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ABSTRACT OF DISSERTATION

ISSUES IN THE CONTROL OF HALFSPACE SYSTEMS

By the name HALFSPACE SYSTEMS, this dissertation refers to systems whose dy-
namics are modeled by linear constraints of the form Ex,,; < Fxyx + Buy (where
E,F € R™™ B € R™*P), This dissertation explores the concepts of BOUNDEDNESS,
STABILITY, IRREDUNDANCY, and MAINTAINABILITY (which is the same as REACHABIL-
ITY OF A TARGET TUBE) that are related to the control of halfspace systems. Given
that a halfspace system is bounded, and that a given static target tube is reachable
for this system, this dissertation presents algorithms to MAINTAIN the system in this
target tube. A DIFFERENCE INCLUSION has the form xi,; = Axy + Byuy, where
XK, X1 € R™, ux € RP, A € R B, € R™P, At € RV B; € R™P, and A and
B.. belong to the convex hulls of (A' A% ... A9) and (B',B?,...,B") respectively.
This dissertation investigates the possibility that halfspace systems have equivalent
difference inclusion representation for the case of u, = 0. An affirmitive result in
this direction may make it possible to apply to halfspace systems the control theory

that exists for difference inclusions.
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Chapter 1
Introduction

The present research was supported by a grant titled ACTIVE SENSING POLICIES FOR
SYSTEMS WITH OBSERVATION COST. The primary goal of the grant was to develop
sensing policies to minimize some sensing cost for systems modeled and sensed with
uncertainty, and in which there may be a cost involved in sensing. A secondary goal
of the grant was to develop these policies in the SLACK-DESCRIPTOR framework.
Active sensing, as defined by L.E. Holloway in [Hol93], is different from con-
ventional sensing methods in that the focus is on sensing with a view to conserve
system resources as the sensing carries a certain cost. Thus, active sensing involves
sensing only when absolutely necessary instead of continuously or frequently or
periodically. Work in active sensing was suggested by Holloway in the context of
smart sensors [Hol93]]. Smart sensors have local memory and processing resources
that allow them to store and process sensing information until requested. Thus,
they also have the potential capability to provide error and warning messages, and
interval-valued observations, which can be expressed through linear constraints. In-
corporating such linearly-constrained observations into the system dynamics results
in the state of the system being set-valued and linearly constrained. To express the
resulting set-valued evolution of the state, [Hol93|]] proposed the slack-descriptor
modeling framework. A set of linear inequalities can be transformed into a set of
equations by appending slack variables as is done in linear programming. The re-
sulting system has the form of a descriptor system with slack variables attached.
Hence the name ‘slack-descriptor’ systems. When this model was proposed, it was
hoped that some of the established results for descriptor systems could be exploited

in working with these models.



This dissertation mainly works with the systems of linear inequalities from which
slack-descriptor systems are derived. In this dissertation these systems of linear
inequalities are called HALFSPACE SYSTEMS because each linear inequality represents
a halfspace.

In the years since [Hol93]], some results in active sensing were presented using
the slack-descriptor framework [LLH95, [LLH96]]. However, little has been done to
relate active sensing to the control of the plant.

As a first step towards developing control techniques in the halfspace frame-
work, MAINTAINABILITY IN A TUBE is considered as the control specification. Let
Tube be a subset of states, and let the control goal be to maintain the state of the
system within the set Tube. Thus, given a xo € Tube , find a control u, such that
Reachq(xg, 1) C Tube. (Here, Reach(xo, Uo) is the set of next possible states from
a given current state xo under a control uy). If such a maintaining control exists
for each such x, , then the system state can be kept within the tube indefinitely.
However, the existence of such controls is not guaranteed, in general, because of
uncertainty in the system dynamics. A given tube is called MAINTAINABLE if a main-
taining control exists for each x, € Tube. Algorithms are presented to test for the
maintainability of a slack-descriptor system in a given static target tube, as well as
to maintain a slack-descriptor system in a maintainable static target tube.

As the next step towards developing control techniques in the halfspace frame-
work, the possibility that halfspace systems may be related to DIFFERENCE INCLU-
SIONS is explored. Demonstrating that they are related may make it possible to
apply the existing difference inclusion control theory to the control of halfspace
systems, while also benefiting the difference inclusion theory.

Set-based state estimates have been considered by several other authors. Early
work by Witsenhausen considered state sets as general convex sets [Wit68].
Schweppe focused on ellipsoidal state estimate sets [Sch73]. An overview of recent
research is found in the edited volume by Kurzhanski and Veliov [KV94]]. Several
authors have considered set-based state estimates using linear constraints. Shamma
and Tu considered the optimal state estimates for uncertain systems with additive
uncertainty [[SYT89]]. Bertsekas and Rhodes [BR71] considered the problems of



REACHABILITY OF TARGET SET and REACHABILITY OF TARGET TUBE. The MAINTAIN-
ABILITY IN A TUBE problem is conceptually similar to their second problem with the
difference that the tube in the present work is static. For a given dynamical system,
Aubin et al [ALQSO02] define a set of states, K, as VIABLE if for all initial conditions
in K there exists a solution of the dynamical system that remains in K. Maintain-
ability is the same as viability. The present work differs from the works of these
authors in that it uses a new modeling framework which has called for new tech-
niques. Another difference is that, in forming a halfspace model, the modeler may
not need to distinguish between plant uncertainty and uncertainty due to external
disturbances or noise (since a halfspace model neither assumes nor explicitly rep-
resents parametric uncertainty alone). This may mean that a halfspace model can
potentially simplify a modeler’s job.

This dissertation is organized as follows. Chapter |2 describes the halfspace/
slack-descriptor modeling framework with a modeling example, and describes prior
work done in this area. Chapters|3|and |4 focus specifically on slack-descriptor sys-
tems. Chapter [3| presents a test for boundedness of slack-descriptor systems and
briefly discusses the relationship between boundedness and stability. This chap-
ter also defines the problem of maintainability. Chapter 4| treats the problem of
maintainability of bounded slack-descriptor systems and shows that the set of main-
taining controls can be characterized using a matrix Q. This chapter also presents
an algorithm to maintain the given slack-descriptor system in a target tube that
has been found to be reachable for this system. This algorithm uses the result of
Chapter [5| Chapter |5/ studies the problem of irredundancy of a system Ax < b of
linear inequalities and presents ways to determine the set of all values of vector b
for which this system is irredundant. Chapters [6] and [7] focus specifically on halfs-
pace systems. Chapter [6|treats the problem of maintainability of halfspace systems.
It presents methods both for testing for the reachability of a target tube and for
maintaining a halfspace system in a reachable target tube. Chapter 7| investigates
the relationship between halfspace systems and difference inclusions. Chapter
concludes the dissertation with a discussion of the results and some directions for

future research.



Chapter 2

Halfspace Systems and Slack-Descriptor

Systems

2.1 How They Are Obtained

The slack-descriptor modeling framework may be especially useful for complex,
hard-to-model systems. This framework was proposed as a potential generalization
and extension of a difference inclusion and discrete-time interval systems (Chap-
ter |7|is devoted to this connection). The slack-descriptor framework has its roots
in Holloway’s doctoral research a decade ago [Hol91]] and was later developed in
several of his works with co-authors [Hol93, LLH95, [LLH96, |Che98, [PHOO].

Notation 2.1 In the present work, instances of variables are represented by ap-
pending superscripts to the corresponding variables. For example, an instance of
x is x!; instances of x;, xo, uo are x}, x3, u$ etc. However, the superscript T is
reserved for the matrix and vector transpose operation. [I']; will represent the i-th
row of I, where I' is any matrix or column vector that will be encountered in this

dissertation.
The slack-descriptor model has the following form:
EXk_H = FXk + Buk + W (21)

where E,F € R™ ™ B € R™P, V € R™9 x111, % € R™, u € RP, v € RYI, and
v > 0.



For cases where V = —I, where I € R™*™ is the identity matrix, Equation (2.1)

becomes:
Exk+] < FXk + Buk (22)

which will be called a HALFSPACE MODEL in this dissertation. For a given value of
the pair (xy, uy), each inequality in this system of inequalities represents a halfspace
(the term “halfspace” is a standard term in linear algebra). Thus, it can be seen
that, in halfspace/slack-descriptor models, restrictions on the set of possible state
evolutions are imposed using linear constraints.

The halfspace/slack-descriptor model is useful where, due to the difficulty in un-
derstanding the system’s parameters/dynamics, or due to the presence of external
disturbances, the next state of the system could take on any of a set of possible val-
ues determined by the current state and control. In the halfspace/slack-descriptor
framework, this set of possible values is expressed as a convex polyhedron.

For example, if the dynamics of some plant can be modeled by the constraints

clIx1 k+1 T C2X2k+] < c3x1 kTt C4X2k + cSuk,

c6x1 k41 + C7X2k+] > c8x1 x+ C9X2k + cl OLLk,

where the c’s are constants, possibly all different, the x’s are states of the plant
and u is the control input, then we have a linear constraint description that can be

transformed into a slack-descriptor model by appending slack variables thus:

cl c2 c3 c4 n c5 N —1 0 _—
Xyp] = X u v, v>0.
—c6 —c7 s —c8 —c9 b —c10 h 0 —1

As another example, it can be shown that interval systems in state space form

can be transformed into slack-descriptor systems. A discrete-time interval system
in state space form is as follows ([[SE89] presents the continuous-time form; the

discrete-time form is similar):
X1 = Axi + Buy,

with A € [A~,A"], B € [B,B*] and where A € [A—, A'] implies a;; < ay < a;f).,

etc, and the following matrices are assumed known: A~ AT € R™" B, BT €



R™™ For xy,u, > 0, this system can be converted into the halfspace form by

writing as follows:

X1 < ATxe+ By,

X1 > ATx+ BTug.

The slack-descriptor form is as follows:

I
I X1 =

2.2 Slack-Descriptor Systems in Regular Form

At B
Xk + Uy +

0 1

10 ]
V.

Definition 2.1 A slack-descriptor system is in REGULAR FORM if V in Equation (2.1]

is a square diagonal matrix with —1’s or 0’s on the diagonal.

The regular form is obtained when the plant dynamics are described by con-

straints such as

[E]iXk_H < [F]ixk—i_[B]iuka 1:1)>m_1> 1§m
[E]ixk+] = [F]ixk—l—[B]iuk, 1=m—l—|—1,,m
The equality a = b is equivalent to the pair of inequalities a < b and a > b.

Thus, the equalities in the above system can be expressed as pairs of inequalities.

Thus, the above system can be written in the form of Expression (2.2).

2.3 An Example of Modeling in Halfspace Framework

The following modeling example is a fictitious one whose purpose is only to show a
possible way in which a halfspace model may be generated. The inspiration for this

example came from the example in [APO1} page 1].



2.3.1 A Minicase

Heavy Metal Inc. (HMI) is engaged in the production and sale of two grades of an
ore. HMI has leased mines from the state and extracts Grade A and Grade B of this
ore. Sales of each ore have always been independent of the other.

Marketing and operating costs are covered by two sources: CAPITAL INVESTMENT
and, of course, sales.

The direct operating cost (cost of extracting and/or holding) of Grade A is $30
per ton while that of Grade B is $20 per ton. It is anticipated that 45% of Grade
A sales and 30% of Grade B sales made during the current production period are
collected during the same period and the cash proceeds will be available to finance
the next production period’s direct operating costs. Additional funds (comprising
40% of capital investment) may be injected to support the direct operating costs if
the need arises. Grade A sells to distributive channels for $50 per ton, and Grade B
for $40 per ton.

Those sales that are not collected in the same production period are collected
at some point in the future and are converted into the above-mentioned capital
investment and into investments into the stock market. Thus, these uncollected
sales are also considered as revenue in the current production period.

Of the total ore mined in each production period, at least 10% of Grade A and
15% of Grade B does not sell in the same production period. However, for various
technical reasons, HMI cannot afford to adopt JUST-IN-TIME practices to reduce the
mining of the ore. So, HMI spends 12% of the capital investment and 15% of the
capital investment respectively on Grade A and Grade B to convert the ores into the
metal, which is then used in some other operations of HMI’s sister concerns. The

cost of converting into metal is $40 per ton of Grade A and $50 per ton of Grade B.

2.3.2 The Modeling Problem

Assuming any ore that is either produced in the current production period or left
over from the previous period as inventory, develop a model that captures the rela-

tion between the inventories of Grade A and Grade B, and the capital investment.



Consider any negative numerical values of the quantities of the ore as reflecting

backorder.

2.3.3 Developing the Model

Denote by x1y the inventory in tons of Grade A, by x;; the inventory in tons of Grade
B of the ore, and by uy the capital investment in the k-th production period.

The direct cost of producing and/or holding X141y tons of Grade A and X1
tons of Grade B is 301 (x41)+20x2+1). This is covered by the funds that are available
for production from the k-th production period. These consist of 40% of capital
investment, that is 0.40u, plus the anticipated collections on sales of Grade A of
0.45(50%x1x) = $22.5x1x plus those on the sales of Grade B of 0.30(40x2) = $12x .
Thus, the cash available for production in the (k+1)-th production period is 0.40u,+
22.5x1x + 12x5,. This gives the inequality:

30X](k+1) + ZOxz(k+1) < 22.5% 1k + 12%x2 + 0.40uy

0.10x71x and 0.15x,y are the amounts of ore that do not sell in the same produc-
tion period. A part of these amounts is converted into metal. The number of tons of
metal produced internally from Grade A (with 12% of capital investment at the rate
of $40 per ton) is 0.12u,/40 = 0.003u, and that from Grade B (with 15% of capital
investment at the rate of $50 per ton) is 0.15u; /50 = 0.003uy. After conversion into
metal, the amount of Grade A left over from the k-th production period into the
(k 4+ 1)-th production period is at least 0.10x, — 0.003u,, and that of Grade B is
at least 0.15x,, — 0.003uy. Thus, these values determine the minimum amounts of

Grade A and Grade B inventories in the (k + 1)-th production period:

X1(k+1) Z 0.10x1k—0.003uk

X2(k4+1) = 0.15%51 — 0.003uy

Thus, HMI’s ore operations are described by the following system of linear con-



straints:

30x; (k+1) T 20X2(k+]) < 22.5% + 12%1 +  0.40uy
—X1(k+1) < —0.10x1 + 0.003wy
<

—X2(k+1) — 0.15X2k + 0003uk

This can be written as a halfspace system as follows:

30 20 25 12 0.40
X X

10 [ ”“”]g ~0.10 0 [ "] 0.003 | we

0 —1 | L7206 0 015 | L™ 0.003

It may seem that HMI’s operations need capital investment in every production
period, and so this may be a losing business. However, the capital investment comes
out of the revenue as mentioned in Subsection “A Minicase”. Thus, it may be possi-
ble that HMI is a self-sustaining business. Whether this is so may be determined by

analyzing the halfspace model that has been developed above.

2.4 Previous Work with Slack-Descriptor Systems

The slack-descriptor model was proposed in [Hol93] as a framework that would
help properly utilize the potential capabilities of new sensors called smart/intelli-
gent sensors that were emerging on the scene.

Smart sensors are different from ordinary sensors in that into the sensor unit
go, besides the sensing device, also memory and processing capabilities. Thus, such
sensors can return not just the values of the variable sensed, but also associated
confidence intervals, fault alarms, warning messages et al. They can also store
sensing information (subject to memory capabilities) until it is requested by the
controller. Holloway saw the potential use of these sensors in active sensing, i.e.,
sensing so as to minimize any cost associated with the sensing.

The interval-valued observations from these sensors would result in set-valued
state estimates. It was thought that to fully utilize the information in interval-

valued observations, a new way of modeling would be needed that would cast the
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Figure 2.1: The plant under active sensing.

observations and state estimates and state evolution as linearly-constrained. Thus,
was born this new modeling framework in which plant dynamics, state estimates,
state sets and observed values are described through linear constraints.

In active sensing, three components work together on-line on the plant as shown
in Figure[2.1} a control policy, a state estimator, and a sensing policy. The state es-
timator uses the model of the system dynamics (a slack-descriptor model or some
other model) to compute the state sets during the intervals of no-sensing, and sup-
plies the set, X£', of possible values of the states to the control policy and to the
sensing policy. The control policy uses some approximation techniques to compute
the control that should be applied (for example, to lead the system’s next state set
to the Target set) given that the state could have a value that could lie anywhere
in the given set X{*t. The sensing policy checks if the state estimate has exceeded
some pre-specified bounds on uncertainty. During the intervals of no-sensing, the
system works in open-loop. Thus, the resulting control system works in alternating,
and possibly irregular, intervals of open- and closed-loop control.

Lim and Holloway [LLH95| LLH96]] proposed sensing policies for active sensing
using slack-descriptor models. As mentioned above, the true state of the system at
the k-th instant of time can be anywhere in X{**. This means that the larger the

size of X¢%, the more the uncertainty in the true state of the system. [LLH95] pre-
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sented two different sensing policies. It was assumed there that each state variable
was associated with a different sensor. Under those sensing policies, at each time
instant each state variable is maximized and minimized over X¢* (this is a linear
programming problem), the difference between the maximum and minimum val-
ues for each state variable is computed, and the difference is tested for exceeding
a certain threshold value. For whichever variable the corresponding difference ex-
ceeds the threshold, the relevant sensor is polled. Thus, different sensors may be
polled at different times. This allows for selectively, and possibly infrequently and
irregularly, polling the sensors. [LLH96] presented an extension of the results of
[LLH95]. It showed that the sensing policies of the type presented in [LLH95] are
longest-wait policies in that the sensing does not take place before it is needed.
Later, it was realized that active sensing could work with not just smart sensors,
but anywhere where there is uncertainty in the plant dynamics and/or the obser-
vations and it is decided to sense irregularly according to a policy. Liu and Hol-
loway [Liu99]] proposed active sensing policies for plants modeled not in the slack-
descriptor framework, but in the conventional stochastic framework. The plant is

modeled by the system of equations:

Exk+] = AXk + Buk + GWk,
Yr = Cxy+ Duyx+ Hzy,

where E, A, B, G, C, D, and H are the parameter matrices of the plant and the x’s
are states, u’s are controls, w’s and z’s are noises, and y’s are the outputs; the matrix
E is non-singular and the w’s and z’s have statistical distributions. The sensing
policy requests sensing when the variance of the state estimate crosses a certain
threshold.

Rajagopal [Raj95] presented conditions under which a slack-descriptor system
will not be bounded. A slack descriptor system is said to be bounded if for any
bounded set X of states at time instant k and for any bounded set U, of controls,
the corresponding set Xy, is also bounded. He also showed conditions under which
a set Xy.,1 would be non-empty for any given nonnegative x;, and u,, and conditions

under which for a given nonnegative x;,; and u,, there exists some nonnegative x;
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satisfying Equation (2.1). He also tried to relate slack-descriptor models to state-
space models. He showed that for x;,u, > 0, the model of Equation (2.1)) can be
represented as a family of models of the form x, ;1 = Axyx + Byu.

It was seen above that the state estimator may use the slack-descriptor model to
generate X{*'. When the estimator simply uses Equation (2.1]) to compute the set of
possible current states from the previous set (either X{*, or X{™f) of states and the
previous inputs, the resulting polyhedron might need a much larger number of con-
straints to describe it depending on the complexity of the model. Storing all these
constraints in the computer will need a lot of memory. Chew [Che98]] suggested
ways to bound these polyhedra using polyhedra that needed fewer constraints. He
characterized the errors that result in the different ways of bounding.

Chew [Che98] used Rajagopal’s result — on when one can express a slack-
descriptor model as equivalent to a family of x, ;1 = Axy + Byux — to propose
a weak way to test for the stability of a slack-descriptor model that satisfies Ra-
jagopal’s conditions. He suggested that in some cases it may be possible to test if
the eigenvalues of all the (A, B,,) pairs are stable.

Chew [Che98]| also presented an analogue for the concept of controllability. He
defined a new concept of FULL STATE REACHABILITY: “For any given initial state x, €
R™ and any target state xt € R"™, a slack descriptor system is full state reachable
if there exist a set of inputs that can lead (within n steps and in the absence of
sensing) the state x, to a state set that includes x1”. He discussed this definition
briefly for the case when the model can be expressed as a family of (A, B,,) pairs.

Chew [Che98]] also suggested a method for developing a feedback stabilizing
controller when the model can be expressed as a family of (A, B,,) pairs.

The problem with the “(A, B,,) family” result is that no clear methods have been
suggested by any of the people who worked with slack-descriptor models as to how
to find such families for a general model. So, the issues of stability, controllability
and stabilizabilty (by developing a feedback controller) of a slack-descriptor model

remain open for research.
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2.5 Differences between Present Work and Previous
Work

The present work differs from previous works done in the slack-descriptor frame-

work in two important aspects:

1. Though the slack-descriptor framework was originally obtained by append-
ing slack variables to linear inequalities, the apparent similarity of the system
thus obtained to descriptor systems and the desire to adapt the results exist-
ing for descriptor systems to slack-descriptor systems focussed the attention
of the previous authors away from the linear inequality origins of the frame-
work and onto the presence of the slack variables. Thus, much of the previous
work done in the slack-descriptor framework gave a lot of importance to un-
derstanding the effect of the slack variables (for this reason the previous work
can be useful for someone interested in understanding the role of slack vari-

ables in systems of linear inequalities).

The present work attempts to understand and exploit the richness of systems
of linear inequalities, and the associated theory of convex polyhedra, with-
out the burden of slack variables. When it uses slack variables, it is only to

manipulate halfspace models conveniently.

2. Previous works restricted all the states, controls, and slack variables to being
nonnegative. Presence of negative variables was dealt with by representing
the negative variables as differences of pairs of nonnegative variables, as is
common in linear programming. The representation of negative variables in

slack-descriptor models is covered in [[Che98]].

The present work does not need the states and controls to be nonnegative, ex-
cept when the halfspace/slack-descriptor systems are obtained from discrete-
time interval systems. Most results are developed for all the values of the
(x, wi) tuples for which the system of linear inequalities Exy 1 < Fxy + Buy

is feasible, which may be possible even when x, and/or uy are negative.
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Chapter 3

Boundedness, Stability, Maintainability

3.1 Reach Sets

Notation 3.1 In the present dissertation, depending on the context, the notations
maxxY or mng

read either “maximum of Y over the set X” or “maximize Y over the set X” or “max-

imize Y subject to the constraints X”. Similar notation applies for minimization.

From Expression (2.1)) it follows that for a single time-step, a slack-descriptor

system can be expressed as

Ex; = Fxo + Buo + Wy (3.1
while a halfspace system can be expressed as

Ex; < Fxo+ Bug (3.2)

Given a state x} and a control input u/, the set of next states arising from x}

under the control u} is defined as follows for a slack-descriptor system:
Reach(x, up) = {x1[3vo > 0: (x1,%§, U, vo) is a solution of Equation (3.1) }
and as follows for a halfspace system:

Reach(xé,ué) = {x1 ‘(xhx(‘),ué) is a solution of Equation (3.2) }

14



In this dissertation, it is assumed that Reach(x},u}) is bounded and nonempty
for all (x},u}) pairs. The question of boundedness of a slack-descriptor system has
been covered in [Raj95]]. Section will briefly describe an alternative method to
test for boundedness.

3.2 Boundedness

A set S C JR™ is BOUNDED if there exists a constant K such that the absolute value of
every component of every element of S is less than or equal to K [BT97]. A slack-
descriptor system is bounded if for all (xy,w) pairs, Reach(xy,uy) is bounded.
Remark [5.4] on Page 55 states that the system Ax < b, x € R™, will be bounded
for a bounded b, if the auxiliary system {rank(A) = n; ATz = 0;z > 0} is feasible.
Applying this result, it can be seen that the halfspace system of Equation (2.2) will
be bounded for bounded Fxy + Buy if the auxiliary system {rank(E) = n;E"z =
0;z > 0} is feasible. Note that, since Fx; + Buy is only a linear combination of the
elements of x, and u,, it is always bounded for bounded x; and u,.

For this test of boundedness to work for a slack-descriptor system which has
been obtained from a halfspace system, and which is not in regular form, the slack-

descriptor system must first be transformed into regular form.

3.3 Zero-Input Stability

A discrete-data system is ZERO-INPUT STABLE if the output sequence y(kT) € R,
(k =1,2,...), satisfies the following conditions [Kuo95]:

ly(kT)] <M < o0
and (3.3)
]}im ly(kT)| =0

Classical control theory has other concepts of stability such as ABSOLUTE, ASYMP-
TOTIC, BIBO, MARGINAL, RELATIVE etc. Analogues of these for halfspace systems
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will be studied in a future work. Here, the concept of zero-input stability of halfs-
pace systems will be addressed.

Assuming that the output sequence is the same as the state sequence (that is,
y(kT) = x(kT) = xy), we will define the zero-input stability of a halfspace system

in regular form as follows.

Definition 3.1 A halfspace system is zero-input stable if for any current state x,
every next state x;,1 that arises from x, satisfies the following condition (with ||x|| =
Vv xTx being the distance of x from the origin):

[Pl < [l (3.4

Note that the condition of Equation requires that the distance of the state
from the origin be non-increasing, whereas the condition of Equation does
not require this. In this sense, the condition of Equation (3.4) is stricter than that
of Equation (3.3)).

Due to the requirement that ||x;|| be non-increasing, the condition of Equa-
tion is equivalent to the following condition:

]l < [lxoll (3.5)

Remark 3.1 Since the next state for a halfspace system is a set, Reach(xg,0), the
condition of Equation (3.5)) is equivalent to the following condition:

[[xol| = max x|
EX]SFXO

or equivalently,

XiXo > max xI1x; (3.6)
0 1
EX]SFXO

Definition 3.2 A POLYTOPE is a convex bounded polyhedron.

Definition 3.3 [BT97]] Consider a polyhedron P defined by linear equality and in-
equality constraints, and let x be an element of R™.

1. The vector x is a BASIC SOLUTION if:
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(a) All equality constraints are active;

(b) Out of the constraints that are active at x, there are n of them that are

linearly independent.

2. If x is a basic solution that satisfies all of the constraints, then it is called a
BASIC FEASIBLE SOLUTION.

[BT97] first defines VERTEX and BASIC FEASIBLE SOLUTION differently from one
another, and then establishes that they are the same. In this dissertation, these two

terms will be considered as synonymous to each other.

Lemma 3.1 The point in the polytope P that is farthest from the origin is a vertex
of P.

Proof: This is a well-known result. O

Notation 3.2 Let E! (respectively F!) be an n x n matrix formed of n different
rows of E (respectively F), let I, € SR™*™ be the identity matrix, and let

m!

cl=———,
(m—mn)in!

Theorem 3.1 A halfspace system is zero-input stable if, for each invertible E}, I,, —
{(E}L)*‘F;}T {(E!)~"FL} is positive semidefinite fori =1,...,CI™

Proof: By Remark[3.1] the halfspace system needs to satisfy the condition of Equa-
tion for zero-input stability. By Lemma this will be true if the vertex
of Reach(xo,0) that is farthest from the origin satisfies Equation (3.5). This sec-
ond statement will be true if every vertex of Reach(xo,0) satisfies the condition of
Equation (3.5)). This idea can be developed as follows.

Consider the set Reach(xo,0) given by Ex; < Fxo. Enumerate the basic solu-
tions of this system of constraints. Note that some or all of the basic solutions of
Ex; < Fxo determine the extreme points of Reach(xo,0). Thus, in effect,all the

possible vertices of Reach(xo,0) are being enumerated. The basic solutions can be
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enumerated by simply enumerating all the CT* different subsystems of Ex; < Fxg
thus:

E;X1§F;XO, 121,,C1711

Then, the i-th basic solution is x} = (EL)~'F! x,, assuming that E}, is invertible.
The condition of Equation (3.5) is equivalent to the following:

il < llxoll,  i=1,...,C.

This gives the following condition:

1B "Fixoll < llxoll, i=1T,...,CR,
that is,
XQW(ED)TTFOTED) TFixg < xjx0, i=1,...,C™
meaning that I,, — ((E})'FL)T(EL)~TF! is positive semidefinite fori =1,...,C™ O

3.4 Relationship between Boundedness and Stability

To see the relationship between boundedness and stability, consider a halfspace
system where Reach(x},0) (x} belongs to some bounded set V) is bounded but
larger than V. The system dynamics evolve into ever-growing but bounded sets of
possible next states. Thus, such a slack-descriptor system is not zero-input stable.
If Reach(x},u}) is unbounded, then the dynamics can evolve without bounds,
meaning that the slack-descriptor system is unstable (FOR THIS REASON, ONLY
BOUNDED SLACK-DESCRIPTOR SYSTEMS WILL BE STUDIED). Thus, an unbounded
slack-descriptor system is clearly unstable, but a bounded slack-descriptor system is

not necessarily stable.
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3.5 Maintainability

Consider a matrix T € 9™ and a vector t € 9. Define the subset of states in

which we desire to restrict the system as
A -
Tube(T, t) = {xx |xx satisfies Tx, <t, k=0,1,...}.

Definition 3.4 If for an x| there exists a control u} such that Reach(x},u}) C
Tube(T, t), then such a control is said to be MAINTAINING for x}. The set of all

maintaining controls for an x] is defined as follows:
U(x)) = {uo|Reach(xy, uo) C Tube(T,t) }.
The state set Tube(T, t) is said to be MAINTAINABLE if Vxo € Tube(T,t), U(xo) # 0.

Here is a geometrical explanation for this definition. For any given scalar c;,
consider the set of all points x4 for which [T];x; is equal to c;. This is the hyperplane
(Figure described by the equation [T];x; = c;. This hyperplane is perpendicular
to the vector [T];. Increasing c; corresponds to moving the hyperplane along the
direction of the vector [T];. For a given x/, Reach(x},u}) C Tube(T, t) means that
over the set of all x; € Reach(x}, 1)), the maximum value of c;, denoted by ¢, in

each direction [T];, is less than or equal to [t];. That is,

Reach(xg,uy) C Tube(Tt) | _ [ o™ < [th, i=1,...,j. 3.7
Vou) e Uu(x) Sl VY ud e ux) .

where,

max
i

C 2 max [T]ix;

Reach(x},ul)
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Reach(x},u))

Figure 3.1: Containment of the set Reach(xo, o) in the tube Tx; < t.
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Chapter 4

Maintainability of Slack-Descriptor

Systems

4.1 Introduction

The results of this chapter were developed in the early stages of the present research
when it was not yet decided to work with halfspace systems. Thus, no assumptions
were made about how a slack-descriptor model was obtained — whether through
appending slack variables to linear inequalities, or through some other means (as
mentioned in Section it was later decided to go back to the origins of the
SD model and work with linear inequalities). However, it was assumed that they
represented convex polyhedral sets. The present chapter discusses maintainability
of slack-descriptor systems, while Chapter [6] discusses maintainability of halfspace

systems.

4.2 Conditions for Maintainability: Q Matrix

Theorems and below help develop a test for maintainability of slack-
descriptor systems. These theorems use Equation (3.1)), and the geometry needed
to understand them is provided by Figure

Theorem 4.1 If there exists a matrix Q € R"*™ satisfying the conditions that

1. QE=T, and
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2. QV has all nonpositive elements,

then for a given x| the following holds:
{uo [uo satisfies QFxg + QBuo < t} C U(xy).

Proof: It needs to be shown that if u/ is such that QFx}+QBu} < t, then u} € U(x})
(that is, u} is a maintaining control). To begin, consider any x; € Reach(x},u}).
This x; is such that Ex; = Fx} + Bu} + W, and, due to Condition 1, Tx; = QFx} +
QBu} + QW. Thus, as QFx} + QBu} < t, so Tx; — QW < t. Condition 2 and
the statement in Section that v > 0 (slack variables are non-negative) give
QW < 0. Thus, Tx; < Tx; — QW. So, Tx; < t. Since this is satisfied for each
x1 € Reach(x},u}), then Reach(x}, u}) C Tube(T,t), so ul € U(x}). O

Theorem [4.1| admits the possibility that there exists a uj such that uj € U(x}),
but that ud ¢ {uo|uo satisfies QFx{ + QBuy < t}. Theorem shows that if Q
satisfies an additional property, then the following equality will hold:

{uo |uo satisfies QFXJ) + QBupy < t} = U(xé).

Theorem 4.2 If for a given (x},u}) pair there exist a matrix Q and slack vectors

vi, i =1,..., m satisfying the following conditions:
1. vtis such that there exists a tuple (x1,x}, 1}, v!) that satisfies Equation (3.1)),
2. Q satisfies the two conditions of Theorem 4.1,
3. [QV]iis orthogonal tovi,i=1,...,m,

then u} € U(x}) if and only if u} satisfies

QFx) + QBu} < t.

Proof: The sufficiency part was shown in the proof of Theorem The necessity
part will be shown here. It will be shown that if u} € U(x}) then QFx}+ QBu} < t.

Suppose that u} € U(x}) (that is, u] is a maintaining control for x}). According to
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Definition [3.4) on Page [19] the following is true for u}: Reach(x},u}) € Tube(T, ).
This implies, according to Expression (3.7), that for u} the following is true: ¢ <
[th, i=1,...,j. c"* will be expressed in terms of the other variables and constants.
Any x; € Reach(x},u}) satisfies Equation (with xo = x} and up = u/). Pre-
multiplication of Equation by Q and application of Condition 1 of Theorem[4.1]
shows that such an x; satisfies the following equation:

Tx; = QFx) + QBul + QW (4.1)

For each row 1 of QV, as a consequence of Condition 2 of Theorem and the
conditions of the present theorem, [QV];v ranges from a maximum value of zero
to some minimum value determined by the system dynamics. So, for any given x
and u/ the maximum value, ¢, of [Tlix; = [QFlix} + [QBliul+ [QV]v is achieved
when [QV];v = 0 for some v = v, and equals [QF]ixé + [QB]iué. This means that
the inequality ¢ < [t]; is equivalent to the inequality [QFlix} + [QBliu} < [tl;, for

i=1,...,m. Thus, it follows that u} satisfies QFx} + QBu} < t. O

4.3 Results for Slack-Descriptor Systems in Regular Form

In the rest of this chapter, slack-descriptor systems in regular form (defined in Sec-
tion [2.2) will be considered. This signifies a move towards the halfspace systems
that are studied in the rest of the present dissertation.

4.3.1 Invariance of Q

For a slack-descriptor system in regular form, the Reach(xy, 1) sets are polyhedra

bounded by the constraints
[Elix1 = [Flixo + [Bliuo + [VIiv, i=1...m,
where [V];v goes to zero (meaning that [v]; — the i-th component of v — equals

zero) at points in the x; space where the i-th constraint is active (a constraint is said
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to be ACTIVE at a point if it is satisfied with equality at that point). The following

observations can be made with respect to these Reach(x,, uo) sets:

1. Associated with each direction (for example, [T];) in the x; space is a certain

group of components of v that go to zero on the surface of Reach(xo, up).

For example, consider Figure In Reach(x}, u}), as one moves along direc-

tion [T],, the components [v]; and [v], of v go to zero.

2. Which components go to zero in a given direction also depends on the (x, uo)
pairs because the Reach sets corresponding to different (xo, uo) pairs may in
general have different shapes while the outward normals of the component

constraints are preserved.

For example, consider Figure[4.1] Both Reach(x}, u}) and Reach(x3, u3) have
the same set of outward normals, though in Reach(x3,u3) one of the com-
ponent constraints is redundant. Along direction [T],, in Reach(x},u}) the
components [v]; and [v]; of v go to zero, whereas in Reach(xé, ué) the compo-

nents [v]; and [v]; of v go to zero.

3. Equation (4.1)) shows that Q represents a series of linear combinations of the

rows of Equation (3.1J).

4. Assume that there is a vector v that satisfies Condition 1 of Theorem
Assume that this v is associated with the direction [T];, meaning that if v cor-
responds to a point on the surface of the Reach set, then certain components
of v are zeros. Assume that Q satisfies Condition 2 of Theorem Then, for
this Q to satisfy the third condition of Theorem the components of [QV];
that correspond to the non-zero components of the vector v, that is associated

with the direction [T];, must be zeros.

For example, in Figure if v is associated with [T], and corresponds to a
point on the surface of Reach(x},u}), then the components v; and v, of v
equal zero. Then, all the components of [QV], except the first and the second

need to equal zero for this Q to satisfy Condition 3 of Theorem 4.2
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Reach(x3,u3)

Figure 4.1: Note that every component of v goes to zero on at least one surface of

Reach(x},u}), but [v]; does not go to zero anywhere in Reach(x3, u3).

In Figure if v is associated with [T], and corresponds to a point on the
surface of Reach(x3, u3), then the components v; and v; of v equal zero. Then,
all the components of [QV], except the first and the third need to equal zero
for this Q to satisfy Condition 3 of Theorem [4.2

5. From the last observation and its example, it follows that a Q matrix that has
been determined to satisfy the conditions of Theorem for a certain (xo, up)

pair may violate them for a different pair.

For example, with respect to Figure a Q satisfying the conditions of The-
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orem found for (x}, u}) will give the following product for QV:

~ 0000 ~

QV =

o o O
o O O O

~

o O O
o O O
14
14

0 0 ~

while a Q found for (x3, u) will give the following product:

~ 000
~ 0
~ 0
0 0 ~ ~
0 0 ~ ~
~ 0000 ~

Here, ~ means that the value of the element that stands in the place of ~ is

~

~

o o O

Q

<

I
o O O O
o O o O

not important as the component of v corresponding to that element is equal

to zero.

Definition 4.1 For a given slack-descriptor system in regular form, if a single Q is
found to satisfy the conditions of Theorem 4.2 for all (x(,uo) pairs, then this Q will
be called INVARIANT for this slack-descriptor system.

4.3.2 Maintaining Controls under Invariant Q

If Q exists and is invariant, then Theorem [4.2| implies the following:
e For a given x,,
U(xo) = {ug [uo satisfies QFxp + QBugy < t} (4.2)
e The set of all xy’s for which there exist maintaining controls and the set of all
maintaining controls are given by

QFxo + QBuy < t. (4.3)
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If no single Q exists that satisfies the conditions of Theorem for all (xq,up)
pairs, equations (4.2) and (4.3) describe a subset of maintaining controls as per
Theorem [4.1]

4.3.3 Test for Maintainability under Invariant Q

Here, a test for the maintainability of a given BOUNDED tube is presented. By defi-
nition, a tube is maintainable if for every x, in the tube maintaining controls can be
found using Equation (4.2). Thus, a test for maintainability might require checking
every xo in the tube. Clearly, this is impossible. Theorem shows, under the
assumption of invariance of Q, that if maintaining controls exist for the vertices of

the tube, then maintaining controls exist for every point in the tube.

Definition 4.2 Let P C A" be a polytope. A linear inequality constraint in R™ is
VALID for P if the constraint is satisfied by all points x € P.

Notation 4.1 Let P, = {xo[Txp < t} be a polytope. Assume that P, has a total
of L vertices: x}, x2, ..., x5. Let U(x}) 2 {uo|QBuo < t — QFx} } be the set of
maintaining controls for x;.

Theorem 4.3 Consider Notation If U(x}),i=1,...,L, is nonempty, then for

any x5 € Po, U(x§) will be nonempty too.

Proof: Any polytope is the convex hull of its vertices. Thus, any point x§ € P, can

be expressed as a convex combination of x{, i =1,..., L. That is,
L L
Xy = Z%XB, where Z% =1,v;>0. 4.4)
i=1 i=1
It needs to be shown that if the sets U(x}), i = 1,...,L, are nonempty, then U(xg)

is also nonempty. Multiplying the system of constraints QBuy < t — QFx} by vy, for
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i=1,...,L, and adding the L systems we obtain

L L

L
Z YiQBuy < Z vit — Z viQFxs. (4.5)
i1

i=1

L L L
= QBUOZ% < tZYi— QFZ%X})-
i i i
= QBuy < t—QFxg

i=1

This last system, by virtue of the non-negative linear combination through which

it has been derived, is valid for all U(x}), i = 1,...,L, meaning that it is feasible.
Since U(x§) = {uolQBuy < t — QFx{}, and QBuy < t — QFx{ is feasible, it follows
that U(x§) is nonempty too. O

Note that if U(x}) is empty for a vertex x}, then this means that there are no
maintaining controls for such an x}. Thus, in such case, an argument based on
forming a linear combination such as in Equations (4.5)) will not be a valid one, and

such a tube is not a maintainable one.

Theorem 4.4 If x§ € P, is a convex combination of the vertices x{, i = 1,...,L,
of Py as in Equation (4.4), then a convex combination (with y;, i =1,...,L as the

coefficients in this combination) of the maintaining controls for these vertices is a

maintaining control for x§ thus:

L
{ Z Viuz)

1

ug € U(xy), i=1,...,L; v; satisfy Equation 4.4} C U(x§).

Proof: As u € U(x}), u} satisfies the inequality QBuy < t — QFx}. This gives the
following nonnegative sum in which the y; from Equation (4.4) has been used:

L L L
D viQBuS <) yit— ) v:iQFxj.
i=1 i=1 i=1

This reduces to the following expression:
L
QB yiup < t— QFxg.
i=1
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Thus, it follows that

L
Zyiu}) € U(xg).

i=1

Hence the proof. O

Using the result of Theorem a maintaining control for any x§ € Py can be

determined as follows:

Step 1: Determine maintaining controls for each of the vertices of P, 2
{xo[Txo < t}.
Step 2: Use Equation (4.4) to determine y = [yy,..., V1, such that xj is a convex

combination of the vertices.

. Find u vex N verti o .
Step 3: Find uf as a convex combination of the vertices’ maintaining controls in

volving this vy.

The next section presents a method to determine Q assuming that it is invariant.

4.4 Finding an invariant Q Matrix

This section presents steps for determining an appropriate Q matrix. The approach
is to determine a Q in steps in order to satisfy the conditions of theorems |4.1
and In Step 1 a Q is found that satisfies Condition 1 of Theorem In
Step 2, this Q is modified using vectors from the null space of ET so that Condition
2 of Theorem is also satisfied. By Theorem such a Q can be used at least
to characterize a subset of U(xy). Finally, in Step 3, for a given (xo,uo) pair, an
optimization is performed in order to modify Q until it satisfies the conditions of
Theorem also, thus allowing the set U(x,) to be represented exactly. For each
step, the properties of the system that allow the transformations of Q to be found

are discussed.

Step 1: Begin with any matrix Qo such that T = Q,E.
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If E is of full column rank, then such a Q, can be determined as Qo =
[T | AJEg where A € R>*(™ ™ is any matrix and Ex € R™™ is the trans-
formation matrix that puts the composite matrix [E — F — B — V] into its

reduced-row echelon form.

If E is not of full column rank, this means that the given SD system is un-
bounded as per Section such a case will be ignored.

If the row space of T is not in the row space of E, then the dynamics of the
system will lead to a next state x; that is unbounded in a direction that should
be constrained by the tube. In such a case, no Q exists, and the set U(x,) will

be empty.

Step 2: In this step, it will be seen if Condition 2 of the theorem can be satisfied.
Define Qn,u such that the columns of Q] ,, are a basis for the null space of
E'. Thus, QnuuE = 0. If a matrix R; can be found such that (Qo + R1Qunuu)V
has all nonpositive elements, then Condition 2 will be satisfied, that is, if the

feasible region of the following linear constraints is nonempty:

(QruaV)T 0 - 0 [Rql] [QoVI]}
0 (QuaV)’ - 0 Ry | _ | [QoVE;
0 0 s Q)T [Ry]) [QoV]]-T

)

Choose a matrix Ry such that its elements satisfy the above constraints. Define
Q1 = (Qo + R1Qnuu). Then,

Tx1 = Q1Fxo + Q1Buy + Q1 Wv.

Note that Q; satisfies conditions 1 and 2 of Theorem It is thus sufficient
to characterize a subset of maintaining controls. In the next step, Q; will be

modified to satisfy, if possible, the condition of Theorem (4.2

Step 3: In this step, a random (x,, 1) pair is chosen and attempt is made to deter-
mine a matrix R, such that Q, = Q7+ R,Q .1 satisfies all the three conditions

of the theorem.
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The condition of Theorem states that for each row [QV];, there must exist
some v satisfying Equation for the above (xo,uq) pair such that v is
orthogonal to [QV];. Two non-negative vectors are orthogonal to each other
if each non-zero element of the first vector has a corresponding zero element
in the second vector. This suggests the following strategy. In step 3a, for
each direction [T];, the associated slack vector, which is such that some of its
components equal zero, will be determined. Such a slack vector will be called
the DESIRED VECTOR associated with the direction [T]; or DESIRED VECTOR-
i for short. Then, in step 3b, each row [R;]; of R, will be found through
optimization so as to minimize the components of [Q,V]; corresponding to the

nonzero components of the desired vector-i. This strategy is detailed below.

Step 3a: The Reach(x},u}) polyhedron is described by Equation (3.1) which is in
regular form. Thus, any slack variables that equal zero will be associated
only with points on the surface of the polyhedron. So, each desired vector
will be associated with points that are only on the surface of the polyhedron.
The desired vector-i can be determined by solving the linear programming
problem

Equgt?o?lx [Tlixs
X0 =Xy

—!
Uo =Uy

This gives a vector [x] v']T. The v part of this vector is the desired vector-i.

This procedure is repeated for each of the j rows of T.

Step 3b: In Step 3a the desired vectors were determined. In the present step, at-
tempt will be made to determine the matrix R; such that the i-th row of the
matrix Q,V = (Q7 + RQnun)V can form an orthogonal product with the
desired vector-i. This can be done by maximizing the sum of the elements
of the i-th row of (Q; + R;Qnun)V that correspond to the non-zero compo-
nents of the desired vector-i subject to the constraints that the elements of

(Q71 + R2Qun1)V be nonpositive. Maximization brings these elements in the
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direction of zero. This is repeated for each of the j rows of (Q; + R2Qnuu1)V
to obtain Q.

If Step 3b fails, then one can settle for the Q, thus determined and one would

have a subset of maintaining controls.

4.5 Special Cases where Q is Invariant

Here one general scenario is described in which Q is invariant across all (xg, 1)
pairs while satisfying the conditions of Theorem 1 and Theorem 2. Q will be in-
variant when, irrespective of the (xo,uo) pairs, in every desired vector associated
with any given direction in the x; space, the indices of the zero-components are the
same. This happens when every constraint from Equation forms a face of the
Reach(x},u}) polyhedron for every (xo, 1) pair. In other words, none of the con-
straints becomes redundant, even when the shape changes as (xo, o) pairs change.
The solution to the problem of determining the set of all b’s for which the system
of inequalities Ax < b is irredundant will be presented in Chapter [5

A special case of an irredundant Reach set is one where changing (xo, 1) only
scales the polyhedron up or down without changing its shape. This happens when

all rows of the right hand side of the expression
Ex; — W = Fxo + Bu,,

are equally scaled for different (x,, 1) pairs. That is,
[F] kXé + [B]kué . [F] 1X(]) + [B]Iu(])

[Flhoxd 4+ [Blaud  [Flixg + [Bliud
fork=1...m, l=1...m.

A little manipulation of the above expression gives the following result:

ak 1
M =™ fork=1...m, l=1...m,
ak 1

n mn

mi=1...n+p), mm=1...(n+p).

Here, a¥, and af are respectively the m;-th and n;-th elements of the k-th row of

the composite matrix [F B].
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4.6 Example

Consider a simple single-state system. Assume that the dynamics of the system can

be represented by the following inequalities:
0.8xk + W < X1 < 0.9% + .
The corresponding slack-descriptor equation is
Exxi1 = Fxie + Buy + W,
where
1 9 1 —1
AR RS HES |
Of interest is whether the tube defined by Txy < t, where
T:[_:] and t:[_gZ]

is maintainable with respect to this system.
This solution will go through the steps of the algorithm of Section 4.4

Step 1: Find a Q,.

T Al =

Step 2:

—1 1 2 1
rTLuu:[ ]]>Q0V=[_] _2])(QnullV)T:[]]-

On testing the constraints shown in Step 2 of Section [4.4] it can be seen that

they are satisfied. Then,

[
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is chosen such that these constraints are satisfied. Then,
Q= 1 0
Tl 2|
Step 3a: The constraints in the slack-descriptor model of the system are linearly
independent. So, neither of them becomes redundant for any (xo,u,) pair.
Thus, any Q matrix that is determined will be invariant as described in Sec-
tion[4.5] So, xo = 1 and u, = 1 are chosen randomly. The desired vector-1
can be found by solving the linear programming problem
max X1
EquatioE1
o=
This gives the desired vector [0 1] in the direction [T]; = 1. Similarly, in the

direction [T], = —1, the desired vector [1 0]' is obtained.

Step 3b: Q2 = Q1 + R2Qnu. Thus, it follows that

1— —1
Q, = T T and Q,V = + 1 T
1—1‘2 —2—|—T2 —1—|—T‘2 —2—|—T2
Solve the problems
max r; and max —1+471;
—1411 <0 —141,<0
1 <0 —241,<0
to get
R, — 0
T
This gives
="' ladqv=|"" °
o - T 0 a1 |
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Thus, Q = Q.. Now, constraints similar to those in Expression (4.3) can be
formed:

0.9 1 0.9
Uy < .
[ 0.8 = ] [ 0.8 ]

The vertices of the tube are 0.8 and 0.9. Thus, to test if the given tube is main-

Xo+

tainable, solve the last expression for controls at these two vertices only (as per
Theorem [4.3). It is found that the tube is maintainable. Solving for the set U(x,)
using these constraints shows that uy ranges from 0.08 to 0.18 for various values of

Xo in the tube.

4.7 Drawback of using a non-invariant Q

As Q is determined for one particular Reach set (specifically, an irredundant Reach
set), QFxf + QBug may turn out to be not less than or equal to t even when
Reach(x§,uy) € Tube(T, t). This idea is explained in the present section.

Consider figures and Note that Reach(x},u}) C Tube(T,t) and
Reach(x3,u3) C Tube(T,t). Assume that the system Ex; < Fxo + Buo comprises

six inequality constraints as shown in the figure, with z' and z? as follows:

When Q is determined for some (x§, u) for which these six constraints are irre-

dundant, Q is as follows (by inspection of Figure |4.2)):

0 0 0 du g5 O
0 g2 g3 0 0 0
s 0 0 0 0 qs
0 0 0 O ds4s das

Here, q; are non-negative numbers. Q is such that QE =T.
The dotted lines in figures and represent the inequalities QEx; < QFx}+
QBu} and QEx; < QFx3 + QBuj respectively.
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g 450

\’Z

Reach(x},u})

[Tlaxy < [tls

[Tlox1 < [t

Figure 4.2: Illustration for the drawback of a non-invariant Q. QFx} + QBu} <t
and Reach(x},u}) C Tube(T,t) (the rectangular region is Tube(T, t)).

When this Q is used to test the condition QFxy+ QBug < t, here is what it tests
for Reach(x}, uf):

(cralFla + qrsFls)xd + (qualBls + qislBlsul < [l
(d2alFla + doslFlsxd + (analBlo + ansBlaul < [t
(asilFl1 + dselFlelxd + (a51Bl + qselBleul < [t
(taslFls + daelFlexd + (quslBls + quglBlaul < [ty

This test passes successfully. Here is what it tests for Reach(x3, u3):

(cralFla + q1slFls) + (qualBls + qisBlsiud < [l
(daalFla + 4slFl3)x3 + (doalBla + asBlsud < [t
(asiFl1 + dselFleh + (a51B] + qselBleud < [t
(daslFls + QaglFlelE + (quslBls + quslBleiud < [ty
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>
Pt 4

Figure 4.3: Illustration for the drawback of a non-invariant Q. QFx% + QBuj £ t
even though Reach(x3,u3) C Tube(T,t) (the rectangular region is Tube(T; t)).

Note that, instead of testing whether the intersection of the constraints [E];x§ <
[Fl1x3 + [Bl1ug and [El3x? < [Fl3x3 + [Blsu3 is “below” [T],x; < [t], (in which case it
would be confirmed that Reach(x3,u3) C Tube(T, t)), this Q tests if the intersection
of [El;x? < [Flox3 + [Bloud and [Elsx§ < [Fl3x§ + [Blsug (indicated by the arrow
in Figure [4.3) is “below” [T],x; < [t],. Clearly, from Figure this test will be
answered in the negative.

Thus, in this subsection, an example was presented to illustrate the possibil-
ity that a Q determined for an irredundant Reach set Reach(x},u}) of a given
Slack-descriptor system may test correctly whether other irredundant Reach sets
of this Slack-descriptor system are subsets of Tube(T, t), but that this Q may iden-

tify a redundant Reach set Reach(x3,u3) as not a subset of Tube(T,t) even though
Reach(x3,u3) C Tube(T, t).
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4.8 Discussion

In this chapter it was shown that for a system whose dynamics are described
through linear constraints, the set of controls that maintain the system’s states in
a linearly constrained tube can be described by linear constraints if the dynamics
satisfy certain conditions. It was explained when this description can be exact and
a case was identified for when this is possible (Chapter [5]studies this case in greater
depth). A method has been presented to test if a given tube is maintainable for a
given slack-descriptor model. Also, an expression has been shown (Equation (4.3))
that can be used on-line to compute controls that would maintain system states
within the given maintainable tube.

Note that a slack-descriptor system in regular form is equivalent to a halfspace

system. Chapter [6|will study maintainability of halfspace systems without involving

a Q.
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Chapter 5

Determining the Values of b for which
Ax < b is Irredundant

5.1 Introduction

The need to study redundancy was motivated in Section From Section (3.1} it
can be seen that a Reach;(x},u}) set is a polyhedron defined by Expression (3.1)

as follows:
Ex; = Fxé + Bué + W. (5.1)

The problem studied in Chapter |4 was: given a convex set of states denoted
Tube(T,t) 2 {x e R"|Tx <t, T e W™t € R} and an x} € Tube(T,t), find a u}
such that Reach;(x},ul) C Tube(T,t). If a u} exists for each x/, then the system
states can be maintained in the tube indefinitely.

It was seen in Chapter (4] that if a matrix Q € 9™ can be found such that
through premultiplication by Q, Expression (5.1) can be rewritten as: Tx; =
QFx} + QBu} + QW, such that QW < 0 and each row of QW is assured to take
on a value of zero, then this last equation gives: Tx; < QFx} + QBu}. Then the
constraint QFx}+ QBu} < t allows one to determine the values of (x},u}) pairs for
which Reach(x}, u}) C Tube(T, t). This result, by extension, helps determine if the
evolution of the states of the system can be maintained in the given tube.

In the method proposed in Chapter [4| to determine Q, the value of Q depends
on the value of the (x}, u}) pair. It was concluded there that if Q could somehow be

independent of (x}, u}) pairs, then a Q determined for any one pair would work for
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the particular slack-descriptor model as a whole. Even if Q were not independent
as described, at least the set of all (xJ,u]) pairs for which the Expression (2.2)
remains irredundant could be determined, and for this set of values a Q could be
determined. This was better than finding a Q for a random (x},1}) pair and not
knowing ‘how far’ it will work. Thus, this was the motivation to study redundancy.

The question of redundancy of a system of linear inequality constraints has been
studied for more than a half century now. The first comprehensive survey on this
topic was done in [KLTZ83|[]. Recently [Gre96] did another survey. These and other
works have focussed on REDUNDANCY DETECTION — determining if a system of lin-
ear inequality constraints is redundant and, if so, which constraints are redundant
— and/or REDUNDANCY ELIMINATION — obtaining a minimized (irredundant) sys-
tem of inequality constraints whose feasible region is the same as that of the origi-
nal system. In contrast, in this paper, the interest is in characterizing the domain of
values over which a system is irredundant.

The techniques used in the literature for redundancy detection and/or elimina-
tion fall into two broad categories — DETERMINISTIC TECHNIQUES and PROBABILIS-
TIC TECHNIQUES. Given a system of linear inequality constraints, a deterministic
method, in its most naive form, determines if a constraint is redundant by solving
a linear programming (LP) problem (LPP) [CBB97]. This means that the compu-
tational complexity of the deterministic methods is polynomial. In practice, many
simplifying observations are used to classify as many constraints as possible as re-
dundant/irredundant during the solution of each LPP. There are also some non-LP-
based deterministic methods which, while not as comprehensive in classifying the
constraints as the LP-based methods, are quicker. The probabilistic methods are
based on the fact that, if a random line intersects the interior of the feasible region
of the given system of constraints, then with probability one the end points of the
feasible segment of that line identify necessary or weakly redundant constraints.

Consider the following systems of constraints:

Ax < By,
y € R™P x e RN (5.2)
Constants: A € R™™M B e Rmxn+p),
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Note that Expression defines, not one system of constraints, but SYSTEMS, each
system being defined by a particular value of y. It is similar to Expression (2.2]).
It can also model the non-negativity constraints on x. In this paper, the polyhedra
defined by this expression are required to be bounded. The problem of determining
the set of all (xo, up) pairs for which Expression remains irredundant can be
formulated more generally as

PRI : Determine {y | The systems of Expression (5.2) are irredundant},
or simply as
PR2: Determine {b | S(b) is irredundant},

where

2

S(b)=(Ax<b, x€R"), beR™ (5.3)

The redundancy-related techniques described above process constraints sequen-
tially and, so, are not suited to solve PR1 or PR2.

The work which comes closest to solving PR1 or PR2 is [IW97]. [LW97]
presents an algorithm to determine the vertices of a polyhedron, such as defined
by Expression (5.2]), as functions of the parameter y. That algorithm works approx-

imately as follows. In the first step, it converts the “parametrized polyhedron” of Ex-

pression (5.2)) into a homogeneous polyhedron of the form [ A —B ][ x y ]" <0.

In the second step, the (n + p)-FACES of the last polyhedron are determined using
a face-enumeration algorithm developed by [LW97]. In the third step, the (n + p)-
FACES are projected onto the n-dimensional space to obtain the “parametrized ver-
tices”. The complexity of this algorithm is bounded by a polynomial in n + p. That
work can provide a first approximation to our problem as follows: the set of all val-
ues of y over which every one of the parametrized vertices is preserved is a subset
of the solution to our problem. The solution may not be exact in some cases as
can be seen in Figure 5.1} this figure shows polytopes represented by irredundant
systems corresponding to Expression (5.2); these polytopes have different number

of vertices. In the present chapter, two methods that solve this problem exactly

41



Figure 5.1: Polytopes represented by irredundant systems corresponding to Ex-
pression (5.2)): these polytopes have different number of vertices.

Figure 5.2: Redundant and Necessary Constraints

are discussed. Another promising direction is also shown that needs to be further
explored.

This chapter is organized as follows. Section presents some definitions re-

lated to redundancy and polytopes. Sections [5.3] [5.4) and |5.5| present the first,

second, and third solution methods respectively. Section presents an example.

Section [5.7| concludes the chapter with a discussion of the results.
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5.2 Definitions

A few definitions are introduced in this section that also serve the purpose of estab-

lishing some of the notation used in this chapter.

Notation 5.1 In Expression (5.3), A = [a; ... amlL ai=layg ... aml
i=1...m;b=[b; ... by, " Thus, the i-th constraint in S(b) is a/x < b;. Let
CT, Ci, and C; denote the constraints a/x = b;, ax < by, and a{x < b; respectively.
Then, S(b) ={Ci/i=1...m}.

. s . _A .
Definition 5.1 Given that a; € "™, and b; € ‘R, the set HT = {x|C;} is called a
A . .
HYPERPLANE and the set H; = {x| C;} is called a CLOSED HALFSPACE with OUTWARD
_A . .
NORMAL a;. H; = {x| C; } is the corresponding OPEN HALFSPACE.

Notation 5.2 For a given b, the feasible region of S(b) is:
P2Ix|C, 1<k<m). (5.4)

X\ T is the set of all elements in the set X that do not belong to the set T. Let
S\i(b) = {Ck‘k c {1, .. ,i — 1,1—|— 1,. .. ,m}}, .A\i = {akICk < S\i(b)}, and L r\niax =
max { alx| S\;(b) }. Let, P\; be the feasible region of S\;(b)}.

Definition 5.2 [CBB97] A system of constraints is called a REDUNDANT SYSTEM if
it contains at least one redundant constraint. In S(b) of Expression ([5.3), the i"
constraint is REDUNDANT if P = P\; or LP}** < b;, WEAKLY REDUNDANT if LP{}"* =
b; , STRONGLY REDUNDANT if LP{}"* < b;, and IRREDUNDANT or NECESSARY if it is
not redundant.

Figure illustrates redundancy of linear constraints w.r.t. the feasible region
of a constraint set. Constraints 1 and 6 can be removed without altering the feasible
region. So, they are redundant: 1 is strongly so, and 6 is weakly so. The others (2
—-5,x > 0and y > 0) are necessary.

In the following the linear algebraic concepts of subspace, affine subspace, affine

hull (denoted aff(-)), polytope, dimension of a polytope, faces and facets of a poly-
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tope, cone [BT97, [Zie95| IGR97, |Sch86]], and the LP concepts of basic solution and
basic feasible solution [BT97]] will be used.

Definition 5.3 [Zie95] Let P C R™ be a polytope. A constraint C;, is VALID for P if

it is satisfied for all points x € P.

Definition 5.4 [Sch86] The cone GENERATED by the vectors X = {x',...,x™}, is the
set cone(X) = cone({x',...,x™}) = {> " Aix' | Ay > 0}. The notation cone(Z)
will be used to denote cone(X) when Z = [x' ... x™|.

Definition 5.5 In the system of halfspaces S(b), it will be said that certain con-
straints SURROUND a particular constraint if the cone generated by the outward
normals of these constraints contains the outward normal of the constraint in ques-
tion. That is, the constraints C;,...,C, (p < m), surround the constraint C;, if
a; € cone({as,...,ap}), where i ¢ {1,...,p}. A SURROUNDING CONSTRAINT SET
(SCS) of a constraint C; is defined as a set of n linearly independent constraints
that surround C;. The set of all SCSs of C; will be called the SSCS of C;.

Definition 5.6 Consider S(b') and S\;(b'), where b' is an instance of b. Assume
that both sets are bounded and that the latter is irredundant. It is known that
C; in S(b') is redundant if LPT™ < b]. Since, S\i(b') is bounded, LPT* occurs
at a vertex of the feasible region of S\;(b'). Assume that this vertex is the point
of intersection of the constraints in S,,(b') which is a subset with cardinality n of
S\i(b'). Consider any S(b?) without regard to whether it is redundant (it is not
necessary that b' # b?). In S(b?) we will call S,,(b?) a REDUNDANCY DEFINING
CONSTRAINT SET (RDCS) of C;. The SRDCS of C; is the set of all possible RDCSs of
Ci.

For example, in Figure {Constraint#2,x > 0} is the RDCS of
Constraint#1, and {Constraint#5,y > 0} is the RDCS of Constraint#6.

Notation 5.3 Letp =[r; ... rm]T > 0 be an instance of b. The constraint set

Slp)={a/x<n|1<j<m}
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is irredundant and has the origin somewhere in the middle of its feasible region.
Let

5.3 First Method to Solve PR1 and PR2

It is assumed that TRIVIAL REDUNDANCIES such as the simultaneous existence of
constraints a/x < b; and a/x < kb;, k > 0, do not occur in our systems, and that
S(b) is bounded.

PRI1 and PR2 will be solved using SCSs. Then, this solution will be refined
using RDCSs.

5.3.1 Overview of SCS Method

By Theorembelow, each constraint in the system S(b) is irredundant if it is irre-
dundant w.r.t. the constraints that SURROUND it. Alternatively, only the constraints
that surround a given constraint can make it redundant. It follows from Defini-
tion that at least two constraints are needed to surround a given constraint.
Once the surrounding constraint sets (SCSs) of a given constraint have been iden-
tified as shown in Subsection PR1 and PR2 can be solved as described in
Subsection [5.3.4]

5.3.2 Preliminary Results on SCSs

Here are presented some results that will form the foundation for the solution given
in Section

Lemma 5.1 Consider P from Expression (5.4). Assume that H{ contains a face F
of P. C; is valid for P if and only if C; is a non-negative linear combination of the
constraints that define F.
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Proof: If C; is not a linear combination (LC) of the constraints that define F, then
no point on F will satisfy C;-, meaning that H{ will not contain F. But, it is given
that H;” contains F. So, C; is an LC of the constraints that define F. It remains to be
shown that C; is valid for P if and only if this LC is a non-negative one. C; can be

written thus:
m m
T
Z k]-aj X S Z k]'bj.
=1 —1

Of the constraints Cy, ..., C,,,, some may enter this LC multiplied by zeros, while
others may simply be linear combinations of some of the other constraints. If F is
an l-face in n dimensional space, then this LC is obtained from n — | constraints.
Thus, this LC can be seen as obtained from a maximum of n linearly independent
constraints that define aff(F). Without loss of generality, for some ¢, let this LC be

as follows:
q q
Cil ijaij < ijbj, 1 < g <n. (55)
=1 =1

Suppose that k; < 0 in the above LC. Consider a point x'

..., C5. Substituting this x' into Expression (5.5) gives k;ajx' < kiby, that is,

satisfying C;, and C5,

a1Tx1 > by. This is in disagreement with the statement that x' satisfies C;. This
means that x' does not satisfy Expression (5.5). So, it follows that if C; is not a
non-negative LC of Cy, ..., C,,, , then C; is not valid for P. To see that if it is a non-
negative LC, then it will be valid for P, suppose that all the k;’s in Expression (/5.5)

are non-negative. Then, any x? which satisfies Cy, . . ., C, also satisfies C;. O

Theorem 5.1 If constraints in S\;(b) make C; redundant, then a; € cone(A\;).

Proof: Without loss of generality, let the constraints in S\i(b) be irredundant. It is
given that the constraints in S\;(b) make C; redundant. This means that a subset
Sc of S\i(b) determines a face F of P such that for some b; = LPT < by, F
is the highest-dimensional face of P contained in the hyperplane {x | a{x =b;}.

This means, by Lemma that the constraint a/x < b; is a non-negative linear
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combination of the constraints in Sc. So, C; is surrounded by the constraints in Sc.
So, a; € cone(Ay). O

Theorem shows that if a; ¢ cone(.A\;), then the constraints in S\;(b) do not
make C; redundant. Thus, Theorem helps confine the redundancy test for C;
to Cy’s surrounding constraints. But, C; may have n; > 2 surrounding constraints.
To test if C; is redundant, it should not be necessary to work with all n; of them,
since only those constraints are needed that determine LP{™. It is enough to work
with just those that determine F (the face on which £ I\rlfx occurs) or, more con-
cisely, with those that determine aff(F). However, the present chapter is only able
to propose a method that works with basic solutions (points of intersection of n
linearly independent constraints, such as in an SCS) rather than those that define F
or aff(F). There are two possible disadvantages to such an approach: (1) in cases
where less than n constraints are enough to surround a constraint, using an SCS
MAY BE expensive; (2) in an unbounded system, an SCS may not be found (this is
why the present method does not work with unbounded systems), though a set of

less than n constraints that surrounds the constraint in question may be found.

Remark 5.1 The SCS method solves PR1 and PR2 by applying the fact, for all the
m constraints in the system, that each constraint is irredundant if it is irredundant
with respect to all of its respective SCSs (for, if the constraint is not irredundant

with respect to any one SCS, then it is redundant).

5.3.3 Determining the SSCS of C;

An SCS of C; can be found by using the fact that for S,,(b) (see Notation to be
an SCS of C;, a; € cone(A,,), thatis A,;'a; > 0.

Step 1: From the m columns of the matrix A" form square matrices taking n dif-

ferent columns at a time. There are C* such matrices.

Step 2: For each a; from AT, list the square matrices that do not have a; as one of

the columns.
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Step 3: Find the inverses of these square matrices.
Step 4: For each such inverse matrix A, calculate the product A;'a;.

Step 5: Classify S, (b) as SCS or not-SCS of C;.

If a search for the SCS of a constraint turns up empty, then this implies one of
two possibilities: (1) the system is unbounded, or (2) the constraint in question is
not surrounded by any constraints (for example, in a constraint system that defines

a cube in &3, none of the constraints has SCSs, but the system is bounded).

5.3.4 Solving PR1 and PR2 using SSCS

Step 1: Let the SCSs of C; be (assuming that the SCSs are 1; in number)

. T . . T .
1 1 1 1
aj;x < by, Qi X = by
, N , . .
. T . . T .
1 1 1 1
an,1 S an aTlﬂi x = bnym

These sets are subsets of S(b) of Expression (/5.3)). They determine the follow-

ing intersection points:

. , N AN T
Xk:<[a§,k ah,d) [b%,k b;,k} , k=1,...,1n

Step 2: By Remark C; is irredundant if b; < alxi, for k = 1,... n;. Similar
conditions have to be satisfied simultaneously by all the constraints, for which

SCSs exist, and their respective SCSs.

Step 3: It follows that the solution set of PR2 is defined by the following expres-

sion:
T 1 b%,k
bi—af([a}k a;yk}) : < 0, (5.6)
bl ok
k = 1)"')“1)
i=1,...,m
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Step 4: The solution to PR1 is obtained by appending the conditions b = By to
Expression (5.6). Alternatively, the solution to PR1 is the feasible region of

the following system of constraints:

o[ B
[B]i—ai([a}k a;’k}) y < 0, (5.7)
Bl
k = 1,...,14
i=1...,m

where [B]; is the i-th row of the matrix B.

5.3.5 Overview of Refinement using RDCSs

By Theorem below, if every constraint in S(b) is irredundant with respect to
its respective RDCSs, then S(b) is irredundant. This means that it is sufficient
to work with RDCSs instead of with SCSs, and that the systems of inequalities of
expressions and may have redundancy in them. Identifying the RDCSs
will help remove some of this redundancy. In the following, a way is shown to

identify some of those constraint sets that cannot be RDCSs of a constraint in S(b).

5.3.6 Preliminary Results on RDCSs

LP™ can occur anywhere in the face F mentioned in the proof of Theorem |5.1
In a bounded system, F contains at least one vertex. Let this vertex be denoted x".
Then, LPU™ = afx".

For example, in the left hand polytope of Figure [5.1, LP\7* is obtained at x"
that is determined by any one of the following 4 sets of constraints: {C;,C,Cs},
{C1,C2,Ca}, {C1,C3,C4}, and {Cz, C3, Ca}.

Given that C; has n; surrounding constraints, and that each x" is defined by a set
of n linearly independent constraints, the maximum number of possible x"’s is
ny!

Chi=
(ny—nm)! n!

n
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Notation 5.4 In the set S\i(b), let the j;-th SCS of C; be Al Tx < b, with ¥ 2
-
(AJiT) bli. Here,

{a];i).“)ait} = {a]""’am})Aji:[ajli ai},])
j j . . AT
{b]f))bzft} C {b],,bm},b]‘: |:b]11 bk:| .

Lemma 5.2 In the set {x

1<5; < Cﬁi} of intersection points, the element that

minimizes a{x is the solution to LP7™.

max

Proof: As was stated in the beginning of this subsection, LP{™* = a{x", where
XV e {x
constraint, there exists At > 0 (Mt € R®") such that AJiN: = q;. As xV satisfies
S\i(b), it follows that A’y < b, meaning that Ali'xv < Ajt'xjt, This gives:

ST T N A A .
Ni Al xy < Nt Adi i) meaning that alx¥ < alx. O

1<ji<Cr } As the constraints corresponding to A’ surround the i-th

Remark 5.2 Applying Definition it can be seen that in an irredundant system
an RDCS of C; determines LP™. The proof of Theorem [5.1| has shown that LP{™
is determined only by the SCSs of C;. So, it follows that an RDCS is an SCS.

The number of inequalities involved in expressions (5.6) and (5.7) can be re-
duced by using the notion of RDCS, as suggested by the following theorem.

Theorem 5.2 If every one of the constraints in S(b) is irredundant with respect to

its respective RDCSs, then S(b) is irredundant.

Proof: Assume that (al) every constraint in S(b) is irredundant with respect to its
respective RDCSs, but that (a2) C; is redundant. (a2) means that there is a SCS ¥;
of C; with respect to which the latter is redundant. Thus, if C; is moved into the
feasible region of S(b) such that the C; is irredundant with respect to ¥;, one of the
following two things may happen:

(1) S(b) may become irredundant (this means that ¥; was in fact an RDCS of C;,
contradicting (al)), or

(2) Some other constraint C; now becomes redundant with respect to ¥;, which is
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one of the SCSs of C;. Now, if C; is moved into the feasible region of S(b) such that
it is irredundant with respect to ¥, one of two things may happen: S(b) becomes
irredundant (meaning that ¥; and ¥; are in fact the RDCSs of C; and C; respectively;
this contradicts (al)), or some other constraint Cy now becomes redundant with re-
spect to one of its SCSs, Y.

Thus, recursive application of the above argument gives one of two possibilities:
either (a2) was incorrect and S(b) was irredundant to start with, or (al) was in-
correct and there were the RDCSs W5, ¥;, ¥y, ..., (respectively of C; , Cj, Cy, ...) that

were overlooked when formulating (al). This completes the proof. O

Lemma below identifies some members of the SSCS of C; that cannot be
RDCSs of C; in S(b). The redundancy-related properties of S(b') — that belongs to
the translation class of systems containing S(p) — are the same as those of S(p);

so, there is no loss of generality in considering S(p).

Lemma 5.3 (see Notation[5.3|on Page Assume that S(p) is irredundant, S,(p)
and S; (p) are SCSs of C;, and that cone(A,) C cone(A’). Then, S/ (p) is not an
RDCS of C;.

Proof: Suppose that S/ (p) is an RDCS of C;. Then, applying Lemma and Re-
mark 5.2 we obtain the following inequality:
-1 _ . . _ . .
al (A;T> [y ... rﬂT <a{ (A}) ] [y ... rl]T. (5.8)

_ ~~
Xn

AL

As a; € cone(A,) and a; € cone(A’), IA|N > 0 € R™ such that A,A = a; and

Al N = a;. Thus, Expression (5.8) can be written as follows:

ATAT (A’nT)_1 [} ... ri’]T<?\T [ ... ri}T.

Now, since A > 0, this inequality will be true only if at least one of the following
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inequalities holds:

ot (A) [T

IA

T

IA
-{-'

aiLT (A’nT) - [} ... riT’L]T

As cone(A,) C cone(A’), this means that at least one of the constraints in S,,(p)
is redundant with respect to the constraints in S} (p). However, it is given that S(p)
is irredundant. So, Expression (5.8)) cannot be true, meaning that S; (p) cannot be
an RDCS of C;. O

Corollary 5.1 In an irredundant system S(b), no two constraints can have the same
RDCS.

Proof: This result follows directly from Lemma 5.3 O

5.3.7 Simplification using RDCS

Once all the SCSs in S(b) have been determined using Subsection[5.3.3] those SCSs
that are not the RDCSs can be eliminated using Corollary 5.1} This can be done as
follows. Suppose that C; and C; are members of S(b). Suppose that S,(b) is an SCS
of C; and C;. In case there exists among the SCSs of C; an SCS which is obtained by
replacing one of the constraints in S,,(b) by C;, then S,,(b) is not an RDCS of C; and
it can be eliminated from the SRDCS of C;.

5.3.8 Solving PR1 and PR2 using RDCSs

In case the SRDCS of each constraint is given, then the solution to PR1 is exactly
as in Section if the term ‘RDCSs’ is substituted for ‘SCSs’.
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5.3.9 Analysis

An m-file (for MATLAB®) has been written to implement the methods of subsec-
tions|5.3.3}[5.3.4} and|5.3.7} Instead of computing A,;' and then the product A 'a;,

Gaussian elimination is used to solve the system of linear equations A,,x = a; and
obtain x. This method is about 2 — 3 times faster than the one that uses matrix
inversion [gen95]].

In the method described so far, Subsection helps reduce only the number
of inequalities that describe the solution space of PR1 or PR2. It does not reduce
the initial complexity — due to Subsection [5.3.3] — of identifying the SSCS. An
efficient way needs to be found that will allow to either identify the SRDCS of C; or,
at least, to identify those constraints that cannot be the RDCSs of C;, without going
through Subsection[5.3.3]

One potential method to identify the RDCSs of a constraint in S(b) is to use the
concept of an IDEAL SYSTEM — a system S(b*®) in which all the member constraints
are tangent to a sphere. It can be shown that S(b?) is irredundant. It is conjectured
that, for some classes of systems, the RDCSs of the i-th constraint in S(b) can be
identified from the knowledge of the RDCSs of the i-th constraint in S(b®). (Note
that this conjecture is not true for all classes of systems. A counter-example for a
particular system has been shown by Dr. Vincent Loechner). Identifying classes of
systems for which this could work is a topic of current research. The advantage
of such a method would be that identifying RDCSs in S(b®) involves fewer matrix
inverse operations than in S(b), and so is less expensive computationally. The
attempt to exploit the idea of ideal systems is described in Appendix [Al

As it stands, the present method is combinatorially complex (mC™ ! Gaussian
eliminations, each of these being O(n3) complex). The method presented in the
next section is POSSIBLY more efficient as it uses vertex enumeration algorithms that,
though not of polynomial complexity, have been found to give acceptable results for

some classes of systems [Bre97]].
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5.4 Second Method to Solve PR1 and PR2

This second method was suggested by Dr. Carl Lee [Lee02] and uses LP duality. It
is presented in Appendix [B| Please look there for further details.

5.4.1 Analysis

An m-file that uses the extreme point and ray enumeration program cDD [Fuk99]]
has been written to implement this algorithm.

The complexity of this method is determined by Step 3 which is a vertex enu-
meration problem. This method solves one problem of vertex enumeration for each
constraint. Thus it solves m problems of vertex enumeration overall. Vertex enu-
meration algorithms are not of polynomial complexity [Bre97].

Step 2 of Subsection follows from the following observation too: LP™ =
a{x" =min {alx{ |k =1,...,n;} as per Lemma and C; is irredundant if b; <
LP{". In this sense, the method of Subsection uses the same criteria to test
for redundancy as the method shown in this section.

Both methods depend on finding extreme points. When the feasible region of
S(b) does not have extreme points, the SCS method quits even though there may
be a finite value for LP\{™. The second method however, finds extreme points in
the feasible region of the dual system (dual polyhedron). As the dual polyhedron
is in the non-negative orthant, it is guaranteed to have at least one extreme point
[BT97]. Thus, the second method works for unbounded systems too.

In this second method, for some 1i the primal LPP of Step 2 might be unbounded.
In such a case the i-th constraint of S(b) is automatically always irredundant for
any choice of b for which S(b) is feasible. In this case the corresponding dual LPP

of Step 2 is infeasible and so no constraints involving b; are generated.
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5.5 Third Method to Solve PR1 and PR2

An additional direction that was explored to solve PR2 is described here. This ap-
proach appears promising but is not yet complete. It is presented as a direction for
continuing research. It is based on using Minkowski’s Theorem for an equilibrated

system of vectors.

Theorem 5.3 (Minkowski’s Theorem for an equilibrated system of vectors [GH99]])
Let uy,...,u,, be pairwise different unit vectors of Euclidean n-space "™ which
span K", and let p, ..., u, be positive reals such that > ", wyu; = 0. Then there
exists a polytope P with outer facet normals uq,...,u,, and corresponding facet

volumes i,..., Wy. Further, P is unique up to translation.

Let, A, be a matrix of unit vectors that has been obtained from A (see Nota-
T
tion|5.1) thus: A, = | & A ] .

e [

Remark 5.3 Minkowski’s theorem suggests that each vector z from the set ¥ =
{zlrank(A,) =n,Alz =0,z > 0,z € R™} corresponds to a bounded irredundant
system, unique up to translation, represented by Equation (5.3)). In particular, each

such z is the vector of facet volumes of a polytope represented by Equation (5.3).

It follows that, given A, and a z from V¥, if a rule (or an algorithm) that would
give the corresponding value of b were to be found, then the system A,x < b (or,
alternatively, Ax < b) would be irredundant. Here, b= \Z_h % ]T. Thus,
applying the said rule to every z from V¥, the set 55 of all such b would be obtained.
Then, the set {B + Ax'[x' € "™} would be the solution to PR2.

Such a rule or algorithm is the subject of the MINKOWSKI RECONSTRUCTION
PROBLEM [GH99]. Such an algorithm does not exist in practice. Even if it existed,
it is not practical to apply it to each z from ¥ as there is an infinite number of z.

Currently other ways to implement the idea of finding a correspondence be-

tween ¥ and B are under investigation.

Remark 5.4 Remark suggests that S(b) is bounded if ¥ is non-empty. Thus,

55



checking for the non-emptiness of W, or of its closure (if a set is non-empty, then its
closure is also non-empty) clo(¥), is one test for boundedness of S(b). Note that
while testing clo(¥) for non-emptiness, the case when the only element of clo(V)
is 0 is ignored.

5.6 Example

Consider S(b) with A as given below:

15578 04142 |
24443 —0.9778
—1.0982 —1.0215

11226 03177

05817 15161
02714 0.7494

From Remark 5.4} it follows that clo(V¥) is non-empty (this was done using cbD),
and thus S(b) is bounded. Next, from the algorithms of subsections|5.3.3|and [5.3.4|
it follows that each constraint in S(b) has two SCSs and that the solution to PR2 is

given by Db < 0 where D is as follows:
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1
1
0
0
—2.7855
0
—0.7154
—0.7247
—0.6620
0

0
0

Thus, the system Ax < b will be irredundant for any b such that Db < 0. For

comparison, here is the matrix D determined using the method of Appendix B}

[ 1.0000
1.0000
0
0
0
—2.7864
—0.7155
—0.7249
0
—0.6620
0
0

The constraint sets which are SCSs of the various constraints can be seen in the

—0.0931

0

1

1
—2.2245
—2.4839

0

0

0

0
—0.2701

0

0
—0.0928
1.0000
1.0000
—2.4840
—2.2255
0
0
0
0
0
—0.2702

0 —1.5903 0
—0.0375 —1.4243 0
—2.9296 0 —1.3288
—1.9062 0 0

1 0 0

1 —4.4298 0

0 1 —0.0141

0 1 0

0 0 1

0 —0.9135 1

0 0 —0.6685
—0.7913 0 —1.0274

—0.0373 —1.4239 0
0 —1.5892 0
—1.9059 0 0
—2.9309 0 —1.3309
1.0000 —4.4282 0
1.0000 0 0
0 1.0000 —0.0141
0 1.0000 0
0 —0.9133  1.0000
0 0 1.0000
—0.7919 0 —1.0282
0 0 —0.6686
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0
0

—1.2933

—0.0234
—1.6571
—1.6358
1
1

0
0
—1.2944
0
0
0
0
—0.0233
—1.6358
—1.6570
1.0000
1.0000




following table which was generated by the m-files mentioned in Subsection |5.3.9;

Constraint  SCS Is this SCS an RDCS ?

Gy {C2 Cu} No
Cq {C3 C4} May be
G {C3 Cs} No
C {C5 Cé} May be
C3 ¢ Ca} May be
C3 {Cr C4} May be
Cy {C; Cs} May be
Cy {C1 Ce} No
Cs {C1 Ce} No
Cs {Cs Ce} May be
Ce {C2 Cs) May be
Ce {C3 Cs) No

Some of the redundancy in the description of the solution space of PR2 is re-
moved using this table. The new description of this solution space is obtained as

Db < 0, where D is the following matrix:

[ 1.0000 0  —0.0375 —14243 0 o |
0 1.0000 —29296 0  —13288 0
27855 —2.2245 1.0000 0 0 0
5_ 0 24839 1.0000 —44298 0 0
—0.7154 0 0 1.0000 —0.0141 0
07247 0 0 1.0000 0 —0.0234
06620 0 0 0 1.0000 —1.6571
0  —02701 0 0  —0.6685 1.0000

Thus, the system will be irredundant for any b such that Db < 0.
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5.7 Discussion

For the system of linear constraints Ax < b, two methods have been presented to
determine the set of all values of b for which the system is irredundant. Also a
third promising direction has been described. Currently, the first method works for

bounded systems only. The second method works for unbounded systems too.
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Chapter 6

Maintainability of Halfspace Systems

6.1 Introduction

In this chapter a linear programming-based test for the maintainability of halfspace
systems will be developed. A test for maintainability developed for slack-descriptor
systems in regular form will also work for halfspace systems. The complexity of
such a test will be compared with the linear programming-based test.

An algorithm for maintaining a halfspace system in a static tube will be pre-
sented. An implementation of this algorithm that uses linear programming dual-
ity will be shown. This same algorithm can also be used for maintaining a slack-
descriptor system in regular form in a static tube. An implementation of this algo-

rithm will be shown. The two implementations will be compared for complexity.

6.2 Test for Maintainability

In Expression (3.7), it was seen that the Reach set from the point x} under the

control uj will be inside Tube(T, t) if

[t]kz max [T]kxh k:]”]
Reach(x,ug)
that is, if
th> max [Tha, k=1,....]. 6.1)

 Exq <Fx{+Bul
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The linear programming primal problem

max  [Thx
Exq <Fxp+Bug
x1 free

has the dual [BT97, page 166]

min z'(Fx{ + Bup)
z>0
2T E=[The

This dual problem is the same as

max —z'(Fx§+ Bup)
z>0
2T E=[T]

Thus, Equation (6.1)) becomes (with k =1, ...

[t > max —z"(Fx§ + Bu})
2T E=[Th

)

(6.2)

The optimal solution of any linear programming problem occurs at a vertex of the

polyhedron that represents the feasible region of the problem. Thus, the solution of

the linear programming problem on the right hand side of Expression (6.2)) occurs

among the vertices of the following polyhedron:

> 0
- 6.3)
Z'E = [Tl
Let Z{14y> Ziapy -+ Zinu) De the vertices of the polyhedron of Expression (6.3).

Then the following system of inequalities is equivalent to Expression (6.2)):

2l (FxS + Bub) < [l

_ZlTZ(k)(FXE‘f’BuE) < [th

—21 00 (Fx§ + Bug)

AN
(=
=
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Then, Reach(x}, ul) C Tube(T, t) if the following system of inequalities holds true:

—Z]T]“)(Fx})—l—Bu})) < [t

—Z1Tnm(Fx}) +Buy) < [t
Zn(z)(FX5 +Bugy) < [t
zIn(z)(Fx}) +Bul) < [tl, (6.4)

—z1y5(Fxg +Bug) < [t

—z?n(j)(Fx})—l—Bu})) < [t].

By definition, a tube is maintainable if for every x, in the tube maintaining con-
trols can be found. Thus, a test for maintainability might need every x, in the tube
to be tested. Clearly, this is impossible. Theorem shows that IF MAINTAINING
CONTROLS EXIST FOR THE VERTICES OF THE TUBE, THEN MAINTAINING CONTROLS EX-
IST FOR EVERY POINT IN THE TUBE. Thus, a test for maintainability need look for the
existence of maintaining controls only for each vertex of the tube.

Let Txp < t and Tx; < t be the cross sections of the tube at timet =0and t = 1

respectively. Let the extreme points of Txo < t be x}, x3, ..., xJ.

Theorem 6.1 Assume that Tube(T, t) is bounded. If for each x}, 1 =1,...,L, there
exists a u§ such that Expression (6.4) holds true, then for any point x§ in Txo < t,

there exists a u such that Reach(x§,uy) C Tube(T, t).
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Proof: It needs to be shown that

—21Tn(2)(Fxg—|—Bug) < [tl, (6.5)

—zIn(j)(Fxg—kBug) < [t

Since Tube(T, t) is bounded, Txy < t is a polytope (that is, a convex bounded poly-

hedron). Any point x} in Tx, < t can be expressed as a convex combination of x},
0 0

i=1,...,L, as follows:
L L
xE=> Ax, > Ai=1, A >0. (6.6)
i=1 i=1

Multiplying each inequality in Expression (6.4) by A; and summing it over i =
1,...,L gives the following:
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L L

D {2zl (Fxg+ Bupi} < At
=1 i=1
L L
Z {—zl1»(Fxg + Bug)A} < Adlt],
i=1 i
TR :
> {—zlp(Fxe+BudAi} < > Alt,
=1 i=1
L . L
D {—zlip(Pxg+Buph} < At
i=1 i1
) . | .i. . . : |
D> {—zlpFs+Buph} < D At
= i

Simplification of the above expression gives Expression (6.5) where x{ is given by
Expression and uj is as follows:

L L
uf=> Aug, Y M=1, A>0.
i=1 i=1

Expression (/6.5]) thus obtained holds true because it is a non-negative combination

(in fact, a convex combination) of inequalities that hold true. O

6.2.1 Direct Approach to Testing for Maintainability

To test for maintainability of Tube(T,t), for each extreme point x{, (i = 1,...,L) of
Txo < t, solve Expression (6.4) for the existence of a u}. The tube is not maintain-
able if there does not exist a u} even for one x.
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The direct approach has the following computational steps:
1. Form Expression (6.4]). This is done as follows:

(a) For k = 1,...,j enumerate the extreme points of the polyhedron of Ex-

pression (/6.3)). That is, solve j extreme-point enumeration problems.

(b) Enumerate the extreme points of Txy < t.

2. For i = 1,...,L solve the problem of determining an interior point of the
polyhedron of Expression (6.4)) to confirm the existence of u for the given

possibilities of x’s and z’s.

6.2.2 Complexity of Direct Approach

Extreme-point enumeration algorithms are not of polynomial complexity except in
certain special cases [Bre97].

Determining an interior point is a linear programming problem. In general,
a linear programming problem can be solved in time that is a polynomial in the
dimension of the problem [BT97]]. In our case, the dimension of the problem —
which is the dimension of u} — is p.

Thus, the complexity of the direct approach is determined by j + 1 non-

polynomial time computations plus L polynomial-time computations.

6.2.3 Using the Q Matrix to Test for Maintainability

As described in Chapter 3, to test for maintainability of Tube(T, t), for each extreme
point x§ (i =1,...,L) of Txy < t, solve the expression QBuy < t— QFx} for uo. The
tube is not maintainable if there does not exist a u, even for one x.

This approach has the following computational steps:
1. Determine Q as follows:

(a) Determine B — the set of all (x, 1) tuples for which Reach(xg, o) is

irredundant.
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(b) Choose an (x},u}) € B.

(c) For this tuple (x},u}), determine Reach(x},u}) (that is, evaluate Fx} +
Bu)).

(d) Fori=1,...,j, where j is the number of rows of T, note the constraints
of Reach(x}, 1)) that are active at the extreme point of Reach(x}, u}) at
which [T];x; is maximum.

By Lemma [T]; is a non-negative linear combination of the direction

vectors of these constraints.

(e) Then, the i-th row of Q will have the coefficients of this linear combi-
nation in those columns whose indices are the same as the indices of
the constraints that were active at this particular extreme point. In the

remaining places of the i-th row of Q, there will be zeros.

2. Test whether Tube(T, t) is maintainable as follows:

(a) Enumerate the extreme points x}, 1 =1,..., L, of Tube(T, t).
(b) Fori=1,...,L determine an interior point u} of the polyhedron QBu, <
t — QFx,.

6.2.4 Complexity of the Q-Matrix Approach

Step mainly involves m extreme point enumeration problems if we use the
method in Appendix

Step [1blis a linear programming problem.

Step [1¢ involves two matrix multiplication operations and one vector addition op-
eration. The complexity of this step can be ignored.

Step |Ld| mainly involves j linear programming maximization problems.

Step [Lels complexity can be ignored.

Step [2alinvolves 1 extreme point enumeration problem.

Step [2b|is a linear programming problem.
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Thus, the Q matrix approach involves a total of m+1 extreme point enumeration
problems (non-polynomial time) and j + 1 linear programming problems (polyno-

mial time).

6.2.5 Comparison of the Two Approaches to Test for Maintainability

In practice, it is expected that m ~ j (the number of constraints defining the Reach
sets may be approximately equal to the number of constraints defining the Tube).
So, the number of extreme point enumeration problems solved by both approaches
is approximately the same. Since L may usually be much greater than j (the number
of extreme points of a bounded polyhedron are usually greater than the number of
constraints defining it), the Q matrix approach may involve fewer linear program-
ming problems.

For those halfspace systems in which the intersection of B with A (the set of
allowable states and admissible controls) is “sufficiently” large, a matrix Q deter-
mined for one irredundant Reach(x, uo) set will work for most other Reach sets of
this system. Thus, it can be assumed that Q is invariant for most values of the pair
(x0, Uo).

The disadvantage of the Q matrix approach is that, since it depends upon the
invariance of Q, if Q is not invariant, this approach may decide that a Reach(xo, uo)
set does not lie inside the Tube even when Reach(xop,uy) C Tube (this idea is
explained in Section[4.7)). Thus, this approach may label a tube as not maintainable
even when it is maintainable. However, it will label a tube as maintainable only if
it is indeed maintainable.

In contrast, the LP-based approach labels a tube as maintainable if and only if it
is indeed maintainable.

6.3 Maintaining the halfspace System in the Tube

Consider the algorithm of Section for maintaining the system’s states inside
the tube. This algorithm assumes that
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1. Sensing is done in every period.

2. Sensing is accurate and hence point-valued (as opposed to set-valued).

6.3.1 Maintaining Algorithm

INPUT : The pairs (x},u}), (x3,13), ..., (x5,u5), each of which represents a vertex

of Txo < t and a maintaining control for this vertex.

1. IF Reach(x},0) C Tube(T,t), THEN
No maintaining control needs to be applied.

ELSE

(a) Determine Aq,A,,...,Ar in the following convex combination (this is Ex-

pression (6.6)):
L L
= Axh, Y A=1, A >0.
=1 i1

(b) Determine a maintaining control for x§ as follows:

L
P _ i
uy = E UpAi.
i=1

2. Sense the halfspace system’s state. Let this state be x} (it is assumed that the

sensing is exact).

SET x§ < xV.
3. GOTO item[Il

In the maintaining algorithm, the two computations that chiefly determine the

complexity of the implementation are:
C1: Testing whether Reach(x§,0) C Tube(T, t).

C2: Determining a [Ay,A,, ..., A(] vector that satisfies Expression (6.6).
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6.3.2 Direct Implementation of Maintaining Algorithm

1. C1 can be implemented by testing if Expression (6.4) is satisfied by the given
x§ and uf = 0. This involves multiplying a (1) +n(2) +...+n(j)] x m matrix
by an m x 1 vector (Fx§) and then comparing the product with a (1) +n(2)+
...+n()] x 1 vector.

2. C2 can be set up as a linear programming problem as follows:

max OA1 +0A2+ ...+ 0AL
)M +xG A+ AXG AL =X
A A+ AL =1
A1 >0

6.3.3 Implementation of Maintaining Algorithm using Q

1. C1 can be implemented by testing if QFxy < t. This involves multiplying a
j x m matrix by an m x 1 vector (Fx§) and then comparing the product with

aj x 1 vector.

2. Q does not figure in the implementation of C2 and so is no help.

6.3.4 Comparison of the Two Implementations of the Maintaining

Algorithm

Asn(k) > 1, k = 1,...,j, the implementation of C1 involving Q has fewer arith-
metic and comparison operations to perform than the direct implementation.

Since Q was determined for one particular Reach set (specifically, an irredun-
dant Reach set), QFx§ may turn out to be not less than or equal to t even when
Reach(xy,0) € Tube(T, t). But, QFx} will be evaluated as less than or equal to t
only if Reach(x},0) € Tube(T, t) (this idea is explained in Section.

In contrast, in the direct implementation of C1, the pair (xg,0) will satisfy Ex-
pression (6.5) if and only if Reach(x§,0) € Tube(T, t).
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Chapter 7

Matrix Polytopes, Halfspace Systems,

Difference Inclusions

7.1 Introduction

As mentioned in Section the halfspace modeling framework was proposed as a
potential generalization and extension of a difference inclusion (DI) and discrete-
time interval systems (DTIS). DI [CDKO02| 1.S98,/APM89, Meg96, KS98]] (also known
as discrete inclusions) have the form x;,; = Axy + Byuy, where x, 1 € R", uyx €
RP, A € R B, € R™P. A can be any matrix in the convex hull of some
square matrices A', A% ... A9 and B, is any matrix in the convex hull of matrices
B',B2,...,B". In the case of a DTIS, A and B,, are interval matrices (meaning, each
element of A or B, lies in a closed interval of real numbers). Thus, a DTIS is a DI
with q = 2.

Convex polyhedra have two representations which are duals: implicit repre-
sentation (or halfspace representation) — as the intersection of a finite number
of halfspaces — and Minkowski representation — as a set of lines, rays, and ver-

tices. Implicit representation is as follows: D = {x € R™|Qx < s}, with Q € R™™,
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s € R™. The Minkowski representation is as follows:

;

x = LA+ Ru+ Vv, )
VA >0,
D=(xeR" p>0, 5
v >0,

vl =1

where L is the matrix containing the lines, R the matrix containing the rays, and V
the matrix containing the vertices of the polyhedron, and v and 1 are vectors with
appropriate dimensions, and 1 is a vector of 1’s.

Parametrized convex polyhedra (PCP) also have two representations [Tea02]:
implicit representation — as the intersection of a finite number of halfspaces —
and Minkowski representation — as a set of lines, rays, and vertices. The implicit

representation is as follows:
D(p) ={x € R"[Qx < Rp + s}

with Q,R € R™ ™", s € R™. The Minkowski representation is as follows:

/

x =LA+ Ru+ V(p)v,
VA >0,

D(p) = { x € R" >0,

v >0,

v =1

/

For bounded PCB the Minkowski representation is purely in terms of the

parametrized vertices and is as follows:

x = V(p)A,
D(p) =<x| VA>0,
ATL =1

Here, V(p) is a matrix containing the vertices of the polyhedron; it depends on

parameters p.
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It can be seen that the halfspace model is the implicit representaTtion (or half-
space representation) of a PCP in the independent variable [ xp ul ] . In contrast,
a DI with u, = 0 is a convex hull of parametrized points, and thus is a Minkowski
representation (or convex hull representation) of a parametrized polyhedron. An-
other difference between a DI and a halfspace model is that, while in forming a
DI the modeler needs to decide whether the uncertainty in the description of next
state is parametric or not (since a DI represents parametric uncertainty only), in
forming a halfspace model, the modeler may not need to distinguish between plant
uncertainty and uncertainty due to external disturbances or noise (since a halfspace
model neither assumes nor explicitly represents parametric uncertainty alone). This
may mean that the halfspace model can potentially simplify a modeler’s job.

If there exist a halfspace system and a DI that represent the same PCB then they
will be called duals of each other with respect to this particular PCP There may
or may not exist both a halfspace system and a DI that represent the same PCP
Determining whether this is possible is the subject of this chapter. This may give
key insights into both halfspace systems and DIs.

This chapter is organized as follows. Section explains the notation used
in this chapter. Section introduces the concept of MATRIX POLYHEDRA, that is
polyhedra in "™ ™, and extends some of the theory of polyhedra in A™ to polyhedra
in R™™, Section introduces the concept of the vertices of a matrix polyhedron
and presents some related results that will be used in the following section. This
section also shows how DIs are related to matrix polytopes. Section presents
conjectures on how halfspace and DI modeling frameworks are related. Section|7.5
summarizes the key results of the chapter and outlines the directions for future

research.

7.2 Matrix Polyhedra (Polyhedra in R"™*™)

The definitions and results in this section can be considered as extensions of the

results from conventional polyhedral theory to closed convex sets in SR™*™.
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Notation 7.1 conv(-) reads “convex hull of”. Let A =[a; a, ... a,] € RV

be a variable. Let F = [ f' 2 ... f*]e R™"and A'= | o} d} ... a;] €
RV M 1=1,...,p, be constants. The aj’s, a}’s, and f’’s are columns of A, Al, and F
respectively.

Definition 7.1 A MATRIX CONVEX HULL POLYTOPE (MCHP) is the following convex
hull:

A= Ziq:1 AiAi» \
?:1 Ai=1,
conv(A1, A% ... A 2! A AL >0,
AL € 4R,
| | given Al € RV g < oo.

Definition 7.2 A MATRIX HALFSPACE is the set

{A e RV |eA <, givene, f € R "™},
If A = [a; a ... a, ], where ays are columns of A, and if f =
[ f' 2 ... f" ], where the fs are columns of f, then a matrix halfspace can

be viewed as the halfspaces ea; < f', ea, < f2, ..., ea, < f™ stacked on top of each

other.

Definition 7.3 A MATRIX HALFSPACE POLYHEDRON (MHP) is a set obtained as the

intersection of matrix halfspaces as follows:

hal(E,F) £ {A € RV [EA <F, given E,F € R™™},

Definition 7.4 A system of the form EA < F (A € R™™, and E,F € R™™M) is said
to be bounded if there exists a constant K such that the absolute value of every

component of every A that satisfies EA < F is less than or equal to K.
Lemma 7.1 An MHP is a convex set.

Proof: Suppose that A' and A? satisfy eA < f of Definition [7.2] So, eA! < f and
eA? < f.Let A € [0,1]. Then, e(AA" + (1 —A)A2) < Af + (1 — A)f = f, which proves
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that AA" 4+ (1 — A)A? also satisfies eA < f. So, eA < f is a convex set. An MHP is
the intersection of convex sets such as eA < f. The intersection of convex sets is
convex [BT97, page 44]. So, an MHP is convex. a

Lemma 7.2 The system EA < F is bounded if the auxiliary system {rank(E) =
n:E'z = 0;z > 0} is feasible.

Proof: The condition EA < F is equivalent to the set of conditions Ea; < fI, ...,
Ea,, < f™. The proof follows by applying to each of these n conditions the result of
Section 3.2} 0

In this chapter, unless otherwise stated, it will be assumed that hal(E,F) is
bounded.

The concept of a MCHP exists in the theory of difference and differential inclu-
sions, even though the term MCHP may not exist. However, to the knowledge of

this author, the concepts of matrix halfspace and MHP do not exist.
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7.2.1 Relationship between conv(A' A% ... A9) and hal(E,F)

The convex hull of A', A2, ..., A9 can be written as follows:

conv(A' A% ... A9)

p

q _ iq:1 Ai=1,
— ZAiAl AL >0,
=1 A € R
\
Z?:] )\i: 1)
- [ BIRDT:t B I Aiﬂ;] AL >0,
AL €R
( ar =Y & Aak
1= Zi=1 Mt
an = qﬁ }\iaiv
= qla an | Pl (7.1)
i=1 Av=1,
Ai 2 O)
ALER
( ay € conv (aj,...,ay),
C <la; ... an| (7.2)
a, € conv(al,...,ad)
\

It is known, from the theory of polyhedra, that a bounded polyhedron has two
equivalent representations: as a convex hull of a set of points and as the intersection

of a finite number of halfspaces as follows:
{aj|a; € conv (aj],...,af‘)} ={aj|Pg; <P, given B, P}, j=1,... n

Hence, the set on the right hand side of Expression ([7.2) equals the following set:

[a; ... all| ...... , given E' ... E™M f L T
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E1C1]<'f1
C <lay oo an I .o , given E',... EMfl .. 8 (7.3)
E"a, < ™
Remark 7.1 The condition E' = E? = ... = E™ = E gives
a; € conv(aj,...,ay),
{AIEA<F}=<la; ... an] (7.4)
a, € conv (a},,...,ad)
and Equation (7.3) becomes:
cov(AL A% LAY C{la e[l o IS 0E

that is,

conv(A', A% ... A9 C{A[EA < F} 2 hal(E, F)

7.2.2 Fromconv(A', A% ... A9 to hal(E,F)

Theorem 7.1 For any given A', A%, ..., A9 ¢ R™", there exist E, F € R™™ such
that

ar € conv (ai,...,af),
[a; ... an] = hal(E,F)

a, € conv(al,...,ad)
Proof: The matrices E and F can be constructed through the following steps:

1. Use a FACET-ENUMERATION algorithm [Fuk99] to obtain the subsystems
E'ay < f', ..., EMa, < ™, respectively corresponding to conv (al,...,a}),

.., conv(al,...,ad).
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2. Determine all the row vectors that are in the set

(), €, U{(ET, [, U UET [E, )

but not in the set

(E],L[E, - Y0 {[BY, L [E3,, . k0. ndiE™), B, )

where [E']. follows Notation Let these row vectors be e, e™, ..., e™ .
Here, the superscript " denotes that these row vectors are redundant in the
sense described in the next step.

3. Append a SUITABLE subset of the following constraint set to each of the sub-
systems E'a; < f', ..., EMa, < f™ (choose the subset such that the resulting
augmented subsystems all have the same number of rows such that this num-

ber is a minimum):

er] fr

eT2 fr
a; <

erk f7

Here f" is a scalar chosen such that the above constraint set is redundant for
(meaning, it does not change the solution set of) every one of the subsystems
Ela; < f', ..., E'a, < f™

The augmented subsystems constructed above are of the form Ea; < 19, ..., Ea, <

fne, Here, the superscript ¢ denotes that the vectors are augmented versions of f',

., f™. Thus, hal(E,F) = {A|[EA < F},where F = [ fl@ _ _ fna ], Hence the proof.
O
Remark 7.2 Note that some of the elements in {a},...,ai} (i=1,...,n) will be
the vertices of conv (a!, ..., a{). So, this last convex hull is equal to the convex hull

of its vertices, which, in turn, by the RESOLUTION THEOREM for polyhedra [BT97,
page 179], is uniquely equal to Ela; < f'. Thus, a unique E'a; < f' corresponds to

conv (al,...,af). However, the matrices E and F are not unique.
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7.2.3 Complexity of conv(A', A%, ..., A9) to hal(E, F) Conversion

The complexity of the conversion from conv(A', A2 ... A9) to hal(E,F) as de-
scribed in the proof of Theorem is mainly determined by step 1 which involves
n facet-enumeration problems. Facet-enumeration algorithms are not of polyno-

mial complexity except in certain special cases [Bre97].

7.2.4 From hal(E,F) to conv(A' A% ... A9)

It can be shown that there exists a unique set of square matrices A', A2 ... A9 for
every hal(E,F) such that hal(E,F) = conv(A' A2 ... A9). This is the subject of

the next section.

7.3 Vertices of Matrix Polytopes

The present section describes some properties of the vertices of matrix polytopes. In
this chapter, the terms VERTEX and EXTREME POINT will be considered synonymous.

Definition 7.5 A VERTEX OF AN MHP EA < Fisapoint V= [V vZ ... vt]¢€

R™™ in MHP such that v! is a vertex of Ea; < ', ..., v*is a vertex of Ea,, < f™

The following lemma presents an interesting property of the vertex of an MHP

Lemma 7.3 A vertex V of an MHP EA < F satisfies the following condition: there
do not exist A4, A® € {A|JEA <F}anda A € (0,1) such that A® # V, A® £V, and
AAC+ (1 =ANAP =V,

Proof: Any vertex v' of the polyhedron Ea; < f' (i = 1...n), satisfies the property
[BT97]:
Aala? € {ai[Ea; < '} A€ (0,1),

such that

af #vhal #viAal + (1—A)ad = v,
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The proof then follows by letting A® = [ al ...ad }, Ab = [ ab ...ab ], A=
[a; ...an L, V=[v" ...v*],F=[f" .. .f"], and by observing that if there do
not exist Aq, Ay, ..., Ay — possibly all different — to satisfy any given property, then

there cannot exist one single A to satisfy that same property. O

7.3.1 A Listing of Vertices

Given that
{a}, ad ! a® } is the set of all the different vertices of Ea; < f',
{a}, ad agz} is the set of all the different vertices of Ea, < f?,
{alH, cad T g } is the set of all the different vertices of Ea,_; < f?,
{a),...,ad T ad} is the set of all the different vertices of Ea, < f",

the MHP can be expressed as follows:

[A[EA<F} = {[m an]}Emgf],...,Eangf“}
a; € conv (a,af,...,af"),
= <la ... a]
a, € conv (a),a?,...,ad")
A VERTEX of EA < F is an n-tuple [v' v2 ... v*] such that
1 1 42 ai—1 _q 2 1 .2 Q-1 Q@
v € {a],a1,...,a1 , 0 }, ve € {az,az,...,a2 , a5 }, ..., VY€
{al,aZ,... a9 " ad}. The vertices of EA < F are obtained as follows:
| 1 1 1 1 2 1 1
a; ... Qg Qn |, a; ... Quq G |, - a; ... a,; apir |,
1 2 1 1 2 2 1 2 q
aj ... a4, a |, a] ... az, a |, ..., |a ... a2,y a¥ |,
1 a1 1 a1 2 1 dn-1
a; ... a 'y an}, [a1 ceoany an}, RPN [a] cooayt oair
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Thus, there are a total of ¢ = q7 X g2 X ... X g, different vertices of EA < F. Let
these be denoted A', A2, ..., Ad.

7.3.2 Example 1

Assume that conv; is as follows:

(Lo olle o1t )
convy; = conv , , (7.5)
00 0 0 1 -1

The polytopes corresponding to
1 0
, , and

Lo 1)

are shown respectively in figures[7.1]and [7.2] (the darkly shaded areas). The sets of

vertices of these convex hulls are respectively:

(HEHE R (N R

The polytopes E'a; < f' (with a; = [x; y1]") and E?a; < 2 (with a; = [x; y2l")

conv(a},af, ad) = conv(

conv(a}, a3, a3) = conv(

-
_O_
-
_O_

that correspond to these sets of vertices are respectively

x1 + yr <1 —x2 — Yz <
—X1 < 0 and X2 <
-y =0 Y2 <

To obtain the MHP corresponding to these systems, the following systems of
constraints (shown using dashed lines in the figures), which are redundant with
respect to E'a; < f! and to E%a, < f? respectively, can be appended to each of the

systems:

1 X2 + Y2
1 and —X2

X1 — WU

X1

VAN VAN VAN
IAIA TN

Y1 1 — Y2
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Figure 7.1: cony(

aq,

1

ample of Subsection

a?, a3) for the ex-

Figure 7.2: cony(

a,,

1, a3, a3) for the ex-

ample of Subsection

Then, the MHP EA < F is as follows:

Listed
o o]
_OO_
1o
_OO_
o 0]
10

1T 1
-1 0
0 —1
-1 -1
1T 0
0 1

X1
Ui

0 —1
0 0
1 1]
0 0
0 —1]
10|

X2

Y2

|

1
0
0
1
1
1

o O = = =

below are all the vertices of this MHP:
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7.3.3 Example 2

Suppose that EA < F is an MHP in R?*?, that is, that A = [ a; a, ] € R>2

Suppose that the vertices of Ea; < f! are four in number:

{ai, ai, i, af}

Suppose that the vertices of Ea, < f? are three in number:

{a a3, a3}

Thus, the vertices of the MHP are as follows:

Let these be denoted A', A2, ..., A'2. It will be shown that

ol al
ai a;
aj a;
al @

al a3
a? a3
a3 a3
al a3

conv(A' A% ... A1) =

al a3 |,
a? a3 |,
a3 a3 |,
al a3

1

{[ ar azl|as Econv(a1,...,a‘1‘),aZEcom}(a},...,ai)}

That is, it will be shown that

g

al al

2 4]
ay a,

1
a;

N
—

a; a,

a1+ a3pa+ aips+ atfs alys+adya+ adys |

A+ | d]
A+ | af
A7+ | a3
Ao+ | aj

as [ A2+ | al a3 | A+

a3 [As+ | af a3 | Aet+

as |As+ | a a3 | Aot

aj | A+ [ af agp\u
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Z?B)':L
Z?Yi:])
BiZO»
v; > 0.




That is, it will be shown that

aj(Ar + A2+ A3)+
af(As + As + Ag)+
a3(A7 + As + o)+
at(Aqo 4+ A1+ Arz)

ajpr+aipz+aifs+aifs alyr +ajyz+ ajys ]

Thus, it will be shown that, for

12
}:mzuhza
i=1

and

4

1

al(Ar 4 Ag+ A7+ Aqo)+
G%U\Z + A5+ Ag+ A1)+
a3(As+Ag+ Ao+ Ar2)

3
ZB)':1>ZYK:]>B]' ZO)YkZOa
1

the following system of equations holds true:

MAA A =
A+ As+Ag =
A7+ Ag+ Ao
Ao+ A1+ Az
MAA+A+ Ao
A+ As+Ag+ A =
A3+ A+ Ao+ Az =

B1
B2
Ps
Pa

Y2
Y3
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A >0

YiBi=1,
Sive=1,
B; >0,
Y >0

(7.7)

(7.8)

(7.9)



The system of Equation (7.9) can be written as follows:

111000000O0O0O0DO0
00011 1T0O0O0O0O0O
000000111000
0 00000O0O0O0OTT1
100100100100
O1T0010010O0T1O0
| 00T 00100100

One way of viewing what needs to be proved is shown below:
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B2
B3
Pa
Y1
Y2
Y3

(7.10)



—_— O O O O O — O — O O O
I

O O —m O O O — O O
I

— O O O O — O O — O O O
I

-— O O

O —m O O O O — O — O
1L

_— O O O — O O O = O O -
1L

-_ O O O O O = = O O
1L

conv

?

4
j=1 BJ:]’
3
k:fYk—L
B; >0,
Y >0

B

B2
B3
Pa

Y2

Y3 |

\

This can be re-written as follows:
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€ conv

Y1

Y2

Y3

Y1

Y2

Y3

4l
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— O O O O O — O — O O O O — O O —m O O O — O O O — O O
1L I 1L

— O O O O — O O — O O O —m O O O m O O —m O O O O — O = O
1L 1L 1L

—_— O O O — O O O — O O —m O O O O —m O m O O O O O = - O O
1L 1L 1L

— COmv

?
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1>

= conv Cq

- O O O O © —m O —w O O O O — O O — O O o —
-—*OOOO-—*OO-—*O"OO—*OOO—*OO—*O
—*OOO—*OOO—*O;)—*OOOO—*O—‘OO
—*OO—*OOOO—*O;OOOOO—*—*OOO

Thus, it needs to be proved that Cy = C;.

Note that, whereas the coefficients of the convex combination of

o O o =
o O = O
o = O O
— O O O

in any element of Cy may be different from the coefficients of the convex combina-
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in Cq, the coefficients of the convex combination of

1
c = O O O o o —
1
1
1
1
1
1
—_ O O O O O —= O

— O O O O O —= O
1
1

— O O O O O —= O
1

o = O O © O o —

o = O O O O o —

have to be the same as those of

- o 0o O 0 o o o =—
—Aooov—aooO_‘
—Aooov—looO_.
—Aooov—looO_.

Thus, it may seem that C; C Cy. However, in the following, it will be proved that
Cy = Co.

Step 1: Note that
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— — —
1l 1L
LA L}
(&) (@] (@]
1l 1L
o ™ 32 [a0)
- - -~ - N o
. . 0w W W
(&) (@] (@]
1l 1L -
: : Y
(@] (@] (&
IL 1L
> > > - = = -
£ c e -~ N =™ T
S s 5 0w W W
@] & Q
> >
e e
] o
8] @]

Cy
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That is,

11
B
A+
d31
Ci= d4
1
0| M+
L L 0
where,
d11 d12 513
521 522 023
631 | | 832 || 833
_541 | _542_ _543_

are the same as those of

o11 012 013
021 022 023
531 | | 832 || 833
da1 d42 043

d12

5
2+

d32

d42

1 | A2+

€ conv

o O O© =

d13
d23
d33

043

0

A3

A3

o O = O

Zf:]Ai:L
A >0

o] [o]

0 0

1110

0 1

since the &’s can be random, the following can be written
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(]| [ B1] K 812
B2 B2 c conv 621 ) l 022 ’

B3 BE! 031 632

G = Ba L Ba | 0a1 | [ 042 |

Y1 Y1 1 0 0
Y2 Y2 € conv O(,[T1T1],]0
RENINREN 0] |0 ]
([ 81 ]| [ 8] (1] [o] [o
P2 b € conv 0 , 1 , ¥
B3 BE! 0 0 1
= Ba || LB L0 LO0] L0
Y1 Y1 1 0 0
Y2 Y2 € conv O, 11|,]0
CLYs ] [ V3] (0] [ O] |

d13
d23
d33

d43

—_ O O O

7.3.4 Relationship between a Bounded MHP and Convex Hull of its

Vertices

Theorem 7.2 A nonempty and bounded MHP is the convex hull of its vertices.

Proof: It needs to be shown that
{A[EA <FA e RV} =conv(AT A% ... AY),

that is, it needs to be shown that

a; € conv (ai,...,ay"),

conv(AVAZ .. A =< [a; ... a,] .
a, € conv (a]

ny *

., adn)

(7.11)

(7.12)

where the MHP {A |[EA < F, A € R™"} and the vertices A', A%,..., A9 have been

defined in Section
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The proof is simply a generalization of the proof given in Example 2.
Expression (7.12)), with some manipulation similar to that done in Example 2,

gives Equation (7.13) which is a generalization of Equation (7.10).
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(€1°2)
C g ]

u
4
u

L

4
b

4
4

4
L

b9

L : L
up .. .
L o L
b

L7771
—
Up xx €b

Up x X €bx b

Lb
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Note that the pattern of the 1’s in the matrix in Equation ([7.13) is similar to that
in Equation (7.10). The method employed in Step 1 and Step 2 in Example 2 can

be applied recursively to this general matrix to arrive at the proof. a

7.3.5 Complexity of hal(E, F) to conv(A' A% ... A9) conversion

The conversion from hal(E, F) to conv(A' A2, ..., A9) has the following main com-

putational steps:

1. Enumeration of the vertices of the subsystems Ea; < f', Ea, < 2, ..., Ea, <
™.

2. Forming the matrices A', A2 ... A9 from the sets of vertices determined in
step 1.

The complexity of the conversion is determined chiefly by step 1 which involves
n vertex-enumeration problems. Vertex-enumeration algorithms are not of polyno-

mial complexity except in certain special cases [Bre97].

7.3.6 Obtaining DI from matrix polytopes

Lemma 7.4 Consider the set obtained by multiplying every element of
conv(A' A2 ... A9 by a vector x| € R™

conv(A' A% .. AY) x x| =

{ Ax,

This set is a polytope.

q q
AzZ?\iAi,Z?\i:L?\izO,?\ieiﬁ, given At € R™™ q <oo}

i=1 i=1

Proof: We have:

{AX]L

q
{ Z AiAiXL
i=1

q q
A=) NALY M=1,A2>0,A €R, given A' € RV, q <oo} =

i=1 i=1

q
Z?\izhmzo,mem, given Al € R™™ q <oo}.

i=1
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Thus, conv(A',A? ..., A") x x| is the same as conv(A'x], A%}, ... A9%/) which

is a polytope. O

7.4 Future research — relationship between halfspace
and DI

It is hoped that the following results will proved in at least some special cases:

Conjecture 7.1 For a bounded halfspace system Ex;,,; < Fx,, there exist square

matrices A', AZ, ..., A9, where q < oo, such that
1. The following equation (Equation (7.11)) holds:
{A|EA<FA RV} =conv(AT A% ... A9

2. Over the set of all x, for which Ex;,; < Fxy is feasible, the DI x;,1 €

conv(A',A?% ... A9) x xi and the halfspace model Ex,; < Fx, are equiv-
alent.
Conjecture 7.2 For any difference inclusion x,,1 = Axy, where A €
conv(Al A% ... A9), g < oo, there exists a bounded halfspace model Ex;,; < Fxy,
such that

1. The following equation (Equation (7.4)) holds:

a; € conv (a},...,ay),
[m an} — (A[EA <F)

a, € conv(al,...,ad)
2. Over the set of all x; for which Ex, 1 < Fxy is feasible,

{Xslxier € conv(Alx, A%y, ..o, A%} C (i lExier < Fad

Remark 7.3 The problem of determining the set of all values for which the halfs-

pace system Exy 1 < Fxy is feasible can be solved using the method described in
Appendix [C|
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7.5 Discussion

In the present chapter, the relationship between the halfspace system Ex; ;1 < Fxy
(E,F € R™™ and xy, X1 € R™) and the difference inclusion (DI) x,1 = Axy,
A € conv(A' A% ... A9), has been explored. In this context, the following results

have been developed:

1. The concept of a matrix polytope — EA < F, A € SR™*™ — has been motivated

and some results from the theory of polyhedra have been extended to matrix

polytopes.

2. It has been shown that difference inclusions can be obtained by multiplying a

matrix polytope by x.

Future work will investigate if a halfspace system can be obtained by multiplying
in some manner a matrix halfspace polytope by xy. Also, the possibility of approxi-
mating a halfspace system through a difference inclusion will be investigated. The
error in such approximation will need to be quantified. It is hoped that the idea of
matrix polytopes developed in the present chapter will prove useful in these inves-

tigations.
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Chapter 8
Conclusion

The main contributions of the present dissertation were as follows:

1. The linear inequality origins of Slack-descriptor systems have been recalled

under the name of Halfspace systems.

2. Techniques from the theory of convex polyhedra and linear programming have
been used to develop a rudimentary control theory for halfspace systems.
Specifically, the problem of maintainability (which is the same as REACHA-
BILITY OF A TARGET TUBE) has been solved.

3. An example of modeling system dynamics in the Halfspace framework has

been presented.

4. The problem of irredundancy of linear inequality constraints has been studied.
The possibility of applying Minkowski’s theorem for an equilibrated system of
vectors to this problem has been proposed. In private communication with Dr.
Carl Lee of the Department of Mathematics at the University of Kentucky, it
was understood that this Minkowski direction of solving the problem may be

of interest to the polytope community.

5. The study of irredundancy has given greater insight into the structure of Half-

space systems.

6. The possibility that Halfspace systems may be related to Difference Inclusions

has been mooted.
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7. The concept of matrix polytopes has been introduced.

8. Demonstrating a duality between Halfspace systems and Difference Inclu-
sions, for at least a class of systems, may potentially help solve the prob-
lem of enumerating the vertices of the parametrized polyhedron Ax < By
(A,B € B™™ and x,y € R™). This problem is described in [LW97].

Here are directions for future research:

1. In this dissertation, the concept of reachability of a target tube was developed
only for static target tubes. This concept needs to be extended to dynamic

target tubes.

2. Relationship between Halfspace systems and Difference Inclusions needs to
be studied. Existence of such a relationship may enable the application of the

Difference Inclusion control theory to Halfspace systems.
3. More examples of systems modeled by halfspace models need to be found.

4. While the method described in [Lee02] and presented in Appendix [B| to de-
termine the set of all b’s for which Ax < b is irredundant is easy to under-
stand and implement, its complexity is not polynomial. Thus, there is value in
searching for other computationally less expensive methods. The techniques

used in those new methods could themselves be of interest.

5. Application of ideal systems (described in Appendix[A) in the study of redun-

dancy needs to be further explored.

6. Application of Minkowski’s Theorem for an equilibrated system of vectors
needs to be further explored. This particular application may be of interest to

the polytope community too.
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Appendix A

Using Ideal Systems to Solve the

Problem of Irredundancy

The motivation for this chapter comes from the discussion in Subsection on
Page The concept of an ideal system is explained in the following paragraphs.

Lemma A.1 In Expression let the system S(b*) be such that all its component
hyperplanes are tangent to a sphere and the feasible region of this system contains

this sphere. Then, every one of the planes forms a facet of the polyhedron S(b*®).

Proof: Suppose that some constraint a]x < b$ does not form a facet. This can
happen if

(a) there is another constraint a/x < bAf, such that bAf < bs; but the hyperplane
corresponding to such a constraint cannot be tangent to the sphere, it can only in-
tersect the sphere; or

(b) some surrounding constraints make the constraint in question redundant: pos-
sible if the locus of intersection of the surrounding constraints is at distance | < r
from the center of the sphere (r — radius), meaning that the halfspaces correspond-

ing to these surrounding constraints are not tangent to the sphere. a

The properties of S(b*) are expressed mathematically as follows:

Suppose that the sphere (x — xo)' (x —x.) = 12 (with center at x. and radius
) and a constraint of the form a'x < «, where a is known, are given. The value
of « needs to be determined so that the hyperplane is tangent to the sphere and

the halfspace contains the sphere. For this first the point of tangency of the plane
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with the sphere is determined — by finding the point on the sphere that is in the
direction of a. Then, this value is substituted into the equation of the plane. This
gives the value of a. Now, the point on the sphere in the direction of a is G + x..
Substituting this into the equation of the plane gives the value a = aT(‘—g‘r + Xc).

Thus, the constraint is a"™x < aT(rle + Xe).

Remark A.1 For a given b, S(b) of Expression (5.3) on Page will have all its
component hyperplanes tangent to a sphere (radius r > 0, center x.) and its feasible
region will contain the sphere if and only if S(b) can be transformed into the form:

alx < af(Er4x),T<i<m

lai

S(b*) will be called an IDEAL SYSTEM and the corresponding polytope — an
IDEAL POLYTOPE. Next, a method to determine an RDCS for each of the constraints
in S(b®) is developed. Of interest are only the indices of the elements of the RDCS.
For convenience, the origin is translated to the center of the ideal system (this is the
same as choosing x. = 0). Thus, the TRANSLATED IDEAL SYSTEM (TIS) corresponding
to the ideal system of Remark[A.T]is:

.
S(b') 2 { ’?;’x <r

1<i< m} (A.1)

In the following, lemmas through [A.4| and Theorem [A.T] describe the prop-
erties of, and help identify, the SRDCS of a constraint in an ideal system or in a
TIS.

In the following, the result of Lemma is applied to Expression (A.1).

Notation A.1 Letp=[r ... r]TeRMand1=[1 ... 1]T€R™ Let
iT iT yT vT

B ) et e O ST IA (- [ s SV s P
laj] [eiy lay| lad

be subsets of S(b**). The members of S, (b**) intersect at x™ = (A]) "5, and those
of S! (bts) —at x™ = (A”.")"p.

Lemma A.2 For S,,(b') to be an RDCS of the i-th constraint in the TIS of Expres-
sion (A.1), A,, must satisfy the following properties:
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(D A*1 ai > 0, and
(A e

Proof: By Theorem for S, (b'*) to be a candidate for an RDCS of the i-th

constraint, ‘a"‘ must be such that “?‘ € cone(A,), meaning that there must exist

A > 0 such that A, A = 2. This gives Property (1). Property (2) is obtained by
applying Lemma O

Lemma can be used to determine A,. However, a computationally less

expensive method is suggested by the following theorem.

Theorem A.1 Given that the constraints in S, (bﬁs) are such that:
i T : . .
(1) T IaHa\’]_1 -m, )%%

\al\ lai]” ’ Jad | \a |
(2) |[Anl #0, and
3 A:J%l > 0 (i.e., 3A > 0 such that A, A = &).

Then the n constraints in S, (b'*) constitute an RDCS of the i-th constraint.

lai

Proof: Consider the constraint sets S,,(b'**) and S/ (b"*). It is not necessary that
Sn(b%) N S (b's) = ). From condition (3) of the theorem it follows that I\ > 0
such that AyA = 2 W #0and IV > 0: AL =

of the theorem means that

ajay a{ay aja} ala¥
|ai|‘ai1‘ N |ai|‘a | "lagllad] T layl|a¥]

.
N> l(;?‘A’n. It needs to be shown

.
These n inequalities can be combined thus: %

that
T T
a; a; )
< Ly e, AT < AT
’ai’ | 1’

(the last inequality has been obtained by using condition (2) of the theorem and
applying the definition of x™ and x™). Postmultiplying the inequality — e IA > |A’

by A and N, gives the following comparison:

T T T T
a. a; a; a.

L An?\’ > 1 A’nN =1="TAA> —IA;?\.
lai lai lai lai]
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Thus, N’ = A + AA such that A, N = A A+ ALAN and

T T
AN =T+ A AN
|(li| ’Cli\

Now S A.AN > 0. Also, Al (A+AA) = @ This gives AN = A, '@ — A I

lai | la|

AN > 0? That is, is A’Tf1 \z?l > A? Substituting into the inequality %AnN\ >0

the expression for AA gives %A“A/n_1 4% > 1. This is true only if A/ "% > A,

meaning AA > 0, I.E., A’ > A. Hence the proof. O

Remark A.2 In Theorem only the information about the angle that any con-
straint makes with the i-th constraint was used. However, the information about
the angles that the constraints make with one another (contained in the matrices
ATA, and A’,"A’) must matter too. This is particularly important in the following
scenario: there exist n constraints which make the smallest angles with the i-th
constraint while surrounding it, and there exist 1 (1 < (m— 1) —n) more constraints
which make the same angles with the i-th constraint as some of those n. In such

a case, to determine the RDCSs, a method that directly computes the expression

T
i

(AY) - p could be applied. However, it may be less expensive to apply a method

lai

that uses a fact such as the following

. o o
f(ATAL) > f (A; A%) o g S

where the operation f(-) is computationally less expensive than the operation (-)~.

Identifying such an f(-) is still a topic of research.

Lemma that follows shows that in S(b**) if S,,(b**) is an RDCS of C;, then
none of the constraints from the set S(b®) \ {S,.(b™) U {C;}} is surrounded by
Sn(btis).

Notation A.2 (Please see notations[5.1] (on Page [43) and [A.1] (on Page [101)).

i i i i
a; Q1 4 Gy a

" |ajl laxal oyl lag] [oh
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Lemma A.3 In a TIS, assume that given are some C;, C; ¢ S,(b™) such that
=L € cone(A,). Then:

la;]? Ia\

(1) In S, (b"*) at least one constraint (say Ci) can be found that can be replaced by

C; giving the new set of n constraints Sk such that 3 € cone(Anj).
(2) Any Sy\k thus formed is such that

al 1 al .
o] A = (AY) e

Proof: Note that

U cone(An;k) = cone(A,).
k=1
So,
ai ai
il ¢ cone(An) (Vke{l,...,n}) & i ¢ cone(An).

This proves statement (1). Next, note that a;/|aj] = A,Aj, for some A; > 0. So,
Anj\k = An/\j: where /\j = [U] Uy ... Uk )\j Ukl ... Up—1 Up ] Here,
Uy, k = 1...m, is a unit vector with a 1 in the k-th position. Thus, to prove state-
ment (2), it needs to be shown that

T ol
a; —1

L (A e

lai

o (A1) "o, LE., that AT (AT) 7' 1 <AT1

(here the fact that A A = %, A; > 0 has been used). Note that Ay 1=

- | - . -
10 At 00 10 —3 00
A
0 1 A2 00 01 —32 00
=100 Ajk 0 0 =100 o 0 0
Ajn1) 10 0 S 10
i Ain 01| 0 = 01
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The above equality has been written based on [BT97, page 96].

_ N 3
(A — ﬁp\ik)
A e
(Aix—1) — %MJ
1y 1
Al
(i) — %MJ
)\'n
L (Ain— 7\’].—k7\ik) 1

Thus,

(/\ﬂ}\i)—r]l = )\11+---+}\i(k—1)+7\ik+7\i(k+l)+---+)\in

Aj1 Aj(k—1) 1 Aj(k+1) A
_Al —_)Al _"'_]—Al _Ai _]—Al _..._ﬂ 1
K Ajk K )\jk K Ajk k Ajk K )\)’k k
A 1
= M1 — 2 A+ —Ai
i Ao K+ e K

This last expression will not be greater than A/ if );\’Tj—j?\ik — ﬁ)‘ik > 0, that is, if
7\].T]1 > 1. Note that the column vectors of A,, are of unit magnitude and hence the
points represented by them lie on the surface of the hypersphere x'x < 1, x € ™
So, the set @ 2 {A; [AJ1 =1,A; >0} is a (n — 1)-dimensional polytope that lies
in this hypersphere on a hyperplane that cuts this hypersphere. Thus, the points
{AN AT <1, >0} are closer to the origin than points in ® and the points
{An?\j ‘AjT]l >1,A5 > 0} are farther from the origin than points in ®. The point
a;/|aj| is on the surface of the hypersphere. It is a point of the second kind. So, for
it A/1 > 1. Hence the proof. O

Thus far the possibility of the existence of more than one RDCS for each con-
straint in S(b) has been admitted. Lemma[A.4|that follows shows how all the RDCSs
of a constraint in S(b'*) are related to each other.

Lemma A.4 In S(b'), assume that S,(b'*) and S/ (b'*) are RDCSs of the i-th
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uz

Un

) h /‘ h

ug uq

constraint. Then,

aV al at
—5 Eaff( : e T‘) ﬂ{x|xTx=1,x€i¥{“}, k=1...n. (A.2)
|ay| |ajl [eky

Proof: (Note that the intersection on the right hand side of the above expression is
simply the circumcircle of three points in 3-D, and in higher dimensions — a “hyper-
circumcircle”.) As both S,,(b'*) and S/, (b'**) are RDCSs of the i-th constraint, it
follows that, for some A, \'(€ R™) > 0,

ol aT
LA LA,
|ai| ’ai’

ie, ATp = Np (A.3)

Let A, AF = a¥/[aY, A € R™, k = 1...n, and A = [A'...A"]. Then, it follows
that A, A = A/ . Substituting this last expression into Equation gives: ATp =
ATATp. This gives AT(1 — AT1) = 0. This means that 1'A' = 1,... 1TA™ = 1.
Expression follows from this last statement combined with the fact that the

points a¥/[aY|, ..., a¥/|aY| lie on the unit sphere. d

The affine hull of n points in n-dimensional space is the hyperplane that passes

simultaneously through these n points. Thus,

i i T 1
aff(ai‘,...,aTL): x|det || —0,xER" }. (A4)
] Jai AT 1

If S,.(b') is such that the only constraint in S(b**) surrounded by it is the i-

th constraint, and |A,| # 0, then is it an RDCS of the i-th constraint? Example 1
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answers this question in the negative.

Example 1 In the left hand figure, the vectors u; — usy and u; begin at the ori-
gin and have their ends on the unit sphere in R3. The set £; of constraints
corresponding to the set of vectors {u,u;, us}, as well as the set X, of con-
straints corresponding to the set {u, u;, 1y}, are such that the only constraint
surrounded by each of them is C; — the constraint corresponding to ;. Only
the first set is an RDCS. The second set does not satisfy Expression (A.2).

Example 2 This is with respect to Example 1. As X; is an RDCS of C;, no vec-
tor belonging to its parent system of constraints can be found in the shaded
region of left hand figure. This can be understood as follows. Assume for
contradiction that there was some vector us in the shaded region (right hand
figure). It can be shown, through an argument similar to that used for the
proof of statement (1) of Lemma that we can find at least one vector in
the set {u, u,, us} (in the figure it is u3) that can be replaced by us such that
u; € cone({uy,uz, us}t). Now, consider a hypothetical vector u;, that satisfies
Expression such that us € cone({u, uy, un}). The set of constraints cor-
responding to the set {u;,u,, uy} is an RDCS of C;. But by statement (2) of

Lemma[A.3]
—1 -1
wifuwrwus]’ 1< wl g upw]t L

This contradicts the fact that {u, u,, un} is an RDCS of C;. So, no vector can

be found in the shaded region.

It can be seen that a formal version of the argument presented in Example 2 can
be used as a proof for Theorem

Lemma and Theorem allow the determination of an RDCS for each of
the constraints in S(b**) for which there exists an RDCS. Lemma shows that if
S.(b') is an RDCS of the i-th constraint in S(b'), then this is the only constraint
in S(b**) surrounded by S, (b**). So, it follows that the i-th constraint in S(b°) is
the only constraint surrounded by S,,(b°). Thus, in S(b°), either S,,(b°) is an RDCS

107



of the i-th constraint, or it is not an RDCS of any constraint at all. Next, of interest
is the question whether S,,(b°) is necessarily an RDCS of the i-th constraint in S(b°)
given that S, is an RDCS of the i-th constraint in S(b®*). The possibilities to check
are:

Q1: If S,,(b%*) is an RDCS of the i-th constraint in S(b**), then is it possible that
Sn(b°) is not an RDCS of the i-th constraint in S(b°)?

Q2: If S,(b") is not an RDCS of the i-th constraint in S(b'*), then is it possible
that S,,(b°) is an RDCS of the i-th constraint in S(b°)?

A counter-example was given for these questions. Thus, it remains to be seen if

they may be answered in the affirmative for a class of systems.
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Appendix B

Second Method to Solve PR1 and PR2

Notation

PRI and PR2 are defined on Page

an a2 A1n by

a axp Qon b,
A - ) b =

Qm1 AQm2 - Amn bm

A.; is the (m — 1) x n matrix that is obtained by deleting a; (see Notation on

Page from A. by; is the (m — 1) x 1 vector that is obtained by deleting b; from
b. Thus,

ag ap - Qi b,
az a»p -+ dxn b,
Avi= | aia Qa2 o Qana |5 Pa= | b
Aiarntr Qa2 o0 QEtn bitn
L ami am2 o Omn | L bm i

The Problem

Given the system of constraints Ax < b, determine the set of all b for which this
system is irredundant.
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The Solution

The following solution was suggested by Carl Lee[Lee02]] and uses LP duality.

Step 1: The constraint a/x < b; is irredundant with respect to the system A\ix <
by; if and only if by < LP™. Thus, for the system Ax < b to be irredundant,

this condition must be satisfied fori=1,..., m.

Step 2: The linear programming primal problem

max al

A\iX S b\i

X

has the dual

min by
T u=a:
A\iy_al
y>0

So, the condition for irredundancy of Step 1 can be translated into the new
condition “b; should be strictly less than the minimum of b{iy over the system
ATy = ayy > 0.

Step 3: Enumerate the extreme points — say, yi, y3, ..., yl, — of the polyhedron

A{iy:ai
y > 0

Step 4: Then, for irredundancy, the following inequality must be true:
b < min{ by, ..., bl }

Step 5: This inequality is equivalent to the following system of inequalities:
b < by
by < b{iyé

by < byl

110



Step 6: From Step 5, it follows that the solution to PR2 is given by the following

system:
by < b{ﬂ'}
by < b{ﬂJ;
by < b{ﬂ;

b, < blLuj

by < b{zyg

by < b{zyiz

b < bl

m

b < blur

m

b < blul

The solution to PR 1 can be obtained by appending the condition b = By to the
above system of constraints.
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Appendix C

Determining the Values of b for which
Ax < b is Feasible

The Problem

Given the system of constraints Ax < b, determine the set of all b for which this

system is feasible (notation same as in Appendix [B).

The Solution

The solution is based on the method shown by Dr. Carl Lee[Lee02] to determine
the set of all b for which the system Ax < b is irredundant. Indeed, our solution is a

very slight modification of the solution that he gave for the problem of irredundancy.

Step 1: The constraint a]x < b; is feasible with respect to the system A\;x < by
if and only if by > L ‘{}m. Thus, for the system Ax < b to be feasible, this

condition must be satisfied for i =1, ..., m (notation same as in Appendix B)).

Step 2: The linear programming primal problem

min ax
A1 x<byi

has the dual (HERE IS THE DIFFERENCE BETWEEN THE IRREDUNDANCY AND THE
FEASIBILITY PROBLEMS)
T
max by

A\‘ly:ai
y<0
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So, the condition for feasibility of Step 1 can be translated into the new con-
dition “b; should be greater than or equal to the maximum of b{iy over the

system Ally = a;,y < 0”.

Step 3: Enumerate the extreme points — say, y}, y5, ..., y., — of the polyhedron

y <0

Step 4: Then, for feasibility, the following inequality must be true:
bi>min{ blyi, ..., blyl |}

Step 5: This inequality is equivalent to the following system of inequalities:

Ao
v

b{iyi]
by > b{iyiz

Ao
\Y

_
by,

Step 6: From Step 5, it follows that the solution to PR2 is given by the following
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system:

by > b{ﬂJ}
by > b{]U;
b > b{ﬂ;llq
b, > b{zU%
b, > b{zyﬁ
b, > b{zyiz
b > blyl
b > blyd
b > bluyl

The One-Dimensional Case

Consider the one-dimensional system (x € fR):

b } (C.1)
b>

We will determine the set of all [ b; b, ]T for which this system is FEASIBLE. Note

arx

IA A

arx

that this is the same as the set of all values of [ b; b, ]T for which this system is

IRREDUNDANT, as this is a one-dimensional system.
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Step 3 of Section [C|for this system is as follows. The extreme point of the system

ayy = o

y <0
is y = aj/a,. The extreme point of the system

ay = az

y <0

isy = az/a;. Note that, if the system of Equation (C.1)) is bounded, then a,/a; < 0.
So, it is not impossible to obtain a;/a; < 0.
Step 4 of Section |C| for this system is as follows.

a
by > —b,
az
a
b, > —by
aq

Since both the inequalities are equal, the set of all values of the vector [ b; b, ] for
which the system of Equation (C.1)) is feasible is given by the following inequality:

—bq + ﬂbz <0
az

This also gives us the set of all values of [ b; b, ]T for which this system is irre-

dundant.

Question

If we were to attempt to apply Carl Lee’s method for determining the set of all b for
which the system of constraints Ax < b is irredundant, as shown in Appendix
to the one-dimensional system presented in Equation (C.1)), we would arrive at the
following inequalities:

b; < max ax
a2x§b2
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and

b, < max ax
a; x<by

Applying linear programming duality to the above inequalities, we get the fol-
lowing:

bi< min b
'™ Gy=a Y
y>0

and

b; < min b]lJ
ary=az
y=>0

We note in these last pair of inequalities that the constraints y = a;/az, y > 0

(similarly y = a,/a;, y > 0) are infeasible if the system of Equation (C.1) should
be bounded, because for bounded systems a;/a; < 0.

Does this mean that the methods presented in Appendix Bl do not work when
Ax < b is one-dimensional? This question needs to be studied.
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Appendix D

MATLAB Program Listings for First
Method for Irredundancy

How to use the folder SCS

File Name : README. txt
Author : Ramprasad Potluri
e—mail : potluri@engr.uky.edu
Date : July—03—2002.

The folder SCS has the following m-files in it:

A.m

C.m

f D DB.m (originally f make D.m, but extended on July—29-2002)

f men.m

f refine.m

f scs_i.m

f subst.m

f xplain.m

&

f scs.m —— This file is a very slight modification of scs.m.
It is simply scs.m made into a function.
Created on August 06, 2002.

These files comprise the program to find the SSCSs, solve PR1 & PR2,
and refine this solution.

The user needs to run the files A.m and C.m first and f scs (.) next.

The files named "f ..." contain functions that will be called by
f scs.m.

Each of these files has more information about how and what it does.
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The file mcentemp.m is created by f scs_i.m.

If you delete mcntemp.m, then please ignore the result of the first
pass of f scs_i.m; its second pass onwards, f scs_i.m seems to work
fine. However, if you have a file mcntemp.m in this folder before
you start f scs(.), then f scs_i.m works fine.

The file Full scs.txt shows example of a 2—D system every one of
whose constraints was found to have SCSs. In my trial runs, this was

the only instance where all the constraints in a system had SCSs.

The user can also compare the results of scs.m with that of
carl lee .m.

I wish you an enjoyable experience using this program.

Date : July—29-2002.
The m—file f make D.m was extended and renamed as f D DB.m.

The m-file f D DB.m solves PR1 besides performing the tasks that
f make D.m performed.
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WBOOOBBB08888888806066088688888888080800888888888898898999999999999999996
%

% f scs.m : Implementation of sections 3.3 and 3.4 of the paper

% titled "Determining the Values of the Right—Hand Vector of an

% Irredundant System of Linear Inequalities"

% by Ramprasd Potluri and L.E.Holloway.

%

% INPUT : Matrices A and C which define the system Ax <= Cy.

%

% OUTPUT : The matrices rev_DB and rev_DB which define the solution

% spaces PR1 and PR2 as rev_DBxx < 0 and rev_Dxx < 0.

%

% USES : f men(.), f scs_i(.), f_explain(.), f D DB(.) ( this one
% is an extension of f make D(.) ), f _refine (.) ( in turn
% uses f subst (.) ).

%

% PRECONDITION : x is at least 2—D.

%

% Created on : June 29, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu

%
%00999068800998968800989988808998988880989896888889898888898986889989068889898888%6
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non—Windows 98 machines.

% This m-file was written for MATLAB v.4 Student Edition.

%
9%98080808089888080888888888988080888888888888888988888888888888888898888888888880

function [rev_D,rev. DB] = f scs(A,C)

Atran = A’;

% It is necessary to test for the boundedness of the system Ax <=
% b. For this, the function f bound(A) can be run.
% Note: f bound (.) uses cdd.exe.

0,

(64

% List the mCn ("m choose k") different combinations of size n
% from the set {1, 2, ..., m} using the function f mcn(m,n).

m = size (Atran,2);
n = size(Atran,1);

indices = f men(m,n);

% TO DO: Write a more compact code for f mcn(m,n).
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0,

(64

% For each constraint, obtain a matrix of the indices of SSCS,
% and a matrix containing the product vector(s) inv(An)xa i. The
% function [scs_inds,invAn_ai] = f scs_i(i,indices ,Atran) is used.

catalog = [];
SSCS _indices
invAn_ai_all

[1;
[1;

for i = 1:m,

[scs_inds ,invAn_ai] = f scs_i(i,indices,Atran);
if scs_inds ~= []
catalog = [catalog; i size(scs_inds,1)];
SSCS_indices = [SSCS_indices; scs_inds];
invAn_ai_all = [invAn_ai_all invAn_ai];

end

end

0,

catalog;

% The matrix ’catalog’ has two columns. In each row of catalog,
% the first column contains the index of a constraint that has
% SCSs, and the second column contains the number of SCSs of
% this constraint.

SSCS_indices;

% The matrix ’SSCS_indices ’ has n columns and number of rows equal
% to the sum of the elements in the second column of ’catalog’

% (that is, SSCS indices has as many rows as there are SCSs

% overall).

invAn_ai_all;
% The matrix ’invAn_ai_all > has n rows and number of columns equal
% to the number of rows in SSCS indices.

0,

(64

% Explain how the matrices catalog, SSCS_indices, and invAn_ai_all
% store the informaton about SSCSs.

% f xplain(catalog,SSCS indices, invAn_ai_all);

0,

(64

% Build the matrices D (which defines the solution space
% D«xb < 0 of PR2) and DB (which defines the solution space
% DBxy < O of PR1) for the systems Ax <=Db and Ax <= Cy
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%

respectively.

[D,DB] = f D DB(catalog,SSCS_indices,invAn_ai_all ,m,C);

%
%
%
%
%

0,

CHECK: The value of D given by this routine can be compared with

that given by Carl Lee’s method. It was found that they are equal.
As for the value of DB given by this routine, it should match the
value of DB obtained as D+xC (because, Dxb < 0, and Cxy = b,

imply DxCxy < 0). It does.

(64

%
%
%
%
%

In preparation for the next part (removing those SCSs that cannot
be RDCSs), merge the information in the matrices ’catalog ’ and
’SSCS indices ’ into one matrix 'SSCS inds’, and add one "flag
column" in the front of SSCS inds and two "block start & end
marking columns" at the end of SSCS_inds:

temp_col = [];

1

for j = 1:size(catalog,l),

col ones = ones(catalog(j,2),1);

temp = [catalog(j,1)*col ones, col onesx[l, l+catalog(j,2)—1] 1;
temp_col = [temp _col; temp ];

1 =1 + catalog(j,2);

end

SSCS_inds = [ones(size(SSCS_indices,1),1) SSCS_indices temp_col];
% This first column will serve as a "flag column" in the function
% f refine.

0,

% Refine the solution by removing those SCSs that cannot be RDCSs.
[rev_SSCS,rev_ D,rev. DB] = f refine (SSCS_inds,D,DB);

% CHECK: rev_DB and rev_DxC are equal.
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WBOOOBBB08888888806066088688888888080800888888888898898999999999999999996
%
% f D DB.m : Implementation of the function

% f D DB(catalog,SSCS indices,invAn_ai_all ,m,C).

%

% For an explanation of how the first 3 arguments of this
% function store the information, use the function

% f_xplain(catalog, SSCS_indices , invAn_ai_all).

%

% INPUT : m, C, and matrices catalog, SSCS indices, invAn _ai_all.
% These values are calculated by scs.m

%

% OUTPUT : The matrices D and DB which respectively

% define the solution spaces of PR2 and PRI.

%

% Created on : July 29, 2002 (Extension of f make D.m).

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
%080098988888898988888898988888898988880898989888888998888888988880889888888898986646
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non— Windows 98 machines.

%
%080098988888898988888898988888898988888899898888889988888989888808989888888898986846

function [D,DB] = f D DB(catalog,SSCS indices,invAn_ai_all ,m,C)

temp = zeros(size (SSCS_indices,1) ,m);
DB = [];

k =1;

for i = 1:size(catalog,1),

for j = k : k + catalog(i,2) — 1,
temp(j,catalog(i,1)) = 1;

temp(j ,SSCS_indices(j,:)) = — invAn_ai_all(:,j)’;
if size(C,1) > 0, % This if condition was added on Aug—14—2002.
DB(j,:) = C(catalog(i,1),:) — invAn_ai all(:,j) ' ...
C(SSCS _indices(j,:),:);
end
end
k = k + catalog(i,2);

end

D = temp;
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WBOOOBBB08888888806066088688888888080800888888888898898999999999999999996
%

% f make_D.m : Implementation of the function

% f make D(catalog,SSCS indices,invAn_ai_all.m).

%

% Function f make D(catalog,SSCS _indices, invAn_ai_all ,m).

% For an explanation of how the first 3 arguments of this
% function store the information, use the function
% f xplain(catalog,SSCS indices, invAn_ai_all).

% Input : The m and matrices catalog, SSCS_indices, invAn_ai_all.
% These values are calculated by scs.m

% Output : The matrix D which defines the solution space of PR2.

% Created on : June 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
WOOOBBB8666666666660666688888080000000008888998899999999999999999999996
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non— Windows 98 machines.

%
BOOOBBBB6666866666606888088888080000000000098988899999999999999999999996

function D = f make D(catalog,SSCS_indices,invAn_ai_all ,m)
temp = zeros(size (SSCS _indices,1) ,m);

k =1;

for i = 1:size(catalog,1),

for j = k : k + catalog(i,2) — 1,
temp(j,catalog(i,1)) = 1;

temp(j,SSCS_indices(j,:)) = — invAn_ai all(:,j)’;
end
k = k + catalog(i,2);

end

D = temp;
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WBOOOBBB08888888806066088688888888080800888888888898898999999999999999996
%
% f mcn.m : Implementation of the function f mcn(m,n) that lists

% the mCn ("m choose k") different combinations of size
% n from the set {1, 2, ..., m}.

%

% INPUT : m, n;

%

% OUTPUT : Matrix r of dimensions mCn x n. Each row of r shows one
% way of choosing n elements out of the list {1,2,...,m}.
%

% PRECONDITION : m >=n.

%

% Created on : June 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%

% TO DO : Write a more compact code for f mcn(m,n) that does not

% print a file.

%
WOOOBBB8666666666660666688888080000000008888998899999999999999999999996
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non— Windows 98 machines.

%
%08008089888888898988888889888888989888888898988888898888888988889889888888898988646
%

%D =[12...m];

%

% For a matrix such as D this function generates a file named

% mcntemp.m that contains commands of the type shown below.

% bb = [];

% x1 = 0;

% for x2 = x1 + 1 : mn+1,
% for x3 =x2 + 1 : mn+2,
%  for x4 =x3 + 1 : mn+3,

% for x(n+1) =xn + 1 : mn+n,
% bb = [ bb; x2 x3 ... x(n+1) J;
% end

9% e

% end

% end

%

% Here, [x2 x3 ... x(n+1)] is the n—tuple that represents the
% different combinations of size n.
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%
%80809809809898898808989898989898808888889898988988888889889898898888808808898898980

function r = f men(m,n)
space = [1;
fid = fopen(’mecntemp.m’, ’wt’);

fprintf(fid , '%s\n’, % mcntemp.m: file generated by f mcn.m’);

fprintf(fid , "%s\n’, ’ "),
fprintf(fid , "%s\n’, ’aa=[];’);
fprintf(fid, %s\n’, 'x1 = 0;’);
for t = 2:n+1,
templ = [space ’for x’...
num2str(t) > = x’ num2str(t—1) > + 1 : ’ num2str(m—n+t—1) ’,’];
space = [space ' ’];
fprintf(fid , '%s\n’, templ);
end
u = [1;
for t = 2 : n+1,
u=1_[u’x’ num2str(t) * ’ ];
end

u=1["["u’l"l;
temp2 = [space 'bb="u ’;’];
fprintf(fid , '%s\n’, temp2);

temp3 = [space ’aa = [aa; bb];’];
fprintf(fid , '%s\n’, temp3);

for t = 1:n,

temp4 = [space(:,1:size(space,2)—t) ’end’];
fprintf(fid , '%s\n’, temp4);

end

fclose (fid);

mentemp;

r = aa;
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WBOOOBBB08888888806066088688888888080800888888888898898999999999999999996
%

% f refine.m : Implementation of of the function

% f refine (SSCS _inds,D,DB).

%

% INPUT : The matrices 'D’, DB’ and ’SSCS _inds’ generated by

% f D DB(.).

%

% OUTPUT : Matrices rev_D, rev. DB, and rev_sscs ——— revised

% versions of the input matrices. Those SCSs that cannot
% be RDCSs are removed from D, DB and SSCS _inds and the
% result is rev_D, rev_DB, and rev_sscs.

%

% USES : f subst(.)

%

% Created on : July 1, 2002.

% Extended on : July — 29 — 2002 to include DB.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
WOOOBBB8666666666660666688888080000000008888998899999999999999999999996
%

% User does not need to modify anything beyond this point,

% unless maybe if he wishes to use this m—file on non— Windows 98
% machines or with a later (and less bugged) version of Matlab.
% For example, in MATIAB v.4 student edition, negation operator
% '~’ is not working OK. So, I wrote a longer piece of code (than
% if this operator were working OK) to work around this problem.

WO 88089889888988888988888988888988888988888888888888888888888888886
%
% EXPLANATION FOR THIS PROGRAM

%

% Here is an example matrix SSCS_inds.
%

% SSCS _inds =

%
%
%
%
%
%
%
%
%
%
%
%
% In this matrix, there are 3 "blocks" as shown below. Each block

L R O T R O o WL W N Y

4
4
4
4
7
7
7

10

10

10

NN~ANM~NGOWDNDMDN
Wi w
A NANRNWWLWWOWRRKR~R~N
UL U R RKRRK
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% corresponds to the SSCS of one constraint. The index of a

% constraint to which a block corresponds is the element in the
% third—but—last column. The first column is a "flag" column.

% SSCS inds is supplied to the function f refine (.) with the

% flag column set to 1’s. When the function determines that a

% particular SCS is not an RDCS, then, the flag before that SCS
% is set to 0. Each row of SSCS _inds corresponds to an SCS. The
% SCS—indices are situated in this matrix from the second to the
% fourth—but—last positions.

%

% Thus, in our example, Block 1 corresponds to Constraint # 1.

% The first row of SSCS_inds shows that [2,3] is the index set of
% one SCS of Constraint # 1. The last two columns in Block 1 show
% that the SSCS of Constraint # 1 occupies 1st through 4th rows
% of Block 1.

%

% The second row in Block 2 shows that [2,5] is the index

% set of one SCS of Constraint # 3, and that the SSCS of

% Constraint # 3 begins at row 5 and ends at row 7.

%

OU

% 1 2 3 1 1 4

% 1 2 5 1 1 4

% 1 3 4 1 1 4 BLOCK 1

% 1 4 5 1 1 4

0,

% 1 1 5 3 5 7

% 1 2 5 3 5 7 BLOCK 2

% 1 4 3 5 7

0,

% 1 1 2 4 8 10

% 1 2 3 4 8 10 BLOCK 3

% 1 2 5 4 8 10

0,

0/0

% The function f refine (.) takes the SCS—index set of a constraint
% and tests if this SCS is an RDCS. If it is not, then a 0 is

% placed in the first cell of the corresponding row.

%

% For example, f refine (.) takes up the index set [2,5] of

% Constraint # 1. With Row 2 of SSCS_inds as its reference row,
% f refine (.) then begins with the first row of Block 2

% and scrolls down SSCS _inds testing if there is another index set
% [2,5] in any of the rows. It finds one in Block 2. It sees that
% [2,5] is also the SCS of Constraint # 3. f refine (.) uses the
% function f subst(.) thus: [a,b] = f _subst([2,5],3) to obtain
% a = [2,3] and b = [3,5]. If there is a 1 in the first cell of its
% reference row, f refine (.) checks if a or b is present in the
% home block of the reference row, i.e., Block 1. Sure enough, a is
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% in Block 1. This means (according to the theory in our paper)

% that [2,5] is not an SCS of Constraint # 1. So, f _refine (.) sets
% the first element of its reference row to 0. Next, f refine(.)

% again uses f subst(.) thus: f subst([2,5],1) to obtain a = [] and
% b = [1,5]. f refine (.) then checks if [1,5] is in Block 2. Sure

% enough it is. So, f refine sets the first element of row 1 of

% Block 2 to O.

%

% Then, f refine (.) scrolls the blocks after Block 2 and finds [2,5]
% first in Block 3. f refine (.) uses f subst(.) thus:

% [a,b] = f subst([2,5],1). It obtains a = [] and b = [1,5].

% f refine (.) checks if a or b is present in Block 3. Neither is.

% So, the 1 in the first cell of the row in which [2,5] was in

% Block 3 remains. f refine (.) also wants to use f subst([2,5],4)

% and test if [2,5] from Block 1 can be marked with a 0 in the first
% cell. But, it does not test because, that cell already has a O.

% Thus, f refine has reached the end of the table in its search with
% ([2,5],1) from Block 1.

%

% Now, f refine (.) repeats this operation with ([3,4],1)from Block 1.
% Now, Row 3 of SSCS inds is the reference row.

%

% And so on.

%

% f refine (.) does not search for the occurence of [3,4] in Block 1
% because, according to how we constructed SSCS inds, not more than
% one instance of [3,4] can exist in any block.

%

% f refine (.) searches in the top—to—bottom direction only and not
% backwards. Because of this rule, it picks up an SCS (to proceed

% to search from that position) only in the first to

% last—but—one blocks of SSCS inds. Thus, when f refine has finished
% the above procedure for the last element of the last—but—one block,
% then f refine stops and returns control to the calling program.

%

WOV 9988998898808988998889888898888988989889888898888988989889888898808896899646

function [rev_sscs ,rev._ D,rev DB] = f refine (SSCS_inds,D,DB)

rows = size (SSCS_inds,1);
cols size (SSCS _inds,2);

n = size (SSCS_inds(1,2:cols —3),2);
% n is the column size of each SCS.

k2 = SSCS_inds(rows, cols —1);
% k2 is the number of the row where begins the last block.
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1 =1;
% | stores the pointer to the reference row.

while 1 < k2

temp = SSCS_inds(l,2:n+1);
% temp stores the SCS—index set from the reference row.

k3 = SSCS inds(l,cols) + 1;
% k3 is used to point to the beginning of the next block.

while k3 <= rows
% This condition tests for end of SSCS_inds matrix.

if norm( temp — SSCS inds(k3,2:n+1)) > 0

% This condition is a substitute for the test
% "if SSCS_inds(k3,2:n+1) ~=temp", as in my copy of Matlab,
% the ~ operator is not working correctly.

% Do nothing.

else
% Meaning: "if SSCS_inds(k3,2:n+1) == temp"

if SSCS_ inds(1l,1) ==1

[a,b] = f subst( temp, SSCS_inds(k3,n+2) );

for k4 = [ SSCS _inds(l,cols —1) : 1 -1 , 1+1 : SSCS_inds(l,cols) 1,
if (SSCS_ inds(k4,2:n+1) == a)|(SSCS_inds(k4,2:n+1) == b)

SSCS_inds(1,1) = 0;
k4 = SSCS_inds(l,cols)+1; % Provides exit from the FOR loop.

end % for the IF loop
end % for the FOR loop
end % for the IF loop

if SSCS_inds(k3,1) == 1
[a,b] = f subst( SSCS inds(k3,2:n+1), SSCS _inds(l,n+2) );
for k5 = [ SSCS_inds(k3,cols —1) : k3—1 , k3+1 :SSCS_inds(k3, cols) 1,

if (SSCS_ inds(k5,2:n+1) == a)|(SSCS_inds(k5,2:n+1) == b)

SSCS_inds(k3,1) = 0;
k5 = SSCS_inds(k3, cols)+1; % Provides exit from the FOR loop.

end % for the IF loop

end % for the FOR loop
end % for the IF loop
end % for the big IF — ELSE loop
k3 = k3 + 1;

end % for the WHILE k3 < rows loop
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1 =1+ 1;
end % end of the WHILE | < k2 loop

% Now, with the information we have in the first column of the
% matrix SSCS_inds, we will revise the matrix D. This amounts to
% removing those rows of D which correspond to rows of SSCS_inds
% with 0’s for their first elements.

for i = 1:rows,
if SSCS inds(i,1) ==
D(i,:) = [1;

if size(DB,1)>0% This if condition was added on Aug—14—2002.
DB(i,:) = []1; % This line was added on July — 29 — 2002.
end
end
end

rev_sscs = SSCS inds(:,1:n+2);

rev.D = D;
rev. DB = DB; % This line was added on July — 29 — 2002.
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%
% f scs_i.m : Implementation of the function

% f scs_i(i,indices ,Atran).

%

% INPUT : The index i, the mCn x n matrix of indices that lists all
% the n—tuples of different indices from the index set of
% the matrix Atran, and the matrix Atran;

%

% OUTPUT : For each constraint, a matrix of the indices of SSCS and,
% a matrix containing the product vector(s) inv(An)xa_ i

% are output.

%

% Created on : June 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
9%9980808080898880808898888088898888888888888888889888888888888888888988808888888880
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non— Windows 98 machines.

%
%00999068800998968800989988808998988880989896888889898888898986889989068889898888%6

function [scs_ind,invAn _ai] = f scs_i(i,indices, Atran)

lambda = [];
temp = [];

for j

1 : size(indices ,1),
tf =

(_i = indices(j,:));

if tf == zeros(1,size(indices ,2))

% If this is true, it means that i is not in indices(j,:). So,
% Atran(:,indices(j,:)) is a potential SCS of Atran(:,i).

x = Atran(:,indices(j,:))\Atran(:,i);

% Here, we have used the equation x = A\b instead of x = inv(A)x*b.
% Both ways solve the system of linear equations Ax = b.

% But, the first way is about 2—3 times faster and more accurate.
% [Page 468. The student edition of Matlab: version 4 : User’s

% guide/ the Mathworks Inc. 1995.]

if x>=0

lambda = [lambda x];
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end
end
end

scs_ind = temp;
invAn_ai = lambda;
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%

% f subst.m : Implementation of of the function f subst(SCS i,C i).
%

% INPUT : The row vector SCS_ i of indices of constraint C i,

% and the index i of the constraint C_i.

%

% OUTPUT : Row vectors SCS i max, and SCS_i_min.

%

% PRECONDITION : ’i’

%

cannot be an element of SCS i.

% Created on : July 1, 2002.
% Author : Ramprasad Potluri.
% E—mail : potluri@engr.uky.edu

%

W09 0009800098808089808889880808880888988888808988888988088898888898888986

%

% If SCS_i has two successive elements between which i lies,

% then SCS i max is obtained by substituting i for the greater

% of these two elements and SCS_ i min is obtained by substituting
% i for the lesser of these two elements.

% Else, if i < min(SCS_i) (meaning, i < first element of SCS i),
% then SCS_i_min is formed and SCS_i_max is empty, and

% if i > max(SCS_i) (meaning, if i > last element of SCS i),

% then SCS_i max is formed and SCS_i min is empty.

%

W90 09800098008980889800889808088988088880898888089880888988888988889806

%

% User does not need to modify anything beyond this point,
% unless he wishes to use this m—file on non— Windows 98 machines.

%

W00 00098000988080898888898808088980888988888888988888988888988888988808986

function [SCS_i max,SCS i min] = f subst(SCS_i,1i)

n = size(SCS i,2);
tf = SCS_i==i;

if tf == zeros(1,n)
if (i < SCS_i(:,1))
SCS i(:,1) = i;
temp_min = SCS_i;

temp _max = [];
elseif (i > max(SCS_i))
SCS i(:,n) = i;
temp _min = [];

temp_max = SCS_i;
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else
k =1;
while i > SCS_i(:,k)
k =k + 1;
end
temp min = [ SCS_i(:,1:k—2) i SCS_i(:,k:n) ];
temp max = [ SCS_i(:,1:k—1) i SCS_i(:,k+1:n) ];
end
else
disp(”  7);
disp ("WARNING : i cannot be an element of SCS i’);
end

SCS_i min temp_min;
SCS_i max = temp _max;

0,

%

% NOTE: In the above code, we could have used the test

%

% if tf~=gzeros(1,n)

%

% But, MATLAB did not respond to such a test. Maybe, this is a
%

% bug in the version (MATLAB 4) that I have.

%

0,

(P
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%

% f xplain.m : Implementation of the function

% f xplain(catalog, SSCS _indices ,invAn_ai_all).

%

% INPUT : The matrices catalog, SSCS _indices, invAn_ai_all.

%

% OUTPUT : The information in these matrices is interpreted and

% output.

%

% Created on : June 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
%080080898888889898888889898888888988888889898888889988888898988888889888888898988646
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non— Windows 98 machines.

%
%08009898888889898888889988888898988880889898888889988888889888888989888888898986646

function [ ] = f xplain(catalog,SSCS_indices,invAn_ai_all)
disp (’ ),
disp (’ ),

disp(’Displaying the indices of the SCSs (row vectors) and’);
disp(’the products inv(An)xai (column vectors) for each constraint.’);
disp (’ )5

1 =1;
for i = 1:size(catalog,l),
templ = [’The indices of the SSCS of constraint # ’...

num2str(catalog(i,1)) ’ are:’];
disp (templ);
disp(’ ");
disp (SSCS_indices(l:catalog(i,2)+1-1,:))
disp (’ )
temp2 = [’The products for constraint # ’
num2str(catalog(i,1)) ’ are:’];
disp (temp2);
disp(’  ’);
disp (invAn_ai_all (:,1:catalog(i,2)+1-1))
disp(’ ’);

1 = catalog(i,2)+1;
end
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%
% f mcn.m : Implementation of the function f mcn(m,n) that lists

% the mCn ("m choose k") different combinations of size
% n from the set {1, 2, ..., m}.

%

% INPUT : m, n;

%

% OUTPUT : Matrix r of dimensions mCn x n. Each row of r shows one
% way of choosing n elements out of the list {1,2,...,m}.
%

% PRECONDITION : m >=n.

%

% Created on : June 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%

% TO DO : Write a more compact code for f mcn(m,n) that does not

% print a file.

%
WOOOBBB8666666666660666688888080000000008888998899999999999999999999996
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non— Windows 98 machines.

%
%08008089888888898988888889888888989888888898988888898888888988889889888888898988646
%

%D =[12...m];

%

% For a matrix such as D this function generates a file named

% mcntemp.m that contains commands of the type shown below.

% bb = [];

% x1 = 0;

% for x2 = x1 + 1 : mn+1,
% for x3 =x2 + 1 : mn+2,
%  for x4 =x3 + 1 : mn+3,

% for x(n+1) =xn + 1 : mn+n,
% bb = [ bb; x2 x3 ... x(n+1) J;
% end

9% e

% end

% end

%

% Here, [x2 x3 ... x(n+1)] is the n—tuple that represents the
% different combinations of size n.
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%
%80809809809898898808989898989898808888889898988988888889889898898888808808898898980

function r = f men(m,n)
space = [1;
fid = fopen(’mecntemp.m’, ’wt’);

fprintf(fid , '%s\n’, % mcntemp.m: file generated by f mcn.m’);

fprintf(fid , "%s\n’, ’ "),
fprintf(fid , "%s\n’, ’aa=[];’);
fprintf(fid, %s\n’, 'x1 = 0;’);
for t = 2:n+1,
templ = [space ’for x’...
num2str(t) > = x’ num2str(t—1) > + 1 : ’ num2str(m—n+t—1) ’,’];
space = [space ' ’];
fprintf(fid , '%s\n’, templ);
end
u = [1;
for t = 2 : n+1,
u=1_[u’x’ num2str(t) * ’ ];
end

u=1["["u’l"l;
temp2 = [space 'bb="u ’;’];
fprintf(fid , '%s\n’, temp2);

temp3 = [space ’aa = [aa; bb];’];
fprintf(fid , '%s\n’, temp3);

for t = 1:n,

temp4 = [space(:,1:size(space,2)—t) ’end’];
fprintf(fid , '%s\n’, temp4);

end

fclose (fid);

mentemp;

r = aa;
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%
% f mcn.m : Implementation of the function f mcn(m,n) that lists

% the mCn ("m choose k") different combinations of size
% n from the set {1, 2, ..., m}.

%

% INPUT : m, n;

%

% OUTPUT : Matrix r of dimensions mCn x n. Each row of r shows one
% way of choosing n elements out of the list {1,2,...,m}.
%

% PRECONDITION : m >=n.

%

% Created on : June 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%

% TO DO : Write a more compact code for f mcn(m,n) that does not

% print a file.

%
WOOOBBB8666666666660666688888080000000008888998899999999999999999999996
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non— Windows 98 machines.

%
%08008089888888898988888889888888989888888898988888898888888988889889888888898988646
%

%D =[12...m];

%

% For a matrix such as D this function generates a file named

% mcntemp.m that contains commands of the type shown below.

% bb = [];

% x1 = 0;

% for x2 = x1 + 1 : mn+1,
% for x3 =x2 + 1 : mn+2,
%  for x4 =x3 + 1 : mn+3,

% for x(n+1) =xn + 1 : mn+n,
% bb = [ bb; x2 x3 ... x(n+1) J;
% end

9% e

% end

% end

%

% Here, [x2 x3 ... x(n+1)] is the n—tuple that represents the
% different combinations of size n.
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%
%80809809809898898808989898989898808888889898988988888889889898898888808808898898980

function r = f men(m,n)
space = [1;
fid = fopen(’mecntemp.m’, ’wt’);

fprintf(fid , '%s\n’, % mcntemp.m: file generated by f mcn.m’);

fprintf(fid , "%s\n’, ’ "),
fprintf(fid , "%s\n’, ’aa=[];’);
fprintf(fid, %s\n’, 'x1 = 0;’);
for t = 2:n+1,
templ = [space ’for x’...
num2str(t) > = x’ num2str(t—1) > + 1 : ’ num2str(m—n+t—1) ’,’];
space = [space ' ’];
fprintf(fid , '%s\n’, templ);
end
u = [1;
for t = 2 : n+1,
u=1_[u’x’ num2str(t) * ’ ];
end

u=1["["u’l"l;
temp2 = [space 'bb="u ’;’];
fprintf(fid , '%s\n’, temp2);

temp3 = [space ’aa = [aa; bb];’];
fprintf(fid , '%s\n’, temp3);

for t = 1:n,

temp4 = [space(:,1:size(space,2)—t) ’end’];
fprintf(fid , '%s\n’, temp4);

end

fclose (fid);

mentemp;

r = aa;
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%

% Full scs.txt : Contains an example result of running f _scs(.)

%
WOOOBBB66866666666660660668888880000000000089889889999999999999999999996

EDU>> A

1.5578 0.4142
—2.4443 —0.9778
—-1.0982 —1.0215

1.1226 0.3177

0.5817 1.5161
—-0.2714 0.7494

EDU>> scs
catalog =
1 2
2 2
3 2
4 2
5 2
6 2
D=
1.0000 —0.0931 0 —1.5903 0 0
1.0000 0 —0.0375 —1.4243 0 0
0 1.0000 —2.9296 0 —1.3288 0
0 1.0000 —1.9062 0 0 —1.2933
—2.7855  —2.2245 1.0000 0 0 0
0 —2.4839 1.0000 —4.4298 0 0
—0.7154 0 0 1.0000 —0.0141 0
—0.7247 0 0 1.0000 0 —0.0234
—0.6620 0 0 0 1.0000 —1.6571
0 0 0 —0.9135 1.0000 —1.6358
0 —0.2701 0 0 —0.6685 1.0000
0 0 —0.7913 0 —1.0274 1.0000

elapsed time =

0.3300
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rev_SSCS =

0 2 4 1
1 3 4 1
0 3 5 2
1 3 6 2
1 1 2 3
1 2 4 3
1 1 5 4
0 1 6 4
0 1 6 5
1 4 6 5
1 2 5 6
0 3 5 6
rev._D =
1.0000 0 —0.0375 —1.4243 0 0
0 1.0000 —2.9296 0 —1.3288 0
—2.7855  —2.2245 1.0000 0 0 0
0 —2.4839 1.0000 —4.4298 0 0
—0.7154 0 0 1.0000 —0.0141 0
—0.7247 0 0 1.0000 0 —0.0234
—0.6620 0 0 0 1.0000 —1.6571
0 —0.2701 0 0 —0.6685 1.0000
elapsed time =
0.0500
Here is the D matrix generated using f carlee.m:
D=
1.0000 0 —0.0373 —1.4239 0 0
1.0000 —0.0928 0 —1.5892 0 0
0 1.0000 —1.9059 0 0 —1.2944
0 1.0000 —2.9309 0 —1.3309 0
0 —2.4840 1.0000 —4.4282 0 0
—2.7864  —2.2255 1.0000 0 0 0
—0.7155 0 0 1.0000 —0.0141 0
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0 1.0000 0 —0.0233
0 —0.9133 1.0000 —1.6358
0 0 1.0000 —1.6570
—0.7919 0 —1.0282 1.0000
0 0 —0.6686 1.0000
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Appendix E

MATLAB Program Listings for Second
Method Method for Irredundancy

How to use the folder carl lee

File Name : READMEOQ2. txt
Author : Ramprasad Potluri
e—mail : potluri@engr.uky.edu
Date : August—06—2002.

This READMEO2. txt file is a modification of READMEOL. txt.
It summarizes the modifications done to the files in this
folder to make them into functions.

Please read READMEO1.TXT that is in the subfolder oldfiles.

The files listed in READMEQl.TXT were modified slightly and
made into functions.

Thus, we now have the following functions:

f carlee.m——> f bound(.) ——> f makine
—> cdd/cddf+
—>f step3(.) ——> f makine (.)
—>cdd / cddf+
—>f step56(.)
(optional) ——> f pbcone(.) ——> f makine (.)
—>cdd / cddf+

f pbcone.m——> f makine (.)
—>cdd / cddf+

f step3.m——> f makine
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—> cdd/cddf+

f step56.m

Also present in this folder are the following files:

cddf+.exe (this is invoked by the m-files to enumerate
extreme points and rays)

cygwinl . dll (this is necessary for cddf+.exe is work)

carl lee.pdf (contains the algorithm; same as Appendix B
of the dissertation)

READMEO]. txt (this file)

To use this program start with f carlee (.).

This is the function that needs to be invoked to execute
Carl Lee’s algorithm. It calls f step3(.), f step56¢(.),
and f pbcone (.) in that order.

f pbcone(.) is not essential to solving PR2.

It was only created for using Minkowski’s Theorem
to solve the problem of Irredundancy.
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%
% f carlee.m : An implementation of the algorithm shown

% by Dr.Carl Lee to determine the set of all values of
% b for which Ax <=b is irredundant.

%

% A description of the algorithm can be found in

% carl _lee. pdf.

%

% INPUT : The matrix A.

%

% OUTPUT : The matrix D. Also generates the files pbcone.ine and
% pbcone. ext that contain the description of the

% pointed—b—cone.

%

% USES : cdd/cdd+, f bound (.) (which in turn uses cdd/cdd+),

% f step3 (.) (which in turn uses cdd/cdd+ and f makine(.) ),
% f step56 (.), f pbcone(.) (which in turn uses cdd/cdd+

% and f makine (.) ).

%

% Created on : April 27, 2002.
% Modified on : August 06, 2002.
% Author : Ramprasad Potluri.
% E—mail : potluri@engr.uky.edu

BOOOBBB66866866666666608888888080000000000089889899999999999999999999996
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non— Windows 98 machines.

%
BOOOBBB6666666666686668888888000000000000099988999999999999999999999996

function [] = f carlee(A)
disp(’ 7);

disp ('WARNING: ’);

disp (’ )

disp(’As part of its operation, this program launches some MS-DOS’);
disp ("windows. The first time an MS-DOS window opens and does not’);
disp(’automatically close after the program that launched it’);
disp(’has completed execution, the user can click on an icon that’);
disp(’is at the top of that DOS window. This will open a’);
disp(’"properties" pop—up window. Checking the "close on exit"’);
disp (’box will close all future MS-DOS windows after the programs’);
disp(’that launch them complete execution.’);

disp (’ )

disp (’'Now, please press any character key to continue.’);

disp (’ ;s
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pause

flag = f bound(A);

if flag ==0

disp (’The system Ax <=Db is unbounded’);
disp(’ ’);

end

Atran = A’;

f step3 (Atran);
% Executes Step 3 of carl lee.pdf: Forms the polyhedron and
% enumerates its extreme points.

N = size (Atran,2);
D = f step56(N);
% Executes steps 5 and 6 of carl _lee.pdf to form the b—cone.

f pbcone(A,D);

% Forms the pointed—b—cone corresponding to the b—cone obtained
% above and uses cddf+.exe to obtain the V—format of the

% pointed—b—cone.

disp (’ )

disp (’ ),

disp(’The "b—cone" is D«b < 0, where D is as follows:’);
D

disp(’ 7);

disp(’The reader can find the H-format of the closure of the’);
disp (’pointed—b—cone in the file pbcone.ine.’);

disp(”  ’);

disp(’The reader can find the V—format of the closure of the’);
disp (’pointed—b—cone in the file pbcone.ext.’);

disp(” ’);
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%

% f step3.m: m—file that implements Step3 of carl _lee.pdf.

%

% INPUT : The matrix Atran which is the transpose of A.

%

% OUTPUT : None. Generates the files constrli.ext (I = 1,2,...)

% which contain the extreme points as described in Step3
% of carl _lee.pdf.

%

% USES : cdd (cdd+), f makine (.).

%

% Created on : April 27, 2002.

% Modified on : August 06, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
9%980808088988808088888080889898808888888888888889888888888888888888988808889888888880
%

% Let C be an m x k matrix, and let d be a column m-vector.

% The Polyhedra format (H-format) of the system Cx <=d

% of m inequalities in k variables x = (x1, x2, ...., xd"T is

%

% various comments

% H-representation

% begin

%9m k+1 numbertype

% d —C

% end

% various options

%

%

% The above is the format of the data that is presented

% in x.ine file ("ine" stands for "inequality").

%

% This m—file generates x.ine files.

%

% This m—file was written in Matlab 4. Maybe the later versions of
% Matlab have more features that allow for simplification of this
% code.

%

WOV 0900998098980988089888896899808989808988889888898888988989889888898888988896%6
%

% Example : Assume that we are given the following A matrix.

%

% A = [all, al2;

% a2l, a22;

% a3l, a32;

% a4l, a42;
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% a51, a52]

%

% Convert to the following format:

%

% [a21 a31 a4l abl1] y = [all]

% [a22 a32 a42 a52] [al2]

% y >= 0

%

% This is the same as

%

% [ a2l a31 a4l ab1] [ all]
% [ a22 a32 a42 a52] [ al2]
% [—a21 —a31 —a41 —-a51] y <= [—all]
% [—a22 —a32 —a42 -—a52] [—al2]
%

% -y <= 0

%

% Now this information needs to be placed in a *.ine file. This job

% is performed by this m-file.

%

% From the A matrix in this example, 5 such systems, and hence 5

% such x.ine files , can be formed.

%

LD BB BLLLLLRLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
%

% User does not need to modify anything beyond this point, unless

% he wishes to use this m-file on non— Windows 98 machines.

%
9%9808080889888080889888808888808888888888888888988888888088888888888808889888888860

function [] = f step3 (Atran)

dd = [1;

CC = [1;

N = size (Atran,2);
options = [];

c = [1;

’ 2 )

% The function f makine(.) will be used. ’options’ and ’c’ are two

% of its inputs.

x1 = ’constr’;
7

x3 = ’.ine’;
% The x.ine files will be named constrl.ine, ..., constrN.ine.

for I = 1:N,

% Begin forming contsrl.ine file.
% The file constrl.ine contains the H-format description of
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% the polyhedron shown in Step 3 of carl _lee.pdf.

dd = [ Atran(:,1);
—Atran (:,1);
—zeros(N—1,1) 1;

CC = [ Atran(:,1:1—-1), Atran(:,I+1:N);
—Atran(:,1:1—-1), —Atran(:,I+1:N);
—eye(N—1) 1

x2 = num2str(1);
filename = [x1 x2 x3];
% In these 2 lines , the name of the file has been created.

filename = deblank(filename);
% Remove any blanks spaces from the file ’s name. Actually,
% we get the desired filename even without this step.

% Place this information in a constrl.ine file:
f makine (filename , options,c,CC,dd);
end

% Thus far, we have obtained the x.ine files. Next, we will run
% cddf+.exe on these x.ine files to generate the extreme points of
% each of the polyhedra therein.

fid = fopen(’process.bat’,’wt’);

% A file process.bat is opened for writing.

% The reason for creating process.bat is because we want the end
% result of the following FOR—loop and the command

% ’!cddf+.exe filename’ will not give that same result.

for I = 1:N,

x2 num2str(1);

x3 = ’.ine’;

filename = [x1 x2 x3];

fprintf(fid , "%s\n’, [ ’cddf+.exe’ ’ ’ filename]);

end
% The commands "cddf+.exe constrl.ine",..., "cddf+.exe constrN.ine"
% have been placed in process.bat.

fclose (fid);
% The file process.bat is closed.

!process.bat

% End of f step3(.)
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%
% f step56.m: An m—file to generate the description of the

% "b—cone". This m—file implements steps 5 and 6 shown
% in carl_lee.pdf.

%

% INPUT : N — the number of the x.ext files named constrl.ext, ...,
% constrN.ext that were generated by f step3(.).

%

% f step56.m reads the information from those .ext files.
%

% OUTPUT : The matrix D such that Dxb < 0 is the solution set of PR2
% as shown in Step 6 of carl _lee.pdf.

%

% Created on : April 27, 2002.
% Modified on : August 06, 2002.
% Author : Ramprasad Potluri.
% E—mail : potluri@engr.uky.edu

WOV 990099809880898809898899889898898808988088988989889898889888898808896889646
%

% The following note is extracted from cdd/cdd+ Reference Manual.

%

% Let P be represented by n extreme points and s rays

% as P = conv(vl, ..., vn) + nonneg(rl, ..., rs).

% Then the Polyhedra V—format for P (as presented in x.ext files)

% is defined as

%
% various comments

% V—representation

% begin

% n+s d+1 numbertype
% 1 vl

% .

% .

% . .

% 1 vn

% 0 ril

% .

% .

% . .

% 0 rs

% end

% various options

%
% Here d is the dimension of the full—dimensional polyhedron.

%

WOV 990998098808988889888998089898089888898888988889889898889888898888988896%6
%
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% The above is the format of the data present in x.ext file.

% The function f step56 (.) implemented here reads those portions

% of the x.ext file that are situated beginning two lines after the
% line on which the ’begin’ statement is and have a 1 as their

% first element.

% This m-file was written in Matlab 4. Maybe the later versions of

% Matlab have more features that will allow for simplification of

% this code.

%
WBOOOOOB088880808666088066088888888808088008880888888889889899999999999999996
%

% User does not need to modify anything beyond this point, unless

% he wishes to use this m—file on non— Windows 98 machines. This

% m-file creates and then runs an MSDOS batch file.

%
%080980809880988089880898889888089808898889888988898889888888888888089880898898889888988898880
%

% In the file FGETL.M, the original value of BLOCKSIZE as set by

% the distribution of Matlab was 128. This was preventing the lines,

% that were being read in from files by the FGETL command,

% to be displayed correctly. The first several characters

% of each line would go missing. So, I decided to see if there

% was some parameter in the FGETL.M file that I could play with

% to get it to work correctly. Interestingly , I hit upon BLOCKSIZE

% right away. Increasing the value of BLOCKSIZE

% worsens the problem. Decreasing the value helps.

% — RAMPRASAD POTLURI. potluri@engr.uky.edu. April 29, 2002.

%
BOOBOBB066866666666660668888888000000000000099889899999999999999999999996

function D = f step56 (N)

x1 = ’constr’;
x3 = ’.ext’;
D = [];

% D is the matrix that represents the b—cone thus: Dxb < 0.
for I = 1:N,

x2 = num2str(1);

filename = [x1 x2 x3];

% In these 2 commands, the name of the file has been created.
fid=fopen(filename , ’rt’);

% open the file constrl.ext for reading.
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line = fgetl(fid);
% read in the first line of the file.

Kl = findstr(line, 'begin’);
% find the string ’begin’ in the line read above.

while K1 == [],
% while ’begin’ is absent in the line, do this loop.
% This loop executes until ’begin’ is found in the file.

line = fgetl (fid);
% read the next line.

K1 = findstr (line, ’begin’);
% check for the presence of ’begin’ in this line.

end

% Now, we have completed reading the line that contains ’begin’
% I thought that now, if we execute fscanf (), we will read this
% same line. But, fscanf() reads the next line which contains
% ’number number numbertype’

% So, it means that after fgetl () finishes reading a line,

% it positions the counter at the beginning of the next line.

K2 = fscanf(fid , "%i’ ,1);

% Read the first number which is in the line that comes after the
% line that contains ’begin’. We are actually interested in the
% next number. So, this is just a step to reach it.

K2 = fscanf(fid, %i’ ,1);

% Read the second number which is in the line that comes after the
% line that contains ’begin’. This second number indicates the

% number of columns that the matrix K5 will have.

line = fgetl(fid);
% Position the counter at the beginning of the next line.

K3 = fscanf(fid, %i’,1);
% Read the first element of the matrix of 1’s, v’s, 0’s, and r’s.

% The following while—loop checks if K3 = 0. If it is, then this
% loop skips to the next line of the matrix of 1’s, v’s, 0’s, r’s
% and again checks if the first element is 0. If the first element
% is 0 in all the rows, then the matrix K5 will not be formed.

% Actually , if the first element of a row is 0, then every first
% element of the subsequent rows in *.ext matrices will be 0, and
% we don’t have to perform the following while loop.
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while K3 ~= 1,

line = fgetl(fid);

% Finish reading the rest of the line and position the counter at
% the beginning of the next line.

K3 = fscanf(fid, "%i’,1);
% Read the first element of this line of matrix of 1’s, v
% and r’s.

2

2
s, 0’s,

end

i =0;

K5 = [];

% K5 is an intermidiate matrix in the formation of D. K5 is such
% that K5«b < 0 is the system shown in Step 5 of carl lee.pdf.
% D is such that D«b < 0 is the system shown in Step 6 of

% carl _lee. pdf.

while K3 == 1,
i =1i4+1;
K4 = fscanf(fid, %g’,[1,K2—-1]);
% The K2—1 elements that follow the first element (which is a 1)
% of a row are read into K4.

K5(i,1:1-1) = —K4(1,1:1-1);

K5(i,1) = 1;

K5(i,1+1:K2) = —K4(1,1:K2—-1);

% Through the above 3 commands, the elements of —K4 are

% successively placed in all but the I—th position of the i—th
% row of K5.

line = fgetl(fid);
% Move to the next line of the x.ext file.

K3 = fscanf(fid, %i’ ,1);
end

fclose (fid);
% close the file

D = [D;K5];
% The matrix D is formed by placing the K5 matrices one below the
% other.

end
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%
% f pbcone.m: This m—file forms the file pbcone.ine. The file

% pbcone.ine contains the H-format of the

% "pointed—b—cone". This m—file also runs cddf+.exe on
% pbcone.ine to generate the V—format of the

% pointed—b—cone.

%

% "pointed—b—cone" is a term coined by Dr.Carl Lee. The
% pointed—b—cone is {b | Dxb < 0, A’xb = 0}.

%

% INPUT : The matrices D (Dxb < 0 is the set of all b for which Ax
% <=b is irredundant) and A.

%

% OUTPUT : None. The V—format of the pointed—b—cone can be found in
% the file pbcone.ext.

%

% USES : cdd / cddf+

%

% Created on : April 27, 2002.

% Modified on : August 06, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu
BOOOBBB668666666688888888888800000000080888888889899999999999899999998

function [] = f pbcone(A,D)

Atran = A’;
Cl = [ D; Atran; —Atran 1];

% The matrix D (that describes the b—cone) was formed in the file
% f step56.m.

dl = [zeros(size(Cl1l,1),1)];

options = [];

c = [];

% Place this information in the file pbcone.ine.
f makine(’pbcone.ine’,options,c,Cl,dl);

% Launching cddf+.exe to work on pbcone.ine:

!cddf+.exe pbcone.ine

% End of function f pbcone(.).
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Appendix F

MATLAB Program Listings for the
Q-Matrix Method of Maintainability of
Halfspace Systems

——— Description of the contents of the folder TstMaint

Author : Ramprasad Poturi
E—mail : potluri@engr.uky.edu
Date : August — 10 — 2002.

The folder TstMaint containts the following m-files
("——>"reads "uses"):

f active.m——> f makine
——> cdd/cddf+

f bound .m——> f makine
——> cdd/cddf+

f cddX.m——> f inter ——> f makine
——> cddf+

f EFB.m——> f bound ——> f makine
——> cdd/cddf+

f findQ . m——> f pickX ——> f square ——> f mcn
—>f ¢ddX ——> f_inter ——> f makine
—> cddf+
——>f active ——> f makine

—> cdd/cddf+

f inter ——> f makine
——> cddf+
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f makine.m

f max.m——> f makine
—> cdd/cddf+

f pickX.m——> f square —> f mcn
—>f cddX ——> f cddX ——> f makine
——> cddf+

f square.m——> f mecn

f TinPR1.m——> f max ——> f makine
——> cdd/cddf+

f tstmnt.m——> f inter ——> f makine
—> cdd/cddf+

f tube .m——> f bound ——> f makine
——> cdd/ cddf+
—>f scs —> f mcen
—>f scs_i
—> f explain (optional)
—>f D DB
—>f refine —> f subst

f verts.m——> f makine
—> cdd/cddf+

pre_pros.m——> f EFB ——> f bound ——> f makine
——> cdd/cddf+

——>f tube ——> f bound ——> f makine
—> cdd/cddf+
—>f scs —>f men
—>f scs i
—> f explain (optional)
—>fD DB
—>f refine ——> f subst
—>f scs —>f men
—>f scs i
—> f explain (optional)
—>f D DB
—>f refine ——> f subst
——>f TinPR1 ——> f max ——> f makine

——> cdd/cddf+
—>f findQ ——> f pickX ——> f square ——> f mcn
—>f cddX —> f _inter ——> f makine
—> cddf+
——>f active ——> f makine
—> cdd/cddf+
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—>f verts ——> f makine
——> cdd/cddf+
—>f tstmnt —> f inter ——> f makine
—> cddf+

OTHER FILES:

The program generates the following temporary intermediate files:
MCNTEMP.m
MYTEMP.m

If they are absent, the program may complain the first time it tries
to use either of them and does not find it. However, this error may be
ignored and the program may be run a second time. The second pass
onwards, the program will work fine.

Optional Components.

Added on August 15, 2002.

Besides the above files , The following files are also present in this
folder:

f poly2D.m——> f trunc
f trunc.m

ptope.m——> f tube —> f bound ——> f makine
——> cdd/cddf+
—>f scs —>f mecn

—>f scs i

——> f explain (optional)

—>f D DB

—>f refine ——> f subst
—>f verts.m——> f makine

——> cdd/cddf+

——>f poly2D ——> f trunc

These functions help visualize the tube. Given a randomly ordered list
of the tube’s vertices, f poly2D (.) first reorders this list so that
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adjacent elements in the list represent adjacent vertices , and then
plots the polytope.

ptope.m is an m-file to generate a random bounded and irredundant tube
( using f tube(.) ), obtain this tube’s vertices ( using f verts(.) ),
and plot this tube using f poly2D (.).

Z.m — This was written to test some parts of the program. This is not
a part of the program itself.

Besides the above files , the program uses the function f scs (.) which
is in the folder SCS.

HOW THIS PROGRAM WORKS
pre_pros.m is the file to run.

pre_pros.m runs in succession the functions f EFB(.) and f tub (.)

(to generate the specifications of a bounded EFB system and

a bounded irredundant Tube), f scs(.) (to determine the set of (x0,u0)
pairs for which the Reach(x0,u0) sets for this EFB system are
irredundant), f TinPR1(.) (to see if Tube is a subset of PR1),

f findQ (.) (to find a suitable Q matrix), f verts(.) (to determine the
vertices of the tube), and f tstmnt(.) (to test if the tube is
maintainable).

This program uses cddf+. cdd does not have all the options

(e.g. find interior) that we need to run this program successfully
(please see the next section for a list of the options used in this
program). So, the user needs to download cddf+ (or some other variant
of cdd+) to use this program.

IMPORTANT : It seems like cddf+.exe needs to be in the same folder from
where it is being invoked. Else, you may see errors.

THE OPTIONS USED IN OUR PROGRAM FOR CDD / CDDF+ AND
THEIR AVAILABILITY FOR EACH OF CDD & CDDF+:
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OPTION + AVAILABLE FOR

+ +

+ cdd + cddf+

+ +

+ +
maximize + yes + yes
dynout_off + yes + yes
stdout_off + yes + yes
logfile off + yes + yes
find _interior + NO + yes
incidence + yes + yes
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%
% f active.m: An m—file to determine the indices of those

% constraints in the bounded system Ax <= b that are

% active at each of this system’s extreme points.

%

% INPUT : A, b.

%

% OUTPUT : The matrices ’verts ’ and ’act _constrs ’. ’verts ’ contains
% the indices of the vertices of Ax <=b. ’“act_constrs’

% contains the indices of 'n’ constraints that are active
% at each of the vertices referenced by ’verts ’. Here n is
% the dimension of x.

%

% In case a vertex of Ax <=Db has more than n active

% constraints , f_active shows just n of these constraints
% that are linearly independent.

%

% USES : f makine (.) which in turn uses cdd/cddf+.

%

% Created on : August 08, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
9%B0000890888088886888888888088880088888868888880888888808808988088888880666
%

% We use cddf+.exe with the ’incidence ’ option specified.

%
9%980808080898880808888888889880808888888888888889888888888888888888988808888888880

function [verts,act _constrs] = f active(A,b)
options = [’incidence ’
"dynout_off ~’
"stdout_off ’
"logfile off’ 1;
c = 1[1;
name = ’Reach.ine’;

% Place this information in the file Reach.ine:
f makine (name, options ,c,A,b);
% Launching cddf+.exe to work on Reach.ine:

!cddf+.exe Reach.ine
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%

% Two files ——— Reach.ext and Reach.ecd ——— have been generated
% by cdd. Next, we will read the coordinates of the vertices

% from the file Reach.ext into the matrix ’verts ’, and the

% indices of the active constraints from the file Reach.ecd

% into the matrix ’act_constrs’

%

0,

(5

% First , the file Reach.ext

fid=fopen(’Reach.ext’, 'rt’);
% open the file Reach.ext for reading.

line = fgetl(fid);
% read in the first line of the file.

KO = findstr (line, ’Number of Vertices’);
% find the string ’Number of Vertices ’ in the line read above.

while KO == [],

line = fgetl(fid);

KO = findstr(line , ’Number of Vertices’);
end

% Now that we have found the line that contains the number of

% vertices that have been enumerated, in the following two command
% lines , we will extract this number of vertices and assign it to
% the variable ’'N’.

token = strtok(line,’,’);
N = str2num (token (1,22:size (token,2)));

% Next, we will move 3 lines past the line that contained "Number
% of Vertices".

for i = 1:3,
line = fgetl(fid);

end

% Next, we will read the contents of the next N lines. These next N
% lines give us the coordinates of the vertices.

n = size(A,2);
temp = fscanf(fid, %f’,[n+1,N]);

fclose (fid);

verts = temp(2:n+1,:)’;
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% Next, the file Reach.ecd

% open the file Reach.ecd for reading.
fid=fopen(’Reach.ecd’, 'rt’);

% read in the first line of the file.
line = fgetl(fid);

% find the string ’begin’ in the line read above.
KO = findstr(line, ’begin’);

while KO == [],

line = fgetl(fid);

KO = findstr(line, ’begin’);
end

% Now, the pointer is on the line that contains ’begin’. Next, we
% will move the pointer one more line down.
line = fgetl(fid);

% Now, we will read in the entries on the next N lines.
for i = 1:N,
line = fgetl(fid);

[token ,rem] = strtok(line);

% Read the contents of ’line’ upto and not including the

% delimiter ’ ’ into the variable ’token’, and read the rest of

% the string beginning with and including ’° ’ upto the end of the
% line , not including the end of line character and the carriage
% return, into the variable ’rem’.

firstitem = str2num/(token);

% This extracts the first item in ’line’

rem = rem( 5:size(rem,2) );

% The line we read in is, for example, like this: 2 : 2 3’. A
% single space after the first item and before the ’:’, then a

% double space after the ’:’ and before the next numeral is the
% format of the data in a x.ecd file. We assigned the first item
% —— 2 —— to the variable ’firstitem ’ in the above instructions.
% The variable ’rem’ is ’ : 2 3’. Then, we removed the first 5

>

% places from the beginning of ’rem’.

if firstitem > n
temp = str2num (rem);
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% Convert ’rem’ into a numeric matrix containing N elements.

r = f men(firstitem ,n);

% Determine the firstitem —Choose—n different combinations of
% the elements of the set {1,2,...,firstitem }.

=1

flag = (rank( A( temp( r(j,:) )’,: ) ) < n);

% Suppose that firstitem = 3, n = 2, and temp = [2 4 7]. Then,
% r = [12;1 3;23]. So, r(1,:) =1[1 2], temp(r(1,:))=[2 4].
% So, A( temp( r(1,:) ) ) will extract the rows number 2 and 4
% of A. If the rank of A([2 4]’,:) is less than n, then it

% means that we have to try an n—subset of temp that is

% different from [2 4]. That is what we do in the following
% ’while’ loop.

while flag > 0,

i=i+tL
flag = (rank( A( temp( r(j,:) ) ) ) < n);

act_constr(i,:) = temp(r(j,:));
else
act_constrs(i,:) = str2num (rem);
end
end

fclose (fid);
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W00 898988889808988889888888888888889888888888888888888888888888%6
%

% f bound.m: An m-file to test for the boundedness of a given

% system of inequalties Ax <=b.

%

% INPUT : The matrix A.

%

% OUTPUT : The value of ’flag’ is set to 1 or O depending on whether
% Ax <=b is bounded or unbounded respectively.

%

% PRECONDITION : A is an m x n matrix where m > n.

%

% USES : f makine (.) which in turn uses cdd/cddf+.

%

% Created on : July 29, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu

%
%08009890888889898888899888889898888099896888889988888989868808989888888898988846
%

% The system Ax <=Db (x is in the set of reals), will be bounded

% for a bounded b, if and only if the auxiliary system

% { rank(A) = n; A°Tz = 0; 2z > 0 } is feasible.

%

% This result (with "z > 0" replaced by "z >= 0") is used by

% function f bound(A) to test for the boundedness of Ax <=b as

% follows:

%

% After checking if A is of full rank, f bound(A) forms the system
% {A"Tz = 0; 2 >= 0}. This system 1is called ’z—cone’ because it

% represents a cone for the variable z.

%

% f bound(A) then uses the program cdd to test if the z—cone is

% non—empty. The z—cone is empty if the only element in it is O.

%
%0800989888888989888888989888888989888808989898888889988888898988880889888888898986646

function flag = f bound(A)

if rank(A) == size(A,2)

options = [’dynout_off ’
"stdout_off ~’
"logfile off’];

c =11

Atran = A’;

164



C2 = [ Atran;

—Atran;

—eye(size (Atran,2))];
d2 = [zeros(size(C2,1),1)];

% Place this information in the file bound. ine.
f makine(’bound.ine’,options,c,C2,d2);

% Launching cddf+.exe to work on bound. ine.
!cddf+.exe bound.ine

0,

%

% Next, we will see if the number of extreme rays of the z—cone
% is greater than 0. If it is, then z—cone is non—empty, and so
% Ax <= b is bounded. The information about the number of

% extreme rays of the z—cone is present in the file bound. ext

% in the line ’«Number of Rays = ’...... So, we will see if
% this line contains a number other than O.
%

0,

(0

% open the file Ax _le b.ext for reading.
fid=fopen(’bound.ext’, 'rt’);

% read in the first line of the file.
line = fgetl(fid);

% find the string ’sxNumber of Rays =’ in the line read above.
K1 = findstr (line, ’«Number of Rays =’);

while K1 == [],
% while ’xNumber of Rays =’ is absent in the line, do this loop.

% This loop executes until ’«Number of Rays =’ is found in the file.

% read the next line.
line = fgetl(fid);

% check for the presence of ’«Number of Rays =’ in this line.
K1 = findstr (line , ’xNumber of Rays =’);

end
fclose (fid);

if stremp(line,’«Number of Rays = 0’) == 0

flag = 1;
else
flag = 0;
end
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else
flag = 0;

end
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%
% f cddX.m : Uses cdd to find a vector (x0,u0) that lies in the

% feasible region of PRI.

%

% PR1 is explained in the paper titled "Reachability of
% target tube in a new class of uncertain systems

% represented by linear constraints"

% by Ramprasd Potluri and L.E.Holloway.

%

% INPUT : Matrices ’'rev. DB’, 'T’, ’'t’.

%

% OUTPUT : Vector ’x’ such that rev_DBxx < 0.

%

% USES : f inter (.) which in turn uses f makine (.) which in turn
% uses cddf+.

%

% Created on : June 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu

%
WOOOBBB888866666666068066888888800008000880888888899989999999999999999996
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non—Windows 98 machines.

% This m-file was written for MATLAB v.4 Student Edition.

%
WOOOB8888886088060660880868888888080800888888888898888999999999999999996
%

% We choose an (x0,u0) from the intersection of PR1 and Tube(T, t)

% because cddf+ does not work with homogeneous systems

% of inequalities.

%
%0809808098808988089888988888888889880898898889888988888888889880898889888988898889888880

function x = f cddX(rev DB,T,t);

ml = size(rev_DB,1); % Number of rows of rev_DB
nl size(rev_DB,2); % Number of columns of rev_DB
size (T,1);

n2 = size(T,2);

3

A =] revDB ; [T, zeros(m2,n1-n2)] ];
b = [zeros(ml,1); t];

x = f inter (’feddx’,A,b);
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%

% f EFB.m : Creat a slack—descriptor model (SD model).

%

% INPUT : m (number of rows of EFB), n_E (number of columns of E or

% F; n E is the same as the dimension of the state space),
% n_B (number of columns of B; n_B is the same as dimension
% of the control space).

%
% OUTPUT : E,F,B matrices such that the SD system Exl1 <= Fx0 + Bu0O

% is bounded, and the constant ’EFBtries ’. Since, we

% randomly generate the E,F,B matrices, ’EFBtries’ gives
% the number of trials made before finding a bounded EFB
% system.

%

% USES : f bound(.).

%

% Created on : July 29, 2002.

% Modified on : August 14, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu

%
WBOOOOB8808888888068080888888888800800888088888888899898899999999999999996

function [E,F,B,EFBtries] = f EFB(m,n_E,n B)
E = randn([m,n_E]);

tries = 1;

flag = f bound(E);
while flag ==

E = randn([m,n_E]);

flag = f bound(E);

tries = tries+1;
end
F = randn([m,n_E]);

B = randn([m,n_B]);
EFBtries = tries;
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%
% f findQ.m : Finds a Q matrix as explained in the paper titled

% "Reachability of target tube in a new class of

% uncertain systems represented by linear constraints"
% by Ramprasd Potluri and L.E.Holloway.

%

% INPUT : rev DB,T,t,E,F,B.

%

% OUTPUT : Q.

%

% USES : f pickX (.), which inturn use f square(.) and f cddX(.),
% which inturn uses cddf+, and f_active (.) which inturn uses
% cddf +.

%

% Created on : June 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
%080098988888898988888898988888898988880898989888888998888888988880889888888898986646
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non—Windows 98 machines.

% This m-file was written for MATLAB v.4 Student Edition.

%
%08008989888888898988888898988888889888888898988888898888888988888889888888898988646

function Q = f findQ (rev_DB,T,t,E,F,B)

% To determine a matrix Q we proceed as follows:
% Choose some (x0,u0) tuple from PRI.

disp(* ’);
disp(’An (x0,u0) tuple that satisfies both PR1 and Tube(T,t)’);
disp(’is as follows:’);

disp(’ 7);

% We choose an (x0,u0) from the intersection of PRI and Tube(T, t)
% because cddf+ does not work with homogeneous systems of

% inequalities. So, if ask it to find an interior point from, say,
% Ax <= 0, it won’t find one.

x0u0 = f pickX(rev_DB,T,t)
disp(’ ’);

disp (’CHECK : For this (x0,u0), the value of the product’);
disp (’rev_DB«*[x0"T uO”T]"T must be negative:’);

169



disp(’ ’);
revDBxOu0O = rev_DBxx0u0

% For this value of xOuO, determine Reach (x0,u0):

disp(’ 7);
disp (’Reach(x0,u0) for this (x0,u0) is given by E <= [F B]xx0u0’);
disp(’ ’);

% Enumerate the extreme points of Reach(x0,u0) and the constraints
% that are active at each of the extreme points of Reach(x0,u0):

A = E;

b = [F B]xx0u0;
[verts,constrs] = f _active (A,b);
% For i = 1,....,m T (mT = size(T,1) ——— the number of rows of T),

% determine the extreme point from the above list at which [T] ix1
% is maximum. Note the constraints of Reach(x0,u0) that are active
% at this extreme point.

Q = zeros( size(T,1),size(E,1) );
for i = 1:size(T,1),

temp = vertsxT(i,:)’;
[y,ind] = max(temp);

% This assigns to 'y’ the maximum value in the column vector temp
% and to ’ind’ the index of this maximum value. The significance
% of ’ind’ is that vert(ind,:) is the vertex of Reach(x0,u0) at

% which [T] ix1 ( represented here by T(i,:) ) attains

% maximum. The constraints of Reach(x0,u0) which intersect at

% vert(ind,:) have the indices constrs(ind,:), and their

% direction vectors are given by:

templ = E( constrs(ind,:)’,: )’\T(i,:)’;

% [T] i is a non—negative linear combination of the direction

% vectors of these constraints.

%

% Then, the i—th row of Q will have the coefficients of this

% linear combination in places whose indices are the same as the
% indices of the constraints that were active at this particular
% extreme point. In the remaining places of the i—th row of Q,
% there will be 0’s:

Q(i,constrs(ind,:)) = templ’;
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end

% $3$
% $3$
% $$3
% $3$
% $3$
% $3$
% $3$
% $3$
% $$3$

disp (7 *);
disp ('The matrix Q is as follows:
disp (7 7);

Q

disp (7 *);

disp (’CHECK: Q*E ==T?’);

disp(” 7);

QE = QxE

T
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%

% f inter.m : Finds an interior point of the given polyhedron

% Ax <=b.

%

% INPUT : Matrices ’A’, b’ such that Ax <=b. ’filename ’ which is
% a character string and contains the name, say, "myfile"
% etc which will be used by f inter (.) to create the file
% myfile. ine.

%

% OUTPUT : Column vector ’x’ which is an interior point of Ax <=0b.
% x = [] means that no interior point of Ax <=b was

% found.

%

% USES : f makine (.) which in turn uses cddf+.

%

% Created on : August 13, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
BOOOBBB66666666666660660668888880000008000089889899999999999999999999996
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non—Windows 98 machines.

% This m—file was written for MATLAB v.4 Student Edition.

%
WOOOBBB888660666666060606606888888880000008080888888899899999999999999999996

function x = f inter (filename ,A,b);

c = [1;

options = [’find_interior’
"dynout_off ’
"stdout_off ’
"logfile off ’1;

name = [filename ’.ine’];

% Place this information in the file given by ’'name’:

f makine (name, options ,c,A,b);
% An .ine file whose name is given by ’'name’ (for example,
% myfile.ine if filename = ’'myfile ’) has been created.

% Launching cddf+.exe to work on filename

fid = fopen(’'mytemp.m’, ’wt’);
% A file mytemp.m is opened for writing.
% The reason for creating mytemp.m is because we want the end
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% result of the following command (whereas the command
% ’!cddf+.exe filename’ will not give that same result):

fprintf(fid, %s\n’, [’!cddf+.exe’ ’ ’ name]);

% The command "!cddf+.exe myfile.ine" (if filename = ’myfile’)
% has been placed in mytemp.m.

fclose (fid);

mytemp;
% This executes the command "!cddf+.exe myfile.ine" (assuming
% filename = 'myfile ’).

0,

%

% Next, we will read the file myfile.lps to find the interior
% point that has been determined by cdd+. If cdd+ finds an

% interior point, it outputs the statment "LP status: a dual
% pair (x, y) of optimal solutions found". Beginning the third
% line after this statement, the coordinates of the interior
% point are presented in the form of a vector which has a

% length of size(A,2)+1. We will extract the first size(A,2)
% elements from this vector. If the said statement is absent in
% interior.lps, then we return x = [].

%

0,

Ipsname = [filename ’.lps’];

% open the file , say, myfile.lps for reading.
fid=fopen (lpsname, ’rt’);

% read in the first line of the file.
line = fgetl(fid);

% find the string ’optimal solutions found’ in the line read above.
KO = findstr(line, ’optimal solutions found’);

K1 = findstr(line, ’begin’);

while (KO == [])& (K1 == []),

line = fgetl(fid);

KO = findstr(line, ’optimal solutions found’);

K1 = findstr(line, ’begin’);
end

if KO == []
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x = [1;
else

while K1 == []

line = fgetl(fid);

K1 = findstr(line, ’begin’);
end

% move down one line after the line in which the string
% "begin" was found. This positions the pointer at the beginning

% of the first element of the vector of the interior point.
line = fgetl(fid);

for i = 1 : size(A,2)

line = fgetl(fid);

[token ,rem] = strtok(line);

x(i,:) = str2num(rem(1,5:size(rem,2)));
end

end

fclose (fid);
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

f makine.m: An m—file to form the file Ax _le b.ine for use by cdd.

INPUT :

OUTPUT :

The matrix A, column vector ’'b’, matrices ’options ’ and
’inename’, and the row vector ¢ = [c0 c1 c¢2 ... ck] of the
objective function (cO + clxx1 + c2xx2 + ... + ckxxk) in

2

case the word ’maximige’ or ’'minimige
elements of ’options’

’

is one of the

The file Ax le b.ine is created.

PRECONDITION : If ’maximize’ or ’minimigze’ is an option, then it

CAUTION :

should be the first row of the matrix ’options’
All rows of ’options’ must be in small letters.

’inename ’ should contain a name and the extension

’ ’

.mne

f makine (.) has been designed to accept only the
following options: hull, verify input, dynout_ off,
stdout_off, logfile on , incidence, #incidence,
input_incidence , nondegenerate, adjacency,
input_adjacency, postanalysis, lexmin, lexmax,
minindex , mincutoff, maxcutoff, mixcutoff, random,
initbasis_at _bottom , maximige, minimige, find interior,
facet listing , tope listing.

If the user wishes to use the options

partial _enumeration , equality , linearity,
strict_inequality , preprojection , gero_tolerance,
round output off, and output _digits , then he needs to
modify the function definition for f makine(.) such
that it will allow for the inputs that accompany these
options.

The options vertex listing cannot be placed in an x.ine
file , so though f makine won’t complain if this option
is input to it, cdd most certainly will.

If the options maximize or minimige are input, then a
valid vector ’'c’ that specifies the objective function
also must be input. If either one of these options is

not chosen, then input ’c = [ ]’ .
Some of the options listed above can be used only with

cdd+ and not with cdd. For an explanation of the
options that can be used with cdd (cdd+), please read
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% cdd’s user manual.

%

% Created on : August 06, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
%009990688009898968800989988808998988880998968888899888889898688998980688898989888%6

function [] = f makine(inename, options,c,A,b)
C2 = A;

d2 = b;

d2C2 = [d2 -C2]7;

width = 5;

% Place this information in the file whose name is in inename:
fid = fopen(inename, 'wt’);

fprintf ( fid, %s\n’, [ ’«File: ’ inename] );
fprintf(fid , '%s\n’, 'H-representation’);
fprintf(fid , "%s\n’, ’begin’);

% The following 2 commands form a line such as "8 5 real"
% that one would find in cdd’s x.ine files.

temp = [num2str(size(C2,1)) ’ > num2str(size (C2,2)+1) ’ * ’real’];
fprintf(fid, %s\n’ ,temp );

% The following piece of code until the end of j’s FOR—loop writes
% the contents of d2C2 to the file whose id is fid (i.e.,
% Ax_le b.ine).

H=1[];
for j = 1:size(d2C2,1),

H=1[1;
for k = 1:size(d2C2,2),
if d2C2(j,k) >= 0,

temp = blanks (width—1-size (num2str(d2C2(j ,k)),2));

item = [’ ’ num2str(d2C2(j,k),width) temp];

% Adding the single space in the beginning of item helps

% left—justify the digits in positive numbers with those of
% negative numbers.

else
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temp = blanks (width—size (num2str (d2C2(j ,k)),2));
item = [num2str(d2C2(j,k),width) ];

end
H=[H item > ’];
end

fprintf (fid , "%s\n’ ,H);
% One row of d2C2 has been written to the file.

end
% All rows of d2C2 have been written to the file.

fprintf(fid , '%s\n’, ’end’);
if size(options,1) > 0

k =1;
if findstr ( options(1,:) , ’maximize’ )

fprintf(fid , '%s\n’, 'maximize’);

% Next, place the vector ’c’ into the file whose name is in
% inename.

H = [];
for i = 1:size(c,2),

H=[H "’ ’ num2str(c(:,i),width)];
end

fprintf (fid , "%s\n’, H);
k = 2;

end
for i = k:size(options,h1)
fprintf ( fid, "%s\n’, options(i,:) );
end
end
fclose (fid);
% End of placing this information in the file whose name is in

% inename.

% End of the function f makine(.)
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%
% f max.m: An m—file to solve the linear programming problem of

% maximizing an objective function over a system of
% inequality constraints Ax <=Db.

%

% INPUT : The row vector ¢ = [cO cl1 ¢2 ... ck] of the objective
% function (cO0 + clxx1 + c2xx2 + ... + ckxxk),

% the matrix A, the column vector b.

%

% OUTPUT : The maximum value of cxx.

%

% USES : f makine which inturn uses cdd (cddf+).

%

% Created on : July 29, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu

%
%08009890888889898888899888889898888099896888889988888989868808989888888898988846
%

% We use cddf+.exe with the ’'maximize’ option specified.

%

W00V 9908888980888889808088888880888889888888888888888888888898888646

function max val = f max(c,A,b)

’

options = [ ’maximize
"dynout_off
"stdout_off ~’
"logfile off’];

’

% Place this information in the file maxim.ine:
f makine (’maxim.ine’,options,c,A,b);
% Launching cddf+.exe to work on maxim. ine:

lcddf+.exe maxim.ine

%

% Next, we will read the file maxim.lps to find the optimal

% value. The x.lps file presents this information in either one
% of the two statements: ’unbounded direction for the primal
% LP’ or ’optimal value : ..... . In the second statement, some
% number is present in the place of the dots.

% The following piece of code checks if the first statement is

% present. If it is, then the code returns max _val = inf, where
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% ’inf’ is a standard MATLAB value. Else, if the first

% statement is not present, then the code looks for the second
% statement (without the ’:’) and extracts the number that is
% present in that statement. The code then returns this number
% as max_val.

fid=fopen( ’maxim.lps’, "rt’);
% open the file maxim.lps for reading.

line = fgetl(fid);
% read in the first line of the file.

KO = findstr(line, ’LP is inconsistent’);

% find the string ’LP is inconsistent ’ in the line read above.
K1 = findstr(line, ’unbounded direction for the primal LP’);
K2 = findstr(line, ’begin’);

while (KO == []) & (K1 == []) & (K2 == []),
line = fgetl(fid);
KO = findstr(line, ’LP is inconsistent’);

K1 = findstr(line, ’unbounded direction for the primal LP’);
K2 = findstr(line, ’begin’);
end
if KO == []
if K1 == [],
s = ’optimal value’;

K3 = findstr(line, ’end’);
K4 findstr (line ,s);

while (K4 == [D&(K3 == [1]),
% This condition is similar to the above while loop
% that uses K1 and K2. Please read that loop’s explanation.

% read the next line.
line = fgetl (fid);

K3 = findstr(line, ’end’);
K4 = findstr(line,s);

end

[token ,rem] = strtok(line);

max_val = str2num(rem(1,4:size(rem,2)));
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else
max_val = inf;
end
else
max_val = [];

end

fclose (fid);
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%
% f pickX.m: Choose some (x0,u0) tuple from PRI.

%

% INPUT : The matrix rev_DB that gives the solution of PRI as
% rev_ DBxx < 0, and the tube parameters T and t.

%

% OUTPUT : A vector ’x’ such that x = [xO0"T uO"~T]"T is in PRI.

%

% USES : Functions f _square(.), f cddX(.) which inturn uses f max(.)
% which inturn uses cdd (cddf+).

%

% Created on : July 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu

%

L BLLLBLLLLLALLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

function x = f pickX(rev_DB,T,t)

x = [1;
templ = — ones( size(rev_DB,1),1 );
rownum = size(rev_DB,1);

colnum = size(rev_DB,2);

if ( rank(rev_DB) == min(rownum, colnum) )& ( rownum < colnum )
% Meaning, if rev_DB is full ranked, and
% if # of rows of rev_DB < # of columns of rev_DB

col inds = f square(rev_DB);
% Obtain the indices of some ’'rownum’ linearly independent
% columns of rev_DB.

X = zeros ( colnum,1 );
x(col _inds,1) = rev._DB(:,col _inds)\templ;

% What we have done in the above 3 lines is this: Since PRI

% needs that rev_DBxx be less than 0, we have arbitrarily

% decided to set rev_DBxx to templ which is a vector of —1’s.

% Next, we have arbitrarily chosen those elements of x to be

% zeros whose indices are absent in col inds.

% I didn’t know how to implement the idea of this last sentence.
% So, I set all elements of x to 0, and then assigned — to those
% of its elements that are indexed by col inds — the value of
% the product inv( rev_DB(:,col _inds) )«templ.

% Now, if we compute the product rev_DBxx, we should get a value
% equal to templ, which is strictly less than 0.

%
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% Here, we have used the equation x = A\b instead of

% x = inv(A)«b.

% That is, instead of

% x(col inds,1) = inv(rev_DB(:,col _inds))xtempl;

% we have used

% x(col inds,1) = rev_DB(:,col _inds)\templ;

%

% Both ways solve the system of linear equations Ax = b.

% But, the first way is about 2—3 times faster and more accurate.
% [Page 468. The student edition of Matlab: version 4 : User’s
% guide/ the Mathworks Inc. 1995.]

elseif ( rank(rev_DB) == min(rownum, colnum) )& ( rownum == colnum )
% Meaning, rev_DB is a full—ranked square matrix.

x = rev_DB\templ;
else
x = f cddX(rev_ DB,T,t);

end
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

f poly2D.m : M—file to draw a 2—D polytope (a bounded convex
polyhedron).

INPUT : Matrix ’verts ’ of dimension m x 2.

OUTPUT : Matrix ’adjverts ’ of dimension m x 2. Also a 2-D
polytope is drawn to screen. Please see below for a
description of ’adjverts’

PRECONDITION : The vertices should belong to a polytope.
Created on : August 15, 2002.

Author : Ramprasad Potluri.
E—mail : potluri@engr.uky.edu

%808098098089809898808989898989889888088888898898898898888888988989889888888808898898980

%
%
%
%
%
%
%
%
%
%
%

This M—file works as follows: It creates a matrix ’adjverts ’ of
dimension m x 2. ’adjverts ’ has been obtained by reordering the
rows of ’verts ’ such that the i—th row of ’adjverts ’ represents a
vertex that is adjacent to the vertex represented by the (i—1)—th
row of ’adjverts ’. Also, the vertices represented by the 1—st and
m-th row of ’adjverts ’ represent vertices that are adjacent.

>

The information in ’adjverts ’ is used by MATLAB’s fill (.)
function to draw the polytope.

WO 880898888898888898888898888898888898888888888888888888888888888s

function adjverts = f poly2D(verts)

m = size(verts ,1);

%

Initialize adjverts:

adjverts = [];

for k1 = 1 : m-2

% Initialize all local variables:

a = [];
b = [];
c = [1;
d = [];
bl = [];
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b2 = [];

k2 = [];

temp = [];
tempvect = [];

% Among those elments that are after the kl—th, beginning with the
% element number kl1+1, search for and find an element that is
% adjacent to the kl—th element:

flag = 0; % This is simply to get the program to go into the
% while loop.

k2 = k1+1;

while (flag == 0)&(k2 <=m)

% For the kl—th element of ’verts’, obtain the coefficients of
% the equation of the line through this element and the k2—th
% element of ’verts’. If (x1,yl) and (x2,y2) are the elements,
% then the equation of the line through them is as follows:

%

% y — ( (y1—2)/(x1—x2) )xx = (y2xx1—y1xx2)/(x1—x2)

%

% Denote a = (y1-y2)/(x1—x2), b = (y2xx1—-yl*x2)/(x1—x2).

= ( verts(kl,2)—verts(k2,2) )/( verts(kl,1)—verts(k2,1) );
bl = ( verts(k2,2)xverts(kl,1)—verts(kl,2)*xverts(k2,1) );
b2 = verts(kl,1)—verts(k2,1);

b = bl/b2;

o

% Test if all the elements of ’verts’ are either on this line
% or on only one side of this line (if they are not, then the
% kl—th and the k2—th elements do not represent adjacent

% vertices):

tempvect = verts(:,2) —axverts (:,1);
% tempvect = y—axx.

f trunc (tempvect,4) <= f trunc(b,4);
f trunc(tempvect,4) >= f trunc(b,4);

c
d

% The function f _trunc(val,num) trucates and rounds ’val’ to

’

% number of decimal places equal to ’'num’.

% ’c’ is a column vector. ’c’ will have 0’s corresponding to
% those elements of ’'tempvect’ that are greater than ’b’.

if ( min(c) == 0)&(max(c) == 1 )&( min(d) == 0 )& ( max(d) == 1)
flag = 0;
k2 = k2 + 1; % Try another k2.

else
flag = 1;
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end
end

% Swap the (kl1+1)—th row of ’verts’ with the k2—th row of ’verts ’:

temp = verts(kl+1,:);
verts (k1+1,:) = verts(k2,:);
verts (k2,:) = temp;

end

adjverts = f trunc(verts ,4);

fill (adjverts (:,1),adjverts (:,2),’r’);

185



WBOOOBBB08888888806066088688888888080800888888888898898999999999999999996
%
% f square.m: Returns the indices of those columns (or rows) of a

% rectangular matrix that are linearly independent.
%

% INPUT : The matrix A

%

% OUTPUT : The vector ’indices ’ that contains the indices of the
% columns (or rows) that are linearly independent.

%

% PRECONDITION : A must be of full rank and not—square.

%

% USES : The function f mcn(.).

%

% Created on : July 30, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu

%

WOV 9909898089880896898968898888988088988989888988888808896898988898888880889808989646

function indices = f square (A)

cols size (A,2);
rows = size(A,1);
indexes = [];
if rows < cols
indexes = f mcn(cols ,rows);
i=1;
while rank ( A( :,indexes(i,:) ) ) < rows
i=1+ 1;
end
elseif cols < rows
indexes = f mcn(rows, cols);
i=1;
while rank( A( indexes(i,:),: ) ) < cols
i=1+ 1;
end

end

indices = indexes(i,:);
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%

% f TinPR1.m : An m—file implementation of the function f TinPRI1(.).

%
%
%
%
%
%
%
%
%
%
%
%
%

Tests if Tube(T,t) lies completely within the
projection of PRI onto the x0 coordinates.

Tube(T,t) is in PRI if

[t] i = max{[T] ix | x \in closure(PR1), x \in Tube}
is true for i = 1,...,m T. Here [X] i is the i—th
row of X, m T is number of rows of T.

For details please see the paper titled
"Reachability of target tube in a new class of
uncertain systems represented by linear constraints"
by Ramprasd Potluri and L.E.Holloway.

% INPUT : The matrices rev_ DB, T, and t which are such that

%
%
%

rev._DBxx < 0 is the solution set of PRI, and Tx <=1t is
the Tube(T,t).

% OUTPUT : a scalar x. x = 0 if Tube(T,t) does not intersect

%
%
%
%
%
%
%

%

proj xO{PR1}, x = 1 if proj xO{PR1} does not completely
contain Tube(T,t), and x = 2 if proj xO{PR1} contains
Tube(T, t).

USES : f max(.) which inturn use cdd (cddf+), and the m—file scs.m.

Created on : August 06, 2002.
% Author : Ramprasad Potluri.
% E—mail : potluri@engr.uky.edu

W09 09890098088098808898808088988088988088898808088988088898888888808898886

%
%
%

%

User does not need to modify anything beyond this point, unless he
wishes to use this m—file on non—Windows 98 machines. This m—file
% was written for MATLAB v.4 Student Edition.

B A g g s g A g A g s g s g s A A s A A A L O L G A

function x = f TinPR1(rev_DB,T,t);

% Compare [t] i with max of [T] ix over rev_ DBxx < 0, Tx \le t.

ml
nl
m2
n2

size(rev_DB,1); % Number of rows of rev_DB
size(rev_DB,2); % Number of columns of rev_DB
size (T,1);

size (T,2);
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A = [ rev_DB;
[T, zeros( m2, nl1-n2 )] ];
b = [ zeros(ml,1);
t1;
c=[0,T(1,:), zeros( 1, nl-n2 ) ];

max val = f max( ¢ , A , b );

if max val == [] % IF#3

x = 0;

% Tube does not intersect PRI.
else

if t(1) == max_val % IF#4

i = 2;
temp = O;
while (i <=m2) & (temp == 0)

if t(i) ==f max( [0,T(i,:),pad row], A , b))
i=1i+4+ 1;
else
temp = 1;
end
end
else % IF#4
i =1;
temp = 1;
end % IF#4

if i==m2+1 % IF#5

X = 2;
% proj xO{PR1} contains Tube completely.
else % IF#5
x = 1;
% proj x0{PR1} contains Tube INcompletely.
end % IF#5
end % IF#3
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WBOOOBBB08888888806066088688888888080800888888888898898999999999999999996
%
% f trunc.m : M-file to truncate and round numbers to specified

% numbers of decimal places.

%

% INPUT : ’val’ — the number which needs to be truncated, ’num’ —
% the number of decimal places to which ’val’ needs to be
% truncated.

%

% OUTPUT : ’truncval’ — the turncated number.

%

% Created on : August 15, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
WOOOBBB86686666066660666688888080000000008888998999999999999999999999996

function truncval = f trunc(val ,num)

truncval = round(val*(10"num))/(10 " num);
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WBOOOBBB08888888806066088688888888080800888888888898898999999999999999996
%
% f tstmnt.m : Determines if the given Tube(T,t) is maintainable as

% explained in the paper titled "Reachability of

% target tube in a new class of uncertain systems

% represented by linear constraints" by Ramprasad

% Potluri and L.E.Holloway.

%

% INPUT : verts ( generated by f verts(.) ),Q,t,F,B.

%

% OUTPUT : x = 0 if Tube(T,t) NOT maintainable.

% x = 1 otherwise.

% vertcntrls = [] if Tube(T,t) is not maintainable.

% If Tube(T,t) is maintainable, then the i—th row of the
% matrix ’vertcntrls ’ represents a maintaining control for
% the i—th vertex of Tube(T,t).

%

% USES : f makine (.), cddf+.

%

% Created on : August 08, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%

OOV 880088880880088888888888888888800808088088888880866
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non—Windows 98 machines.

% This m—file was written for MATLAB v.4 Student Edition.

%
9%B0000908808888080888888808888088808880888888888808808808088888888880866

function [x,vertcntrls] = f tstmnt(verts ,Q,t,F,B)

N = size(verts,1);

% Test if QBuO <= t—QFx0i is feasible ( x01,x02,..,xON are the
% vertices of the tube):

for i = 1:N,

A
b

QxB;

t — QxFxverts(i,:)’;

name = [’ftstmnt’ num2str(i)];
temp = f inter (name,A,b);

if temp == []
% Meaning, no interior point was found for QBuO <= t—QFxO0i
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x = 0;

vertcntrls = [];

break;
else

x = 1;

vertcntrls(i,:) = temp’;
end

end
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BV 990000808808999808888899888808888898888808888998888808880088888088806
%
% f tube.m : Gives a bounded irredundant

% Tube(T,t) :={ x | Tx <=1t }.

%

% INPUT : mT (number of rows of T and t), nT (number of columns

% of T; nT is the same as the dimension of the state

% space); numties is the maximum number of random values of
% t’ to try.

%

% OUTPUT : T, t such that Tx <=t is bounded and irredundant, and
% the constant ’tubetries ’. Since, we randomly generate
% T and t, ’tubetries ’ gives the number of trials made

% before we find a bounded, irredundant system Tx <=1t. If
% no valid ’t’ is found in numtries number of attempts,

% then T =[], t = [] are returned.

%

% PRECONDITION : mT >= nT+1.

%

% USES : f bound(.) (which in turn uses cdd/cddf+) and f scs (.).

% Created on : July 29, 2002.
% Modfied on : August 14, 2002.
% Author : Ramprasad Potluri.
% E—mail : potluri@engr.uky.edu

WOV 090000900900090088980089808089808088988008898986

function [T,t,tubetries] = f tube (mT,nT, numtries)

% First, let us determine a T which will give a bounded Tube.

T = randn ([mT,nT]);
tubetries = 1;

flag = f bound(T);

while flag == 0
T = randn ([mT,nT]);
flag = f bound(T);
tubetries = tubetries+1;
end

% Next, let us determine a ’'t’ which will give an irredundant tube.
% For this, we will first determine the set of all values of t for
% which Tx <=t will be irredundant.

% Then we will randomly generate t until we find one that is an

% element of the said set.
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%

% Note that, if x is 1-D, then mT = 2, nT = 1, and the tube is

% always irredundant. Since, f scs (.) that we use below requires
% that x be at least 2—D, we will test for the irredundancy of the
% tube only if we have at least a 2—D system.

if nT >=2

[rev D,rev. DB] = f scs(T,[]1);

% We have used the function f _scs (.). For a null second argument
% in the input, this function returns a null value of rev_DB.

% The set of all values of t for which Tx <=t is irredundant is
% given by rev_Dxt < 0.

t = randn([mT,1]);

flag = (rev_Dxt < 0);

while (min(flag) == 0)&(tubetries < numtries)
t = randn([mT,1]);
flag = (rev_Dxt < 0);
tubetries = tubetries+1;

end

if min(flag)==

T = [1;
t = [1;
end

else
t = randn([mT,1]);

% Test for the satisfaction of the condition
% [—1, al/a2]*[bl;b2] <= 0:

flag = ([—-1, T(1,1)/T(2,1)]+t <= 0);

while (flag == 0)&(tubetries < numtries)
t = randn([mT,1]);
flag = ([—-1, T(1,1)/T(2,1)]xt <= 0);
tubetries = tubetries + 1;

end

end
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%

% f verts.m : Enumerates the vertics of Ax <=Db.

%

% INPUT : A,b.

%

% OUTPUT : Matrix ’verts ’ whose rows represents the vertices.

%

% PRECONDITION : Ax <= b must be bounded. You can use f bound(.) to

% test this. Neither of A and b should be empty.
%

% USES : f makine (.), cdd/cddf+.

%

% Created on : August 12, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
9%9980808080898880808898888088898888888888888888889888888888888888888988808888888880
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non—Windows 98 machines.

% This m-file was written for MATLAB v.4 Student Edition.

%
BOOOOOB88868688888888888888080000000008888888888889898999989898989898989898989898980

function verts = f verts(A,b)

’

options = [’dynout_off
"stdout_off ~’
"logfile off’ 1;

c =11

name = ’verts.ine’;

% Place this information in the file verts.ine:

f makine (name, options ,c,A,b);

% Launching cddf+.exe to work on verts.ine:

!cddf+.exe verts.ine

% A file —— verts.ext has been generated by cddf+.

% Get vertices of Ax <=Db from the file verts.ext

fid=fopen(’verts.ext’, 'rt’);
% open the file Reach.ext for reading.
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line = fgetl(fid);
% read in the first line of the file.

KO = findstr (line, ’Number of Vertices’);
% find the string ’Number of Vertices ’ in the line read above.

while KO == [],

line = fgetl(fid);

KO = findstr (line, ’Number of Vertices’);
end

% Now that we have found the line that contains the number of
% vertices , in the following two command lines , we will extract

% this number of vertices and assign it to the variable ’'N’.

token = strtok(line,’,’);
N = str2num (token (1,22:size (token,2)));

if N>0

% Next, we will move 3 lines past the line that contained "Number
% of Vertices".

for i = 1:3,
line = fgetl(fid);
end

% Then, we will read the contents of the next N lines. These next
% N lines give us the coordinates of the vertices.

n = size(A,2);
temp = fscanf(fid, %f’ ,[n+1,N]);

verts = temp(2:n+1,:)’;
else

verts = [];
end
fclose (fid);

% Now, the matrix ’verts ’ contains the coordinates of the vertices
% of Ax <=b. Each row of verts represents one vertex of Ax <=Db.
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WOOOBBB88888880880860668888888888880000088888888889999999999999999999996
%

% mcntemp.m: file generated by f mcn.m

%
WOOOBBB666666666666668888888080000000008989888999999999899999999999996

aa=[];

x1 = 0;

for x2 =x1 + 1 : 4,
for x3 =x2 +1:5,
bb =[ x2 x3 ];
aa = [aa; bb];

end

end
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WOOOBBB88888880880860668888888888880000088888888889999999999999999999996
%

% mytemp.m : File created by f inter.m

%
WOOOBBB666666666666668888888080000000008989888999999999899999999999996

lcddf+.exe ftstmnt5.ine
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%
% pre_pros.m : Accomplishes the preprocessing needed to test the

% theory of maintainability presented in the paper
% titled "Reachability of target tube in a new class
% of uncertain systems represented by linear

% constraints" by Ramprasd Potluri and L.E.Holloway.
%

% USES : f EFB(.), f tube(.), f scs(.), f TinPR1(.), f findQ(.),
% f verts (.), f tstmnt (.) which inturn use other functions.
%

% Please see README. txt for a complete tree of which

% functions use which.

%

% Created on : June 29, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu

%

WOV 9909898089880896898968898888988088988989888988888808896898988898888880889808989646
%

% User does not need to modify anything beyond this point, unless he
% wishes to use this m—file on non—Windows 98 machines. This m—file
% was written for MATLAB v.4 Student Edition.

%

WOV V960998098808988998898888988889889898898888888898889898898888880880899646

diary controll. txt

tic

% Create a bounded EFB system in regular form.
m = 5; % number of rows of EFB.

nE = 2; % number of columns of E or F.

nB = 2; % number of columns of B.

[E,F,B,EFBtries] = f EFB(m,nE,nB);

disp(’ ’);

disp(’The matrices E, F, B in the SD system Exl <= Fx0 + Bu0O are:’);
disp(’ 7);

disp(’ ’);

E

F

B

disp(* *);

disp(’ 7);

disp(’This SD system is bounded. ’);

0,

(64
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% Create a bounded irredundant tube Tube(T,t) := { x | Tx <=1t }
% and test if it is bounded.

ml = 5;

nT = nE;

numtries = 50; % Maximum number of random values of ’t’ to try.
[T,t,tubetries] = f tube (mT,nT, numtries);

% If a tube is not found in a maximum of numtries number of tries,
% then f tube(.) returns T =[] and t = [].

if (size(T,1)==0) % IF #1

disp ([’A tube was not found in ’ num2str(numtries) ’ attempts’]);

else % IF #1
disp(’ ’);
disp (’The tube Tx1l <=t is given by the following T, t:’);
disp(’ ’);
T
t
disp(’ ’);
disp (’This tube is bounded and irredundant’);
disp(’ ’);
toc
% IF #1
tic

% Determine the set PRI of all (x0,u0) tuples for which
% Reach(x0,u0) is irredundant.

A = E;
C = [F BJ;
if nE ==
rev. D = [—-1,A(1,1)/A(2,1)]; % The system Ax <=b, where ’b’
% belongs to the set of all b’ such
% that rev_Dxb <= 0, is irredundant.
rev. DB = rev_DxC; % The system Ax <= Cy, where y belongs to the
% set of all 'y’ such that rev_DBxy <=0, is
% irredundant.
else
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% This can be done with the help of the program scs.m that is in
% the folder C:\MATLAB\Matfiles\research\SCS.

% I have set the appropriate path in the file

% C:\MATLAB\Matlabrc.m.

% The m—file scs.m works on the system Ax <= Cy.

% In the case of our EFB system, this is

% Ex1 <= [F B]«[x0"T u0"~T]"T.

% A and C are used by scs.m.
[rev. D,rev. DB] = f scs(A,C);
end

disp(’ ’);

disp(’The set PR1 of all (x0,u0) tuples for which Reach(x0,u0)’);
disp(’is irredundant is given by rev_DBx[x0"T u0~T]"T < 0,’);
disp (’where rev_ DB is as follows:’);

disp(’ ’);

rev_DB

0,

(64

% Test if Tube(T,t) lies completely within the projection of PRI
% onto the x0 coordinates. Tube(T,t) is

% in PR1 if [t] i = max{ [T] ix | x \in closure(PR1), x in Tube }
% is true for i = 1,...,mT. Here [X] i represents the i—th row of
% X, m_T is number of rows of T. (m_T is also specified in the

% file spec_tub.m).

% Compare [t] i with max of [T] ix over rev_DBxx < 0, Tx \le t :
x = f TinPR1(rev DB,T,t);

if x ==
disp (’Sorry! The Tube does not intersect proj x0{PR1}’);

% One reason for why we care for whether Tube intersects

% proj xO{PR1} is because in the function f findQ (.) below, we
% choose an (x0,u0) from the intersection of PRI and Tube(T,t)
% because cddf+ does not work with homogeneous systems of

% inequalities. So, if we ask it to find an interior point from,
% say, Ax <=0, it won’t find one.

elseif x ==

disp(’ ’);
disp (’Well! proj x0{PR1} contains this Tube INCOMPLETELY. ’);
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disp(’ ’);

else
% x =2
disp(’ ’);

disp (’Congratulations! The Tube is a subset of PR1’);
disp(’ ’);
end

0,

(64

if (x==1|x==2)

Q = f findQ (rev_DB,T,t,E,F,B)

verts = f verts(T,t)

[x1,vertcntrls] = f tstmnt(verts ,Q,t,F,B)

% x = 0 if Tube is not maintainable, x = 1 if maintainable.

if x1 ==
disp(’Sorry! Tube(T,t) is not maintainable.’);
dips (’Try tweaking "t". ’);

else

disp(’Congratulations! Tube(T,t) is maintainable.’);
end

end

0,

6 IF #1

end % IF #1

toc

diary off
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WOOOBBB88888880880860668888888888880000088888888889999999999999999999996
%

% ptope.m : An example of obtaining an irredundant tube in 2D and

% plotting its cross—section.

%
WOOOBBB8886886066066060608688888888000000888888888899999999899999999999996

[T,t,tubetries] = f tube(5,2,50);
if size(T,1) > O

tic

verts = f verts(T,t)

toc

adjverts = f poly2D(verts)

end
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%
% Z.m : This was written to test some parts of the program. This is

% not a part of the program itself.
%

B g A g g A g A g A g s g A i A s A A A G A L G L

mt = 7;
nt = 3;

Z = randn(mt, nt);
while rank(Z) < min( mt,nt )
Z = randn(mt, nt);

end

Z
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%

% controll.txt : Example result of pre _pros.m

%
WOOBOBBB6866666666866606066888888800000000000009888889899999999999999999986

The matrices E, F, B in the SD system Exl <= Fx0 + BuO are:

E —
—1.4462 —0.3600
—0.7012 —0.1356
1.2460 —1.3493
—0.6390 —1.2704
0.5774 0.9846

F =
—0.0449 0.5135
—0.7989 0.3967
—0.7652 0.7562
0.8617 0.4005
—0.0562 —1.3414

B =

0.3750 —0.3229
1.1252 0.3180
0.7286 —0.5112
—-2.3775 —0.0020
—0.2738 1.6065

This SD system is bounded.

The tube Tx1 <=t is given by the following T, t:

0.8476 —0.5571
0.2681 —0.3367
—0.9235 0.4152
—0.0705 1.5578
0.1479  —2.4443

204



0.5360
0.2985
0.2840
0.9597
2.0876

This tube is bounded and irredundant

elapsed time =

4.3900

The set PR1 of all (x0,u0) tuples for which Reach(x0,u0)
is irredundant is given by rev_DBx[x0"T uO"T]"T < O,
where rev_DB is as follows:

rev_DB =

1.4915 -0.3074 —-1.7071 —0.9583
—-0.7737 0.2004 0.9491 0.4061
—16.0079 24.4836 52.8296 —38.1064
1.4199 —0.6291 —3.2475 0.6693
3.1656 —1.0148 —-5.3703 —0.3307

Well! proj xO{PR1} contains this Tube INCOMPLETELY.
An (x0,u0) tuple that satisfies both PR1 and Tube(T,t)
is as follows:
x0u0 =

—0.0090

—0.8484

0.1621
—0.0147

CHECK : For this (x0,u0), the value of the product
rev._DBx[x0"T u0”T]™T must be negative:
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revDBx0u0 =

—0.0152
—0.0152
—11.5059
—0.0152
—0.0331

Reach (x0,u0) for this (x0,u0) is given by E <= [F B]*x0u0

Q =
0 0 0.5764 0 0.2242
0 0 0.2273 0.0236 0
0 1.8772 0 0 0.6802
0 1.5828 0 0 1.8002
0 0 0.7156 1.1639 0
verts =
0.1045 —0.8032
1.0690 0.6644
—0.0312 0.6146
0.0439 —0.8514
—0.7109 —-0.8971
x1 =
1
vertcntrls =

—1.0270 0.1189
—-0.3627 1.0515
—0.6292 0.7197
—1.0555 0.0805
—1.2428 —0.1428
Congratulations! Tube(T,t) is maintainable.

elapsed time =

8.7900
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Appendix G

MATLAB Program Listings for the
Q-Matrix Method of Maintaining a
Halfspace System in a Tube

%0809808098 V0000008098080 898809880988888 L)
%

% control.m : To maintain system states in the tube, this m—file

% executes the control alogrithm developed in the paper

% titled "Reachability of target tube in a new class of
% uncertain systems represented by linear constraints" by
% Ramprasd Potluri and L.E.Holloway.

%

% Also, performs sensing when required.

%

% INPUT : The matrices ’verts ’ (each row of this matrix represents a
% vertex of the tube Tx <=t), ’vertcntrls > (the i—th row of
% ‘vertcntrls ’ gives a maintaining control for the i—th row of
% ‘verts '), E’, 'F’, B’ (these three matrices specify the
% EFB system), 'T’, ’t’(these two matrices specify the tube),
% ’Q’, ’rev_DB’ (rev_DB defines the set of all (x0,u0) tuples
% for which the system Exl <= Fx0 + BuO is irredundant), ’x0’
% (an intial state which has maintaining controls), ’horizon’
% (this specifies the time horizon over which we want to

% maintain the system’s states in the tube, ’step’ (this is
% the length of the time—step for the control).

%

% All the above matrices can be generated by running the

% m—file pre pros.m

%

% USES : The functions f _inter (.), f genx(.)

%

% Created on : August 13, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr. uky.edu

%
WBOOOOB88888880666066088888888888000800888888888899888899999999999999996
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%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non—Windows 98 machines.

% This m—file was written for MATLAB v.4 Student Edition.

%
WOOOBOOB8888686666060606866888888880808008888888888989989999999999999999996

diary control2. txt
vhum = size(verts ,1); % vnum is the number of vertices of the tube.

n = size(verts ,2); % n is the dimension of the state—space.

% Generate a random initial state xOp which is in Tube(T,t). This
% random state is generated by taking a random mean of all the
% vertices as follows:

randinds = randperm(vnum); % The MATLAB function randperm(n) gives
% a random permutation of the elements

% of 1:n. ’randinds’ is a row vector.

x0p = (1/vnum)x*(verts ’«randinds ’); % xOp is a column vector.

0,

(64

numsteps = 50; % Total number of time steps over which we want to
% control the system.

>

states (:,1) = x0p; % The matrix ’states ’ stores the information

% about the states.
for i = 1:numsteps

% So far , we have generated a random initial state x0 that is

% inside the tube.

%

% Next, we will first see if, in the absence of any control,

% Reach(x0,0) will be inside the tube. If it will not be, then we
% will compute a control u0 such that Reach(x0,u0) will be inside
% the tube.

%

% Then, we will store the definition of this Reach set in XI.

if (Q«Fxx0p <= t)
% Meaning, if Reach(xOp,0) is in Tube(T,t), then:

% disp (’Reach(x0p,0) is in Tube(T,t)’);
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% Denote Rch := Reach(x0p,0):
Rch = [E,Fxx0p];
cntrls (1:size(F,2),i) = zeros(size(F,2),1);

else
A = [verts’
ones (1,vnum)
—verts’
—ones (1,vnum)
—eye(voum)  ];
b = [x0p
1
—x0p
—1
zeros (vhum, 1) ];
filename = ’lambdas’;
tic

lambda = f inter (filename ,A,b); % f inter.m is a file in the
% folder TstMaint. f inter (.)
% returns a column vector.
toc
% f inter (.) took 1.04 seconds to find an interior point of
% Ax <=b.

% Determine a maintaining control for x0:
uOp = vertcntrls "«lambda; % uOp is a column vector.

% Denote Rch := Reach (x0p,uOp):
Rch = [E,F«x0p+Bxulp];
cntrls (1:size(F,2),i) = uOp;

end

0,

(64

% Check if the one—step evolution of the system from the Reach set
% given by X1 in the absence of a control will be within the tube.

%

% For this, we can test if the Reach sets from each of the extreme

% points of X1 in the absence of a control will be inside the
% tube. However, this method will need us once more to resort to

% cdd / cddf+ to find the extreme points of X1. For a 5x2 system Tx
% <=t, using cdd/cddf+ takes 0.88 — 1.2 seconds on my Windows 98

% HP Pavilion 8660C PC which has 128 MB of RAM and a processor
% speed of 533 MHz.
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% Instead , we can take the basic solutions of X1 that will be

% obtained through the linear combinations of its rows if we were
% to use Q. Then, from these basic solutions , we can consider the
% one—step evolution of the system (Reach sets) as mentioned in the
% previous paragraph. This, will be a "harsher" test as explained
% in Chapter 6 of the dissertation.

% flag = 0, if the one—step evolution will not be inside the tube.
% flag 1, otherwise.
%

0,

(64

%if flag =0
x1 = f genx(Rch); % x1 is a column vector.

% f genx (.) generates a state that is in Reach(x0,u0) using the
% information in Rch.

%

% In practice, we will use f sense (.) which will give us the

% system’s state as obtained from sensing. However, for the

% purposes of this algorithm, we use f genx(.).

% Assign this x1 to x0:
x0p = x1;

% Also store this xI in states:
states (:,1i) = x1;

%else

%

% Here, one may add functionality to bring the evolution back into
% the tube. This functionality has not be implemented in this

% dissertation.

%

%end

end % End of FOR.

states;
cntrls;

0,
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diary off
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% Next, we want to plot the data we obtained in the matrix
% ’states .

i = l:numsteps;
for j = 1:n
figure
subplot(2,1,1)
plot(i,states(j,:)), xlabel(’k’), ylabel([’x’ num2str(j)]);
subplot(2,1,2)
plot(i,cntrls(j,:)), xlabel(’k’), ylabel([’u’ num2str(j)]);
% print —deps exmaint.eps
end

% plotting controls needs to be seperate from plotting states. The
% number of controls may be different from the number of states.
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W00 898988889808988889888888888888889888888888888888888888888888%6
%

% f genx.m : Generates a state that is in Reach(x0,u0).

%

% INPUT : The matrix ’Rch’ which stores the information

% Ex1 <= Fx0+BuO as shown in the m—file control.m.

%

% OUTPUT : A row vector x1 which satisfies Exl <= Fx0+Bu0.

%

% PRECONDITION : The last column of Rch is the vector Fx0+BuO. Rch

% is of the form Rch = [E, Fx0+BuO].

%

% USES : f bound(.) , f max(.) both of which inturn use cdd (cddf+),
% and f scs (.).

%

% Created on : August 10, 2002.

% Author : Ramprasad Potluri.

% E—mail : potluri@engr.uky.edu

%
%080098988888898988888898988888898988880898989888888998888888988880889888888898986646
%

% User does not need to modify anything beyond this point,

% unless he wishes to use this m—file on non—Windows 98 machines.

% This m-file was written for MATLAB v.4 Student Edition.

%
%080089898988888898988888889888808898888888989888888898888888988888889888888898988646

function x1 = f genx(Rch)

filename = ’genx’;
n = size(Rch,2);

x1 = f inter (filename ,Rch(:,1:n—1),Rch(:,n));

% f inter.m is a file in the folder TstMaint.
% f inter (.) returns a column vector.
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WBOOOBBB08888888806066088688888888080800888888888898898999999999999999996
%

% spec.m : A sample specifications file to test the maintainability
% algorithm.

%

% Author : Ramprasad Potluri

% E—mail : potluri@engr. uky.edu

%
BOOOBBBB8866668886888888888000000000088888898899999999999999999999986

E =1[-1.4462 —0.3600
—-0.7012 —-0.1356
1.2460 —1.3493
—0.6390 —1.2704
0.5774 0.98461];

F = [-0.0449 0.5135
—0.7989 0.3967
—0.7652 0.7562

0.8617 0.4005
—0.0562 —1.3414];

B = [0.3750 —0.3229
1.1252 0.3180
0.7286 —0.5112

—2.3775  —0.0020
—0.2738 1.60651;

T = [0.8476 —0.5571
0.2681 —0.3367
—0.9235 0.4152
—0.0705 1.5578
0.1479 —2.4443];

t = [0.5360
0.2985
0.2840
0.9597
2.08761];

rev. DB = [ 1.4915 —-0.3074 —-1.7071 —0.9583
—-0.7737 0.2004 0.9491 0.4061

—16.0079 24.4836 52.8296 —38.1064

1.4199 —0.6291 —3.2475 0.6693
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3.1656 —-1.0148 —-5.3703 —0.33071;

Q=10 0 0.5764 0 0.2242
0 0 0.2273 0.0236 0
0 1.8772 0 0 0.6802
0 1.5828 0 0 1.8002
0 0 0.7156 1.1639 01;

verts = [ 0.1045 —0.8032
1.0690 0.6644
—0.0312 0.6146
0.0439 —-0.8514
—0.7109 —-0.89711];

vertcntrls = [—-1.0270 0.1189
—-0.3627 1.0515
—0.6292 0.7197
—1.0555 0.0805
—1.2428 —0.1428];
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The following figures illustrate maintaining a system in a tube. The specifications can

be found in the m-file spec.m. x = [x; x»|" is the state, and u = [u; u,]" is the control.
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