
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Doctoral Dissertations Graduate School 

2005 

ON THE PROPERTIES AND COMPLEXITY OF MULTICOVERING ON THE PROPERTIES AND COMPLEXITY OF MULTICOVERING 

RADII RADII 

Andrew Eugene Mertz 
University of Kentucky 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Mertz, Andrew Eugene, "ON THE PROPERTIES AND COMPLEXITY OF MULTICOVERING RADII" (2005). 
University of Kentucky Doctoral Dissertations. 328. 
https://uknowledge.uky.edu/gradschool_diss/328 

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been 
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


ABSTRACT OF DISSERTATION

Andrew Eugene Mertz

The Graduate School
University of Kentucky

2005



ON THE PROPERTIES AND COMPLEXITY OF
MULTICOVERING RADII

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the College of Engineering at

the University of Kentucky

By

Andrew Eugene Mertz
Lexington, Kentucky

Director: Dr. Andrew Klapper, Professor of Computer Science
Lexington, Kentucky

2005

Copyright c© Andrew Eugene Mertz 2005



ABSTRACT OF DISSERTATION

ON THE PROPERTIES AND COMPLEXITY OF
MULTICOVERING RADII

People rely on the ability to transmit information over channels of communication that are
subject to noise and interference. This makes the ability to detect and recover from errors
extremely important. Coding theory addresses this need for reliability. A fundamental
question of coding theory is whether and how we can correct the errors in a message that
has been subjected to interference. One answer comes from structures known as error
correcting codes.

A well studied parameter associated with a code is its covering radius. The covering
radius of a code is the smallest radius such that every vector in the Hamming space of the
code is contained in a ball of that radius centered around some codeword. Covering radius
relates to an important decoding strategy known as nearest neighbor decoding.

The multicovering radius is a generalization of the covering radius that was proposed by
Klapper [11] in the course of studying stream ciphers. In this work we develop techniques for
finding the multicovering radius of specific codes. In particular, we study the even weight
code, the 2-error correcting BCH code, and linear codes with covering radius one.

We also study questions involving the complexity of finding the multicovering radius of
codes. We show: Lower bounding the m-covering radius of an arbitrary binary code is NP-
complete when m is polynomial in the length of the code. Lower bounding the m-covering
radius of a linear code is Σp

2-complete when m is polynomial in the length of the code. If
P is not equal to NP, then the m-covering radius of an arbitrary binary code cannot be
approximated within a constant factor or within a factor nε, where n is the length of the
code and ε < 1, in polynomial time. Note that the case when m = 1 was also previously
unknown. If NP is not equal to Σp

2, then the m-covering radius of a linear code cannot be
approximated within a constant factor or within a factor nε, where n is the length of the
code and ε < 1, in polynomial time.

KEYWORDS: Coding Theory, Complexity, Covering Radius, Multicovering Radius,
Approximation Complexity.
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Chapter 1

Introduction

More and more people have come to rely on the ability to transmit large volumes of infor-

mation over long distances. The applications are varied: entertainment, finance, communi-

cation, and defense to name a few. Complicating the situation is the fact that the channels

of communication are subject to noise and interference. This makes the ability to detect

and recover from errors extremely important. Also, much of this information is sensitive in

nature. Thus, there is a need for reliability and security.

Coding theory addresses this need for reliability. A fundamental question of coding

theory is whether and how we can correct the errors in a message that has been subjected

to interference. One answer comes from structures known as error correcting codes. Error

correcting codes are embedded in almost every device or system that uses some form of

communication or storage; from modems and cell phones to hard drives.

In this chapter we describe the basic properties and language of error correcting codes

and covering radii. See MacWilliams and Sloane’s or Pless and Huffman’s book [3] [23]

[24] for a more detailed treatment of error correcting codes. For an excellent survey of the

covering radius of codes see Cohen et al.’s monograph [3].

1.1 Codes

One use of codes is to correct errors that occur when information is transmitted over a noisy

channel. Imagine that we have a radio transmitter that we can use to send binary messages

and that sometimes when we send a 0 a recipient receives a 1, or similarly a 1 becomes a

0. Suppose that the probability, independent of the location of a symbol in the string, of

such a transposition is p. The communication model that we have just described is called a

binary symmetric channel and is illustrated in Figure 1.1. We place the restriction that the

1
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Figure 1.1: The binary symmetric channel with error probability 0 ≤ p < 1/2.

error probability p is less than 1/2. If p were greater than 1/2 we could simply reverse our

interpretation of a received symbol; if p were equal to 1/2, then the received symbol would

be random.

To protect a message that we wish to transmit we encode it into a larger sequence

of symbols. That is, we add some redundancy. We encode a message m = m1m2 . . .mk

consisting of k symbols as a codeword c = c1c2 . . . cn where k ≤ n. This codeword c is then

transmitted instead of m.

Definition: In general, given a set S of q symbols, the set of all strings of length n over S

is called the q-ary Hamming space and is denoted F n
q . An arbitrary element of F n

q is called

a vector. A nonempty subset of a Hamming space is a code and its elements are called

codewords. If a code contains only one codeword then it is said to be trivial.

We will mostly be focusing on non-trivial codes and the binary Hamming space. For

the binary Hamming space we will drop the q in the notation. Sometimes it is of interest

to restrict our attention to a particular class of codes known as linear codes.

Definition: We define the componentwise sum, componentwise difference, component-

wise product, scalar multiplication, and scalar product of vectors as follows: Suppose

x = x1x2 . . . xn and y = y1y2 . . . yn in F n
q and α ∈ F 1

q then

x + y , (x1 + y1)(x2 + y3) . . . (xn + yn),

x− y , (x1 − y1)(x2 − y3) . . . (xn − yn),

x ∗ y , (x1 ∗ y1)(x2 ∗ y3) . . . (xn ∗ yn),

αx , (α ∗ x1)(α ∗ x2) . . . (α ∗ xn),

and

x · y , x1 ∗ y1 + x2 ∗ y2 + · · ·+ xn ∗ yn.

2



Definition: The vectors x and y are said to be orthogonal if x · y = 0.

Definition: A code C ⊆ F n
q is said to be linear if all of the pairwise sums and scalar

multiples of codewords are also in the code.

In other words a linear code is closed under scalar multiplication and componentwise

addition. So a linear code is a linear subspace of F n
q . Therefore there exists a basis for C.

Definition: Let {c1, . . . , ck} be a set of linearly independent codewords where k is maximal.

Then the k × n matrix 
c1

...

ck


is called a generator matrix of C. The codewords of C are the qk linear combinations of

the rows in the generator matrix.

Definition: Given a linear code C ⊆ F n
q , the linear code that consists of the vectors which

are orthogonal to every codeword of C is called the dual of C and is denoted:

C⊥ , {v ∈ F n
q : v · c = 0 for all c ∈ C}.

Definition: As C⊥ is linear it has a generator matrix. Any generator matrix of C⊥, which

will be an (n− k)× n matrix, is called a parity check matrix of C.

Often a linear code is specified by giving its parity check matrix. If H is any parity

check matrix of C, the code C can be defined as

C =
{
x ∈ F n

q : HxT = 0n−k
}

.

Definition: Given a parity check matrix H and vector x ∈ F n
q the vector HxT ∈ F n−k

q is

called the syndrome of x. Thus the code C consists of exactly the vectors with syndrome

0n−k.

1.1.1 Maximum Likelihood Decoding

When a codeword c is sent through the channel it is subject to noise and may be altered.

Thus the received vector r may be different from c. The effect of the channel can be

3



ESTIMATE
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r = c + e

MESSAGE

   n. . . c1c = ck. . . m1m = m

n. . . e1e = e

ERROR  e

CHANNEL

ENCODER

Figure 1.2: Communication model

represented by a vector e = r− c called the error vector. The channel can be thought of as

adding the error vector to the transmitted codeword.

Upon receiving the vector r the decoder must determine what codeword was really

sent and therefore what message was sent. One decoding strategy, maximum likelihood

decoding, assumes that the most likely error vector was the one that occurred. We will now

introduce some definitions to help examine this decoding strategy.

Definition: The Hamming distance between two vectors x,y ∈ F n
q is the number of

coordinates in which they differ.

dist(x,y) , |{i : xi 6= yi}|.

Definition: The Hamming weight of a vector x ∈ F nq is the number of nonzero coordinates

of x,

wt(x) , dist(x,0n).

Thus

dist(x,y) = wt(x− y).

In the binary case x + y = x− y so for binary vectors

dist(x,y) = wt(x + y).

Definition: The support of a vector x ∈ F n
q is the set

supp(x) , {i : xi 6= 0}.

In the case of the binary alphabet we have

wt(x + y) = wt(x) + wt(y)− 2wt(x ∗ y)

= wt(x) + wt(y)− 2|supp(x) ∩ supp(y)|.

4



Definition: Also, we will consider the weight of a set of vectors to be the maximum of the

weights of its elements

wt(S) , max
x∈S

(wt(x)).

Definition: The distance from a vector to a set of vectors to be the minimum distance

between the vector and the elements of the set

dist(x, S) , min
s∈S

(dist(x, s)).

Definition: The Hamming sphere of radius r centered on the vector x ∈ F n
q is:

Br(x) , {y ∈ F n
q : dist(x,y) ≤ r}

and its cardinality, or volume, is

Vq(n, r) ,
r∑

i=0

 n

i

 (q − 1)i.

The Hamming distance satisfies the triangle inequality and is a metric for the Hamming

space.

Lemma 1.1 Given any three vectors x, y and z in F n
q , dist(x,y) + dist(y, z) ≥ dist(x, z).

Proof: Let x,y, z ∈ F 1
q . If we assume that x = z then dist(x, z) = 0. Therefore, dist(x,y)+

dist(y, z) ≥ dist(x, z) as distance cannot be negative. If x 6= z then dist(x, z) = 1. Again

dist(x,y) + dist(y, z) ≥ dist(x, z) as y cannot be equal to both x and z.

Now let x,y, z ∈ F k
q .

dist(x,y) + dist(y, z) =
∑

1≤i≤k

dist(xi, yi) + dist(yi, zi)

≥
∑

1≤i≤k

dist(xi, zi) = dist(x, z).

2

The probability that a symbol is altered is p, so the probability that ei, the ith coordinate

of the error vector e, is nonzero is also p, with all nonzero values equally likely. Thus the

5



probability that wt(e) = j is pj(1− p)n−j where e has length n, and j is a natural number.

Also p < 1/2, so p < 1− p and therefore

(1− p)n > p(1− p)n−1 > · · · > pn.

This implies that given two error vectors the one with smaller weight is more likely to

have occurred. Since dist(c, r) = wt(r − c) = wt(e) we can perform maximum likelihood

decoding for the binary symmetric channel by decoding the received vector to the codeword

that is nearest to it. This is known as nearest neighbor decoding.

Definition: An important parameter of a code is the minimum distance between code-

words.

minimum distance of C , min
a,b∈C,a 6=b

dist(a,b).

One reason minimum distance is important is that it gives a condition when nearest

neighbor decoding is guaranteed to be successful.

Theorem 1.2 A code with minimum distance d can correct b(d− 1)/2c errors.

Proof: Assume that the codeword c was sent while r = c+ e was received with the weight

of e less than or equal to (d − 1)/2. Given any other codeword x the spheres centered on

x and c of radius b(d− 1)/2c must be disjoint. As r is within the sphere centered on c its

distance to x must be greater than its distance to c. Therefore r will be decoded correctly

to c via nearest neighbor decoding. A visual way to see Theorem 1.2 is given in Figure 1.3.

2

1.2 Covering Radius

Another well studied parameter associated with a code is its covering radius. Definition:

The covering radius of a code is the smallest radius such that every vector in the Hamming

space of the code is contained in a ball of that radius centered around some codeword.

In other words, the covering radius of a code t(C) is the smallest integer r such that

∀v ∈ F n, ∃c ∈ C : dist(c,v) ≤ r.

Like minimum distance, covering radius relates to nearest neighbor decoding. However,

covering radius measures the largest number of errors in any correctable error vector.

6
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Figure 1.3: A code with minimum distance d can correct b(d− 1)/2c errors.

   r .  d

    d
  x  c    .   .

Figure 1.4: A code with covering radius d cannot correct more than d errors.

Theorem 1.3 A code with covering radius d cannot correct a codeword that has be subject

to more than d errors using nearest neighbor decoding.

Proof: Given a code C ⊆ F n with covering radius d assume that we have received a vector

r = c+e, where c ∈ C, e ∈ F n, and the weight of e is greater than d. This then implies that

there must be another codeword x, such that dist(x, r) ≤ d, as d is the covering radius of the

code. Therefore, r is guaranteed to be decoded incorrectly by nearest neighbor decoding. 2

Definition: If the covering radius of a code is less than its minimum distance it is called

maximal.

Theorem 1.4 If a code is maximal then no vector can be added to the code without de-

creasing its minimum distance.

7



1.3 Multicovering Radius

The multicovering radius is a generalization of the covering radius that was proposed by

Klapper [11] in the course of studying stream ciphers. A stream cipher can be thought of as

a pseudo-random (PR) sequence that is added to the message bit by bit. Given a piece of

the PR sequence an attacker would like to be able to predict the rest or at least most of the

bits. Thus the designer of the stream cipher wants families of sequences that asymptotically

resist all attacks i.e. ∀m ∃ sequence S so that for all 1 ≤ i ≤ m, S is far from the sequence

predicted by attack Ai. This implies that for all 1 ≤ i ≤ m, S is close to every sequence

predicted. The question becomes do such families exists and if they do how hard is it to

find such families?

Klapper [12] has shown that there exist stream ciphers that are resistant to synthesis

attacks. Some of these results depend on the multicovering radius of Reed-Muller codes.

Therefore, the multicovering radius is interesting from a cryptographic standpoint as well

as a natural generalization of the covering radius.

Definition: Given a code of length n, the m-covering radius is the smallest radius such

that every m-tuple of vectors in the ambient space, the Hamming space of which the code

is a subset, of the code is contained in a ball of that radius centered around some code-

word. Specifically the m-covering radius of a code tm(C) is the smallest integer r such that

∀v.1,v.2, . . . ,v.m ∈ F n : ∃c ∈ C : ∀i = 1, . . . ,m : dist(c,v.i) ≤ r. A visual example of a

vector covering a m-tuple is given in Figure 1.5.

1.4 Translate Leader

Definition: For any x ∈ F n
q and code C ⊆ F n

q the set

x + C , {x + c : c ∈ C}

is called a translate of C.

Distance is preserved under translation so a code and it translate have the same covering

radius. More generally we can define a translate over a set of m vectors.

Definition: Let S be a set of m vectors.

S + C , {c + S : c ∈ C}.

8



��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

c

x1

x2

x3

x4

r

Figure 1.5: Covering of an m-tuple of vectors

A translate leader is an m-tuple T ∈ S + C such that the weight of T is minimal. The

m-covering radius of C is the weight of the maximal weight translate leader.

1.5 Notation

We will use the following notation:

a|b = ab = The concatenation of a and b.

0n and 1n = the all 0 and all 1 vectors of length n respectively.

Given a binary vector v, v = the complement of v = 1n + v.

vi = ith component or block of v.

v.i = ith element of a countable set V .

A code with length n, cardinality K, and minimum distance d is called a (n, K, d)

code or if the minimum distance is not needed just a (n, K) code.

9



A linear code with length n, dimension k, and minimum distance d is called a [n, k, d]

or [n, k] code.

Given a set S and vector x, cov(x, S) = max{dist(x,y) : y ∈ S} = the radius of the

smallest ball centered at x that contains all of S.

cov(C,S) =min{cov(c, S) : c ∈ C}.

Using the above notation we can write the m-covering radius of the code C ⊆ F n as,

tm(C) = max{cov(C,S) : |S| = m and S ⊆ F n}.

10



Chapter 2

Properties of the Multicovering

Radii of Codes

There are some basic relations involving the multicovering radius that hold as the param-

eters of a code vary, and in this chapter we will look at some of the previous work that

has been done to find such properties. The results in this chapter are due to Klapper and

Honkala. These properties will also be used in later chapters. Note that in some cases there

are differences in the behavior of these relations when m is not equal to one. For example

Theorem 2.1 If m ≥ 2 then tm(C) ≥ dn/2e.

This is true as the closest that one can mutually be to two complementary vectors is dn/2e.

Some other straightforward properties of the m-covering radius follow:

Theorem 2.2

1. If C is a subcode of S then tm(C) ≥ tm(S).

2. For any code C and any m ≥ 1, tm(C) ≤ tm+1(C).

Theorem 2.3 (Klapper [11]) Let C be any code of length n. Then for any positive m,

tm(C) ≤ t1(C) + tm(F n).

Proof: Given any m-tuple of vectors in F n there exists a vector x that covers them

within radius tm(F n). Furthermore, there exists a codeword c ∈ C with distance at most

t1(C) from x. The distance from c to each vector in the m-tuple is less than or equal to

t1(C) + tm(F n) by the triangle inequality. This is depicted in Figure 2.1. 2

11



m
 v

   m-1
 v

 .
 x

 .

 2
  v

 3
  v

 1

   .
  v ..

.
 

  c

.
   )
 n

(F
 m
t

Figure 2.1: tm(C) ≤ t1(C) + tm(F n)

2.1 Constructions

2.1.1 Cartesian Product

Definition: Given two codes, A and B, let C = A×B = {a|b : a ∈ A,b ∈ B}. The code

C is called the Cartesian product or direct sum of A and B. If both A and B are linear

then so is their Cartesian product.

Theorem 2.4 (Klapper [11]) Given two codes, A and B,

tm(A×B) ≤ tm(A) + tm(B).

When m = 1 the above inequality becomes an equality.

Proof: When m = 1 the equality is easy to see since dist(x|y, A × B) = dist(x, A) +

dist(y, B). Similarly when m ≥ 2, if S is a set of m vectors in F nA+nB , where nA and nB

are the lengths of the codes A and B respectively, then the projections onto the first nA

and following nB coordinates are within tm(A) and tm(B) of some codewords in A and B.

2

Note that for m ≥ 2 the inequality of Theorem 2.4 may be strict. For example if C =

{00, 01}, then t2(C) = 2 but t2(C × C) = 3.

Theorem 2.5 (Klapper [11]) Given two codes, C1 ⊆ F n1 and C2 ⊆ F n2, and two natu-

ral numbers m1 and m2

tm1m2(C1 × C2) ≥ tm1(C1) + tm2(C2).
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Proof: Suppose Si is a set of mi vectors of length ni whose distance to Ci equals di for

i = 1 and 2. Then the distance from S1 × S2 to C1 × C2 is d1 + d2. 2

2.1.2 Repetition

Definition: For any positive integer r the r-fold repetition of the code C is the code C ′

consisting of every codeword of the original code concatenated with itself r times, C ′ =

{c|c| · · · |c : c ∈ C}. This construction also preserves linearity if C is linear.

Theorem 2.6 (Klapper [11]) If C is a (n, K, d) code and C ′ is the r-fold repetition of C

then C ′ is (rn, K, rd) code with rtm(C) ≤ tm(C ′) ≤ rtrm(C).

Proof: Let S = {v.1, . . . ,v.m} be a set of vectors of length n such that tm(C) = cov(C,S).

Have v′.i be v.i concatenated with itself r times and S′ = {v′.1, . . . ,v′.m}. Then rtm(C) =

cov(C ′, S′) ≤ tm(C ′).

For the other inequality, let S = {v.1, . . . ,v.m} be a set of vectors of length rn with

v.i = v.i1|v.i2| · · · |v.ir where each v.ij has length n. Then from the definition of m-

covering radius there is a c ∈ C such that dist(c,v.ij) ≤ trm(C) for every i and j. Thus

dist(c|c| · · · |c,v.i) ≤ rtrm(C) for every i. Therefore, tm(C ′) ≤ rtrm(C). 2

Note that it is possible for both of the inequalities to be strict. For example, if C =

{00, 01, 10} and r = 2 then t2(C) = 1, t2(C ′) = 3 and t4(C) = 4.

2.1.3 New Parity Checks

A linear [n, k] code C can be lengthened by adding another parity check. This amounts to

adding another column to the code’s generator matrix. The new code is a [n + 1, k] code

whose codewords consist of the vectors of the form c|c · p, where c is a codeword of the

original code C and p is some fixed vector corresponding to the new parity check. This

process is called extending a code and the resulting code is called the extended code.

When p is the all one vector we say that we have added an overall parity check. In this

case, the extended code is formed by adding a 0 at the end of each even weight codeword and

a 1 at the end of each odd weight codeword of the original code. Thus all of the codewords

in the extended code are even.
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For any positive integer m the m-covering radius of the new code is either tm(C) or

tm(C) + 1. The following theorem characterizes when the multicovering radius increases.

Theorem 2.7 (Klapper [11]) Suppose the code C is lengthened to C ′ by the addition of

the parity check p. Then tm(C ′) = 1 + tm(C) if and only if there is a translate leader

S = {v.1, . . . ,v.m} of C with weight tm(C) and a vector e ∈ F m such that whenever c ∈ C

and S + c is a translate leader, we have ei 6= c ·p for some i such that the weight of v.i + c

is maximal.

Proof: Let S = {v.1, . . . ,v.m} be a set of binary vectors of length n. We can extend S to

be a set of vectors of length n + 1 in 2m ways, each of the form Se = {v.1|e1, . . . ,v.m|em}

for some vector e ∈ F m. The weight of each element of Se can be at most one more than its

corresponding element in S. Thus the weight of the translate leader of Se can be at most

one more than the translate leader of S. For a given S and e the translate of Se consists of

m-tuples of the form

{v.1 + c|e1 + c · p, . . . ,v.m + c|em + c · p},

where c ∈ C and p is a parity check. The weight of an element of such an m-tuple is greater

than that of S + c exactly when ei 6= c · p for some i such that wt(v.i + c) is maximal and

the m-covering radius increases if and only if the weight of every translate leader of some

maximal weight translate increases. 2

Corollary 2.8 (Klapper [11]) Appending a zero or overall parity check to a code in-

creases the m-covering radius by one.

Proof: In the case of a zero parity let e = 1m. Then ei is never equal to c · 0n.

In the case of an overall parity check for any set S = {v.1, . . . ,v.m} let Sodd be the set

of odd vectors in S, and let Seven be the set of even vectors. Since the maximum weight

of a vector in S must be either even or odd, the maximum weight vectors of S must all

be in Sodd or all be in Seven. Suppose S is a maximum weight translate leader and all of

the maximum weight vectors of S have even weight. Let ei = 0 if v.i ∈ Sodd and ei = 1

if v.i ∈ Seven. Let T = c + S, where T has the same weight as S. The maximum weight

elements of T are in T ′′. If c has even weight then T ′′ = c + S′′ and ei = 1 6= c · p. If c has
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odd weight then T ′′ = c + S′ and ei = 0 6= c · p. The argument is similar if the maximum

weight vectors of S are odd, simply reverse the definition of e. 2

2.2 Relative Covering Radius

Definition: Let C and S be codes of length n, and let m be a positive integer. The k-

covering radius of C relative to S, Rk(S, C), is the smallest integer r such that for every

k-tuple, {c.1, . . . , c.k}, of elements of C there is an element s of S such that dist(c.i, s) ≤ r

for all i = 1, . . . , k. Also, tk(m,C) = min{Rk(S, C) : |S| = m}. That is, we are only

covering m-tuples of vectors in C, not all of the Hamming space with vectors in S.

Theorem 2.9 (Honkala and Klapper [10]) Let C be a code of length n. Then tm(C) =

n− t1(m, C).

Proof: Let S be any (n, m) code. Then from the definition of relative covering radius

R1(S,C) ≥ t1(m, C), (2.1)

where S is the set of complements the of elements of S. Furthermore, equation (2.1) holds

with equality for at least one such S. Therefore, there is some c ∈ C such that for every

s ∈ S, dist(c, s) ≥ t1(m,C). Thus, there is some c ∈ C such that for every s ∈ S,

dist(c, s) ≤ n− t1(m,C). As this holds for every (n, m) code S

Rm(S, C) ≤ n− t1(m,C).

If equation (2.1) holds with equality then for every c ∈ C there exists an s ∈ S such

that dist(c, s) ≤ t1(m,C). In other words, for every c ∈ C, there exists an s ∈ S such that

dist(c, s) ≥ n − t1(m, C). Therefore Rm(S, C) ≥ n − t1(m,C) for at least one (n, m) code

S. Thus Rm(C) = n− t1(m,C). 2

Theorem 2.9 states that we can find bounds on the m-covering radius of a code by

finding bounds on the relative covering radius.
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2.3 Lower Bounds

Theorem 2.10 (Klapper [10], [11]) For every m and n satisfying m ≤ 2n, we have

tm(F n) ≥ d(n + blog2(m)c − 1)/2e, with equality for m = 2, 3, 4, 5, 6.

2.3.1 Sphere Bound

Assume that C is a q-ary (n, K) code with covering radius R. Since each codeword covers

Vq(n, R) vectors within a distance of R, it must be that K ≥ qn/Vq(n, R). This inequality

is known as the sphere-covering bound, and it generalizes to the multicovering radius case.

Theorem 2.11 (Klapper [11]) For any (n, K) code C

K ≥

 qn

m


 Vq(n, tm(C))

m

 .

Proof: Since each codeword c can r-cover only the m-tuples chosen from the ball Br(c),

there is a total of Vq(n, r) choose m such m-tuples. The total number of possible m-tuples

is qm choose m. This gives rise to the above inequality. 2

2.3.2 Other Methods

Other methods have been used to improve upon the sphere bound, such as the method of

counting excesses and the method of linear inequalities. In the method of counting excesses

instead of looking at how the whole space is covered one considers whether a ball of some

small radius can be covered perfectly. In other words, can every point in the ball be covered

by exactly one codeword? If not then there must already be some “excess”.

Given C, a (n, K)R code and vector x ∈ F n, let Ai(x) , |{c ∈ C : dist(c,x) = i}|. The

method of linear inequalities gives bounds on K by deriving linear inequalities on Ai(0n)

and Ai(x). Both of these methods have been extended to the multicovering radius case by

Klapper [11], [13].
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Chapter 3

The Multicovering radius of

Specific Codes

In this chapter we describe new results on the multicovering radius of specific codes. Cur-

rently precise results for the multicovering radius of code are somewhat rare. Even in the

case of the Hamming space the only tight results currently known are given by Theorem

2.10 while some bounds are known for m > 6. Therefore, we will look at some of the

techniques that have been successful in determining the multicovering radius.

Let C be a code with covering radius 1, then Theorems 2.3 and 2.10 give the following

bounds:

dn/2e ≤ tm(C) ≤ dn/2e+ 1

if m = 2 or 3 and

dn + 1/2e ≤ tm(C) ≤ dn + 1/2e+ 1

if m = 4, 5, or 6. We would like to know under what conditions equality holds in these

bounds. First, various techniques are used to examine the case of the even weight code

which has covering radius 1. Then we will take a look at linear codes with 1-covering radius

one.

Definition: The even weight code is the code consisting of all the even weight vectors of a

fixed length. This code will be denoted by En , {x : x ∈ F n and wt(x) is even}.

17



3.1 The 2-covering radius of the even weight code

In this section we give an upper bound on the 2-covering radius of the even weight code.

We then prove that this bound is tight by constructing appropriate deep holes (m-tuples

that meet the upper bound).

Lemma 3.1 For any n, t2(En) ≤ d(n + 1)/2e.

Proof: Let a,b ∈ F n. Assume that a or b has even weight. Without loss of generality,

let a have even weight. We have wt(a + x) = wt(a) + wt(x) − 2 |supp(a) ∩ supp(x)|, so

a + x ∈ En whenever a,x ∈ En. Also, distance is preserved under translation. There-

fore, there is an x in En such that cov(x, {a,b}) = d if and only if there is a y in

En such that cov(y, {0n, c}) = d; i.e. where c = a + b (set y = a + x). Therefore, we

only need to consider coverings of {0n, c}.

Let r = bwt(c)/2c or b(wt(c) + 2)/2c, whichever is even. Let y be a vector with ones

in r coordinates in which c has ones, and zeros elsewhere.

Suppose y has bwt(c)/2c ones. Then, since wt(c) ≤ n,

dist(0n,y) =
⌊

wt(c)
2

⌋
≤
⌊

n

2

⌋
.

Also, as wt(c) ≤ n,

dist(c,y) = wt(c)−
⌊

wt(c)
2

⌋
=
⌈

wt(c)
2

⌉
≤
⌈

n

2

⌉
.

Suppose y has b(wt(c) + 2)/2c ones. Then

dist(0n,y) =
⌊

wt(c)
2

⌋
+ 1 ≤

⌊
n

2

⌋
+ 1 =

⌈
n + 1

2

⌉
.

Also,

dist(c,y) = wt(c)−
(⌊

wt(c)
2

⌋
+ 1
)

=
⌈

wt(c)
2

⌉
− 1 ≤

⌈
n

2

⌉
− 1.

Now assume a and b both have odd weight. Let a = a′|a′′, where a′ ∈ F 1 and a′′ ∈

F n−1. Then by translating each vector by 0|a′′ or 1|a′′, whichever has even weight, we

see that there is an x in En such that cov(x, {a,b}) = d if and only if there is a y in

En such that cov(y, {1|0n−1, c}) = d.

Let r = bwt(c)/2c or dwt(c)/2e, whichever is even. Let y be a vector with ones in r

coordinates in which c has ones, and zeros elsewhere.
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Suppose y has bwt(c)/2c ones and c1 = 1. Then

dist(1|0n−1, y) =
⌊

wt(c)
2

⌋
− 1 ≤

⌊
n

2

⌋
− 1.

If c1 = 0, then

dist(1|0n−1,y) =
⌊

wt(c)
2

⌋
+ 1 ≤

⌊
n− 1

2

⌋
+ 1 =

⌈
n

2

⌉
.

Also,

dist(c,y) = wt(c)−
⌊

wt(c)
2

⌋
=
⌈

wt(c)
2

⌉
≤
⌈

n

2

⌉
.

Suppose y has dwt(c)/2e ones and c1 = 1. Then

dist(1|0n−1,y) =
⌈

wt(c)
2

⌉
− 1 ≤

⌈
n

2

⌉
− 1.

If c1 = 0, then

dist(1|0n−1,y) =
⌈

wt(c)
2

⌉
+ 1 ≤

⌈
n− 1

2

⌉
+ 1 =

⌈
n + 1

2

⌉
.

Also,

dist(c,y) = wt(c)−
⌈

wt(c)
2

⌉
=
⌊

wt(c)
2

⌋
≤
⌊

n

2

⌋
.

So in all possible cases cov(En, {a,b}) ≤ d(n + 1)/2e. 2

Theorem 3.2 For any n ≥ 1, t2(En) = d(n + 1)/2e.

Proof: From Lemma 3.1 and Theorem 2.10 we know that dn/2e ≤ t2(En) ≤ d(n + 1)/2e.

However, in the case that n is odd, dn/2e = d(n + 1)/2e. So all that remains is the case

when the length is even. We now construct deep holes that meet the bound given in Lemma

3.1. There are two cases.

Suppose n ≡ 2 mod 4. Our deep hole is {0n,1n}. Let z ∈ En. Then wt(z) = 2i and

n = 2 + 4j for some natural numbers i and j. Let

f(i) = dist(0n, z) = 2i

and

g(i) = dist(1n, z) = n− 2i = 2 + 4j − 2i.
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Both functions are linear in i. Given the above we can see that

cov(En, {0n,1n}) = min
0≤i≤1+2j

max(f(i), g(i))

from the definition of cov(En, {0n,1n}). If i was not restricted to the natural numbers,

then this minimum would occur when f(i) = g(i) (when i = 1
2 + j). Over the natural

numbers, the minimum occurs for either i = j or i = 1 + j. Thus

min
0≤i≤1+2j

max(f(i), g(i)) = max(2 + 2j, 2j)

=
n

2
+ 1 =

⌈
n + 1

2

⌉
.

Suppose n ≡ 0 mod 4. We claim that {1|0n−1, 0|1n−1} is a deep hole that meets the

given bound. Let z ∈ En. Then wt(z) = 2i and n = 4j for some natural numbers i and j.

Let

f(i) = dist(1|0n−1, z) =

 2i− 1 if z1 = 1

2i + 1 if z1 = 0

and

g(i) = dist(0|1n−1, z) = n− 2i =

 4j − 2i + 1 if z1 = 1

4j − 2i− 1 if z1 = 0
.

Again both functions are linear in i and:

cov(En, {0n,1n}) = min
0≤i≤2j

max(f(i), g(i)).

If i was not restricted to the natural numbers, then this minimum would occur when f(i) =

g(i). This is when i = 1
2 +j if z1 = 1 or when i = j− 1

2 if z1 = 0. Over the natural numbers,

the minimum occurs for either i = j or i = 1 + j when z1, or either i = j or i = j − 1 when

z1 = 0. In either case

min
0≤i≤2j

max(f(i), g(i)) = max(2j + 1, 2j − 1)

=
n

2
+ 1 =

⌈
n + 1

2

⌉
.

2

3.2 The 3-covering radius of the even weight code

We now form bounds on the 3-covering radius of the even weight code. The case when

the length of the code is even is already known from the results of the last two sections.
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Therefore, we need only tighten our bounds for the case when the length is odd. To do this

we develop bounds on the relative covering radius as in Honkala and Klapper’s paper [10].

Lemma 3.3 (Honkala and Klapper [10]) A binary code of odd length n, cardinality

three and covering radius (n− 1)/2 contains a word-complement pair.

Lemma 3.4 For n odd and n ≥ 3, t1(3,En) = (n− 1)/2.

Proof: Assume that there is a code C = {a,b, c} of length n such that C covers En with

balls of radius (n − 3)/2. As the 1-covering radius of En is one, C covers the whole space

with balls of radius (n − 1)/2. Therefore, by Lemma 3.3 C contains a word-complement

pair. Without loss of generality, let b = c. Furthermore, the 2-covering radius of En is

(n + 1)/2. So there exists e ∈ En such that dist(e,b) and dist(e, c) are (n − 1)/2 and

(n + 1)/2 in some order. Also, dist(e,b) 6= dist(e, c) by the triangle inequality. So we may

let dist(e,b) = (n+1)/2 and i be a coordinate where e and c are different and where e and

b are the same. While e does not have even weight, as the length of our code is odd, we can

find an element of En that is close. Let e′ be the vector e with the ith bit complemented.

Then e′ is an element of En,

dist(e′,b) = dist(e,b) + 1

=
n− 1

2
+ 1

and

dist(e′, c) = dist(e, c)− 1

=
n + 1

2
− 1.

So neither e nor e′ is an element of the ball B(n−3)/2(b) or the ball B(n−3)/2(c). Since

dist(e, e′) = n − 1, e and e′ cannot both belong to B(n−3)/2(a). This contradicts our as-

sumption so t1(3,En) ≥ (n−1)/2. The reverse inequality comes from the bounds on t3(En)

which we have already established and from Theorem 2.9. 2

From Lemma 3.4, Theorem 2.9, and our previous bounds, we obtain the following result.

Theorem 3.5 For all n ≥ 2, t3(En) = d(n + 1)/2e.
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3.3 Higher order covering radii of the even weight code

Lemma 3.6 If n is odd and n ≥ 3 then t4(En) = d(n + 1)/2e+ 1.

Proof: There are two cases:

Suppose n ≡ 1 mod 4. There exists an integer k such that n = 1 + 4k. Let

S = {0n−2|02,0n−2|12,1n−2|0|1,1n−2|1|0}.

Also assume that there exists an even weight vector v of length n such that cov(v, S) =

d(n + 1)/2e = 2k + 1. Let v = v′|v′′, where v′ ∈ F n−2 and v′′ ∈ F 2. So dist(v′,0n−2) ≤

2k + 1 and dist(v′,1n−2) ≤ 2k + 1. This implies that 2k − 2 ≤ wt(v′) ≤ 2k + 1. The

following table examines each of these possible cases.

wt(v′) = 2k − 2 wt(v′) = 2k − 1 wt(v′) = 2k wt(v′) = 2k + 1

wt(v′′) = 0 or 2 wt(v′′) = 1 wt(v′′) = 0 or 2 wt(v′′) =1

1n−2|0|1

1n−2|1|0

1n−2|0|1

1n−2|1|0

0n−2|02

0n−2|12

0n−2|02

0n−2|12

In each of the above cases, one of the listed vectors has distance 2k + 2 to v. This

contradicts the assumption that cov(v, S) = d(n + 1)/2e = 2k + 1.

Suppose n ≡ 3 mod 4.

This case is similar, but let

S = {0n−2|0|1,0n−2|1|0,1n−2|02,1n−2|12}.

Also there exists an integer k such that n = 3+4k and we can assume that there exists an

even weight vector v of length n such that cov(v, S) = d(n + 1)/2e = 2k+2. Let v = v′|v′′,

where v′ ∈ F n−2 and v′′ ∈ F 2. So dist(v′,0n−2) ≤ 2k +2 and dist(v′,1n−2) ≤ 2k +2. This

implies that 2k − 1 ≤ wt(v′) ≤ 2k + 2. The following table examines each of these possible

cases.
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wt(v′) = 2k − 1 wt(v′) = 2k wt(v′) = 2k + 1 wt(v′) = 2k + 2

wt(v′′) = 1 wt(v′′) = 0 or 2 wt(v′′) = 1 wt(v′′) = 0 or 2

1n−2|02

1n−2|12

1n−2|02

1n−2|12

0n−2|0|1

0n−2|1|0

0n−2|0|1

0n−2|1|0

In each of the above cases, one of the listed vectors has distance 2k + 3 to v. This

contradicts the assumption that cov(v, S) = d(n + 1)/2e = 2k + 2.

Therefore, t4(En) ≥ dn + 1/2e + 1. The reverse inequality comes from our previous

bounds. 2

Lemma 3.6 and our previous bounds yield the following.

Theorem 3.7 If n is odd, n ≥ 3 and m = 4, 5, or 6, then tm(En) = d(n + 1)/2e+ 1.

In the case of even length we again use the relative covering radius, and the following

definitions.

Definition: If each of the four possible pairs 00, 01, 10 and 11 occur at least once in every

two coordinates of the codewords, we call the code 2-independent.

Definition: Let Keven(n, r) denote the minimum number of codewords in any code C of

length n such that t1(C,En) = r. Similarly let Kodd(n, r) denote the minimum number of

codewords in any code C of length n such that t1(C, {x ∈ F n : wt(x) is odd}) = r.

Lemma 3.8 Keven(n, r) = Kodd(n, r).

Proof: Let C be a (n, k) code that r covers En, and x be any odd weight vector. Then

dist(x,1|0n−1 + C) = dist(1|0n−1 + x, C) ≤ r.

So 1|0n−1 +C covers all of the odd weight vectors with balls of radius r. Thus Keven(n, r) ≥

Kodd(n, r).

The reverse inequality can be shown in a similar fashion. Let x be any even weight vector

and C be a (n, k) code that r covers the set of all odd vectors of length n. Then 1|0n−1 +C

covers all of the even weight vectors with balls of radius r. Thus Keven(n, r) ≤ Kodd(n, r).

23



Therefore, Keven(n, r) = Kodd(n, r). 2

Definition: For an arbitrary set S of cardinality n, we call two subsets A and B of S

2-independent if membership (non-membership) in one neither implies nor excludes mem-

bership (non-membership) in the other. Thus

A ∩B,A ∩B,A ∩B, and A ∩B

are all not empty. A collection of subsets of S is said to be 2-independent if every pair in

the collection is 2-independent.

Theorem 3.9 (Kleitman and Spencer [14]) The maximal size of a 2-independent col-

lection of subsets of an n element set S is

 n− 1

bn/2c − 1

.

Lemma 3.10 Keven(2R + 4, R) ≥ 6.

Proof: We prove this by induction on R. First suppose R = 0. Then each vector can only

cover itself. Thus Keven(4, 0) ≥ 8.

Now assume by induction that Keven(2i + 2, i− 1) ≥ 6 for some i ≥ 1. Further assume

that there exists a (2i + 4, 5) code C that covers E2i+4 with balls of radius i. By Theorem

3.9, C is not 2-independent.

Suppose the pair 00 or the pair 11 does not appear in two of the coordinates of C.

Without loss of generality we may assume 00 does not appear in the first two coordinates.

Let C ′ be the code C punctured on these coordinates. If there exists any even weight vector

x, such that dist(x,C′) > i − 1 then dist(00|x, C) > i. However, this contradicts the fact

that C covers the even weight vectors with radius i. Thus C ′ covers the even weight vectors

with radius at most i − 1. But this now contradicts the fact that Keven(2i + 2, i − 1) ≥ 6.

Therefore, no such code C can exist and Keven(2i + 4, i) ≥ 6.

The case when 10 or 01 does not appear in two of the coordinates of C is similar. The

code 1|02i+3 + C covers the odd vectors with radius i, the pair 00 or the pair 11 does not

appear in 1|02i+3 +C. Keven(2i+2, i−1) ≥ 6 implies that Kodd(2i+2, i−1) ≥ 6 by Lemma

3.8 and the remaining argument is the same as above. 2

Theorem 3.11 If n is even, n ≥ 2, and m = 4 or 5 then tm(En) = d(n + 1)/2e.
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m n tm(En)

2, 3 — d(n + 1)/2e

4, 5, 6 odd d(n + 1)/2e+ 1

4, 5 even d(n + 1)/2e

6 even d(n + 1)/2e ≤ tm(En) ≤ d(n + 1)/2e+ 1

Table 3.1: Multicovering radius of the even weight code.

Proof: Given that n is even, n ≥ 2 and m = 4 or 5, our previous bounds show that t1(m,En)

is (n− 2)/2 or (n− 4)/2. However, Lemma 3.10 shows that t1(m,En) 6= (n− 4)/2. 2

Table 3.1 shows our results on the multicovering radius of the even weight code. Our

methods have illustrated some of the techniques that are available to determine multicov-

ering radii. After this work was done Honkala showed that tm(En) = tm(F n−1) + 1 using

some facts previously proven by Klapper.

Theorem 3.12 (Honkala [9]) tm(En) = tm(F n−1) + 1.

Proof: This can be seen by using Corollary 2.8 and noting that the even weight code of

length n is equal to the Hamming space of length n− 1 appended with a parity check. 2

However, this method is unlikely to work for more general codes of 1-covering radius

one as it relies on the fact that the code can be constructed by appending zero or overall

parity checks to the Hamming space of some length. However, much of the proof of Lemma

3.1 still holds for any linear code with 1-covering radius one. In the case when the length of

the code is odd it only remains to show that any such linear code must contain a vector of

weight bn/2c or dn/2e. We will see how to complete this proof in this case in Section 3.4.

3.4 The Multicovering Radii of Linear Codes with Covering

Radius One

Here we prove two lemmas on the structure of linear codes of odd length with 1-covering

radius one and show that such linear codes have 2-covering radius (n + 1)/2. Note that

25



non-linear codes with covering radius one may have 2-covering radius dn/2e+ 1. The code

consisting of all vectors except those of weight dn/2e and bn/2c is an example of such a

code. This code cannot cover {0n,1n} within radius dn/2e.

Lemma 3.13 Let C be a linear code of length n and 1-covering radius one, where n is odd

and greater than 3. Then C contains a code word of weight dn/2e or bn/2c.

Proof: Assume that such a code C does not contain a codeword of weight dn/2e or bn/2c.

Then every vector of weight bn/2c is covered by codewords of weight bn/2c−1 = (n−3)/2.

Suppose that n ≡ 1 mod 4. To make it easier to compare the supports of vectors we

will write them in the form v = v1|v2|v3|v4|v′ where each vi has length (n − 1)/4 and

v′ ∈ {0, 1}. The vector 1(n−1)/4|1(n−1)/4|0(n−1)/4|0(n−1)/4|0 is covered by a codeword α.

Without loss of generality let α = 1(n−1)/4|1(n−5)/40|0(n−1)/4|0(n−1)/4|0.

The vector 1(n−1)/4|0(n−1)/4|1(n−1)/4|0(n−1)/4|0 is covered by a codeword of the form

β = a|0(n−1)/4|b|0(n−1)/4|0. If the weight of a is (n − 5)/4, then the cardinality of the

intersection of the supports of α and β is (n− 5)/4. Therefore,

wt(α + β) = n− 3− n− 5
2

=
n− 1

2
,

which contradicts our assumption that there are no weight bn/2c codewords. Thus, the

weight of b is (n− 5)/4, and the weight of a is (n− 1)/4.

Similarly the vector 1(n−1)/4|0(n−1)/4|0(n−1)/4|1(n−1)/4|0 is covered by a codeword

of the form γ = c|0(n−1)/4|0(n−1)/4|d|0, where the weight of d is (n − 5)/4. The

vector 0(n−1)/4|0(n−1)/4|1(n−1)/4|1(n−1)/4|0 is covered by a codeword of the form δ =

0(n−1)/4|0(n−1)/4|e|f |0. If the weight of e is (n− 1)/4 then β + δ = a|0(n−1)/4|b|f |0, which

has weight (n − 1)/4 + 1 + (n − 5)/4 = (n − 1)/2. If the weight of f is (n − 1)/4 then

γ + δ = c|0(n−1)/4|e|d|0, which also has weight (n− 1)/2. Thus, in all cases we contradict

our assumption that C does not contain a codeword of weight dn/2e or bn/2c.

Suppose that n ≡ 3 mod 4. This time we will break our vectors into blocks of size

(n−3)/4 and will write them in the form v = v1|v2|v3|v4|000 where vi has length (n−3)/4.

There must be at least one codeword α with weight (n − 3)/2. Without loss of generality

let α = 1(n−3)/4|1(n−3)/40|0(n−3)/4|000.

The vector 1(n−3)/4|0(n−3)/4|1(n−3)/4|0(n−3)/4|100 is covered by a codeword of the form

β = a|0(n−3)/4|b|0(n−3)/4|100. We may assume that β ends in 100 since if it did not we
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could permute the coordinates, exchange the (n− 2)th coordinate with a coordinate in the

third block b, to place it in this form without changing the structure of α. If the weight of a

is (n− 7)/4, then the cardinality of the intersection of the supports of α and β is (n− 7)/4.

Therefore,

wt(α + β) = n− 3− n− 7
2

=
n + 1

2
,

which contradicts our assumption that there are no weight dn/2e vectors. Thus, the weight

of b is (n− 7)/4, and the weight of a is (n− 3)/4.

Similarly the vector 1(n−3)/4|0(n−3)/4|0(n−3)/4|1(n−3)/4|010 is covered by a codeword of

the form γ = c|0(n−3)/4|0(n−3)/4|d|010. We may assume that γ ends in 010 since if it did

not we could permute the coordinates, exchange the (n− 1)th coordinate with a coordinate

in the fourth block d, to place it in this form without changing the structure of α or β. Also

the weight of d is (n−7)/4. The vector 0(n−3)/4|0(n−3)/4|1(n−3)/4|1(n−3)/4|001 is covered by

a codeword of the form δ = 0(n−3)/4|0(n−3)/4|e|f |000. We may assume that δ ends in 000

since if it did not we could permute the coordinates, exchange the nth coordinate with the

coordinate in the third block where b is zero, to place it in this form without changing the

structure of α, β, or γ. The weight of e and f is then (n−3)/4. β + δ = a|0(n−3)/4|b|f |100,

which has weight (n− 3)/4 + 1 + (n− 3)/4 + 1 = (n + 1)/2. Thus in all cases we contradict

our assumption that C does not contain a codeword of weight dn/2e or bn/2c. 2

The proof of the following lemma is analogous to the proof of Lemma 3.13.

Lemma 3.14 Let C be a linear code of length n and 1-covering radius one, where n is odd

and greater than 3. Then C contains a codeword at distance dn/2e or bn/2c from the vector

1|0n−1.

Proof: Assume C does not contain a codeword at distance dn/2e or bn/2c from the vector

a = 1|0n−1. Then C contains no codewords of the form 0|v1, 0|v2, 1|v2, or 1|v3 where

vi has length n − 1, v1 has weight (n − 3)/2, v2 has weight (n − 1)/2, and v3 has weight

(n + 1)/2.

Suppose that n ≡ 1 mod 4. The vector 1|1(n−1)/4|1(n−1)/4|0(n−1)/4|0(n−1)/4 is covered

by a codeword α. Let α = 1|a|b|0(n−1)/4|0(n−1)/4, where wt(ab) = (n − 3)/2. Note that

α must have this structure as otherwise it will be in one of the prohibited forms. Without

loss of generality let the weight of a be (n− 5)/4.
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The vector 1|1(n−1)/4|0(n−1)/4|1(n−1)/4|0(n−1)/4 is covered by a codeword of the form β =

1|c|0(n−1)/4|d|0(n−1)/4|0, where wt(cd) = (n− 3)/2. As before β must have this structure

to avoid the prohibited forms. If the weight of d is (n−5)/4, then α+β = 0|a|b|d|0(n−1)/4,

which has weight 1 + (n − 1)/4 + (n − 5)/4 = (n − 1)/2. This contradicts our assumption

that C does not contain a codeword of the form 0|v2, where v2 has weight (n−1)/2. Thus,

the weight of c is (n− 5)/4, and the weight of d is (n− 1)/4.

Similarly the vector 1|1(n−1)/4|0(n−1)/4|0(n−1)/4|1(n−1)/4 is covered by a codeword of

the form γ = 0|e|0(n−1)/4|0(n−1)/4|f , where the weight of e is (n − 5)/4. The vec-

tor 1|0(n−1)/4|0(n−1)/4|1(n−1)/4|1(n−1)/4 must be covered by a codeword of the form δ =

1|0(n−1)/4|0(n−1)/4|g|h. If the weight of g is (n− 5)/4 then β + δ = 0|c|0(n−1)/4|g|h, which

has weight (n − 5)/4 + 1 + (n − 1)/4 = (n − 1)/2. If the weight of h is (n − 5)/4 then

γ + δ = 0|e|0(n−1)/4|g|h, which also has weight (n − 1)/2. Thus in all cases we contradict

our assumption that C does not contain a codeword at distance dn/2e or bn/2c from the

vector 1|0n−1.

Suppose that n ≡ 3 mod 4. The vector u = 1|1(n−3)/4|1(n−3)/4|0(n−3)/4|0(n−3)/4|10 is

covered by a codeword. Because we have assumed that there are no codewords of the form

0|v1 or 1|v2, where v1 has weight (n−3)/2 and v2 has weight (n−1)/2, we cannot cover u by

complementing its first coordinate or one of the coordinates that contains a zero. Thus we

may assume that u is covered by the codeword α = 1|1(n−3)/4|1(n−3)/4|0(n−3)/4|0(n−3)/4|00.

The vector 1|1(n−3)/4|0(n−3)/4|1(n−3)/4|0(n−3)/4|10 is covered by a codeword of the form

β = 1|a|0(n−3)/4|b|0(n−3)/4|c0. If c is zero then the weight of a and b must both equal

(n− 3)/4. So α + β = 0|1(n−3)/4|1(n−3)/4|0(n−3)/4|00, which is prohibited. If the weight of

b is (n− 5)/4 then α + β = 0|0(n−3)/4|1(n−3)/4|b|0(n−3)/4|10, which has weight (n− 3)/4 +

(n− 5)/4 + 1 = (n− 3)/2, and is thus prohibited. So the weight of a is (n− 5)/4 and the

weight of b is (n− 3)/4.

Similarly the vector 1|1(n−3)/4|0(n−3)/4|0(n−3)/4|1(n−3)/4|10 is covered by a codeword

of the form γ = 1|d|0(n−3)/4|0(n−3)/4|e|10, where the weight of d is (n − 5)/4. The

vector 1|0(n−3)/4|0(n−3)/4|1(n−3)/4|1(n−3)/4|10 is covered by a codeword of the form δ =

1|0(n−3)/4|0(n−3)/4|f |g|h0. If h is zero then the weight of f and g must both equal (n−3)/4.

So β+δ = 0|a|0(n−3)/4|0(n−3)/4|g|10, which has weight (n−5)/4+(n−3)/4+1 = (n−3)/2

and is thus prohibited. If the weight of f is (n − 5)/4 then β + δ = 0|a|0(n−3)/4|f |g|00,

which has weight (n−3)/4. If the weight of g is (n−5)/4 then γ + δ = 0|d|0(n−3)/4|f |g|00,
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which has weight (n − 3)/4. Thus in all cases we contradict our assumption that C does

not contain a codeword at distance dn/2e or bn/2c from the vector 1|0n−1.

2

Theorem 3.15 Let C be a linear code of length n and 1-covering radius one, where n is

odd and greater than 3. Then C has 2-covering radius (n + 1)/2.

Proof: Let a,b ∈ F n. Assume that a or b is an element of C. Without loss of gen-

erality, let a be an element of C. If x is also a codeword then a + x is a codeword as

C is linear. Also, distance is preserved under translation. Therefore, there is an x in

C such that cov(x, {a,b}) = d if and only if there is a y in C such that cov(y, {0n, c}) = d;

i.e. where c = a + b (set y = a + x). Therefore, we only need to consider coverings of

{0n, c}.

Suppose c 6= 1n. Let r = bwt(c)/2c and let y be a vector with ones in r coordinates in

which c has ones, and zeros elsewhere.

Then, since wt(c) ≤ n− 1,

dist(0n,y) =
⌊

wt(c)
2

⌋
≤ n− 1

2
.

Also,

dist(c,y) = wt(c)−
⌊

wt(c)
2

⌋
=
⌈

wt(c)
2

⌉
≤ n− 1

2
.

Since C has 1-covering radius one there exists a codeword y′ with distance at most one

from y. Therefore,

dist(0n,y′),dist(c,y′) ≤ n− 1
2

+ 1 =
n + 1

2
.

Suppose c = 1n. Lemma 3.13 says that C must have a codeword of weight dn/2e or

bn/2c. This codeword covers {0n,1n} with a ball of radius (n + 1)/2.

Now assume neither a nor b is an element of C. As the 1-covering radius of C is

one, there is a codeword α that differs from a in only one coordinate. Without loss of

generality assume that this difference is in the first coordinate. By translating by α, we

see that there is an x in C such that cov(x, {a,b}) = d if and only if there is a y in

C such that cov(y, {1|0n−1, c}) = d.
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As in the previous case, if dist(1|0n−1, c) is less than or equal to n − 1, then there is

a vector y at distance at most (n-1)/2 from both. Furthermore, we can take y′ to be a

codeword at distance 1 from y. So y′ has distance at most (n + 1)/2 to both 1|0n−1 and c.

If c = 0|1n then Lemma 3.14 says that there is a codeword that has distance at most

(n + 1)/2 to both 1|0n−1 and c. In all possible cases cov(C, {a,b}) ≤ (n + 1)/2 the reverse

inequality comes from the bounds given in the introduction. 2

3.5 The multicovering radius of BCH codes

The binary primitive BCH code of length 2m − 1 and designed distance 2e + 1 is a cyclic

[n = 2m − 1, k ≥ 2m −me− 1, d ≥ 2e + 1]

code and is denoted BCH(e,m). BCH(e,m) is at least an e-error correcting code. Since

its minimum distance is at least 2e + 1 Theorem 1.2 shows that it can correct at least e

errors. BCH(1,m) is the Hamming code and k = 2m − me − 1 if 2e − 1 ≤ 2dm/2e. The

formal definition of BCH(e,m) can be found in MacWilliams and Sloane’s book [18]. BCH

codes are important because their correction capabilities are known and they can be easily

encoded. The covering radius of the 2 and 3 error correcting BCH codes are known. We

will focus on the 2-error correcting BCH code.

Theorem 3.16 (Gorenstein, Peterson and Zierler [8]) The covering radius of the 2-

error correcting BCH code, BCH(2,m), for m ≥ 3, is equal to 3.

So Theorems 2.3 and 2.10 give the bound:dn/2e ≤ t2(BCH(2,m) ≤ dn/2e+ 3 when m ≥ 3.

To obtain the 2-covering radius of BCH(2,m) we use certain well known relations between

the weight distribution of a code and the weight distribution of its dual. These relations

depend on certain polynomials known as the Krawtchouk polynomials. Here we describe

only the properties of these polynomials that we will need. More thorough treatments of

these relations and properties can be found in MacWilliams and Sloane’s book [18] and

Cohen et al.’s book [3].
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Definition: The binary Krawtchouk polynomial of degree i in x Pn
i (x) is defined by the

following generating function:

∞∑
i=0

Pn
i (x)zi = (1− z)x(1 + z)n−x.

An explicit expression for a Krawtchouk polynomial is given by:

Pn
i (x) =

i∑
j=0

(−1)j

(
x

j

)(
n− x

i− j

)
.

Usually n is fixed and is omitted. There are many relations involving Krawtchouk polyno-

mials. Some can be found by rearranging binomial coefficients. Some relationships that we

will use follow:

Pi(x) =
(n− 2i)Pi(x− 1)− (x− 1)Pi(x− 2)

n− x + 1
, (3.1)

Pi(x) = (−1)iPi(n− x), (3.2)

(
n

x

)
Pi(x) =

(
n

i

)
Px(i), (3.3)

and if n is even,

Pn
i (n/2) =


0 if i is odd,

(−1)i/2
(n/2

i/2

)
if i is even.

(3.4)

Lemma 3.17 (Krasikov and Litsyn [15]) For any integers x, n and i, with i even

|Pi(x)| ≤

(
n

n/2

)(n/2
i/2

)(
n
x

) .

Definition: Let C ⊆ F n be a binary code. Its weight distribution A(C) = A =

(A0, A1, . . . , An) is defined by

Ai = |{c ∈ C : wt(c) = i}|.

In other words the ith component of A(C) is the number of codewords in C with weight i.
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Definition: The distance distribution, B(C) = B = (B0, B1, . . . , Bn), is defined by

Bi =
1
|C|

|{c1, c2 ∈ C : dist(c1, c2) = i}|.

Thus the ith component of B(C) is the average number of codewords that are distance i

from a codeword of C.

For linear codes the vectors A and B are equal. For a linear code C the distance

distribution of the dual code C⊥ is denoted B⊥ and is called the dual spectrum of C.

Theorem 3.18 (MacWilliams identities [18]) For a linear code C of length n

B⊥
i =

1
|C|

n∑
x=0

BxPn
i (x),

where Pn
i (x) is the Krawtchouk polynomial of degree i.

Theorem 3.19 (Krasikov and Litsyn [15]) Let C be the 2-error correcting BCH code

of length n′ = n− 1 = 2m − 1. Then

Bi =

(
n′

i

)
n2

(1 + Ei∗),

where i∗ = i + 1 if i is odd, i∗ = i if i is even,

|Ei| ≤
n2
(

n
n/2

)(n/2
i/2

)(
n
i

)(
n
d

) ,

d = 2m−1 − 2(m−1)/2 if m is odd, and d = 2m−1 − 2m/2 is m is even.

We will also use Stirling’s bound on factorials and the following bounds on binomial

coefficients:

Lemma 3.20 The following properties are satisfied for any non-negative integers n and k:

1.
(
n
k

)
≥ (n

k )k

2.
(
n
k

)
≤ nk

3. n! ∈
√

2πn
(

n
e

)n (1 + Θ
(

1
n

))
Lemma 3.21 ([18] §9.9) Let δ = 2m−1 − 2(m−1)/2 if m is odd and δ = 2m−1 − 2m/2 is

m is even. The weight of any nonzero codeword of the dual of BCH(2,m) lies in the range

[δ, n− δ].
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Adding an overall parity check appends a zero to all current vectors in the generator matrix

of the dual and adds the all one vector to the generator matrix. Thus we have the following

corollary.

Corollary 3.22 Let δ = 2m−1 − 2(m−1)/2 if m is odd and δ = 2m−1 − 2m/2 is m is even.

The weight of any codeword of the dual of the extended BCH(2,m) code lies in the range

[δ, n + 1− δ] or is equal to 0 or n + 1.

Lemma 3.21 tells much about the weight distribution of the dual 2-error correcting BCH

code, and the MacWilliams identities, Theorem 3.18, can be used to examine the weight

distribution of the BCH code from this information. However, many of our theorems and

lemmas only apply when certain parameters are even. Because of this we will use the dual

of the extended 2-error correcting BCH code, which only contains even weight vectors, to

help us prove the following theorem. Extended codes are discussed in Section 2.1.3

Theorem 3.23 Let 0 ≤ a ≤ 4 and 0 ≤ b ≤ 3. Let S and T be disjoint sets of coordinates

with |S| = a and |T | = b. Then for sufficiently large m there exists a codeword v of the

code BCH(2,m) with (n− 1)/2− a + b ≤ wt(v) ≤ (n + 1)/2 + b and with zeros at all of the

coordinates in S and ones at all of the coordinates in T , where n = 2m − 1.

Proof: Suppose i is a positive integer and U and V are disjoint sets of coordinates. Let

Bi,U,V be the number of codewords in the extended 2-error correcting BCH code with weight

i, zeros in all of the coordinates in U and ones in all of the coordinates in V . If V is the

empty set then we may omit it from our notation, i.e. Bi,U,∅ = Bi,U . Also, B⊥
i,U,V will denote

the same quantity in the dual of B. We next establish a useful equation for Bi,U .

Suppose U is a set of coordinates from the primitive BCH code, and let the size of U

be a. Let CU be the subcode of the extended 2-error correcting BCH code with zeros in

the coordinates of U and the last coordinate of the extended code. Since codewords of this

subcode must have a zero in the last coordinate we can remove this coordinate and obtain a

BCH codeword that has the same weight. The code CU can be constructed by adding a+1

parity checks, namely the a + 1 vectors that are all zero except in one of the coordinates

in U or the last coordinate. From Corollary 3.22 we know that the minimal distance of the

dual of the extended 2-error correcting BCH code is at least (n + 1)/2−
√

n + 1. Therefore

as long as a + 1 < (n + 1)/2 −
√

n + 1 the added parity checks are independent. Taking

these additions into account and Corollary 3.22 we see that:
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B⊥
i,U = B⊥

n+1−i,U =


(
a+1

i

)
for 0 ≤ i ≤ a + 1

0 for a + 1 < i < δ − a− 1
,

where δ = (n + 1)/2−
√

n + 1. Also
∑n+1

j=0 B⊥
j,U = |C⊥

U | = 22m+1+a+1 = 2a+2(n + 1)2.

Using Theorem 3.18 and the above values for B⊥ we have:

Bi,U =
1

2a+2(n + 1)2

n+1∑
x=0

B⊥
x,UPn+1

i (x)

=



0 if i is odd

1
2a+2(n+1)2

(
a+1∑
x=0

(
a + 1

x

)(
Pn+1

i (x) + Pn+1
i (n + 1− x)

)
+

n+2−δ+a∑
x=δ−a−1

B⊥
x,UPn+1

i (x)

)
if i is even

When i is even we can use equation 3.2 to write Bi,U as:

Bi,U =
1

2a+2(n + 1)2

(
2

a+1∑
x=0

(
a + 1

x

)
Pn+1

i (x) +
n+2−δ+a∑
x=δ−a−1

B⊥
x,UPn+1

i (x)

)
,

= αi,a(1 + βi,U )

where

αi,a =
Ai,a

2a+2(n + 1)2
,

βi,U =
1

Ai,a

n+2−δ+a∑
x=δ−a−1

B⊥
x,UPn+1

i (x)

with

Ai,a = 2
a+1∑
x=0

(
a + 1

x

)
Pn+1

i (x).

Since both n and i are even in this case, we may use Lemma 3.17 to bound the absolute

value of βi,U .

|βi,U | =
1

Ai,a
|
n+2−δ+a∑
x=δ−a−1

B⊥
x,UPn+1

i (x)|

≤
|C⊥

S |
Ai,a

max{|Pn+1
i (x)| : δ − a− 1 ≤ x ≤ n + 2− δ + a}

≤

(
n+1

(n+1)/2

)((n+1)/2
i/2

)
αi,a

(
n+1

δ−a−1

) .
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We denote the last quantity by γi,a. We now proceed by cases for different a and b.

Case(a = 4, b = 3): Suppose S and T are arbitrary disjoint sets of coordinates with

|S| = 4 and |T | = 3. It is sufficient to show B(n+1)/2,S,T ≥ 1 for sufficiently large n. This

implies the existence of a weight (n + 1)/2 codeword with the appropriate structure. Such

a codeword satisfies the requirements of other cases as well, namely when (n + 1)/2 and

(n − 1)/2 are in the range of acceptable weights. So any case where (n − 1)/2 − a + b ≤

(n− 1)/2 ≤ (n + 1)/2 + b, which is equivalent to b ≤ a, will also be proved. Also, any case

where (n−1)/2−a+b ≤ (n+1)/2 and a ≤ 3, in other words b−1 ≤ a ≤ 3, will be satisfied.

This leaves only the cases (0,2), (0,3) and (1,3) unsolved.

Let T = {t1, t2, t3}. Using the inclusion exclusion principal we can write Bi,S,T as

follows:

Bi,S,T = Bi,S

−Bi,S∪{t1} −Bi,S∪{t2} −Bi,S∪{t3}

+Bi,S∪{t1,t2} + Bi,S∪{t1,t3} + Bi,S∪{t2,t3}

−Bi,S∪T .

Rewriting this equation in terms of α and β yields:

B(n+1)/2,S,T = α(n+1)/2,4(1 + β(n+1)/2,S)

−α(n+1)/2,5(3 + β(n+1)/2,S∪{t1} + β(n+1)/2,S∪{t2} + β(n+1)/2,S∪{t3})

+α(n+1)/2,6(3 + β(n+1)/2,S∪{t1,t2} + β(n+1)/2,S∪{t1,t3} + β(n+1)/2,S∪{t2,t3})

−α(n+1)/2,7(1 + β(n+1)/2,S∪T )
(3.5)

To examine the asymptotic behavior of B(n+1)/2,S,T we consider the behavior of the α and

β terms. Using equations 3.3 and 3.4 we can write Pn+1
(n+1)/2(x) as,

Pn+1
(n+1)/2(x) =

(
n+1

(n+1)/2

)
Pn+1

x ((n + 1)/2)(
n+1

x

)
=


(−1)x/2( n+1

(n+1)/2)(
(n+1)/2

x/2 )
(n+1

x ) if x is even

0 if x is odd
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Thus,

α(n+1)/2,a =
1

2a+1(n + 1)2

a+1∑
x=0

(
a + 1

x

)
Pn+1

(n+1)/2(x)

=

(
n+1

(n+1)/2

)
2a+1(n + 1)2

ba+1
2
c∑

x=0

(−1)x
(
a+1
2x

)(
(n+1)/2

x

)(
n+1
2x

)
=

(
n+1

(n+1)/2

)
2a+1(n + 1)2

1 +
ba+1

2
c∑

x=1

(−1)x
(
a+1
2x

)(
(n+1)/2

x

)(
n+1
2x

)


Since x and a are constant,
(
(n+1)/2

x

)
is a polynomial of degree x, and

(
n+1
2x

)
is a polynomial

of degree 2x, we have

(−1)x
(
a+1
2x

)(
(n+1)/2

x

)(
n+1
2x

) ∈ Θ

((
(n+1)/2

x

)(
n+1
2x

) )
⊆ o(1).

for x ≥ 1. Therefore,

α(n+1)/2,a ∈

(
n+1

(n+1)/2

)
2a+1(n + 1)2

(1 + o(1)) .

Using our asymptotic bounds on α we can bound γ, which in turn bounds β.

γ(n+1)/2,a =

(
n+1

(n+1)/2

)((n+1)/2
(n+1)/4

)
α(n+1)/2,a

(
n+1

δ−a−1

)
∈

2a+1(n + 1)2
((n+1)/2
(n+1)/4

)(
n+1

δ−a−1

)
(1 + o(1))

Using Stirling’s formula we can estimate
((n+1)/2
(n+1)/4

)
. We have

(
(n + 1)/2
(n + 1)/4

)
=

((n + 1)/2)!
((n + 1)/4)!((n + 1)/4)!

∈
√

π(n + 1) n+1
2

(n+1)/2
e−(n+1)/2 (1 + Θ( 1

n))

(
√

π(n + 1)/2 n+1
4

(n+1)/4
e−(n+1)/4 (1 + Θ( 1

n)))2

⊆ Θ

(
2
√

π(n + 1) (n + 1)(n+1)/2 4(n+1)/2

π(n + 1)(n + 1)(n+1)/2 2(n+1)/2

)

⊆ Θ

(
2(n+1)/2

√
n + 1

)
.
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We can also estimate
(

n+1
δ−a−1

)
. We have

(
n + 1

δ − a− 1

)
=

(
n + 1⌈

(n + 1)/2−
√

n + 1
⌉
− a− 1

)

=

d(n+1)/2−
√

n+1e−a−2∏
x=0

(n + 1− x)

d(n+1)/2−
√

n+1e−a−2∏
x=0

(⌈
(n + 1)/2−

√
n + 1

⌉
− a− 1− x

)
Since n+1

2 −
√

n + 1 + 1 ≥
⌈

n+1
2 −

√
n + 1

⌉
, we have

n + 1 ≥ n + 1− 2
√

n + 1− 2a− 2x

≥ 2
(⌈

n + 1
2

−
√

n + 1
⌉
− a− 1− x

)
.

Also,

if x ≥ 1
3

(
n + 1− 4

√
n + 1− 4a

)
then 3x ≥

(
n + 1− 4

√
n + 1− 4a

)
then −x ≥

(
n + 1− 4

√
n + 1− 4a− 4x

)
then n + 1− x ≥ 2

(
n + 1− 2

√
n + 1− 2a− 2x

)
then n + 1− x ≥ 4

(⌈
n+1

2 −
√

n + 1
⌉
− a− 1− x

)
.

Thus

(
n + 1

δ − a− 1

)
≥

d(n+1−4
√

n+1−4a)/3e−1∏
x=0

2


 d(n+1)/2−

√
n+1e−a−2∏

x=d(n+1−4
√

n+1−4a)/3e
22


= 22(d(n+1)/2−

√
n+1e−a−2−d(n+1−4

√
n+1−4a)/3e+1)+d(n+1−4

√
n+1−4a)/3e

= 22d(n+1)/2−
√

n+1e−2a−2−d(n+1−4
√

n+1−4a)/3e

≥ 22((n+1)/2−
√

n+1)−2a−2−((n+1−4
√

n+1−4a)/3+1)

= 2
2
3(n−

√
n+1−a− 7

2).

For any ε > 0, 2c(n−
√

n+1) ∈ Ω
(
2(c−ε)n

)
. Therefore

(
n+1

δ−a−1

)
∈ Ω

(
2( 2

3
−ε)n

)
for any ε > 0.

So,

γ(n+1)/2,a ∈
2a+1(n + 1)2Θ

(
2(n+1)/2
√

n+1

)
Ω
(
2( 2

3
−ε)n

)
(1 + o(1))
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This implies that γ(n+1)/2,a tends to 0 as n gets large and so must β(n+1)/2,U , where U is of

size a. Since β(n+1)/2,U tends to zero as n gets large equation 3.5 becomes

B(n+1)/2,S,T = α(n+1)/2,4 − 3α(n+1)/2,5 + 3α(n+1)/2,6 − α(n+1)/2,7

∈

(
n+1

(n+1)/2

)
(n + 1)2

(
1
25
− 3

26
+

3
27
− 1

28
+ o(1)

)
=

(
n+1

(n+1)/2

)
(n + 1)2

(
1

256
+ o(1)

)
.

So B(n+1)/2,S,T tends to infinity as n gets large and therefore there must exist BCH code-

words of weight (n + 1)/2 with the sought after structure for large enough m.

Case(a = 1, b = 3): Suppose S and T are arbitrary disjoint sets of coordinates with

|S| = 1 and |T | = 3. It is sufficient to show B(n+5)/2,S,T ≥ 1 for sufficiently large n. This is

equivalent to the existence of a weight (n + 5)/2 codeword with the appropriate structure.

Such a codeword satisfies the requirements of cases (0,2) and (0,3), since (n+5)/2 is in the

range of acceptable weights for those cases as well.

As in the previous case we let T = {t1, t2, t3}. Using the inclusion exclusion principal

we can write B(n+5)/2,S,T in terms of α and β

B(n+5)/2,S,T = α(n+5)/2,1(1 + β(n+5)/2,S)

−α(n+5)/2,2(3 + β(n+5)/2,S∪{t1} + β(n+5)/2,S∪{t2} + β(n+5)/2,S∪{t3})

+α(n+5)/2,3(3 + β(n+5)/2,S∪{t1,t2} + β(n+5)/2,S∪{t1,t3} + β(n+5)/2,S∪{t2,t3})

−α(n+5)/2,4(1 + β(n+5)/2,S∪T )
(3.6)

To examine the asymptotic behavior of B(n+5)/2,S,T we consider the behavior of the α and

β terms. From the explicit expression for a Krawtchouk polynomial we have

Pn
i (n/2 + 2) =

i∑
j=0

(−1)j

(n
2 + 2

j

)(n
2 − 2
i− j

)
.

This is a summation of polynomials in n of degree i and is therefore also a polynomial of

degree i. So,

Pn
i (n/2 + 2) ∈ Θ(ni).

Also equation 3.3 implies

Pn
n/2+2(x) ∈

(
n

n
2
+2

)
Θ(nx)(
n
x

) .
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Thus,

α(n+5)/2,a =
1

2a+1(n + 1)2

a+1∑
x=0

(
a + 1

x

)
Pn+1

(n+5)/2(x)

∈

(
n+1

(n+5)/2

)
2a+1(n + 1)2

a+1∑
x=0

(
a+1
x

)
Θ(nx)(

n+1
x

)
⊆

(
n+1

(n+5)/2

)
2a+1(n + 1)2

Θ(1).

Using our asymptotic bounds on α we can bound γ, which in turn bounds β.

γ(n+5)/2,a =

(
n+1

(n+1)/2

)((n+1)/2
(n+5)/4

)
α(n+5)/2,a

(
n+1

δ−a−1

)
∈

2a+1(n + 1)(n + 5)(n + 3)
((n+1)/2
(n+5)/4

)
(n− 1)

(
n+1

δ−a−1

)
Θ(1)

Using Stirling’s formula we can estimate
((n+1)/2
(n+1)/4

)
. We have(

(n + 1)/2
(n + 5)/4

)
=

((n + 1)/2)!
((n + 5)/4)!((n− 3)/4)!

=
4(n− 1)((n− 3)/2)!

(n + 5)((n− 3)/4)!((n− 3)/4)!

∈
4(n− 1)

√
π(n− 3) n−3

2

(n−3)/2
e−(n−3)/2 (1 + Θ( 1

n))

(n + 5)(
√

π(n− 3)/2 n−3
4

(n−3)/4
e−(n−3)/4 (1 + Θ( 1

n)))2

⊆ Θ

(
2
√

π(n− 3) (n− 3)(n−3)/2 4(n−3)/2

π(n− 3)(n− 3)(n−3)/2 2(n−3)/2

)

⊆ Θ

(
2(n−3)/2

√
n− 3

)
.

As before
(

n+1
δ−a−1

)
∈ Ω

(
2( 2

3
−ε)n

)
for any ε > 0. So,

γ(n+5)/2,a ∈
2a+1(n + 5)(n + 3)(n + 1)Θ

(
2(n−3)/2
√

n−3

)
(n− 1)Ω

(
2( 2

3
−ε)n

)
Θ(1)

.

This implies that γ(n+5)/2,a tends to 0 as n gets large and so must β(n+5)/2,U , where U is of

size a. Since β(n+5)/2,U tends to zero as n gets large equation 3.6 becomes

B(n+5)/2,S,T = α(n+5)/2,1 − 3α(n+5)/2,2 + 3α(n+5)/2,3 − α(n+5)/2,4

∈

(
n+1

(n+5)/2

)
Θ(1)

(n + 1)2

(
1
22
− 3

23
+

3
24
− 1

25

)
=

(
n+1

(n+5)/2

)
Θ(1)

32(n + 1)2
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for large n. So B(n+5)/2,S,T tends to infinity as n gets large and therefore there must ex-

ist BCH codewords of weight (n+5)/2 with the sought after structure for large enough m. 2

Corollary 3.24 Given two vectors x and y with a = n − dist(x,y) ≤ 4, let z = x + y.

There exist codewords u and v of the code BCH(2,m) that satisfy the following properties

for sufficiently large m:

1. b , dist(u,x) ≤ 3

2. (n− 1)/2− a + b ≤ wt(v) ≤ (n + 1)/2 + b

3. supp(u + x) ⊆ supp(v)

4. supp(z) ∩ supp(u + x + v) = ∅

Proof: Property 1 can be satisfied since the covering radius of BCH(2,m) = 3 for m ≥ 3,

Theorem 3.16. Note that wt(z) = a, wt(x + u) = b, and supp(u + x + v) = supp(v) −

supp(u + x) so the fourth condition says that v has zeros wherever z is one and u + x is

zero. There are at most three such coordinates. The third condition says that v has ones

wherever u + x has ones. Thus by Theorem 3.23 with S = supp(z) and T = supp(x + u)

there exists a codeword v of BCH(2,m) that satisfies properties 2, 3, and 4. 2

Theorem 3.25 t2(BCH(2,m)) = n+1
2 for sufficiently large m.

Proof: Consider two vectors x and y with dist(x,y) = n− a, where a ≥ 5. There exists a

vector v′ with distance at most (n−5)/2 to both x and y and there exists a codeword v with

dist(v,v′) ≤ 3. Thus the distance from v to both x and y is at most (n−5)/2+3 = (n+1)/2.

Consider two vectors x and y with dist(x,y) = n− a, where a ≤ 4. Let u, v, z, and b

be as in Corollary 3.24. Then

dist(x,u + v) = wt(u + v + x)

= wt(v)− wt(u + x)

= wt(v)− b

≤ n + 1
2

,
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and

dist(y,u + v) = wt(u + v + y)

= wt(u + v + x + z)

= n− wt(u + v + x + z)

= n− wt(u + v + x)− wt(z)

= n− wt(v) + b− a

≤ n + 1
2

.

2
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Chapter 4

Complexity

In this chapter we introduce aspects of complexity theory and study the computational com-

plexity of various problems related to the multicovering radii of codes. There are several

problems that frequently occur when dealing with codes, such as: performing minimum dis-

tance decoding, determining minimum distance, finding the covering radius, etc. Therefore,

knowing the complexity of such problems becomes important so we can apply appropriate

techniques to them. We examine the complexity of various decision problems relating to

error correcting codes, focusing on problems involving covering radii. For a detailed look

at complexity theory see Garey and Johnson’s book [7].

For now we will only consider problems that consist of a question with a “yes” or “no”

answer. Such problems are called decision problems. We restrict our attention to decision

problems since they have a natural formal analog known as a language. Given any finite

set of symbols Σ we denote the set of all finite strings of symbols over Σ as Σ∗. If L is a

subset of Σ∗ then it is called a language over the alphabet Σ.

The correspondence between decision problems and language is given by the encoding

scheme that is used to encode the instances of a problem. A problem and encoding scheme

partition Σ∗ into three parts: strings that are not encodings of instances of the problem,

strings that are encodings of “no” instances and strings that are encoding of “yes” instances.

The later class of strings is taken to be the language corresponding to the problem. Note that

this language is dependent on the encoding scheme. We follow the more informal practice of

considering only “reasonable” encoding schemes and properties that are independent under

this restriction. For an encoding scheme to be accepted as reasonable it should be concise,

not padded with unnecessary symbols, numbers should be represented in binary or some
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other larger base, and decodable in that any component of an instance could be extracted

from the encoded instance in polynomial-time.

An algorithm A solves a decision problem if for every instance of that problem A returns

the correct answer. The size of an instance of a problem is the length of the string encoding

the instance by some reasonable encoding scheme. The time complexity function for an

algorithm A that halts on all input strings over Σ is given by:

TA(n) = max{t : ∃x ∈ Σ∗ s.t. |x| = n and A takes time t to halt on input x }

Algorithms are often classified by the asymptotic performance of this worst case running

time. For a given function g(n) we define the following sets of functions:

Θ(g(n)) = {f(n) : ∃c1, c2, n0 > 0 s.t. 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n),∀n ≥ n0}

O(g(n)) = {f(n) : ∃c, n0 > 0 s.t. 0 ≤ f(n) ≤ cg(n),∀n ≥ n0}

Ω(g(n)) = {f(n) : ∃c, n0 > 0 s.t. 0 ≤ cg(n) ≤ f(n),∀n ≥ n0}

o(g(n)) = {f(n) : ∀c > 0,∃n0 > 0 s.t. 0 ≤ f(n) < cg(n),∀n ≥ n0}

ω(g(n)) = {f(n) : ∀c > 0,∃n0 > 0 s.t. 0 ≤ cg(n) < f(n),∀n ≥ n0}

A polynomial-time algorithm is one whose time complexity function is bounded by some

polynomial p(n), where n is the size of an instance. That is TA(n) ∈ O(p(n)) for some

polynomial p(n). The class of polynomial-time solvable problems is denoted by P. Another

fundamental class of decision problems is NP. A decision problem belongs to NP if it can

be solved by a polynomial time nondeterministic algorithm. This is an algorithm that can

be thought of as having two stages, a guessing stage and a verification stage. The guessing

stage produces some structure s. The verification stage is deterministic and uses s to solve

the problem. Such an algorithm solves a problem if whenever the correct answer is “no”

there does not exists a guess s that can produce a “yes” in the verification stage, and if

whenever the correct answer is “yes” there exists some guess s that produces a “yes” in the

verification stage.

For example consider the following decision problem

NAME: Satisfiability (SAT)

INSTANCE: A set V of variables and a Boolean formula F over V .

QUESTION: Can F be satisfied?

Theorem 4.1 SAT is in NP.
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4.1 NP Completeness

The concept of NP-completeness gives us a way of showing that a problem in NP is as

difficult as any other problem in NP. An informal definition for NP-completeness is that a

problem A in NP is NP-complete if any problem in NP could be solved in polynomial time

if A can be solved in polynomial time. To formalize this idea we will introduce the idea of a

reduction. A set A has a polynomial time mapping reduction to a set B, denoted A �p
m B,

if there exists a function f that is computable in polynomial time so that

x ∈ A ⇔ f(x) ∈ B.

The function f can be thought of transforming an instance of problem A into an instance

of problem B. Note that �p
m is a binary relation over Σ∗. Some properties of �p

m follow.

Theorem 4.2

1. �p
m is reflexive

2. �p
m is transitive

3. A �p
m B if and only if A �p

m B

4. A �p
m B and B ∈ P implies A ∈ P

5. A �p
m B and B ∈ NP implies A ∈ NP

6. If A ∈ P, then for all B 6= Σ∗, ∅ then A �p
m B

Proof:

1. �p
m is reflexive

Let A be any set, and let f be the identity function (f : x → x). Thus f is computable

in O(|x|) time and x ∈ A ⇔ f(x) = x ∈ A. Therefore A �p
m A.

2. �p
m is transitive

Let A, B, and C be sets such that A �p
m B �p

m C. So there exists polynomial-time

reductions f and g from A to B and B to C respectively. So g(f(x)) is a polynomial-

time computable function. Furthermore, x ∈ A ⇔ f(x) ∈ B ⇔ g(f(x)) ∈ C as f and

g are reductions. Therefore A �p
m C.
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3. A �p
m B ⇔ A �p

m B

(⇒) Assume that A �p
m B via a function f . So x ∈ A ⇔ f(x) ∈ B. Taking the

contrapositive of this statement we see that f(x) 6∈ B ⇔ x 6∈ A. Thus, A �p
m B.

(⇐) Similar to the above case.

4. A �p
m B and B ∈ P implies A ∈ P

Since A �p
m B there must exist a function f(x) that transforms instances of A into

instances of B in polynomial time. Also there exists a polynomial time algorithm M

that solves B because B ∈ P. To solve an instance x of A in polynomial time we need

only compute f(x) and use f(x) as the input to M .

5. A �p
m B and B ∈ NP implies A ∈ NP

Since B is in NP there exists a polynomial time nondeterministic algorithm MB that

solves it. A polynomial time nondeterministic algorithm to solve A can then be formed

from MB and the reduction between A and B. Given the input x use MB on f(x).

6. If A ∈ P, then for all B 6= Σ∗, ∅ then A �p
m B

Since B is not equal to Σ∗ or ∅ there exists y ∈ B and z 6∈ B. The set A is in P so

there is a polynomial time algorithm that determines membership in A. The function

f(x) for the reduction can use this algorithm to determine whether a given input x is

in A or not. If so f(x) = y otherwise f(x) = z.

2

Definition: A set A is NP-complete if

1. A ∈ NP

2. For every set L ∈ NP, L �p
m A.

If A satisfies the second property A is said to be NP-hard.

Perhaps the biggest open problem in complexity theory is the question of whether P =

NP. If A is NP-complete then every problem in NP can be transformed into A with only a

polynomial increase in the amount of time needed to solve it. This leads us to the following

characterization of when P is equal to NP.

Theorem 4.3 If A is NP-complete, then A ∈ P if and only if P = NP.
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NP−
complete
problems

NPI

P

Figure 4.1: If P 6= NP

Proof: If a problem can be solved in polynomial time deterministically then it can also be

solved in polynomial time nondeterministically by discarding the structure generated from

the guessing stage and proceeding with the original algorithm. Thus P ⊆ NP.

Now suppose that A is NP-complete and let L be in NP. From the definition of NP-

completeness L �p
m A. Since A belongs to P so does L by Theorem 4.2.4. Therefore NP ⊆

P. 2

This gives us three possibilities: P = NP, NP = P ∪ NP-complete, and NP = P ∪ NP-

complete ∪ NPI. Where NPI = NP - (P ∪ NP-complete) is some set of languages having

“intermediate” difficulty. Ladner [16] was able to show that if P 6= NP then NPI is not

empty.

Theorem 4.4 (Ladner) If P 6= NP, then there is a language in NP which is neither in P

nor is it NP-complete.

This gives us the picture in Figure 4.1 if P is not equal to NP. One question is whether

NP-complete languages exist. It turns out that there exist hundreds of natural NP-complete
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problems. Many of these are cataloged in Garey and Johnson’s book [7]. Working inde-

pendently Cook [4] and Levin [17] were the first to discover natural NP-complete problems.

Cook proved that the problem of determining whether a Boolean formula is satisfiable is

NP-complete.

Theorem 4.5 (Cook’s Theorem) SAT is NP-complete

The proof of Cook’s Theorem is quite lengthy since it must be shown that any language in

NP can be reduced to SAT. Fortunately once an NP-complete problem is known it is easier

to prove that other languages are NP-complete using the following theorem.

Theorem 4.6 If A is NP-complete, A �p
m B, and B ∈ NP, then B is NP-complete.

Proof: For any L ∈ NP, L �p
m A since A is NP-complete. If A �p

m B then by the

transitivity of �p
m, L �p

m B. Thus B is NP-hard. If B is also in NP then it is NP-complete.

2

Therefore to show that a language B is NP-complete we need to show that B is in NP and

that A �p
m B, where A is known to be NP-complete.

It is known that the following coding theoretic problems are NP-complete:

Covering Radius:

Lower bounding the covering radius of an arbitrary code. [6]

Weight of error:

Given a linear code C with parity check matrix H, a vector v, and a non-negative

integer w, is it true that dist(v, C) ≤ w? [19]

Minimal weight:

Given a linear code with parity check matrix H and a non-negative integer w, is there

a non-zero codeword c with weight less than or equal to w? [26]

Codeword of given weight:

Given a linear code with parity check matrix H and a non-negative integer w, is there

a codeword c with weight equal to w? [19]

Also, when restricted to linear codes, the problem of lower bounding the covering radius

is known to be Σp
2-complete [20]. Σp

2 is a class of problems that will be introduced in
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the next section. The problem of minimal weight relates to finding the minimum distance

of a linear code; the minimum distance of a linear code is the minimum weight of any

non-zero codeword. Furthermore, Dumer, Micciancio and Sudan have shown that even

approximating the minimum distance of a linear code within a constant factor, or within an

additive error that is linear in the length of the code, is not possible in random polynomial

time (RP), unless RP equals NP [22]. For an overview of computational complexity as it

relates to coding theory see Barg’s survey [1].

For each class of problems that we define we can also define the class of problems that

are complementary to it. Given a set of problems S, let co-S be the set of instances that

have their answers reversed. If a problem π can be solved by a deterministic polynomial

time algorithm then the complement of π can as well. Simply reverse the output of the

algorithm. However the same cannot be easily seen for nondeterministic algorithms. Note

that P = co-P ⊆ NP ∩ co-NP. Since many problems in co-NP do not seem to be in NP, one

might conjecture that NP is not equal to co-NP. This is in fact a stronger conjecture than

P 6= NP in that NP 6= co-NP would imply P 6= NP while the converse is not true. However

there is a connection between NP-completeness and the conjecture that NP is not equal to

co-NP. Figure 4.2 shows the state of affairs if NP is not equal to co-NP.

Theorem 4.7 A is �p
m-complete for co-NP if and only if A is �p

m-complete for NP.

Proof: (⇒) Assume that A is �p
m-complete for co-NP and let S be any element of NP.

Thus S is an element of co-NP, A is an element of NP, and S �p
m A. Then by Theorem

4.2.3 S �p
m A. Therefore A is �p

m-complete for NP as the choice of S was arbitrary.

(⇐) Similar to the above case. 2

Theorem 4.8 co-NP = NP if and only if there exists a NP-complete problem A such that

A is in NP.

Proof: Suppose that co-NP = NP. Then for any NP-complete problem, for example SAT,

its complement will be in co-NP=NP.

Suppose there exists a NP-complete language A such that A ∈ NP. Theorem 4.7 says

that A is then co-NP-complete. So if L ∈ co-NP, L �p
m A. Since A is in NP so is L by

Theorem 4.2.5. Thus co-NP ⊆ NP. The opposite containment can be shown similarly. 2
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Figure 4.2: If NP 6= co-NP

Theorem 4.9 The problem of determining whether a formula of propositional logic is a

tautology (TAUT) is �p
m-complete for co-NP.

Proof: We know from Cook’s Theorem that SAT is NP-complete, and so Theorem 4.7

implies that SAT is co-NP-complete. Note that SAT, when given a propositional formula

F , asks whether F is unsatisfiable. However, SAT polynomial-time reduces to TAUT. Map

F to its negation (F is always false if and only if ¬F is always true). Thus, TAUT is

�p
m-complete for co-NP. 2

4.2 Introduction to the polynomial hierarchy

The polynomial hierarchy formalizes a way to discuss problems that are NP-hard but might

be harder than NP-complete problems. The following definitions are from Garey and John-

son’s book [7]. The language classes PY and NPY are defined as follows, where Y is a set
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of languages:

PY = {L : ∃L′ ∈ Y such that there is a Turing reduction from L to L′ }

NPY =

L :
∃L′ ∈ Y such that there is a polynomial time

nondeterministic Turing reduction from L to L′

 .

Meyer and Stockmeyer [21] observed that you could continue to build these classes induc-

tively giving an infinite hierarchy of classes of apparently growing difficulty. Let Σp
0 = Πp

0 =

∆p
0 = P and for all k ≥ 0, ∆p

k+1 = PΣp
k , Σp

k=1 = NPΣp
k , and Πp

k+1 = co−Σp
k+1. So Σp

1 = NP,

Πp
1 = co-NP, and ∆p

1 = P. The idea is that a problem is in Σp
k if it can be solved by a

polynomial time nondeterministic algorithm that has access to an oracle that can provide

solutions for some problem in Σp
k−1. We have the following containment relationships be-

tween classes in the polynomial hierarchy. The set ∆p
k is contained by both Σp

k and Πp
k.

They are in turn both contained by ∆p
k+1.

When we wish to determine whether a language is complete for a given class we must

first show that the language is an element of the class. In the case of the polynomial

hierarchy this would be difficult if we had to use the inductive definition itself. Fortunately,

there is a more direct approach using relations. The following theorem is due to Wrathall

[28].

Theorem 4.10 (Wrathall) Let L ⊆ Γ∗ be a language, with |Γ| ≥ 2. For any k ≥ 1,

L ∈ Σp
k if and only if there exist polynomials p1, p2, . . . , pk and a polynomial time recognizable

relation R of dimension k + 1 over Γ∗ such that for all x ∈ Γ∗

x ∈ L ↔ (∃y1 ∈ Γ∗ such that |y1| ≤ p1(|x|))

(∀y2 ∈ Γ∗ such that |y2| ≤ p2(|x|))
...

(Qyk ∈ Γ∗ such that |yk| ≤ pk(|x|))

[〈x, y1, y2, . . . , yk〉 ∈ R]

where Q is an existential quantifier if k is odd and a universal quantifier if k is even (in

general the quantifiers alternate).

A similar characterization for Πp
k holds when the quantifiers alternate the other way (∀∃∀ . . . ).

Also each class in the polynomial hierarchy is closed under �p
m. So if A is complete for the

class C in the polynomial hierarchy, A �p
m B, and B is in C, then B is complete for C.

50



Therefore, the situation is similar to the case of NP-completeness, it becomes much simpler

to prove completeness for a particular class of the polynomial hierarchy once there is a

known problem that is complete for that class. The following family of quantified versions

of satisfiability performs that role for the polynomial hierarchy.

NAME: ∃1∀2∃3 . . . Qk − 3−Satisfiability (∃1∀2∃3 . . . Qk − 3−SAT), where the quantifiers

alternate and Qk denotes ∃ if k is odd and ∀ if k is even.

INSTANCE: A k-tuple of integers m1, . . . ,mk and a quantified Boolean expression

∃u1,1 . . . u1,m1∀u2,1 . . . u2,m2∃u3,1 . . . u3,m3 . . . Quk,1 . . . uk,mk
E,

where E is in conjunctive normal form, there are three distinct literals in each clause

and the quantified variables are all the variables of E.

QUESTION: Can E be satisfied with respect to the quantifiers?

Meyer and Stockmeyer [21] proved the following completeness result.

Theorem 4.11 (Meyer and Stockmeyer) For all k ≥ 1, ∃1∀2∃3 . . . Qk−3−SAT is com-

plete for Σp
k, and the complementary problem ∀1∃2∀3 . . . Qk − 3−SAT is complete for Πp

k.

The hierarchy is somewhat fragile in the sense that equality at one level implies equality

at all levels above it.

Theorem 4.12 If there exists an i ≥ 1 such that Σp
i = Πp

i , then for all j > i Σp
j = Πp

j =

∆p
j = Σp

i .

If the conclusion of Theorem 4.12 holds, then the polynomial hierarchy is said to collapse

to the ith level.

Corollary 4.13 If P = NP, or if NP = co-NP, then the polynomial hierarchy collapses to

the first level.

So without knowing that P 6= NP, the polynomial hierarchy cannot be shown to be a true

hierarchy of classes each properly containing the last. However, the polynomial hierarchy

remains interesting. The levels of the hierarchy do contain natural problems, many of which

are complete for some class in the hierarchy.
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4.3 Complexity of bounding the 1-covering radius

The complexity of bounding the 1-covering radius of binary codes was first studied in the

linear case where McLoughlin [20] showed that lower bounding the 1-covering radius of

a linear binary code was Σp
2-complete. Later, Frances and Litman [6] proved that lower

bounding the 1-covering radius in the unrestricted case was NP-complete. This difference

in complexity can be explained by the fact that a linear code can be represented in a

very compact form via a generator or parity check matrix. The problem of computing a

lower bound of the multicovering radius of a binary code can be stated in the form of the

following family of decision problems, where m(n) is a function from the positive integers

to the positive integers:

NAME: LBCm(n) Lower bounding the multicovering radius of an arbitrary code:

INSTANCE: A binary code C ⊆ F n, given as a list of all codewords, and a positive

integer w.

QUESTION: Does there exist an m(n)-tuple (y1, . . . ,ym(n)) of binary vectors of length n

such that for every codeword c in C there is some yi that is at least distance w from

c?

If we focus our attention only on linear codes the problem can be stated as:

NAME: LBLCm(n) Lower bounding the multicovering radius of a linear code:

INSTANCE: A linear binary code C ⊆ F n, given by a parity check matrix H with

dimensions (n− k)× n, and a positive integer w.

QUESTION: Does there exist an m(n)-tuple (y1, . . . ,ym(n)) of binary vectors of length

n such that for every vector c ∈ F n, where HcT = 0n−k, there is some yi that is at

least distance w from c?

Note that the parameter m(n) could be thought of as a constant integer, but we will

take the more general view that m is a function of the length n of the code C. Often we will

use the shorthand LBCi or LBLCi, where i is an integer, to mean that m(n) is the constant

function m : n 7→ i. Also, a (n, K) code when represented by a list, or a [n, k] code when

represented by a generator or parity check matrix has size O(nK) or O(n2) respectively.
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To show that LBC1 is NP-complete Frances and Litman constructed a polynomial-time

reduction from 3-SAT, which was shown to be NP-complete by a transformation from SAT

by Cook [4].

NAME: 3-satisfiability (3-SAT)

INSTANCE: A Boolean formula E = C1 ∧ C2 ∧ · · · ∧ Cm, in conjunctive normal form,

with exactly three distinct literals in each clause.

QUESTION: Can E be satisfied?

To describe this reduction we will use facts about doubled vectors. We say that a vector

v = v1v2 · · · v2n ∈ F 2n is doubled if v2i−1 = v2i for all i between 1 and n. Doubled

vectors of length 2n can be characterized by their distances to a set Y2n. This set can be

constructed from the vector u(i) = 0101 · · · 01 ∈ F 2i. Define Y 1
2n = {01|u(n−1), 10|u(n−1),

01|u(n− 1),10|u(n− 1)}.

Lemma 4.14 If v ∈ F 2n is such that for all y ∈ Y 1
2n, dist(v,y) ≤ n, then v1 = v2.

Proof: Note that

dist(v, 01|u(n− 1)) = dist(v1v2, 01) + dist(v3 . . . v2n,u(n− 1)) ≤ n (4.1)

by our hypothesis. Similarly, dist(v1v2, 01) + dist(v3 . . . v2n,u(n − 1)) is less than or equal

to n. So

dist(v1v2, 01) + 2(n− 1)− dist(v3 . . . v2n, u(n− 1)) ≤ n (4.2)

as dist(x,y) = k− dist(x,y) if x and y have length k. Adding the two inequalities 4.1 and

4.2 together we see that dist(v1v2, 01) ≤ 1. The same argument using the other two vectors

in Y 1
2n shows that dist(v1v2, 10) ≤ 1. Therefore v1 = v2. 2

Let sj denote the circular right shift by 2j − 2 bits and Y j
2n = {sj(y) : y ∈ Y 1

2n}.

Lemma 4.15 If v ∈ F 2n is such that for all y ∈ Y j
2n, dist(v,y) ≤ n, then v2j−1 = v2j.

Let Y2n =
⋃n

j=1 Y j
2n.

Lemma 4.16 If v ∈ F 2n is doubled if and only if dist(v,y) ≤ n for all y ∈ Y2n.

Theorem 4.17 (Frances and Litman) The decision problem LBC1 is NP-complete.
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Proof: Let E = C1∧C2∧· · ·∧Cm be an instance of 3-SAT using the variables x1, x2, . . . , xn.

For each clause Cj define the vector z(Cj) ∈ F 2n where:

z2i−1 = z2i = 0 if Cj contains xi

z2i−1 = z2i = 1 if Cj contains xi

z2i−1 = 0, z2i = 1 otherwise.

We then define the code C ⊆ F 2n+2 to be the set {z(Cj)|00 : i ≤ j ≤ m} ∪ Y2(n+1), and

w = n + 1. The code C and integer w form our instance of LBC1. The cardinality of C is

2n + 4 + m so this construction can be done in polynomial-time with respect to the size of

E.

To see that this is indeed a reduction we must show that positive and negative instances

coincide. Assume that E can be satisfied. Any satisfying assignment can be represented

by a vector v ∈ F n, where the ith coordinate of v is one if xi is assigned to be true and

zero otherwise. Now let v∗ = v1v1v2v2 · · · vnvn|00 ∈ F 2n+2. This vector v∗ is doubled

so dist(c,v∗) ≤ n + 1 = w for every c ∈ Y2n by Lemma 4.16. In each clause there is

at least one literal which is set true by the assignment corresponding to v as it satisfies

E. So dist(z(Cj)|00,v∗) ≤ 2 + 2 + 0 + (n − 3) = w. So for every c ∈ C, dist(c,v∗) ≥

2n + 2− (n + 1) = n + 1. Thus C has covering radius at least w.

Assume that C has covering radius at least w. Then there exists a vector v∗ ∈ F 2n+2

such that dist(v∗, c) ≥ n + 1. As dist(v∗, c) ≤ n + 1 for every c in C, v∗ is doubled. Let

v∗ = v1v1v2v2 . . . vnvnvn+1vn+1. Then dist(v1v1v2v2 . . . vnvn, z(Cj)) ≤ n + 1. Therefore

there exists an i such that z2i−1 = z2i = vi. So the assignment corresponding to this vector

satisfies E. 2

Theorem 4.18 (McLoughlin) The decision problem LBLC1 is Σp
2-complete.

4.4 Complexity of bounding the m-covering radius

We now show that LBCm(n) is NP-complete and LBLCm(n) is Σp
2-complete for any function

m(n) that is polynomially bounded in n. This is done by showing that there is a polynomial

time mapping reduction from LBC1 to LBCm(n), and from LBLC1 to LBLCm(n). First we

need a lemma using the minimum distance of a code.
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Lemma 4.19 If C is a (n, K, d) code, then ∀y ∈ F n, c.1, c.2 ∈ C such that c.1 6= c.2, we

have dist(y, c.1) + dist(y, c.2) ≤ 2n− d.

Proof: For any distinct c.1, c.2 ∈ C and y ∈ F n we have:

dist(y, c.1) + dist(y, c.2) = 2n− (dist(y, c.1) + dist(y, c.2))

≤ 2n− dist(c.1, c.2)

≤ 2n− d.

2

We are now ready to prove our first completeness result. The heart of our result is a

construction that takes a given code and produces another code whose m-covering radius

is only dependent on the 1-covering radius and length of the original code. Given a binary

(n, K) code C and positive integer m, let l = blog(m)c. Note that log(m) ≥ l ≥ log(m +

1)− 1. Let S be the code that has the following l× l(2n + 1) matrix as a generator matrix:
12n+1 02n+1 02n+1 · · · 02n+1

02n+1 12n+1 02n+1 · · · 02n+1

...
. . .

...

02n+1 02n+1 02n+1 · · · 12n+1


Thus S is a [r = l(2n + 1), l, d = 2n + 1] linear code. We also use the direct product of

codes. Given the codes A and B their direct product is A×B = {a|c : a ∈ A,b ∈ B}.

Lemma 4.20 A (n, K) code C has 1-covering radius w if and only if C ′ = C × S has

m-covering radius w + r, where r is the length of S.

Proof: Suppose the 1-covering radius of C is at least w. That is, there exists a y ∈ F n

such that for every c ∈ C the distance from y to c is at least w. Let s.1, s.2, . . . , s.2l be

the elements of S and y.i = y|s.i, where 1 ≤ i ≤ 2l. If c′ ∈ C ′, then c′ = c|s.i for some

c ∈ C and s.i ∈ S. Therefore, the distance from y.i to c|s.i is at least w + r. Since

l is at most log(m), the cardinality of S and {y.i : i = 1, . . . , 2l} is at most m. Thus

tm(C ′) ≥ t2l(C ′) ≥ w + r.

Now suppose that the m-covering radius of C ′ is at least w + r. So there exist vectors

y.1, . . . ,y.m such that for every c′ ∈ C ′ the distance from c′ to one or more y.i is at least

w + r. Let Ti be a minimal subset of {y.1, . . . ,y.m} such that for every c ∈ C there is a y

in Ti where the distance from y to c|s.i is at least w + r; hence 1 ≤ |Ti| ≤ m.
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We claim that for every y ∈ F n+r, if there exist vectors c.1 ∈ C and s.i ∈ S such that

the distance from y to c.1|s.i is at least w + r, then there do not exist vectors c.2 ∈ C and

s.j ∈ S, such that s.i 6= s.j and the distance from y to c.2|s.j is greater than or equal to

w+r. In other words, if there is a vector that is far (distance at least w+r) from a codeword

that ends in s.i, then it cannot be far from a codeword of any other form. Assume that the

claim is false; there exist vectors y ∈ F n+r, c.1, c.2 ∈ C, and distinct vectors s.i, s.j ∈ S

such that:

dist(y, c.1|s.i) = dist(y′, c.1) + dist(y′′, s.i) ≥ w + r (4.3)

dist(y, c.2|s.j) = dist(y′, c.2) + dist(y′′, s.j) ≥ w + r (4.4)

where y′ consists of the first n coordinates of y and y′′ the remaining r. Adding inequalities

(4.3) and ( 4.4) yields:

dist(y′, c.1) + dist(y′′, s.i) + dist(y′, c.2) + dist(y′′, s.j) ≥ 2(w + r). (4.5)

Also from Lemma 4.19 we have the inequality:

dist(y′′, s.i) + dist(y′′, s.j) ≤ 2r − d. (4.6)

Thus,

dist(y′, c.1) + dist(y′, c.2) ≥ 2(w + r)− 2r + d = 2w + d > 2n,

which is a contradiction as the length of each of the above vectors is n.

So if y is an element of Ti, then it cannot also be an element of Tj , where i 6= j. Therefore,

there exists a Ti with cardinality one. Otherwise, each Ti contains at least 2 distinct vectors

for a total of at least 2l+1 distinct vectors in the union of every Ti. So, m ≥ 2l+1, but this

contradicts the fact that l ≥ log(m + 1) − 1. Furthermore, if dist(y, c|s.i) ≥ w + r then

dist(y′, c) ≥ w+r−dist(y′′, s.i) ≥ w. So we have a vector whose distance to each codeword

is at least w. 2

We use Lemma 4.20 to form a polynomial time mapping reduction from LBC1 to LBCm(n).

Theorem 4.21 The decision problem LBCm(n) is NP-complete for any m(n) that is poly-

nomially bounded by the length of the code.
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Proof: Let C be a binary (n, K) code and m(n) be polynomially bounded by n. So there

exists an integer i such that m(n) ∈ O(ni). The Hamming distance between any two vectors

of length n can be found in time O(n) by simple comparisons. Similarly cov(y, C) and

cov(C,S) can be computed in time O(Kn) and O(m(n)Kn) respectively, where |S| = m(n).

So, O(m(n)Kn) ⊆ O(Kni+1). Thus the problem LBCm(n) belongs to NP, since it can be

verified in polynomial time with respect to the size of the code C.

To show that LBCm(n) is also NP-hard we give a reduction from LBC1. Given any

instance of LBC1, a binary (n, K) code C and a positive integer w, let C ′ = C × S be

the code and w′ the integer given in the construction of Lemma 4.20. As stated in the

construction S is a [r = l(2n + 1), l = blog(m(n))c, d = 2n + 1] code. So C ′ is a (n + r, K2l)

code. However, the total size of C ′ is still polynomial in the size of C since l is bounded by

the logarithm of m(n). This shows that our construction can be done in polynomial time.

Furthermore, Lemma 4.20 says that C ∈ LBC1 if and only if C ′ ∈ LBCm(n). 2

In a similar fashion we form a reduction from LBLC1 to LBLCm(n).

Theorem 4.22 The decision problem LBLCm(n) is Σp
2-complete for any m(n) that is poly-

nomially bounded by the length of the code.

Proof: Let U be the set of all 〈H, w, Y, c〉 where H is a binary matrix, w is an integer,

Y is a set of binary vectors, and c is a binary vector. We define the relation R to be the

subset of U where if H is a (n − k) × n matrix then every vector in Y , as well as c, have

length n, HcT = 0n−k, and cov(c, Y ) ≥ w. It is trivial to determine if Y and c have the

appropriate length in polynomial time with respect to the size of H and the cardinality of

Y . The matrix multiplication can also be done in polynomial time. As we discussed in the

proof of Theorem 4.21, cov(c, Y ) can be computed in time O(m(n)n). Therefore when m(n)

is polynomially bounded by n, membership in R can be determined in polynomial time.

Furthermore, LBLCm(n) can be written as: Given a n× k binary matrix H and integer w,

is it true that

∃y.1, . . . ,y.m(n) ∈ F n∀c ∈ F n〈H, w, {y.1, . . . ,y.m(n)}, c〉 ∈ R?

Thus LBLCm(n) is in Σp
2.

Now we show that LBLCm(n) is Σp
2-hard. Let the matrix H and positive integer w be

any instance of LBLC1. Since the generator matrix of the [r, l] code S used in Lemma 4.20
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can be formed in polynomial time, so too can the parity check matrix H′ of C ′ = C × S.

Also, Lemma 4.20 says that C ∈ LBLC1 if and only if C ′ ∈ LBLCm(n). 2

Another way of forming the decision problem of computing a lower bound of the m-

covering radius of a binary code would be to include m in the instance of the problem. This

can be stated in the form of the following decision problem:

NAME: LBCM Lower bounding the multicovering radius of an arbitrary binary code:

INSTANCE: A binary code C ⊆ F n, given as a list of all codewords, and positive integers

w and m.

QUESTION: Does there exist an m-tuple (y.1, . . . ,y.m) of binary vectors of length n

such that for every codeword c in C there is some y.i that is at least distance w from

c?

Theorem 4.23 The decision problem LBCM is NP-complete.

Proof: Let C, a binary (n, K) code, and positive integers w and m be an instance of LBCM.

If w > n, then the answer must be “no” since any collection of vectors can be covered in

radius n by any one vector. If w ≤ dn/2e, then the answer must be “yes” since the closest

that a vector can mutually be to two complementary vectors is dn/2e. If m ≥ K, then

tm(C) = n as the m-tuple can contain the complement of the code C. The only time when

there is ambiguity in the answer is when 1 ≤ m < K and dn/2e < w ≤ n, and this case can

be verified in polynomial time. Thus, LBCM is in NP. Furthermore, 〈C,w〉 ∈ LBC1 if and

only if 〈C,w, 1〉 ∈ LBCM. So LBCM is NP-complete. 2

The case when the code is linear is similar and the problem is Σp
2-complete.

4.5 Complexity of approximating the m-covering radius

We have seen that it is doubtful that one can exactly determine the m-covering radius of

a code in polynomial time. So we ask what happens if we relax things and require only an

approximation of the m-covering radius. We show that for at least one type of performance

guarantee this is also as hard as the original problem.

First let us set the stage with some definitions. A combinatorial optimization problem

is either a minimization or a maximization problem that consists of the following:

59



• I, a set of instances.

• For each i in I, a finite set S(i). The elements of S(i) are called the candidate solutions

for i.

• A function m, called the objective function, that takes an instance i and a candidate

solution s in S(i) and returns a positive rational number m(i, s), called the solution

value of s.

If a problem is a minimization or respectively a maximization problem, then an optimal so-

lution of an instance is a candidate solution with the minimum or respectively the maximum

solution value. An approximation algorithm for an optimization problem is any algorithm

A that when given an instance i of the problem returns a candidate solution sA(i). The so-

lution value of sA(i) will be denoted A(i). That is, A(i) = m(i, sA(i)). If A(i) is always an

optimal solution then A is called an optimization algorithm. The problem of approximating

the multicovering radius can be given in the form of the following maximization problems:

NAME: ACRm(n) Approximating the multicovering radius of an arbitrary binary code:

INSTANCES: I is the set of all binary codes.

CANDIDATES: for each (n, K) code C let S(C) be the set of all m(n)-tuples of binary

vectors with length n.

OBJECTIVE FUNCTION: Given any code C and m(n)-tuple Y , let m(C, Y ) = cov(C, Y ).

NAME: ACRLm(n) Approximating the multicovering radius of a linear code:

INSTANCES: I is the set of all parity check matrices for linear binary codes.

CANDIDATES: for each [n, k] code C let S(C) be the set of all m(n)-tuples of binary

vectors with length n.

OBJECTIVE FUNCTION: Given any code C and m(n)-tuple Y , let m(C, Y ) = cov(C, Y ).

We start with a lemma.

Lemma 4.24 Given a function f : Z+ → N and the following properties:
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1. There exists an ε < 1 such that f is in o(nε).

2. There exists a positive integer valued function g(n) that is polynomially bounded by n

such that f(ng(n)) < g(n) for all sufficiently large n.

3. There exists an ε < 1 such that f is not in ω(nε).

Then (1) ⇒ (2) ⇒ (3).

Proof: (1) ⇒ (2) Given that f is in o(nε) for some ε < 1, then for some such ε, f(n) < nε

for all n sufficiently large. Let d = dε/(1 − ε)e and g(n) = nd. So f(ng(n)) < (ng(n))ε ≤

nε(d+1) ≤ g(n) for all n sufficiently large.

(2) ⇒ (3) Assume not, then for every ε < 1, f is in ω(nε). Since g is positive integer

valued then n ≤ ng(n) for any integer n. Also since g is polynomially bounded there exists

a d such that g(n) ≤ nd for n sufficiently large. Let ε be a real number less than one

such that ε/(1 − ε) > d. This is possible since ε/(1 − ε) tends to infinity as ε tends to one

from below. Because f(n) is in ω(nε) then f(n) > nε for all n sufficiently large. Thus,

(ng(n))ε < f(ng(n)) < g(n) for large n. However, this implies that nε < g(n)1−ε and

nε/(1−ε) < g(n) ≤ nd for n sufficiently large. This is a contradiction as ε/(1− ε) > d. 2

We will call any function that satisfies property 2 asymptotically sublinear.

Theorem 4.25 If P 6= NP and f is an asymptotically sublinear function, then there does

not exist a polynomial time approximation algorithm A1 for ACR1 that guarantees t1(C)−

A1(C) ≤ f(n).

Proof: Suppose that P is not equal to NP and that there is such an algorithm A1. Given

a (n, K) binary code C and function f that satisfies the hypothesis, let C ′ be the direct

product of C with itself g(n) times, C ′ = Cg(n). Since g(n) is polynomially bounded in n, the

C ′ can be constructed in polynomial time. We will see that we can use the approximation

algorithm A1 on C ′ to find the 1-covering radius of C exactly and in polynomial time for

all n sufficiently large. This contradicts Theorem 4.17.

Let sA1(C ′) = s1|s2| . . . |sg(n) be the candidate solution found by A1 on input C ′, where

s1, . . . , sg(n) all have length n. We have A1(C ′) = cov(C ′, sA1(C ′)) =
∑g(n)

i=1 cov(C, si). Now

let smax be the si that has the greatest distance from C. In other words, cov(C, smax) =

max1≤i≤g(n)(cov(C, si)). Because cov(C, si) can be computed in time O(Kn), cov(C, smax)

can be found in timeO(g(n)Kn) i.e. in polynomial time. Since smax has the greatest distance
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from C it makes the largest contribution to A1(C ′) and cov(C, smax) ≥ dA1(C ′)/g(n)e. We

have the guarantee

t1(C ′)−A1(C ′) ≤ f(n′) (4.7)

where n′ = ng(n) is the length of C ′. Also, since C ′ was formed by taking the direct product

of C g(n) times, t1(C ′) = g(n)t1(C). Using the fact that f(ng(n)) < g(n) the inequality

(4.7) can be written as:

t1(C)− A1(C ′)
g(n)

≤ f(ng(n))
g(n)

< 1

for all n sufficiently large. Therefore,

t1(C) < 1 + A1(C′)
g(n)

≤ 1 +
⌈

A1(C′)
g(n)

⌉
≤ 1 + cov(C, smax).

Since cov(C, smax) must be an integer and is also at most t1(C), it must be equal to t1(C).

Thus we have found the 1-covering radius of C in polynomial time. 2

There are some interesting guarantees that Theorem 4.25 rules out. For example, f(n) =

c for some constant integer c is asymptotically sublinear, with g(n) = c+1. So no polynomial

time approximation algorithm for ACR1 can guarantee that its error is at most a fixed

constant. Also, f(n) = nε for any ε < 1 is asymptotically sublinear, with g(n) = nδ where

δ > ε/(1 − ε). Furthermore, as we have seen in Lemma 4.24, just having f in o(nε) for

some ε < 1 is sufficient. On the other hand, any approximation algorithm can guarantee

its error is no more than n. Also, Theorem 4.25 and Lemma 4.20 give a similar result for

the m-covering radius.

Theorem 4.26 If P 6= NP, f(n) is an asymptotically sublinear function, and m(n) is poly-

nomially bounded in n, then there does not exist a polynomial time approximation algorithm

Am(n) for ACRm(n) that guarantees tm(n)(C)−Am(n)(C) ≤ f(n).

Proof: Suppose that P is not equal to NP and there is such an algorithm Am(n). Given

a (n, K) binary code C, let C ′ = C × S where S is the code defined in Section 3. We can

approximate the 1-covering radius of C by applying the algorithm Am(n) to C ′. Namely, let

the algorithm A1 have A1(C) = Am(n)(C ′) − r where r is the length of S and sA1(C) be

the first n coordinates of sAm(n)(C ′). Lemma 4.20 says that tm(n)(C ′) = t1(C) + r. Thus,
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tm(n)(C ′)−Am(n)(C ′) ≤ f(n) implies that t1(C)−A1(C) ≤ f(n). This contradicts Theorem

4.25. 2

There are analogous results for the linear case.

Theorem 4.27 If NP 6= Σp
2 and f(n) is an asymptotically sublinear function, then there

does not exist a polynomial time approximation algorithm B1 for ACRL1 that guarantees

t1(C)−B1(C) ≤ f(n).

Proof: This proof is similar to the proof for the unrestricted case. Suppose that NP is not

equal to Σp
2 and that there is such an algorithm B1. Given a parity check matrix H for a

[n, k] binary linear code C and a function f that satisfies the hypothesis, let C ′ be the direct

product of C with itself g(n) times, C ′ = Cg(n), and let H′ be its parity check matrix. We

will see that we can use the approximation algorithm B1 on H′ to find the covering radius

of C exactly for all sufficiently large lengths.

Let sB1(C ′) = s1|s2| . . . |sg(n) be the candidate solution found by B1 on input H′, where

s1, . . . , sg(n) all have length n. We have B1(C ′) = cov(C ′, sB1(C ′)) =
∑g(n)

i=1 cov(C, si).

Now let smax be the si that has the greatest distance from C. Since such an smax takes

the largest radius to contain all of C, it makes the largest contribution to B1(C ′) and

cov(C, smax) ≥ dB1(C ′)/g(n)e. Now the general question of whether cov(C,y) < w is in

NP as it can be verified in polynomial time. Thus the question of whether cov(C,y) ≥ w

and finding smax is in co-NP. As in Theorem 4.25, the guarantee t1(C ′) − B1(C ′) ≤ f(n′)

implies that cov(C, smax) is the covering radius of C. Therefore, finding the covering radius

of a linear code can be reduced to a problem in co-NP. Since LBLC1 is Σp
2-complete and Σp

2

contains co-NP, co-NP is equal to Σp
2. Also, Σp

2 contains NP. So co-NP contains NP and is

therefore equal to NP. This contradicts our assumption that NP is not equal to Σp
2. 2

Using the same method as in Theorem 4.26 we get a similar result for the m-covering radius.

Theorem 4.28 If NP 6= Σp
2, f(n) is an asymptotically sublinear function, and m(n) is

polynomially bounded in n, then there does not exist a polynomial time approximation al-

gorithm Bm(n) for ACRLm(n) that guarantees tm(n)(C)−Bm(n)(C) ≤ f(n).
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Chapter 5

Parameterized Complexity

Another view on the complexity of computational problems was formulated by Downey and

Fellows [5]. They note that many problems consist of a pair of inputs such as:

Graph Genus Takes as input a pair (G, k) where G is a graph and k is a positive integer.

The question is whether G can be embedded onto the surface of genus k.

Vertex Cover Takes as input a pair (G, k) as in Graph Genus. However, the question is

whether there is a set S of k vertices in G such that every edge in G has at least one

element in S.

Dominating Set Take as input a pair (G, k) as in Graph Genus. However, the question

is whether there is a set S of k vertices such that every vertex either is a member of

S or has an adjacent vertex that is.

Weighted CNF Satisfiability Takes as input a pair (f, k) where f is a Boolean formula

in conjunctive normal form and k a positive integer. The question is whether there is

a truth assignment of weight k that satisfies f .

All of the above problems are known to be NP-complete. However it may be the case

that in practice only a small range of the parameters are really important. Therefore the

NP-completeness of the general problem may be misleading.

For the first two examples there is a constant c such that for every fixed parameter k

the problem can be solved in time O(nc). For Graph Genus it was shown that we may take

c to be 3 by Robertson and Seymour [25]. For Vertex Cover, from the work of Buss and

Goldsmith [2], we may take c to be 1.
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However the situation is different with Dominating Set and Weighted CNF Satisfiability.

For both of these problems the best known algorithms run in time O(nk+1) for fixed k. In

other words they are no faster than exhaustive search. Parameterized complexity theory

gives a framework to discuses such differences. The following are some of the main definitions

of that theory.

A parameterized problem (language) is a set L ⊆ Σ∗ × Σ∗ where Σ is a fixed alphabet.

Often for ease of reading L is considered to be a subset of Σ∗×N. The set Lk = {y : (y, k) ∈

L} is called the kth slice of L and denotes an associated fixed parameter problem.

The parameterized problem L is fixed parameter tractable (FPT) if and only if there

exists a computable function f , a constant c, and a deterministic algorithm M such that

for all x, k, (x, k) is in L if and only if M(x, k) accepts and the running time of M(x, k) is

less than f(k)|x|c.

The parameterized problem L is reducible to L′, denoted L ≤fpt L′, if and only if there

exists a deterministic algorithm M , functions f, g : N → N and a constant c such that:

M : (G, k) 7→ (G′, k′)

M((G, k)) runs in time ≤ g(k)|G|c

k′ ≤ f(k)

(G, k) ∈ L ⇔ (G′, k′) ∈ L′.

Lemma 5.1 (Downey and Fellows [5]) If the parameterized problem L reduces to the

problem L′ and L′ is FPT the L is FPT.

Now consider again the problem of Weighted CNF Satisfiability.

NAME: Weighted CNF SAT Weighted CNF Satisfiability

INPUT: A Boolean formula E in CNF

PARAMETER: A non-negative integer k

QUESTION: Does E have a satisfying truth assignment of weight k?

Similarly we can define a weighted version of 3-CNF SAT. Furthermore it is known

that CNF SAT and 3-CNF SAT are many-one equivalent. CNF SAT can be shown to be

many-one reducible to 3-CNF SAT by a passing argument. That is, a given clause can be

turned into an equivalent set of clauses by adding new literals. However this would not give
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a parametric reduction from WEIGHTED CNF SAT to WEIGHTED 3-CNF SAT since

a k weight assignment for the CNF formula could be transformed into any other weight

assignment for the corresponding 3-CNF formula. Downey and Fellows conjecture that in

fact there is no parametric reduction from WEIGHTED CNF SAT to WEIGHTED 3-CNF

SAT. Consider the following parameterized problems:

NAME: Weighted t-POS SAT Weighted t-product of sum satisfiability

INPUT: A Boolean formula E in product of sums of products of... with t alternations.

PARAMETER: A non-negative integer k

QUESTION: Does E have a satisfying truth assignment of weight k?

Downey and Fellows defined classes:

W [1] = set of languages fpt-equivalent to Weighted 3-CNF SAT

W [2] = set of languages fpt-equivalent to Weighted CNF SAT
...

W [t] = set of languages fpt-equivalent to Weighted t-POS SAT
...

W [SAT ] = set of languages fpt-equivalent to Weighted SAT.

The classes form a hierarchy

W [1] ⊆ W [2] ⊆ · · · ⊆ W [SAT ].

Downey and Fellows further conjectured that these classes are distinct.

The parameterized complexity of some coding theoretic problems has also been studied.

Consider the problems

NAME: Maximum Likelihood Decoding

INPUT: A binary m× n matrix H, a target vector s ∈ F m, and an integer k > 0.

PARAMETER: k

QUESTION: Is there a set of at most k columns of H that sum to s?

and
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NAME: Weight Distribution

INPUT: A binary m× n matrix H and an integer k > 0.

PARAMETER: k

QUESTION: Is there a set of k columns of H that sum to the zero vector?

Downey et. al. [27] showed that both are W[1]-hard and that they belong to W[2]. A simple

modification to the proof of Theorem 4.17 shows that the following parameterized version

of the covering radius problem is W[1]-hard.

NAME: PLBC Lower bounding the covering radius

INPUT: A binary code C ⊆ F n, and integer w and an integer k.

PARAMETER: k

QUESTION: Is there a vector y ∈ F n such that wt(y) = k and ∀c ∈ C dist(y, c) ≥ w?

Theorem 5.2 Weighted 3-CNF SAT ≤ftp PLBC

Proof: Let E = C1 ∧ C2 ∧ · · · ∧ Cm and k be an instance of Weighted 3-CNF SAT using

the variables x1, x2, . . . , xn. The primary modification is in how we define z(Cj). For each

clause Cj define the vector z(Cj) ∈ F 2n where:

z2i−1 = z2i = 1 if Cj contains xi

z2i−1 = z2i = 0 if Cj contains xi

z2i−1 = 0, z2i = 1 otherwise

We then define the code C ⊆ F 2n+2 to be the set {z(Cj)|00 : i ≤ j ≤ m} ∪ Y2(n+1),

w = n+1 and k′ = 2(k +1). The code C and integer w form the desired instance of PLBC.

The cardinality of C is 2n+4+m so this construction can be done in polynomial-time with

respect to the size of E.

All that remains to see that this is indeed a FPT reduction is to show that positive and

negative instances coincide with respect to the parameters. Assume that E can be satisfied

by an assignment with weight k. Any satisfying assignment can be represented by a vector

v ∈ F n, where the ith coordinate of v is one if xi is assigned to be true and zero otherwise.

Now let v∗ = v1v1v2v2 · · · vnvn|11 ∈ F 2n+2 and v∗ be its complement. Both vectors v∗
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and v∗ are doubled so dist(c,v∗) ≤ n + 1 = w for every c ∈ Y2n by Lemma 4.16. In each

clause there is at least one literal which is set true by the assignment corresponding to v

as it satisfies E. So dist(z(Cj)|00,v∗) ≤ 2 + 2 + 0 + (n − 3) = w. So for every c ∈ C,

dist(c,v∗) ≥ 2n+2− (n+1) = n+1. Thus C has a deep hole with distance at least w and

weight k′ = 2(k + 1).

Assume that C has a deep hole with distance at least w and weight k′. Then there exists

a vector v∗ ∈ F 2n+2 such that dist(v∗, c) ≥ n+1. As dist(v∗, c) ≤ n+1 for every c in C, v∗

and v∗ are doubled. Let v∗ = v1v1v2v2 . . . vnvnvn+1vn+1. Then dist(v1v1v2v2 . . . vnvn, z(Cj)) ≤

n + 1. Therefore there exists an i such that z2i−1 = z2i = vi. So the assignment of weight

k corresponding to the vector v∗ satisfies E. 2
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Chapter 6

Open Questions

Our technique for the finding the 2 covering radius of the 2-error correcting BCH code could

be applied to other codes. For instance you could prove that a code satisfied the hypothesis

of a theorem like the following.

Theorem 6.1 Suppose C is a linear code with t1(C) = r. If for any two vectors x and y,

with a = n − dist(x,y) ≤ r + 1, let z = x + y, there exists codewords u and v that satisfy

the following properties:

1. b , dist(u,x) ≤ r

2. b(n− r + 2)/2c − a + b ≤ wt(v) ≤ d(n + r − 2)/2e+ b

3. supp(u + x) ⊆ supp(v)

4. supp(z) ∩ supp(u + x + v) = ∅

then t2(C) ≤
⌈

n+r−2
2

⌉
.

Proof: Consider two vectors x and y with dist(x,y) = n − a, where a ≥ r + 2. There

exists a vector v′ with distance at most d(n− r − 2)/2e to both x and y and there exists

a codeword v with dist(v,v′) ≤ r. Thus the distance from v to both x and y is at most

d(n− r − 2)/2e+ r = d(n + r − 2)/2e.
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Consider two vectors x and y with dist(x,y) = n− a, where a ≤ r +1. Let u, v, z, and

b be as in the hypothesis. Then

dist(x,u + v) = wt(u + v + x)

= wt(v)− wt(u + x)

= wt(v)− b

≤ d(n + r − 2)/2e ,

and

dist(y,u + v) = wt(u + v + y)

= wt(u + v + x + z)

= n− wt(u + v + x + z)

= n− wt(u + v + x)− wt(z)

= n− wt(v) + b− a

≤ d(n + r − 2)/2e .

2

To prove the hypothesis of such a theorem in the case of the 2-error correcting BCH code

we took advantage of the fact that both the covering radius and the dual distribution were

known. In the case of the dual distribution we needed it to be concentrated around n/2.

In other words no small or large weight codewords could be in the dual. Other codes have

this properties as well, the 3-error correcting BCH code for example.

While we have focused on the binary case there are general q-ary definitions of codes,

Hamming distance, covering radius and so on. As such our techniques may have general-

izations as well. A good code to look at may be the q-ary Hamming code since it is known

to have covering radius one.

Our completeness and approximation results require m to be polynomially bounded in

the length of the code. The problem of finding the covering radius when m = 2n is trivial

as t2n(C) = n for any code C. Furthermore, let K1(n, 1) be the size of the smallest code

with 1-covering radius 1, then for m ≥ K1(n, 1), the m-covering radius can be found in

polynomial time. In this case the m-covering radius is at least n− 1. To see this, let S be a

set of m vectors with 1-covering radius equal to 1. Then if c is any codeword, S contains a

70



vector whose distance is at most 1 from the complement of c, hence the set S has distance

at least n − 1 from c. Given a code C, if |C| ≤ m then tm(C) = n since we can take

S = {c : c ∈ C} and cov(C,S) = n. For |C| > m, any m-tuple S must not contain the

complement of at least one codeword c ∈ C. Hence dist(c,v) ≤ n− 1 for every v ∈ S, and

so cov(C,S) ≤ n− 1. So for m ≥ K1(n, 1), tm(C) = n if |C| ≤ m and tm = n− 1 otherwise.

For all n, K1(n, 1) ≤ 2n−n since the set of size 2n−n that contains every vector except for

n−1 of the vectors of weight n−1 and the all one vector has 1-covering radius 1. Therefore

for large m the problem of finding the m-covering radius can be done in polynomial time.

This leads to the question of how the complexity varies with respect to m when m is not

polynomially bounded in the length of the code.
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