hendler et 

al., 1998; Kourtzi & Kanwisher, 2000; Malach et al., 1995; Whatmough, Chertkow, Murtha, & 

Hanratty, 2002).  The LOC has been consistently identified bilaterally, but the different 

hemispheric roles of the LOC in the discrimination of highly similar shapes are unknown.  Here 

we speculate as to the contribution of each hemisphere in SS processing.  

We found left mid-fusiform regions in 9-11 year olds and adults that were consistent with 

shape-sensitive regions identified in our former structural similarity investigations (Joseph & 

Farley, 2004; Joseph & Gathers, 2003). Two right hemisphere VPS clusters were also identified, 

one mid-anterior fusiform and one inferior occipital.  In our previous study, the orientation of 

objects in the stimulus pairs varied (Joseph & Gathers, 2003), therefore we proposed that the left 

hemisphere might be responsible for processing viewpoint-invariant object representations 

(Vuilleumier, Henson, Driver, & Dolan, 2002) and the right hemisphere might be involved in 

processing viewpoint-dependent representations. Because the current stimuli are the same as 

those used in Joseph & Gathers (2003) the explanation of differential hemispheric processing of 

viewpoints may still apply.   

As an alternative, left hemisphere and right hemisphere involvement may be indicative of 

knowledge type and difficulty imposed by the task respectively.  In a positron emission 

tomography (PET) study, Moore and Price (1999) used naming and matching tasks to 

differentiate among functional correlates for object categorization (semantics), object 

configuration, and object identification.  The authors compared functional patterns produced by 

contrasts of simple-shaped or multi-component natural, man-made, and non-object stimuli.  

Neuroimaging results indicated left occipito-temporal cortex involvement was based on 

knowledge type (perceptual and functional) with more anterior regions activated by perceptual 

judgments and more posterior regions activated by functional judgments.  In contrast, right 

hemisphere activation reflected structural task demands.  Natural objects, with more structural 

similarities than the other stimulus categories tested, produced anterior and posterior temporal 
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activation in the right hemisphere while other stimulus categories activated the right postcentral 

gyrus.  We apply the findings of Moore and Price to our current analyses.  Because our stimuli 

are basic shapes rich in perceptual but poor in functional information, we speculate that left mid-

anterior fusiform activation by highly similar geon pairs is due to task reliance on perceptual 

knowledge. 

Further support for right hemisphere involvement in structural processing demands 

comes from studies by Gerlach and colleagues (Gerlach, Law, Gade, & Paulson, 1999; Gerlach 

et al., 2004).  Using PET, Gerlach et al. found that activity within the right posterior inferior 

temporal gyrus corresponded with degrees of perceptual differentiation required for recognition 

(1999). And in a later study, Gerlach and colleagues report right hemisphere activation in 

difficult object decision tasks requiring more fine-grained perceptual differentiation (2004).  

Thus, greater processing demands evoked by discrimination of high SS may explain findings of 

right hemisphere VPS activity in the present data. 

A final explanation of hemispheric involvement in SS processing relates directly to 

maturation.  Our analyses indicated maturational changes in SS processing in the right VPS.  In 

particular, between group analyses revealed a significant interaction of SS Level x Age for the 

right mid-fusiform and right inferior occipital gyri.  The location of this cluster corresponds to a 

previously identified right hemisphere locus sensitive to relational (holistic) processing (Lerner 

et al., 2001).  Based on the current findings, we suggest that age-related hemispheric 

lateralization for SS processing reflects developmental changes in featural and relational 

processing.   

Several studies provide support for this reasoning.  In a behavioral study, Mondloch et al. 

(2003) reported that the processing of hierarchical geometric shapes continues to develop into 

adolescence.  They found slower development of relational processing (i.e. local/configural 

processing based on high spatial frequencies) than general global shape processing.  In 

particular, adult-like relational processing developed between 10-14 years of age and was 

localized to the right hemisphere as evidenced by visual field testing.  Mondloch and colleagues’ 

findings of a right hemisphere bias for relational processing correspond to fMRI findings in 

adults (Martinez et al., 1997) and children (Moses et al., 2002).  In a developmental fMRI study 

of relational (global) versus featural (local) processing, Moses and colleagues imaged children 

ages 12-14 years and then categorized them as bilateral immature or mature lateralized based on 
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their response time profiles (Moses et al., 2002).  The immature bilateral group produced greater 

activation overall to features (local), similar response patterns bilaterally to relational (global) 

conditions, and a trend of right hemisphere activation greater than left for local features.  The 

mature lateralized children demonstrated adult-like activation patterns with greater right 

hemisphere activation during relational (global) processing and greater left hemisphere activity 

in response to local featural processing.  Based on these studies, we suggest that the role of the 

right hemisphere in our SS processing task corresponds with findings of developmental changes 

in featural and relational processing strategies.   

None of our speculations of hemispheric roles in SS processing is necessarily mutually 

exclusive.  The effect of viewpoint processing may be tightly linked to task demands (Lawson, 

2004) and task knowledge requirements.  In the same way, task demands may be tightly linked to 

processing strategies (Shedden & Reid, 2001).  Thus, all three accounts for bilateral hemispheric 

activation in structural processing are possible explanations for our present findings.   

Other Cortical Regions  

Previous data support the existence and maturation of structural processing regions 

beyond the VPS (Gerlach et al., 2004; Joseph & Farley, 2004; Joseph & Gathers, 2003). In the 

present analyses, we found age-related changes in the functional correlates of structural 

similarity processing in five non-VPS regions.  From these non-VPS regions, two patterns 

emerged.  First, significant or marginally significant simple main effects in older children were 

common to all five regions suggesting a maturational shift in structural processing between 9-11 

years of age.  As noted in our discussion of present VPS findings, other studies support similar 

ages for developmental changes in visual processing (Carey & Diamond, 1994; Schwarzer, 

2000). 

Second, a general anterior to posterior shift in SS processing occurs in development.  

Children recruited primarily frontal and parietal regions with systematically stronger activation 

for high SS processing most prevalent in older children.  In contrast, a posterior cerebellar 

region, involved in low SS processing, was increasingly active from age 9 years to adulthood.  

Other studies note recruitment of frontal and parietal regions in object recognition tasks 

involving structural similarity processing (Gerlach et al., 2004; Joseph & Farley, 2004; Joseph & 

Gathers, 2003).  In a review, Kanwisher and Wojciulik note that “attention is central to the 

construction of every visual experience” explaining that fronto-parietal networks may aid in 
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directing visual attention to spatial locations, features, or whole objects (Kanwisher & Wojciulik, 

2000). Frontal and parietal involvement may relate to top-down attentional influences in visual 

processing (Joseph & Farley, 2004; Joseph & Gathers, 2003; Kanwisher & Wojciulik, 2000; 

Mondloch et al., 2003).  The parietal lobe is active in a variety of attentional tasks (Kanwisher & 

Wojciulik, 2000), one of which is allocation (Robertson & Lamb, 1991).  As SS processing 

demands increase, children may have more difficulty than adults allocating more of their 

attention or selectively attending to significant stimulus differences (Gibson, 1969).  Less control 

over the allocation of their attention and yet greater demands on their need to selectively attend 

with increasing SS levels may result in stronger recruitment of the fronto-parietal network in 

children than adults.  As implied by behavioral shifts in bias and hemispheric shifts in SS 

processing with age, developmental changes in SS processing strategies may account for fronto-

parietal activation in children.   

Overall, the finding that frontal and parietal regions are linked to developmental changes 

in SS processing is consistent with knowledge of neural development.  Though 9-11 year olds 

continue to use a conservative strategy like younger children, their fMRI patterns are most 

similar to adults.  This apparent transition in SS processing may be due to corresponding changes 

in neural architecture (see Chapter 6). 

The Role of Structural Similarity in Face Processing 

Considering the homogeneity of faces in their first order configurations (i.e. eyes above 

nose, nose above mouth), external shape, and general features, face recognition requires a great 

deal of discrimination to delineate subtle differences in features and inter-featural relationships.  

Thus, we hypothesized that the mechanistic basis of face recognition was structural similarity 

processing.  Because faces are highly similar to one another, a structural basis for face 

processing would be evidenced by co-localized regions of high structural similarity processing 

and face-preferential responses.  In addition, we hypothesized a developmental change in the 

mechanistic basis of face processing.  Our developmental hypothesis was based on a compilation 

of data from multiple face and object processing studies.  Results from many researchers indicate 

developmental changes in face processing (Carey & Diamond, 1994; Freire & Lee, 2001; Freire 

& Lee, 2003b; Mondloch et al., 2002; Mondloch et al., 2003; Schwarzer, 2000).  
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At the group level, we found no VPS regions of co-localization at any age for face-

preferential and SS responses.  Therefore, our current data do not directly support our hypothesis 

that face processing is based on a structural similarity mechanism.  However, the possibility 

cannot be ruled out.  An explanation for the lack of overlap in SS processing in 3-D shapes and 

face processing in our subjects may be based on task design rather than the absence of SS 

processing in face recognition. 

It is known that face-preferential regions (i.e. FFA) and shape sensitive regions (i.e. 

LOC), particularly those sensitive to high shape similarity (Joseph & Gathers, 2003; Price, 

Noppeney et al., 2003), are located near each other in the mid-anterior fusiform gyrus (Grill-

Spector, Kourtzi, & Kanwisher, 2001).  In fact, partial overlap of the two regions is reported 

(Grill-Spector et al., 2001).  The LOC may represent a continuum of shape processing with more 

and more anterior regions specialized for greater degrees of shape similarity (Lerner et al., 2001; 

Price, Noppeney et al., 2003).  As faces represent the extreme end of the continuum of shape 

processing (Bruce & Humphreys, 1994), traditional face regions (i.e. the FFA, Kanwisher et al., 

1997), near but more anterior to shape regions, may be drawing on even more distinct structural 

processing.  For example, Lerner et al. examined fMRI signal changes in the VPS in response to 

parametric manipulations of featural and relational (i.e. holistic) representations of cars and faces 

(2001).  Responses to car and face stimuli did not overlap spatially; however, results indicated an 

increasing sensitivity to relational (i.e. holistic) representations in increasingly anterior regions of 

the VPS for both stimuli.  From Lerner and colleagues findings, we infer that structural similarity 

processing of stimuli may include degrees of featural and holistic processing with faces requiring 

a greater degree of  relational (holistic) differentiation than that of cars or, in our case, 

geometrical shapes (2001).  Thus, absence of spatial overlap between regions sensitive to high 

structural similarity and regions sensitive to faces may be the result of a task design in which we 

only manipulated structural similarity of objects (3-D shapes).   
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Table 5.1  VPS Areas Sensitivity to High Structural Similarity  
 
region  BA Taliarach Cluster size              Mixed ANOVA 
      (x,y,z)   (voxels)          SS Effect         Age     SS x Age 
R. FG  37   44, -64, -14        48            F(2,30) = 3.3, p < .052      F(4,60) = 2.6, p < .064 
R. IOG  37   37, -81,   -3        18              F(4,60) = 2.6, p < .056 
L. FG  19 -53, -45, -29        21            F(2,30) = 3.5, p < .045 
L. FG  19 -50, -58, -20   F(2,60) = 2.6, p < .086 
 
Note.  VPS, ventral processing stream; R, right; L, left; FG, fusiform gyrus; IOG, inferior occipital gyrus; BA, Brodmann’s area; x, 
medial-lateral coordinate; y, anterior-posterior coordinate; z, inferior-superior coordinate; SS, structural similarity.  
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Table 5.2  Other Cortical Areas Sensitivity to High Structural Similarity  
 
region  BA Taliarach Cluster size              Mixed ANOVA 
      (x,y,z)   (voxels)          SS Effect         Age     SS x Age 
L. SFG    6 -7, 14, 68         86 F(2,29) = 3.2, p < .057                    F(4,58) = 3.1, p < .021 
R. MFG   9  49, 7, 37         24 F(2,60) = 2.6, p < .080         F(4,60) = 2.6, p < .046 
R. IFG  11  27, 5, -21         67                    F(4,60) = 3.3, p < .016 
L. IPL  40 -29, -52, 44         44           F(2,30) = 6.4, p < .005       
R. MFG 47         13, 21, -21       113 
L. MFG 46 -48, 44, 20         36       F(2,60) = 5.8, p < .005        
R. SPL    7  25, -57, 55         54           F(2,30) = 2.8, p < .078 
R. SFG 10   14, 70, 3         15   
R. SPL    7  30, -70, 31         18    
R. Precuneus 19/7  29, -59, 38         59           F(2,30) = 3.4, p < .048 
    
Note.  R, right; L, left; SFG, superior frontal gyrus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; MFG, middle frontal 
gyrus; SPL, superior parietal lobule; BA, Brodmann’s area; x, medial-lateral coordinate; y, anterior-posterior coordinate; z, inferior-
superior coordinate; SS, structural similarity.  
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Table 5.3  Areas Sensitive to Low Structural Similarity  
 
region  BA Taliarach Cluster size              Mixed ANOVA 
      (x,y,z)   (voxels)          SS Effect         Age     SS x Age 
L. Cerebellum  -30, -49, -21        22  F(2,18) = 5.2, p < .024        F(2,60) = 3.0, p < .059        F(4,60) = 3.1, p < .023 
R. Cerebellum  40, -55, -30        74  F(2,18) = 9.4, p < .008    
L. SFG    9 -25, 33, 31        13  F(2,18) = 6.5, p < .013 
 
Note.  L, left; R, right; SFG, superior frontal gyrus; BA, Brodmann’s area; x, medial-lateral coordinate; y, anterior-posterior 
coordinate; z, inferior-superior coordinate; SS, structural similarity.  
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Figure 5.1.  Child Error Rates (RT).  Average error rates for “yes” and “no” responses in 
(A) 5-8 year olds and (B) 9-11 year olds.  Error bars represent within-group confidence 
intervals.  
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Figure 5.2.  Adult Error Rates (RT).  Average error rates for “yes” and “no” responses in 
adults.  Error bars represent within-group confidence intervals.  
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Figure 5.3.  Child Reaction Times (RT).  Average RT for “yes” and “no” responses in 
(A) 5-8 year olds and (B) 9-11 year olds.  Error bars represent within-group confidence 
intervals.  
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Figure 5.4.  Adult Reaction Times (RT).  Average RT for “yes” and “no” responses in 
adults.  Error bars represent within-group confidence intervals.  
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Figure 5.5.  (A) Sensitivity and (B) bias results for the shape-matching task.  Error bars 
reflect within-participants confidence intervals. 
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Figure 5.6.  Ventral processing stream (VPS) regions modulated by maturational changes in 
structural similarity (SS).  * Indicates significant simple effect of SS.  Error bars represent 
within-group confidence intervals.  R = right, L = left, A = anterior.   Taliarach z coordinates in 
left, top corner of functional images indicate mm inferior to a plane through the anterior and 
posterior commissures. 
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Figure 5.7.  Frontal and parietal regions modulated by maturational changes in structural 
similarity (SS).  * Indicates significant simple effect of SS.  Error bars represent within-group 
confidence intervals.  R = right, L = left, A = anterior.  Taliarach z coordinates in top left 
indicate mm inferior to a plane through the anterior and posterior commissures. 
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Chapter Six:  Developmental changes in fMRI measures of activation extent, signal 

magnitude, and lateralization for face and object processing from five years to adulthood 

 

Summary  

The current analyses expand upon existing work by assessing changes in face and object 

processing in the entire cortex, using measures of extent, magnitude, and lateralization of 

activation at both global and local levels, and characterizing network-wide changes in activation 

profiles.  Children recruited a greater number of smaller regions for face and object processing 

whereas adults recruited fewer but larger regions of activity.  However, contrary to current 

predictions in literature of increased functional selectivity with maturation (Aylward et al., 2005; 

Passarotti et al., 2003), these developmental changes in extent occurred only for regions of 

shared object and face processing (i.e. conjoined).  Overall fMRI signal strength did not change 

systematically across age groups, but regional progressions and regressions of signal reflected 

developmental network changes.  Not specific to stimulus category, signal strength decreased 

with age for frontal regions but increased for age in parietal and VPS regions.  Furthermore, 

children produced primarily bilateral activation whereas adult brain activity was lateralized to the 

right.   As with measures of activation extent and signal magnitude, hemispheric changes were 

not category-specific.  A narrowing of face and object processing networks does occur with age, 

which may correspond with underlying neuroanatomical changes and/or functional changes 

related to task rather than categorical processing.   

Introduction 

In this chapter, we reevaluate data (Gathers, Bhatt, Corbly et al., 2004) from the fMRI 

passive face and object viewing task used in Chapter Four.  Our objectives are two-fold:  1.)  

Comprehensively quantify age differences using measures of extent, magnitude, and 

lateralization of activation thoughout the entire brain and 2.)  qualify developmental changes by 

characterizing neural activation patterns.  
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As established previously in this work, a fundamental interest of developmental cognitive 

neuroscience is the changing functional organization of the cortex in relationship to cognitive 

tasks.  Though many neuroimaging studies have limited their investigations to particular cortical 

regions (i.e. FFA for face processing), cognitive processing is a result of activity within large-

scale, distributed interconnected populations of neurons.   In Chapter Four, we investigated the 

maturation of functional neural correlates of face and object processing within the ventral 

processing stream (VPS).  We attributed our finding of developmental shifts in the VPS face-

preferential loci to the potential maturation of inter-cortical visual pathways such as later 

developing frontal lobe connections.  In Chapter Five, from our developmental investigation of a 

structural similarity basis for object processing, we demonstrated that normal visual processing 

involved frontal, parietal, and cerebellar loci as well as VPS loci.  From these experiments and 

others, data indicate that normal visual processing recruits a network of cortical regions 

(Andrews & Schluppech, 2004; Chao, Martin, & Haxby, 1999; Epstein & Kanwisher, 1998; 

Gathers & Joseph, 2003a; George, Evans, Fiori, Davidoff, & Renault, 1996; Haxby et al., 1994; 

Itier & Taylor, 2004c; Joseph & Farley, 2004; Joseph & Gathers, 2003; Sergent & Bindra, 1981).  

Thus, a whole-brain approach is warranted in our developmental fMRI study of face and object 

recognition.   

In our whole-brain approach, we employ comprehensive measures to quantify 

maturational changes.  In general, developmental fMRI studies including working memory and 

face processing investigations report more distributed widespread neural networks in children 

than adults (Casey et al., 1997; Gaillard et al., 2000; Passarotti et al., 2003; Thomas et al., 1999).  

However, the definition of “distributed” and measures of distribution vary among imaging 

studies.  Existing developmental fMRI studies report functional developmental changes in three 

aspects of activation patterns: extent of activation (Casey et al., 1997; Gaillard et al., 2000; 

Passarotti et al., 2003), signal magnitude (Brown et al., 2004; Thomas et al., 1999), or 

hemispheric lateralization (Holland & al., 2001; Moses et al., 2002; Passarotti et al., 2003).  

Regarding the validity and the constraints of each measure (Casey et al., 1997; Gaillard, Grandin, 

& Xu, 2001b; Muzik, Chungani, Juhasz, Shen, & Chungani, 2000; Palmer, Brown, Petersen, &  

Schlaggar, 2004), we incorporate all three measures for a complete assessment of functional 

maturation.  Figure 6.1.  Furthermore, we consider each measure of functional change at two 

spatial levels – global and local.   
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We define global measurements as widespread changes throughout the cortex whereas 

local measurements refer to regional changes.  As mentioned above, the definition of 

“distributed” activation in developmental literature is unclear.  Reports that children recruit more 

distributed networks for a task than adults may be interpreted in two ways (See Figure 6.1a).    

Children may recruit a larger set of spatially scattered regions of activity across the cortex (a 

greater number of activated clusters) than adults or children may recruit larger regions of 

activation than adults (a greater number of voxels per cluster).  Global and local assessments of 

extent allow us to make a distinction in developmental changes in distribution patterns between 

spatially dispersed and locally diffuse.  

Like extent, changes in signal magnitude are also important measures of developmental 

change (Figure 6.1b).  However, when comparing signal strength among age groups, care must 

be taken to assure signal differences reflect development related to the task rather than 

physiological or anatomical artifacts of maturation.  For instance, Gaillard et al. (Gaillard et al., 

2000) noted that maturational differences in respiration rates, head sizes, and skull thickness may 

enhance or depress signal magnitude readings for one age group over.  This concern served as 

the motivation for our global signal magnitude analysis.  To ensure that our signal magnitude 

findings reflected true developmental changes in response to the task rather than general 

systematic age-related changes, we statistically compared the overall average percent signal 

change (collapsing across all regions of activation) among groups.  In addition to global signal 

changes, we analyzed local or regional activation to determine if the roles of regions remain 

stable or change with development.   Anatomical and cellular studies indicate that regions 

develop at different rates (Giedd et al., 1999; Sowell, Thompson, Tessner, & Toga, 2001; Wilke, 

Schmithorst, & Holland, 2002).  On a functional level, a recent developmental study of reading 

reports regional increases and decreases in fMRI signals with maturation (Brown et al., 2004).  

Thus, in regards to evaluating developmental changes in signal magnitude, global and local 

assessments are needed.   

In addition to activation extent and signal magnitude, previous functional neuroimaging 

studies of maturation have also described development by changes in lateralization (Holland & 

al., 2001; Mabbott & Smith, 2003; Martinez et al., 1997; Moses et al., 2002; Sowell et al., 2004).   
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These studies characterized hemispheric changes based on extent and signal strength.   

Therefore, for hemispheric changes, we assessed global and local levels of extent (Figure 6.1c) 

and signal magnitude.  

Second, we used the conservative hypothesis testing approach, logical combination 

analysis (Joseph et al., 2002), to qualify functional developmental changes in face and object 

processing.  A primary goal of developmental fMRI studies is to determine changes in neural 

systems.  Another essential goal of developmental neuroimaging is to describe the cognitive 

processing performed in changing systems (Palmer et al., 2004; Poldrack, 2000).  Behavioral 

evidence suggests that face processing and corresponding brain regions become more specialized 

with age.  Developmental ERP studies have shown that certain electrophysiological components 

become more sensitive to faces with age (Carver et al., 2003; de Haan et al., 2002; Halit, de 

Haan, & Johnson, 2003).  Similarly, in Chapter Four, we reported finding increased category-

selectivity in non-VPS regions with increased age.  Thus, to identify potential changes in face 

(and object) processing linked to developmental changes in neural substrates; we define four 

main profiles of activation, face-preferential, face-selective, face-manufactured-natural graded, 

and face-manufactured-natural conjoined (See Appendix A) and applied them to our examination 

of extent, magnitude, and lateralization of activation. 

Based on findings from previous studies, we predict that face and object processing 

networks in children and adults include regions within and without the ventral processing stream 

(Gathers, Bhatt, Corbly et al., 2004; Gathers, Piper, Partin, & Joseph, 2001) that narrow 

anatomically with development (Gauthier & Nelson, 2001).  By a functional anatomical 

narrowing of network activity, we suggest that children initially use a larger set of regions for 

face and object processing than adults.  Furthermore, from previous studies, we predict that 

within the VPS functional narrowing does not occur; however, in other non-VPS regions, 

children are less selective in their responses to stimuli than regions recruited by adults (Brown et 

al., 2004; Carey & Diamond, 1994; Casey et al., 1997; Gathers, Bhatt, Corbly et al., 2004; 

Holland & al., 2001; Passarotti et al., 2003; Schwarzer, 2000; Thomas et al., 1999).  In this 

chapter, we use two methods of analyses to examine our predictions.  One, we quantify fMRI 

changes in extent, magnitude, and lateralization of activation globally (whole-brain) and locally  
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(regions of interest) to assess distribution changes with age.  Two, to assess changes in 

selectivity to stimuli, we provide a qualitative description of quantitative developmental changes 

in the face and object recognition networks.  

Participants 

Child Subjects  

Twenty-nine 5-11 year old normal, healthy children volunteers (18 males, 11 females, 

mean age 8.3 years) with no significant medical histories or conditions were compensated for 

their participation.  All volunteers had normal visual acuity, were fluent in English, and showed a 

preference for their right hand based on the Edinburgh Handedness Survey. Receptive and 

expressive language skills were within normal age limits as determined by the Peabody Picture 

Vocabulary Test (PPVT) (Dunn & Dunn, 1997) and the Expressive Vocabulary Test (EVT) 

(Williams, 1997).  Three children did not complete the study. Data from six other participants 

were omitted due to excessive head motion.  Thus, data from the remaining 20 subjects (12 

males, 8 females, mean 8.8 years) were divided into two age groupings, 5-8 year olds and 9-11 

year olds, and submitted to further analyses.  

Adult Subjects  

Nine adult subjects (5 males, 4 females, mean 20.8 years, 8 right-handed) with normal or 

corrected-to-normal vision and no significant medical or psychological conditions participated in 

a previously published study (Joseph & Gathers, 2002).  

Results  

Analysis of Activation Extent 

We examined two measures of activation extent, global (whole-brain) and local 

(regional).  Global measures allowed us to investigate claims that neural networks in children 

consist of more regions of scattered brain activity than in adults.  For each subject in each age 

group, we calculated the global extent of activation expressed as percentage of total clusters in a 

whole-brain volume for each activation profile (face-, manufactured-, or natural-selective, fix-

selective, face-preferential, face-graded, and conjoined).  Using local measures of extent, we 

investigated developmental growth or regression as regional changes in dispersion.   Specifically, 

we defined the local extent of activation as the average size of each cluster for each activation 

profile.  The number of clusters for category-selective (M, N, F) activation was very low and not 
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all participants had category-selective responses.  In fact, out of a total of 1846 clusters detected 

in individual subjects, only four clusters were detected for face-selective activation, 18 for 

natural-selective activation, and four for manufactured-selective activation.  Due to the paucity 

of category-selective data in individual subjects, we did not analyze extent of category-

selectivity.  Instead, we determined the extent of conjoined, face-preferential, and face-graded 

activity.  When comparing age groups in developmental fMRI studies, similarities and 

differences in the control task activation for each population must be considered for proper 

interpretation of task activations (Palmer et al., 2004).  Therefore, in addition to our experimental 

conditions (F, M, N), we examined the extent of fixation-selective (baseline) activation to assess 

the validity of our control task among age groups.  We submitted the two measures of activation 

extent (number and size of clusters) to separate random-effects, two-way ANOVAs with age 

group (adults, ages 9-11 years, and ages 5-8 years) as a between-subjects factor and profile (face-

graded, face-preferential, conjoined, and fixation-selective) as a within-subjects factor.   

Global Analysis of Activation Extent 

As shown in Figure 6.2a, fixation-selective (baseline) and conjoined clusters were more 

numerous than face-graded or face-preferential clusters, as confirmed by the main effect of 

profile [F(3,24)=31.2, p<.0001].  The overall age effect, however, was not significant [F(2,26) 

=1, p<.43], indicating that adults and children activate the same number of clusters when all 

brain regions and profiles are considered collectively.  Nevertheless, the significant age x profile 

interaction [F(6,48) = 4.2, p< .002] indicated that the number of clusters for a given profile type 

depended on age.  To further explore this interaction, we conducted simple main effects analyses 

of age for each profile separately.  The only significant effect of age emerged for the conjoined 

profile [F(2,26)= 5.7, p< .009] in which 5-8 year olds activated more clusters than did adults (p< 

.007, Bonferroni corrected) but not more than children ages 9-11 years (p< .20).  Thus, children 

activate a greater number of conjoined clusters than adults.  

Local Analysis of Activation Extent  

 With respect to our local measure of activation extent, cluster size, Figure 6.2b illustrates 

that adults activated much larger conjoined clusters than any other profile or age group.  Hence, 

the main effect of profile was significant [F(3,24) = 27.9, p < .0001], as was the age effect 

[F(2,26) = 10.6, p < .0001] and the age x profile interaction [F(6,48) = 3.9, p < .003].  Simple 
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main effects analyses of age conducted separately for each profile type revealed that the age 

effect was only significant for the conjoined profile (p < .0001) and not the other three profiles (p  

< .17).  In sum, the analyses of activation extent revealed that adults activated fewer but larger 

conjoined clusters than children, but fixation-selective, face-graded, and face-preferential 

activation showed no differences in extent as a function of age. 

Global Analysis of Signal Magnitude  

In addition to extent, we performed global and local assessments of magnitude as 

measured by percentage signal change for each category (F, M, N).  We conducted a global 

effects analysis, across all activation profiles and brain regions, to determine if signal strength 

was a phenomenon of age (Gaillard et al., 2000).  To assess potential differences in general 

signal strength throughout the developing brain, we submitted the average percent signal change 

of  each category for each subject across regions and profiles to a repeated-measures ANOVA 

with category (F, M, N) as the within-subject factor and age (adults, 9-11 years, 5-8 years) as the 

between-subjects factor.  The within-subject factor of category along with the between-subjects 

factor of age allowed us to discern if differences in overall magnitude could be attributed to 

stimulus category or to age.  As depicted in Figure 6.3, results of the global analysis revealed no 

significant effect of age [F(2,26) = .720, p < .496] for signal magnitude implying no systematic 

change in signal intensity with age.  Thus, no systematic signal intensity changes occurred with 

age.   

Local Analysis of Signal  Magnitude 

In addition to global magnitude, we assessed local magnitude to discern if significant 

signal differences occurred regionally as a result of maturation.  We submitted each region of 

activation confirmed by ROI analyses to repeated-measures ANOVAs where category (F, M, N) 

served as the within-subject factor and age (adults, 9-11 years, 5-8 years) as the between-subjects 

factor. The main effect of age was significant for 28 regions of activation (See Tables 6.1a, 6.2a, 

and 6.3a) including clusters of conjoined, face-preferential, face-graded, and fixation-selective 

activation profiles.  In seven of these regions, the main effect of category was significant and in 

six regions a significant interaction occurred between category and age.   All regions significant 

for the main effect of category or the interaction of category x age were explained by face-graded 

or face-preferential profiles.   
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We characterized maturational trends in regional magnitude changes as either progressive 

(signal increases) or regressive (signal decreases).  We submitted the 28 regions with a 

significant main effect of age to a simple linear regression. See Tables 6.1b, 6.2b, and 6.3b.  

Collapsing across category, age predicted average percentage signal change in 11 of the 28 

regions.  These regions were significant for either linear increases (progression) or decreases 

(regression) in signal with age.  In addition, as evidenced by p-values, trends of increasing or 

decreasing activation with age occurred in 17 other clusters; however, these were neither 

significant nor linear but instead were characterized by non-linear U-shaped and inverted U-

shaped functions where children 9 to 11 years of age had either significantly greater or lesser 

signal strength than children 5 to 8 years and adults.  Here, we focused only on regions with 

linear changes in magnitude.  In general, linear increases in signal magnitude (progressive 

changes) occurred in occipito-temporal cortex, bilateral fusiform gyrus and right cuneus, and 

superior and inferior parietal regions whereas linear decreases in signal magnitude (regressive 

changes) were found in frontal (superior, middle, and inferior) and superior temporal regions.  

The only “selective” clusters with a significant age effect were fixation-selective clusters.  No 

category-selective clusters survived the analyses.  Of thirty-eight significant fixation-selective 

ROI’s, only three were significant for linear changes in signal as a function of age.  Five 

fixation-selective clusters showed non-linear trends of signal change.  Thus, in evaluating the 

control condition across age groups, developmental differences appeared in only eight of the 38 

baseline regions.   Overall, local analyses revealed both progressive and regressive regional age 

effects of magnitude for clusters with conjoined, face-graded, face-preferential, and fixation-

selective activation profiles.  (See Figures 6.4 and 6.5 and Tables 6.1b, 6.2b, and 6.3b) 

Lateralization Analysis of Extent 

 To assess lateralization differences in extent among age groups, we computed the average 

number of clusters (global analysis) and the average cluster size (local analysis) within each 

hemisphere for each subject.  We submitted these data to separate three-way mixed ANOVAs 

with age as a between-subjects factor and hemisphere (right, left) and profile (face-graded, face-

preferential, fixation-selective, and conjoined) as within-subject` factors.  If maturation results in 

more lateralization, as reported in other studies (Holland & al., 2001; Moses et al., 2002), then  
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we expected a significant hemisphere x age interaction, which may or may not be qualified by 

profile type.  For number of clusters, neither the hemisphere x age interaction nor the hemisphere 

x age x profile interactions were significant.   

 However, for cluster size, the hemisphere x age interaction was significant [F(2, 26) = 

4.5, p < .002].  As shown in Figure 6.6, adults have significantly larger clusters of activation in 

the right hemisphere than in the left, whereas both groups of children have equally large clusters 

in the two hemispheres.  This interaction was not further qualified by profile type (i.e. the 

hemisphere x age x profile interaction was not significant, p < .17), suggesting that greater right 

hemisphere interaction in adults persists across all profile types. 

Lateralization Analysis of Magnitude 

 In addition to evaluating potential changes in lateralization extent among age groups, we 

considered hemispheric changes in signal magnitude.  Using a mixed 3-way ANOVA with 

category (F, M, N) and hemisphere (right or left) as within subject variables and age group as the 

between subject variable, data indicated a significant age x hemisphere interaction [F(2, 26) = 

6.328, p < .006].  Main effects of age [F(2, 26) = .657, p < .527] and hemisphere [F (1, 26) = 

.011, p < .916] were not significant.  Thus, overall magnitude changes did not exist but were a 

factor of age.  As age increased, signal magnitude increased in the right hemisphere but 

decreased in the left hemisphere.  This coincides with extent findings.  With age, activation 

within the right hemisphere grows in cluster size and signal strength.  Signal magnitude was 

significant for category but no interactions with category were significant.  Therefore, 

lateralization analyses were collapsed across categories.   

Discussion 

With these analyses, we contributed to the limited data regarding the normal functional 

maturation of face and object processing networks.  We quantified and qualified developmental 

changes in activation patterns using global (whole-brain) and local (regional) analyses of extent, 

magnitude, and lateralization of activation.  We proposed that face and object processing involve 

neural networks that extend beyond the VPS and undergo anatomical narrowing with maturation.  

Based on data indicating maturational changes in neuroanatomical (Benes, Turtle, Khan, & 

Farol, 1994; Fuster, 2002; Gaillard et al., 2001a; Giedd et al., 1999; Sowell, Thompson, Holmes, 
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Batth et al., 1999; Sowell, Thompson, Holmes, Jernigan, & Toga, 1999; Sowell et al., 2001; 

Wilke et al., 2002) and cognitive processes (Carey & Diamond, 1994; Schwarzer, 2000), we 

predicted a developmental redistribution of functional activation patterns from widespread 

recruitment of cortical regions in young children, including frontal and parietal activation, to 

more focal VPS activation in adults (Brown et al., 2004; Carey & Diamond, 1994; Casey et al., 

1997; Gathers, Bhatt, Corbly et al., 2004; Holland & al., 2001; Passarotti et al., 2003; Schwarzer, 

2000; Thomas et al., 1999). 

Extent 

In analyzing the maturation of face and object processing networks, we considered global 

(number of clusters) and local (cluster size) measures of extent. Changes in extent were not all 

systematic and did not include all activation profiles.  Global assessment of extent (number of 

clusters) revealed no systematic changes.  As a control for extent, we examined fixation-selective 

activity (baseline).  Adults and children aged 5 to 8 years yielded significantly more fixation-

selective clusters than subjects 9 to 11 years eliminating the issues of general processing changes 

or overall extent effects with increasing age.   

In addition to findings in fixation-selective activation extent, global analysis revealed a 

significant developmental difference in conjoined activation.  Both child groups had significantly 

more conjoined clusters than adults with children nine to eleven years of age having significantly 

more conjoined clusters than children five to eight years.  Our findings are supported by other 

developmental fMRI studies.  For example, in a study of verbal fluency, Gaillard et al. also 

found that children activate significantly more pixels than adults (2000).  These developmental 

differences in cluster numbers may reflect underlying structural modifications.  Changeux and 

Danchin proposed a neuronal plasticity theory in which excess of labile synaptic connections 

exist during development (1976).  Over time, some connections are incorporated into functioning 

systems and become stable while other redundant connections fail to be incorporated and are 

eliminated.  More recent findings of decreases in synaptic density support this idea.  

Huttenlocher (1990) reported a developmental decrease in synaptogenesis with regional 

differences in rates of loss.  Age-related elimination of synapses may explain a reduction in the 

number of activated clusters from childhood to adulthood.  
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We also found significant local developmental changes in extent of activation.  For 

conjoined activation profiles (non-category specific) only, located primarily in the occipito-

temporal cortex, adults produced significantly larger clusters of activity than children.   As with 

global results, these age-related regional increases may reflect structural changes.  In fact, animal 

studies have shown that increased cortical thickening and arborization occur as a result of 

enriched environmental experience (Diamond, 2001).  Because clusters that “grew” in extent 

were located in cortex known to process visual stimuli, it follows that these areas show age-

related increases based on usage or experience with visual tasks.   Thus, age-related functional 

changes in local activation extent (cluster size) may signify experience-based structural changes.   

Taken together, our global and local extent results indicated that adults have a 

significantly smaller number of conjoined clusters than either child group but that these clusters 

are significantly larger than those in children.  Synaptic reduction with age would explain 

developmental decreases in cluster number whereas increased cortical thickening and 

arborization with experience would explain developmental increases in cluster size.  Thus, our 

fMRI findings of developmental changes in extent, both globally and locally, may link functional 

developmental changes to changes in brain structure. 

Magnitude 

As with extent of activation, we evaluated global and local changes in signal magnitude 

with age.  We detected no significant global changes in magnitude as a function of age.  In fact, 

stimulus category (F, M, N) not age was found to be significant for overall magnitude changes.  

Thus, we determined that magnitude could be used as a basis of comparison in developmental 

fMRI studies without fear of age-related biological factors systematically influencing general 

signal strength (Gaillard et al., 2000).   

In local magnitude analysis, twenty-eight brain regions displayed a significant effect of 

age on percent signal change.  Eleven of the twenty-eight regions were characterized by linear 

increases (progression) or decreases (regression) in signal strength with age.  Linear magnitude 

findings existed as positive and negative increases (progression) and decreases (regression) 

relative to baseline (See Figures 6.4 and 6.5).  Positive increases relative to baseline occurred in 

the occipito-temporal cortex while negative increases were focused in parietal cortex.  In 

contrast, linear decreases occurred in frontal regions (positive), the superior temporal lobule 

(negative), and the paracentral lobule (negative).  These developmental activation patterns in 
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signal magnitude are supported by both structural and cognitive literature. Our findings of 

regional changes in magnitude with age, like our results for extent, correspond with maturation 

studies regarding brain structure (Giedd et al., 1999; Sowell et al., 2001; Wilke & Holland, 

2003).  Our regional magnitude and extent findings may be founded on similar explanations of 

structural development.  As noted in our discussion of extent, Huttenlocher (1990) found 

regional differences in developmental rates of synaptic loss. He noted slower declines in the 

synaptic density of occipital regions than frontal regions.  Furthermore, Sowell et al. found age 

effects for gray matter density reduction in frontal and parietal cortex from childhood to 

adolescence and frontal gray matter density reductions from adolescence to adulthood (Sowell, 

Thompson, Holmes, Batth et al., 1999; Sowell et al., 2001). Thus, linear magnitude decreases in 

frontal regions and increases in occipital regions correspond to cellular maturation processes 

such as synaptic pruning (Huttenlocher, 1990), gray matter modification (Sowell, Thompson, 

Holmes, Jernigan et al., 1999; Sowell et al., 2001) and  refinement of white matter fiber tracts 

(Schmithorst, Wilke, Dardzinski, & Holland, 2002; Sowell et al., 2004).  

Our regional magnitude measures for face and object processing are also in alignment 

with developmental fMRI studies of other cognitive processes.  In their study of inhibition, 

Bunge and colleagues noted that, in general, children and adults had different abilities for 

recruiting different brain regions and, in a developmental study of reading (Bunge, Dudukovic, 

Thomason, Vaidya, & Gabrieli, 2002), Brown et al. found regions of progressive and regressive 

signal changes as a function of age (2004).  Furthermore, in their developmental study of 

reading, Brown and colleagues found that regional age-related increases in signal corresponded 

to regions traditionally recognized as primary players in language and reading tasks.  Similar to 

Brown et al., we found developmental increases in magnitude, as well as extent, in regions 

attributed to visual processing – occipito-temporal regions.  Thus, structural changes driven by 

experience or task may explain age-related linear increases in signal magnitude as well as age-

related changes in cluster size.  Hence, magnitude findings may be task-relevant in nature. 

Lateralization 

Based on other developmental fMRI studies that cite lateralization with age (Holland & 

al., 2001; Moses et al., 2002; Sowell et al., 2004), we examined maturation in regards to changes 

in hemispheric extent and magnitude.  As with our other measures of change, we assessed 

lateralization at both global and local levels.  Lateralization analyses revealed increasing cluster 
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size (local extent) and signal strength in the right hemisphere with age regardless of profile type.  

These age-related functional hemispheric changes are expected as they correspond with findings 

of structural and cognitive maturation.  Using EEG to measure strength and the number of 

neuronal connections, Thatcher, Walker and Giudice noted differential development of the 

hemispheres with a lag in the right hemisphere (1987).  Using diffusion tensor imaging, 

Klingberg et al. reported a significant difference in axonal organization in the right hemisphere 

versus the left but no significant differences in myelination (Klingberg, Vaidya, Gabrieli, 

Moseley, & Hedehus, 1999).  Similar to these anatomical studies, we find age-related functional 

changes particular to the right hemisphere.   

Functional hemispheric changes may reflect structural changes influenced by cognitive 

development.  Previous developmental studies imply that lateralization may occur as a result of 

changes in cognitive processing (i.e. global vs local; face processing) or task-related competency 

(i.e. left lateralized for language).  In fact, in a study of global and local processing of facial 

features Moses et al. (2002) noted greater right occipito-temporal activation than left for global 

processing with maturity and, in a verb generation task , Holland et al. (2001) found increased 

left hemisphere activity with age. In addition, others have implied specific categorical processing 

result in lateralization (i.e. face recognition lateralized to the right hemisphere) (Kanwisher et al., 

1997).  Because current analyses reveal hemispheric changes with development across all 

categories regardless of activation profile, this study does not support category-specific 

lateralization.  Our findings indicate developmental changes in lateralization are more likely 

driven by cognitive processing or task rather than stimulus category.  
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Table 6.1a  Signal Magnitude ANOVA Results:  Local Linear Developmental Changes 
 
region    BA   Taliarach   Cluster size     Repeated Measures ANOVA of percent signal change/ category 
       (x,y,z)     (voxels)            Effect of Age              Effect of Category    Age x Category 
R. Cuneus   18     21, -99, 7         65           F(2,26) = 3.2**     F(2,52) = .20      F(4,52) = .30 
R. FG    37      38, -58, -20       494           F(2,26) = 6.9**     F(2,52) = 2.8      F(4,52) = .40 
L. FG    18   -34, -75, -14      2399                      F(2,26) = 7.7**     F(2,52) = 3.0      F(4,52) = .90 
L. SPL     7   -31, -60, 54         81           F(2,26) = 11.1**      F(2,52) = 1.7      F(4.52) = 1.2 
L. IPL    40   -63, -27, 35         99           F(2,26) = 3.8 **    F(2,52) = 2.1      F(4,52) = .80 
 
R. Paracentral     7      3, -42, 49     1171           F(2,26) = 9.9 **    F(2,52) = 2.1      F(4,52) = 1.3 
R. MFG   10    52, 45, -12       148           F(2,26) = 32.2**    F(2,52) = 1.5      F(4,52) = .40 
L. SFG                6    -4, 10, 68         11           F(2,26) = 7.9**     F(2,52) = 8.4 **      F(4,52) = 3.7** 
L. IFG    47   -49, 27, -21         31           F(2,26) = 8.2**     F(2,52) = 1.0      F(4,52) = .40 
L. STG   21   -51, -13, -2         77           F(2,26) = 4.7**     F(2,52) = .20      F(4,52) = .40 
 
Note.  R, right; L, left; FG, fusiform gyrus;  SPL, superior parietal lobule; IPL, inferior parietal lobule; MFG, middle frontal gyrus; 
SFG, superior frontal gyrus; IFG, inferior frontal gyrus; STG, superior temporal gyrus; BA, Brodmann’s area; x, medial-lateral 
coordinate; y, anterior-posterior coordinate; z, inferior-superior coordinate; SS, structural similarity. ** indicates significance of  
p < .05.  
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Table 6.1b  Signal Magnitude Regression Results:  Local Linear Developmental Changes 
 
region    BA    Regression     Signal Trend     Activation Profile 
     (F/p values)                  
R. Cuneus   18      F(1,27) =   4.1, p < .054     Increase      Face-Object-Graded 
R. FG    37       F(1,27) = 15.1, p < .001     Increase      Conjoined    
L. FG    18    F(1,27) = 16.8, p < .000     Increase      Conjoined   
L. SPL     7    F(1,27) = 18.2, p < .000     Increase      Conjoined    
L. IPL    40    F(1,27) =   2.0, p < .168     Increase      Fixation-Selective     
 
R. Paracentral     7       F(1,27) = 21.1, p < .000     Decrease      Fixation-Selective     
R. MFG   10     F(1,27) = 10.7, p < .003     Decrease      Conjoined     
L. SFG                6  F(1,27) =   6.5, p < .017     Decrease      Face-Object-Graded      
L. IFG    47    F(1,27) =   9.6, p < .005     Decrease      Conjoined     
L. STG   21    F(1,27) = 10.7, p < .003     Decrease      Fixation-Selective      
 
Note.  R, right; L, left; FG, fusiform gyrus;  SPL, superior parietal lobule; IPL, inferior parietal lobule; MFG, middle frontal gyrus; 
SFG, superior frontal gyrus; IFG, inferior frontal gyrus; STG, superior temporal gyrus; BA, Brodmann’s area; x, medial-lateral 
coordinate; y, anterior-posterior coordinate; z, inferior-superior coordinate; SS, structural similarity.  
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Table 6.2a  Signal Magnitude ANOVA Results:  Local Non-Linear U-Shaped Developmental Changes 
 
region    BA   Taliarach   Cluster size     Repeated Measures ANOVA of percent signal change/ category 
       (x,y,z)     (voxels)            Effect of Age              Effect of Category    Age x Category 
R. MTG   21     44, -56, 6         21           F(2,26) = 5.1**        F(2,52) = 8.3**      F(4,52) = 4.1** 
R. FG    37      42, -56,-22         19           F(2,26) = 4.6**     F(2,52) = .60      F(4,52) = 1.7 
L. OG    17     28, -96, -14         60                      F(2,26) = 4.0**     F(2,52) = .10      F(4,52) = 2.1 
L. FG    18   -32, -85, -19         64           F(2,26) = 5.2**     F(2,52) = 8.1**      F(4,52) = 4.0** 
L. Postcentral     1   -57, -15, 54       256           F(2,26) = 7.7**     F(2,52) = 3.0      F(4,52) = .90 
L. Cuneus 
 
R. Postcentral      1     48, -26, 64         42           F(2,26) = 3.7 **    F(2,52) = .60      F(4,52) = .20 
R. OG      17     26, -97,-13         32           F(2,26) = 4.7**        F(2,52) = 7.8**      F(4,52) = 3.4** 
L. IPL                 7    -40, -60, -56         34           F(2,26) = 4.8**     F(2,52) = 2.0      F(4,52) = 3.4** 
L. FG    18    -32, -85, -19         65           F(2,26) = 5.1**     F(2,52) = 8.3**      F(4,52) = 4.1** 
 
Note.  R, right; L, left; MTG, middle temporal gyrus; FG, fusiform gyrus;  OG, occipital gyrus; IPL, inferior parietal lobule; BA, 
Brodmann’s area; x, medial-lateral coordinate; y, anterior-posterior coordinate; z, inferior-superior coordinate; SS, structural 
similarity.  ** indicates significance of p < .05. 
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Table 6.2b  Signal Magnitude Regression Results:  Local Non-Linear U-Shaped Developmental Changes 
 
region    BA     Regression     Signal Trend     Activation Profile 
    (F/p Values) 
R. MTG   21      F(1,27) = .80, p < .367     Increase   Face-Object-Graded         
R. FG    37       F(1,27) = 8.7, p < .007     Increase   Face-Object-Graded      
L. OG    17      F(1,27) = .00, p < .948     Increase   Face-Preferential      
L. FG    18    F(1,27) = 1.5, p < .233     Increase   Face-Object-Graded  
L. Postcentral     1    F(1,27) = 2.3, p < .144     Increase   Conjoined 
L. Cuneus   17  F(1,27) = .90, p < .361     Increase   Face-Preferential 
 
R. Postcentral      1      F(1,27) = 1.2, p < .296     Decrease   Conjoined     
R. OG      17      F(1,27) = .00, p < .969     Decrease   Face-Object-Graded          
L. IPL                 7     F(1,27) = .10, p < .755     Decrease   Conjoined      
L. FG    18    F(1,27) = .40, p < .515     Decrease   Face-Preferential     
 

Note.  R, right; L, left; MTG, middle temporal gyrus; FG, fusiform gyrus;  OG, occipital gyrus; IPL, inferior parietal lobule; BA, 
Brodmann’s area; x, medial-lateral coordinate; y, anterior-posterior coordinate; z, inferior-superior coordinate; SS, structural 
similarity.  
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Table 6.3a  Signal Magnitude ANOVA Results:  Local Non-Linear Inverted U-Shaped Developmental Changes 
 
region    BA   Taliarach   Cluster size     Repeated Measures ANOVA of percent signal change/ category 
       (x,y,z)     (voxels)            Effect of Age              Effect of Category    Age x Category 
R. Insula   13     47, -14, 12       306           F(2,26) = 11.3**    F(2,52) = .50      F(4,52) = 3.5 
R. Precentral     4      28, -28, 58       445           F(2,26) = 9.1**     F(2,52) = .40      F(4,52) = 1.6 
L. Cingulate   17     28, -96, -14         84                      F(2,26) = 6.0**     F(2,52) = .10      F(4,52) = 2.1 
 
R. IFG    45     48, 20, 20       437           F(2,26) = 3.8 **    F(2,52) = .30      F(4,52) = 2.2* 
R. Transverse   41     55, -22, 11       219           F(2,26) = 4.5**        F(2,52) = .10      F(4,52) = .60 
R. STG              22     52, -7, -1         86           F(2,26) = 7.2**     F(2,52) = .30      F(4,52) = .60 
L. STG   20   -38, 0, -36         30           F(2,26) = 7.2**     F(2,52) = 2.2      F(4,52) = 2.0 
 
Note.  R, right; L, left; IFG, inferior frontal gyrus; STG, superior temporal gyrus; BA, Brodmann’s area; x, medial-lateral coordinate; 
y, anterior-posterior coordinate; z, inferior-superior coordinate; SS, structural similarity.  ** indicates significance of p < .05.   
* indicates significance of p < .01. 
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Table 6.3b  Signal Magnitude Regression Results:  Local Non-Linear Inverted U-Shaped Developmental Changes 
 
region    BA       Regression     Signal Trend      Activation Profile 
       (F/p Values)      
R. Insula   13      F(1,27) = 1.0, p < .319 Increase   Fixation-Selective     
R. Precentral     4       F(1,27) = 1.6, p < .211 Increase   Fixation-Selective      
L. Cingulate   17      F(1,27) = 2.5, p < .127 Increase   Fixation-Selective      
 
R. IFG    45      F(1,27) = .70, p < .397 Decrease   Conjoined     
R. Transverse   41      F(1,27) = 7.9, p < .009 Decrease   Fixation-Selective         
R. STG              22      F(1,27) = 9.9, p < .004 Decrease   Fixation-Selective      
L. STG   20    F(1,27) = .10, p < .767 Decrease   Conjoined     
 
Note.  R, right; L, left; IFG, inferior frontal gyrus; STG, superior temporal gyrus; BA, Brodmann’s area; x, medial-lateral coordinate; 
y, anterior-posterior coordinate; z, inferior-superior coordinate; SS, structural similarity.  
 
 
 
 



  

 

        

Signal Magnitude 
Increasing vs. Decreasing

(A) 

Number (global)  Size (local)  

Extent 

(B) 

(C) 

Size (local)  Number (global)  

Lateralization (Extent)                                  

Figure 6.1.  Methods of assessing changes in extent, magnitude, and lateralization of activation 
with age. (A) Extent of activation (i.e. distribution) was assessed at the global level defined by 
the number of clusters (percentage of clusters) in each group and the local level defined by 
average cluster size in each age group.  (B)  Signal magnitude was defined as progressive 
changes that show increasing signal strength with age (orange, red) or regressive changes that 
are indicated by a decrease in signal strength (blues). (C)  Lateralization of activation was 
measured at global and local levels of extent and magnitude of activation to assess hemispheric 
changes in face processing with age. 
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Figure 6.2.  Extent of activation via (A) global measures – percentage of clusters 
and (B) local measures – average cluster size.  Error bars reflect standard error of 
the mean. 
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Figure 6.3.  Global analysis of signal magnitude results from a repeated measures  
ANOVA of category (F, M, N) as the within-subject factor and age (5-8 years, 9-11 
years, adults) as the between-subjects factor.  Error bars reflect confidence intervals 
based on mean squared error. 
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Figure 6.4.  Progressive regional changes in 
signal magnitude.  Local magnitude analyses
revealed systematic increases in percentage 
signal change with increasing age in (A) 
occipito-temporal cortex and (B) parietal 
regions.  Error bars represent within-group
confidence intervals. 
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Figure 6.5.  Regressive regional changes in signal magnitude.  Local magnitude analyses 
revealed linear decreases in percent signal change with increasing age in (A) frontal and 
(B) temporal regions.  Error bars represent within-group confidence intervals.   
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Figure 6.6. Hemispheric distribution by average cluster size (# of voxels) for each age 
group.  Error bars represent standard error of the mean. 
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Chapter Seven:  Conclusions 

It

one alike.”  Thomas Browne, Religio Medici 

Sighted humans are bombarded with countless faces and objects that must be 

ifferentiated and identified for proper functioning in society.  To the typical adult, differences 

mong faces and objects are distinguishable but, to the individual who suffers from visual 

rocessing deficits such as prosopagnosia (an inability to recognize faces) and autism spectrum 

isorders, the world is a confusing place.  Because of their relevance to our daily lives, face and 

bject processing have been investigated for decades.  Behavioral methods as well as more 

cent functional imaging technologies such as ERP, PET, and fMRI, have provided much 

information on adult visual processing.  However, normal developmental processes regarding 

neu in 

relatively uncharted.   

Though behavioral data indicate developmental changes in face processing from 

hwarzer, 2000), few pediatric neuroimaging 

studies have investigated functional changes in the neural correlates of face and object 

processing (Aylward et al., 2005; Carver et al., 2003; de Haan et al., 2002; Halit et al., 2000; 

Passarotti et al., 2003) with even fewer focusing on changes in early, middle, and late childhood 

(Want et al., 2003). The establishment of normative data on the maturation of cortical networks 

of face and object recognition and their underlying cognitive mechanisms is vital in 

understanding the neurobiology of both normal and abnormal visual processing.  Thus, the 

significance yet shortage of developmental studies of face and object processing served as the 

motivation for this project.   

 

 

 

 
Motivations and Foundations 

 
“  is the common wonder of all men how among so many (millions of) faces, there should be 

n

 

d

a

p

d

o

re

ral substrates and underlying cognitive mechanisms of face and object recognition rema

childhood to adulthood (Carey & Diamond, 1994; Sc



  

Gaps in the literature motivated the project and previous adult fMRI studies provided the 

foundation for our experiments.  Findings from three of our adult visual recognition studies 

indicated a distributed rather than dom

2002; Joseph et al., 2003). In these fMRI experiments, faces, objects, and letters produced 

ifferential rather than selective VPS responses. Thus, our adult data failed to support the idea of 

e 

nition in the VPS.  In other words, VPS neural 

bstrates are sensitive to the degree of structural overlap (structural similarity) between stimuli 

rather t

 

 

ry 

 brain. Collectively, our preliminary adult data served as the starting point 

for the 

anges 

We 

m 

vation in the ventral processing stream, the location of this 

activation shifted with age.  Adults and children 9-11 years exhibited face-preferential loci near 

the classically defined fusiform face area, whereas children 5-8 years showed this activation in 

ain-specific modular VPS architecture (Joseph & Gathers, 

d

a taxonomic based VPS functional organization.  

 As an alternative, we proposed that a structural similarity (SS) mechanism explained th

functional organization of face and object recog

su

han to the categorical distinctions of stimuli.  Using a set of same/different matching 

tasks, we tested the structural basis of VPS organization by parametrically manipulating 

structural overlap in pairs of animal and shape stimuli (Joseph & Gathers, 2003).  Analyses

revealed that our manipulations of SS in both animal and shape stimuli modulated fMRI signal in

the fusiform gyrus.  In particular, more anterior regions of the fusiform gyrus were responsive to 

high SS processing whereas relatively more posterior regions were sensitive to low SS 

processing.  These findings supported our hypothesis that object structure rather than catego

determines the functional organization of the VPS.  This idea provided the basis for our 

examination in Chapter Five of the relationship between structural processing and fMRI 

responses in the child’s

present set of experiments.  In this project, we extended the ideas and the results 

discussed above to determine the typical neural substrates and cognitive processes of face and 

object recognition in children five-to-eleven years of age.  To outline developmental ch

from childhood to adulthood, we compared our child data to adult data. 

Findings, Implications, and Future Directions 

In Chapter 4, we used a passive face and object-viewing task to identify the VPS neural 

correlates of face and object processing in children 5-8 years and 9-11 years of age.  

compared child findings with data from a similar adult study (Joseph & Gathers, 2003).  Fro

the results, two developmental findings emerged.  Of primary interest, though all age groups 

showed face-preferential acti
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l regions 

sponses. 

le in 

ts 

e organization of the 

96; Damasio, 1990; Damasio et al., 1982; 

Gaffan

tural 

 

n of 

 

terior ventral processing stream.  In addition, the degree of category-selectivity in other 

brain regions increased with age.  While there were no category-selective regions in 5-8 year

olds, 9-11 year olds and adults had selective activation for all three stimulus categories (faces,  

natural objects, and manufactured objects) in non-VPS regions.  Although the total number

category-selective voxels increased with age, there were few selective clusters overall and those 

that emerged were small. 

Anterior shifts in the ventral processing stream locus for face recognition across age as 

well as the emergence of category-selective activation with increasing age in other brain region

may reflect fine-tuning of visual recognition processes.  Other investigations (Gauthier & 

Nelson, 2001; Passarotti et al., 2003) also support the refinement of visual recognition neural

pathways during development.  Collectively, these developmental changes may be based 

learning and experience.  

Maturational shifts in VPS face-preferential loci presented as the primary developmental 

finding from our experiments in Chapter Four.  However, though the location of face-preferential 

clusters changed with development, the functional activation profiles of face-preferentia

did not change.  In children and adults, the face-preferential regions were characterized by 

differential processing in which faces and other object categories produced significant re

No category-selective regions emerged in the VPS at any age.  A VPS characterized by 

differential rather than selective processing from childhood to adulthood provided further 

support for the idea that structural similarity, not taxonomic category, plays a principle ro

VPS functional organization.   

In addition to our findings, other visual processing studies in impaired and normal adul

indicate that structural similarity (SS) processing is a principle force in th

ventral processing stream (VPS) (Arguin et al., 19

 & Heywood, 1993; Humphreys & Riddoch, 2003; Tranel et al., 1988).  However, 

behavioral data comparing children and adults indicate developmental differences in struc

processing (Abecassis et al., 2001; Gibson et al., 1962; Piaget & Inhelder, 1948).  Therefore, in

Chapter Five, we used fMRI to investigate maturational changes in the functional organizatio

the VPS relevant to a structural mechanism of object recognition.  From existing data, we

predicted increased use of structural processing with age.   
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FMRI and behavioral data were collected during a visual recognition task in which 5-8 

year olds, 9-11 year olds, and adults made same/different judgments for shape pairs with 

parametrically varied levels of SS.  Our fMRI findings agree with previous behavioral studies 

that cite developmental changes visual processing from early school years to adulthood. 

(Aylward et al., 2005; Carey & Diamond, 1994; Freire & Lee, 2001; Freire & Lee, 2003b; 

Gathers, Bhatt, Corbly et al., 2004; Mondloch et al., 2002; C.J. Mondloch et al., 2003; Passarotti 

et al., 2

 

th age criterion settings become more liberal for distinguishing 

betwee

current 

gest that modulation of structural similarity may involve 

manipu

n 

. 

 

, 

ity in 

, we predicted that normal visual 

processing involves a network of cortical regions not limited to the VPS, and that these networks 

003; Schwarzer, 2000).   Though error rates and sensitivity indicate the use of SS 

processing from 5 years to adulthood, fMRI data do not reveal neural correlates for structural 

processing until 9-11 years of age.  From nine years of age, VPS regions emerge that are 

sensitive to processing highly structurally similar objects.  This potential conflict in behavioral

and fMRI results may be attributed to developmental changes in processing strategies.  Bias 

measures indicated that wi

n highly similar objects.  These developmental changes in strategy correspond in time to 

previously identified changes in relational (holistic, configural) vs. featural face processing 

strategies (Carey & Diamond, 1994).  Furthermore, anterior fusiform regions currently identified 

as sensitive to high structural similarity in 9-11 year olds and adults are similar to regions 

identified as sensitive to holistic representations in car and face processing (Lerner et al., 2001). 

Hemispheric findings also support a shift toward relational processing.  Taken together, 

behavioral and imaging data signify developmental changes in the structural similarity 

processing of objects which may be linked to greater reliance on relational rather than featural 

strategies with age. Results sug

lation of relational and featural processing.  To test this proposal, future studies should 

investigate SS manipulation within the category of faces. An experiment manipulating SS withi

the category of faces would test the idea that faces are at the extreme end of the SS continuum

Use of the same/different matching task design would limit the investigation to perceptual

processing, constraining potential top-down influences such as memory and semantics. 

In Chapter Five, developmental changes in SS processing occurred in the frontal, parietal

and cerebellar loci as well as in the VPS.  Similarly, in Chapter Four, though developmental 

changes occurred in face and object processing in the VPS, age-related increases in selectiv

other cortical regions were also noted.  From these findings
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 in spatial distribution and processing selectivity with age.  In Chapter Six, using a whole

brain approach, we quantified and qualified developmental changes in the neural correlate

face and object recognition to investigate our prediction.   

Data from the fMRI experiment in Chapter Four were re-evaluated for widespread

regional developmental changes using measures of extent, magnitude, and lateralization of 

activation.  In addition, using activation profiles defined by the logical combination hypothesis 

testing approach (Joseph et al., 2002), neural substrates were evaluated for cognitive proce

changes.  As predicted, honing of face and object processing networks occurred across 

development.  As adults recruited fewer but larger regions of activation than children, a pa

of scattered cortical activation in children was replaced with primarily VPS activity in adults.  

However, contrary to the idea of increasingly category-selective neural substrates with 

development, changes in extent occurred only for regions of shared object and face process

FMRI signal strength reflected regional developmental changes rather than systematic changes 

with age.  Across all activation profiles, signal strength decreased with age for frontal region

increased for age in parietal and VPS regions.  Measures of lateralization, revealed more right 

hemisphere activity in adults than children.  Hemispheric changes were not category-specif

These functional changes correspond to documented anatomical changes.  Further 

investigations using more active rather than passive designs are needed to determine the 

cognitive developmental basis for functional changes that accompany visual processing

addition, as MRI studies indicate significant structural changes between adolescence and 

adulthood (Sowell et al., 2001), an adolescent group should be added to the current desig

further delineate functional developmental changes in cortical networks for face and object 

processing.  Continued investigations into the developing functional networks of face and object 

processing will enhance not only our understanding of typical development but may provide 

increased understanding of developmental disorders involving atypical face and/ or object 

processing such as developmental prosopagnosia (Damasio et al., 1982) and autism (Bod

icius, 2002; Critchley, Daly, Bullmore et al., 2000; Schultz & al., 2000).  Furthermore, 

continued investigations into the development of functional networks in all aspects of cogniti

will help to bridge the gap in neuroscience between the biological constructs and the behavioral 

outputs of the brain. 
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Appendix A.  Logical Combination Approach Used in the Current Studies 
 

 

al z-

re below 

 

ed 

ogical 

, 

y 

other conditions (F, N, M).  Voxe

 masks: 

-

l 

   

ix) &~ (F>N) &~ (fix>N) &~ (fix>F); natural-selective = [(N>fix) &  

 

To test for preferential, selective, graded, and conjoined brain activation patterns or 

profiles using the logical combination approach, (Joseph et al., 2002) each of the 12 statistic

maps (group and individual) was thresholded at a z-score of 1.644 corresponding to an 

uncorrected probability of .05 for a one-tailed test.  Thresholded z-maps were then converted into 

binary masks with any z-score above the threshold assigned the value of 1 and any z-sco

the threshold having a value of 0.  The binary masks were then combined using logical operators

in the image calculator of MEDx to yield 7, unsigned, eight-bit images referred to as voxel-bas

activation profile masks.  (See below for details on how profile masks were created by l

combination of thresholded z-maps).  In each profile mask, a voxel was associated with a value 

of 1 only if it reflected the corresponding profile; otherwise it was given a 0 value.  For example

in the profile mask used to isolate regions selectively activated by fixation processing, voxels 

with the value of 1 were those that showed a statistically greater response to fixation than to an

other experimental condition and did not produce a statistically different response among the 

ls associated with the value 0 did not have this profile.   

Unique combinations of categorical contrasts produced seven voxel-based profile

a) face-preferential, b) face-selective, c) manufactured- selective, d.) natural-selective, e.) fix

selective (baseline), f.) face-manufactured-natural graded, and g.) face-manufactured-natural 

conjoined.  Each categorical contrast was represented by a pair of conditions (within 

parentheses) in which the condition to the left of the ‘>’ sign served as the experimental 

condition and the condition to the right of the ‘>’ served as the control condition.  (The four 

experimental conditions were face processing (F), manufactured object processing (M), natura

object processing (N), and, the baseline, visual fixation (fix).)  Categorical contrasts were 

combined using logical operators (AND = &, OR = |, and NOT = ~).  

To isolate voxels with selective responses, the following categorical contrasts were 

combined: face-selective = [(F>fix) & (F>M) & (F>N)] &~ (M>fix) &~ (M>N) &~ (N>fix) &~ 

(N>M) &~ (fix>M) &~ (fix>N); manufactured-selective = [(M>fix) & (M>F) & (M>N)] &~ 

(N>fix) &~ (N>F) &~ (F>f

 132



  

(N>M) & (N>F)] &~ (M>fix) &~ (M>F) &~ (F>fix) &~ (F>M) &~ (fix>M) &~ (fix>F); fix-

selective = [(Fix>M) & (Fix>N) & (Fix>F)] &~ (N>F) &~ (N>M) &~ (M>F) &~ (M>N) &~ 

>M) &

g 

(F ~ (F>N). 

To isolate voxels with face-preferential responses, used to identify the FFA, the following 

categorical contrasts were combined:  [(F>M)| (F>N)] & (F>fix). 

To isolate voxels with face-manufactured-natural graded responses, the followin

categorical contrasts were combined:   [(F>M) & (M>fix)]|[(F>N) & (N>fix)]. 

To isolate voxels with face-manufactured-natural conjoined responses, the following 

categorical contrasts were combined: [(F>fix) & (M>fix) & (N>fix)] &~ (F>M) &~ (F>N) &~ 

(M>F) &~ (M>N) &~ (N>F) &~ (N>M).    

Cluster detection was used to eliminate spatially isolated voxels from the voxel-based 

profile masks by searching each z-map for groups of spatially contiguous voxels above the 

specified threshold (z > 2.33, p < .05).  The clusters that emerged served as regions-of-interest 

(ROIs).  Repeated-measures ANOVAs were conducted in each of the ROIs to confirm a main 

effect of condition (F, M, N, fix).  Post-hoc comparisons with Bonferroni correction were 

conducted within each ROI to verify logical combination profiles.  To confirm face-selective 

ROI’s, the following contrasts were significant at an alpha level of .008:  (F>fix), (F>M), (F>N), 

and the

e 

cant.  For 

N>M) 

f 

manufactured-natural-

graded profiles when (F

, 

 following contrasts were not significant at the same alpha level:  (M>fix), (N>fix), 

(M>N), and (N>M).  Manufactured, natural, and fix-selective ROI’s were confirmed at the sam

alpha level of significance (.008).  For manufactured-selective ROI’s (M>fix), (M>F), and 

(M>N) must were significant and (F>fix), (N>fix), (F>N), and (N>F) were not signifi

natural-selective responses the following contrasts were significant (N>fix), (N>F), and (

and not (M>fix), (N>fix), (F>M), and (M>F).  Fix-selective profiles were confirmed when 

(fix>F), (fix>M), and (fix>N) were significant but not (F>M), (F>N), (N>M), and (M>N).  To 

confirm face-preferential ROI’s, the following contrasts were significant at an alpha level o

.017:  (F>fix) and (F>M) or (F>N).  ROI’s were characterized as face-

>fix), (M>fix), (N>fix), and (F>M) or (F>N) were significant at an alpha 

level of .017.  Face-manufactured-natural conjoined responses were confirmed when the 

following contrasts were significant at .017:  (F>fix), (M>fix), and (N>fix), and (F>N), (F>M)

(N>M), (N>F), (M>F), and (M>N) were not significant at the same level.       
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