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ABSTRACT OF DISSERTATION 

 
 
 
 

EMPIRICAL PROCESSES FOR ESTIMATED PROJECTIONS 
OF MULTIVARIATE NORMAL VECTORS WITH APPLICATIONS 
TO E.D.F. AND CORRELATION TYPE GOODNESS OF FIT TESTS 

 

Goodness-of-fit and correlation tests are considered for dependent univariate data that 
arises when multivariate data is projected to the real line with a data-suggested linear 
transformation.  Specifically, tests for multivariate normality are investigated.  Let { }iY  be a 
sequence of independent k-variate normal random vectors, and let 0d  be a fixed linear transform 

from kR  to R .  For a sequence of linear transforms ( ){ }1
ˆ , , nd Y Y…  converging almost surely to 

0d , the weak convergence of the empirical process of the standardized projections from d̂  to a 
tight Gaussian process is established.  This tight Gaussian process is identical to that which arises 
in the univariate case where the mean and standard deviation are estimated by the sample mean 
and sample standard deviation (Wood, 1975).  The tight Gaussian process determines the 
limiting null distribution of E.D.F. goodness-of-fit statistics applied to the process of the 
projections. 

A class of tests for multivariate normality, which are based on the Shapiro-Wilk statistic 
and the related correlation statistics applied to the dependent univariate data that arises with a 
data-suggested linear transformation, is also considered. The asymptotic properties for these 
statistics are established.  

In both cases, the statistics based on random linear transformations are shown to be 
asymptotically equivalent to the statistics using the fixed linear transformation. The statistics 
based on the fixed linear transformation have same critical points as the corresponding tests of 
univariate normality; this allows an easy implementation of these tests for multivariate 
normality.   

Of particular interest are two classes of transforms that have been previously considered 
for testing multivariate normality and are special cases of the projections considered here. The 
first transformation, originally considered by Wood (1981), is based on a symmetric 
decomposition of the inverse sample covariance matrix. The asymptotic properties of these 
transformed empirical processes were fully developed using classical results. The second class of 
transforms is the principal components that arise in principal component analysis. Peterson and 
Stromberg (1998) suggested using these transforms with the univariate Shapiro-Wilk statistic.  



Using these suggested projections, the limiting distribution of the E.D.F. goodness-of-fit 
and correlation statistics are developed. 

 
 
 

KEYWORDS: Shapiro-Wilk Statistic, Multivariate Normality, Empirical Processes, Goodness-
of-Fit, Asymptotic Properties 
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Chapter I.  Introduction and Overview 

 

1.1. Introduction.  Classical multivariate analysis relies on the assumption that the data is 

randomly selected from a population with a multivariate normal distribution. More specifically, a 

random vector kY R∈  is said to have a multivariate normal distribution, if and only if, for 

every ku R∈ , u Y′ is a univariate normal random variable.  A natural and informative method for 

testing this assumption is to apply a linear transformation of the data from kR R , and then test 

the projections for univariate normality.  The tests proposed in Wood (1981), Srivastava and Hui 

(1987), Mudholkar et al. (1995), Peterson and Stromberg (1998), and Royston (1983) are all 

examples of this class of tests. As Wood (1981) and Royston (1983) noted, if the linear 

transformation is fixed from the definition of multivariate normality, this is a standard test for 

univariate normality.  

However, if the linear transformation is a function of the data, then the projections are not 

independent identically distributed normal random variables. Moreover, as noted by 

Gnanadeskan (1997), the asymptotic null distribution of the test statistics is unknown in most 

cases, with the test proposed in Wood (1981) being an exception. We derive asymptotic 

approximations to the sampling distribution of two broad classes of univariate goodness-of-fit 

test statistics applied to the projections from a data-suggested linear transformation of 

multivariate normal random vectors. Specifically, we consider Empirical Distribution Function 

(E.D.F.) and correlation type statistics for testing multivariate normality. Using the empirical 

process theory presented in van der Vaart and Wellner (1996), it is shown that the empirical 

process of the projections converges to a known tight Gaussian process with a specific 

covariance structure.  This Gaussian process will determine the limiting behavior of statistics that 

are continuous functionals of the empirical process of the projections, such as the Cramer-von 

Mises, Kolmogorov-Smirnov, and other continuous E.D.F. type statistics.  For the Shapiro-Wilk 

type correlation statistics applied to the projections, a different approach based on the rate 

theorems presented in Pollard (1984) is taken to derive the limiting behavior of these statistics. 
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1.2. Previous Results.  During the last three decades, over fifty tests for multivariate 

normality have been proposed, however most of the procedures have unknown consistency 

properties and the asymptotic null distribution is rarely derived (Bogdan 1999, Koziol 1983). 

There have been two comprehensive review articles of tests for multivariate normality published 

in recent years; Henze (2002) and Mecklin and Mundfrom (2004).  Henze (2002) surveys affine 

invariant tests and summarizes most of the current asymptotic theory for these tests. Mecklin and 

Mundfrom (2004) provide a more comprehensive survey in preparation for their later simulation 

study. Three major classes of tests for multivariate normality are considered in these papers. 

• Mardia’s Skewness and/or Kurtosis tests, Mardia (1970, 1974) 

• Henze and Zirkler’s Empirical Characteristic Function tests, Henze and Zirkler 

(1990) 

• Univariate methods such as Royston’s Shapiro-Wilk tests, Royston (1983) 

Henze (2002) argues for use of affine invariant tests of multivariate normality with 

known consistency properties such as the Henze and Zirkler test.  Mecklin and Mundfrom (2002, 

2004) found the Henze and Zirkler test and the Royston Shapiro Wilk test to be powerful 

omnibus tests for multivariate normality, although they noted some concerns about the 

theoretical aspects of Royston’s test. 

Let iY , 1, , ,i n= …  be independent and identically distributed (i.i.d.) random vectors in 

kR , 1

1

n

i
i

Y n Y−

=

= ∑  be the sample mean vector, and ( ) ( )( )1

1
1

n

i i
i

S n Y Y Y Y−

=

′= − − −∑  be the sample 

covariance matrix. Then the Mardia skewness test statistic is 

 ( ) ( )
3

2 1
1,

1 1

n n

k i j
i j

b n Y Y S Y Y− −

= =

⎡ ⎤′= − −⎢ ⎥⎣ ⎦
∑∑  

and the Mardia kurtosis test statistic is 

( ) ( )
2

1 1
2,

1
.

n

k i i
j

b n Y Y S Y Y− −

=

⎡ ⎤′= − −⎢ ⎥⎣ ⎦
∑  

The tests for multivariate normality based on these two statistics are only consistent against 

distributions that differ from the multivariate normal distribution in the third and fourth 

moments, respectively. A statistic, ( )1, ,n nT Y Y… , is said to affine invariant if, for every kb R∈  

and k kA R ×∈ , A  nonsingular, ( ) ( )1 1, , , ,n n n nT Y Y T AY b AY b= + +… … . 



 3

The two Mardia test statistics are affine invariant, and considered in the Henze (2002) review 

paper, where the asymptotic properties of the statistics are summarized under the assumptions of 

normality and non-normality of iY ’s.  

 The Henze and Zirkler test statistic measures the weighted 2L distance between the 

empirical characteristic function of ( ){ }1/ 2

1

n

i i
S Y Y−

=
−  and the characteristic function of a 

standard multivariate normal distribution. In the univariate setting, this statistic has been found to 

have power properties similar to the popular Shapiro-Wilk statistic. As mentioned in Henze 

(2002), these tests are consistent tests for multivariate normality with a known asymptotic null 

distribution. Due to the difficulty in interpreting these types of statistics, Csorgo (1989) 

recommends using these statistics in combination with other “less powerful but more transparent 

procedures”. 

The third class of statistics reduces the multivariate problem to a univariate problem.  The 

Shapiro-Wilk (1965) statistic has consistently been shown to be a powerful test for univariate 

normality against a wide range of alternatives. See Gan and Koeher (1990) and Seier (2002) for 

two recent simulations.  Royston’s (1983) marginal method first tests each of the k variates for 

univariate normality with a Shapiro-Wilk statistic, then combines the k dependent tests into one 

omnibus test statistic for multivariate normality.  Royston transforms the k -Shapiro-Wilk 

statistics into what he claims is an approximately Chi-squared random variable, with ( )m m k≤  

degrees of freedom.  The degrees of freedom are estimated by taking into account possible 

correlation structures between the original k  test statistics. This test has been found to behave 

well when the sample size is small and the variates are relatively uncorrelated (Mecklin and 

Mundfrom, 2002, 2005).   

Srivastava and Hui (1987) along with Romeu and Ozturk (1993) noted that the 

correlation structure between the variates affects Royston’s test, even after correcting for the 

dependence between the k  univariate test statistics. To account for the covariance dependence of 

Royston’s test, Srivastava and Hui (1987) and Peterson and Stromberg (1998) suggested using 

the k -eigenvectors of the sample covariance matrix, also known as the sample principle 

components, to project each of the original observations onto the real line. The k -univariate 

samples, one for each eigenvector, are then tested in turn for univariate normality with a Shapiro-

Wilk or a related correlation test statistic. Each of the k test statistics will be asymptotically 
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independent when the original vectors are from a multivariate normal distribution, which implies 

that they can easily be combined into an omnibus test statistic for multivariate normality with an 

asymptotic Type I error rate of alpha.  However, the estimation of the principle components 

introduces dependence between the projections, which violates the assumptions under which the 

null distribution of the correlation statistics has been characterized. Peterson and Stromberg 

(1998) investigated this issue with a simulation study. They found that the null distribution of the 

Shapiro-Wilk statistic was not unduly affected by estimating the principle components.  

Wood (1981) suggested a similar approach to Peterson and Stromberg (1998), using a 

symmetric decomposition of the inverse of the sample covariance matrix.  She transformed a 

sample of random vectors into k  approximately independent univariate samples, which can then 

be tested with an E.D.F. test such as a Cramer-von Mises or Kolmogorov -Smirnov type statistic.  

The k -linear transformations used are the rows of the symmetric decomposition of the inverse of 

the sample covariance matrix. Wood showed that the empirical process of the standardized 

projections converges weakly to the tight Gaussian process studied by Durbin (1973) and Wood 

(1975). This process determines the limiting distribution of the E.D.F. statistics such as the 

Cramer-von Mises or Kolmogorov-Smirnov type statistics. 

The Shapiro-Wilk statistic is a powerful test for univariate normality that is commonly 

used to test the marginals or projections of multivariate vectors for normality (Seber, 1984, 

Gnanadeskan, 1997).  Therefore, we provide an overview of univariate Shapiro-Wilk type 

statistics and the relevant asymptotic theory. Let 1, , ny y… be independent and identically 

distributed (i.i.d.) univariate random variables and :i ny  be the thi order statistics from{ } 1

n
i i

y
=

.  Let 

1, , nz z…  be i.i.d. standard normal random variables with expectation of 0 and variance of 1. Let 

:i nz  be the thi order statistics from{ } 1

n
i i

z
=

.    For two vectors U  and V  in nR , let 

1

1

n

i
i

U n U−

=

= ∑ and 1

1

n

i
i

V n V−

=

= ∑ , then we define  

(1.1) ( ) ( )( ) ( ) ( )
2 2

1 1 1

,
n n n

i i i i
i i i

r U V U U V V U U V V
= = =

= − − − −∑ ∑ ∑  
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to be the sample correlation between U  and V .
 
 Let ( ){ }: 1

n
i n i

m E z
=

=  and 0V  be the covariance 

matrix of :i nz ,  then the Shapiro-Wilk statistic is the square of sample correlation between the 

vector of order statistics and the vector, 1
0V m− .

 

Due to the difficulty in calculating m and 0V  for large samples, the test is somewhat 

impractical. To remedy this, various authors have suggested simplifications such as the Shapiro-

Francia (1972) statistic, which replaces 1
0V m−  with m , or nW , the de Wet and Venter statistic, 

which uses ( )( )1

1
1

n
i nξ −

×
= Φ +

 
in place of 1

0V m− , where ( )tΦ  is the cumulative distribution 

function of a standard normal random variable.  These tests have slightly different power 

properties depending on the choice of plotting positions as illustrated in Looney and Gulledge 

(1985) or Brown and Hettmansperger (1996).  

The de Wet and Venter statistic was the first of the Shapiro-Wilk type statistics for which 

the asymptotic distribution was derived. In de Wet and Venter (1972, 1973) it was shown that  

 ( ) ( )1/ 2

3

2 1 1 ,  as ,n n i
j

n W a X j n
∞

=

− − − →∞∑  

where 1, , nX X… are i.i.d. random variables with a Chi-squared distribution, one degree of 

freedom, and ( )
2

1

1

31 1
1 1 1 2

n

n
i

i i ia n
n n n

−
−

=

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − Φ −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∑ −1φ .  Here 

nx x denotes the weak convergence of nx  to x . 

Extending the above result; Leslie, Stephens, and Fotopoulos (1986) showed that the 

Shapiro-Wilk statistic has the same limiting distribution as nW . The following year Verrill and 

Johnson (1987) proved that for any vector of plotting coefficients, Ψ , of length n such that 

( ) ( )( )2 1

1
log log ,

n

i i
i

o nξ −

=

Ψ − =∑  as n →∞ , the square of the correlation statistic based on Ψ  

still has the same limiting distribution as nW .  All of these results assume that the observations 

are i.i.d. normal random variables. 

In the case when the observations are not i.i.d., Wood (1984) derived the asymptotic 

properties of the standardized empirical process applied to the residuals from a fitted ridge 

regression model.  Sen et al. (2003) proved a similar result for the de Wet-Venter statistic based 
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on the residuals from a fitted regression model. Sen et al. (2003) proved that the de Wet-Venter 

statistic based on the fitted residuals is asymptotically equivalent to the de Wet and Venter 

statistic based the residuals when the regression model is known.  This is the only case where the 

asymptotic null distribution of Shapiro-Wilk type statistic applied to approximately normal 

random variables has been derived. 

 

1.3. E.D.F. Approach.  Our goal is to use E.D.F. and correlation type goodness-of-fit 

statistics for multivariate normal vectors. Our approach is to reduce the multivariate goodness-

of-fit problem to a univariate goodness-of-fit test by using a procedure based on the definition of 

multivariate normality. Specifically, let 1 nY … Y, ,  be k-dimensional multivariate normal vectors 

with mean,μ , and positive definite covariance matrix, Σ . Then 0{ ( ); 1 }id Y i … nμ− = , ,  is a 

univariate set of i.i.d. normal random variables, when  0d  is a fixed row vector in kR .  However, 

if 0d  is replaced by a random vector ( )1
ˆ ˆ , , nd d Y Y= …  and  μ  is estimated with 

1

n

i
i

Y Y
=

= ∑ , the 

corresponding univariate set of observations, ˆ{ ( ) 1 }n id Y Y i … n− , = , , , are only approximately i.i.d. 

normal random variables.  Let  

 ( ) ( )1

1

ˆˆ ( )
n

n i
i

F t n I d Y Y t−

=

= − ≤∑ , for t−∞ < < ∞ , 

where, for a set A , 

 ( )
1,
0, .

x A
I x A

x A
∈⎧

∈ = ⎨ ∉⎩
 

Let ( )tΦ  and ( )tφ , t−∞ < < ∞ , be the cumulative distribution and probability density functions 

of a standard normal distribution, respectively.  In Chapter III, we consider the univariate 

empirical process corresponding to ˆ{ ( ) 1 }id Y Y i … n− , = , , , 

(1.2) ( )1/ 2 ˆ( ) ( ( )), ,nG t n F t t t= −Φ −∞ < < ∞  

where d̂  is related to the sample covariance matrix, ( )1, , nS S Y Y= … .  In general, we will 

suppress the dependence on n . Specifically, in Chapter III, we consider d̂ , a sequence of row 

vectors in kR , with the properties  

(1.3) ˆ ˆ 1dSd ′ = , 
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and  

(1.4) 0
ˆ

p

d d→ , as n →∞ , for 0
kd R∈ , 

where 

(1.5) 0 0 1d d ′Σ = .  

Under these assumptions on d̂ ,  we show that  

(1.6) , as ,nG G n →∞  

where G  is a tight Gaussian process with covariance function 

 ( ( )) ( ) ( ) ( ) ( ) ( ) ( ) 2min t s t s s t ts s tφ φ φ φΦ , −Φ Φ − − , , .s t−∞ < < ∞  

It is important to note that ( )G t is the same process that arises in the univariate case when 

estimating the parameters in the normal distribution (Wood, 1975). By the Continuous Mapping 

Theorem, the Gaussian process, ,G  will determine the limiting behavior of continuous E.D.F. 

goodness-of-fit statistics applied to nG , such as the Cramer-von Mises type statistics. 

The theory presented in Chapter III is applicable to some interesting projections used for 

E.D.F. goodness of fit testing. The first was proposed by Wood in 1981. Let jb  be the thj  row of 

B , where 1BB −= Σ . Let ˆ
jb  be the thj  row of B̂ , where 1ˆ ˆBB S −= . Then, ˆ

jb  has the properties 

(1.3) and (1.4), take ˆ ˆ
jd b= . Then the results presented in Chapter III demonstrate the weak 

convergence of nG  to G , as .n →∞  

Since 0t
j kb bΣ = , if k j≠ , each of the k  processes will be asymptotically independent of 

the 1k −  other processes. The asymptotic properties of nG , including the tightness of the 

limiting process, based on this set of data suggested linear transformations has been previously 

derived using the random change of time technique (Wood, 1981).  

Peterson and Stromberg (1998) suggest k  transformations for investigating multivariate 

normality in kR . Each of the transformations is an eigenvector of the sample covariance matrix, 

S . Let 1
ˆˆ{ }k

j j je λ =,  be the eigenvector/eigenvalue pairs of S  and 1{ }k
j j je λ =,  be the 

eigenvector/eigenvalue pairs of Σ . Since, for fixed j , { ( ) 1 }t
j ie Y i … nμ− , = , ,  are i.i.d. normal 

random variables with variance jλ , Peterson and Stromberg (1998) consider the transformed 
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data { }ˆ ( ) 1j ie Y Y i … n′ − , = , ,  for use with the univariate Shapiro-Wilk statistic.  To apply the 

theorems in Chapter III for E.D.F. tests, let 
1
2ˆ ˆ ˆj jd eλ− ′= .  The projections, 

1
2

1
ˆ ˆ{ }k

j j jeλ−
=′ , have the 

properties (1.3) and (1.4).  As above, the results in Chapter III demonstrate the weak 

convergence of nG  to G , 1, ,j k= … , as .n →∞  Furthermore, since the 0j ke e′Σ = , if k j≠ , 

each process determined by an eigenvector, will be asymptotically independent of the 1k −  other 

processes.  

 

1.4. Correlation Statistic Approach.  In Chapter IV, we also apply the de Wet and Venter 

statistic to the projections from a data suggested linear transformation. The correlation form of 

the modified de Wet and Venter statistic is the square of the sample correlation between the 

vector ξ  and the vector of order statistics from { } 1
ˆ n

i i
y

=
.  We will denote the modified de Wet and 

Venter statistic based on the projections ˆˆ{ ( ) 1 }i iy d Y Y i … n= − , = , ,  as ˆ
nW .  Similarly, we denote 

the de Wet and Venter statistic based on the projections from the fixed linear transformation 

0{ ( ) 1 }i iy d Y i … nμ= − , = , ,  as nW .  In the case of correlation type statistics, we make the 

additional assumption that 

(1.7)  ( )1/ 2
0

ˆ 1pn d d O− = , as n →∞ .   

Our approach demonstrates for the de Wet and Venter statistic based the projections from d̂  

satisfying (1.7), that 

(1.8)  ( ) ( )ˆ 1 ,  n n pn W W o− = as n →∞ , 

and 

(1.9)  ( ) ( )
3

ˆ1 1 ,  n n j
j

n W a x j
∞

=

− − −∑ as .n →∞  

We prove similar results for all of the correlation type statistics considered in Verrill and 

Johnson (1987).  It is shown in Chapter V that the two sets of projections mentioned above from 

Wood (1981) and Peterson and Stromberg (1998) satisfy the condition  (1.7). 

 

1.5. Summary of Results.  In this dissertation, we derive the limiting distribution for E.D.F. 

and correlation type goodness-of-fit statistics applied to the projections from a data suggested 
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linear transformation of multivariate normal random vectors. In particular, we derive the limiting 

distribution of these types of statistics for the projections from the sample principle components, 

as suggested by Peterson and Stromberg (1998) and Srivastava and Hui (1987).  We also re-

derive the result of Wood (1981) for E.D.F. goodness-of-fit statistics based on projections from 

the symmetric decomposition of the inverse of sample covariance matrix and derive the 

asymptotic distribution of the correlation goodness-of-fit statistic applied to Wood’s projections. 

In Chapter II, we provide a summary of the main results and definitions that we have 

used from Pollard (1984), van der Vaart (1998) and van der Vaart and Wellner (1996). One new 

result presented in this chapter is Lemma 2.12, this lemma is a generalization of the Lemma from 

Bahadur (1966) which yields a uniform result for ( ) ( ) ( ) ( )n nF t t F s s−Φ − −Φ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , 

,t s−∞ < < ∞ , where nF  is the empirical C.D.F. of n  i.i.d. standard normal random variables. 

Generally speaking, the results from van der Vaart and Wellner (1996) and van der Vaart (1998) 

are used in the derivation of the limiting process of nG , while the results from Pollard (1984) are 

used in deriving the asymptotic distribution of the correlation statistic ˆ
nW .   

 In Chapter III, we derive the convergence properties of empirical processes based on the 

projections from a data suggested linear transformation under the assumptions that the original 

observations have a multivariate normal distribution and that the linear transformation satisfies 

(1.2), (1.3), and (1.4). The proof is a straightforward application of the theory presented in 

Chapter II which generalizes the result from Wood (1981).  The main result in this chapter is 

Theorem 3.11, where it is shown that the process nG  converges to the tight Gaussian process, 

G , which has a known covariance structure. By the continuous mapping theorem, G  determines 

the limiting distribution of continuous functionals of nG , such as most E.D.F. goodness-of-fit 

statistics. 

In Chapter IV, we derive the limiting distribution of correlation statistics based on 

projections of multivariate normal random vectors from a data suggested linear transformation 

under the assumption of normality of the original observations and that the data suggested linear 

transformation satisfies condition (1.7).   This chapter starts, by reducing the problem of showing 

(1.8) to bounding the difference between the normalized order statistics from 

ˆ ˆ ˆˆ{ ( ); 1 ; 1}i iz d Y i … n d dμ ′= − = , , Σ =  and the order statistics from 



 10

0 0 0{ ( ); 1 ; 1}i iz d Y i … n d dμ ′= − = , , Σ = .  In Lemma 4.14, we give a sequence of bounds on this 

difference, which holds uniformly in i  and tends to zero at a specific rate.  Let { } 1n n
i ∞

=
be a 

sequence of positive integers such that ( )1/ 4 1 log 1nn i n O− = and ( )1 1 ,ni n o− =  as n →∞ .  In 

Lemma 4.16, we give a sequence of bounds on the difference between the two sets of order 

statistics for n ni i n i≤ ≤ − , where the actual rate at which these bounds tend to zero depends on 

the choice of the sequence { } 1n n
i ∞

=
.  Theorem 4.19, the main result of this chapter, is proven by 

combining these two rate theorems to show (1.8) which implies (1.9).  Theorem 4.21 extends the 

results for the de Wet and Venter statistic to the other correlation goodness-of-fit statistics 

considered in Verril and Johnson (1981) and Corollary 4.18 specifically covers the Shapiro-Wilk 

statistic. 

 In Chapter V, we apply the theory from Chapter IV to derive the limiting distribution of 

correlation statistics from specific linear transformations.  In Corollary 5.2, we apply our theory 

to { }ˆ ( ) 1j ie Y Y i … n′ − , = , , , 1, , ,j k= …  and derive the limiting distribution of the Srivastava and 

Hui (1987) and the Peterson and Stromberg (1998) statistics.  In Corollary 5.4, we consider 

Wood’s transformation and derive the limiting distribution of correlation type goodness of fit 

statistics applied to { }ˆ ( ) 1 .j ib Y Y i … n− , = , ,  The proofs in this chapter make use the asymptotic 

results for sample principle components from a multivariate normal distribution in Anderson 

(1963). 

In Chapter VI, we provide a simulation study of the power properties the proposed 

omnibus tests for normality. First, some problems associated with calculating the p-values for 

univariate correlation statistics is discussed. We review two methods presented in Peterson and 

Stromberg (1998) for combining k  p-values for an omnibus test for multivariate normality.   

In Chapter VII, we summarize our current research and discuss future directions. 

 

 

Copyright © Christopher Paul Saunders 2006 
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Chapter II. Empirical Process Theory 

 
2.1.  Introduction and Basic Definitions.  For completeness we will begin with a summary of 

the main results that we require from Billingsley (1968), Pollard (1984), van der Vaart (1998), 

and van der Vaart and Wellner (1996).  In this section, we state some definitions for empirical 

processes from van der Vaart (1998).  In Section 2.2, we review empirical processes indexed by 

classes of functions and some theorems concerning P-Donsker Classes of functions.  In Section 

2.3, we review VC-Classes of functions and their relationship to P-Donsker classes.  Euclidean 

and Permissible Classes of functions are reviewed for use with Pollard’s Rate Theorem in 

Section 2.4.  Corollary 2.10 defines a class Euclidean class of functions that we will use in 

Sections 2.5 and 4.2. In Section 2.5, we state Pollard’s Rate Theorem and use it to prove a 

generalization of the Lemma from Bahadur (1966) for the standard normal distribution. 

Here we consider 1 2, ,X X …  an infinite sequence of random vectors on a probability 

space ( ), ,QΩ B . Throughout, for i.i.d. random vectors, we work with the induced probability 

measure ( )1
1P Q X −= .  A sequence of random elements nX , taking values in the metric space 

X , is said to converge in distribution (or weakly) to a random element X  if 

( ) ( ) ,nEf X Ef X→  as ,n →∞  for every bounded, continuous function :f RX .  We will 

denote the weak convergence of nX  to X , as n →∞ , by nX X .  A Borel-measurable 

random element X  into a metric space is tight if for every 0ε >  there exists a compact set K  

such that ( )P X K ε∉ < . 

Let 1, , nX X…  be i.i.d. random elements with the induced probability distribution P  on a 

measurable space { },X A . Then the empirical measure nP  is defined by ( ) ( )1

1
i

n

n X
i

P n δ−

=

= ∑i i , 

where ( )xδ i  is the probability distribution that is degenerate at x . For F a class of measurable 

functions :f RX , we define the operators   

(2.1) Pf fdP= ∫ , 
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(2.2) 1 ( )n n iP f fdP n f X−= = ∑∫ , 

and  

(2.3) 1/ 2 ( ) ,  for every .n nf n P P f f= − ∈ℑG  

Here nP f and n fG  are random and technically are ( ) ( )( )1

1

n

n i
i

P f n f Xω ω−

=

= ∑  

and ( ) ( )1/ 2
n nf n P f Pfω ω= −⎡ ⎤⎣ ⎦G .  Here we suppress the dependence on ω .  For a given 

arbitrary set ,T  let ( )T∞  be the collection of all bounded functions : .z T R  We seek 

conditions under which  

(2.4) , in ( ), as  ,n p n∞ ℑ →∞G G  

where pG  is a tight Gaussian process in the space ( )∞ ℑ , with zero mean and covariance 

function 

(2.5) 1 2 1 2 1 2,  for  , .Pf f Pf Pf f f− ∈ℑ  

A set of functions is said to be totally bounded for a given semi-metric if, for every 

0ε > , the set of functions can be covered with finitely many balls of radius ε . It is important to 

note that every totally bounded space is separable.  

 The covering number ( ),N ε iF,  of a class of functions F , with respect to the norm 

i , is the minimal number of balls { }:g g f ε− < of radius ε  needed to cover F . An 

envelope function of a class of real function F on a measurable space ( )X A,  is any function 

F on X such that ( ) ( )f x F x≤  for all x∈X  and all f ∈F .   

For P  be a probability distribution on a measurable space ( ),X A , the ( )rL P  norm of a 

real valued function f  will be denoted by 

 ( )1/

,
.

rr

P r
f f dP= ∫  

 We will consistently use the notation from Serfling (1981).  For two functions ( )u x  and 

( )v x , the notation ( ) ( )( ) ,u x O v x=   as x L→ , denotes that ( ) ( )u x v x  remains bounded as 

x L→ . The notation ( ) ( )( ) ,u x o v x=   as x L→ ,  denotes that ( ) ( )lim 0
x L

u x v x
→

= .  A 
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sequence of random variables, { } ,nX  with respective distribution functions { }nF , is said to be 

bounded in probability if for every 0ε >  there exists  M ε  and Nε  such that 

( ) ( ) 1 ,n nF M F Mε ε ε− − > −  for all .n Nε>   For two sequences of random variables { }nU and 

{ }nV , the notation ( ) ,n p nU O V=  as ,n →∞  denotes that the sequence of random variables 

{ }n nU V  is bounded in probability.  The notation ( ) ,n p nU o V=  as ,n →∞  denotes that 

0,
p

n nU V → as .n →∞   For the sequence of random variables { } ,nX  the statement  “with 

probability 1,  ( )( ) ,nX O g n=  as n →∞ ” means that there exists a  set 0Ω  such that 

( )0 1P Ω =  and for each 0ω∈Ω  there exists a constant ( )B ω such that ( ) ( ) ( ) ,nX B g nω ω≤  

for all n  sufficiently large. The statement  “with probability 1,  ( )( ) ,nX o g n=  as n →∞ ” 

means that there exists a  set 0Ω  such that ( )0 1P Ω =  and for each 0ω∈Ω  

( ) ( ) ( )1 ,nX g n oω = as .n →∞   

Let { }ng  be a sequence of real numbers.  When considering a sequence of random 

elements, say { } 1
,n n

Y ∞

=
 taking values in metric space, ,S  with a metric 

S
• , the  notation  

 ( ) , as ,n p nY O g n= →∞  

refers to the sequence of random variables { }n nS
Y g  being bounded in probability, as n →∞ .  

In addition, the notation  

 ( ) , as ,n p nY o g n= →∞  

denotes that the sequence of random variables { }n nS
Y g  converges to zero, in probability, as 

n →∞ . 

 

2.2.  P-Donsker Classes and Tight Gaussian Processes.  A class of measurable functions, 

ℑ , is said to be a P-Donsker class of functions if n pG G  in ( )∞ ℑ , as n →∞ ,  where pG  is 

the tight Gaussian process with covariance defined in  (2.5) .  A Gaussian process, pG , in ( )∞ ℑ  
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is said to be tight if and only if ( )pρℑ,  is totally bounded and almost all paths ( )pf f ω,G  

are uniformly pρ -continuous for some p, where  

 1 2 1 1 2 2 1 2( ) ( ) ,where .p
p f f P f Pf f Pf f fρ , = − − + , ∈ℑ  

Here 2ρ  is a semi-metric on ℑ .  This is the natural semi-metric to be used with a Gaussian 

process and corresponds to the standard deviation metric (van der Vaart and Wellner, 1996, pg. 

41).  

An important result, due to van der Vaart (1998), is stated and proved here for 

completeness as Theorem 2.3. To prove Theorem 2.3, we make use of the following two results 

from Billingsley (1968), which are presented without proof.  The first is the Extended 

Continuous Mapping Theorem.  The second result is Slutsky’s Lemma for the convergence of 

random elements, in the associated product space.  

In general, a random element defined on ( ), , QΩ B , say ,Y  is a mapping taking values in 

a metric space ( ),S L ; i.e. 1Y − ⊂L B .  Let S  be a metric space equipped with the metric ρ  and 

the σ -field L of Borel sets.  Let { }nY  be a sequence of random elements of S  defined on the 

probability spaces ( ), , nQΩ B .  Let h  be a measurable mapping from S  into the metric space 

S′  with the metric ρ′  and the σ -field ′L of Borel sets, then each probability measure YP  on  

( ),S L  determines a unique probability measure 1
YP h− , defined by ( )1 1

Y YP h P h A− −=  for A ′∈L .  

Let nh  and h  be measurable mappings from S  to ,S ′  S  separable.  Let E S⊂  be the set of y  

such that n nh y hy→  fails to hold for some sequence { }ny approaching .y   We will use the 

notation nP P  to denote the weak convergence of the sequence of probability measures { }nP  

to P . 

 

Theorem 2.1. (Billingsley (1968),  Theorem 5.5, pg. 33)  If nP P , as n →∞ , and ( ) 0P E = , 

then 1 1
n nP h Ph− − , as .n →∞  

 

Lemma 2.2.  (Billingsley (1968),  Theorem 4.4, pg. 27)   If nY Y S∈  and nX c , as 

,n →∞  with S  separable and c  a constant, then ( ) ( )n nX Y c Y, , , as n →∞ .  
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The following theorem is contained in Theorem 19.26 of van der Vaart (1998).  

 

Theorem 2.3. Let Θ  be a normed space and  

 
0 0 0={ }t tf f t Rδ θ θ θ θ δ θ θ, ,ℑ − :|| − ||≤ , , ∈Θ, ∈  

be a P-Donsker class of functions, which map RX , for some 0δ > .  

If  

 
0

2sup ( ) 0,t t
t R

f f dPθ θ, ,
∈

− →∫  as 0θ θ→ , for ,θ  0 δθ ∈Θ , and t R∈ , 

and 

 0
ˆ ,pθ θ⎯⎯→  as n →∞ , 

then  

          
0ˆ sup ( ) (1),n t pt

t R
f f oθθ ,,

∈
− =G  as n →∞ .  

Proof.  Let { }0:δ θ θ θ δΘ = | − |<  and consider ( ) ( )g R Rδ
∞ ∞: Θ ×  by ( ) ( )g z t z tθ θ, = , .  

Note that ( )g ⋅  is a continuous function for every point 0( )z θ, , where  

 0 0sup ( ) ( ) 0, as .
t R

z t z tθ θ θ θ
∈

| , − , |→ →  

Define, for t−∞ < < ∞ , 

 
0

( ) ( )n n t tZ t f fθ θθ , ,, = −G  

and  

 
0

( ) ( )p p t tZ t f fθ θθ , ,, = −G . 

Since δℑ  is a P-Donsker class of functions, n pG G , as n →∞ , in ( )δ
∞ ℑ , where pG  is a 

tight Gaussian process defined on δℑ . Therefore,  

 
0 0

( ) ( ) ( ) ( ),  as .n n t t p t t pZ t f f f f Z t nθ θ θ θθ θ, , , ,, = − − = , →∞G G  

In order to use Theorem 2.1 we need to show that ( )g ⋅  is a continuous map at 0( )pZ θ, . 

Since pG  is a tight Gaussian process on δℑ , by the characterization of a tight Gaussian process 

mentioned above, δℑ  is totally bounded with respect to ρ  and almost all sample paths on δℑ  

are uniformly ρ − continuous on δℑ  with respect to the standard deviation metric on δℑ , i.e.  
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1 1 2 2 1 1 1 1 2 2 2 2 2 2 1 1

2 2( ) ( ) ,  for .t t t t t t t tf f P f Pf f Pf f fθ θ θ θ θ θ θ θ δρ , , , , , , , ,, = − − + , ∈ℑ  

Note that  

            1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2

2 2 2

2

( ) ( ) ( ( ))

( )
t t t t t t

t t

f f P f f P f f

P f f
θ θ θ θ θ θ

θ θ

ρ , , , , , ,

, ,

= − − −

≤ − .
 

The uniform ρ -continuity of almost all sample paths implies that for every 0ε > , there exists a 

0δ >  such that whenever 
1 1 2 2

( )t tf fθ θρ δ, ,, < , 
1 1 2 2

( )p t tf fθ θ ε, ,| − |<G .  

To show that ( )g ⋅  is continuous at 0( )pZ θ, , we need to show that for every 0ε > , there 

exists 0δ >  such that 
0

sup ( )p t t
t R

f fθ θ ε, ,
∈

| − |<G , whenever 0θ θ δ|| − ||< .  By the uniform ρ -

continuity of pG , there exists a 0δℑ >  such that if  

0
sup ( 0)t t
t R

f fθ θρ δ, , ℑ
∈

− , <  then 
0

( )p t tf fθ θ ε, ,| − |< ,G   for every t R∈ .  However, from the note 

above, 
0 0

2 2sup ( 0) sup ( )t t t t
t R t R

f f P f fθ θ θ θρ , , , ,
∈ ∈

− , ≤ − .   Now by assumption, there exists a δ ′  such 

that if 0θ θ δ ′|| − ||< , then 
0

2 2sup ( )t t
t R

P f fθ θ δ, , ℑ
∈

− < . Without loss of generality, assume δ δ′ < . 

Therefore, if  0θ θ δ ′|| − ||< , then 
0

2 2sup ( 0)t t
t R

f fθ θρ δ, , ℑ
∈

− , < .  This implies 
0

2 2( )t tf fθ θρ δ, , ℑ, < , ∀  t 

R∈  and θ  such that 0θ θ δ ′|| − ||< . Therefore,  
0

( )p t tf fθ θ ε, ,| − |<G , ∀  t R∈  and 

0
sup ( )p t t
t R

f fθ θ ε, ,
∈

| − |≤G . Which implies that sup ( ) sup ( )p p
t R t R

Z t g Zθ θ ε
∈ ∈

| , |= | , |≤  whenever 

0θ θ δ ′|| − ||< . Therefore, ( )g ⋅  is a continuous map at 0( )pZ θ, .  

Next, we note that 0
ˆ pθ θ⎯⎯→  and n pZ Z  and that ℑ  is totally bounded with respect to 

2ρ , which gives us that 0(θ ,  )pZ  takes values on a separable space with probability one. Now 

by Theorem 2.1,  0
ˆ( ) ( )n pZ Zθ θ, ,  in ( )Rδ δ

∞Θ × Θ × , as n →∞ . Now by applying the 

Continuous Mapping Theorem we get that 
0 00

ˆ( ) ( ) ( ) 0n p p t tg Z g Z f fθ θθ θ , ,, , = − =G , as 

n →∞ ,  in ( )R∞ .  Therefore, 
0ˆsup ( ( ) ( )) 0

P

p tt
t R

f Y f Yθθ ,,
∈

| − |→G .     
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2.3.  VC Classes and Uniform Entropy Integrals. There are two common methods used to 

show that a class of functions has the P-Donsker property,  

(i) the bracketing integral is finite (For further information see the van der 

Vaart(1998) and van der Vaart and Wellner(1996))  

or  

(ii)  the uniform entropy integral is finite and 
, 2Q

F < ∞ .  

For completeness we will define uniform entropy integrals and list some results concerning them 

from van der Vaart and Wellner (1998).  The norm that is used when defining uniform entropy is 

the 2 ( )L Q  norm. The uniform entropy integral is defined as  

(2.6) 2 220
( ) logsup ( ( ))

Q
Q

J L N F L Q d
δ

δ ε ε
,

,ℑ, = ,ℑ,∫ . 

 The next theorem from van der Vaart(1998) relates P-Donsker classes and uniform 

entropy integrals.  

 

Theorem 2.4. (Theorem 19.14, van der Vaart, 1998, pg. 274)  Let ℑ  be a suitably measurable 

class of functions with 2(1 )J L,ℑ, < ∞ . If 2PF < ∞ , then ℑ  is P-Donsker.  

 
One of the classes of functions considered form a Vapnik-Cervonenkis (VC) class of 

functions. A VC-class of functions has the property that there exists an upper bound on 

22
( ( ))

Q
N F L Qε

,
,ℑ, , which is a polynomial of 1

ε . Theorem 2.5 below gives a bound on the 

covering number for a VC-class that is uniform for all probability measures, such that 0
Q r

F
,
> . 

This bound is strong enough to guarantee that the uniform entropy integral is finite.  Therefore, 

VC-classes of functions are P-Donsker classes of functions if they possess a finite envelope 

function.  

A VC-class of functions is defined in terms of an associated VC-class of sets. Let us first 

define a VC-class of sets. A class of sets, B  defined on X , will shatter another set, C  of size k , 

contained in X , if every subset of C  can be written as ib C∩ , where ib B∈ . The VC-index of 

B , denoted V( B ), is the size of a set for which any set of that size cannot be shattered by B . B  

is a VC-class of sets if ( )V B  is finite. The subgraph of a function is the set {( ) ( )}x t t f x, : < . A 
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class of functions, ℑ , is a VC-class of functions if the class of sets generated from the subgraphs 

of the elements of ℑ  is a VC-class of sets.  

 

Theorem 2.5.  (Theorem 2.6.7, van der Vaart and Wellner, 1996, pg. 141 )   For a VC-class of 

function with a measurable envelope function F and 1r ≥  , one has for any probability measure 

Q  with 0
Q r

F
,
> ,  

 
( ( ) 1)

( ) 1( ( )) ( )(16 )
r V

V
rQ r

N F L Q KV eε
ε

ℑ −
ℑ

,

⎛ ⎞,ℑ, ≤ ℑ ⎜ ⎟
⎝ ⎠

,  

for a universal constant K and 0 1ε< < .  

 

There are three results concerning VC-Classes and P-Donsker classes, from van der Vaart 

and Wellner(1996), which are used in Chapter III, the lemmas are stated here for ease of 

reference.  

 

Lemma 2.6. (Example 19.17, van der Vaart, 1998, pg.276 )  Let ℑ  be all linear combinations 
k

i ii
fλ∑  of a given, finite set of functions 1 kf …f  on X .  Then ℑ  is a VC class and hence has a 

finite uniform entropy integral. Furthermore, the same is true for the class of all sets { }f c>  if f 

ranges over ℑ  and c  over R .  

 

Lemma 2.7. (Lemma 2.6.18, van der Vaart and Wellner, 1996, pg.147 )   Let ℑ  be a VC-

subgraph class of functions on a set X  and R Rφ :  be a monotonic fixed function. Then 

φ ℑ  is VC-subgraph. 

 

Lemma 2.8. (Example 19.20, van der Vaart, 1998, pg. 277 )    For any fixed Litschitz function 
2R Rφ : , the class of all functions of the form ( )f gφ ,  is Donsker, if  f  and  g range over 

Donsker classes ℑ  and G  with integrable envelope functions. For example, the class of all sums 

f+g, all minima f g∧  and the class of all maxima f g∨  are Donsker.  
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2.4.  Euclidean and Permissible Classes. A class of functions is said to be a Euclidean class 

of functions, with respect to an envelope function F , if there exists A  and V , not depending on 

the probability distribution Q , such that  

 ( )( )1,1
, ,V

Q
N F L Q Aε ε −≤F,  0,ε >  

whenever 
,1

0 .
Q

F< < ∞   In this Chapter and Chapter IV, Euclidean classes are used with 

Pollard’s Rate theorem, which is summarized in Section 2.5.   Wellner (2004) gives a complete 

discussion of Euclidean classes. See Wellner (2004), van der Vaart and Wellner (1996),  or van 

der Vaart (1998) for a discussion of VC classes. 

 

Lemma 2.9. (Wellner, 2004, Proposition 8.5)  Suppose that F  and G are Euclidean classes of 

functions with envelopes F and G respectively, suppose that rQG < ∞ , for some 1r ≥ , Then the 

class of functions 

(2.7) { }: ,f g f g+ + ∈ ∈F G = F G  

is Euclidean for the envelope F +G . 

 

Next we will show that the class of functions on kR  

(2.8) ( ) ( )( ) ( )( ){ }1 2 1 2, , , , , 1 1 2 2 ; , , ,k
c c a a s t i if y I c y a t I c y a s c a R s t R′= = − ≤ − − ≤ ∈ ∈F  

is a Euclidean class of functions. 

 

Corollary 2.10.  The class of functions, F,  defined in (2.8) is a Euclidean class of functions with 

an envelope function 1F ≡ . 

Proof.  Define 

 ( ) ( )( ){ }1 1,1 , 1 1 1 1; , ,k
c a tf y I c y a t c a R t R′= = − ≤ ∈ ∈F  

and 

            ( ) ( )( ){ }2 22 , , 2 2 2 2; , , .k
c a sf y I c y a s c a R s R′= = − − ≤ ∈ ∈F  

By Lemma 2.6, both 1F and 2F  are VC-Classes of functions and therefore Euclidean classes of 

functions. Note that 1 2⊂ +F F F  and that F =1 is an envelope function for 1F and 2F .  By 
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Lemma 2.9, 1F + 2F  is a Euclidean class of functions with respect to the envelope 

function 2 2F ≡ .  Now we need to show that F is a Euclidean class with respect to the envelope 

function 1F ≡ .  Next, consider 

 ( )( )2 1,1
, , 0 1.V

Q
N F L Q Aε ε ε−≤ < ≤F,  

Let 2δ ε= .  Then  

            
( )( )1, 2 , 0 2 1,

2 , 0 2.

V V

V V

N L Q A

A

δ δ δ

δ δ

−

−

≤ < ≤

= < ≤

F, 
 

Note, for f ∈F,  1 .f F≤ =  Therefore,  

 
( )( ) ( )( )1 1,1

, ,

2 ,0 1.
Q

V V

N F L Q N L Q

A

ε ε

ε ε−

=

≤ < ≤

F, F, 
 

 
 

In order to apply Pollard’s Theorem, we need to show that the class of functions 

considered is also a permissible class of functions.  This is used to insure the measurability of the 

space indexed by c, a, and t.  The following definitions are found in Pollard (1984, Appendix C).  

Let 1 2, ,ξ ξ …  be measurable maps from a probability space ( ), , PΩ E  into a set S equipped with 

the σ -field ( )/ RL B . Let F be a class of ( )/ R −L B measurable real valued functions on S .  

We consider the empirical measure nP  attached to each f in F  to get the real number 

 ( )1

1

.
n

n i
i

P f n f ξ−

=

= ∑  

The definition of a permissible class of functions depends upon the underlying probability space 

( ), , PΩ E and the set S equipped with the σ -field L . 

Suppose that a class F  is indexed by a parameter t  that ranges over some set T .  Let 

( )TB  be the Borel σ -field on T .  Let ( )T ⊗B L be the product σ -field associated with ( )TB  

and L . Assume that T is a separable metric space. The class of functions F is said to be 

permissible if it can be indexed by a T  in such a way that  

(i)  the function ( ),f i i  is ( )T⊗L B measurable as a function from S T⊗  into the real 

line; 
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 (ii) T  is an analytic subset of a compact subset of compact metric space T . 

Note that the subset of (2.8) defined as  

(2.9) ( ) ( ) ( )( ) ( ) ( )( )
1 1 1
2 2 2

* 1 1
, , 1 1 1 2 2 2
, ,

c a p
c a p

f y I c y a p I c y a p− −⎧ ⎫
= = − ≤ Φ − − ≤ Φ⎨ ⎬
⎩ ⎭

F  

when indexed by the vector ( ) 4 2
1 1 1 2 2 3, , , , , kc a p c a p R +∈ , where ,i cc L≤ < ∞ ,  i aa L≤ < ∞ and 

( ) 0,1ip ∈  is a permissible class of functions.  To see that (2.9) is a permissible class of 

functions, let  

 ( ) ( ){ }4 2
1 1 1 2 2 3, , , , , : , ,   0,1k

i c i a iT c a p c a p R c L a L p+= ∈ ≤ < ∞ ≤ < ∞ ∈  

and 

 ( ) [ ]{ }4 2
1 1 1 2 2 3, , , , , : , ,   0,1 .k

i c i a iT c a p c a p R c L a L p+= ∈ ≤ < ∞ ≤ < ∞ ∈   Then T  is a 

compact metric space.  SinceT is Lebsegue measurable with ,T T⊂  T  is analytic. Also ( ),f i i  

is a ( )T⊗L B  measurable function from S T R⊗ . 

 

2.5. Pollard’s Rate Theorem.  In the representation theorems associated with the 

correlations statistics we will make use of the following result from Pollard (1984) and Lemmas 

2.12 and 4.11, which are derived from Pollard’s result. 

 

Theorem 2.11. (Pollard, 1984)  For each n , let nF  be a permissible class of functions whose 

covering numbers satisfy 

( )( )1sup , ,0 1,W
n

Q
N L Q Aε ε ε−≤ < ≤F ,  

with constants A  and W not depending on n . If 1f ≤  and ( )1/ 22
nPf δ≤ , for each f in nF , then 

for a non-increasing sequence of positive numbers { }nα such that  

2 2log 0,n nn nδ α →  as ,n →∞  

we have 
2sup 0, . .1 .n n nP f Pf w p as nδ α− → →∞

nF
 

 
Lemma 2.12 is a generalization of a Lemma from Bahadur (1966) for the standard normal 
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distribution.   
 

Lemma 2.12. Let 1, , nz z… be i.i.d. standard normal random variables and  

 ( ) ( )1

1
,

n

n i
i

F t n I z t t−

=

= ≤ − ∞ < < ∞∑ . 

Let ( )na q be a sequence of positive constants such that  

 ( ) 1/ 2
0~ log ,q

na q c n n as n− → ∞ , 

for 0q > and 0 0.c >  Let nβ be a sequence of constants such that ,nβ → ∞ as n →∞ , and 

1/ 2 1log q
nn n β− −  is a non-increasing sequence of positive numbers. Then  

(2.10) 
( )

( ) ( ) ( )1
23/ 4( ) ( ) log ,sup
q

s t a qn
n n nF s F t s t o n n β

+

− <

−− −Φ +Φ =  as n →∞ , almost surely. 

Proof.  Define ( ) ( ) ( ) ( ){ }, :n s t nf z I z t I z s s t a q= = ≤ − ≤ − ≤G and note that for ,s t nf ∈G  

 ( ) ( ) ( ) ., ( ) ( )n s t n nP P f F s F t s t− = − − Φ + Φ  

Let *F be defined as in (2.9), then *
n ⊆ F ,G  for every n , then 

( )( ) ( )( )*
1 1, , , ,nN L Q N L Qε ε≤ FG  and nG  is a permissible class of functions for every n .  By 

Corollary 2.10,  

 ( )( )1sup , , W
n

Q
N L Q Aε ε −≤G , for 0 1,ε< ≤  

where A and W are constants not depending on n . Note that , 1s tf ≤ , for every ,s t nf ∈G . Consider 

 

( )
( ) ( )( )
( ) ( ) ( )( )

( ) ( )

22
,

*

1/ 2

,  for , ,

2 , .

s t

n

n n

n

Pf E I s z t

t t a q

t a q t t a q t

a q t R

φ

π

Φ

−

= < ≤

≤ Φ −Φ −

= ∈ −

≤ ∈

 

Let ( ) ( )1/ 22 2n na qδ π −=  and 2 1/ 2 1 2log q
n nn nα β− −=  then, by Theorem 2.11,  

(2.11) 
( )
( ) ( )2

,sup , . .1, as .
n

n s t n n
s t a q

P P f o w p nδ α
− ≤

− = →∞  

Next, note 

 ( ) ( )1/ 22 1/ 2
02 log q

n na q c n nδ π − −= =  

and 
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 2 1/ 2 1 2log .q
n nn nα β− −=  

Therefore we can rewrite (2.10) as  

 
( )

( ) ( ) ( )1
23 / 4sup ( ) ( ) log , . .1, as .
q

s t a qn

n n nF s F t s t o n n w p nβ
+

− <

−− −Φ +Φ = →∞   

 
 
Corollary 2.13. ( ) ( ) ( )

1/ 2 1/ 2
0

3 / 4

log
sup ( ) ( ) log , . .1, as .n n

s t c n n
F s F t s t o n n w p n

−

−

− <
− −Φ +Φ = →∞  

Proof. Take 1/ 2q = , 1/ 4log ,n nβ =  and apply Lemma 2.12.   
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Chapter III. An Asymptotic Representation for  

               Empirical Processes of Projections 
 

3.1.  Basic Definitions and Introduction.  Let 1 nY … Y, ,  be k -dimensional multivariate vectors 

with mean, μ  and positive definite covariance matrix, Σ . Let S  denote the sample covariance 

matrix.  Let Y  denote the sample mean.  Let ( )tΦ  and ( )tφ , t−∞ < < ∞ , be the cumulative 

distribution and probability density functions of a standard normal distribution, respectively. 

 

Assumption 3.1.  For 1 nY … Y, ,  be i.i.d. random vectors with a positive definite covariance matrix 

Σ  and ( )1
ˆ ˆ

nd d Y … Y= , ,  a sequence of row vectors,   

(i) ˆ ˆ 1;dSd ′ =  

and  

(ii)  0
ˆ P
d d→ , as n →∞ , for 0 ;kd R∈  

where 

(iii) 0 0 1d d ′Σ = .  

 

If 1 nY … Y, ,  are i.i.d. multivariate normal vectors, then 0{ ( ); 1 }id Y i … nμ− = , ,  are i.i.d. 

standard normal random variables.  Here we consider the transformed data ˆ{ ( ) 1 }id Y Y i … n− , = , ,  

and the corresponding univariate empirical process,  

(3.1) 1/ 2 1
1

ˆ( ) ( ( ( ) ) ( )), .i n
n ii

G t n n I d Y Y t t t=−
=

= − ≤ −Φ −∞ < < ∞∑  

In this chapter, it is shown under the assumption of multivariate normality that 

( ), ,nG t t−∞ < < ∞  is asymptotically equivalent to  

(3.2) 

1
01

2
0

0

( ) ( ( ) ) ( )

( )( ( )) 2 ( ) 2

( ) ( ) ,] ,

[(

)

i n
n ii

i

i

A t n n I d Y t t

t t d Y t t

t d Y t

μ

φ μ φ

φ μ

=−
=

= − ≤ −Φ

+ − −

+ − −∞ < < ∞

∑
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 uniformly over t , for estimated projections, d̂ , that satisfy Assumption 3.1.  Then it is shown 

that nA  converges weakly to G , as n  tends to infinity, where G  is a tight zero mean Gaussian 

process with covariance function 

 ( ) ( )( ) ( ) ( )( ( )) ( ) ( ) ( ) ( ) , , ,
2

ts s tE G t G s min t s t s s t s tφ φφ φ= Φ , −Φ Φ − − −∞ < < ∞ . 

This implies the weak convergence of nG  to G , as n →∞ , in ( ).l R∞  

3.2.  An application of Theorem 2.3.  In order to apply Theorem 2.3, it is first necessary to 

choose a proper class of functions.  For t R∈ , , kc a R′ ∈ , define 

(3.3) { ( ( ) ) , }.t k
c a tf I c y a t t R c a R, ,ℑ = = − ≤ : ∈ , ∈   

  

Then  

  
0

1/ 2
ˆ , ,, ,

( ) , .n n d td Y t
G t n P f Pf tμ

⎡ ⎤= − − ∞ < < ∞⎣ ⎦  

In particular, we consider 1, , nY Y…  i.i.d. on the measure space ( ), , PX A  where X  is restricted 

to kR .  Here, we show that ℑ  is a P-Donsker class of functions.  Our approach is to apply 

Theorem 2.3.  This  will result in a approximating process which is the usual empirical process 

plus a drift term.  The majority of this chapter deals with representing the drift term as a sum of 

i.i.d. random elements, uniformly over the real line.   

 

Lemma 3.1.  Let ℑ  be the class of functions defined in (3.3). Then ℑ  is a P-Donsker class of 

functions. 

Proof. By Corollary 2.10, ℑ  is a Euclidean class of functions with an envelope function of 1, 

which implies that ( )21, ,J Lℑ < ∞ .  Then, by Theorem 2.4, ℑ  is a P-Donsker class of functions. 

          

 

 In Lemma 3.2, we verify the second assumption of Theorem 2.3 for the class of functions 

defined in (3.3) and d̂ satisfying Assumption 3.1. 
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Lemma 3.2.  Let ℑ  be the class of functions defined in (3.3) and  P  a continuous probability 

measure on ( ),kR A .  Then  

0 0 0 0
2

2

( )
sup sup ( ( ) ( )) ( ) (1)c a t c a t c a t c a tL Pt R t R

f f f y f y dP y o, , , , , , , ,
∈ ∈

− = − = ,∫   

as 0 0( ) ( )c a c a, → , . 

Proof.   Consider  

 

0 0 0 0
2

2

( )

2
0 0

0 0 0 0

( ( ) ( )) ( )

[ ( ( ) ) ( ( ) )]
[ ( ( ) ( ) ) ( ( ) ( ) )]

c a t c a t c a t c a tL P
f f f y f y dP y

E I c Y a t I c Y a t
E I c Y a t c Y a t I c Y a t c Y a t

, , , , , , , ,− = −

= − ≤ − − ≤
= − ≤ , − > + − > , − ≤ .

∫
 

Let 0 0 0( )( ) ( )M c c Y a c a a= − − + −  and note that   

0 0 0 (1) (1) (1) (1) (1)p pM c c Y a c a a o O O o o| |≤ − − + − = + = , as 0 0( ) ( )c a c a, → , . 

Therefore, we have 

0 0

2
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

( ( ) ( )) ( ) [ ( ) ( )( ) ( ) ( ) ]

[ ( ) ( )( ) ( ) ( ) ]
[ ( ) ( ) ]
[ ( ) ( ) ]

c a t c a tf y f y dP y P c Y a c c Y a c a a t c Y a t

P c Y a c c Y a c a a t c Y a t
P M c Y a t c Y a t
P c Y a M t c Y a t

, , , ,− = − + − − + − ≤ , − >

+ − + − − + − > , − ≤
= + − ≤ , − >
+ − + > , − ≤ .

∫
 

First consider  

 

0 0 0 0 0 0 0 0

0 0 0 0

0 0

0 0

[ ( ) ( ) ] [ ( ) ( ) ]
[ ( ) ( ) ]

[ ( ) ] [ ]
[ ( ) ] [ ] 0

P M c Y a t c Y a t P M c Y a t c Y a t M
P M c Y a t c Y a t M

P t c Y a t M M P M
P t c Y a t P M

δ
δ

δ δ
δ δ δ

+ − ≤ , − > = + − ≤ , − > ,| |≤
+ + − ≤ , − > ,| |>

≤ < − ≤ − , ≤ + | |>

≤ < − ≤ + + | |> ,∀ > .

 

By a similar process, we get that, for every 0δ > ,  

 0 0 0 0 0 0[ ( ) , ( ) ] [ ( ) ] [ ]P c Y a M t c Y a t P t c Y a t P Mδ δ− + > − ≤ ≤ − < − ≤ + | |> . 

Now we have that 
2

0 0 0 0( ( )) ( ) [ ( ) ] [ ( ) ] 2 [ ]c a tf y dP y P t c Y a t P t c Y a t P Mδ δ δ, , ≤ − < − ≤ + < − ≤ + + | |>∫ , 

 for every 0δ >  and for every t R∈ . Then [ ] (1)P M oδ| |> = , for every 0δ > , as c  approaches 

0c  and a  approaches 0a . Since 0 0( )c Y d− is a continuous random variable, there exists a 0δ >  

for every 0ε >  such that 0 0[ ( ) ]P t c Y d t δ ε< − ≤ + ≤ , for every t R∈ . Therefore, 
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0

2
, ,sup ( ) (1)c a t d t

t R
f f dP oμ, ,

∈
− =∫ , as c approaches 0c  and a approaches 0a .     

        
 

We will denote the common empirical process evaluated at 
0 , ,d tPf μ , t−∞ < < ∞ ,  by 

( ) ,n tW t−∞ < < ∞ ,  i.e., 

 ( ) ( )
0

1/ 2
, , , .n n d tt n P P f tμ= − − ∞ < < ∞W  

 Note that under the assumption of normality of 1, , nY Y… ,  

 ( ) ( )( ) ( )1/ 2 1
0

1

, .
n

n i
i

t n n I d Y t t tμ−

=

⎡ ⎤= − ≤ −Φ −∞ < < ∞⎢ ⎥⎣ ⎦
∑W  

 
Lemma 3.3.  Let 1, , nY Y…  be k-dimensional multivariate normal random vectors with meanμ  

and positive definite covariance matrix Σ .  Let d̂ and 0d satisfy Assumption 3.1. Then, 

for ,t− ∞ < < ∞  

( ) ( ) ( )1/ 2
ˆ( ) ( ) 1 , .
ˆ ˆn n p

t d YG t t n t o as n
d d

μ−

′

⎡ ⎤⎛ ⎞+ −
= + Φ −Φ + →∞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥Σ⎝ ⎠⎣ ⎦
W  

Proof. By Assumption 3.1, we have that ˆ
nd  is weakly consistent for 0d , as n →∞ . By the 

Strong Law of Large numbers, we have that Y  is strongly consistent for μ , as n →∞ .  

Therefore, by Lemma 3.2, the assumptions to Theorem 2.3 are satisfied for the class of functions 

defined in (3.3), when ( ) ( )ˆ, ,c a d Y=  and 0 0 0( ) ( )c a d μ, = , .  

Applying Theorem 2.3 we get that  

( )
0

1/ 2
ˆ , ,, ,

( ) (1)n d t pd Y t
n P P f f oμ− − = , uniformly in t R∈ , as .n →∞  

Performing the above integrations, we get that 

(3.4) 
1
2

0ˆ , ,, ,

ˆ( ) ( ) ( ),
ˆ ˆ

n n d t pd Y t

t d YP f P f t o n
d d

μ
μ −

⎛ ⎞+ −⎜ ⎟−Φ − + Φ =
⎜ ⎟′Σ⎝ ⎠

 

uniformly in t , as .n →∞   To complete the proof, rewrite (3.4) as  
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0

1
2

ˆ , ,, ,
( ) ( )

ˆ( ) ( ) ( ),  as ,
ˆ ˆ

n n d td Y t

p

P f t P f t

t d Y t o n n
d d

μ

μ −

′

⎡ ⎤− Φ = −Φ⎣ ⎦

⎡ ⎤⎛ ⎞+ −
+ Φ −Φ + →∞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥Σ⎝ ⎠⎣ ⎦

 

uniformly in t R∈ . 
           
 
 
3.3.  The Characterization of the Drift Term.  In Lemma 3.3, nG  is shown to be 

asymptotically equivalent to the standard empirical process plus a drift term.  In this section, we 

will characterize the drift term in terms of a sum off i.i.d. random variables. 

The drift term has the form of  ˆ( ) ( )t tΦ −Φ , where 
ˆ( )ˆ
ˆ ˆ

t d Yt
d d

μ
′

+ −
=

Σ
, t−∞ < < ∞ .  

To deal with the drift term we first need to find the asymptotic properties of 1/ 2 1 1
ˆ ˆ

n
d d ′

⎛ ⎞
−⎜ ⎟⎜ ⎟Σ⎝ ⎠

 

and  1/ 2
ˆ( )

ˆ ˆ
d Yn

d d

μ
′

−

Σ
.  

 

Lemma 3.4.  Let 1 nY … Y, ,  be k-dimensional random vectors with mean vectorμ , positive definite 

covariance Σ , and ( )4
1 .E Y < ∞   Let d̂  and 0d  satisfy Assumption 3.1. Then  

 ( )( )21
01

ˆ ˆ( 1) 1 (1)n
i pi

n d d n n d Y oμ−
=

⎡ ⎤′Σ − = − − − +
⎣ ⎦∑ , as n →∞ . 

Proof.  First consider  

 

1

1

1

1

1

1

( ) ( ( )( ) )

( (( )( ) ( )( )

( )( ) ( )( ) ))

( ( )( ) ) ( )( )

n

i i
i

n

i i i
i

i

n

i i
i

n S n n Y Y Y Y

n n Y Y Y Y

Y Y Y Y

n n Y Y n Y Y

μ μ μ μ

μ μ μ μ

μ μ μ μ

μ μ μ μ

−

=

−

=

−

=

′Σ − = Σ − − − + − − +

′ ′= Σ − − − − − −

′ ′− − − + − −

′ ′= Σ − − − − − − .

∑

∑

∑

 

By the Central Limit Theorem, we have 1/ 2 ( ) (0 )n Y Nμ− ,Σ∼  and ( ) (1)pY oμ ′− = . Therefore,  



 29

(3.5) 1
1

( ) ( ( )( ) ) (1),  as n
i i pi

n S n n Y Y o nμ μ−
=

′Σ − = Σ − − − + →∞.∑  

Next consider  

 

0 0

ˆ ˆ ˆ ˆ ˆ ˆ( 1) ( )
ˆ ˆ( )
ˆ ˆ ˆ( ) ( ) ( )

n d d n d d dSd

d n S d

d d n S d d n S d

′ ′ ′Σ − = Σ −

′= Σ −

′ ′⎡ ⎤ ⎡ ⎤= − Σ − + Σ − .⎣ ⎦ ⎣ ⎦

 

By the consistency of ˆ
nd for 0d  and ( ) (1)pn S OΣ − = , we have the following  

 

0 0 0

0 0

0 0

0 0

0 0

ˆ ˆ ˆ ˆ( ) ( ) ( ) (1) ( )

ˆ(1) ( ) ( )

( )

(1) (1) ( )

( ) (1), as 

p

p

p p

p

d d n S d d n S d o d n S d

o d n S d d

d n S d

o o d n S d

d n S d o n

′ ′ ′⎡ ⎤− Σ − + Σ − = + Σ −⎣ ⎦
′ ′⎡ ⎤= + Σ − −⎣ ⎦

′⎡ ⎤+ Σ −⎣ ⎦
⎡ ⎤ ′= + + Σ −
⎣ ⎦

⎡ ⎤ ′= Σ − + →∞.
⎣ ⎦

 

Therefore,  

(3.6) 0 0
ˆ ˆ( 1) ( ) (1),  as .pn d d d n S d o n′⎡ ⎤′Σ − = Σ − + → ∞⎣ ⎦  

To complete the proof, note that 

 

( )( )

( )( )

( )( )

0 0 0 0

1
0 0

1

21
0

1

21
0

1

( ) (1 )

1

1

1 (1), as 

n

i i
i

n

i
i

n

i p
i

d n S d n d Sd

n d n Y Y Y Y d

n n d Y Y

n n d Y o nμ

−

=

−

=

−

=

′⎡ ⎤ ′Σ − = −⎣ ⎦
⎡ ⎤⎛ ⎞′ ′= − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤

= − −⎢ ⎥⎣ ⎦
⎡ ⎤= − − + →∞.⎢ ⎥⎣ ⎦

∑

∑

∑

 

 

Now, by the Central Limit Theorem, 1 2
01

(1 ( ( )) (0 ),  as n
ii

n n d Y N nμ η−
=

− − , →∞∑ , 

 where η  is the fourth moment of a standard normal distribution. 

 



 30

Lemma 3.5.  Let 1 nY … Y, ,  be k-dimensional random vectors with mean vector μ  and positive 

definite covariance matrix Σ .  Let d̂  and 0d  satisfy Assumption 3.1.  Let Y  be the sample mean. 

Then  

 0

ˆ( ) ( ) (1),
ˆ ˆ

p
d Yn nd Y o

d d

μ μ−
= − +

′Σ
 as n →∞ . 

Proof. The result follows immediately by noting ˆ ˆ 1,
p

d d ′Σ →  as ,n →∞  and  

 

0 0

0

ˆ( ) 1ˆ ˆ( ) ( )( 1)
ˆ ˆ ˆ ˆ

ˆ( ) (1)
ˆ( ) ( ) ( ) (1)

( ) (1),  as .

p

p

p

d Yn nd Y nd Y
d d d d

nd Y o

nd Y d d n Y o

nd Y o n

μ μ μ

μ

μ μ

μ

−
= − + − −

′ ′Σ Σ

= − +

= − + − − +

= − + →∞

 

 

Lemma 3.6.  Let 1 nY … Y, ,  be k-dimensional random vectors with mean vector μ , positive 

definite covariance matrix Σ , and ( )4
1 .E Y < ∞  Let d̂  and 0d  satisfy Assumption 3.1. Then  

 
ˆ ˆ1 (1 )1 (1)

2ˆ ˆ
p

n d dn o
d d

⎛ ⎞ ′− Σ⎜ ⎟− = +
⎜ ⎟′Σ⎝ ⎠

, as n →∞ . 

Proof.  Consider  

 ( )

( )

1 1 11 1 1ˆ ˆˆ ˆ 1
ˆ ˆ

1ˆ ˆ 1
ˆ ˆ ˆ ˆ

ˆ ˆ1 1 1ˆ ˆ 1
2 2ˆ ˆ ˆ ˆ

n n
d dd d

d d

n d d
d d d d

d dn d d n
d d d d

′

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟− = −⎜ ⎟⎜ ⎟ ⎜ ⎟′Σ⎝ ⎠′Σ +⎝ ⎠ ⎜ ⎟

Σ⎝ ⎠
⎛ ⎞

′ ⎜ ⎟= Σ −
⎜ ⎟′ ′ ′Σ + Σ⎝ ⎠
⎛ ⎞ ′Σ −′ ⎜ ⎟= Σ − − + .
⎜ ⎟′ ′Σ + Σ⎝ ⎠
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Note that 1 1 0
2ˆ ˆ ˆ ˆ

P

d d d d ′

⎛ ⎞
− ⎯⎯→⎜ ⎟⎜ ⎟′Σ + Σ⎝ ⎠

, as n →∞ , because 0 0
ˆ ˆ 1Pd d d d′ ′Σ ⎯⎯→ Σ = , as 

n →∞ .  Therefore, we have that 
ˆ ˆ( 1)

2
d dn

′Σ − = 11 (1)
ˆ ˆ

pn o
d d

⎛ ⎞
⎜ ⎟− +
⎜ ⎟′Σ⎝ ⎠

.      

 

Now by combining Lemma 3.4 and Lemma 3.6, we get that  

(3.7) 
( )( )21

01
11 1 (1)

2ˆ ˆ

n
ii

p

n n d Y
n o

d d

μ−
=

⎡ ⎤− −⎛ ⎞ ⎣ ⎦⎜ ⎟− = +
⎜ ⎟′Σ⎝ ⎠

∑
, as n →∞ . 

In Lemma 3.7, we will approximate the drift term from Lemma 3.3, 
  

(3.8) 
ˆ( ) ( ), .
ˆ ˆ

t d Y t t
d d

μ⎛ ⎞+ −⎜ ⎟Φ −Φ −∞ < < ∞
⎜ ⎟′Σ⎝ ⎠

 

 
The remainder term to the approximation to (3.8) is shown to be 1( )pO n− , uniformly in t . This 

guarantees that the remainder is converging to zero sufficiently fast in probability. 

 

Lemma 3.7. Let 1 nY … Y, ,  be k-dimensional random vectors with mean vector μ , positive 

definite covariance matrix Σ , and ( )4
1 .E Y < ∞  Let d̂  satisfy Assumption 3.1. Then                                   

( ) ( ) ( )1/ 2
ˆ ˆ( ) ( ) 1( ) 1 , ,

ˆ ˆ ˆ ˆˆ ˆ
p

t d Y d Yt t t t o n as n
d d d dd d

μ μφ φ −

′ ′

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟Φ −Φ = + − + →∞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ Σ Σ⎝ ⎠ ⎝ ⎠Σ⎝ ⎠
 

uniformly in t R∈ . 

Proof.  Consider 

 
( ) 2*ˆ ˆ ˆ( ) ( ) ( ) ,
2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

tt d Y t t d Y d Y

d d d d d d d dd d

φμ μ μφ
′ ′ ′ ′

⎛ ⎞ ′⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ − − −⎜ ⎟Φ −Φ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ Σ Σ Σ Σ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠Σ⎝ ⎠
 

where *t  is between 
ˆ( )
ˆ ˆ

t d Y

d d

μ+ −

′Σ
 and 

ˆ ˆ
t

d d ′Σ
.  Note that 

( )*

2
tφ′

 is a bounded function of *t .  

Therefore, by Lemma 3.5, we have 
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(3.9)     

( )

( )

( )1

ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ

ˆ( )
ˆ ˆ ˆ ˆ

,  as ,p

t d Y t d Yt
d d d dd d

t d Yt
d d d d

O n n

μ μφ

μφ φ

′ ′

′ ′

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟Φ −Φ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ Σ Σ⎝ ⎠ ⎝ ⎠Σ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞−
⎜ ⎟+ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟Σ Σ⎝ ⎠ ⎝ ⎠⎝ ⎠

+ →∞

 

uniformly in t R∈ .  Note that ( ) ( )sup 1 ,
ˆ ˆ p

t R

t t o
d d

φ φ
∈ ′

⎛ ⎞
− =⎜ ⎟⎜ ⎟Σ⎝ ⎠

 as .n →∞  This implies the 

following modification of (3.9), 

(3.10) ( ) ( )1/ 2
ˆ ˆ( ) ( ) ,  as ,

ˆ ˆ ˆ ˆˆ ˆ
p

t d Y t d Yt o n n
d d d dd d

μ μφ −

′ ′

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟Φ −Φ = + →∞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ Σ Σ⎝ ⎠ ⎝ ⎠Σ⎝ ⎠
 

 

uniformly in t R∈ .  Now consider   

(3.11) ( ) ( ) ( ) 2*
21 11 1 ,

2ˆ ˆ ˆ ˆ ˆ ˆ

tt t t t t
d d d d d d

φ
φ

′ ′ ′

′⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Φ −Φ = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟Σ Σ Σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

where *t  is between t  and 
ˆ ˆ
t

d d ′Σ
. Next we will show that 

( ) ( )
2*

2 11 1 ,
2 ˆ ˆ p

t
t O n

d d

φ
−

′

′ ⎛ ⎞
− =⎜ ⎟⎜ ⎟Σ⎝ ⎠

 

uniformly for t R∈ , as n →∞ . 

We will consider two cases, the first is when 0t >  and the second is for 0.t <  

Case 1:  Let 0t > .  If *ˆ ˆ0 t d d t t′< Σ < < , then 

 

( ) ( )

( )
( ) ( ) ( )

2 * 2 * *

3
3

3
3

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ sup 1 ,  as .p
t R

t t t t t

t td d
d d d d

d d t t O n

φ φ

φ

φ

′

′ ′

′

∈

′ =

⎛ ⎞⎛ ⎞
≤ Σ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Σ Σ⎝ ⎠⎝ ⎠

≤ Σ = →∞

 

If *0
ˆ ˆ
tt t

d d ′

< < <
Σ

, then 
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( ) ( )

( )

( ) ( )

2 * 2 * *

2

3

ˆ ˆ

1 sup 1 ,  as .
ˆ ˆ p

t R

t t t t t

tt t
d d

t t O n
d d

φ φ

φ

φ

′

∈′

′ =

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟Σ⎝ ⎠
⎛ ⎞

≤ = →∞⎜ ⎟⎜ ⎟Σ⎝ ⎠

 

Case 2:  Let 0t < . If *ˆ ˆ 0t d d t t′Σ < < < , then 

 

( ) ( )

( )

( ) ( )

2 * 2 * *

2

3

ˆ ˆ

1 sup 1 ,  as .
ˆ ˆ p

t R

t t t t t

tt t
d d

t t O n
d d

φ φ

φ

φ

′

∈′

′ =

≤
Σ

⎛ ⎞
≤ = →∞⎜ ⎟⎜ ⎟Σ⎝ ⎠

 

If  * 0
ˆ ˆ
tt t

d d ′

< < <
Σ

, then 

 

( ) ( )

( )
( ) ( ) ( )

2 * 2 * *

3
3

3
3

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ sup 1 ,  as .p
t R

t t t t t

t td d
d d d d

d d t t O n

φ φ

φ

φ

′

′ ′

′

∈

′ =

⎛ ⎞
≤ Σ ⎜ ⎟⎜ ⎟Σ Σ⎝ ⎠

≤ Σ = →∞

 

Therefore,  

(3.12) 
( ) ( )

*
2sup 1 ,  as 

2 p
t R

t
t O n
φ

∈

′
= →∞ , 

 this implies  

(3.13) 
( ) ( )

2*
2 11sup 1 , as 

2 ˆ ˆ p
t R

t
t O n n

d d

φ
−

∈ ′

′ ⎛ ⎞
− = →∞⎜ ⎟⎜ ⎟Σ⎝ ⎠

, 

and  

(3.14) ( ) ( ) ( )11 1 , as 
ˆ ˆ ˆ ˆ p
t t t t O n n

d d d d
φ −

′ ′

⎛ ⎞ ⎛ ⎞
Φ −Φ = − + →∞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Σ Σ⎝ ⎠ ⎝ ⎠

, 

uniformly for t R∈ .  To finish the proof combine (3.10) and (3.14) to get 
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( ) ( ) ( ) ( )

( ) ( ) ( )

1/ 2

1/ 2

ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ

ˆ1 ( )1 , as ,
ˆ ˆ ˆ ˆ

p

p

t d Y t d Yt t t o n
d d d dd d

d Yt t t o n n
d d d d

μ μφ

μφ φ

−

′ ′

−

′ ′

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟Φ −Φ = Φ −Φ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ Σ Σ⎝ ⎠ ⎝ ⎠Σ⎝ ⎠
⎛ ⎞ ⎛ ⎞−

= − + + →∞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Σ Σ⎝ ⎠ ⎝ ⎠

 

uniformly for t R∈ .           

3.4.    The Limit of the Empirical Process of the Projections.  In this section,  we first show 

the asymptotic equivalence of nA  and nG , as n →∞ .  Then we will show that nA G , as 

,n →∞  where G  is a zero mean, tight Gaussian process with covariance function  

 
( ) ( )( ( )) ( ) ( ) ( ) ( ) , ,

2
ts s tmin t s t s s t s tφ φφ φΦ , −Φ Φ − − −∞ < < ∞ . 

 

Lemma 3.8.  Let 1 nY … Y, ,  be k -dimensional multivariate normal vectors with mean, μ  and 

positive definite covariance matrix, Σ . Let nG  and nA  be defined as in (3.1) and (3.2) 

respectively.  Then  

 ( )sup ( ) ( ) 1 ,n n p
t R

G t A t o
∈

| − |=   as n →∞ . 

 

Proof. By Lemma 3.3, we have, 

 ( ) 1/ 2
ˆ ( )( ) ( ) (1),  as ,
ˆ ˆ
n

n n p

n n

t d YG t t n t o n
d d

μ
′

⎛ ⎞⎛ ⎞+ −⎜ ⎟⎜ ⎟= + Φ −Φ + →∞
⎜ ⎟⎜ ⎟Σ⎝ ⎠⎝ ⎠

W  

uniformly in t R∈ .  Now by applying Lemma 3.7 to the drift term, we have,   

 ( ) 1/ 2 1/ 2
ˆ ( ) 1( ) ( ) ( ) 1 (1),  as ,

ˆ ˆ ˆ ˆ
n

n n p

n n n n

d YG t t t n t t n o n
d d d d

μφ φ
′ ′

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟= + + − + →∞
⎜ ⎟ ⎜ ⎟Σ Σ⎝ ⎠ ⎝ ⎠

W  

uniformly in .t R∈   Now using (3.7),  

 
1 2

0 1/ 21
( ( )) 11 1 ( )  as ,

2ˆ ˆ

n
ii

p

n n

n d Y
o n n

d d

μ−
−=

′

⎛ ⎞ − −
⎜ ⎟− = + , → ∞
⎜ ⎟Σ⎝ ⎠

∑
 

and Lemma 3.5,  

 
1
2

0

ˆ ( ) ( ) ( ),  as n ,
ˆ ˆ

n
p

n n

d Y d Y o n
d d

μ μ −

′

−
= − + →∞

Σ
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we have that  

 
( ) ( )( ) ( )

21
01/ 2 1/ 21

0

1
( ) ( ) ( ) (1)

2

( ) (1) ,  as .

n
ii

n n p

n p

n d Y
G t t t t n t n d Y o

A t o t n

μ
φ φ μ

−
=

⎛ ⎞− −
⎜ ⎟= + + − +
⎜ ⎟
⎝ ⎠

= + , − ∞ < < ∞ →∞

∑
W

 

 
Note that 0 ( )i iz d Y μ= −  are i.i.d. standard normal random variables.  For completeness, we next 

find the covariance structure for .nA   

 

Lemma 3.9. Let 1 , , nY Y… be i.i.d. multivariate normal random vectors. The covariance 

function of nA  is given by  

( ) ( )( ),n nCov A t A s = ( ) ( )( ( )) ( ) ( ) ( ) ( )
2

ts s tmin t s t s s t φ φφ φΦ , −Φ Φ − − , for s t−∞ < , < ∞ . 

Proof. Let 
2( ) ( )( ) ( )

2 2t
t t Z t tX I Z t tφ φ

= ≤ + −Φ −  and ( )tY t Zφ= , where ( )~ 0,1Z N . Then  

 
( ) ( )( ), ( )

( ) ( ) ( ) ( )
n n s s t t

s t s t s t s t

Cov A t A s Cov X Y X Y

Cov X X Cov Y Y Cov X Y Cov Y X

= + , +

= , + , + , + , .
 

First consider ( )s tCov X X,  and note the following,  

( )

( )

2

2

2 2

4

( )( ) ( ) ( )
2 2

( )( ) ( )
2 2

( ) ( )(min( )) ( ) ( )
2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) .
4 2 2 4

s t

t s

Z t tCov X X E I Z t t t t

Z s sI Z s s s s

z s z tt s s z dz t z dz

ts t s s s t t t s ts s tz z dz t s

φφ

φφ

φ φφ φ

φ φ φ φ φ φφ

−∞ −∞

⎛ ⎞
, = ≤ + −Φ −⎜ ⎟

⎝ ⎠
⎛ ⎞

× ≤ + −Φ −⎜ ⎟
⎝ ⎠

= Φ , + +

Φ Φ
+ −Φ Φ − − −

∫ ∫

∫

 

Integrate the second and third terms by parts to get the following,  

 

2 ( ) ( )

( ) ( )

( ) ( )

s s

s

z z dz z z dz

s s z dz

s s s

φ φ

φ φ

φ

−∞ −∞

−∞

′= −

= − +

= − + Φ .

∫ ∫
∫  
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Note that 4 ( )z z dzφ∫ =3, since the integral is the expectation of the square of a 2χ  random 

variable with one degree of freedom.  Performing the above integrals we get the following,  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ( ))
2 2

3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
4 2 2 4

( ) ( )(min( )) ( ) ( )
2

s t
s s t ts s t t t s ts s tCov X X min t s

ts s t t t s s s t ts s tt s

ts s tt s t s

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ

Φ − Φ −
, = Φ , + +

Φ Φ
+ −Φ Φ − − −

= Φ , −Φ Φ − .

 

Next note that ( ) ( ) ( )s tCov Y Y s tφ φ, = . Using calculations similar to those used for ( )s tCov X X, , 

we get the following,  

 

( )
2

3

( )( ) ( ) ( ) ( ) ( )
2 2

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
2 2

( ) ( )

s t Z

Z

Z s sCov X Y E I Z s s s s t Z

Z s s tE ZI Z s t s s t Z t s Z

t s

φφ φ

φ φφ φ φ φ

φ φ

⎛ ⎞
, = ≤ + −Φ −⎜ ⎟

⎝ ⎠
⎛ ⎞

= ≤ + − Φ −⎜ ⎟
⎝ ⎠

= − .

 

Combine the above results to get the following,  

 

( ) ( )( ), ( ) ( ) ( ) ( )

( ) ( )(min( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( )(min( )) ( ) ( ) ( ) ( )
2

n n s t s t s t s tCov A t A s Cov X X Cov Y Y Cov X Y Cov Y X

ts s tt s t s s t s t t s

ts s tt s t s s t

φ φ φ φ φ φ φ φ

φ φ φ φ

= , + , + , + ,

= Φ , −Φ Φ − + − −

= Φ , −Φ Φ − − .

 

The space [ ],D a b  is the set of all Cadlag functions on an interval [ ],a b R⊂ : functions 

[ ]: ,z a b R  that are continuous from the right and have limits from the left everywhere.  

 

Theorem 3.10.  Let nG  be defined as in (3.1) and G  be a tight Gaussian process with 

covariance ( ) ( )( ( )) ( ) ( ) ( ) ( )
2

ts s tmin t s t s s t φ φφ φΦ , −Φ Φ − − .  

Then  

 nG G , in [ , ]D −∞ ∞ , as n →∞ . 

Proof.  By Lemma 3.8, we have that sup ( ) ( ) = (1)n n P
t R

G t A t o
∈

| − | , as n →∞ , so it suffices to find 

the limiting distribution of nA .  Note that  
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 ( ) ( )
( )

( )( ) ( )( )1 1

0,1
sup supn n n n
t R p

G t A t G p A p− −

∈ ∈
− = Φ − Φ  

 
and 

 

 

( ) ( )( )

( ) ( )( ) ( )( )

( )( ) ( )

1 1

21
01 1 1/ 2 1

1 1/ 2
0

( )

1
2

,   for 0 1.

n n

n
ii

A p p

n d Y
p p n

p n d Y p

μ
φ

φ μ

− −

−
− − =

−

Φ = Φ

⎛ ⎞− −
⎜ ⎟+Φ Φ
⎜ ⎟
⎝ ⎠

+ Φ − < <

∑

W

 

 
First, we note that ( )( )1 , 0 1,n p p−Φ < <W  converges to a uniform Brownian bridge in [0,1]D , as 

n →∞ (see Theorem 13.1, Billingsley, 1968).  Next,  note that ( ) ( )( )1 1 , 0 1,p p pφ− −Φ Φ < <  

and ( ) ( )( )1 1 , 0 1,p p pφ− −Φ Φ < <  are bounded uniformly continuous on [ ]0,1 .  Therefore, by 

the Central Limit Theorem, the limiting distribution of the second and third terms is going to is 

going to be normal.   This implies that 

 ( ) ( )( ) ( )( ) ( )( ) ( )
21

01 1 1/ 2 1 1/ 21
0

1
,  

2

n
ii

n d Y
p p n p n d Y

μ
φ φ μ

−
− − −=

⎛ ⎞− −
⎜ ⎟Φ Φ + Φ −
⎜ ⎟
⎝ ⎠

∑  

0 1,p< <  converges to a tight Gaussian process as,  in [ ]0,1D ,  .n →∞  The sum of two tight 

Gaussian processes is a tight Gaussian process.  Therefore, ( )( )1 ,nA p−Φ  0 1p< < , converges 

weakly to a tight Gaussian process in [ ]0,1D , as n →∞ .  By Lemma 3.10, the covariance 

function of ( )( )1 ,nA p−Φ  0 1,p< <  is  

  

( )( ) ( )( )( ) ( ) ( )( )( ) ( )( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )( ) ( )( )

1 1 1 1 1 1

1 1

1 1 1 1

,

,
2

Cov G p G q min p q p q

p q

p q p q

φ φ

φ φ

− − − − − −

− −

− − − −

Φ Φ = Φ Φ ,Φ −Φ Φ Φ Φ

− Φ Φ

Φ Φ Φ Φ
−

 

for 0 1p q< , < .  To complete the proof, let ( )1t p−= Φ .                                 
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3.5. The Asymptotic Distribution of Certain Functionals of the Empirical Process.   In 

Corollary 3.11, we apply the theory from the preceding sections to derive the distribution of 

continuous functionals applied to the empirical process of the estimated projections.  Let T  be a 

continuous functional from ( )R∞  to R .  Two examples of continuous functionals of the 

empirical process are the Cramer-von Mises type statistic, 

(3.15) [ ]
2

1/ 2 1
1 1

ˆ( ( ( ) ) ( )) ( )i n
n ii

T G n n I d Y Y t t d t=−
=

⎡ ⎤= − ≤ −Φ Φ⎣ ⎦∑∫ , 

and the Kolmogorov-Smirnov type statistic, 

(3.16) [ ] 1/ 2 1
2 1

ˆsup ( ( ( ) ) ( ))i n
n ii

t R
T G n n I d Y Y t t=−

=
∈

= − ≤ −Φ∑ . 

 
Corollary 3.12.  Let nG  be defined as in (3.1) and G  be a tight Gaussian process with 

covariance ( ) ( )( ( )) ( ) ( ) ( ) ( )
2

ts s tmin t s t s s t φ φφ φΦ , −Φ Φ − − .  Let T  be a continuous functional 

from ( )R∞  to R . 

Then  

 [ ] [ ]nT G T G , as n →∞ . 

Proof.  The result following immediately from Theorem 2.11 and Theorem 3.11.     
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Chapter IV. Asymptotic Distribution Results for 

Correlation Tests  

 

4.1.  Some Preliminary Results and Definitions.  Let 1, , nY Y… be i.i.d. k-variate multivariate 

normal vectors with a mean,μ , and covariance matrix, k k×Σ , which is positive definite.  Let 

ˆ kd R′∈  be a random vector which converges to 0
kd R′ ∈ .  Since 0d  is generally based upon the 

unknown parameters Σ  we will consider 

(4.1) ( )ˆˆi iy d Y Y= − , 1, ,i n= … . 

We are interested in deriving the asymptotic distribution of the DeWet and Venter statistic 

applied to { } 1
ˆ n

i i
y

=
.  Let ( ),r U V  be the sample correlation between two vectors U  and  V  

defined in (1.1).  Then the correlation form of the modified de Wet and Venter statistic is  

(4.2) ( )( )2
: 1

ˆ ˆ ,n i n n
W r y ξ

×
= , 

where 

(4.3) ( )( )1

1
/ 1

n
i nξ −

×
= Φ +  

and :ˆi ny  is the thi order statistic from { } 1
ˆ n

i i
y

=
. Since 2 ( , )r ⋅ ⋅ is location and scale invariant,  

 

( )( )
( ) ( )( )
( ) ( ) ( )( )

2
: 1

2
: 11

1/ 2
2

: 11

ˆ ˆ ,

ˆˆ 1 ,

ˆ ˆ ˆˆ 1 , .

n i n n

i n nn

i n nn

W r y

r y d Y

r d d y d Y

ξ

μ ξ

μ ξ

×

××

−

××

=

= − −

⎛ ⎞′= Σ − −⎜ ⎟
⎝ ⎠

 

Let  

(4.4) ( ) 1/ 2ˆ ˆ ˆĉ d d d
−

′= Σ , 

(4.5) ˆˆ ( )i iz c Y μ= − , 

and 

(4.6) ( ): 1
ˆ ˆi n n
Z z

×
= , 
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where :ˆi nz is the thi  order statistic from  { } 1
ˆ n

i i
z

=
. Then   

 ( ) ( ) ( )( )1/ 2

: 11
ˆ ˆ ˆˆ ˆ 1i n nn

Z d d y d Yμ
−

××
′= Σ − −  

and  
(4.7) ( )2ˆ ˆ ,nW r Z ξ= . 

Therefore, it is sufficient to consider 

 ( )ˆˆi iz c Y μ= − , 1, ,i n= … , 

where ĉ  is given in (4.4) and satisfies ˆ ˆ 1c c′Σ = .  Without loss of generality we may assume that 

0μ = .  We will consider estimators, ˆ,d  which satisfy Assumption 4.1.  

 

Assumption 4.1.  For ( )1
ˆ ˆ

nd d Y … Y= , ,  a sequence of row vectors,   

 i.)  ( )1/ 2
0

ˆ
pd d O n−− = , as n →∞ , for 0

kd R∈ , 

where 

ii.)  0 0d > .  

 

It will also be convenient to let  

 ( ) 1/ 2

0 0 0 0c d d d
−

′= Σ . 

 
Lemma 4.1. Let d̂  satisfy Assumption 4.1.  Then  

          i.)     ( ) ( ) ( )
1/ 21/ 2

1/ 2
0 0

ˆ ˆ
pd d d d O n

−−
−′′Σ − Σ = , as n →∞ , 

and  

          ii.)  ( )1/ 2
0ˆ pc c O n−− = , as n →∞ . 

Note that Lemma 4.1 ii.) implies 0ˆ pc c⎯⎯→ , as .n →∞  

Proof.  Let ( )1/ 2

0 0 0 0d dλ ′= Σ > and ( )1/ 2ˆ ˆˆ .d dλ ′= Σ  We will first consider  (i), define : kg R R ,  

by ( )g x x x′= Σ , kx R∈ .  Let 0
kx R∈  be arbitrary but fixed.  Let kx R∈  such that 0x x δ− < , 

0δ > .  
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Then  

 
( ) ( )

0 0 0

0 0

( ) ( )

.

g x g x x x x x

x x x x

′ ′− = Σ − Σ

′ ′= − Σ +
 

Then, by the Cauchy –Schwartz inequality, we have  

 ( ) ( )0 0 0( ) ( )g x g x x x x x′ ′− = − Σ + . 

By the matrix norm inequality, ,a aΣ ≤ Σ  

 ( ) ( )0 0 0( ) ( )g x g x x x x x′ ′− ≤ − Σ + . 

Note that 

   
0 0 0 0

0 0

0

2

2 .

x x x x x x

x x x

xδ

+ = + − +

≤ − +

≤ +

 

  

Then ( )0 0( ) ( ) 2 ,g x g x xδ δ− ≤ Σ +  which implies that if x  is in a δ - neighborhood of 0x  

then ( )g x  is in a ( )02 xδ δΣ + -neighborhood of ( )0 .g x   Therefore ( )g ⋅  is a continuous 

function on ,kR  which implies, by the convergence properties of transformed sequences 

(Serfling, 1980, pg. 24), 

                   ( ) ( )2 2
0 0 0

ˆ ˆ ˆˆ ,pd d g d g d d dλ λ′ ′′ ′= Σ = ⎯⎯→ = Σ =  as n →∞ .  

This implies that 1 1
0

ˆ pλ λ− −⎯⎯→ ,  as n →∞ , because  0 0.λ >  

Finally, consider 

 

( ) ( )
( ) ( )

( ) ( )
( )

1 1
0 0 0

1 1 1 1
0 0 0 0

1 1 1
0 0 0 0

1 1 1
0 0 0 0

1 1 1
0 0 0 0

1/ 2

ˆˆˆ

ˆˆ ˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

1

1 , as .
p p

p

c c d d

d d d d

d d d

d d d

d d d

O n o

o n

λ λ

λ λ λ λ

λ λ λ

λ λ λ

λ λ λ

− −

− − − −

− − −

− − −

− − −

−

− = −

= − + −

= − + −

≤ − + −

= − + −

= +

= →∞
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Next consider  

 

( ) ( )

( ) ( )

( ) ( )

0 0 0 0 0

0 0 0

0 0

0 0

1/ 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

1 , as .p p

d d d d d d d d d d d d

d d d d d d

d d d d

d d d d

O O n n−

′ ′ ′′ ′ ′Σ − Σ = Σ − Σ + Σ − Σ

′ ′= Σ − + Σ −

′= + Σ −

≤ + Σ −

= →∞

 

This implies  ( )2 2 1/ 2
0

ˆ ,  as ,pO n nλ λ −− = →∞  

and 

            
( ) ( )

( ) ( )

1
2 2

0 0 0

1/ 2

ˆ ˆ ˆ

1 ,  as .p pO O n n

λ λ λ λ λ λ
−

−

− = + −

= → ∞
 

Therefore, 

 
( ) ( )

( ) ( )

1
1 1

0 0

1/ 2

ˆ ˆ ˆ

1 ,  as .p pO O n n

λ λ λλ λ λ
−

− −

−

− = −

= → ∞
 

In other words 

 
( ) ( )

( )

1/ 21/ 2
1 1

0 0 0

1/ 2

ˆ ˆ ˆ

,  as .p

d d d d

O n n

λ λ
−−

− −

−

′′Σ − Σ = −

= →∞
 

Finally, consider 

 
( ) ( )

( ) ( ) ( )
( )

1 1
0 0 0

1 1 1 1
0 0 0 0

1 1 1
0 0 0

1 1 1
0 0 0

1/ 2 1/ 2

1/ 2

ˆˆˆ

ˆ ˆ ˆˆ

ˆ ˆˆ

ˆ ˆˆ

1 ,  as 

,  as .

p p p

p

c c d d

d d d d

d d d

d d d

O n O O n n

O n n

λ λ

λ λ λ λ

λ λ λ

λ λ λ

− −

− − − −

− − −

− − −

− −

−

− = −

= − + −

= − + −

≤ − + −

= + →∞

= →∞
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Define 

(4.8) ( )0i iz c Y μ= −  

and 

(4.9) ( ): 1i n n
Z z

×
= , 

where :i nz  is the  thi  order statistic from  { } 1

n
i i

z
=

.  Note that 1 , , nz z…  are i.i.d. standard normal 

random variables.  de Wet and Venter (1972) give the following result for the de Wet and Venter 

statistic, 

(4.10) ( )2 , .nW r Z ξ=  

 
Theorem 4.2. (de Wet and Venter, 1972, Theorem 2) If 1 , , nz z… are i.i.d. standard normal 

random variables, 

then 

 ( ) ( )1/ 2

3

2 1 1 ,  as ,n n i
j

n W a X j n
∞

=

− − − →∞∑  

where 1, , nX X…  are i.i.d. random variables with a Chi-squared distribution, one degree of 

freedom, and ( )
2

1

1

31 1
1 1 1 2

n

n
i

i i ia n
n n n

−
−

=

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − Φ −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∑ −1φ . 

 

 Lemma 4.3 is a result due to Leslie et al. (1986) which gives the convergence rate of 

{ }na . 

 

Lemma 4.3. (Leslie et al., 1986, Lemma) There exists constants 1c  and  2c , 1 20 ,c c< < < ∞  

such that 

 ( ) ( )1 2log log log log .nc n a c n< <  

 
Using the above lemma and Theorem 4.2, we get Corollary 4.4 to Theorem 4.2.  This result is 

found in the proof of Theorem 2 from de Wet and Venter (1972). Their proof is informative and 

is included for completeness. 
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Corollary 4.4. (de Wet and Venter, 1972, pg.145)  Let 1 , , nz z… are i.i.d. standard normal 

random variables.  Then 

 ( ) ( )
3

1 1 ,  as .n n i
j

n W a X j n
∞

=

− − − →∞∑  

Proof.  By Theorem 4.2, we have 

 ( ) ( )1/ 22 1 1 ,  as .n n pn W a O n− − = → ∞  

This implies 

 ( ) ( )1/ 2 1/ 2 1/ 2 1/ 22 1 ,  as .n n pn W n a O n n− −− − = → ∞  

By Lemma 4.3, we have ( )1/ 2 1 ,  as .n pn a o n− = → ∞  Now consider 

(4.11) 

( ) ( ) ( )
( )( )

( )

21/ 2 1/ 2

21/ 2 1/ 2

2 1 1 1

1

1 ,  as .

n n n

n

p

n W n W n W

n W

o n

− − − = −

= −

= → ∞

 

Finally, consider 

 ( ) ( ) ( ) ( )1/ 2 1/ 21 2 1 1 2 1 .n n n n n nn W a n W a n W n W⎡ ⎤− − = − − + − − −⎣ ⎦  

By Theorem 4.1, ( ) ( )1/ 2

3

2 1 1 ,  as ,n n i
j

n W a X j n
∞

=

− − − →∞∑  and by  (4.11) 

( ) ( ) ( )1/ 22 1 1 1 ,  as .n n pn W n W o n− − − = → ∞  Therefore, apply Slutsky’s Theorem to complete 

the proof.                 

 

Our goal is to show 

(4.12) ( ) ( )
3

ˆ1 1 ,  as .n n i
j

n W a X j n
∞

=

− − − →∞∑  

As a first step, we consider  

 ( ) ( ) ( )ˆ ˆ1 1 .n n n n n nn W a n W a n W W− − = − − + −  

However, since
1

0
n

i
i
ξ

=

=∑ , we have  
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(4.13) ( )
2 2

2 2
1 2

1

ˆˆ 1 1 ,
ˆ

n n
n n n

n n
i

i

T Tnn W W
s sn ξ−

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
− = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦∑

 

where 

(4.14) 1
:

1
,

n

n i n i
i

T n z ξ−

=

= ∑  

(4.15) 1
:

1

ˆ ˆ
n

n i n i
i

T n z ξ−

=

= ∑ , 

2s  is defined as the sample variance of the iz ’s, i.e., 

 
2

2 1 2 1

1 1

n n

i i
i i

s n z n z− −

= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ∑ , 

and 2ŝ  is defined as the sample variance of the ˆiz ’s, i.e., 

 
2

2 1 2 1

1 1

ˆ ˆ ˆ
n n

i i
i i

s n z n z− −

= =

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∑ ∑ . 

Let  

 ( )( )1

1

ˆ
n

i i
i

n Y Y Y Y−

=

′Σ = − −∑ . 

Then  

(4.16) 
( ) ( )222 1 1

0 0 0 0
1 1

0 0
ˆ

n n

i i i
i i

s n c Y c Y c n YY YY c

c c

− −

= =

⎡ ⎤′ ′′= − = −⎢ ⎥⎣ ⎦
′= Σ

∑ ∑
 

and, by a similar argument,  

(4.17) 2 ˆˆ ˆ ˆs c c′= Σ . 

Hoeffding (1953) showed that 

 ( )
2

1 21 1 1

0
1

1,  as .
1

n

i

in t dt n
n

− − −

=

⎛ ⎞ ⎡ ⎤Φ → Φ = →∞⎜ ⎟ ⎣ ⎦+⎝ ⎠
∑ ∫  

Therefore, in order to show (4.12) we will need to show  

(4.18) ( )ˆ 1 ,  as ,n n pV V o n− = → ∞  

where 
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(4.19) 
2

2

ˆˆ 1
ˆ
n

n
TV n
s

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

and  

(4.20) 21 n
n

TV n
s

⎛ ⎞= −⎜ ⎟
⎝ ⎠

. 

In order to show (4.18), following del Barrio et al (2000), we will work with 

(4.21) ( )2 2ˆ ˆˆn n nU n s T= −  

and 

(4.22) ( )2 2
n nU n s T= −  

and show  

(4.23) ( )ˆ 1 ,  as .n n pU U o n− = → ∞  

The relationship between (4.18) and (4.23) is explained in the following lemma and corollary. 

 

Lemma 4.5.  Let  n̂V , nV , ˆ
nU , and nU  be defined as in (4.19), (4.20), (4.21), and (4.22), 

respectively.  Let d̂  satisfy Assumption 4.1.  Then 

 ( ) ( )2ˆ ˆˆ 1 ,  n n n n n pV V s U U o−− = − + as .n →∞  

Proof.  Consider 

 

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 2 2

2 2 2 2 2

2 2 2 2 2 2 2

ˆ ˆˆ
ˆˆ

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ ˆ .

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n n n

V V s U s U

s U U U s U

s U U U s s

s U U n s T s s

s U U n s T s s s s

− −

− −

− − −

− − −

−

− = −

= − + −

= − + −

= − + − −

= − + − −

 

Now, since ( ) ( ) ( ) ( )2 2 1
0 0

ˆˆ ˆ ˆ ,  as ,n n ps s c c c c O n n−′− = + Σ − Σ − = → ∞  2 1,ass ⎯⎯→   and 

1,as
nT ⎯⎯→  as n →∞ , we have that  

 ( ) ( ) ( )2 2 2 2 2 2ˆ ˆ 1 ,  as .n n n n n pn s T s s s s o n− − = → ∞  

Therefore, 
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 ( ) ( )2ˆ ˆˆ 1 ,  n n n n n pV V s U U o−− = − + as .n →∞      

 
Corollary 4.6.  If ( )ˆ 1 ,n n pU U o− = as ,n →∞  then ( )ˆ 1n n pV V o− = , as .n →∞  

Proof.  Note that 2 ˆˆ ˆ ˆ 1p
ns c c′= Σ ⎯⎯→ , as ,n →∞  and the result follows from Slutsky’s Theorem.    

             

 

Corollary 4.6 allows us to work with  

(4.24) ( ) ( )2 2 2 2ˆ ˆˆ .n n n n n nU U n s s n T T− = − − −  

To characterize ( )2 2
n̂ nT T− we will use a decomposition similar to Sen et al. (2003), which we 

state as Lemma 4.7. Let  

(4.25) ( )21
1 : :

1

ˆ
n

i n i n
i

B n z z−

=

= −∑  

and  

(4.26) ( ) ( )1
2 : : :

1

ˆ .
n

i n i n i n i
i

B n z z z ξ−

=

= − −∑  

 

Lemma 4.7.  Let nT , n̂T , 1B , and 2B  be defined as in (4.14), (4.15), (4.25 ), and (4.26), 

respectively.  Then  

(4.27) ( ) ( )2 2 3 / 2
1 2

ˆ ˆ 2 2 ,  as .n n n n pT T s s B B O n n−− = − + − + →∞  

Proof.  Consider  

( )

( ) ( ) ( ){ }

( ) ( )

( )

1
: :

1

1
: : : : : :

1

1 2 1 2 1
: : : : : : : :

1 1 1

21 2 1 2 1
: : : :

1 1

ˆ ˆ

ˆ ˆ ˆ2 2

1ˆ ˆ ˆ2 2
2

ˆ ˆ2 2

n

n n i n i n i
i

n

i n i n i n i n i n i n i
i

n n n

i n i n i n i n i n i n i n i n i
i i i

n n

i n i n i n i n
i i

T T n z z

n z z z z z z

n z n z n z z z z z z

n z n z n z z

ξ

ξ

ξ

−

=

−

=

− − −

= = =

− − −

= =

− = −

= − + − + +

⎧ ⎫= − + − − − + + +⎨ ⎬
⎩ ⎭

= − + −

∑

∑

∑ ∑ ∑

∑ ∑ ( )( )1
: : :

1 1

ˆ2 .
n n

i n i n i n i
i i

n z z z ξ−

= =

− − −∑ ∑

 

Making use of the identities  
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 ( )21 2 2
0

1

n

i
i

n z s c Y−

=

= +∑  

and 

 ( )21 2 2

1

ˆ ˆˆ
n

i
i

n z s cY−

=

= +∑ , 

we have ( ) ( )2 22 2
1 2 0

ˆ ˆ ˆ2 2 2 2 2.n n n nT T s s B B c Y cY− = − + − + −  

Note, that by Lemma 4.1 (ii), ( )1/ 2
0 ˆ ,  as ,pc c O n n−− = → ∞  and, since 

0,μ = ( )1/ 2 ,pY O n−=  which implies that 

 

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )
( )

2 2
0 0 0

0 0

0 0

1/ 2 1/ 2 1/ 2

3/ 2

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

1

,  as .

p p p p

p

cY c Y cY c Y c c Y

c c Y c c Y

c c Y c c Y

O n O n O O n

O n n

− − −

−

− = − +

= − +

≤ − +

=

= →∞

 

Therefore 

 ( ) ( )2 2 3/ 2
1 2

ˆ ˆ 2 2 ,  as .n n n n pT T s s B B O n n−− = − + − + → ∞          

 

Next notice, by the Cauchy-Schwarz Inequality,  

(4.28) 
( ) ( )

( )

2 21 1
2 : : :

1 1

21
1 :

1

ˆ

.

n n

i n i n i n i
i i

n

i n i
i

B n z z n z

B n z

ξ

ξ

− −

= =

−

=

≤ − −

= −

∑ ∑

∑
 

de Wet and Venter (1972) proposed ( )20
:

1

n

n i n i
i

L z ξ
=

= −∑ as a test statistic to test the null 

hypothesis that { } 1

n
i i

z
=

 have a standard normal distribution. Specifically, for  

 ( ) ( )1 ,  0 1,v t t t t= − ≤ ≤  

 ( ) ( )1 ,  0 1,H t t t−= Φ ≤ ≤  

 ( ) ( ) , 0 1,h t H t t′= ≤ ≤  

and 
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 ( ) ( ) ( )10
1 1

1
1 ,

n
k k

n n n
k

a n h v−
+ +

=

= + ∑  

they proved the following lemma. 

 

Lemma 4.8. (de Wet and Venter, 1972, Thm. 1)  Let iz  be i.i.d. (0,1),  N for 1, ,i n= …  then 

 ( )0 0

1

1 ,  as ,n n i
i

L a X j n
∞

=

− − →∞∑  

where 1, , nX X… are i.i.d. random variables with a Chi-squared distribution, one degree of 

freedom. 

 

Note that 

 ( ) ( )( )1/ ,  0 1H t t tφ′ = Φ < <  

and 

 ( ) ( )( ) 2
,  0 1.h t t tφ

−
= Φ < <  

Therefore 

 ( )
2

10

1

31 1
1 1 1 2

n

n
j

i i ia n
n n n

−
−

=

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − Φ −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∑ −1φ  

and 

 0 3 .
2n na a= +  

This immediately implies the following corollary to Lemma 4.3. 

 

Corollary 4.9.  There exists constants 1c , 2c , 1 20 ,c c< < < ∞  such that  

 ( ) ( )03 3
2 21 2log log log log .nc n a c n+ < < +  

 

Combining the results from Lemma 4.8 and Corollary 4.9, we have  
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(4.29) 

( )

( )( )
( )( )

21 1 0
:

1

1

1

log log

log log ,  as .

n

i n i n
i

p

p

n z n L

n O n

O n n n

ξ− −

=

−

−

− =

=

= →∞

∑
 

Therefore, to prove (4.12) we need to show that ( )(1 )
1 ,pB o n δ− +=  for some 0,δ >  as .n →∞  

 

4.2.  Bounds on the difference between the two vectors of order statistics.   As noted 

above, to prove (4.12) we need to show that ( )(1 )
1 ,pB o n δ− +=  for some 0,δ >  as .n →∞   Since 

( )21
1 : :

1

ˆ
n

i n i n
i

B n z z−

=

= −∑ , our approach is to consider : :ˆi n i nz z− .  The main results in this section 

are Lemma 4.14 and Lemma 4.16.  In Lemma 4.14 we give a sequence of bounds on : :ˆi n i nz z−  

which holds uniformly in i  and tends to zero at a specific rate.  Let { } 1n n
i ∞

=
be a sequence of 

positive integers such that ( )1/ 4 1 log 1nn i n O− =  and  ( )1 1 ,ni n o− =   as n →∞ .   In Lemma 4.16, we 

give a sequence of bounds on : :ˆi n i nz z−  for n ni i n i≤ ≤ − , where the actual rate at which these 

bounds tend to zero depends on the choice of the sequence { } 1n n
i ∞

=
.  First we will show, in the 

corollary to Lemma 4.9 , 

(4.30) ( ) ( ) ( )3 / 4
0ˆsup ; ; log , as ,n n p

t
F t c F t c o n n n−− = →∞  

where 

(4.31) ( ) ( )1

1

; , , .
n

k
n i

i

F t c n I cY t t c R−

=

′= ≤ −∞ < < ∞ ∈∑   

Next we prove Lemma 4.14, which, when combined with Corollary 2.13 and (4.30), implies 

Lemma 4.15, ( ) ( ) ( )3 / 4
: :ˆsup log ,i n i n p

i
z z o n n−Φ −Φ = as n →∞ .  By taking advantage of the 

properties of  ( ) , ,t tΦ −∞ < < ∞  Lemma 4.15 implies Lemma 4.16. 
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Lemma 4.9.  Let ( );nF t c  be defined as in (4.31). Let nβ be a sequence of positive numbers such 

that , ,n nβ → ∞ →∞  such that ( )1/ 21/ 2 2log nn n β−  is a non-increasing sequence of positive 

numbers.  Assume ( )1/ 2
0ˆ , ,pc c O n n−− = → ∞  ˆ ˆ 1c c′Σ = , and 0 0 1c c ′Σ = .  Then 

 ( ) ( ) ( )( )3/ 43/ 4
0ˆsup ; ; log , as .n n p n

t
F t c F t c o n n nβ−− = →∞  

Proof.   First we will show that for 1/ 2
0 ,c c Mn−− ≤  and 1c c′Σ = , 

(4.32) ( ) ( ) ( )( )3/ 43/ 4
0

,
sup ; ; log , . .1, as .n n n

t c
F t c F t c o n n w p nβ−− = →∞  

To show (4.32) we will apply Theorem 2.11 to the class of function 

 ( ) ( ){ }1/ 2
, 0 0: , 1, ,n c tf I cY t I c Y t t R c c c c Mn−′= = ≤ − ≤ ∈ Σ = − =F  

where 0
kc R′ ∈  is fixed, 0 0 1,c c′Σ = and fixed 0.M >   Note that ( ) ( )1 ,E I cY t t≤ = Φ⎡ ⎤⎣ ⎦  for every 

c  such that 1.c c′Σ =   Then, for every , ,c t nf ∈F   

 ( ) ( ) ( ) ( ) ( ), 0; ; , .n c t n nP P f F t c F t c t t t− = − −Φ +Φ −∞ < < ∞  

To show that  

 ( )( )1, , , 0 1,W
nN L Q Aε ε ε− <≤ ≤F  

note that ,n ⊆F F where F  is the class of functions defined in (2.8). Let *F  be the permissible 

class of functions defined in (2.9).  Then note that the bounds on *F can be chosen such that 

*,n ⊆F F  for every n . This also implies that { } 1n n

∞

=
F  is a sequence of permissible classes of 

functions.  Now we will identify 2
nδ  such that 2 2

, ,c t nPf δ≤  for , .c t nf ∈F   Let ,c t nf ∈F  and 

consider 

 

( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )
( ) ( )( )

( )( )

22
, 1 0 1

0 1 1 0 1 1

0 1 1 0 1 1

0 1 1

0 1 0 1 0 1

0 1 0 1

1 1

2

2

2 .

c tPf E I cY t I c Y t

E I c Y t I cY t E I c Y t I cY t

E I c Y t I cY t t t E I c Y t I cY t

E I c Y t I cY t

E I c Y t I c Y t c c Y

E I t c c Y c Y t

= ≤ − ≤

= ≤ > + > ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= ≤ > + −Φ − −Φ + > ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= ≤ >⎡ ⎤⎣ ⎦

⎡ ⎤= ≤ > + −⎣ ⎦
⎡ ⎤= + − < ≤⎣ ⎦
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Let * 1/ 2 ,M M= Σ  ( )0 1 ~ 0,1 ,z c Y N=  and ( )1/ 2
1 ~ 0,Y MN I−Σ .  Note that 

( ) 1/ 2 1/ 2 1/ 2 1/ 2
0 1 0 1c c Y c c Y− −− Σ Σ ≤ − Σ Σ  and 1/ 2

0 .c c Mn−− ≤   Therefore, we have  

(4.33) 
( )( )

( )
2 1/ 2 1/ 2
, 0 1 0 1

1/ 2 * 1/ 2
1 0 1

2

2 .

c tPf EI t c c Y c Y t

EI t n M Y c Y t

−

− −

= + − Σ Σ < ≤

≤ − Σ < ≤
 

Then, for every 0B >  

(4.34) 

( )
( )
( )

( ) ( )
( ) ( ) ( )

( ) ( )
( )

1/ 2 * 1/ 2
1 0 1

1/ 2 * 1/ 2 1/ 2
1 0 1 1

1/ 2 * 1/ 2 1/ 2
1 0 1 1

1/ 2 * 1/ 2
0 1 1

1/ 2 * 1/ 2
1

1/ 2 * 1/ 2
1

1/ 2 1/ 2 *

2

;

;

sup

2
t

EI t n M Y c Y t

P t n M Y c Y t Y B

P t n M Y c Y t Y B

P t n M B c Y t P Y B

t t n M B P Y B

t n M B P Y B

n M B

φ

π

− −

− − −

− − −

− −

− −

− −

− −

− Σ < ≤

= − Σ < ≤ Σ ≤

+ − Σ < ≤ Σ >

≤ − < ≤ + Σ >

= Φ −Φ − + Σ >

⎛ ⎞≤ + Σ >⎜ ⎟
⎝ ⎠

= + ( )1/ 2
1 .P Y B−Σ >

 

Let , 1, ,iz i k= … be i.i.d. standard normal random variables.  Then  

(4.35)    
( ) ( )

( )( )
0 1

1

2 1 .

k

i
i

P c Y B P z B k

k B k
=

> ≤ >

= −Φ

∑
 

By Serfling (1980, pg. 81) 

(4.36) ( )( ) ( )1/ 2 1/ 21 2log , as ,n O n n−− Φ = →∞  

and (4.34) we have, for ( )1/ 22log ,nB k n=  

 ( ) ( )( )1/ 22 1/ 2 *
, 2 2 1 .c t n nPf n M B k B kπ − −≤ + −Φ  

Then, we have that  

 ( )( ) ( )1/ 22 1/ 2 1/ 2
, 2log ,  as .c tPf O n n O n n− −= + →∞  

Then there exists a constant 1 0,M >  such that for ( )1/ 22 1/ 2
1 logn M n nδ −= , we have that 

2 2
, ,c t nPf δ≤  for , .c t nf ∈F   Choose ,nβ  an increasing sequence such that ( )1/ 41/ 4 logn nn nα β −=  is a 

non-increasing sequence of positive real numbers.  Then  
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 ( ) 2 2 2log 0,  as .n n nn n nδ α β −= → →∞  

Then, by Theorem 2.11, we have 

(4.37) ( ) ( )( )
,

3 / 43 / 4
,sup log , . .1, ,

c t n

n c t n
f

P P f o n n w p nβ −

∈
− = →∞

F
 

this can be rewritten as (4.32), 

 ( ) ( ) ( )( )
1/ 2

0

3 / 43 / 4
0

1

sup sup ; ; log , . .1, as .n n n
t Rc c Mn

c c

F t c F t c o n n w p nβ
−

−

∈− ≤
′Σ =

− = →∞  

Let  

 ( ) ( )( ) ( ) ( )3 / 43 / 4
0log sup ; ; ,  1,n n n n

t R
c n n F t c F t c nβ−

∈
Δ = − = … . 

Then we need to show ( ) ( )ˆ 1 ,n pc oΔ =  as .n →∞  To do this, consider, for every 0δ >  and 

0,B >  

(4.38) 

( )( ) ( )( ) ( )( )

( ) ( )
1 / 2

0

1/ 2 1/ 2
0 0

1/ 2
0

ˆ ˆ ˆ ˆ ˆ; ;

ˆsup .

n n n

n

c c Bn

P c P c c c Bn P c c c Bn

P c P c c Bn

δ δ δ

δ
−

− −

−

− ≤

Δ > = Δ > − ≤ + Δ > − >

⎛ ⎞
⎜ ⎟≤ Δ > + − >
⎜ ⎟
⎝ ⎠

 

Note that, since ( )1/ 2
0ˆ ,pc c O n−− =  for every 0,ε >  there exists Nε  and Bε  such that  

(4.39) ( )1/ 2
20ˆ ,  for all .P c c B n n Nε

ε ε
−− > < >  

Now by (4.32), there exists ,N εΔ such that 

(4.40) ( )
1/ 2

0

,sup ,  for all .2n

c c B n

P c n N
ε

ε
εδ

−

Δ

− ≤

⎛ ⎞
⎜ ⎟Δ > < >
⎜ ⎟
⎝ ⎠

 

Combining (4.38), (4.39), and (4.40) we have, we have, for every 0,δ >  0,ε >  and 

{ },max , ,n N Nε εΔ>  

(4.41) 

( )( ) ( ) ( ) ( )( )

( )( ) ( )

3 / 43 / 4
0

1/ 2
0

2 2

ˆ ˆlog sup ; ;

ˆ ˆ

.

n n n n
t R

n

P n n F t c F t c P c

P c P c c B nε
ε ε

β δ δ

δ

ε

−

∈

−

⎛ ⎞− > = Δ >⎜ ⎟
⎝ ⎠

≤ Δ > + − >

≤ +
=
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Therefore 

 ( ) ( ) ( )( )3 / 43 / 4
0ˆsup ; ; log , as .n n p n

t
F t c F t c o n n nβ−− = →∞          

 

Corollary  4.10. For 1, nY Y… , i.i.d. multivariate normal random vectors with 0μ =  and positive 

definite covariance matrix Σ .   Let ( );nF t c  be defined as in (4.31). 

Assume ( )1/ 2
0ˆ ,   ,pc c O n as n−− = →∞  ˆ ˆ 1c c′Σ = , and 0 0 1c c ′Σ = . Then 

 ( ) ( ) ( )3/ 4
0ˆsup ; ; log , as .n n p

t R
F t c F t c o n n n−

∈
− = →∞  

Proof.  Choose ( )1/ 4logn nβ =  and apply Lemma 8.         

 

Lemma  4.11.  For 1, nY Y… , i.i.d. multivariate normal random vectors with 0μ =  and positive 

definite covariance matrix Σ .  Assume ( )1/ 2
0ˆ , ,pc c O n n−− = → ∞  ˆ ˆ 1c c′Σ = , and 0 0 1c c ′Σ = .  

Then 

(4.42) ( )( )1/ 2 1/ 2

1
ˆmax log ,as .i i pi n
z z O n n n−

≤ ≤
− = →∞  

Proof.  From (4.6) and (4.8), for 1, , ,i n= …  

(4.43) 

( )
( )

0

1/ 2 1/ 2
0

1/ 2 1/ 2
0

ˆˆ

ˆ

ˆ .

i i i

i

i

z z c c Y

c c Y

c c Y

−

−

− = −

= − Σ Σ

≤ − Σ Σ

 

Note that 1/ 2
iY−Σ , 1, ,i n= … ,  are i.i.d. (0, )n nMN I ×  and that ( )1/ 2

1
,i ij k

Y z−

×
Σ =  where ijz  are i.i.d. 

( )0,1N , 1, ,j k= …  and  1, , .i n= …   Then 

 

{ }

1/ 2

1/ 2 2

1 1 1

1/ 2

1 1

1/ 2
: 1:

max max

max max

max , .

k

i iji n i n j

iji n j k

kn kn kn

Y z

k z

k z z

−

≤ ≤ ≤ ≤ =

≤ ≤ ≤ ≤

⎛ ⎞
Σ = ⎜ ⎟

⎝ ⎠

≤

= −

∑
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By the symmetry of the standard normal distribution about zero, we have : 1: .
d

kn kn knz z= −  

Furthermore, by Serfling (1980, pg.91), 

 ( )1/ 2
: ~ 2 log ,  as , . .1,kn knz kn n w p→∞  

and since ( )log log 1, as ,kn n n→ →∞  

(4.44) ( ) { }1/ 2
: 1:2 log max , ~ 1, . .1, as .kn kn knkn z z w p n− − →∞  

Combining (4.43) and (4.44) we have that  

            { }
( ) ( )( )

1/ 2 1/ 2
01

1/ 2 1/ 2
0 : 1:

1/ 21/ 2

ˆˆmax

ˆ max ,

log ,  as .

i i ii n

kn kn kn

p p

z z c c Y

c c k z z

O n o n n

−

≤ ≤

−

− ≤ − Σ Σ

≤ − Σ −

= →∞

  

 
Lemma 4.12.  Let 1,a 2 ,a 1,b  and 2b  be real numbers such that 1 2a a≤  and 1 2b b≤ . Then 

 { } { }1 1 2 2 1 2 2 1max , max , .a b a b a b a b− − ≤ − −  

Proof.  Without loss of generality assume that  

 { }1 1 2 1 2min , , , .a a a b b=  

First assume 2 2a b≤ .  Then either 1 2 1 2 1 1 2 2  or   .a a b b a b a b≤ ≤ ≤ ≤ ≤ ≤   Therefore  

1 1 1 2a b a b− ≤ −  and 2 2 1 2 .a b a b− ≤ −   Secondly assume 2 2b a≤ .  Then 1 1 2 2a b b a≤ ≤ ≤  and 

1 1 1 2a b a b− ≤ −  and 2 2 1 2 .a b b a− ≤ −      

 

Lemma  4.13.  Let 1, , nx x…  and 1, , ny y… be any two sequences of real numbers. Then  

 : :1 1
max max .i n i n i ii n i n

x y x y
≤ ≤ ≤ ≤

− ≤ −  

Proof.  First we note that without loss of generality, we may assume that  

(4.45) 1 2 .nx x x≤ ≤ ≤…  

Now we will use a proof by induction.  Let 1,n = then  

 : :1 1
max max .i n i n i ii i

x y x y
= =

− = −  

Let 2,n = then, by Lemma 4.12,  
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 : :1 2 1 2
max max .i n i n i ii i

x y x y
≤ ≤ ≤ ≤

− ≤ −  

Next assume that the result is true for all integers less than 1n +  and we will prove  

 : :1 1 1 1
max max .i n i n i ii n i n

x y x y
≤ ≤ + ≤ ≤ +

− ≤ −  

We will consider two cases. For case 1, assume that 1: 1 1.n n ny y+ + +=   Then

 { }1 11 1 1
max max max , .i i i i n ni n i n

x y x y x y+ +≤ ≤ + ≤ ≤
− = − −  

By the assumption of the induction hypothesis we have that 

 
{ }: 1: 1 1: 11 1 1

: 1 : 11 1

max max max ,

max .

i i i i n n n n ni n i n

i n i ni n

x y x y x y

x y

+ + + +≤ ≤ + ≤ ≤

+ +≤ ≤ +

− ≥ − −

= −
 

For case 2, assume 1: 1 ,n n jy y+ + =  for some 1.j n< +   Then

 { }1 11 1 1
max max max , max , .i i i i j j n ni n i n

i j

x y x y x y x y+ +≤ ≤ + ≤ ≤
≠

⎧ ⎫⎪ ⎪− = − − −⎨ ⎬
⎪ ⎪⎩ ⎭

 

Note that 1n jy y+ ≤  and 1j nx x +≤ .  Then, by Lemma 4.12,  

            

{ }1 1 1: 11 1 1

1 1 1: 11

max max max , max ,

max max , , .

i i i i j n n n ni n i n
i j

i i j n n n ni n
i j

x y x y x y x y

x y x y x y

+ + + +≤ ≤ + ≤ ≤
≠

+ + + +≤ ≤
≠

⎧ ⎫⎪ ⎪− ≥ − − −⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪= − − −⎨ ⎬
⎪ ⎪⎩ ⎭

 

Note that by pairing ix  with iy , for 1 or  ,i n j≠ +  and jx  with 1ny + , we can apply the induction 

hypothesis for this set of n  pairs of observations to get  

 1 : 1 : 11 1
max max , max .i i j n i n i ni n i n

i j

x y x y x y+ + +≤ ≤ ≤ ≤
≠

⎧ ⎫⎪ ⎪− − ≥ −⎨ ⎬
⎪ ⎪⎩ ⎭

 

Therefore, 

 { }
1 1: 1 1: 11 1 1

: 1 : 1 1: 1 1: 11

: 1 : 11 1

max max max max , ,

max max ,

max .

i i i i j n n n n ni n i n
i j

i n i n n n n ni n

i n i ni n

x y x y x y x y

x y x y

x y

+ + + + +≤ ≤ + ≤ ≤
≠

+ + + + + +≤ ≤

+ +≤ ≤ +

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪− ≥ − − −⎨ ⎨ ⎬ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

≥ − −

= −
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This completes the proof by induction.            

 

Lemma 4.14.  Let 1, , nY Y…  i.i.d. multivariate normal random vectors with 0μ =  and positive 

definite covariance matrix Σ . Assume  ( )1/ 2
0ˆ , ,pc c O n n−− = → ∞  ˆ ˆ 1c c′Σ = , and 0 0 1c c ′Σ = . 

Then 

(4.46) ( )( )1/ 2 1/ 2
: :1

ˆmax log ,i n i n pi n
z z O n n−

≤ ≤
− = as .n →∞  

Proof. By Lemma 4.11 and Lemma 4.13, we have  

 
( )( )

: :1 1

1/ 2 1/ 2

ˆ ˆmax max

log ,  as .

i n i n i ii n i n

p

z z z z

O n n n
≤ ≤ ≤ ≤

−

− ≤ −

= →∞
 

 
 
Lemma 4.15.  Let :i nz and  :ˆi nz  be defined as in (4.6) and (4.8) respectively.  Assume  

( )1/ 2
0ˆ , ,pc c O n n−− = → ∞  ˆ ˆ 1c c′Σ = , and 0 0 1c c ′Σ = .  Then 

(4.47) ( ) ( ) ( )3 / 4
: :1

ˆmax log ,i n i n pi n
z z o n n−

≤ ≤
Φ −Φ =  as .n →∞  

Proof.  Let ( ) ( ) ( )13 / 4
: :1

ˆlog max .n i n i ni n
D n n z z−

≤ ≤
= Φ −Φ  Then, for every 0ε > , there exists 0M ε >  

and Nε such that  

 ( )( )1/ 21/ 2
: :1

ˆmax log ,2i n i ni n
P z z n n M ε

ε−

≤ ≤
− > <  for all ,n Nε>  

we have 

           

( ) ( )( )
( )( )
( )( )

( )( )

1/ 21/ 2
: :1

1/ 21/ 2
: :1

1/ 21/ 2
: :1

1/ 21/ 2
: :1

ˆ;max log

ˆ;max log

ˆ;max log

ˆmax log .

n n i n i ni n

n i n i ni n

n i n i ni n

i n i ni n

P D P D z z n n M

P D z z n n M

P D z z n n M

P z z n n M

ε

ε

ε

ε

ε ε

ε

ε

−

≤ ≤

−

≤ ≤

−

≤ ≤

−

≤ ≤

> = > − ≤

+ > − >

≤ > − ≤

+ − >

 

Note that ( ) ( ): : 0ˆˆ ; ;n i n n i n
iF z c F z c
n

= = . Then, for ( )1/ 21/ 2
: :1

ˆmax log ,i n i ni n
z z n n M ε

−

≤ ≤
− ≤   
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1/ 2 1/ 2

: : : : 0 : 01 1

: 0 : :

: : 01

: 0 : 0 : :1

0

log

ˆˆ ˆ ˆ ˆmax max ; ; ;

ˆ;

ˆˆ ˆmax ; ;

ˆ ˆmax ; ;

ˆsup ; ;

sup ;

i n i n n i n n i n n i ni n i n

n i n i n i n

n i n n i ni n

n i n n i n i n i ni n

n n
t

n
s t M n n

z z F z c F z c F z c

F z c z z

F z c F z c

F z c F z c z z

F t c F t c

F t
ε

−

≤ ≤ ≤ ≤

≤ ≤

≤ ≤

− <

Φ − Φ = − +

− + Φ −Φ

≤ −

+ − + Φ −Φ

≤ −

+ ( ) ( ) ( ) ( )0 0; .nc F s c s t− + Φ −Φ

 

Now apply Corollary 2.13 and Corollary 4.10 to complete the proof 

( )( ) ( ) ( )

( ) ( ) ( ) ( )
1/ 2 1/ 2

1/ 2 01/ 2
: : 3 / 41

0 0
3 / 4

log

ˆ; ;
ˆ;max log sup

log 2

; ;
sup 0, as .

log 2

n n
n i n i ni n t

n n

s t M n n

F t c F t c
P D z z n n M P

n n

F t c F s c s t
P n

n nε

ε
εε

ε
−

−
−≤ ≤

−
− <

⎛ ⎞−
> − ≤ ≤ >⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− + Φ −Φ⎜ ⎟+ > → →∞⎜ ⎟⎜ ⎟
⎝ ⎠

  

 

Lemma 4.16.  Let :i nz and  :ˆi nz  be defined as in (4.6) and (4.8), respectively.  Assume  

( )1/ 2
0ˆ , ,pc c O n n−− = → ∞  ˆ ˆ 1c c′Σ = , and 0 0 1c c ′Σ = .  Let { } 1n n

i ∞

=
be a sequence of positive 

integers such that ( )1/ 4 1 log 1nn i n O− = and ( )1 1 ,ni n o− =  as n →∞ . Then  

 ( )1 1/ 4
: :ˆmax log ,

n n
i n i n p ni i n i

z z o i n n−

≤ ≤ −
− =  as .n →∞  

Proof.  First, we apply a first order Taylor series expansion to  ( ) ( ): :ˆi n i nz zΦ −Φ  to get 

(4.48) ( ) ( )( ) *
: : : :ˆ ˆ ( ) ,i n i n i n i n iz z z z zφ− = Φ −Φ  

where *
iz  is between :ˆi nz and :i nz . Choose p , 0 1/ 2p< < , then, by Theorem 2.3.1, Serfling 

(1980), 

(4.49) ( ) ( )1 1
0; 0, . .1,

n
F p c p w p− −→ Φ <  as .n →∞  

Therefore, for i
n p≤ ,  

(4.50) 

( )
( )
( ) ( )

1
: 0

1
0

1

;

;

1 , . .1, as .

n

n

i
ni nz F c

F p c

p o w p n

−

−

−

=

≤

= Φ + →∞

 



 59

Since ( ): :1
ˆmax 1 ,i n i n pi n

z z o
≤ ≤

− =  as n →∞ , and ( )1 0,p−Φ <  we have that , given 0,ε >  there 

exists ,Nε such that  

(4.51) ( ):ˆ 0; , .i nP z i n p n Nεε≥ ≤ < ≥  

Next we will make use of an inequality from Royden (1968), for a convex function ( )tϕ on an 

interval ( ), ,a b  for points x , ,y  ,x′ y′  of ( ),a b  such that x x y′≤ < and x y y′≤ <  

(4.52) ( ) ( ) ( ) ( )y x y x
y x y x

ϕ ϕ ϕ ϕ′ ′− −
≤

′ ′− −
. 

First, we note that since ( )tΦ  is monotonically increasing and  

 ( ) ( )( ) ( ) { }( ) { }( )
{ } { }

: : : :
: : : :

: : : :

ˆ ˆmax , min ,
ˆ ˆ .

ˆ ˆmax , min ,
i n i n i n i n

i n i n i n i n
i n i n i n i n

z z z z
z z z z

z z z z
Φ −Φ

Φ −Φ − =
−

 

Therefore, for : 0i nz <  and :ˆ 0i nz < , noting  ( )tΦ  is convex for ( ), 0t∈ −∞ , 

{ } { } { }1: 1: : : : :ˆ ˆ ˆmin , min , max , ,i n i n i n i n i n i nz z z z z z− − ≤ ≤  and 

{ } { } { }1: 1: 1: 1: : :ˆ ˆ ˆmin , max , max , ,i n i n i n i n i n i nz z z z z z− − − −≤ ≤  

 ( ) ( ) ( ) ( )1: 1: : :

1: 1: : :

ˆ ˆ
ˆ ˆ

i n i n i n i n

i n i n i n i n

z z z z
z z z z
− −

− −

Φ −Φ Φ −Φ
≤

− −
. 

This is implies, for 1: : 0i n i nz z− < < and 1: :ˆ ˆ 0,i n i nz z− < <  

(4.53) 

( ) ( ) ( )

( ) ( )

( )

1: 1:*
1

1: 1:

: :

: :

*

ˆ
ˆ

ˆ
ˆ

.

i n i n
i

i n i n

i n i n

i n i n

i

z z
z

z z

z z
z z

z

φ

φ

− −
−

− −

Φ −Φ
=

−

Φ −Φ
≤

−

=

 

 Now, by (4.48) and (4.53), we have, for [ ]: 0np nz ≤  and [ ]:ˆ 0,np nz ≤  

(4.54) 
( ) ( )
( ) ( )

*
: :[ ] [ ]

*

[ ]

: :

: :

ˆmax max ( )

max ( ).

ˆ

ˆ
n n

n
n

i n i n ii i np i i np

ii i np

i n i n

i n i n

z z z

z

z z

z z

φ

φ

≤ ≤ ≤ ≤

≤ ≤

− =

≤

Φ −Φ

Φ −Φ
 

Let ( ) ( )1, [ ] : :max ˆ
n

n i i np i n i nR z z
≤ ≤

= Φ −Φ  and apply Mill’s Ratio for 0,t < ( ) ( ) ,t t tφΦ ≤  to get  
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(4.55) ( )( )* *
: : 1,[ ]

ˆmax .
n n

n
i n i n n i ii i np

z z R z z
≤ ≤

− ≤ Φ  

Let 

 ( ) ( )*
n nn i iA z z= Φ −Φ  

and 

 ( ): ,
nn i n nB z i n= Φ −  

then 

(4.56) ( )* .
ni n n nz i n A BΦ = + +  

Applying Lemma 4.15 to nA , we have  

(4.57) 

( ) ( )
( ) ( )
( )( )

*
:

: :

3 / 4

ˆ

log , as .

n n

n n

n i i n

i n i n

p

A z z

z z

o n n n−

= Φ −Φ

≤ Φ −Φ

= →∞

 

There exists ,iU 1, ,i n= … , such that iU  are  i.i.d. random variables with a uniform distribution 

on [ ]0,1  and ( ): : ;i n i nU z= Φ  1, ,i n= … .  Therefore, we can rewrite 

(4.58) 
( ) ( )

:

2, ,
nn i n n

n n n n n

B U i n

i n G i n R i n

= −

= − +
 

where ( ) ( )1

1

n

n i
i

G t n I U t−

=

= ≤∑  and ( )2,nR t  is the remainder term from the Bahadur 

Representation Theorem (1966). Then we have, by Kiefer (1967),  

(4.59) 
( )

( ) ( )( )1/ 23 / 4
2,

0,1
sup log ,  as .n p

t
R t O n n n−

∈
= →∞  

Next, note that ( )nnG t has a binomial distribution with n  trials and probability of success t . 

Therefore,  

(4.60) 

( )( )( ) ( )
( )

1/ 2 1/ 2var 1

1
1.

nn t G t t t t t

t

− = −

= −

≤
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Let nt i n= and we have ( )( ) ( )( ) ( )1/ 21/ 2var 1 1,n n n n nn i n G i n i n i n− = − → as ,n →∞ which 

implies 

(4.61) ( ) ( )1/ 2 1 ,  as .n n n p ni n G i n O i n n−− = →∞  

Consider  

(4.62) 
( )( ) ( )

( ) ( ) ( )( )

1 1* * *
1, 1,

1 1*
1, 1 .

n n n

n

n i i n i n n n

n n i n n n n

R z z R z i n A B

n i R z n i A n i B

− −

− −

Φ = + +

= + +
 

By Lemma 4.15, we have  

(4.63) 

( ) ( )( )
( )( ) ( )( ) ( )( )
( )( )

1, 1,

1/ 4 3 / 4 3 / 4

1/ 4

log log

log log log

log ,  as .

n n n n

n p

p n

n i R n i n n R

n n i n n o n n

o n n i n

−

=

=

= →∞

 

Now by (4.57), we have  

(4.64) 

( ) ( )( )
( )( ) ( )( ) ( )
( )( )

1/ 4 1 3 / 4 3 / 4

1/ 4 1

log log

log log log

log ,  as .

n n n n

n p

p n

n i A n i n n A

n n i n n o n n

o n n i n

− −

−

=

=

= →∞

 

By (4.58), (4.59), and (4.61),  

(4.65) 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

1/ 21/ 2 1 3 / 4

1/ 21/ 2 1/ 4 1

1/ 21/ 4 1

log

1 log

1 log ,  as .

n n n p n n p

n p p n

p p n

n i B n i O i n n i O n n

i O O n i n

o O n i n n

− −

− − −

− −

= +

= +

= + →∞

 

Since ( )1/ 4 1log 1 ,nn n i O− − =  as n →∞ , ( ) ( )1n n pn i A o= and ( ) ( )1n n pn i B o= , as n →∞ , we 

have  

(4.66) ( ) ( )( ) ( )1
1 1 ,  as .n n n n pn i A n i B O n

−
+ + = →∞  

Therefore, noting that ( )
1* 1 ,

ni pz o
−
=  as n →∞ , by (4.63), we have 

(4.67) 
( )( ) ( ) ( ) ( )

( )

* * 1/ 4 1
1,

1/ 4 1

log 1 1

log , as .

n nn i i p n p p

p n

R z z o n n i o O

o n n i n

−

−

Φ =

= →∞
 

Let 
[ ] : :ˆmax

n
n i n i ni i np

D z z
≤ ≤

= −  and, for 0ε > , consider 
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(4.68) 

( )( ) ( )( )
( ) { }( )
( )( )

( ) ( )

1/ 4 1/ 4
: :

1/ 4
: :

1/ 4
: :

: :

ˆlog log ; 0; 0;

ˆlog ; 0 or 0 ;

ˆlog ; 0; 0;

ˆ0; 0; .

i
nn n n n i n i n

i
nn n i n i n

i
nn n i n i n

i i
n ni n i n

P i D n n P i D n n z z p

P i D n n z z p

P i D n n z z p

P z p P z p

ε ε

ε

ε

> = > < < <

+ > > > <

≤ > < < <

+ > < + > <

 

By (4.54) and (4.67), we have 

(4.69) 
( )( )

( )( ) ( )( )
1/ 4

: :

* * 1/ 4
1,

ˆlog ; 0; 0;

log 0,  as n .
n n

i
nn n i n i n

n n i i

P i D n n z z p

P i R z z n n

ε

ε

> < < <

⎡ ⎤≤ Φ > → →∞⎣ ⎦

 

By (4.50) and (4.51), we have 

(4.70) ( ) ( ): :ˆ0; 0; 0, as .i i
n ni n i nP z p P z p n> < + > < → →∞  

Combining (4.68), (4.69), and (4.70), we have 

(4.71) 
[ ]

( )1 1/ 4
: :ˆmax log ,  as .

n
n

i n i n pi i np
z z o i n n n−

≤ ≤
− = →∞  

Next we note that ( )tΦ  is concave for [ )0, .t∈ ∞  Therefore, we can use a similar argument, 

where ( ) ( )* *
1 ,i iz zφ φ +≥  for * 0iz > and *

1 0iz + > , and for 0t > , ( )( ) ( )1 ,t t tφ−Φ ≤  to get  

(4.72) 
[ ]

( )1 1/ 4
: :(1 )

ˆmax log ,  as .
n

n
i n i n pn p i n i

z z o i n n n−

− ≤ ≤ −
− = →∞  

Finally, choose q , such that 0 q p< < . Then by Theorem 2.3.1, Serfling(1980), for 

1 ,i
np p≤ ≤ −   

(4.73) ( ) ( ) ( ) ( )1 1 1 1
0 : 0; 1 ; 1 , . .1, as .n i n nq F p c z F p c q w p n− − − −Φ < ≤ ≤ − < Φ − →∞  

Since ( ): :1
ˆmax 1 ,  as ,i n i n pi n

z z o n
≤ ≤

− = →∞ we have  

(4.74) ( ) ( )( )1 1
:ˆ 1 ; 1 1, as .i

ni nP q z q p p n− −Φ < < Φ − ≤ ≤ − → →∞  

For  ( ) [ ] [ ] ( )1 1
: (1 ) : 1np n n p nq z z q− −

−Φ < ≤ < Φ −  and ( ) [ ] [ ] ( )1 1
: (1 ) :ˆ ˆ 1 ,np n n p nq z z q− −

−Φ < ≤ < Φ −  we have  

(4.75) [ ] [ ] [ ] [ ]
( ) ( ) ( )

[ ] [ ]
( ) ( ) ( )( )

*
: : : :(1 ) (1 )

1
: :(1 )

ˆ ˆmax max

ˆmax .

i n i n i n i n inp i n p np i n p

i n i nnp i n p

z z z z z

z z q

φ

φ

≤ ≤ − ≤ ≤ −

−

≤ ≤ −

− = Φ −Φ

≤ Φ −Φ Φ
 

Combining (4.73), (4.74), (4.75), and applying Lemma 4.13 to the numerator of (4.75), we have 

(4.76) 
[ ] [ ]

( )3 / 4
: :(1 )

ˆmax log , as .i n i n pnp i n p
z z o n n n−

≤ ≤ −
− = →∞  
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Finally, combine (4.71), (4.72), and (4.76) to get  

 [ ] [ ] [ ] [ ]{ }
( )

: : : : : : : :(1 ) (1 )

1 1/ 4

ˆ ˆ ˆ ˆmax max , max , max

log ,  as .
n n n n

i n i n i n i n i n i n i n i ni i n i np i n p n p i n i i i np

p n

z z z z z z z z

o i n n n

≤ ≤ − ≤ ≤ − − ≤ ≤ − ≤ ≤

−

− = − − −

= →∞
 

 
4.3.  Rates for 1B  and 2B .  In this section, we consider  

 ( )21
1 : :

1

ˆ
n

i n i n
i

B n z z−

=

= −∑  

and 

 ( )( )1
2 : : :

1

ˆ .
n

i n i n i n i
i

B n z z z ξ−

=

= − −∑  

Using lemmas 4.11 and 4.16, we prove Lemma 4.17, that states 

 ( )( )27 / 6
1  log , as ,pB o n n n−= →∞  

and Corollary 4.18, that states  

 ( )( )1/ 213 /12
2 log log log ,  as .pB o n n n n−= → ∞  

As noted in Section 4.1, Lemma 4.17 and it’s corollary will imply the main results presented in 

Section 4.4. 

 

Lemma 4.17.   Let :i nz  and  :ˆi nz  be defined as in (4.6) and (4.8), respectively.  Assume  

( )1/ 2
0ˆ , ,pc c O n n−− = → ∞  ˆ ˆ 1c c′Σ = , and 0 0 1c c ′Σ = .   Let ( )21

1 : :
1

ˆ .
n

i n i n
i

B n z z−

=

= −∑   Then  

 ( )( )27 / 6
1 log ,pB o n n−=  as .n →∞  

Proof. Consider 

(4.77) 

( )

( ) ( ) ( )

( ) ( )

21
1 : :

1

2 2 21
: : : : : :

22
1

: : : :1

ˆ

ˆ ˆ ˆ

ˆ ˆ2 max ( 2 ) max .

n n n n

n n

n

i n i n
i

i n i n i n i n i n i n
i i i n i i i n i

n i n i n n i n i ni n i i n i

B n z z

n z z z z z z

n i z z n i z z

−

=

−

≤ ≥ − < < −

−

≤ ≤ ≤ ≤ −

= −

⎡ ⎤
= − + − + −⎢ ⎥

⎣ ⎦
⎡ ⎤

≤ − + − −⎢ ⎥
⎣ ⎦

∑

∑ ∑ ∑  
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We will apply Lemma 4.14 to the first term of (4.77) and letting 
3

4 ,ni n δ+=  0 1 4,δ< <  to get  

(4.78) 
( ) ( ) ( )

( ) ( )

2 23 3 1/ 21 1/ 24 4
: : : :1 1

1
4

ˆ ˆmax log log max

log 1 ,  as .

i n i n i n i ni n i n

p

n z z n n n n n z z

n n O n

δ δ

δ

+ + −−

≤ ≤ ≤ ≤

−

⎡ ⎤− = −⎣ ⎦

= →∞
 

Next, we apply Lemma 4.16, with 
3

4 ,ni n δ+=  0 1 4.δ< <  Then  

(4.79) 

( )
( ) ( ) ( )( ) ( )( )

( ) ( )

3 3
4 4

3 3
4 4

2
3

4
: :

2
3 2 11 2 1/ 24

: :

22

ˆ2 max

ˆ2 log log max

log 1 , as .

i n i n
n i n n

i n i n
n i n n

p

n n z z

n n n n n n z z

n n o n

δ δ

δ δ

δ

δ δ δ

δ

+ +

+ +

+

≤ ≤ −

−+ − + +

≤ ≤ −

−

⎛ ⎞− −⎜ ⎟
⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

= →∞

 

Let 1 12.δ =  Then, by (4.77), (4.78), and (4.79),  

(4.80) 

( )( ) ( )( )
( )( )

( )( )

21 1/ 6 1/ 6
1

21 1/ 6

27 / 6

log log

log

log ,  as .

p p

p

p

B n O n n o n n

n o n n

o n n n

− − −

− −

−

⎡ ⎤= +
⎣ ⎦

=

= →∞

 

 
Corollary 4.18. Let :i nz and  :ˆi nz  be defined as in (4.6) and (4.8), respectively.  Assume  

( )1/ 2
0ˆ , ,pc c O n n−− = → ∞  ˆ ˆ 1c c′Σ = , and 0 0 1c c ′Σ = .    Let ( )( )1

2 : : :
1

ˆ .
n

i n i n i n i
i

B n z z z ξ−

=

= − −∑   

Then 

 ( )( )1/ 213 /12
2 log log log ,pB o n n n−=  as .n →∞  

Proof.  By (4.28) we have 

(4.81) ( )
1/ 2

21
2 1 :

1

.
n

i n i
i

B B n z ξ−

=

⎛ ⎞≤ −⎜ ⎟
⎝ ⎠

∑  

Apply Theorem 4.8 and Lemma 4.18 to complete the proof,  

 
( ) ( )( )

( )( )

1/ 27 /12 1/ 2
2

1/ 213/12

log log log

log log log , as .

p p

p

B o n n O n n

o n n n n

− −

−

=

= →∞
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4.4  Asymptotic Equivalence for Correlation Statistics.  In this section, we derive the 

limiting distribution of correlation statistics based on projections of multivariate normal random 

vectors from a data suggested linear transformation under the assumption of normality of the 

original observations, and that the data suggested linear transformation satisfies condition 

Assumptions 4.1.   Theorem 4.19, the main result of this chapter and section, gives the 

asymptotic distribution of the de Wet and Venter Statistic applied to the projections from the 

estimated linear transformation. Theorem 4.21 extends Theorem 4.19 to the other correlation 

goodness-of-fit statistics considered in Verril and Johnson (1981) and Corollary 4.22 specifically 

covers the Shapiro-Wilk statistic. 

 

Theorem 4.19.  Let 1, , nY Y…  be i.i.d. k-variate multivariate normal vectors with mean, μ , and 

positive definite covariance matrix, k k×Σ .  Let ˆ kd R′∈  be a random vector satisfying Assumption 

4.1.  Let ˆ
nW  and  nW be defined as in (4.2) and (4.10). Then  

( ) ( )ˆ) 1 ,  n n pi n W W o− = n →∞ ,  

and 

( ) ( )
3

1ˆ) 1 ,  j
n n

j

x
ii n W a j

∞

=

−
− − ∑  as .n →∞  

Proof.  By Lemma 4.7, Lemma 4.17, Corollary 4.18, we have  

(4.82) ( ) ( )( )
2 2ˆ 1/ 213 /12

2
ˆ log log log ,  as .n ns s

n n pT T o n n n n
− −− = + →∞  

Since ˆ 2,P
n nT T+ ⎯⎯→ as ,n →∞  ˆ ˆ 1c c′Σ = , and 0 0 1c c ′Σ = ,  by (4.24) we have 
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(4.83) 

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( )( ) ( ) ( )

( ) ( ) ( )
( )

2 2

2 2

ˆ2 2 1
2

ˆ
2 2

2

2 2

0 0

1

ˆ ˆ ˆˆ

ˆˆ

ˆˆ 1 1

ˆ 1 1

ˆˆ ˆ 1 1

1 1

1 ,  as .

n n

n n

n n n n n n n n

s s

n n n n p

T T

n n n n p

n n p p

p p

p p p

p

U U n s s n T T T T

n s s T T n o n

n s s T T o

n s s o o

n c c c c o o

nO n o o

o n

− −

+

−

− = − − + −

⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

⎡ ⎤= − − + +⎢ ⎥⎣ ⎦

= − +

′= − Σ − Σ + +

= +

= →∞

 

By Corollary 4.6, (4.13), and (4.83), we have 

 ( ) ( )ˆ 1 ,as .n n pn W W o n− = →∞  

Furthermore, by Slutsky’s Theorem, 

 

( ) ( ) ( )
( ) ( )

( )
3

ˆ ˆ ˆ1 1

ˆ1 1

1 , as .

n n n n n n

n n p

j
j

n W a n W a n W W

n W a o

X j n
∞

=

− − = − − + −

= − − +

− →∞∑

 

 
Now we will consider the Shapiro-Wilk statistic and the related statistics considered in Verrill 

and Johnson (1987).  First, we state some results we will need from this paper. Define Ψ  to be a 

vector of length n  such that  

(4.84) ( ) ( )( )2 1

1

log log ,  as ,
n

i i
i

o n nξ −

=

Ψ − = →∞∑  

where ξ  is defined in (4.3).  For ease of reference, we state the complete sample version of 

Verrill and Johnson’s (1987) Theorem 3.1 as Theorem 4.20. 

 

Theorem 4.20.  (Verrill and Johnson, 1987, Theorem 3.1)  Let 1, , ny y…  be  i.i.d. normal 

random variables.  Let ξ be defined as in (4.3), and Ψ be a vector of constants that satisfies 

(4.84).  Then  

 ( )( ) ( )( ) ( ): :1 1
, , 1 , as .i n i n pn n

n r y r y o nξ
× ×

⎡ ⎤Ψ − = →∞
⎣ ⎦

 



 67

 
Let  

(4.85) ,ξα
ξ

=  

and 

(4.86) 1 1
1 1

1 1

1 1 .
n n

i n i n
i i

n nβ − −
Ψ × ×

= =

⎛ ⎞= Ψ − Ψ Ψ − Ψ⎜ ⎟
⎝ ⎠

∑ ∑  

In the proof of Verrill and Johnson’s Theorem 3.1 the following two results were shown 

(4.87) ( )( )2 11 log log ,  as ,o n n nα β −−
Ψ− = →∞  

and 

(4.88) ( ) ( )1/ 2 ,  as .o n nα β ξ −
Ψ
′− = →∞  

 
Theorem 4.21.  Let 1, , nY Y… be i.i.d. k-variate multivariate normal vectors with mean, μ , and 

positive definite covariance matrix, k k×Σ .  Let d̂  be a random vector and 0d be a fixed vector 

which jointly satisfy Assumption 4.1.  Let ( ): 1
ˆi n n
y

×
and  ( ): 1i n n

y
×

be the vectors of univariate order 

statistics based on ( ){ }
1

ˆˆ
n

i i i
y d Y Y

=
= −  and  ( ){ }0 1

n
i i i

y d Y μ
=

= − , respectively.  Let ξ  be defined 

as in (4.3), and Ψ  be a vector of constants that satisfies (4.84).  Then  

 ( )( ) ( )( ) ( )2 2
: :1 1

ˆ ˆ, , 1 ,i n i n pn n
n r y r y oξ

× ×
⎡ ⎤Ψ − =
⎣ ⎦

 as ,n →∞  

and 

 ( )( ) ( )( ) ( )2 2
: :1 1

ˆ , , 1 ,i n i n pn n
n r y r y o

× ×
⎡ ⎤Ψ − Ψ =
⎣ ⎦

 as .n →∞  

Proof.  Let Ẑ  and Z  be defined as in (4.7) and (4.9), respectively.  Then, by the location-scale 

invariance of ( )2 ,r i i ,  

 ( )( ) ( )2 2
: 1

ˆˆ , , ,i n n
r y r Z

×
Ψ = Ψ  

 ( )( ) ( )2 2
: 1

ˆˆ , , ,i n n
r y r Zξ ξ

×
=  

 ( )( ) ( )2 2
: 1

, , ,i n n
r y r Zξ ξ

×
=  

and 



 68

 ( )( ) ( )2 2
: 1

, , .i n n
r y r Z

×
Ψ = Ψ  

 
For α  and βΨ  defined as in (4.85) and (4.86),  

(4.89) 

( )
1/ 2

2 2
:

1 1

11/ 2 1

1/ 2 1

ˆ ˆˆ,

ˆ ˆ
ˆˆ

n n

i n i i
i i

r Z z ns

Z n s

n s Z

ξ ξ ξ

ξ ξ

α

−

= =

−− −

− −

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

′=

′=

∑ ∑

 

and 

(4.90) 

( )
1/ 2

2 2
:

1 1

11/ 2 1

1/ 2 1

ˆ ˆˆ,

ˆ ˆ
ˆˆ

n n

i n i i
i i

r Z z ns

Z n s

n s Z

ξ ξ ξ

ξ ξ

α

−

= =

−− −

− −

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

′=

′=

∑ ∑

 

and 

(4.91) 

( )
1/ 22

1 2 1
:

1 1 1 1

1
1 1/ 2 1 1

1 1
1 1

1/ 2 1

ˆ ˆˆ,

ˆ ˆ1 1

ˆˆ .

n n n n

i n i i i i
i i i i

n n

i n i n
i i

r Z z n ns n

Z n n s n

n s Z β

−

− −

= = = =

−
− − − −

× ×
= =

− −
Ψ

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
Ψ = Ψ − Ψ Ψ − Ψ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞′= Ψ − Ψ Ψ − Ψ⎜ ⎟
⎝ ⎠

′=

∑ ∑ ∑ ∑

∑ ∑  

Therefore, we have 

(4.92) 

( ) ( )( )
( )

( ) ( ) ( )

( )

2 21 2

21 2

2
1 2

2221 2

ˆ ˆ ˆ ˆˆ, ,

ˆˆ

ˆˆ

ˆˆ

r Z r Z n s Z Z

n s Z

n s Z

n s Z

ξ α β

α β

α β ξ α β ξ

α β ξ α β ξ

− −
Ψ

− −
Ψ

− −
Ψ Ψ

− −
Ψ Ψ

⎡ ⎤′ ′− Ψ = −⎣ ⎦

⎡ ⎤′= −⎣ ⎦

⎡ ⎤′ ′= − − + −⎢ ⎥⎣ ⎦
⎡ ⎤′≤ − − + −⎢ ⎥
⎣ ⎦

 

Apply Lemma 4.17 and Lemma 4.8 to get 

(4.93) ( )( ) ( )
( )

2 0
1

27 / 6

ˆ

log log log

log log ,  as .

n

p p

p

Z nB L

no n n O n

O n n

ξ

−

− ≤ +

= +

= →∞
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Note that 2ˆ 1,ps− ⎯⎯→ as n →∞ . To prove the first part of the theorem, combine (4.86), (4.88), 

(4.92), and (4.93) to get 

 
( ) ( )( ) ( ) ( )( ) ( ) ( )

( )

2 211 1 1/ 2

2

ˆ ˆ, , log log log log

,  as ,

p p

p

r Z r Z O n o n n O n o n

o n n

ξ −− − −

−

⎡ ⎤− Ψ = +⎢ ⎥⎣ ⎦

= →∞
 

and note that  

 

( )( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

( )

2 2 2 2
: :1 1

1

ˆ ˆˆ ˆ, , , ,

ˆ ˆ ˆ ˆ, , , ,

ˆ ˆ2 , ,

, as .

i n i nn n

p

r y r y r Z r Z

r Z r Z r Z r Z

r Z r Z

o n n

ξ ξ

ξ ξ

ξ

× ×

−

− Ψ = − Ψ

⎡ ⎤ ⎡ ⎤= + Ψ − Ψ⎣ ⎦ ⎣ ⎦

⎡ ⎤≤ − Ψ⎣ ⎦

= →∞

 

To prove the second part of the theorem, note that  

 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )

2 2 2 2
: : : :1 1 1 1

2 2
: :1 1

2 2
: :1 1

1 1 1

ˆ ˆ ˆ, , , ,

ˆ , ,

, ,

,  as .

i n i n i n i nn n n n

i n i nn n

i n i nn n

p p p

r y r y r y r y

r y r y

r y r y

o n o n o n n

ξ

ξ ξ

ξ

× × × ×

× ×

× ×

− − −

Ψ − Ψ ≤ Ψ −

+ −

+ − Ψ

= + + →∞

 

 

In Lemma 3.3 of Verril and Johnson (1987) different sets of vectors are shown to satisfy (4.84), 

including the vector from Shapiro-Francia statistic, ( )m E Z= , where Z  is defined in (4.9). The 

Shapiro-Wilk statistic uses the vector 1
0V m− , where 0V is the covariance matrix of the standard 

normal order statistics. In Leslie (1984) it is shown that  

(4.94) ( )( )1/ 21
0 2 log ,  as .V m m O n n−− − = →∞  

These results imply the following Corollary to Lemma 4.20. 
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Corollary 4.22.  Let 1, , nY Y… be i.i.d. k-variate multivariate normal vectors with mean, μ , and 

positive definite covariance matrix, k k×Σ .  Let d̂  be a random vector and 0d be a fixed vector 

which jointly satisfy Assumption 4.1. Let ( ): 1
ˆi n n
y

×
and ( ): 1i n n

y
×

be the vectors of univariate order 

statistics based on  ( ){ }
1

ˆˆ
n

i i i
y d Y Y

=
= −  and  ( ){ }0 1

n
i i i

y d Y μ
=

= − , respectively. Then  

 ( )( ) ( )( ) ( )2 1 2 1
: 0 : 01 1

ˆ , , 1 ,i n i n pn n
n r y V m r y V m o− −

× ×
⎡ ⎤− =
⎣ ⎦

 as .n →∞  

Proof.  Note that, by the location-scale invariance of ( )2 ,r i i  it will suffice to show that  

(4.95) ( )( ) ( )( ) ( )2 1 2 11 1
: 0 : 02 21 1

ˆ , , 1 ,  as .i n i n pn n
n r y V m r y V m o n− −

× ×
⎡ ⎤− = →∞
⎣ ⎦

 

Consider  

(4.96) 

2 2
1 1

0 0

2
21

0

1 1
2 2

1 .
2

V m V m m m

V m m m

ξ ξ

ξ

− −

−

− = − + −

≤ − + −

 

By (4.94) 

 

( )( )

( )
( )

( )

( )( )

2
1/ 21

0

1/ 2

1

1 log
2

log log 1 1
log loglog

11
log log

log log , as . 

V m m O n

n O
nn

o O
n

O n n

−−

−

− =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

= →∞

 

Since m satisfies (4.84), we have 

 ( )( )2 1log log ,  as .m o n nξ −− = →∞  

To complete the proof, note that  1
0

1
2

V m−  satisfies (4.84) and invoke Lemma 4.21.       

 
 
 
 

Copyright © Christopher Paul Saunders 2006 



 71

Chapter V. Specific Tests for Multivariate Normality  

 

5.1.  Introduction.   In Chapter IV, we showed, under the assumption of multivariate 

normality,  that the correlation statistic, ˆ
nW , based on the projections from an estimated linear 

transformation, d̂ ,  is asymptotically equivalent to a correlation statistic, nW , based on the 

projections from a fixed linear transformation, 0d , provided that  

(5.1) ( )1/ 2
0

ˆ ,  as ,pd d O n n−− = →∞   

and 

(5.2) 0 0.d >  

In the case of continuous functionals of the empirical process of the projections from the 

estimated linear transformation, we require the weaker assumption that ( )0
ˆ 1 ,pd d o− =  as 

,n →∞  for 0 0.d >   Therefore, if we show that (5.1) and (5.2) are satisfied, we can apply 

Corollary 3.12 and Theorem 4.21 to get the asymptotic properties of both correlation and E.D.F. 

type  goodness of fit statistics for multivariate normality.  We specifically consider E.D.F. and 

correlation Goodness-of-Fit tests applied to projections from the linear transformations suggested 

by Peterson and Stromberg (1998) and  Wood (1980).  As in the preceding chapters, let ξ  be the 

plotting scores associated with the de Wet and Venter statistic, specifically 

(5.3) ( )( )1

1
1

n
i nξ −

×
= Φ + . 

 

5.2.  Tests Based on Sample Principal Components.  Testing the marginal distribution for 

univariate normality is a standard practice for investigating multivariate normality. Royston 

(1983) proposed a method for combining the k-dependent tests into one omnibus test by 

transforming the k -Shapiro Wilk statistics into an approximately Chi-squared random variable, 

with m k≤  degrees of freedom.  The degrees of freedom are then estimated taking into account 

possible correlation structures between the original m  test statistics. This test has been found to 

behave well when the sample size is small and the variates are uncorrelated.  
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However, as the correlation increases between variates the type 1 error increases. To 

improve on this methodology, Srivastava and Hui (1987) and Peterson and Stromberg (1998) 

suggested using the k -eigenvectors of the sample covariance matrix, also known as the sample 

principal components, to create k -univariate samples that are then tested, in turn, for univariate 

normality. For univariate normality, they  suggested using with a Shapiro-Wilk or a related 

correlation test statistic. Each of the k -test statistics will be asymptotically independent when the 

original vectors are from a multivariate normal distribution. The independence implies that that 

the tests can easily be combined into an omnibus test statistic for multivariate normality with an 

asymptotic type 1 error rate of alpha.  However, the estimation of the principal components 

introduces dependence between the observations, which violates the assumptions under which 

the null distribution of the correlation statistics has been characterized.  Peterson and Stromberg 

(1998) investigated these statistics with a simulation study. Corollary 5.2 proves Peterson and 

Stromberg’s hypothesis, that using the sample eigenvectors does not unduly affect the null 

distribution of the test statistics for large samples.  As in the preceding chapters, let Y be the 

sample mean, 

(5.4) 1

1
,

n

i
i

Y n Y−

=

= ∑  

 and S  be the sample covariance matrix,  

(5.5) ( ) ( )( )1

1
1 .

n

i i
i

S n Y Y Y Y−

=

′= − − −∑  

Let { }
1

ˆˆ ,
k

j j j
e λ

=
 be the eigenvector/eigenvalue pairs of the sample covariance matrix, S , and 

{ }
1

,
k

j j j
e λ

=
 be the eigenvector/eigenvalue pairs of the population covariance matrix, k k×Σ .  

Furthermore, we will assume that k k×Σ  has k distinct non-zero eigenvalues. We make use of the 

following result from Flurry (1988), which is based on an earlier result by Anderson (1984). 

 

Theorem 5.1. (Flurry, 1988)  Let S denote a random symmetric p p×  matrix, distributed as a 

Wishart distribution with 1n −  degrees of freedom and parameter matrix ( ) 11n −− Σ , where Σ  is 

positive definite and symmetric. Let ˆ ˆ ˆS E E′= Λ and E E′Σ = Λ be the spectral decompositions of 
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S and Σ , where ( )1̂
ˆˆ , , pdiag λ λΛ = … , ( )1, , pdiag λ λΛ = … , ( )1

ˆ ˆ ˆ, , p p p
E e e

×
= … , and 

( )1, , p p p
E e e

×
= … . Assume that all jλ are distinct. Then  

 i. The asymptotic distribution of ( )
1 1

1/ 2

ˆ

1
ˆ

p p

n
λ λ

λ λ

⎛ ⎞−
⎜ ⎟

− ⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

 as n tends to infinity is p-variate 

normal with mean zero and covariance matrix ( )2 2
12 , , 2 pdiag λ λ… , and the ˆ

jλ are independent of 

Ê . 

 ii. The asymptotic distribution of  ( )
1 1

1/ 2

ˆ
1

ˆp p

e e
n

e e

⎡ ⎤−
⎢ ⎥− ⎢ ⎥
⎢ ⎥−⎣ ⎦

 is 2p -variate normal with mean 

zero and covariance matrix EV . 

 

Under the assumption that 1, , nY Y… are i.i.d. k-variate multivariate normal vectors with mean 

vector, μ , and positive definite covariance matrix, k k×Σ , the sample covariance matrix S  has a 

Wishart distribution with n degrees of freedom and parameter matrix ( ) 11n −− Σ  (Seber, 1984). 

Theorem 5.1 then implies the following two results 

(5.6) ( )1/ 2ˆ ,  for 1, ,  as j j pe e O n j k n−− = = →∞…   

and  

(5.7) ( )1/ 2ˆ ,  for 1, , , as j j pO n j k nλ λ −− = = →∞… . 

Also by definition 1je = , therefore (5.1) and (5.2) are satisfied. Then, Theorem 4.21 

immediately implies the following corollary. 

 

Corollary 5.2   Let 1, , nY Y… be i.i.d. k-variate multivariate normal vectors with mean, μ , and 

positive definite covariance matrix, k k×Σ , with k  unique eigenvalues.  Let ˆ k
je R∈  be the 

thj eigenvector of the sample covariance matrix, S , and k
je R∈  be the thj  eigenvector of the 

population covariance matrix, k k×Σ . Let  ( ): 1
ˆi n n
y

×
 and  ( ): 1i n n

y
×

 be the vectors of univariate order 
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statistics based on ( ){ }
1

ˆ ˆ
n

i j i i
y e Y Y

=
′= − and ( ){ }

1

n

i j i i i
y e Y μ

=
′= − , respectively. Let Ψ  be a vector 

of constants that satisfies ( ) ( )( )2 1

1
log log

n

i i
i

o nξ −

=

Ψ − =∑ , as n →∞ , where iξ  is defined in 

(5.3). Then  

 ( )( ) ( )( ) ( ): :1 1
ˆ , , 1 ,i n i n pn n

n r y r y o
× ×

⎡ ⎤Ψ − Ψ =
⎣ ⎦

as .n →∞  

 
 

By noting that 1/ 2 1/ 2ˆ ˆˆ ˆ 1j j j je Seλ λ− −′ = , Theorem 5.1 and Corollary 3.12 immediately imply the 

Corollary 5.3. 

 

Corollary 5.3.   Let 1, , nY Y… be i.i.d. k-variate multivariate normal vectors with mean, μ , and 

positive definite covariance matrix, k k×Σ , with k  unique eigenvalues. Let 1
ˆˆ{ }k

j j je λ =,  be the 

eigenvector/eigenvalue pairs of S . Let  

 ( ) ( )( ) ( )1/ 2 1 1/ 2

1

ˆ ˆ
n

n j j i
i

G t n n I e Y Y t tλ− −

=

⎡ ⎤′= − ≤ −Φ⎢ ⎥⎣ ⎦
∑ , ,t−∞ < < ∞  

and G  be a tight Gaussian process with covariance function 

 
( ) ( )( ( )) ( ) ( ) ( ) ( ) , .

2
ts s tmin t s t s s t tφ φφ φΦ , −Φ Φ − − −∞ < < ∞  

Let T  be a continuous functional from ( )R∞  to R .  Then  
 [ ] [ ]nT G T G , as n →∞ . 

 
 

It is worth noting that in the case of common principle components, the large sample 

properties presented in Flurry (1988, Theorem 4.4) are sufficient to demonstrate that the 

assumptions (5.1) and (5.2) are satisfied, under appropriate assumptions on the rate at which the 

sample sizes of the different groups tend to infinity.  This suggests that similar results to 

corollaries 5.2 and 5.3 will hold for these linear transformations. 
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5.3.  Tests Based on Wood’s Symmetric Decomposition.  In Wood (1981), the rows of the 

symmetric decomposition of the inverse of the sample covariance matrix are used to create k 

univariate samples that are each tested for univariate normality with an empirical cumulative 

distribution function Goodness-of-Fit test, such as a Cramer-von Mises statistic.   

Let 1S −  of the inverse of the sample covariance matrix. Let 1/ 2S −  and 1/ 2−Σ  be symmetric 

positive definite matrices such that 

(5.8) 1/ 2 1/ 2 1S S S− − −= , 
and 

(5.9) 1/ 2 1/ 2 1− − −Σ Σ = Σ . 
Let 

(5.10) ˆ
jb  be the thj row of 1/ 2S − , 

and 

(5.11) jb be the thj row of 1/ 2.−Σ  

We then consider the k -correlation statistics applied ( ): 1
ˆi n n
y

×
,  in this case the vector of order 

statistics from  ( ){ }
1

ˆ n

j i i
b Y Y

=
− .  Before proceeding further we will show that the set of k linear 

transformations in (5.9) satisfy conditions (5.1) and (5.2). 

 

Lemma 5.4. Let S be the sample covariance matrix from an i.i.d. sample of n multivariate 

normal random vectors with a mean vector μ  and positive definite covariance matrix Σ . Let 
1 1/ 2 1/ 2S S S− − −=  and 1 1/ 2 1/ 2− − −Σ = Σ Σ . Then 

 ( )1/ 2 1/ 2 1/ 2 ,  as .pS O n n− − −− Σ = →∞  

Proof.  Let Γ  be the matrix of eigenvectors of Σ  and Δ the diagonal matrix of eigenvalues ofΣ .  

We assume that 1 2 kλ λ λ> > >…  and that  

 

1 1

2 2

1

2

0 0 0

0 0 0

0 0 0
0 0 0

k k

q q

q q

k q q

I

I

I

λ

λ

λ

×

×

×

⎛ ⎞
⎜ ⎟
⎜ ⎟Δ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where iq  is the multiplicity associated with iλ . Let D  be the matrix of eigenvalues associated 

with S  and C  the matrix of eigenvectors of S  such that ( )iD diag D= , where  
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1 0

,
0 k p p

D
D

D
×

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
1

1

1 0

,
0

i

i i

q

i

q q

d

D
d

−

−

+

+

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 1 2 3 ,pd d d d> > > >…  

and 

 .S CDC′=  

Note, by definition, 

 CC I′ =  

and  

 I′ΓΓ = . 

Let  

 

11 12 1

21 22

1

r

r rr p p

E E E
E E

E

E E
×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

…

…

 

be the matrix of eigenvectors  of .S′Γ Γ  Then 

 T S′= Γ Γ  
is the sample covariance matrix of a sample of n i.i.d. multivariate normal random vectors with 

covariance matrixΔ . Note that D  is the matrix of of sample eigenvectors of T  as well as S .  

 Anderson (1963) gives the following results concerning D  and E , 

(5.12) ( )1/ 2 ,  as ,k k pD I O n nλ −− = →∞  

and 

(5.13) ( )1/ 2 ,  ,  as .kl pE O n k l n−= ≠ →∞  

Let kid be the thi diagonal element of .kD Note that (5.12) implies  

(5.14) 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

1/ 21/ 2 1/ 2 1/ 2 1/ 2

1/ 2 11/ 2 1/ 2

1/ 2

1/ 2

1 1

, as ,

ki k ki k k ki

ki k ki k k ki

p p p

p

d d d

d d d

O O O n

O n n

λ λ λ

λ λ λ

−− −

− −

−

−

− = −

= + −

=

= →∞
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which implies  

(5.15) ( )1/ 2 1/ 2 1/ 2 ,  as .k k pD I O n nλ− − −− = →∞  

Next, note that C E= Γ  and consider  

 

( )

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2 .

S CD C
ED E

T

− − − −

− −

− −

′ ′− Σ = − ΓΔ Γ

′ ′ ′= Γ Γ − ΓΔ Γ

′= Γ − Δ Γ

 

Therefore it will suffice to show that  

 ( )1/ 2 1/ 2 1/ 2 , as .pT O n n− − −− Δ = →∞  

Consider  

(5.16) ( ) ( ) ( )1/ 2 1/ 2 1/ 2 1/ 2 ,ijT ED E N− − − −′− Δ = − Δ =  

where  

 1/ 2

1
,

r

jj ji i ji j
i

N E D E Iλ−

=

′= −∑  

and 

 1/ 2

1

, .
r

kl ki i li
i

N E D E k l−

=

′= ≠∑  

By (5.13) and (5.15) we have, for k l≠ , 

(5.17) ( )1/ 2 1/ 2 ,  as ,ki i li pE D E O n n− −′ = →∞  

which implies 

(5.18) ( )1/ 2 ,  as .kl pN O n n−= →∞  

Consider  

(5.19) 

( )
( ) ( )

( )

( )

1/ 2 1/ 2 1/ 2

1

1/ 2 1

1/ 2 1/ 2 1/ 2 1

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2

k

il l il ii i ii il l il
l i l

ii i ii p

ii i i ii i ii p

i ii ii p

i ii ii i il il i il il p
i l i l

i

E D E E D E E D E

E D E O n

E D I E E E O n

E E O n

E E E E E E O n

I O

λ λ

λ

λ λ λ

λ

− − −

= ≠

− −

− − − −

− −

− − − −

≠ ≠

−

′ ′ ′= +

′= +

′ ′= − + +

′= +

′ ′ ′= + − +

= +

∑ ∑

∑ ∑

( )1/ 2 ,  as .p n n− → ∞
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Which implies 

(5.20) 

( )

1/ 2

1

1/ 2 ,  as .

r

jj ji i ji j
i

p

N E D E I

O n n

λ−

=

−

′= −

= →∞

∑
 

Therefore  

 ( )1/ 2 1/ 2 1/ 2 ,  as ,pT O n n− − −− Δ = →∞  

and  

 

( )

( )

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 , as .p

S T

T

O n n

− − − −

− −

−

′− Σ = Γ −Δ Γ

′≤ Γ −Δ Γ

= →∞

 

 
Since 1/ 2−Σ  is positive definite, 0jb > , for 1, ,j k= … , condition (5.2) is satisfied. By Lemma 

5.3, condition (5.1) is satisfied.  Corollary 5.4 will follow directly from Theorem 4.21. 

 

Corollary 5.5.  Let 1, , nY Y… be i.i.d. k-variate multivariate normal vectors with mean, μ , and 

positive definite covariance matrix, k k×Σ .  Let ˆ
jb  and jb be defined as in (5.10) and (5.11). Let 

( ): 1
ˆi n n
y

×
and ( ): 1i n n

y
×

be the vectors of univariate order statistics based on ( ){ }
1

ˆ n

j i i
b Y Y

=
− and  

( ){ }
1

n

j i i
b Y μ

=
− ,  respectively.  Let Ψ be a vector of constants that satisfies 

( ) ( )( )2 1

1

log log ,  as 
n

i i
i

o n nξ −

=

Ψ − = →∞∑ ,  ( ) ( )( )2 1

1

log log
n

i i
i

o nξ −

=

Ψ − =∑ , as n →∞ , where 

iξ  is defined in (3.3). Then  

 ( )( ) ( )( ) ( )2 2
: :1 1

ˆ , , 1 ,i n i n pn n
n r y r y o

× ×
⎡ ⎤Ψ − Ψ =
⎣ ⎦

as .n →∞  

 

As with Corollary 5.3, by noting that ˆ ˆ 1j jb Sb′ = , Theorem 5.1 and Corollary 3.12 immediately 

imply Corollary 5.6. 

 

Corollary 5.6.   Let 1, , nY Y… be i.i.d. k-variate normal vectors with mean, μ , and positive 

definite covariance matrix, k k×Σ .  Let ˆ
jb  and jb be defined as in (5.10) and (5.11).  Let  
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 ( ) ( )( ) ( )1/ 2 1

1

ˆ
n

n j i
i

G t n n I b Y Y t t−

=

⎡ ⎤= − ≤ −Φ⎢ ⎥⎣ ⎦
∑ , ,t−∞ < < ∞  

and G  be a tight Gaussian process with covariance function 

 ( ) ( )( ( )) ( ) ( ) ( ) ( ) , .
2

ts s tmin t s t s s t tφ φφ φΦ , −Φ Φ − − −∞ < < ∞  

 Let T  be a continuous functional from ( )R∞  to R .  Then  
 [ ] [ ]nT G T G , as n →∞ . 
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Chapter VI. Simulations 

 

6.1. Introduction.  Up to this point we have considered univariate tests for normality applied 

to the projections determined by a single estimated linear transformation.  We proved that the 

estimation of the fixed linear transformation by a data suggested linear transformation does not 

affect the limiting distribution of the test statistic under the assumption of multivariate normality.  

As mentioned in the sections 1.3 and 1.4, if we choose k  fixed linear transformations such that 

they are orthogonal to each other with respect to the population covariance matrix, then the 

corresponding k  standardized univariate test statistics based on the estimated projections will be 

asymptotically mutually independent.  In Section 6.2, we present our method for simulating the 

univariate null distribution for correlation statistics. In sections 6.3, we review two strategies for 

combining the k  p-values into one omnibus test statistic for multivariate normality. The first was 

proposed by Peterson and Stromberg (1998) and the second is a version of the method proposed 

by Royston (1983).  For the omnibus tests of multivariate normality based on combining the k  

univariate tests, Section 6.3 has a Type I error simulation study and Section 6.4 has a power 

simulation study. 

 

6.2.  Monte Carlo Simulation of the Null Distribution of Univariate Correlation Test 

Statistics.   In the preceding chapters it was shown that the correlation statistic determined by the 

estimated linear transformation, ( )( )2
: 1

ˆ ,i n n
r y

×
Ψ , is asymptotically equivalent to the correlation 

statistic determined by the fixed linear transformation, ( )( )2
: 1

,i n n
r y

×
Ψ .  The correlation statistic, 

( )( )2
: 1

,i n n
r y

×
Ψ , is just the corresponding test statistic for testing univariate normality in the 

direction of 0d .  Therefore, it is reasonable to use the distribution of the univariate correlation 

statistic to calculate a p-value for correlation statistic determined by the estimated linear 

transformation.  

 The Shapiro-Wilk statistic is the most extensively studied of the univariate correlation 

statistics.  Unfortunately, the exact null distribution of the univariate Shapiro-Wilk statistic is 

unknown for sample sizes greater than three, and the convergence rate of the sampling 
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distribution of the test statistic to its asymptotic distribution appears to be rather slow (Verrril 

and Johnson, 1988).  The common approach to calculating the p-value for a univariate Shapiro-

Wilk statistic is to transform the statistic such that it has an approximate normal distribution 

(Royston, 1995). Unfortunately these approximations only work well for a range of sample sizes, 

where the range depends upon the type of approximation (Royston, 1992).  Royston’s 

approximation is used in such packages as R (Royston,1995), S-Plus (Royston, 1992), and the 

univariate procedure in SAS (Royston, 1992).   The sampling distributions of the other 

correlation statistics are not as extensively studied as the Shapiro-Wilk statistic’s sampling 

distribution.  Therefore, as recommended by Verril and Johnson (1988), we take advantage 

location scale invariance of the correlation statistics to use Monte Carlo methods to approximate 

the null distribution of the test statistic, ( )( )2
: 1

,i n n
r y

×
Ψ .  

In the following simulations, the null distribution of the univariate correlation statistics is 

determined by a simulation of 30,000 samples of n  normal random variables with mean equal to 

zero and variance equal to one, where n  is chosen appropriately for the application.  

 

6.3. Combining P-Values from k-independent Tests. We will denote the 

approximate p-values based off of a univariate test of normality applied to the estimated 

projections as ( )1ˆ , ,i np Y Y… , 1, ,i k= … .  For the tests considered in Chapter V,  

( )1ˆ , , ,  as ,i n ip Y Y p n →∞…  where ip  are i.i.d. uniform random variable on the interval ( )0,1 .  

In this section we review two methods for combining the k  approximate p-values into one 

omnibus test statistic for multivariate normality.   

 The first method is based on the idea that we will reject the assumption of multivariate 

normality if at least one of the k  directions suggests non-normality.  Noting that { } 1
min k

i i
p

=
 is a 

beta random variable with parameters 1 and k . We will denote this random variable as ( )1, kβ .  

Therefore, for finite n , we will compare { } 1
ˆmin k

i i
p

=
 with the α -quantile of a ( )1, kβ  random 

variable.  This will give us an asymptotic Type I error of α .  We will refer to this method of 

combining p-values as the minimum p-value omnibus test.  This is a transformation of the “upper 

bound p-value” suggested in Peterson and Stromberg (1998).  
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 Let jΨ  be the C.D.F. of a chi-squared random variable with j  degrees of freedom.  

Then 
1

2log( )
k

i
i

p
=

−∑  is a chi-squared random variable with 2k  degrees of freedom and 

1 1

ˆ2log( ) 2log( ),  as .
k k

i i
i i

p p n
= =

− − →∞∑ ∑   Therefore, we will reject the assumption that the 

original vectors have a multivariate normal distribution when ( )1
2

1

ˆ2log( ) 1
k

i k
i

p α−

=

− > Ψ −∑ .  This 

will give us an asymptotic Type I error of α .  This is the method suggested by Fisher (1946) for 

combining the k  independent p-values. We will refer to this method of combining p-values as 

the Fisher omnibus test.  

 

6.4. Type I Error Simulation. To study the effect on the Type I error of using a set of data 

suggested linear transformations in place of a fixed linear transformation, we perform a short 

simulation.  For correlation statistics, we will simulate the null distribution of the univariate test 

statistic under the assumption of normality. For the E.D.F. goodness of fit statistics we will use 

the tabulated values coded in most basic software packages.  Due to the simulation of the 

univariate null distribution for the correlation statistics, the variability of the Type I error 

estimate for the correlation statistics will be greater than the variance of the E.D.F. goodness of 

fit Type I error estimates. The tests considered in the simulation study are summarized in Table 

6.1.  
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Table 6.1- Tests of Multivariate Normality considered in Simulations 

Test Omnibus Test Univariate Goodness of Test Linear Transformation 
1 minimum p-value Shapiro-Wilk Sample Eigenvectors 
2 minimum p-value de Wet and Venter Sample Eigenvectors 

3 minimum p-value Shapiro-Wilk 
Wood's Symmetric 

Decomposition 

4 minimum p-value de Wet and Venter 
Wood's Symmetric 

Decomposition 
5 minimum p-value Kolmogorov-Smirnov Sample Eigenvectors 
6 minimum p-value Cramer-von Mises Sample Eigenvectors 

7 minimum p-value Kolmogorov-Smirnov 
Wood's Symmetric 

Decomposition 

8 minimum p-value Cramer-von Mises 
Wood's Symmetric 

Decomposition 
9 Fisher Shapiro-Wilk Sample Eigenvectors 
10 Fisher de Wet and Venter Sample Eigenvectors 

11 Fisher Shapiro-Wilk 
Wood's Symmetric 

Decomposition 

12 Fisher de Wet and Venter 
Wood's Symmetric 

Decomposition 
13 Fisher Kolmogorov-Smirnov Sample Eigenvectors 
14 Fisher Cramer-von Mises Sample Eigenvectors 

15 Fisher Kolmogorov-Smirnov 
Wood's Symmetric 

Decomposition 

16 Fisher Cramer-von Mises 
Wood's Symmetric 

Decomposition 
 

The thm  sample in the simulation was generated as follows;  first mΣ , a random k k×  Wishart 

matrix with k degrees of freedom and expectation ( ).1 .9 1kxk kxk
I + , is generated,  then a sample of 

n  zero mean multivariate normal random vectors with covariance mΣ .  Each sample generated 

in the simulation was tested for normality with the test in Table 6.1.  The results of the Type I 

error simulation are summarized in Table 6.2, for 2k = , and Table 6.3, for 5k = . We consider 

sample sizes ranging from 20 to 1000. 
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Table 6.2- Type One Error Simulations in two dimensions 

Test/Sample Size 20 40 100 250 500 1000 
Test 1 0.048 0.048 0.049 0.050 0.051 0.050 
Test 2 0.047 0.050 0.049 0.050 0.050 0.052 
Test 3 0.049 0.048 0.049 0.050 0.055 0.050 
Test 4 0.048 0.052 0.051 0.049 0.052 0.050 
Test 5 0.048 0.050 0.050 0.052 0.048 0.047 
Test 6 0.050 0.051 0.050 0.051 0.048 0.051 
Test 7 0.047 0.050 0.050 0.051 0.047 0.048 
Test 8 0.050 0.050 0.053 0.049 0.049 0.052 
Test 9 0.049 0.051 0.051 0.053 0.051 0.051 
Test 10 0.047 0.049 0.050 0.050 0.049 0.051 
Test 11 0.048 0.049 0.051 0.052 0.054 0.050 
Test 12 0.047 0.052 0.052 0.049 0.051 0.050 
Test 13 0.047 0.050 0.051 0.053 0.048 0.049 
Test 14 0.052 0.053 0.049 0.051 0.048 0.051 
Test 15 0.047 0.048 0.051 0.051 0.048 0.048 
Test 16 0.051 0.051 0.052 0.049 0.049 0.052 

 

   

Table 6.3- Type One Error Simulations in five dimensions 

Test/Sample Size 20 40 100 250 500 1000 
Test 1 0.044 0.048 0.048 0.044 0.051 0.049 
Test 2 0.047 0.050 0.047 0.043 0.053 0.051 
Test 3 0.042 0.049 0.048 0.043 0.048 0.047 
Test 4 0.044 0.052 0.049 0.044 0.050 0.050 
Test 5 0.050 0.047 0.050 0.051 0.047 0.046 
Test 6 0.050 0.048 0.049 0.049 0.049 0.050 
Test 7 0.049 0.050 0.052 0.051 0.050 0.046 
Test 8 0.049 0.049 0.050 0.050 0.050 0.048 
Test 9 0.047 0.048 0.048 0.044 0.051 0.048 

Test 10 0.048 0.048 0.049 0.046 0.052 0.049 
Test 11 0.045 0.049 0.050 0.045 0.049 0.048 
Test 12 0.045 0.049 0.050 0.046 0.052 0.047 
Test 13 0.047 0.047 0.050 0.051 0.052 0.049 
Test 14 0.052 0.050 0.049 0.049 0.050 0.050 
Test 15 0.048 0.048 0.053 0.050 0.052 0.049 
Test 16 0.050 0.051 0.051 0.049 0.051 0.048 

 

This simulation suggests that all of the tests have reasonable Type I error control. 
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6.5. Power Simulation Study.   In Rizzo and Szekely (2005) a simulation for a test of 

multivariate normality is performed based on using mixtures of multivariate normal random 

variables. We replicate their simulation study for a sample size of 50 in five dimensions.  This 

simulation will illustrate the dependence of these tests on the choice of the linear transformation.  

Let ( )1 1
0

k
μ

×
= , ( )2 1

3
k

μ
×

= ,  ( )3 1
6.708204, 0, ,0

k
μ

×
= … , 1 kxkIΣ = and  ( )2 .1 .9 1kxk kxk

IΣ = + .  The 

mixtures of multivariate normal distributions considered in the power simulation are summarized 

in Table 6.4.  The powers of the tests in Table 6.1 are summarized in Table 6.5.   

In the case of the mixture distribution, the eigenvector transformation tests are more 

powerful than the symmetric decomposition test due to the eigenvectors tending to point in the 

directions of maximum variability, which the cases considered is also the direction of the 

departure from normality.  

 

Table 6.4- Mixtures of Multivariate Normal Distributions 

 Mixing Proportion 
First Normal 
Distribution 

Second Normal 
Distribution 

Mixture 1 0.5 ( )1 1,N μ Σ  ( )2 1,N μ Σ  

Mixture 2 0.79 ( )1 1,N μ Σ  ( )2 1,N μ Σ  

Mixture 3 0.9 ( )1 1,N μ Σ  ( )2 1,N μ Σ  

Mixture 4 0.5 ( )1 1,N μ Σ  ( )1 2,N μ Σ  

Mixture 5 0.9 ( )1 1,N μ Σ  ( )1 2,N μ Σ  

Mixture 6 0.5 ( )3 2,N μ Σ  ( )1 2,N μ Σ  

Mixture 7 0.9 ( )3 2,N μ Σ  ( )1 2,N μ Σ  
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Table 6.5- Power Study for Mixtures of Multivariate  

     Normal Distributions, for k=5 and n=50. 

Test Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5 Mixture 6 Mixture 7
1 1.000 1.000 0.992 0.750 0.125 0.921 0.882 
2 0.999 1.000 0.992 0.836 0.152 0.669 0.843 
3 0.044 0.052 0.069 0.232 0.047 1.000 0.995 
4 0.041 0.051 0.075 0.298 0.047 1.000 0.996 
5 1.000 1.000 0.958 0.645 0.073 0.874 0.711 
6 1.000 1.000 0.976 0.818 0.090 0.967 0.825 
7 0.047 0.048 0.053 0.102 0.048 1.000 0.995 
8 0.046 0.049 0.057 0.144 0.050 1.000 0.995 
9 1.000 1.000 0.991 0.881 0.127 0.845 0.886 
10 0.986 1.000 0.992 0.959 0.172 0.552 0.846 
11 0.045 0.053 0.071 0.277 0.050 1.000 0.995 
12 0.040 0.053 0.087 0.451 0.051 0.996 0.995 
13 0.998 1.000 0.947 0.832 0.079 0.807 0.709 
14 1.000 1.000 0.972 0.926 0.098 0.939 0.830 
15 0.048 0.048 0.054 0.134 0.049 1.000 0.995 
16 0.047 0.052 0.060 0.195 0.051 1.000 0.995 
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Chapter VII.  Discussion and Future Research  

 

7.1. Summary.   In this dissertation, we considered univariate goodness-of-fit tests applied to 

projections of multivariate normal random vectors.  The large sample behavior of these statistics 

was suspected to the same as the univariate statistics, however there has yet to be a formal 

derivation of the asymptotic properties of these statistics.  The theorems presented in Chapter III, 

provide the general theory for the weak convergence the standardized empirical process of the 

projections from a data suggested linear transformation of multivariate normal random vectors. 

The limiting process determines the asymptotic  behavior of continuous functions of the 

empirical process, such as E.D.F. goodness of fit statistics.  The theorems presented in Chapter 

IV provide an asymptotic representation of univariate correlation goodness of fit statistics 

applied to projections from a data suggested linear transformation of multivariate normal random 

vectors, which determines the asymptotic distribution of the statistics.  In Chapter V, we 

demonstrated that our theorems apply to some commonly used tests for multivariate normality 

that currently lack a formal derivation of the null distribution. Specifically, for the tests proposed 

by Srivastava and Hui (1987), Peterson and Stromberg (1998), and correlation tests based on the 

projections from Wood (1981), we derived the asymptotic distribution of the tests under the null 

hypothesis. In Chapter VI, we investigated the small sample behavior of the projection tests. We 

found that the Type I error is maintained at a reasonable rate even when the sample size is as 

small as 20 and the variates are highly correlated.  However, the power of projection based tests 

was demonstrated to be highly dependent upon the type of departure from normality.  This is a 

common problem in testing for normality, even in the univariate case.  

 

7.2.  Future research   The popular Royston (1983) adaptation of Shapiro-Wilk test to 

multivariate normality has commonly been found to have a high power when compared to other 

tests for multivariate normality (Mecklin and Mundfrom, 2005; Romeu and Ozturk, 1993).  This 

test, with the correction proposed by Srivastava and Hui (1987) and Peterson and Stromberg 

(1998), now has a known asymptotic null distribution.  To date the consistency properties of the 

test are unknown, although we suspect that the test will not be consistent against alternatives that 
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have normal distributions for projections determined by the eigenvectors of the covariance 

matrix.  This suspicion leads to the following conjecture. 

 

Conjecture 7.1.  Let 1, , nY Y… be i.i.d. k-variate vectors with mean, μ , such that 

( )( )
1
max log ,i pi n

Y O n
≤ ≤

= as n →∞ .  Let 0c  be a fixed row vector such that ( )0 ic Y μ−  are i.i.d. 

standard normal random variables, 1, ,i n= … .  Let ĉ  be a row vector such that 

( )1/ 2
0 ˆ pc c O n−− = , as .n →∞  Let ( ): 1

ˆi n n
y

×
and ( ): 1i n n

y
×

be the vectors of univariate order 

statistics based on ( ){ }
1

ˆ
n

i i
c Y Y

=
− and  ( ){ }0 1

n
i i

c Y μ
=

− ,  respectively.   

 ( )( ) ( )( ) ( )2 2
: :1 1

ˆ , , 1 ,i n i n pn n
n r y r y oξ ξ

× ×
⎡ ⎤− =
⎣ ⎦

 as .n →∞  

 

 In the proof of Theorem 4.19, we assume that the difference between the estimated linear 

transformation and the fixed linear transformation was ( )1/ 2
pO n , as .n →∞   For the 

eigenvectors of the sample covariance matrix this assumption is not satisfied when the 

eigenvalues of the population covariance matrix have a multiplicity greater than one.  It is 

suspected that this assumption can be relaxed by using the method of proof used in Wood 

(1981). 
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