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By the name HALFSPACE SYSTEMS, this dissertation refers to systems whose dy-

namics are modeled by linear constraints of the form Exk+1 ≤ Fxk + Buk (where

E, F ∈ <m×n, B ∈ <m×p). This dissertation explores the concepts of BOUNDEDNESS,

STABILITY, IRREDUNDANCY, and MAINTAINABILITY (which is the same as REACHABIL-

ITY OF A TARGET TUBE) that are related to the control of halfspace systems. Given

that a halfspace system is bounded, and that a given static target tube is reachable

for this system, this dissertation presents algorithms to MAINTAIN the system in this

target tube. A DIFFERENCE INCLUSION has the form xk+1 = Axk + Buuk, where

xk, xk+1 ∈ <n, uk ∈ <p, A ∈ <n×n, Bu ∈ <n×p, Ai ∈ <n×n, Bj ∈ <n×p, and A and

Bu belong to the convex hulls of (A1, A2, . . . , Aq) and (B1, B2, . . . , Br) respectively.

This dissertation investigates the possibility that halfspace systems have equivalent

difference inclusion representation for the case of uk = 0. An affirmitive result in

this direction may make it possible to apply to halfspace systems the control theory

that exists for difference inclusions.
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Chapter 1

Introduction

The present research was supported by a grant titled ACTIVE SENSING POLICIES FOR

SYSTEMS WITH OBSERVATION COST. The primary goal of the grant was to develop

sensing policies to minimize some sensing cost for systems modeled and sensed with

uncertainty, and in which there may be a cost involved in sensing. A secondary goal

of the grant was to develop these policies in the SLACK-DESCRIPTOR framework.

Active sensing, as defined by L.E. Holloway in [Hol93], is different from con-

ventional sensing methods in that the focus is on sensing with a view to conserve

system resources as the sensing carries a certain cost. Thus, active sensing involves

sensing only when absolutely necessary instead of continuously or frequently or

periodically. Work in active sensing was suggested by Holloway in the context of

smart sensors [Hol93]. Smart sensors have local memory and processing resources

that allow them to store and process sensing information until requested. Thus,

they also have the potential capability to provide error and warning messages, and

interval-valued observations, which can be expressed through linear constraints. In-

corporating such linearly-constrained observations into the system dynamics results

in the state of the system being set-valued and linearly constrained. To express the

resulting set-valued evolution of the state, [Hol93] proposed the slack-descriptor

modeling framework. A set of linear inequalities can be transformed into a set of

equations by appending slack variables as is done in linear programming. The re-

sulting system has the form of a descriptor system with slack variables attached.

Hence the name ‘slack-descriptor’ systems. When this model was proposed, it was

hoped that some of the established results for descriptor systems could be exploited

in working with these models.
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This dissertation mainly works with the systems of linear inequalities from which

slack-descriptor systems are derived. In this dissertation these systems of linear

inequalities are called HALFSPACE SYSTEMS because each linear inequality represents

a halfspace.

In the years since [Hol93], some results in active sensing were presented using

the slack-descriptor framework [LLH95, LLH96]. However, little has been done to

relate active sensing to the control of the plant.

As a first step towards developing control techniques in the halfspace frame-

work, MAINTAINABILITY IN A TUBE is considered as the control specification. Let

Tube be a subset of states, and let the control goal be to maintain the state of the

system within the set Tube. Thus, given a x0 ∈ Tube , find a control u0 such that

Reach1(x0, u0) ⊆ Tube. (Here, Reach1(x0, u0) is the set of next possible states from

a given current state x0 under a control u0). If such a maintaining control exists

for each such x0 , then the system state can be kept within the tube indefinitely.

However, the existence of such controls is not guaranteed, in general, because of

uncertainty in the system dynamics. A given tube is called MAINTAINABLE if a main-

taining control exists for each x0 ∈ Tube. Algorithms are presented to test for the

maintainability of a slack-descriptor system in a given static target tube, as well as

to maintain a slack-descriptor system in a maintainable static target tube.

As the next step towards developing control techniques in the halfspace frame-

work, the possibility that halfspace systems may be related to DIFFERENCE INCLU-

SIONS is explored. Demonstrating that they are related may make it possible to

apply the existing difference inclusion control theory to the control of halfspace

systems, while also benefiting the difference inclusion theory.

Set-based state estimates have been considered by several other authors. Early

work by Witsenhausen considered state sets as general convex sets [Wit68].

Schweppe focused on ellipsoidal state estimate sets [Sch73]. An overview of recent

research is found in the edited volume by Kurzhanski and Veliov [KV94]. Several

authors have considered set-based state estimates using linear constraints. Shamma

and Tu considered the optimal state estimates for uncertain systems with additive

uncertainty [SYT89]. Bertsekas and Rhodes [BR71] considered the problems of

2



REACHABILITY OF TARGET SET and REACHABILITY OF TARGET TUBE. The MAINTAIN-

ABILITY IN A TUBE problem is conceptually similar to their second problem with the

difference that the tube in the present work is static. For a given dynamical system,

Aubin et al [ALQS02] define a set of states, K, as VIABLE if for all initial conditions

in K there exists a solution of the dynamical system that remains in K. Maintain-

ability is the same as viability. The present work differs from the works of these

authors in that it uses a new modeling framework which has called for new tech-

niques. Another difference is that, in forming a halfspace model, the modeler may

not need to distinguish between plant uncertainty and uncertainty due to external

disturbances or noise (since a halfspace model neither assumes nor explicitly rep-

resents parametric uncertainty alone). This may mean that a halfspace model can

potentially simplify a modeler’s job.

This dissertation is organized as follows. Chapter 2 describes the halfspace/

slack-descriptor modeling framework with a modeling example, and describes prior

work done in this area. Chapters 3 and 4 focus specifically on slack-descriptor sys-

tems. Chapter 3 presents a test for boundedness of slack-descriptor systems and

briefly discusses the relationship between boundedness and stability. This chap-

ter also defines the problem of maintainability. Chapter 4 treats the problem of

maintainability of bounded slack-descriptor systems and shows that the set of main-

taining controls can be characterized using a matrix Q. This chapter also presents

an algorithm to maintain the given slack-descriptor system in a target tube that

has been found to be reachable for this system. This algorithm uses the result of

Chapter 5. Chapter 5 studies the problem of irredundancy of a system Ax ≤ b of

linear inequalities and presents ways to determine the set of all values of vector b

for which this system is irredundant. Chapters 6 and 7 focus specifically on halfs-

pace systems. Chapter 6 treats the problem of maintainability of halfspace systems.

It presents methods both for testing for the reachability of a target tube and for

maintaining a halfspace system in a reachable target tube. Chapter 7 investigates

the relationship between halfspace systems and difference inclusions. Chapter 8

concludes the dissertation with a discussion of the results and some directions for

future research.

3



Chapter 2

Halfspace Systems and Slack-Descriptor

Systems

2.1 How They Are Obtained

The slack-descriptor modeling framework may be especially useful for complex,

hard-to-model systems. This framework was proposed as a potential generalization

and extension of a difference inclusion and discrete-time interval systems (Chap-

ter 7 is devoted to this connection). The slack-descriptor framework has its roots

in Holloway’s doctoral research a decade ago [Hol91] and was later developed in

several of his works with co-authors [Hol93, LLH95, LLH96, Che98, PH00].

Notation 2.1 In the present work, instances of variables are represented by ap-

pending superscripts to the corresponding variables. For example, an instance of

x is x1; instances of x1, x0, u0 are x1
1, xv

0, us
0 etc. However, the superscript T is

reserved for the matrix and vector transpose operation. [Γ ]i will represent the i-th

row of Γ , where Γ is any matrix or column vector that will be encountered in this

dissertation.

The slack-descriptor model has the following form:

Exk+1 = Fxk + Buk + Vv (2.1)

where E, F ∈ <m×n, B ∈ <m×p, V ∈ <m×q, xk+1, xk ∈ <n, uk ∈ <p, v ∈ <q, and

v ≥ 0.

4



For cases where V = −I, where I ∈ <m×m is the identity matrix, Equation (2.1)

becomes:

Exk+1 ≤ Fxk + Buk (2.2)

which will be called a HALFSPACE MODEL in this dissertation. For a given value of

the pair (xk, uk), each inequality in this system of inequalities represents a halfspace

(the term “halfspace” is a standard term in linear algebra). Thus, it can be seen

that, in halfspace/slack-descriptor models, restrictions on the set of possible state

evolutions are imposed using linear constraints.

The halfspace/slack-descriptor model is useful where, due to the difficulty in un-

derstanding the system’s parameters/dynamics, or due to the presence of external

disturbances, the next state of the system could take on any of a set of possible val-

ues determined by the current state and control. In the halfspace/slack-descriptor

framework, this set of possible values is expressed as a convex polyhedron.

For example, if the dynamics of some plant can be modeled by the constraints

c1x1k+1 + c2x2k+1 ≤ c3x1k + c4x2k + c5uk,

c6x1k+1 + c7x2k+1 ≥ c8x1k + c9x2k + c10uk,

where the c’s are constants, possibly all different, the x’s are states of the plant

and u is the control input, then we have a linear constraint description that can be

transformed into a slack-descriptor model by appending slack variables thus:[
c1 c2

−c6 −c7

]
xk+1 =

[
c3 c4

−c8 −c9

]
xk +

[
c5

−c10

]
uk +

[
−1 0

0 −1

]
v; v ≥ 0.

As another example, it can be shown that interval systems in state space form

can be transformed into slack-descriptor systems. A discrete-time interval system

in state space form is as follows ([SE89] presents the continuous-time form; the

discrete-time form is similar):

xk+1 = Axk + Buk,

with A ∈ [A−, A+], B ∈ [B−, B+] and where A ∈ [A−, A+] implies a−
i,j ≤ ai,j ≤ a+

i,j,

etc, and the following matrices are assumed known: A−, A+ ∈ <n×n, B−, B+ ∈

5



<n×m. For xk, uk ≥ 0, this system can be converted into the halfspace form by

writing as follows:

xk+1 ≤ A+xk + B+uk,

xk+1 ≥ A−xk + B−uk.

The slack-descriptor form is as follows:[
I

I

]
xk+1 =

[
A+

A−

]
xk +

[
B+

B−

]
uk +

[
−I 0

0 I

]
vk.

2.2 Slack-Descriptor Systems in Regular Form

Definition 2.1 A slack-descriptor system is in REGULAR FORM if V in Equation (2.1)

is a square diagonal matrix with −1’s or 0’s on the diagonal.

The regular form is obtained when the plant dynamics are described by con-

straints such as

[E]i xk+1 ≤ [F]i xk + [B]i uk, i = 1, . . . ,m − l; l ≤ m

[E]i xk+1 = [F]i xk + [B]i uk, i = m − l + 1, . . . ,m.

The equality a = b is equivalent to the pair of inequalities a ≤ b and a ≥ b.

Thus, the equalities in the above system can be expressed as pairs of inequalities.

Thus, the above system can be written in the form of Expression (2.2).

2.3 An Example of Modeling in Halfspace Framework

The following modeling example is a fictitious one whose purpose is only to show a

possible way in which a halfspace model may be generated. The inspiration for this

example came from the example in [AP01, page 1].
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2.3.1 A Minicase

Heavy Metal Inc. (HMI) is engaged in the production and sale of two grades of an

ore. HMI has leased mines from the state and extracts Grade A and Grade B of this

ore. Sales of each ore have always been independent of the other.

Marketing and operating costs are covered by two sources: CAPITAL INVESTMENT

and, of course, sales.

The direct operating cost (cost of extracting and/or holding) of Grade A is $30

per ton while that of Grade B is $20 per ton. It is anticipated that 45% of Grade

A sales and 30% of Grade B sales made during the current production period are

collected during the same period and the cash proceeds will be available to finance

the next production period’s direct operating costs. Additional funds (comprising

40% of capital investment) may be injected to support the direct operating costs if

the need arises. Grade A sells to distributive channels for $50 per ton, and Grade B

for $40 per ton.

Those sales that are not collected in the same production period are collected

at some point in the future and are converted into the above-mentioned capital

investment and into investments into the stock market. Thus, these uncollected

sales are also considered as revenue in the current production period.

Of the total ore mined in each production period, at least 10% of Grade A and

15% of Grade B does not sell in the same production period. However, for various

technical reasons, HMI cannot afford to adopt JUST-IN-TIME practices to reduce the

mining of the ore. So, HMI spends 12% of the capital investment and 15% of the

capital investment respectively on Grade A and Grade B to convert the ores into the

metal, which is then used in some other operations of HMI’s sister concerns. The

cost of converting into metal is $40 per ton of Grade A and $50 per ton of Grade B.

2.3.2 The Modeling Problem

Assuming any ore that is either produced in the current production period or left

over from the previous period as inventory, develop a model that captures the rela-

tion between the inventories of Grade A and Grade B, and the capital investment.
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Consider any negative numerical values of the quantities of the ore as reflecting

backorder.

2.3.3 Developing the Model

Denote by x1k the inventory in tons of Grade A, by x2k the inventory in tons of Grade

B of the ore, and by uk the capital investment in the k-th production period.

The direct cost of producing and/or holding x1(k+1) tons of Grade A and x2(k+1)

tons of Grade B is 30x1(k+1)+20x2(k+1). This is covered by the funds that are available

for production from the k-th production period. These consist of 40% of capital

investment, that is 0.40uk plus the anticipated collections on sales of Grade A of

0.45(50x1k) = $22.5x1k plus those on the sales of Grade B of 0.30(40x2k) = $12x2k.

Thus, the cash available for production in the (k+1)-th production period is 0.40uk+

22.5x1k + 12x2k. This gives the inequality:

30x1(k+1) + 20x2(k+1) ≤ 22.5x1k + 12x2k + 0.40uk

0.10x1k and 0.15x2k are the amounts of ore that do not sell in the same produc-

tion period. A part of these amounts is converted into metal. The number of tons of

metal produced internally from Grade A (with 12% of capital investment at the rate

of $40 per ton) is 0.12uk/40 = 0.003uk and that from Grade B (with 15% of capital

investment at the rate of $50 per ton) is 0.15uk/50 = 0.003uk. After conversion into

metal, the amount of Grade A left over from the k-th production period into the

(k + 1)-th production period is at least 0.10x1k − 0.003uk, and that of Grade B is

at least 0.15x2k − 0.003uk. Thus, these values determine the minimum amounts of

Grade A and Grade B inventories in the (k + 1)-th production period:

x1(k+1) ≥ 0.10x1k − 0.003uk

x2(k+1) ≥ 0.15x2k − 0.003uk

Thus, HMI’s ore operations are described by the following system of linear con-
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straints:

30x1(k+1) + 20x2(k+1) ≤ 22.5x1k + 12x2k + 0.40uk

−x1(k+1) ≤ −0.10x1k + 0.003uk

−x2(k+1) ≤ − 0.15x2k + 0.003uk

This can be written as a halfspace system as follows:
30 20

−1 0

0 −1


[

x1(k+1)

x2(k+1)

]
≤


22.5 12

−0.10 0

0 0.15


[

x1k

x2k

]
+


0.40

0.003

0.003

uk

It may seem that HMI’s operations need capital investment in every production

period, and so this may be a losing business. However, the capital investment comes

out of the revenue as mentioned in Subsection “A Minicase”. Thus, it may be possi-

ble that HMI is a self-sustaining business. Whether this is so may be determined by

analyzing the halfspace model that has been developed above.

2.4 Previous Work with Slack-Descriptor Systems

The slack-descriptor model was proposed in [Hol93] as a framework that would

help properly utilize the potential capabilities of new sensors called smart/intelli-

gent sensors that were emerging on the scene.

Smart sensors are different from ordinary sensors in that into the sensor unit

go, besides the sensing device, also memory and processing capabilities. Thus, such

sensors can return not just the values of the variable sensed, but also associated

confidence intervals, fault alarms, warning messages et al. They can also store

sensing information (subject to memory capabilities) until it is requested by the

controller. Holloway saw the potential use of these sensors in active sensing, i.e.,

sensing so as to minimize any cost associated with the sensing.

The interval-valued observations from these sensors would result in set-valued

state estimates. It was thought that to fully utilize the information in interval-

valued observations, a new way of modeling would be needed that would cast the
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Control Policy Plant

State Estimator

Sensing Policy

Xest
k Xtrue

k

Uk

Target set

Figure 2.1: The plant under active sensing.

observations and state estimates and state evolution as linearly-constrained. Thus,

was born this new modeling framework in which plant dynamics, state estimates,

state sets and observed values are described through linear constraints.

In active sensing, three components work together on-line on the plant as shown

in Figure 2.1: a control policy, a state estimator, and a sensing policy. The state es-

timator uses the model of the system dynamics (a slack-descriptor model or some

other model) to compute the state sets during the intervals of no-sensing, and sup-

plies the set, Xest
k , of possible values of the states to the control policy and to the

sensing policy. The control policy uses some approximation techniques to compute

the control that should be applied (for example, to lead the system’s next state set

to the Target set) given that the state could have a value that could lie anywhere

in the given set Xest
k . The sensing policy checks if the state estimate has exceeded

some pre-specified bounds on uncertainty. During the intervals of no-sensing, the

system works in open-loop. Thus, the resulting control system works in alternating,

and possibly irregular, intervals of open- and closed-loop control.

Lim and Holloway [LLH95, LLH96] proposed sensing policies for active sensing

using slack-descriptor models. As mentioned above, the true state of the system at

the k-th instant of time can be anywhere in Xest
k . This means that the larger the

size of Xest
k , the more the uncertainty in the true state of the system. [LLH95] pre-
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sented two different sensing policies. It was assumed there that each state variable

was associated with a different sensor. Under those sensing policies, at each time

instant each state variable is maximized and minimized over Xest
k (this is a linear

programming problem), the difference between the maximum and minimum val-

ues for each state variable is computed, and the difference is tested for exceeding

a certain threshold value. For whichever variable the corresponding difference ex-

ceeds the threshold, the relevant sensor is polled. Thus, different sensors may be

polled at different times. This allows for selectively, and possibly infrequently and

irregularly, polling the sensors. [LLH96] presented an extension of the results of

[LLH95]. It showed that the sensing policies of the type presented in [LLH95] are

longest-wait policies in that the sensing does not take place before it is needed.

Later, it was realized that active sensing could work with not just smart sensors,

but anywhere where there is uncertainty in the plant dynamics and/or the obser-

vations and it is decided to sense irregularly according to a policy. Liu and Hol-

loway [Liu99] proposed active sensing policies for plants modeled not in the slack-

descriptor framework, but in the conventional stochastic framework. The plant is

modeled by the system of equations:

Exk+1 = Axk + Buk + Gwk,

yk = Cxk + Duk + Hzk,

where E, A, B, G, C, D, and H are the parameter matrices of the plant and the x’s

are states, u’s are controls, w’s and z’s are noises, and y’s are the outputs; the matrix

E is non-singular and the w’s and z’s have statistical distributions. The sensing

policy requests sensing when the variance of the state estimate crosses a certain

threshold.

Rajagopal [Raj95] presented conditions under which a slack-descriptor system

will not be bounded. A slack descriptor system is said to be bounded if for any

bounded set Xk of states at time instant k and for any bounded set Uk of controls,

the corresponding set Xk+1 is also bounded. He also showed conditions under which

a set Xk+1 would be non-empty for any given nonnegative xk and uk, and conditions

under which for a given nonnegative xk+1 and uk, there exists some nonnegative xk
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satisfying Equation (2.1). He also tried to relate slack-descriptor models to state-

space models. He showed that for xk, uk ≥ 0, the model of Equation (2.1) can be

represented as a family of models of the form xk+1 = Axk + Buuk.

It was seen above that the state estimator may use the slack-descriptor model to

generate Xest
k . When the estimator simply uses Equation (2.1) to compute the set of

possible current states from the previous set (either Xest
k−1 or Xtrue

k−1 ) of states and the

previous inputs, the resulting polyhedron might need a much larger number of con-

straints to describe it depending on the complexity of the model. Storing all these

constraints in the computer will need a lot of memory. Chew [Che98] suggested

ways to bound these polyhedra using polyhedra that needed fewer constraints. He

characterized the errors that result in the different ways of bounding.

Chew [Che98] used Rajagopal’s result — on when one can express a slack-

descriptor model as equivalent to a family of xk+1 = Axk + Buuk — to propose

a weak way to test for the stability of a slack-descriptor model that satisfies Ra-

jagopal’s conditions. He suggested that in some cases it may be possible to test if

the eigenvalues of all the (A,Bu) pairs are stable.

Chew [Che98] also presented an analogue for the concept of controllability. He

defined a new concept of FULL STATE REACHABILITY: “For any given initial state x0 ∈
<n and any target state xT ∈ <n, a slack descriptor system is full state reachable

if there exist a set of inputs that can lead (within n steps and in the absence of

sensing) the state x0 to a state set that includes xT ”. He discussed this definition

briefly for the case when the model can be expressed as a family of (A,Bu) pairs.

Chew [Che98] also suggested a method for developing a feedback stabilizing

controller when the model can be expressed as a family of (A,Bu) pairs.

The problem with the “(A,Bu) family” result is that no clear methods have been

suggested by any of the people who worked with slack-descriptor models as to how

to find such families for a general model. So, the issues of stability, controllability

and stabilizabilty (by developing a feedback controller) of a slack-descriptor model

remain open for research.
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2.5 Differences between Present Work and Previous

Work

The present work differs from previous works done in the slack-descriptor frame-

work in two important aspects:

1. Though the slack-descriptor framework was originally obtained by append-

ing slack variables to linear inequalities, the apparent similarity of the system

thus obtained to descriptor systems and the desire to adapt the results exist-

ing for descriptor systems to slack-descriptor systems focussed the attention

of the previous authors away from the linear inequality origins of the frame-

work and onto the presence of the slack variables. Thus, much of the previous

work done in the slack-descriptor framework gave a lot of importance to un-

derstanding the effect of the slack variables (for this reason the previous work

can be useful for someone interested in understanding the role of slack vari-

ables in systems of linear inequalities).

The present work attempts to understand and exploit the richness of systems

of linear inequalities, and the associated theory of convex polyhedra, with-

out the burden of slack variables. When it uses slack variables, it is only to

manipulate halfspace models conveniently.

2. Previous works restricted all the states, controls, and slack variables to being

nonnegative. Presence of negative variables was dealt with by representing

the negative variables as differences of pairs of nonnegative variables, as is

common in linear programming. The representation of negative variables in

slack-descriptor models is covered in [Che98].

The present work does not need the states and controls to be nonnegative, ex-

cept when the halfspace/slack-descriptor systems are obtained from discrete-

time interval systems. Most results are developed for all the values of the

(xk, uk) tuples for which the system of linear inequalities Exk+1 ≤ Fxk + Buk

is feasible, which may be possible even when xk and/or uk are negative.
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Chapter 3

Boundedness, Stability, Maintainability

3.1 Reach Sets

Notation 3.1 In the present dissertation, depending on the context, the notations

maxX Y or max
X

Y

read either “maximum of Y over the set X” or “maximize Y over the set X” or “max-

imize Y subject to the constraints X”. Similar notation applies for minimization.

From Expression (2.1) it follows that for a single time-step, a slack-descriptor

system can be expressed as

Ex1 = Fx0 + Bu0 + Vv0 (3.1)

while a halfspace system can be expressed as

Ex1 ≤ Fx0 + Bu0 (3.2)

Given a state x1
0 and a control input u1

0, the set of next states arising from x1
0

under the control u1
0 is defined as follows for a slack-descriptor system:

Reach(x1
0, u

1
0)

4
=

{
x1

∣∣∃v0 ≥ 0 : (x1, x
1
0, u

1
0, v0) is a solution of Equation (3.1)

}
and as follows for a halfspace system:

Reach(x1
0, u

1
0)

4
=

{
x1

∣∣(x1, x
1
0, u

1
0) is a solution of Equation (3.2)

}
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In this dissertation, it is assumed that Reach(x1
0, u

1
0) is bounded and nonempty

for all (x1
0, u

1
0) pairs. The question of boundedness of a slack-descriptor system has

been covered in [Raj95]. Section 3.2 will briefly describe an alternative method to

test for boundedness.

3.2 Boundedness

A set S ⊂ <n is BOUNDED if there exists a constant K such that the absolute value of

every component of every element of S is less than or equal to K [BT97]. A slack-

descriptor system is bounded if for all (xk, uk) pairs, Reach(xk, uk) is bounded.

Remark 5.4 on Page 55 states that the system Ax ≤ b, x ∈ <n, will be bounded

for a bounded b, if the auxiliary system {rank(A) = n; ATz = 0; z ≥ 0} is feasible.

Applying this result, it can be seen that the halfspace system of Equation (2.2) will

be bounded for bounded Fxk + Buk if the auxiliary system {rank(E) = n; ETz =

0; z ≥ 0} is feasible. Note that, since Fxk + Buk is only a linear combination of the

elements of xk and uk, it is always bounded for bounded xk and uk.

For this test of boundedness to work for a slack-descriptor system which has

been obtained from a halfspace system, and which is not in regular form, the slack-

descriptor system must first be transformed into regular form.

3.3 Zero-Input Stability

A discrete-data system is ZERO-INPUT STABLE if the output sequence y(kT) ∈ <,

(k = 1, 2, . . .), satisfies the following conditions [Kuo95]:

|y(kT)| ≤ M < ∞
and

lim
k→∞ |y(kT)| = 0

(3.3)

Classical control theory has other concepts of stability such as ABSOLUTE, ASYMP-

TOTIC, BIBO, MARGINAL, RELATIVE etc. Analogues of these for halfspace systems
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will be studied in a future work. Here, the concept of zero-input stability of halfs-

pace systems will be addressed.

Assuming that the output sequence is the same as the state sequence (that is,

y(kT) = x(kT) ≡ xk), we will define the zero-input stability of a halfspace system

in regular form as follows.

Definition 3.1 A halfspace system is zero-input stable if for any current state xk,

every next state xk+1 that arises from xk satisfies the following condition (with ‖x‖ =
√

xTx being the distance of x from the origin):

‖xk+1‖ ≤ ‖xk‖ (3.4)

Note that the condition of Equation (3.4) requires that the distance of the state

from the origin be non-increasing, whereas the condition of Equation (3.3) does

not require this. In this sense, the condition of Equation (3.4) is stricter than that

of Equation (3.3).

Due to the requirement that ‖xk‖ be non-increasing, the condition of Equa-

tion (3.4) is equivalent to the following condition:

‖x1‖ ≤ ‖x0‖ (3.5)

Remark 3.1 Since the next state for a halfspace system is a set, Reach(x0, 0), the

condition of Equation (3.5) is equivalent to the following condition:

‖x0‖ ≥ max
Ex1≤Fx0

‖x1‖

or equivalently,

xT
0x0 ≥ max

Ex1≤Fx0

xT
1x1 (3.6)

Definition 3.2 A POLYTOPE is a convex bounded polyhedron.

Definition 3.3 [BT97] Consider a polyhedron P defined by linear equality and in-

equality constraints, and let x be an element of <n.

1. The vector x is a BASIC SOLUTION if:
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(a) All equality constraints are active;

(b) Out of the constraints that are active at x, there are n of them that are

linearly independent.

2. If x is a basic solution that satisfies all of the constraints, then it is called a

BASIC FEASIBLE SOLUTION.

[BT97] first defines VERTEX and BASIC FEASIBLE SOLUTION differently from one

another, and then establishes that they are the same. In this dissertation, these two

terms will be considered as synonymous to each other.

Lemma 3.1 The point in the polytope P that is farthest from the origin is a vertex

of P.

Proof: This is a well-known result. 2

Notation 3.2 Let Ei
n (respectively Fi

n) be an n × n matrix formed of n different

rows of E (respectively F), let In ∈ <n×n be the identity matrix, and let

Cm
n =

m!

(m − n)!n!
.

Theorem 3.1 A halfspace system is zero-input stable if, for each invertible Ei
n, In −{

(Ei
n)−1Fi

n

}T {
(Ei

n)−1Fi
n

}
is positive semidefinite for i = 1, . . . , Cm

n .

Proof: By Remark 3.1, the halfspace system needs to satisfy the condition of Equa-

tion (3.6) for zero-input stability. By Lemma 3.1, this will be true if the vertex

of Reach(x0, 0) that is farthest from the origin satisfies Equation (3.5). This sec-

ond statement will be true if every vertex of Reach(x0, 0) satisfies the condition of

Equation (3.5). This idea can be developed as follows.

Consider the set Reach(x0, 0) given by Ex1 ≤ Fx0. Enumerate the basic solu-

tions of this system of constraints. Note that some or all of the basic solutions of

Ex1 ≤ Fx0 determine the extreme points of Reach(x0, 0). Thus, in effect,all the

possible vertices of Reach(x0, 0) are being enumerated. The basic solutions can be
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enumerated by simply enumerating all the Cm
n different subsystems of Ex1 ≤ Fx0

thus:

Ei
nx1 ≤ Fi

nx0, i = 1, . . . , Cm
n .

Then, the i-th basic solution is xi
1 = (Ei

n)−1Fi
nx0, assuming that Ei

n is invertible.

The condition of Equation (3.5) is equivalent to the following:

‖xi
1‖ ≤ ‖x0‖, i = 1, . . . , Cm

n .

This gives the following condition:

‖(Ei
n)−1Fi

nx0‖ ≤ ‖x0‖, i = 1, . . . , Cm
n ,

that is,

xT
0 [((Ei

n)−1Fi
n)T (Ei

n)−1Fi
n]x0 ≤ xT

0x0, i = 1, . . . , Cm
n .

meaning that In −((Ei
n)−1Fi

n)T (Ei
n)−1Fi

n is positive semidefinite for i = 1, . . . , Cm
n . 2

3.4 Relationship between Boundedness and Stability

To see the relationship between boundedness and stability, consider a halfspace

system where Reach(x1
0, 0) (x1

0 belongs to some bounded set Ψ) is bounded but

larger than Ψ. The system dynamics evolve into ever-growing but bounded sets of

possible next states. Thus, such a slack-descriptor system is not zero-input stable.

If Reach(x1
0, u

1
0) is unbounded, then the dynamics can evolve without bounds,

meaning that the slack-descriptor system is unstable (FOR THIS REASON, ONLY

BOUNDED SLACK-DESCRIPTOR SYSTEMS WILL BE STUDIED). Thus, an unbounded

slack-descriptor system is clearly unstable, but a bounded slack-descriptor system is

not necessarily stable.
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3.5 Maintainability

Consider a matrix T ∈ <j×n and a vector t ∈ <j. Define the subset of states in

which we desire to restrict the system as

Tube(T, t)
4
= {xk |xk satisfies Txk ≤ t, k = 0, 1, . . . } .

Definition 3.4 If for an x1
0 there exists a control u1

0 such that Reach(x1
0, u

1
0) ⊆

Tube(T, t), then such a control is said to be MAINTAINING for x1
0. The set of all

maintaining controls for an x1
0 is defined as follows:

U(x1
0)

4
=

{
u0

∣∣Reach(x1
0, u0) ⊆ Tube(T, t)

}
.

The state set Tube(T, t) is said to be MAINTAINABLE if ∀x0 ∈ Tube(T, t), U(x0) 6= ∅.

Here is a geometrical explanation for this definition. For any given scalar ci,

consider the set of all points x1 for which [T ]ix1 is equal to ci. This is the hyperplane

(Figure 3.1) described by the equation [T ]ix1 = ci. This hyperplane is perpendicular

to the vector [T ]i. Increasing ci corresponds to moving the hyperplane along the

direction of the vector [T ]i. For a given x1
0, Reach(x1

0, u
1
0) ⊆ Tube(T, t) means that

over the set of all x1 ∈ Reach(x1
0, u

1
0), the maximum value of ci, denoted by cmax

i , in

each direction [T ]i, is less than or equal to [t]i. That is,

{
Reach(x1

0, u
1
0) ⊆ Tube(T, t)

∀ u1
0 ∈ U(x1

0)

}
≡

{
cmax

i ≤ [t]i, i = 1, . . . , j.

∀ u1
0 ∈ U(x1

0)

}
(3.7)

where,

cmax
i

4
= max

Reach(x1
0,u1

0)
[T ]ix1
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Figure 3.1: Containment of the set Reach(x0, u0) in the tube Tx1 ≤ t.
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Chapter 4

Maintainability of Slack-Descriptor

Systems

4.1 Introduction

The results of this chapter were developed in the early stages of the present research

when it was not yet decided to work with halfspace systems. Thus, no assumptions

were made about how a slack-descriptor model was obtained — whether through

appending slack variables to linear inequalities, or through some other means (as

mentioned in Section 2.5, it was later decided to go back to the origins of the

SD model and work with linear inequalities). However, it was assumed that they

represented convex polyhedral sets. The present chapter discusses maintainability

of slack-descriptor systems, while Chapter 6 discusses maintainability of halfspace

systems.

4.2 Conditions for Maintainability: Q Matrix

Theorems 4.1 and 4.2 below help develop a test for maintainability of slack-

descriptor systems. These theorems use Equation (3.1), and the geometry needed

to understand them is provided by Figure 3.1.

Theorem 4.1 If there exists a matrix Q ∈ <j×m satisfying the conditions that

1. QE = T , and
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2. QV has all nonpositive elements,

then for a given x1
0 the following holds:{

u0

∣∣u0 satisfies QFx1
0 + QBu0 ≤ t

}
⊆ U(x1

0).

Proof: It needs to be shown that if u1
0 is such that QFx1

0+QBu1
0 ≤ t, then u1

0 ∈ U(x1
0)

(that is, u1
0 is a maintaining control). To begin, consider any x1 ∈ Reach(x1

0, u
1
0).

This x1 is such that Ex1 = Fx1
0 + Bu1

0 + Vv, and, due to Condition 1, Tx1 = QFx1
0 +

QBu1
0 + QVv. Thus, as QFx1

0 + QBu1
0 ≤ t, so Tx1 − QVv ≤ t. Condition 2 and

the statement in Section 2.1 that v ≥ 0 (slack variables are non-negative) give

QVv ≤ 0. Thus, Tx1 ≤ Tx1 − QVv. So, Tx1 ≤ t. Since this is satisfied for each

x1 ∈ Reach(x1
0, u

1
0), then Reach(x1

0, u
1
0) ⊆ Tube(T, t), so u1

0 ∈ U(x1
0). 2

Theorem 4.1 admits the possibility that there exists a u2
0 such that u2

0 ∈ U(x1
0),

but that u2
0 /∈

{
u0

∣∣u0 satisfies QFx1
0 + QBu0 ≤ t

}
. Theorem 4.2 shows that if Q

satisfies an additional property, then the following equality will hold:{
u0

∣∣u0 satisfies QFx1
0 + QBu0 ≤ t

}
= U(x1

0).

Theorem 4.2 If for a given (x1
0, u

1
0) pair there exist a matrix Q and slack vectors

vi, i = 1, . . . ,m satisfying the following conditions:

1. vi is such that there exists a tuple (x1, x
1
0, u

1
0, v

i) that satisfies Equation (3.1),

2. Q satisfies the two conditions of Theorem 4.1,

3. [QV ]i is orthogonal to vi, i = 1, . . . ,m,

then u1
0 ∈ U(x1

0) if and only if u1
0 satisfies

QFx1
0 + QBu1

0 ≤ t.

Proof: The sufficiency part was shown in the proof of Theorem 4.1. The necessity

part will be shown here. It will be shown that if u1
0 ∈ U(x1

0) then QFx1
0 + QBu1

0 ≤ t.

Suppose that u1
0 ∈ U(x1

0) (that is, u1
0 is a maintaining control for x1

0). According to
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Definition 3.4 on Page 19, the following is true for u1
0: Reach(x1

0, u
1
0) ⊆ Tube(T, t).

This implies, according to Expression (3.7), that for u1
0 the following is true: cmax

i ≤
[t]i, i = 1, . . . , j. cmax

i will be expressed in terms of the other variables and constants.

Any x1 ∈ Reach(x1
0, u

1
0) satisfies Equation (3.1) (with x0 = x1

0 and u0 = u1
0). Pre-

multiplication of Equation (3.1) by Q and application of Condition 1 of Theorem 4.1

shows that such an x1 satisfies the following equation:

Tx1 = QFx1
0 + QBu1

0 + QVv (4.1)

For each row i of QV, as a consequence of Condition 2 of Theorem 4.1 and the

conditions of the present theorem, [QV ]iv ranges from a maximum value of zero

to some minimum value determined by the system dynamics. So, for any given x1
0

and u1
0 the maximum value, cmax

i , of [T ]ix1 = [QF]ix
1
0 + [QB]iu

1
0 + [QV]iv is achieved

when [QV]iv = 0 for some v = vi, and equals [QF]ix
1
0 + [QB]iu

1
0. This means that

the inequality cmax
i ≤ [t]i is equivalent to the inequality [QF]ix

1
0 +[QB]iu

1
0 ≤ [t]i, for

i = 1, . . . ,m. Thus, it follows that u1
0 satisfies QFx1

0 + QBu1
0 ≤ t. 2

4.3 Results for Slack-Descriptor Systems in Regular Form

In the rest of this chapter, slack-descriptor systems in regular form (defined in Sec-

tion 2.2) will be considered. This signifies a move towards the halfspace systems

that are studied in the rest of the present dissertation.

4.3.1 Invariance of Q

For a slack-descriptor system in regular form, the Reach(x0, u0) sets are polyhedra

bounded by the constraints

[E]ix1 = [F]ix0 + [B]iu0 + [V ]iv, i = 1 . . .m,

where [V ]iv goes to zero (meaning that [v]i — the i-th component of v — equals

zero) at points in the x1 space where the i-th constraint is active (a constraint is said
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to be ACTIVE at a point if it is satisfied with equality at that point). The following

observations can be made with respect to these Reach(x0, u0) sets:

1. Associated with each direction (for example, [T ]i) in the x1 space is a certain

group of components of v that go to zero on the surface of Reach(x0, u0).

For example, consider Figure 4.1. In Reach(x1
0, u

1
0), as one moves along direc-

tion [T ]2, the components [v]1 and [v]2 of v go to zero.

2. Which components go to zero in a given direction also depends on the (x0, u0)

pairs because the Reach sets corresponding to different (x0, u0) pairs may in

general have different shapes while the outward normals of the component

constraints are preserved.

For example, consider Figure 4.1. Both Reach(x1
0, u

1
0) and Reach(x2

0, u
2
0) have

the same set of outward normals, though in Reach(x2
0, u

2
0) one of the com-

ponent constraints is redundant. Along direction [T ]2, in Reach(x1
0, u

1
0) the

components [v]1 and [v]2 of v go to zero, whereas in Reach(x2
0, u

2
0) the compo-

nents [v]1 and [v]3 of v go to zero.

3. Equation (4.1) shows that Q represents a series of linear combinations of the

rows of Equation (3.1).

4. Assume that there is a vector v that satisfies Condition 1 of Theorem 4.2.

Assume that this v is associated with the direction [T ]i, meaning that if v cor-

responds to a point on the surface of the Reach set, then certain components

of v are zeros. Assume that Q satisfies Condition 2 of Theorem 4.2. Then, for

this Q to satisfy the third condition of Theorem 4.2, the components of [QV]i

that correspond to the non-zero components of the vector v, that is associated

with the direction [T ]i, must be zeros.

For example, in Figure 4.1 if v is associated with [T ]2 and corresponds to a

point on the surface of Reach(x1
0, u

1
0), then the components v1 and v2 of v

equal zero. Then, all the components of [QV]2 except the first and the second

need to equal zero for this Q to satisfy Condition 3 of Theorem 4.2.
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[T ]6

[T ]5

[T ]1

[T ]2

[T ]3

[T ]4

Reach(x1
0, u1

0)

[v]1 = 0

[v
]2

=
0

[v
] 3

=
0

[v]4
= 0

[v]5
=

0

[v
] 6

=
0

[v]5
=

0

[v]1 = 0

Reach(x2
0, u2

0)

[v
] 6

=
0

[v]4
= 0

[v
] 3

=
0

[v]2 6= 0

Figure 4.1: Note that every component of v goes to zero on at least one surface of

Reach(x1
0, u

1
0), but [v]2 does not go to zero anywhere in Reach(x2

0, u
2
0).

In Figure 4.1 if v is associated with [T ]2 and corresponds to a point on the

surface of Reach(x2
0, u

2
0), then the components v1 and v3 of v equal zero. Then,

all the components of [QV ]2 except the first and the third need to equal zero

for this Q to satisfy Condition 3 of Theorem 4.2.

5. From the last observation and its example, it follows that a Q matrix that has

been determined to satisfy the conditions of Theorem 4.2 for a certain (x0, u0)

pair may violate them for a different pair.

For example, with respect to Figure 4.1, a Q satisfying the conditions of The-
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orem 4.2 found for (x1
0, u

1
0) will give the following product for QV:

QV =



∼ 0 0 0 0 ∼

∼ ∼ 0 0 0 0

0 ∼ ∼ 0 0 0

0 0 0 ∼ ∼ 0

0 0 0 ∼ ∼ 0

∼ 0 0 0 0 ∼


,

while a Q found for (x2
0, u

2
0) will give the following product:

QV =



∼ 0 0 0 0 ∼

∼ 0 ∼ 0 0 0

∼ 0 ∼ 0 0 0

0 0 0 ∼ ∼ 0

0 0 0 ∼ ∼ 0

∼ 0 0 0 0 ∼


.

Here, ∼ means that the value of the element that stands in the place of ∼ is

not important as the component of v corresponding to that element is equal

to zero.

Definition 4.1 For a given slack-descriptor system in regular form, if a single Q is

found to satisfy the conditions of Theorem 4.2 for all (x0, u0) pairs, then this Q will

be called INVARIANT for this slack-descriptor system.

4.3.2 Maintaining Controls under Invariant Q

If Q exists and is invariant, then Theorem 4.2 implies the following:

• For a given x0,

U(x0) = {u0 |u0 satisfies QFx0 + QBu0 ≤ t } (4.2)

• The set of all x0’s for which there exist maintaining controls and the set of all

maintaining controls are given by

QFx0 + QBu0 ≤ t. (4.3)
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If no single Q exists that satisfies the conditions of Theorem 4.2 for all (x0, u0)

pairs, equations (4.2) and (4.3) describe a subset of maintaining controls as per

Theorem 4.1.

4.3.3 Test for Maintainability under Invariant Q

Here, a test for the maintainability of a given BOUNDED tube is presented. By defi-

nition, a tube is maintainable if for every x0 in the tube maintaining controls can be

found using Equation (4.2). Thus, a test for maintainability might require checking

every x0 in the tube. Clearly, this is impossible. Theorem 4.3 shows, under the

assumption of invariance of Q, that if maintaining controls exist for the vertices of

the tube, then maintaining controls exist for every point in the tube.

Definition 4.2 Let P ⊆ <n be a polytope. A linear inequality constraint in <n is

VALID for P if the constraint is satisfied by all points x ∈ P.

Notation 4.1 Let P0
4
= {x0 |Tx0 ≤ t } be a polytope. Assume that P0 has a total

of L vertices: x1
0, x2

0, . . ., xL
0 . Let U(xi

0)
4
=

{
u0

∣∣QBu0 ≤ t − QFxi
0

}
be the set of

maintaining controls for xi
0.

Theorem 4.3 Consider Notation 4.1. If U(xi
0), i = 1, . . . , L, is nonempty, then for

any x
p
0 ∈ P0, U(xp

0) will be nonempty too.

Proof: Any polytope is the convex hull of its vertices. Thus, any point x
p
0 ∈ P0 can

be expressed as a convex combination of xi
0, i = 1, . . . , L. That is,

x
p
0 =

L∑
i=1

γix
i
0, where

L∑
i=1

γi = 1, γi ≥ 0. (4.4)

It needs to be shown that if the sets U(xi
0), i = 1, . . . , L, are nonempty, then U(xp

0)

is also nonempty. Multiplying the system of constraints QBu0 ≤ t − QFxi
0 by γi, for
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i = 1, . . . , L, and adding the L systems we obtain

L∑
i=1

γiQBu0 ≤
L∑

i=1

γit −

L∑
i=1

γiQFxi
0. (4.5)

⇒ QBu0

L∑
i=1

γi ≤ t

L∑
i=1

γi − QF

L∑
i=1

γix
i
0.

⇒ QBu0 ≤ t − QFx
p
0

This last system, by virtue of the non-negative linear combination through which

it has been derived, is valid for all U(xi
0), i = 1, . . . , L, meaning that it is feasible.

Since U(xp
0) = {u0|QBu0 ≤ t − QFx

p
0 }, and QBu0 ≤ t − QFx

p
0 is feasible, it follows

that U(xp
0) is nonempty too. 2

Note that if U(xi
0) is empty for a vertex xi

0, then this means that there are no

maintaining controls for such an xi
0. Thus, in such case, an argument based on

forming a linear combination such as in Equations (4.5) will not be a valid one, and

such a tube is not a maintainable one.

Theorem 4.4 If x
p
0 ∈ P0 is a convex combination of the vertices xi

0, i = 1, . . . , L,

of P0 as in Equation (4.4), then a convex combination (with γi, i = 1, . . . , L as the

coefficients in this combination) of the maintaining controls for these vertices is a

maintaining control for x
p
0 thus:{

L∑
1

γiu
i
0

∣∣∣∣∣ui
0 ∈ U(xi

0), i = 1, . . . , L; γi satisfy Equation (4.4)

}
⊆ U(xp

0).

Proof: As ui
0 ∈ U(xi

0), ui
0 satisfies the inequality QBu0 ≤ t − QFxi

0. This gives the

following nonnegative sum in which the γi from Equation (4.4) has been used:

L∑
i=1

γiQBui
0 ≤

L∑
i=1

γit −

L∑
i=1

γiQFxi
0.

This reduces to the following expression:

QB

L∑
i=1

γiu
i
0 ≤ t − QFx

p
0 .
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Thus, it follows that

L∑
i=1

γiu
i
0 ∈ U(xp

0).

Hence the proof. 2

Using the result of Theorem 4.4 a maintaining control for any x
p
0 ∈ P0 can be

determined as follows:

Step 1: Determine maintaining controls for each of the vertices of P0
4
=

{x0 |Tx0 ≤ t }.

Step 2: Use Equation (4.4) to determine γ = [γ1, . . . , γL], such that x
p
0 is a convex

combination of the vertices.

Step 3: Find u
p
0 as a convex combination of the vertices’ maintaining controls in-

volving this γ.

The next section presents a method to determine Q assuming that it is invariant.

4.4 Finding an invariant Q Matrix

This section presents steps for determining an appropriate Q matrix. The approach

is to determine a Q in steps in order to satisfy the conditions of theorems 4.1

and 4.2. In Step 1 a Q is found that satisfies Condition 1 of Theorem 4.1. In

Step 2, this Q is modified using vectors from the null space of ET so that Condition

2 of Theorem 4.1 is also satisfied. By Theorem 4.1, such a Q can be used at least

to characterize a subset of U(x0). Finally, in Step 3, for a given (x0, u0) pair, an

optimization is performed in order to modify Q until it satisfies the conditions of

Theorem 4.2 also, thus allowing the set U(x0) to be represented exactly. For each

step, the properties of the system that allow the transformations of Q to be found

are discussed.

Step 1: Begin with any matrix Q0 such that T = Q0E.
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If E is of full column rank, then such a Q0 can be determined as Q0 =

[T | A]ER where A ∈ <j×(m−n) is any matrix and ER ∈ <m×m is the trans-

formation matrix that puts the composite matrix [E − F − B − V ] into its

reduced-row echelon form.

If E is not of full column rank, this means that the given SD system is un-

bounded as per Section 3.2; such a case will be ignored.

If the row space of T is not in the row space of E, then the dynamics of the

system will lead to a next state x1 that is unbounded in a direction that should

be constrained by the tube. In such a case, no Q0 exists, and the set U(x0) will

be empty.

Step 2: In this step, it will be seen if Condition 2 of the theorem can be satisfied.

Define Qnull such that the columns of QT
null are a basis for the null space of

ET . Thus, QnullE = 0. If a matrix R1 can be found such that (Q0 + R1Qnull)V

has all nonpositive elements, then Condition 2 will be satisfied, that is, if the

feasible region of the following linear constraints is nonempty:
(QnullV)T 0 · · · 0

0 (QnullV)T · · · 0

· · · · · · · · · · · ·
0 0 · · · (QnullV)T




[R1]
T
1

[R1]
T
2

· · ·
[R1]

T
j

 ≤ −


[Q0V ]

T
1

[Q0V ]
T
2

· · ·
[Q0V ]

T
j


Choose a matrix R1 such that its elements satisfy the above constraints. Define

Q1 = (Q0 + R1Qnull). Then,

Tx1 = Q1Fx0 + Q1Bu0 + Q1Vv.

Note that Q1 satisfies conditions 1 and 2 of Theorem 4.1. It is thus sufficient

to characterize a subset of maintaining controls. In the next step, Q1 will be

modified to satisfy, if possible, the condition of Theorem 4.2.

Step 3: In this step, a random (x0, u0) pair is chosen and attempt is made to deter-

mine a matrix R2 such that Q2 = Q1 +R2Qnull satisfies all the three conditions

of the theorem.
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The condition of Theorem 4.2 states that for each row [QV ]i, there must exist

some v satisfying Equation (3.1) for the above (x0, u0) pair such that v is

orthogonal to [QV]i. Two non-negative vectors are orthogonal to each other

if each non-zero element of the first vector has a corresponding zero element

in the second vector. This suggests the following strategy. In step 3a, for

each direction [T ]i, the associated slack vector, which is such that some of its

components equal zero, will be determined. Such a slack vector will be called

the DESIRED VECTOR associated with the direction [T ]i or DESIRED VECTOR-

i for short. Then, in step 3b, each row [R2]i of R2 will be found through

optimization so as to minimize the components of [Q2V ]i corresponding to the

nonzero components of the desired vector-i. This strategy is detailed below.

Step 3a: The Reach(x1
0, u

1
0) polyhedron is described by Equation (3.1) which is in

regular form. Thus, any slack variables that equal zero will be associated

only with points on the surface of the polyhedron. So, each desired vector

will be associated with points that are only on the surface of the polyhedron.

The desired vector-i can be determined by solving the linear programming

problem

max
Equation (3.1)

x0=x1
0

u0=u1
0

[T ]ix1

This gives a vector [xT
1 vT ]T . The v part of this vector is the desired vector-i.

This procedure is repeated for each of the j rows of T .

Step 3b: In Step 3a the desired vectors were determined. In the present step, at-

tempt will be made to determine the matrix R2 such that the i-th row of the

matrix Q2V = (Q1 + R2Qnull)V can form an orthogonal product with the

desired vector-i. This can be done by maximizing the sum of the elements

of the i-th row of (Q1 + R2Qnull)V that correspond to the non-zero compo-

nents of the desired vector-i subject to the constraints that the elements of

(Q1 + R2Qnull)V be nonpositive. Maximization brings these elements in the
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direction of zero. This is repeated for each of the j rows of (Q1 + R2Qnull)V

to obtain Q2.

If Step 3b fails, then one can settle for the Q2 thus determined and one would

have a subset of maintaining controls.

4.5 Special Cases where Q is Invariant

Here one general scenario is described in which Q is invariant across all (x0, u0)

pairs while satisfying the conditions of Theorem 1 and Theorem 2. Q will be in-

variant when, irrespective of the (x0, u0) pairs, in every desired vector associated

with any given direction in the x1 space, the indices of the zero-components are the

same. This happens when every constraint from Equation (3.1) forms a face of the

Reach(x1
0, u

1
0) polyhedron for every (x0, u0) pair. In other words, none of the con-

straints becomes redundant, even when the shape changes as (x0, u0) pairs change.

The solution to the problem of determining the set of all b’s for which the system

of inequalities Ax ≤ b is irredundant will be presented in Chapter 5.

A special case of an irredundant Reach set is one where changing (x0, u0) only

scales the polyhedron up or down without changing its shape. This happens when

all rows of the right hand side of the expression

Ex1 − Vv = Fx0 + Bu0,

are equally scaled for different (x0, u0) pairs. That is,

[F]kx
1
0 + [B]ku

1
0

[F]kx
2
0 + [B]ku

2
0

=
[F]lx

1
0 + [B]lu

1
0

[F]lx
2
0 + [B]lu

2
0

for k = 1 . . .m, l = 1 . . .m.

A little manipulation of the above expression gives the following result:

ak
m1

ak
n1

=
al

m1

al
n1

for k = 1 . . .m, l = 1 . . .m,

m1 = 1 . . . (n + p), n1 = 1 . . . (n + p).

Here, ak
m1

and ak
n1

are respectively the m1-th and n1-th elements of the k-th row of

the composite matrix [F B].
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4.6 Example

Consider a simple single-state system. Assume that the dynamics of the system can

be represented by the following inequalities:

0.8xk + uk ≤ xk+1 ≤ 0.9xk + uk.

The corresponding slack-descriptor equation is

Exk+1 = Fxk + Buk + Vv,

where

E =

[
1

1

]
, F =

[
0.9

0.8

]
, B =

[
1

1

]
, V =

[
−1 0

0 1

]
.

Of interest is whether the tube defined by Txk ≤ t, where

T =

[
1

−1

]
and t =

[
0.9

−0.8

]
.

is maintainable with respect to this system.

This solution will go through the steps of the algorithm of Section 4.4.

Step 1: Find a Q0.

[T A] =

[
1 −2

−1 2

]
, ER =

[
1 0

1 −1

]
,Q0 =

[
−1 2

1 −2

]
.

Step 2:

QT
null =

[
−1

1

]
, Q0V =

[
1 2

−1 −2

]
, (QnullV)T =

[
1

1

]
.

On testing the constraints shown in Step 2 of Section 4.4, it can be seen that

they are satisfied. Then,

R1 =

[
−2

0

]
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is chosen such that these constraints are satisfied. Then,

Q1 =

[
1 0

1 −2

]
.

Step 3a: The constraints in the slack-descriptor model of the system are linearly

independent. So, neither of them becomes redundant for any (x0, u0) pair.

Thus, any Q matrix that is determined will be invariant as described in Sec-

tion 4.5. So, x0 = 1 and u0 = 1 are chosen randomly. The desired vector-1

can be found by solving the linear programming problem

max
Equation (3.1)

x0=1
u0=1

x1

This gives the desired vector [0 1]T in the direction [T ]1 = 1. Similarly, in the

direction [T ]2 = −1, the desired vector [1 0]T is obtained.

Step 3b: Q2 = Q1 + R2Qnull. Thus, it follows that

Q2 =

[
1 − r1 r1

1 − r2 −2 + r2

]
and Q2V =

[
−1 + r1 r1

−1 + r2 −2 + r2

]
.

Solve the problems

max
−1+r1≤0

r1≤0

r1 and max
−1+r2≤0
−2+r2≤0

−1 + r2

to get

R2 =

[
0

1

]

This gives

Q2 =

[
1 0

0 −1

]
and Q2V =

[
−1 0

0 −1

]
.
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Thus, Q = Q2. Now, constraints similar to those in Expression (4.3) can be

formed:[
0.9

−0.8

]
x0 +

[
1

−1

]
u0 ≤

[
0.9

−0.8

]
.

The vertices of the tube are 0.8 and 0.9. Thus, to test if the given tube is main-

tainable, solve the last expression for controls at these two vertices only (as per

Theorem 4.3). It is found that the tube is maintainable. Solving for the set U(x0)

using these constraints shows that u0 ranges from 0.08 to 0.18 for various values of

x0 in the tube.

4.7 Drawback of using a non-invariant Q

As Q is determined for one particular Reach set (specifically, an irredundant Reach

set), QFx
p
0 + QBu

p
0 may turn out to be not less than or equal to t even when

Reach(xp
0 , u

p
0) ∈ Tube(T, t). This idea is explained in the present section.

Consider figures 4.2 and 4.3. Note that Reach(x1
0, u

1
0) ⊆ Tube(T, t) and

Reach(x2
0, u

2
0) ⊆ Tube(T, t). Assume that the system Ex1 ≤ Fx0 + Bu0 comprises

six inequality constraints as shown in the figure, with z1 and z2 as follows:

z1 =

[
x1

0

u1
0

]
, z2 =

[
x2

0

u2
0

]

When Q is determined for some (xs
0, u

s
0) for which these six constraints are irre-

dundant, Q is as follows (by inspection of Figure 4.2):

Q =


0 0 0 q14 q15 0

0 q22 q23 0 0 0

q31 0 0 0 0 q36

0 0 0 0 q45 q46


Here, qij are non-negative numbers. Q is such that QE = T .

The dotted lines in figures 4.2 and 4.3 represent the inequalities QEx1 ≤ QFx1
0 +

QBu1
0 and QEx1 ≤ QFx2

0 + QBu2
0 respectively.
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[T ]3x1 ≤ [t]3

[T
] 2

x
1
≤

[t
] 2
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≤
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[E
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≤
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≤
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B
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[E]4x1
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[E
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1 ≤
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B
]5 z 1

[E
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x 1
≤

[F
B
] 6

z
1

Figure 4.2: Illustration for the drawback of a non-invariant Q. QFx1
0 + QBu1

0 ≤ t

and Reach(x1
0, u

1
0) ⊆ Tube(T, t) (the rectangular region is Tube(T, t)).

When this Q is used to test the condition QFx0 + QBu0 ≤ t, here is what it tests

for Reach(x1
0, u

1
0):

(q14[F]4 + q15[F]5)x
1
0 + (q14[B]4 + q15[B]5)u

1
0

?

≤ [t]1

(q22[F]2 + q23[F]3)x
1
0 + (q22[B]2 + q23[B]3)u

1
0

?

≤ [t]2

(q31[F]1 + q36[F]6)x
1
0 + (q31[B]1 + q36[B]6)u

1
0

?

≤ [t]3

(q45[F]5 + q46[F]6)x
1
0 + (q45[B]5 + q46[B]6)u

1
0

?

≤ [t]4

This test passes successfully. Here is what it tests for Reach(x2
0, u

2
0):

(q14[F]4 + q15[F]5)x
2
0 + (q14[B]4 + q15[B]5)u

2
0

?

≤ [t]1

(q22[F]2 + q23[F]3)x
2
0 + (q22[B]2 + q23[B]3)u

2
0

?

≤ [t]2

(q31[F]1 + q36[F]6)x
2
0 + (q31[B]1 + q36[B]6)u

2
0

?

≤ [t]3

(q45[F]5 + q46[F]6)x
2
0 + (q45[B]5 + q46[B]6)u

2
0

?

≤ [t]4
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Reach(x2
0, u2

0)

[E
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2
≤

[F
B
]2 z

2

[E
] 3

x 1
≤

[F
B
] 3

z
2

[E]4x1
≤ [F B]4z

2

[E]1x1 ≤ [F B]1z2

[E
] 6

x 1
≤

[F
B
] 6

z
2

[E
]5 x

1 ≤
[F

B
]5 z 2

Figure 4.3: Illustration for the drawback of a non-invariant Q. QFx2
0 + QBu2

0 6≤ t

even though Reach(x2
0, u

2
0) ⊆ Tube(T, t) (the rectangular region is Tube(T, t)).

Note that, instead of testing whether the intersection of the constraints [E]1x
2
1 ≤

[F]1x
2
0 + [B]1u

2
0 and [E]3x

2
1 ≤ [F]3x

2
0 + [B]3u

2
0 is “below” [T ]2x1 ≤ [t]2 (in which case it

would be confirmed that Reach(x2
0, u

2
0) ⊂ Tube(T, t)), this Q tests if the intersection

of [E]2x
2
1 ≤ [F]2x

2
0 + [B]2u

2
0 and [E]3x

2
1 ≤ [F]3x

2
0 + [B]3u

2
0 (indicated by the arrow

in Figure 4.3) is “below” [T ]2x1 ≤ [t]2. Clearly, from Figure 4.3, this test will be

answered in the negative.

Thus, in this subsection, an example was presented to illustrate the possibil-

ity that a Q determined for an irredundant Reach set Reach(x1
0, u

1
0) of a given

Slack-descriptor system may test correctly whether other irredundant Reach sets

of this Slack-descriptor system are subsets of Tube(T, t), but that this Q may iden-

tify a redundant Reach set Reach(x2
0, u

2
0) as not a subset of Tube(T, t) even though

Reach(x2
0, u

2
0) ⊆ Tube(T, t).
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4.8 Discussion

In this chapter it was shown that for a system whose dynamics are described

through linear constraints, the set of controls that maintain the system’s states in

a linearly constrained tube can be described by linear constraints if the dynamics

satisfy certain conditions. It was explained when this description can be exact and

a case was identified for when this is possible (Chapter 5 studies this case in greater

depth). A method has been presented to test if a given tube is maintainable for a

given slack-descriptor model. Also, an expression has been shown (Equation (4.3))

that can be used on-line to compute controls that would maintain system states

within the given maintainable tube.

Note that a slack-descriptor system in regular form is equivalent to a halfspace

system. Chapter 6 will study maintainability of halfspace systems without involving

a Q.
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Chapter 5

Determining the Values of b for which

Ax ≤ b is Irredundant

5.1 Introduction

The need to study redundancy was motivated in Section 4.5. From Section 3.1, it

can be seen that a Reach1(x
1
0, u

1
0) set is a polyhedron defined by Expression (3.1)

as follows:

Ex1 = Fx1
0 + Bu1

0 + Vv. (5.1)

The problem studied in Chapter 4 was: given a convex set of states denoted

Tube(T, t)
4
=

{
x ∈ <n

∣∣Tx ≤ t, T ∈ <j×n, t ∈ <j
}

and an x1
0 ∈ Tube(T, t), find a u1

0

such that Reach1(x
1
0, u

1
0) ⊆ Tube(T, t). If a u1

0 exists for each x1
0, then the system

states can be maintained in the tube indefinitely.

It was seen in Chapter 4 that if a matrix Q ∈ <j×m can be found such that

through premultiplication by Q, Expression (5.1) can be rewritten as: Tx1 =

QFx1
0 + QBu1

0 + QVv, such that QVv ≤ 0 and each row of QVv is assured to take

on a value of zero, then this last equation gives: Tx1 ≤ QFx1
0 + QBu1

0. Then the

constraint QFx1
0 + QBu1

0 ≤ t allows one to determine the values of (x1
0, u

1
0) pairs for

which Reach1(x
1
0, u

1
0) ⊆ Tube(T, t). This result, by extension, helps determine if the

evolution of the states of the system can be maintained in the given tube.

In the method proposed in Chapter 4 to determine Q, the value of Q depends

on the value of the (x1
0, u

1
0) pair. It was concluded there that if Q could somehow be

independent of (x1
0, u

1
0) pairs, then a Q determined for any one pair would work for
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the particular slack-descriptor model as a whole. Even if Q were not independent

as described, at least the set of all (x1
0, u

1
0) pairs for which the Expression (2.2)

remains irredundant could be determined, and for this set of values a Q could be

determined. This was better than finding a Q for a random (x1
0, u

1
0) pair and not

knowing ‘how far’ it will work. Thus, this was the motivation to study redundancy.

The question of redundancy of a system of linear inequality constraints has been

studied for more than a half century now. The first comprehensive survey on this

topic was done in [KLTZ83]. Recently [Gre96] did another survey. These and other

works have focussed on REDUNDANCY DETECTION — determining if a system of lin-

ear inequality constraints is redundant and, if so, which constraints are redundant

— and/or REDUNDANCY ELIMINATION — obtaining a minimized (irredundant) sys-

tem of inequality constraints whose feasible region is the same as that of the origi-

nal system. In contrast, in this paper, the interest is in characterizing the domain of

values over which a system is irredundant.

The techniques used in the literature for redundancy detection and/or elimina-

tion fall into two broad categories – DETERMINISTIC TECHNIQUES and PROBABILIS-

TIC TECHNIQUES. Given a system of linear inequality constraints, a deterministic

method, in its most naive form, determines if a constraint is redundant by solving

a linear programming (LP) problem (LPP) [CBB97]. This means that the compu-

tational complexity of the deterministic methods is polynomial. In practice, many

simplifying observations are used to classify as many constraints as possible as re-

dundant/irredundant during the solution of each LPP. There are also some non-LP-

based deterministic methods which, while not as comprehensive in classifying the

constraints as the LP-based methods, are quicker. The probabilistic methods are

based on the fact that, if a random line intersects the interior of the feasible region

of the given system of constraints, then with probability one the end points of the

feasible segment of that line identify necessary or weakly redundant constraints.

Consider the following systems of constraints:

Ax ≤ By,

y ∈ <n+p, x ∈ <n.

Constants: A ∈ <m×n, B ∈ <m×(n+p).

 (5.2)
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Note that Expression (5.2) defines, not one system of constraints, but SYSTEMS, each

system being defined by a particular value of y. It is similar to Expression (2.2).

It can also model the non-negativity constraints on x. In this paper, the polyhedra

defined by this expression are required to be bounded. The problem of determining

the set of all (x0, u0) pairs for which Expression (3.2) remains irredundant can be

formulated more generally as

PR1 : Determine {y | The systems of Expression (5.2) are irredundant } ,

or simply as

PR2 : Determine {b | S(b) is irredundant } ,

where

S(b)
4
= (Ax ≤ b, x ∈ <n) , b ∈ <m. (5.3)

The redundancy-related techniques described above process constraints sequen-

tially and, so, are not suited to solve PR1 or PR2.

The work which comes closest to solving PR1 or PR2 is [LW97]. [LW97]

presents an algorithm to determine the vertices of a polyhedron, such as defined

by Expression (5.2), as functions of the parameter y. That algorithm works approx-

imately as follows. In the first step, it converts the “parametrized polyhedron” of Ex-

pression (5.2) into a homogeneous polyhedron of the form [ A −B ][ x y ]T ≤ 0.

In the second step, the (n + p)-FACES of the last polyhedron are determined using

a face-enumeration algorithm developed by [LW97]. In the third step, the (n + p)-

FACES are projected onto the n-dimensional space to obtain the “parametrized ver-

tices”. The complexity of this algorithm is bounded by a polynomial in n + p. That

work can provide a first approximation to our problem as follows: the set of all val-

ues of y over which every one of the parametrized vertices is preserved is a subset

of the solution to our problem. The solution may not be exact in some cases as

can be seen in Figure 5.1: this figure shows polytopes represented by irredundant

systems corresponding to Expression (5.2); these polytopes have different number

of vertices. In the present chapter, two methods that solve this problem exactly
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Figure 5.1: Polytopes represented by irredundant systems corresponding to Ex-

pression (5.2): these polytopes have different number of vertices.

y
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1

2

3
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5

6

Figure 5.2: Redundant and Necessary Constraints

are discussed. Another promising direction is also shown that needs to be further

explored.

This chapter is organized as follows. Section 5.2 presents some definitions re-

lated to redundancy and polytopes. Sections 5.3, 5.4, and 5.5 present the first,

second, and third solution methods respectively. Section 5.6 presents an example.

Section 5.7 concludes the chapter with a discussion of the results.
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5.2 Definitions

A few definitions are introduced in this section that also serve the purpose of estab-

lishing some of the notation used in this chapter.

Notation 5.1 In Expression (5.3), A = [ a1 . . . am ]T , ai = [ ai1 . . . ain ]T ,

i = 1 . . .m; b = [ b1 . . . bm ]T . Thus, the i-th constraint in S(b) is aT
i x ≤ bi. Let

C=
i , Ci, and C−

i denote the constraints aT
i x = bi, aT

i x ≤ bi, and aT
i x < bi respectively.

Then, S(b) = {Ci|i = 1 . . .m}.

Definition 5.1 Given that ai ∈ <n, and bi ∈ <, the set H=
i

4
= {x | C=

i } is called a

HYPERPLANE and the set Hi
4
= {x | Ci } is called a CLOSED HALFSPACE with OUTWARD

NORMAL ai. H−
i

4
= {x | C−

i } is the corresponding OPEN HALFSPACE.

Notation 5.2 For a given b, the feasible region of S(b) is:

P
4
= {x | Ck, 1 ≤ k ≤ m } . (5.4)

X \ T is the set of all elements in the set X that do not belong to the set T . Let

S\i(b) = {Ck|k ∈ {1, . . . , i − 1, i + 1, . . . ,m}}, A\i = {ak|Ck ∈ S\i(b)}, and LPmax
\i =

max
{

aT
i x
∣∣S\i(b)

}
. Let, P\i be the feasible region of S\i(b)}.

Definition 5.2 [CBB97] A system of constraints is called a REDUNDANT SYSTEM if

it contains at least one redundant constraint. In S(b) of Expression (5.3), the ith

constraint is REDUNDANT if P = P\i or LPmax
\i ≤ bi, WEAKLY REDUNDANT if LPmax

\i =

bi , STRONGLY REDUNDANT if LPmax
\i < bi, and IRREDUNDANT or NECESSARY if it is

not redundant.

Figure 5.2 illustrates redundancy of linear constraints w.r.t. the feasible region

of a constraint set. Constraints 1 and 6 can be removed without altering the feasible

region. So, they are redundant: 1 is strongly so, and 6 is weakly so. The others (2

– 5, x ≥ 0 and y ≥ 0) are necessary.

In the following the linear algebraic concepts of subspace, affine subspace, affine

hull (denoted aff(·)), polytope, dimension of a polytope, faces and facets of a poly-
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tope, cone [BT97, Zie95, GR97, Sch86], and the LP concepts of basic solution and

basic feasible solution [BT97] will be used.

Definition 5.3 [Zie95] Let P ⊆ <n be a polytope. A constraint Ci, is VALID for P if

it is satisfied for all points x ∈ P.

Definition 5.4 [Sch86] The cone GENERATED by the vectors X = {x1, . . . , xm}, is the

set cone(X) = cone({x1, . . . , xm})
4
=

{∑m
i=1 λix

i
∣∣ λi ≥ 0

}
. The notation cone(Z)

will be used to denote cone(X) when Z = [x1 . . . xm].

Definition 5.5 In the system of halfspaces S(b), it will be said that certain con-

straints SURROUND a particular constraint if the cone generated by the outward

normals of these constraints contains the outward normal of the constraint in ques-

tion. That is, the constraints C1, . . . , Cp (p ≤ m), surround the constraint Ci, if

ai ∈ cone({a1, . . . , ap}), where i /∈ {1, ..., p}. A SURROUNDING CONSTRAINT SET

(SCS) of a constraint Ci is defined as a set of n linearly independent constraints

that surround Ci. The set of all SCSs of Ci will be called the SSCS of Ci.

Definition 5.6 Consider S(b1) and S\i(b
1), where b1 is an instance of b. Assume

that both sets are bounded and that the latter is irredundant. It is known that

Ci in S(b1) is redundant if LPmax
\i ≤ b1

i . Since, S\i(b
1) is bounded, LPmax

\i occurs

at a vertex of the feasible region of S\i(b
1). Assume that this vertex is the point

of intersection of the constraints in Sn(b1) which is a subset with cardinality n of

S\i(b
1). Consider any S(b2) without regard to whether it is redundant (it is not

necessary that b1 6= b2). In S(b2) we will call Sn(b2) a REDUNDANCY DEFINING

CONSTRAINT SET (RDCS) of Ci. The SRDCS of Ci is the set of all possible RDCSs of

Ci.

For example, in Figure 5.2 {Constraint#2, x ≥ 0} is the RDCS of

Constraint#1, and {Constraint#5, y ≥ 0} is the RDCS of Constraint#6.

Notation 5.3 Let ρ = [r1 . . . rm]
T ≥ 0 be an instance of b. The constraint set

S(ρ) =
{

aT
j x ≤ rj

∣∣ 1 ≤ j ≤ m
}
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is irredundant and has the origin somewhere in the middle of its feasible region.

Let

Sn(ρ)
4
=

{
ai

1

T
x ≤ ri

1, . . . , a
i
n

T
x ≤ ri

n

}
, S ′n(ρ)

4
=

{
ai′

1

T
x ≤ ri′

1 , . . . , ai′
n

T
x ≤ ri′

1

}
be some subsets of S(ρ). Let An =

[
ai

1 . . . ai
n

]
, A′

n =
[
ai′

1 . . . ai′
n

]
.

5.3 First Method to Solve PR1 and PR2

It is assumed that TRIVIAL REDUNDANCIES such as the simultaneous existence of

constraints aT
i x ≤ bi and aT

i x ≤ kbi, k ≥ 0, do not occur in our systems, and that

S(b) is bounded.

PR1 and PR2 will be solved using SCSs. Then, this solution will be refined

using RDCSs.

5.3.1 Overview of SCS Method

By Theorem 5.1 below, each constraint in the system S(b) is irredundant if it is irre-

dundant w.r.t. the constraints that SURROUND it. Alternatively, only the constraints

that surround a given constraint can make it redundant. It follows from Defini-

tion 5.5 that at least two constraints are needed to surround a given constraint.

Once the surrounding constraint sets (SCSs) of a given constraint have been iden-

tified as shown in Subsection 5.3.3, PR1 and PR2 can be solved as described in

Subsection 5.3.4.

5.3.2 Preliminary Results on SCSs

Here are presented some results that will form the foundation for the solution given

in Section 5.3.4.

Lemma 5.1 Consider P from Expression (5.4). Assume that H=
i contains a face F

of P. Ci is valid for P if and only if Ci is a non-negative linear combination of the

constraints that define F.
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Proof: If Ci is not a linear combination (LC) of the constraints that define F, then

no point on F will satisfy C=
i , meaning that H=

i will not contain F. But, it is given

that H=
i contains F. So, Ci is an LC of the constraints that define F. It remains to be

shown that Ci is valid for P if and only if this LC is a non-negative one. Ci can be

written thus:

m∑
j=1

kja
T
j x ≤

m∑
j=1

kjbj.

Of the constraints C1, . . ., Cm, some may enter this LC multiplied by zeros, while

others may simply be linear combinations of some of the other constraints. If F is

an l-face in n dimensional space, then this LC is obtained from n − l constraints.

Thus, this LC can be seen as obtained from a maximum of n linearly independent

constraints that define aff(F). Without loss of generality, for some q, let this LC be

as follows:

Ci :

q∑
j=1

kja
T
j x ≤

q∑
j=1

kjbj, 1 ≤ q ≤ n. (5.5)

Suppose that k1 < 0 in the above LC. Consider a point x1 satisfying C−
1 , and C=

2 ,

. . ., C=
q . Substituting this x1 into Expression (5.5) gives k1a

T
1x1 ≤ k1b1, that is,

aT
1x1 ≥ b1. This is in disagreement with the statement that x1 satisfies C−

1 . This

means that x1 does not satisfy Expression (5.5). So, it follows that if Ci is not a

non-negative LC of C1, . . ., Cm , then Ci is not valid for P. To see that if it is a non-

negative LC, then it will be valid for P, suppose that all the kj’s in Expression (5.5)

are non-negative. Then, any x2 which satisfies C1, . . ., Cq also satisfies Ci. 2

Theorem 5.1 If constraints in S\i(b) make Ci redundant, then ai ∈ cone(A\i).

Proof: Without loss of generality, let the constraints in S\i(b) be irredundant. It is

given that the constraints in S\i(b) make Ci redundant. This means that a subset

S⊆ of S\i(b) determines a face F of P such that for some bi = LPmax
\i ≤ bi, F

is the highest-dimensional face of P contained in the hyperplane
{
x
∣∣ aT

i x = bi

}
.

This means, by Lemma 5.1, that the constraint aT
i x ≤ bi is a non-negative linear
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combination of the constraints in S⊆. So, Ci is surrounded by the constraints in S⊆.

So, ai ∈ cone(A\i). 2

Theorem 5.1 shows that if ai /∈ cone(A\i), then the constraints in S\i(b) do not

make Ci redundant. Thus, Theorem 5.1 helps confine the redundancy test for Ci

to Ci’s surrounding constraints. But, Ci may have ni ≥ 2 surrounding constraints.

To test if Ci is redundant, it should not be necessary to work with all ni of them,

since only those constraints are needed that determine LPmax
\i . It is enough to work

with just those that determine F (the face on which LPmax
\i occurs) or, more con-

cisely, with those that determine aff(F). However, the present chapter is only able

to propose a method that works with basic solutions (points of intersection of n

linearly independent constraints, such as in an SCS) rather than those that define F

or aff(F). There are two possible disadvantages to such an approach: (1) in cases

where less than n constraints are enough to surround a constraint, using an SCS

MAY BE expensive; (2) in an unbounded system, an SCS may not be found (this is

why the present method does not work with unbounded systems), though a set of

less than n constraints that surrounds the constraint in question may be found.

Remark 5.1 The SCS method solves PR1 and PR2 by applying the fact, for all the

m constraints in the system, that each constraint is irredundant if it is irredundant

with respect to all of its respective SCSs (for, if the constraint is not irredundant

with respect to any one SCS, then it is redundant).

5.3.3 Determining the SSCS of Ci

An SCS of Ci can be found by using the fact that for Sn(b) (see Notation 5.3) to be

an SCS of Ci, ai ∈ cone(An), that is A−1
n ai ≥ 0.

Step 1: From the m columns of the matrix AT form square matrices taking n dif-

ferent columns at a time. There are Cm
n such matrices.

Step 2: For each ai from AT , list the square matrices that do not have ai as one of

the columns.
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Step 3: Find the inverses of these square matrices.

Step 4: For each such inverse matrix A−1
n , calculate the product A−1

n ai.

Step 5: Classify Sn(b) as SCS or not-SCS of Ci.

If a search for the SCS of a constraint turns up empty, then this implies one of

two possibilities: (1) the system is unbounded, or (2) the constraint in question is

not surrounded by any constraints (for example, in a constraint system that defines

a cube in <3, none of the constraints has SCSs, but the system is bounded).

5.3.4 Solving PR1 and PR2 using SSCS

Step 1: Let the SCSs of Ci be (assuming that the SCSs are ηi in number)
ai

1,1
T
x ≤ bi

1,1

. . . . . . . . .

ai
n,1

T
x ≤ bi

n,1

 , . . . . . . ,


ai

1,ηi

T
x ≤ bi

1,ηi

. . . . . . . . .

ai
n,ηi

T
x ≤ bi

n,ηi

 .

These sets are subsets of S(b) of Expression (5.3). They determine the follow-

ing intersection points:

xi
k =

([
ai

1,k · · · ai
n,k

]T)−1 [
bi

1,k · · · bi
n,k

]T
, k = 1, . . . , ηi.

Step 2: By Remark 5.1, Ci is irredundant if bi < aT
i xi

k, for k = 1, . . . , ηi. Similar

conditions have to be satisfied simultaneously by all the constraints, for which

SCSs exist, and their respective SCSs.

Step 3: It follows that the solution set of PR2 is defined by the following expres-

sion:

bi − aT
i

([
ai

1,k · · · ai
n,k

]T)−1


bi

1,k
...

bi
n,k

 < 0, (5.6)

k = 1, . . . , ηi,

i = 1, . . . ,m.
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Step 4: The solution to PR1 is obtained by appending the conditions b = By to

Expression (5.6). Alternatively, the solution to PR1 is the feasible region of

the following system of constraints:[B]i − aT
i

([
ai

1,k · · · ai
n,k

]T)−1


[B]

i
1,k

· · ·
[B]

i
n,k


y < 0, (5.7)

k = 1, . . . , ηi,

i = 1, . . . ,m

where [B]i is the i-th row of the matrix B.

5.3.5 Overview of Refinement using RDCSs

By Theorem 5.2 below, if every constraint in S(b) is irredundant with respect to

its respective RDCSs, then S(b) is irredundant. This means that it is sufficient

to work with RDCSs instead of with SCSs, and that the systems of inequalities of

expressions (5.6) and (5.7) may have redundancy in them. Identifying the RDCSs

will help remove some of this redundancy. In the following, a way is shown to

identify some of those constraint sets that cannot be RDCSs of a constraint in S(b).

5.3.6 Preliminary Results on RDCSs

LPmax
\i can occur anywhere in the face F mentioned in the proof of Theorem 5.1.

In a bounded system, F contains at least one vertex. Let this vertex be denoted xv.

Then, LPmax
\i = aT

i xv.

For example, in the left hand polytope of Figure 5.1, LPmax
\7 is obtained at xv

that is determined by any one of the following 4 sets of constraints: {C1, C2, C3},

{C1, C2, C4}, {C1, C3, C4}, and {C2, C3, C4}.

Given that Ci has ni surrounding constraints, and that each xv is defined by a set

of n linearly independent constraints, the maximum number of possible xv’s is

Cni
n =

ni!

(ni − n)! n!
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Notation 5.4 In the set S\i(b), let the ji-th SCS of Ci be AjiT
x ≤ bji, with xji

4
=

(AjiT
)
−1

bji. Here,{
a

ji
1 , . . . , aji

n

}
⊂ {a1, . . . , am} , Aji =

[
a

ji
1 . . . aji

n

]
,{

b
ji
1 , . . . , bji

n

}
⊂ {b1, . . . , bm} , bji =

[
b

ji
1 . . . bji

n

]T
.

Lemma 5.2 In the set
{
xji
∣∣ 1 ≤ ji ≤ Cni

n

}
of intersection points, the element that

minimizes aT
i x is the solution to LPmax

\i .

Proof: As was stated in the beginning of this subsection, LPmax
\i = aT

i xv, where

xv ∈
{

xji
∣∣ 1 ≤ ji ≤ Cni

n

}
. As the constraints corresponding to Aji surround the i-th

constraint, there exists λji ≥ 0 (λji ∈ <n) such that Ajiλji = ai. As xv satisfies

S\i(b), it follows that AjiT
xv ≤ bji, meaning that AjiT

xv ≤ AjiT
xji. This gives:

λjiT
AjiT

xv ≤ λjiT
AjiT

xji, meaning that aT
i xv ≤ aT

i xji. 2

Remark 5.2 Applying Definition 5.6 it can be seen that in an irredundant system

an RDCS of Ci determines LPmax
\i . The proof of Theorem 5.1 has shown that LPmax

\i

is determined only by the SCSs of Ci. So, it follows that an RDCS is an SCS.

The number of inequalities involved in expressions (5.6) and (5.7) can be re-

duced by using the notion of RDCS, as suggested by the following theorem.

Theorem 5.2 If every one of the constraints in S(b) is irredundant with respect to

its respective RDCSs, then S(b) is irredundant.

Proof: Assume that (a1) every constraint in S(b) is irredundant with respect to its

respective RDCSs, but that (a2) Ci is redundant. (a2) means that there is a SCS Ψi

of Ci with respect to which the latter is redundant. Thus, if Ci is moved into the

feasible region of S(b) such that the Ci is irredundant with respect to Ψi, one of the

following two things may happen:

(1) S(b) may become irredundant (this means that Ψi was in fact an RDCS of Ci,

contradicting (a1)), or

(2) Some other constraint Cj now becomes redundant with respect to Ψj, which is
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one of the SCSs of Cj. Now, if Cj is moved into the feasible region of S(b) such that

it is irredundant with respect to Ψj, one of two things may happen: S(b) becomes

irredundant (meaning that Ψi and Ψj are in fact the RDCSs of Ci and Cj respectively;

this contradicts (a1)), or some other constraint Ck now becomes redundant with re-

spect to one of its SCSs, Ψk.

Thus, recursive application of the above argument gives one of two possibilities:

either (a2) was incorrect and S(b) was irredundant to start with, or (a1) was in-

correct and there were the RDCSs Ψi, Ψj, Ψk, ..., (respectively of Ci , Cj, Ck, ...) that

were overlooked when formulating (a1). This completes the proof. 2

Lemma 5.3 below identifies some members of the SSCS of Ci that cannot be

RDCSs of Ci in S(b). The redundancy-related properties of S(b1) — that belongs to

the translation class of systems containing S(ρ) — are the same as those of S(ρ);

so, there is no loss of generality in considering S(ρ).

Lemma 5.3 (see Notation 5.3 on Page 44) Assume that S(ρ) is irredundant, Sn(ρ)

and S ′n(ρ) are SCSs of Ci, and that cone(An) ⊂ cone(A′
n). Then, S ′n(ρ) is not an

RDCS of Ci.

Proof: Suppose that S ′n(ρ) is an RDCS of Ci. Then, applying Lemma 5.2 and Re-

mark 5.2 we obtain the following inequality:

aT
i

(
A′

n
T
)−1 [

ri′
1 . . . ri′

n

]T︸ ︷︷ ︸
x′

n

≤ aT
i

(
AT

n

)−1 [
ri
1 . . . ri

n

]T︸ ︷︷ ︸
xn

. (5.8)

As ai ∈ cone(An) and ai ∈ cone(A′
n), ∃λ, λ′ ≥ 0 ∈ <n such that Anλ = ai and

A′
nλ′ = ai. Thus, Expression (5.8) can be written as follows:

λTAT
n

(
A′

n
T
)−1 [

ri′
1 . . . ri′

n

]T ≤ λT
[
ri
1 . . . ri

n

]T
.

Now, since λ ≥ 0, this inequality will be true only if at least one of the following
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inequalities holds:

ai
1

T
(
A′

n
T
)−1 [

ri′
1 . . . ri′

n

]T ≤ ri
1

. . . . . . . . . . . . . . . . . . . . .

ai
n

T
(
A′

n
T
)−1 [

ri′
1 . . . ri′

n

]T ≤ ri
n

As cone(An) ⊂ cone(A′
n), this means that at least one of the constraints in Sn(ρ)

is redundant with respect to the constraints in S ′n(ρ). However, it is given that S(ρ)

is irredundant. So, Expression (5.8) cannot be true, meaning that S ′n(ρ) cannot be

an RDCS of Ci. 2

Corollary 5.1 In an irredundant system S(b), no two constraints can have the same

RDCS.

Proof: This result follows directly from Lemma 5.3. 2

5.3.7 Simplification using RDCS

Once all the SCSs in S(b) have been determined using Subsection 5.3.3, those SCSs

that are not the RDCSs can be eliminated using Corollary 5.1. This can be done as

follows. Suppose that Ci and Cj are members of S(b). Suppose that Sn(b) is an SCS

of Ci and Cj. In case there exists among the SCSs of Ci an SCS which is obtained by

replacing one of the constraints in Sn(b) by Cj, then Sn(b) is not an RDCS of Ci and

it can be eliminated from the SRDCS of Ci.

5.3.8 Solving PR1 and PR2 using RDCSs

In case the SRDCS of each constraint is given, then the solution to PR1 is exactly

as in Section 5.3.4 if the term ‘RDCSs’ is substituted for ‘SCSs’.
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5.3.9 Analysis

An m-file (for MATLAB R©) has been written to implement the methods of subsec-

tions 5.3.3, 5.3.4, and 5.3.7. Instead of computing A−1
n and then the product A−1

n ai,

Gaussian elimination is used to solve the system of linear equations Anx = ai and

obtain x. This method is about 2 – 3 times faster than the one that uses matrix

inversion [gen95].

In the method described so far, Subsection 5.3.7 helps reduce only the number

of inequalities that describe the solution space of PR1 or PR2. It does not reduce

the initial complexity — due to Subsection 5.3.3 — of identifying the SSCS. An

efficient way needs to be found that will allow to either identify the SRDCS of Ci or,

at least, to identify those constraints that cannot be the RDCSs of Ci, without going

through Subsection 5.3.3.

One potential method to identify the RDCSs of a constraint in S(b) is to use the

concept of an IDEAL SYSTEM — a system S(bs) in which all the member constraints

are tangent to a sphere. It can be shown that S(bs) is irredundant. It is conjectured

that, for some classes of systems, the RDCSs of the i-th constraint in S(b) can be

identified from the knowledge of the RDCSs of the i-th constraint in S(bs). (Note

that this conjecture is not true for all classes of systems. A counter-example for a

particular system has been shown by Dr. Vincent Loechner). Identifying classes of

systems for which this could work is a topic of current research. The advantage

of such a method would be that identifying RDCSs in S(bs) involves fewer matrix

inverse operations than in S(b), and so is less expensive computationally. The

attempt to exploit the idea of ideal systems is described in Appendix A.

As it stands, the present method is combinatorially complex (mCm−1
n Gaussian

eliminations, each of these being O(n3) complex). The method presented in the

next section is POSSIBLY more efficient as it uses vertex enumeration algorithms that,

though not of polynomial complexity, have been found to give acceptable results for

some classes of systems [Bre97].
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5.4 Second Method to Solve PR1 and PR2

This second method was suggested by Dr. Carl Lee [Lee02] and uses LP duality. It

is presented in Appendix B. Please look there for further details.

5.4.1 Analysis

An m-file that uses the extreme point and ray enumeration program CDD [Fuk99]

has been written to implement this algorithm.

The complexity of this method is determined by Step 3 which is a vertex enu-

meration problem. This method solves one problem of vertex enumeration for each

constraint. Thus it solves m problems of vertex enumeration overall. Vertex enu-

meration algorithms are not of polynomial complexity [Bre97].

Step 2 of Subsection 5.3.4 follows from the following observation too: LPmax
\i =

aT
i xv = min

{
aT

i xi
k | k = 1, . . . , ηi

}
as per Lemma 5.2, and Ci is irredundant if bi <

LPmax
\i . In this sense, the method of Subsection 5.3.4 uses the same criteria to test

for redundancy as the method shown in this section.

Both methods depend on finding extreme points. When the feasible region of

S(b) does not have extreme points, the SCS method quits even though there may

be a finite value for LPmax
\i . The second method however, finds extreme points in

the feasible region of the dual system (dual polyhedron). As the dual polyhedron

is in the non-negative orthant, it is guaranteed to have at least one extreme point

[BT97]. Thus, the second method works for unbounded systems too.

In this second method, for some i the primal LPP of Step 2 might be unbounded.

In such a case the i-th constraint of S(b) is automatically always irredundant for

any choice of b for which S(b) is feasible. In this case the corresponding dual LPP

of Step 2 is infeasible and so no constraints involving bi are generated.
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5.5 Third Method to Solve PR1 and PR2

An additional direction that was explored to solve PR2 is described here. This ap-

proach appears promising but is not yet complete. It is presented as a direction for

continuing research. It is based on using Minkowski’s Theorem for an equilibrated

system of vectors.

Theorem 5.3 (Minkowski’s Theorem for an equilibrated system of vectors [GH99])

Let u1, . . . , um be pairwise different unit vectors of Euclidean n-space <n which

span <n, and let µ1, . . . , µm be positive reals such that
∑m

i=1 µiui = 0. Then there

exists a polytope P with outer facet normals u1, . . . , um and corresponding facet

volumes µ1, . . . , µm. Further, P is unique up to translation.

Let, Au be a matrix of unit vectors that has been obtained from A (see Nota-

tion 5.1) thus: Au =
[

a1

|a1|
. . . am

|am|

]T
.

Remark 5.3 Minkowski’s theorem suggests that each vector z from the set Ψ ={
z|rank(Au) = n, AT

uz = 0, z > 0, z ∈ <m
}

corresponds to a bounded irredundant

system, unique up to translation, represented by Equation (5.3). In particular, each

such z is the vector of facet volumes of a polytope represented by Equation (5.3).

It follows that, given Au and a z from Ψ, if a rule (or an algorithm) that would

give the corresponding value of b̂ were to be found, then the system Aux ≤ b̂ (or,

alternatively, Ax ≤ b) would be irredundant. Here, b̂ =
[

b1

|a1|
. . . bm

|am|

]T
. Thus,

applying the said rule to every z from Ψ, the set B of all such b would be obtained.

Then, the set
{
B + Ax1|x1 ∈ <n

}
would be the solution to PR2.

Such a rule or algorithm is the subject of the MINKOWSKI RECONSTRUCTION

PROBLEM [GH99]. Such an algorithm does not exist in practice. Even if it existed,

it is not practical to apply it to each z from Ψ as there is an infinite number of z.

Currently other ways to implement the idea of finding a correspondence be-

tween Ψ and B are under investigation.

Remark 5.4 Remark 5.3 suggests that S(b) is bounded if Ψ is non-empty. Thus,
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checking for the non-emptiness of Ψ, or of its closure (if a set is non-empty, then its

closure is also non-empty) clo(Ψ), is one test for boundedness of S(b). Note that

while testing clo(Ψ) for non-emptiness, the case when the only element of clo(Ψ)

is 0 is ignored.

5.6 Example

Consider S(b) with A as given below:

A =



1.5578 0.4142

−2.4443 −0.9778

−1.0982 −1.0215

1.1226 0.3177

0.5817 1.5161

−0.2714 0.7494


.

From Remark 5.4, it follows that clo(Ψ) is non-empty (this was done using CDD),

and thus S(b) is bounded. Next, from the algorithms of subsections 5.3.3 and 5.3.4

it follows that each constraint in S(b) has two SCSs and that the solution to PR2 is

given by Db < 0 where D is as follows:
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D =



1 −0.0931 0 −1.5903 0 0

1 0 −0.0375 −1.4243 0 0

0 1 −2.9296 0 −1.3288 0

0 1 −1.9062 0 0 −1.2933

−2.7855 −2.2245 1 0 0 0

0 −2.4839 1 −4.4298 0 0

−0.7154 0 0 1 −0.0141 0

−0.7247 0 0 1 0 −0.0234

−0.6620 0 0 0 1 −1.6571

0 0 0 −0.9135 1 −1.6358

0 −0.2701 0 0 −0.6685 1

0 0 −0.7913 0 −1.0274 1



.

Thus, the system Ax ≤ b will be irredundant for any b such that Db < 0. For

comparison, here is the matrix D determined using the method of Appendix B:

D =



1.0000 0 −0.0373 −1.4239 0 0

1.0000 −0.0928 0 −1.5892 0 0

0 1.0000 −1.9059 0 0 −1.2944

0 1.0000 −2.9309 0 −1.3309 0

0 −2.4840 1.0000 −4.4282 0 0

−2.7864 −2.2255 1.0000 0 0 0

−0.7155 0 0 1.0000 −0.0141 0

−0.7249 0 0 1.0000 0 −0.0233

0 0 0 −0.9133 1.0000 −1.6358

−0.6620 0 0 0 1.0000 −1.6570

0 0 −0.7919 0 −1.0282 1.0000

0 −0.2702 0 0 −0.6686 1.0000



.

The constraint sets which are SCSs of the various constraints can be seen in the
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following table which was generated by the m-files mentioned in Subsection 5.3.9:

Constraint SCS Is this SCS an RDCS ?

C1 {C2 C4} No

C1 {C3 C4} May be

C2 {C3 C5} No

C2 {C3 C6} May be

C3 {C1 C2} May be

C3 {C2 C4} May be

C4 {C1 C5} May be

C4 {C1 C6} No

C5 {C1 C6} No

C5 {C4 C6} May be

C6 {C2 C5} May be

C6 {C3 C5} No

Some of the redundancy in the description of the solution space of PR2 is re-

moved using this table. The new description of this solution space is obtained as

D̂b < 0, where D̂ is the following matrix:

D̂ =



1.0000 0 −0.0375 −1.4243 0 0

0 1.0000 −2.9296 0 −1.3288 0

−2.7855 −2.2245 1.0000 0 0 0

0 −2.4839 1.0000 −4.4298 0 0

−0.7154 0 0 1.0000 −0.0141 0

−0.7247 0 0 1.0000 0 −0.0234

−0.6620 0 0 0 1.0000 −1.6571

0 −0.2701 0 0 −0.6685 1.0000


.

Thus, the system will be irredundant for any b such that D̂b < 0.
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5.7 Discussion

For the system of linear constraints Ax ≤ b, two methods have been presented to

determine the set of all values of b for which the system is irredundant. Also a

third promising direction has been described. Currently, the first method works for

bounded systems only. The second method works for unbounded systems too.
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Chapter 6

Maintainability of Halfspace Systems

6.1 Introduction

In this chapter a linear programming-based test for the maintainability of halfspace

systems will be developed. A test for maintainability developed for slack-descriptor

systems in regular form will also work for halfspace systems. The complexity of

such a test will be compared with the linear programming-based test.

An algorithm for maintaining a halfspace system in a static tube will be pre-

sented. An implementation of this algorithm that uses linear programming dual-

ity will be shown. This same algorithm can also be used for maintaining a slack-

descriptor system in regular form in a static tube. An implementation of this algo-

rithm will be shown. The two implementations will be compared for complexity.

6.2 Test for Maintainability

In Expression (3.7), it was seen that the Reach set from the point xi
0 under the

control ui
0 will be inside Tube(T, t) if

[t]k ≥ max
Reach(xi

0,ui
0)

[T ]kx1, k = 1, . . . , j.

that is, if

[t]k ≥ max
Ex1≤Fxi

0+Bui
0

[T ]kx1, k = 1, . . . , j. (6.1)
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The linear programming primal problem

max
Ex1≤Fxi

0+Bui
0

x1 free

[T ]kx1

has the dual [BT97, page 166]

min
z≥0

zT E=[T ]k

zT (Fxi
0 + Bui

0)

This dual problem is the same as

max
z≥0

zT E=[T ]k

−zT (Fxi
0 + Bui

0)

Thus, Equation (6.1) becomes (with k = 1, . . . , j):

[t]k ≥ max
z≥0

zT E=[T ]k

−zT (Fxi
0 + Bui

0) (6.2)

The optimal solution of any linear programming problem occurs at a vertex of the

polyhedron that represents the feasible region of the problem. Thus, the solution of

the linear programming problem on the right hand side of Expression (6.2) occurs

among the vertices of the following polyhedron:

z ≥ 0

zTE = [T ]k

}
(6.3)

Let zT
11(k), zT

12(k), . . ., zT
1η(k) be the vertices of the polyhedron of Expression (6.3).

Then the following system of inequalities is equivalent to Expression (6.2):

−zT
11(k)(Fx

i
0 + Bui

0) ≤ [t]k

−zT
12(k)(Fx

i
0 + Bui

0) ≤ [t]k

. . . . . . . . . . . .

−zT
1η(k)(Fx

i
0 + Bui

0) ≤ [t]k
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Then, Reach(xi
0, u

i
0) ⊆ Tube(T, t) if the following system of inequalities holds true:

−zT
11(1)(Fx

i
0 + Bui

0) ≤ [t]1

. . . . . . . . . . . .

−zT
1η(1)(Fx

i
0 + Bui

0) ≤ [t]1

−zT
11(2)(Fx

i
0 + Bui

0) ≤ [t]2

. . . . . . . . . . . .

−zT
1η(2)(Fx

i
0 + Bui

0) ≤ [t]2

. . . . . . . . . . . .

−zT
11(j)(Fx

i
0 + Bui

0) ≤ [t]j

. . . . . . . . . . . .

−zT
1η(j)(Fx

i
0 + Bui

0) ≤ [t]j



(6.4)

By definition, a tube is maintainable if for every x0 in the tube maintaining con-

trols can be found. Thus, a test for maintainability might need every x0 in the tube

to be tested. Clearly, this is impossible. Theorem 6.1 shows that IF MAINTAINING

CONTROLS EXIST FOR THE VERTICES OF THE TUBE, THEN MAINTAINING CONTROLS EX-

IST FOR EVERY POINT IN THE TUBE. Thus, a test for maintainability need look for the

existence of maintaining controls only for each vertex of the tube.

Let Tx0 ≤ t and Tx1 ≤ t be the cross sections of the tube at time t = 0 and t = 1

respectively. Let the extreme points of Tx0 ≤ t be x1
0, x2

0, . . ., xL
0 .

Theorem 6.1 Assume that Tube(T, t) is bounded. If for each xi
0, i = 1, . . . , L, there

exists a ui
0 such that Expression (6.4) holds true, then for any point x

p
0 in Tx0 ≤ t,

there exists a u
p
0 such that Reach(xp

0 , u
p
0) ⊆ Tube(T, t).
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Proof: It needs to be shown that

−zT
11(1)(Fx

p
0 + Bu

p
0) ≤ [t]1

. . . . . . . . . . . .

−zT
1η(1)(Fx

p
0 + Bu

p
0) ≤ [t]1

−zT
11(2)(Fx

p
0 + Bu

p
0) ≤ [t]2

. . . . . . . . . . . .

−zT
1η(2)(Fx

p
0 + Bu

p
0) ≤ [t]2

. . . . . . . . . . . .

−zT
11(j)(Fx

p
0 + Bu

p
0) ≤ [t]j

. . . . . . . . . . . .

−zT
1η(j)(Fx

p
0 + Bu

p
0) ≤ [t]j



(6.5)

Since Tube(T, t) is bounded, Tx0 ≤ t is a polytope (that is, a convex bounded poly-

hedron). Any point x
p
0 in Tx0 ≤ t can be expressed as a convex combination of xi

0,

i = 1, . . . , L, as follows:

x
p
0 =

L∑
i=1

λix
i
0,

L∑
i=1

λi = 1, λi ≥ 0. (6.6)

Multiplying each inequality in Expression (6.4) by λi and summing it over i =

1, . . . , L gives the following:
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L∑
i=1

{
−zT

11(1)(Fx
i
0 + Bui

0)λi

}
≤

L∑
i=1

λi [t]1

. . . . . . . . . . . .
L∑

i=1

{
−zT

1η(1)(Fx
i
0 + Bui

0)λi

}
≤

L∑
i=1

λi [t]1

L∑
i=1

{
−zT

11(2)(Fx
i
0 + Bui

0)λi

}
≤

L∑
i=1

λi [t]2

. . . . . . . . . . . .
L∑

i=1

{
−zT

1η(2)(Fx
i
0 + Bui

0)λi

}
≤

L∑
i=1

λi [t]2

. . . . . . . . . . . .

L∑
i=1

{
−zT

11(j)(Fx
i
0 + Bui

0)λi

}
≤

L∑
i=1

λi [t]j

. . . . . . . . . . . .
L∑

i=1

{
−zT

1η(j)(Fx
i
0 + Bui

0)λi

}
≤

L∑
i=1

λi [t]j

Simplification of the above expression gives Expression (6.5) where x
p
0 is given by

Expression (6.6) and u
p
0 is as follows:

u
p
0 =

L∑
i=1

λiu
i
0,

L∑
i=1

λi = 1, λi ≥ 0.

Expression (6.5) thus obtained holds true because it is a non-negative combination

(in fact, a convex combination) of inequalities that hold true. 2

6.2.1 Direct Approach to Testing for Maintainability

To test for maintainability of Tube(T, t), for each extreme point xi
0 (i = 1, . . . , L) of

Tx0 ≤ t, solve Expression (6.4) for the existence of a ui
0. The tube is not maintain-

able if there does not exist a ui
0 even for one xi

0.
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The direct approach has the following computational steps:

1. Form Expression (6.4). This is done as follows:

(a) For k = 1, . . . , j enumerate the extreme points of the polyhedron of Ex-

pression (6.3). That is, solve j extreme-point enumeration problems.

(b) Enumerate the extreme points of Tx0 ≤ t.

2. For i = 1, . . . , L solve the problem of determining an interior point of the

polyhedron of Expression (6.4) to confirm the existence of u for the given

possibilities of x’s and z’s.

6.2.2 Complexity of Direct Approach

Extreme-point enumeration algorithms are not of polynomial complexity except in

certain special cases [Bre97].

Determining an interior point is a linear programming problem. In general,

a linear programming problem can be solved in time that is a polynomial in the

dimension of the problem [BT97]. In our case, the dimension of the problem —

which is the dimension of ui
0 — is p.

Thus, the complexity of the direct approach is determined by j + 1 non-

polynomial time computations plus L polynomial-time computations.

6.2.3 Using the Q Matrix to Test for Maintainability

As described in Chapter 3, to test for maintainability of Tube(T, t), for each extreme

point xi
0 (i = 1, . . . , L) of Tx0 ≤ t, solve the expression QBu0 ≤ t−QFxi

0 for u0. The

tube is not maintainable if there does not exist a u0 even for one xi
0.

This approach has the following computational steps:

1. Determine Q as follows:

(a) Determine B — the set of all (x0, u0) tuples for which Reach(x0, u0) is

irredundant.
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(b) Choose an (x1
0, u

1
0) ∈ B.

(c) For this tuple (x1
0, u

1
0), determine Reach(x1

0, u
1
0) (that is, evaluate Fx1

0 +

Bu1
0).

(d) For i = 1, . . . , j, where j is the number of rows of T , note the constraints

of Reach(x1
0, u

1
0) that are active at the extreme point of Reach(x1

0, u
1
0) at

which [T ]ix1 is maximum.

By Lemma 5.1, [T ]i is a non-negative linear combination of the direction

vectors of these constraints.

(e) Then, the i-th row of Q will have the coefficients of this linear combi-

nation in those columns whose indices are the same as the indices of

the constraints that were active at this particular extreme point. In the

remaining places of the i-th row of Q, there will be zeros.

2. Test whether Tube(T, t) is maintainable as follows:

(a) Enumerate the extreme points xi
0, i = 1, . . . , L, of Tube(T, t).

(b) For i = 1, . . . , L determine an interior point ui
0 of the polyhedron QBu0 ≤

t − QFxi
0.

6.2.4 Complexity of the Q-Matrix Approach

Step 1a mainly involves m extreme point enumeration problems if we use the

method in Appendix B.

Step 1b is a linear programming problem.

Step 1c involves two matrix multiplication operations and one vector addition op-

eration. The complexity of this step can be ignored.

Step 1d mainly involves j linear programming maximization problems.

Step 1e’s complexity can be ignored.

Step 2a involves 1 extreme point enumeration problem.

Step 2b is a linear programming problem.
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Thus, the Q matrix approach involves a total of m+1 extreme point enumeration

problems (non-polynomial time) and j + 1 linear programming problems (polyno-

mial time).

6.2.5 Comparison of the Two Approaches to Test for Maintainability

In practice, it is expected that m ≈ j (the number of constraints defining the Reach

sets may be approximately equal to the number of constraints defining the Tube).

So, the number of extreme point enumeration problems solved by both approaches

is approximately the same. Since L may usually be much greater than j (the number

of extreme points of a bounded polyhedron are usually greater than the number of

constraints defining it), the Q matrix approach may involve fewer linear program-

ming problems.

For those halfspace systems in which the intersection of B with A (the set of

allowable states and admissible controls) is “sufficiently” large, a matrix Q deter-

mined for one irredundant Reach(x0, u0) set will work for most other Reach sets of

this system. Thus, it can be assumed that Q is invariant for most values of the pair

(x0, u0).

The disadvantage of the Q matrix approach is that, since it depends upon the

invariance of Q, if Q is not invariant, this approach may decide that a Reach(x0, u0)

set does not lie inside the Tube even when Reach(x0, u0) ⊆ Tube (this idea is

explained in Section 4.7). Thus, this approach may label a tube as not maintainable

even when it is maintainable. However, it will label a tube as maintainable only if

it is indeed maintainable.

In contrast, the LP-based approach labels a tube as maintainable if and only if it

is indeed maintainable.

6.3 Maintaining the halfspace System in the Tube

Consider the algorithm of Section 6.3.1 for maintaining the system’s states inside

the tube. This algorithm assumes that
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1. Sensing is done in every period.

2. Sensing is accurate and hence point-valued (as opposed to set-valued).

6.3.1 Maintaining Algorithm

INPUT : The pairs (x1
0, u

1
0), (x2

0, u
2
0), . . ., (xL

0 , u
L
0), each of which represents a vertex

of Tx0 ≤ t and a maintaining control for this vertex.

1. IF Reach(xp
0 , 0) ⊆ Tube(T, t), THEN

No maintaining control needs to be applied.

ELSE

(a) Determine λ1, λ2, . . . , λL in the following convex combination (this is Ex-

pression (6.6)):

x
p
0 =

L∑
i=1

λix
i
0,

L∑
i=1

λi = 1, λi ≥ 0.

(b) Determine a maintaining control for x
p
0 as follows:

u
p
0 =

L∑
i=1

ui
0λi.

2. Sense the halfspace system’s state. Let this state be x
p
1 (it is assumed that the

sensing is exact).

SET x
p
0 ⇐ x

p
1 .

3. GOTO item 1.

In the maintaining algorithm, the two computations that chiefly determine the

complexity of the implementation are:

C1: Testing whether Reach(xp
0 , 0) ⊆ Tube(T, t).

C2: Determining a [λ1, λ2, . . . , λL] vector that satisfies Expression (6.6).
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6.3.2 Direct Implementation of Maintaining Algorithm

1. C1 can be implemented by testing if Expression (6.4) is satisfied by the given

x
p
0 and u

p
0 = 0. This involves multiplying a [η(1)+η(2)+ . . .+η(j)]×m matrix

by an m×1 vector (Fxp
0) and then comparing the product with a [η(1)+η(2)+

. . . + η(j)]× 1 vector.

2. C2 can be set up as a linear programming problem as follows:

max
x1

0λ1+x2
0λ2+...+xL

0λL=xp
0

λ1+λ2+...+λL=1
λ1≥0
......

λL≥0

0λ1 + 0λ2 + . . . + 0λL

6.3.3 Implementation of Maintaining Algorithm using Q

1. C1 can be implemented by testing if QFx
p
0 ≤ t. This involves multiplying a

j ×m matrix by an m × 1 vector (Fxp
0) and then comparing the product with

a j× 1 vector.

2. Q does not figure in the implementation of C2 and so is no help.

6.3.4 Comparison of the Two Implementations of the Maintaining

Algorithm

As η(k) ≥ 1, k = 1, . . . , j, the implementation of C1 involving Q has fewer arith-

metic and comparison operations to perform than the direct implementation.

Since Q was determined for one particular Reach set (specifically, an irredun-

dant Reach set), QFx
p
0 may turn out to be not less than or equal to t even when

Reach(xp
0 , 0) ∈ Tube(T, t). But, QFx

p
0 will be evaluated as less than or equal to t

only if Reach(xp
0 , 0) ∈ Tube(T, t) (this idea is explained in Section 4.7).

In contrast, in the direct implementation of C1, the pair (xp
0 , 0) will satisfy Ex-

pression (6.5) if and only if Reach(xp
0 , 0) ∈ Tube(T, t).
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Chapter 7

Matrix Polytopes, Halfspace Systems,

Difference Inclusions

7.1 Introduction

As mentioned in Section 2.1, the halfspace modeling framework was proposed as a

potential generalization and extension of a difference inclusion (DI) and discrete-

time interval systems (DTIS). DI [CDK02, LS98, APM89, Meg96, KS98] (also known

as discrete inclusions) have the form xk+1 = Axk + Buuk, where xk+1 ∈ <n, uk ∈
<p, A ∈ <n×n, Bu ∈ <n×p. A can be any matrix in the convex hull of some

square matrices A1, A2, . . . , Aq, and Bu is any matrix in the convex hull of matrices

B1, B2, . . . , Br. In the case of a DTIS, A and Bu are interval matrices (meaning, each

element of A or Bu lies in a closed interval of real numbers). Thus, a DTIS is a DI

with q = 2.

Convex polyhedra have two representations which are duals: implicit repre-

sentation (or halfspace representation) — as the intersection of a finite number

of halfspaces — and Minkowski representation — as a set of lines, rays, and ver-

tices. Implicit representation is as follows: D = {x ∈ <n |Qx ≤ s }, with Q ∈ <m×n,
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s ∈ <m. The Minkowski representation is as follows:

D =


x ∈ <n

∣∣∣∣∣∣∣∣∣∣∣∣∣

x = Lλ + Rµ + Vν,

∀λ ≥ 0,

µ ≥ 0,

ν ≥ 0,

νT
1 = 1


,

where L is the matrix containing the lines, R the matrix containing the rays, and V

the matrix containing the vertices of the polyhedron, and ν and 1 are vectors with

appropriate dimensions, and 1 is a vector of 1’s.

Parametrized convex polyhedra (PCP) also have two representations [Tea02]:

implicit representation — as the intersection of a finite number of halfspaces —

and Minkowski representation — as a set of lines, rays, and vertices. The implicit

representation is as follows:

D(p) = {x ∈ <n |Qx ≤ Rp + s }

with Q,R ∈ <m×n, s ∈ <m. The Minkowski representation is as follows:

D(p) =


x ∈ <n

∣∣∣∣∣∣∣∣∣∣∣∣∣

x = Lλ + Rµ + V(p)ν,

∀λ ≥ 0,

µ ≥ 0,

ν ≥ 0,

νT
1 = 1


.

For bounded PCP, the Minkowski representation is purely in terms of the

parametrized vertices and is as follows:

D(p) =

x

∣∣∣∣∣∣∣∣
x = V(p)λ,

∀λ ≥ 0,

λT
1 = 1

 .

Here, V(p) is a matrix containing the vertices of the polyhedron; it depends on

parameters p.
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It can be seen that the halfspace model is the implicit representation (or half-

space representation) of a PCP in the independent variable
[

xT
k uT

k

]T
. In contrast,

a DI with uk = 0 is a convex hull of parametrized points, and thus is a Minkowski

representation (or convex hull representation) of a parametrized polyhedron. An-

other difference between a DI and a halfspace model is that, while in forming a

DI the modeler needs to decide whether the uncertainty in the description of next

state is parametric or not (since a DI represents parametric uncertainty only), in

forming a halfspace model, the modeler may not need to distinguish between plant

uncertainty and uncertainty due to external disturbances or noise (since a halfspace

model neither assumes nor explicitly represents parametric uncertainty alone). This

may mean that the halfspace model can potentially simplify a modeler’s job.

If there exist a halfspace system and a DI that represent the same PCP, then they

will be called duals of each other with respect to this particular PCP. There may

or may not exist both a halfspace system and a DI that represent the same PCP.

Determining whether this is possible is the subject of this chapter. This may give

key insights into both halfspace systems and DIs.

This chapter is organized as follows. Section 7.1 explains the notation used

in this chapter. Section 7.2 introduces the concept of MATRIX POLYHEDRA, that is

polyhedra in <n×n, and extends some of the theory of polyhedra in <n to polyhedra

in <n×n. Section 7.3 introduces the concept of the vertices of a matrix polyhedron

and presents some related results that will be used in the following section. This

section also shows how DIs are related to matrix polytopes. Section 7.4 presents

conjectures on how halfspace and DI modeling frameworks are related. Section 7.5

summarizes the key results of the chapter and outlines the directions for future

research.

7.2 Matrix Polyhedra (Polyhedra in <n×n)

The definitions and results in this section can be considered as extensions of the

results from conventional polyhedral theory to closed convex sets in <n×n.
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Notation 7.1 conv(·) reads “convex hull of”. Let A = [ a1 a2 . . . an ] ∈ <n×n

be a variable. Let F = [ f1 f2 . . . fn ] ∈ <m×n and Ai =
[

ai
1 ai

2 . . . ai
n

]
∈

<n×n, i = 1, . . . , p, be constants. The aj’s, ai
j ’s, and fj’s are columns of A, Ai, and F

respectively.

Definition 7.1 A MATRIX CONVEX HULL POLYTOPE (MCHP) is the following convex

hull:

conv(A1, A2, . . . , Aq)
4
=


A

∣∣∣∣∣∣∣∣∣∣∣∣∣

A =
∑q

i=1 λiA
i,∑q

i=1 λi = 1,

λi ≥ 0,

λi ∈ <,

given Ai ∈ <n×n, q < ∞.


.

Definition 7.2 A MATRIX HALFSPACE is the set{
A ∈ <n×n

∣∣eA ≤ f, given e, f ∈ <1×n
}

.

If A = [ a1 a2 . . . an ], where ai’s are columns of A, and if f =

[ f1 f2 . . . fn ], where the fi’s are columns of f, then a matrix halfspace can

be viewed as the halfspaces ea1 ≤ f1, ea2 ≤ f2, . . ., ean ≤ fn stacked on top of each

other.

Definition 7.3 A MATRIX HALFSPACE POLYHEDRON (MHP) is a set obtained as the

intersection of matrix halfspaces as follows:

hal(E, F)
4
=

{
A ∈ <n×n

∣∣EA ≤ F, given E, F ∈ <m×n
}

.

Definition 7.4 A system of the form EA ≤ F (A ∈ <n×n, and E, F ∈ <m×n) is said

to be bounded if there exists a constant K such that the absolute value of every

component of every A that satisfies EA ≤ F is less than or equal to K.

Lemma 7.1 An MHP is a convex set.

Proof: Suppose that A1 and A2 satisfy eA ≤ f of Definition 7.2. So, eA1 ≤ f and

eA2 ≤ f. Let λ ∈ [0, 1]. Then, e(λA1 + (1 − λ)A2) ≤ λf + (1 − λ)f = f, which proves
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that λA1 + (1 − λ)A2 also satisfies eA ≤ f. So, eA ≤ f is a convex set. An MHP is

the intersection of convex sets such as eA ≤ f. The intersection of convex sets is

convex [BT97, page 44]. So, an MHP is convex. 2

Lemma 7.2 The system EA ≤ F is bounded if the auxiliary system {rank(E) =

n; ETz = 0; z ≥ 0} is feasible.

Proof: The condition EA ≤ F is equivalent to the set of conditions Ea1 ≤ f1, . . .,

Ean ≤ fn. The proof follows by applying to each of these n conditions the result of

Section 3.2. 2

In this chapter, unless otherwise stated, it will be assumed that hal(E, F) is

bounded.

The concept of a MCHP exists in the theory of difference and differential inclu-

sions, even though the term MCHP may not exist. However, to the knowledge of

this author, the concepts of matrix halfspace and MHP do not exist.
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7.2.1 Relationship between conv(A1, A2, . . . , Aq) and hal(E, F)

The convex hull of A1, A2, . . . , Aq can be written as follows:

conv(A1, A2, . . . , Aq)

=


q∑

i=1

λiA
i

∣∣∣∣∣∣∣∣
∑q

i=1 λi = 1,

λi ≥ 0,

λi ∈ <


=


[ ∑q

i=1 λia
i
1 . . .

∑q
i=1 λia

i
n

] ∣∣∣∣∣∣∣∣
∑q

i=1 λi = 1,

λi ≥ 0,

λi ∈ <



=


[ a1 . . . an ]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 =
∑q

i=1 λia
i
1,

. . .

an =
∑q

i=1 λia
i
n,∑q

i=1 λi = 1,

λi ≥ 0,

λi ∈ <


(7.1)

⊆

[ a1 . . . an ]

∣∣∣∣∣∣∣∣
a1 ∈ conv

(
a1

1, . . . , a
q
1

)
,

. . .

an ∈ conv
(
a1

n, . . . , aq
n

)
 (7.2)

It is known, from the theory of polyhedra, that a bounded polyhedron has two

equivalent representations: as a convex hull of a set of points and as the intersection

of a finite number of halfspaces as follows:{
aj

∣∣aj ∈ conv
(
a1

j , . . . , a
q
j

)}
=

{
aj

∣∣Ejaj ≤ fj, given Ej, fj
}

, j = 1, . . . , n.

Hence, the set on the right hand side of Expression (7.2) equals the following set:[ a1 . . . an ]

∣∣∣∣∣∣∣∣


E1a1 ≤ f1

. . . . . .

Enan ≤ fn

 , given E1, . . . , En, f1, . . . , fn


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Thus,

conv(A1, A2, . . . , Aq)

⊆

[ a1 . . . an ]

∣∣∣∣∣∣∣∣


E1a1 ≤ f1

. . . . . .

Enan ≤ fn

 , given E1, . . . , En, f1, . . . , fn

 (7.3)

Remark 7.1 The condition E1 = E2 = . . . = En = E gives

{A |EA ≤ F } =

[ a1 . . . an ]

∣∣∣∣∣∣∣∣
a1 ∈ conv

(
a1

1, . . . , a
q
1

)
,

. . .

an ∈ conv
(
a1

n, . . . , aq
n

)
 (7.4)

and Equation (7.3) becomes:

conv(A1, A2, . . . , Aq) ⊆
{

[ a1 . . . an ]
∣∣∣E[ a1 . . . an ] ≤ [ f1 . . . fn ]

}
that is,

conv(A1, A2, . . . , Aq) ⊆ {A |EA ≤ F }
4
= hal(E, F)

7.2.2 From conv(A1, A2, . . . , Aq) to hal(E, F)

Theorem 7.1 For any given A1, A2, . . ., Aq ∈ <n×n, there exist E, F ∈ <m×n such

that [ a1 . . . an ]

∣∣∣∣∣∣∣∣
a1 ∈ conv

(
a1

1, . . . , a
q
1

)
,

. . .

an ∈ conv
(
a1

n, . . . , aq
n

)
 = hal(E, F)

Proof: The matrices E and F can be constructed through the following steps:

1. Use a FACET-ENUMERATION algorithm [Fuk99] to obtain the subsystems

E1a1 ≤ f1, . . ., Enan ≤ fn, respectively corresponding to conv
(
a1

1, . . . , a
q
1

)
,

. . ., conv
(
a1

n, . . . , aq
n

)
.
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2. Determine all the row vectors that are in the set{[
E1
]
1
,
[
E1
]
2
, . . .

}
∪

{[
E2
]
1
,
[
E2
]
2
, . . .

}
∪ . . . ∪ {[En]1 , [En]2 , . . .}

but not in the set{[
E1
]
1
,
[
E1
]
2
, . . .

}
∩

{[
E2
]
1
,
[
E2
]
2
, . . .

}
∩ . . . ∩ {[En]1 , [En]2 , . . .}

where
[
Ej
]
i

follows Notation 7.1. Let these row vectors be er1, er2, . . ., erk.

Here, the superscript r denotes that these row vectors are redundant in the

sense described in the next step.

3. Append a SUITABLE subset of the following constraint set to each of the sub-

systems E1a1 ≤ f1, . . ., Enan ≤ fn (choose the subset such that the resulting

augmented subsystems all have the same number of rows such that this num-

ber is a minimum):
er1

er2

. . .

erk

a1 ≤


fr

fr

. . .

fr


Here fr is a scalar chosen such that the above constraint set is redundant for

(meaning, it does not change the solution set of) every one of the subsystems

E1a1 ≤ f1, . . ., Enan ≤ fn.

The augmented subsystems constructed above are of the form Ea1 ≤ f1a, . . ., Ean ≤
fna. Here, the superscript a denotes that the vectors are augmented versions of f1,

. . ., fn. Thus, hal(E, F) = {A |EA ≤ F }, where F = [ f1a . . . fna ]. Hence the proof.

2

Remark 7.2 Note that some of the elements in
{
a1

i , . . . , a
q
i

}
(i = 1, . . . , n) will be

the vertices of conv
(
a1

i , . . . , a
q
i

)
. So, this last convex hull is equal to the convex hull

of its vertices, which, in turn, by the RESOLUTION THEOREM for polyhedra [BT97,

page 179], is uniquely equal to Eiai ≤ fi. Thus, a unique Eiai ≤ fi corresponds to

conv
(
a1

i , . . . , a
q
i

)
. However, the matrices E and F are not unique.

77



7.2.3 Complexity of conv(A1, A2, . . . , Aq) to hal(E, F) Conversion

The complexity of the conversion from conv(A1, A2, . . . , Aq) to hal(E, F) as de-

scribed in the proof of Theorem 7.1 is mainly determined by step 1 which involves

n facet-enumeration problems. Facet-enumeration algorithms are not of polyno-

mial complexity except in certain special cases [Bre97].

7.2.4 From hal(E, F) to conv(A1, A2, . . . , Aq)

It can be shown that there exists a unique set of square matrices A1, A2, . . . , Aq for

every hal(E, F) such that hal(E, F) = conv(A1, A2, . . . , Aq). This is the subject of

the next section.

7.3 Vertices of Matrix Polytopes

The present section describes some properties of the vertices of matrix polytopes. In

this chapter, the terms VERTEX and EXTREME POINT will be considered synonymous.

Definition 7.5 A VERTEX OF AN MHP EA ≤ F is a point V = [ v1 v2 . . . vn ] ∈
<n×n in MHP such that v1 is a vertex of Ea1 ≤ f1, . . ., vn is a vertex of Ean ≤ fn.

The following lemma presents an interesting property of the vertex of an MHP.

Lemma 7.3 A vertex V of an MHP EA ≤ F satisfies the following condition: there

do not exist Aa, Ab ∈ {A |EA ≤ F } and a λ ∈ (0, 1) such that Aa 6= V , Ab 6= V , and

λAa + (1 − λ)Ab = V .

Proof: Any vertex vi of the polyhedron Eai ≤ fi (i = 1 . . . n), satisfies the property

[BT97]:

6 ∃ aa
i , ab

i ∈
{
ai

∣∣Eai ≤ fi
}

, λi ∈ (0, 1),

such that

aa
i 6= vi, ab

i 6= vi, λia
a
i + (1 − λi)a

b
i = vi.
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The proof then follows by letting Aa =
[

aa
1 . . . aa

n

]
, Ab =

[
ab

1 . . . ab
n

]
, A =

[ a1 . . . an ], V = [ v1 . . . vn ], F = [ f1 . . . fn ], and by observing that if there do

not exist λ1, λ2, . . ., λn — possibly all different — to satisfy any given property, then

there cannot exist one single λ to satisfy that same property. 2

7.3.1 A Listing of Vertices

Given that{
a1

1, . . . , a
q1−1
1 , a

q1

1

}
is the set of all the different vertices of Ea1 ≤ f1,{

a1
2, . . . , a

q2−1
2 , a

q2

2

}
is the set of all the different vertices of Ea2 ≤ f2,

. . . . . . . . .{
a1

n−1, . . . , a
qn−1−1
n−1 , a

qn−1

n−1

}
is the set of all the different vertices of Ean−1 ≤ f2,{

a1
n, . . . , aqn−1

n , aqn
n

}
is the set of all the different vertices of Ean ≤ fn,

the MHP can be expressed as follows:

{A |EA ≤ F } =
{

[ a1 . . . an ]
∣∣Ea1 ≤ f1, . . . , Ean ≤ fn

}

=

[ a1 . . . an ]

∣∣∣∣∣∣∣∣
a1 ∈ conv

(
a1

1, a
2
1, . . . , a

q1

1

)
,

. . .

an ∈ conv
(
a1

n, a2
n, . . . , aqn

n

)


A VERTEX of EA ≤ F is an n-tuple [ v1 v2 . . . vn ] such that

v1 ∈
{

a1
1, a

2
1, . . . , a

q1−1
1 , a

q1

1

}
, v2 ∈

{
a1

2, a
2
2, . . . , a

q2−1
2 , a

q2

2

}
, . . ., vn ∈{

a1
n, a2

n, . . . , aqn−1
n , aqn

n

}
. The vertices of EA ≤ F are obtained as follows:

[
a1

1 . . . a1
n−1 a1

n

]
,
[

a1
1 . . . a1

n−1 a2
n

]
, . . . ,

[
a1

1 . . . a1
n−1 aqn

n

]
,[

a1
1 . . . a2

n−1 a1
n

]
,
[

a1
1 . . . a2

n−1 a2
n

]
, . . . ,

[
a1

1 . . . a2
n−1 aqn

n

]
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[
a1

1 . . . a
qn−1

n−1 a1
n

]
,
[

a1
1 . . . a

qn−1

n−1 a2
n

]
, . . . ,

[
a1

1 . . . a
qn−1

n−1 aqn
n

]
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Thus, there are a total of q = q1 × q2 × . . . × qn different vertices of EA ≤ F. Let

these be denoted A1, A2, . . ., Aq.

7.3.2 Example 1

Assume that conv1 is as follows:

conv1 = conv

([
0 0

0 0

]
,

[
1 −1

0 0

]
,

[
0 0

1 −1

])
(7.5)

The polytopes corresponding to

conv(a1
1, a

2
1, a

3
1) = conv

([
0

0

]
,

[
1

0

]
,

[
0

1

])
and

conv(a1
2, a

2
2, a

3
2) = conv

([
0

0

]
,

[
−1

0

]
,

[
0

−1

])
are shown respectively in figures 7.1 and 7.2 (the darkly shaded areas). The sets of

vertices of these convex hulls are respectively:{[
0

0

]
,

[
1

0

]
,

[
0

1

]}
and

{[
0

0

]
,

[
−1

0

]
,

[
0

−1

]}
The polytopes E1a1 ≤ f1 (with a1 = [x1 y1]

T) and E2a2 ≤ f2 (with a2 = [x2 y2]
T)

that correspond to these sets of vertices are respectively

x1 + y1 ≤ 1

−x1 ≤ 0

− y1 ≤ 0

and

−x2 − y2 ≤ 1

x2 ≤ 0

y2 ≤ 0

To obtain the MHP corresponding to these systems, the following systems of

constraints (shown using dashed lines in the figures), which are redundant with

respect to E1a1 ≤ f1 and to E2a2 ≤ f2 respectively, can be appended to each of the

systems:

−x1 − y1 ≤ 1

x1 ≤ 1

y1 ≤ 1

and

x2 + y2 ≤ 1

−x2 ≤ 1

− y2 ≤ 1
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y1

x1

(0, 1)

(0, 0) (1, 0)

Figure 7.1: conv(a1
1, a

2
1, a

3
1) for the ex-

ample of Subsection 7.3.2.

y1

x2

(0, 0)(−1, 0)

(0,−1)

Figure 7.2: conv(a1
2, a

2
2, a

3
2) for the ex-

ample of Subsection 7.3.2.

Then, the MHP EA ≤ F is as follows:

1 1

−1 0

0 −1

−1 −1

1 0

0 1


[

x1 x2

y1 y2

]
≤



1 1

0 1

0 1

1 1

1 0

1 0


(7.6)

Listed below are all the vertices of this MHP:[
0 0

0 0

]
,

[
0 −1

0 0

]
,

[
0 0

0 −1

]
,[

1 0

0 0

]
,

[
1 −1

0 0

]
,

[
1 0

0 −1

]
,[

0 0

1 0

]
,

[
0 −1

1 0

]
,

[
0 0

1 −1

]
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7.3.3 Example 2

Suppose that EA ≤ F is an MHP in <2×2, that is, that A = [ a1 a2 ] ∈ <2×2.

Suppose that the vertices of Ea1 ≤ f1 are four in number:{
a1

1, a
2
1, a

3
1, a

4
1

}
Suppose that the vertices of Ea2 ≤ f2 are three in number:{

a1
2, a

2
2, a

3
2

}
Thus, the vertices of the MHP are as follows:[

a1
1 a1

2

]
,
[

a1
1 a2

2

]
,
[

a1
1 a3

2

]
,[

a2
1 a1

2

]
,
[

a2
1 a2

2

]
,
[

a2
1 a3

2

]
,[

a3
1 a1

2

]
,
[

a3
1 a2

2

]
,
[

a3
1 a3

2

]
,[

a4
1 a1

2

]
,
[

a4
1 a2

2

]
,
[

a4
1 a3

2

]
.

Let these be denoted A1, A2, . . ., A12. It will be shown that

conv(A1, A2, . . . , A12) =

=
{

[ a1 a2 ]
∣∣a1 ∈ conv

(
a1

1, . . . , a
4
1

)
, a2 ∈ conv

(
a1

2, . . . , a
3
2

)}
That is, it will be shown that

[
a1

1 a1
2

]
λ1 +

[
a1

1 a2
2

]
λ2 +

[
a1

1 a3
2

]
λ3+[

a2
1 a1

2

]
λ4 +

[
a2

1 a2
2

]
λ5 +

[
a2

1 a3
2

]
λ6+[

a3
1 a1

2

]
λ7 +

[
a3

1 a2
2

]
λ8 +

[
a3

1 a3
2

]
λ9+[

a4
1 a1

2

]
λ10 +

[
a4

1 a2
2

]
λ11 +

[
a4

1 a3
2

]
λ12

∣∣∣∣∣∣∣∣∣∣∣∣
∑12

i=1 λi = 1,

λi ≥ 0


=


[

a1
1β1 + a2

1β2 + a3
1β3 + a4

1β4 a1
2γ1 + a2

2γ2 + a3
2γ3

]
∣∣∣∣∣∣∣∣∣∣

∑4
1 βj = 1,∑3
1 γj = 1,

βi ≥ 0,

γj ≥ 0.


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That is, it will be shown that


a1

1(λ1 + λ2 + λ3)+ a1
2(λ1 + λ4 + λ7 + λ10)+

a2
1(λ4 + λ5 + λ6)+ a2

2(λ2 + λ5 + λ8 + λ11)+

a3
1(λ7 + λ8 + λ9)+ a3

2(λ3 + λ6 + λ9 + λ12)

a4
1(λ10 + λ11 + λ12)


∣∣∣∣∣∣∣∣∣∣

∑12
i=1 λi = 1,

λi ≥ 0

 =


[

a1
1β1 + a2

1β2 + a3
1β3 + a4

1β4 a1
2γ1 + a2

2γ2 + a3
2γ3

]
∣∣∣∣∣∣∣∣∣∣

∑4
1 βj = 1,∑3
1 γk = 1,

βj ≥ 0,

γk ≥ 0


Thus, it will be shown that, for

12∑
i=1

λi = 1, λi ≥ 0, (7.7)

and

4∑
1

βj = 1,

3∑
1

γk = 1, βj ≥ 0, γk ≥ 0, (7.8)

the following system of equations holds true:

λ1 + λ2 + λ3 = β1

λ4 + λ5 + λ6 = β2

λ7 + λ8 + λ9 = β3

λ10 + λ11 + λ12 = β4

λ1 + λ4 + λ7 + λ10 = γ1

λ2 + λ5 + λ8 + λ11 = γ2

λ3 + λ6 + λ9 + λ12 = γ3


(7.9)
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The system of Equation (7.9) can be written as follows:



1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1


×



λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

λ10

λ11

λ12



=



β1

β2

β3

β4

γ1

γ2

γ3


(7.10)

One way of viewing what needs to be proved is shown below:
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



β1

β2

β3

β4

γ1

γ2

γ3



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑4
j=1 βj = 1,∑3
k=1 γk = 1,

βj ≥ 0,

γk ≥ 0



?
= conv





1

0

0

0

1

0

0


,



1

0

0

0

0

1

0


,



1

0

0

0

0

0

1


,



0

1

0

0

1

0

0


,



0

1

0

0

0

1

0


,



0

1

0

0

0

0

1


,



0

0

1

0

1

0

0


,



0

0

1

0

0

1

0


,



0

0

1

0

0

0

1


,



0

0

0

1

1

0

0


,



0

0

0

1

0

1

0


,



0

0

0

1

0

0

1


.


This can be re-written as follows:
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C0
4
=





β1

β2

β3

β4

γ1

γ2

γ3



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


β1

β2

β3

β4

 ∈ conv




1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

0

0

1


 ,


γ1

γ2

γ3

 ∈ conv




1

0

0

 ,


0

1

0

 ,


0

0

1






?
=
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?
= conv





1

0

0

0

1

0

0


,



1

0

0

0

0

1

0


,



1

0

0

0

0

0

1


,



0

1

0

0

1

0

0


,



0

1

0

0

0

1

0


,



0

1

0

0

0

0

1


,



0

0

1

0

1

0

0


,



0

0

1

0

0

1

0


,



0

0

1

0

0

0

1


,



0

0

0

1

1

0

0


,



0

0

0

1

0

1

0


,



0

0

0

1

0

0

1


.



=
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= conv





1

0

0

0

1

0

0


,



0

1

0

0

1

0

0


,



0

0

1

0

1

0

0


,



0

0

0

1

1

0

0


,



1

0

0

0

0

1

0


,



0

1

0

0

0

1

0


,



0

0

1

0

0

1

0


,



0

0

0

1

0

1

0


,



1

0

0

0

0

0

1


,



0

1

0

0

0

0

1


,



0

0

1

0

0

0

1


,



0

0

0

1

0

0

1


.



4
= C1

Thus, it needs to be proved that C0 = C1.

Note that, whereas the coefficients of the convex combination of
1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

0

0

1


in any element of C0 may be different from the coefficients of the convex combina-
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tion of
1

0

0

 ,


0

1

0

 ,


0

0

1

 ,

in C1, the coefficients of the convex combination of
1

0

0

0

 ,


1

0

0

0

 ,


1

0

0

0

 ,


0

1

0

0

 ,


0

1

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

0

1

0

 ,


0

0

1

0

 ,


0

0

0

1

 ,


0

0

0

1

 ,


0

0

0

1

 .

have to be the same as those of
1

0

0

 ,


1

0

0

 ,


1

0

0

 ,


1

0

0

 ,


0

1

0

 ,


0

1

0

 ,


0

1

0

 ,


0

1

0

 ,


0

0

1

 ,


0

0

1

 ,


0

0

1

 ,


0

0

1

 .

Thus, it may seem that C1 ⊆ C0. However, in the following, it will be proved that

C1 = C0.

Step 1: Note that
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C1 = conv



conv





1

0

0

0

1

0

0


,



0

1

0

0

1

0

0


,



0

0

1

0

1

0

0


,



0

0

0

1

1

0

0




,

conv





1

0

0

0

0

1

0


,



0

1

0

0

0

1

0


,



0

0

1

0

0

1

0


,



0

0

0

1

0

1

0




,

conv





1

0

0

0

0

0

1


,



0

1

0

0

0

0

1


,



0

0

1

0

0

0

1


,



0

0

0

1

0

0

1




.



= conv





δ11

δ21

δ31

δ41

1

0

0


,



δ12

δ22

δ32

δ42

0

1

0


,



δ13

δ23

δ33

δ43

0

0

1




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That is,

C1 =






δ11

δ21

δ31

δ41

 λ1 +


δ12

δ22

δ32

δ42

 λ2 +


δ13

δ23

δ33

δ43

 λ3


1

0

0

 λ1 +


0

1

0

 λ2 +


0

0

1

 λ3



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑3
i=1 λi = 1,

λi ≥ 0


where,

δ11

δ21

δ31

δ41

 ,


δ12

δ22

δ32

δ42

 ,


δ13

δ23

δ33

δ43

 ∈ conv




1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

0

0

1





Step 2: In C1, even though the coefficients of the convex combination of
1

0

0

 ,


0

1

0

 ,


0

0

1

 ,

are the same as those of
δ11

δ21

δ31

δ41

 ,


δ12

δ22

δ32

δ42

 ,


δ13

δ23

δ33

δ43

 ,

since the δ’s can be random, the following can be written
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C1 =





β1

β2

β3

β4

γ1

γ2

γ3



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


β1

β2

β3

β4

 ∈ conv




δ11

δ21

δ31

δ41

 ,


δ12

δ22

δ32

δ42

 ,


δ13

δ23

δ33

δ43





γ1

γ2

γ3

 ∈ conv




1

0

0

 ,


0

1

0

 ,


0

0

1






=





β1

β2

β3

β4

γ1

γ2

γ3



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


β1

β2

β3

β4

 ∈ conv




1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

0

0

1





γ1

γ2

γ3

 ∈ conv




1

0

0

 ,


0

1

0

 ,


0

0

1





= C0

7.3.4 Relationship between a Bounded MHP and Convex Hull of its

Vertices

Theorem 7.2 A nonempty and bounded MHP is the convex hull of its vertices.

Proof: It needs to be shown that{
A
∣∣EA ≤ F,A ∈ <n×n

}
= conv(A1, A2, . . . , Aq), (7.11)

that is, it needs to be shown that

conv(A1, A2, . . . , Aq) =

[ a1 . . . an ]

∣∣∣∣∣∣∣∣
a1 ∈ conv

(
a1

1, . . . , a
q1

1

)
,

. . .

an ∈ conv
(
a1

n, . . . , aqn
n

)
 (7.12)

where the MHP {A |EA ≤ F,A ∈ <n×n } and the vertices A1, A2, . . . , Aq have been

defined in Section 7.3.1.
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The proof is simply a generalization of the proof given in Example 2.

Expression (7.12), with some manipulation similar to that done in Example 2,

gives Equation (7.13) which is a generalization of Equation (7.10).
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                                          

1
1

..
.

1

..
.

..
.

..
.

..
.

︸
︷︷

︸
q

2
×

q
3
×

..
.×

q
n

q
1

          1
1

..
.

1

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

1
1

..
.

1

q
3
×

..
.×

q
n

︷ ︸︸
︷

1
..

.1
..

.

..
.

..
.

1
..

.1

q
2

      1
..

.1
..

.

..
.

..
.

1
..

.1

..
.

..
.

1
..

.1
..

.

..
.

..
.

1
..

.1

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

1

. .
.

1

..
.

..
.

..
.

1

. .
.

1

q
n

      
1

. .
.

1

..
.

..
.

..
.

1

. .
.

1

..
.

..
.

1

. .
.

1

..
.

..
.

..
.

1

. .
.

1

                                          ×

        λ
1

λ
2 . . . . . . λ
q

        =

                                       β
1 1

β
2 1

··
·

β
q

1

1 β
1 2

β
2 2

··
·

β
q

2

2 ··
·

··
·

β
1 n

β
2 n ··
·

β
q

n
n

                                       
(7

.1
3)
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Note that the pattern of the 1’s in the matrix in Equation (7.13) is similar to that

in Equation (7.10). The method employed in Step 1 and Step 2 in Example 2 can

be applied recursively to this general matrix to arrive at the proof. 2

7.3.5 Complexity of hal(E, F) to conv(A1, A2, . . . , Aq) conversion

The conversion from hal(E, F) to conv(A1, A2, . . . , Aq) has the following main com-

putational steps:

1. Enumeration of the vertices of the subsystems Ea1 ≤ f1, Ea2 ≤ f2, . . ., Ean ≤
fn.

2. Forming the matrices A1, A2, . . . , Aq from the sets of vertices determined in

step 1.

The complexity of the conversion is determined chiefly by step 1 which involves

n vertex-enumeration problems. Vertex-enumeration algorithms are not of polyno-

mial complexity except in certain special cases [Bre97].

7.3.6 Obtaining DI from matrix polytopes

Lemma 7.4 Consider the set obtained by multiplying every element of

conv(A1, A2, . . . , Aq) by a vector x1
k ∈ <n:

conv(A1, A2, . . . , Aq)× x1
k ={

Ax1
k

∣∣∣∣∣A =

q∑
i=1

λiA
i,

q∑
i=1

λi = 1, λi ≥ 0, λi ∈ <, given Ai ∈ <n×n, q < ∞}
This set is a polytope.

Proof: We have:{
Ax1

k

∣∣∣∣∣A =

q∑
i=1

λiA
i,

q∑
i=1

λi = 1, λi ≥ 0, λi ∈ <, given Ai ∈ <n×n, q < ∞}
={

q∑
i=1

λiA
ix1

k

∣∣∣∣∣
q∑

i=1

λi = 1, λi ≥ 0, λi ∈ <, given Ai ∈ <n×n, q < ∞}
.

95



Thus, conv(A1, A2, . . . , A1) × x1
k is the same as conv(A1x1

k, A
2x1

k, . . . , A
qx1

k) which

is a polytope. 2

7.4 Future research — relationship between halfspace

and DI

It is hoped that the following results will proved in at least some special cases:

Conjecture 7.1 For a bounded halfspace system Exk+1 ≤ Fxk, there exist square

matrices A1, A2, . . ., Aq, where q < ∞, such that

1. The following equation (Equation (7.11)) holds:{
A
∣∣EA ≤ F,A ∈ <n×n

}
= conv(A1, A2, . . . , Aq)

2. Over the set of all xk for which Exk+1 ≤ Fxk is feasible, the DI xk+1 ∈
conv(A1, A2, . . . , Aq) × xk and the halfspace model Exk+1 ≤ Fxk are equiv-

alent.

Conjecture 7.2 For any difference inclusion xk+1 = Axk, where A ∈
conv(A1, A2, . . . , Aq), q < ∞, there exists a bounded halfspace model Exk+1 ≤ Fxk,

such that

1. The following equation (Equation (7.4)) holds:
[

a1 . . . an

] ∣∣∣∣∣∣∣∣
a1 ∈ conv

(
a1

1, . . . , a
q
1

)
,

. . .

an ∈ conv
(
a1

n, . . . , aq
n

)
 = {A |EA ≤ F }

2. Over the set of all xk for which Exk+1 ≤ Fxk is feasible,{
xk+1|xk+1 ∈ conv(A1xk, A

2xk, . . . , A
qxk)

}
⊆ {xk+1|Exk+1 ≤ Fxk} .

Remark 7.3 The problem of determining the set of all values for which the halfs-

pace system Exk+1 ≤ Fxk is feasible can be solved using the method described in

Appendix C.
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7.5 Discussion

In the present chapter, the relationship between the halfspace system Exk+1 ≤ Fxk

(E, F ∈ <m×n, and xk, xk+1 ∈ <n) and the difference inclusion (DI) xk+1 = Axk,

A ∈ conv(A1, A2, . . . , Aq), has been explored. In this context, the following results

have been developed:

1. The concept of a matrix polytope — EA ≤ F, A ∈ <n×n — has been motivated

and some results from the theory of polyhedra have been extended to matrix

polytopes.

2. It has been shown that difference inclusions can be obtained by multiplying a

matrix polytope by xk.

Future work will investigate if a halfspace system can be obtained by multiplying

in some manner a matrix halfspace polytope by xk. Also, the possibility of approxi-

mating a halfspace system through a difference inclusion will be investigated. The

error in such approximation will need to be quantified. It is hoped that the idea of

matrix polytopes developed in the present chapter will prove useful in these inves-

tigations.
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Chapter 8

Conclusion

The main contributions of the present dissertation were as follows:

1. The linear inequality origins of Slack-descriptor systems have been recalled

under the name of Halfspace systems.

2. Techniques from the theory of convex polyhedra and linear programming have

been used to develop a rudimentary control theory for halfspace systems.

Specifically, the problem of maintainability (which is the same as REACHA-

BILITY OF A TARGET TUBE) has been solved.

3. An example of modeling system dynamics in the Halfspace framework has

been presented.

4. The problem of irredundancy of linear inequality constraints has been studied.

The possibility of applying Minkowski’s theorem for an equilibrated system of

vectors to this problem has been proposed. In private communication with Dr.

Carl Lee of the Department of Mathematics at the University of Kentucky, it

was understood that this Minkowski direction of solving the problem may be

of interest to the polytope community.

5. The study of irredundancy has given greater insight into the structure of Half-

space systems.

6. The possibility that Halfspace systems may be related to Difference Inclusions

has been mooted.
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7. The concept of matrix polytopes has been introduced.

8. Demonstrating a duality between Halfspace systems and Difference Inclu-

sions, for at least a class of systems, may potentially help solve the prob-

lem of enumerating the vertices of the parametrized polyhedron Ax ≤ By

(A,B ∈ <m×n, and x, y ∈ <n). This problem is described in [LW97].

Here are directions for future research:

1. In this dissertation, the concept of reachability of a target tube was developed

only for static target tubes. This concept needs to be extended to dynamic

target tubes.

2. Relationship between Halfspace systems and Difference Inclusions needs to

be studied. Existence of such a relationship may enable the application of the

Difference Inclusion control theory to Halfspace systems.

3. More examples of systems modeled by halfspace models need to be found.

4. While the method described in [Lee02] and presented in Appendix B to de-

termine the set of all b’s for which Ax ≤ b is irredundant is easy to under-

stand and implement, its complexity is not polynomial. Thus, there is value in

searching for other computationally less expensive methods. The techniques

used in those new methods could themselves be of interest.

5. Application of ideal systems (described in Appendix A) in the study of redun-

dancy needs to be further explored.

6. Application of Minkowski’s Theorem for an equilibrated system of vectors

needs to be further explored. This particular application may be of interest to

the polytope community too.
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Appendix A

Using Ideal Systems to Solve the

Problem of Irredundancy

The motivation for this chapter comes from the discussion in Subsection 5.3.9 on

Page 53. The concept of an ideal system is explained in the following paragraphs.

Lemma A.1 In Expression 5.3, let the system S(bs) be such that all its component

hyperplanes are tangent to a sphere and the feasible region of this system contains

this sphere. Then, every one of the planes forms a facet of the polyhedron S(bs).

Proof: Suppose that some constraint aT
i x ≤ bs

i does not form a facet. This can

happen if

(a) there is another constraint aT
i x ≤ b̂s

i , such that b̂s
i < bs

i ; but the hyperplane

corresponding to such a constraint cannot be tangent to the sphere, it can only in-

tersect the sphere; or

(b) some surrounding constraints make the constraint in question redundant: pos-

sible if the locus of intersection of the surrounding constraints is at distance l ≤ r

from the center of the sphere (r – radius), meaning that the halfspaces correspond-

ing to these surrounding constraints are not tangent to the sphere. 2

The properties of S(bs) are expressed mathematically as follows:

Suppose that the sphere (x − xc)
T
(x − xc) = r2 (with center at xc and radius

r) and a constraint of the form aTx ≤ α, where a is known, are given. The value

of α needs to be determined so that the hyperplane is tangent to the sphere and

the halfspace contains the sphere. For this first the point of tangency of the plane
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with the sphere is determined — by finding the point on the sphere that is in the

direction of a. Then, this value is substituted into the equation of the plane. This

gives the value of α. Now, the point on the sphere in the direction of a is a
|a|

r + xc.

Substituting this into the equation of the plane gives the value α = aT ( a
|a|

r + xc).

Thus, the constraint is aTx ≤ aT ( a
|a|

r + xc).

Remark A.1 For a given b, S(b) of Expression (5.3) on Page 41 will have all its

component hyperplanes tangent to a sphere (radius r > 0, center xc) and its feasible

region will contain the sphere if and only if S(b) can be transformed into the form:

aT
i x ≤ aT

i ( ai

|ai|
r + xc), 1 ≤ i ≤ m.

S(bs) will be called an IDEAL SYSTEM and the corresponding polytope — an

IDEAL POLYTOPE. Next, a method to determine an RDCS for each of the constraints

in S(bs) is developed. Of interest are only the indices of the elements of the RDCS.

For convenience, the origin is translated to the center of the ideal system (this is the

same as choosing xc = 0). Thus, the TRANSLATED IDEAL SYSTEM (TIS) corresponding

to the ideal system of Remark A.1 is:

S(btis)
4
=

{
aT

i

|ai|
x ≤ r

∣∣∣∣ 1 ≤ i ≤ m

}
(A.1)

In the following, lemmas A.2 through A.4 and Theorem A.1 describe the prop-

erties of, and help identify, the SRDCS of a constraint in an ideal system or in a

TIS.

In the following, the result of Lemma 5.2 is applied to Expression (A.1).

Notation A.1 Let ρ = [ r . . . r ]T ∈ <n, and 1 = [ 1 . . . 1 ]T ∈ <n. Let

Sn(btis)
4
=

{
ai

1
T

|ai
1|

x ≤ r, . . . ,
ai

n
T

|ai
n|

x ≤ r

}
, S ′n(btis)

4
=

{
ai′

1
T

|ai′
1 |

x ≤ r, . . . ,
ai′

n
T

|ai′
n|

x ≤ r

}

be subsets of S(btis). The members of Sn(btis) intersect at xn =
(
AT

n

)−1
ρ, and those

of S ′n(btis) — at xn′ = (A′
n

T )−1ρ.

Lemma A.2 For Sn(btis) to be an RDCS of the i-th constraint in the TIS of Expres-

sion (A.1), An must satisfy the following properties:
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(1) A−1
n

ai

|ai|
≥ 0, and

(2) An minimizes aT
i

|ai|

(
AT

n

)−1
ρ.

Proof: By Theorem 5.1, for Sn(btis) to be a candidate for an RDCS of the i-th

constraint, ai

|ai|
must be such that ai

|ai|
∈ cone(An), meaning that there must exist

λ ≥ 0 such that Anλ = ai

|ai|
. This gives Property (1). Property (2) is obtained by

applying Lemma 5.2. 2

Lemma A.2 can be used to determine An. However, a computationally less

expensive method is suggested by the following theorem.

Theorem A.1 Given that the constraints in Sn(btis) are such that:

(1) ai
1

T

|ai
1|

ai

|ai|
, . . . ,

ai
n

T

|ai
n|

ai

|ai|
are the largest of all

aT
j

|aj|
ai

|ai|
, j = 1 . . .m, j 6= i,

(2) |An| 6= 0, and

(3) A−1
n

ai

|ai|
≥ 0 (i.e., ∃λ ≥ 0 such that Anλ = ai

|ai|
).

Then the n constraints in Sn(btis) constitute an RDCS of the i-th constraint.

Proof: Consider the constraint sets Sn(btis) and S ′n(btis). It is not necessary that

Sn(btis) ∩ S ′n(btis) = ∅. From condition (3) of the theorem it follows that ∃λ ≥ 0

such that Anλ = ai

|ai|
. Assume that |A′

n| 6= 0 and ∃λ′ ≥ 0 : A′
nλ′ = ai

|ai|
. Condition (1)

of the theorem means that

aT
i ai

1

|ai|
∣∣ai

1

∣∣ ≥ aT
i ai′

1

|ai|
∣∣ai′

1

∣∣ , . . . , aT
i ai

n

|ai| |ai
n|
≥ aT

i ai′
n

|ai| |ai′
n|

.

These n inequalities can be combined thus: aT
i

|ai|
An ≥

aT
i

|ai|
A′

n. It needs to be shown

that

aT
i

|ai|
xn ≤ aT

i

|ai|
xn′, i.e., λT

1 ≤ λ′
T
1

(the last inequality has been obtained by using condition (2) of the theorem and

applying the definition of xn and xn′). Postmultiplying the inequality aT
i

|ai|
An ≥

aT
i

|ai|
A′

n

by λ and λ′, gives the following comparison:

aT
i

|ai|
Anλ′ ≥ aT

i

|ai|
A′

nλ′ = 1 =
aT

i

|ai|
Anλ ≥ aT

i

|ai|
A′

nλ.
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Thus, λ′ = λ + ∆λ such that Anλ′ = Anλ + An∆λ and

aT
i

|ai|
Anλ′ = 1 +

aT
i

|ai|
An∆λ.

Now aT
i

|ai|
An∆λ ≥ 0. Also, A′

n (λ + ∆λ) = ai

|ai|
. This gives ∆λ = A′

n
−1 ai

|ai|
− λ. Is

∆λ ≥ 0? That is, is A′
n

−1 ai

|ai|
≥ λ? Substituting into the inequality aT

i

|ai|
An∆λ ≥ 0

the expression for ∆λ gives aT
i

|ai|
AnA′

n
−1 ai

|ai|
≥ 1. This is true only if A′

n
−1 ai

|ai|
≥ λ,

meaning ∆λ ≥ 0, I.E., λ′ ≥ λ. Hence the proof. 2

Remark A.2 In Theorem A.1 only the information about the angle that any con-

straint makes with the i-th constraint was used. However, the information about

the angles that the constraints make with one another (contained in the matrices

AT
nAn and A′

n
T
A′

n) must matter too. This is particularly important in the following

scenario: there exist n constraints which make the smallest angles with the i-th

constraint while surrounding it, and there exist l (l ≤ (m−1)−n) more constraints

which make the same angles with the i-th constraint as some of those n. In such

a case, to determine the RDCSs, a method that directly computes the expression
aT

i

|ai|

(
AT

n

)−1
ρ could be applied. However, it may be less expensive to apply a method

that uses a fact such as the following

f
(
AT

nAn

)
≥ f

(
A′

n
T
A′

n

)⇐⇒ aT
i

|ai|
xn ≤ aT

i

|ai|
xn′,

where the operation f(·) is computationally less expensive than the operation (·)−1.

Identifying such an f(·) is still a topic of research.

Lemma A.3 that follows shows that in S(btis) if Sn(btis) is an RDCS of Ci, then

none of the constraints from the set S(btis) \ {Sn(btis) ∪ {Ci}} is surrounded by

Sn(btis).

Notation A.2 (Please see notations 5.1 (on Page 43) and A.1 (on Page 101)).

Anj\k =

[
ai

1

|ai
1|

. . .
ai

k−1

|ai
k−1|

aj

|aj|

ai
k+1

|ai
k+1|

. . .
ai

n

|ai
n|

]
.
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Lemma A.3 In a TIS, assume that given are some Ci, Cj /∈ Sn(btis) such that
ai

|ai|
,

aj

|aj|
∈ cone(An). Then:

(1) In Sn(btis) at least one constraint (say Ck) can be found that can be replaced by

Cj giving the new set of n constraints Snj\k such that ai

|ai|
∈ cone(Anj\k).

(2) Any Snj\k thus formed is such that

aT
i

|ai|

(
AT

nj\k

)−1
ρ ≤ aT

i

|ai|

(
AT

n

)−1
ρ.

Proof: Note that

n⋃
k=1

cone(Anj\k) = cone(An).

So,

ai

|ai|
/∈ cone(Anj\k) (∀k ∈ {1, . . . , n}) ⇐⇒ ai

|ai|
/∈ cone(An).

This proves statement (1). Next, note that aj/|aj| = Anλj, for some λj ≥ 0. So,

Anj\k = AnΛj, where Λj = [ u1 u2 . . . uk−1 λj uk+1 . . . un−1 un ]. Here,

uk, k = 1 . . . n, is a unit vector with a 1 in the k-th position. Thus, to prove state-

ment (2), it needs to be shown that

aT
i

|ai|

(
(AnΛj)

T
)−1

ρ ≤ aT
i

|ai|

(
AT

n

)−1
ρ, I.E., that λT

i

(
ΛT

j

)−1
1 ≤ λT

i 1

(here the fact that Anλi = ai

|ai|
, λi ≥ 0 has been used). Note that Λ−1

j =

=



1 0 λj1 0 0

0 1 λj2 0 0
...

... . . . ...
...

...

0 0 λjk 0 0
...

...
... . . . ...

...

0 0 λj(n−1) 1 0

0 0 λjn 0 1



−1

=



1 0 −
λj1

λjk
0 0

0 1 −
λj2

λjk
0 0

...
... . . . ...

...
...

0 0 1
λjk

0 0

...
...

... . . . ...
...

0 0 −
λj(n−1)

λjk
1 0

0 0 −
λjn

λjk
0 1


.
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The above equality has been written based on [BT97, page 96].

Λ−1
j λi =



(λi1 −
λj1

λjk
λik)

...

(λi(k−1) −
λj(k−1)

λjk
λik)

1
λjk

λik

(λi(k+1) −
λj(k+1)

λjk
λik)

...

(λin −
λjn

λjk
λik)


.

Thus,(
Λ−1

j λi

)T
1 = λi1 + . . . + λi(k−1) + λik + λi(k+1) + . . . + λin

−λik −
λj1

λjk

λik − . . . −
λj(k−1)

λjk

λik +
1

λjk

λik −
λj(k+1)

λjk

λik − . . . −
λjn

λjk

λik

= λT
i 1−

λT
j 1

λjk

λik +
1

λjk

λik.

This last expression will not be greater than λT
i 1 if

λT
j 1

λjk
λik − 1

λjk
λik ≥ 0, that is, if

λT
j 1 ≥ 1. Note that the column vectors of An are of unit magnitude and hence the

points represented by them lie on the surface of the hypersphere xTx ≤ 1, x ∈ <n.

So, the set Φ
4
=

{
Anλj

∣∣λT
j 1 = 1, λj ≥ 0

}
is a (n − 1)-dimensional polytope that lies

in this hypersphere on a hyperplane that cuts this hypersphere. Thus, the points{
Anλj

∣∣λT
j 1 < 1, λj ≥ 0

}
are closer to the origin than points in Φ and the points{

Anλj

∣∣λT
j 1 > 1, λj ≥ 0

}
are farther from the origin than points in Φ. The point

aj/|aj| is on the surface of the hypersphere. It is a point of the second kind. So, for

it λT
j 1 ≥ 1. Hence the proof. 2

Thus far the possibility of the existence of more than one RDCS for each con-

straint in S(b) has been admitted. Lemma A.4 that follows shows how all the RDCSs

of a constraint in S(btis) are related to each other.

Lemma A.4 In S(btis), assume that Sn(btis) and S ′n(btis) are RDCSs of the i-th
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u1

u2

u3

u4

ui

u1

u2

u3

u5ui uh

constraint. Then,

ai′
k

|ai′
k |
∈ aff

(
ai

1

|ai
1|

, . . . ,
ai

n

|ai
n|

)
∩

{
x
∣∣xTx = 1, x ∈ <n

}
, k = 1 . . . n. (A.2)

Proof: (Note that the intersection on the right hand side of the above expression is

simply the circumcircle of three points in 3-D, and in higher dimensions — a “hyper-

circumcircle”.) As both Sn(btis) and S ′n(btis) are RDCSs of the i-th constraint, it

follows that, for some λ, λ′(∈ <n) ≥ 0,

aT
i

|ai|
(AT

n)−1ρ =
aT

i

|ai|
(A′

n
T
)−1ρ,

i.e., λTρ = λ′
T
ρ (A.3)

Let Anλk = ai′
k/|ai′

k |, λk ∈ <n, k = 1 . . . n, and Λ = [λ1 . . . λn]. Then, it follows

that AnΛ = A′
n. Substituting this last expression into Equation (A.3) gives: λTρ =

λTΛTρ. This gives λT (1 − ΛT
1) = 0. This means that 1Tλ1 = 1, . . . ,1Tλn = 1.

Expression (A.2) follows from this last statement combined with the fact that the

points ai′
1/|ai′

1 |, . . ., ai′
n/|ai′

n| lie on the unit sphere. 2

The affine hull of n points in n-dimensional space is the hyperplane that passes

simultaneously through these n points. Thus,

aff
(

ai
1

|ai
1|

, . . . ,
ai

n

|ai
n|

)
=

{
x

∣∣∣∣∣det

([
xT 1

AT
n 1

])
= 0, x ∈ <n

}
. (A.4)

If Sn(btis) is such that the only constraint in S(btis) surrounded by it is the i-

th constraint, and |An| 6= 0, then is it an RDCS of the i-th constraint? Example 1
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answers this question in the negative.

Example 1 In the left hand figure, the vectors u1 – u4 and ui begin at the ori-

gin and have their ends on the unit sphere in <3. The set Σ1 of constraints

corresponding to the set of vectors {u1, u2, u3}, as well as the set Σ2 of con-

straints corresponding to the set {u1, u2, u4}, are such that the only constraint

surrounded by each of them is Ci — the constraint corresponding to ui. Only

the first set is an RDCS. The second set does not satisfy Expression (A.2).

Example 2 This is with respect to Example 1. As Σ1 is an RDCS of Ci, no vec-

tor belonging to its parent system of constraints can be found in the shaded

region of left hand figure. This can be understood as follows. Assume for

contradiction that there was some vector u5 in the shaded region (right hand

figure). It can be shown, through an argument similar to that used for the

proof of statement (1) of Lemma A.3, that we can find at least one vector in

the set {u1, u2, u3} (in the figure it is u3) that can be replaced by u5 such that

ui ∈ cone({u1, u2, u5}). Now, consider a hypothetical vector uh that satisfies

Expression (A.2) such that u5 ∈ cone({u1, u2, uh}). The set of constraints cor-

responding to the set {u1, u2, uh} is an RDCS of Ci. But by statement (2) of

Lemma A.3,

uT
i [u1 u2 u5]

T −1
1 < uT

i [u1 u2 uh]T
−1
1.

This contradicts the fact that {u1, u2, uh} is an RDCS of Ci. So, no vector can

be found in the shaded region.

It can be seen that a formal version of the argument presented in Example 2 can

be used as a proof for Theorem A.1.

Lemma A.2 and Theorem A.1 allow the determination of an RDCS for each of

the constraints in S(btis) for which there exists an RDCS. Lemma A.3 shows that if

Sn(btis) is an RDCS of the i-th constraint in S(btis), then this is the only constraint

in S(btis) surrounded by Sn(btis). So, it follows that the i-th constraint in S(b0) is

the only constraint surrounded by Sn(b0). Thus, in S(b0), either Sn(b0) is an RDCS
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of the i-th constraint, or it is not an RDCS of any constraint at all. Next, of interest

is the question whether Sn(b0) is necessarily an RDCS of the i-th constraint in S(b0)

given that Sn is an RDCS of the i-th constraint in S(btis). The possibilities to check

are:

Q1: If Sn(btis) is an RDCS of the i-th constraint in S(btis), then is it possible that

Sn(b0) is not an RDCS of the i-th constraint in S(b0)?

Q2: If Sn(btis) is not an RDCS of the i-th constraint in S(btis), then is it possible

that Sn(b0) is an RDCS of the i-th constraint in S(b0)?

A counter-example was given for these questions. Thus, it remains to be seen if

they may be answered in the affirmative for a class of systems.
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Appendix B

Second Method to Solve PR1 and PR2

Notation

PR1 and PR2 are defined on Page 41.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

 ; b =


b1

b2

· · ·
bm

 .

A\i is the (m − 1) × n matrix that is obtained by deleting ai (see Notation 5.1 on

Page 43) from A. b\i is the (m − 1)× 1 vector that is obtained by deleting bi from

b. Thus,

A\i =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
a(i−1)1 a(i−1)2 · · · a(i−1)n

a(i+1)1 a(i+1)2 · · · a(i+1)n

· · · · · · · · · · · ·
am1 am2 · · · amn


; b\i =



b1

b2

· · ·
b(i−1)

b(i+1)

· · ·
bm


.

The Problem

Given the system of constraints Ax ≤ b, determine the set of all b for which this

system is irredundant.
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The Solution

The following solution was suggested by Carl Lee[Lee02] and uses LP duality.

Step 1: The constraint aT
i x ≤ bi is irredundant with respect to the system A\ix ≤

b\i if and only if bi < LPmax
\i . Thus, for the system Ax ≤ b to be irredundant,

this condition must be satisfied for i = 1, . . . ,m.

Step 2: The linear programming primal problem

max
A\ix ≤ b\i

aT
i x

has the dual

min
AT

\i
y=ai

y≥0

bT
\iy

So, the condition for irredundancy of Step 1 can be translated into the new

condition “bi should be strictly less than the minimum of bT
\iy over the system

AT
\iy = ai, y ≥ 0”.

Step 3: Enumerate the extreme points — say, yi
1, yi

2, . . ., yi
νi

— of the polyhedron

AT
\iy = ai

y ≥ 0

Step 4: Then, for irredundancy, the following inequality must be true:

bi < min
{

bT
\iy

i
1, . . . , bT

\iy
i
νi

}
Step 5: This inequality is equivalent to the following system of inequalities:

bi < bT
\iy

i
1

bi < bT
\iy

i
2

· · · · · · · · ·

bi < bT
\iy

i
νi
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Step 6: From Step 5, it follows that the solution to PR2 is given by the following

system:

b1 < bT
\1y

1
1

b1 < bT
\1y

1
2

· · · · · · · · ·

b1 < bT
\1y

1
ν1

b2 < bT
\2y

2
1

b2 < bT
\2y

2
2

· · · · · · · · ·

b2 < bT
\2y

2
ν2

· · · · · · · · ·

· · · · · · · · ·

bm < bT
\mym

1

bm < bT
\mym

2

· · · · · · · · ·

bm < bT
\mym

νm

The solution to PR1 can be obtained by appending the condition b = By to the

above system of constraints.
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Appendix C

Determining the Values of b for which

Ax ≤ b is Feasible

The Problem

Given the system of constraints Ax ≤ b, determine the set of all b for which this

system is feasible (notation same as in Appendix B).

The Solution

The solution is based on the method shown by Dr. Carl Lee[Lee02] to determine

the set of all b for which the system Ax ≤ b is irredundant. Indeed, our solution is a

very slight modification of the solution that he gave for the problem of irredundancy.

Step 1: The constraint aT
i x ≤ bi is feasible with respect to the system A\ix ≤ b\i

if and only if bi ≥ LPmin
\i . Thus, for the system Ax ≤ b to be feasible, this

condition must be satisfied for i = 1, . . . ,m (notation same as in Appendix B).

Step 2: The linear programming primal problem

min
A\ix≤b\i

aT
i x

has the dual (HERE IS THE DIFFERENCE BETWEEN THE IRREDUNDANCY AND THE

FEASIBILITY PROBLEMS)

max
AT

\i
y=ai

y≤0

bT
\iy
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So, the condition for feasibility of Step 1 can be translated into the new con-

dition “bi should be greater than or equal to the maximum of bT
\iy over the

system AT
\iy = ai, y ≤ 0”.

Step 3: Enumerate the extreme points — say, yi
1, yi

2, . . ., yi
νi

— of the polyhedron

AT
\iy = ai

y ≤ 0

Step 4: Then, for feasibility, the following inequality must be true:

bi ≥ min
{

bT
\iy

i
1, . . . , bT

\iy
i
νi

}
Step 5: This inequality is equivalent to the following system of inequalities:

bi ≥ bT
\iy

i
1

bi ≥ bT
\iy

i
2

· · · · · · · · ·

bi ≥ bT
\iy

i
νi

Step 6: From Step 5, it follows that the solution to PR2 is given by the following
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system:

b1 ≥ bT
\1y

1
1

b1 ≥ bT
\1y

1
2

· · · · · · · · ·

b1 ≥ bT
\1y

1
ν1

b2 ≥ bT
\2y

2
1

b2 ≥ bT
\2y

2
2

· · · · · · · · ·

b2 ≥ bT
\2y

2
ν2

· · · · · · · · ·

· · · · · · · · ·

bm ≥ bT
\mym

1

bm ≥ bT
\mym

2

· · · · · · · · ·

bm ≥ bT
\mym

νm

The One-Dimensional Case

Consider the one-dimensional system (x ∈ <):

a1x ≤ b1

a2x ≤ b2

}
(C.1)

We will determine the set of all [ b1 b2 ]T for which this system is FEASIBLE. Note

that this is the same as the set of all values of [ b1 b2 ]T for which this system is

IRREDUNDANT, as this is a one-dimensional system.
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Step 3 of Section C for this system is as follows. The extreme point of the system

a2y = a1

y ≤ 0

is y = a1/a2. The extreme point of the system

a1y = a2

y ≤ 0

is y = a2/a1. Note that, if the system of Equation (C.1) is bounded, then a2/a1 < 0.

So, it is not impossible to obtain a2/a1 < 0.

Step 4 of Section C for this system is as follows.

b1 ≥ a1

a2

b2

b2 ≥ a2

a1

b1

Since both the inequalities are equal, the set of all values of the vector [ b1 b2 ]T for

which the system of Equation (C.1) is feasible is given by the following inequality:

−b1 +
a1

a2

b2 ≤ 0

This also gives us the set of all values of [ b1 b2 ]T for which this system is irre-

dundant.

Question

If we were to attempt to apply Carl Lee’s method for determining the set of all b for

which the system of constraints Ax ≤ b is irredundant, as shown in Appendix B,

to the one-dimensional system presented in Equation (C.1), we would arrive at the

following inequalities:

b1 < max
a2x≤b2

a1x
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and

b2 < max
a1x≤b1

a2x

Applying linear programming duality to the above inequalities, we get the fol-

lowing:

b1 < min
a2y=a1

y≥0

b1y

and

b2 < min
a1y=a2

y≥0

b1y

We note in these last pair of inequalities that the constraints y = a1/a2, y ≥ 0

(similarly y = a2/a1, y ≥ 0) are infeasible if the system of Equation (C.1) should

be bounded, because for bounded systems a1/a2 < 0.

Does this mean that the methods presented in Appendix B do not work when

Ax ≤ b is one-dimensional? This question needs to be studied.
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Appendix D

MATLAB Program Listings for First
Method for Irredundancy

−−−−−−−−−−−−−−−−−−−−−−−−How to use the f o l d e r SCS−−−−−−−−−−−−−−−−−−−−−−

File_Name : README. t x t
Author : Ramprasad P o t l u r i
e−mail : pot luri@engr . uky . edu
Date : July −03−2002.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The f o l d e r SCS has the fo l lowing m− f i l e s in i t :

A .m
C .m
f_D_DB .m ( o r i g i n a l l y f_make_D .m, but extended on July −29−2002)
f_mcn .m
f _ r e f i n e .m
f _ s c s _ i .m
f _ s u b s t .m
f _ x p l a i n .m
&
f _ s c s .m −− This f i l e i s a very s l i g h t mod i f i ca t ion of s c s .m.

I t i s s imply s c s .m made in to a function .
Created on August 06 , 2002 .

These f i l e s comprise the program to f ind the SSCSs , so l ve PR1 & PR2 ,
and r e f i n e t h i s s o l u t i o n .

The user needs to run the f i l e s A .m and C .m f i r s t and f _ s c s ( . ) next .

The f i l e s named " f_ . . . " conta in func t i on s tha t w i l l be c a l l e d by
f _ s c s .m.

Each of these f i l e s has more in format ion about how and what i t does .
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The f i l e mcntemp .m i s crea ted by f _ s c s _ i .m.
I f you delete mcntemp .m, then p lease ignore the r e s u l t of the f i r s t
pass of f _ s c s _ i .m; i t s second pass onwards , f _ s c s _ i .m seems to work
f i n e . However , i f you have a f i l e mcntemp .m in t h i s f o l d e r before
you s t a r t f _ s c s ( . ) , then f _ s c s _ i .m works f i n e .

The f i l e F u l l _ s c s . t x t shows example of a 2−D system every one of
whose c o n s t r a i n t s was found to have SCSs . In my t r i a l runs , t h i s was
the only in s t ance where a l l the c o n s t r a i n t s in a system had SCSs .

The user can a l so compare the r e s u l t s of s c s .m with tha t of
c a r l _ l e e .m.

I wish you an en joyab le exper ience using t h i s program .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Date : July −29−2002.

The m− f i l e f_make_D .m was extended and renamed as f_D_DB .m.
The m− f i l e f_D_DB .m s o l v e s PR1 bes ides performing the t a s k s tha t
f_make_D .m performed .
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ s c s .m : Implementat ion o f s e c t i o n s 3 . 3 and 3 . 4 o f the paper
% t i t l e d " Determining the Va lue s o f the Right−Hand Ve c t o r o f an
% Irredundant System o f L inear I n e q u a l i t i e s "
% by Ramprasd P o t l u r i and L . E . Holloway .
%
% INPUT : Mat r i c e s A and C which d e f i n e the sys tem Ax <= Cy .
%
% OUTPUT : The ma t r i c e s rev_DB and rev_DB which d e f i n e the s o l u t i o n
% s p a c e s PR1 and PR2 as rev_DB∗x < 0 and rev_D∗x < 0.
%
% USES : f_mcn ( . ) , f _ s c s _ i ( . ) , f _ e x p l a i n ( . ) , f_D_DB ( . ) ( t h i s one
% i s an e x t e n s i o n o f f_make_D ( . ) ) , f _ r e f i n e ( . ) ( in turn
% use s f _ s u b s t ( . ) ) .
%
% PRECONDITION : x i s at l e a s t 2−D.
%
% Created on : June 29 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non−Windows 9 8 machines .
% Thi s m− f i l e was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ rev_D , rev_DB ] = f _ s c s (A , C)

Atran = A ’ ;

% I t i s n e c e s s a r y to t e s t f o r the boundedness o f the sys tem Ax <=
% b . For t h i s , the f u n c t i o n f_bound (A ) can be run .
% Note : f_bound ( . ) u s e s cdd . exe .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% L i s t the mCn ( "m choose k " ) d i f f e r e n t combinat ions o f s i z e n
% from the s e t { 1 , 2 , . . . , m} us ing the f u n c t i o n f_mcn (m, n ) .

m = s ize ( Atran , 2 ) ;
n = s ize ( Atran , 1 ) ;
i n d i c e s = f_mcn (m, n ) ;

% TO DO : Write a more compact code f o r f_mcn (m, n ) .
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% For each c o n s t r a i n t , ob ta in a matr ix o f the i n d i c e s o f SSCS ,
% and a matr ix c on ta in ing the produc t v e c t o r ( s ) inv (An)∗ a_ i . The
% f u n c t i o n [ s c s _ i n d s , invAn_ai ] = f _ s c s _ i ( i , i n d i c e s , Atran ) i s used .

ca ta log = [ ] ;
SSCS_indices = [ ] ;
i nvAn_a i _a l l = [ ] ;
for i = 1:m,

[ scs_ inds , invAn_ai ] = f _ s c s _ i ( i , i nd i ce s , Atran ) ;
i f s c s _ ind s ~= []
ca ta log = [ ca ta log ; i s ize ( scs_ inds , 1 ) ] ;
SSCS_indices = [ SSCS_indices ; s c s _ ind s ] ;
i nvAn_a i _a l l = [ invAn_a i _a l l invAn_ai ] ;

end
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ca ta log ;
% The matr ix ’ ca ta log ’ has two columns . In each row o f ca ta log ,
% the f i r s t column c o n t a i n s the index o f a c o n s t r a i n t tha t has
% SCSs , and the second column c o n t a i n s the number o f SCSs o f
% t h i s c o n s t r a i n t .

SSCS_indices ;
% The matr ix ’ SSCS_indice s ’ has n columns and number o f rows equal
% to the sum o f the e l emen t s in the second column o f ’ ca ta log ’
% ( tha t i s , SSCS_ ind i c e s has as many rows as t h e r e are SCSs
% o v e r a l l ) .

i n vAn_a i _a l l ;
% The matr ix ’ i nvAn_a i_a l l ’ has n rows and number o f columns equal
% to the number o f rows in SSCS_ ind i c e s .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Exp la in how the ma t r i c e s ca ta log , SSCS_indice s , and i n v A n _ a i _ a l l
% s t o r e the informaton about SSCSs .

% f _ x p l a i n ( ca ta log , SSCS_indice s , i n v A n _ a i _ a l l ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Bui ld the ma t r i c e s D ( which d e f i n e s the s o l u t i o n space
% D∗b < 0 o f PR2 ) and DB ( which d e f i n e s the s o l u t i o n space
% DB∗y < 0 o f PR1 ) f o r the sy s t ems Ax <= b and Ax <= Cy

120



% r e s p e c t i v e l y .

[D,DB] = f_D_DB( cata log , SSCS_indices , invAn_a i_a l l ,m, C) ;

% CHECK : The va lue o f D g i v en by t h i s r o u t i n e can be compared with
% tha t g i v en by Car l Lee ’ s method . I t was found tha t they are equal .
% As f o r the va lue o f DB g i v en by t h i s rou t ine , i t should match the
% va lue o f DB obta ined as D∗C ( because , D∗b < 0 , and C∗y = b ,
% imply D∗C∗y < 0 ) . I t does .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% In pr epara t i on f o r the nex t par t ( removing tho s e SCSs tha t cannot
% be RDCSs ) , merge the in fo rmat ion in the ma t r i c e s ’ ca ta l og ’ and
% ’ SSCS_indice s ’ i n t o one matr ix ’ SSCS_inds ’ , and add one " f l a g
% column " in the f r o n t o f SSCS_inds and two " b l o ck s t a r t & end
% marking columns " at the end o f SSCS_inds :

temp_col = [ ] ;
l = 1;

for j = 1: s ize ( cata log , 1 ) ,
co l_ones = ones ( ca ta log ( j , 2 ) , 1 ) ;
temp = [ ca ta log ( j ,1 )∗ col_ones , co l_ones ∗[ l , l+ca ta log ( j ,2) −1] ] ;
temp_col = [ temp_col ; temp ] ;
l = l + ca ta log ( j , 2 ) ;

end

SSCS_inds = [ ones ( s ize ( SSCS_indices , 1 ) , 1 ) SSCS_indices temp_col ] ;
% Thi s f i r s t column w i l l s e r v e as a " f l a g column " in the f u n c t i o n
% f _ r e f i n e .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% R e f i n e the s o l u t i o n by removing tho s e SCSs tha t cannot be RDCSs .

[ rev_SSCS , rev_D , rev_DB ] = f _ r e f i n e ( SSCS_inds ,D,DB) ;

% CHECK : rev_DB and rev_D∗C are equal .
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_D_DB .m : Implementat ion o f the f u n c t i o n
% f_D_DB ( ca ta log , SSCS_indice s , i nvAn_a i_a l l ,m, C ) .
%
% For an exp lana t i on o f how the f i r s t 3 arguments o f t h i s
% f u n c t i o n s t o r e the in format ion , use the f u n c t i o n
% f _ x p l a i n ( ca ta log , SSCS_indice s , i n v A n _ a i _ a l l ) .
%
% INPUT : m, C , and ma t r i c e s ca ta log , SSCS_indice s , i n v A n _ a i _ a l l .
% These v a l u e s are c a l c u l a t e d by s c s .m
%
% OUTPUT : The ma t r i c e s D and DB which r e s p e c t i v e l y
% d e f i n e the s o l u t i o n s p a c e s o f PR2 and PR1 .
%
% Created on : Ju l y 29 , 2002 ( Ex t en s i on o f f_make_D .m) .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [D,DB] = f_D_DB( cata log , SSCS_indices , invAn_a i_a l l ,m, C)

temp = zeros ( s ize ( SSCS_indices , 1 ) ,m) ;
DB = [ ] ;
k = 1;

for i = 1: s ize ( cata log , 1 ) ,
for j = k : k + ca ta log ( i ,2) − 1 ,
temp( j , ca ta log ( i , 1 ) ) = 1 ;

temp( j , SSCS_indices ( j , : ) ) = − i n vAn_a i _a l l ( : , j ) ’ ;

i f s ize (C,1 ) > 0 , % Thi s i f c o n d i t i o n was added on Aug−14−2002.
DB( j , : ) = C( ca ta log ( i , 1 ) , : ) − i n vAn_a i _a l l ( : , j ) ’ ∗ . . .

C( SSCS_indices ( j , : ) , : ) ;
end

end
k = k + ca ta log ( i , 2 ) ;

end

D = temp ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_make_D .m : Implementat ion o f the f u n c t i o n
% f_make_D ( ca ta log , SSCS_indice s , i n v A n _ a i _ a l l .m) .
%
% Func t ion f_make_D ( ca ta log , SSCS_indice s , i nvAn_a i_a l l ,m) .
%
% For an exp lana t i on o f how the f i r s t 3 arguments o f t h i s
% f u n c t i o n s t o r e the in format ion , use the f u n c t i o n
% f _ x p l a i n ( ca ta log , SSCS_indice s , i n v A n _ a i _ a l l ) .
%
% Input : The m and ma t r i c e s ca ta log , SSCS_indice s , i n v A n _ a i _ a l l .
% These v a l u e s are c a l c u l a t e d by s c s .m
%
% Output : The matr ix D which d e f i n e s the s o l u t i o n space o f PR2 .
%
% Created on : June 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function D = f_make_D( cata log , SSCS_indices , invAn_a i_a l l ,m)

temp = zeros ( s ize ( SSCS_indices , 1 ) ,m) ;
k = 1;

for i = 1: s ize ( cata log , 1 ) ,
for j = k : k + ca ta log ( i ,2) − 1 ,
temp( j , ca ta log ( i , 1 ) ) = 1 ;

temp( j , SSCS_indices ( j , : ) ) = − i n vAn_a i _a l l ( : , j ) ’ ;
end
k = k + ca ta log ( i , 2 ) ;

end

D = temp ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_mcn .m : Implementat ion o f the f u n c t i o n f_mcn (m, n ) tha t l i s t s
% the mCn ( "m choose k " ) d i f f e r e n t combinat ions o f s i z e
% n from the s e t { 1 , 2 , . . . , m} .
%
% INPUT : m, n ;
%
% OUTPUT : Matrix r o f d imens ions mCn x n . Each row o f r shows one
% way o f choos ing n e l emen t s out o f the l i s t { 1 , 2 , . . . ,m} .
%
% PRECONDITION : m >= n .
%
% Created on : June 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
% TO DO : Write a more compact code f o r f_mcn (m, n ) tha t does not
% p r i n t a f i l e .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% D = [ 1 2 . . . m] ;
%
% For a matr ix such as D t h i s f u n c t i o n g e n e r a t e s a f i l e named
% mcntemp .m tha t c o n t a i n s commands o f the t ype shown below .
%
% bb = [ ] ;
% x1 = 0;
% f o r x2 = x1 + 1 : m−n+1,
% f o r x3 = x2 + 1 : m−n+2,
% f o r x4 = x3 + 1 : m−n+3,
% . . . . . . . . . . . . . .
% . . . . . . . . . . . . . .
% f o r x (n+1) = xn + 1 : m−n+n ,
% bb = [ bb ; x2 x3 . . . x (n+1) ];
% end
% . . . . . . . . . . . . . . .
% . . . . . . . . . . . . . . .
% end
% end
%
% Here , [ x2 x3 . . . x (n+1)] i s the n−t u p l e tha t r e p r e s e n t s the
% d i f f e r e n t combinat ions o f s i z e n .
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%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function r = f_mcn (m, n)

space = [ ] ;
f i d = fopen ( ’ mcntemp .m ’ , ’ wt ’ ) ;

f p r i n t f ( f id , ’%s \n ’ , ’ % mcntemp .m: f i l e generated by f_mcn .m ’ ) ;
f p r i n t f ( f id , ’%s \n ’ , ’ ’ ) ;

f p r i n t f ( f id , ’%s \n ’ , ’ aa =[]; ’ ) ;
f p r i n t f ( f id , ’%s \n ’ , ’ x1 = 0; ’ ) ;
for t = 2:n+1,
temp1 = [ space ’ f o r x ’ . . .

num2str ( t ) ’ = x ’ num2str ( t −1) ’ + 1 : ’ num2str (m−n+t −1) ’ , ’ ] ;
space = [ space ’ ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp1 ) ;

end

u = [ ] ;
for t = 2 : n+1,
u = [ u ’ x ’ num2str ( t ) ’ ’ ] ;

end

u = [ ’ [ ’ u ’ ] ’ ] ;
temp2 = [ space ’ bb = ’ u ’ ; ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp2 ) ;

temp3 = [ space ’ aa = [ aa ; bb ] ; ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp3 ) ;

for t = 1:n ,
temp4 = [ space ( : , 1 : s ize ( space ,2)− t ) ’ end ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp4 ) ;

end

fc lose ( f i d ) ;

mcntemp ;

r = aa ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ r e f i n e .m : Implementat ion o f o f the f u n c t i o n
% f _ r e f i n e ( SSCS_inds ,D, DB ) .
%
% INPUT : The ma t r i c e s ’ D ’ , ’ DB ’ and ’ SSCS_inds ’ g ene ra t ed by
% f_D_DB ( . ) .
%
% OUTPUT : Mat r i c e s rev_D , rev_DB , and r e v _ s s c s −−− r e v i s e d
% v e r s i o n s o f the input ma t r i c e s . Those SCSs tha t cannot
% be RDCSs are removed from D , DB and SSCS_inds and the
% r e s u l t i s rev_D , rev_DB , and r e v _ s s c s .
%
% USES : f _ s u b s t ( . )
%
% Created on : Ju l y 1 , 2002 .
% Extended on : Ju l y − 29 − 2002 to i n c l u d e DB .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s maybe i f he wi she s to use t h i s m− f i l e on non− Windows 98
% machines or with a l a t e r ( and l e s s bugged ) v e r s i o n o f Matlab .
% For example , in MATLAB v . 4 s tud en t e d i t i o n , nega t ion ope ra to r
% ’ ~ ’ i s not working OK . So , I wrote a l ong e r p i e c e o f code ( than
% i f t h i s ope ra to r were working OK) to work around t h i s problem .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%−−−−−−−−−−−−−−−−−−−EXPLANATION FOR THIS PROGRAM−−−−−−−−−−−−−−−−−−−−−
%
% Here i s an example matr ix SSCS_inds .
%
% SSCS_inds =
%
% 1 2 3 1 1 4
% 1 2 5 1 1 4
% 1 3 4 1 1 4
% 1 4 5 1 1 4
% 1 1 5 3 5 7
% 1 2 5 3 5 7
% 1 4 5 3 5 7
% 1 1 2 4 8 10
% 1 2 3 4 8 10
% 1 2 5 4 8 10
%
% In t h i s matrix , t h e r e are 3 " b l o c k s " as shown below . Each b l o ck

126



% cor r e s pond s to the SSCS o f one c o n s t r a i n t . The index o f a
% c o n s t r a i n t to which a b l o ck co r r e s pond s i s the e l ement in the
% th i rd −but− l a s t column . The f i r s t column i s a " f l a g " column .
% SSCS_inds i s s u p p l i e d to the f u n c t i o n f _ r e f i n e ( . ) with the
% f l a g column s e t to 1 ’ s . When the f u n c t i o n de t e rmine s tha t a
% p a r t i c u l a r SCS i s not an RDCS , then , the f l a g b e f o r e tha t SCS
% i s s e t to 0 . Each row o f SSCS_inds co r r e s pond s to an SCS . The
% SCS− i n d i c e s are s i t u a t e d in t h i s matr ix from the second to the
% four th −but− l a s t p o s i t i o n s .
%
% Thus , in our example , B lock 1 co r r e s pond s to C on s t r a i n t # 1 .
% The f i r s t row o f SSCS_inds shows tha t [ 2 , 3 ] i s the index s e t o f
% one SCS o f C o n s t r a in t # 1 . The l a s t two columns in B lock 1 show
% tha t the SSCS o f C o n s t r a in t # 1 o c c u p i e s 1 s t through 4 th rows
% o f B lock 1 .
%
% The second row in Block 2 shows tha t [ 2 , 5 ] i s the index
% s e t o f one SCS o f C o n s t r a in t # 3 , and tha t the SSCS o f
% Co ns t r a i n t # 3 be g in s at row 5 and ends at row 7 .
%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% 1 2 3 1 1 4
% 1 2 5 1 1 4
% 1 3 4 1 1 4 BLOCK 1
% 1 4 5 1 1 4
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% 1 1 5 3 5 7
% 1 2 5 3 5 7 BLOCK 2
% 1 4 5 3 5 7
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% 1 1 2 4 8 10
% 1 2 3 4 8 10 BLOCK 3
% 1 2 5 4 8 10
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% The f u n c t i o n f _ r e f i n e ( . ) t ak e s the SCS−index s e t o f a c o n s t r a i n t
% and t e s t s i f t h i s SCS i s an RDCS . I f i t i s not , then a 0 i s
% p la c ed in the f i r s t c e l l o f the co r r e spond ing row .
%
% For example , f _ r e f i n e ( . ) t ak e s up the index s e t [ 2 , 5 ] o f
% Co n s t r a i n t # 1 . With Row 2 o f SSCS_inds as i t s r e f e r e n c e row ,
% f _ r e f i n e ( . ) then b e g in s with the f i r s t row o f B lock 2
% and s c r o l l s down SSCS_inds t e s t i n g i f t h e r e i s another index s e t
% [ 2 , 5 ] in any o f the rows . I t f i n d s one in B lock 2 . I t s e e s tha t
% [ 2 , 5 ] i s a l s o the SCS o f C on s t r a in t # 3 . f _ r e f i n e ( . ) u s e s the
% f u n c t i o n f _ s u b s t ( . ) thus : [ a , b ] = f _ s u b s t ( [ 2 ,5 ] , 3 ) to ob ta in
% a = [2 ,3 ] and b = [ 3 , 5 ] . I f t h e r e i s a 1 in the f i r s t c e l l o f i t s
% r e f e r e n c e row , f _ r e f i n e ( . ) ch e ck s i f a or b i s p r e s e n t in the
% home b lo ck o f the r e f e r e n c e row , i . e . , B lock 1 . Sure enough , a i s
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% in Block 1 . Th i s means ( a c co rd ing to the theo ry in our paper )
% tha t [ 2 , 5 ] i s not an SCS o f C on s t r a in t # 1 . So , f _ r e f i n e ( . ) s e t s
% the f i r s t e l ement o f i t s r e f e r e n c e row to 0 . Next , f _ r e f i n e ( . )
% again u s e s f _ s u b s t ( . ) thus : f _ s u b s t ( [ 2 ,5 ] , 1 ) to ob ta in a = [ ] and
% b = [ 1 , 5 ] . f _ r e f i n e ( . ) then che ck s i f [ 1 , 5 ] i s in B lock 2 . Sure
% enough i t i s . So , f _ r e f i n e s e t s the f i r s t e l ement o f row 1 o f
% Block 2 to 0 .
%
% Then , f _ r e f i n e ( . ) s c r o l l s the b l o c k s a f t e r B lock 2 and f i n d s [2 ,5 ]
% f i r s t in B lock 3 . f _ r e f i n e ( . ) u s e s f _ s u b s t ( . ) thus :
% [ a , b ] = f _ s u b s t ( [ 2 , 5 ] , 1 ) . I t o b t a i n s a = [ ] and b = [1 ,5 ] .
% f _ r e f i n e ( . ) ch e ck s i f a or b i s p r e s e n t in B lock 3 . Ne i t h e r i s .
% So , the 1 in the f i r s t c e l l o f the row in which [ 2 , 5 ] was in
% Block 3 remains . f _ r e f i n e ( . ) a l s o wants to use f _ s u b s t ( [2 ,5] ,4)
% and t e s t i f [ 2 , 5 ] from Block 1 can be marked with a 0 in the f i r s t
% c e l l . But , i t does not t e s t because , tha t c e l l a l r eady has a 0 .
% Thus , f _ r e f i n e has reached the end o f the t a b l e in i t s s ea r ch with
% ( [ 2 , 5 ] , 1 ) from Block 1 .
%
% Now , f _ r e f i n e ( . ) r e p e a t s t h i s op e ra t i on with ( [ 3 , 4 ] , 1 ) from Block 1 .
% Now , Row 3 o f SSCS_inds i s the r e f e r e n c e row .
%
% And so on .
%
% f _ r e f i n e ( . ) does not s ea r ch f o r the o c cu r en c e o f [ 3 , 4 ] in B lock 1
% because , a c co rd ing to how we c o n s t r u c t e d SSCS_inds , not more than
% one i n s t a n c e o f [ 3 , 4 ] can e x i s t in any b l o ck .
%
% f _ r e f i n e ( . ) s e a r c h e s in the top−to−bottom d i r e c t i o n only and not
% backwards . Because o f t h i s ru l e , i t p i c k s up an SCS ( to proceed
% to s ea r ch from tha t p o s i t i o n ) on ly in the f i r s t to
% l a s t −but−one b l o c k s o f SSCS_inds . Thus , when f _ r e f i n e has f i n i s h e d
% the above procedure f o r the l a s t e l ement o f the l a s t −but−one block ,
% then f _ r e f i n e s t o p s and r e t u r n s c o n t r o l to the c a l l i n g program .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ rev_s sc s , rev_D , rev_DB ] = f _ r e f i n e ( SSCS_inds ,D,DB)

rows = s ize ( SSCS_inds , 1 ) ;
c o l s = s ize ( SSCS_inds , 2 ) ;

n = s ize ( SSCS_inds (1 ,2 : co l s −3) ,2);
% n i s the column s i z e o f each SCS .

k2 = SSCS_inds ( rows , co l s −1);
% k2 i s the number o f the row where b eg in s the l a s t b l o ck .
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l = 1;
% l s t o r e s the p o i n t e r to the r e f e r e n c e row .

while l < k2

temp = SSCS_inds ( l , 2 : n+1);
% temp s t o r e s the SCS−index s e t from the r e f e r e n c e row .

k3 = SSCS_inds ( l , c o l s ) + 1;
% k3 i s used to po in t to the beg inn ing o f the nex t b l o ck .

while k3 <= rows
% Thi s c o n d i t i o n t e s t s f o r end o f SSCS_inds matr ix .

i f norm ( temp − SSCS_inds (k3 , 2 : n+1) ) > 0
% Thi s c o n d i t i o n i s a s u b s t i t u t e f o r the t e s t
% " i f SSCS_inds (k3 , 2 : n+1) ~= temp " , as in my copy o f Matlab ,
% the ~ ope ra to r i s not working c o r r e c t l y .

% Do noth ing .

else
% Meaning : " i f SSCS_inds (k3 , 2 : n+1) == temp "

i f SSCS_inds ( l ,1) == 1
[a , b ] = f _ s u b s t ( temp , SSCS_inds (k3 , n+2) );
for k4 = [ SSCS_inds ( l , co l s −1 ) : l −1 , l +1 : SSCS_inds ( l , c o l s ) ] ,

i f ( SSCS_inds (k4 , 2 : n+1) == a )|( SSCS_inds (k4 , 2 : n+1) == b)
SSCS_inds ( l , 1 ) = 0 ;
k4 = SSCS_inds ( l , c o l s )+1; % P r o v i d e s e x i t from the FOR loop .

end % f o r the IF loop
end % f o r the FOR loop

end % f o r the IF loop

i f SSCS_inds (k3 ,1) == 1
[a , b ] = f _ s u b s t ( SSCS_inds (k3 , 2 : n+1) , SSCS_inds ( l , n+2) );
for k5 = [ SSCS_inds (k3 , co l s −1 ) : k3 −1 , k3+1 : SSCS_inds (k3 , c o l s ) ] ,

i f ( SSCS_inds (k5 , 2 : n+1) == a )|( SSCS_inds (k5 , 2 : n+1) == b)
SSCS_inds (k3 , 1 ) = 0 ;
k5 = SSCS_inds (k3 , c o l s )+1; % P r o v i d e s e x i t from the FOR loop .

end % f o r the IF loop
end % f o r the FOR loop

end % f o r the IF loop

end % f o r the b i g IF − ELSE loop

k3 = k3 + 1;

end % f o r the WHILE k3 < rows loop
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l = l + 1;

end % end o f the WHILE l < k2 loop

% Now , with the in fo rmat ion we have in the f i r s t column o f the
% matr ix SSCS_inds , we w i l l r e v i s e the matr ix D . Th i s amounts to
% removing tho s e rows o f D which cor r e spond to rows o f SSCS_inds
% with 0 ’ s f o r t h e i r f i r s t e l emen t s .

for i = 1: rows ,
i f SSCS_inds ( i ,1) == 0
D( i , : ) = [ ] ;
i f s ize (DB,1) >0 % Thi s i f c o n d i t i o n was added on Aug−14−2002.

DB( i , : ) = [ ] ; % Thi s l i n e was added on Ju ly − 29 − 2002.
end

end
end

r e v _ s s c s = SSCS_inds ( : , 1 : n+2);
rev_D = D;
rev_DB = DB ; % Thi s l i n e was added on Ju ly − 29 − 2002.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ s c s _ i .m : Implementat ion o f the f u n c t i o n
% f _ s c s _ i ( i , i n d i c e s , Atran ) .
%
% INPUT : The index i , the mCn x n matr ix o f i n d i c e s tha t l i s t s a l l
% the n−t u p l e s o f d i f f e r e n t i n d i c e s from the index s e t o f
% the matr ix Atran , and the matr ix Atran ;
%
% OUTPUT : For each c o n s t r a i n t , a matr ix o f the i n d i c e s o f SSCS and ,
% a matr ix c on ta in ing the produc t v e c t o r ( s ) inv (An)∗ a_ i
% are output .
%
% Created on : June 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ scs_ ind , invAn_ai ] = f _ s c s _ i ( i , i nd i ce s , Atran )

lambda = [ ] ;
temp = [ ] ;

for j = 1 : s ize ( ind i ce s , 1 ) ,
t f = ( i == i n d i c e s ( j , : ) ) ;

i f t f == zeros (1 , s ize ( ind i ce s , 2 ) )

% I f t h i s i s t rue , i t means tha t i i s not in i n d i c e s ( j , : ) . So ,
% Atran ( : , i n d i c e s ( j , : ) ) i s a p o t e n t i a l SCS o f Atran ( : , i ) .

x = Atran ( : , i n d i c e s ( j , : ) ) \ Atran ( : , i ) ;

% Here , we have used the equat ion x = A\b i n s t e a d o f x = inv (A)∗b .
% Both ways s o l v e the sys tem o f l i n e a r equa t i on s Ax = b .
% But , the f i r s t way i s about 2 −3 t imes f a s t e r and more a c cu ra t e .
% [ Page 4 6 8 . The s tud en t e d i t i o n o f Matlab : v e r s i o n 4 : User ’ s
% guide / the Mathworks In c . 1 9 9 5 . ]

i f x >= 0
temp = [ temp ; i n d i c e s ( j , : ) ] ;
lambda = [ lambda x ] ;
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end

end

end

s c s_ ind = temp ;
invAn_ai = lambda ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ s u b s t .m : Implementat ion o f o f the f u n c t i o n f _ s u b s t ( SCS_i , C_i ) .
%
% INPUT : The row v e c t o r SCS_i o f i n d i c e s o f c o n s t r a i n t C_i ,
% and the index i o f the c o n s t r a i n t C_i .
%
% OUTPUT : Row v e c t o r s SCS_i_max , and SCS_i_min .
%
% PRECONDITION : ’ i ’ cannot be an e lement o f SCS_i .
%
% Created on : Ju l y 1 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% I f SCS_i has two s u c c e s s i v e e l emen t s between which i l i e s ,
% then SCS_i_max i s ob ta ined by s u b s t i t u t i n g i f o r the g r e a t e r
% o f t h e s e two e l emen t s and SCS_i_min i s ob ta ined by s u b s t i t u t i n g
% i f o r the l e s s e r o f t h e s e two e l emen t s .
% E l s e , i f i < min( SCS_i ) ( meaning , i < f i r s t e l ement o f SCS_i ) ,
% then SCS_i_min i s formed and SCS_i_max i s empty , and
% i f i > max( SCS_i ) ( meaning , i f i > l a s t e l ement o f SCS_i ) ,
% then SCS_i_max i s formed and SCS_i_min i s empty .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ SCS_i_max , SCS_i_min ] = f _ s u b s t ( SCS_i , i )

n = s ize ( SCS_i , 2 ) ;

t f = SCS_i==i ;

i f t f == zeros (1 ,n)
i f ( i < SCS_i ( : , 1 ) )
SCS_i ( : , 1 ) = i ;
temp_min = SCS_i ;
temp_max = [ ] ;

e l s e i f ( i > max( SCS_i ))
SCS_i ( : , n ) = i ;
temp_min = [ ] ;
temp_max = SCS_i ;
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else
k = 1;
while i > SCS_i ( : , k )
k = k + 1;
end
temp_min = [ SCS_i ( : , 1 : k−2) i SCS_i ( : , k : n ) ] ;
temp_max = [ SCS_i ( : , 1 : k−1) i SCS_i ( : , k+1:n ) ] ;

end
else
disp ( ’ ’ ) ;
disp ( ’WARNING : i cannot be an element of SCS_i ’ ) ;

end

SCS_i_min = temp_min ;
SCS_i_max = temp_max ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% NOTE : In the above code , we cou ld have used the t e s t
%
% i f t f~=z e r o s (1 ,n)
%
% But , MATLAB did not respond to such a t e s t . Maybe , t h i s i s a
%
% bug in the v e r s i o n ( MATLAB 4 ) tha t I have .
%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ x p l a i n .m : Implementat ion o f the f u n c t i o n
% f _ x p l a i n ( ca ta log , SSCS_indice s , i n v A n _ a i _ a l l ) .
%
% INPUT : The ma t r i c e s ca ta log , SSCS_indice s , i n v A n _ a i _ a l l .
%
% OUTPUT : The in fo rmat ion in t h e s e ma t r i c e s i s i n t e r p r e t e d and
% output .
%
% Created on : June 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ ] = f _ x p l a i n ( cata log , SSCS_indices , i nvAn_a i _a l l )

disp ( ’ ’ ) ;
disp ( ’ ’ ) ;
disp ( ’ D i sp lay ing the i n d i c e s of the SCSs ( row ve c to r s ) and ’ ) ;
disp ( ’ the products inv (An)∗ a i ( column v ec to r s ) f o r each c o n s t r a i n t . ’ ) ;
disp ( ’ ’ ) ;

l = 1;
for i = 1: s ize ( cata log , 1 ) ,
temp1 = [ ’ The i n d i c e s of the SSCS of c o n s t r a i n t # ’ . . .

num2str ( ca ta log ( i , 1 ) ) ’ are : ’ ] ;
disp ( temp1 ) ;
disp ( ’ ’ ) ;
disp ( SSCS_indices ( l : ca ta log ( i ,2)+ l −1 ,:))
disp ( ’ ’ ) ;

temp2 = [ ’ The products f o r c o n s t r a i n t # ’ . . .
num2str ( ca ta log ( i , 1 ) ) ’ are : ’ ] ;

disp ( temp2 ) ;
disp ( ’ ’ ) ;
disp ( i nvAn_a i _a l l ( : , l : c a ta log ( i ,2)+ l −1))
disp ( ’ ’ ) ;

l = ca ta log ( i ,2)+ l ;
end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_mcn .m : Implementat ion o f the f u n c t i o n f_mcn (m, n ) tha t l i s t s
% the mCn ( "m choose k " ) d i f f e r e n t combinat ions o f s i z e
% n from the s e t { 1 , 2 , . . . , m} .
%
% INPUT : m, n ;
%
% OUTPUT : Matrix r o f d imens ions mCn x n . Each row o f r shows one
% way o f choos ing n e l emen t s out o f the l i s t { 1 , 2 , . . . ,m} .
%
% PRECONDITION : m >= n .
%
% Created on : June 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
% TO DO : Write a more compact code f o r f_mcn (m, n ) tha t does not
% p r i n t a f i l e .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% D = [ 1 2 . . . m] ;
%
% For a matr ix such as D t h i s f u n c t i o n g e n e r a t e s a f i l e named
% mcntemp .m tha t c o n t a i n s commands o f the t ype shown below .
%
% bb = [ ] ;
% x1 = 0;
% f o r x2 = x1 + 1 : m−n+1,
% f o r x3 = x2 + 1 : m−n+2,
% f o r x4 = x3 + 1 : m−n+3,
% . . . . . . . . . . . . . .
% . . . . . . . . . . . . . .
% f o r x (n+1) = xn + 1 : m−n+n ,
% bb = [ bb ; x2 x3 . . . x (n+1) ];
% end
% . . . . . . . . . . . . . . .
% . . . . . . . . . . . . . . .
% end
% end
%
% Here , [ x2 x3 . . . x (n+1)] i s the n−t u p l e tha t r e p r e s e n t s the
% d i f f e r e n t combinat ions o f s i z e n .
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%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function r = f_mcn (m, n)

space = [ ] ;
f i d = fopen ( ’ mcntemp .m ’ , ’ wt ’ ) ;

f p r i n t f ( f id , ’%s \n ’ , ’ % mcntemp .m: f i l e generated by f_mcn .m ’ ) ;
f p r i n t f ( f id , ’%s \n ’ , ’ ’ ) ;

f p r i n t f ( f id , ’%s \n ’ , ’ aa =[]; ’ ) ;
f p r i n t f ( f id , ’%s \n ’ , ’ x1 = 0; ’ ) ;
for t = 2:n+1,
temp1 = [ space ’ f o r x ’ . . .

num2str ( t ) ’ = x ’ num2str ( t −1) ’ + 1 : ’ num2str (m−n+t −1) ’ , ’ ] ;
space = [ space ’ ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp1 ) ;

end

u = [ ] ;
for t = 2 : n+1,
u = [ u ’ x ’ num2str ( t ) ’ ’ ] ;

end

u = [ ’ [ ’ u ’ ] ’ ] ;
temp2 = [ space ’ bb = ’ u ’ ; ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp2 ) ;

temp3 = [ space ’ aa = [ aa ; bb ] ; ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp3 ) ;

for t = 1:n ,
temp4 = [ space ( : , 1 : s ize ( space ,2)− t ) ’ end ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp4 ) ;

end

fc lose ( f i d ) ;

mcntemp ;

r = aa ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_mcn .m : Implementat ion o f the f u n c t i o n f_mcn (m, n ) tha t l i s t s
% the mCn ( "m choose k " ) d i f f e r e n t combinat ions o f s i z e
% n from the s e t { 1 , 2 , . . . , m} .
%
% INPUT : m, n ;
%
% OUTPUT : Matrix r o f d imens ions mCn x n . Each row o f r shows one
% way o f choos ing n e l emen t s out o f the l i s t { 1 , 2 , . . . ,m} .
%
% PRECONDITION : m >= n .
%
% Created on : June 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
% TO DO : Write a more compact code f o r f_mcn (m, n ) tha t does not
% p r i n t a f i l e .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% D = [ 1 2 . . . m] ;
%
% For a matr ix such as D t h i s f u n c t i o n g e n e r a t e s a f i l e named
% mcntemp .m tha t c o n t a i n s commands o f the t ype shown below .
%
% bb = [ ] ;
% x1 = 0;
% f o r x2 = x1 + 1 : m−n+1,
% f o r x3 = x2 + 1 : m−n+2,
% f o r x4 = x3 + 1 : m−n+3,
% . . . . . . . . . . . . . .
% . . . . . . . . . . . . . .
% f o r x (n+1) = xn + 1 : m−n+n ,
% bb = [ bb ; x2 x3 . . . x (n+1) ];
% end
% . . . . . . . . . . . . . . .
% . . . . . . . . . . . . . . .
% end
% end
%
% Here , [ x2 x3 . . . x (n+1)] i s the n−t u p l e tha t r e p r e s e n t s the
% d i f f e r e n t combinat ions o f s i z e n .
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%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function r = f_mcn (m, n)

space = [ ] ;
f i d = fopen ( ’ mcntemp .m ’ , ’ wt ’ ) ;

f p r i n t f ( f id , ’%s \n ’ , ’ % mcntemp .m: f i l e generated by f_mcn .m ’ ) ;
f p r i n t f ( f id , ’%s \n ’ , ’ ’ ) ;

f p r i n t f ( f id , ’%s \n ’ , ’ aa =[]; ’ ) ;
f p r i n t f ( f id , ’%s \n ’ , ’ x1 = 0; ’ ) ;
for t = 2:n+1,
temp1 = [ space ’ f o r x ’ . . .

num2str ( t ) ’ = x ’ num2str ( t −1) ’ + 1 : ’ num2str (m−n+t −1) ’ , ’ ] ;
space = [ space ’ ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp1 ) ;

end

u = [ ] ;
for t = 2 : n+1,
u = [ u ’ x ’ num2str ( t ) ’ ’ ] ;

end

u = [ ’ [ ’ u ’ ] ’ ] ;
temp2 = [ space ’ bb = ’ u ’ ; ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp2 ) ;

temp3 = [ space ’ aa = [ aa ; bb ] ; ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp3 ) ;

for t = 1:n ,
temp4 = [ space ( : , 1 : s ize ( space ,2)− t ) ’ end ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp4 ) ;

end

fc lose ( f i d ) ;

mcntemp ;

r = aa ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% F u l l _ s c s . t x t : Conta ins an example r e s u l t o f running f _ s c s ( . )
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

EDU>> A

A =

1.5578 0.4142
−2.4443 −0.9778
−1.0982 −1.0215

1.1226 0.3177
0.5817 1.5161

−0.2714 0.7494

EDU>> scs

ca ta log =

1 2
2 2
3 2
4 2
5 2
6 2

D =

1.0000 −0.0931 0 −1.5903 0 0
1.0000 0 −0.0375 −1.4243 0 0

0 1.0000 −2.9296 0 −1.3288 0
0 1.0000 −1.9062 0 0 −1.2933

−2.7855 −2.2245 1.0000 0 0 0
0 −2.4839 1.0000 −4.4298 0 0

−0.7154 0 0 1.0000 −0.0141 0
−0.7247 0 0 1.0000 0 −0.0234
−0.6620 0 0 0 1.0000 −1.6571

0 0 0 −0.9135 1.0000 −1.6358
0 −0.2701 0 0 −0.6685 1.0000
0 0 −0.7913 0 −1.0274 1.0000

elapsed_t ime =

0.3300
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rev_SSCS =

0 2 4 1
1 3 4 1
0 3 5 2
1 3 6 2
1 1 2 3
1 2 4 3
1 1 5 4
0 1 6 4
0 1 6 5
1 4 6 5
1 2 5 6
0 3 5 6

rev_D =

1.0000 0 −0.0375 −1.4243 0 0
0 1.0000 −2.9296 0 −1.3288 0

−2.7855 −2.2245 1.0000 0 0 0
0 −2.4839 1.0000 −4.4298 0 0

−0.7154 0 0 1.0000 −0.0141 0
−0.7247 0 0 1.0000 0 −0.0234
−0.6620 0 0 0 1.0000 −1.6571

0 −0.2701 0 0 −0.6685 1.0000

elapsed_t ime =

0.0500

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Here i s the D matr ix generated using f _ c a r l e e .m:

D =

1.0000 0 −0.0373 −1.4239 0 0
1.0000 −0.0928 0 −1.5892 0 0

0 1.0000 −1.9059 0 0 −1.2944
0 1.0000 −2.9309 0 −1.3309 0
0 −2.4840 1.0000 −4.4282 0 0

−2.7864 −2.2255 1.0000 0 0 0
−0.7155 0 0 1.0000 −0.0141 0
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−0.7249 0 0 1.0000 0 −0.0233
0 0 0 −0.9133 1.0000 −1.6358

−0.6620 0 0 0 1.0000 −1.6570
0 0 −0.7919 0 −1.0282 1.0000
0 −0.2702 0 0 −0.6686 1.0000
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Appendix E

MATLAB Program Listings for Second
Method Method for Irredundancy

−−−−−−−−−−−−−−How to use the f o l d e r c a r l _ l e e −−−−−−−−−−−−−−−−

File_Name : README02. t x t
Author : Ramprasad P o t l u r i
e−mail : pot luri@engr . uky . edu
Date : August −06−2002.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This README02. t x t f i l e i s a mod i f i ca t ion of README01. t x t .
I t summarizes the mod i f i c a t i ons done to the f i l e s in t h i s
f o l d e r to make them in to func t i on s .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Please read README01. TXT tha t i s in the sub fo lde r o l d f i l e s .

The f i l e s l i s t e d in README01. TXT were modif ied s l i g h t l y and
made in to func t i on s .

Thus , we now have the fo l lowing func t i on s :

f _ c a r l e e .m −−> f_bound (.) −−> f_makine
−−> cdd/ cddf+

−−> f_s tep3 (.) −−> f_makine ( . )
−−> cdd / cddf+

−−> f_s tep56 ( . )
( op t iona l ) −−> f_pbcone (.) −−> f_makine ( . )

−−> cdd / cddf+

f_pbcone .m −−> f_makine ( . )
−−> cdd / cddf+

f_s tep3 .m −−> f_makine
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−−> cdd/ cddf+

f_s tep56 .m

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Also present in t h i s f o l d e r are the fo l lowing f i l e s :

cddf+.exe ( t h i s i s invoked by the m− f i l e s to enumerate
extreme po in t s and rays )

cygwin1 . d l l ( t h i s i s necessary for cddf+.exe i s work)

c a r l _ l e e . pdf ( conta ins the algor i thm ; same as Appendix B
of the d i s s e r t a t i o n )

README01. t x t ( t h i s f i l e )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

To use t h i s program s t a r t with f _ c a r l e e ( . ) .
This i s the function tha t needs to be invoked to execute
Car l Lee ’ s a lgor i thm . I t c a l l s f _ s t ep3 ( . ) , f_s tep56 ( . ) ,
and f_pbcone ( . ) in tha t order .

f_pbcone ( . ) i s not e s s e n t i a l to so l v in g PR2 .
I t was only crea ted for using Minkowski ’ s Theorem
to so lve the problem of Irredundancy .
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ c a r l e e .m : An implementat ion o f the a lgor i thm shown
% by Dr . Car l Lee to de te rmine the s e t o f a l l v a l u e s o f
% b f o r which Ax <= b i s i r r edundant .
%
% A d e s c r i p t i o n o f the a lgor i thm can be found in
% c a r l _ l e e . pd f .
%
% INPUT : The matr ix A .
%
% OUTPUT : The matr ix D . A l so g e n e r a t e s the f i l e s pbcone . i n e and
% pbcone . e x t tha t con ta in the d e s c r i p t i o n o f the
% pointed −b−cone .
%
% USES : cdd / cdd + , f_bound ( . ) ( which in turn u s e s cdd / cdd +),
% f _ s t e p 3 ( . ) ( which in turn u s e s cdd / cdd+ and f_makine ( . ) ) ,
% f_ s t e p5 6 ( . ) , f _pbcone ( . ) ( which in turn u s e s cdd / cdd+
% and f_makine ( . ) ) .
%
% Created on : A p r i l 27 , 2002 .
% Modi f i ed on : August 06 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ ] = f _ c a r l e e (A)

disp ( ’ ’ ) ;
disp ( ’WARNING: ’ ) ;
disp ( ’ ’ ) ;
disp ( ’ As par t of i t s operat ion , t h i s program launches some MS−DOS ’ ) ;
disp ( ’ windows . The f i r s t time an MS−DOS window opens and does not ’ ) ;
disp ( ’ au tomat i ca l l y c l o s e a f t e r the program tha t launched i t ’ ) ;
disp ( ’ has completed execut ion , the user can c l i c k on an icon tha t ’ ) ;
disp ( ’ i s a t the top of tha t DOS window . This w i l l open a ’ ) ;
disp ( ’ " p r o p e r t i e s " pop−up window . Checking the " c l o s e on e x i t " ’ ) ;
disp ( ’ box w i l l c l o s e a l l fu tu re MS−DOS windows a f t e r the programs ’ ) ;
disp ( ’ tha t launch them complete execut ion . ’ ) ;
disp ( ’ ’ ) ;
disp ( ’Now, p lease pres s any cha rac t e r key to cont inue . ’ ) ;
disp ( ’ ’ ) ;
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pause

f lag = f_bound (A) ;
i f f l ag == 0
disp ( ’ The system Ax <= b i s unbounded ’ ) ;
disp ( ’ ’ ) ;

end

Atran = A ’ ;
f _ s t ep3 ( Atran ) ;
% E x e c u t e s Step 3 o f c a r l _ l e e . pd f : Forms the po lyhedron and
% enumerates i t s extreme p o i n t s .

N = s ize ( Atran , 2 ) ;
D = f_s tep56 (N) ;
% E x e c u t e s s t e p s 5 and 6 o f c a r l _ l e e . pd f to form the b−cone .

f_pbcone (A ,D) ;
% Forms the po inted −b−cone co r r e spond ing to the b−cone ob ta ined
% above and u s e s cdd f +. exe to ob ta in the V−format o f the
% pointed −b−cone .

disp ( ’ ’ ) ;
disp ( ’ ’ ) ;
disp ( ’ The " b−cone " i s D∗b < 0 , where D i s as fo l l ows : ’ ) ;

D

disp ( ’ ’ ) ;
disp ( ’ The reader can f ind the H−format of the c l o su re of the ’ ) ;
disp ( ’ pointed−b−cone in the f i l e pbcone . ine . ’ ) ;
disp ( ’ ’ ) ;
disp ( ’ The reader can f ind the V−format of the c l o su re of the ’ ) ;
disp ( ’ pointed−b−cone in the f i l e pbcone . ext . ’ ) ;
disp ( ’ ’ ) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ s t e p 3 .m: m− f i l e tha t implements Step3 o f c a r l _ l e e . pd f .
%
% INPUT : The matr ix Atran which i s the t r a n s p o s e o f A .
%
% OUTPUT : None . Genera t e s the f i l e s c o n s t r I . e x t ( I = 1 , 2 , . . . )
% which con ta in the extreme p o i n t s as d e s c r i b e d in Step3
% o f c a r l _ l e e . pd f .
%
% USES : cdd ( cdd +) , f_makine ( . ) .
%
% Created on : A p r i l 27 , 2002 .
% Modi f i ed on : August 06 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Le t C be an m x k matrix , and l e t d be a column m−v e c t o r .
% The Po lyhedra format (H−format ) o f the sys tem Cx <= d
% of m i n e q u a l i t i e s in k v a r i a b l e s x = ( x1 , x2 , . . . . , xd)̂ T i s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% var i ou s comments
% H−r e p r e s e n t a t i o n
% beg in
% m k+1 numbertype
% d −C
% end
% var i ou s o p t i o n s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% The above i s the format o f the data tha t i s p r e s e n t e d
% in ∗ . i n e f i l e ( " i n e " s t ands f o r " i n e q u a l i t y " ) .
%
% Thi s m− f i l e g e n e r a t e s ∗ . i n e f i l e s .
%
% Thi s m− f i l e was w r i t t e n in Matlab 4 . Maybe the l a t e r v e r s i o n s o f
% Matlab have more f e a t u r e s tha t a l low f o r s i m p l i f i c a t i o n o f t h i s
% code .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Example : Assume tha t we are g i v en the f o l l o w i n g A matr ix .
%
% A = [ a11 , a12 ;
% a21 , a22 ;
% a31 , a32 ;
% a41 , a42 ;
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% a51 , a52]
%
% Conver t to the f o l l o w i n g format :
%
% [ a21 a31 a41 a51 ] y = [a11]
% [ a22 a32 a42 a52 ] [a12]
% y >= 0
%
% Thi s i s the same as
%
% [ a21 a31 a41 a51 ] [ a11]
% [ a22 a32 a42 a52 ] [ a12]
% [−a21 −a31 −a41 −a51 ] y <= [−a11]
% [−a22 −a32 −a42 −a52 ] [−a12]
%
% − y <= 0
%
% Now t h i s in fo rmat ion needs to be p la c ed in a ∗ . i n e f i l e . Th i s j ob
% i s per formed by t h i s m− f i l e .
%
% From the A matr ix in t h i s example , 5 such sys tems , and hence 5
% such ∗ . i n e f i l e s , can be formed .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int , u n l e s s
% he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ ] = f_s tep3 ( Atran )

dd = [ ] ;
CC = [ ] ;
N = s ize ( Atran , 2 ) ;

opt ions = [ ] ;
c = [ ] ;
% The f u n c t i o n f_makine ( . ) w i l l be used . ’ op t ions ’ and ’ c ’ are two
% o f i t s i n p u t s .

x1 = ’ cons t r ’ ;
x3 = ’ . ine ’ ;
% The ∗ . i n e f i l e s w i l l be named con s t r1 . ine , . . . , cons t rN . in e .

for I = 1:N,
% Begin forming c o n t s r I . i n e f i l e .
% The f i l e c o n s t r I . i n e c o n t a i n s the H−format d e s c r i p t i o n o f
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% the polyhedron shown in Step 3 o f c a r l _ l e e . pd f .

dd = [ Atran ( : , I ) ;
−Atran ( : , I ) ;
−zeros (N−1 ,1) ] ;

CC = [ Atran ( : , 1 : I −1) , Atran ( : , I +1:N) ;
−Atran ( : , 1 : I −1) , − Atran ( : , I +1:N) ;
−eye (N−1) ] ;

x2 = num2str ( I ) ;
f i lename = [ x1 x2 x3 ] ;
% In t h e s e 2 l i n e s , the name o f the f i l e has been c r e a t e d .

f i lename = deblank ( f i lename ) ;
% Remove any b lanks s p a c e s from the f i l e ’ s name . A c tua l l y ,
% we g e t the d e s i r e d f i l ename even without t h i s s t e p .

% P l a c e t h i s in fo rmat ion in a c o n s t r I . i n e f i l e :

f_makine ( f i lename , opt ions , c , CC , dd ) ;

end

% Thus far , we have ob ta ined the ∗ . i n e f i l e s . Next , we w i l l run
% cdd f +. exe on t h e s e ∗ . i n e f i l e s to g ene ra t e the extreme p o i n t s o f
% each o f the po lyhedra t h e r e i n .

f i d = fopen ( ’ p rocess . bat ’ , ’ wt ’ ) ;
% A f i l e p r o c e s s . bat i s opened f o r w r i t i n g .
% The reason f o r c r e a t i n g p r o c e s s . bat i s be cause we want the end
% r e s u l t o f the f o l l o w i n g FOR−l oop and the command
% ’ ! cdd f +. exe f i l ename ’ w i l l not g i v e tha t same r e s u l t .

for I = 1:N,
x2 = num2str ( I ) ;
x3 = ’ . ine ’ ;
f i lename = [ x1 x2 x3 ] ;
f p r i n t f ( f id , ’%s \n ’ , [ ’ cddf+.exe ’ ’ ’ f i lename ] ) ;

end
% The commands " cdd f +. exe con s t r1 . in e " , . . . , " c dd f +. exe cons t rN . in e "
% have been p la c ed in p r o c e s s . bat .

f c lose ( f i d ) ;
% The f i l e p r o c e s s . bat i s c l o s e d .

! p rocess . bat

% End o f f _ s t e p 3 ( . )
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_ s t e p5 6 .m: An m− f i l e to g ene ra t e the d e s c r i p t i o n o f the
% " b−cone " . Th i s m− f i l e implements s t e p s 5 and 6 shown
% in c a r l _ l e e . pd f .
%
% INPUT : N − the number o f the ∗ . e x t f i l e s named con s t r1 . ext , . . . ,
% cons t rN . e x t tha t were gene ra t ed by f _ s t e p 3 ( . ) .
%
% f_ s t e p5 6 .m reads the in fo rmat ion from tho s e . e x t f i l e s .
%
% OUTPUT : The matr ix D such tha t D∗b < 0 i s the s o l u t i o n s e t o f PR2
% as shown in Step 6 o f c a r l _ l e e . pd f .
%
% Created on : A p r i l 27 , 2002 .
% Modi f i ed on : August 06 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The f o l l o w i n g note i s e x t r a c t e d from cdd / cdd+ R e f e r e n c e Manual .
%
% Le t P be r e p r e s e n t e d by n extreme p o i n t s and s ray s
% as P = conv ( v1 , . . . , vn ) + nonneg ( r1 , . . . , r s ) .
% Then the Po lyhedra V−format f o r P ( as p r e s e n t e d in ∗ . e x t f i l e s )
% i s d e f i n e d as
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% var i ou s comments
% V−r e p r e s e n t a t i o n
% beg in
% n+s d+1 numbertype
% 1 v1
% . .
% . .
% . .
% 1 vn
% 0 r1
% . .
% . .
% . .
% 0 r s
% end
% var i ou s o p t i o n s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Here d i s the dimension o f the f u l l −d imens iona l po lyhedron .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
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% The above i s the format o f the data p r e s e n t in ∗ . e x t f i l e .
%
% The f u n c t i o n f _ s t e p56 ( . ) implemented here r eads tho s e p o r t i o n s
% o f the ∗ . e x t f i l e tha t are s i t u a t e d beg inn ing two l i n e s a f t e r the
% l i n e on which the ’ begin ’ s ta t ement i s and have a 1 as t h e i r
% f i r s t e l ement .
%
% Thi s m− f i l e was w r i t t e n in Matlab 4 . Maybe the l a t e r v e r s i o n s o f
% Matlab have more f e a t u r e s tha t w i l l a l low f o r s i m p l i f i c a t i o n o f
% t h i s code .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int , u n l e s s
% he wi she s to use t h i s m− f i l e on non− Windows 9 8 machines . Th i s
% m− f i l e c r e a t e s and then runs an MSDOS batch f i l e .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% In the f i l e FGETL .M, the o r i g i n a l va lue o f BLOCKSIZE as s e t by
% the d i s t r i b u t i o n o f Matlab was 1 2 8 . Th i s was p r e v e n t i n g the l i n e s ,
% tha t were be ing read in from f i l e s by the FGETL command ,
% to be d i s p l a y e d c o r r e c t l y . The f i r s t s e v e r a l c h a r a c t e r s
% o f each l i n e would go mi s s ing . So , I d e c i d ed to s e e i f t h e r e
% was some parameter in the FGETL .M f i l e tha t I cou ld p lay with
% to g e t i t to work c o r r e c t l y . I n t e r e s t i n g l y , I h i t upon BLOCKSIZE
% r i g h t away . I n c r e a s i n g the va lue o f BLOCKSIZE
% worsens the problem . De c r ea s ing the va lue h e l p s .
% − RAMPRASAD POTLURI . pot lur i@engr . uky . edu . A p r i l 29 , 2002 .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function D = f_s tep56 (N)

x1 = ’ cons t r ’ ;
x3 = ’ . ext ’ ;

D = [ ] ;
% D i s the matr ix tha t r e p r e s e n t s the b−cone thus : D∗b < 0.

for I = 1:N,

x2 = num2str ( I ) ;
f i lename = [ x1 x2 x3 ] ;
% In t h e s e 2 commands , the name o f the f i l e has been c r e a t e d .

f i d=fopen ( f i lename , ’ r t ’ ) ;
% open the f i l e c o n s t r I . e x t f o r r ead ing .
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l ine = f g e t l ( f i d ) ;
% read in the f i r s t l i n e o f the f i l e .

K1 = f i nds t r ( l ine , ’ begin ’ ) ;
% f i n d the s t r i n g ’ begin ’ in the l i n e read above .

while K1 == [] ,
% whi l e ’ begin ’ i s ab sen t in the l i n e , do t h i s loop .
% Thi s loop e x e c u t e s u n t i l ’ begin ’ i s found in the f i l e .

l ine = f g e t l ( f i d ) ;
% read the nex t l i n e .

K1 = f i nds t r ( l ine , ’ begin ’ ) ;
% check f o r the p r e s e n c e o f ’ begin ’ in t h i s l i n e .

end

% Now , we have comple ted read ing the l i n e tha t c o n t a i n s ’ begin ’ .
% I thought tha t now , i f we e x e c u t e f s c a n f ( ) , we w i l l read t h i s
% same l i n e . But , f s c a n f ( ) r eads the nex t l i n e which c o n t a i n s
% ’ number number numbertype ’ .
% So , i t means tha t a f t e r f g e t l ( ) f i n i s h e s r ead ing a l i n e ,
% i t p o s i t i o n s the coun t e r at the beg inn ing o f the nex t l i n e .

K2 = f scanf ( f id , ’%i ’ , 1 ) ;
% Read the f i r s t number which i s in the l i n e tha t comes a f t e r the
% l i n e tha t c o n t a i n s ’ begin ’ . We are a c t u a l l y i n t e r e s t e d in the
% next number . So , t h i s i s j u s t a s t e p to reach i t .

K2 = f scanf ( f id , ’%i ’ , 1 ) ;
% Read the second number which i s in the l i n e tha t comes a f t e r the
% l i n e tha t c o n t a i n s ’ begin ’ . Th i s second number i n d i c a t e s the
% number o f columns tha t the matr ix K5 w i l l have .

l ine = f g e t l ( f i d ) ;
% P o s i t i o n the coun t e r at the beg inn ing o f the nex t l i n e .

K3 = f scanf ( f id , ’%i ’ , 1 ) ;
% Read the f i r s t e l ement o f the matr ix o f 1 ’ s , v ’ s , 0 ’ s , and r ’ s .

% The f o l l o w i n g whi le−l oop che ck s i f K3 = 0 . I f i t i s , then t h i s
% loop s k i p s to the nex t l i n e o f the matr ix o f 1 ’ s , v ’ s , 0 ’ s , r ’ s
% and again che ck s i f the f i r s t e l ement i s 0 . I f the f i r s t e l ement
% i s 0 in a l l the rows , then the matr ix K5 w i l l not be formed .
% Ac tua l l y , i f the f i r s t e l ement o f a row i s 0 , then ev e r y f i r s t
% element o f the subsequen t rows in ∗ . e x t m a t r i c e s w i l l be 0 , and
% we don ’ t have to perform the f o l l o w i n g whi l e loop .
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while K3 ~= 1,
l ine = f g e t l ( f i d ) ;
% F i n i s h read ing the r e s t o f the l i n e and p o s i t i o n the coun t e r at
% the beg inn ing o f the nex t l i n e .

K3 = f scanf ( f id , ’%i ’ , 1 ) ;
% Read the f i r s t e l ement o f t h i s l i n e o f matr ix o f 1 ’ s , v ’ s , 0 ’ s ,
% and r ’ s .

end

i = 0;
K5 = [ ] ;
% K5 i s an i n t e r m i d i a t e matr ix in the format ion o f D . K5 i s such
% tha t K5∗b < 0 i s the sys tem shown in Step 5 o f c a r l _ l e e . pd f .
% D i s such tha t D∗b < 0 i s the sys tem shown in Step 6 o f
% c a r l _ l e e . pd f .

while K3 == 1,
i = i +1;
K4 = f scanf ( f id , ’%g ’ , [1 ,K2−1]);
% The K2−1 e l emen t s tha t f o l l o w the f i r s t e l ement ( which i s a 1)
% o f a row are read i n t o K4 .

K5( i , 1 : I −1) = −K4(1 ,1 : I −1);
K5( i , I ) = 1;
K5( i , I +1:K2) = −K4(1 , I : K2−1);
% Through the above 3 commands , the e l emen t s o f −K4 are
% s u c c e s s i v e l y p l a c ed in a l l but the I−th p o s i t i o n o f the i−th
% row o f K5 .

l ine = f g e t l ( f i d ) ;
% Move to the nex t l i n e o f the ∗ . e x t f i l e .

K3 = f scanf ( f id , ’%i ’ , 1 ) ;
end

fc lose ( f i d ) ;
% c l o s e the f i l e

D = [D; K5 ] ;
% The matr ix D i s formed by p l a c i n g the K5 mat r i c e s one below the
% othe r .

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_pbcone .m: Th i s m− f i l e forms the f i l e pbcone . i n e . The f i l e
% pbcone . in e c o n t a i n s the H−format o f the
% " pointed −b−cone " . Th i s m− f i l e a l s o runs cdd f +. exe on
% pbcone . in e to g ene ra t e the V−format o f the
% pointed −b−cone .
%
% " pointed −b−cone " i s a term co ined by Dr . Car l Lee . The
% pointed −b−cone i s { b | D∗b < 0 , A ’ ∗ b = 0} .
%
% INPUT : The ma t r i c e s D (D∗b < 0 i s the s e t o f a l l b f o r which Ax
% <= b i s i r r edundant ) and A .
%
% OUTPUT : None . The V−format o f the po inted −b−cone can be found in
% the f i l e pbcone . e x t .
%
% USES : cdd / cdd f+
%
% Created on : A p r i l 27 , 2002 .
% Modi f i ed on : August 06 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ ] = f_pbcone (A ,D)

Atran = A ’ ;

C1 = [ D ; Atran ; − Atran ] ;

% The matr ix D ( tha t d e s c r i b e s the b−cone ) was formed in the f i l e
% f_ s t e p5 6 .m.

d1 = [ zeros ( s ize (C1 , 1 ) , 1 ) ] ;
opt ions = [ ] ;
c = [ ] ;

% P l a c e t h i s in fo rmat ion in the f i l e pbcone . i n e .

f_makine ( ’ pbcone . ine ’ , opt ions , c , C1 , d1 ) ;

% Launching cdd f +. exe to work on pbcone . i n e :

! cddf+.exe pbcone . ine

% End o f f u n c t i o n f_pbcone ( . ) .
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Appendix F

MATLAB Program Listings for the
Q-Matrix Method of Maintainability of

Halfspace Systems

−−−−−−−−−−Desc r i p t i on of the content s of the f o l d e r TstMaint−−−−−−−−−−−−

Author : Ramprasad Po tu r i
E−mail : pot luri@engr . uky . edu
Date : August − 10 − 2002.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The f o l d e r TstMaint c o n t a i n t s the fo l lowing m− f i l e s
("−−>" reads " uses " ) :

f _ a c t i v e .m −−> f_makine
−−> cdd/ cddf+

f_bound .m −−> f_makine
−−> cdd/ cddf+

f_cddX .m −−> f _ i n t e r −−> f_makine
−−> cddf+

f_EFB .m −−> f_bound −−> f_makine
−−> cdd/ cddf+

f_f indQ .m −−> f_pickX −−> f_square −−> f_mcn
−−> f_cddX −−> f _ i n t e r −−> f_makine

−−> cddf+
−−> f _ a c t i v e −−> f_makine

−−> cdd/ cddf+

f _ i n t e r −−> f_makine
−−> cddf+
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f_makine .m

f_max .m −−> f_makine
−−> cdd/ cddf+

f_p ickX .m −−> f_square −−> f_mcn
−−> f_cddX −−> f_cddX −−> f_makine

−−> cddf+

f_square .m −−> f_mcn

f_TinPR1 .m −−> f_max −−> f_makine
−−> cdd/ cddf+

f_ t s tmnt .m −−> f _ i n t e r −−> f_makine
−−> cdd/ cddf+

f_tube .m −−> f_bound −−> f_makine
−−> cdd/ cddf+

−−> f _ s c s −−> f_mcn
−−> f _ s c s _ i
−−> f_ e x p l a i n ( op t i ona l )
−−> f_D_DB
−−> f _ r e f i n e −−> f _ s u b s t

f _ v e r t s .m −−> f_makine
−−> cdd/ cddf+

pre_pros .m −−> f_EFB −−> f_bound −−> f_makine
−−> cdd/ cddf+

−−> f_tube −−> f_bound −−> f_makine
−−> cdd/ cddf+

−−> f _ s c s −−> f_mcn
−−> f _ s c s _ i
−−> f _ e x p l a i n ( op t i ona l )
−−> f_D_DB
−−> f _ r e f i n e −−> f _ s u b s t

−−> f _ s c s −−> f_mcn
−−> f _ s c s _ i
−−> f_ e x p l a in ( op t i ona l )
−−> f_D_DB
−−> f _ r e f i n e −−> f _ s u b s t

−−> f_TinPR1 −−> f_max −−> f_makine
−−> cdd/ cddf+

−−> f_f indQ −−> f_pickX −−> f_square −−> f_mcn
−−> f_cddX −−> f _ i n t e r −−> f_makine

−−> cddf+
−−> f _ a c t i v e −−> f_makine

−−> cdd/ cddf+
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−−> f _ v e r t s −−> f_makine
−−> cdd/ cddf+

−−> f_t s tmnt −−> f _ i n t e r −−> f_makine
−−> cddf+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

OTHER FILES :
−−−−−−−−−−−−

The program generates the fo l lowing temporary in te rmedia te f i l e s :

MCNTEMP.m

MYTEMP.m

I f they are absent , the program may complain the f i r s t time i t t r i e s
to use e i t h e r of them and does not f ind i t . However , t h i s error may be
ignored and the program may be run a second time . The second pass
onwards , the program w i l l work f i n e .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Optional Components .

Added on August 15 , 2002 .
−−−−−−−−−−−−−−−−−−−−−−−−−

Bes ides the above f i l e s , The fo l lowing f i l e s are a l so present in t h i s
f o l d e r :

f_poly2D .m −−> f_ t runc

f_ t runc .m

ptope .m −−> f_tube −−> f_bound −−> f_makine
−−> cdd/ cddf+

−−> f _ s c s −−> f_mcn
−−> f _ s c s _ i
−−> f _e x p l a in ( op t i ona l )
−−> f_D_DB
−−> f _ r e f i n e −−> f _ s u b s t

−−> f _ v e r t s .m −−> f_makine
−−> cdd/ cddf+

−−> f_poly2D −−> f_ t runc

These func t i on s help v i s u a l i z e the tube . Given a randomly ordered l i s t
of the tube ’ s v e r t i c e s , f_poly2D ( . ) f i r s t r eo rder s t h i s l i s t so tha t
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ad jacent elements in the l i s t r ep re sen t ad jacent v e r t i c e s , and then
p l o t s the polytope .

ptope .m i s an m− f i l e to generate a random bounded and irredundant tube
( using f_ tube ( . ) ) , obta in t h i s tube ’ s v e r t i c e s ( us ing f _ v e r t s ( . ) ) ,
and plot t h i s tube using f_poly2D ( . ) .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Z .m − This was wr i t t en to t e s t some pa r t s of the program . This i s not
a par t of the program i t s e l f .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bes ides the above f i l e s , the program uses the function f _ s c s ( . ) which
i s in the f o l d e r SCS .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

HOW THIS PROGRAM WORKS

pre_pros .m i s the f i l e to run .

pre_pros .m runs in succe s s ion the func t i on s f_EFB ( . ) and f_ tub ( . )
( to generate the s p e c i f i c a t i o n s of a bounded EFB system and
a bounded irredundant Tube ) , f _ s c s ( . ) ( to determine the set of ( x0 , u0)
p a i r s for which the Reach (x0 , u0 ) s e t s for t h i s EFB system are
i r redundant ) , f_TinPR1 ( . ) ( to see i f Tube i s a subse t of PR1) ,
f_ f indQ ( . ) ( to f ind a s u i t a b l e Q matr ix ) , f _ v e r t s ( . ) ( to determine the
v e r t i c e s of the tube ) , and f_ t s tmnt ( . ) ( to t e s t i f the tube i s
mainta inable ) .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This program uses cddf +. cdd does not have a l l the opt ions
( e . g . f i n d _ i n t e r i o r ) tha t we need to run t h i s program s u c c e s s f u l l y
( p lease see the next s e c t i o n for a l i s t of the opt ions used in t h i s
program ) . So , the user needs to download cddf + ( or some other v a r i a n t
of cdd+) to use t h i s program .

IMPORTANT : I t seems l i k e cddf+.exe needs to be in the same f o l d e r from
where i t i s being invoked . Else , you may see e r r o r s .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

THE OPTIONS USED IN OUR PROGRAM FOR CDD / CDDF+ AND
THEIR AVAILABILITY FOR EACH OF CDD & CDDF+:
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−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OPTION + AVAILABLE FOR

+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−
+ cdd + cddf+

−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−
+ +

maximize + yes + yes
dynout_of f + yes + yes
s t d o u t _ o f f + yes + yes
l o g f i l e _ o f f + yes + yes
f i n d _ i n t e r i o r + NO + yes
inc idence + yes + yes

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ a c t i v e .m: An m− f i l e to de te rmine the i n d i c e s o f t ho s e
% c o n s t r a i n t s in the bounded sys tem Ax <= b tha t are
% a c t i v e at each o f t h i s system ’ s extreme p o i n t s .
%
% INPUT : A , b .
%
% OUTPUT : The ma t r i c e s ’ v e r t s ’ and ’ a c t _ c o n s t r s ’ . ’ v e r t s ’ c o n t a i n s
% the i n d i c e s o f the v e r t i c e s o f Ax <= b . ’ a c t _ c o n s t r s ’
% c o n t a i n s the i n d i c e s o f ’ n ’ c o n s t r a i n t s tha t are a c t i v e
% at each o f the v e r t i c e s r e f e r e n c e d by ’ v e r t s ’ . Here n i s
% the dimension o f x .
%
% In ca s e a v e r t e x o f Ax <= b has more than n a c t i v e
% c o n s t r a i n t s , f _ a c t i v e shows j u s t n o f t h e s e c o n s t r a i n t s
% tha t are l i n e a r l y independent .
%
% USES : f_makine ( . ) which in turn u s e s cdd / cdd f +.
%
% Created on : August 08 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% We use cdd f +. exe with the ’ i n c i d e n c e ’ op t i on s p e c i f i e d .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ ver t s , a c t _ c o n s t r s ] = f _ a c t i v e (A , b)

opt ions = [ ’ inc idence ’
’ dynout_of f ’
’ s t d o u t _ o f f ’
’ l o g f i l e _ o f f ’ ] ;

c = [ ] ;
name = ’ Reach . ine ’ ;

% P l a c e t h i s in fo rmat ion in the f i l e Reach . in e :

f_makine (name , opt ions , c , A , b ) ;

% Launching cdd f +. exe to work on Reach . in e :

! cddf+.exe Reach . ine

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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%
% Two f i l e s −−− Reach . e x t and Reach . ecd −−− have been gene ra t ed
% by cdd . Next , we w i l l read the c o o r d i n a t e s o f the v e r t i c e s
% from the f i l e Reach . e x t i n t o the matr ix ’ v e r t s ’ , and the
% i n d i c e s o f the a c t i v e c o n s t r a i n t s from the f i l e Reach . ecd
% i n t o the matr ix ’ a c t _ c o n s t r s ’ .
%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−−−−−−−−−−−−−−−−−−−−F i r s t , the f i l e Reach . ext−−−−−−−−−−−−−−−−

f i d=fopen ( ’ Reach . ext ’ , ’ r t ’ ) ;
% open the f i l e Reach . e x t f o r r ead ing .

l ine = f g e t l ( f i d ) ;
% read in the f i r s t l i n e o f the f i l e .

K0 = f i nds t r ( l ine , ’ Number of V e r t i c e s ’ ) ;
% f i n d the s t r i n g ’ Number o f V e r t i c e s ’ in the l i n e read above .

while K0 == [] ,
l ine = f g e t l ( f i d ) ;
K0 = f i nds t r ( l ine , ’ Number of V e r t i c e s ’ ) ;

end

% Now tha t we have found the l i n e tha t c o n t a i n s the number o f
% v e r t i c e s tha t have been enumerated , in the f o l l o w i n g two command
% l i n e s , we w i l l e x t r a c t t h i s number o f v e r t i c e s and a s s i g n i t to
% the v a r i a b l e ’ N ’ .

token = s t r tok ( l ine , ’ , ’ ) ;
N = str2num ( token (1 ,22: s ize ( token , 2 ) ) ) ;

% Next , we w i l l move 3 l i n e s pa s t the l i n e tha t con ta ined " Number
% o f V e r t i c e s " .

for i = 1:3 ,
l ine = f g e t l ( f i d ) ;

end

% Next , we w i l l read the c o n t e n t s o f the nex t N l i n e s . These nex t N
% l i n e s g i v e us the c o o r d i n a t e s o f the v e r t i c e s .

n = s ize (A , 2 ) ;
temp = f scanf ( f id , ’%f ’ , [ n+1,N] ) ;

f c lose ( f i d ) ;

v e r t s = temp (2: n +1 , : ) ’ ;
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−Next , the f i l e Reach . ecd−−−−−−−−−−−−−−−−−

% open the f i l e Reach . ecd f o r r ead ing .
f i d=fopen ( ’ Reach . ecd ’ , ’ r t ’ ) ;

% read in the f i r s t l i n e o f the f i l e .
l ine = f g e t l ( f i d ) ;

% f i n d the s t r i n g ’ begin ’ in the l i n e read above .
K0 = f i nds t r ( l ine , ’ begin ’ ) ;

while K0 == [] ,
l ine = f g e t l ( f i d ) ;
K0 = f i nds t r ( l ine , ’ begin ’ ) ;

end

% Now , the p o i n t e r i s on the l i n e tha t c o n t a i n s ’ begin ’ . Next , we
% w i l l move the p o i n t e r one more l i n e down .
l ine = f g e t l ( f i d ) ;

% Now , we w i l l read in the e n t r i e s on the nex t N l i n e s .

for i = 1:N,

l ine = f g e t l ( f i d ) ;

[ token , rem] = s t r tok ( l ine ) ;
% Read the c o n t e n t s o f ’ l i n e ’ upto and not i n c l u d i n g the
% d e l i m i t e r ’ ’ i n t o the v a r i a b l e ’ token ’ , and read the r e s t o f
% the s t r i n g beg inn ing with and i n c l u d i n g ’ ’ upto the end o f the
% l i n e , not i n c l u d i n g the end o f l i n e c h a r a c t e r and the c a r r i a g e
% return , i n t o the v a r i a b l e ’ rem ’ .

f i r s t i t e m = str2num ( token ) ;
% Thi s e x t r a c t s the f i r s t i tem in ’ l i n e ’ .

rem = rem ( 5 : s ize (rem , 2 ) ) ;
% The l i n e we read in i s , f o r example , l i k e t h i s : ’ 2 : 2 3 ’ . A
% s i n g l e space a f t e r the f i r s t i tem and b e f o r e the ’ : ’ , then a
% double space a f t e r the ’ : ’ and b e f o r e the nex t numeral i s the
% format o f the data in a ∗ . e cd f i l e . We a s s i g n e d the f i r s t i tem
% −− 2 −− to the v a r i a b l e ’ f i r s t i t e m ’ in the above i n s t r u c t i o n s .
% The v a r i a b l e ’ rem ’ i s ’ : 2 3 ’ . Then , we removed the f i r s t 5
% p l a c e s from the beg inn ing o f ’ rem ’ .

i f f i r s t i t e m > n
temp = str2num (rem ) ;
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% Conver t ’ rem ’ i n t o a numeric matr ix c o n ta in ing N e l emen t s .

r = f_mcn ( f i r s t i t e m , n ) ;
% Determine the f i r s t i t e m −Choose−n d i f f e r e n t combinat ions o f
% the e l emen t s o f the s e t { 1 , 2 , . . . , f i r s t i t e m } .

j = 1;

f l ag = ( rank ( A ( temp ( r ( j , : ) ) ’ , : ) ) < n ) ;
% Suppose tha t f i r s t i t e m = 3 , n = 2 , and temp = [ 2 4 7 ] . Then ,
% r = [ 1 2 ; 1 3 ; 2 3 ] . So , r ( 1 , : ) = [ 1 2 ] , temp ( r (1 , : ) )=[2 4] .
% So , A ( temp ( r ( 1 , : ) ) ) w i l l e x t r a c t the rows number 2 and 4
% o f A . I f the rank o f A ( [ 2 4 ] ’ , : ) i s l e s s than n , then i t
% means tha t we have to t r y an n−s u b s e t o f temp tha t i s
% d i f f e r e n t from [ 2 4 ] . That i s what we do in the f o l l o w i n g
% ’ whi le ’ l oop .

while f lag > 0 ,

j = j + 1;
f l ag = ( rank ( A ( temp ( r ( j , : ) ) ) ) < n ) ;

end

a c t _ c o n s t r ( i , : ) = temp( r ( j , : ) ) ;

else

a c t _ c o n s t r s ( i , : ) = str2num (rem ) ;

end

end

fc lose ( f i d ) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_bound .m: An m− f i l e to t e s t f o r the boundedness o f a g i v en
% sys tem o f i n e q u a l t i e s Ax <= b .
%
% INPUT : The matr ix A .
%
% OUTPUT : The va lue o f ’ f l a g ’ i s s e t to 1 or 0 depending on whether
% Ax <= b i s bounded or unbounded r e s p e c t i v e l y .
%
% PRECONDITION : A i s an m x n matr ix where m > n .
%
% USES : f_makine ( . ) which in turn u s e s cdd / cdd f +.
%
% Created on : Ju l y 29 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The sys tem Ax <= b ( x i s in the s e t o f r e a l s ) , w i l l be bounded
% f o r a bounded b , i f and only i f the a u x i l i a r y sys tem
% { rank (A) = n ; Â Tz = 0 ; z > 0 } i s f e a s i b l e .
%
% Thi s r e s u l t ( with " z > 0" r e p l a c e d by " z >= 0") i s used by
% f u n c t i o n f_bound (A ) to t e s t f o r the boundedness o f Ax <= b as
% f o l l o w s :
%
% A f t e r che ck ing i f A i s o f f u l l rank , f_bound (A ) forms the sys tem
% { Â Tz = 0 ; z >= 0}. Th i s sys tem i s c a l l e d ’ z−cone ’ be cause i t
% r e p r e s e n t s a cone f o r the v a r i a b l e z .
%
% f_bound (A ) then u s e s the program cdd to t e s t i f the z−cone i s
% non−empty . The z−cone i s empty i f the only e l ement in i t i s 0 .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function f lag = f_bound (A)

i f rank (A) == s ize (A,2 )

opt ions = [ ’ dynout_of f ’
’ s t d o u t _ o f f ’
’ l o g f i l e _ o f f ’ ] ;

c = [ ] ;

Atran = A ’ ;
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C2 = [ Atran ;
−Atran ;
−eye ( s ize ( Atran , 2 ) ) ] ;

d2 = [ zeros ( s ize (C2 , 1 ) , 1 ) ] ;

% P l a c e t h i s in fo rmat ion in the f i l e bound . in e .
f_makine ( ’ bound . ine ’ , opt ions , c , C2 , d2 ) ;

% Launching cdd f +. exe to work on bound . in e .
! cddf+.exe bound . ine

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% Next , we w i l l s e e i f the number o f extreme rays o f the z−cone
% i s g r e a t e r than 0 . I f i t i s , then z−cone i s non−empty , and so
% Ax <= b i s bounded . The in fo rmat ion about the number o f
% extreme rays o f the z−cone i s p r e s e n t in the f i l e bound . e x t
% in the l i n e ’ ∗Number o f Rays = ’ . . . . . . So , we w i l l s e e i f
% t h i s l i n e c o n t a i n s a number o the r than 0 .
%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% open the f i l e Ax_le_b . e x t f o r r ead ing .
f i d=fopen ( ’ bound . ext ’ , ’ r t ’ ) ;

% read in the f i r s t l i n e o f the f i l e .
l ine = f g e t l ( f i d ) ;

% f i n d the s t r i n g ’ ∗Number o f Rays = ’ in the l i n e read above .
K1 = f i nds t r ( l ine , ’ ∗Number of Rays = ’ ) ;

while K1 == [] ,
% whi l e ’ ∗Number o f Rays = ’ i s ab sen t in the l i n e , do t h i s loop .
% Thi s loop e x e c u t e s u n t i l ’ ∗Number o f Rays = ’ i s found in the f i l e .

% read the nex t l i n e .
l ine = f g e t l ( f i d ) ;

% check f o r the p r e s e n c e o f ’ ∗Number o f Rays = ’ in t h i s l i n e .
K1 = f i nds t r ( l ine , ’ ∗Number of Rays = ’ ) ;

end
fc lose ( f i d ) ;

i f strcmp ( l ine , ’ ∗Number of Rays = 0 ’ ) == 0
f l ag = 1;

else
f lag = 0;

end
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else

f lag = 0;

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_cddX .m : Uses cdd to f i n d a v e c t o r ( x0 , u0 ) tha t l i e s in the
% f e a s i b l e r e g i on o f PR1 .
%
% PR1 i s e x p l a i n ed in the paper t i t l e d " R e a c h a b i l i t y o f
% t a r g e t tube in a new c l a s s o f un c e r t a in sy s t ems
% r e p r e s e n t e d by l i n e a r c o n s t r a i n t s "
% by Ramprasd P o t l u r i and L . E . Holloway .
%
% INPUT : Mat r i c e s ’ rev_DB ’ , ’ T ’ , ’ t ’ .
%
% OUTPUT : Ve c t o r ’ x ’ such tha t rev_DB∗x < 0.
%
% USES : f _ i n t e r ( . ) which in turn u s e s f_makine ( . ) which in turn
% use s cdd f +.
%
% Created on : June 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non−Windows 9 8 machines .
% Thi s m− f i l e was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% We choose an ( x0 , u0 ) from the i n t e r s e c t i o n o f PR1 and Tube (T , t )
% because cdd f + does not work with homogeneous sy s t ems
% o f i n e q u a l i t i e s .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function x = f_cddX ( rev_DB , T , t ) ;

m1 = s ize ( rev_DB , 1 ) ; % Number o f rows o f rev_DB
n1 = s ize ( rev_DB , 2 ) ; % Number o f columns o f rev_DB
m2 = s ize (T , 1 ) ;
n2 = s ize (T , 2 ) ;

A = [ rev_DB ; [ T , zeros (m2, n1−n2 ) ] ] ;

b = [ zeros (m1, 1 ) ; t ] ;

x = f _ i n t e r ( ’ fcddx ’ ,A , b ) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_EFB .m : Creat a s l a ck −d e s c r i p t o r model ( SD model ) .
%
% INPUT : m ( number o f rows o f EFB ) , n_E ( number o f columns o f E or
% F ; n_E i s the same as the dimension o f the s t a t e space ) ,
% n_B ( number o f columns o f B ; n_B i s the same as dimension
% o f the c o n t r o l space ) .
%
% OUTPUT : E , F , B ma t r i c e s such tha t the SD sys tem Ex1 <= Fx0 + Bu0
% i s bounded , and the con s t an t ’ EFB t r i e s ’ . S ince , we
% randomly g ene ra t e the E , F , B matr i c e s , ’ EFB t r i e s ’ g i v e s
% the number o f t r i a l s made b e f o r e f i n d i n g a bounded EFB
% sys tem .
%
% USES : f_bound ( . ) .
%
% Created on : Ju l y 29 , 2002 .
% Modi f i ed on : August 14 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ E , F , B , EFBt r i e s ] = f_EFB (m, n_E , n_B)

E = randn ([m, n_E ] ) ;
t r i e s = 1;

f l ag = f_bound (E ) ;

while f lag == 0

E = randn ([m, n_E ] ) ;
f l ag = f_bound (E ) ;
t r i e s = t r i e s +1;

end

F = randn ([m, n_E ] ) ;
B = randn ([m, n_B ] ) ;
EFBt r i e s = t r i e s ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_ f indQ .m : F inds a Q matr ix as e xp l a i n ed in the paper t i t l e d
% " R e a c h a b i l i t y o f t a r g e t tube in a new c l a s s o f
% unc e r t a in sy s t ems r e p r e s e n t e d by l i n e a r c o n s t r a i n t s "
% by Ramprasd P o t l u r i and L . E . Holloway .
%
% INPUT : rev_DB , T , t , E , F , B .
%
% OUTPUT : Q.
%
% USES : f _ p i c k X ( . ) , which in turn use f _ squar e ( . ) and f_cddX ( . ) ,
% which in turn u s e s cdd f + , and f _ a c t i v e ( . ) which in turn u s e s
% cdd f +.
%
% Created on : June 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non−Windows 9 8 machines .
% Thi s m− f i l e was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Q = f_f indQ ( rev_DB , T , t , E , F , B)

% To determine a matr ix Q we proceed as f o l l o w s :

% Choose some ( x0 , u0 ) t u p l e from PR1 .

disp ( ’ ’ ) ;
disp ( ’An ( x0 , u0 ) tup le tha t s a t i s f i e s both PR1 and Tube(T , t ) ’ ) ;
disp ( ’ i s as fo l l ows : ’ ) ;
disp ( ’ ’ ) ;

% We choose an ( x0 , u0 ) from the i n t e r s e c t i o n o f PR1 and Tube (T , t )
% because cdd f + does not work with homogeneous sy s t ems o f
% i n e q u a l i t i e s . So , i f ask i t to f i n d an i n t e r i o r po in t from , say ,
% Ax <= 0 , i t won ’ t f i n d one .

x0u0 = f_p ickX ( rev_DB , T , t )

disp ( ’ ’ ) ;
disp ( ’CHECK : For t h i s ( x0 , u0 ) , the value of the product ’ ) ;
disp ( ’ rev_DB ∗[ x0̂ T u0̂ T]̂ T must be negat ive : ’ ) ;
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disp ( ’ ’ ) ;

revDBx0u0 = rev_DB∗x0u0

% For t h i s va lue o f x0u0 , de t e rmine Reach (x0 , u0 ) :

disp ( ’ ’ ) ;
disp ( ’ Reach (x0 , u0 ) fo r t h i s ( x0 , u0 ) i s given by E <= [F B]∗x0u0 ’ ) ;
disp ( ’ ’ ) ;

% Enumerate the extreme p o i n t s o f Reach (x0 , u0 ) and the c o n s t r a i n t s
% tha t are a c t i v e at each o f the extreme p o i n t s o f Reach (x0 , u0 ) :

A = E ;
b = [ F B]∗x0u0 ;
[ ve r t s , c o n s t r s ] = f _ a c t i v e (A , b ) ;

% For i = 1 , . . . , m_T ( m_T = s i z e (T,1) −−− the number o f rows o f T ) ,
% determine the extreme po in t from the above l i s t at which [ T] _ ix1
% i s maximum . Note the c o n s t r a i n t s o f Reach (x0 , u0 ) tha t are a c t i v e
% at t h i s extreme po in t .

Q = zeros ( s ize (T , 1 ) , s ize (E , 1 ) ) ;
for i = 1: s ize (T , 1 ) ,

temp = v e r t s ∗T( i , : ) ’ ;
[y , ind ] = max( temp ) ;

% Thi s a s s i g n s to ’ y ’ the maximum va lue in the column v e c t o r temp
% and to ’ ind ’ the index o f t h i s maximum va lue . The s i g n i f i c a n c e
% o f ’ ind ’ i s tha t v e r t ( ind , : ) i s the v e r t e x o f Reach (x0 , u0 ) at
% which [ T] _ ix1 ( r e p r e s e n t e d here by T( i , : ) ) a t t a i n s
% maximum . The c o n s t r a i n t s o f Reach (x0 , u0 ) which i n t e r s e c t at
% v e r t ( ind , : ) have the i n d i c e s c o n s t r s ( ind , : ) , and t h e i r
% d i r e c t i o n v e c t o r s are g i v en by :

temp1 = E ( c o n s t r s ( ind , : ) ’ , : ) ’ \ T( i , : ) ’ ;

% [ T] _ i i s a non−n e g a t i v e l i n e a r combinat ion o f the d i r e c t i o n
% v e c t o r s o f t h e s e c o n s t r a i n t s .
%
% Then , the i−th row o f Q w i l l have the c o e f f i c i e n t s o f t h i s
% l i n e a r combinat ion in p l a c e s whose i n d i c e s are the same as the
% i n d i c e s o f the c o n s t r a i n t s tha t were a c t i v e at t h i s p a r t i c u l a r
% extreme po in t . In the remaining p l a c e s o f the i−th row o f Q,
% t h e r e w i l l be 0 ’ s :

Q( i , c o n s t r s ( ind , : ) ) = temp1 ’ ;
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end

% $$$ d i s p ( ’ ’ ) ;
% $$$ d i s p ( ’ The matr ix Q i s as f o l l o w s : ’ ) ;
% $$$ d i s p ( ’ ’ ) ;
% $$$ Q
% $$$ d i s p ( ’ ’ ) ;
% $$$ d i s p ( ’CHECK : Q∗E == T ? ’ ) ;
% $$$ d i s p ( ’ ’ ) ;
% $$$ QE = Q∗E
% $$$ T
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ i n t e r .m : F inds an i n t e r i o r po in t o f the g i v en polyhedron
% Ax <= b .
%
% INPUT : Mat r i c e s ’ A ’ , ’ b ’ such tha t Ax <= b . ’ f i l ename ’ which i s
% a c h a r a c t e r s t r i n g and c o n t a i n s the name , say , " m y f i l e "
% e t c which w i l l be used by f _ i n t e r ( . ) to c r e a t e the f i l e
% m y f i l e . i n e .
%
% OUTPUT : Column v e c t o r ’ x ’ which i s an i n t e r i o r po in t o f Ax <= b .
% x = [ ] means tha t no i n t e r i o r po in t o f Ax <= b was
% found .
%
% USES : f_makine ( . ) which in turn u s e s cdd f +.
%
% Created on : August 13 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non−Windows 9 8 machines .
% Thi s m− f i l e was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function x = f _ i n t e r ( f i lename , A , b ) ;

c = [ ] ;
opt ions = [ ’ f i n d _ i n t e r i o r ’

’ dynout_of f ’
’ s t d o u t _ o f f ’
’ l o g f i l e _ o f f ’ ] ;

name = [ f i lename ’ . ine ’ ] ;

% P l a c e t h i s in fo rmat ion in the f i l e g i v en by ’ name ’ :

f_makine (name , opt ions , c , A , b ) ;
% An . in e f i l e whose name i s g i v en by ’ name ’ ( f o r example ,
% m y f i l e . i n e i f f i l ename = ’ my f i l e ’ ) has been c r e a t e d .

%−−−−−−−−−−− Launching cdd f +. exe to work on f i l ename −−−−−−−−−−−−−−−−−−

f i d = fopen ( ’ mytemp .m ’ , ’ wt ’ ) ;
% A f i l e mytemp .m i s opened f o r w r i t i n g .
% The reason f o r c r e a t i n g mytemp .m i s be cause we want the end
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% r e s u l t o f the f o l l o w i n g command ( whereas the command
% ’ ! cdd f +. exe f i l ename ’ w i l l not g i v e tha t same r e s u l t ) :

f p r i n t f ( f id , ’%s \n ’ , [ ’ ! cddf+.exe ’ ’ ’ name ] ) ;

% The command " ! cdd f +. exe m y f i l e . i n e " ( i f f i l ename = ’ my f i l e ’ )
% has been p la c ed in mytemp .m.

f c lose ( f i d ) ;

mytemp ;
% Thi s e x e c u t e s the command " ! cdd f +. exe m y f i l e . i n e " ( assuming
% f i l ename = ’ my f i l e ’ ) .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% Next , we w i l l read the f i l e m y f i l e . l p s to f i n d the i n t e r i o r
% po in t tha t has been determined by cdd +. I f cdd+ f i n d s an
% i n t e r i o r point , i t ou tpu t s the s ta tment " LP s t a t u s : a dual
% pa i r ( x , y ) o f opt imal s o l u t i o n s found " . Beg inning the t h i r d
% l i n e a f t e r t h i s s ta tement , the c o o r d i n a t e s o f the i n t e r i o r
% po in t are p r e s e n t e d in the form o f a v e c t o r which has a
% l e n g t h o f s i z e (A ,2)+1. We w i l l e x t r a c t the f i r s t s i z e (A ,2 )
% e l emen t s from t h i s v e c t o r . I f the s a i d s ta t ement i s ab sen t in
% i n t e r i o r . l p s , then we r e tu rn x = [ ] .
%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpsname = [ f i lename ’ . l p s ’ ] ;

% open the f i l e , say , m y f i l e . l p s f o r r ead ing .
f i d=fopen ( lpsname , ’ r t ’ ) ;

% read in the f i r s t l i n e o f the f i l e .
l ine = f g e t l ( f i d ) ;

% f i n d the s t r i n g ’ opt imal s o l u t i o n s found ’ in the l i n e read above .
K0 = f i nds t r ( l ine , ’ opt imal s o l u t i o n s found ’ ) ;

K1 = f i nds t r ( l ine , ’ begin ’ ) ;

while ( K0 == [])&(K1 == []) ,
l ine = f g e t l ( f i d ) ;
K0 = f i nds t r ( l ine , ’ opt imal s o l u t i o n s found ’ ) ;
K1 = f i nds t r ( l ine , ’ begin ’ ) ;

end

i f K0 == []
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x = [ ] ;

else

while K1 == []
l ine = f g e t l ( f i d ) ;
K1 = f i nds t r ( l ine , ’ begin ’ ) ;

end

% move down one l i n e a f t e r the l i n e in which the s t r i n g
% " beg in " was found . Th i s p o s i t i o n s the p o i n t e r at the beg inn ing
% o f the f i r s t e l ement o f the v e c t o r o f the i n t e r i o r po in t .
l ine = f g e t l ( f i d ) ;

for i = 1 : s ize (A,2 )
l ine = f g e t l ( f i d ) ;
[ token , rem] = s t r tok ( l ine ) ;
x ( i , : ) = str2num (rem(1 ,5 : s ize (rem , 2 ) ) ) ;

end

end

fc lose ( f i d ) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_makine .m: An m− f i l e to form the f i l e Ax_le_b . i n e f o r use by cdd .
%
% INPUT : The matr ix A , column v e c t o r ’ b ’ , ma t r i c e s ’ op t ions ’ and
% ’ inename ’ , and the row v e c t o r c = [ c0 c1 c2 . . . ck ] o f the
% o b j e c t i v e f u n c t i o n ( c0 + c1∗x1 + c2∗x2 + . . . + ck∗xk ) in
% ca s e the word ’ maximize ’ or ’ minimize ’ i s one o f the
% e l emen t s o f ’ op t ions ’ .
%
% OUTPUT : The f i l e Ax_le_b . in e i s c r e a t e d .
%
% PRECONDITION : I f ’ maximize ’ or ’ minimize ’ i s an opt ion , then i t
% should be the f i r s t row o f the matr ix ’ op t ions ’ .
%
% A l l rows o f ’ op t ions ’ must be in smal l l e t t e r s .
%
% ’ inename ’ should con ta in a name and the e x t e n s i o n
% ’ . ine ’ .
%
% CAUTION : f_makine ( . ) has been de s i gned to a c c e p t on ly the
% f o l l o w i n g o p t i o n s : hu l l , v e r i f y _ i n p u t , dynout_o f f ,
% s t d o u t _ o f f , l o g f i l e _ o n , i n c i d e n c e , # i n c i d e n c e ,
% i n p u t _ i n c i d e n c e , nondegenerate , ad jacency ,
% input_ad ja cency , p o s t a n a l y s i s , lexmin , lexmax ,
% minindex , mincu to f f , maxcutof f , m ix cu to f f , random ,
% i n i t b a s i s _ a t _ b o t t o m , maximize , minimize , f i n d _ i n t e r i o r ,
% f a c e t _ l i s t i n g , t o p e _ l i s t i n g .
%
% I f the u s e r wi she s to use the o p t i o n s
% par t ia l_enumera t ion , e q u a l i t y , l i n e a r i t y ,
% s t r i c t _ i n e q u a l i t y , p r e p r o j e c t i o n , z e r o _ t o l e r a n c e ,
% round_output_o f f , and o u t p u t _ d i g i t s , then he needs to
% modify the f u n c t i o n d e f i n i t i o n f o r f_makine ( . ) such
% tha t i t w i l l a l low f o r the i n p u t s tha t accompany t h e s e
% o p t i o n s .
%
% The o p t i o n s v e r t e x _ l i s t i n g cannot be p la c ed in an ∗ . i n e
% f i l e , so though f_makine won ’ t complain i f t h i s op t i on
% i s input to i t , cdd most c e r t a i n l y w i l l .
%
% I f the o p t i o n s maximize or minimize are input , then a
% v a l i d v e c t o r ’ c ’ t ha t s p e c i f i e s the o b j e c t i v e f u n c t i o n
% a l s o must be input . I f e i t h e r one o f t h e s e o p t i o n s i s
% not chosen , then input ’ c = [ ] ’ .
%
% Some o f the o p t i o n s l i s t e d above can be used only with
% cdd+ and not with cdd . For an exp lana t i on o f the
% o p t i o n s tha t can be used with cdd ( cdd +) , p l e a s e read
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% cdd ’ s u s e r manual .
%
% Created on : August 06 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ ] = f_makine ( inename , opt ions , c , A , b)

C2 = A;
d2 = b ;
d2C2 = [ d2 −C2 ] ;
width = 5;

% P l a c e t h i s in fo rmat ion in the f i l e whose name i s in inename :

f i d = fopen ( inename , ’ wt ’ ) ;

f p r i n t f ( f id , ’%s \n ’ , [ ’ ∗ F i l e : ’ inename ] ) ;
f p r i n t f ( f id , ’%s \n ’ , ’H−r ep re s en ta t i on ’ ) ;
f p r i n t f ( f id , ’%s \n ’ , ’ begin ’ ) ;

% The f o l l o w i n g 2 commands form a l i n e such as " 8 5 r e a l "
% tha t one would f i n d in cdd ’ s ∗ . i n e f i l e s .

temp = [ num2str ( s ize (C2 , 1 ) ) ’ ’ num2str ( s ize (C2,2)+1) ’ ’ ’ r e a l ’ ] ;
f p r i n t f ( f id , ’%s \n ’ , temp ) ;

% The f o l l o w i n g p i e c e o f code u n t i l the end o f j ’ s FOR−l oop w r i t e s
% the c o n t e n t s o f d2C2 to the f i l e whose id i s f i d ( i . e . ,
% Ax_le_b . in e ) .

H = [ ] ;
for j = 1: s ize (d2C2 , 1 ) ,

H = [ ] ;
for k = 1: s ize (d2C2 , 2 ) ,

i f d2C2( j , k) >= 0 ,

temp = blanks ( width−1−s ize (num2str (d2C2( j , k ) ) , 2 ) ) ;
item = [ ’ ’ num2str (d2C2( j , k ) , width ) temp ] ;
% Adding the s i n g l e space in the beg inn ing o f i tem h e l p s
% l e f t − j u s t i f y the d i g i t s in p o s i t i v e numbers with tho s e o f
% n e g a t i v e numbers .

else
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temp = blanks ( width−s ize (num2str (d2C2( j , k ) ) , 2 ) ) ;
item = [ num2str (d2C2( j , k ) , width ) ] ;

end

H = [H item ’ ’ ] ;

end

f p r i n t f ( f id , ’%s \n ’ ,H) ;
% One row o f d2C2 has been w r i t t e n to the f i l e .

end
% A l l rows o f d2C2 have been w r i t t e n to the f i l e .

f p r i n t f ( f id , ’%s \n ’ , ’ end ’ ) ;

i f s ize ( opt ions ,1) > 0

k = 1;
i f f i nds t r ( opt ions ( 1 , : ) , ’ maximize ’ )

f p r i n t f ( f id , ’%s \n ’ , ’ maximize ’ ) ;

% Next , p l a c e the v e c t o r ’ c ’ i n t o the f i l e whose name i s in
% inename .
H = [ ] ;
for i = 1: s ize ( c , 2 ) ,

H = [H ’ ’ num2str ( c ( : , i ) , width ) ] ;
end

f p r i n t f ( f id , ’%s \n ’ , H) ;
k = 2;

end

for i = k : s ize ( opt ions ,1 )
f p r i n t f ( f id , ’%s \n ’ , opt ions ( i , : ) ) ;

end

end

fc lose ( f i d ) ;
% End o f p l a c i n g t h i s in fo rmat ion in the f i l e whose name i s in
% inename .

% End o f the f u n c t i o n f_makine ( . )
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_max .m: An m− f i l e to s o l v e the l i n e a r programming problem o f
% maximizing an o b j e c t i v e f u n c t i o n over a sys tem o f
% i n e q u a l i t y c o n s t r a i n t s Ax <= b .
%
% INPUT : The row v e c t o r c = [ c0 c1 c2 . . . ck ] o f the o b j e c t i v e
% f u n c t i o n ( c0 + c1∗x1 + c2∗x2 + . . . + ck∗xk ) ,
% the matr ix A , the column v e c t o r b .
%
% OUTPUT : The maximum va lue o f c ∗x .
%
% USES : f_makine which in turn u s e s cdd ( cdd f +).
%
% Created on : Ju l y 29 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% We use cdd f +. exe with the ’ maximize ’ op t i on s p e c i f i e d .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function max_val = f_max ( c , A , b)

opt ions = [ ’ maximize ’
’ dynout_of f ’
’ s t d o u t _ o f f ’
’ l o g f i l e _ o f f ’ ] ;

% P l a c e t h i s in fo rmat ion in the f i l e maxim . in e :

f_makine ( ’maxim . ine ’ , opt ions , c , A , b ) ;

% Launching cdd f +. exe to work on maxim . in e :

! cddf+.exe maxim . ine

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% Next , we w i l l read the f i l e maxim . l p s to f i n d the opt imal
% va lue . The ∗ . l p s f i l e p r e s e n t s t h i s in fo rmat ion in e i t h e r one
% o f the two s t a t emen t s : ’ unbounded d i r e c t i o n f o r the pr imal
% LP ’ or ’ op t ima l_va lue : . . . . . ’ . In the second s tatement , some
% number i s p r e s e n t in the p l a c e o f the do t s .
% The f o l l o w i n g p i e c e o f code che ck s i f the f i r s t s ta t ement i s
% p r e s e n t . I f i t i s , then the code r e t u r n s max_val = in f , where
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% ’ in f ’ i s a s tandard MATLAB va lue . E l s e , i f the f i r s t
% s ta t ement i s not p r e s en t , then the code l o ok s f o r the second
% sta t ement ( wi thout the ’ : ’ ) and e x t r a c t s the number tha t i s
% p r e s e n t in tha t s ta t ement . The code then r e t u r n s t h i s number
% as max_val .
%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f i d=fopen ( ’maxim . l p s ’ , ’ r t ’ ) ;
% open the f i l e maxim . l p s f o r r ead ing .

l ine = f g e t l ( f i d ) ;
% read in the f i r s t l i n e o f the f i l e .

K0 = f i nds t r ( l ine , ’ LP i s i n c o n s i s t e n t ’ ) ;
% f i n d the s t r i n g ’ LP i s i n c o n s i s t e n t ’ in the l i n e read above .
K1 = f i nds t r ( l ine , ’ unbounded d i r e c t i o n f o r the primal LP ’ ) ;
K2 = f i nds t r ( l ine , ’ begin ’ ) ;

while ( K0 == []) & (K1 == []) & (K2 == []) ,
l ine = f g e t l ( f i d ) ;
K0 = f i nds t r ( l ine , ’ LP i s i n c o n s i s t e n t ’ ) ;
K1 = f i nds t r ( l ine , ’ unbounded d i r e c t i o n f o r the primal LP ’ ) ;
K2 = f i nds t r ( l ine , ’ begin ’ ) ;

end

i f K0 == []

i f K1 == [] ,

s = ’ opt imal_value ’ ;
K3 = f i nds t r ( l ine , ’ end ’ ) ;
K4 = f i nds t r ( l ine , s ) ;

while ( K4 == [])&(K3 == []) ,
% Thi s c o n d i t i o n i s s i m i l a r to the above whi l e loop
% tha t u s e s K1 and K2 . P l e a s e read tha t loop ’ s e xp l ana t i on .

% read the nex t l i n e .
l ine = f g e t l ( f i d ) ;

K3 = f i nds t r ( l ine , ’ end ’ ) ;
K4 = f i nds t r ( l ine , s ) ;

end

[ token , rem] = s t r tok ( l ine ) ;
max_val = str2num (rem(1 ,4 : s ize (rem , 2 ) ) ) ;
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else
max_val = i n f ;

end

else

max_val = [ ] ;

end

fc lose ( f i d ) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ p i c k X .m: Choose some ( x0 , u0 ) t u p l e from PR1 .
%
% INPUT : The matr ix rev_DB tha t g i v e s the s o l u t i o n o f PR1 as
% rev_DB∗x < 0 , and the tube parameters T and t .
%
% OUTPUT : A v e c t o r ’ x ’ such tha t x = [ x0̂ T u0̂ T]̂ T i s in PR1 .
%
% USES : Func t i on s f _ s quar e ( . ) , f_cddX ( . ) which in turn u s e s f_max ( . )
% which in turn u s e s cdd ( cdd f +).
%
% Created on : Ju l y 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function x = f_p ickX ( rev_DB , T , t )

x = [ ] ;
temp1 = − ones ( s ize ( rev_DB , 1 ) , 1 ) ;
rownum = s ize ( rev_DB , 1 ) ;
colnum = s ize ( rev_DB , 2 ) ;

i f ( rank ( rev_DB) == min(rownum , colnum ) ) & ( rownum < colnum )
% Meaning , i f rev_DB i s f u l l ranked , and
% i f # o f rows o f rev_DB < # of columns o f rev_DB

co l _ inds = f_square ( rev_DB ) ;
% Obtain the i n d i c e s o f some ’ rownum ’ l i n e a r l y independent
% columns o f rev_DB .

x = zeros ( colnum , 1 ) ;
x ( co l_ inds ,1 ) = rev_DB ( : , co l _ inds )\ temp1 ;

% What we have done in the above 3 l i n e s i s t h i s : S in c e PR1
% needs tha t rev_DB∗x be l e s s than 0 , we have a r b i t r a r i l y
% de c i d ed to s e t rev_DB∗x to temp1 which i s a v e c t o r o f −1 ’ s .
% Next , we have a r b i t r a r i l y chosen tho s e e l emen t s o f x to be
% z e r o s whose i n d i c e s are absen t in c o l _ i n d s .
% I didn ’ t know how to implement the idea o f t h i s l a s t s e n t e n c e .
% So , I s e t a l l e l emen t s o f x to 0 , and then a s s i g n e d − to tho s e
% o f i t s e l emen t s tha t are indexed by c o l _ i n d s − the va lue o f
% the produc t inv ( rev_DB ( : , c o l _ i n d s ) ) ∗ temp1 .
% Now , i f we compute the produc t rev_DB∗x , we should g e t a va lue
% equal to temp1 , which i s s t r i c t l y l e s s than 0 .
%
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% Here , we have used the equat ion x = A\b i n s t e a d o f
% x = inv (A)∗b .
% That i s , i n s t e a d o f
% x ( co l _ i nd s ,1 ) = inv ( rev_DB ( : , c o l _ i n d s ))∗ temp1 ;
% we have used
% x ( co l _ i nd s ,1 ) = rev_DB ( : , c o l _ i n d s )\ temp1 ;
%
% Both ways s o l v e the sys tem o f l i n e a r equa t i on s Ax = b .
% But , the f i r s t way i s about 2 −3 t imes f a s t e r and more a c cu ra t e .
% [ Page 4 6 8 . The s tud en t e d i t i o n o f Matlab : v e r s i o n 4 : User ’ s
% guide / the Mathworks In c . 1 9 9 5 . ]

e l s e i f ( rank ( rev_DB) == min(rownum , colnum ) ) & ( rownum == colnum )
% Meaning , rev_DB i s a f u l l −ranked square matr ix .

x = rev_DB\temp1 ;

else

x = f_cddX ( rev_DB , T , t ) ;

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_poly2D .m : M− f i l e to draw a 2−D p o l y t o p e ( a bounded convex
% polyhedron ) .
%
% INPUT : Matrix ’ v e r t s ’ o f d imension m x 2 .
%
% OUTPUT : Matrix ’ a d j v e r t s ’ o f d imension m x 2 . A l so a 2−D
% p o l y t op e i s drawn to s c r e e n . P l e a s e s e e below f o r a
% d e s c r i p t i o n o f ’ a d j v e r t s ’ .
%
% PRECONDITION : The v e r t i c e s should be long to a p o l y t o p e .
%
% Created on : August 15 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Thi s M− f i l e works as f o l l o w s : I t c r e a t e s a matr ix ’ a d j v e r t s ’ o f
% dimension m x 2 . ’ a d j v e r t s ’ has been ob ta ined by r e o r d e r i n g the
% rows o f ’ v e r t s ’ such tha t the i−th row o f ’ a d j v e r t s ’ r e p r e s e n t s a
% v e r t e x tha t i s ad j a c en t to the v e r t e x r e p r e s e n t e d by the ( i −1)−th
% row o f ’ a d j v e r t s ’ . Also , the v e r t i c e s r e p r e s e n t e d by the 1− s t and
% m−th row o f ’ a d j v e r t s ’ r e p r e s e n t v e r t i c e s tha t are ad j a c en t .
%
% The in fo rmat ion in ’ a d j v e r t s ’ i s used by MATLAB ’ s f i l l ( . )
% f u n c t i o n to draw the p o l y t op e .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function a d j v e r t s = f_poly2D ( v e r t s )

m = s ize ( ve r t s , 1 ) ;

% I n i t i a l i z e a d j v e r t s :

a d j v e r t s = [ ] ;

for k1 = 1 : m−2

% I n i t i a l i z e a l l l o c a l v a r i a b l e s :

a = [ ] ;
b = [ ] ;
c = [ ] ;
d = [ ] ;
b1 = [ ] ;
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b2 = [ ] ;
k2 = [ ] ;
temp = [ ] ;
tempvect = [ ] ;

% Among tho s e e lment s tha t are a f t e r the k1−th , beg inn ing with the
% element number k1+1 , s ea r ch f o r and f i n d an e lement tha t i s
% ad ja c en t to the k1−th e l ement :

f l ag = 0 ; % Thi s i s s imp ly to g e t the program to go i n t o the
% whi l e loop .

k2 = k1+1;
while ( f l ag == 0)&(k2 <= m)

% For the k1−th e l ement o f ’ v e r t s ’ , ob ta in the c o e f f i c i e n t s o f
% the equat ion o f the l i n e through t h i s e l ement and the k2−th
% element o f ’ v e r t s ’ . I f ( x1 , y1 ) and ( x2 , y2 ) are the e l ements ,
% then the equat ion o f the l i n e through them i s as f o l l o w s :
%
% y − ( ( y1−y2 )/( x1−x2 ) ) ∗ x = ( y2∗x1−y1∗x2 )/( x1−x2 )
%
% Denote a = ( y1−y2 )/( x1−x2 ) , b = ( y2∗x1−y1∗x2 )/( x1−x2 ) .

a = ( v e r t s (k1 ,2)− v e r t s (k2 , 2 ) ) / ( v e r t s (k1 ,1)− v e r t s (k2 , 1 ) ) ;
b1 = ( v e r t s (k2 ,2)∗ v e r t s (k1 ,1)− v e r t s (k1 ,2)∗ v e r t s (k2 , 1 ) ) ;
b2 = v e r t s (k1 ,1)− v e r t s (k2 , 1 ) ;
b = b1/b2 ;

% T e s t i f a l l the e l emen t s o f ’ v e r t s ’ are e i t h e r on t h i s l i n e
% or on only one s i d e o f t h i s l i n e ( i f they are not , then the
% k1−th and the k2−th e l emen t s do not r e p r e s e n t a d j a c en t
% v e r t i c e s ) :

tempvect = v e r t s (: ,2) −a∗ v e r t s ( : , 1 ) ;
% tempvec t = y−a∗x .

c = f_ t runc ( tempvect ,4) <= f_ t runc (b , 4 ) ;
d = f_ t runc ( tempvect ,4) >= f_ t runc (b , 4 ) ;

% The f u n c t i o n f _ t r u n c ( val ,num) t r u c a t e s and rounds ’ val ’ t o
% number o f dec imal p l a c e s equal to ’ num ’ .
% ’ c ’ i s a column v e c t o r . ’ c ’ w i l l have 0 ’ s c o r r e spond ing to
% tho s e e l emen t s o f ’ t empvect ’ t ha t are g r e a t e r than ’ b ’ .

i f ( min( c ) == 0 )&( max( c ) == 1 )&( min(d) == 0 )&( max(d) == 1)
f l ag = 0;
k2 = k2 + 1 ; % Try another k2 .

else
f lag = 1;
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end

end

% Swap the ( k1+1)−th row o f ’ v e r t s ’ with the k2−th row o f ’ v e r t s ’ :

temp = v e r t s (k1 +1 ,:) ;
v e r t s (k1 +1 ,:) = v e r t s (k2 , : ) ;
v e r t s (k2 , : ) = temp ;

end

a d j v e r t s = f_ t runc ( ver t s , 4 ) ;

f i l l ( a d j v e r t s ( : , 1 ) , a d j v e r t s ( : , 2 ) , ’ r ’ ) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_ squar e .m: Returns the i n d i c e s o f t ho s e columns ( or rows ) o f a
% r e c t a n g u l a r matr ix tha t are l i n e a r l y independent .
%
% INPUT : The matr ix A
%
% OUTPUT : The v e c t o r ’ i n d i c e s ’ t ha t c o n t a i n s the i n d i c e s o f the
% columns ( or rows ) tha t are l i n e a r l y independent .
%
% PRECONDITION : A must be o f f u l l rank and not−square .
%
% USES : The f u n c t i o n f_mcn ( . ) .
%
% Created on : Ju l y 30 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function i n d i c e s = f_square (A)

c o l s = s ize (A , 2 ) ;
rows = s ize (A , 1 ) ;
indexes = [ ] ;

i f rows < c o l s

indexes = f_mcn ( co l s , rows ) ;

i = 1;
while rank ( A ( : , indexes ( i , : ) ) ) < rows

i = i + 1;
end

e l s e i f c o l s < rows

indexes = f_mcn ( rows , c o l s ) ;

i = 1;
while rank ( A ( indexes ( i , : ) , : ) ) < c o l s

i = i + 1;
end

end

i n d i c e s = indexes ( i , : ) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_TinPR1 .m : An m− f i l e implementat ion o f the f u n c t i o n f_TinPR1 ( . ) .
% T e s t s i f Tube (T , t ) l i e s c o m p l e t e l y wi th in the
% p r o j e c t i o n o f PR1 onto the x0 c o o r d i n a t e s .
%
% Tube (T , t ) i s in PR1 i f
% [ t ] _ i = max{[T] _ i x | x \ in c l o s u r e (PR1 ) , x \ in Tube}
% i s t ru e f o r i = 1 , . . . , m_T . Here [ X] _ i i s the i−th
% row o f X , m_T i s number o f rows o f T .
%
% For d e t a i l s p l e a s e s e e the paper t i t l e d
% " R e a c h a b i l i t y o f t a r g e t tube in a new c l a s s o f
% unc e r t a in sy s t ems r e p r e s e n t e d by l i n e a r c o n s t r a i n t s "
% by Ramprasd P o t l u r i and L . E . Holloway .
%
% INPUT : The ma t r i c e s rev_DB , T , and t which are such tha t
% rev_DB∗x < 0 i s the s o l u t i o n s e t o f PR1 , and Tx <= t i s
% the Tube (T , t ) .
%
% OUTPUT : a s c a l a r x . x = 0 i f Tube (T , t ) does not i n t e r s e c t
% pro j_x0 {PR1 } , x = 1 i f pro j_x0 {PR1 } does not c o m p l e t e l y
% con ta in Tube (T , t ) , and x = 2 i f pro j_x0 {PR1 } c o n t a i n s
% Tube (T , t ) .
%
% USES : f_max ( . ) which in turn use cdd ( cdd f +) , and the m− f i l e s c s .m.
%
% Created on : August 06 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int , u n l e s s he
% wishe s to use t h i s m− f i l e on non−Windows 9 8 machines . Th i s m− f i l e
% was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function x = f_TinPR1 ( rev_DB , T , t ) ;

% Compare [ t ] _ i with max o f [ T] _ i x over rev_DB∗x < 0 , Tx \ l e t .

m1 = s ize ( rev_DB , 1 ) ; % Number o f rows o f rev_DB
n1 = s ize ( rev_DB , 2 ) ; % Number o f columns o f rev_DB
m2 = s ize (T , 1 ) ;
n2 = s ize (T , 2 ) ;
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A = [ rev_DB ;
[T , zeros ( m2, n1−n2 ) ] ] ;

b = [ zeros (m1, 1 ) ;
t ] ;

c = [ 0 , T ( 1 , : ) , zeros ( 1 , n1−n2 ) ] ;

max_val = f_max ( c , A , b ) ;

i f max_val == [] % IF#3
x = 0;
% Tube does not i n t e r s e c t PR1 .

else

i f t (1) == max_val % IF#4

i = 2;
temp = 0;
while ( i <= m2) & ( temp == 0)

i f t ( i ) == f_max ( [ 0 , T( i , : ) , pad_row ] , A , b )
i = i + 1;

else
temp = 1;

end

end

else % IF#4

i = 1;
temp = 1;

end % IF#4

i f i == m2 + 1 % IF#5
x = 2;
% pro j_x0 {PR1 } c o n t a i n s Tube c o m p l e t e l y .

else % IF#5
x = 1;
% pro j_x0 {PR1 } c o n t a i n s Tube INcomp l e t e l y .

end % IF#5

end % IF#3
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ t r u n c .m : M− f i l e to t r u n c a t e and round numbers to s p e c i f i e d
% numbers o f dec imal p l a c e s .
%
% INPUT : ’ val ’ − the number which needs to be t runca ted , ’ num’ −
% the number o f dec imal p l a c e s to which ’ val ’ needs to be
% t runca t ed .
%
% OUTPUT : ’ t runcva l ’ − the tu rn ca t ed number .
%
% Created on : August 15 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function t runcva l = f_ t runc ( val ,num)

t runcva l = round( va l∗(10^num))/(10^num) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ t s t m n t .m : Determines i f the g i v en Tube (T , t ) i s mainta inab l e as
% ex p l a i n ed in the paper t i t l e d " R e a c h a b i l i t y o f
% t a r g e t tube in a new c l a s s o f un c e r t a in sy s t ems
% r e p r e s e n t e d by l i n e a r c o n s t r a i n t s " by Ramprasad
% P o t l u r i and L . E . Holloway .
%
% INPUT : v e r t s ( g ene ra t ed by f _ v e r t s ( . ) ) , Q, t , F , B .
%
% OUTPUT : x = 0 i f Tube (T , t ) NOT mainta inab l e .
% x = 1 o t h e rw i s e .
% v e r t c n t r l s = [ ] i f Tube (T , t ) i s not mainta inab l e .
% I f Tube (T , t ) i s maintainable , then the i−th row o f the
% matr ix ’ v e r t c n t r l s ’ r e p r e s e n t s a mainta in ing c o n t r o l f o r
% the i−th v e r t e x o f Tube (T , t ) .
%
% USES : f_makine ( . ) , c dd f +.
%
% Created on : August 08 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non−Windows 9 8 machines .
% Thi s m− f i l e was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ x , v e r t c n t r l s ] = f_ t s tmnt ( ver t s ,Q, t , F , B)

N = s ize ( ve r t s , 1 ) ;

% T e s t i f QBu0 <= t−QFx0i i s f e a s i b l e ( x01 , x02 , . . , x0N are the
% v e r t i c e s o f the tube ) :

for i = 1:N,

A = Q∗B ;
b = t − Q∗F∗ v e r t s ( i , : ) ’ ;

name = [ ’ f t s tmnt ’ num2str ( i ) ] ;
temp = f _ i n t e r (name , A , b ) ;

i f temp == []
% Meaning , no i n t e r i o r po in t was found f o r QBu0 <= t−QFx0i
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x = 0;
v e r t c n t r l s = [ ] ;
break ;

else
x = 1;
v e r t c n t r l s ( i , : ) = temp ’ ;

end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ t u b e .m : G i v e s a bounded i r r edundant
% Tube (T , t ) : = { x | Tx <= t } .
%
% INPUT : mT ( number o f rows o f T and t ) , nT ( number o f columns
% o f T ; nT i s the same as the dimension o f the s t a t e
% space ) ; numties i s the maximum number o f random v a l u e s o f
% ’ t ’ t o t r y .
%
% OUTPUT : T , t such tha t Tx <= t i s bounded and irredundant , and
% the con s tan t ’ t u b e t r i e s ’ . S ince , we randomly g ene ra t e
% T and t , ’ t u b e t r i e s ’ g i v e s the number o f t r i a l s made
% b e f o r e we f i n d a bounded , i r r edundant sys tem Tx <= t . I f
% no v a l i d ’ t ’ i s found in numtr ie s number o f at tempts ,
% then T = [ ] , t = [ ] are r e tu rned .
%
% PRECONDITION : mT >= nT+1.
%
% USES : f_bound ( . ) ( which in turn u s e s cdd / cdd f +) and f _ s c s ( . ) .
%
% Created on : Ju l y 29 , 2002 .
% Modfied on : August 14 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ T , t , t u b e t r i e s ] = f_tube (mT, nT , numtries )

% F i r s t , l e t us de te rmine a T which w i l l g i v e a bounded Tube .

T = randn ([mT, nT ] ) ;
t u b e t r i e s = 1;

f l ag = f_bound (T ) ;

while f lag == 0
T = randn ([mT, nT ] ) ;
f l ag = f_bound (T ) ;
t u b e t r i e s = t u b e t r i e s +1;

end

% Next , l e t us de te rmine a ’ t ’ which w i l l g i v e an i r r edundant tube .
% For t h i s , we w i l l f i r s t de t e rmine the s e t o f a l l v a l u e s o f t f o r
% which Tx <= t w i l l be i r r edundant .
% Then we w i l l randomly g ene ra t e t u n t i l we f i n d one tha t i s an
% element o f the sa i d s e t .

192



%
% Note that , i f x i s 1−D , then mT = 2 , nT = 1 , and the tube i s
% always i r r edundant . S ince , f _ s c s ( . ) tha t we use below r e q u i r e s
% tha t x be at l e a s t 2−D , we w i l l t e s t f o r the i r redundancy o f the
% tube only i f we have at l e a s t a 2−D sys tem .

i f nT >= 2

[ rev_D , rev_DB ] = f _ s c s (T , [ ] ) ;
% We have used the f u n c t i o n f _ s c s ( . ) . For a n u l l s e cond argument
% in the input , t h i s f u n c t i o n r e t u r n s a n u l l va lue o f rev_DB .
% The s e t o f a l l v a l u e s o f t f o r which Tx <= t i s i r r edundant i s
% g i v en by rev_D∗ t < 0.

t = randn ([mT, 1 ] ) ;

f l ag = ( rev_D∗ t < 0);

while ( min( f l ag ) == 0)&( t u b e t r i e s < numtries )
t = randn ([mT, 1 ] ) ;
f l ag = ( rev_D∗ t < 0);
t u b e t r i e s = t u b e t r i e s +1;

end

i f min( f l ag)==0
T = [ ] ;
t = [ ] ;

end

else

t = randn ([mT, 1 ] ) ;

% T e s t f o r the s a t i s f a c t i o n o f the c o n d i t i o n
% [ −1 , a1/a2 ]∗[ b1 ; b2] <= 0:

f l ag = ([ −1 , T(1 ,1)/T(2 ,1)]∗ t <= 0);
while ( f l ag == 0)&( t u b e t r i e s < numtries )

t = randn ([mT, 1 ] ) ;
f l ag = ([ −1 , T(1 ,1)/T(2 ,1)]∗ t <= 0);
t u b e t r i e s = t u b e t r i e s + 1;

end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f _ v e r t s .m : Enumerates the v e r t i c s o f Ax <= b .
%
% INPUT : A , b .
%
% OUTPUT : Matrix ’ v e r t s ’ whose rows r e p r e s e n t s the v e r t i c e s .
%
% PRECONDITION : Ax <= b must be bounded . You can use f_bound ( . ) to
% t e s t t h i s . Ne i t h e r o f A and b should be empty .
%
% USES : f_makine ( . ) , cdd / cdd f +.
%
% Created on : August 12 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non−Windows 9 8 machines .
% Thi s m− f i l e was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function v e r t s = f _ v e r t s (A , b)

opt ions = [ ’ dynout_of f ’
’ s t d o u t _ o f f ’
’ l o g f i l e _ o f f ’ ] ;

c = [ ] ;
name = ’ v e r t s . ine ’ ;

% P l a c e t h i s in fo rmat ion in the f i l e v e r t s . i n e :

f_makine (name , opt ions , c , A , b ) ;

% Launching cdd f +. exe to work on v e r t s . i n e :

! cddf+.exe v e r t s . ine

% A f i l e −− v e r t s . e x t has been gene ra t ed by cdd f +.

%−−−−−−−−−−−Get v e r t i c e s o f Ax <= b from the f i l e v e r t s . ext−−−−−−

f i d=fopen ( ’ v e r t s . ext ’ , ’ r t ’ ) ;
% open the f i l e Reach . e x t f o r r ead ing .
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l ine = f g e t l ( f i d ) ;
% read in the f i r s t l i n e o f the f i l e .

K0 = f i nds t r ( l ine , ’ Number of V e r t i c e s ’ ) ;
% f i n d the s t r i n g ’ Number o f V e r t i c e s ’ in the l i n e read above .

while K0 == [] ,
l ine = f g e t l ( f i d ) ;
K0 = f i nds t r ( l ine , ’ Number of V e r t i c e s ’ ) ;

end

% Now tha t we have found the l i n e tha t c o n t a i n s the number o f
% v e r t i c e s , in the f o l l o w i n g two command l i n e s , we w i l l e x t r a c t
% t h i s number o f v e r t i c e s and a s s i g n i t to the v a r i a b l e ’ N ’ .

token = s t r tok ( l ine , ’ , ’ ) ;
N = str2num ( token (1 ,22: s ize ( token , 2 ) ) ) ;

i f N > 0

% Next , we w i l l move 3 l i n e s pa s t the l i n e tha t con ta ined " Number
% o f V e r t i c e s " .

for i = 1:3 ,
l ine = f g e t l ( f i d ) ;

end

% Then , we w i l l read the c o n t e n t s o f the nex t N l i n e s . These nex t
% N l i n e s g i v e us the c o o r d i n a t e s o f the v e r t i c e s .

n = s ize (A , 2 ) ;
temp = f scanf ( f id , ’%f ’ , [ n+1,N] ) ;

v e r t s = temp (2: n +1 , : ) ’ ;

else

v e r t s = [ ] ;

end

fc lose ( f i d ) ;

% Now , the matr ix ’ v e r t s ’ c o n t a i n s the c o o r d i n a t e s o f the v e r t i c e s
% o f Ax <= b . Each row o f v e r t s r e p r e s e n t s one v e r t e x o f Ax <= b .
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% mcntemp .m: f i l e g ene ra t ed by f_mcn .m
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

aa =[];
x1 = 0;
for x2 = x1 + 1 : 4 ,

for x3 = x2 + 1 : 5 ,
bb =[ x2 x3 ] ;
aa = [ aa ; bb ] ;

end
end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% mytemp .m : F i l e c r e a t e d by f _ i n t e r .m
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

! cddf+.exe f t s tmnt5 . ine
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% pre_pro s .m : Ac comp l i she s the p r e p r o c e s s i n g needed to t e s t the
% theory o f m a i n t a i n a b i l i t y p r e s e n t e d in the paper
% t i t l e d " R e a c h a b i l i t y o f t a r g e t tube in a new c l a s s
% o f un c e r t a in sy s t ems r e p r e s e n t e d by l i n e a r
% c o n s t r a i n t s " by Ramprasd P o t l u r i and L . E . Holloway .
%
% USES : f_EFB ( . ) , f _ t u b e ( . ) , f _ s c s ( . ) , f_TinPR1 ( . ) , f _ f indQ ( . ) ,
% f _ v e r t s ( . ) , f _ t s t m n t ( . ) which in turn use o the r f u n c t i o n s .
%
% P l e a s e s e e README. t x t f o r a comple t e t r e e o f which
% f u n c t i o n s use which .
%
% Created on : June 29 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int , u n l e s s he
% wishe s to use t h i s m− f i l e on non−Windows 9 8 machines . Th i s m− f i l e
% was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

diary cont ro l1 . t x t
t i c

% Crea t e a bounded EFB sys tem in r e g u l a r form .

m = 5; % number o f rows o f EFB .
nE = 2 ; % number o f columns o f E or F .
nB = 2 ; % number o f columns o f B .

[E , F , B , EFBt r i e s ] = f_EFB (m, nE , nB ) ;

disp ( ’ ’ ) ;
disp ( ’ The matr i ces E , F , B in the SD system Ex1 <= Fx0 + Bu0 are : ’ ) ;
disp ( ’ ’ ) ;
disp ( ’ ’ ) ;
E
F
B
disp ( ’ ’ ) ;
disp ( ’ ’ ) ;
disp ( ’ This SD system i s bounded . ’ ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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% Crea t e a bounded i r r edundant tube Tube (T , t ) : = { x | Tx <= t }
% and t e s t i f i t i s bounded .

mT = 5;
nT = nE ;
numtries = 50 ; % Maximum number o f random v a l u e s o f ’ t ’ t o t r y .

[T , t , t u b e t r i e s ] = f_tube (mT, nT , numtries ) ;

% I f a tube i s not found in a maximum o f numtr ie s number o f t r i e s ,
% then f _ t u b e ( . ) r e t u r n s T = [ ] and t = [ ] .

i f ( s ize (T,1)==0) % IF #1

disp ([ ’A tube was not found in ’ num2str ( numtries ) ’ a t tempts ’ ] ) ;

else % IF #1
disp ( ’ ’ ) ;
disp ( ’ The tube Tx1 <= t i s given by the fo l lowing T , t : ’ ) ;
disp ( ’ ’ ) ;
T
t
disp ( ’ ’ ) ;
disp ( ’ This tube i s bounded and irredundant ’ ) ;
disp ( ’ ’ ) ;

toc

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−I F # 1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t i c

% Determine the s e t PR1 o f a l l ( x0 , u0 ) t u p l e s f o r which
% Reach (x0 , u0 ) i s i r r edundant .

A = E ;
C = [ F B ] ;

i f nE == 1

rev_D = [ −1 , A(1 ,1)/A( 2 , 1 ) ] ; % The sys tem Ax <= b , where ’ b ’
% be l ong s to the s e t o f a l l ’ b ’ such
% tha t rev_D∗b <= 0 , i s i r r edundant .

rev_DB = rev_D∗C ; % The sys tem Ax <= Cy , where y b e l ong s to the
% s e t o f a l l ’ y ’ such tha t rev_DB∗y <= 0 , i s
% ir r edundant .

else
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% Thi s can be done with the he lp o f the program s c s .m tha t i s in
% the f o l d e r C :\MATLAB\ M a t f i l e s \ r e s e a r c h \SCS .
% I have s e t the app rop r i a t e path in the f i l e
% C:\MATLAB\ Mat labrc .m.
% The m− f i l e s c s .m works on the sys tem Ax <= Cy .
% In the ca s e o f our EFB system , t h i s i s
% Ex1 <= [F B]∗[ x0̂ T u0̂ T]̂ T .

% A and C are used by s c s .m.

[ rev_D , rev_DB ] = f _ s c s (A , C ) ;

end

disp ( ’ ’ ) ;
disp ( ’ The s e t PR1 of a l l ( x0 , u0 ) t up l e s f o r which Reach (x0 , u0) ’ ) ;
disp ( ’ i s i r redundant i s given by rev_DB ∗[ x0̂ T u0̂ T]̂ T < 0 , ’ ) ;
disp ( ’ where rev_DB i s as fo l l ows : ’ ) ;
disp ( ’ ’ ) ;

rev_DB

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% T e s t i f Tube (T , t ) l i e s c o m p l e t e l y wi th in the p r o j e c t i o n o f PR1
% onto the x0 c o o r d i n a t e s . Tube (T , t ) i s
% in PR1 i f [ t ] _ i = max { [ T] _ i x | x \ in c l o s u r e (PR1 ) , x in Tube }
% i s t ru e f o r i = 1 , . . . , m_T . Here [ X] _ i r e p r e s e n t s the i−th row o f
% X , m_T i s number o f rows o f T . ( m_T i s a l s o s p e c i f i e d in the
% f i l e sp e c_ tub .m) .

% Compare [ t ] _ i with max o f [ T] _ i x over rev_DB∗x < 0 , Tx \ l e t :

x = f_TinPR1 ( rev_DB , T , t ) ;

i f x == 0
disp ( ’ Sorry ! The Tube does not i n t e r s e c t proj_x0 {PR1} ’ ) ;

% One reason f o r why we car e f o r whether Tube i n t e r s e c t s
% pro j_x0 {PR1 } i s be cause in the f u n c t i o n f_ f indQ ( . ) below , we
% choose an ( x0 , u0 ) from the i n t e r s e c t i o n o f PR1 and Tube (T , t )
% because cdd f + does not work with homogeneous sy s t ems o f
% i n e q u a l i t i e s . So , i f we ask i t to f i n d an i n t e r i o r po in t from ,
% say , Ax <= 0 , i t won ’ t f i n d one .

e l s e i f x == 1
disp ( ’ ’ ) ;
disp ( ’ Well ! pro j_x0 {PR1 } conta ins t h i s Tube INCOMPLETELY . ’ ) ;
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disp ( ’ ’ ) ;
else
% x = 2

disp ( ’ ’ ) ;
disp ( ’ Congra tu la t ions ! The Tube i s a subse t of PR1 ’ ) ;
disp ( ’ ’ ) ;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( x == 1)|(x == 2)

Q = f_f indQ ( rev_DB , T , t , E , F , B)
v e r t s = f _ v e r t s (T , t )
[x1 , v e r t c n t r l s ] = f_ t s tmnt ( ver t s ,Q, t , F , B)
% x = 0 i f Tube i s not maintainable , x = 1 i f mainta inab l e .

i f x1 == 0
disp ( ’ Sorry ! Tube(T , t ) i s not mainta inable . ’ ) ;
d ips ( ’ Try tweaking " t " . ’ ) ;

else
disp ( ’ Congra tu la t ions ! Tube(T , t ) i s mainta inable . ’ ) ;

end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−I F #1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

end % IF #1

toc

diary o f f
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ptope .m : An example o f ob ta in ing an i r r edundant tube in 2D and
% p l o t t i n g i t s c r o s s −s e c t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[T , t , t u b e t r i e s ] = f_tube (5 ,2 ,50) ;

i f s ize (T,1) > 0

t i c
v e r t s = f _ v e r t s (T , t )
toc

a d j v e r t s = f_poly2D ( v e r t s )

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Z .m : Th i s was w r i t t e n to t e s t some p a r t s o f the program . Th i s i s
% not a par t o f the program i t s e l f .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mt = 7;
nt = 3;

Z = randn (mt , nt ) ;

while rank (Z) < min ( mt , nt )
Z = randn (mt , nt ) ;

end

Z
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% c o n t r o l 1 . t x t : Example r e s u l t o f p r e_pro s .m
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The matr i ces E , F , B in the SD system Ex1 <= Fx0 + Bu0 are :

E =

−1.4462 −0.3600
−0.7012 −0.1356

1.2460 −1.3493
−0.6390 −1.2704

0.5774 0.9846

F =

−0.0449 0.5135
−0.7989 0.3967
−0.7652 0.7562

0.8617 0.4005
−0.0562 −1.3414

B =

0.3750 −0.3229
1.1252 0.3180
0.7286 −0.5112

−2.3775 −0.0020
−0.2738 1.6065

This SD system i s bounded .

The tube Tx1 <= t i s given by the fo l lowing T , t :

T =

0.8476 −0.5571
0.2681 −0.3367

−0.9235 0.4152
−0.0705 1.5578

0.1479 −2.4443
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t =

0.5360
0.2985
0.2840
0.9597
2.0876

This tube i s bounded and irredundant

e lapsed_t ime =

4.3900

The set PR1 of a l l ( x0 , u0 ) tu p l e s for which Reach (x0 , u0)
i s i r redundant i s given by rev_DB ∗[ x0̂ T u0̂ T]̂ T < 0 ,
where rev_DB i s as fo l l ows :

rev_DB =

1.4915 −0.3074 −1.7071 −0.9583
−0.7737 0.2004 0.9491 0.4061

−16.0079 24.4836 52.8296 −38.1064
1.4199 −0.6291 −3.2475 0.6693
3.1656 −1.0148 −5.3703 −0.3307

Well ! pro j_x0 {PR1 } conta ins t h i s Tube INCOMPLETELY .

An ( x0 , u0 ) tup le tha t s a t i s f i e s both PR1 and Tube(T , t )
i s as fo l l ows :

x0u0 =

−0.0090
−0.8484

0.1621
−0.0147

CHECK : For t h i s ( x0 , u0 ) , the value of the product
rev_DB ∗[ x0̂ T u0̂ T]̂ T must be negat ive :
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revDBx0u0 =

−0.0152
−0.0152

−11.5059
−0.0152
−0.0331

Reach (x0 , u0 ) for t h i s ( x0 , u0 ) i s given by E <= [F B]∗x0u0

Q =

0 0 0.5764 0 0.2242
0 0 0.2273 0.0236 0
0 1.8772 0 0 0.6802
0 1.5828 0 0 1.8002
0 0 0.7156 1.1639 0

v e r t s =

0.1045 −0.8032
1.0690 0.6644

−0.0312 0.6146
0.0439 −0.8514

−0.7109 −0.8971

x1 =

1

v e r t c n t r l s =

−1.0270 0.1189
−0.3627 1.0515
−0.6292 0.7197
−1.0555 0.0805
−1.2428 −0.1428

Congra tu la t ions ! Tube(T , t ) i s mainta inable .

e lapsed_t ime =

8.7900
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Appendix G

MATLAB Program Listings for the
Q-Matrix Method of Maintaining a

Halfspace System in a Tube

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% c o n t r o l .m : To maintain sys tem s t a t e s in the tube , t h i s m− f i l e
% e x e c u t e s the c o n t r o l a logr i thm deve l oped in the paper
% t i t l e d " R e a c h a b i l i t y o f t a r g e t tube in a new c l a s s o f
% unc e r t a in sy s t ems r e p r e s e n t e d by l i n e a r c o n s t r a i n t s " by
% Ramprasd P o t l u r i and L . E . Holloway .
%
% Also , per forms s e n s i n g when r e q u i r e d .
%
% INPUT : The ma t r i c e s ’ v e r t s ’ ( each row o f t h i s matr ix r e p r e s e n t s a
% v e r t e x o f the tube Tx <= t ) , ’ v e r t c n t r l s ’ ( the i−th row o f
% ’ v e r t c n t r l s ’ g i v e s a mainta in ing c o n t r o l f o r the i−th row o f
% ’ v e r t s ’ ) , ’ E ’ , ’ F ’ , ’ B ’ ( t h e s e t h r e e m a t r i c e s s p e c i f y the
% EFB sys tem ) , ’ T ’ , ’ t ’ ( t h e s e two ma t r i c e s s p e c i f y the tube ) ,
% ’Q ’ , ’ rev_DB ’ ( rev_DB d e f i n e s the s e t o f a l l ( x0 , u0 ) t u p l e s
% f o r which the sys tem Ex1 <= Fx0 + Bu0 i s i r r edundant ) , ’ x0 ’
% (an i n t i a l s t a t e which has mainta in ing c o n t r o l s ) , ’ horizon ’
% ( t h i s s p e c i f i e s the t ime hor izon over which we want to
% maintain the system ’ s s t a t e s in the tube , ’ s t ep ’ ( t h i s i s
% the l e n g t h o f the time−s t e p f o r the c o n t r o l ) .
%
% A l l the above ma t r i c e s can be gene ra t ed by running the
% m− f i l e p r e_pro s .m
%
% USES : The f u n c t i o n s f _ i n t e r ( . ) , f _genx ( . )
%
% Created on : August 13 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non−Windows 9 8 machines .
% Thi s m− f i l e was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

diary cont ro l2 . t x t

vnum = s ize ( ve r t s , 1 ) ; % vnum i s the number o f v e r t i c e s o f the tube .

n = s ize ( ve r t s , 2 ) ; % n i s the dimension o f the s t a t e −space .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Generate a random i n i t i a l s t a t e x0p which i s in Tube (T , t ) . Th i s
% random s t a t e i s g ene ra t ed by tak ing a random mean o f a l l the
% v e r t i c e s as f o l l o w s :

randinds = randperm(vnum ) ; % The MATLAB f u n c t i o n randperm (n ) g i v e s
% a random permutat ion o f the e l emen t s
% o f 1 : n . ’ randinds ’ i s a row v e c t o r .

x0p = (1/vnum)∗( ve r t s ’ ∗ randinds ’ ) ; % x0p i s a column v e c t o r .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

numsteps = 50 ; % Tota l number o f t ime s t e p s over which we want to
% c o n t r o l the sys tem .

s t a t e s ( : , 1 ) = x0p ; % The matr ix ’ s t a t e s ’ s t o r e s the in fo rmat ion
% about the s t a t e s .

for i = 1: numsteps

% So far , we have gene ra t ed a random i n i t i a l s t a t e x0 tha t i s
% i n s i d e the tube .
%
% Next , we w i l l f i r s t s e e i f , in the absence o f any con t r o l ,
% Reach (x0 , 0 ) w i l l be i n s i d e the tube . I f i t w i l l not be , then we
% w i l l compute a c o n t r o l u0 such tha t Reach (x0 , u0 ) w i l l be i n s i d e
% the tube .
%
% Then , we w i l l s t o r e the d e f i n i t i o n o f t h i s Reach s e t in X1 .

i f (Q∗F∗x0p <= t )
% Meaning , i f Reach ( x0p , 0 ) i s in Tube (T , t ) , then :

% d i s p ( ’ Reach ( x0p , 0 ) i s in Tube (T , t ) ’ ) ;
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% Denote Rch := Reach ( x0p , 0 ) :
Rch = [E , F∗x0p ] ;
c n t r l s (1 : s ize (F , 2 ) , i ) = zeros ( s ize (F , 2 ) , 1 ) ;

else

A = [ ver t s ’
ones (1 ,vnum)
−ver t s ’
−ones (1 ,vnum)
−eye (vnum ) ] ;

b = [ x0p
1
−x0p
−1
zeros (vnum , 1 ) ] ;

f i lename = ’ lambdas ’ ;

t i c
lambda = f _ i n t e r ( f i lename , A , b ) ; % f _ i n t e r .m i s a f i l e in the

% f o l d e r TstMaint . f _ i n t e r ( . )
% r e t u r n s a column v e c t o r .

toc
% f _ i n t e r ( . ) took 1 . 0 4 s e cond s to f i n d an i n t e r i o r po in t o f
% Ax <= b .

% Determine a mainta in ing c o n t r o l f o r x0 :
u0p = v e r t c n t r l s ’ ∗ lambda ; % u0p i s a column v e c t o r .

% Denote Rch := Reach ( x0p , u0p ) :
Rch = [E , F∗x0p+B∗u0p ] ;
c n t r l s (1 : s ize (F , 2 ) , i ) = u0p ;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Check i f the one−s t e p e v o l u t i o n o f the sys tem from the Reach s e t
% g i v en by X1 in the absence o f a c o n t r o l w i l l be wi th in the tube .
%
% For t h i s , we can t e s t i f the Reach s e t s from each o f the extreme
% p o i n t s o f X1 in the absence o f a c o n t r o l w i l l be i n s i d e the
% tube . However , t h i s method w i l l need us once more to r e s o r t to
% cdd / cdd f + to f i n d the extreme p o i n t s o f X1 . For a 5 x2 sys tem Tx
% <= t , us ing cdd / cdd f + take s 0 . 8 8 − 1 . 2 s e conds on my Windows 98
% HP P a v i l i o n 8660C PC which has 128 MB o f RAM and a p r o c e s s o r
% speed o f 533 MHz.

209



%
% Ins t ead , we can take the b a s i c s o l u t i o n s o f X1 tha t w i l l be
% obta ined through the l i n e a r combinat ions o f i t s rows i f we were
% to use Q . Then , from t h e s e b a s i c s o l u t i o n s , we can c o n s i d e r the
% one−s t e p e v o l u t i o n o f the sys tem ( Reach s e t s ) as mentioned in the
% p r e v i o u s paragraph . This , w i l l be a " har sher " t e s t as e xp l a i n e d
% in Chapter 6 o f the d i s s e r t a t i o n .
%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% f l a g = 0 , i f the one−s t e p e v o l u t i o n w i l l not be i n s i d e the tube .
% f l a g = 1 , o t h e r w i s e .
%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%i f f l a g = 0

x1 = f_genx (Rch ) ; % x1 i s a column v e c t o r .

% f_genx ( . ) g e n e r a t e s a s t a t e tha t i s in Reach (x0 , u0 ) us ing the
% in fo rmat ion in Rch .
%
% In p r a c t i c e , we w i l l use f _ s e n s e ( . ) which w i l l g i v e us the
% system ’ s s t a t e as ob ta ined from s e n s i n g . However , f o r the
% purpose s o f t h i s a lgor i thm , we use f_genx ( . ) .

% As s i gn t h i s x1 to x0 :
x0p = x1 ;

% Also s t o r e t h i s x1 in s t a t e s :
s t a t e s ( : , i ) = x1 ;

%e l s e
%
% Here , one may add f u n c t i o n a l i t y to br ing the e v o l u t i o n back i n t o
% the tube . Th i s f u n c t i o n a l i t y has not be implemented in t h i s
% d i s s e r t a t i o n .
%
%end

end % End o f FOR .

s t a t e s ;
c n t r l s ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

diary o f f
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% Next , we want to p l o t the data we ob ta ined in the matr ix
% ’ s t a t e s ’ .

i = 1: numsteps ;
for j = 1:n

f igure
subplot (2 ,1 ,1)
plot ( i , s t a t e s ( j , : ) ) , xlabel ( ’ k ’ ) , ylabel ([ ’ x ’ num2str ( j ) ] ) ;
subplot (2 ,1 ,2)
plot ( i , c n t r l s ( j , : ) ) , xlabel ( ’ k ’ ) , ylabel ([ ’ u ’ num2str ( j ) ] ) ;

% p r i n t − deps exmaint . eps
end

% p l o t t i n g c o n t r o l s needs to be s e p e r a t e from p l o t t i n g s t a t e s . The
% number o f c o n t r o l s may be d i f f e r e n t from the number o f s t a t e s .
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% f_genx .m : Genera t e s a s t a t e tha t i s in Reach (x0 , u0 ) .
%
% INPUT : The matr ix ’ Rch ’ which s t o r e s the in fo rmat ion
% Ex1 <= Fx0+Bu0 as shown in the m− f i l e c o n t r o l .m.
%
% OUTPUT : A row v e c t o r x1 which s a t i s f i e s Ex1 <= Fx0+Bu0 .
%
% PRECONDITION : The l a s t column o f Rch i s the v e c t o r Fx0+Bu0 . Rch
% i s o f the form Rch = [E , Fx0+Bu0 ] .
%
% USES : f_bound ( . ) , f_max ( . ) both o f which in turn use cdd ( cdd f +),
% and f _ s c s ( . ) .
%
% Created on : August 10 , 2002 .
% Author : Ramprasad P o t l u r i .
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User does not need to modify anything beyond t h i s po int ,
% u n l e s s he wi she s to use t h i s m− f i l e on non−Windows 9 8 machines .
% Thi s m− f i l e was w r i t t e n f o r MATLAB v . 4 Student E d i t i o n .
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function x1 = f_genx (Rch)

f i lename = ’ genx ’ ;
n = s ize (Rch , 2 ) ;

x1 = f _ i n t e r ( f i lename , Rch ( : , 1 : n−1) ,Rch ( : , n ) ) ;
% f _ i n t e r .m i s a f i l e in the f o l d e r TstMaint .
% f _ i n t e r ( . ) r e t u r n s a column v e c t o r .
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% sp e c .m : A sample s p e c i f i c a t i o n s f i l e to t e s t the m a i n t a i n a b i l i t y
% algor i thm .
%
% Author : Ramprasad P o t l u r i
% E−mail : pot lur i@engr . uky . edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

E = [ −1.4462 −0.3600
−0.7012 −0.1356

1.2460 −1.3493
−0.6390 −1.2704

0.5774 0.9846];

F = [ −0.0449 0.5135
−0.7989 0.3967
−0.7652 0.7562

0.8617 0.4005
−0.0562 −1.3414];

B = [0.3750 −0.3229
1.1252 0.3180
0.7286 −0.5112

−2.3775 −0.0020
−0.2738 1.6065];

T = [0.8476 −0.5571
0.2681 −0.3367

−0.9235 0.4152
−0.0705 1.5578

0.1479 −2.4443];

t = [0.5360
0.2985
0.2840
0.9597
2.0876];

rev_DB = [ 1 .4915 −0.3074 −1.7071 −0.9583
−0.7737 0.2004 0.9491 0.4061

−16.0079 24.4836 52.8296 −38.1064
1.4199 −0.6291 −3.2475 0.6693
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3.1656 −1.0148 −5.3703 −0.3307];

Q = [0 0 0.5764 0 0.2242
0 0 0.2273 0.0236 0
0 1.8772 0 0 0.6802
0 1.5828 0 0 1.8002
0 0 0.7156 1.1639 0] ;

v e r t s = [ 0 .1045 −0.8032
1.0690 0.6644

−0.0312 0.6146
0.0439 −0.8514

−0.7109 −0.8971];

v e r t c n t r l s = [ −1.0270 0.1189
−0.3627 1.0515
−0.6292 0.7197
−1.0555 0.0805
−1.2428 −0.1428];
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The following figures illustrate maintaining a system in a tube. The specifications can

be found in the m-file spec.m. x = [x1 x2]
T is the state, and u = [u1 u2]

T is the control.
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