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IDENTIFICATION AND CHARACTERIZATION OF SOCS44A IN DROSOPHILA 
 
 
 

The JAK/STAT pathway is but one of the signal transduction cascades 

responsible for proper development and homeostasis.  Gain-of-function mutations of 

pathway components are causative agents of several leukemias, highlighting the necessity 

for proper regulation of signal transduction.  Drosophila presents an attractive model to 

study JAK/STAT signaling because mutations in the pathway behave in an analogous 

manner.  Furthermore, the Drosophila cascade is much simpler as only one of each 

component required for activation has been characterized; whereas in mammals, there are 

many ligands, receptors, 4 JAKs and 7 STATs. 

Suppressors of Cytokine Signaling (SOCS) are one family of molecules which 

regulate JAK/STAT signaling via a negative feedback loop.  All SOCS share a distinct 

modular domain architecture, which we exploited to locate three putative SOCS 

homologues within the Drosophila genome.  I present the identification and initial 

characterization of one of these homologues, Socs44A.  I show that Socs44A is not 

responsive to or dependent on JAK activity.  However, I demonstrate that Socs44A is 

capable of downregulating JAK/STAT signaling in the developing wing but not in 

 



oogenesis, indicating that its ability to regulate the pathway is tissue specific, a 

phenomenon observed in the mammalian model. 

Signal transduction pathways are integrated at multiple levels.  This interplay 

allows for combinatorial signaling, resulting in a higher order of complexity in the signals 

that can be received and interpreted by a cell.  Well documented are the interactions 

between the JAK/STAT and the EGFR/MAPK pathways.  In this work, I show that 

Socs44A can genetically interact with, and upregulate, the EGFR/MAPK pathway, 

analogous to a recent report involving SOCS-3. 

Starting with the Drosophila genome sequence, I initiated a reverse genetic 

approach to studying the function of the Socs44A locus.  During the course of this 

investigation, I designed and implemented a novel post-processor of the BLAST 

algorithm, called Multi-BLAST, which facilitates retrieval of multiple domain sequences 

from public databases.  In what would have been the ultimate achievement of this study, I 

attempted two mutagenesis screens designed to isolate Socs44A loss-of-function alleles.  

Progress on these screens is reported. 
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Chapter I 
 

Background 
 
 

General signal transduction 

 Cell to cell communication is essential for the orchestrated chain of events leading 

to proper development of multicellular organisms.  Not only must each cell be cognizant 

of its location, but it must also have the competence to differentiate into the proper cell 

type.  This is accomplished through the utilization of signal transduction cascades, which 

allow cells to send, receive and respond to extracellular signals.  Each cell then must be 

able to correctly interpret and integrate all of the signals it receives in order to behave 

properly during the course of development. 

Surprisingly, there are relatively few signal transduction cascades compared to the 

number of tasks they must perform during development and homeostasis.  This disparity 

is overcome by the fact that each cascade can produce multiple cellular responses by 

modulating either the amplitude or duration of their signal.  Higher levels of complexity 

can be achieved if the integration of multiple signals from multiple cascades is 

considered.  Finally, the cellular context in which a signal is received also contributes to 

the complexity of signaling. 

The largest class of signal transduction cascades are those that have a cell surface 

receptor, which include the Transforming Growth Factor β, Receptor Tyrosine Kinases, 

Notch, Wingless, and the JAK/STAT pathways (for reviews, see Dierick and Bejsovec, 

1999; Nilson and Schupbach, 1999; Rawlings et al., 2004; Schweisguth, 2004; Shi and 

Massague, 2003).  While these cascades are distinct in the particular signals they 
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recognize, they behave in a similar fashion.  A cell surface receptor (or receptors) comes 

into contact with its ligand, resulting in activation of the pathway.  The signal then may 

be propagated and/or amplified by intermediates and/or second messengers before 

reaching the nucleus, where target gene expression is either increased or decreased. 

 

The JAK/STAT signal transduction cascade 

In vertebrates, the JAK/STAT (Janus Kinase/Signal Transducer and Activator of 

Transcription) signal cascade is an integral intracellular response mechanism involved in 

many essential biological processes including cell proliferation, differentiation, and 

apoptosis (reviewed in Igaz et al., 2001; O'Shea et al., 2002).  Furthermore, the 

JAK/STAT cascade is utilized in many tissues in multiple stages of development.  

Discovered about 15 years ago, this pathway has been shown to be responsive to a wide 

array of extracellular ligands, including interferons, interleukins, growth hormone, and 

erythropoietin (see reviews by Imada and Leonard, 2000; Rawlings et al., 2004; 

Schindler, 1999; Yeh and Pellegrini, 1999) in addition to some receptor tyrosine kinases, 

including epidermal growth factor receptor (EGFR) and platelet derived growth factor 

receptor (PDGFR).  Due to its virtual omnipresence in development, abnormal 

JAK/STAT signaling often leads to deleterious, if not lethal effects, with the majority of 

these being defects in hematopoiesis (reviewed in Bowman et al., 2000; Coffer et al., 

2000; Ward et al., 2000).  Severe combined immunodeficiency (SCID) is the result of 

improper differentiation of lymphocytes.  This differentiation is dependent on the 

JAK/STAT cascade; patients with SCID have been found to have mutations in either the 

shared interleukin receptor gamma chain or JAK-3 (Leonard, 1996).  Conversely, the 
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fusion of JAK-2 to the TEL ETS transcription factor is but one clinical example that 

results in constitutive pathway activity.  The consequence is either chronic myeloid 

leukemia (CML) or acute lymphoblastic leukemia (ALL), the most prevalent childhood 

form of the disease (Ho et al., 1999; Lacronique et al., 1997; Peeters et al., 1997).  

Additionally, these leukemias have been reported in patients where STATs are 

constitutively activated, although a direct causal link has not been established (Gouilleux-

Gruart et al., 1996).   

The JAK/STAT pathway is a simple cascade, in which extracellular signals can 

be rapidly transduced to the nucleus to elicit a cellular response in the form of altered 

transcription of target genes (Fig. 1-1).  The pathway is initiated by ligand induced 

dimerization or multimerization of transmembrane receptors.  While these receptors have 

no intrinsic catalytic activity, they are constitutively associated with a family of tyrosine 

kinases, the Janus Kinase (JAK) proteins.  Dimerization of the receptors juxtaposes their 

associated JAK proteins, allowing the JAKs to transphosphorylate and activate each 

other.  Activated JAKs also phosphorylate tyrosine residues on the receptors, providing 

docking sites for SH2 domain containing molecules, such as STAT (Signal Transducer 

and Activator of Transcription).  STAT molecules are latent, cytosolic transcription 

factors, that when bound to the receptor, can be phosphorylated by the JAK proteins.  

Activated STATs can homo- or hetero-dimerize and translocate to the nucleus where they 

directly bind DNA and modulate transcription of target genes. 
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The JAK/STAT pathway in Drosophila melanogaster 

 The JAK/STAT pathway is conserved across many species, even insects; 

however, Drosophila melanogaster is the only invertebrate model organism that 

possesses a complete JAK/STAT pathway that functions similarly to what is found in 

mammals (Barillas-Mury et al., 1999; Hombria and Brown, 2002; Rawlings et al., 2004; 

Zeidler et al., 2000).  Although C. elegans and D. discoidium both possess STAT-like 

molecules, they lack JAK homologues and they use STATs in a different manner than do 

higher eukaryotes (Dearolf, 1999; Kawata et al., 1997).  Because of its relatively 

simplistic version of the JAK/STAT pathway, and the powerful tools for genetic 

manipulation that the species offers, we have chosen to study JAK/STAT signaling in 

Drosophila.   

The JAK/STAT pathway was discovered in Drosophila through the molecular 

characterization of the hopscotch gene, which was recovered in a screen for maternal 

effect lethal mutations and shown to have defects in embryonic segmentation (Binari and 

Perrimon, 1994; Perrimon and Mahowald, 1986).  Interestingly, the other two well-

characterized components of the pathway in flies, Stat92E and unpaired, were identified 

based on the fact that they share this same embryonic segmentation defect (Harrison et 

al., 1998; Hou et al., 1996).  The receptor for the cascade, domeless, was identified in two 

separate screens, one was looking for mutants with posterior spiracle defects (Brown et 

al., 2001), the other isolated the same gene in a screen for suppressors of upd 

misexpression in the eye (Chen et al., 2002a).  While hopscotch and Stat92E both share 

specific sequence similarity to their mammalian counterparts, both unpaired and 

domeless are unlike any specific cytokine or cytokine receptor, respectively. 
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As in mammals, the Drosophila JAK/STAT pathway is involved in a broad array 

of biological processes.  In addition to its roles in embryogenesis, the pathway is 

responsible for follicle cell fate decisions in oogenesis (McGregor et al., 2002; Xi et al., 

2003), proliferation of larval hematopoietic lineages (Luo et al., 1997), the formation of 

larval melanotic tumors, and hypertrophy of larval lymph glands (Harrison et al., 1995).  

Furthermore, the JAK/STAT pathway has also been implicated in sex determination 

(Jinks et al., 2000), multiple processes in eye development (Luo et al., 1999; Zeidler et 

al., 1999), wing vein formation (Yan et al., 1996a), stem cell maintenance during 

spermatogenesis (Brawley and Matunis, 2004; Kiger et al., 2001; Tulina and Matunis, 

2001), and patterning of other adult structures (Harrison et al., 1995; Zeidler et al., 2000). 

 

Regulation of signal transduction 

During development, cells must receive and respond to a variety of signals, many 

of which utilize the same signal cascade.  Furthermore, a single signal can elicit a variety 

of responses; the cell must be able to correctly interpret each signal, or combination of 

signals, and produce the appropriate response.  To achieve this, a signal cascade must be 

tightly regulated with mechanisms to both activate and deactivate the pathway.  Negative 

regulation of a signal transduction pathway may serve to modulate amplification and thus 

change the response to a signal, or return the cell to a “reset” state such that it can 

respond to future signals.   

Recent studies have revealed several protein families that regulate the JAK/STAT 

cascade in several different ways; they include SH2-Bβ, StIP, SHP, PIAS, and SOCS 

(Fig. 1-2).  Both SH2-Bβ and its relative APS interact with JAK, but have opposing roles.  
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SH2-Bβ is a potent activator, while APS negatively regulates JAK activity (O'Brien et al., 

2002).  StIP (STAT interacting protein) is a WD40 repeat protein that preferentially 

interacts with unphosphorylated STAT in addition to activated JAK.  It is believed that 

this protein acts as a scaffold in the recruitment of STAT to the receptor complex 

(Collum et al., 2000).  The SHP (SH2 domain containing phosphatase) family represents 

a logical means to downregulate the phosphorylation-dependent JAK/STAT cascade 

since phosphorylation is a rapid and easily reversible protein modification.  SHP-1 has 

been shown to bind to the tyrosine phosphorylated erythropoietin receptor and 

dephosphorylate JAK2 (Jiao et al., 1996).  The PIAS (Protein Inhibitor of Activated 

STAT) family was identified in a two-hybrid screen for proteins that interact with STAT 

proteins.  PIAS-1 serves as a mechanistic paradigm of this family of proteins; it binds to 

activated STAT-1, the resulting complex is unable to bind DNA.  Interestingly, it seems 

as though each member of the PIAS family interacts with a specific STAT target (Chung 

et al., 1997; Liu et al., 1998). 

 

The Suppressors of Cytokine Signaling (SOCS) 

 The largest and perhaps most versatile family of JAK/STAT negative regulators is 

the SOCS (suppressor of cytokine signaling) family, with eight mammalian members 

identified.  Three different groups identified the SOCS family of genes concurrently, each 

giving a different name to their find.  Starr and Hilton identified SOCS-1 by virtue of its 

ability to suppress interleukin-6 induced macrophage differentiation of M1 cells (Starr et 

al., 1997).  Yoshimura’s lab utilized a two-hybrid strategy using the kinase domain of 

JAK-2 as bait.  They isolated a protein that they named JAB (JAK binding protein) and 
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illustrated that it reduces the tyrosine-kinase activity of JAKs and suppresses the tyrosine 

phosphorylation and activation of STATs (Endo et al., 1997).  Finally, Kishimoto’s group 

isolated a protein they named SSI-1 (STAT induced STAT Inhibitor) based upon its 

immunocrossreactivity to the SH2 domain of STAT-3 and showed that it inhibited the 

signaling of a variety of cytokines.  Furthermore, they showed that SSI-1 transcription 

was induced by interleukin-4 and interleukin-6 (Naka et al., 1997).  Two years prior to 

these discoveries, Yoshimura’s group isolated CIS (Cytokine Inducible Suppressor), a 

novel gene that was able to inhibit signaling through the Epo and several interleukin 

receptors and showed that CIS was induced by several cytokines (Yoshimura et al., 

1995).  In the interest of clarity, we will refer to all of these mammalian genes as SOCS-1 

to SOCS-7 and CIS (Table 1-1). 

All SOCS proteins possess a similar structure; in addition to a central SH2 

domain, these genes also contain a carboxy-terminal motif, termed the SOCS box, as well 

as an undefined amino terminal region of variable length.  The SOCS box is 

approximately forty amino acids in length and has been found by sequence homology in 

twenty different proteins belonging to five structural classes (Hilton et al., 1998).  Each 

class is delineated by the identity of the central domain, be it an SH2 domain (SOCS), 

SPRY domain (SSB), WD-40 repeat (WSB), ankyrin repeat (ASB) or undefined motif. 

 Current studies in mammals have shown that SOCS proteins may downregulate 

the JAK/STAT pathway in several ways (Fig. 1-1).  All SOCS proteins contain an SH2 

domain, which allows for interaction with phosphotyrosine activated components of the 

JAK/STAT pathway (for review of the SH2 domain in signaling, see Yaffe, 2002).  

Beyond this, explicit mechanisms of action must be implied from biochemical analyses.  
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SOCS-1 has been shown to associate directly with all four mammalian JAKs, acting as a 

pseudosubstrate, inhibiting their catalytic activity (Endo et al., 1997; Naka et al., 1997; 

Nicholson et al., 1999; Yasukawa et al., 1999).  Unlike SOCS-1, CIS does not interact 

directly with JAKs; instead, CIS associates with the activated Epo receptor at one of two 

STAT-5 binding sites (Verdier et al., 1998) and competes with STAT-5 for binding to the 

receptor (Matsumoto et al., 1999).  SOCS-3, unlike SOCS-1, does not inhibit JAK-1 or 

JAK-2 catalytic activity via in vitro kinase assay (Nicholson et al., 1999); and unlike CIS, 

it does not compete with STAT-5 (Ram and Waxman, 2000).  However, it does possess a 

sequence resembling a JAK activation loop similar to SOCS-1 (Yasukawa et al., 1999) 

and it can bind JAK-1, albeit with a much lower affinity than SOCS-1 (Nicholson et al., 

1999).  Furthermore, SOCS-3 has been shown to bind to the gp130 cytokine receptor 

subunit (Nicholson et al., 2000), IL-2Rβ receptor (Cohney et al., 1999), and GH receptor 

(Hansen et al., 1999).  Taken together, these observations suggest that SOCS-3 inhibits 

JAK/STAT signaling by a different mechanism than SOCS-1 or CIS.  Finally, the 

carboxy-terminal SOCS box has been shown to interact with the elongin BC complex, an 

interaction that is inhibited by tyrosine phosphorylation of two residues within the SOCS 

domain (Haan et al., 2003).  The Elongin BC complex also interacts with an E3 ubiquitin 

ligase (cullin-2) that could target bound proteins for proteosomal degradation (Fig. 1-3).  .  

Thus, the SOCS proteins could act as adaptors whose role would be to couple activated 

JAK/STAT constituents to this elongin BC complex, ultimately leading to their 

ubiquitination and degradation (Kamura et al., 1998; Zhang et al., 1999). 

 Phenotypically, SOCS genes parallel what is seen in other JAK/STAT molecules 

(Table 1-1).  Targeted knockouts of SOCS-1 produce runted mice that die at three weeks 
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of age, suffering from severe reduction in platelet and hematocrit cells, fatty degeneration 

of the liver and macrophage infiltration of major organs (Alexander et al., 1999; Marine 

et al., 1999b; Metcalf et al., 1999; Naka et al., 1998; Starr et al., 1998).  This is 

reminiscent of the phenotype seen when IFNγ is administered to neonatal wild-type mice 

(Gresser et al., 1981).  Transgenic mice that overexpress SOCS-3 do not survive to birth 

(Marine et al., 1999a), but have a phenotype that resembles that of JAK-2-/- mice 

(Neubauer et al., 1998; Parganas et al., 1998).  Mice lacking SOCS-2 grew significantly 

larger than their wild-type littermates; a result from deregulated growth hormone (GH) 

and insulin-like growth factor-I (IGF-I) signaling (Metcalf et al., 2000).   

 Very little is known about the remaining four SOCS (SOCS-4 to SOCS-7).  

Recently, a knockout of SOCS-6 was created; however, these animals showed only mild 

growth retardation (Krebs et al., 2002).  Biochemical analyses suggest that SOCS-6 may 

regulate insulin signaling (Krebs et al., 2002; Mooney et al., 2001).  A single report 

indicates that overexpression of SOCS-5 disrupted Th2 cell differentiation in culture 

(Seki et al., 2002).  However, a recently developed knockout of the gene had neither no 

visible phenotype save a mildly increased erythropoiesis, nor did its absence affect T cell 

differentiation (Brender et al., 2004).  To date, there are no functional studies of either 

SOCS-4 or SOCS-7. 

Data mining of the Drosophila genome has produced three putative SOCS 

homologues (Adams et al., 2000).  Based on their inferred cytological location on 

polytene chromosomes, we named these homologues Socs16D, Socs36E, and Socs44A.  

Of these, Socs36E is the most studied; it shares similar embryonic and ovarian patterns of 

expression to Unpaired.  Furthermore, it shares misexpression phenotypes consistent with 
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a role in negatively regulating the JAK/STAT pathway (Callus and Mathey-Prevot, 2002; 

Karsten et al., 2002 and Rennebeck, unpublished).  This work will focus on the molecular 

and functional characterization of Socs44A.  This study examines its roles in Drosophila 

development and its functions in JAK/STAT signaling.  Furthermore, we will discuss the 

discovery of an interaction between Socs44A and EGFR signaling. 
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Figure 1-1.  Activation of JAK signaling and subsequent inhibition by SOCS 

proteins.   Ligand binding induces receptor dimerization and pathway activation 

propagated by tyrosine phosphorylation of Janus Kinase (JAK) and Signal Transducer 

and Activator of Transcription (STAT) intermediates.  Activated STATs can dimerize, 

translocate to the nucleus and control transcription of target genes, including SOCS 

(Suppressor of Cytokine Signaling).  SOCS can then act to inhibit JAK signaling by a 

variety of mechanisms.  See text for more details. 
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Figure 1-2.  Regulators of JAK/STAT signaling.  Positive regulators are labeled in 

green, while negative regulators are labeled in red.  Both SH2-Bβ and its relative APS 

interact with JAK, but have opposing roles; SH2-Bβ is a potent activator, while APS 

negatively regulates JAK activity.  StIP preferentially interacts with unphosphorylated 

STAT in addition to activated JAK, acting as a scaffold in the recruitment of STAT to the 

receptor.  The SHP family represents a logical means to downregulate the 

phosphorylation-dependent JAK/STAT cascade since phosphorylation is a rapid and 

easily reversible protein modification.  The PIAS family binds to activated STATs and 

this complex is unable to bind DNA.
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Figure 1-3.  Model for SOCS mediated proteosomal degradation of JAK.  The SH2 

domain allows SOCS proteins to interact with activated components of the JAK/STAT 

pathway.  The SOCS box interacts with the elongin BC complex, which in turn interacts 

with cullin-2, an E3 Ubiquitin ligase.  Roc1 is a RING finger protein that recruits the E2 

Ubiquitin conjugating enzyme to the ligase complex (Furukawa et al., 2003; Furukawa et 

al., 2002).  The resulting polyubiquitination of the activated component labels it for 

degradation by the proteosome. 
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Table 1-1.  The SOCS family of proteins:  interactions, regulation, and phenotypes.  

 
Abbreviations:  SOCS = Suppressor of Cytokine Signaling, CIS = Cytokine inducible 

SH2 containing protein, SSI = STAT induced STAT inhibitor, JAB = JAK binding 

protein, CNTF = ciliary neurotrophic factor, EPO = erythropoietin, G-CSF = 

granulocyte colony stimulating factor, GM-CSF = granulocyte-macrophage colony 

stimulating factor, GH = growth hormone, IFN = interferon, IGF-1 = insulin like growth 

factor, LIF = leukemia inhibitory factor, LPS = lipopolysaccharide, OSM = oncostatin, 

PKC = protein kinase C, TNF = tumor necrosis factor, TPO = thrombopoietin, TSLP = 

thymic stromal lymphopoietin 
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Chapter II 
 

The Drosophila genome encodes three putative SOCS 
homologues 

 
 
INTRODUCTION 

 The eight mammalian SOCS genes can be readily identified by their distinct 

modular arrangement of domains (Fig. 2-1).  Specifically, each member of the family has 

a central SH2 domain followed closely by a carboxy-terminal SOCS domain.  The ~70 

amino acid SH2 domain permits interactions with phosphotyrosine residues of activated 

JAK/STAT components and the ~40 amino acid SOCS domain targets bound molecules 

for proteosomal degradation.  Additionally, SOCS-1 and SOCS-3 share a third functional 

motif directly preceding the SH2 domain, termed the KIR (Kinase Inhibitory Region).  

This 24 amino acid motif resembles a JAK activation loop and is believed to allow these 

SOCS to act as a pseudosubstrate, inhibiting JAK catalytic activity (Narazaki et al., 1998; 

Nicholson et al., 1999; Yasukawa et al., 1999).  The amino termini of mammalian SOCS 

proteins are divergent in both length and composition.  However, SOCS proteins can be 

divided into two classes based on the length.  SOCS-1 to SOCS-3 as well as CIS all are 

less than 300 amino acids in length, while the remaining SOCS (SOCS-4 to SOCS-7) are 

all longer than 400 amino acids. 
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RESULTS 

BLAST analysis identified three putative SOCS genes in the fly genome 

 Using the modular domain architecture of mammalian SOCS as a guide, we 

searched the Drosophila genome for putative SOCS homologues.  Specifically, the 

consensus SOCS sequence (Hilton et al., 1998) was used as a query in a tBLASTn search 

of the Drosophila genome.  Open reading frames that contained a SOCS domain were 

further queried for an upstream SH2 domain.  Three putative SOCS were identified using 

this approach and were named Socs16D, Socs36E, and Socs44A based upon their 

cytological position in the genome.  All three Drosophila SOCS contain the expected 

arrangement of domains, in that they each have a SH2 domain followed by a SOCS 

domain located at the carboxy terminus of the locus.  None of the Drosophila SOCS have 

sequence in common with the KIR of SOCS-1 and SOCS-3.  Like their mammalian 

counterparts, their amino termini are divergent; however, all of them are at least 350 

amino acids in length (Fig. 2-1). 

 

Phylogenetic relationships between Drosophila and mammalian SOCS 

 A multiple sequence alignment based upon conceptual translations of the 

Drosophila SOCS and their mammalian counterparts reveals that there is high degree of 

similarity in the carboxy portions of SOCS proteins across taxa, however, the amino 

termini remain divergent.  Socs36E is the most similar to mammalian SOCS, sharing 

71% similarity to murine SOCS-5 and 68% similarity to murine SOCS-4 over the last 

180 amino acids comprising the SOCS, SH2, and the immediate 30 amino acids 

preceding the SH2 domain.  Socs16D is most similar to murine SOCS-6, sharing 44% 
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similarity.  Socs44A is least similar to mammalian SOCS, but it does share 43% 

similarity to murine SOCS-6 (Fig 2-2).  As expected, these similarities were found solely 

in the SH2 and SOCS domains, and in the case of Socs36E, the similarity extended into 

the 30 amino acid region preceding the SH2 domain.  However, this sequence shared no 

similarity to the analogous region defined as the KIR for SOCS-1 and SOCS-3. 

From this alignment, we can infer a phylogenetic relationship between these 

SOCS (Fig 2-2).  It appears that there are three distinct clades of SOCS of which there 

were at least two present at the time of divergence of mammals and dipterans.  These two 

clades include Socs36E which diverged into SOCS-4 and SOCS-5 and the tandem of 

Socs16D and Socs44A which diverged into SOCS-6 and SOCS-7.  The third clade, 

which comprises CIS and SOCS-1 to SOCS-3, is not present in flies. 

 

Cloning of Drosophila SOCS genes 

Two distinct clones for Socs36E were recovered in an embryonic cDNA library 

screen (Fig 2-3 and G. Rennebeck, unpublished).  The first clone (designated 2.1.1) 

contains the expected domain architecture, including complete SH2 and SOCS domains.  

The second clone (designated 6.3.1) lacks the SOCS domain as well as most of the SH2 

domain.  Another lab observed two distinct transcripts in a Northern analysis 

corresponding to Socs36E, one consistent with a full length clone (3.5kb), while the other 

was 2.3kb, smaller than the 2.75kb abbreviated clone recovered in our screen (Callus and 

Mathey-Prevot, 2002).  Our full length clone indicates that the Socs36E locus is 

comprised of four exons and three introns.  The 5’ most intron is nearly 10kb in length 
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and contains two clusters of four putative Stat92E binding sites (Fig. 2-3, Yan et al., 

1996b). 

I PCR amplified an 1133bp fragment comprising the predicted start and stop 

codons for Socs44A.  Subsequently, we acquired a larval/pupal derived EST 

corresponding to the Socs44A locus (LP02169).  This EST was sequenced in its entirety 

(Sanger et al., 1977) and deposited into Genbank (Accession AF435923, Fig 2-4).  

Another EST isolated (GM29526) from ovaries is consistent with the larval/pupal clone.  

Both ESTs are consistent with the predicted start and stop codons for this locus.  The 

larval/pupal EST contains a 74bp 5’ UTR,, 2 exons measuring 557 and 472 nucleotides, 

and a 681bp 3’ UTR (Fig 2-3).  This EST is predicted to encode a 342 amino acid 

protein, approximately 38kD in size.  Comparison of the EST sequence to genomic 

sequence reveals that the locus has but a single 62bp intron.  Analysis of all genomic 

sequences 10kb upstream and downstream failed to detect the presence of any clusters of 

putative Stat92E binding sites. 

The Berkeley Drosophila Genome Project (BDGP) recovered 2 ESTs 

corresponding to the third SOCS homologue, Socs16D:  an embryonic EST and an EST 

derived from Drosophila S2 cells (Fig. 2-3, FlyBase Consortium, 2003).  The S2 cell 

derived EST (SD11104) contains a larger amino terminus than the embryonic EST 

(LD08944).  Sequence analysis of the embryonic EST clone was inconsistent with the 

sequence reported by the BDGP.  Additionally, I was able to PCR amplify an 827bp 

segment of the Socs16D genomic locus which could be used to isolate a full-length 

cDNA from a library screen. 
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DISCUSSION 

Based on sequence similarity to a known modular architecture, we identified three 

putative SOCS homologues in Drosophila.  Each of these SOCS genes contains the 

expected arrangement of the SH2 and SOCS domains at their carboxy terminus and an 

amino terminus of variable length.  While the amino termini of SOCS-1 and SOCS-3 are 

functionally dispensable, this did not extend to the other SOCS family members 

(Nicholson et al., 1999).  Therefore, it is not surprising to find such disparity among 

SOCS across taxa in this regard. 

Phylogenetic analysis revealed that there are perhaps three distinct clades of 

SOCS genes (Fig 2-2).  The four most studied mammalian SOCS genes all belong to a 

single clade that has no Drosophila homologues.  This absence may be reflective of this 

clade arising after the evolution of dipterans, or that this clade was lost in Drosophila.  

Examination the closely related Drosophila pseudoobscura genome as well as the 

recently completed Anopheles gambiae genome will be required to address this issue.  

Or, perhaps this is reflective of SOCS functions that are unique to chordates.  Socs36E is 

most similar to SOCS-4 and SOCS-5 while Socs44A is most similar to SOCS-6, 

accounting for the other two observed SOCS clades.  This would suggest that the 

functions of Socs36E and Socs44A may be representative of the lesser studied 

mammalian SOCS genes.  The presence of the sole C. elegans SOCS homologue in the 

same clade as Socs44A and Socs16D could suggest that these arose from the “original” 

SOCS gene and may be representative of a more generalized SOCS. 

It is sometimes possible to infer evolutionary decent by analysis of intron/exon 

structures; however, the Drosophila SOCS genes do not share similar intron/exon 
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structures.  Socs44A is perhaps the simplest, containing 2 exons and a single, small 62bp 

intron.  There is evidence that both Socs36E and Socs16D have multiple splice forms.  In 

the case of Socs36E, this is supported by isolation of embryonic cDNAs and  Northern 

analysis (Callus and Mathey-Prevot, 2002).  ESTs from the BDGP indicate that Socs16D 

may have two splice variants, the only difference between them being the size of the 

amino terminus of the resulting protein.  Both Socs16D and Socs36E are spliced within 

the SH2 domain; however, the location of this splice site is not conserved.  Both splice 

junctions occur in a less conserved region of the SH2 domain near the carboxy end.  

Altogether, these observations are consistent with the divergence of three clades of SOCS 

proteins. 

The general mechanism of SOCS regulation of signal transduction is based on a 

simple negative feedback loop.  SOCS genes respond to JAK/STAT pathway activity and 

in turn act to downregulate the cascade.  The possession of both an SH2 and SOCS 

domain indicates that Drosophila SOCS genes may at least be capable of downregulating 

the cascade in flies.  Furthermore, the presence of two clusters of Stat92E binding sites in 

the 5’ intron of Socs36E suggests that it may also be responsive to pathway activity, 

consistent with the negative feedback loop model.  In contrast, the Socs44A and Socs16D 

loci and surrounding genomic regions do not contain a similar cluster of Stat92E binding 

sites, which suggests that they may not be responsive to the JAK/STAT cascade.  

Nevertheless, these findings provided sufficient motivation for the study of these genes as 

potential regulators of Drosophila JAK/STAT signaling.  
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Figure 2-1.  Domain architecture of SOCS.  Eight mammalian SOCS have been 

identified and designated CIS and SOCS-1 to SOCS-7.  Based on the modular domain 

architecture shared by these proteins, we identified three putative Drosophila SOCS 

homologues, designated Socs16D, Socs36E, and Socs44A based upon their cytological 

position in the fly genome.  The proteins are depicted to scale and length of each SOCS is 

indicated to the right and the coloring scheme is defined below the figure. 
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Figure 2-2.  Protein sequence comparison of Drosophila and mouse SOCS.  (A) The 

predicted protein sequences of fly and selected mouse SOCS genes are aligned and 

shaded to indicate similarities and identities.  Fly Socs36E is most similar to mouse 

SOCS-5, while the remaining fly homologues, Socs16D and Socs44A, are more distantly 

related to mouse SOCS-6 and SOCS-7.  (B)  Phylogenetic analysis of SOCS genes 

indicates that there are perhaps three clades of SOCS.  Drosophila Socs36E is located in 

the same clade as mouse SOCS-4 and SOCS-5, while Drosophila Socs16D and Socs44A 

share the same clade as mouse SOCS-6 and SOCS-7.  The most studied mammalian 

SOCS (CIS and SOCS-1 to SOCS-3) occupy the third clade. 
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Figure 2-3.  Schematics of Drosophila SOCS cDNAs.  Transcribed regions are 

indicated by boxes.  The SH2 domain is blue, the SOCS domain is red, while light gray 

indicates untranslated regions and dark gray indicates undefined regions of the 

polypeptide. Two potential Stat92E binding sites are indicated by closed circles.  The 

EST or clone reference is indicated to the right.  Further information about these clones 

can be found in the text. 
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Figure 2-4.  Nucleotide sequence of Socs44A.  The sequence of the Socs44A EST 

LP02169 is shown.  The conceptual translation of the Socs44A protein is indicated in one 

letter amino acid code above the corresponding nucleotide sequence.  The SH2 domain is 

shaded blue and the SOCS domain is shaded yellow. Primers used in sequencing are 

indicated in red.  The closed arrowhead indicates the location of the intron (see Fig 2-3).  

The open arrowhead indicates the location of the PiggyBac P-element insertion (see 

chapter five). 
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Chapter III 
 

The role of Drosophila SOCS in the JAK/STAT cascade 
 
 
INTRODUCTION 

Regulation of signal transduction can serve two purposes.  First, it can act to 

attenuate the amplitude or duration of a signal in order to elicit the appropriate response.  

Second, the signaling pathway must have a means to reset itself so that the cell can 

respond to future signals.  These regulatory phenomena are required throughout 

development and homeostasis.  A common mechanism for such regulation is the negative 

feedback loop, which allows a signaling cascade to regulate itself based upon activation 

of the pathway. 

 The four well-studied mammalian SOCS genes (CIS, SOCS-1 to SOCS-3) have 

been shown to operate in a classical negative feedback loop to regulate the JAK/STAT 

pathway.  Cytokines and growth factors induce pathway activation resulting in the 

modulation of target gene transcription, including SOCS.  The expression of CIS, as well 

as SOCS-1 to SOCS-3 can be induced by a variety of interleukins, interferons, growth 

hormones, and colony stimulating factors (reviewed in Fujimoto and Naka, 2003).  

However, the pattern of SOCS induction seems to be tissue or cell-line specific.  For 

example, IFN-γ induces SOCS-1 and SOCS-3 expression in NIH-3T3 cells, but only 

SOCS-1 in M1 cells (Sakamoto et al., 1998).  Likewise, growth hormone can induce CIS, 

SOCS-2, and SOCS-3 expression in the mouse liver, but only CIS and SOCS-2 are 

induced in the mammary gland (Davey et al., 1999).  The general observation is that 

multiple SOCS are induced by a single cytokine in a tissue specific manner.   
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After pathway activation and induction of gene expression, SOCS can act to 

downregulate JAK/STAT signaling by a variety of mechanisms described previously.  

CIS, as well as SOCS-1 to SOCS-3 have been shown to inhibit signaling by an array of 

cytokines.  However, there is no pattern to the relationship between the SOCS proteins 

and the cytokines they inhibit.  Considering only the interleukins, CIS is induced by IL-2, 

IL-3, IL-6, and IL-9; however, it can only inhibit IL-2 and IL-3 signaling (reviewed in 

Fujimoto and Naka, 2003)  Conversely, SOCS-5 is induced by IL-6 but can negatively 

regulate IL-4 in addition to IL-6 signaling (Heinrich et al., 2003; Nicholson et al., 1999).   

Clearly the activity of SOCS is more complex than a “simple” negative feedback 

loop.  The observations mentioned above indicate that there is considerable crosstalk 

among cytokines via SOCS.  With numerous ligands and receptors for the mammalian 

JAK/STAT pathway, dissection of SOCS function is an arduous task at best, lending 

credence to the study of SOCS in the relatively simplistic Drosophila JAK/STAT system. 

This chapter examines the roles of the Drosophila Socs36E and Socs44A in the 

JAK/STAT pathway.  Specifically, we show that Socs36E expression is dependent on 

JAK activity and it is responsive to JAK pathway activation.  These observations are 

consistent with a recently published report (Karsten et al., 2002).  On the other hand, 

Socs44A failed to respond to JAK/STAT activation.  Likewise, a reduction in pathway 

activity had no effect on Socs44A expression.  Others showed that Socs36E could 

negatively regulate the JAK/STAT cascade during wing development (Callus and 

Mathey-Prevot, 2002).  We extend this by illustrating that Socs36E can also negatively 

regulate the pathway during oogenesis.  Socs44A appears to have tissue specificity in its 

regulation of the pathway.  While it is able to regulate JAK/STAT signal transduction in 
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wing development, it does not regulate the pathway during follicular development in 

oogenesis.    

 

RESULTS 

Expression patterns of Drosophila SOCS 

 If Socs36E and Socs44A were responsive to JAK/STAT signaling, we would 

expect them to have similar patterns of expression to known components of the pathway.  

The role of the JAK/STAT pathway in proper segmentation of the embryo has been well 

established (Binari and Perrimon, 1994; Harrison et al., 1998; Hou et al., 1996; Perrimon 

and Mahowald, 1986; Yan et al., 1996b).  It has been shown that the cascade coordinates 

expression of several of the pair-rule class of genes, including even-skipped, fushi turazu, 

and runt  (Binari and Perrimon, 1994; Small et al., 1996).  The ligand, unpaired, is 

expressed in a distinctive, dynamic pattern during embryogenesis (Harrison et al., 1998).  

Early on, transcripts are detected broadly in the embryo and later refined to seven and 

then fourteen stripes during gastrulation, resembling the classical pair-rule pattern of 

expression.  At germ band retraction, expression is restricted to the tracheal pits, hindgut, 

and other structures.  Whole mount in situ hybridization to mRNA in embryos (work 

done by G. Rennebeck) revealed that Socs36E expressed in a strikingly similar pattern 

throughout embryogenesis (Fig. 3-1).  The principle difference is that the domain of 

Socs36E expression appeared to be broader than that of unpaired.  In embryogenesis, 

expression of Socs44A is not similar to unpaired (Fig. 3-1).  Its expression can be seen 

only in the dorsal trunk and lateral braches of the tracheal system of late stage embryos.  

No expression can be detected in earlier stages, to include the tracheal pits at germ band 
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retraction.  It must be noted that tracheal staining is a common artifact in mRNA in situ 

hybridization.  Therefore, it is possible that the observed expression pattern is not 

legitimate.  However, we did not detect tracheal staining with sense mRNA control 

probes.  Furthermore, the tracheal staining was consistent with both DNA and RNA 

probes generated from variety of polymerases.  We also examined animals homozygous 

for the Df(2R)CA53 deficiency which includes the Socs44A locus.  These embryos died 

before the onset of tracheal morphogenesis.   

 Similar results were seen when expression of these SOCS genes was observed 

during oogenesis (Fig. 3-1).  In the developing egg chamber, unpaired is expressed 

specifically in the two polar follicle cells found at each end of the egg chamber.  Socs36E 

is also expressed at the poles (work done by G. Rennebeck), but again, its domain of 

expression is much broader than that of unpaired.  In contrast, Socs44A was not 

expressed in the somatic epithelium; however, transcripts were detected in germline, 

accumulating in the oocyte by stage 8. 

 

Socs36E but not Socs44A is responsive to the JAK/STAT signal 

 To more directly assess the role of JAK/STAT signaling on the expression of 

Socs36E and Socs44A, mRNA in situ hybridizations were performed on embryos that 

lacked JAK/STAT pathway activity.  We presumed that a decrease in cascade activation 

would result in a decrease in SOCS expression.  Hopscotch, the Drosophila JAK, is an 

essential gene that has both maternal and zygotic functions and is required for early 

embryogenesis. Therefore, we utilized the dominant female sterile technique (DFS) to 

generate females that fail to produce hop in the germline (Chou and Perrimon, 1992).  
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Mating these females to wild-type males produces two populations of embryos.  Because 

hopscotch is X-linked, the resulting male embryos are null for hop, while females are 

paternally rescued because they receive one zygotic copy of hop from their fathers.  It has 

been documented that this technique produces embryos with the expected segmentation 

defects associated with hop loss of function (Binari and Perrimon, 1994).  In situ 

hybridization of Socs36E mRNA in these hop germline clone derived animals (work done 

by G. Rennebeck) revealed a marked reduction in Socs36E expression.  Half of the 

embryos (presumably the males) showed no staining above basal levels, with the 

exception of a persistent mesodermal expression (Fig. 3-2).  In situ hybridization of 

Socs44A mRNA to hop germline clone derived embryos did not result in reduction in the 

tracheal staining.  Interestingly, these animals had vastly reduced tracheal tissue as 

marked by the trachealess-LacZ enhancer trap (Fig. 3-2).  The little tracheal tissue that 

was present was disorganized and did not resemble normal tracheal morphology.  The 

paternally rescued animals had near wild-type trachea with only minor migration defects 

present.  This phenotype is consistent with previous data illustrating the role of the JAK 

receptor, domeless, in tracheal morphogenesis (Brown et al., 2001).  The failure to reduce 

the tracheal staining in hop germline clone derived animals suggests that Socs44A 

expression is not affected by loss of JAK pathway activity.  These data indicate that while 

Socs36E expression is dependent on JAK/STAT activity, it is not the case for Socs44A. 

 The above assays do not address whether Drosophila SOCS are responsive to 

pathway activation.  Recent work has shown that overexpression of unpaired or other 

JAK/STAT components could induce the expression of Socs36E (Karsten et al., 2002 and 

G. Rennebeck, unpublished).  However, misexpression of upd using a paired-GAL4 
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driver failed to induce embryonic Socs44A expression (data not shown).  Taken together, 

these data indicate that Socs44A is not dependent upon or responsive to the JAK/STAT 

pathway during embryogenesis. 

 

Socs44A regulation of JAK/STAT signaling in wing development 

 The JAK/STAT pathway has been implicated in the development of the wing vein 

pattern.  The  hypomorphic statHiJak mutant exhibits ectopic wing vein material in the 

posterior compartment of the wing at the posterior crossvein (Yan et al., 1996a).  A 

strikingly similar phenotype is seen in certain heteroallelic combinations of hop mutants 

(Fig. 3-4).  If SOCS negatively regulate JAK/STAT signaling in flies, we would expect 

misexpression in the posterior to cause a similar phenotype.  Indeed, misexpression of 

two copies of a Socs36E transgene using the engrailed-GAL4 driver produced a similar 

phenotype (Callus and Mathey-Prevot, 2002 and G. Rennebeck, unpublished).   

It is possible that Socs44A could negatively regulate the JAK/STAT pathway 

even though it is unable to respond to its signal because these events are uncoupled.  To 

address this issue, Socs44A was subcloned from the full length LP02169 EST into the 

pUAST vector and the resulting construct was used in the standard transformation 

technique to generate transgenic animals (Spradling, 1986).  These animals express 

Socs44A under the control of the GAL4/UAS binary expression system (Brand and 

Perrimon, 1993).  GAL4, a yeast transcription factor, is not expressed in Drosophila, nor 

does it induce expression of endogenous genes.  However, GAL4 recognizes the 

upstream activating sequence (UAS) that precedes the subcloned Socs44A transgene.  

The UAS-Socs44A transgenic flies were then mated to an array of established lines that 
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express GAL4 under the control of a variety of enhancers providing both temporal and 

spatial control of misexpression (FlyBase Consortium, 2003; Harrison et al., 1995; 

Tracey et al., 2000).   

Socs44A was misexpressed in a variety of tissues (Table 3-1).  In most cases, 

misexpression of Socs44A was either lethal or had no discernable effect.  However, 

misexpression of Socs44A in the wing yielded several phenotypes (Fig. 3-3).  In all cases, 

misexpression in the wing caused either formation of ectopic wing vein material and/or 

alterations in the guidance of the lateral or cross veins.  Patched encodes a receptor 

involved in hedgehog signaling and is expressed specifically along the anterior/posterior 

boundary in the wing imaginal disc (Capdevila et al., 1994).  Patched-GAL driven 

misexpression of Socs44A along this boundary, which is located between the third and 

fourth lateral veins (L3 and L4), caused both of these veins to pinch together at the 

anterior crossvein.  Misexpression using the GAL-T6 driver also caused this pinching 

phenomenon and also resulted in ectopic wing vein material extruding from the anterior 

side of L4.  GAL-T113 misexpression resulted in the formation of one or more ectopic 

crossveins between L2 and L3.  Misexpression of Socs44A using the engrailed-GAL4 

driver also resulted ectopic wing vein formation around the posterior crossvein (Fig. 3-4).  

This ectopic material can be seen as a thickening of the PCV at the distal ends where it 

intersects L4 and L5.  Additional ectopic material is also seen beneath L5 and at the most 

distal portions of L4 and L5.  Finally, these wings also exhibit an exaggerated arching of 

L3. 

 While misexpression of Socs44A results in phenotypes similar to and consistent 

with JAK/STAT mutants, it does not directly address the capacity of Socs44A to 
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downregulate the pathway.  The engrailed-GAL4 driven Socs44A wing phenotype is 

fully penetrant.  The addition of a single copy of the hopc111 null allele enhances this 

phenotype (Fig. 3-4), which would be expected of a negative regulator of JAK/STAT 

signaling.  Misexpression of hop using the engrailed-GAL driver results in complete loss 

of L5 and the most of PCV as well as ectopic wing venation at the anterior crossvein 

(ACV).  Concurrent misexpression of Socs44A in this background rescues the wing vein 

defects, restoring the PCV and L5 (Fig. 3-4).  The resulting wing has ectopic wing vein 

material at the distal part of L5 and occasionally along L3 and arching of L3 is also 

present in these wings, phenotypes attributed to misexpression of Socs44A alone.  Taken 

together, these data suggest that Socs44A is capable of downregulating the JAK/STAT 

pathway during development of the wing. 

 Socs44A appears capable of downregulating the JAK/STAT pathway during wing 

development, but is that reflective of the endogenous activity in vivo?  The PCV wing 

vein spur associated with a specific heteroallelic combination of hop is 98% penetrant 

(n=89).  Furthermore, these flies show a reduction in viability.  It would be expected that 

misexpression of Socs44A would enhance these phenotypes.  Misexpression of Socs44A 

in three different transheterozygous combinations of hop always resulted in lethality 

(Table 3-2).  Exacerbation of the reduced viability caused by the hop mutations is 

consistent with a role in downregulating the JAK/STAT cascade.  These data indicate that 

ectopic expression of Socs44A has the capacity to downregulate endogenous hop in the 

developing wing. 

 In a reciprocal assay, we would expect that a reduction in Socs44A would rescue 

the hop transheterozygous wing spur phenotype.  Currently, a loss of function allele of 
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Socs44A has not been isolated.  In lieu of this, there are several deficiencies that remove 

the Socs44A locus.  CA53 and NCX10 are deficiencies that lack Socs44A by virtue of 

their failure to complement lethal P-element insertions that flank either side of the locus.  

A single copy of either of these deficiencies when placed in a hopM38/msv background 

partially rescued the PCV wing spur phenotype, reducing the penetrance by as much as 

52% (Fig. 3-5).  These observations suggest that endogenous Socs44A downregulates 

hop in wing development.  Unexpectedly, these animals often had misguided PCVs that 

failed to connect to L4 and occasional perturbations of the ACV. 

 

Socs36E but not Socs44A regulates JAK/STAT signaling in oogenesis 

 As mentioned previously, mammalian SOCS responsiveness and subsequent 

pathway regulation is context specific (reviewed in Johnston and O'Shea, 2003).  We 

utilized the Drosophila ovary to test if there is tissue specificity to Socs44A regulation of 

the cascade.  Recent work has established that the JAK/STAT pathway is responsible for 

patterning the somatic follicle cells of the vitellarium (Beccari et al., 2002; McGregor et 

al., 2002; Silver and Montell, 2001; Xi et al., 2003).  Specifically, JAK activity is 

essential for identification of the posterior terminal follicle cells (Xi et al., 2003).  These 

cells are molecularly defined by the expression of the ETS domain transcription factor, 

pointed (Gonzalez-Reyes and St Johnston, 1998; Morimoto et al., 1996; Roth et al., 

1995).  Expression of the pointed protein is detected as a gradient emanating from the 

posterior pole of developing egg chambers.  Clones of cells in the posterior that lack hop 

activity fail to express the reporter, pnt-LacZ (Xi et al., 2003) establishing this as an assay 

for JAK pathway activity. 
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Clones of cells misexpressing either Socs36E or Socs44A in the posterior of 

developing egg chambers were generated using the FLP-OUT cassette technique 

(Neufeld et al., 1998; Struhl and Basler, 1993).  Clones of cells misexpressing Socs36E at 

high levels in the posterior cells of the developing egg chamber exhibited a loss of the 

pnt-LacZ marker (Work done by R. Xi, Fig. 3-6).  However, when Socs44A was 

misexpressed in a similar fashion, there was no reduction of pnt-LacZ expression (Fig. 3-

6).  These data suggest a functional role for Socs36E but not Socs44A in the regulation of 

JAK signaling in oogenesis.  These data also suggest that context specificity of SOCS 

regulation of the JAK pathway is conserved across taxa. 

 

DISCUSSION 

In this chapter, the role of Socs44A in JAK/STAT signaling was examined.  It has 

been shown that the four well-studied mammalian SOCS (CIS and SOCS-1 to SOCS-3) 

respond to and downregulate the JAK/STAT cascade in a classical negative feedback 

loop.  However, it should be noted that SOCS-4, SOCS-6, and SOCS-7 have not been 

shown to be induced by any cytokine or growth factor.  Furthermore, SOCS-4 and SOCS-

7 have not been shown to inhibit JAK/STAT signaling in vitro or in vivo (reviewed in 

Fujimoto and Naka, 2003). 

Socs36E appears to be able to respond to and downregulate the JAK/STAT 

pathway in flies, indicating that this mechanism of JAK/STAT regulation is conserved.  

First, Socs36E is expressed in a dynamic pattern strikingly similar to the ligand, 

unpaired.  We observed that in both embryos and ovaries, the domain of Socs36E 

expression exceeded that of unpaired.  This observation is consistent with the model that 
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Socs36E is responsive to JAK/STAT signaling.  Unpaired is a secreted molecule which 

could induce pathway activation in neighboring cells, leading to Socs36E expression in 

those cells, creating a broader domain of Socs36E expression.  Although diffusion of Upd 

has not been directly observed, Upd expressed in follicle cells of the ovary leads to JAK 

activation in neighboring cells (Xi et al., 2003) which would presumably lead to 

expression of Socs36E in those cells.  Second, ours and other labs have shown that 

Socs36E expression can be induced by ectopic activation of the JAK/STAT pathway 

(Karsten et al., 2002 and G. Rennebeck, unpublished).  Finally, reduction of cascade 

activity has a direct effect on Socs36E expression (work done by G. Rennebeck, Fig. 3-

2).  Interestingly though, in hop null animals, mesodermal expression of Socs36E 

persisted.  This suggests that there may be alternative pathways that activate Socs36E 

transcription in those tissues. 

 Socs44A mRNA expression was detected in both ovarian and embryonic tissues in 

patterns inconsistent with JAK pathway activation.  During oogenesis, an accumulation 

of transcripts was detected in the germline during the period when maternal RNAs are 

loaded into the oocyte.  Further expression was not detected until late stages of 

embryogenesis, when it was restricted to the trachea.  However, the expression of 

unpaired in the tracheal pits (Fig. 3-1) coupled with studies implicating a role for 

JAK/STAT signaling in tracheal morphogenesis (Brown et al., 2001) support our 

findings.  Furthermore, the existence of both embryonic and ovarian ESTs supports the 

observed temporal expression patterns. 
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Through misexpression, it was shown that Socs44A has the capacity to 

downregulate ectopic activated Hop.  Additionally, the loss-of-function mutation hopc111 

enhances the Socs44A misexpression phenotype.  Consistent with these data, 

misexpression of Socs44A exacerbates the reduced viability associated with 

transheterozygous hop mutants.  Finally, deficiencies for Socs44A rescue hop 

heteroallelic phenotypes.  Taken together, these data strongly suggest that endogenous 

Socs44A downregulates JAK pathway activity in vivo.  In contrast, misexpression of 

Socs44A had no effect on expression of a marker for JAK pathway activity during 

oogenesis.  However, it must be noted that both the EGFR/MAPK and JAK/STAT 

pathways work synergistically to pattern the posterior terminal follicle cells in oogenesis 

(Gonzalez-Reyes and St Johnston, 1998; Roth et al., 1995; Xi et al., 2003).  Roles of 

Socs44A in EGFR/MAPK signaling will be examined in chapter four; this issue will be 

revisited there.  Nonetheless, our observations indicate that there may be context 

specificity to SOCS activity in Drosophila, a phenomenon that has been observed in the 

study of mammalian SOCS. 

 When we attempted to rescue the wing spur phenotype associated with certain 

heteroallelic combinations of hop by introducing a single copy of Socs44A-containing 

deficiency, we observed unexpected wing phenotypes.  While the penetrance of the hop 

heteroallelic phenotype was reduced, we observed wings with misguided PCVs and 

occasional perturbations of the ACV.  Both of these defects appeared to be the result of 

failure of the crossvein to migrate properly.  The development and placement of 

crossveins is believed to be the result of signaling from the Jun Kinase, BMP, 

EGFR/MAPK, and Notch pathways (reviewed in Marcus, 2001).  Although the role of 
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JAK/STAT signaling in wing venation has not been determined, hop (Fig. 3-5) and 

Stat92E (Yan et al., 1996a) mutant phenotypes suggest that this pathway is somehow 

involved in this process.
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Figure 3-1.  Socs36E but not Socs44A is expressed similarly to upd in both 

embryogenesis and oogenesis.  The embryonic expression patterns of upd (first column) 

are remarkably similar to the patterns of expression of Socs36E (second column), while 

Socs44A expression patterns (third column) are distinct.  At each stage during embryonic 

development, the dynamic pattern of upd expression (A, D, F, and H) is nearly matched 

by Socs36E expression (B, E, G, and I).  Socs44A expression is not detected until later 

stages, where it is restricted to the trachea (C and J).  In the ovary, upd is expressed 

specifically in the polar follicle cells at each end of the chamber (K).  Socs36E expression 

encompasses the entire anterior and posterior polar caps of post-germarium stage 

chambers.  See text for more details.  Upd and Socs36E in situs done by G. Rennebeck. 
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Figure 3-2.  Socs36E but not Socs44A expression is dependent on JAK activity.   As 

compared with wild-type at various embryonic stages (A, B, and C), germline clone 

derived embryos from hopc111 mothers display dramatically reduced or eliminated 

expression of Socs36E (D, E, and F).  Only a stripe of mesodermal staining in germ band 

extended mutant embryos (F) remains at near normal intensity.  Expression of Socs44A 

persists in hopc111 germline clone derived embryos (G and H).  However, the tracheal 

morphology is drastically reduced in these animals (G) and somewhat reduced in animals 

that are paternally rescued (H), evidenced by the trachealess-LacZ enhancer trap (I).  

Panels A - F are the work of G. Rennebeck.
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Figure 3-3.  Wing misexpression phenotypes generated with the Socs44A transgene.  

Anterior is up and posterior is down for all wing figures.  A Socs44A transgene was 

misexpressed using the GAL4/UAS binary system (Brand and Perrimon, 1993) altering 

the wing vein pattern seen in wild-type wings (A).  When misexpressed along the A/P 

axis with a patched GAL4 driver, the L3 and L4 pinched together at the ACV (B).  

Misexpression with other wing drivers resulted in ectopic wing vein formation (C) or 

extra crossveins (D). 
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Figure 3-4.  Socs44A is capable of downregulating the JAK/STAT cascade in the 

wing.  Engrailed-GAL4 misexpression of Socs44A in the posterior half of the wing 

results in ectopic wing venation (A) that is enhanced by the addition of a single copy of 

the hopc111 null allele (B).  Engrailed-GAL4 misexpression of hopscotch results in a loss 

of L5 and most of the PCV and ectopic wing venation near the ACV.  This phenotype is 

rescued by the concurrent misexpression of Socs44A (D).  The PCV and L5 are restored 

and the amount of ectopic wing vein is reduced.
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Figure 3-5.  Endogenous Socs44A regulates JAK pathway activity.  The 

hopmsv/hopM38 transheterozygote has a wing spur phenotype (A) that is 98% penetrant 

(n=89).  A single copy of a deficiency (Df(2R)CA53 or Df(2R)NCX10) that includes the 

Socs44A locus can rescue this phenotype resulting in reduced (B, arrowhead) or 

misguided (B, arrow) crossveins.  Furthermore, the penetrance of the spur phenotype is 

dramatically reduced (C).  This phenomenon was not seen with a local deficiency that 

does not include Socs44A (C, Df(2R)Drlrv18).
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Figure 3-6.  Socs36E but not Socs44A regulates JAK activity during oogenesis.  In 

wild-type ovaries (first column), pnt-lacZ (red) is expressed in a gradient in the posterior 

terminal cells.  Cells that lack hop activity (marked by a lack of green, see outline), also 

fail to express pnt-lacZ (second column).  Similarly, UAS-Socs36E expressed in clones 

(marked by presence of green, see outline), have reduced or missing pnt-LacZ expression 

(third column, see insets).  Conversely, UAS-Socs44A expressed in clones (marked by 

presence of green, see outline), had no effect on pnt-LacZ expression (third column).  

DAPI nuclear staining is shown in blue.  Panels A – H are the work of R. Xi. 
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Table 3-1.  Socs44A misexpression phenotypes. 

 

The UAS-Socs44A transgene was crossed to an array of GAL4 drivers (FlyBase 

Consortium, 2003; Harrison et al., 1995).  ACV, anterior crossvein; cut, cuticle; discs, 

imaginal discs; FB, fat bodies; LG, lymph gland; Malp, Malpighian tubules; MB, 

mushroom body; OL, optic lobes; PR, pair-rule pattern; SG, salivary glands; Tr, trachea; 

VNC, ventral nerve cord.  Asterisks indicate phenotypes scored from crosses performed 

at 290C all other crosses performed at 250C. 
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Table 3-2.  Misexpression of Socs44A exacerbates the reduced viability of hop 

heteroallelic mutants. 

 

Misexpression of Socs44A in a range of hop heteroallelic mutants resulted in lethality.  

For each mutant combination, n represents the total number of progeny scored in the 

cross.  The number of progeny of each genotype is indicated.  E represents the expected 

number of progeny of that genotype if Socs44A misexpression were to have no effect on 

viability, where E = b/a x c. 
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Chapter IV 
 

Socs44A is capable of interacting with the EGFR/MAPK 
pathway 

 
 
INTRODUCTION 

 The number of developmental and homeostatic programs far surpasses the 

number of signal transduction pathways that control them.  One method of compensation 

for this deficit is the crosstalk among signaling cascades.  Crosstalk permits a higher 

order of complexity resulting in a greater number of possible responses without 

increasing the number of cascades that generate them.  Combinatorial control of gene 

expression through crosstalk may serve to attenuate transcription levels and possibly 

contribute to the robustness to changes in gene dosage that are inherently compensated 

for by signaling cascades (Eldar et al., 2002). 

 There is considerable interplay between the JAK/STAT and several other 

cascades (Heinrich et al., 2003; Rane and Reddy, 2000; Shuai, 2000).  This is not 

surprising because certain species lack some of the components required for activation 

and propagation of the JAK/STAT signal.  For example, the slime mold Dictyostelium 

possesses three STAT molecules but lacks any other component.  The nematode, C. 

elegans, also possesses a STAT molecule, as well as a predicted protein with high 

similarity to SOCS, but also lacks a JAK or other components (see reviews by Dearolf, 

1999; Rawlings et al., 2004).  These observations imply that the STATs can be activated 

by some other mechanism than by JAK phosphorylation.  In fact, it has been shown that 

STAT and SMAD (a TGF-β pathway molecule) can interface through p300 (Iwamoto et 
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al., 2002; Moustakas, 2002).  The phosphotyrosine docking sites on the JAK/STAT 

receptor are inviting targets for interaction with other signal cascades as well.  For 

example, p85 interacts with the phosphorylated receptor.  This molecule also interacts 

with IRS (insulin receptor substrate) bridging JAK/STAT with the phosphoinositide 3-

kinase (PI3K) pathway (Foster et al., 2003).  

 Of particular interest is the EGFR/MAPK pathway, which has a bidirectional 

interface with JAK/STAT on several levels (reviewed in Rawlings et al., 2004).  The 

protein tyrosine phosphatase SHP-2 (SH2 containing protein) interacts with the 

JAK/STAT receptor gp130 as well as GRB2, an adaptor in the EGFR/MAPK cascade 

(Qu, 2002).  Also, it has been shown that JAK can activate MAPK through the Pyk2 

intermediary (Takaoka et al., 1999).    Several MAPKs can contribute to the 

transcriptional ability of STATs via serine phosphorylation, independent of JAK 

activation (David et al., 1996; Decker and Kovarik, 2000; Leaman et al., 1996).  A recent 

report directly links murine SOCS-3 to EGFR signaling.  Specifically, SOCS-3 binds to 

and degrades p120 RasGAP, the small GTPase responsible for inactivating Ras.  The 

result of this interaction is an upregulation of the EGFR/MAPK pathway (Cacalano et al., 

2001). 

The interplay between JAK/STAT and EGFR/MAPK is also reflected in the 

Drosophila model.  In the follicular epithelium of the Drosophila ovary, JAK/STAT 

pathway pre-patterns the termini and is required for EGFR competence in the posterior of 

developing egg chambers (McGregor et al., 2002; Xi et al., 2003).  Likewise, the MAPK 

pathway is required for JAK driven differentiation of hematopoietic cells because a direct 

interaction between hopscotch and D-Raf is required for the blood cell alterations caused 

47 



by the hypermorphic hopTum-l and hopT42 alleles (Luo et al., 2002).  Furthermore, Socs36E 

has been reported to weakly suppress EGFR signaling in the wings (Callus and Mathey-

Prevot, 2002).    

 In this chapter, potential interactions between Socs44A and other signaling 

cascades is explored.  Strong evidence of a genetic interaction between Socs44A and the 

EGFR/MAPK (Epidermal growth factor receptor/Mitogen-activated protein kinase) 

pathway is presented.  Specifically, Socs44A acts to upregulate the EGFR/MAPK 

cascade, analogous to what was reported for mouse SOCS-3. 

 

RESULTS 

Interactions between Socs44A and other signaling cascades 

 As described previously, misexpression of Socs44A using the engrailed-GAL4 

driver resulted in a fully penetrant phenotype marked by the presence of ectopic wing 

vein material in the posterior compartment of the wing.  To test possible dominant 

interactions between Socs44A and other signaling pathways, flies were generated that 

were heterozygous for mutations or carried GAL4/UAS compatible transgenes in an 

engrailed-GAL4; UAS-Socs44A genetic background to determine if they had any effect 

on the Socs44A misexpression phenotype.  Members of the TGF-β, dpp 

(decapentaplegic), and hedgehog pathways were tested (Table 4-1), none of which 

showed any detectable modulation of the Socs44A misexpression phenotype.  An 

interaction between Socs44A and the EGFR/MAPK pathway was detected and will be 

described in the next section. 

 

48 



 

Socs44A interacts with the EGFR/MAPK pathway 

Engrailed-GAL4 driven misexpression phenotypes of Socs44A were suppressed 

in the background of heterozygous mutations for EGFR/MAPK components, including: 

Ras85D, Son of sevenless (Sos), and Egfr (Table 4-1 and Fig. 4-1).  Consistent with these 

observations, reduction in the dosage of argos enhanced the Socs44A misexpression 

phenotype.  Argos is an extracellular ligand that possesses an EGF motif and acts as an 

inhibitor of EGFR/MAPK signaling in the developing wing and other tissues (Sawamoto 

et al., 1996; Sawamoto et al., 1994; Schweitzer et al., 1995).  Concurrent misexpression 

of Socs44A and argos also showed a phenotypic interaction consistent with the previous 

data.  Misexpression of two copies of an argos transgene under the engrailed-GAL4 

driver resulted in wings lacking the 4th lateral vein (L4) as well as both cross-veins (Fig. 

4-2).  Concurrent misexpression of a single copy of the Socs44A transgene in this 

background was able to rescue this phenotype, restoring the posterior crossvein and both 

the most proximal and distal portions of L4.  The resulting wing phenotype mimicked 

that seen when only a single copy of argos was used in the misexpression assay or what 

is seen in heteroallelic Egfr mutants.  Finally, concurrent misexpression of a single copy 

of the argos and Socs44A transgenes produced a nearly wild-type wing.  These data 

indicate that Socs44A expression is able to suppress argos misexpression phenotypes in a 

dose-dependent manner.  It should be noted that concurrent misexpression of the gene 

encoding GFP did not have similar effects in these assays (Fig. 4-5), indicating that the 

phenotypes produced were not merely a consequence of titrating GAL4.   
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To address whether endogenous Socs44A activity had a similar effect on EGFR 

pathway activity, we assayed the effects of a Socs44A deficiency in the argos 

misexpression background.  Engrailed-GAL4 misexpression of argos produces a range of 

phenotypic classes in which parts or all of L4 and/or the PCV are missing (Fig. 4-3).  

Addition of a single copy of a Socs44A deficiency shifted the distribution of phenotypes 

to the more severe classes compared to a deficiency that does not include the Socs44A 

locus (Fig. 4-4).  Taken with the previous data, these observations suggest that Socs44A 

does indeed upregulate EGFR signaling in the Drosophila wing. 

Not all proteins that interact with various MAPK pathways showed interactions 

with Socs44A.  For example, sevenless, the receptor used in eye development (Hafen et 

al., 1994) had no effect on the Socs44A misexpression phenotype.  Sprouty is an 

intracellular inhibitor of the EGFR/MAPK pathway that possesses a mutant phenotype 

similar to the engrailed-GAL4 driven misexpression phenotype of Socs44A (Casci et al., 

1999).  In my hands, sprouty heterozygotes exhibited a PCV wing spur nearly identical to 

hopM38/msv transheterozygotes.  Addition of a deficiency that includes the Socs44A locus 

had no effect on the penetrance of this phenotype.  Veinlet is an allele of rhomboid, a 

transmembrane protein that interacts with EGFR and promotes signaling during wing 

development.  Homozygous veinlet mutants exhibit wings that lack the distal portions of 

all of the lateral veins (Guichard et al., 1999; Sturtevant et al., 1993).  Removal of one 

copy of Socs44A via a deficiency had no effect on this phenotype.  These observations do 

not contradict my previous findings because these assays tested for dominant interactions. 
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DISCUSSION 

 Crosstalk is a common theme amongst signal transduction cascades.  This 

phenomenon is likely to serve multiple purposes.  Among them are to allow a cell to 

integrate multiple signals into a single response, or to contribute to the compensation for 

changes in gene dosage required to maintain the fidelity of developmental and 

homoeostatic processes dependent on signal transduction mechanisms.   

While others have shown that Socs36E genetically interacts with and 

downregulates the EGFR pathway (Callus and Mathey-Prevot, 2002), it is illustrated here 

that Socs44A acts in the opposite manner.  Socs44A is able to rescue misexpression of 

the EGFR negative regulator argos in a dose-dependent manner.  Furthermore, mutations 

in EGFR pathway components rescue Socs44A misexpression phenotypes.  Finally, a 

loss of endogenous Socs44A activity enhanced the argos misexpression phenotype.  

Taken together, these data indicate that Socs44A is upregulating the EGFR pathway.  

This finding is consistent with a recent report describing an interaction between SOCS-3 

and the p120 RasGAP (Cacalano et al., 2001).  In this model, SOCS-3 degrades p120 

RasGAP, the GTPase-activating protein responsible for inactivating Ras, resulting in an 

upregulation of the EGFR/MAPK pathway.  It is possible that Socs44A is acting in an 

analogous manner; biochemical analyses are required to address this hypothesis.   

Interactions were not detected between Socs44A and several known 

EGFR/MAPK pathway proteins including: sevenless, sprouty, and veinlet.  In addition, 

interactions with other cascades were also not observed.  Members of the Notch, Dpp, 

Hedgehog, and TGF-β pathways were tested, none of which showed an interaction with 

Socs44A in misexpression assays.  This does not rule out interactions between Socs44A 

51 



and EGFR/MAPK or those other pathways.  The assay may not have been sensitive 

enough or the location of misexpression may have been inappropriate to observe 

interactions.  In light of the fact that Socs44A regulation of JAK signaling seems to be 

context specific, it is possible the interactions between Socs44A and other cascades may 

exist and not be detected by this particular misexpression assay.  Finally, the use of 

animals heterozygous for mutations may not have sufficiently reduced the function of the 

genes tested to alter the Socs44A misexpression phenotype.  Clearly, this assay was 

designed to detect dominant interactions; therefore, negative data cannot be interpreted as 

a lack of an interaction. 

 In the previous chapter, I showed that ectopic expression of Socs44A in clones of 

cells at the posterior terminus of the developing egg chamber had no effect on the 

posterior cell fate marker, pointed, suggesting that Socs44A does not downregulate 

JAK/STAT signaling in oogenesis.  Recent work in our lab showed that the JAK/STAT 

pathway is responsible for establishing a cell fate pre-pattern exhibiting a symmetrical 

mirror image during oogenesis (Xi et al., 2003).  This symmetry is broken by Gurken, 

expressed from the oocyte positioned in the posterior of the egg chamber, which activates 

EGFR/MAPK signaling, resulting in the posterior cells adopting the appropriate terminal 

cell fate (Gonzalez-Reyes and St Johnston, 1998; Roth et al., 1995).  Thus, in order for 

cells to adopt their proper terminal cell fates, both the JAK/STAT and EGFR/MAPK 

pathways must be activated.  This is evidenced by the failure of terminal cell fate 

differentiation via ectopic EGFR induction in main body cells, where JAK is not active; 

whereas success is seen in induction of EGFR induction in anterior cells, where JAK is 

active (Xi et al., 2003).   
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One could imagine that ectopic Socs44A has no effect on pointed expression 

because its downregulation of JAK/STAT and upregulation of EGFR/MAPK cancels 

itself out.  This theory is dependent on incomplete reduction of JAK/STAT signaling by 

Socs44A because complete abolishment of pathway activity would result in loss of 

pointed expression, regardless of its effects on EGFR/MAPK signaling.  If indeed, it was 

incomplete reduction of JAK/STAT signaling, but still sufficient to pre-pattern the 

terminal cells, we would expect to see cell autonomous ectopic pointed expression in 

clonal cells, driven by Socs44A upregulation of EGFR/MAPK signaling.  This was not 

the case, as the gradient of pointed expression from the posterior terminus was unaffected 

by induction of clones ectopicly expressing Socs44A.  Therefore, we can conclude that 

Socs44A is not capable of affecting JAK/STAT or EGFR/MAPK signaling in patterning 

the terminal follicle cells of the ovary, at least to the sensitivity of the assay used.  This 

does not rule out roles in patterning other cell fates within the ovary.  Furthermore, this 

suggests that Socs44A regulation of EGFR/MAPK signaling might also be tissue 

specific.  Further clonal analyses will be required to validate the issues raised here. 
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Figure 4-1.  Socs44A increases activity of EGFR signaling.  The ectopic wing vein 

phenotype of Socs44A misexpression (A, arrow) is rescued by reduction of Egfr (B), Sos 

(C) or Ras85D (D), all positive effectors of EGFR signaling.  In contrast, reduction of 

argos, a negative regulator of EGFR signaling, enhances the phenotype (E, arrows). 
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Figure 4-2.  Concurrent misexpression of Socs44A rescues argos misexpression in a 

dose-dependent manner.  Heteroallelic combinations of EGFR mutations result in loss 

of the ACV and the medial portion of L4 (A).  Misexpression using two copies of the 

argos transgene results in loss of both crossveins and L4 (B, arrows).  Concurrent 

misexpression of Socs44A rescues this phenotype, resulting in a wing similar to the 

EGFR double mutant (compare C and A, arrows).  When a single copy of the argos 

transgene is used (D), the Socs44A misexpression rescue results in a nearly wild-type 

wing (E).  All UAS constructs are driven in the posterior of the wing using one copy of 

engrailed-GAL (en-GAL). 
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Figure 4-3.  Phenotypic classes generated by misexpression of argos.  Misexpression 

of argos via the engrailed-GAL4 driver produces a range of phenotypic classes, 

categorized by the presence of the posterior crossvein (PCV) and L4.  Left column 

contains representative pictures of each class.  Right column, corresponding description 

used to score wings into the phenotypic classes.  It should be noted that Class V and 

Class VI phenotypes were only observed in animals where Socs44A and argos are 

concurrently misexpressed. 
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Figure 4-4.  Socs44A deficiencies enhance argos misexpression phenotypes.  A 

deficiency (Df(2R)CA53, CA53) that includes the Socs44A locus shifted the distribution 

of phenotypes to the more severe classes compared to a local deficiency that does not 

include Socs44A (Df(2R)Drlrv18, Drl) or no deficiency at all (Scutoid, Sco).  See Fig 4-3 

for class definitions. 
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Figure 4-5.  Socs44A misexpression rescues argos misexpression phenotypes.  

Concurrent misexpression of Socs44A (UAS-44A) rescues misexpression of argos, 

shifting the distribution of phenotypes, producing Class V and Class VI wing phenotypes 

(compare UAS-44A to Sco).  Concurrent misexpression of GFP (UAS-GFP) did not 

produce class V or class VI wing phenotypes.  Misexpression of UAS constructs in the 

posterior of the wing was achieved using the engrailed-GAL4 driver.  For class 

definitions, see Fig. 4-3. 
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Table 4-1.  Socs44A misexpression assay data. 
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Mutants and transgenics were placed in the engrailed-GAL4; UAS-Socs44A 

misexpression background.  Wings were analyzed for suppression or enhancement of the 

Socs44A misexpression phenotype.  Several transgenes were lethal when misexpressed 

with engrailed-GAL4; therefore interactions could not be determined (ND-lethal).  

Concurrent misexpression of Socs44A rescued the phenotypes associated with engrailed-

GAL4 misexpression of hop (UAS-hop) and argos (UAS-argos). 
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Chapter V 
 

Attempts to isolate a loss-of-function Socs44A mutation 
 
 
INTRODUCTION 

 Evidence presented in previous chapters suggests that Socs44A interacts with 

multiple signal transduction cascades.  However, these studies utilized misexpression 

analysis of Socs44A function.  While ectopic expression demonstrates the capacity of 

Socs44A, it may also overestimate its functions, as elevated levels of protein or 

inappropriate location of expression could result in non-specific interactions.  

Misexpression studies of SOCS in mammals overestimated their physiological roles, as 

was the case for SOCS-3 and SOCS-5.  Initial misexpression studies of SOCS-3 indicated 

that it might be a pleiotropic inhibitor of cytokine signaling as it is capable of regulating 

multiple cytokines, including IL-10 (Alexander, 2002).  However, STAT3 activation 

induced by IL-10 was not enhanced in Socs3-/- macrophages.  Misexpression of SOCS-5 

indicated that it might be involved in T cell development and differentiation (Seki et al., 

2002); however, analysis of a recently generated SOCS-5 knockout indicated that it was 

dispensable for these functions (Brender et al., 2004).  Misexpression could also 

potentially lead to a qualitative error in the misjudgment of Socs44A function, as was the 

case for murine SOCS-2.  When expressed at low levels, SOCS-2 inhibits growth 

hormone signaling, but at higher levels, it actually stimulates GH signaling (Favre et al., 

1999).  Finally, we have already demonstrated context specificity for Socs44A action that 

is consistent with the mammalian model.  Therefore, the interpretation of expression of 

Socs44A out of context must be guarded.   
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In the absence of an available mutant, we utilized several overlapping deficiencies 

to study the loss-of-function of Socs44A.  These deficiencies behaved consistently with 

our expectations based on misexpression analyses.  Nevertheless, these deficiencies are 

quite large, removing multiple genes in addition to Socs44A (Table 5-1) that theoretically 

could be responsible for the interactions we observed.  Analyses utilizing a loss-of-

function allele of Socs44A would not be plagued with these issues.  It would allow for the 

analyses of the endogenous activity of the protein in its appropriate context without the 

ambiguity associated with the deletion of multiple genes.  Therefore, to validate findings 

presented in this work, several avenues designed to isolate a Socs44A loss-of-function 

mutation were pursued.  This chapter will discuss progress on these avenues. 

 

RESULTS 

P-element excision 

 The Drosophila P-elements are perhaps the best-studied eukaryotic transposons.  

They are a widely exploited tool used by geneticists to manipulate the Drosophila 

genome (Engels, 1997).  The Drosophila community has developed several strategies for 

targeted manipulation of the fly genome using a variety of P-elements (Cooley et al., 

1988; Parks et al., 2004; Sentry and Kaiser, 1992; Spradling et al., 1999; Thibault et al., 

2004; Timakov et al., 2002; Tower et al., 1993).  These strategies are largely made 

possible by the engineering of P-elements that lack the enzyme transposase, required for 

excision and integration of the element (Beall and Rio, 1997; Beall and Rio, 1998; Doll et 

al., 1989; Kaufman et al., 1989; Rio and Rubin, 1988).  P-element induced mutagenesis 

has allowed for the isolation of several components of the Drosophila JAK/STAT 
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cascade.  Marelle6346 (a synonym for stat92E) was recovered in a P-element mobilization 

screen for autosomal zygotic lethal mutations exhibiting specific maternal effect 

phenotypes (Hou et al., 1996).  The Drosophila JAK/STAT receptor, domeless, was 

identified in two separate screens of P-element insertions.  The first was designed to 

identify novel factors in posterior spiracle development (Brown et al., 2001).  The second 

screen sought modifiers of GMR-GAL4 driven misexpression of upd (Chen et al., 2002a). 

Drosophila P-elements utilize cut-and-paste transposition generating a double 

strand break in the chromosome (Engels et al., 1990; Gloor et al., 1991; Kaufman and 

Rio, 1992) resulting in a variety of excision products (Gloor et al., 2000; O'Brochta et al., 

1991).  Precise excisions involve removal of the P-element without affecting adjoining 

DNA, although a P-element footprint is left behind (Engels et al., 1990; Nassif and 

Engels, 1993).  Imprecise or “dirty” excisions occur when the P-element removes 

flanking DNA sequences when it is excised, resulting in a deletion surrounding the 

original P-element locus (Gloor et al., 2000). 

 There are several characterized P-element insertions in the vicinity of Socs44A on 

chromosome 2R (Fig. 5-1).  We attempted to imprecisely excise one of these P-elements, 

in hopes of deleting the Socs44A locus, generating a null allele.  One of these elements, 

KG03963, is homozygous viable and is located approximately 5 kbp upstream of the 5’ 

end of the Socs44A locus.  This element contains the mini-white gene which permits the 

rescue of white- mutants by tracking the P-element via the red eye color it imparts on the 

animal (Roseman et al., 1995).  This element was excised (see scheme, Fig. 5-2) using 

∆2-3 (Robertson et al., 1988) as the source of transposase.  Of 109 independent excision 

events recovered, 102 remained viable, while 7 were lethal as homozygotes.  The lethal 
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excision events were then subjected to complementation analysis with lethal P-element 

insertions that flank either side of Socs44A (Fig 5-1).  All seven lethal excisions 

complemented both P-elements, indicating that those loci remained intact in these 

animals (Table 5-1).  The lethal excision events were balanced over the P{Act-GFP}CyO 

balancer, which ubiquitously expresses GFP under the Actin promoter.  This allowed 

recovery of DNA from homozygous embryos and larvae; DNA was collected from 

homozygous adults (marked by lack of the CyO marker) for the viable excision events.  

All 109 lines were then tested by PCR for the presence of the Socs44A locus (Table 5-1).  

Specifically, the 5’ portion of Socs44A proximal to the KG03963 insertion site was PCR 

amplified from animals homozygous for the excision.  As a positive control, a portion of 

the unpaired locus was simultaneously amplified for each line.  For the lethal excisions, 

selection of homozygous animals was confirmed by failure to PCR amplify GFP.  

Furthermore, the intergenic region 5’ of Socs44A was also amplified from animals 

presumed to have imprecise excision events (Fig. 5-1).  These data indicate that all of the 

excisions recovered failed to delete Socs44A. 

 

EMS mutagenesis 

 Since its introduction in 1968, Ethyl methanesulphonate (EMS) has been the most 

commonly used chemical mutagen in Drosophila genetics (Lewis and Bacher, 1968).  

EMS is an alkylating agent that produces G/C to A/T transition class mutations (Pastink 

et al., 1991).  In theory, the standard 25mM dose of EMS will lead to a 1 in 1000 

mutation rate for the average gene (Greenspan, 1997).  However, there is considerable 

variation to this estimate based largely on the size of the coding region and the number of 
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critical amino acids in the gene target.  Nonetheless, EMS mutagenesis screens have 

successfully produced mutant alleles of several of the known Drosophila JAK/STAT 

components.  Mutations in hopscotch were recovered in a screen for maternal effect 

lethal genes exhibiting segmentation defects (Binari and Perrimon, 1994; Perrimon and 

Mahowald, 1986).  The stat92EHiJak allele was isolated in a mutagenesis screen for 

dominant autosomal suppressors of the hyperactive hopTum-l allele (Hanratty and Dearolf, 

1993; Yan et al., 1996a).  Upd alleles were isolated in an elaborate screen involving a 

duplication of polytene segment 17 of the X chromosome placed on the Y chromosome 

which allowed for the recovery and complementation analyses of zygotic lethal mutants 

in that segment of the X chromosome (Eberl et al., 1992). 

 Our lab, in collaboration with several others, embarked upon a large scale F3 EMS 

screen designed to isolate mutations of several genes located on the second chromosome:  

Socs36E, Socs44A, StIP, and Ric.  Socs36E and Socs44A have already been described in 

detail within this text.  StIP (Stat interacting protein) is a WD-40 repeat containing 

protein that has been shown to interact with both JAK and STAT in mammalian systems.  

Biochemical analyses suggest that it may serve as an adaptor molecule that facilitates 

STAT recruitment to the receptor complex (Collum et al., 2000).  Biochemical analysis 

of Ric indicates that it is a small GTPase that binds Calmodulin (FlyBase Consortium, 

2003; Wes et al., 1996).  Ric has not been associated with JAK/STAT signaling in 

Drosophila.   

Starting with a line carrying an isogenized second chromosome containing 

cinnabar (cn), brown (bw), and speck (sp)  markers, 600 males were exposed to 25mM 

EMS per the standard protocol (Ashburner, 1989).  These males were then mated en 
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masse to y w; Sco/CyO females.  Of the progeny collected, 7,477 males were individually 

mated again to three y w; Sco/CyO females.  From these crosses, 3,986 balanced stocks 

were recovered, each carrying a mutagenized second chromosome (the complete scheme 

can be found in Fig. 5-3).  Approximately 62% of these stocks were homozygous viable 

for the mutagenized chromosome, assayed for by the presence of flies with wild-type 

wings in the CyO balanced stocks.  From this we can extrapolate that each mutagenized 

stock carries 1.5 recessive lethal mutations on the second chromosome (Ashburner, 1989) 

for a total of 5,979 lethal hits.  Although the precise number of essential genes in the 

Drosophila genome is not known, it has been estimated that approximately 3,600 genes 

are essential (Miklos and Rubin, 1996).  The second chromosome accounts for 

approximately 40% of the entire Drosophila genome (Adams et al., 2000), thus 

containing approximately 1,440 essential genes.  To carry this line of reasoning further, 

we would then expect that our screen hit each lethal gene on the second chromosome on 

average 4.15 times, suggesting that we approached saturation. 

While similar strategies were employed to isolate mutations in all four genes, I 

will focus on our efforts to obtain loss-of-function alleles of Socs44A.  There are several 

deficiencies located in the vicinity of Socs44A (Fig. 5-4).  These deficiencies were tested 

by complementation with molecularly defined P-elements that flank either side of 

Socs44A to determine which deficiencies uncovered the Socs44A locus.  All 3,986 

balanced stocks were crossed to the Df(2R)CA53 deficiency, which contains the Socs44A 

locus, and tested for complementation.  Those lines that failed to complement 

Df(2R)CA53 were submitted to secondary screens against another deficiency that takes 

out the Socs44A locus (Df(2R)NCX10) as well as deficiency that does not take out 
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Socs44A (Df(2R)Drlrv18).  Of the 3,986 lines, 42 lines failed to complement Df(2R)CA53 

and Df(2R)NCX10 and successfully complemented Df(2R)Drlrv18 and were retained as 

candidate Socs44A mutants.   

 Of the 42 candidate mutants, 4 were viable as homozygotes while the remainder 

were lethal.  None of the candidates exhibited dominant phenotypes.  When crossed to a 

Socs44A containing deficiency, four of the candidates displayed wing vein defects.  Three 

lines were marked by a loss in the most distal portions of L5, while one line had weak 

ectopic wing veins that did not seem to be localized to a particular portion of the wing.  

The remaining 38 lines were lethal when crossed to the Socs44A deficiency.  All 42 of 

the candidate mutants were crossed pair-wise in a complementation analysis to determine 

the number of genes represented in the collection.  The results of this analysis were not 

easily interpreted as inconsistent complementation behavior was observed.  These 

behaviors may have been the result of semilethality, intergenic complementation, or some 

other unknown phenomenon.  Nonetheless, we estimate that there are no more than 23 

complementation groups present in the Socs44A candidate collection (Table 5-2). 

 As detailed in the previous chapter, Socs44A interacts with the EGFR/MAPK 

pathway.  I developed an assay to test this interaction based on modification of the 

distribution of phenotypes seen when argos is misexpressed using the engrailed-GAL4 

driver.  Deficiencies for Socs44A shifted the distribution to the more severe phenotypic 

classes (Fig. 4-4).  Loss-of-function mutants generated in the EMS screen would be 

expected to behave in a similar fashion.  Representatives from each of the 23 

complementation groups were subjected to this argos misexpression interaction assay.  

The distribution of phenotypes generated by each line was then compared to Df(2R)CA53 
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as well as Sco using Fisher’s Exact Test (Armitage and Berry, 1994) and are presented in 

Table 5-2 (statistical analyses courtesy of Chris Saunders).  Of particular interest is 

candidate 7267, of which we did not observe anything that would lead us to believe that 

there is a statistical difference between its behavior and that of the Socs44A deficiency 

Df(2R)CA53 (p = 1).  Several other candidates showed interactions by this assay and are 

identified in Table 5-2. 

 In addition to the argos interaction assay, representatives for several 

complementation groups were selected for sequencing (Table 5-2).  These lines were 

balanced over the P{Act-GFP}CyO chromosome.  Embryos and larvae that were 

homozygous for the mutagenized chromosome were selected by virtue of their lack of 

GFP fluorescence.  The Socs44A locus was then PCR amplified from genomic DNA 

isolated from these animals.  Sequence analysis from these lines revealed no molecular 

lesions within the amplified region when compared to the sequence of the original 

isogenic cn bw sp chromosome. 

 

DISCUSSION 

 This chapter chronicles efforts to obtain a loss-of-function allele of Socs44A.  I 

had hoped that the isolation of a Socs44A hypomorph would allow me to validate my 

previous findings implicating roles for Socs44A in JAK/STAT and EGFR/MAPK 

signaling.  Furthermore, this reagent would be indispensable in determining the roles of 

Socs44A in Drosophila development.  Unfortunately, there are no guarantees when 

undertaking random mutagenesis screens that attempt to target a specific gene for 

mutation.  I attempted both a P-element excision as well as a saturating F3 EMS screen 
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against Socs44A deficiencies.  Although not all of the candidates from the EMS screen 

have been analyzed completely, recent developments in the Drosophila community 

indicate it is impossible that our strategy would produce the desired mutation.  These 

implications will also be discussed. 

 

P-element excision mutagenesis 

I attempted to excise a viable P-element located approximately 5kb away from the 

Socs44A locus.  There are several variations of P-elements in use by Drosophila 

geneticists, each of these elements exhibits different behavior in regards to the frequency 

of excision and the class of the resulting molecular lesion produced by excision.  

Furthermore, the location of the P-element insertion may also affect its behavior in these 

regards (Gloor et al., 2000; Handler, 2001; Spradling et al., 1999).  Of the 215 attempted 

excisions, 109 independent excision events were recovered (excision evidenced by loss of 

the white eye marker), indicating that 51% of the males gave rise to some progeny with 

excision events.  Of these events, 102 remained viable, while in the other 7, excision 

resulted in homozygous lethality.  It is likely that the vast majority of the 102 viable lines 

represent precise excision events, as this phenomenon is often reported as the most 

common P-element excision event (Gloor et al., 2000; Sentry and Kaiser, 1992).  I can 

presume that the seven lethal lines represent P-element excision events that were not 

precise because the original KG03963 insertion is homozygous viable.  PCR 

amplification of genomic DNA from these animals revealed that none of these events 

excised the Socs44A locus or the adjacent 5’ region.  I can assume these excisions were 

simply not large enough to remove Socs44A. 
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 Several labs have conducted imprecise excision screens using P as well as other 

transposable elements and there is no consistency in the size or the rates in which 

deletions are recovered.  Johnson-Schlitz and Engels (1993) excised a P-element from the 

white locus, generating 65 excision events.  None of these deleted more then 905bp of 

genomic DNA surrounding the insertion.  In stark contrast, Mohr and Gelbart (2002) 

excised P{wHy} from multiple locations on the second chromosome.  This element is a 

hybrid between P and hobo type transposons.  They produced a total of 66 deletions (of 

138 recombinants), of which 53 were greater than 10kb.  In another excision screen, 

Preston, Sved, and Engels (1996) excised P{CaSpeR}Cp150C, generating 243 recombinant 

lines.  Of these 21 were short deletions less than 650bp while 24 were much larger; the 

largest measuring over 100kb by cytology.  In this study, Preston et al noticed that the 

breakpoints of the deletions often correspond to P-element insertion site preferences.  

These include euchromatic regions often near the 5’ end of genes and target octamers 

similar to sequence GGCCAGAC (Engels, 1989; Kelley et al., 1987; O'Hare and Rubin, 

1983).  This suggests that P-element mobilization behavior can be used as a guide for 

imprecise excision activity.  Thus, we would expect that the majority of deletions would 

be small because P-elements preferentially mobilize to local sites within 2kb of the 

insertion site (Tower et al., 1993), although 2 out of 36 mobilizations in the Tower et. al. 

study moved as far as  128kb away. 

 Why did the P-element excision screen fail?  The scope of the screen was well 

within that of those describe above, all of which generated deletions larger than the 5kb 

needed to remove Socs44A.  However, it is known that P-elements tend to insert 

themselves into “hotspots” in the genome (Spradling et al., 1999), which may have some 
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bearing here because breakpoints apparently mimic insertion site preferences.  Perhaps 

Socs44A is not in a “hotspot” for the particular P-element used.  Also, it is known that 

there is directionality to the deletions caused by P-element excision (Preston et al., 1996).  

It is possible that the starting P-element was not oriented in the proper direction for 

efficient deletion of the Socs44A locus. 

 Although the P-excision screen failed to generate a Socs44A deletion, 7 lethal 

lines were recovered.  Based on complementation analyses, the breakpoints of these 

presumed excisions fall between the l(2)k16504  – Socs44A interval (Fig. 5-1).  This 

genomic region is approximately 55kb and contains 13 genes.  Of these, five genes have 

been named while the others are predicted loci.  One of these, CG11210, has been 

disrupted by a P-element insertion and is lethal (Bellen et al., in press).  This predicted 

gene does not have any functionally characterized domains or motifs, nor has any 

analyses been published on the mutant.  Four of the 13 genes have mutant alleles reported 

in FlyBase that are viable (FlyBase Consortium, 2003).  The remaining seven genes 

include sut1, sut2, and five predicted genes.  It is likely that the lethal excisions created 

contain a small deletion around the KG03963 insertion that includes CG11210 and/or one 

or more of these loci. 

 

EMS mutagenesis 

 In a large collaborative effort, an F3 EMS screen was undertaken to isolate 

mutations in several genes on the second chromosome, including Socs44A.  A total of 

3,986 balanced lines were generated, each containing a unique mutagenized second 

chromosome.  Based on the assumption that the second chromosome contains 
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approximately 1,400 essential genes, our screen should have hit each of these an average 

of 4.15 times.  This suggests that we should have isolated a mutation in Socs44A 

provided that such a mutant would produce a discernable phenotype when placed over a 

deficiency for the locus.  This reasoning exposes a potentially fatal weakness in our 

screening strategy.  If a Socs44A null animal has no visible phenotype and is not essential 

for viability, then it would be impossible to recover such an animal in our screen even 

though we approached saturation of the genome.  Based on studies using engrailed-

GAL4 misexpression of Socs44A we hoped that in lieu of lethality we might have 

detected a wing vein defect in potential Socs44A mutants.  Indeed, we recovered several 

candidate mutants that lacked wing vein material in the posterior compartment near the 

PCV, consistent with our expectations.  However, this phenotype is likely caused by 

another mutation within the Df(2)CA53 - Df(2R)Drlrv18 interval.  The reasoning for this is 

provided in the next section. 

These results are consistent with a multitude of mutagenic screens, some of which 

were designed to target JAK/STAT components directly.  Many large scale EMS screens, 

including the Nobel winning work of Christiane Nüsslein-Volhard and Eric Wieschaus, 

that isolated most of essential the mutations that pattern the embryo did not recover a 

Socs44A allele (Nusslein-Volhard, 1979; Nusslein-Volhard and Wieschaus, 1980; 

Nusslein-Volhard et al., 1984).  Other screens for female sterility (Schupbach and 

Wieschaus, 1989; Schupbach and Wieschaus, 1991) or maternal effect mutants, one of 

which isolated hopscotch (Nusslein-Volhard et al., 1987; Perrimon et al., 1989; 

Schupbach and Wieschaus, 1986) also failed to isolate alleles of Socs44A.  Erica Bach 

spearheaded a screen for dominant modifiers of a GMR-GAL driven unpaired 
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misexpression rough eye phenotype in an effort to uncover new interacting JAK/STAT 

genes, but also failed to isolate a Socs44A mutation (Bach et al., 2003).  A similar screen 

for modifiers of GMR-GAL driven misexpression of argos also failed to isolate a 

Socs44A mutant (Taguchi et al., 2000).  The Hou lab at the National Cancer Institute, 

which studies JAK/STAT signaling, recently attempted a P-element mobilization screen 

targeting the second chromosome.  They report the isolation of 2,355 second 

chromosome insertions in 850 different genes, but they failed to produce an insertion in 

the Socs44A locus (Oh et al., 2003).  Another P-element mutagenesis of the second 

chromosome isolated 2,711 independent insertions, none of which disrupted Socs44A 

(Torok et al., 1993).    

All twelve of these screens had the potential to identify alleles of Socs44A, but 

none were successful.  All twelve of these screens (this list is by no means exhaustive) 

employed different strategies, be they various forward genetic approaches, modifier 

screens, or P-element mobilizations/disruptions.  Add to that list our labor intensive F3 

EMS screen of 3,986 mutagenized lines against Socs44A deficiencies and my local P-

element excision screen. 

 Ultimately, an allele of Socs44A was found as part of a large scale transposon 

mediated gene disruption project (Thibault et al., 2004).  In this endeavor, a modified 

lepidopteran transposon was successfully mobilized into the Socs44A locus.  This 

approach was successful for several reasons.  First, it did not depend on an observable 

phenotype; instead, transposon insertion sites were molecularly defined.  Second, the use 

of the PiggyBac transposon eliminated the insertional bias associated with P-elements 

(Spradling et al., 1999).  Although it has not been determined if PiggyBac has its own 
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preferential insertion sites, it is clear that PiggyBac does not share the same “hotspots” as 

P-elements.  Finally, this disruption project benefited from vast financial resources and a 

large number of personnel, permitting a scale not possible in previous screens. 

Although it is unlikely that any of the candidate mutants from the EMS screen are 

bona fide Socs44A alleles, I did recover several lines, 7267 in particular, that showed 

significant enhancement of the argos misexpression phenotype (Table 5-2).  Based upon 

the failure to complement Df(2R)CA53 and success in complementing Df(2R)Drlrv18, 

these lines contain mutations within the 44A3 to 44B6 cytological region.  This region 

encompasses approximately 120 kb of DNA and houses 22 genes in addition to Socs44A 

(Lewis et al., 2002).  Of these, 8 have been studied but none of these are known to be 

involved in JAK/STAT or EGFR/MAPK signal transduction.  The remaining 14 are 

predicted genes that have not been studied (FlyBase Consortium, 2003).  Interestingly, 

one of the unknown genes is predicted to be an ARF GTPase activating protein (GAP) 

based on sequence similarity.  If this gene is involved in EGFR/MAPK signaling, we 

could postulate that our EMS induced candidate mutations are at that locus and not 

Socs44A. 

 

Recent developments 

 With the completion of the Drosophila genome (Adams et al., 2000), there has 

been increased effort in the generation of community-wide tools for genetic analysis of 

Drosophila.  Among these is the large scale P-element mobilization mutagenesis 

spearheaded by several prominent labs in the fly community designed to disrupt each and 

every gene in the genome (Bellen et al., in press).  A similar large scale effort, conducted 

74 



by Exelixis using a modified form of the lepidopteran PiggyBac transposon (Handler and 

Harrell, 1999) successfully disrupted the Socs44A locus (Thibault et al., 2004).  This 

mutant was made available to the Drosophila community only few months prior to this 

writing.  The transposon insertion is located at the 5’ end of the locus and disrupts the 

codon that encodes D28 (Fig. 2-4); suggesting that the allele is null.  These animals are 

homozygous viable as adults and do not exhibit any discernable phenotype.   

 There is a possibility that this disruption of the Socs44A locus is not equivalent to 

a null allele.  It is possible that a constitutive promoter within the transposon (Thibault et 

al., 2004) might be facilitating the production of a functional Socs44A product, making 

this a hypomorphic allele.  Mutational analyses of mammalian SOCS genes discovered 

that the 5’ end upstream of the KIR (see Fig. 2-1) are dispensable for function with 

regard to SOCS-1 and SOCS-3 (Nicholson et al., 1999).  Therefore, deletion and/or 

alteration of the amino terminus of the protein may not have an effect on the function of 

the protein.  Yet animals heterozygous for the transposon insertion and the Df(2R)CA53 

deficiency were also viable and presented no phenotypes (J. Rawlings, unpublished).  

Another possibility is that the transposon insertion is a gain-of-function allele because the 

PiggyBac transposon contains a UAS element which, although highly unlikely, could be 

generating a weak ectopic expression even in the absence of a GAL4 driver.  However, 

when crossed to the engrailed-GAL4 driver, no ectopic wing veins (or any other visible 

phenotype) were observed (data not shown).  Furthermore, the modified PiggyBac 

element also contains “splice-trap” and transcriptional silencing elements (Thibault et al., 

2004), which would presumably prevent any ectopic or leaky expression of the disrupted 

gene 
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Taken as it is, the PiggyBac transposon disruption of Socs44A has several 

important ramifications.  First, it is not likely that the PiggyBac insertion is causing leaky 

or ectopic expression of Socs44A and given the composition of the transposon and its 

point of insertion, the allele is most likely null.  Therefore, it is likely that Socs44A is not 

an essential gene that has a straightforward adult phenotype.  Second, the EMS screen 

was predicated on the ability to screen for mutations based on complementation to a 

deficiency, meaning that we had to be able to observe a phenotype in the mutant.  Since 

the Socs44A disruption had no phenotype, it is highly unlikely that the candidate mutants 

generated by the EMS screen are Socs44A mutants.  Finally, even if the PiggyBac 

insertion was not null, the most straightforward next step would be to conduct an 

imprecise excision of this element, which would guarantee a null allele.  However, the 

PiggyBac transposon exhibits a remarkable efficiency in precise excisions (Thibault et 

al., 2004), making this strategy moot.   

Nevertheless, this transposon insertion merits further scrutiny.  It may have an 

adult phenotype not detected by direct visual observations.  Furthermore, it could have 

transient phenotypes present in earlier development.  One possibility is that it could affect 

somatic follicle cell populations in oogenesis, as this process is governed by multiple 

signaling pathways including JAK/STAT and EGFR/MAPK.  These pathways in 

particular act to pattern various cell populations at the termini of developing egg 

chambers (Beccari et al., 2002; Gonzalez-Reyes et al., 1995; McGregor et al., 2002; Roth 

et al., 1995; Silver and Montell, 2001; Xi et al., 2003).  Since these distinct populations 

present specific cell surface markers, we could examine Socs44A mutant ovaries for 

changes in the distribution and/or differentiation of these cell populations.  Another 
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possibility is that Socs44A could have an effect on larval hematopoiesis, which also 

depends upon JAK/STAT signaling (reviewed in Evans et al., 2003; Luo and Dearolf, 

2001; Zeidler et al., 2000).  As in oogenesis, the specific larval blood cell populations 

also present markers (Lebestky et al., 2000) that could be exploited to determine if a 

Socs44A mutant has an effect on hematopoiesis.  Although crystal cell derived melanotic 

tumors associated with dominant gain-of-function hop alleles were not observed 

(Hanratty and Dearolf, 1993; Harrison et al., 1995; Luo et al., 1995; Luo et al., 1997), it 

is possible that Socs44A has roles in the development and differentiation of other blood 

cell types.  Examination of the distribution of blood cell types in Socs44A mutants would 

address this issue.  
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Figure 5-1.  P-element map of the Socs44A region.  (A) Genetic map of the Socs44A 

region illustrating relative positions of genes and P-element insertions (marked by 

arrowheads above and below the blue boxes).  Socs44A (shown in red) is flanked on 

either side by the lethal P-elements (red arrowheads) l(2)k16503, EP(2)2264, and 

l(2)02045.  The viable P-element insertion (green arrowhead) KG03963 was used in a P-

element excision screen designed to make a small deficiency at the Socs44A locus (see 

text for more details).  Each tick mark represents 10kb of DNA.  (B)  Enlargement of the 

boxed region shown in A.  PCR primers used for amplification of Socs44A and upstream 

regions are indicated as bars above and below the scale bar.  Each tick mark represents 

500bp of DNA. 
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Figure 5-2.  Scheme for imprecise P-element excision screen.  The stable source of 

transposase, ∆2-3, was used to excise the viable KG03963 P-element.  The element 

contains the mini-white gene which confers red eye color.  The actual P-element 

excisions occurred in the germline of the 3rd generation.  109 excision events were 

selected for by the loss of eye color and balanced over the CyO balancer chromosome to 

establish individual stable stocks.  Only the relevant chromosomes are shown and all 

crosses were done in a w- background. 
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Figure 5-3.  EMS mutagenesis scheme.  600 isogenized cn bw sp males were 

mutagenized with EMS (denoted by red asterisk).  The scheme illustrates crosses to 

generate balanced stocks, each possessing a unique mutagenized chromosome.  Each of 

3986 balanced stocks that were recovered were screened in the F3 generation using a 

deficiency for the gene of interest. 
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Figure 5-4.  Deficiency map of the 43F – 44B region.  Breakpoints of several 

deficiencies in the vicinity of Socs44A were mapped by complementation to several lethal 

P-elements that flank the Socs44A locus.  Think bars represent the extent of the 

deficiency as mapped by complementation.  The thin bars represent the theoretical limit 

of the breakpoint.  Both Df(2R)CA53 and Df(2R)NCX10 deficiencies were found to 

include Socs44A and were used to screen for potential mutants.  The Df(2R)Drlrv18 

deficiency does not include Socs44A and was used as a means to pare down candidate 

mutants (see text for details). 
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Table 5-1.  Summary of P-element excision screen. 

 

The viable KG0369 P-element was excised, generating 109 independent excision events, 

of which 7 were lethal as homozygotes.  All lethals complemented the nearby lethal P-

elements k16503 and EP2264 (for relative positions see Fig. 5-1) delimiting the 

outermost boundary of the presumed imprecise excision.  The Socs44A locus was PCR 

amplified from homozygous animals from all 109 lines indicating that all failed to excise 

Socs44A.  ND = not determined. 
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Table 5-2.  Summary of EMS mutagenesis screen. 
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Table 5-2, continued. 
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Table 5-2, continued. 
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Table 5-2, continued. 
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Table 5-2, continued. 

We isolated no fewer than 23 complementation groups (column one) in an EMS screen 

for alleles of Socs44A.  Second column lists the members of each complementation 

group.  An asterisk indicates which line(s) of that complementation group were subjected 

to the argos interaction assay.  Third column shows that distribution of wing phenotypes 

in the argos interaction assay.  The x-axis, from left to right, is class I – class IV.  The y-

axis is proportion of wings in each class; each gridline is 10%.  Fisher’s Exact Test 

(Armitage and Berry, 1994) was used to compare this distribution to that of Scutoid (Sco, 

fourth column) and Df(2R)CA53 or Df(2R)NCX10 (Df, fifth column).  The p value 

indicates the probability that the candidate mutant phenotype distribution is similar to that 

of Sco or the Socs44A deficiency.  A p = 1 indicates we did not observe anything that 

would lead us to believe that there is a difference in the distribution of phenotypes 

between the candidate and Sco or the deficiency.  Those lines that behaved like expected 

Socs44A hypomorphs are indicated in red.  Finally, the last column indicates which 

members of the complementation group, if any, were sequenced. 
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Chapter VI 

 
Multi-BLAST:  database query for multi-domain proteins or 

coding regions 
 
 
INTRODUCTION 

 The reverse genetic investigation of the three Drosophila SOCS proteins was 

predicated on not only their possession of both an SH2 and SOCS domain, but also the 

specific arrangement of those domains within their amino acid sequence.  In fact, this 

modular arrangement of domains was instrumental in data mining the Drosophila 

genome for potential SOCS homologues.  The consensus SOCS domain  (Hilton et al., 

1998) was used in a tBLASTn query of the Drosophila genome.  The results of this 

search were queried again for the presence of an SH2 domain in upstream sequences.  

This arduous task inspired the creation of Multi-BLAST, a novel post-processor of the 

popular BLAST suite of algorithms, designed for the efficient retrieval of multiple 

domain containing proteins from public databases.  This chapter describes the design and 

implementation of Multi-BLAST.  Multi-BLAST is available at:  

http://genome.kbrin.uky.edu/multiblast/

 Protein structure and function has proven to be surprisingly modular; the domains 

that a protein possesses confer its functions.  By arranging domains in different 

combinations and orientations, large numbers of polypeptides, each with unique 

functions, are produced.  This phenomenon occurs naturally via genome rearrangements 

during evolution.  Additionally, alternative splicing can create proteins differing in their 

modular domain arrangement from a single primary transcript.  Although there are a 
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multitude of algorithms designed for the identification and retrieval of sequences by 

similarity, the approach to protein and genome analysis that seemed lacking was a simple 

method to identify proteins or coding regions based upon a specific modular design.  In 

silico efforts to analyze protein sequences based on modular architectures have produced 

large databases of protein domains such as SMART-A (Letunic et al., 2004; Schultz et 

al., 2000; Schultz et al., 1998) and Pfam (Bateman et al., 2000; Bateman et al., 2004),  

and methods to effectively find these individual domains.   

 Perhaps the most widely used method to identify similar protein sequences or 

coding regions is the BLAST suite of programs (Altschul et al., 1997).  BLAST and 

related programs attempt to find overall similarity by dynamically building local 

alignments between a query and database sequences.  This is accomplished by assigning 

a positive score to an alignment based on matches and similarities while assigning a 

penalty to mismatches and gaps.   BLAST has limitations, especially when searching for 

proteins with multiple domains.  First, BLAST discriminates against smaller domains 

because the BLAST score is length dependent, the longer the alignment, the better the 

score.  Second, BLAST will stop building an alignment if it encounters a large enough 

span of dissimilarity to make continuing such an alignment cost prohibitive.  For 

example, if one conducts a BLAST search against the nr protein database for proteins that 

contain both an SH2 domain and a SOCS domain by using mouse SOCS-1 (Accession 

AAD53324) as a query, the results are predominantly records that contain only the SH2 

domain, primarily because the SH2 domain is ~70 amino acids long, while the SOCS 

domain is only ~40 amino acids.  The long match to the SH2 domain is sufficient to 

generate a high BLAST score, while matches to the SOCS domain generate lower scores.   
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Although the desired sequences that contain both domains are in the long list of 

hits, sorting this list is not trivial.  Motif searching using tools like PHI-BLAST (Zhang et 

al., 1998), Pfam, or the SMART database is a very powerful way to identify lists of 

domain-containing sequences.  Nevertheless, identifying particular modular arrangements 

within proteins on that BLAST hit list is not trivial with the tools available.  Additionally, 

these resources do not address the fact that the relative location of domains within a 

protein may be important to its function.  Furthermore, when using motif searches like 

SMART-A, the user is confined to using the domain definitions provided, preventing one 

from inputting novel sequences into a query. 

NCBI recognizes the need to identify proteins based on modular architectures; in 

that vein, they created CDART (Geer et al., 2002).  This program accepts a protein 

sequence as a query and displays proteins with similar architectures.  For CDART to be 

useful it must know the definitions of the domains of interest and be able to recognize 

those domains within the query sequence; one cannot search for novel domains and/or 

architectures.  Additionally, CDART defines similar protein architectures as those 

proteins that have one or more similar domains to the query; the distance between 

domains is not considered.  Finally, CDART does not accept nucleotide queries, nor can 

it perform searches against translated databases. 

 We designed a novel post-processor of the BLAST suite of programs, called 

Multi-BLAST, which allows the user to query protein or nucleic acid databases for 

multiple domain containing proteins or coding regions in which the domains are 

separated by a user-defined distance.  A set of CGI, JavaScript, and Perl programs collect 

input from the user and conducts independent BLAST searches with user-defined 
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parameters for each input domain.  Then the program compares the results to identify the 

sequences matching the modular design, and presents both the independent and combined 

domain search results to the user.  The user interface couples this algorithm with the 

domain definitions of over 600 protein domains offered through the SMART-A, Pfam, 

and NCBI Conserved Domain databases.  This communication presents the features of 

Multi-BLAST and illustrates how it improves upon the BLAST suite in identifying 

multiple domain containing proteins in sequence databases. 

 

METHODS AND IMPLEMENTATION 

Domain definition 

 In order to utilize this modular domain concept in the Multi-BLAST program, we 

first needed a domain definition.  When classifying a protein domain, one compares it 

with sequences of known domains.  Various algorithms like Hidden Markov Models 

(Eddy, 1998) have been used to classify protein sequences into domain families and to 

include these in massive alignments that determine a domain’s consensus sequence 

resulting in databases such as Pfam and SMART.  Our method capitalizes upon these 

databases and upon the flexibility of user input BLAST queries.  Through the feature 

termed CD (conserved domain) Search, NCBI maintains current information regarding 

the domain definitions offered by these two databases.  We therefore dynamically linked 

Multi-BLAST to the CD-search service, allowing Multi-BLAST to offer an extensive list 

of domains (either consensus or representative sequences) for use.  Additionally, this 

dynamic linking also allows Multi-BLAST to offer direct links to the associated 

information regarding domains selected by the user. We realize that although the domain 
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definitions offered are extensive, they are nonetheless incomplete and that representative, 

rather than consensus, sequences are available for some domain definitions.  Therefore, 

the Multi-BLAST program also allows the user to input novel sequences in addition to, or 

in lieu of, the predefined domain sequences offered.  Furthermore, Multi-BLAST 

provides methods for modification of domain definitions if needed.  Taken together, we 

believe that Multi-BLAST offers an unprecedented level of user control and flexibility in 

designing a database query. 

 

Use of the BLAST suite of programs 

 Rather than design a novel core database search algorithm, we used the BLAST 

suite of programs for several reasons.  First, the BLAST algorithms can effectively 

identify each domain queried since the sequence similarity within a domain is likely to be 

continuous.  Second, the BLAST suite of programs is freely available and relatively easy 

to install and implement.  Third, the BLAST suite of programs is well recognized, widely 

used, and accepted in the scientific community.  Finally, the BLAST suite of programs 

allows Multi-BLAST the opportunity to accept nucleotide and protein queries and 

conduct searches against nucleotide, protein, and translated databases, providing the user 

with the utmost flexibility. 

 

The Multi-BLAST program 

 The core concept of the Multi-BLAST program is quite simple.  Instead of 

creating a single BLAST query containing multiple domains of interest, Multi-BLAST 

conducts independent, simultaneous BLAST searches for each domain entered.  Multi-
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BLAST currently accepts two domains in a single query.  Each domain that is entered, 

either predefined or user-defined, is BLASTed according to the parameters set by the 

user.  Multi-BLAST then compares the results for each search and compiles a list of 

records that appear in both search results.  The BLAST-generated alignments are then 

compared between matching records against a set of range variables entered by the user.  

By entering a set of range values, the user has control over the relative position of each 

domain within positive results.  The end result is that Multi-BLAST is flexible, efficient 

and easy to use. 

 

User interface  

On the surface, the Multi-BLAST user interface appears similar to the BLAST 

suite of programs (Fig. 6-1).  The user can select various BLAST programs, databases, 

and several advanced BLAST options including expect threshold, scoring matrix, and 

word size.  Beneath this, the interface is divided into two sections, one for each domain to 

be queried.  For each domain, the user has the option of using domain definitions from 

the Conserved Domain Database (CDD) at NCBI (Marchler-Bauer et al., 2003) 

consisting of SMART, Pfam and other NCBI annotated domains.  The SMART domains 

are organized based upon function or cellular location: signaling, extracellular, nuclear, 

or others.  The Pfam and NCBI domains are organized alphabetically.  All domain lists 

include a brief description of each domain; furthermore, each domain is dynamically 

linked to the CDD at NCBI, allowing instant access to associated information on each 

domain (descriptions, alignments, references etc).  Next, a set of range values must be 

entered.  The range values serve two purposes.  First, for queries against nucleotide 
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databases this prevents ludicrous matches to large multi-gene records (e.g. Drosophila 

chromosomes).  Second, this feature allows the user some control over the modular 

design of desired records retrieved by Multi-BLAST.  Finally, the user has the option to 

have results sent via e-mail or to run the query interactively.  The current version of this 

service runs on a BLAST server at the University of Kentucky with databases updated 

monthly.  The simple code could be installed on essentially any BLAST server. 

 
Results page  

The results page generated by Multi-BLAST is divided into three parts (Fig. 6-2).  

First, Multi-BLAST gives a summary of the query, including the program, database, 

search parameters, and domains used.  Second, Multi-BLAST offers links to the results of 

each individual domain BLAST search.  These two features are useful for 

troubleshooting when no results are achieved from a given query.  Finally, the user is 

presented with a list of descriptions and alignments of records that matched the search 

criteria for both domains.  BLAST scores and Expect values are offered for each domain; 

an asterisk denotes multiple matches within the user specified range to a given domain, 

with the best BLAST score and E value reported.  For example, the Drosophila dock 

protein contains three tandem SH3 domains and an SH2 domain.  All of the SH3 domains 

that fall within the user specified range are shown in the alignment section, ranked by 

BLAST score with the best score and E value reported in the descriptions section along 

with an asterisk. 
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RESULTS 

To test the ability and efficiency of Multi-BLAST, we compared the results when 

using both BLASTp and Multi-BLAST when querying NCBI databases for modular 

protein sequences.  For each standard BLASTp search, a protein containing two known 

domains was used as a query; the Multi-BLAST query contained the appropriate domain 

representations provided by Pfam and/or SMART using a reasonable distance variable.  

In both types of searches, all parameters were set to default with the exception of the 

number of records to display in the results, which was set to maximum in all searches. 

Multi-BLAST was extremely efficient in recovering protein sequence records 

containing both query domains (Table 1).  All relevant two-domain proteins were 

recovered in every case.  In at least one case (AAF00543 query of the nr database), 

Multi-BLAST recovered protein sequences that contain both domains but were not 

recovered in the standard BLASTp search.  This was probably due to the fact that 

BLASTp search results depended on the particular query protein sequence in its entirety, 

but that Multi-BLAST results depended only on the domain definitions. 

Generally, using a known homologue in a BLASTp search is the most efficient 

means to collect sequences that have a match to the domain architecture of the query.  

This strategy does not work as well when domains are not spaced exactly like the query 

or when the relative positions of domains differ from what is in the query sequence.  

Furthermore, in most cases, similarity to one domain is sufficient for a record to be 

included in the results.  The end result is that along with desired records that contain both 

domains, the results page contains records that have only one of the query domains.  For 

example, consider the SH2 and SH3 cell signaling domains found in most organisms, 
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including Drosophila melanogaster.  To access all Drosophila protein sequences at NCBI 

containing both of these domains using a BLASTp strategy, one might use the Drosophila 

GRB2 homologue (DRK) as a query.  DRK is an adaptor protein in the Ras/Raf signaling 

cascade that contains an SH3-SH2-SH3 modular architecture of these domains (Olivier et 

al., 1993).   By using this protein, the chances of obtaining records with both domains in 

both possible orientations are optimized.  The BLASTp search yielded 139 hits; upon 

closer inspection, only twelve of these hits actually contained both SH2 and SH3 

domains.  Furthermore, these twelve hits are not the first twelve presented.  Indeed, one 

must look through the first 28 hits to find all twelve bona fide SH2 and SH3 domain-

containing protein sequences.  When a Multi-BLAST search is conducted against the 

Drosophila genome using the SH2 and SH3 domain representations from either SMART 

or Pfam with default parameters, the correct twelve (and only those twelve) results are 

displayed (Table 6-1).  Similar results can be obtained using less promiscuous domain 

combinations.  SOCS proteins (suppressor of cytokine signaling) are involved in the 

negative regulation of the JAK/STAT signal cascade.  In addition to an SH2 domain, all 

SOCS proteins contain a novel carboxy-terminal SOCS domain.  Eight mammalian 

SOCS proteins have been identified (Rawlings et al., 2004).  To identify putative 

Drosophila SOCS homologues, one can use murine SOCS-1 as a query for a BLASTp 

against the Drosophila genome.  This search yields fifteen hits, only two of which contain 

both SH2 and SOCS domains.  A similar Multi-BLAST search using those domains 

yields just the two correct hits found using BLASTp.   These examples, as well as similar 

searches using other domain combinations against different databases are illustrated in 

Table 6-1. 
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DISUCSSION 

 Multi-BLAST is a novel post-processor of the BLAST suite of programs designed 

to enhance its ability to find specific modular arrangements of protein domains within a 

protein or nucleic acid database.  A common approach to searching databases for 

particular proteins using BLAST programs is to input a known homologue of the protein 

of interest.  This approach is not efficient in acquiring desired records of specific modular 

proteins from protein databases.  Many factors contribute to the appearance of “false 

positives”, proteins without the intended domain architecture, in the results of BLAST 

queries.  Similarity to one domain is often sufficient to garner a favorable BLAST score 

and it is not trivial to sort through the results to retrieve only the records that fit the 

intended modular query.  Also, BLAST does not take into account the orientation of 

domains or distance between domains, both of which may be relevant to a particular 

search.  In both of these instances, BLAST considers each portion as a separate database 

“hit.”  For example, if one uses the Drosophila VAV protein as a BLASTp query for 

other Drosophila proteins containing both an SH2 and SH3 domain, obvious matches 

such as Src49A and RasGAP receive low BLAST scores (30 for both) and Expect values 

(4.1 and 5.1, respectively) simply because the SH2 and SH3 domains of these proteins 

are in the opposite orientation as in the query, with the BLAST score reflecting the match 

to the best portion, not both domains.  Furthermore, proteins like the Drosophila SL 

protein which contain the SH2 and SH3 domains in the proper orientation are “false 

negatives” in that they receive poor BLAST scores because the distance between domains 

differs from the query.  In the case of SL, which appears in the middle of the results list 

(#30 out of 97 against Drosophila database; #472 out of 1172 against nr database), the 
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BLAST score (35, Expect 0.083) is based only on its SH2 domain.  Also, domains that 

tend to be repeated within a protein sequence, such as Cadherin repeats, can cause 

problems in obtaining desired records since the repeated elements are enough to generate 

a high enough BLAST score making other domains present in the query insignificant (see 

Cadherin and Laminin G query, Table 6-1).  Multi-BLAST takes all of these issues into 

account giving the user the utmost flexibility and control in designing database queries.  

By conducting independent BLAST searches, each domain is given equal weight in the 

results.  The use of a range value allows the user to gain further control over which 

records are included in the results and also prevents multi-gene containing records such 

as cosmids or Drosophila chromosomes from being included in the results. 

 The Multi-BLAST program takes advantage of three publicly available lists of 

domain definitions (SMART-A, Pfam, and NCBI).  It is important to remember that 

many of these domain definitions are representative sequences, not consensus sequences. 

One can access the Conserved Domain Database (CDD) information on each domain 

selected.  From here, one can access the alignments used to generate the representative 

sequences.  Also, when a protein domain is selected, the sequence appears in the query 

box.  This gives the user flexibility to make any modifications to the domain sequence 

before the search is executed.  Finally, Multi-BLAST gives the user the opportunity to 

enter novel or undefined sequences in lieu of or in addition to the domain definitions 

provided. 

 This communication illustrates the use of Multi-BLAST in searching protein 

sequence databases with protein queries; however, Multi-BLAST can use the entire suite 

of BLAST programs, with the exception of PHI/PSI-BLAST.  Although PHI/PSI-BLAST 

99 



offers distinct advantages over the traditional suite of BLAST programs; these programs 

were not included in Multi-BLAST because of their limitation to protein queries and the 

need for iterative searching of both domains.  The basic comparison algorithm could be 

extended to include these programs, however. 

 Multi-BLAST has several limitations, some of which will be examined here.  

First, it only accepts two domains in a query.  It may be beneficial to add a third domain 

to the query, especially when searching large databases with one or more promiscuous 

domains.  However, this would dramatically increase the complexity and speed of the 

algorithm because domain order would have to be considered.  Second, Multi-BLAST 

cannot execute Boolean (AND, OR, NOT) type searches with the input domains.  This 

feature would allow for more complex queries making new types of sequence searches 

possible.  Third, Multi-BLAST could be improved by the inclusion of more of the 

standard BLAST parameters and formatting options, most notably, “limit by Entrez 

query.”  This command allows results to be limited to subsets of the search database.  All 

of these improvements represent logical extensions of the present version of Multi-

BLAST and could be implemented into the program. 

The uses of Multi-BLAST extend past simple sequence retrieval.  With the 

tBLASTn option, it is possible to use Multi-BLAST in genefinding, although we did not 

test this specifically.  One can also use Multi-BLAST to search for genetic elements that 

are arranged in tandem (e.g. promoter elements), giving the Multi-BLAST program 

additional utility.  By far, the most promising and ambitious application of Multi-BLAST 

lies in genome analysis.  Evolutionary changes in genomes are, at least in part, 

accomplished through sequence change including the creation of new and the 
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rearrangement of existing functional domains.  By using Multi-BLAST to query for every 

possible combination of domains one could address questions genomic scale.  For 

example, Multi-BLAST could be used to determine which domain combinations are 

unique to a particular organism or conserved within a group of organisms.  By comparing 

multiple genomes, it may be possible to decipher the core proteome of life.  However it is 

utilized, Multi-BLAST offers an efficient means to identify specific domain architectures 

within the ever-growing databases of sequence information. 
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Figure 6-1.  Multi-BLAST user interface, input screen.  Multi-BLAST user interface 

on which an example of the drop-down domain selection menu has been activated for 

domain 1.  After selecting the domain, its sequence is displayed in the text box and can 

be modified by the user. 
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Figure 6-2.  Multi-BLAST user interface, results page.  Top is a summary of the user 

query, including the program, database, query sequences and range value.  Beneath the 

summary is a list of records that match the query along with BLAST scores and Expect 

values.  An asterisk by the BLAST score indicates that multiple domains within the 

sequence matched the domain query; only the highest BLAST score is reported.  Beneath 

the results summary are the alignments of domains within the first record to the domains 

used in the query. 
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Table 6-1.  Comparison of Multi-BLAST and BLASTp.   

 
Similar searches using Multi-BLAST and BLASTp were conducted and results 

containing the domains of interest are reported.  S_TKc, Serine threonine kinase catalytic 

domain; FHA, Fork-head associated domain; LamG1, Laminin G domain; CA2, 

Cadherin repeats; SH2, Src homology 2; SH3, Src homology 3; RhoGEF, Guanine 

nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; SOCS, SOCS box; TyrKc, 

Tyrosine kinase catalytic domain. 
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Chapter VII 
 

Conclusions and Discussion 
 
 In this work, I described the identification and characterization of Socs44A, a 

presumed negative regulator of the JAK/STAT signal transduction pathway.  I showed 

that although Socs44A is not responsive to JAK/STAT pathway activity, it is capable of 

downregulating the pathway in a tissue specific manner.  Furthermore, I illustrated a 

positive role for Socs44A in regulating the EGFR/MAPK pathway.  This work also 

chronicled the ongoing efforts to isolate a loss-of-function mutation in the Socs44A locus.  

Finally, I presented a novel BLAST post-processor called Multi-BLAST that efficiently 

retrieves multiple domain containing sequences from public databases. 

 

The Drosophila genome encodes three SOCS homologues 

Drosophila melanogaster presents an attractive model for the study of the 

JAK/STAT pathway because its pathway is much simpler than its mammalian 

counterparts.  While the mammalian version of the pathway consists of numerous ligands 

and receptors, four JAKs and seven STATs, the Drosophila version possesses but one 

characterized homologue of each component required for pathway activation. 

Furthermore, the Drosophila genome contains only one PIAS (Protein Inhibitor of 

Activated STAT) homologue, zimp, compared to four mammalian homologues (Betz et 

al., 2001; Hari et al., 2001; Mohr and Boswell, 1999).  PIAS proteins negatively regulate 

the pathway by interacting with and degrading STAT dimers, preventing their 

translocation to the nucleus (reviewed in Wormald and Hilton, 2004).  In this work I 

describe the characterization of one of three Drosophila SOCS homologues that were 
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identified on the basis of a shared modular domain architecture with the eight known 

vertebrate SOCS.  The presence of three fly SOCS genes raises an interesting question.  

If the Drosophila JAK/STAT pathway is so much simpler than its mammalian 

counterpart, why does the fly genome encode three SOCS?   

One explanation is that the three Drosophila SOCS are redundant in function.  We 

know that this is not entirely true because Socs36E and Socs44A appear to have 

differential functions in oogenesis.  Furthermore, I show that Socs44A has an opposing 

role to Socs36E in EGFR/MAPK signal regulation in the wing.  Also, the mRNA 

expression patterns of Socs36E and Socs44A do not overlap in either embryogenesis or 

oogenesis.  Finally, it appears that Socs44A lacks the capacity to respond to JAK/STAT 

signaling.  Taken together, these observations suggest that Socs36E and Socs44A are not 

functionally redundant.  The third Drosophila SOCS homologue, Socs16D has not been 

functionally characterized.  It is possible that it is redundant with one or both of the other 

Drosophila SOCS.  Once mutants for all three of these genes are isolated and 

characterized, potential redundancies among these homologues can be addressed. 

 Another explanation for multiple SOCS genes in the Drosophila genome is that 

these genes are more generalized regulators of signal transduction, not specific to 

JAK/STAT.  The possession of an SH2 domain would allow SOCS molecules to 

theoretically interface with any signal transduction pathway propagated by tyrosine 

phosphorylation.  In vertebrates, various SOCS proteins have been shown to interact with 

Vav, the Rho family guanine nucleotide exchange factor (De Sepulveda et al., 2000); 

RasGAP, the Ras family GTPase activating protein (Cacalano et al., 2001); FAK, the 

focal adhesion kinase (Liu et al., 2003); c-kit, a tyrosine kinase receptor (Bayle et al., 
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2004); and the Pim family of serine/threonine kinases (Chen et al., 2002b; Peltola et al., 

2004).  This pleiotropy extends to Drosophila as we found that Socs44A genetically 

interacts with and upregulates the EGFR/MAPK pathway.  Our findings indicate that 

Socs44A operates in an opposite fashion to Socs36E which was found to weakly suppress 

EGFR/MAPK signaling (Callus and Mathey-Prevot, 2002). 

 Yet a third possibility is that, like their mammalian counterparts, Drosophila 

SOCS are context specific.  In mammals, this can be seen in the tissue specificity in 

which SOCS genes can be induced.  When growth hormone is injected into the murine 

liver, CIS, SOCS-2 and SOCS-3 expression is induced; however, only CIS and SOCS-2 

expression is induced in mammary glands (Davey et al., 1999).  Unlike Socs36E, the 

pattern of Socs44A expression in the embryo was not altered upon misexpression of 

unpaired.  It may be possible that Socs44A transcription could be induced by unpaired in 

other tissues. 

 

Role of Socs44A in JAK/STAT signal transduction 

 The hallmark of mammalian SOCS is their ability to both respond to and 

downregulate the JAK/STAT cascade, forming a classical negative feedback loop.  In this 

work, I show that Socs44A expression is not responsive to or dependent upon the 

JAK/STAT pathway.  Furthermore, in the absence of a characterized Socs44A mutant, the 

data presented herein are comprehensive lines of evidence that clearly suggest that 

Socs44A has a role in downregulating JAK/STAT activity in the wing.  One explanation 

for the aberrant negative feedback loop participation is that the ability to respond to 

pathway activation arose after the evolution of Socs44A.  All of the mammalian SOCS 
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have been shown to be responsive pathway activation, with the exception of SOCS-4, 

SOCS-6, and SOCS-7.  Interestingly, Socs44A occupies the same phylogenetic clade as 

SOCS-6 and SOCS-7 (Fig. 2-2), consistent with this hypothesis.  The third Drosophila 

SOCS homologue, Socs16D, also belongs to this clade.  It would be interesting to see if it 

is responsive to JAK/STAT pathway activation.  Another explanation for these 

observations is that at some point Socs44A lost the capacity to respond to pathway 

activation. 

 In addition to Drosophila melanogaster, JAK/STAT components can be found in 

several invertebrate model organisms; however, these models do not contain a complete 

pathway (Rawlings et al., 2004).  The slime mold D. discoideum has three STATs but no 

other components and the nematode C. elegans has both a STAT and a SOCS 

homologue, but no JAKs, receptors, or ligands.  The mere presence of a SOCS in C. 

elegans suggests that the “original” function of SOCS proteins may not have been to 

downregulate JAK/STAT signaling because the C. elegans genome does not contain any 

of the known targets for SOCS-mediated downregulation of the JAK/STAT pathway.  If 

not JAK/STAT signaling, perhaps the “original” function of SOCS is to regulate another 

cascade and interactions with JAK/STAT components arose with the divergence of 

mammals.  Phylogenetic analysis of known SOCS proteins is consistent with this 

hypothesis, as all four of the mammalian SOCS genes that have been shown to both 

respond to and downregulate the JAK/STAT pathway fall into a single clade not 

populated by SOCS from either Drosophila or C. elegans (Fig. 2-2). 
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Role of Socs44A in EGFR/MAPK signal transduction 

 The JAK/STAT and EGFR/MAPK pathways are integrated at multiple levels 

resulting in combinatorial control of signal transduction.  Theoretically, this phenomenon 

allows for increased complexity in the interpretation of extracellular signals.  It has been 

shown that each pathway can activate the other independent of the endogenous ligand.  

EGFR can mediate the activation of STAT independent of JAK activation (David et al., 

1996; Leaman et al., 1996).  Additionally, there are several phosphorylation sites on 

STAT not used by the canonical JAK/STAT mechanism.  Studies have shown that 

STATs can be phosphorylated at a serine residue at the C-terminus by several MAPKs, 

potentiating STAT activity (Decker and Kovarik, 2000).  Likewise, IL-6 and GH can 

activate MAPK via JAK-2, presumably by activating the Shc and GRB2 adaptor proteins  

(Giordano et al., 1997; Yamauchi et al., 1997). 

 In this work, I discovered and investigated the interactions between Socs44A and 

the EGFR/MAPK pathway, illustrating that Socs44A can act to upregulate the 

EGFR/MAPK pathway.  A recent study showed that SOCS-3 behaves in a similar 

manner, achieving this task through targeted degradation of RasGAP (Cacalano et al., 

2001).  This interaction requires the phosphorylation of SOCS-3 on a C-terminal tyrosine 

within the SOCS domain.  Socs44A does not contain a tyrosine at this position, instead 

contains a glutamic acid which could mimic a constitutively phosphorylated state.  

Biochemical analyses of Socs44A will be required to address this possibility.  

Interestingly, it has been shown that Socs36E also interacts with the EGFR/MAPK 

pathway; however, it appears to have an opposite role.  Misexpression of Socs36E was 
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able to weakly suppress wing vein phenotypes associated with several EGFR/MAPK 

pathway mutants (Callus and Mathey-Prevot, 2002). 

 

Crosstalk between the JAK/STAT and EGFR/MAPK pathways 

 As mentioned above, the complexity required for the countless number of signals 

that must be generated during development and homeostasis can be achieved, in part, 

through crosstalk among signal transduction cascades.  Combinatorial control of gene 

expression may serve to attenuate levels of transcription or perhaps interplay provides a 

means of redundancy, contributing to the robustness of these signaling pathways.  There 

is evidence that the JAK/STAT cascade can interface with several other signaling 

mechanisms.  This is not surprising as phosphorylation-mediated activation is a common 

theme amongst many pathways (for review, see Graves and Krebs, 1999).  Of particular 

interest is the EGFR/MAPK (Epidermal Growth Factor/Mitogen Activated Protein 

Kinase) pathway.  Like JAK/STAT, this cascade relies on phosphorylation for signal 

propagation.  Therefore, it is not entirely surprising that EGFR can activate STAT, 

independent of JAK activation (David et al., 1996; Leaman et al., 1996).  Furthermore, 

STATs may be activated by serine phosphorylation that is also mediated by several 

MAPKs (Decker and Kovarik, 2000).  Conversely, IL-6 and Growth hormone can 

activate the EGFR/MAPK pathway in addition to JAK/STAT (Giordano et al., 1997; 

Yamauchi et al., 1998; Yamauchi et al., 1997).  Also, it has been shown that JAK can 

activate MAPK through the Pyk2 intermediary (Takaoka et al., 1999).  The interplay 

between EGFR/MAPK and JAK/STAT may not be limited to vertebrates.  Recent work 

in our lab demonstrated the combinatorial requirement of these cascades in patterning the 
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follicular epithelium during oogenesis (McGregor et al., 2002; Xi et al., 2003), however, 

the precise mechanism of this control has yet to be elucidated.  Perhaps this is 

accomplished through direct interaction between these pathways.  If so, then both 

Socs44A and Socs36E are attractive as mediators of this interaction.  Although Socs44A 

is not expressed in the ovarian follicle cells, its transcripts were seen accumulating in the 

oocyte, where Gurken initiates the EGFR/MAPK pathway.   

 

The role of Socs44A in wing vein development 

 Developmental biology, when reduced to its simplest form, is the patterning of a 

field of cells.  The Drosophila wing provides an excellent model to investigate this 

process.  It consists of specific wing vein pattern dispersed in a field of epithelial cells 

that is two cell layers thick.  The wing veins provide structural rigidity and also serve as 

conduits for sensory axons, hemocites, and tracheal cells (reviewed in De Celis, 2003).  

The wing veins consist of six longitudinal veins, two of which (L1 and L6) do not reach 

the distal margin.  Additionally, there are two transverse veins that that intersect 

longitudials.  The anterior crossvein (ACV) connects L3 and L4 and the posterior 

crossvein connects L4 and L5. 

 The development of the longitudinal veins takes place in progressive steps that 

establish vein location and identity.  The Hedgehog, Notch, Wingless, EGFR/MAPK and 

Dpp pathways all work synergistically in this process that begins in the imaginal wing 

disc with the establishment of provein and intervein cell-fate decisions along with 

establishing the anterior-posterior boundary (Crozatier et al., 2002; Williams et al., 1993; 

Zecca et al., 1995).   It is known that Hedgehog is responsible for patterning L3, L4, and 
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the ACV (Methot and Basler, 1999; Mullor et al., 1997).  EGFR/MAPK signaling is 

responsible for patterning L4 (Garcia-Bellido et al., 1994; Schnepp et al., 1996).  Finally, 

Dpp regulates spalt gene complex expression which is responsible for positioning of L2 

and L5 (de Celis and Barrio, 2000).  Interestingly, it is not known what directs the 

patterning and positioning of the posterior crossvein. 

 I have provided evidence suggesting that endogenous Socs44A acts to 

simultaneously downregulate JAK/STAT and upregulate EGFR/MAPK pathway activity 

in the wing.  It is known that the EGFR/MAPK pathway is involved in the specification 

of vein and intervein cell fates.  Heteroallelic Egfr mutants lack the central portion of L4 

(Fig. 4-2).  Other EGFR/MAPK pathway mutants share consistent phenotypes (Guichard 

et al., 1999; Sawamoto et al., 1994).  While much is known about the roles of 

EGFR/MAPK in specifying vein and intervein fates, the roles of JAK/STAT signaling in 

wing vein development have not been determined.  Nonetheless, mutations in either 

Stat92E or hop exhibit a relatively subtle wing vein defect, marked by a small amount of 

ectopic vein material protruding longitudinally from the posterior crossvein (Yan et al., 

1996a and Fig. 3-5). 

A simple model for the role of Socs44A in wing vein development can be 

generated based upon findings in this study (Fig. 7-1).  In this model, Socs44A acts to 

upregulate EGFR/MAPK activity, as evidenced by ectopic wing vein phenotypes caused 

by Socs44A misexpression that can be modulated by EGFR/MAPK pathway mutants.  

One can speculate that targeting RasGAP for proteosomal degradation is the modus 

operandi of Socs44A upregulation of EGFR/MAPK signaling, leading to ectopic 

specification of vein cell fate in an otherwise intervein territory.  Biochemical analyses 
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will allow scrutiny of this hypothesis.  Once the roles of JAK signaling in wing vein 

development have been elucidated, Socs44A regulation of that pathway in this context 

can be addressed. 

 

Other roles for Socs44A in Drosophila development 

 The pleiotropy of the relatively few signaling pathways accounts for their ability 

to govern the multitude of developmental and homeostatic processes.  As a likely 

regulator of both JAK/STAT and EGFR/MAPK signaling, it would not be surprising to 

find that Socs44A is involved in many contexts.  Tracheal morphogenesis and 

hematopoiesis stand out as two developmental processes that are attractive models for the 

continued study of the roles of Socs44A in Drosophila development. 

 Tracheal development (for reviews, see Manning and Krasnow, 1993; Metzger 

and Krasnow, 1999; Shilo et al., 1997) begins with the assignment of tracheal cell fates to 

ten segmental clusters of cells on each side of the embryo approximately four hours after 

fertilization.  These cells will then give rise to the tracheal pits in which unpaired 

expression can ultimately be detected (Harrison et al., 1998 and Fig. 3-1).  The remainder 

of tracheal morphogenesis occurs solely by cell migration leading to the formation of a 

large tree-like structure.  Over 50 genes have been found to play roles in tracheal 

development (Metzger and Krasnow, 1999).  Mutants of these genes exhibit varying 

phenotypes ranging from migration defects to faulty cell fate decisions (for review, see 

Zelzer and Shilo, 2000). 

 The JAK/STAT pathway is involved in tracheal development.  In embryos that 

lack hopscotch, the trachea is reduced, and what tissue remains is grossly malformed, 
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failing to migrate properly (Fig. 3-2).  Furthermore, the elusive JAK/STAT pathway 

receptor, domeless, was first isolated based upon its posterior spiracle defect (Brown et 

al., 2001).  Subtle tracheal defects were also observed in the StatHiJak mutant (Yan et al., 

1996a).  I detected expression of Socs44A in the trachea of late stage embryos; however, 

its expression does not overlap that of unpaired, which is expressed at an earlier stage.  

Misexpression of Socs44A using the breathless-GAL4 driver resulted in lethality (Table 

3-1).  Breathless is an FGF homologue required for the proper migration of tracheal cells 

(Yan et al., 1996a).  In addition to FGF the TGF-β and EGFR/MAPK pathways are 

involved in the migration of tracheal cells, helping to determine the size and spacing of 

primary branches {reviewed in \Metzger, 1999 #280}.  The coordination of all of the 

signaling cascades involved in patterning the trachea is poorly understood.  Socs44A 

could have a role in the coordination of JAK/STAT and EGFR/MAPK signaling during 

the patterning of the trachea.  In light of its expression pattern in embryogenesis and the 

implication of JAK/STAT and EGFR/MAPK signaling in tracheal development, the 

study of Socs44A in tracheal development should merit further consideration.  

Perhaps hematopoiesis is the most studied developmental process involving 

JAK/STAT signal transduction.  Abnormal levels of pathway activity have been directly 

implicated as causative agents in hematopoietic disorders including several leukemias 

and immune disorders (Aringer et al., 1999; Bowman et al., 2000; Coffer et al., 2000; 

Lacronique et al., 1997; Leonard, 1996; Ward et al., 2000).  Recently, the JAK/STAT 

cascade has also been implicated in the progression of rheumatoid arthritis (Ivashkiv and 

Hu, 2003; Naka and Kishimoto, 2002; Naka et al., 2002).  As negative regulators of 

cytokine signaling, SOCS are inviting targets for gene based therapies.  Indeed, SOCS 
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involvement in the immune response has been well documented (see review by Kubo et 

al., 2003).  It has been proposed that SOCS-3 could be used in such a fashion to combat 

inflammatory arthritis (Rottapel, 2001; Shouda et al., 2001). 

 The Drosophila hematopoietic system is primitive compared to its mammalian 

counterpart; however, several mechanisms in the hematopoietic process are conserved 

(Evans et al., 2003; Lanot et al., 2001; Lebestky et al., 2000).  Perturbations in 

JAK/STAT signaling have analogous effects to what is seen in mammals.  The gain-of-

function alleles, hopTum-l and hopT42 are well-characterized.  Animals carrying either of 

these dominant mutations exhibit reduced viability, enlargement of the lymph gland and 

develop melanotic masses (Hanratty and Dearolf, 1993; Harrison et al., 1995; Luo et al., 

1995; Luo et al., 1997).  These observations make hematopoiesis an attractive target for 

study.  Preliminary data involving ectopic misexpression, RNA interference (RNAi), and 

the use of deficiencies indicate that Socs36E may suppress the hopTum-l phenotypes (G. 

Rennebeck and J. Rawlings, unpublished).  Clearly, JAK/STAT signaling is paramount 

for proper development of hematopoietic lineages in both mammals and flies and perhaps 

Socs36E and/or Socs44A may be regulating this process. 

 

Closing remarks 

 I describe in this work the identification and initial characterization of a SOCS 

homologue in Drosophila.  Based on its domain architecture, we believed that Socs44A 

would participate in a negative feedback loop to regulate JAK/STAT signaling.  

Therefore, we initiated a reverse genetic study that revealed important information about 

this gene and the process of its characterization.  First, I provide the first example of a 

116 



SOCS gene, vertebrate or invertebrate, that is not regulated by JAK/STAT activity (at 

least in the tissues we tested).  Although it is not known if SOCS-4, SOCS-6, and SOCS-

7 are induced by cytokines, no one has shown that these molecules are not 

transcriptionally regulated by the pathway.  This important find illustrates the relevance 

of negative data and the simplicity of the Drosophila JAK/STAT model, which allows 

this claim to be made.  Second, this work is the first to demonstrate differential tissue 

specificity of SOCS activity in Drosophila, a phenomenon seen in the mammalian model.  

This bolsters the validity of the insect as a model to study JAK/STAT regulation via 

SOCS.  Because the rest of the JAK/STAT pathway is much simpler in Drosophila, 

future study in the dipteran could elucidate the mechanisms underlying this complexity.  

Third, I discovered that Socs44A upregulates EGFR/MAPK signaling in wing 

development in contrast to Socs36E which weakly suppressed it (Callus and Mathey-

Prevot, 2002).  This is the first evidence of SOCS having direct opposing roles in any 

developmental process.  Fourth, our futile attempts at obtaining a Socs44A loss-of-

function allele uncovered weaknesses in the reverse genetic approach to the investigation 

of gene function, exposing the principle deficiency in Drosophila melanogaster as a 

genetic system, specifically, the lack of efficient, rapid, targeted gene disruption.  

Although a method for gene targeting has been recently developed (Rong and Golic, 

2001; Rong et al., 2002), its efficiency and efficacy is largely untested.  Fortunately, 

efforts from the Drosophila community, namely Exelixis (Thibault et al., 2004) and the 

BDGP (Bellen et al., in press) are addressing this flaw by attempting to disrupt every 

gene in the genome through transposon mobilization. 
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 It is clear that SOCS play pivotal roles in the regulation of at least two signal 

transduction cascades.  I have shown that this regulation extends to the lower eukaryote, 

Drosophila melanogaster.  For years, Drosophila has been a pioneering model for 

genetic investigation of developmental processes and my work regarding Socs44A 

illustrates the utility of the fly as a model system.  Clearly, this work has presented as 

many, if not more, questions than it has answered.  Is Socs44A responsive to JAK/STAT 

signaling in other tissues?  What are the precise roles of Socs44A and JAK/STAT 

signaling in wing development?  Is Socs44A involved in tracheal morphogenesis and 

hematopoiesis?  How?  Most importantly, is our understanding of Socs44A and its roles 

in signal transduction applicable to the human condition?  Time will tell. 
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Figure 7-1.  Model for Socs44A involvement in wing vein formation.  Based on 

findings presented in this work, we can postulate that the ectopic wing venation caused 

by Socs44A misexpression is the result of ectopic upregulation of EGFR/MAPK 

signaling.  This may be caused by Socs44A-mediated proteosomal degradation of 

RasGAP.  Based on distinct wing phenotypes exhibited in hop and stat92E mutants, the 

JAK/STAT pathway also participates in patterning the wing veins, although its specific 

role has yet to be determined. 

 

119 



Chapter VIII 
 

Materials and Methods 
 
 
Fly strains 

 Fly strains were raised under standard conditions at 250C unless otherwise stated.  

Sty alleles and Egfrtop1 were obtained from M. Freeman.  Btl-GAL4 was obtained from 

M. Krasnow.  Pnt-LacZ was obtained from T. Schupbach.  [Act5C>y>GAL4][UAS-

GFP.S65T] was obtained from M. Zeidler.  A Bgl I/Xho I fragment from LP02169 

(described below) containing the entire Socs44A EST sequence was subcloned into the 

pUAST vector (Brand and Perrimon, 1993) in order to ectopically express Socs44A in the 

GAL4/UAS system.  The resulting construct was used in standard germline 

transformation (Spradling, 1986). Three independent insertions recovered and balanced.  

All three behaved similarly when misexpressed with GAL drivers (Table 3-1).  The 

remaining GAL4 drivers (Table 3-1); mutants and recombinants used in Socs44A 

interaction studies (Table 4-1); the Df(2R)CA53, Df(2R)Drlrv18, and Df(2R)NCX10 

deficiencies; and the KG03963, EP(2)2264, and l(2)02045, and l(2)k16503 P-elements 

are all described in FlyBase. 

 

Cloning of Socs44A 

 An 1133bp fragment of genomic DNA corresponding to the Socs44A locus was 

PCR amplified using the following primers:  ‘5 – GAG CCA CGG CGA CCA GAG 

TCA AAA A – 3’ and 5’ – CAA GTA CTC CAG CAT CTG CGC C – 3’.  The resulting 

product, pBS-Socs44Agenomic, was cloned into pBlueScript II KS+.  Socs44A was also 
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subcloned from the LP02169 EST clone (described below) as a Bam HI/Xho I fragment 

and placed into pBluescript II KS+, making pBS-Socs44A.  These constructs were used 

in the in situ hybridizations to embryos, DNA sequencing and RNAi construction 

described below. 

 

Sequencing of the Socs44A EST 

 The Sanger/dideoxy method (Sanger et al., 1977) of nucleotide determination was 

used to sequence the entire LP02169 EST sequence corresponding to Socs44A.  The 

following primers (obtained from IDT) were used (see Fig. 2-4): 

#1:  ‘5 – GAG CCA CGG CGA CCA GAG TCA AAA A – 3’ 

#2:  ‘5 – CCA TGG GCG ACT GCG ACG ACG G – 3’ 

#3:  ‘5 – CCG TCG TCG CAG TCG CCC ATG G – 3’ 

#4:  5’ – CAA GTA CTC CAG CAT CTG CGC C – 3’ 

#5:  5’ – CTT CTC CCT GTC CCT C – 3’ 

#6:  5’ – GCC GCC GTG TTC TGC – 3’ 

#7:  5’ – CCA TGC AAT CTA GAT TAG C – 3’ 

Additionally, standard primers corresponding to the T3 and T7 promoter sequences of 

pBlueScript II were used.  The sequence of this Socs44A EST has been deposited in 

Genbank (Accession AF439523). 

 

In situ hybridization 

 In situ hybridization of embryos and ovaries was performed essentially as 

described (Harrison et al., 1998; Wilkie et al., 1999).  Sense and anti-sense digoxigenin 
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probes from the previously described Socs44A cDNAs were generated.  Probe for 

Socs36E was generated from the 5’ end of the 2.1.1 cDNA.  Embryos aged 0-24 hours 

were collected, dechorionated in 50% bleach, fixed in 3.7% formaldehyde and 

dehydrated in methanol and stored until ready for use.  Embryos were rehydrated in PBT, 

fixed again in 3.7% formaldehyde, washed 5 x 5’ in PBT.  Embryos were then moved 

into hybridization solution (50% deionized formamide, 5X SSC, 50ug/ml heparin, 

100ug/ml tRNA, and 0.1% Tween) and allowed to prehybridize for one hour at 700C.  

Appropriate probes diluted between 1:200 and 1:50 and then hybridized overnight at 

700C.  The embryos were then washed for 20 minutes in prewarmed hybridization 

solution at 700C followed by a 20 minute wash in prewarmed hybridization/PBT (1:1) 

solution.  Next, embryos were washed 4 x 20’ in PBT at 700C followed by 3 x 20’ washes 

in PBT at room temperature.  Embryos were then washed 3 x 5’ in pH 9 solution and then 

developed in NBT and X-phosphate.  The reaction was stopped by 6 x 5’ washes in PBT 

+ EDTA.  Embryos were mounted with 70% glycerol in PBT.   All washes were done on 

a standard microfuge tube rotator and incubations were done on a standard heating block. 

Germline clone hopc111 null allele animals were generated using the dominant 

female sterile technique (Chou and Perrimon, 1992).  Embryos misexpressing upd in the 

seven stripe pair-rule pattern were generated by crossing females carrying a UAS-upd 

transgene with males heterozygous for paired-GAL4.  Embryos were then collected and 

hybridized as described. 
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Immunological staining of embryos 

 Germline clone hopc111 mutants in a trh10512 enhancer trap background (Isaac and 

Andrew, 1996) were generated.  These animals (genotype hopc111/hopc111; trachealess-

LacZ/+) were stained with anti-β-gal antibody to visualize developing trachea (Patel, 

1994).  Briefly, embryos were dechorionated in 50% bleach and fixed in 3.7% 

formaldehyde in heptane, washed in PBT, and blocked for 1 hour in 5% BSA in PBT.  

Embryos were then incubated in a 1:1000 dilution of rabbit anti-β-gal overnight at 40C.  

Following washes in PBT, embryos were then incubated in a 1:500 dilution of FITC anti-

rabbit secondary antibody for 2 hours at room temperature.  Embryos were mounted in 

70% Glycerol, 2.5% DABCO in PBT. 

 

Generation of ovarian clones 

 Ovarian clones of the hopc111 null allele were generated by mitotic recombination 

mediated by hsFLP as previously described (McGregor et al., 2002).  Misexpression 

clones of Socs36E and Socs44A were generated using a GAL4 flip-out cassette, also 

controlled by hsFLP (Ito et al., 1997).  Genotype of those animals was w [hsFLP]1; 

[Act5C>y>GAL4][UAS-GFP.S65T]/[UAS-Socs36E]11.2; pnt-LacZ and w [hsFLP]1; 

[Act5C>y>GAL4][UAS-GFP.S65T]/+; [UAS-Socs44A]11D/ pnt-LacZ, respectively.  For 

each, ovaries were fixed and stained with anti-β-gal and anti-GFP as previously described 

(McGregor et al., 2002). 
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Misexpression studies 

 Flies carrying the [UAS-Socs36E] or [UAS-Socs44A] transgenes were mated to 

various GAL4 drivers and compared to wild-type flies for any abnormal phenotypes.  For 

e16E, T113, T6, and ptc-GAL, wings were dissected and mounted in Hoyer’s medium 

(Ashburner, 1989).  Two copies of the [UAS-Socs36E] transgene were required to 

generate the indicated wing phenotype when crossed to GAL-e16E (engrailed).  For 

interaction assays, flies of genotype y w; GAL-e16E/CyO; [UAS-Socs44A]11D/TM3 were 

crossed to the mutant or recombinant listed in Table 4-1.  In the argos interaction assay 

of EMS mutants, flies of genotype [UAS-argos]/Y; GAL-e16E/[UAS-argos] were crossed 

to each candidate Socs44A mutant in addition to y w; CA53/CyO, y w;  NCX10/CyO, and  

y w; Drlrv18/CyO.  Female progeny possessing the X chromosome UAS-argos insertion, 

the GAL-e16E driver, and the mutant/recombinant variable were examined.  Each wing 

on each animal was classified according to Fig. 4-3).  Fisher’s Exact Test was performed 

(courtesy of C. Saunders) on the data to determine statistical significance. 

 

Image capture and processing  

 All in situ hybridization and wing images (Nomarski, DIC, and epifluorescence) 

were acquired using a Spot Camera (Diagnostic Instruments) on a Nikon E800 

microscope.  A Leica TCS-SP laser scanning confocal microscope was used to capture all 

confocal micrographs. All images were then exported to Adobe Photoshop for 

manipulation and annotation. 
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RNAi construction 

 pBS-Socs44A (described above) was cut with Xho I and Stu I, filled in with 

Klenow and relegated to form pBS-Socs44A-5’-Stu.  A 600bp Bam HI/Eco RI fragment 

of pYES was subcloned into pBS-Socs44A-5’-Stu to form pBS-44A-spacer.  A Sma 

I/Xba I fragment of the EST clone, LP02169, was subcloned into pBS-44A-spacer via an 

Xba/ blunted Bam HI ligation to create pBS-44A-hp6.  An Xba I/Stu I fragment was 

removed from this construct, the resulting DNA was blunted and relegated to form pBS-

44A-hp6.1.  The entire symmetrical Socs44A inverted repeat was then isolated as a Kpn 

I/Not I fragment and subcloned into pUASp (Rorth, 1998) to create the final construct 

pUASp-Socs44A-RNAi. 

 

EMS mutagenesis 

 Six hundred isogenized males of genotype y w; cn bw sp were fed 25mM EMS in 

a 1% sucrose solution per the standard protocol (Lewis and Bacher, 1968).  Mutagenized 

males were then mated in groups of 8 to approximately 25 females of genotype y w; 

Sco/CyO.  7,477 individual male progeny of genotype y w; cn bw sp*/CyO or y w; cn bw 

sp*/Sco were then mated to three females of genotype y w; Sco/CyO (asterisk indicates 

mutagenized chromosome).  From each cross, siblings of genotype y w; Sco/CyO were 

mated to establish a balanced stock.  We recovered 3,986 balanced stocks.  Each stock 

was then mated to the CA53 deficiency and tested for complementation.  Those stocks 

that failed to complement (were lethal or exhibited a phenotype) were recrossed to CA53 

for verification.  Verified stocks were crossed to NCX10 and Drlrv18 deficiencies; stocks 

that complemented Drlrv18 but failed to complement NCX10 were retained as candidate 
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Socs44A mutants.  Each of these stocks, a total of 43, were crossed pair-wise in 

complementation analyses to determine number of genes represented in the collection.  

Representatives of several of these groups were selected for sequencing.  These lines 

were balanced over the P{Act-GFP}CyO chromosome, permitting the collection of DNA 

from homozygous animals based on their failure to fluoresce.  Socs44A was PCR 

amplified, sequenced, and scanned for molecular lesions by comparing this sequence to 

the original, unmutagenized cn bw sp chromosome.  Representatives of all of the groups 

were subjected to the argos interaction assay described above. 

 

P-element excision mutagenesis 

 The KG03963 viable P-element was excised in the germline of males of genotype 

[KG03963]/CyO; ∆2-3,Sb/+.  These males were crossed individually to y w; Sco/CyO 

females and the progeny examined for excision based on loss of red eye color associated 

with the P-element.  Progeny of genotype [KG03963](w-)/CyO were mated to y w; 

Sco/P{Act-GFP}CyO to establish 109 balanced stocks, each representing an independent 

excision event.  For each line, DNA was isolated from homozygous animals.  In the case 

of 7 lethal stocks, this was accomplished by selecting embryos or larvae that failed to 

fluoresce.  This process was verified by failure to amplify GFP from the DNA collected.  

For all 109 stocks, a 700bp fragment of the upd locus (positive control) and a 400bp 

fragment of the proximal portion of Socs44A were simultaneously amplified by PCR.  In 

parallel, a reaction containing all PCR reagents except template DNA was used as a 

negative control.  Finally, DNA from y w; Sco/P{Act-GFP}CyO flies was used as a 

positive control for upd, Socs44A, and GFP amplification. 
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Socs44A primers: 

#1:  ‘5 – GAG CCA CGG CGA CCA GAG TCA AAA A – 3’ 

#3:  ‘5 – CCG TCG TCG CAG TCG CCC ATG G – 3’ 

 

Socs44A upstream primers: 

S44-5’-1:  5’ – CTA GAG ATG GAA GTA TGT TCG – 3’ 

S44-5’-2:  5’ – GTG ATC AAT GCC TAA CTT TA – 3’ 

 

Unpaired primers: 

Upd-54:  5’ CTG CAC ACT GAT TTC GAT ACG GAC CGC GG – 3’ 

Upd-798R:  5’ – GAT CCC AGC GGA TCT GCT GGC GCC – 3’ 

 

Bioinformatic analyses 

All sequence alignments were done using AlignX (Informax Inc.) using ClustalX 

parameters.  The Phylogenetic trees were produced from the alignments using the 

Neighbor-Joining method.  All BLAST analyses were done at NCBI 

(http://www.ncbi.nlm.nih.gov/BLAST) using the default parameters.  All BLASTp 

searches in the Multi-BLAST comparison also used default options, with the exception 

that the number of results to display was set at maximum (1000) for each search. 
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