
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Doctoral Dissertations Graduate School 

2005 

MODULATION OF THE ADRENAL MEDULLARY RESPONSE TO MODULATION OF THE ADRENAL MEDULLARY RESPONSE TO 

STRESS BY ESTRADIOL IN THE FEMALE RAT STRESS BY ESTRADIOL IN THE FEMALE RAT 

Julye Marie Adams 
University of Kentucky 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Adams, Julye Marie, "MODULATION OF THE ADRENAL MEDULLARY RESPONSE TO STRESS BY 
ESTRADIOL IN THE FEMALE RAT" (2005). University of Kentucky Doctoral Dissertations. 419. 
https://uknowledge.uky.edu/gradschool_diss/419 

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been 
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


 
 
 
 
 
 
 
 
 
 

Abstract of Dissertation 
 
 
 
 
 
 
 
 
 

Julye Marie Adams 
 
 
 
 
 
 
 
 
 

The Graduate School 
 

University of Kentucky 
 

2005 

 



 

 
 
 
 
 
 

MODULATION OF THE ADRENAL MEDULLARY RESPONSE TO 
STRESS BY ESTRADIOL IN THE FEMALE RAT 

 
 
 

--------------------------------------------- 
ABSTRACT OF DISSERTATION 
--------------------------------------------- 

 
 

An abstract of a dissertation submitted in partial fulfillment of the  
requirements for the degree of Doctor of Physiology  

at the University of Kentucky 
 
 
 

By 
 

Julye Marie Adams 
 

Versailles, Kentucky 
 

Director:  Dr. Brian A Jackson, Professor of Physiology 
 

Lexington, Kentucky 
 

2005 
 

Copyright © Julye M. Adams 2005 
 
 
 
 
 
 
 

 



 

 

 
 
 
 

Abstract of Dissertation 
 
 
 

MODULATION OF THE ADRENAL MEDULLARY RESPONSE TO 
STRESS BY ESTRADIOL IN THE FEMALE RAT 

 
The present study has established that physiological concentrations of estradiol can modulate 
stress-induced increases in plasma epinephrine (EPI).  In anesthetized female rats, insulin-
induced hypoglycemia (0.25 U/kg) increased plasma EPI concentration to a significantly greater 
extent in 14-day ovariectomized (OVEX) rats compared to sham-operated controls.  In 17β-
estradiol (E2)-replaced OVEX rats, the hypoglycemia-induced rise in plasma EPI was 
significantly reduced compared to OVEX rats.  This suppression was due to both decreased 
adrenal medullary output and increased clearance of EPI.    Adrenal venous EPI concentration 
was significantly reduced in OVEX+E2 rats, suggesting that EPI secretion from the adrenal 
medulla was decreased by E2 replacement.  The underlying mechanism(s) of this apparent E2-
mediated reduction in secretion could not be established since 1) the expression levels of the 
biosynthetic enzymes tyrosine hydroxylase and phenylethanolamine N-methyltransferase were 
not affected in OVEX+E2 rats, suggesting that EPI biosynthesis is similar in these and OVEX 
rats; and 2) agonist-induced increases in intracellular Ca P

2+ 
Pwere identical in isolated adrenal 

medullary chromaffin cells exposed to E2 (10 nM) or vehicle for 48 hr, suggesting that stimulus 
secretion coupling is unaffected by E2 treatment.  In contrast, plasma clearance of EPI was 
significantly increased in OVEX+E2 rats.  

Although 48 hr exposure to E2 had no effect on intracellular signaling in chromaffin cells, 
acute (3 min) exposure to micromolar concentrations of E2 dose-dependently and reversibly 
inhibited agonist-induced Ca P

2+ 
Ptransients. Consistent with this observation, acute (30 min) 

infusions of E2 also significantly reduced the insulin-induced increase in plasma EPI in OVEX 
rats.  These data demonstrate that physiological levels of circulating E2 can modulate 
hypoglycemia-induced increases in plasma EPI.  This effect appears to be mediated by the 
steroid’s influence on adrenal medullary EPI output and plasma EPI clearance; however the 
mechanism(s) underlying these E2-mediated modulations remain undetermined.  This study has 
also established that acute exposure to supra-physiological levels of E2 can suppress 
hypoglycemia-induced increases in plasma EPI, due at least in part to inhibition of stimulus-
secretion coupling.     
Key Words:  Estradiol, Stress, Adrenal Medulla, Epinephrine, Chromaffin Cell 
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Chapter 1:  Introduction 

 
Estrogen 

Estrogen and progesterone are the main steroid hormones synthesized by and 

secreted from the ovary.  Estradiol, the most biologically active form of estrogen, is 

produced by the granulosa cells of antral follicles and is responsible for various actions 

throughout the reproductive system.  For example, estradiol induces the proliferation of 

granulosa cells in the ovary, the epithelial and stromal layers in the uterus, and the 

epithelium in the vagina.  The development of the lactiferous duct system in the 

mammary glands is also dependent upon the presence of estradiol (Kacsoh, 2000).   

Typically, estradiol acts through traditional steroid receptor mechanisms.  

Intracellular estrogen receptors, which act as transcription factors, bind estradiol and 

dimerize in the cytoplasm of the target cell.  The estrogen receptor dimer translocates to 

the nucleus and binds estrogen-responsive elements located in the promoter region of 

estrogen-responsive genes, thereby regulating transcription of these genes.  There are 

at least two subtypes of estrogen receptors, the classic estrogen receptor alpha (ERα), 

and the more recently discovered estrogen receptor beta (ERβ).  Although ERα and 

ERβ share a high degree of sequence homology, they are the product of two different 

genes and exhibit tissue/cell-specific expression and action (Matthews and Gustafsson, 

2003 for review).  In addition to acting via this traditional, relatively slow-onset genomic 

transcription/translation signaling pathway, several studies have demonstrated that 

estrogens can also initiate rapid activation of G-protein-coupled receptor signaling 

systems, perhaps by binding to distinct pools of estrogen receptors which locate to 

caveolae regions of the plasma membrane (Hall et al., 2001; Nadal et al., 2001; Levin, 

2002).  For example, acute exposure to estradiol stimulates a rise in intracellular Ca P

2+
P, 

and activates the protein-kinase A and protein-kinase C signaling pathways in female 

colon cells, while in smooth muscle cells and atrial/ventricular myocytes, short-term 

estradiol exposure attenuates voltage-dependent Ca P

2+
P current (Levin 1999 for review; 

Kelly and Levin, 2001).   

 

 



 

Extra-Reproductive Effects of Estrogen 
Although primarily regarded as the female sex hormone, estradiol acts beyond 

the scope of the reproductive axis at various sites, including bone, liver, kidney, brain, 

heart, and vasculature.   For instance, estradiol induces elongation of bone, the closure 

of the epiphyseal plates, and prevents bone resorption.  This latter benefit on bone 

remodeling is lost at menopause, a time in normal female aging when estradiol 

secretion declines.  This permanent decrease in circulating estradiol concentration is 

often accompanied by increased osteoporosis and bone fragility in postmenopausal 

women (Lindsay, 1996).  Recent studies have shown that hormone replacement 

therapies, which include estrogens, can decrease the incidence and severity of 

osteoporosis in post-menopausal women (Lawrenson et al., 2005; Stevenson, 2005).   

Several studies have shown that a number of health problems confronted by 

older women can be linked to the deficiency of circulating estradiol after menopause.  

For example, increases in the prevalence of heart disease and the incidence and 

severity of hypertension in post-menopausal women are reduced by hormone 

replacement therapy (Kannel et al., 1976; Pines et al., 1996; Prevlevic et al., 1997; 

Wassertheil-Smoller et al., 2000).  The mechanisms underlying these benefits are quite 

diverse, and include estrogenic effects on lipid and lipoprotein metabolism and both 

vascular reactivity and growth (Prevlevic et al., 1997; Dubey et al., 2001, 2004; 

Mendelsohn et al., 2005).  Additionally, estradiol replacement also lessens the risk 

and/or delays the onset of neurodegenerative conditions such as Alzheimer’s disease 

(Henderson et al., 1996; Asthana et al., 1997; Kawas et al., 1997; Baum, 2005), and 

provides cognitive benefits (see Gleason et al., 2005 for review) in post-menopausal 

women.   

Not all data are consistent with the concept that estrogen is protective against 

these types of illnesses. While it is widely accepted that high doses of estradiol can be 

harmful, increasing the risk of breast cancer, venous thrombosis, stroke, and pulmonary 

embolism (Gillum et al., 2000), clinicians with the Women’s Health Initiative (WHI), a 

study which has enrolled more than 160,000 participants overall, reported in 2002 that 

post-menopausal women receiving lower dose hormone replacement therapy (a 

combination of estrogen and progesterone) also have a higher risk for heart disease, 
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stroke and blood clots compared to post-menopausal women receiving placebo 

treatment (Pradhan et al.)  In 2004, it was reported that post-menopausal women 

receiving estrogen-only therapy are also at a greater risk for blood clots, stroke and 

dementia than those in the placebo control group (Anderson et al.).  In light of these 

reports, doctors halted all hormone and estrogen-only treatment studies in the WHI.  It 

should be noted, however, that the estrogens used in these replacement therapies were 

conjugated equine estrogens, which can adversely affect the liver (Turgeon et al., 

2004), that the therapies were given orally, which can affect hemostasis (Scarabin et al., 

1997; Luyer et al., 2001), and that the women who were enrolled in these studies were 

well past the onset of menopause (average age of 63 and 65 years old) when they 

began the therapies.   Given these cohorts and the fact that the levels of estrogen 

administered orally in hormone and estrogen replacement therapies are typically non-

physiologic, even in low-dose regimes, the effects of physiologic levels of estradiol in 

younger individuals have remained undefined.   

Several basic science studies have investigated the effects of estradiol in more 

controlled paradigms.  Dubal and Wise (2001) have demonstrated that both estrous and 

pro-estrous concentrations of estradiol replacement in ovariectomized rats protects 

against infarct injury during ischemic stroke in both young and middle aged rats.  In 

these studies, estradiol protected against stroke-induced injury by inhibiting infarct-

induced cell death.  High doses of estradiol are also protective against ischemic brain 

injury, as demonstrated by Yang et al. (2000). In these studies, the injection of estradiol 

up to 3 hours after the initial injury attenuated infarct-induced damage by modulating 

both cerebral blood flow and the production of nitric oxide.   

Beneficial/protective effects of estradiol have also been demonstrated in the 

cardiovascular system.  Chronic estrogen treatment lowers blood pressure in both 

transgenic and spontaneously hypertensive rats (Brosnihan et al., 1997; Crofton and 

Share, 1997; Li et al., 1997).  Pressor responses to phenylephrine are also reduced in 

chronically estradiol-treated ovariectomized rats, while indices of baroreflex sensitivity 

are greater than in vehicle treated controls (He et al., 1998).  This latter conclusion is 

supported by a study in conscious mice, which demonstrated that estradiol facilitates 

baroreflex function, perhaps by modulating angiotensin II-mediated effects on the 

 3



 

cardiovascular system (Pamidimukkala et al., 2003). He et al. (1998) also demonstrated 

that an acute, intravenous injection of estradiol lowers heart rate, and renal and 

splanchnic nerve activity in ovariectomized rats compared to vehicle-treated controls.    

 

Estrogen and Stress  
Stress responses are affected by estradiol in a variety of manners.  For example, 

post-menopausal women have increased behavioral responses to mental stress 

compared to pre-menopausal women, and estrogen therapy attenuates this increase 

(Lindheim et al., 1992; Owens et al., 1993).  These conclusions are supported by 

studies in experimental animals, which have shown that physiological concentrations of 

estradiol reduce anxiety and depressive behavior in rats subjected to open field, 

elevated plus maze, and forced swim tests (Lunga and Herbert, 2004; Walf and Frye, 

2005).  The activity of the hypothalamic-pituitary-adrenal axis (HPA axis) is also 

modulated by the presence of estradiol. Clinical studies have shown that cortisol levels 

are significantly decreased after menopause and are restored with estrogen 

replacement therapy (Helgason et al., 1981).  In the rat, basal plasma levels of both 

ACTH and corticosterone are lower in ovariectomized rats than in intact controls and 

estradiol replacement returns both hormones to control levels (Burgess and Handa, 

1992, Seale et al., 2004, Lunga and Herbert, 2004, Serova et al., 2005).  In contrast, 

immobilization stress-induced increases in plasma ACTH concentrations are 

significantly lower in estradiol-replaced ovariectomized rats than in their controls 

(Serova et al., 2005).   

 

Adrenal Medullary Response to Stress 
As first proposed by Cannon in 1934, it is now well established that the adrenal 

gland is vital in the maintenance of overall body homeostasis during times of stress.  

Stressors such as trauma (Hammond et al., 1956; Barton et al, 1981), hypotension (Lilly 

et al., 1982; Bereiter et al., 1984), cold (Gordon et al., 1966; LeBlanc et al., 1967; 

Kanayama et al., 1999), hypoxia (Fowler et al., 1961; Bloom et al., 1977), and 

hypoglycemia (Niijma, 1989) result in a marked increase in both adrenal medullary 

catecholamine and adrenocortical glucocorticoid secretion, resulting in adaptation to the 
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stressor by eliciting diverse cardiovascular, metabolic, and immunomodulatory effects 

(Axelrod and Reisine, 1984; Becker, 1986; Ewbank 1992).  Furthermore, tolerance to 

such stressors as exercise (Winder et al., 1987), hemorrhage (Bond and Johnson, 

1984), and hypoxia (Nahas et al., 1954) is severely reduced in adrenalectomized and/or 

adrenal de-medullated animals.   

 The principal catecholamines, epinephrine (EPI) and norepinephrine (NE) are 

synthesized by and released from adrenal medullary chromaffin cells, which are 

considered functionally similar to postsynaptic sympathetic neurons.  However, these 

cells do not have axons, and therefore function in a more endocrine manner by 

secreting epinephrine and norepinephrine directly into the blood stream.  

Catecholamine biosynthesis occurs within the cells through a series of enzymatic 

reactions, with the conversion of tyrosine to dihydroxyphenylanine (DOPA) by tyrosine 

hydroxylase as the initial and rate-limiting step.  DOPA is then converted to dopamine 

(DA) by dopa decarboxylase (DDC) and DA is converted to NE by dopamine-beta-

hydroxylase (DBH).  Lastly, NE is converted to EPI by phenyl-ethanolamine-N-

methyltransferase (PNMT).   

It is well established that there are two separate populations of chromaffin cells 

(Moro et al., 1990) characterized by the presence or absence of this latter enzyme.  The 

ratio of PNMT containing (EPI secreting) cells to non-PNMT containing (NE secreting) 

cells is species dependent.  For example, the ratio of EPI secreting to NE secreting cells 

in the rat adrenal medulla is approximately 4:1 (Verhofstad et al., 1985; Tomlinson et 

al., 1987), while the ratio is approximately 1:1 in the pig (Verhofstad et al., 1989).  In 

humans, approximately 80% of adrenal medullary chromaffin cells are EPI secreting 

while just 20% are NE (Vollmer, 1996 for review).   

Catecholamines are stored in vesicles until their release, which occurs when a 

stress-induced increase in splanchnic nerve activity stimulates secretion from the 

chromaffin cell.  Mechanistically, acetylcholine, released from the adrenal nerve (a 

branch of the splanchnic nerve), induces sodium (Na+) and calcium (Ca2+) influx via 

nicotinic receptor-operated ion channels (Wada et al., 1985).  The resultant 

depolarization activates voltage gated Ca2+ channels and results in a transient rise in 

intracellular free Ca2+ concentration, which is the primary trigger for catecholamine 
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exocytosis (Kilpatrick et al, 1982). The rise in intracellular Ca P

2+
P can also increase the 

activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthetic cascade and 

therefore enhance catecholamine biosynthesis, which allows chromaffin cells the ability 

to maintain catecholamine stores in cases of increased secretion and maintain the 

cellular catecholamine content at a relatively constant amount, a process described as 

stimulus-synthesis-secretion coupling (Wakade et al., 1988; Malhotra et al., 1989).  

 

Estradiol and the Adrenal Medullary Response to Stress 
While the response of the HPA axis to a stressor is usually enhanced by 

estradiol, clinical studies indicate that stress-induced increases in plasma 

catecholamines are lower in post-menopausal women receiving estrogen replacement 

therapy (Del Rio et al., 1993; Komesaroff et al., 1999; Ceresinsi et al., 2000; Sandoval 

et al., 2003). Despite these persuasive clinical observations, the mechanism(s) 

underlying this estrogen-dependent suppression of stress-evoked catecholamine 

responses, and more specifically the effects of normal circulating levels of estrogen on 

this response, have not been convincingly established.  Conclusions from studies in the 

rat are contradictory and may be dependent upon several factors, including the type of 

stressor utilized and the age, weight, and strain of the rat. For example, the 

hypoglycemia-induced increase in plasma catecholamine concentration is attenuated in 

female rats compared to weight-matched males (Drake et al., 1998), while foot-shock 

evoked increases are enhanced in females compared to age-matched males 

(Weinstock et al, 1998).   

The prospect that estradiol can affect adrenal medullary function is supported by 

a report which identified ERα immunoreactivity in chromaffin cells of the female but not 

male rat adrenal gland (Green et al., 1999).  However, information regarding estrogen 

effects on catecholamine biosynthesis is both limited and inconclusive. For example, it 

has been reported that daily injections of a high dose of estradiol for 3 days increases 

adrenal medullary epinephrine content in ovariectomized rats (Fernandez-Ruiz et al., 

1988), and that 10 days of estrogen treatment in intact female rats increases the activity 

of adrenal tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthetic 

cascade (Kohler et al., 1975).  In contrast, TH activity was reported to be unaffected by 



 

 7

estrogen treatment in ovariectomized rats (de Miguel et al., 1989).  More recently, 

Serova et al. (2005) have demonstrated that TH mRNA levels are increased in the 

adrenal medulla of non-stressed, estradiol-treated ovariectomized rats compared to 

vehicle-treated controls.  Conversely, the treatment paradigm utilized in this study also 

inhibited the stress-induced increase in TH mRNA levels seen in the control group.  

It is now accepted that in addition to acting via traditional steroid-receptor 

signaling pathways, members of the steroid receptor superfamily, can rapidly affect cell 

function (Losel et al., 2003 for review).  Previous studies from our laboratory have 

identified crosstalk between the adrenal stress hormones, establishing that both acute 

and long-term exposure to physiologic concentrations of glucocorticoids can modulate 

catecholamine stimulus-secretion pathways in vitro in both rat and pig chromaffin cells.  

Notably, these effects were found to be diametrically opposite: long-term exposure to 

physiologic concentrations of the synthetic glucocorticoid dexamethasone potentiates 

voltage-gated CaP

2+ 
P channel current, consequently potentiating  agonist-induced 

intracellular Ca P

2+
P transients (Fuller et al., 1997a,b),  while acute exposure to 

dexamethasone dose-dependently attenuates voltage-gated Ca P

2+ 
P channel current and 

the subsequent intracellular Ca P

2+
P transient (Wagner et al., 1999).   

Several in vitro studies have demonstrated that relatively high concentrations of 

estrogen can also acutely and therefore, presumably non-genomically, modulate 

adrenal medullary function. For example, in the isolated perfused rat adrenal gland, 

nicotinic agonist-induced catecholamine secretion is suppressed within minutes of 

exposure to 17α-estradiol (Park et al., 1996). Similarly, short-term exposure to 17α-

estradiol suppresses secretory responses to both nicotinic agonists and to direct 

depolarization with KCl in isolated perfused bovine and feline adrenal glands (Lopez et 

al., 1991). Mechanistically, the KCl data combined with the fact that steroid treatment 

also suppresses agonist-induced P

45
PCaP

2+
P uptake in isolated bovine chromaffin cells, 

suggests that the primary site of estradiol action may be the voltage-gated Ca P

2+
P 

channel. Consistent with this concept, Kim et al., (2000) have demonstrated that short-

term exposure to 17β-estradiol suppresses KCl-induced [ P

3
PH] nor-epinephrine secretion 

and intracellular Ca P

2+
P transients in the PC-12 cell line, an established model of the 

medullary chromaffin cell. At least in this model, channel-selective antagonist studies 



 

demonstrated that estrogen inhibited both L- and N-type voltage-gated Ca2+ channels.  

Evidence in favor of an acute suppressive effect of estradiol on catecholamine secretion 

in vitro is not unanimous however. Dar and Zinder (1997) have reported that, compared 

to the effects of progestins and androgens, estrogens in general have relatively little 

effect on agonist-induced catecholamine secretion in bovine chromaffin cells.  While the 

rapid-onset effects of estradiol on catecholamine secretion described above are 

consistent with a non-genomic mechanism of hormone action, it is not clear whether the 

effects have physiological significance, since the concentrations of steroid used in all of 

the these studies far exceeds normal plasma levels of estrogen in the rat (Smith et al., 

1975).  

Based on these data that non-physiological levels of estrogen can modulate the 

adrenal medullary response to stress in post-menopausal women and that acute 

exposure to high levels of estradiol can affect stimulus-secretion coupling in the 

chromaffin cell, the primary goal of the studies presented in this dissertation was to 

specifically determine whether physiological levels of estradiol can affect stress-induced 

increases in plasma catecholamine concentration.  The working hypothesis to be tested 

was that physiological concentrations of estradiol attenuate the stress-induced 

increase in plasma epinephrine concentration by directly suppressing secretion 

from the adrenal medullary chromaffin cell.  
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Chapter 2:  Materials and Methods 

 
Animals and Experimental Treatments  

All animal protocols were approved by the University of Kentucky Institutional 

Animal Care and Use Committee and utilized 12-14 week-old female Sprague-Dawley 

rats.  Animals were housed individually in a room with controlled temperature (24 P

o
PC) 

and light (14:10-h light-dark cycle) and given free access to food and water.  Bilateral 

ovariectomy (or sham-surgery) was performed under isoflurane anesthesia via two 

small flank incisions.  For estradiol replacement, capsules containing either 17β-

estradiol or vehicle were implanted subcutaneously at this time. The implanted capsules 

were made in accordance with previously published protocols (Wise et al., 1981; Dubal 

et al., 2001), by injecting 0.07 mL of either 17β-estradiol (1 mg/mL; Sigma; St. Louis, 

MO) or sesame oil into 30 mm lengths of SILASTIC brand tubing (0.062/0.125 in 

inner/outer diameter; Dow Corning; Midland, MI).  Each capsule was capped at both 

ends with 5 mm wooden applicator sticks.   

  Uterine weight and the change in overall body weight 14 days after surgery are 

listed in Table 2.1.  Plasma estradiol concentrations measured 14 days after surgery are 

displayed in Figure 2.1.  Ovariectomized rats gained more overall body weight and had 

significantly lower uterine weights and plasma estradiol concentrations than the sham-

operated controls. Uterine weights and plasma estradiol concentrations were 

significantly greater and changes in body weight were significantly reduced in the 

estradiol-replaced group compared to the ovariectomized group.  Estradiol replacement 

produced plasma estradiol concentrations equivalent to those of sham rats during the 

proestrous phase of the estrous cycle.  Uterine weights and changes in body weight 

also were not different between these two groups.   

 

In Vivo Studies 
The primary catecholamine secreted from the adrenal medulla is epinephrine 

(EPI; Vollmer, 1996).  Therefore, plasma EPI concentrations in response to stress were 

determined in all treatment groups.   
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Insulin-induced hypoglycemia was used as a stressor to assess the effects of 

estradiol on increases in plasma EPI. This well established paradigm elicits consistent 

increases in plasma EPI levels in both experimental animals (Vollmer et al., 1997; 

Drake et al., 1998) and humans (Diamond et al., 1993; Davis et al., 2000).   

 

A.  Hypoglycemic-Stress Model  

1.  Measurement of Stress-Induced Plasma Epinephrine Concentrations 

For these experiments, overnight-fasted rats were anesthetized with inactin (100 

mg/kg, i.p.; Sigma) and following tracheotomy, the left femoral artery and femoral vein 

were catheterized with PE 50 tubing. Core body temperature was maintained at 36.7P

o
PC 

by heat pad/lamp, and blood pressure and heart rate were recorded with a Grass Model 

7 polygraph (Grass Instruments Co.; Quincy , MA) for the duration of the experiment.  

After a 30 min equilibration period, a baseline arterial blood sample (0.6 mL) was taken 

and a bolus of insulin was injected via the femoral vein (Figure 2.2). Additional blood 

samples were taken 30 and 60 min post-insulin. Blood volume was replaced with 0.9% 

sterile saline. A small volume (10 µL) from each heparinized sample was used to 

measure blood glucose concentrations by a OneTouch Ultra glucose monitoring system 

(glucometer; Lifescan-Johnson & Johnson; Milpitas, CA), and the sample was 

centrifuged and the plasma was stored at -80 P

o
PC for later EPI analysis by enzyme-linked 

immunosorbent assay (ELISA).  Preliminary experiments established that blood-

sampling performed in the absence of insulin-induced hypoglycemia did not increase 

plasma epinephrine concentration above baseline (Figure 2.3).  

Preliminary experiments also examined the effects of two concentrations of 

insulin on plasma EPI concentration.  Both 0.25 U/kg and 1.0 U/kg of insulin elicited 

decreases in plasma glucose concentrations (∆ -67 ± 2.1% and >-76 ± 1.2%, 

respectively) and increases in plasma EPI concentrations (5 fold and 30 fold, 

respectively) after 30 min of hypoglycemia. (It should be noted that, in several rats, 1.0 

U/kg of insulin lowered plasma glucose to below the detectable range (< 20 mg/dL) of 

the glucometer after 30 min of hypoglycemia.)   Both the decrease in plasma glucose 

and the increase in plasma EPI concentrations were significantly greater in the 1.0 U/kg 

insulin-treated compared to the 0.25 U/kg insulin treated rats (Figure 2.4; P<0.01).  After 



 

60 min, plasma glucose and EPI concentrations returned toward baseline in 0.25 U/kg 

insulin-treated rats.  Glucose and EPI concentrations in the 1.0 U/kg insulin-treated rats 

did not differ after 60 min of hypoglycemia compared to 30 min, and were significantly 

different than the 0.25 U/kg insulin-treated group at 60 min (P<0.01).  All subsequent 

experiments utilized the sub-maximal stress effects of the 0.25 U/kg dose of insulin to 

determine the effects of estradiol on hypoglycemia-induced increases in plasma EPI 

concentration.  

 

2.  Measurement of Adrenal Medullary Epinephrine Output 

For these experiments, a method for the collection of adrenal venous blood 

previously published by Vollmer et al. (2000) was modified for use with the basic 

hypoglycemia protocol.  After the femoral cannulations, a peritoneal incision was made 

and the abdominal wall retracted to reveal the left kidney, adrenal gland, and 

surrounding vasculature.  Ligatures were tightened around the renal vein and artery just 

proximal to the hilus of the kidney.  A loose (non-tightened) ligature was placed around 

the renal vein just distal to the vena-cava.  Visible venous branches were either ligated 

or cauterized so that only adrenal venous flow entered the renal vein.   A bolus dose of 

heparin (300 U/kg) was injected intravenously and a small length (9-10 mm) of capped 

PE 50 tubing filled with heparinized saline was placed in the renal vein distal to the 

adrenal vein branch.  Insulin was injected after a 30 min equilibration period.  After 24 

min of hypoglycemia, the loose ligature at the vena cava was tightened and 

renal/adrenal venous flow was allowed to backflow through the uncapped renal vein 

catheter and was collected in a pre-weighed 1.5 mL microcentrifuge tube.  The 

collection continued for 6 min and was weighed to quantify a flow rate which was used 

to determine the adrenal medullary secretion rate.  No arterial blood samples were 

taken during these experiments.   

 

3.  Measurement of Sympathetic Nerve Activity (SNA) 

The basic hypoglycemia model was modified in order to record renal nerve 

activity in accordance with previously published methods (Randall et al., 1994; Brown et 

al., 1999; Stocker et al., 2004).  After the femoral cannulations, a retroperitoneal incision 
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was made and the left kidney was retracted allowing the isolation of a sympathetic renal 

nerve.  After placing the nerve on a stainless steel wire electrode and covering both the 

nerve and wire with a silicon-based impression material (Super-Dent Light, Darby 

Dental Supply; Westbury, NY), the electrical signals from the nerve were obtained using 

a high-impedance probe and were amplified (50,000) and band-pass filtered (between 

30-3,000 Hz) by a Grass P511 differential amplifier.  The data were digitized at 10,000 

samples/sec using a Cache 486 microprocessor and Data Translation DT2821-F 

analog-to-digital converter.  Nerve signals were recorded for 20 min before and 60 min 

after an insulin bolus.  The raw nerve signal was full-wave rectified and integrated (1 

sec time constant) using software developed by Dr. David Brown in Visual C++ (Figure 

2.5).  Background noise was determined by the average value of integrated voltage 

over 5 min after a bolus injection of 1M KCl (3 mL/kg; i.v.) to euthanatize the rat.  No 

arterial blood samples were taken during these experiments.  

Values for renal sympathetic nerve activity were measured as 1 min averages 

every 5 min after the insulin bolus.  This activity was expressed as a percent change 

from an average baseline value that was calculated from 3 separate 1 min averages 10, 

5, and 1 min before insulin.  Background noise was subtracted from all 1 min averages 

prior to calculating the percent change.   

 

B.  Measurement of Epinephrine Clearance  

For these experiments, methods from Azoui et al. (1997) and Marker et al. (1998) 

were modified (Figure 2.6) and rats were infused with 3 increasing doses of EPI for 30 

min each, equaling a total infusion time of 90 min.  Rats were anesthetized with inactin 

(100 mg/kg, i.p.) and following tracheotomy, the left femoral artery and left and right 

femoral veins were catheterized with PE 50 tubing. Core body temperature was 

maintained at 36.7oC by heat pad/lamp and blood pressure and heart rate were 

recorded with a Grass Model 7 polygraph for the duration of the experiment.  After a 30 

min equilibration period, a baseline arterial blood sample (0.6 mL) was taken and an 

intravenous infusion of EPI (Sigma) was started at a rate of 600 pmol/kg/min.  After 30 

min of infusion, an arterial blood sample (0.6 mL) was taken and the EPI infusion rate 

was increased to 1500 pmol/kg/min by change-out of the syringe on the infusion pump.  
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This ensured that the infused volume over 30 min remained consistent for all doses.  An 

arterial blood sample was taken after 30 min and the EPI infusion rate was increased to 

3000 pmol/kg/min.  The last blood sample was taken 30 min later. Each heparinized 

blood sample was centrifuged and plasma was stored at -80oC for later catecholamine 

analysis by ELISA.   

 

In Vitro Studies 
A.  Rat Adrenal Medullary Chromaffin Cells 

1.  Chromaffin Cell Isolation  

Chromaffin cells were isolated from the adrenal medullae of 12-14 week-old 

female Sprague-Dawley rats as previously described by Fuller et al. (1997a).  Adrenal 

glands were removed from CO2-euthanatized rats and submerged in warmed (37oC) 

Hank’s balanced salt solution (HBSS 7.4). The adrenal medullae were dissected from 

the cortical tissue and cut into four pieces and washed in HBSS.  The tissue was then 

suspended in Ca2+/Mg2+-free HBSS containing 0.3% collagenase D, 0.15% 

hyaluronidase, and 0.02% DNase, and transferred to a spinner flask for digestion.  The 

medullae pieces were incubated at 37oC for approximately 30 min with gentle spinning 

and with trituration by a fire polished glass pipette every 10 min to break up chunks of 

tissue.  The suspension was checked several times during the digestion for single cells, 

30 min generally yielded a majority of healthy single cells.  The cell suspension was 

then filtered through a 200 µM screen into a 15 mL centrifuge tube and the cells were 

washed in enzyme-free, Ca2+/Mg2+-free HBSS and centrifuged at 1500 rpm for 3 min.  

The cells were resuspended in DMEM containing 10% fetal bovine serum, 40 mg/L 

gentamicin, 100,000 U/L penicillin, 40,000 U/L nystatin, 4 g/L ascorbate, and 10 µM 

cytosine arabinose.  Aliquots of the cell suspension were allowed to adhere to poly-L-

lysine coated glass cover slips in 6-well plates for 30 min in a 37oC incubator, after 

which 0.5 mL of culture medium was added to the wells and the cells maintained in a 

humidified, 37oC environment of 5% CO2. Culture medium was changed 24 hr after 

plating, and cells were used 48 hr after isolation. 
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2.  Intracellular Calcium Measurements 

Intracellular Ca2+ transients were analyzed using established protocols as 

previously described (Liu et al., 2001; Jorgensen et al., 2002).  In each experiment, 

cytosolic Ca2+ was measured simultaneously in 5-12 chromaffin cells loaded with the 

fluorescent dye fura-2 using a dual-excitation spectrofluorometric system (Zeiss 

AttoFluor Ratio Vision Workstation, Atto Instruments, Inc.; Rockville, MD).  Before 

experimental analysis, the cells were rinsed 3X with HBSS and loaded with 5 µM fura-

2AM plus 0.1% Pluronic F-127 for 45 min at 37oC.  After this time, the cells were rinsed 

again with HBSS and allowed to recover for at least 15 min.  The cover slip was 

mounted in a closed perfusion chamber (Warner Instrument Corp.; Hamden, CT), 

placed on the stage of a Zeiss Axiovert inverted microscope fitted with a 40X 

fluorescence oil immersion objective, and constantly perfused by gravity-feed with 

ambient temperature HBSS at 1-3 mL/min. 

For these experiments, non-stimulated (basal) fluorescence was measured for 

approximately 30 sec, an agonist was added by a rapid change-out of the bathing 

medium, and was removed after 15 sec by a second bath change-out.  There was a 10 

min recovery period before each re-stimulation.  Fluorescence was determined using 

excitation wavelengths of 340 nm and 380 nm and an emission wavelength of 510 nm.  

Ratiometric data were collected and converted to cytosolic Ca2+ ([Ca2+]i) estimates 

based on a curve generated using a two-point calibration method and the following 

equation (Grynkiewicz et al., 1995): 

 [Ca2+]i = Kd [(R – R(min) / R(max) – R)] X [Den(min)/Den(max)] 

where R = measured ratio; Kd = dissociation constant for the dye; R(min) = ratio 

for the low standard (Ca2+ -free solution); R(max) = ratio for high standard (10 

mM Ca2+ solution); Den(min) = denominator intensity for the low standard; Den 

(max) = denominator intensity for the high standard. 

 

B.  NCI-H295R cells 

1.  Cell Culture  

An aliquot of the adrenal cortical cell line NCI-H295R was obtained from 

American Type Culture Collection (ATCC; Manasssas, VA) and the cells were grown 
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according to the product information sheet supplied.  Cells were maintained in complete 

growth medium containing a 1:1 mixture of Dulbecco’s Modified Eagle’s Medium and 

Ham’s F12 medium + L-glutamine (2.5 mM), HEPES (15 mM), sodium pyruvate (0.5 

mM), and sodium bicarbonate (1.2 g/L) , supplemented with 2.5% Nu-Serum (BD 

Biosciences) and the additives insulin (6.25 µg/mL), transferrin (6.25 µg/mL), selenium 

(6.25 µg/mL), bovine serum albumin (1.25 mg/mL), and linoleic acid (5.35 µg/mL) in a 

humidified,  37oC environment with 5% CO2.  Cells were subcultured weekly at a ratio of 

1:4 using a solution of 0.25% Trypsin-EDTA. 

 

2.  cAMP Accumulation 

Incubations were conducted on H295R cells in 24-well plates (200,000 

cells/well).  The well plates were placed in a 37oC water bath and the culture medium 

removed and replaced with warmed pre-incubation medium (0.25 mL)  consisting of 

Eagle’s Balanced Salt Solution (EBSS, pH 7.4) supplemented with the cAMP 

phosphodiesterase inhibitor Ro20-1724 (25 µM; Calbiochem; La Jolla, CA).  After 10 

min of pre-incubation, warmed incubation medium (0.25 mL) containing either vehicle or 

agonist in pre-incubation medium was added to the wells.  The medium was removed 

after 10 minutes of incubation and 0.25 mL of HCl (0.01 M) was added to the wells.  For 

protein analysis, 5% SDS (0.3 mL) was added in place of HCl to at least 4 wells from 

every experimental plate.  The plates were stored at -80oC for later analysis by enzyme 

immunoassay (EIA). 

 
Analytical Techniques 
A.  Plasma Epinephrine ELISA 

Plasma concentration of free EPI was determined by a non-competitive, 

monoamine specific ELISA kit (KMI-IBL; Hamburg, Germany).  EPI was extracted from 

kit standards, kit controls and plasma samples (0.25 mL) and was chemically converted 

to biotin derivatives.  Basal samples were diluted 1:2, 30 min and 60 min samples were 

diluted 1:5 with HCl provided in the kit.  Standards, controls and diluted samples (0.05 

mL) were added in duplicate to the antigen-coated wells of a 96-well plate and the 

extracted EPI was enzymatically methylated and bound to antigens for N-
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acylmetanephrine.  After a wash step, the wells were incubated in a solution of anti-

biotin antibodies conjugated with alkaline phosphatase for 90 min, followed by second 

wash step.  The sandwich complex fixed to the wells was visualized with a signal 

amplification system, which utilizes NADPH as the substrate for alkaline phosphatase 

and allows the conversion of p-iodonitrotetrazolium (colorless) to formazan (hot 

pink/red).  The reaction was stopped after 15 min by the addition of H2PO4 and the 

developed color intensity was measured at 490 nm (reference wavelength 600-650 nm) 

within 1 hr using a 96-well plate reader (µQuant, Bio-Tek Inc; Winooski, VT).  All 

incubation steps required constant shaking (400-600 rpm) and were performed at room 

temperature.  It was essential for assay precision that the washes utilize an auto strip 

washer (ELx50, Bio-Tek).  Concentrations of samples were determined with the aid of 

KC-4 software (Bio-Tek), which interpolated the mean measured absorbancies against 

the standard curve (Figure 2.7) on each plate.  All comparisons were intra assay and 

the coefficient of variation (c.v.) was 9.8 ±1%.  

 

B.  Measurement of Plasma Estradiol Concentration 

1.  Estradiol Extraction 

Estradiol was extracted from rat plasma samples prior to assay by diethyl ether 

extraction.  Samples (0.2 mL) and diethyl ether (3 mL) were added to 16X125 mm 

vortex tubes in duplicate and tightly capped.  Samples were vigorously vortexed for 5 

min and the aqueous layer was frozen in an ethanol/dry ice bath.  The ether 

supernatant was decanted into 12X75 mm tubes, the ether evaporated and the tubes 

completely dried.  This process was accelerated by heating the samples to 40oC and 

placing under a vacuum.  The tubes were rinsed with ether and dried three additional 

times to ensure that the extracted estradiol accumulated at the bottom of the tube.  A 

set of clean 12X75 mm tubes used as standard and control assay tubes were washed 

with ether and dried at the same time as the samples. 

 

2.  Estradiol RadioImmunoAssay 

Plasma concentration of free estradiol was determined by an estradiol-specific 

RIA kit (DSL; Webster, TX).  After the final wash down and evaporation step of the 
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extraction, the samples were reconstituted in 0.2 mL of the zero standard from the kit 

and the appropriate volumes of kit-provided standards or controls were added to the 

ether washed, empty tubes.   Tubes (except the total count and non-specific binding) 

were incubated with estradiol-antiserum (4 hr, 4oC), and I-125 labeled estradiol was 

added to all assay tubes and the tubes incubated again at 4oC for 20-24 hr.  Tubes 

(except total count) were then incubated with precipitating reagent for 20 min at room 

temperature, centrifuged for 15 min at 1500 X g, decanted, and the iodinated estradiol 

contained in all tubes was measured for 1 min by gamma counter.  The percent ratio of 

the bound fraction of labeled estradiol in each sample (B) to that in the absence of 

unlabelled estradiol (Bmax) was calculated and interpolated against the standard curve 

to determine sample concentrations (Figure 2.8).  Control samples were assayed both 

in extracted and non-extracted form. 

 

C.  cAMP EIA 

Accumulated cAMP in the H295R cells was determined by a competitive EIA kit 

(Cayman Chemical; Ann Arbor, MI).  First, the experimental well plates were thawed 

and scraped to ensure total cell lysis and release of cAMP into the HCl.  The samples 

were then transferred to 1.5 mL microcentrifuge tubes and centrifuged at 1,000 X g for 

10 min.  Standards, controls, and samples were acetylated in 12X75 mm tubes and 

0.05 mL of each was added in duplicate to anti-rabbit IgG coated wells of a 96-well 

plate.  cAMP acetylcholinesterase (Tracer) and cAMP antiserum were added to the 

appropriate wells and the plate was incubated 18-24 hrs at 4oC.  The wells were 

washed using a plate washer (ELx50, Bio-Tek) and incubated in the dark with shaking 

(400-600 rpm) for 2 hrs at 25oC with the acetylchotinesterase (AChE) substrate 

(designated as Ellman’s reagent).  The intensity of the color (yellow) that developed was 

measured at 420 nM and was inversely proportional to the amount of free cAMP 

present.  The percent ratio of the AChE- labeled cAMP in the sample bound to the 

antibody (B) to the maximum capacity of the antibody for AChE-labeled cAMP in the 

absence of unlabelled cAMP (Bmax) was calculated and interpolated against the 

standard curve (Figure 2.9) to determine sample concentrations. 
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D.  Adrenal Medullary Gene Expression 

1. RNA isolation 

Adrenal medullary tissue was dissected from the adrenal glands of rats in the 

three treatment paradigms and was stored in RNAlater (Ambion; Houston, TX) at -20P

o
PC 

prior to RNA isolation.  Total RNA was extracted using an RNeasy Mini Kit (Quiagen; 

Valencia, CA).  Tissue was homogenized in a guanidine isothiocyanate-containing 

buffer with a Duall tissue grinder (Fisher Scientific; Pittsburg, PA).  The samples were 

centrifuged at 12,000 X g for 3 min and the supernatant was transferred to 1.5 mL 

microcentrifuge tubes.  One volume of ethanol (70%) was added to all samples and the 

solution applied to an RNeasy mini column containing a silica-gel membrane.  The 

columns were centrifuged for 15 sec at 8,000 X g and the flow-through discarded.  After 

an on-column DNase digestion and two high-salt washes, the total RNA was eluted 

from the column membrane with 0.03 mL of nanopure water and quantified 

spectrometrically at 260 nM. 

 

2. Reverse Transcription 

Single- stranded cDNA was synthesized from 1 µg of RNA using a Thermoscript 

RT kit (Invitrogen Life Technologies; Carlsbad, CA) and a protocol previously described 

(Carrithers et al., 2000).  The samples were incubated for 5 min at 65P

o
PC with random 

hexamers (final concentration of 5 µM) and dNTPs (final concentration of 1 mM) and 

immediately placed on ice.  RT components were added as a master mix containing (in 

final concentrations):  1X cDNA synthesis buffer (25 mM Tris acetate (pH 8.4), 75 mM 

potassium acetate, 8mM magnesium acetate); 0.75 U Thermoscript reverse 

transcriptase; 5 mM DTT; 2U RNase OUT.  Samples were incubated at 25P

o
PC for 10 min, 

55P

o
PC for 60 min, and 85 P

o
PC for 5 min.  RNase H (1 µL) was added to each reaction and 

incubated at 37 P

o
PC for 20 min to degrade existing RNA molecules.   The cDNA synthesis 

reactions were stored at -20P

o
PC or used immediately for polymerase chain reaction. 

 

3.  Polymerase chain reaction (PCR) 

An initial PCR reaction determined the amount of β-actin generated by 1 µL of 

each RT reaction at 26 cycles.  Subsequent PCR reactions were prepared with volumes 
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of RT reaction which were estimated (by CDD camera) to generate equal amounts of β-

actin.  The 50 µL PCR reaction mixture consisted of (in final concentrations): cDNA 

template (~ 5% of RT reaction); 20 mM Tris-HCl (pH 8.0); 50 mM KCl; 0.2 mM dNTPs; 

0.4 µM primers; 2 mM MgCl B2 B and 2.5 U of Platinum Taq Polymerase (Invitrogen Life 

Technologies).  PCR reactions utilized a Perkin Elmer GeneAmp PCR system 2400 

(Applied Biosystems; Foster City, CA).  Control reactions were performed in the 

absence of cDNA.  Samples (20% of reaction volume) were size fractionated by 3% 

agarose gel electrophoresis.  Ethidium bromide stained DNA bands were visualized by 

a UV Foto/analyst image analysis system equipped with a convertible dual 

transilluminator (Fotodyne; Hartland, WI).  The signal intensity of each PCR product 

was determined by an electronic imaging and analysis system with a CCD video 

camera (Fotodyne) and analyzed by UN-SCAN-IT software (Silk Scientific Inc; Orem, 

UT).  The primer sequences and cycle protocols for tyrosine hydroxylase (TH; Murru et 

al., 1997), phenylethanolamine N-methyltransferase (PNMT; Morita et al., 2001), 

estrogen receptor α (ERα; Kuiper et al., 1997), estrogen receptor β (ERβ; Byers et al., 

1997), and β-actin (Carrithers et al., 2000) have been previously published and are 

listed in Table 2.2. 

 

E.  Adrenal Medullary Protein Expression 

1.  Protein Isolation 

Adrenal medullary tissue was dissected from the adrenal glands of 

ovariectomized, vehicle and estradiol-treated rats and stored at -80 P

o
PC prior to protein 

isolation.   Samples were homogenized in a lysis buffer (pH 6.4) consisting of 25mM 

MES, 0.15mM NaCl, 1% TritonX-100, and 60mM n-octyl-β-D-glucopyranoside, stored 

on ice for 15 min, centrifuged (14,000g) at 4P

o
PC for 10 min.  The supernate was collected 

and stored at -20 P

o
PC.  Prior to use, P

 
P5X protein sample buffer (pH 6.8) consisting of 0.31M 

Tris, 2.5% (w/v) SDS, 50% glycerol and 0.125% bromophenol blue was added to a final 

concentration of 1X.  All samples were heated to 95P

o
PC immediately prior to loading.   
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2.  Immunoblot 

Proteins were separated on a 12.5% polyacrylamide gel at 50mA (constant 

current) and subsequently transferred to PVDF membrane (0.45µM; Sigma) at 50V 

(constant voltage) for 2 hours.  Membranes were blocked with blotting buffer consisting 

of TBS plus 0.5% Tween 20 and 5% dry milk for 1 hr at 22P

 o
PC.  Primary antibodies for 

ERα (Upstate Biotechnology; Lake Placid, NY), TH (BD Transduction Labs; San Jose, 

CA), and PNMT (Dia Sorin Inc; Stillwater, MN) were diluted in blotting buffer and 

incubated with blocked membranes for 1-24 hrs at 22P

o
PC.  Membranes were washed four 

times for 5 min in a buffer containing TBS plus 0.5% Tween 20 and 0.2% dry milk.  

Horseradish peroxidase conjugated IgGs directed against the appropriate host IgG were 

diluted and incubated with membranes for up to 1 hr.  Membranes were washed four 

times and visualized using chemiluminescence.  The relative signal intensities were 

determined densitometrically.  Equality of protein loading was determined qualitatively 

by Ponceau S staining of membranes.   

 

F.  Protein Concentration Analysis  

Protein concentrations of H295R cells and adrenal medullary tissue samples 

were determined by the colorimetric DC Protein Assay (Bio Rad; Hercules, CA).  This 

technique is similar to Lowry protein analysis.  Samples were thawed, triturated and 

0.05 mL was added in duplicate to 12 X 75 mm tubes as were bovine serum albumin 

standards (in 5% SDS, [0, 2.5, 5, 10, 25, and 50 mg/mL]).  A working solution of 0.02 

mL Reagent S per 1 mL Reagent A (alkaline copper tartrate solution) was made and 0.2 

mL added to all tubes along with 1.5 mL of Reagent B (dilute Folin solution).  All tubes 

were vortexed vigorously and the color (blue) developed for 15 min at 25 P

o
PC.  

Absorbance was measured at 550 nM.    

 

G.  Statistical Analysis 

Results are expressed as Mean ± SEM.  Statistical significance was determined 

using a t-test, paired t-test or ANOVA as appropriate.  Post-hoc analysis to compare 

multiple treatment groups utilized the Student-Newman-Keuls test.  Significance level 

was set at P<0.05. 
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  Uterine Weight (mg/mm)  ∆ Body Weight (g)   

  2 Weeks After Surgery 2 Weeks After Surgery 

SHAM 123 ± 9.5 -1.5 ± 5.6 

OVEX 50 ± 8.6* +39 ± 1.5*  

OVEX +E2 110 ± 7.4** -8 ± 0.9** 

 

 



 

 

 

Table 2.1 
 

Effect of Ovariectomy and Estradiol-Replacement in Ovariectomized Rats on Uterine 

Weight and Total Body Weight 

 

 

Uterine weight and changes in body weight 14 days after sham-surgery (SHAM), 

ovariectomy (OVEX), or ovariectomy + E2 replacement (OVEX +E2).  Values are Mean 

± SEM of data from 5 separate experiments.  * P< 0.01 compared to the SHAM group.  

** P< 0.05 compared to the OVEX group. 
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Figure 2.1 
 

Plasma Estradiol Concentrations 

 

 

Plasma estradiol concentrations were measured 14 days after ovariectomy (OVEX), or 

ovariectomy + E2 replacement (OVEX +E2).  Plasma estradiol concentration was 

measured 12-16 days after surgery in the sham-operated controls (SHAM) on the pro-

estrous day of the estrous cycle.  Columns represent Mean ± SEM of data from 5 

separate experiments.  * P< 0.01 compared to the SHAM group.  ** P< 0.01 compared 

to the OVEX group. 
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Figure 2.2 
 

Summary of the Insulin-Induced Hypoglycemia Paradigm 

 

 

OVEX: ovariectomy; E2: 17β-estradiol 
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Figure 2.3 
 

Effects of the Blood-Sampling Protocol on  

Epinephrine Concentrations 

 

 

Plasma glucose and epinephrine (EPI) concentrations in sham-operated rats during the 

hypoglycemic-stress paradigm blood sampling protocol in the absence of insulin.  

Vehicle (saline; 100 µL) was administered intravenously as a bolus at time 0. Arterial 

blood samples (0.6 mL) were taken immediately prior to and 30 and 60 minutes after 

the vehicle.  Upper Panel:  Plasma glucose concentrations.  Lower Panel:  Plasma EPI 

concentrations. Circles (upper panel) and columns (lower panel) represent Mean ± SEM 

of data from 4-5 separate experiments. 

 28



 

Minutes Post-Insulin

0 30 60

Pl
as

m
a 

E
PI

 (p
g/

m
L

)

0

2000

4000

6000

8000

0.25 U/kg Insulin 
1.0 U/kg Insulin 

0 30 60

Pl
as

m
a 

G
lu

co
se

 (m
g/

dL
)

0

20

40

60

80

100

120

0.25 U/kg Insulin
1.0 U/kg Insulin *

*
*

*

 29



 

 

Figure 2.4 
 

Effect of 0.25 U/kg and 1.0 U/kg Insulin Bolus on Plasma Glucose and Epinephrine 

Concentrations 

 

 

Experiments were conducted 14 days after sham-surgery.   Insulin (0.25 U/kg or 1.0 

U/kg) was administered intravenously as a bolus at time 0. Arterial blood samples (0.6 

mL) were taken immediately prior to and 30 and 60 minutes after the insulin.  Upper 

Panel:  Plasma glucose concentrations. Lower Panel:  Plasma epinephrine (EPI) 

concentrations. Circles (upper panel) and columns (lower panel) represent Mean ± SEM 

of data from 6-8 separate experiments. * P< 0.01 compared to the 0.25 U/kg treated 

group. 
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Figure 2.5 
 

Typical Renal Sympathetic Nerve Recording 

 

 

Upper Panel:  Raw nerve activity over 60 milliseconds.  Middle Panel:  Rectified nerve 

activity over 60 milliseconds.  Lower Panel:  Rectified nerve activity integrated over 0.01 

second integrals for 10 seconds. 
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Figure 2.6 
 

Protocol for Measurement of Plasma Epinephrine Clearance 

 

 

OVEX: ovariectomy; E2: 17β-estradiol; EPI: epinephrine 
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Figure 2.7 
 

Representative Standard Curve Used for the  

Determination of Epinephrine Concentration by ELISA 

 

 

Standard curve used for the determination of epinephrine (EPI) concentrations in rat 

plasma.  Up-pointing triangle represents the actual measured concentration (5.6  

pg/mL) of a kit-provided low-concentration control (Control  1) with a range of 3.1-6.5 

pg/mL.  Down-pointing triangle represents the actual measured concentration (19.6 

pg/mL) of a kit-provided high-concentration control (Control 2) with a range of 13.4-26.1 

pg/mL.
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Figure 2.8 
 

Representative Standard Curve Used for Determination of Estradiol Concentrations by 

RIA 

 

 

Standard curve used for the determination of estradiol concentrations in rat plasma.  

Up-pointing triangle represents the actual measured concentration (12 pg/mL) of an 

extracted, kit-provided low-concentration control (Control 1) with a range of 10 ± 3 

pg/mL.               Down-pointing triangle represents the actual measured, concentration 

(34 pg/mL) of an     extracted,      kit-provided      high-concentration   control         

(Control 2) with a range of 30 ± 9 pg/mL.  
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Figure 2.9 
 

Representative Standard Curve Used for the  

Determination of cAMP Levels by EIA 
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Gene Primer Sequence (5’ to 3’) base pairs Cycle      #     Cycle Protocol 
   Temp       Time 

 
TH (+) ACATTTGAACTTAAAATTCAC 

(-) CGGGTGGTCCAGGTCCAGAT 263 29 
    94P

o
PC        0.5 min 

    55P

o
PC        0.5 min 

    72P

o
PC        1.0 min 

 
PNMT (+) CAGACTTCTTGGAGGTCAACCG 

(-) TTATTAGGTGCCACTTCGGGTG 610 30 
    94P

o
PC        0.5 min 

    55P

o
PC        0.5 min 

    72P

o
PC        1.0 min 

 
ERα (+) AATTCTGACAATCGACGCCAG 

(-) GTGCTTCAACATTCTCCCTCCTC 344 36 
    95P

o
PC        1.0 min 

    55P

o
PC        1.0 min 

    72P

o
PC        2.0 min 

 
ERβ (+) AAAGCCAAGAGAAACGGTGGGC 

(-) GCCAATCATGTGCACCAGTTCC 203 38 
    94P

o
PC        0.5 min 

    62P

o
PC        1.0 min 

    72P

o
PC        1.5 min 

β-
actin 

(+)TGGTGGGAATGGGTCAGAAGGACTC
(-) CATGGCTGGGGTGTTGAAGGTCTCA 265 26 

    94P

o
PC        1.0 min 

    63P

o
PC        1.0 min 

    72P

o
PC        1.0 min 
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Table 2.2 

 

PCR Primer Sequences and Protocols  
 

TH:  tyrosine hydroxylase; PNMT:  phenylethanolamine N-methyltransferase; ERα:  

estrogen receptor α; ERβ:  estrogen receptor β 
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Chapter 3:  Results 
 

A.  Estrogen Receptor Expression 
 In order for estradiol to affect adrenal medullary function via conventional steroid 

pathways, receptors for the steroid must be present in the tissue.   

RT-PCR analysis identified mRNA for both estrogen receptor α (ERα) and β (ERβ) in 

the adrenal medullary tissue of sham-operated controls (Figure 3.1; upper panel).  ERβ 

expression was more evident than ERα expression in the sham group.  The expression 

of both receptors in medulla was markedly lower than in uterine (ERα) and the ovarian 

(ERβ) tissue.  While the expression of ERα appeared to be increased by ovariectomy, 

densometric comparisons (Figure 3.1; lower panel) were not significant and estradiol 

replacement did not affect ERα expression in ovariectomized (OVEX) rats.  ERβ mRNA 

levels did not differ between ovariectomized and sham groups or estradiol-replaced and 

vehicle-treated OVEX groups. A limited number of immunoblot samples confirmed that 

ERα did translate to receptor protein in the medulla, but at a reduced level compared to 

expression in the uterus (Figure 3.2; upper panel).  Expression levels did not differ 

between vehicle-treated and estradiol-replaced OVEX groups (Figure 3.2; lower panel).  

Attempts to measure ERβ protein expression proved unsuccessful.   

 

B.  Effects of Physiological Concentrations of Estrogen  
1.  Effects of the Loss of Ovarian Steroids 

Experiment 1 compared the effects of insulin-induced hypoglycemia on plasma 

epinephrine concentration in 14-day OVEX and sham-operated rats. Pre-insulin plasma 

glucose concentration did not differ between the groups, and the glucose lowering 

effects of 0.25 U/kg insulin were identical in both groups at 30 (∆ -67 ± 2.3%) and 60 (∆ 

-36 ± 2.3%) minutes post-treatment (Figure 3.3; upper panel). Pre-insulin plasma 

epinephrine concentrations also did not differ between groups (150 ± 25 vs. 150 ± 26 

pg/mL).  However, 30 min of hypoglycemia increased plasma epinephrine concentration 

to a significantly greater extent (∆ +112%; P< 0.01) in the OVEX group compared to the 

sham-operated controls (Figure 3.3; lower panel). At 60 min post-insulin, plasma 

epinephrine concentrations were lower than at 30 min and did not differ between the 
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groups. Heart rate did not differ between the groups at any time point (Figure 3.4; upper 

panel).  Mean arterial blood pressure (MAP) was significantly decreased (P<0.001) to 

exactly the same extent after 30 min of hypoglycemia in the sham and OVEX groups (∆ 

-20 ± 4.0% and -21 ± 2.3% respectively) and remained depressed after 60 min (Figure 

3.4; lower panel).   
 
2.  Effects of Estradiol Replacement  

In order to assess the effects of estradiol per se in this response, experiment 2 

compared the effects of insulin-induced hypoglycemia on plasma epinephrine in 14-day 

OVEX and estradiol-replaced OVEX rats. For these experiments, one SILASTIC 

capsule containing either 17β-estradiol (E2) or sesame oil (vehicle) was implanted at 

the time of ovariectomy.  As described in the materials and methods section, this 

replacement paradigm produced plasma E2 concentrations that were almost identical to 

those seen in intact, late proestrous phase, female rats (20.0 ± 2.4 and 22.0 ± 2.5 pg/ml 

respectively).  Plasma E2 concentration in the OVEX animals (8.5 ± 0.6 pg/mL) was 

significantly lower than in both the intact and the E2-replaced OVEX rats (P<0.01).   

Pre-insulin plasma glucose concentrations did not differ between vehicle-treated 

and E2-treated OVEX rats (95 ± 3.4 and 103 ± 3.5, respectively) and were decreased to 

the same extent 30 min after insulin (∆ -64 ± 2.6%; Figure 3.5; upper panel).  Pre-insulin 

plasma epinephrine concentrations also did not differ between groups (133 ± 29 vs. 152 

± 30 pg/mL).  However, at 30 min post-insulin, the hypoglycemia-induced increase in 

plasma epinephrine concentration was significantly lower (∆ -56%; P< 0.001) in the 

OVEX +E2 group compared to the vehicle-treated OVEX (Figure 3.5; lower panel).  

Comparing across experiments, the increase in plasma epinephrine in the E2-replaced 

group was, in fact similar to that elicited in the SHAM group of experiment 1 (∆ 416 ± 75 

vs. 550 ± 73 pg/mL).  At 60 min post-insulin, plasma epinephrine concentrations again 

did not differ between groups despite the fact that plasma glucose was significantly 

lower in the OVEX compared to the OVEX +E2 group at this time point (61 ± 4.8 vs. 88 

± 9.0 mg/dL respectively; P<0.05).  Heart rate and MAP during hypoglycemia were 

similar to those seen in experiment 1.  Heart rate remained constant in both groups and 

was not different between groups at any time point (Figure 3.6; upper panel).  MAP 
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significantly decreased after 30 min of hypoglycemia in both groups (∆ -21 ± 2.5%  and 

-17 ± 2.4%, OVEX and OVEX +E2 respectively; P<0.001) and remained depressed 

after 60 min (Figure 3.6; lower panel), but was not different between groups at any time 

point.   

To this point, experiments demonstrate that physiological levels of E2 can 

suppress stress (hypoglycemia)-induced increases in plasma epinephrine.  

Theoretically, this could result from a steroid-mediated decrease in epinephrine 

secretion from the adrenal medulla and/or increase in the plasma clearance of 

epinephrine.  Measurement of epinephrine levels in blood collected directly from the 

adrenal vein was utilized as an index of epinephrine secretion.  Given the highly 

invasive nature of these studies, blood sampling was restricted to one 6 min period 

beginning 24 min post insulin, during a time of lowest plasma glucose.  Consistent with 

the plasma data, epinephrine secretion during this time period was significantly lower in 

the OVEX +E2 group compared to the OVEX (∆ -44%; P<0.005; Figure 3.7).  This E2-

mediated decrease in secretion could be due to several factors, including decreased 

epinephrine synthesis in the adrenal medulla, suppressed intracellular signaling for 

secretion in the chromaffin cells of the medulla, and/or decreased neural input to the 

medulla.   

Our data do not support the concept that E2 affects epinephrine biosynthesis.  

Using semi-quantitative RT-PCR,  mRNA expression levels for tyrosine hydroxylase 

(TH), the rate limiting enzyme in the catecholamine biosynthetic cascade, and for 

phenylethanolamine N-methyltransferase (PNMT), the enzyme necessary for the 

conversion of nor-epinephrine to epinephrine, did not differ between OVEX and sham or 

E2-replaced and vehicle-treated OVEX groups (Figure 3.8).  Similarly, protein 

expression of these enzymes measured by immunoblot also was not different in OVEX 

+E2 compared to OVEX rats (Figure 3.9). 

Isolated adrenal medullary chromaffin cells maintained in primary culture were 

used to assess the effects of E2 on agonist-induced increases in intracellular Ca P

2+
P, 

which is the primary stimulus for epinephrine secretion. Exposure to 10 nM E2 for 48 hr 

had no significant effect on Ca P

2+
P transients elicited by either 50 µM nicotine (NIC) or by 

60 mM KCl when compared to vehicle-treated control cells (Figure 3.10).  In contrast, 
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short-term treatment (3 min) with relatively high concentrations of E2 dose-dependently 

suppressed agonist-induced Ca P

2+
P transients in chromaffin cells.  At 5 µM E2, NIC-

induced CaP

2+
P transients were significantly suppressed by 33 ± 2.0% (P< 0.001; Figure 

3.11; upper panel); transients were almost completely abolished with exposure to 50 µM 

E2 (∆ -88 ± 4.2%; P<0.001). The suppressive effects of E2 were rapidly reversible. For 

example, exposure to 10 µM E2 inhibited NIC-induced responses by 48 ± 4.6% (P< 

0.001). Following removal of E2, the amplitude of the Ca P

2+
P transient returned to 92 ± 

4.6% of control within 10 min (Figure 3.11; lower panel).  Increasing the time of 

exposure to E2 to 10 and 20 minutes had no additional inhibitory effect (Figure 3.12; 

upper panel). Ca P

2+
P transients stimulated by KCl were inhibited 50% (P<0.001) by 3 min 

treatment with 50 µM E2 (Figure 3.12; lower panel).   

The effects of these two in vitro treatment paradigms were diametrically opposite 

in adrenal cortical cells compared to chromaffin cells.  Pituitary adenylate cyclase-

activating polypeptide-27 (PACAP-27; 100 nM)- induced increases in intracellular cAMP 

accumulation were significantly decreased in cells from a human adrenal cortical cell 

line (H295R) exposed to 10 nM E2 for 48 hr compared to vehicle-treated controls (∆ -

33%; P<0.05; Figure 3.13).  However, acute exposure to a supra-physiological 

concentration of E2 (50 µM) did not affect agonist-induced cAMP accumulation in this 

cell line (Figure 3.14).   

Subsequent experiments assessed the effects of E2 on renal sympathetic nerve 

activity (RSNA) as an index of neural input to the adrenal medulla.  As in previous 

experiments, insulin reduced plasma glucose concentrations to the same extent in both 

groups.  Hypoglycemia elicited a maximal increase in RSNA above baseline 

approximately 25 min after insulin in both groups and was significantly greater in the 

OVEX +E2 compared to the OVEX group (49 ± 6.0% vs 16 ± 1.8%; P< 0.01).  Activity 

returned toward baseline after peak, but remained significantly augmented above 

baseline for the duration of the experiment in the OVEX +E2 group.  However, in the 

OVEX group, RSNA had returned to baseline after 45 min of hypoglycemia, and was 

thereafter significantly decreased below baseline levels (Figure 3.15).    

To evaluate the effects of estradiol on epinephrine clearance, plasma 

epinephrine concentrations were compared in OVEX and OVEX +E2 rats before and 
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during infusion of three successively increasing doses of exogenous epinephrine.  Pre-

infusion plasma epinephrine concentrations did not differ between the groups (108 ± 19 

vs. 92 ± 9 pg/mL).  As anticipated, plasma epinephrine concentrations increased as the 

epinephrine infusion rate was increased in both groups.  These increases in plasma 

epinephrine levels were significantly lower in the E2-replaced OVEX animals (∆ -39% at 

30 min, ∆ -34% at 60 min, and ∆ -42% at 90 min; P<0.05; Figure 3.16), suggesting that 

the rate of epinephrine clearance is greater in this group compared to the OVEX group.   

 
C.  Effects of Supra-Physiological Concentrations of Estradiol 

Consistent with other reports, our work has demonstrated that acute exposure to 

high concentrations of estradiol can suppress agonist-induced Ca P

2+
P transients in the 

chromaffin cell. Based on previous work from our laboratory (Wagner et al., 1999; 

Jorgensen et al., 2002), we would anticipate that this reduction in Ca P

2+
P signaling would 

result in decreased epinephrine secretion.  Subsequently, experiments were designed 

to determine whether acute increases in circulating E2 can affect hypoglycemia-induced 

increases in plasma epinephrine.  The following modifications were applied to the basic 

hypoglycemia protocol for these experiments:  only ovariectomized rats were used and 

a bolus dose of E2 (150 µg/kg) or vehicle (10% EtOH) was intravenously infused over 2 

min 30 min prior to the insulin bolus. To maintain a high plasma concentration of free 

E2, rats were infused with either E2 or vehicle at a rate of 75 µg/kg/hr for the remainder 

of the experiment. 

Plasma glucose concentrations measured immediately prior to and 30 min after 

E2 or vehicle administration did not differ and the glucose lowering effects of insulin 

were identical in both groups at 30 and 60 min post-insulin (∆ -66 ± 1.6% and ∆ -35 ± 

3.1%; Figure 3.17; upper panel). Plasma epinephrine concentrations also did not differ 

prior to (82 ± 29.9 vs. 105 ± 16.5 pg/mL) or 30 min after (154 ± 23.0 vs. 203 ± 32.3 

pg/mL) E2 or vehicle administration.  E2 treatment significantly suppressed the rise in 

plasma epinephrine concentration after 30 min of hypoglycemia (∆ -34%; P< 0.05), and 

tended to suppress the rise at 60 min post-insulin (Figure 3.17; lower panel).  In contrast 

to experiment 1 and 2, heart rate did increase after 30 min in the E2-infused group, and 

after 60 min in the vehicle-infused group, but these increases did not reach significance 
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(P=0.06 and P=0.07 respectively; Figure 3.18; upper panel).  Also in contrast to 

experiments 1 and 2, MAP remained stable for the duration of the 60 min hypoglycemic 

test in both groups.  Neither heart rate nor MAP was different between the groups at 

any time point (Figure 3.18; lower panel). 

 

D.  Effects of Gender    
 Since the data to this point have established that both physiological and supra-

physiological levels of E2 can modulate stress-induced epinephrine responses, a final 

series of experiments compared hypoglycemia-induced increases in plasma 

epinephrine concentration in age-matched (14 week-old) male and female rats.  Plasma 

glucose concentration did not differ between the groups prior to insulin treatment (92 ± 

1.2 and 98 ± 3.3 mg/dL; male and female respectively).  The glucose lowering effects of 

insulin were identical in both groups (∆ -62 ± 2.2%) after 30 min of hypoglycemia.  

Plasma glucose levels were returned toward baseline after 60 min in both groups, but 

had returned to a greater degree in the female rats (73 ± 3.7 vs. 56 ± 3.7 mg/dL; P<0.01 

p) (Figure 3.19; upper panel). Pre-insulin plasma epinephrine concentrations were 

significantly higher in the female group compared to the male group (113 ± 6 vs. 79 ± 11 

pg/mL; P<0.05).  Hypoglycemia-induced increases in plasma epinephrine concentration 

were greater in the female group after 30 min (∆ + 308%; P<0.05) and did not differ 

after 60 min (Figure 3.19; lower panel), but heart rate was significantly increased above 

baseline after 30 min of hypoglycemia in the female group (∆ +10%; P<0.05).  Heart 

rate did not differ between the groups at any time point (Figure 3.20; upper panel).  

MAP significantly decreased over time in both groups, but also did not differ between 

groups (Figure 3.20; lower panel).  
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Figure 3.1 
 

Estrogen Receptor Gene Expression in the Adrenal Medulla 

 

 

Semi-quantitative RT-PCR analysis of adrenal medullary mRNA levels for estrogen 

receptor α (ERα) and estrogen receptor β (ERβ).  Tissue was collected 14 days after 

ovariectomy (OVEX), SHAM- surgery, ovariectomy + estradiol replacement (OVEX + 

E2) or + vehicle treatment (OVEX + VEH).  Upper Panel:  This ethidium bromide-

stained agarose gel illustrates each PCR product (n = 3 per group). The size of each 

product is listed in the left column.  Uterine (UT) tissue was used as a control for ERα 

expression, ovarian (OV) tissue was used as a control for ERβ expression; β-actin was 

used as an internal control for each reaction.   Lower Panel:  Densitometric analysis of 

the relative signal intensities. Columns (lower panel) represent Mean ± SEM of data 

from the 3 individual experiments in the upper panel. 
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Figure 3.2 
 

Estrogen Receptor α Protein Expression in the Adrenal Medulla 

 

 

Immunoblot analysis of adrenal medullary protein levels for estrogen receptor α (ERα).  

Tissue was collected 14 days after ovariectomy + vehicle (OVEX) or estradiol 

replacement (OVEX + E2). Upper Panel:  100 µg of adrenal medullary and 20 µg of 

uterine (UT) protein were separated by SDS-PAGE (n = 3 per group) and subjected to 

immunoblot analysis with rabbit anti ERα in a dilution of 1:2000 overnight.  The size of 

the product is listed in the left column.  Lower Panel:  Densitometric analysis of the 

relative signal intensities. Columns (lower panel) represent Mean ± SEM of data from 

the 3 individual experiments in the upper panel. 
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Figure 3.3 
 

Effect of Ovariectomy on Hypoglycemia-Induced Increases in Plasma Epinephrine 

Concentration 

 

 

Experiments were conducted 14 days after ovariectomy (OVEX) or sham-surgery 

(SHAM).  Insulin (0.25 U/kg) was administered intravenously as a bolus at time 0. 

Arterial blood samples (0.6 mL) were taken immediately prior to and 30 and 60 minutes 

after the insulin. Upper Panel: Effect of insulin on plasma glucose concentrations. Lower 

Panel: Effect of hypoglycemia on plasma epinephrine (EPI) concentrations.  Circles 

(upper panel) and columns (lower panel) represent Mean ± SEM of data from 7-8 

separate experiments.  * P < 0.01 compared to SHAM group. 
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Figure 3.4 
 

Effect of Ovariectomy on Hypoglycemia-Induced Changes in Heart Rate and Mean 

Arterial Blood Pressure 

 

 

Upper Panel: Effect of hypoglycemia on heart rate.  Lower Panel: Effect of 

hypoglycemia on mean arterial blood pressure (MAP).  Experiments were conducted 14 

days after ovariectomy (OVEX) or sham-surgery (SHAM).  Insulin was administered 

intravenously as a bolus at time 0.  Circles represent Mean ± SEM of data from 7-8 

separate experiments. 
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Figure 3.5 
 

Effect of Estradiol-Replacement in Ovariectomized Rats on Hypoglycemia-Induced 

Increases in Plasma Epinephrine Concentration 

 

 

Experiments were conducted 14 days after ovariectomy (OVEX); estradiol (E2)- or 

vehicle (sesame oil)-containing SILASTIC capsules were implanted at the time of 

surgery. Arterial blood samples (0.6 mL) were taken immediately prior to and 30 and 60 

minutes after the insulin. Upper Panel: Effect of insulin on plasma glucose 

concentrations. Lower Panel: Effect of hypoglycemia on plasma EPI concentrations.  

Circles (upper panel) and columns (lower panel) represent Mean ± SEM of data from 7-

8 separate experiments.  * P<0.001 compared to OVEX group. 
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Figure 3.6 
 

Effect of Estradiol-Replacement in Ovariectomized Rats on Hypoglycemia-Induced 

Changes in Heart Rate and Mean Arterial Blood Pressure 

 

 

Upper Panel: Effect of hypoglycemia on heart rate. Lower Panel: Effect of hypoglycemia 

on mean arterial blood pressure (MAP).  Experiments were conducted 14 days after 

ovariectomy (OVEX); estradiol (E2)- or vehicle (sesame oil)-containing SILASTIC 

capsules were implanted at the time of surgery.  Circles represent Mean ± SEM of data 

from 7-8 separate experiments. 
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Figure 3.7 
 

Effect of Estradiol-Replacement in Ovariectomized Rats on Hypoglycemia-Induced 

Increases in Adrenal Epinephrine Output  

 

Experiments were conducted 14 days after ovariectomy (OVEX); estradiol (E2)- or 

vehicle (sesame oil)-containing SILASTIC capsules were implanted at the time of 

surgery.  The left renal vein was isolated so that blood flow from the adrenal vein branch 

could be sampled.  Epinephrine (EPI) concentrations were measured in blood samples 

collected during one 6 min period starting 24 min after the insulin.  Columns represent 

Mean ± SEM of data from 4-5 separate experiments.  * P<0.005 compared to OVEX 

group. 

 

 

 

 

 

 

 

 

 

 

 62



 

 63



 

 

Figure 3.8 
 

Effects of Ovariectomy and Estradiol-Replacement in Ovariectomized Rats on Adrenal 

Medullary Gene Expression of Catecholamine Biosynthetic Enzymes 

 

 

Adrenal medullary tyrosine hydroxylase (TH) and phenylethanolamine N-

methyltransferase (PNMT) mRNA expression analysis by semi-quantitative RT-PCR.  

Tissue was collected 14 days after ovariectomy (OVEX), SHAM- surgery, ovariectomy + 

estradiol replacement (OVEX +E2) or + vehicle treatment (OVEX +VEH).  Upper Panel:  

Ethidium bromide-stained agarose gel illustrating each PCR product (n = 3 per group). 

The size of each product is listed in the left column. Lower Panel:  Densitometric 

analysis of the relative signal intensities. Columns (lower panel) represent Mean ± SEM 

of data from the 3 individual experiments in the upper panel. 
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Figure 3.9 
 

Effect of Estradiol-Replacement in Ovariectomized Rats on Adrenal Medullary Protein 

Expression of Catecholamine Biosynthetic Enzymes 

 

 

Immunoblot analysis of adrenal medullary protein levels for tyrosine hydroxylase (TH) 

and phenylethanolamine N-methyltransferase (PNMT).  Tissue was collected 14 days 

after ovariectomy (OVEX); estradiol (E2)- or vehicle (sesame oil)-containing SILASTIC 

capsules were implanted at the time of surgery.  Upper Panel:  20 µg of adrenal 

medullary protein samples were separated by SDS-PAGE (n = 3 per group) and 

subjected to immunoblot analysis with rabbit anti TH or rabbit anti PNMT in a dilution of 

1:1000 for 1 hr.  The size of the product is listed in the left column.  Lower Panel:  

Densitometric analysis of the relative signal intensities. Columns (lower panel) represent 

Mean ± SEM of data from the 3 individual experiments in the upper panel. 
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Figure 3.10 
 

Effect of 48 hr Estradiol Treatment on Basal and Agonist-Induced Ca2+ Transients in 

Rat Chromaffin Cells 

 

 

Cells were exposed to either vehicle or 10 nM estradiol (E2) for 48 hr prior to analysis.  

Data are expressed as peak intracellular Ca2+ concentration achieved in response to 

either 50 µM nicotine (NIC) or to 60 mM KCl.  Columns represent Mean ± SEM of data 

from 3 separate isolations. 
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Figure 3.11 
 

Effect of Acute Estradiol Treatment on Agonist-Induced Ca2+ Transients in Rat 

Chromaffin Cells:  Dose Dependent Effects and Representative Trace 

 

 

Upper Panel: Dose-dependent effects of acute estradiol (E2) exposure on nicotine 

(NIC)-induced intracellular Ca2+ transients in rat chromaffin cells. Cells were exposed to 

various concentrations of E2 for 3 min prior to stimulation with a 15-sec pulse of 50 µM 

NIC.  Data are expressed as a percent of a control NIC-induced Ca2+ transient 

measured prior to E2 treatment. Lower Panel:  Representative trace of intracellular Ca2+ 

responses to 15-sec pulses of 50 µM NIC (arrows) prior to E2 exposure, after 3 min 

exposure to 10 µM E2, and after 10 min washout of E2.  Columns (upper panel) 

represent Mean ± SEM of data from 3-4 separate isolations.  * P<0.001 compared to 

control transients 
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Figure 3.12 
 

Effect of Acute Estradiol Treatment on Agonist-Induced Ca2+ Transients in  

Rat Chromaffin Cells:  Time Dependent Effects and  

Nicotine vs KCl-Induced Transients 

 

 

Upper Panel:  Time dependent effects of acute estradiol (E2) exposure on nicotine 

(NIC)-induced intracellular Ca2+ transients in rat chromaffin cells. Cells were exposed to 

either 1 or 10 µM concentrations of E2 for 3, 10, and 20 min prior to stimulation with a 

15-sec pulse of 50 µM NIC.  Data are expressed as a percent of a control NIC-induced 

Ca2+ transient measured prior to E2 treatment. Lower Panel:  Effect of acute E2 

exposure on NIC- and KCl-induced intracellular Ca2+ transients in rat chromaffin cells. 

Cells were exposed to either 10 or 50 µM concentrations of E2 for 3 min prior to 

stimulation with a 15-sec pulse of 50 µM NIC or 60 mM KCl.  Columns represent Mean 

± SEM of data from 3-4 separate isolations.  * P<0.001 compared to control transients. 
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Figure 3.13 
 

Effect of 48 hr Estradiol Treatment on Basal and Agonist-Induced cAMP Accumulation 

in H295R Cells 

 

 

Cells were exposed to either vehicle or 10 nM estradiol (E2) for 48 hr prior to incubation 

(10 min) with PACAP-27 (PAC 27; 10-7 M).  All incubations included the 

phosphodiesterase inhibitor Ro20-1724 (25 µM).  Columns represent Mean ± SEM of 

duplicate determinations from 3 experiments. * P<0.05 compared to vehicle-treated 

cells. 
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Figure 3.14 
 

Effect of Acute Estradiol Treatment on Basal and Agonist-Induced cAMP Accumulation 

in H295R Cells 

 

 

Cells were exposed to either vehicle or 10 nM estradiol (E2) for 10 min prior to 

incubation (10 min) with PACAP-27 (PAC 27; 10-7 M).  All incubations included the 

phosphodiesterase inhibitor Ro20-1724 (25 µM).  Columns represent Mean ± SEM of 

duplicate determinations from 3 experiments. 
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Figure 3.15 
 

Effect of Estradiol-Replacement in Ovariectomized Rats on Hypoglycemia-Induced 

Changes in Renal Sympathetic Nerve Activity 

 

 

Experiments were conducted 14 days after ovariectomy (OVEX); estradiol (E2)- or 

vehicle (sesame oil)-containing SILASTIC capsules were implanted at the time of 

surgery.  A renal sympathetic nerve fiber was isolated and placed on a stainless steel 

electrode and stabilized with a silicon-based impression material.  Renal sympathetic 

nerve activity (RSNA) was recorded for 20 min prior to insulin to calculate baseline 

activity.  Data are expressed as a percent of the baseline shown as the solid line at 

100%.  Circles represent Mean ± SEM of data from 3 separate experiments.  * P<0.05 

compared to OVEX group. Ψ P< 0.05 compared to baseline. 
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Figure 3.16 
 

Effect of Estradiol-Replacement in Ovariectomized Rats on  

Plasma Epinephrine Clearance Rates 

 

 

Plasma epinephrine (EPI) concentrations before and during EPI infusions at a rate of  

600, 1500, and 3000 pmol/kg/min (arrows).  An arterial blood sample (0.6 mL) was 

taken prior to the start of the infusion and after 30 min of infusion with each dose.  

Experiments were conducted 14 days after ovariectomy (OVEX); estradiol (E2)- or 

vehicle (sesame oil)-containing SILASTIC capsules were implanted at the time of 

surgery.  Circles represent Mean ± SEM of data from 4-5 separate experiments. 

*P<0.05 compared to OVEX group. 

 

 

 

 

 

 

 

 

 

 80



 

-30 0 30 60

Pl
as

m
a 

G
lu

co
se

 (m
g/

dL
)

0

20

40

60

80

100

120

VEHICLE
ACUTE E2

Minutes Post-Insulin

-30 0 30 60

Pl
as

m
a 

E
PI

 (p
g/

m
L

)

0

500

1000

1500

2000

2500

3000

VEHICLE
ACUTE E2

*

 81



 

 82

 

Figure 3.17 
 

Effect of Acute Estradiol Treatment in Ovariectomized Rats on Hypoglycemia-Induced 

Increases Plasma Epinephrine Concentration 

 

 

Experiments were conducted 14 days after ovariectomy.  17β-Estradiol (E2; 150 µg/kg) 

was administered IV over a 2 min period 30 min prior to insulin, followed by a constant 

infusion (75 µg/kg/hr) for the duration of the experiment.  Insulin (0.25 U/kg) was 

administered intravenously as a bolus at time 0. Arterial blood samples (0.6 mL) were 

taken immediately prior to and 30 and 60 minutes after the insulin. Upper Panel: Effect 

of insulin on plasma glucose concentrations. Lower Panel: Effect of hypoglycemia on 

plasma epinephrine (EPI) concentrations.  Circles (upper panel) and columns (lower 

panel) represent Mean ± SEM of data from 6-7 separate experiments.  * P< 0.01 

compared to vehicle-treated group. 
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Figure 3.18 
 

Effect of Acute Estradiol Treatment in Ovariectomized Rats on Hypoglycemia-Induced 

Changes in Heart Rate and Mean Arterial Blood Pressure 

 

 

Upper Panel: Effect of hypoglycemia on heart rate. Lower Panel: Effect of hypoglycemia 

on mean arterial blood pressure (MAP).  Experiments were conducted 14 days after 

ovariectomy.  17β-Estradiol (E2) or vehicle was administered IV over a 2 min period 30 

min prior to insulin, followed by a constant infusion of the steroid for the duration of the 

experiment.  Insulin was administered intravenously as a bolus at time 0. Circles 

represent Mean ± SEM of data from 6-7 separate experiments.  
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Figure 3.19 
 

Effect of Gender on Hypoglycemia-Induced Increases in  

Plasma Epinephrine Concentration 

 

 

Experiments were conducted in 14 week-old male and female rats.  Insulin (0.25 U/kg) 

was administered intravenously as a bolus at time 0. Arterial blood samples (0.6 mL) 

were taken immediately prior to and 30 and 60 minutes after the insulin. Upper Panel: 

Effect of insulin on plasma glucose concentrations. Lower Panel: Effect of hypoglycemia 

on plasma epinephrine (EPI) concentrations.  Circles (upper panel) and columns (lower 

panel) represent Mean ± SEM of data from 6-7 separate experiments.  * P < 0.01 

compared to male group. 
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Figure 3.20 
 

Effect of Gender on Hypoglycemia-Induced Changes in  

Heart Rate and Mean Arterial Blood Pressure 

 

 

Upper Panel: Effect of hypoglycemia on heart rate. Lower Panel: Effect of hypoglycemia 

on mean arterial blood pressure (MAP). Experiments were conducted in 14 week-old 

male and female rats. Insulin was administered intravenously as a bolus at time 0. 

Circles represent Mean ± SEM of data from 6-7 separate experiments.  
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Chapter 4: Discussion 
 

Effects of Estradiol 
A number of clinical studies have reported that stress-induced increases in 

plasma epinephrine levels are decreased in post-menopausal subjects receiving 

estrogen-replacement therapies (Del Rio et al., 1993; Komesaroff et al., 1999; Ceresinsi 

et al., 2000; Sandoval et al., 2003).  Estrogen supplementation even attenuates mental 

stress-induced increases in plasma epinephrine in hypoganadal, elderly men 

(Komesaroff et al., 2002).  While these data illustrate that administration of exogenous 

estradiol suppresses the adrenal medullary response to stress, it remains to be 

established whether normal circulating levels of estradiol can modulate this response, 

due to the fact that the levels and types of estrogen administered in these replacement 

therapies were typically non-physiologic and were almost always administered orally.  

Also, these reports were limited to a cohort of aging subjects, and most often investigate 

the effect of replacement therapies in women whose circulating estradiol concentrations 

have been severely depleted for months or even years.  In this context, the timing of 

estradiol replacement after the loss of the steroid (by ovariectomy) can affect final 

outcomes.  For example, the ovariectomy-induced rise in circulating luteinizing hormone 

(LH) level in rats is abolished by estradiol replacement at the time of ovariectomy, while 

estradiol replacement three weeks after ovariectomy reduces the serum LH level by 

only 50% (King et al., 1987).  The same study also reported that luteinizing hormone-

releasing hormone quantities in the medial basal hypothalamus are higher in 

ovariectomized rats administered estradiol replacement at the time of surgery, 

compared to rats that were estradiol replaced three weeks after ovariectomy.  In order 

to avoid these confounds, the primary goal of the present study was to assess the 

adrenal medullary response to stress in young, but sexually mature rats in which 

estradiol levels were controlled by ovariectomy and immediate estradiol replacement.   

Our studies have established that physiological circulating levels of 17β-estradiol 

suppress stress-induced increases in plasma epinephrine in the young adult, female rat. 

This conclusion is based on two fundamental observations. First, insulin-induced 

hypoglycemia increases plasma epinephrine concentration to a significantly greater 



 

extent in 14-day ovariectomized rats than in sham-operated controls. Second, and 

perhaps more specifically, the rise in plasma epinephrine is significantly lower in 

ovariectomized, estradiol-replaced rats than in vehicle-treated ovariectomized rats.  This 

replacement regime elicited plasma estradiol concentrations virtually identical to those 

of sham-operated rats during the pro-estrous phase of the estrus cycle.  Comparing 

across groups, the rise in plasma epinephrine attained with 30 min of hypoglycemia in 

the estradiol-replaced rats was, in fact, quite comparable to that of the sham-operated 

controls, suggesting indirectly that the modulation of plasma catecholamine levels is 

due to an effect of physiological levels of circulating estradiol alone and not in 

combination with other ovarian steroids. 

Insulin-induced hypoglycemia is a standard method used for assessing adrenal 

stress responses, despite the fact that the mechanism by which insulin elicits an 

increase in plasma catecholamines is still not completely understood.  While there is 

evidence that insulin can directly stimulate epinephrine release from the adrenal 

medulla in vitro (Macho et al., 1996), the preponderance of evidence suggests that the 

in vivo response requires a centrally-mediated neuronal activation.  For example, it has 

been shown that adrenal denervation inhibits the hypoglycemia-induced increases in 

both plasma epinephrine concentration (Khalil et al., 1986) and adrenal medullary 

tyrosine hydroxylase gene expression (Vietor et al., 1996).  Increases in plasma 

epinephrine are also attenuated in brain/neuron specific insulin receptor knockout mice 

(Fisher et al., 2005).   

Despite this uncertainty surrounding the mechanism, there are several 

advantages in utilizing an insulin-induced hypoglycemic model of stress.  Firstly, it is 

well established that hypoglycemia consistently increases plasma epinephrine levels in 

both experimental animals (Fujino and Fujii, 1995; Vollmer et al., 1997; Drake et al., 

1998) and humans (Diamond et al., 1993; Davis et al., 2000; Sandoval et al., 2003; 

Heise et al., 2004).  Secondly, in contrast to other stress paradigms such as footshock 

(Weinstock et al., 1998), hypoxia (Bloom et al., 1977), and cold (Kanayama et al., 

1999), the magnitude of the epinephrine increase in response to hypoglycemia is insulin 

dose-dependent. A third advantage of this model is that it can be utilized reliably in both 

conscious (Goldstein et al., 1993; Vollmer et al., 1997; Batista et al., 2005; Fisher et al., 
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2005) and anesthetized (Mokuda and Sakamoto, 1994; Lamarche et al., 1995; Drake et 

al., 1998) experimental animals.  We selected the anesthetized model for use in the 

present studies for a number of reasons.  For example, anesthesia decreases many of 

the environmental confounds that can affect the stress response.  Second, this model 

eliminates the need for multiple survival surgeries.  Finally, from a productivity 

perspective, the turnover rate of chronically instrumented, conscious animal studies is 

much slower than that of anesthetized studies.  

 The utilization of an anesthetized model in these studies was, however, also 

precipitated by our early work which focused on the development of a classical 

conditioning paradigm so that stress responses in the conscious female rat could be 

assessed.  Using a paradigm modified from Randall et al. (1994), rats were first 

habituated to handling and restraint in a cloth sock for 1-2 days, after which each rat 

was exposed for 1 week to 5 trials per day of a 15-second pulsed tone followed by a 0.5 

second, 0.4 mAmp tail shock.  On the day of the experiment, the rats were placed in the 

sock and exposed to 1 tone + shock.  This paradigm has been shown to evoke 

immediate, short-duration increases in sympathetic nerve activity (Randall et al., 1994; 

Brown et al., 1999) and in principle, should have resulted in epinephrine secretion from 

the adrenal medulla.  However, this paradigm failed to elicit even marginal increases in 

plasma epinephrine levels, suggesting that the adrenal medulla does not secrete 

epinephrine in response to this model of stress. 

The estrogen-dependent suppression of hypoglycemia-induced increases in 

plasma epinephrine could, in theory, be due to either decreased adrenal medullary 

secretion and/or increased peripheral clearance of epinephrine.  We do have data to 

support the concept that estradiol replacement suppresses adrenal medullary secretion 

in ovariectomized rats.  This conclusion is based on measurements of epinephrine 

concentration from the adrenal vein during hypoglycemia.  Our approach in these 

experiments was a modification of a standard method used to assess adrenal 

catecholamine output (Engeland and Gann, 1989; Gaumann et al., 1990; Vollmer et al., 

2000; Lamouche and Yamaguchi, 2001), which allows blood to flow from the vein for 

the duration of the experiment while donor blood is infused through a peripheral vein. In 

order to minimize confounds associated with continuous bleeding and donor 
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replacement, blood was collected over just one 6 min period after 24 min of 

hypoglycemia in the present study.  The epinephrine measured during this time should 

represent peak adrenal output because both the hypoglycemia-induced decrease in 

blood glucose concentration and rise in sympathetic nerve activity are maximal at this 

time. Ideally, to confirm this assumption these experiments should be repeated to allow 

sampling at other post-insulin time points as well as to establish pre-insulin epinephrine 

secretory levels.  Recognizing the inherent limitations of this approach, considerable 

time was initially invested on attempting to establish a method for the continuous 

measurement of adrenal epinephrine output using in vivo chronoamperometry.  This 

technique successfully detects and quantifies catecholamines in the brain (Freund et al., 

2003; Moxon et al., 2004; Burmeister et al., 2005; Glaser et al., 2005).  With assistance 

from Dr. Greg Gerhardt and members of his laboratory, both a Nafion-coated carbon 

fiber electrode and a ceramic-based multisite electrode were successfully introduced 

into the adrenal vein and the adrenal medulla.  However, both electrodes failed to detect 

epinephrine at either site, due, at least in part, to the electrodes’ inability to oxidize 

catecholamines in blood or highly vascularized tissue.   

Subsequent experiments addressed the question of whether estradiol-dependent 

suppression of the adrenal output of epinephrine was due to decreased synthesis 

and/or secretion of epinephrine by the chromaffin cell.  Green et al. (1999), initially 

reported estrogen receptor-α (ERα) immunoreactivity in chromaffin cells of the female 

but not male rat adrenal gland.  The RT-PCR and immunoblot data in the present study 

confirms and expands on this report, since ER-α message and protein expression and 

estrogen receptor-β (ERβ) message can be detected in the female rat adrenal medulla, 

albeit at considerably lower levels of expression than in the uterus and ovary 

respectively.   

Despite the probable existence of functional estradiol receptors in the medulla, 

the present studies do not support the hypothesis that this steroid directly affects either 

epinephrine biosynthesis in or secretion from the adrenal medulla.  At the gene level, 

semi-quantitative RT-PCR analysis revealed that mRNA levels for both tyrosine 

hydroxylase (TH) and phenylethanolamine N-methytransferase (PNMT) are not different 

in adrenal medullae taken from ovariectomized versus sham-operated animals or from 



 

estradiol- versus vehicle-replaced ovariectomized rats. At the protein level, neither TH 

nor PNMT expression was modulated by estradiol treatment in ovariectomized rats. 

There are, in fact, already a number of contradictory reports on the effects of 

estradiol on catecholamine biosynthesis in the adrenal medulla.  Recently, Serova et al. 

(2005) have reported that TH mRNA levels are increased in ovariectomized rats treated 

with estradiol benzoate for 16 days compared to vehicle-treated ovariectomized rats.  

And while  Kohler et al. (1975) have reported that 10 days of estrogen administration to 

intact female rats increases TH activity, de Miguel et al. (1989) have reported that TH 

activity is unaffected by estrogen treatment in ovariectomized rats.  Additionally, it has 

also been reported that TH activity is not different in the adrenal medulla of aged (22 

months old) female rats compared to young (2 months old), but adrenal medullary 

epinephrine content is greater in the aged rats (Fernandez-Ruiz et al., 1989).   

With regard to secretion, acetylcholine released by the adrenal nerve stimulates 

Na+ influx via nicotinic acetylcholine receptor-operated ion channels on the chromaffin cell 

(Wada et al., 1985).  The resultant depolarization activates voltage-gated Ca2+ channels 

and results in a transient rise in intracellular free Ca2+ concentration, which is the primary 

trigger for catecholamine exocytosis (Kilpatrick et al., 1982).  Previous studies from our 

laboratory established that 48 hr exposure to the synthetic glucocorticoid 

dexamethasone significantly potentiated agonist-induced intracellular Ca2+ transients in 

isolated adrenal medullary chromaffin cells (Fuller et al., 1997a, b).  In the present study, 

48 hr exposure to a relatively physiologic concentration of estradiol (10 nM) had no 

significant effect on nicotine-induced intracellular Ca2+ transients, suggesting, albeit 

indirectly, that the effects of estradiol in vivo are not due to a suppression of agonist-

induced Ca2+ signaling in, and as a consequence epinephrine secretion from, the 

chromaffin cell.  

While nicotinic acetylcholine receptor mediated Ca2+ signaling is the primary 

stimulatory pathway in these cells, it is well-established that chromaffin cells also express 

muscarinic acetylcholine receptors (Inoue and Kuriyama, 1991; Inoue and Imanaga, 

1995), which, upon activation, can also directly stimulate catecholamine secretion from rat 

the chromaffin cell (Finnegan et al., 1996).  There is evidence that the number of 

muscarinic acetylcholine receptors is increased in the hippocampus of ovariectomized 
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rats, and that this increase is abolished by estradiol treatment (Cardoso et al.; 2004), 

therefore future studies should also investigate the effects of estradiol on muscarinic-

receptor mediated contributions to secretion.     

 Although adrenal output and intracellular Ca2+ signaling are valid means by which 

to assess stress-induced chromaffin cell secretion, cellular processes ‘downstream’ of 

Ca2+ signaling were not directly examined in these studies.  Previous studies from our 

laboratory have determined nicotinic-induced catecholamine secretion in single cells by 

carbon-fiber amperometry (Liu et al., 2001).  One of the limitations of this approach is that 

measurements can reliably only be compared within the same cell, making this technique 

more appropriate for acute drug exposure studies.  The effects of longer-term (ie. 48 hr) 

exposure to a steroid (dexamethasone) on agonist-induced epinephrine secretion have 

been assessed in populations of cells by HPLC (Fuller et al., 1997b), but this method 

requires a large number of cells for each experiment and cell yields from rat adrenal 

glands are typically too low for this type of analysis.  However, while chronoamperometry 

has not proven effective for measuring plasma concentrations of epinephrine, it may be 

possible to utilize this approach to assess the effects of estradiol on secretion in vitro.  Our 

in vivo attempts at chronoamperometry gave us experience in calibrating carbon-fiber 

electrodes for epinephrine in solution and it may be possible to use these types of 

electrodes in order to measure secretion from a small number of cells.  

A more global approach to examine the effects of estradiol on stimulus-secretion 

coupling pathways in the adrenal medulla would be to utilize gene array technology.  

However, our experience in this area was not very encouraging.  In experiments to assess 

the effects of age on gene expression in the adrenal medulla, the expression levels of 62 

known genes were significantly increased and the expression levels of 67 known genes 

were significantly decreased by a minimum of 1.5 fold in the adrenal medulla of aged 

compared to young rats.  However, none of the genes that were affected by age were 

known to be particularly important in secretory signaling or biosynthetic pathways, even 

though it is well established that both stress-induced plasma catecholamine levels 

(McCarty 1986; Mabry et al., 1995) and expression of tyrosine hydroxylase (Voogt et al., 

1990; Tumer et al., 1992; 1997; Tumer and Larohelle, 1995) are significantly increased 

with age.  
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In contrast to the apparent lack of effect of circulating levels of estradiol on 

chromaffin cell function discussed earlier, short-term exposure to high, presumably non-

physiologic levels of estradiol can suppress agonist-induced Ca P

2+
P signaling in the 

chromaffin cell. These data are fundamentally consistent with several previous reports 

in which acute exposure to micromolar concentrations of estradiol significantly 

depressed nicotinic receptor-triggered increases in intracellular Ca P

2+
P concentration in 

bovine chromaffin cells (Liu et al., 2002; Machado et al., 2002) and KCl-induced 

transients in PC-12 cells (Kim et al., 2000).  The present study demonstrated that 3 min 

of exposure to estradiol is sufficient to dose-dependently suppress nicotine and KCl-

induced CaP

2+
P transients in rat chromaffin cells.  The fact that the effect was both rapid 

and reversible suggests that estradiol is acting non-genomically.  Although 

catecholamine secretion was not measured in this study, previous work from our 

laboratory has shown that a suppression of nicotine-induced intracellular Ca P

2+
P transients 

of this magnitude reduces nicotine-induced catecholamine secretion from porcine 

chromaffin cells (Wagner et al., 1999).  However, it has been reported that short-term 

exposure to estrogens, including 17β-estradiol, has no effect on acetylcholine-induced 

secretion from bovine chromaffin cells, while androgens inhibit agonist-induced 

secretion (Dar and Zinder, 1997).      

Due to the high concentrations of estradiol used, it is plausible that the acute 

effects of estradiol on chromaffin cell signaling are non-cell specific.  The present study 

has demonstrated that acute exposure to a high concentration of estradiol does not 

affect function in every adrenal cell type. The NCI-H295R cell line was derived from 

human adrenocortical cells.  These cells retain the ability to secrete mineralocorticoids, 

glucocorticoids, and adrenal androgens (Rainey et al., 1994), and like primary adrenal 

cortical cells, express pituitary adenylate cyclase-activating polypeptide (PACAP) 

receptors that, when activated, stimulate cAMP synthesis and the subsequent release 

of aldosterone and/or cortisol (Bodart et al., 1997; Haidan et al., 1998).   Acute 

exposure to a high concentration of estradiol did not affect PACAP-mediated cAMP 

accumulation in these cells.  In contrast, 48 hr exposure to a physiologic concentration 

of estradiol significantly attenuated PACAP-induced increases in cAMP accumulation in 

this cell line.  While it is difficult to correlate data between primary cultures of cells and a 



 

cell line, as well as between species, these data do suggest that both the acute and 

long-term effects of estradiol on intracellular signaling processes are cell-type specific. 

Given that acute treatment with estradiol attenuated agonist-induced Ca2+ 

transients in the chromaffin cell, epinephrine secretion should also be suppressed, 

which would result in decreased stress-induced rises in plasma epinephrine levels in 

vivo.  Using the hypoglycemic stress model, we tested this hypothesis and have now 

shown that an acute infusion of supra-physiological levels of estradiol does suppress 

the insulin-induced rise in plasma epinephrine in ovariectomized rats. It should be noted 

however, that the overall effect on plasma epinephrine levels is relatively small given 

the large increase in plasma estradiol levels that occurred with this infusion paradigm. 

Therefore, it is unlikely that a physiological increase in estradiol could occur that would 

be of the magnitude needed to elicit an acute effect on circulating epinephrine levels. 

The studies to this point do not support the concept that the estradiol-dependent 

suppression of stress-induced adrenal epinephrine output is due to modulation of either 

epinephrine biosynthesis or stimulus-secretion coupling in the chromaffin cell.  

Therefore, subsequent experiments addressed the possibility that estradiol can 

modulate stress-induced increases in sympathetic nerve activity, which is the initial 

trigger for catecholamine secretion from the adrenal medulla. Although previous reports 

have demonstrated that intravenous administration of supra-physiologic concentrations of 

estrogen can rapidly suppress both renal and splanchnic nerve activity in ovariectomized 

rats (He et al., 1998), and that chronic estrogen treatment can affect sympathetically-

mediated baroreflex sensitivity (He et al., 1999; Pamidimukkala et al., 2003),  in the 

present study, hypoglycemia-induced increases in nerve activity were actually greater in 

the estradiol-replaced ovariectomized rats compared to vehicle-treated ovariectomized 

rats.  Clearly these data are not consistent with the concept that estradiol suppresses 

epinephrine secretion by modulating neural input, since this increased nerve activity 

should elicit a greater epinephrine response to stress.   

One limitation of these data is that recordings were made from the more easily 

accessible renal nerve, while secretion is predominately regulated by the activity of the 

splanchnic/adrenal nerve.  Therefore, the activity of these nerves during hypoglycemia 

should also be examined in order to fully assess the effect of estradiol on neural input to 
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the adrenal medulla.  This requirement is further supported by the fact that a given 

stimulus can induce a diverse pattern of sympathetic responses.  For example, Scislo et 

al. (2001) demonstrated that stimulation of A2A receptors increased adrenal nerve activity, 

decreased renal nerve activity, and did not affect lumbar nerve activity.  This same group 

also reported that A1 receptor stimulation increased the activity of the adrenal, renal, and 

lumbar nerves, but the magnitude of the increase was greatest in the adrenal nerve and 

lowest in the lumbar nerve.  In addition, it has been reported that estrogen potentiates 

presynaptic function in cultured hippocampal neurons (Yokomaku et al., 2003) and 

enhances glutamate receptor-mediated excitatory postsynaptic potential (Foy et al., 1999); 

but there is little published research investigating the effects of physiological 

concentrations of estradiol on nerve properties such as conductivity, pre- and post-

synaptic function and synapse plasticity.  The information from such studies would 

certainly offer insight into how estrogen may modulate the neural input to the adrenal 

medulla.     

In review of the results thus far, the reduced adrenal output of epinephrine in 

estradiol-replaced, ovariectomized rats is consistent with the observed depressive 

effects of physiological levels of estradiol on the hypoglycemia-induced increases in 

plasma epinephrine concentration.  The mechanism(s) underlying the suppressive 

effects of estradiol on adrenal medullary secretion remain to be defined.  A final series 

of experiments assessed whether the difference in plasma epinephrine concentration 

during hypoglycemia may also be attributed to differential rates of plasma 

catecholamine clearance.  To assess the effects of estradiol on plasma epinephrine 

handling, 30 min sequential intravenous infusions of epinephrine (600, 1500, and 3000 

pmol/kg/min) were administered in vehicle and estradiol-treated ovariectomized rats.  At 

all epinephrine infusion rates, plasma epinephrine concentrations were lower in the 

estradiol-replaced ovariectomized group compared to the vehicle-treated 

ovariectomized rats after each infusion, suggesting that the clearance of epinephrine 

from the circulation was higher in these animals.    

However, these data are not consistent with the majority of available information 

which suggests that estrogen negatively regulates both catecholamine metabolism and 

cellular reuptake.  For example, the activity of catechol-O-methyltransferase (COMT), 
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the main enzyme responsible for the metabolism of catecholamines, is at its lowest level 

in the female rat brain and adrenal gland during the pro-estrous phase of the estrous 

cycle (Parvez et al., 1978), the period of highest circulating estradiol concentration 

(Smith et al., 1975).  Also, both the gene expression and the activity of COMT are 

down-regulated by physiologic concentrations of estradiol in MCF-7 cells (Xie et al., 

1999; Jiang et al., 2003).  It has also been reported that estradiol can affect nor-

epinephrine transporter function in bovine chromaffin cells, suppressing cellular 

reuptake (Toyohira et al., 2003).  Consequently, these effects on metabolism and 

reuptake should elevate plasma epinephrine levels. 

 
Effects of Gender 

 As noted earlier in the discussion, estradiol supplementation can also reduce the 

epinephrine response to stress in men (Komesaroff et al., 2002).  These data are 

consistent with both clinical (Diamond et al., 1993; Davis et al., 2000; Galassetti et al., 

2001) and basic science (Drake et al., 1998) studies which have demonstrated that 

stress-induced increases in plasma catecholamines are lower in females than in males.  

In contrast, however, the data from our experiments on gender are diametrically 

opposed to these reported observations, since hypoglycemia-induced increases in 

plasma epinephrine levels are greater in female rats compared to age-matched males.  

Our data are, however, consistent with at least one published report, which 

demonstrated that the extent and duration of both the corticosterone and epinephrine 

response to foot-shock is also higher in females compared to age-matched males 

(Weinstock et al, 1998). 

 
Summary 

The studies contained in this dissertation have clearly demonstrated that 

physiological circulating levels of estradiol suppress stress-induced increases in plasma 

epinephrine concentration.  This suppression may be due to both a reduction in adrenal 

medullary epinephrine secretion and an increase in plasma clearance of the 

catecholamine.  However, the specific mechanism(s) underlying these effects have yet 

to be established.  For example, while the decreased adrenal vein epinephrine 
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concentration is consistent with a reduction in epinephrine secretion, our data suggest 

that this effect could not be attributed to decreased biosynthesis, attenuation of 

intracellular Ca2+ signaling, or decreased sympathetic nerve activity.  Additionally, while 

epinephrine clearance is markedly increased in estradiol-replaced rats, available data in 

the literature do not support that this increase could be attributed to the increased 

activity of catecholamine metabolizing enzymes such as COMT.     We have also 

confirmed previous in vitro reports that short-term exposure to high concentrations of 

estradiol can attenuate agonist-induced Ca2+ signaling in the chromaffin cell and shown 

for the first time that acute exposure to high, presumably non-physiological, levels of 

estradiol can suppress stress-induced increases in plasma epinephrine in vivo.   
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