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                                        ABSTRACT OF DISSERTATION 
 
 
 
 
CLONING, CHARACTERIZATION AND SUBCELLULAR LOCALIZATION OF 
THE N (NUCLEOCAPSID) AND P (PHOSPHOPROTEIN) PROTEIN OF THE SYDV 
(POTATO YELLOW DWARF VIRUS – SANGUINOLENTA STRAIN) 
 
 
Potato yellow dwarf virus (PYDV) is the type member of the genus Nucleorhabdovirus. 
The virus replicates in the nuclei of infected cells and mature virions accumulate in the 
perinuclear space after viral cores bud through the inner nuclear membrane. The virus 
was first described as an extremely destructive pathogen of potato (Solanum tuberosum) 
and other members of family Solanaceae. There are two different strains of PYDV based 
on their insect-vector specificity, namely SYDV (sanguinolenta strain) and CYDV 
(constricta strain). PYDV is considered a model system to study virus-vector 
relationship, particularly for agriculturally harmful rhabdoviruses. However, very little is 
known about the molecular aspects and cell biology of PYDV.  Preliminary studies 
showed that infection of transgenic Nicotiana benthamiana plants that constitutively 
express GFP targeted to endomembranes with SYDV and SYNV (Sonchus yellow net 
virus, another member of genus Nucleorhabdovirus) results in increased accumulation of 
GFP and membrane within the infected nuclei, though the pattern of GFP accumulation is 
completely different for the two viruses. GFP accumulation was found mainly in the 
external and internal loci of the nucleus in SYDV-infected cells, where as, in the case of 
SYNV infection, the GFP accumulation was scattered throughout the nucleus of the 
infected cell. Molecular characterization of SYDV was undertaken to better understand 
the cellular difference between these two members of Nucleorhabdoviruses. This 
dissertation describes the determination of the complete nucleotide and ORF (open 
reading frame) sequences of N (nucleocapsid) and P (Phosphoprotein) gene of SYDV 
from cDNA clones of both viral genomic and messenger RNAs. Analyses of sequence 
showed that SYDV-N mRNA contains an 11 nucleotide (nt) untranslated region followed 
by a 1416 nt ORF encoding a 472 amino acid (aa) protein and P-mRNA contains an 18 nt 
5’ untranslated region followed by 840 nt ORF encoding a 280 aa protein. 
Characterization of SYDV-N and P protein using bioinformatic algorithms predict basic 
hydrophilic and coiled coil regions that may posses the putative nuclear localization 
signal and protein-protein interaction domain, respectively. Comparison of the SYDV-N 
ORF with orthologous regions from other plant and animal rhabdoviruses showed 

  



statistically significant identity. Phylogenetic analysis based on consensus N-ORFs 
placed SYDV into the same group with other Nucleorhabdoviruses. Localization studies 
of SYDV-N and P protein as autofluorescent protein fusions revealed that both proteins 
are exclusively nuclear localized. Taken together, this dissertation reports a detailed 
analysis of the biology of SYDV-N and P protein at the molecular and cellular level for 
the first time towards the long term goal to characterize the entire SYDV genome and to 
better understand SYDV-host interaction. 
 
Keywords: rhabdovirus, SYDV, SYNV, nucleus, transgenic “16c” plant,  
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                                                   Chapter 1 
 
1. Comprehensive literature review of rhabdoviruses 

1.1 Introduction: 

                       Rhabdoviridae is a family of viruses whose members infect vertebrates and 

invertebrates as well as plants. The family includes four genera of animal infecting virus 

viz. Vesiculoviruses, Lyssaviruses, Ephemeroviruses and Novirhabdoviruses, some of 

which are important human and animal pathogens such as Rabies virus (RV) (human 

pathogen), Bovine ephemeral fever virus (BEFV), Vesicular stomatitis virus (VSV) 

(livestock pathogens) and Infectious haematopoitic necrosis virus (IHNV) (fish 

pathogen). The plant adapted rhabdoviruses are divided into the Nucleorhabdovirus and 

Cytorhabdovirus genera (Table 1.1). They have a characteristic bullet or bacilliform 

shape and a host-derived lipid envelope. In general, the chemical composition of 

rhabdoviruses varies from 65% to 75% protein, 1% to 2% RNA, 15% to 25% lipid, and 

3% G protein carbohydrate (Jackson et al., 2005). The rhabdovirus genome encodes at 

least five major proteins; the nucleocapsid protein (N), phosphoprotein (P), matrix 

protein (M), glycoprotein (G) and the RNA-dependent RNA polymerase (L). One of the 

unique features of the negative strand RNA genome of a rhabdovirus is that it can serve 

as the template for both transcription (mRNA synthesis) and replication (genome RNA 

synthesis). The linear single-strand RNA genome is tightly associated with monomers of 

N protein. Together with two other proteins, L and P, the genome RNA plus N complex 

constitutes the transcription as well as genome replication ribonucleoprotein particle 

(RNP) (Figure1.1). The matrix (M) protein and the glycoprotein (G) are the major 
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structural proteins. Within the virion, the RNP is coiled to form a tight helix and is 

associated with the matrix protein (M).   

1.2 Genomic organization of plant rhabdoviruses:                                  

                         The plant-infecting rhabdoviruses contain a genome consisting of non 

segmented negative-sense, single-stranded RNA, with a length in the range of 11,000-

13,000 nucleotides. Although about 100 plant rhabdoviruses have been described so far 

(Jackson et al., 2005), complete nucleotide sequences of only 8 plant-adapted 

rhabdoviruses are available, namely Rice yellow stunt virus (RYSV) (Huang et al., 2003), 

Sonchus yellow net virus (SYNV) (Heaton et al, 1989), Maize fine streak virus (MFSV) 

(Tsai et al., 2005), Maize mosaic virus (MMV) (Reed et al., 2005),  Taro vein Chlorosis 

virus (TaVCV) (Revill et al. 2005) - genus Nucleorhabdovirus, Lettuce necrotic yellow 

virus (LNYV) (Wetzel et al., 1994), Northern cereal mosaic virus (NCMV) (Tanno et al., 

2000) - genus Cytorhabdovirus and Orchid fleck virus – genus Dichorhabdovirus 

(proposed) Kondo et al., 2006). Partial nucleotide sequence is also available for 

Strawberry crinkle virus (SCV) (Posthuma et al., 2002). Amongst all the sequenced plant 

rhabdoviruses, SYNV is the most extensively characterized at both the molecular as well 

as the cellular level (Jackson et al., 1999, Tsai et al., 2005). Potato yellow dwarf virus 

(PYDV) is the type member of the genus Nucleorhabdovirus of the family 

Rhabdoviridae, yet no sequence or cell biology data are available to date for further 

classification. 

                             The genomes of almost all sequenced plant rhabdoviruses possess more 

than five open reading frames (N, P, M, G and L).  The additional gene in SYNV is 

“sc4”, which is considered a putative viral cell-to-cell movement protein that facilitates 
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virus movement through plasmodesmata and is indicative of adaptive modification in 

regard to rhabdovirus host-plant cell interaction (Heaton et al, 1989) (Figure 1.2). This 37 

kDa protein is membrane-associated and is rich in serine and threonine residues (16%). 

LNYV contains a novel gene called “4b” whose function is still unknown (Wetzel et al., 

1994). There are two additional genes in RYSV genome: gene 3 and gene 6. Gene 3 is 

found between the P and M genes where additional ORFs have been identified in all plant 

rhabdoviruses genomes examined so far. However, RYSV gene 6 is located in between G 

and L genes, where the presence of the novel gene(s) has been detected in some animal 

rhabdoviruses only (Huang et al., 2003). The genome of NCMV contains 4 novel ORFs 

in between the P gene and M gene and these ORFs are named gene 3, gene 4, gene 5, and 

gene 6, respectively. Though the organization and their size is very similar, there is no 

homology of these regions as compared to other rhabdoviruses (Tanno et al., 2000).   

                            Another striking feature of rhabdovirus genome is the presence of 

nearly identical gene junction sequences. The gene junctions of the rhabdovirus genome 

have short, virtually identical nucleotide sequences that provide signals for transcription 

initiation, termination and polyadenylation of viral mRNA (Table 1.4). The gene junction 

sequences are composed of three distinct regions, a poly-U tract near the 3’ end of each 

gene (element I), a dinucleotide “spacer” (element II) and a conserved region at the 5’ 

end of subsequent gene (element III). Homologies are found in the intergenic regions of 

different rhabdoviruses, especially at the 3’ ends of the mRNAs (Heaton et al., 1989, 

Wetzel et al., 1994). The gene junction sequences are not only highly conserved amongst 

plant rhabdoviruses (Jackson et al., 2005), but show marked similarity when compared 

with the gene junction sequence of animal rhabdoviruses. The first three nucleotides in 
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the element III of gene junction sequences are UUG in case of SYNV, VSV and Rabies 

virus (Heaton et al., 1989), which shows the evidence of conserved gene junction 

sequences amongst plant and animal rhabdoviruses. 

1.3 Properties of rhabdoviral Nucleocapsid (N) and Phosphoprotein (P): 

The Nucleocapsid protein (N) 

                          The N protein encapsidates the entire genomic RNA and packages it into 

a core that serves as template for both viral mRNA transcription and genomic/ 

antigenomic RNA replication. The N protein is an important part of the viral 

ribonucleoprotein (RNP) core. The assembly of N protein with viral RNA genome was 

explicitly described in VSV. The 2.9 Å VSV N-RNA complexes consists of 10 molecules 

of N protein with 90 bases of RNA and over 1200 copies of N protein tightly associated 

with genomic RNA (Green et al., 2006). SYNV N protein has been shown to contain a 

bipartite nuclear localization signal (NLS) – RKRR and KPKK at the proximity of 

carboxy (C) terminal (Goodin et al., 2001). Similar NLS’s have been found near the C-

terminus of the MFSV, RYSV and OFV-N protein (Table 1.2). No such signal was 

detected in the case of the TaVCV and MMV-N protein. In the absence of the P protein, 

N is localized throughout the nucleus of the infected cell in case of SYNV (Goodin et al., 

2001) and MFSV (Tsai et al., 2005), where as interaction with the P protein results in 

subnuclear (restricted to a region inside the nucleus) and nucleolar localization, 

respectively. 

The Phosphoprotein (P): 

                        The P protein is a part of the RNP core and comprises the viral RNA 

dependent polymerase complex along with L protein (Jayakar et al., 2004). The 
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polymerase complex is responsible for both viral transcription and replication. The P 

protein can be found in soluble form in the infected cells. The P protein in fact, acts as 

chaperone for both N and L polymerase proteins (Qanungo et al., 2004, Green et al., 

2000). The SYNV and the VSV- P protein forms complex with L and N proteins which 

might function as the viral transcriptase and replicase complex, respectively (Jackson et 

al., 2005, Qanungo et al., 2004). The SYNV and VSV-P protein are found to be 

phosphorylated in threonine and serine residues, respectively (Jackson et al., 2005; Chen 

et al., 1997). Phosphorylation of the VSV-P protein in specific residues is important in 

regulating viral transcription and replication. Studies with the VSV-P protein showed that 

phosphorylation of precise serine residues at amino terminal acidic domain I and domain 

II are required for viral transcription and replication respectively (Hwang et al., 1999). 

Subcellular localization studies of the autofluorescent protein fusion of SYNV-P revealed 

localization of P in the nucleus as discrete ring-shaped structure along with detection of 

some cytoplasmic fluorescence around the peripheries of the cell (Goodin et al., 2007 and 

2001). In contrast, MFSV-P localized throughout the cell (Tsai et al., 2005). SYNV P 

protein contains a bipartite nuclear localization signal (NLS) – RKRK and RKHR at the 

proximity of carboxy (C) terminal. Similar NLS’s have been found near the C-terminus 

of the MMV, RYSV and OFV-P protein (Table 1.2). No such signal was detected in the 

case of the TaVCV and MSFV-P protein. 

                        A comparison of nucleotide and ORF sequences of rhabdoviral N and P 

proteins is discussed more in detail in chapter 3. 
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1.4 Biology of N and P protein in brief: 

                        This dissertation reports the complete nucleotide and deduced amino acid 

sequence of N and P mRNA of sanguinolenta strain (SYDV) of PYDV along with their 

characterization, subcellular localization and comparative sequence analysis of SYDV-N 

and P protein with other animal and plant rhabdoviruses in an attempt to characterize 

SYDV at both the molecular as well as the cellular level. N and P proteins are considered 

as very important structural proteins and crucial for replication of genomic RNA and 

transcription of mRNA of rhabdoviruses. The N protein encapsidates the genomic RNA 

along its entire length and the concentration of the N protein regulates the switch of 

transcription and replication. The structure of N protein and its interaction pattern with P 

protein and RNA has been extensively characterized for VSV. In VSV, 10 molecules of 

N protein binds with 90 bases of RNA forming a 2.9 angstrom complex where RNA is 

tightly sequestered in a cavity between two lobes of N protein and the ratio of VSV N: P 

is 2: 1 for N/P/RNA complex (Green et al, 2006). Along with its role as an important part 

of the viral transcriptase and replicase complex, the P protein also acts as a chaperone 

protein for N and L proteins and forms N-P, L-P and P-P interactions. Furthermore, 

phosphorylation of VSV-P protein regulates the transcription and replication of viral 

mRNA and genomic RNA, respectively (Pattnaik et al, 1997). Extensive research on 

VSV-P protein showed that VSV-P is phosphorylated by cellular Caesin kinase II (Gupta 

et al., 1995) and phosphorylation of serine residues at the amino terminal acidic domain I 

and domain II of the P protein are required for viral transcription and replication 

respectively (Figure 1.3) (Hwang et al., 1999). In addition, phosphorylation of specific 

serine residues in domain I and II showed that VSV-P protein is vital for virus 
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morphogenesis (Das et al, 2004). Mutations in the phosphate acceptor sites in domain I 

and II of VSV-P protein negatively impact virus morphogenesis (Figure 1.3). Virus 

recovery was completely abolished when the phosphate acceptor sites in domain I and II 

of P protein were replaced with alanine (Das et al., 2004). In addition to replication and 

morphogenesis, phosphorylation of specific residues of P protein is also important for 

protein-protein interactions. The P protein of Chandipura virus (CHP), another member 

of genus Vesiculovirus, is found to have an N terminal domain of 46 amino acids, which 

is phosphorylated by Caesin kinase II and the phosphorylation is required for P-P 

interactions (Raha et al., 2000). In VSV, the interaction between N and P does not require 

phosphorylation of P protein. Five amino acids at the C terminus (Val-Glu-Phe-Asp-Lys) 

of N protein and N terminal domain I along with C terminal domain III of P protein are 

important for N-P interaction in VSV (Takacs et al., 1993). The most extensively studied 

plant rhabdovirus, SYNV, also showed a similar kind of N-P interaction and P-P 

interaction like their animal counterparts, although the interacting domains in the case of 

SYNV are different when compared to VSV. An N terminal 72 amino acid domain of N 

protein and N terminal 80 amino acid domain of P protein are involved in N-P interaction 

for SYNV, where as a centrally located domain is essential for P-P interactions (Goodin 

et al., 2001). This central domain (aa position 40-124) also serves as the karyophillic 

domain for SYNV-P (Goodin et al., 2001). Recently, a study with Newcastle disease 

virus, a member of the genus Avulavirus, family Paramyxoviridae showed a C terminal 

45 amino acid domain (aa 247-291) of the P protein is required for both N-P and P-P 

interactions (Jahanshiri et al., 2005). Taken together, available data for N-P and P-P 
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interactions for both plant and animal viruses in the order Mononegavirales suggest that 

there may also be similar domains necessary for protein-protein interactions in SYDV. 

1.5 Comparison of the replication cycle of Nucleo- and Cytorhabdoviruses: 

                        As stated earlier, members of plant rhabdoviruses are divided into two 

genera – Nucleo- and Cytorhabdoviruses, based on their sites of replication and 

maturation (Figure 1.4). Most plant rhabdoviruses enter into their host cells by insect 

vector feeding because of the rigid cell wall in plant cells. Upon entry, uncoating of the 

lipid envelope takes place in the endoplasmic reticular (ER) membrane and the 

ribonucleoprotein (RNP) core released into the cytoplasm.  At this stage, members of 

nucleo- and cytothabdovirus follow two different paths to complete their replication 

cycle. In the case of cytorhabdoviruses, the RNP core associates with the ER and become 

transcriptionally active to synthesize viral messenger RNAs (mRNAs). Translation of 

viral mRNAs occur in the cytoplasm and the resulting viral proteins (N, P and L) 

accumulated in the viroplasm and take part in antigenome and genome RNA synthesis. 

Viral G protein is directed to the cytoplasmic membrane, or outer nuclear membrane. The 

maturation of virion occurs through M protein mediated condensation of RNP core at the 

site of G protein accumulation in the ER membrane. It is hypothesized that in case of the 

nucleorhabdoviruses, RNP core moves into the nucleus through nuclear pore complexes 

(NPCs), and transcription of viral mRNAs occurs in the nucleus. Following transcription, 

viral mRNAs export into the cytoplasm, where they are translated into viral proteins with 

the help of host cell protein synthesis machinery. Viral proteins are then transport to the 

nucleus and initiate replication of genomic and antigenomic RNA. Morphogenesis of 
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nucleorhabdoviruses occurs either by invagination of inner nuclear membrane (e.g. 

SYNV) or expansion of outer nuclear membrane (e.g. PYDV) (Goodin et al., 2005).  

1.6 Vector specificity of plant rhabdoviruses: 

                         Most plant rhabdoviruses are transmitted by their insect vector (Table 

1.3). The virus-vector relationship is very specific and in most of the cases, the virus is 

propagated by three distinct insect families, Aphidae (aphids), Cicadellidae (leafhoppers) 

or Delphacidae (planthoppers). For example, SYDV is transmitted by Aceratagallia 

sanguinolenta, and MMV is transmitted by Peregrinus maidis (Jackson et al., 2005). 

Recently, another putative member of genus Nucleorhabdoviruses, Sorghum Stunt 

Mosaic virus (SSMV) was reported to be transmitted by a leafhopper vector, Graminella 

sonora (Family Cicadellidae) (Creamer et al., 1997). Although some viruses are found to 

be spread by mechanical injuries in the leaves of host plants, insect mediated propagation 

is the major controlling factor of virus distribution. The plant rhabdoviruses are equally 

capable of replicating in their specific insect vectors. It is believed that epithelial lining of 

insect midgut cells are the major sites for virus replication with the viruses passed on 

from the infected midgut cells to the salivary gland via transport through hemolymph 

(Jackson et al., 2005, Black L.M., 1979; Nault L.R., 1997; Sylvester et al., 1992). To 

date, very little is known about the multiplication events of plant rhabdoviruses in their 

insect vector and the biology of virus-vector interaction. Further research in the field of 

virus-vector biology will provide a better understanding of the relationship between plant 

rhabdoviruses and their specific insect vector, which will prove beneficial for examining 

ways to control the transmission of agriculturally harmful viruses. 
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1.7 Potato yellow dwarf virus (PYDV) – type species of genus Nucleorhabdoviruses: 

                           PYDV is the type species of genus nucleorhabdoviruses, which was first 

reported in the common potato plant, Solanum tuberosum from the U.S.A. (Barrus and 

Chupp; 1922).  The PYDV virion is enveloped, rhabdo- or bullet-shaped, and usually 

straight, with a length of 380 nm and width of 75 nm. Virions contain 2 % nucleic acid, 

78 % protein and 20 % lipid (source: VIDE database). The genome consists of a single-

stranded linear negative sense RNA with a total genome size of 12.6 kb. Virion 

replication does not depend on a helper virus and virions are found in the perinuclear 

space mainly after replication and morphogenesis. Viral inclusions are found in the 

leaves, roots, stem, trichome, and phloem tissue of infected plant (Black 1938, 1970). 

Experimentally, PYDV-infected plants exhibit symptoms which include vein clearing, 

stunting, leaf malformation, mosaic (intermingling patches of normal and light green to 

yellow color, delineated by veins, angular areas against a yellow background) and 

chlorotic local lesions (Black, 1970) (Figure 1.5 A). Nicotiana rustica is widely used as 

the virus maintenance and propagation host as well as the viral assay host. Recently we 

have shown in our lab that the PYDV successfully infects N.benthamiana (1.5 B).  

1.8 Vector specificity, host range and strains of PYDV:      

                        PYDV is transmitted in a persistent manner by an insect (leafhopper) 

vector (Family: Cicadellidae) and by manual inoculation to Nicotiana rustica. There are 

two different strains of PYDV, namely SYDV (transmitted by Aceratagallia 

sanguinolenta) and CYDV (transmitted by Agallia constricta). Agallia quadripunctata 

sometimes poorly transmits both strains of PYDV (Black L.M. 1970). Viruses are 

generally retained when the vector molts and multiplies in the vector. The nymph and the 
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adult male and female can transmit the virus. SYDV (Black L.M., 1943) (Nagaraj and 

Black L.M., 1962) has not been found to be transmitted through egg or sperm of the 

vector, but in some strains of CYDV, it is occasionally transmitted through the egg 

(Black L.M., 1953). The experimental mode of virus transmission is by mechanical 

inoculation. All known plant hosts of SYDV are dicotyledons (Black L.M., 1970). 

Although plants of the Solanaceae family are the most susceptible to virus infection, 

other possible hosts include members of the family Compositae, Cruciferae, Labiateae, 

Leguminosae, Polygonaceae and Scrophulariaceae (Younkin, 1942; Frampton et al., 

1942). The diagnostically susceptible hosts of SYDV are Nicotiana glutinosa, Nicotiana 

rustica and Trifolium incarnatum. The ox-eye daisy, (Chrysanthemum leucanthemum) 

also acts as one of the principal host plant for SYDV. The infection intensity of SYDV in 

the potato plants is temperature dependent. It was reported that high temperature favors 

rapid virus infection as compared to lower temperature (Walker and Larson, 1939; Black 

L.M. 1970).  

1.9 Geographical distribution of PYDV: 

                        PYDV is generally found in regions of Northeastern United States and 

adjacent parts of Canada. The SYDV and CYDV strains were first identified in New 

York (NY) and New Jersey (NJ), respectively (The New York and New Jersey isolates of 

PYDV. Black L.M. 1970; Falk and Weathers, 1983). Later another SYDV strain was 

identified in California (CA) (California isolate of PYDV, Falk and Weathers, 1981). 

Serological studies indicate that SYDV-NY and SYDV-CA are more closely related to 

each other than CYDV-NJ (Falk and Weathers, 1981). The virus had not been seen in the 
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mid-west of the USA for forty years, until an outbreak in Minnesota in between 1986-88 

on ornamental plants (Lockhart, 1989). 

1.10 Serological relationship between PYDV strains: 

                       There are two different strains of PYDV based on their insect vector 

specificity, SYDV (sanguinolanta strain) and CYDV (constricta strain) (Black L.M. 

1970, Falk and Weathers, 1983). As discussed, two isolates of SYDV (SYDV-NY and 

SYDV-CA) and one isolate of CYDV (CYDV-NJ) have been described. Early 

serological studies between these three isolates showed SYDV-NY and SYDV-CA are 

more closely related to each other than CYDV-NJ (Falk and Weathers, 1983). The 

serological differentiation study between these two strains revealed that CYDV has 

greater cross-reactivity with SYDV encoded proteins when compared to reciprocal cross-

reaction. Western immunoblot analysis of total protein isolated from SYDV and CYDV 

infected N. benthamiana leaves probed with CYDV primary antibody (obtained from Dr. 

Hei-Ti-Hsu, USDA) showed that CYDV primary antibody cross-reacts with at least two 

SYDV proteins, the G (Glycoprotein) and N (Nucleocapsid) proteins. Similar blot failed 

to cross-react with any CYDV encoded protein when probed with SYDV primary 

antibody (obtained from Dr. Hei-Ti-Hsu, USDA) (Figure 1.6). Another serological 

immunoblot of PYDV was conducted to verify the serology data obtained so far using 

SYDV and CYDV polyclonal antibodies from different source (Dr. Andrew Jackson’s 

lab UC, Berkley). These antibodies were raised in rabbits against disrupted virions and 

antibodies from two different bleeds of rabbits were obtained. Western immunoblot 

analysis of total protein isolated from SYDV and CYDV infected N. benthamiana leaves 

probed with SYDV and CYDV primary antibody from both bleeds repeated the 
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serological cross-reactivity between those strains (Figure 1.7 A,B,C,D) when compared 

with the data obtained from similar analysis but using different source of antibodies 

(Figure 1.6). The CYDV primary antibody cross-reacts with SYDV-G and N protein, but 

no reciprocal cross-reaction is detected with the SYDV primary antibody. Cross-reaction 

with total protein isolated from mock and SYNV infected N. benthamiana leaves were 

also negative. The serological relationship data of SYDV and CYDV will be helpful for 

the effective and reliable diagnosis of the symptoms of SYDV and CYDV infection in the 

host plant along with widely used electron microscopy. 

                         Following the validation of the antibodies, a series of western 

immunoblot were conducted with total protein isolated from SYDV and CYDV infected 

N. benthamiana leaves probed with different dilutions of antibodies from both bleeds to 

determine the best working antibody dilution. Three different dilutions, 1:500, 1:1000 

and 1: 2000 were tested. Three major proteins, G, N and P were detected in the blot 

probed with SYDV and CYDV polyclonal antibodies in 1:500 as well as 1:1000 dilutions 

from both bleed (Figure 1.7 E, F, G, and H). Therefore, antibodies raised from both 

bleeds will be useful in 1:1000 working dilutions for any future immunoblotting 

experiments. Taken together, these two serologically distinguishable strains of PYDV 

may serve as models to study the comparative cell biology between themselves as well as 

with other plant rhabdoviruses and biology of virus-host interaction. Because in addition 

to their vector specificity, SYDV and CYDV may differ in their titers in infected plants, 

ease of purification, timing of symptom development and other biological properties that 

may contribute their differential reaction with host cells.  
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                           In this dissertation, cloning and complete sequence analysis of 

Nucleocapsid (N) and Phosphoprotein (P) mRNA from cDNA clones derived from both 

SYDV genomic and messenger RNAs are reported. The deduced amino acid sequence of 

SYDV “N” protein and the N proteins of other well characterized plant as well as animal 

rhabdoviruses were compared in order to establish a phylogenetic relationship between 

these viruses. Further, in planta subcellular localization studies of SYDV “N” and “P” 

protein showed the localization of those proteins in the infected nucleus of Nicotiana 

benthamiana plant cells. Successful completion of cloning and sequencing of PYDV 

strains will be helpful to develop virus specific antibodies and a plant expression vector 

for use in tobacco (N. tabacum).  
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Table 1.1: Examples of Animal and Plant infecting rhabdoviruses. 

Animal infecting rhabdoviruses 

                              Genus                             Example 

                       Vesiculovirus        Vesicular stomatitis virus (VSV) 

                          Lyssavirus Rabies virus (RV), Australian bat 

lyssavirus (ABLV), Mokola virus (MV) 

                      Ephimerovirus Bovine ephimeral fever virus (BEFV) 

                     Novirhabdovirus Infectious haematopoetic necrosis virus 

(IHNV), Snakehead rhabdovirus (SRV) 

Plant infecting rhabdoviruses 

                             Genus                             Example 

                   Nucleorhabdovirus Potato yellow dwarf virus (PYDV), 

Sonchus yellow net virus (SYNV), Maize 

fine streak virus (MFSV), Taro vein 

chlorosis virus (TaVCV) 

                     Cytorhabdovirus Lettuce necrotic yellow virus (LNYV), 

Northern cereal mosaic virus (NCMV) 

 

The family Rhabdoviridae is divided into six genera, four of which are animal-infecting 

and two are plant-infecting rhabdoviruses. Plant rhabdoviruses are classified based on 

their site of replication and maturation, either in nucleus (Nucleorhabdoviruses) or in 

cytoplasm (Cytorhabdoviruses). PYDV is the type species of genus 

Nucleorhabdoviruses.                                     
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Table 1.2: Nuclear localization signal (NLS) of N and P protein of plant     

Nucleorhabdoviruses.                 

                 Virus                                    N-NLS                                     P-NLS 

Potato yellow dwarf virus-

sanguinolenta strain 

(SYDV) 

              

                   None  

 

                  None 

Sonchus yellow net virus 

(SYNV) 

           RKRR, KPKK            RKRK, RKHR 

Maize fine streak virus 

(MFSV) 

KRSSDGTGNVSKKKSRK                   None       

 

Maize mosaic virus (MMV)                   None                   KRPR 

Rice yellow stunt virus 

(RYSV) 

KKLGPPRANAHSRRKE RKDSHHYRTVVSRIEKK 

Taro vein chlorosis virus 

(TaVCV) 

                  None                    None 

Orchid fleck virus (OFV)                  RKRH           PKRK, KRKH 

  

ORFs of N and P protein of the members of genus Nucleorhabdovirus were analyzed 

using pSORT algorithm (Nakai et al., 1995) for their respective putative NLS’s. SYNV 

had a putative bipartite NLS for both N and P protein, and OFV had a putative bipartite 

NLS for its putative P (ORF2) protein. Other viruses have monopartite putative NLS’s 

for N or P protein unless otherwise stated. Analysis of SYDV and TaVCV revealed no 

putative NLS for N and P protein. 
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Table 1.3: List of plant rhabdoviruses (Nucleo- and Cytorhabdoviruses) and their 

specific insect vector. 

                            Virus                                                     Insect vector type 

Genus Nucleorhabdoviruses 

 
Potato yellow dwarf virus-sanguinolenta 
strain (SYDV) 

                 Cicadellid leafhopper 

               (Aceratagallia sanguinolenta) 

      Sonchus yellow net virus (SYNV)                              Aphid 

                 (Aphis coreopsidis) 

      Maize fine streak virus (MFSV)                  Cicadellid leafhopper 

                 (Graminella nigrifrons) 

     Maize mosaic virus (MMV)                  Delphacid planthopper 

                 (Peregrinus maidis) 

     Rice yellow stunt virus (RYSV)                  Cicadellid leafhopper 

    Taro vein chlorosis virus (TaVCV)                             unknown 

Genus Cytorhabdoviruses 

    Lettuce necrotic yellows virus (LNYV)                               Aphid 

                  (Hyperomyzus lactucae) 

   Northern cereal mosaic virus (NCMV)                 Delphacid planthopper 

                (Laodelphax striatellus) 

 

Only those viruses used in this study for the purpose of comparative analysis were taken 

into account. [Data source: VIDE (Virus Identification Data Exchange); Biology of plant 

rhabdoviruses. Annu Rev Phytopathol (2005)43:623-60)] 
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Table 1.4: Comparison of gene junction sequences between plant and animal 

rhabdoviruses. 

 

          Virus    Element I     Element II    Element III 

 Sonchus yellow net 
virus (SYNV) 

 AUUCUUUUU             GG            UUG 

Lettuce  necrotic 
yellows virus  (LNYV) 

 AUUCUUUU            G(N)X            CUU 

Vesicular stomatitis 
virus (VSV) 

 ACUUUUUUU              TU            UUG 

Rabies virus (RV)  ACUUUUUUU             T(N)X            UUG 

 

 

Example of members from Nucleo- (SYNV) and Cytorhabdovirus (LNYV) were 

compared with members of animal rhabdoviruses (VSV, genus Vesiculoviruses and RV, 

genus Lyssaviruses). The rhabdoviral gene junction is divided into three distinct elements 

– I, II and III (please see page 21 for detail explanation). Note that element III is 

conserved (UUG) for SYNV, VSV and Rabies virus. “T” represents either “G” or “C” 

nucleotide. “N” represents the presence of either “A”, “U”, “G” or “C” nucleotide. “X” 

denotes occurrence of variable number of nucleotides in that position. 

(Data source: Jackson et al., Annu Rev Phytopathol (2005)43:623-60; Heaton et al., 

Proc. Natl. Acad. Sci. USA (1989) 86:8665-8668) 
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Figure 1.1: Generalized morphology of rhabdoviruses. A. Transmission electron 

micrograph of Lettuce necrotic yellows virus showing the bacilliform shaped virus 

particle. B. Diagram illustrating the structure of a virion. The RNP core consists of 

negative-sense and single stranded genomic RNA encapsidated with N, P and L protein. 

The M protein is responsible for RNP core condensation and attached with G protein. 

The G protein is a surface glycoprotein associated with host derived lipid envelop. 

(Picture courtesy: Biology of plant rhabdoviruses. Annu Rev Phytopathol (2005)43:623-

60) 
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Figure 1.2:  Comparison of negative-sense genomic organization between plant 

(SYNV) and animal (VSV) rhabdovirus. The genome of rhabdovirus primarily 

comprises of five genes viz. N, P, M, G and L gene with a 3’-leader and 5’- trailer 

sequences. Plant rhabdoviruses contain additional genes (X), which are thought to encode 

the putative cell-to-cell movement protein. In case of SYNV, the putative cell-to-cell 

movement protein gene is SC4. 
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Figure 1.3: Structure of VSV-P protein. VSV-P protein is divided into three functional 

domains, Domain I, II, III and a hinge region. The phosphate acceptor sites are Serine 

residues at amino acid position 60, 64 in domain I and at amino acid position 226 and 227 

in domain II (showed in solid black circle). 

 

(Figure adapted from Das et al, 2004 Journal of Virology Vol. 78 No. 12) 
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Figure 1.4: Comparison of multiplication cycle between Nucleo- and 

Cytothabdoviruses in the host cell. Upon infection, uncoating takes place in the ER 

membrane and the RNP core is released into the cytoplasm. In case of 

Cytorhabdoviruses, transcription of viral mRNAs and replication of viral genomic and 

anti genomic RNAs occur in the cytoplasm, where as in case of Nucleorhabdoviruses, the 

RNP core transported into nucleus, transcription of viral mRNAs and replication of viral 

genomic and antigenomic RNAs takes place in the nucleus only. [INE: Inner Nuclear 

membrane, ONE: Outer Nuclear Membrane] 

(Picture courtesy: Biology of plant rhabdoviruses. Annu Rev Phytopathol (2005)43:623-

60) 
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Figure 1.5: Symptoms of SYDV in infected leaves of A. Nicotiana rustica and B.  

Nicotiana benthamiana. Leaves from mock-inoculated plants of the same age are shown 

for comparison. The symptoms mainly include intermingling patches of light green to 

yellow color, delineated by veins, and chlorotic local lesions 
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Figure 1.6: Western immunoblots demonstrating the serological relationship 

between the SYDV and CYDV. Following separation on 12% SDS-PAGE gels, 

equivalent amounts of protein isolated from healthy N. benthamiana (lane 1) SYDV (lane 

2), CYDV (lane 3) and SYNV-infected (lane 4) N. benthamiana leaves were transferred 

to nitrocellulose membranes and probed with A. anti-CYDV or B. anti-SYDV polyclonal 

antibodies. Note that the CYDV antibodies cross-react with SYDV G and N protein. A 

coomassie stained gel image showing rubisco (50 kD) were used as loading controls. 
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Figure 1.7: Serological western immunoblot analysis of SYDV and CYDV using 

different source of anti-SYDV and CYDV antibodies. Top panel (A, B) and lower 

panel (C, D) shows the immunoblot image using PYDV primary antibodies raised in 

rabbits to disrupted virions from bleed #1 and bleed #2 respectively. Following 
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separation on 12% SDS-PAGE gels, equivalent amount of protein samples isolated from 

healthy Nicotiana benthamiana (lane 1) SYDV (lane 2), SYNV (lane 3) and CYDV-

infected (lane 4) Nicotiana benthamiana leaves were transferred to nitrocellulose 

membranes and probed with A. and C. anti-SYDV or B. and D. anti-CYDV polyclonal 

antibodies. Note that the CYDV antibodies cross-react with SYDV proteins. A coomassie 

stained gel image showing rubisco (50 kD) were used as loading controls. E, F. Western 

immunoblot analysis of equivalent amount of protein from SYDV infected Nicotiana 

benthamiana leaves probed with different dilutions (1:500, 1:1000 and 1:2000) of anti- 

SYDV primary antibody. G, H. Western immunoblot analysis of equivalent amount of 

protein from CYDV infected Nicotiana benthamiana leaves probed with different 

dilutions (1:500, 1:1000 and 1:2000) of anti- CYDV primary antibody. 
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                   Chapter 2 
 

2. Preliminary experiments: The infection pattern of SYDV in host cells 

2.1 Introduction: 

                        The effect of plant rhabdovirus infection on host cell biology is poorly 

understood. To determine the possible effects of such infection on the endomembrane 

system of infected host cells, a series of experiments was conducted with two 

serologically distinct plant rhabdoviruses, SYDV and SYNV. The fact that both SYDV 

and SYNV infect N. benthamiana is important because it will help in comparing the 

cytopathology and genomics of SYDV with the well-characterized plant 

nucleorhabdovirus, SYNV (Heaton et al., 1989). A major characteristic of 

nucleorhabdovirus infections is the formation of large proteinaceous inclusions or 

“viroplasms” in nuclei of infected cells (Christie and Edwardson, 1977).   The viroplasms 

induced by SYNV have been found to contain the N, P, and L proteins in addition to the 

viral genomic and anti-genomic RNA (Martins et al., 1998).  

                        To study the infection pattern of SYDV in the host plant cell, experiments 

were conducted to monitor the pattern of GFP accumulation in nuclei of infected cells in 

Nicotiana benthamiana 16c plants that constitutively express GFP targeted to 

endomembrane (GFP-HDEL). The increased accumulation of GFP and membrane in the 

infected nuclei of different tissue types is an indication of virus infection (Figure 2.1), 

which was monitored by epiflouroscence as well as Laser Scaning Confocal Microscopy 

(Goodin et al, 2005). The microscopy and counter-staining with the DNA-selective dye 

DAPI confirmed the accumulation of GFP within nuclei in rhabdovirus-infected tissues 

(Goodin et al., 2005). These studies also demonstrated that the pattern of GFP 
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accumulation is completely different for the two different species of 

nucleorhabdoviruses. 

2.2 Plant material, growth conditions and virus inoculation procedures: 

                          The SYDV strain was obtained from Dr.Hei-ti-Hsu at USDA (United 

States Department of Agriculture) with permission from Animal and Plant Health 

Inspection Service (APHIS; Permit # 62615).  

                           Transgenic (16c) N. benthamiana plants, (Ruiz et al., 1998) that 

constitutively express the mgfp5-ER variant of the GFP were grown in the greenhouse 

under ambient conditions (please see Table 2.1 for relative temperature and humidity).  

Plants were inoculated with virus when they had 4-6 fully-expanded leaves.  Virus-

infected leaves were used as sources of inocula for all viruses, except TRV (Tobacco 

rattle virus) was “agroinoculated” as described by Liu et al (2002). SYNV or INSV -

infected plant tissues were grounded with inoculation buffer (10 mM sodium phosphate, 

pH 6.9, 0.5% w/v NaSO3, 1% celite) in a mortar and pestle.  SYDV-infected tissues were 

grounded in approximately 2 volumes of 0.1 M sodium phosphate, pH 6.9.  Leaf 

homogenate was applied to carborundum dusted leaves of N. benthamiana plants from 

which the apical meristem has been removed prior to inoculation.  TEV (Tobacco etch 

virus) infected material was ground in 10 mM sodium phophate buffer, pH 6.9.  Mock-

inoculations were conducted using virus-free leaves processed in the same buffer 

condition. 
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 Results 

 2.3 SYDV infection induce increased accumulation of GFP in the infected nuclei of  

   Nicotiana benthamiana cells 

                       Increased GFP acumulation was detected in SYDV as well as in SYNV 

infected cells, though the pattern of GFP accumulation was completely different in these 

two nulceorhabdoviruses. The GFP accumulation was found mainly in the external and 

internal loci of the infected nucleus in SYDV infected cells, where as, in the case of 

SYNV infection, GFP accumulated throughout the nucleus, mostly within the DAPI-

stainable portion of the nucleus (Goodin et al., 2005) (Figure 2.2). The results of the 

experiments conducted in this study represent the demonstration of the ability to monitor 

rhabdovirus infections in planta by live-cell imaging which provides the means to study 

rhabdovirus infection in living cells and will thus facilitate studies of virus cell-to-cell 

movement. To confirm rhabdovirus-induced relocalization of GFP is associated with the 

membrane, live cell imaging was conducted by using fluorescent dyes (DAPI and 

BODIPY-TRme) to mark the location of nuclei and endomembranes respectively. The 

endoplasmic reticulum and nuclear membrane were stained and the GFP expressed in 16c 

N.benthamiana plants was targeted to endomembrane via the ER-retention “HDEL” 

sequence. The results confirmed that GFP expressed in 16c plants was membrane-

associated and that this association was maintained in the virus-infected plants (Goodin et 

al, 2005). To show that GFP accumulation in nucleus in rhabdovirus infected plants is 

consistent with the site of virus accumulation, a coimmunolocalization experiment was 

carried out using anti-N (of SYNV) and anti-GFP polyclonal antibodies. Because N 

protein of SYNV is exclusively nucleus localized and tightly associated with single-
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strand genome RNA of the virus (Wagner and Jackson, 1996; Wagner et al., 1997; 

Martins et al. 1998; Goodin et al., 2001, 2002), it can be used as an ideal marker for sites 

of virus accumulation. This experiment clearly showed that nuclei regions that reacted 

with N antibodies were coincident with the sites of increased GFP accumulation in 

DAPI-stained nuclei (Goodin et al., 2005). In contrast, there was no fluorescence signal 

detected by the N antibodies in mock-inoculated tissues.                                     

2.4: GFP accumulates in both external and internal loci of nuclei in SYDV-infected 

tissue 

                        Three dimensional optical projections were made from the SYDV-induced 

GFP accumulation. Optical sections were made through x, y and z planes of the 

projections. Careful observations through these optical slices of GFP accumulation 

clearly established that GFP was accumulated within as well as in the external foci of the 

infected nuclear periphery, which is a unique characteristic compared to SYNV-induced 

GFP accumulation scattered throughout the nucleus (Goodin et al., 2005).                 

                   2.5: Virus specific pattern of GFP and membrane accumulation in SYDV and SYNV-  

                    infected nuclei 

                         It is hypothesized that the differences in the patterns of increased GFP 

accumulation and membrane relocalization depend on the manner in which SYDV and 

SYNV undergo morphogenesis. Invaginations of the inner nuclear membrane occur upon 

SYNV infection, through which condensed core particles bud into the perinuclear space 

(VanBeek et al., 1985), resulting nuclear accumulation of GFP.  In contrast, SYDV buds 

into the perinuclear space resulting in expansion of the outer nuclear membrane with an 

apparent accumulation of GFP on the “outside” of the nucleus (Goodin et al., 2005).  
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Such accumulation of GFP on the external foci of the nucleus is consistent with the site 

of accumulation of mature SYDV particles determined by electron microscopy 

(MacLeod, et al., 1966). In contrast to nucleorhabdovirus-mediated GFP accumulation, 

infection of plants by viruses that replicate in cytoplasm, Tobacco etch virus, a potyvirus 

(TEV) and Impatience necrotic spot virus, a tospovirus (INSV), induces proliferation of 

ER membranes by activity of their replicase proteins or G proteins. 

2.6: Enlargement of nuclei occurs in only rhabdovirus-infected tissues 

                        Another striking feature was that the rhabdovirus-infected nuclei in which 

GFP had accumulated were larger compared to the nuclei of mock-inoculated plants. The 

cross-sectional areas of nuclei in micrographs obtained by epifluorescence microscopy 

were measured to determine the size difference of nuclei in mock and virus infected cells. 

Statistical comparative analysis using SAS 9.0 reveals that the mean area of nuclei in 

mock-inoculated cells was much smaller when compared to the size of the nucleus of 

SYNV and SYDV infected cells (Figure 2.3). Despite the presence of accumulation of 

GFP surrounding the nucleus of TEV and INSV infected cells, their area did not increase 

significantly as compared to those in mock-inoculated cells.                                

2.7: Hypothesis:  

                       The infection pattern study showed that both SYDV and SYNV induce 

accumulation of membrane-associated GFP (mgfp5-ER) in the nuclei of infected 

transgenic Nicotiana benthamiana cells. Since nucleorhabdovirus induced viroplasms 

contain polymerase associated N and P proteins as it was evident for SYNV (Martins et 

al., 1998, Deng et al., 2007) and SYNV induced increased accumulation of GFP in the 

nuclei of infected Nicotiana benthamiana cells is consistent with the site of viroplasm 
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formation (Martins et al., 1998, Goodin et al., 2005, Deng et al., 2007), N and P protein 

of SYDV should localize to the nucleus when expressed as autofluorescent protein 

fusions as these proteins are an inherent part of nuclear viroplasm. 

Specific aims: 

Specific aim 1: To clone and characterize the N and P gene of Potato yellow dwarf virus 

-Sanguinolenta (SYDV) strain at molecular level. 

Specific aim 2: Study the subcellular localization of SYDV-N and SYDV-P protein in 

order to gain a better understanding of the biology of virus-plant interactions. 

2.8: Significance                              

                      This live-cell imaging study is the first to document rhabdovirus-induced 

changes in the morphology of plant endomembranes during viral replication (Goodin et 

al, 2005) and will facilitate the study of rhabdovirus infection in living cells including 

virus cell-to-cell movement, infection processes and effects on host gene expression. The 

pattern of GFP accumulation in the infected nuclei was completely different for SYDV 

and SYNV infection; although both viruses are belong to genus Nucleorhabdovirus. This 

different pattern of GFP and membrane accumulation between SYNV and SYDV 

encourages further exploration in the area of molecular and cell biology of SYDV. Given 

the fact that SYNV is well characterized at molecular level, the molecular data of SYDV 

should permit to explain the difference of their infection pattern at the cellular level. In 

addition to that, the live cell imaging technique is an efficient and non-destructive way to 

study the endomembrane dynamics of plant nucleorhabdovirus and virus-host 

interactions. Moreover, these series of experiments also determined that 16c Nicotiana 
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benthamiana plants that constitutively express GFP targeted to their endomembrane 

system could be used to monitor rhabdovirus-mediated change in the host cell. 
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                Table 2.1: SYDV cage condition in greenhouse 
 
 
                      Greenhouse 1                            Zone4                                     Cage#2         
 

                 Date                  Time           Specific condition 
         22nd February’05                      9:00 a.m              Temperature: 26°C 

Relative Humidity: 38% 
Temperature Range: 20°C – 28°C

                3:00 p.m              Temperature: 29° C 
Relative Humidity: 27% 
Temperature Range: 26°C – 31°C

         23rd February’05                      9:00 a.m              Temperature: 28° C 
Relative Humidity: 18% 
Temperature Range: 20°C – 29°C

                3:00 p.m              Temperature: 29° C 
Relative Humidity: 28% 
Temperature Range: 27°C – 31°C

         24th February’05                       9:00 a.m              Temperature: 25°C 
  Humidity: 34% 
Temperature Range: 20°C – 31°C

                3:00 p.m              Temperature: 27°C 
Humidity: 21% 
Temperature Range: 22°C – 30°C

 
 
             Greenhouse Set points: Temperature: Day - 25°C 
                                                                            Night - 22°C 
                                                                            14 hour day length 
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Figure 2.1: Detection of GFP fluorescence in SYDV infected “16c” Nicotiana 

benthamiana tissue. Epifluorescence micrograph of relocalized membrane-associated 

GFP fluorescence observed in the nuclei of SYDV infected (B, D). epidermal cells in 

inoculated leaf, (F, H). epidermal cells in systemic leaf (J, L). stem, (N). root and (P) 

trichome tissue of Nicotiana benthamiana (yellow arrow). In contrast, no detectable 
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fluorescence of relocalized GFP was observed in the nuclei of mock-inoculated  

Nicotiana benthamiana cells (A, C, E, G, I, K, M and O). 
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Figure 2.2: Increased accumulation of membrane-associated GFP in the nuclei of 

SYDV-infected cells.  

(A-L). Confocal micrograph of SYNV, SYDV and mock-inoculated Nicotiana 

benthamiana leaves. 

(A, E, I). Wide field confocal micrograph showing the GFP fluorescence as punctuate 

loci in SYNV and SYDV Nicotiana benthamiana leaves (E, I). In contrast, increased 

accumulation of GFP was not observed in mock-inoculated Nicotiana benthamiana 

leaves (A). 

  37



(B-D, F-H and J-L). Detection of DAPI, GFP fluorescence and overlay of these images 

in the nucleus of SYNV, SYDV and mock-inoculated Nicotiana benthamiana cells, 

respectively. 

(B-D). Relocalization of membrane-associated GFP primarily observed as punctuate loci 

within the DAPI stained area of the nucleus of SYNV infected cells relative to mock 

inoculated cells. 

(F-H). GFP relocalization relative to mock inoculated cells was observed at the periphery 

of infected nucleus around the DAPI stained region and an internal region that excludes 

DAPI in case of SYDV infection. 

(J-L). Relocalization of membrane-associated GFP was not observed in mock-inoculated 

Nicotiana benthamiana nucleus. 

(Goodin et al, 2005) 
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Figure 2.3: Comparison of nuclear area of Nucleorhabdovirus, SYDV and SYNV 

with cytoplasm replicating viruses e.g. TRV, TEV and INSV. Mock-inoculated cells 

used as control. Note that the mean area of nucleus is much larger in SYDV and SYNV 

infected cells when compared with mock-inoculated cells. The difference of nuclear area 

between TEV and INSV infected cells is not significant relative to mock-inoculated cells. 

(95% confidence intervals are shown for measurements of 100 nuclei in each treatment). 

 
 
 
 
 

                                          Copyright © Debasish Ghosh 2007 
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                                                           Chapter 3 
 

3. Cloning and Characterization of SYDV N and P mRNA 

3.1 Introduction:  

                            Preliminary cell biology studies showed that the effect of infection of 

the host cell endomembrane system is completely different for SYDV and SYNV (Figure 

2.2). Infection of transgenic Nicotiana benthamiana plants that constitutively express 

GFP targeted to endomembranes with SYDV and SYNV results in increased 

accumulation of GFP and membrane within nuclei. GFP accumulation was associated 

with the nuclear periphery in SYDV-infected cells, where as, in SYNV infection, the 

GFP accumulation was more widespread within the nucleus (Figure 2.2). In order to 

understand cell biology difference between these two serologically distinct species of 

genus Nucleorhabdovirus, an attempt was made to characterize SYDV at the molecular 

level. This dissertation reports the complete cloning, characterization and subcellular 

localization of SYDV-N and P protein as well as reagents developed for further 

characterization of SYDV genome. 

Materials and Methods 

3.2 Virus maintenance and purification:  

                          SYDV strains were maintained experimentally in N. rustica and N. 

benthamiana by serial mechanical inoculation in the greenhouse under ambient 

condition. Virus purification was done using the method (modified) described by Falk 

and Weathers (Falk & Weathers, Phytopathology 73:81-85, 1983) (Figure 3.1) from 

SYDV infected N. benthamiana tissues harvested approximately 4-5 weeks after 

inoculation. SYDV infected N. benthamiana leaves were harvested approximately 4-5 
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weeks after inoculation (50 grams) and homogenized in Solution A (0.1 M Tris-HCL, 

0.01 M MgCl2, 0.04 M Na2SO3, pH 8.4). The slurry was then squeezed to clarify the tissue 

through miracloth and centrifuged at 10,570 rpm (5719 x g) in a Beckman MLA-80 rotor 

for 10 minutes. The clarified supernatant was applied to a celite pad in solution A (2.5 

gram of celite per 50 gram of tissue) and the filtrate was centrifuged at 35,000 rpm 

(63,000 x g) for 30 minutes in Beckman MLA-80 rotor. The supernatant was discarded 

and the pellet was resuspended in 200 µl of solution B (0.1 M Tris-HCL, 0.01 M MgCl2, 

0.04 M Na2SO3, and pH 7.5). The resuspended pellet was applied onto discontinuous 

sucrose gradients, 3 ml of 30% sucrose and 2 ml of 60% sucrose in solution B. The 

gradient was centrifuged again in Beckman MLA-80 rotor at 35,000 rpm for 30 minutes. 

The 30%-60% interface was collected, resuspended in Solution B and centrifuged in a 

Beckman TLA-55 rotor at 55,000 rpm (186,000 x g) for 10 minutes. The supernatant was 

discarded and the pellet was resuspended in 200 µl of solution B.  A sucrose density 

gradient (5%-30% solution B) was made and the resuspended pellet was applied to the 

gradient. The gradient was centrifuged in Beckman MLS-50 rotor at 35,000 rpm (63,000 

x g) for 30 minutes. The sucrose fractions containing the virus were collected and 

resuspended in solution B. The resuspended fractions were centrifuged in Beckman TLA-

55 rotor at 55,000 rpm (186,000 x g) for 10 minutes. The supernatant was discarded and 

the viral pellet resuspended in 47.5 µl of Solution B and 2.5 µl of 2% PEG 1540 

(Polyethelene Glycol). G and N proteins were detected from purified SYDV in SDS-

PAGE analysis (Figure 3.2A). The purification was repeated four times and G and N 

protein bands were cut and sent for trypsin digested peptide sequencing analysis by Mass 

Spectrometry/ Edman degradation (Figure 3.2B). 
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3.3 SDS-PAGE analysis:  

                        For all SDS-PAGE analyses (Coomassie and Western Immunoblot), 

protein extracts {purified SYDV fractions or 3 leaf discs (cut using 1 cm cork borer) from 

healthy as well as virus infected N. benthamiana leaves} were prepared by grinding the 

tissue sample in 2X SDS-PAGE loading buffer containing 0.5 M Tris-HCL (pH 6.8), 

10% SDS, 75% Glycerol, 5% β-mercaptoethanol and 0.05 % Bromophenol Blue in a 

boiling water bath (100°C) for 10 minutes followed by centrifugation (Spectrafuge-240, 

Labnet International Inc.) at maximum speed for another 10 minutes. Protein samples 

were then loaded into discontinuous Sodium Dodecyl Sulfate- Polyacrylamide Gel 

Electrophoresis (SDS-PAGE). The gel was stained by coomassie (0.1% Brilliant Blue, 

50% MeOH, 10% acetic acid) for 30 minutes followed by washing in destaining solution 

(30% isopropanol, 10% HAc) or by using PageBlueTM dye according to manufacturer’s 

instructions (Fermentas Life Sciences, Hanover, MD) . 

                          For the western Immunoblot analysis, proteins separated by PAGE were 

transferred to nitrocellulose membrane and the non-specific binding sites were blocked 

by 10 ml of non-fat dry milk in 1X TBS (0.5M Tris, 1.5M NaCl, pH 7.5) for 1 hr 

followed by overnight incubation with primary antibody (e.g. α-SYDV, 1:1000 dilution; 

GFP, 1:1000 dilution). The membrane was then washed in distilled water for 2x10 

minutes and incubated with secondary antibody {Anti-rabbit conjugated with Alkaline 

Phosphatase, 1:20,000 dilution (for SYDV 1°Ab); Anti-chicken conjugated with Alkaline 

Phosphatase, 1:30,000 (for GFP 1°Ab)} for 2 hr.  Membranes were developed by 

incubating in 12 ml of alkaline phosphatase buffer (100 mM Tris, 100 mM NaCl, 50 mM 

MgCl2.6H2O, pH 9.5) containing 50 µl each of NBT (Nitro-blue tetrazolium chloride) 
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and BCIP (5-Bromo-4-Chloro-3'-Indolyphosphate p-Toluidine Salt). Images were 

scanned by Epson Scanner control software, converted into TIFF file and processed using 

Adobe photoshop 7.0 (Adobe, San Jose, CA). 

3.4 RNA extraction and Cloning of SYDV-specific PCR product:  

                          Total RNA was extracted from SYDV infected N. benthamiana leaves 

harvested approximately 4-5 weeks after inoculation using Qiagen’s RNeasy® Minikit 

according to manufacturer’s instructions. RNA was eluted in RNase free water and 

quantified using spectrophotometer. Then 5 µg of total RNA was used to synthesize first 

strand cDNA using the SuperscriptTM First strand synthesis system for RT-PCR 

according to the manufacturer’s instructions (Invitrogen life technologies, Carlsbad, CA). 

Briefly, total RNA {including poly (A)+ RNA} was transcribed into first strand cDNA 

by SuperscriptTM  Reverse Transcriptase (RT) at 42°C for 50 minutes using Oligo (dT) as 

primer. To obtain double stranded cDNA, PCR was done using Phusion high fidelity 

DNA polymerase (Finzyme, New England Biolab.) with the SYDV N and G-gene 

specific degenerate/ N and P-gene specific forward and reverse primers and first strand 

cDNA as template. Virus-specific amplicons were gel purified and ligated into pGEM-T 

(Promega Corp., Madison, WI) or GeneJET vector (Fermentas Life Sciences, Hanover, 

MD) and transformed into Top10 E.coli competent cell lines. Clones carrying inserts that 

hybridized with viral RNA were selected for sequence analysis. 

3.5 Cloning of 5’ and 3’ termini of SYDV Nucleocapsid (N) and Phosphoprotein (P) 

mRNA:  

                       The 5’ as well as 3’ end of SYDV-N and P gene were amplified by BD 

SMARTTM RACE (Rapid Amplification of cDNA Ends) cDNA Amplification kit 
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(Clontech, Takara Bio Company) according to manufacturer’s instructions. Briefly, for 

5’RACE, the first strand cDNA was synthesized from 2µg of total RNA (from SYDV 

infected N. benthamiana leaves) using BD Powerscript Reverse Transcriptase with BD 

SMART II A OligoTM (5’-AAGCAGTGGTATCAACGCAGAGTACGCGGGG-3’) and 

5’-RACE CDS primer {5’-(T)25VN-3’; V=A,G or C and N=A,C,G or T} at 42°C for 1.5 

hr in an air incubator. For 3’RACE, first strand cDNA was made from 2µg of total RNA 

primed with 3’-RACE CDS primer A {5’-AAGCAGTGGTATCAACGCAGAGTAC 

(T)30VN-3’; V=A,G or C and N=A,C,G or T}using the same reaction conditions 

described for 5’RACE. For 5’- and 3’-RACE, PCR was used to produce double stranded 

cDNA using BD TITANIUM Taq polymeraseTM with 5’RACE-Ready cDNA/3’RACE 

ready cDNA as template and Universal Primer A Mix (UPM, 5’-

CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT-3’) and 

SYDV N or P gene specific reverse/forward primer respectively. The 5’- and 3’-RACE 

products were cloned into pGEM-T vector (Promega Corp., Madison, WI) and positive 

clones that hybridized with viral RNA were selected for sequence analysis. 

3.6 Peptide sequencing and Sequence analysis:  

                           The G and N protein bands from highly purified SYDV were excised 

from the coomassie-stained SDS-PAGE gels and sent to the Protein Sequencing Analysis 

Facility, University of Kentucky Department of Biochemistry and the University of 

Nebraska Medical Center Protein Sequencing Core Facility for sequencing of trypsin-

digestion products by mass spectrometry (MS) or Edman degradation 

(http://www.unmc.edu/pscf/-Applied Biosystems Procise protein sequencer), 

respectively. Two G protein- and two N protein derived peptides were partially 
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sequenced and degenerate oligonucleotide primers corresponding to the first six amino-

acids were made (Table 3.1). During the primer design, care was taken to maintain 

maximum specificity at the 3' end of the primer to optimize the primer binding to 

template. The N protein was sequenced by conventional Edman degradation method 

because de novo protein sequencing by MS is still not regular.  This also helped to 

compare the efficiency of the two sequencing techniques to provide useful data for the 

experiment.   

3.7 DNA sequencing and sequence analysis: 

                         Plasmid DNA was sent to University of Iowa and University of Florida 

DNA Sequencing Core Facility and the sequencing was carried out in 600-900 bp 

segments by primer walking (M13 forward and reverse universal primer, GeneJET vector 

specific primer) using a Perkin Elmer, Applied Biosystems Division (PE/ABd) 377 

automated DNA sequencer and fluorescent dideoxy terminator method of cycle 

sequencing (University of Florida), Applied Biosystems 3730xl DNA Analyzer and 

BigDye Terminator Cycle Sequencing chemistry according to the supplier’s instructions 

(Applied Biosystems, Inc., Foster City, CA) (University of Iowa). The sequences 

obtained were subjected to Vecscreen (National center for Biotechnology Information, 

NCBI) to remove any vector sequences prior to analysis; ORFs were identified with 

DNA Strider version1.1 and Vector NTI AdvanceTM version10 (Invitrogen Corp., 

Carlsbad, CA). Putative SYDV protein sequences were compared to the NCBI GenBank 

protein database with BLASTP search to identify sequence similarity of the same 

proteins of other well-characterized rhabdoviruses. Protein sequences were searched for 

domains and motifs, including phosphorylation motifs 
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(http://www.hprd.org/PhosphoMotif_finder) and hydropathy analysis 

(http://www.expasy.ch). 

3.8 Northern blot hybridization analysis: 

                       Total RNA from healthy as well as virus infected Nicotiana benthamiana 

was (by using Qiagen’s RNeasy minikit) electrophoresed in 1% denaturing 

Formaldehyde/Agarose gel {Agarose, 10X MOPS, Formaldehyde (37% v/v solution), 

water} and transferred to positively charged nylon transfer membrane (HybondTM-N+, 

Amersham Life Science) with 20X SSPE buffer (3.6M NaCl, 0.2M Sodium phosphate, 

0.02M EDTA, pH 7.7) overnight. To determine the molecular weight, RNA Ladder, High 

RangeTM (Fermentas Life Sciences, Hanover, MD) was used as molecular marker. 

Following transfer, the membrane was air dried, crosslinked by UV exposure (UV 

StratalinkerTM 1800, Stratagene) for 2 minutes and incubated in ULTRAhyb® 

hybridization buffer (Ambion) at 42°C for 1 hr. Probes were synthesized by gel 

purification of the amplified SYDV-N and P PCR product and successive addition of 32P-

dCTP by Rediprime II Random Prime Labelling System according to manufacturer’s 

instructions (Amersham Biosciences Corp., Piscataway, NJ). Membranes were 

hybridized with gene-specific SYDV-N and P probes overnight at 42°C and washed two 

times for 10 minutes each with 2X SSPE, 0.1% SDS followed by two times for 15 

minutes each with 0.1X SSPE, 0.1% SDS at 42°C. After washing, membranes were 

wrapped in a SaranWrap and exposed to Storage Phosphor Screen (Molecular Dynamics, 

Sunnyvale, CA) for 12-24 hours. Images were captured using Typhoon Scanner control 

Software and analyzed by ImageQuant Software (Molecular Dynamics), converted to 

TIFF file and processed using Adobe photoshop 7.0 (Adobe, San Jose, CA). 
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3.9 Phylogenetic Analysis:  

                          All comparative sequence data used in the phylogenetic analysis study 

was obtained from NCBI GenBank. All the amino acid sequences were analyzed and 

aligned using the CLUSTAL W program (Thompson et al., 1994). A phylogenetic tree 

was generated using the Neighbor-Joining method available in PHYLIP 3.65 (Felsenstein 

J, 1989). The tree was visualized by TREEVIEW program (Page, 1996). Sequences used 

in this study (with their GenBank accession number) are as follows; 

Nucleorhabdovirus: Maize mosaic virus (MMV, YP_052850), Rice yellow stunt virus  

 (RYSV, NP_620496), Sonchus yellow net virus (SYNV, NP_042281), Maize fine streak  

virus (MFSV, YP_052843), Taro vein chlorosis virus (TaVCV, YP_224078), Orchid  

fleck virus (OFV, BAE93579). 

Cytorhabdovirus: Lettuce necrotic yellows virus (LNYV, CAG34089), Northern cereal 

mosaic virus (NCMV, NP_057954). 

Lyssavirus: Rabies virus (RABV, AAT48623), Australian bat lyssavirus (ABLV,  

NP_478339),  Mokola virus (MV, YP_142350).  

Vesiculovirus: Vesicular stomatitis Indiana virus (VSV; New Jersey serotype,  

AAA48449). 

 Ephemerovirus: Bovine ephemeral fever virus (BEFV, NP_065398). 

 Novirhabdovirus: Infectious haematopoietic necrosis virus (IHNV, CAA61495),  

Snakehead rhabdovirus (SRV, NP_050580).  

3.10 Deposition of sequence data 

               Nucleotide sequences for the SYDV-N and P mRNAs have been 

deposited in GenBank as accessions EU183122 and EU183123, respectively. 
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3.11 Construction of pSITE expression vectors for in planta subcellular localization:        

                          Construction of pSITE expression vectors (Chakrabarty et al., 2007) was 

carried out by Gateway® Technology Version E (Invitrogen Corp. Carlsbad, CA) 

according to manufacture’s instructions. Briefly, total RNA was extracted from SYDV 

infected N. benthamiana leaves harvested approximately 4-5 weeks after inoculation 

using Qiagen’s RNeasy® minikit according to manufacturer’s instructions. Gateway 

compatible primers were designed for both putative SYDV-N and P ORF. The SYDV N 

and P ORFs were amplified by RT-PCR using gateway primers and PCR products were 

cloned into donor vector (pDONR221) to make entry clones by BP recombination 

reaction (using BP ClonaseTM enzyme). Following BP reaction, LR recombination 

reaction was done between entry clones and destination vector, pSITE4-CA and pSITE2-

CA for the expression of RFP and GFP fusions, respectively (Chakrabarty, et al., 2007). 

The functional pSITE vectors expressing the autofluorescent protein fusions of SYDV-N 

and P were transformed into Agrobacterium tumefaciens strain CBA4604 and A. 

tumefaciens was infiltrated into leaves of Nicotiana benthamiana (mock-inoculated as 

well as SYDV infected “16c”-GFP transgenic plants) as previously described (Goodin et 

al. 2002; Chakrabarty et al., 2007). 

3.12 Cloning of SYDV-N mRNA: 

                            A PCR-based strategy was employed to clone and characterize the 

SYDV-N and P mRNA. Reverse-transcription Polymerase Chain Reaction (RT-PCR) 

was done using total RNA (5 µg) derived from SYDV infected N. benthamiana plants as 

template for cDNA synthesis and N-gene specific degenerate primer (N2F/ N1R) 

designed from partial peptide sequence of SYDV-N protein.  SYDV specific amplicon 
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(~500 bp) that hybridized to viral RNA was cloned into pGEM-T vector (Promega, 

Madison WI) (Figure 3.3). The cloned cDNA for putative SYDV-N gene was 

subsequently used as a probe in Northern hybridization experiment.  Of two clones tested 

in this manner, one gave the expected hybridization patterns, a 1.5 kb N mRNA transcript 

and a 12.6 kb SYDV genomic RNA. The consensus sequence of 465 bp PCR-amplified 

DNA fragment was assembled from the sequence of 10 independent clones. Sequence 

analysis of this 465 bp fragment showed the presence of primer sequences derived from 

the Forward and Reverse degenerate primers at their 5’ and 3’ terminal region and the 

two amino acid residues present immediately upstream of the A-T-P-A-A-T sequence 

(reverse degenerate primer), are K (lysine) and R (arginine), which is cleavage site for 

trypsin. The cloned sequence is a continuous open reading frame, which is expected if the 

amplicon really derived from the SYDV-N gene. Two sets of gene specific primers 

(GSPs), forward and reverse (NRF1, NRR1 and NRF2, NRR2) were synthesized based 

on this initial 465 bp sequence of putative SYDV-N gene for the purpose of using these 

primers in RACE (Rapid Amplification of cDNA Ends). RT-PCR reactions with 

NRF1/NRR1 primer pair resulted in amplification of a DNA fragment from cDNA 

synthesized from total RNA isolated from mock-inoculated N. benthamiana plants, in a 

manner similar to when degenerate N primers were used along with amplification of a 

fragment of predicted size (~350 bp) from SYDV infected N. benthamiana plants. The 

second primer pair (NRF2/NRR2) produced the predicted amplicon only from SYDV 

infected N. benthamiana plants. These data, together with that from Northern 

hybridization (Figure 3.4 A), provide validation that SYDV-N specific cDNA was cloned 

successfully.  Completion of the N mRNA cloning was done by 5’ and 3’ RACE using 
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SMARTTM technology (Clontech). This method uses the combined actions of SMART 

II™ Oligonucleotide and the BD-PowerScript Reverse Transcriptase (RT). The BD-

PowerScript RT is a variant of Moloney murine leukemia virus RT that, upon reaching 

the end of an RNA template, initiates terminal transferase activity by adding 3–5 residues 

(predominantly dC) to the 3' end of the first-strand cDNA. The BD SMART-oligo 

contains a terminal stretch of dG residues that anneal to the dC-rich cDNA tail and serves 

as an extended template for RT. The PowerScript RT then switches templates from the 

mRNA molecule to the BD SMART oligo, generating a complete cDNA copy of the 

original RNA with the additional BD SMART sequence at the end. Since the dC-tailing 

activity of RT is most efficient if the enzyme has reached the end of the RNA template, 

the BD SMART sequence is typically added only to complete first-strand cDNAs.  The 

first strand cDNA synthesis was carried out using 2 µg of total RNA extracted from 

SYDV infected N. benthamiana leaves and primed by a modified oligo dT primer. 

Following reverse transcription, the first strand cDNA was used directly in 5’- and 3’-

RACE PCR reactions using N-gene-specific primer (NRF2/NRR2) and the BD SMART 

oligo. The 5’ and 3’ RACE reactions amplified SYDV-N specific 5’ RACE fragment 

(~1.4 kb) and 3’RACE fragment (~ 600 bp), which were cloned into pGEM-T vector 

(Figure 3.5). Colonies were screened and clones carrying inserts (4 each of 5’ and 3’ 

RACE products) that hybridized with viral RNA were sequenced. All the sequences were 

analyzed using Vecscreen (NCBI Blast), ORF were identified using Vector NTI version 

10 and DNA strider 1.1 and ~1.5 kb SYDV-N mRNA was assembled (Figure 3.6). 
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3.13 Cloning of SYDV-P mRNA: 

                          To amplify the SYDV-P mRNA, RT-PCR was conducted using total 

RNA extracted from SYDV infected N. benthamiana leaves. Reverse transcription/ first 

strand cDNA synthesis reaction was primed by SYDV-N gene specific primer (NRF1). 

Following reverse transcription, conventional PCR was performed using the same 

SYDV-N gene specific primer (NRF1) as forward primer, which was used to prime the 

first strand cDNA synthesis and G-specific degenerate oligonucleotide primer (G2R) as 

reverse primer. A virus specific amplicon of ~2.0 kb was amplified in SYDV cDNA 

containing sample, but not in healthy N. benthamiana cDNA containing control sample 

(Figure 3.3 B). The amplified fragment (~ 2.0 kb) was not consistent with the predicted 

fragment size as G gene-specific degenerate oligonucleotide primer was failed to anneal 

with the G gene sequence. The PCR product was cloned into pJET-1 vector (Fermentas, 

MD) and subsequently used as a probe in Northern hybridization experiment for its 

authentic virus-specificity. Colonies were screened and 4 clones carrying the positive 

insert were sent off for sequencing. Sequences were analyzed as described above and an 

ORF of size 843 bp was identified. Gel purified putative SYDV-P PCR product was used 

as probe in a Northern hybridization to validate its SYDV specificity and the 

hybridization pattern was obtained as expected, a 0.9 kb P mRNA transcript and a 12.6 

kb PYDV-S genomic RNA (Figure 3.4 B). Two sets of putative SYDV-P gene specific 

primers were synthesized (P5R/P3R) for use in 5’ and 3’ RACE reactions to amplify the 

entire P gene (BD SMART technology by Clontech as above). The RACE-PCR reaction 

amplified predicted 0.5 kb 5’RACE product and 0.7 kb 3’RACE product. Cross-

hybridization of those primers with control (healthy N. benthamiana cDNA for RACE) 
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was negative (Figure 3.5). RACE products were cloned into pGEM-T vector and positive 

clones (4 each of 5’ and 3’ RACE products) were sequenced. The sequences of putative P 

5’- and 3’- RACE products were aligned with the initial ~843 bp sequence and ~0.9 kb 

SYDV-P mRNA was assembled (Figure 3.7). 

3.14 Structure, characterization and sequence analysis of SYDV-N mRNA: 

                         The 1546 nucleotide sequence of SYDV-N protein mRNA was assembled 

from the initial 465 bp sequence as well as the 1.4 kb SYDV-N 5’ and 600 bp 3’ RACE 

sequence. The 5’ end of SYDV-N mRNA starts with the sequence 5’-AACA-3’. This 

sequence is consistent with the conserved transcription initiation sequence at the 5’ end 

of mRNAs of other well characterized rhabdoviruses except LNYV, which has a 

consensus transcription start sequence GA(A/T)(A/T) for its mRNAs (Heaton et al., 

1989, Wetzel et al., 1994). An 11-nucleotide (nt) 5’ untranslated region (5’-UTR) 

preceded the AUG start codon. This 5’-UTR of SYDV-N mRNA is shorter than those of 

SYNV-N (56 nt) and LNYV-N mRNA (78 nt), but quite similar in size when compared 

to RYSV-N (15 nt) and those of N protein mRNA of animal rhabdoviruses including 

VSV (13 nt), Rabies and Mokola virus (12 nt). The 3’ untranslated region (3’-UTR) of 

SYDV-N mRNA has sequence length of 84 nt followed by UAG stop codon. The 3’ 

terminus contains the sequence AACAAAA followed by a polyadenylic stretch of 30 

residues. The 84 nt 3’-UTR of SYDV-N mRNA is longer than those of SYNV-N (67 nt) 

and LNYV-N mRNA (74 nt), but considerably shorter than RYSV-N mRNA (136 nt). 

The N-ORF starts with the first AUG codon encodes a protein comprising of 472 amino 

acids with a calculated molecular weight of 51,553 Dalton, which is quite similar with the 

original estimates of around 50,000 Dalton obtained by sodium dodecyl sulfate – 
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polyacrylamide gel electrophoresis (SDS-PAGE). The SYDV-N protein is larger in size 

than MFSV, LNYV, VSV, and Rabies virus N proteins, which contain 462, 459, 422 and 

450 amino acids respectively, but smaller than 475 amino acid long SYNV-N and 521 

amino acid long RYSV-N protein. Comparison of SYDV-N protein amino acid sequence 

using Hitachi-Prosis and BLASTP (NCBI) program reveals significant identity with other 

Nucleorhabdoviruses including SYNV-N (26%, identity), MMV (27% identity), MFSV 

(22% identity), TaVCV (27% identity), OFV (27% identity), RYSV (25% identity) and 

20% identity with NCMV (a member of genus Cytorhabdoviruses). The bioinformatic 

analysis of SYDV-N protein using ProtParam algorithm (Gasteiger et al., 2005) shows 

the ratio of basic [Arg, Lys (total number of basic residues: 46)] and acidic [Asp, Glu 

(total number of acidic residues: 45)] amino acids is almost equivalent (~1.02). The N 

protein of SYDV contains 46 basic amino acids and 45 acidic amino acids, as compared 

to 53 and 51 for SYNV-N, 61 and 54 for MFSV-N and 80 and 41 for RYSV-N. The 

predicted theoretical isoelectric point (pI) of SYDV-N is 7.61, suggesting that it is less 

basic than SYNV-N (pI: 8.09), MFSV-N (pI: 8.84) and RYSV-N (pI: 10.04). Hydropathy 

analysis (SOAP algorithm, Kyte and Doolittle, 1982) of SYDV-N protein showed a high 

hydrophilic region from amino acid position 10 to 20 near the amino terminal and a 

stretch from position 310 to 440 located near the carboxy terminal of the protein with 

cumulative GRAVY (Grand average of Hydropathicity) value of -0.183 (Figure 3.8). 

These regions might contain the putative RNA binding domain as well as motifs for the 

nuclear localization signal (NLS) as typical nuclear localization signal consists of 

positively charged hydrophilic amino acid residues (Kalderon et al, Lusk et al., 2007). 

Similar hydrophilic region have been found near the carboxy terminus of SYNV, MFSV, 
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Rabies and RYSV-N protein, but those are less extensive in SYNV and Rabies when 

compared to MFSV and RYSV. ProtParam analysis (Gasteiger et al., 2005) also showed 

that the estimated instability index and in vivo half-life (E.coli) of SYDV-N protein is 

39.55 and >10 hours respectively, suggesting the protein is stable (A protein whose 

instability index is smaller than 40 is predicted as stable, a value above 40 predicts that 

the protein may be unstable). Analysis of SYDV-N protein using the COILS algorithm 

(Lupas et al., 1991) predicts the presence of a distinct coiled coil region at the proximity 

of carboxy terminal between amino acids position 360 to 375 (Figure 3.9), which might 

mediate the interaction of N protein with other proteins including P protein as has been 

shown for other plant and animal rhabdoviruses (Goodin et al., 2001, Green et al., 2000). 

Similar COIL analysis reveals marked regions in other Nucleorhabdovirus encoding N 

protein including MFSV-N (amino acid region between 200-220, 275-290, and 378-400) 

and RYSV-N (aa region 375-400) but failed to predict any clear coiled coil region in case 

of SYNV-N. In comparison to that, LNYV, a member of genus Cytorhabdovirus shows 

presence of distinct coiled coil regions at its amino terminus (aa position 1-25, 151-190).  

These predictions can be served as a preliminary data for future experiments towards the 

understanding and comparison of N-P interaction between the members of plant 

rhabdoviruses. 

3.15 Structure, Characterization and sequence analysis of SYDV-P mRNA: 

                          The 887 nucleotide sequence of SYDV-P protein mRNA was determined 

from 4 independent clones that corresponded to the 2.0 kb N-G amplicon as well as the 

0.7 kb SYDV-N 5’ and 0.9 kb 3’ RACE amplicon. The 5’ end of SYDV-P mRNA starts 

with the conserved transcription initiation sequence 5’-AACA-3’ as comparable as 
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SYDV-N and other rhabdoviral mRNAs except LNYV. An 18-nt 5’ untranslated region 

(5’-UTR) preceded the AUG start codon. This 5’-UTR of SYDV-P mRNA is shorter than 

that of SYNV-P (50 nt). The 3’ untranslated region (3’-UTR) of SYDV-P mRNA is 126 

nt long and is followed by UGA stop codon. It is longer than the 3’-UTR of SYNV-P 

mRNA (45 nt). The 3’ terminus contains the sequence AAUAAAA followed by a 

polyadenylic stretch of 15 residues. The P-ORF starts with the first AUG codon encodes 

a protein comprising of 280 amino acids with a calculated molecular weight of 31,366 

Dalton, which is almost similar with the original estimates of around 32,000 Dalton 

obtained by SDS-PAGE analysis. The 280 amino acid SYDV-P protein is shorter in size 

than MFSV, RYSV, SYNV, LNYV and Rabies virus P protein, which contain 338, 322, 

286, 300 and 297 amino acids respectively, but larger than 265 amino acid long VSV-P 

protein. Comparison of SYDV-P protein amino acid sequence using BLASTP (NCBI) 

program did not reveal any identity with the P protein of other well characterized 

rhabdoviruses.  

                         Bioinformatic analysis of SYDV-P protein using ProtParam algorithm 

(Gasteiger et al., 2005) shows the ratio of basic (Arg, Lys) and acidic (Asp, Glu) amino 

acids is almost equivalent. The P protein of SYDV contains 32 basic amino acids and 31 

acidic amino acids, as compared to 41 and 40 for SYNV-P, 46 and 56 for MFSV-P and 

46 and 39 for RYSV-P. The predicted theoretical isoelectric point (pI) of SYDV-P is 

7.72, suggesting that it is more basic than SYNV-P (pI: 7.67), MFSV-P (pI: 5.14), 

LNYV-P (pI: 4.59), VSV-P (pI: 4.64) and Rabies virus-P (pI: 4.99) but less basic when 

compared to RYSV-P (pI: 9.23). Hydropathy analysis (SOAP algorithm, Kyte and 

Doolittle, 1982) of SYDV-P protein predicts an extensive hydrophilic region from amino 
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acid position 1-61, 100-118 close to amino terminal and a moderately hydrophilic region 

from amino acid position 190- 205 near the carboxy terminal (Figure 3.8) with 

cumulative GRAVY (Grand average of Hydropathicity) value of -0.615. Similar but 

highly extensive hydrophilic region was found (aa position 175-235) near the C-terminus 

of SYNV-P protein. This region might posses the putative RNA binding domain as well 

as motifs for the nuclear localization signal. The estimated instability index of SYDV-P 

protein is 48.64, which suggests that the protein is chemically unstable though the in vivo 

half-life (E.coli) of SYDV-P protein is >10 hours. Coiled coil analysis of SYDV-P 

protein using COILS algorithm (Lupas et al., 1991) predicts the presence of minor but 

distinct coiled coil regions at the amino- (aa position 32-50) as well as central proximity 

of the protein (aa position between 125-145 and 150-175) and an extensive coiled region 

at the carboxy terminal between amino acids position 250 to 278 (Figure 3.9). Similar 

central and terminal coiled coil regions are also present in other Nucleorhabdovirus 

encoding P protein including MFSV-P (aa position 83-100, 200-223 and 226-247), 

RYSV-P, SYNV-P, LNYV-P and NCMV-P (Goodin et a., 2001). In contrast to that, 

animal infecting VSV and Rabies virus P protein show presence of a distinct and 

extensive coiled coil region exclusively at their amino terminal and a very weak region at 

their C-terminal (unpublished data). In this regard, the SYDV-P protein is more similar to 

the P protein of plant infecting rhabdoviruses than their animal counterpart though there 

is no significant sequence identity between them.  
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3.16 Phylogenetic relationship of SYDV with other Rhabdoviruses based on 

consensus sequences of the N ORF:  

                       Taxonomic relationships of Rhabdoviruses are primarily based on 

structural properties (genome structure), biological properties (host specificity, mode of 

transmission) and serological relationships between the members (Bourhy et al., 2005). 

Although serological and other biological data were widely used to establish evolutionary 

relationships among closely related members of viruses (Calisher et al., 1989; Shope, 

1995; Wang et al., 1995), molecular sequence analysis/ genome structure and its 

properties became more important since the development of modern molecular biological 

techniques. Molecular sequence analysis of specific genes has been used to examine the 

phylogenetic relationship among rhabdoviruses (Bourhy et al., 2005, Kondo et al. 2006, 

Dietzgen et al. 1994). For example, sequence similarity of the Nucleocapsid gene and 

conserved block III of the L polymerase gene was used to examine taxonomic 

relationships between different genotypes of Lyssaviruses and and among members of the 

Rhabdoviridae family, respectively. (Arai et al., 2003; Bourhy et al., 1993; Kuzmin et al., 

2003 and Bourhy et al., 2005). Similarly, phylogenetic relationship analysis of SYDV 

and other well-characterized members of the family Rhabdoviridae using the consensus 

region of N-ORF support the previous taxonomic characterization of SYDV based on its 

EM, serological and other biological data (Black, 1938, 1970; Falk et al., 1981, 1983) 

into genus Nucleorhabdoviruses. An unrooted tree was chosen in order to address the 

evolutionary relationship between the members of this group of viruses because the 

sequence alignment alone does not provide sufficient information to determine the node 

that represents the ancestor, the root. The phylogenetic analysis using the deduced amino 
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acid sequence of the N gene places members of the plant rhabdoviruses into two separate 

groups, genus Nucleo- and Cytorhabdoviruses. This analysis predicts that plant 

rhabdoviruses are more closely allied with members of the genus Novirhabdoviruses than 

members of the other animal rhabdovirus genus (Vesiculoviruses, Ephemeroviruses and 

Lyssaviruses). Similar phylogenetic relationship among plant and animal rhabdoviruses 

was determined based on conserved motifs of pre-A-E of L polymerase gene (Dietzgen et 

al 1994). The six sequenced members of the genus Nucleorhabdoviruses forms two sub-

groups, SYNV, MFSV and OFV fall into one sub-groups and TaVCV, MMV and RYSV 

form the other. SYDV is clustered with members of the genus Nucleorhabdoviruses, but 

seems more closely related to TaVCV, MMV and RYSV based on the phylogenetic 

analysis of consensus N-ORF (Figure 3.10). 

3.17 Subcellular localization studies of SYDV-N and P protein: 

                       In order to study the subcellular localization of SYDV-N and P protein in 

plant cell, in planta localization and co-localization experiments were performed by 

cloning the full length ORFs of N and P protein into pSITE expression vectors for 

Agrobacterum tumefeciens mediated infiltration into wild type as well as “16c” (GFP-

transgenic) Nicotiana benthamiana leaves.  

                       Agroinfiltration of fluorescent protein fusions of SYDV-N and P protein in 

non-“16c” (Figure 3.11) mock and SYDV infected “16c” N. benthamiana cells (Figure 

3.12) showed the nuclear localization of RFP: N, GFP: P and RFP: P protein in the cells. 

GFP: P localized as distinct punctuate loci in the nucleus, where as RFP: N diffused 

throughout the nucleus. In contrast to its localization in mock-inoculated plants, RFP: N 

partially colocalized with intranuclear membranes in the case of SYDV-infected plants 
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(Figure 3.12 P). These localization results were consistent with the predicted hydrophilic 

region found in SYDV-N and P protein, which might posses the putative karyophillic 

region required for nuclear localization, because no putative NLS was found either in N 

or P protein using the pSORT algorithm (algorithm for the prediction of putative NLS). 

Similar results were observed for the localization of N protein fusion of two other 

members of the genus Nucleorhabdoviruses, SYNV and MFSV, though the patterns of 

localization for P (ORF2 for MFSV) fusion protein were different in each case as 

compared to SYDV-P. SYNV-P (GFP: P) was localized in the nucleus along with some 

cytoplasmic fluorescence also observed around the periphery of the cell (Goodin et al., 

2001) and MFSV-ORF2 (YFP: ORF2) spread throughout the cell (Tsai et al., 2005).  

                        Co-infiltration of SYDV-N and P autofluorescent protein fusions, RFP: N 

and GFP: P results in a unique localization pattern when compared to their independent 

localization in N. benthamiana cells. When co-expressed, both SYDV-N and P protein 

fusions were colocalized in a distinct subnuclear locale (Figure 3.11).   This result is 

consistent with the localization pattern of co-expressed fluorescent protein fusion of 

SYNV-N and P protein, where subnuclear localization was evident for both protein 

fusions (Goodin et al., 2001). Taken together, this data suggests an exclusive nuclear 

localization patterns for SYDV-N and P protein in plant cells. Further experiments are 

required to determine the presence of any motifs for a putative nuclear localization signal 

(as evident for SYNV-N) or a specific karyophillic region (as evident for SYNV-P) in 

SYDV-N and P protein. 
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3.18 Time course systemic infection pattern of SYDV in Nicotiana benthamiana: 

                        Given the fact that infection of SYDV induces increased accumulation of 

GFP in the nuclei of 16c Nicotiana benthamiana cells, a time course infection study of 

SYDV in N. benthamiana plants was conducted in an attempt to correlate the 

accumulation of GFP upon SYDV infection with an increase in virus titer and infection 

intensity (Figure 3.13). 16c Nicotiana benthamiana plants with 4-6 fully expanded leaves 

were inoculated with SYDV for a 5-week time period and leaf tissue samples were 

collected over the entire time course. Marked symptoms of SYDV infection were first 

observed in 3rd week post inoculation (wpi) plants which include vein clearing and 

yellowing of infected leaves and become very prominent in the 5th wpi as an indication of 

increasing virus infection, although leaf malformation started around the 2nd wpi (Figure 

3.13 A, B). Both N. rustica and N. benthamiana were killed after 6-7 weeks post 

inoculation with SYDV (data not shown). This appearance of symptoms in the infected 

plant was coincident with increased accumulation of GFP in the nuclei of infected plant 

cells. Western immunoblot analysis with equivalent amount of total protein isolated from 

the 2nd, 3rd, 4th and 5th wpi infected leaves was consistent with the pattern of appearance 

of visual symptoms. Virus titers (as determined using anti-SYDV antibody) accumulated 

in the infected leaves at 3rd wpi (Figure 3.13 C). The immunoblot also showed that the 

virus titer reached to an elevated level during the 5th wpi (Figure 3.13 C). Northern 

hybridization experiment with total RNA isolated from same source of SYDV infected 

leaves probed with SYDV-N was coherent with the visual symptoms and western 

immunoblot data where differential increase of N-mRNA and genomic RNA was 

observed over the course of the time period (Figure 3.13 E). The increasing pattern of 
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viral protein and RNA from western immunoblot and northern hybridization data 

supports the initial observation of SYDV causing GFP accumulation in the infected 

nuclei of 16c Nicotiana benthamiana cells, which is believed to be consistent with the 

site of virus accumulation. Finally, the time course data suggests that the infection 

intensity is at its highest level between the 4th-5th wpi; accordingly, this is the best time 

for harvesting infected tissue.  
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3.19 Primers used in this study: 

SYDV-N gene specific degenerate primer 

1. N1F: GCNATNGARATNCCNGAY  

2. N1R: NGTNGCNGCNGGNGTNGC 

3. N2F: GCNACNCCNGCNGCNACN 

4. N2R: RTCNGGNATYTCNATNGC 

SYDV-G gene specific degenerate primer 

5. G1F: TTYCCNGCNGGNYTNAAR  

6. G1R: YTTNARNCCNGCNGGRAA 

7. G2F: TTYGAYCAYATGGAYCCN 

8. G2R:  NGGRTCCATRTGRTCRAA  

9. G-RR1: CCGTTTATACCTTTGCTAC 

SYDV-N gene specific primer for RACE (Rapid Amplification of cDNA Ends) 

10. NRR2: CTCTCTTCTGTGCTGCTGGTGG 

11. NRF2: ATCTAATGGCATGCATCCT 

12. NRR1: GTGGCGGCGGGGGTGGCTCTC 

13. NRF1: ACAAAGTTTGCCTATCTAATGGC 

SYDV-P gene specific primer for Gateway recombination 

14. (PF) att_SYDV_PF: AAAAAGCAGGCTTAATGTCAGGGCATGATATCAGTCC  

15. (PR) att_SYDV_PR: AGAAAGCTGGGTTCAGTTCTCCGTCATTC  

SYDV-P gene specific primer for RACE (Rapid Amplification of cDNA Ends) 

16. P5R:   TGGTAACTCTTTTCAAGACTAGGCAACA  
 
17. P3R: TATCTGATAGCGTGATCAGACCTCTGTGGG  
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SYDV-N gene specific primer for Gateway recombination 

18. (NF) att_SYDV_NF: AAAAAGCAGGCTTAATGAATAACGCTAACAC 
CGCTCAGTTCGTGC  
 
19. (NR) att_SYDV_NR: AGAAAGCTGGGTCTAGGGCAGCTGGTCCAGC 
ACTCCGGATTGTAG 
 
SYDV-N gene specific primer to amplify N-P intergenic region 

20. NPF1: TGAATGCTGCTCTACAATCCGGAGTGCTGG  
 
21. NPF2: GGGACATCCGGAACAGCATCAGCCACTCCG  
 
SYDV-P gene specific primer to amplify N-P intergenic region 

22. NPR1: TCTCTAAGCTTTCTCGAAGGACTGA                     
 
23. NPR2: GCTTGTTTTACTGGGTCATAAGGGGCT 
 
L gene specific degenerate primer (common to animal and plant rhabdovirus)           

24. LCF: GAAGGTAGATTTTTCTCATTAATG 
 
25: LCR: CCATCCCTTTTGCCGTAGACCTTA 
 
L gene specific degenerate primer (SYNV specific)           

26: LSF: AAAGCCAGATTTTTCTCATTGATG 
 
27: LSR: CCAACCCTTATGACATACACCTTC 
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Table 3.1: Degenerate primer sequence of SYDV-N and G peptide fragments. 

 

     
      Gene 

 
Peptide sequence 

 
Degenerate Oligo sequence 

Forward/ 
Reverse 
Sequence 

GCNATNGARATNCCNGAY Forward AIEIPDPVTA 
RTCNGGNATYTCNATNGC Reverse 
GCNACNCCNGCNGCNACN Forward 

   
 
  SYDV-N ATPAATQQLQ 

NGTNGCNGCNGGNGTNGC Reverse 
TTYCCNGCNGGNYTNAAR Forward FPAGLK 
YTTNARNCCNGCNGGRAA Reverse 
TTYGAYCAYATGGAYCCN Forward 

  
 
   SYDV-G FDHMDPGLAAYK

NGGRTCCATRTGRTCRAA Reverse 
 
      
     
Coomassie stained SYDV-N and G gel bands were cut and sequenced by Mass 

Spectrometry and Edman Degradation. Two each of N and G-specific degenerate 

oligonucleotide primers (Forward and Reverse) were designed based on their peptide 

sequences. The degenerate primers were used in RT-PCR reaction. 

(Y = C, T; R = A, G; N = A, G, T, C) 
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Figure 3.1: Flow chart of SYDV purification (modified Falk and Weather’s method, 

1983) 
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Figure 3.2: Detection of purified SYDV from Nicotiana benthamiana leaf tissue. A. 

Coomassie brilliant blue gel (CBB) image showing the G and N protein from purified 

SYDV by sucrose density gradient centrifugation (lane 2). Similar purification from 

healthy Nicotiana benthamiana leaves (lane 1) was used as negative control, which 

shows abundant Rubisco protein. B. CBB image of four independent purification of 

SYDV from Nicotiana benthamiana leaves (lane 1, 2, 3 and 4). Gel bands of G and N 

protein were cut and provided for peptide sequencing by LC/MS or Edman degradation 

analysis. 
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Figure 3.3: Strategy for cloning SYDV-N and P mRNA using gene specific 

degenerate primers.   A. SYDV was purified from N. benthamiana plants. Coomassie-

stained bands containing the N and G proteins were excised from 10% SDS-PAGE gels.  

Gels-slices were digested with trypsin and eluted peptides were purified by liquid-

chromatography and partially-sequenced by Edman degradation and mass-spectrometry 

respectively. B. Two peptide sequences were synthesized for N and three for G protein.   

C. Degenerate primers were designed based upon the first six residues of two peptides. 

Both forward and reverse primers were designed for the specific peptide sequences as the 
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relative positions of the peptides in the cognate protein sequences was not known and 

they were subjected  to RT-PCR reaction with all possible combinations using template 

cDNA derived from total RNA isolated from mock-inoculated or SYDV-infected plants.  

D. Ethidium bromide gel image of the RT-PCR reaction showing the amplification of 

SYDV-specific amplicon. A 0.45 kb SYDV-N fragment were amplified using primer 

combination N1-F/ N2-R and 2.0kb N-G specific amplicon were amplified using N-RF2/ 

G2R combination  (see chapter 3 for primer sequences).  The SYDV-N and N-G 

amplicon were cloned into pGEM-T and pJET-1 by T/A cloning.   
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Figure 3.4: Detection of N and P mRNA transcript in SYDV infected Nicotiana 

benthamiana by Northern Hybridization. Equivalent amounts of total RNA isolated 

from SYDV and CYDV infected N. benthamiana leaves (lane 2, 3 respectively) 

hybridized to genomic RNA (gRNA) and A. SYDV-N mRNA (white arrow). B. SYDV-P 

mRNA (black arrow). Cross-hybridization with the RNA transcripts from total RNA 

isolated from healthy N. benthamiana (lane 1) and SYNV infected N. benthamiana leaves 

(lane 4) was not observed. Ethidium bromide (EtBr) gel images of 25s ribosomal RNA 

were used as loading controls. 
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Figure 3.5: Strategy for cloning 5’ and 3’ ends of SYDV-N and P mRNA. A, B. A set 

of gene specific forward and reverse primers were designed based on the initial partial 

sequence of SYDV-N and P mRNA. C. Ethidium bromide (EtBr) gel picture of 5’ and 3’ 

RACE-PCR reaction of cDNA obtained from total RNA isolated from SYDV infected N. 

benthamiana tissue using universal primer mix (UPM) and N/ P gene specific primer. 

Black arrow indicates 1.4 kb 5’RACE and 0.6 kb 3’RACE amplification for SYDV-N 

mRNA as well as 0.7 kb 5’RACE and 1.0 kb 3’RACE amplification of SYDV-P mRNA. 

Cross-hybridization with the cDNA obtained from total RNA isolated from healthy N. 

benthamiana was not observed. D. N and P 5’ and 3’ RACE products were cloned into 

pGEM-T vector by T/A cloning and clones carrying the positive inserts were sent for 

sequencing. 
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Figure 3.6: Nucleotide and deduced amino acid sequence of the SYDV-N mRNA. 

The nucleotide sequence is presented as messenger RNA sequence. The 5’ and 3’ 

untranslated region of the mRNA is not taken into consideration for numbering. The 

conserved transcription initiation region found is boxed. The peptide sequences used for 

designing degenerate primers are underlined. Black arrow indicates the position of N-

specific forward and reverse primers used for RACE. 
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Figure 3.7: Nucleotide and deduced amino acid sequence of the SYDV-P mRNA. 

The nucleotide sequence is presented as messenger RNA sequence. The 5’ and 3’ 

untranslated region of the mRNA is not taken into consideration for numbering. The 

conserved transcription initiation region found is boxed. Black arrow indicates the 

position of P-specific forward and reverse primers used for RACE. 
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Figure 3.8: Hydropathy profile of A. SYDV-N and B. P protein. The plots were 

generated by Protscale using SOAP algorithm (Kyte and Doolittle, 1982). Lines above 

and below the center of the scale predicts the relative hydrophobicity and hydrophilicity 

respectively. SYDV-N protein showed a highly hydrophilic region from amino acid 

position 10-20 near the amino terminal and a stretch from position 310-440 located near 

the carboxy terminal and SYDV-P protein showed hydrophilic region from amino acid 

position 1-61, 100-118 close to amino terminal and a weak region from amino acid 

position 190- 205 near the carboxy terminal. 
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Figure 3.9: Prediction of coiled coil region in SYDV-N and P protein. Analysis of A. 

SYDV-N and B. SYDV-P protein using COIL algorithm predicts putative distinct coiled 

coil region at amino acids position 360 to 375 for SYDV-N and at the amino acid 

position 32-50, 125-145, 150-175 along with an extensive coiled region at amino acids 

position 250 to 278 for SYDV-P (using the window matrix of 14 amino acid residues).  

(Y-axis denotes the matrix of amino acid score for COIL algorithm; X-axis denotes the 

no. of amino acids/ amino acid position in the sequence) 
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Figure 3.10: Neighbor-joining tree constructed using N protein amino acid 

sequences and orthologs from selected plant and animal rhabdoviruses. Branch 

lengths are proportional to the differences between pairs of neighboring nodes. The scale 

bar represents the number of aa replacements per site. Figures on the branches represent 

the percentage of trees containing each cluster out of 1000 bootstrap replicates. The virus 

names and GenBank accession numbers of sequences used in the analysis are listed in the 

materials and method section. 
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Figure 3.11: Confocal micrographs showing the subcellular localization of SYDV-N 

and P protein in Nicotiana benthamiana cells. A-C. Confocal micrographs of GFP:P 

protein fusion showing the localization of SYDV-P protein in the nucleus. D-F. Confocal 

micrographs of RFP:N protein fusion showing the nuclear localization of SYDV-N 

protein. G-J. Co-expression of SYDV-N (RFP:N) and SYDV-P (GFP-P) results in 

subnuclear  localization of N and P protein. The DNA selective dye DAPI was used to 

validate the nuclear localization in the plant cells. 
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Figure 3.12: Confocal micrographs showing the subcellular localization of SYDV-N 

and P protein in mock and SYDV-infected “16c” Nicotiana benthamiana cells. A-H. 

Confocal micrographs of mock and SYDV-infected “16c” Nicotiana benthamiana cells 

showing the detection of RFP fluorescence (RFP alone) in the nucleus and cytoplasm. I-

P. Confocal micrographs of RFP:N protein fusion in mock and SYDV-infected “16c” 

Nicotiana benthamiana cells showing that nuclear localization of SYDV-N protein and 

RFP fluorescence is detected only from nucleus. Q-X. Confocal micrographs of RFP:P 
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protein fusion showing SYDV-P protein localized in the nucleus of mock and SYDV-

infected “16c” Nicotiana benthamiana cells with nuclear detection of RFP fluorescence . 
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Figure 3.13: Time course virus infection in SYDV infected Nicotiana leaves. A, B. 

Symptoms of SYDV infection in Nicotiana rustica and Nicotiana benthamiana leaves 

after 2nd, 3rd, 4th and 5th week post inoculation (wpi). Virus-induced symptoms are 

observed as venial chlorosis of leaves, and are severe at 4th and 5th wpi in N. rustica 

leaves, and at 5th wpi in N. benthamiana leaves. C. Western immunoblot analysis 

showing the gradual increase of SYDV encoded protein level as an indication of 
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increasing virus infection at 2nd, 3rd, 4th and 5th wpi respectively. Following separation on 

10% SDS-PAGE gel, equivalent amounts of protein from healthy N. benthamiana (lane 

C1), SYDV (lane 2,3,4 and 5) and SYNV-infected N. benthamiana (lane C2) leaves were 

transferred to nitrocellulose membrane and probed with SYDV-specific polyclonal 

antibodies raised in rabbits to disrupted virions. Cross-reaction with protein isolated from 

healthy N. benthamiana (C1) and SYNV infected N. benthamiana (C2) leaves was not 

observed. D. A coomassie stained gel image showing rubisco (50 kD) were used as 

loading controls. E. Northern hybridization showing the gradual increase of SYDV 

specific RNA as an indication of increasing virus infection at 2nd, 3rd, 4th and 5th wpi 

respectively. Equivalent amounts of total RNA, from healthy N. benthamiana (lane C1), 

SYDV (lane 2, 3, 4 and 5) and SYNV-infected N. benthamiana (lane C2) leaves were 

separated on denaturing 1.2% formaldehyde-agarose gel, transferred to positively 

charged nylon membrane and probed with SYDV-N. Cross-hybridization with total RNA 

isolated from healthy N. benthamiana (C1) and SYNV infected N. benthamiana (C2) 

leaves was not observed. F. Ethidium bromide gel images of 25s ribosomal RNA were 

used as loading controls. 

 

 
 
 
 
 
 
 
 
 
 
 
                                           Copyright © Debasish Ghosh 2007 

  80



 
                                       Chapter 4 
 
4.1 Discussion 
 
                          This dissertation reports (1) a detailed analysis of SYDV infection 

pattern on host cell endomembrane system and its comparative study with SYNV 

infection, (2) cloning and characterization of SYDV-N and P protein is reported towards 

the aim of completion of whole genome sequencing of SYDV, (3) subcellular 

localization of SYDV-N and P protein in mock-inoculated and virus-infected plants, (4) a 

comprehensive study of the symptoms of SYDV on experimental hosts, and (5) a 

phylogenetic relationship analysis of SYDV with other well-characterized plant and 

animal rhabdoviruses based on their consensus N-ORF. Currently the biology of plant-

adopted rhabdovirus-host cell interaction, especially the infection process and how this 

group of viruses alters the host cell biology and cause disease is not clearly understood. 

In recent years, due to their increasing threat to agricultural production for many crops, 

sequencing of a number of plant rhabdovirus genomes has been completed (Huang et al 

2003; Dietzgen et al 2005; Reed et al., 2005;Revill et al 2005; Tsai et al 2005) but very 

little is known about the cell biology of these newly sequenced viruses. PYDV is the type 

member of genus Nucleorhabdovirus and due to the elegant and pioneering work of 

Lindsey Black and colleagues, PYDV has long served as the paradigm for plant 

rhabdovirus research particularly in the area of virus:vector relationships (Black 1938, 

1943; McLeod 1966,1968). However, until now, no molecular data were available for 

PYDV prior to this study. In addition, two serologically distinguishable strains, SYDV 

and CYDV are now available for research. Further, the finding that N. benthamiana can 

serve as the experimental host for both SYDV and SYNV, is an excellent tool for 
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comparative virology for plant nucleorhabdoviruses. The live cell imaging study of 

SYDV and SYNV infection in GFP transgenic N. benthamiana revealed different 

infection pattern on the host cell nuclei upon virus infection. The GFP accumulation was 

found mainly in the external and internal loci of the infected nucleus in SYDV infected 

cells. In contrast, GFP accumulated throughout the nucleus in the case of SYNV 

infection. It is assumed that the differences in the patterns of increased GFP accumulation 

depend on the mode of morphogenesis adopted by SYDV and SYNV. Invaginations of 

the inner nuclear membrane upon SYNV infection result in nuclear accumulation of GFP. 

On the other hand, infection of SYDV induces expansion of the outer nuclear membrane 

with an apparent accumulation of GFP on the “outside” of the nucleus (Goodin et al., 

2005).  Additionally, the time course infection study of SYDV on N. benthamiana 

showed that the infection intensity is high around the 3rd wpi, which was followed by 

plant death at approximately six to seven weeks post inoculation (data not shown). 

Similar time course infection studies of SYNV in N. benthamiana conducted in our lab 

showed marked recovery phenotype in SYNV infected plants at 4 wpi as depicted by loss 

of viral antigens and a return of newly emergent leaves to near wild-type morphology 

(Ghosh et al, manuscript submitted). In contrast, SYDV infected plants did not recovers, 

and the protein sample from the 5th wpi contained a ~90 kD protein band in the 

Coomassie-stained gel that may correspond to the PYDV-G protein (glycoprotein) 

(Figure 3.12). Cloning of the SYDV genome and characterization of SYDV-encoded 

proteins are required to characterize this 90 kD protein, and to understand the difference 

in infection patterns as well as the recovery phenotype of SYDV and SYNV in N. 

benthamiana. In general, there are three genes in between N (Nucleocapsid) and G gene 

  82



in plant rhabdoviruses, namely P (Phosphoprotein), putative matrix protein and M 

(Matrix protein) gene (Jackson et al., 2005) (Figure 1.2). Attempt has been made to 

amplify and clone all five genes by designing degenerate primers based on partial peptide 

sequence of N and G ORF. Unfortunately, the G degenerate primer did not hybridize to 

the G gene sequence as expected. But when used in combination with an N-gene specific 

forward primer, one of the G degenerate reverse primers amplified a 2.0 kb SYDV-

specific fragment (Figure 5.6). An ORF was identified upon successful cloning and 

sequencing of that 2.0 kb SYDV-specific fragment, which showed characteristics of 

rhabdoviral P proteins, mainly based on its position next to N-ORF and its ability to 

change the localization pattern of N protein from the nucleoplasm to a sub-nuclear local 

when both proteins were co-expressed as autofluorescent protein fusion (Figure 3.11).  

Similar change in the localization pattern has also been observed for the N and P proteins 

of both SYNV and MFSV (Goodin et al 2001, Tsai et al 2005).  

                           Complete sequence and characterization of SYDV-N and P protein will 

help to understand the biology and role of these proteins in the SYDV life cycle. 

Prediction of coiled coil region in SYDV-N and P protein suggests a possible interaction 

between N and P protein, and between P protein itself similar to other well characterized 

animal and plant rhabdoviruses, because the presence of coiled coil region often mediates 

protein-protein interaction (Curran et al., 1995; Goodin et al., 2001). Studies with SYNV-

N have shown that Tyr40 in a helix-loop-helix region near the amino terminus of the N 

protein is required for efficient N-N and N-P interaction (Deng et al., 2007). In addition, 

homologous interactions mediated by the same helix-loop-helix region near the amino 

terminus of SYNV-N protein are required for formation of the viroplasm-like foci (Deng 
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et al., 2007). Yeast two-hybrid assay/ co-purification  of proteins using GST or His tag 

can be done to examine the prediction of possible interaction between SYDV-N and P 

protein, as has been done for VSV (Takacs et al., 1993) and SYNV (Goodin et al., 2001). 

Phosphorylation studies of SYDV-P protein will demonstrate the potential domain 

responsible for P protein phosphorylation as 123 putative motifs for serine kinase and 12 

putative motifs for tyrosine kinase were predicted for SYDV-P ORF using Phosphofinder 

algorithm (Peri et al., 2003; Mishra et al., 2006). Although no putative NLS’s were 

predicted for SYDV-N and P protein by the pSORT algorithm, presence of a distinct 

hydrophilic region in both the ORFs indicates there might be a specific karyophilic 

domain that guides these two proteins to be in the nucleus. The subcellular localization 

studies of autofluorescent protein fusions of SYDV-N and P protein showed that they are 

exclusively localized to the nucleus. At this point it is unknown which specific domains 

of SYDV-N and P protein and/or which precise host nuclear import system are 

responsible for the nuclear localization of these proteins. In the case of SYNV, importin-

α is thought to be required for the nuclear localization of the N protein and P protein 

contains a karyophillic region between amino acid 40-124 (Goodin et al 2001; Deng et al 

2007). Like SYNV, SYDV-N fusion protein colocalizes with the intranuclear membrane 

in SYDV infected cells, suggesting that N protein must be directed to intranuclear 

membrane during viral morphogenesis (Jackson et al., 2005). However, SYDV-P did not 

colocalize with the intranuclear membrane in SYDV infected cells. These data are 

entirely consistent with the proposed model for the spatial relationship between the sites 

of nucleorhabdovirus (SYNV) replication and morphogenesis (Goodin et al, 2007; Green 

et al, 2000), according to which, P protein delivers N protein as N/P complex to the 
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nascent strands of viral RNA and is then removed from N/P/RNA complex during the 

maturation of nucleocapsid. 

                         Taken together, nucleotide and deduced amino acid sequences of SYDV-

N and P gene along with their bioinformatic characterization will serve as excellent tools 

for future work on biochemistry and cell biology of N and P protein of SYDV. The 

nucleotide sequence of SYDV-N and P gene will not only prove beneficial to complete 

the sequencing of the entire SYDV genome, but it can be used as an efficient reagent to 

start the cloning and sequencing of another PYDV strain, CYDV (constricta strain). 

Subcellular localization data of SYDV-N and P protein will be helpful to understand the 

virus-host interaction and multiplication cycle of SYDV in host cell. Furthermore, 

complete sequence data and cell biology of these two strains of PYDV, which is the type 

species of genus Nucleorhabdoviruses, will enrich our understanding of rhabdoviruses 

especially their comparative genomics, cell biology and virus-host interaction 

4.2 Proposed strategy to complete the sequencing of SYDV genome: 

                        Given the set of primers already designed based on the SYDV gene 

sequences, completion of cloning and sequencing of the entire SYDV genome (~12.6 kb) 

should be accomplishable using primer walking method as has been done for several 

plant rhabdoviruses (Tsai et al., Revill et al., Wetzel et al). The complete sequence data of 

SYDV-N and P mRNA discussed in this dissertation as well as successful sequencing of 

already cloned PCR products (Table 5.1 Appendix) and cloning and sequencing of 

amplified 5.0 kb P-L and 7.0 kb N-L fragment (Figure 5.18 Appendix) will facilitate the 

characterization of more than half of the SYDV genome, that includes the matrix protein 

(M) gene, glycoprotein (G) gene, putative movement protein gene (s), 5’ fragment of 
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polymerase (L) protein along with conserved “gene junction” sequences unique for each 

rhabdoviruses (Heaton et al., 1989, Jackson et al., 2005). Cloning of rest of the L gene 

could be done by conventional RT-PCR or 3’ RACE using the L gene-specific 

degenerate primers based on conserved block III region of rhabdoviral L gene (Bouhry et 

al., 2005).  Completion of entire L polymerase gene sequencing should provide the 

necessary information to clone and sequence the trailer sequence at the 5’ end of SYDV 

genome. 5’ and 3’ RACE using gene specific primers (GSPs) located at the 5’ end of N 

gene and 3’ end of L gene should amplify the remaining 3’-leader as well as 5’-trailer 

sequences of SYDV genome respectively. Alternatively, a ligation-anchored PCR 

method can be applied to characterize the 5’ and 3’ terminus of SYDV genome as have 

been done for LNYV (Wetzel et al., 1994) and/ or OFV (Kondo et al., 2006).  

                       The cloning strategy described above should facilitate an efficient means to 

clone and sequence the complete SYDV genome. In addition to that, the random shotgun 

sequencing method could also be applied to characterize the SYDV genome, as has been 

done successfully for another member of genus Nucleorhabdovirus, Maize mosaic virus 

(MMV) (Reed et al., 2005) as well as several other bacterial and eukaryotic genomes 

(Venter et al., 2004; Perna et al., 2001).  This strategy employs the construction of a 

cDNA library from genomic RNA isolated from purified SYDV by random priming 

(SuperScript Choice system for cDNA synthesis Invitrogen Corp, Carlsbad, CA).  After 

successful cloning of the cDNA into an appropriate vector, screening of positive colonies 

and sequencing can provide sufficient depth of genome coverage to assemble the SYDV 

genome sequence.            

                                         Copyright © Debasish Ghosh 2007 
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                                                          APPENDICES: 

5. Complete organization of all SYDV cDNAs, PCR products and northern  
 
hybridization data 
 
                        A PCR-based strategy using degenerate primers based on partial peptide 

sequence of N and G gene has been employed to initiate the cloning and characterization 

of entire 12600 nt (~12.6 kb) long SYDV genome. The reason being, in addition to clone 

the SYDV-N and G genes, these primers should permit amplification of approximately 

half of the SYDV genome.  The advantage of this cloning strategy is, it also permit 

unambiguous assignment of the gene order between the N and G genes.  

5.1 Amplification of SYDV-N mRNA fragment: 

                        SYDV-N mRNA was amplified by RT-PCR (SuperscriptTM First strand 

cDNA synthesis system for RT-PCR, Invitrogen, Carlsbad, CA) using total RNA (5 ug) 

derived from SYDV infected N. benthamiana plants as template for first strand cDNA 

synthesis and oligo(dT) primer. The first strand cDNA synthesis reaction was catalyzed 

by SuperscriptTM II reverse transcriptase enzyme (modified Moloney murine leukemia 

virus RT).  The first strand cDNA obtained was amplified by PCR reaction using 

Dynazyme DNA polymerase and SYDV-N gene specific degenerate primer combination 

(N2F/ N1R). A 500 bp SYDV specific DNA fragment was amplified (Figure 5.1), which 

was gel purified and used as probe in a Northern hybridization for its authenticity (Figure 

3.4 A). The 500 bp PCR product was cloned into pGEM-T vector (Promega, Madison, 

WI) by T/A cloning. Cloned cDNA was subsequently used as a probe in Northern 

hybridization experiment.  Of two clones tested in this manner, one gave the expected 

hybridization patterns, a 1.5 kb N mRNA transcript and a 12.6 kb SYDV genomic RNA 
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(Figure 5.2 B). A total of 56 clones were tested and the consensus sequence of 465 bp 

PCR-amplified DNA fragment was assembled from the sequence of 10 independent 

clones.  

PCR condition for amplification of SYDV-N mRNA fragment (annealing temperature: 

45°C): 

94°C – 2 min 

94°C – 1 min 

X 35 45°C – 1 min 

72°C – 1 min 

72°C – 10 min 

5.2 5’ and 3’ RACE of SYDV-N mRNA:  

                        Two sets of N-mRNA specific primers (GSPs), forward and reverse 

(NRF1, NRR1 and NRF2, NRR2) were designed based on this initial 465 bp sequence of 

putative SYDV-N mRNA for the purpose of using these primers in RACE (Rapid 

Amplification of cDNA Ends). RT-PCR reactions with oligo(dT) primed first strand 

cDNA and NRF1/NRR1 primer pair resulted in amplification of a DNA fragment from 

cDNA synthesized from total RNA isolated from mock-inoculated N. benthamiana 

plants, in a manner similar to when degenerate N primers were used along with 

amplification of a fragment of predicted size (~350 bp) from SYDV infected N. 

benthamiana plants (PCR condition was same as Figure 4.1). The second primer pair 

(NRF2/NRR2) produced the predicted amplicon only from SYDV infected N. 

benthamiana plants (Figure 5.3). The primer pair NRF2/ NRR2 was used for 5’ and 3’ 

RACE reaction to amplify the 5’ as well as 3’ end of N-mRNA using SMARTTM 
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technology (Clontech). This method uses the combined actions of SMART II™ 

Oligonucleotide and the BD-PowerScript Reverse Transcriptase (RT). The first strand 

cDNA synthesis was carried out using 2 ug of total RNA extracted from SYDV infected 

N. benthamiana leaves and primed by a modified oligo dT primer. Following reverse 

transcription, the first strand cDNA was used directly in 5’- and 3’-RACE PCR reactions 

using N-gene-specific primer (NRF2/NRR2) and the BD SMART oligo (UPM, Universal 

primer mix A). The 5’ and 3’ RACE reactions amplified SYDV-N specific 5’ RACE 

fragment (~1.4 kb) and 3’RACE fragment (~ 600 bp) (Figure 5.4.), which were cloned 

into pGEM-T vector. The RACE fragments were gel purified and subsequently used as 

probe in Northern hybridization experiment with total RNA isolated from SYDV and 

CYDV along with mock and SYNV infected N. benthamiana leaves (negative control) 

for its SYDV specific authenticity (Figure 5.5). 

PCR condition for SYDV-N 5’ and 3’ RACE-PCR (annealing temperature: 68°C): 

5’RACE                                                                             3’RACE 

94°C – 30 sec                                                                    94°C – 30 sec                                                        

72°C – 3 min                                                                     68°C – 30 sec 
X 5 

X 20 

94°C – 30 sec                                                                    72°C – 3 min 

70°C – 30 sec 
X 5 

72°C – 3 min 

94°C – 30 sec 

68°C – 30 sec X 25 

72°C – 3 min 
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5.3 Amplification of SYDV-N-G fragment: 

                        SYDV-N-G fragment was amplified by RT-PCR using total RNA 

extracted from SYDV infected N. benthamiana leaves. Reverse transcription/ first strand 

cDNA synthesis reaction was primed by SYDV-N gene specific primer (NRF1). 

Following reverse transcription, conventional PCR was done by the same SYDV-N gene 

specific primer (NRF1) as forward primer, which was used to prime the first strand 

cDNA synthesis and G-specific degenerate oligonucleotide primer (G2R) as reverse 

primer. A virus specific amplicon of ~2.0 kb was amplified in SYDV cDNA containing 

sample, but not in healthy N.benthamiana cDNA containing control sample (Figure 

5.6A.). The PCR product was cloned into pJET-1 vector (Fermentas, MD) and 

subsequently used as a probe in Northern hybridization experiment for its virus-specific 

authenticity (Figure 5.6B).  

PCR condition to amplify the SYDV-N-G fragment (annealing temperature: 50°C): 

94°C – 2 min 

94°C – 30 sec  

50°C – 30 sec X 35 

72°C – 3 min 

72°C – 10 min 

5.4 Amplification of SYDV-P mRNA: 

                       SYDV-P mRNA was amplified by RT-PCR (SuperscriptTM First strand 

cDNA synthesis system for RT-PCR, Invitrogen, Carlsbad, CA) using total RNA (5 ug) 

derived from SYDV infected N. benthamiana plants as template for first strand cDNA 

synthesis and oligo(dT) primer. The first strand cDNA synthesis reaction was catalyzed 
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by SuperscriptTM II reverse transcriptase enzyme (modified Moloney murine leukemia 

virus RT).  The first strand cDNA obtained was amplified by PCR reaction using 

“Phusion” proofreading DNA polymerase (Finzymes, New England Biolabs) and SYDV-

P gene specific primer combination (PF/ PR). The same primer combination was used to 

clone the P ORF into pSITE expression vector by Gateway recombination reaction for 

subcellular localization studies (Invitrogen, Carlsbad, CA). A ~0.9 kb SYDV specific 

DNA fragment was amplified (Figure 5.7), which was gel purified and used as probe in a 

northern hybridization for its authenticity (Figure 3.4 B).  

PCR condition to amplify SYDV-P mRNA (annealing temperature: 55°C): 

98°C – 30 sec 

98°C – 10 sec 

55°C – 30 sec X 35 

72°C – 4 min 

72°C – 10 min 

5.5 5’ and 3’ RACE of SYDV-P mRNA:  

                       A set of P-mRNA specific forward and reverse primers (P5R/P3R) were 

designed based on this initial 843 bp sequence of putative SYDV-P mRNA for the 

purpose of using these primers in RACE (Rapid Amplification of cDNA Ends). 

Completion of the entire P mRNA cloning was done by 5’ and 3’ RACE using 

SMARTTM technology as described for SYDV-N mRNA (Clontech).  The first strand 

cDNA synthesis was carried out using 2 ug of total RNA extracted from SYDV infected 

N. benthamiana leaves and primed by a modified oligo dT primer. The first strand cDNA 

obtained, was used directly in 5’- and 3’-RACE PCR reactions using P-gene-specific 
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primer (P5R/P3R) and the BD SMART oligo (UPM, Universal primer mix A). The 5’ 

and 3’ RACE reactions amplified SYDV-P specific 5’ RACE fragment (~0.5 kb) and 

3’RACE fragment (~0.7 bp) (Figure 5.8), which were cloned into pGEM-T vector. The 

RACE fragments were gel purified and subsequently used as probe in Northern 

hybridization experiment with total RNA isolated from SYDV and CYDV along with 

mock and SYNV infected N. benthamiana leaves (negative control) for its SYDV 

specific authenticity. 

PCR condition for SYDV-P 5’ and 3’ RACE-PCR (annealing temperature: 68°C): 

5’RACE                                                                             3’RACE 

94°C – 30 sec                                                                    94°C – 30 sec                                                        

68°C – 30 sec                                                                    72°C – 3 min                                                         

72°C – 3 min                                                                     94°C – 30 sec                                                       

X 20 
X 5 

                                                                                          70°C – 30 sec 
X 5 

                                                                                          72°C – 3 min 

                                                                                          94°C – 30 sec 

X 25                                                                                           68°C – 30 sec 

                                                                                          72°C – 3 min 

5.6 Amplification of the region between N and P gene (Intergenic region): 

                       Two sets of SYDV-N (forward) and P gene (reverse) specific primers were 

designed in order to amplify the region between N and P gene. The positions of the 

primers were determined in such, so that it will amplify the region between N and P gene 

along with flanking 3’ end of N gene as well as 5’ end of P gene at the 5’ and 3’ end of 

the predicted amplifying fragment, respectively. Reverse transcription reaction was 
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conducted using 5 ug of total RNA isolated from SYDV infected N. benthamiana leaves 

by SuperscriptTM First strand cDNA synthesis system for RT-PCR according to 

manufacturer’s instruction (Invitrogen, Carlsbad, CA). The first strand cDNA was used 

as template in the PCR reaction using “Phusion” high fidelity DNA polymerase 

(Finzymes, New England Biolabs) and combination of two different primer sets, 

NPF1/NPR1 and NPF2/ NPR2 respectively. The PCR reaction results in predicted 0.5 kb 

and 0.6 kb SYDV specific DNA fragment (Figure 5.9). Cross hybridization with the 

cDNA obtained from total RNA isolated from healthy N. benthamiana leaves was not 

observed using the same primer combination. The PCR products were cloned into 

pGEM-T vector (Promega, Madison, WI) by T/A cloning. Colonies were screened and 4 

independent clones carrying the positive insert for each DNA fragment were sent off for 

sequencing. Analysis of the sequences revealed 327 nt long region between SYDV-N and 

P gene (Figure 5.10). This 327 nt long putative region between SYDV-N and P gene is 

longer when compared to 14-16 nt long “gene junction” of other plant or animal 

rhabdoviruses (SYNV, MFSV, VSV, Rabies) (Heaton et al., 1989, Tsai et al., 2005), 

although 400-500 nt long intergenic region was evident between G and L gene in case of 

some fish rhabdoviruses (Thoulouze et al., 2004). Further experiments and analysis are 

required to validate this data.  
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PCR condition to amplify the region between SYDV-N and P gene (annealing 

temperature: 60°C):  

98°C – 30 sec 

98°C – 10 sec 

60°C – 30 sec X 35 

72°C – 2 min 

72°C – 10 min 

5.7 Amplification of SYDV-G gene: 

                       To amplify the SYDV-G gene, RT-PCR was conducted (SuperscriptTM 

First strand cDNA synthesis system for RT-PCR, Invitrogen, Carlsbad, CA) using total 

RNA (5 ug) derived from SYDV infected N. benthamiana leaves as template for first 

strand cDNA synthesis and random hexamer as primer.  The first strand cDNA obtained 

was amplified by PCR reaction using “Dynazyme” proofreading DNA polymerase and 

SYDV-G gene specific degenerate primer combination (G1F/G2R). A 1.0 kb SYDV 

specific DNA fragment was amplified (Figure 5.11). Cross hybridization with the cDNA 

obtained from total RNA isolated from healthy N. benthamiana leaves was not observed 

using the same primer combination. The 1.0 kb PCR product was gel purified and used as 

probe in a Northern hybridization experiment using total RNA isolated from SYDV 

infected N. benthamiana leaves. The northern hybridization failed to reveal the 

authenticity of this SYDV-G gene specific 1.0 kb PCR product. Further experiments are 

necessary using different combination of G gene specific degenerate primers and PCR 

annealing temperature to validate this amplification. 
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PCR condition to amplify SYDV-G gene fragment (annealing temperature: 45°C): 

94°C – 2 min 

94°C – 1 min 

X 35 45°C – 1 min 

72°C – 1 min 

72°C – 10 min 

5.8 Amplification of SYDV-L gene fragment: 

                      Given the fact that there are three highly conserved regions (pre motif A, 

motif A and motif B) present in the block III segment of RNA dependent RNA 

polymerase (L) gene of all plant and animal rhabdoviruses characterized so far (Bourhy 

et al., 2005), two sets of forward and reverse degenerate primers were designed 

(LCF/LCR, LSF/LSR) based on the conservative pre motif A and motif B region. All the 

primer sets were tested by in silico PCR (AmplifyTM Software) using the L gene sequence 

of SYNV, VSV and Rabies virus as well as other plant nucleo- and cytorhabdoviruses 

(MFSV, MMV, TaVCV, OFV, RYSV, LNYV), that were not included in the 

phylogenetic analysis study conducted by Bourhy et al. SYDV-L gene fragment was 

amplified by RT-PCR using total RNA extracted from SYDV infected N. benthamiana 

leaves. Reverse transcription/ first strand cDNA synthesis reaction was primed by 

SYDV-N gene specific primer (NRF1). Following reverse transcriptions, conventional 

PCR was done by using “Phusion” proofreading DNA polymerase (Finzymes, New 

England Biolabs) and L gene specific degenerate forward and reverse primer (LCF/LCR). 

Two virus specific amplicon, predicted 0.45 kb and an authentic SYDV specific 2.0 kb 

were amplified in SYDV cDNA containing sample using different PCR conditions, but 
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not in healthy N.benthamiana cDNA containing control sample (Figure 5.12). The PCR 

products were gel purified and subsequently used as a probe in Northern hybridization 

experiment for its virus-specific authenticity (Figure 5.13).  

PCR condition of SYDV-L amplification {annealing temp.: 50°C (0.45 kb)/ 55°C (2.0 

kb)}: 

0.45 kb fragment                                                                          2.0 kb fragment 

98°C – 30 sec                                                                              98°C – 30 sec                                             

98°C – 10 sec                                                                              98°C – 10 sec  

50°C – 30 sec                                                                              55°C – 30 sec 

72°C – 2 min                                                                               72°C – 3 min 

X 35 X 35 X 35 

72°C – 10 min                                                                             72°C – 10 min 

5.9 Amplification of SYDV-N-L fragment: 

                          SYDV-N-L fragment was amplified by RT-PCR (SuperscriptTM First 

strand cDNA synthesis system for RT-PCR, Invitrogen, Carlsbad, CA) using total RNA 

(5 ug) derived from SYDV infected N. benthamiana plants as template for first strand 

cDNA synthesis and SYDV-N gene specific primer (NRF2).  The first strand cDNA 

obtained was amplified by PCR reaction using “Phusion” proofreading DNA polymerase 

(Finzymes, New England Biolabs) and SYDV-N gene specific forward (NRF2) and L-

gene specific degenerate primer (LCR). A ~7.0 kb SYDV specific DNA fragment was 

amplified (Figure 5.14), which was gel purified and used as probe in a Northern 

hybridization for its authenticity (Figure 5.15). Cross hybridization with the cDNA 

obtained from total RNA isolated from healthy N. benthamiana leaves was not observed 

using the same primer combination. 
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PCR condition to amplify SYDV-N-L fragment (annealing temperature: 55°C): 

98°C – 30 sec 

98°C – 10 sec 

55°C – 30 sec X 35 

72°C – 6 min 

72°C – 10 min 

5.10 Amplification of SYDV-specific 5.0 kb fragment: 

                        In order to amplify the region between SYDV-P and L gene, RT-PCR 

reaction was conducted using total RNA extracted from SYDV infected N. benthamiana 

leaves. Reverse transcription/ first strand cDNA synthesis reaction was primed by 

SYDV-N gene specific primer (NRF1). Following reverse transcription, PCR was done 

by using Phusion high fidelity DNA polymerase (Finzymes, New England Biolabs) along 

with a forward primer designed based on the flanking sequence next to P gene (PF1), and 

L gene specific degenerate oligonucleotide primer (LCR) as reverse primer. A virus 

specific amplicon of ~5.0 kb was amplified in SYDV cDNA containing sample, but not 

in healthy N.benthamiana cDNA containing control sample (Figure 5.16).  

PCR condition to amplify the SYDV-specific 5.0 kb fragment (annealing temperature: 

55°C): 

98°C – 30 sec 

98°C – 10 sec 

55°C – 30 sec X 35 

72°C – 4 min 

72°C – 10 min 
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5.11 Amplification of SYDV-G-L fragment: 

                        SYDV-G-L fragment was amplified by RT-PCR (SuperscriptTM First 

strand cDNA synthesis system for RT-PCR, Invitrogen, Carlsbad, CA) using total RNA 

(5 ug) derived from SYDV infected N. benthamiana plants as template for first strand 

cDNA synthesis. The first strand cDNA synthesis reaction was catalyzed and primed by 

SuperscriptTM II reverse transcriptase enzyme (Invitrogen, Carlsbad CA) and SYDV-N 

gene specific primer (NRF1) respectively.  Following first strand cDNA synthesis, PCR 

reaction was conducted using Phusion high fidelity DNA polymerase and SYDV-G and L 

gene specific degenerate primer combination (G2F/ LSR). PCR reaction results in 

amplification of SYDV specific 2.0 kb DNA fragment (Figure 5.17). Cross hybridization 

with the cDNA obtained from total RNA isolated from healthy N. benthamiana leaves 

was not observed using the same primer combination. 

PCR condition for amplification of SYDV-G-L fragment (annealing temperature: 50°C):   

98°C – 30 sec 

98°C – 10 sec 

50°C – 30 sec X 35 

72°C – 3 min 

72°C – 10 min 
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Table 5.1: Complete chart of SYDV PCR product and cloned fragments. 

 

 

     
#    PCR product   Size Template cDNA   Primer 

Annealing temp. 
(°C) 

Cloning 
status 

1 SYDV-N 465 bp    oligoDT primed N2F/N1R 45 Cloned 

2 SYDV-N 5'RACE 1.4 kb    oligoDT primed UPM/NRR2 68 Cloned 

3 SYDV-N 3'RACE 0.6 kb    oligoDT primed NRF1/UPM 68 Cloned 

4 N-P junction 0.6 kb    NRF1 primed NPF1/NPR1 60 Cloned 

5 N-P junction 0.5 kb    NRF1 primed NPF2/NPR2 60 Cloned 

6 SYDV-P 5'RACE 0.5 kb    oligoDT primed UPM/P5R 68 Cloned 

7 SYDV-P 3'RACE 0.7kb    oligoDT primed P3R/UPM 68 Cloned 

8 SYDV-P 0.9kb    NRF1 primed PF/PR 55 Cloned 

  9    SYDV-N-G 2.0kb    NRF1 primed NRF1/G2R 50 Cloned 

10 SYDV-G 1.0kb    hexamer primed G1F/G2R 45 Not cloned 

11 SYDV-P-L 5.0kb    NRF1 primed PF1/LCR 55 Not cloned 

12 SYDV-L 2.0kb    NRF1 primed LCF/LCR 55 Not cloned 

13 SYDV-L 0.45kb    NRF1 primed LCF/LCR 50 Not cloned 

14 SYDV-G-L 2.0kb    NRF1 primed G2F/LSR 50 Not cloned 

15 SYDV-N-L 7.0kb    NRF1 primed NRF2/LCR 55 Not cloned 

 
 

List of cloned / not cloned SYDV PCR product with their size, template cDNA and 

primer used along with annealing temperature for the PCR reaction. Sequences of the 

primers are listed in chapter 2. Note SYDV-N-G 2.0 kb fragment was cloned in GeneJET 

(pJET1) vector; all others were cloned in pGEM-T vector (Promega). 
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Figure 5.1: Amplification of SYDV-N gene. Amplification of SYDV-N by using N-

specific degenerate forward and reverse primer (N2F/N1R). RT-PCR was conducted 

using total RNA derived from healthy as well as SYDV-infected Nicotiana benthamiana 

leaves as template for cDNA synthesis.  Black arrow indicates the amplification of 0.45 

kb SYDV-N specific amplicon. 

 
 
 
 
 
 
 
 
 
 

  100



 
 
 
 
Figure 5.2: Northern hybridization showing the validation of SYDV-N clones.  

Equivalent amounts of total RNA from healthy N. benthamiana (lane 1), and SYDV-

infected N. benthamiana (lane 2) leaves were separated on denaturing 1.2% 

formaldehyde-agarose gel, transferred to positively charged nylon membrane and probed 

with A. 0.5 kb SYDV-N PCR product as positive control. B. SYDV-N clone. Cross-

hybridization with total RNA isolated from healthy Nicotiana benthamiana leaves (lane 

1) was not observed. EtBr gel image of 25s rRNA was used as loading control. 

 
 
 
  
 

  101



 
 
 
 
 
 
Figure 5.3: RT-PCR of SYDV-infected Nicotiana benthamiana cDNA using SYDV-N 

gene specific primer (N-GSP). RT-PCR reactions using cDNA synthesized from total 

RNA isolated from mock-inoculated (lane 1) and SYDV (lane 2) or CYDV-infected (lane 

3) Nicotiana benthamiana leaves and primers designed from the initial 465 bp SYDV N 

mRNA sequence. The NRF1/NRR1 primers amplified a DNA fragment from cDNA 

synthesized from mock-inoculated Nicotiana benthamiana total RNA along with the 

expected fragment from SYDV-containing samples where as the primer pair 

NRF2/NRR2 was SYDV-specific only. 
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Figure 5.4: 5’ and 3’ RACE (Rapid Amplification of cDNA Ends) of SYDV-N 

mRNA. EtBr gel image of 5’ and 3’ RACE-PCR reaction showing the amplification of 

SYDV-N specific amplicon. Black arrow indicates 1.4 kb SYDV- N specific 5’ RACE 

(lane 2) and 0.6 kb 3’ RACE (lane 4) amplicon from SYDV-infected Nicotiana 

benthamiana cDNA. Cross hybridization with cDNA synthesized from healthy Nicotiana 

benthamiana (lane 1 and 3) was not observed. 
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Figure 5.5: Validation of SYDV-N 5’- and 3’ RACE amplicon by Northern 

Hybridization. Equivalent amounts of total RNA isolated from SYDV and CYDV 

infected N. benthamiana leaves (lane 2, 3 respectively) hybridized to genomic RNA 

(gRNA) and SYDV-N mRNA when probed with A. SYDV-N 5’RACE and B. SYDV-N 

3’ RACE PCR product respectively. Cross-hybridization with the RNA transcripts from 

total RNA isolated from healthy N. benthamiana (lane 1) and SYNV infected N. 

benthamiana leaves (lane 4) was not observed. Ethidium bromide (EtBr) gel images of 

25s ribosomal RNA were used as loading controls. 
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Figure 5.6: Amplification and validation of SYDV-N-G 2.0 kb amplicon. A. EtBr gel 

image of RT-PCR reaction showing amplification of 2.0 kb SYDV-specific DNA 

fragment (black arrow) from SYDV-infected Nicotiana benthamiana cDNA (lane 2) 

using N specific (NRF1) forward and G (G2R) reverse primer. Cross hybridization with 

cDNA synthesized from healthy Nicotiana benthamiana (lane 1) was not observed. B. 

Validation of SYDV-N-G 2.0 kb amplicon by Northern Hybridization. Equivalent 

amounts of total RNA isolated from SYDV and CYDV infected N. benthamiana leaves 

(lane 2, 3 respectively) hybridized to genomic RNA (gRNA) and SYDV-N, SYDV-P 

mRNA. Cross-hybridization with the RNA transcripts from total RNA isolated from 

healthy N. benthamiana (lane 1) and SYNV infected N. benthamiana leaves (lane 4) was 
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not observed. Ethidium bromide (EtBr) gel images of 25s ribosomal RNA were used as 

loading controls. 
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Figure 5.7: Amplification of SYDV-P gene. Amplification of SYDV-P by using P gene 

specific (P-GSP) forward and reverse primer. RT-PCR was conducted using total RNA 

derived from healthy as well as SYDV-infected Nicotiana benthamiana leaves as 

template for cDNA synthesis.  Black arrow indicates the amplification of 0.9 kb SYDV-P 

specific amplicon (lane 2). Cross hybridization with cDNA synthesized from healthy 

Nicotiana benthamiana (lane 1) was not observed. 
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Figure 5.8: 5’ and 3’ RACE (Rapid Amplification of cDNA Ends) of SYDV-P 

mRNA. EtBr gel image of 5’ and 3’ RACE-PCR reaction showing the amplification of 

SYDV-P specific amplicon. Black arrow indicates 0.5 kb SYDV- P specific 5’ RACE 

(lane 2) and 0.7 kb 3’ RACE (lane 4) amplicon from SYDV-infected Nicotiana 

benthamiana cDNA. Cross hybridization with cDNA synthesized from healthy Nicotiana 

benthamiana (lane 1 and 3) was not observed. 
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Figure 5.9: Amplification of the region between SYDV-N and P gene. EtBr gel image 

of RT-PCR reaction showing amplification of 0.6 and 0.5 kb SYDV-specific DNA 

fragment (black arrow) from SYDV-infected Nicotiana benthamiana cDNA (lane 2) 

using the N- and P- gene specific primer (N-GSP, P-GSP) combination NPF1/NPR1 and 

NPF2/NPR2 respectively. Cross hybridization with cDNA synthesized from healthy 

Nicotiana benthamiana (lane 1) was not observed. 
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Figure 5:10: Nucleotide sequence of the region between SYDV-N and P gene. The 

nucleotide sequence is presented as messenger RNA sequence. The N and P mRNA 

sequence is not taken into consideration for numbering. The underlined sequence 1 and 2 

represents the polyadenylation signal of N-mRNA and conserved transcription initiation 

signal of P-mRNA, respectively. The stop codon (UAG) of N-mRNA and start codon 

(AUG) of P-mRNA are shown in red.  
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Figure 5.11: Amplification of SYDV-G gene. Amplification of SYDV-G by using G-

specific degenerate forward and reverse primer (G1F/G2R). RT-PCR was conducted 

using total RNA derived from healthy as well as SYDV-infected Nicotiana benthamiana 

leaves as template for cDNA synthesis.  Black arrow indicates the amplification of 1.0 kb 

SYDV-G specific amplicon. Cross hybridization with cDNA synthesized from healthy 

Nicotiana benthamiana (lane 1) was not observed. 
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Figure 5.12: Amplification of SYDV-L gene. Amplification of SYDV-L gene by using 

L-specific degenerate forward and reverse primer (LCF/LCR) designed based on 

conserved block III region of rhabdoviral L gene. RT-PCR was conducted using total 

RNA derived from healthy as well as SYDV-infected Nicotiana benthamiana leaves as 

template for cDNA synthesis.  Black arrow indicates the amplification of authentic 

SYDV specific A. 2.0 kb and B. predicted 0.45 kb SYDV-L amplicon. Cross 

hybridization with cDNA synthesized from healthy Nicotiana benthamiana (lane 1) was 

not observed. 
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Figure 5.13: Validation of SYDV-L 2.0 kb amplicon by northern hybridization. 

Equivalent amounts of total RNA isolated from SYDV and CYDV infected N. 

benthamiana leaves (lane 2, 3 respectively) hybridized to genomic RNA (gRNA) and 

SYDV-L mRNA. Cross-hybridization with the RNA transcripts from total RNA isolated 

from healthy N. benthamiana (lane 1) and SYNV infected N. benthamiana leaves (lane 4) 

was not observed. Ethidium bromide (EtBr) gel images of 25s ribosomal RNA were used 

as loading controls. 
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Figure 5.14: Amplification of SYDV-N-L fragment. EtBr gel image of RT-PCR 

reaction showing amplification of 7.0 kb SYDV-specific DNA fragment (black arrow) 

from SYDV-infected Nicotiana benthamiana cDNA (lane 2) using SYDV-N specific 

(NRF2) forward and L degenerate (LCR) reverse primer. Cross hybridization with cDNA 

synthesized from healthy Nicotiana benthamiana (lane 1) was not observed. 
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Figure 5.15: Validation of SYDV-N-L 7.0 kb amplicon by northern hybridization. 

Equivalent amounts of total RNA isolated from SYDV and CYDV infected N. 

benthamiana leaves (lane 2, 3 respectively) hybridized to genomic RNA (gRNA) and 

SYDV-N and P-mRNA. Cross-hybridization with the RNA transcripts from total RNA 

isolated from healthy N. benthamiana (lane 1) and SYNV infected N. benthamiana leaves 

(lane 4) was not observed. Ethidium bromide (EtBr) gel images of 25s ribosomal RNA 

were used as loading controls. 
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Figure 5.16: Amplification of SYDV specific 5.0 kb fragment. EtBr gel image of RT-

PCR reaction showing amplification of 5.0 kb SYDV-specific DNA fragment (black 

arrow) from SYDV-infected Nicotiana benthamiana cDNA (lane 2) using forward primer 

(PF1) next to P gene and L degenerate (LCR) reverse primer. Cross hybridization with 

cDNA synthesized from healthy Nicotiana benthamiana (lane 1) was not observed. 
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Figure 5.17: Amplification of SYDV-G-L fragment. EtBr gel image of RT-PCR 

reaction showing amplification of 2.0 kb SYDV-specific DNA fragment (black arrow) 

from SYDV-infected Nicotiana benthamiana cDNA (lane 2) using SYDV-G degenerate 

(G2F) forward and L degenerate (LSR) reverse primer. Cross hybridization with cDNA 

synthesized from healthy Nicotiana benthamiana (lane 1) was not observed. 
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Figure 5.18: PCR amplification map of SYDV genome. Each amplified PCR product 

is represented by a single line along with their respective size. Flanking is the 

combination of forward and reverse primer used to amplify each specific PCR fragment 

(Please see the primer section for the sequence of each primer used). 

 

 

 

 

 

                                                               
                                          
                                                  Copyright © Debasish Ghosh 2007                        

  118



References/ Bibilography:              

Barrus M.F, and Chupp CC (1922) Yellow dwarf of potatoes. Phytopathology 12:122-

133 

 

Black, L. M. (1970). Potato yellow dwarf virus.  C.M.I./A.A.B. Description of plant 

viruses. No. 35. Cambrian News, LTD., Aberystwyth, Wales. 

 

Black, L. M. (1938). Properties of Potato yellow dwarf virus Phytopathology 28:863-874 

 

Black L.M. (1943) Some relationships between PYDV and clover leafhopper. 

Phytopathology 33:363-371 

 

Bourhy H, Cowley JA, Larrous F, Holmes EC, Walker PJ. (2005) Phylogenetic 

relationships among rhabdoviruses inferred using the L polymerase gene.  

J Gen Virol. 86:2849-2858.  

 

Callaghan B., Dietzen R.G. (2005). Nucleocapsid gene variability reveals two subgroups 

of Lettuce necrotic yellows virus. Arch. Virol. (150): 1661-1667. 

 

Chakrabarty R, Banerjee R, Chung S, Farman M, Citovsky V, Hogenhout  S.A,  Tzfira 

T, Goodin M.M (2007) PSITE vectors for stable integration or transient expression of 

autofluorescent protein fusions in plants: probing Nicotiana benthamiana-virus 

interactions. Mol Plant Microbe Interact. 2007 Jul; 20 (7):740-50 17601162 

  119



Chen J-L, Das T, Banerjee AK. (1997). Phosphorylated states of vesicular stomatitis 

virus P protein in vitro and in vivo. Virology 228:200–12. 

 

Chiu et al. Potato yellow dwarf virus in leafhopper cell culture. (1970), Virology 40;387-396 

 

Choi TJ, Kuwata S, Koonin EV, Heaton LA, Jackson AO. (1992) Structure of the L 

(polymerase) protein gene of sonchus yellow net virus. Virology. 189:31-39. 

 

Christie, S. R., Christie, R. G., and Edwardson, J. R. 1974. Transmission of a bacilliform 

virus of sowthistle and Bidens pilosa. Phytopathology 64 :840-845 . 

 

Contamine. D. (1984) The late functions of Drosophila sigma virus. Arch. Virol. 1984; 

82(1-2):31-47 

 

Creamer R., He X. (1997) Transmission of Sorghum Stunt Mosaic Rhabdovirus by the 

Leafhopper Vector, Graminella sonora (Homoptera: Cicadellidae). Plant Diseases (81) 

1: 63-65 

 

Curran, J., Boeck R., Lin-Marq N., Lupas A., Kolakofsky D. (1995) Paramyxovirus 

phosphoproteins form homotrimers as determined by an epitope dilution assay, via 

predicted coiled coils. Virology 214:139–149. 

 

  120

javascript:AL_get(this,%20'jour',%20'Arch%20Virol.');


Das S.C., Pattnaik A.K. (2004) Phosphorylation of Vesicular Stomatitis Virus 

Phosphoprotein P Is Indispensable for Virus Growth. J of Virol. (78) 12: 6420-6430. 

 

Das T., Pattnaik A.K., Takacs A.M., Li T., Hwang L.N., Banerjee A.K.(1997) Basic 

amino acid residues at the carboxy-terminal eleven amino acid region of the 

phosphoprotein (P) are required for transcription but not for replication of vesicular 

stomatitis virus genome RNA. Virology 238:103–114. 

 

Deng M, Bragg J.N, Ruzin S, Schichnes D, King D, Goodin M.M, Jackson A.O. (2007) 

Role of the Sonchus Yellow Net Virus N Protein in Formation of Nuclear Viroplasms. J 

Virol. 2007 May; 81(10): 5362–5374. 

 

Dietzgen RG, Callaghan B, Wetzel T, Dale JL. (2005) Completion of the genome 

sequence of Lettuce necrotic yellows virus, type species of the genus Cytorhabdovirus. 

Virus Res. 2005 Nov 25 

 

Duane, M. (1993). Molecular biophysics, p. 432–455. Oxford University Press, 

New York, N.Y. 

 

Falk BW, Weathers LG, Greer FC. (1981) Identification of Potato yellow dwarf virus 

occurring naturally in California. Plant Disease 65:81-83 

 

  121



Falk BW, Weathers LG. (1983) Comparison of Potato yellow dwarf virus Serotypes. 

Phytopathology 73:81-85 

 

Felsenstein, J. (1989) PHYLIP -- Phylogeny Inference Package (Version 3.2). Cladistics 

5: 164-166 

 

Frampton V. L., Linn M.B., Hansing E.D. (1942) The spread of virus diseases of the 

yellow type under field conditions. Phytopathology (32): 799-808 

 

Gao, Y., N. J. Greenfield, D. Z. Cleverley, and J. Lenard. (1996) The transcriptional 

form of the phosphoprotein of vesicular stomatitis virus is a trimer: structure and 

stability. Biochemistry 35:14569–14573. 

 

Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch 

A.; (2005).Protein Identification and Analysis Tools on the ExPASy Server; 

(In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press pp. 571-

607 

Goodin M., Chakrabarty R., Yelton S., Martin K., Clark A.J., Brooks R. (2007). 

Membrane and protein dynamics in live plant nuclei infected with Sonchus yellow net 

virus, a plant-adapted rhabdovirus. J Gen Virol 88 (2007), 1810-1820. 

 
 

 

  122



Goodin M, Yelton S, Ghosh D, Mathews S, Lesnaw J. (2005) Live-cell imaging of 

rhabdovirus-induced morphological changes in plant nuclear membranes. Mol Plant 

Microbe Interact. 2005 18:703-709. 

 

Goodin, M. M., Austin, J., Tobias, R., Fujita, M., Morales, C. and Jackson, A. O. (2001).  

Interactions and nuclear import of the  N and P proteins of Sonchus yellow net virus, a 

plant nucleorhabdovirus.  J. Virol. 75:9393-9406. 

 

Goodin, M. M., Dietzgen, R. G., Schichnes, D., Ruzin, S., and Jackson, A. O. (2002). 

pGD vectors: versatile tools for the expression of green and red fluorescent protein 

fusions in agroinfiltrated plant leaves. Plant Journal. 31:375-383. 

 

Green T.J., Macpherson S., Qiu S., Lebowitz J., Wartz G.W., Luo M. (2000)  Study of 

the assembly of Vesicular stomatitis virus N protein: Role of the P protein. J of Virol. 74 

(20) 9515-9524. 

 

Green T.J., Zhang X, Wertz G.W, Luo M. (2006) Structure of the Vesicular Stomatitis 

Virus Nucleoprotein-RNA Complex. Science 313 (5785) 357-360 

 

Gupta A.K., Das T., Banerjee A.K. (1995) Casein kinase II is the P protein 

phosphorylating cellular kinase associated with the ribonucleoprotein complex of purified 

vesicular stomatitis virus. J of Gen. Virol. (76) 365-372. 

 

  123



Heaton LA, Hillman BI, Hunter BG, Zuidema D, Jackson AO. (1989).  Physical map of 

the genome of sonchus yellow net virus, a plant rhabdovirus with six genes and 

conserved gene junction sequences. Proc Natl Acad Sci U S A.; 86(22): 8665–8668. 

 

Herranz M.C., Pallás V. (2004) RNA-binding properties and mapping of the RNA-

binding domain from the movement protein of Prunus necrotic ringspot virus. J Gen 

Virol 85 (2004), 761-768 

 

Hogenhout, S. A., Redinbaugh, M. G., and Ammar, el-D. (2003). Plant and animal 

rhabdovirus host range: a bug's view. Trends Microbiol. 11:264-271 

 

Hsu, H.T., Black, L.M. (1973) PEG purification of Potato yellow dwarf virus 

Phytopathology 63:692-696 

 

Hsu H.T., Black LM. (1973) Inoculation of vector cell monolayers with potato yellow 

dwarf virus. Virology. 52:187-198. 

 

Hsu H.T., Black LM. (1974) Multiplication of potato yellow dwarf virus on vector cell 

21 monolayers. Virology. 59:331-334. 

 

Huang Y, Zhao H, Luo Z, Chen X, Fang RX. (2003) Novel structure of the genome of 

Rice yellow stunt virus: identification of the gene 6-encoded virion protein. J Gen Virol. 

84(Pt 8):2259-64. 

  124



Huang YW, Geng YF, Ying XB, Chen XY, Fang RX. (2005) Identification of a 

movement protein of rice yellow stunt rhabdovirus. J Virol. 2005 Feb;79(4):2108-14.  

 

Hwang, L. N., N. Englund, T. Das, A. K. Banerjee, and A. K. Pattnaik. (1999). Optimal 

replication activity of vesicular stomatitis virus RNA polymerase requires 

phosphorylation of a residue(s) at carboxy-terminal domain II of its accessory subunit, 

phosphoprotein P. J. Virol. 73:5613–5620. 

 

Jackson A. O., Dietzgen RG, Goodin MM, Bragg JN, Deng M. (2005) Biology of plant 

rhabdoviruses. Annu Rev Phytopathol 43:623-60 

 

Jackson A.O. (1978) Partial Characterization of the structural proteins of Sonchus 

yellow net virus. Virology (87): 172-181. 

 

Jahanshiri F., Eshaghi M., Yusoff K. (2005) Identification of phosphoprotein: 

Phosphoprotein and phosphoprotein:nucleocapsid protein interaction domains of the 

Newcastle disease virus. Arch  Virol 150: 611-618. 

 

Jayakar HR, Jeetendra E, Whitt MA. (2004) Rhabdovirus assembly and budding.  

Virus Res. 2004 Dec;106(2):117-32. Review. 

 

Kalderon D, Roberts BL, Richardson WD, Smith AE (1984). "A short amino acid 

sequence able to specify nuclear location". Cell 39 (3 Pt 2): 499-509. 

  125



Kondo H., Maeda T., Shirako Y, Tamada T. (2006) Orchid fleck virus is a rhabdovirus 

with an unusual bipartite genome. J Gen Virol 87 (2006), 2413-2421 

 

Kyte J., Doolittle R.F. (1982). A simple method for displaying the hydropathic character 

of a protein. J Mol Biol.1982 May 5;157(1):105-32. 

 

Lockhart, B.E.L. (1989) Recurrence of natively occurring potato yellow dwarf virus in 

Minnesota. Plant Disease 73, 321-323. 

Lupas, A., Van Dyke, M., and Stock, J. (1991) Predicting Coled Coils from Protein 

Sequences, Science 252:1162-1164. 

 
Lupas, A. (1996) Prediction and Analysis of Coiled-Coil Structures Meth. Enzymology 

266:513-525. 

 

Lusk C.P, Blobel G, and King M.C (2007). Highway to the inner nuclear membrane: 

rules for the road. Nature Reviews Molecular Cell Biology 8, 414-420 

 
MacLeod, R., Black, L. M., and Moyer, F. H. (1966). The fine structure and intracellular 

localization of potato yellow dwarf virus. Virology. 29:540-552. 

 

MacLeod, R (1968). An interpretation of the observed polymorphism of potato yellow 

dwarf virus. Virology 34: 771-777 

 

 

  126



Martins CR, Johnson JA, Lawrence DM, Choi TJ, Pisi AM, Tobin SL, Lapidus D, 

Wagner JD, Ruzin S, McDonald K, Jackson AO. (1998) Sonchus yellow net rhabdovirus 

nuclear viroplasms contain polymerase-associated proteins. J Virol. 72:5669-5679.  

 

Mishra, G., Suresh, M., Kumaran, K., Kannabiran, N., Suresh, S., Bala, P., Shivkumar, 

K., Anuradha, N., Reddy, R., Raghavan, T.M., Menon, S., Hanumanthu, G., Gupta, M., 

Upendran, S., Gupta, S., Mahesh, M., Jacob, B., Matthew, P., Chatterjee, P., Arun, K. S., 

Sharma, S., Chandrika, K. N., Deshpande, N., Palvankar, K., Raghavnath, R., 

Krishnakanth, K., Karathia, H., Rekha, B., Rashmi, N. S., Vishnupriya, G., Kumar, H. G. 

M., Nagini, M., Kumar, G. S. S., Jose, R., Deepthi, P., Mohan, S. S., Gandhi, T. K. B., 

Harsha, H. C., Deshpande, K. S., Sarker, M., Prasad, T. S. K. and Pandey, A. Human 

Protein Reference Database - 2006 Update. Nucleic Acids Research. 34, D411-D414. 

 

Nakai K., Kanehisa M. (1995) Expert system for predicting protein localization sites in  

gram-negative bacteria. Proteins. 1991;11(2):95-110 

 

Pattnaik A.K., Hwang L., Li T., Englund N., Manjula M., Das T., Banerjee  A.K. (1997) 

Phosphorylation within the Amino-Terminal Acidic Domain I of the Phosphoprotein of 

Vesicular Stomatitis Virus Is Required for Transcription but Not for Replication. J of 

Virol. (71) 11: 8167-8175. 

 

 

 

  127



Perna N.T., Guy Plunkett III, Burland V., Mau B., Glasner J.D., Rose D.J., Mayhew 

G.F., Evans P.S., Gregor J., Kirkpatrick H.A., György Pósfai, Hackett J., Klink S., Boutin 

A., Shao Y., Miller L., Grotbeck E.J., Davis N.W., Lim A., Dimalanta E., Potamousis 

K.D., Apodaca J., Anantharaman T.S., Lin J., Yen G., Schwartz D.C., Welch R.A., 

Blattner F.R. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. 

Nature 409 (6819), 529-533. 

 

Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK,Surendranath V, 

Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, Ibarrola N, Deshpande N, Shanker 

K, Shivashankar HN, Rashmi BP, Ramya MA, Zhao Z, Chandrika KN, Padma N, Harsha 

HC, Yatish AJ, Kavitha MP, Menezes M, Choudhury DR, Suresh S, Ghosh N, Saravana 

R, Chandran S, Krishna S, Joy M, Anand SK, Madavan V, Joseph A, Wong GW, 

Schiemann WP, Constantinescu SN, Huang L, Khosravi-Far R, Steen H, Tewari M, 

Ghaffari S, Blobe GC, Dang CV, Garcia JG, Pevsner J, Jensen ON, Roepstorff P, 

Deshpande KS, Chinnaiyan AM, Hamosh A, Chakravarti A, Pandey A. Development of 

human protein reference database as an initial platform for approaching systems biology 

in humans. Genome Research. (2003). 13:2363-2371. 

 

Posthuma,-K.I., Adams,-A.N. ;Hong,-Y. ;Kirby,-M.J. (2002) Detection of Strawberry 

crinkle virus in plants and aphids by RT-PCR using conserved L gene sequences. Plant-

pathol. 51:266-274. 

 

 

  128



Qanungo K.R., Shaji D., Mathur M., Banerjee A.K. (2004) Two RNA polymerase 

complexesfrom vesicular stomatitis virus-infected cells that carry out transcription and 

replication of genomic RNA. Proc Natl Acad Sci USA (101) 16, 5952-5957.  

 

Raha T., Samal E., Majumdar A., Basak S., Chattopadhyay D., Chattopadhyay D. J. 

(2000) N-terminal region of P protein of Chandipura virus is responsible for 

phosphorylation-mediated homodimerization.  Protein Engineering (13) 6; 437-444. 

 

Reed S.E., Tsai C.W., Willie K., Redinbaugh M.G., Hogenhout S.A. (2005) Shotgun 

sequencing of the negative-sense RNA genome of the rhabdovirus Maize mosaic virus. J 

Virol Methods. 2005 Oct;129(1):91-6.  

 

Revill P., Trinh X., Dale J., Harding R. (2004) Taro vein chlorosis virus: characterization 

and variability of a new Nucleorhabdovirus. J Gen Virol. 2005 Feb;86(Pt 2):491-9. 

 

Ruiz, M. T., Voinnet, O., and Baulcombe, D. C. 1998. Initiation and maintenance of 

virus-induced gene silencing. Plant Cell. 10:937-946.  

 

Sinha R.C., (1965) Recovery of potato yellow dwarf virus from hemolymph and 

internal organs of an insect vector. Virology 27: 118. 

 

 

  129



Takacs A.M., Das T., Banerjee A.K. (1993) Mapping of interacting domains between the 

nucleocapsid protein and the phosphoprotein of vesicular stomatitis virus by using a 

two-hybrid system. Proc. Natl. Acad. Sci. USA (90) 10375-10379 

 

Tanno F, Nakatsu A, Toriyama S, Kojima M. (2000) Complete nucleotide sequence of 

Northern cereal mosaic virus and its genome organization. Arch Virol. 145(7):1373-84. 

 

Thompson JD, Higgins DG, Gibson TJ. (1994) CLUSTAL W: improving the sensitivity 

of progressive multiple sequence alignment through sequence weighting, position-

specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 

11;22(22):4673-80.  

 

Thompson JD, Gibson T. J, Plewniak F, Jeanmougin F, Higgins DG. (1997) The 

CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment 

aided by quality analysis tools. Nucleic Acids Res. 1997 25:4876-82.  

 

Thoulouze MI, Bouguyon E, Carpentier C, Bremont N. (2004) Essential Role of the NV 

Protein of Novirhabdovirus for Pathogenicity in Rainbow Trout. J Virol. 2004 78(8): 

4098-4107. 

 

Tsai, C-H., Redinbaugh, M. G., Willie, K. J., Reed, S., Goodin, M., and Hogenhout SA. 

(2005) Complete Genome Sequence and in planta Subcellular Localization of Maize Fine 

Streak Virus Proteins. Journal of Virology (79) No. 9. p. 5304-5314. 

  130



Venter J.C., Remington K, Heidelberg J.F., Halpern A. L, Rusch D., Eisen J A., Wu D., 

Paulsen I., Nelson K.E., Nelson W, Fouts D.E., Levy S, Knap A.H., Lomas M.W., 

Nealson K., White W., Peterson J., Hoffman J., Parsons R., Baden-Tillson H., Pfannkoch 

C., Rogers Y., Smith H.O. (2004) Environmental Genome Shotgun Sequencing of the 

Sargasso Sea. Science (304) 5667: 66-74. 

 

Wagner JD, Choi. TJ, Jackson, AO. (1996) Extraction of nuclei from Sonchus yellow 

Net Rhabdovirus-Infected Plants yields a Polymerase that synthesizes Viral mRNAs and 

Polyadenylated Plus-Strand Leader RNA. J. Virol. 70:468-477. 

 

Wagner, J D, Jackson, A O. (1997). Characterization of the components and activity of 

sonchus yellow net rhabdovirus polymerase. Journal of Virology. 71: 2371-2382. 

 

Walker J.C., Larson R.H. (1939) Yellow dwarf of potato in Wisconsin. J. Agric. Res. 

(59) 259-280 

 

Wetzel T, Dietzgen RG, Dale JL. (1994) Genomic organization of lettuce necrotic 

yellows rhabdovirus. Virology. 200(2):401-12. 

 

Wetzel T., Dietzen R.G., Geering A.D.W., Dale J.L. (1994) Analysis of the 

Nucleocapsid gene of Lettuce necrotic Yellows Rhabdovirus. Virology (202) 1054-1057. 

 

  131



Xu X., Severson W, Villegas N, Schmaljohn C.S, Johnson C. B. (2002) The RNA 

Binding Domain of the Hantaan Virus N Protein Maps to a Central, Conserved Region. 

Journal of Virology, April 2002, p. 3301-3308, Vol. 76, No. 7 

 

Younkin S.G. (1942) Weed suspects of the potato yellow dwarf virus. Am. Potato J. (19) 

6-11 

 

 

 

 

 

 

 

 

 

 

  

 

 

                                          

 

 

 

 

  132



                                                                          VITA 
 
 
 
A. NAME: DEBASISH GHOSH    
 
B. DATE OF BIRTH: 09/25/1975 
 
C. PLACE OF BIRTH: City: - Calcutta, State: - West Bengal, Country: - India                                                       
                                                                                                                       
D. EDUCATION:  
 
1.  PhD candidate, Biology 
               Molecular & Cellular Biology Program (Molecular Virology) 
               August, 2001 - present 
               University of Kentucky, Lexington, KY (USA); GPA: 3.654/4 
 
2.   MS, Zoology 
                Specialization in Neuroendocrinology 
                Graduated August’ 1999 
                University of Calcutta, India, First Class, 67.4% 
 
3.   BS, Zoology (Honors), Chemistry, Botany 
                Graduated July’1997 
                University of Calcutta, India, First Class, 61.6% 
 
4.    Diploma in Network Centered Software Engineering (GNIIT Program) 
                 Graduated January’2000 
                 National Institute of Information Technology (NIIT), Calcutta, India 
                          
5.    Certificate course in Quality Management 
                  Graduated January’ 2000 
                  The Quality College (A Division of Philip B. Crosby Associates) 
 
E. PROFESSIONAL POSITION HELD 
 
1. Faculty in Biology (Southwestern Oklahoma State University, Weatherford OK): 08/2007 – 
present 
 
2. Teaching assistant and TA Mentor (University of Kentucky): 08/2001 – 05/2007 
 
F. AWARDS & PROFESSIONAL AFFILIATIONS: 
 
1. Awarded Full Tuition Scholarship by the Graduate School, University of Kentucky, 

Lexington, KY 
 
2. Awarded Teaching Assistantship at the Department of Biology, University of Kentucky, 

Lexington, KY  
 
3. Awarded Best Teacher Award from the Department of Biology, University of Kentucky 

(Spring’ 2005) 

  133



  134

4. Awarded National Scholarship on the basis of the results of BS and MS Exam. By Ministry 
of Education & Human Resource Development, Govt. of India  

 
5. Awarded Merit Certificates of All India Science Aptitude and Talent Search Test 
 
6. Student member, Zoological Society of India 
 
7. Associate Student member, American Society for Virology (ASV) 
 
G. PUBLICATION: 
 
1. Ghosh D., Brooks R.E., Lesnaw J.A., Goodin M.M. (2007). Cloning and subcellular 
localization of the phosphoprotein and nucleocapsid proteins of Potato yellow dwarf 
virus, type species of the genus Nucleorhabdovirus (Submitted to Virus Research) 
 
2. Goodin, M., Yelton, S Ghosh, D., Mathews, S., Lesnaw, J.:  Live-cell imaging of 
Rhabdovirus-Induced Morphological Changes in Plant Nuclear Membranes. Molecular Plant-
Microbe Interactions. (March, 2005) 
 
3. Andrew O. Jackson, Ralf G. Dietzgen, Michael M. Goodin, Jennifer N. Bragg, and Min 
Deng. 2005 : BIOLOGY OF PLANT RHABDOVIRUSES. Annual Review of 
Phytopathology Vol. 43: 623-660. (Please see Acknowledgement) 
 
4. Rohr, J.R., A.A. Elskus, B.S. Shepherd, P.H. Crowley, T.M. McCarthy, J.H. Niedzwiecki, T. 
Sager, A. Sih, B.D. Palmer.  2003. Lethal and sublethal effects of atrazine, carbaryl, endosulfan, 
and octylphenol on the Streamside Salamander, Ambystoma barbouri. Environmental Toxicology 
and Chemistry 22(10):2385–2392. (Please see Acknowledgement) 
  
5. Rohr, J.R., A.A. Elskus, B.S. Shepherd, P.H. Crowley, T.M. McCarthy, J.H. Niedzwiecki, T.A. 
Sager, A. Sih, and B.D. Palmer.  2004.  Multiple stressors and salamanders: Effects of an 
herbicide, food limitation and hydroperiod.  Ecolological Applications 14(4):1028-1040. (Please 
see Acknowledgement) 
 
 
 H. Professional Meetings: 
 
 Live cell imaging of plant rhabdovirus movement (Co-author of the poster) 
 
 S. Yelton1, D. Ghosh2, S. Mathews1, J. Lesnaw2, and M. Goodin1 
 

(1) Department of Plant Pathology, University of Kentucky, Lexington, KY 
(2) Department of Biology, University of Kentucky, Lexington, KY 
 

Conference name: Annual conference of American Phytopathological Society, (APS 
Meeting, 2004) 


	CLONING, CHARACTERIZATION AND SUBCELLULAR LOCALIZATION OF THE N (NUCLEOCAPSID) AND P (PHOSPHOPROTEIN) PROTEIN OF THE SYDV (POTATO YELLOW DWARF VIRUS SANGUINOLENTA STRAIN)
	Recommended Citation

	Title page for abstract
	Abstract
	Title page for dissertation
	Acknowledgement
	Table of contents
	List of tables
	List of figures
	Chapter 1
	Comprehensive literature review of rhabdoviruses
	Introduction
	Genomic organization of plant rhabdoviruses
	Properties of rhabdoviral Nucleocapsid (N) and Phosphoprotein (P)
	Biology of N and P protein in brief
	Comparison of the replication cycle of Nucleo- and Cytorhabdoviruses
	Vector specificity of plant rhabdoviruses
	PYDV-type species of genus Nucleorhabdoviruses
	Vector specificity, host range and strains of PYDV
	Geographical distribution of PYDV
	Serological relationship between PYDV strains
	Chapter 1 Tables
	Chapter 1 Figures
	Chapter 2
	Preliminary experiments: The infection pattern of SYDV in host cells
	Introduction
	Plant material, growth conditions and virus inoculation procedures
	Results
	SYDV infection induce increased accumulation of GFP in the infected nuclei of Nicotiana benthamiana cells
	GFP accumulates in both external and internal loci of nuclei in SYDV-infected tisue
	Virus specific pattern of GFP and membrane accumulation in SYDV and SYNV-infected nuclei
	Enlargement of nuclei occurs in only rhabdovirus-infected tissues
	Hypothesis
	Specific aims
	Significance
	Chapter 2 Tables
	Chapter 2 Figures
	Chapter 3
	Cloning and characterization of SYDV N and P mRNA
	Introduction
	Materials and Methods
	Virus maintenance and purification
	SDS-PAGE analysis
	RNA extraction and Cloning of SYDV-specific PCR product
	Cloning of 5' and 3' termini of SYDV N and P mRNA
	Peptide sequencing and sequence analysis
	DNA sequencing and sequence analysis
	Northern blot hybridization analysis
	Phylogenetic analysis
	Deposition of sequence data
	Construction of pSITE expression vectors for in planta subcellular localization
	Untitled
	Cloning of SYDV-N mRNA
	Cloning of SYDV-P mRNA
	Structure, characterization and sequence analysis of SYDV-N mRNA
	Structure, characterization and sequence analysis of SYDV-P mRNA
	Phylogenetic relationship of SYDV with other rhabdoviruses based on consensus sequences of the N ORF
	Subcellular localization studies of SYDV-N and P protein
	Time course systemic infection pattern of SYDV in Nicotiana benthamiana
	Primers used in this study
	Chapter 3 Tables
	Chapter 3 Figures
	Chapter 4
	Discussion
	Proposed strategy to complete the sequencing of SYDV genome
	Appendices
	Complete organization of SYDV cDNAs, PCR products and northern hybridization data
	Amplification of SYDV-N mRNA fragment
	5' and 3' RACE of SYDV-N mRNA
	Amplification of SYDV-N-G fragment
	Amplification of SYDV-P mRNA
	5' and 3' RACE of SYDV-P mRNA
	Amplification of the region between N and P gene
	Amplification of SYDV-G gene
	Amplification of SYDV-L gene fragment
	Amplification of SYDV-N-L fragment
	Amplification of SYDV-specific 5.0 kb fragment
	Amplification of SYDV-G-L fragment
	Appendices Tables
	Appendices Figures
	References/ Bibilography
	Vita

