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ABSTRACT OF DISSERTATION 

 

SYNTHESIS AND DEVICE CHARACTERIZATION OF FUNCTIONALIZED  

PENTACENES AND ANTHRADITHIOPHENES 

 

 

      Research on pi-conjugated organic materials in the recent past has produced 

enormous developments in the field of organic electronics and it is mainly due to their 

applications in electronic devices such as organic field effect transistors (OFETs), organic 

light emitting diodes (OLEDs) and organic photovoltaic cells (OPVs). The primary goal 

of this research work is to design and synthesize high performing charge transport 

organic semiconductors. 

      One of the criteria for better performance of the organic thin film transistor (OTFT) is 

to have high uniform thin film morphology of the organic semiconductor layer on the 

substrate. The first project in this dissertation has been directed towards improving the 

thin film morphology of the functionalized pentacenes through liquid crystalline 

behaviour. The results have suggested the possibility of thermotropic liquid crystalline 

phases in 6,13-bis(diisopropylhexylsilylethynyl) pentacene which has no pi-stacking in 

its solid state and the presence of silyl group at the peri-position is crucial for the stability 

of the functionalized pentacenes. In the second project, i have investigated the effect of 

alkyl groups with varying chain length on the anthradithiophene chromophore on the 

performance of the charge transporting devices. Organic blend cell based on solution 

processable 2,8-diethyl-5,12-bis(triethylsilylethynyl) anthradithiophene has showed 1% 

power conversion efficiency and the performance is mainly attributed to the large 

crystalline phase segregation of the functionalized anthradithiophene from the amorphous 

soluble fullerene derivative matrix. OTFT study on alkyl substituted functionalized 

anthradithiophenes suggested the need of delegate balance between thin film morphology 

and the crystal packing. Third project has been directed towards synthesizing halogen 



 

 

 

substituted functionalized anthradithiophenes and their influence in the performance of 

OFETs. OTFT made of 2,8-difluoro-5,12-bis(triethylsilylethynyl) anthradithiophene 

produced devices with thin film hole mobilities greater than 1 cm
2
/Vs. The result 

suggested that the device is not contact limited rather this high performance OTFTs are 

due to the contact induced crystallinity of the organic semiconductor. 

               

KEY WORDS: organic thin film transistors, organic solar cells, thin film morphology,  

crystal packing, pentacenes, anthradithiophenes 
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Chapter 1: Introduction  

1.1 Organic Electronic Materials 

   The microelectronics industry of the 20
th

 century has been completely dominated by 

inorganic field-effect transistors (FETs) ever since the invention of the first transistor in 

1947 at Bell Laboratories. However, the high cost of production for these traditional 

silicon based FETs has stimulated extensive scientific research on π-conjugated organic 

small molecule, oligomer, dendrimer and polymer based semiconductors.
1-4

 Interest in 

organic materials is mainly due to the electronic and optical properties that come from the 

delocalization of charges in a system of atoms covalently bonded with alternating single 

and multiple bonds. Unlike their inorganic counterparts, organic electronic materials can 

be processed using low-cost solution-based techniques such as spin-coating and ink-jet 

printing at low temperature, and have the potential to eliminate the use of high vacuum 

deposition and photolithography. Mechanical flexibility,
5
 and the possibility of large area 

deposition onto substrates
6
 are  other advantages of these carbon-based semiconductors.  

        The breakthrough in the research of organic electronics was the discovery of 

electrically conducting organic polymers by Shirakawa
7
 and co-workers in 1977. By 

means of suitable halogen doping, polyacetylene (1, Fig. 1.1) showed high conductivity 

at room temperature. For this discovery, Shirakawa, MacDiarmid and Heeger were 

awarded with Nobel Prize for Chemistry in 2000.  

Figure 1.1 Polyacetylene 

 

n
 

1 



 

2 

 

    Over the past three decades, extensive research has been dedicated to understanding 

charge transport mechanisms in organic semiconductors in order to employ them in 

devices such as organic field effect transistors (OFETs), organic light emitting diodes 

(OLEDs) and organic photovoltaics (OPVs).
8-11

 The efficiency of conduction of charge 

carriers (electrons and holes) in semiconductors is referred to as their mobility, which 

will be discussed in the following sections. 

 

1.2 Fundamental Concepts of Charge Transport in Organic Electronic Materials 

       There are several ways to introduce charge carriers into the lowest unoccupied 

molecular orbital (LUMO) energy level or the highest occupied molecular orbital 

(HOMO) energy level in organic semiconductors, by means of photo-generation, 

chemical doping, excess thermal energy, and most importantly through injection from 

metal electrodes.  

       Charge transport in semiconductors is mainly determined by the type of atomic or 

molecular interactions present in the solid. Organic molecular solids possess weak van 

der Waals interactions between neighboring molecules. On the other hand, atoms are held 

together with very strong covalent bond interactions in traditional inorganic 

semiconductors. Due to strong overlap of atomic orbitals observed in these conventional 

silicon based semiconductors, charge transport occurs in delocalized bands which are 

limited by the phonon (thermally induced lattice vibrations) scattering within the solid 

and show a very high single crystal charge carrier mobility (electron mobility, µe = 1430 

cm
2
/Vs, and hole mobility, µh = 466 cm

2
/Vs).

12
 Therefore, the mobility is lowered as the 

temperature increases.  In contrast, even after tremendous advances in the field of organic 



 

3 

 

semiconductors over several decades, the exact charge transport mechanism in organic 

electronic materials is a frequently contested subject.  Part of the confusion arises because 

there are various methods to determine the electrical characteristics of organic electronic 

materials, including time-of-light (TOF), space charge limited current (SCLC), and field-

effect transistor (FET) measurements.
13-17 

In chapter 3 and 4, I will describe the electrical 

properties of functionalized anthradithiophenes that have been measured by organic FET 

studies. A detailed structure of a field effect transistor, followed by its study in the 

developments of organic semiconductors, will be discussed in the following sections.
 

 

1.3 Organic Field Effect Transistors (OFETs) 

    In principle, a FET acts as a capacitor, as first proposed by Lilienfeld in 1930.
18 

However, it was only after the introduction of the silicon-based metal-oxide-

semiconductor FET (MOSFET) concept in 1960, that FETs became an important element 

in modern microelectronic chips.
19

 Even though they are not expected to compete with 

high performing crystalline silicon-based FETs, organic semiconductor based devices 

have the potential to overcome amorphous silicon (a-Si:H) based transistors (hole 

mobility in the range of 0.1 - 1 cm
2
/Vs) where low on-off switching speed is required. In 

1970, the first organic FET was described when FET measurements were carried out on 

the surface of metal-free phthalocyanine (2, Fig. 1.2a).
20

 The first organic semiconductor 

based thin-film transistor was demonstrated in 1987 by Koezuka et al. when 

electrochemically polymerized polythiophene (3, Fig. 1.2b) showed  thin film hole 

mobility of 2 x 10
-5

cm
2
/Vs.

21, 22
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   In field effect transistors, the conductivity or flow of charges across the semiconducting 

material is influenced by the voltage applied at the gate electrode with respect to source 

(Fig. 1.3). The organic field effect transistor plays a critical role in carbon based 

electronics, and the success in the development of these organic electronic devices 

mainly relies on improved charge career mobility of organic semiconductors and reduced 

operation voltage of the transistors. The architecture of an OFET is generally similar to 

that of thin film transistor (TFT) based on amorphous hydrogenated silicon. 

Figure 1.2 a. Phthalocyanine                                    b. Polythiophene 
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   An organic thin film transistor (OTFT) consists of three major components; three 

electrodes (source (S), drain (D), and gate (G)), a dielectric layer (insulator), and an 

active organic semiconductor layer. It can be constructed either with top-contact or 

bottom-contact geometry (Fig. 1.3 b and a, respectively). In the top-contact devices, an 

active organic semiconductor layer (OSL) is first deposited on the dielectric, and then the 

two electrodes (source and drain) are evaporated through a shadow mask. In the bottom-

contact device, the source and drain electrodes are pre-patterned on the dielectric, and 

then the organic layer is deposited on top of them.  



 

5 

 

Figure 1.3 Two types of organic thin film transistor device configuration: 

 

 

a. Bottom-Contact Configuration 

 

 

b. Top-Contact Configuration 

        

    The current flow between the source and drain electrodes is controlled by the applied 

gate voltage. When no voltage is applied at the gate electrode, there will be low or no 

current, and the transistor is said to be off. When the gate voltage is applied, charge 

carriers (holes or electrons depending on the polarity of gate voltage) will be accumulated 

at the interface between the dielectric and the organic semiconductor layer due to the 

polarization of dielectric. The charge carriers will allow current flow between the source 

and drain electrodes under applied voltage, and the transistor is on.  



 

6 

 

       The potential usefulness of an OTFT is mainly determined by four important 

parameters; First, charge carrier mobility (µ), which is the drift velocity of charge carriers 

in the conducting channel (the region covered between source and drain electrodes) under 

electric field (measured in cm
2
 / Vs). Second, the on / off current ratio (Ion / off) is the ratio 

of current flow between the source and drain electrodes at the on state of the transistor to 

that of off state. Third, threshold voltage (VT) is the voltage required at the gate electrode 

to induce the current flow in the channel. And, finally, the sub-threshold slope (S), 

determines how fast the device can switch back to the on state in the region of 

exponential current increase from the off state. 

 

Figure 1.4 Output characteristics of a typical OFET 

 

 

 



 

7 

 

   At constant gate voltage (VG), as the drain-source voltage (VSD) increases, the current 

flow in the conducting channel increases almost linearly and then gradually saturates at 

higher VSD (see Fig. 1.4).The source-drain current (ISD) generated in the linear and 

saturation regions can be calculated by the following equations. 

For the linear region,  

ISD, Linear = (CiWµFET / L) (VG-VT)VSD 

For the saturation region, 

ISD, Saturation = (CiWµFET / 2L) (VG-VT)
2

 

Where Ci is the capacitance of the dielectric, W and L are the distance across the 

conducting channel, channel width and distance between the source and drain electrodes, 

conducting channel length respectively, VT is the threshold voltage, and µFET is the 

charge carrier mobility. 
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Figure 1.5 Examples of p-type organic semiconductors 
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    In general, organic semiconductors can be classified into two categories; p-type 

(majority hole carriers) and n-type (majority electron carriers) depending on the density 

of states in the energy band  – a high dispersion in the valence band for p-type materials, 

and high dispersion in the conduction band for n-types. Energy levels in organic materials 

can be tuned through functionalization. Electron donating groups such as alkyl, 
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Figure 1.6 Examples of n-type organic semiconductors 
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alkoxy, amino are used to synthesize p-type organic materials. On the other hand, 

electron withdrawing groups such as cyano, fluoro, nitro are used to make n-type 

materials. Figures 1.5 and 1.6 depict some examples of commonly studied p-type and n-

type organic semiconductors respectively.
23-34 

The active layer is usually deposited 

through either vacuum-sublimation or from solution.  

   The first solution processable organic semiconductor based FET was demonstrated in 

the late 1980s using the alkylated polythiophene poly(3-hexylthiophene),
35

 P3HT (16, 
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Fig. 1.7). Even though polymer based FETs produced highly uniform thin films over a 

large area, the performance of the devices was limited by the poor control of conjugation 

length,   

Figure 1.7 Poly (3-hexylthiophene) 

S n  

16 

and the difficulties in purification of polymers to remove impurities. Improving 

regioregularity (>91 % of head-tail linkages) of the P3HT thin film improved hole 

mobility to 0.1 cm
2
/Vs.

36
 Recently, using a dip coating technique which induced high 

regioregularity produced mobilities approaching 0.2 cm
2
/Vs.

37
  

   In contrast with polymeric systems, the solid state order of small molecules can be 

more effectively controlled by chemical modification. The addition of alkyl chains to the  

Figure 1.8 α, α’-diethylsexithiophene 
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17 

end of α-sexithiophene (6, Fig. 1.5) rings enhanced the molecular orientation and 

improved π-π  stacking of the oligomer layer, and the extracted thin film hole mobility of 

α, α’-diethylsexithiophene (17, Fig. 1.8) was around 1.1 cm
2
/Vs.

38, 39
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1.3.1 Functionalized Acenes and Derivatives 

   Pentacene (18, Fig. 1.9), an acene oligomer, has been extensively studied for OTFT 

devices because of its unique thin film forming ability.
40

 High performance pentacene 

based OTFTs with spin coated polymer dielectric layers were fabricated by Klauk and 

co-workers, 
41

 showing an extracted thin film hole mobility of 3 cm
2
/Vs and on/off  

Figure 1.9 Pentacene 

 

O O

18

 

 

current ratio of 10
5
. Further improvements on pentacene based devices are limited by 

herringbone interactions between neighboring molecules, insolubility in commonly used 

organic solvents, and poor oxidative stability. Typical pathways of pentacene degradation 

are endo-peroxide formation by interacting with singlet oxygen in air or dimerization at 

the central ring of the pentacene (Fig. 1.9). Earlier, our group overcame these problems 

through peri-functionalization of pentacene using trialkylsilyl groups as solubilizers and 

an ethynyl spacer was employed to avoid complete disruption of π-stacking between the 
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neighboring molecules due to the bulkiness of silyl substituents. It was found that the size 

of the silyl substituents determines the crystal π-stacking of the molecules. Improved π-

overlap and stability were imparted when the diameter of the silyl group is  

Figure 1.10 TIPS Pentacene 

Si

Si

 

19 

 

 

 

 

 

half the length of the length of the acene core. From X-ray crystal diffraction studies, the 

solid-state arrangement of 6,13-bis (triisopropylsilylethynyl)pentacene (TIPS pentacene, 

19) is found to be a two-dimensional π-stack (brickwork arrangement)
42

 with interatomic 

distances as close as 3.41Ǻ (Fig. 1.10). Recently, researchers at Penn State fabricated 

solution-processed TIPS pentacene OTFTs with thin film hole mobility of 1.21 cm
2
/Vs 

and On/Off current ratio of 10
7
.
43
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Figure 1.11 2, 8- dihexylanthradithiophene 
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Figure 1.12 TES Anthradithiophene 
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   Anthradithiophene, a pentacene analogue where the two terminal benzene rings are 

replaced by two thiophene units, shows greater stability over pentacene because of high 

energy barrier to oxidation. Katz et al. demonstrated that vacuum evaporated 2,8- 

dihexylanthradithiophene 20 (Fig. 1.11) formed high quality thin films with extracted 

charge carrier mobility of vacuum sublimed thin films as high as 0.15 cm
2
/Vs.

44
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   Applying our peri-functionalization approach to anthradithiophene also produced 

materials with excellent electronic properties. Our best performing functionalized 

anthradithiophene was 5,12-bis (triethylsilylethynyl)anthradithiophene (TES 

Anthradithiophene, 21) which adopts two-dimensional π-stacks with carbon-carbon 

interatomic distances as close as 3.25 Ǻ (Fig. 1.12). Our collaborator fabricated the 

solution processed TES anthradithiophene based OTFTs with extracted thin film hole 

mobility of 1.0 cm
2
/Vs. However, hole injection from the metal electrode is limited by its 

high oxidation potential (Eox = 904 mV).
45 

21 can easily be chemically tuned due to the 

presence of acidic hydrogens in the terminal thiophene rings of the acene core. In 

chapters 3-5, I will discuss my work on the chemical synthesis of functionalized 

anthradithiophenes in detail. 

 

1.4 Organic Solar Cells (OSC) 

     As natural energy sources such as coal, oil, and natural gas are depleted and the price 

of energy continues to rise, a high demand for renewable energy (such as solar, wind, 

hydroelectric, bio) production prevails around the world. According to a recent US 

department of energy report, the United States government spends 500 billion dollars
46

 

annually on energy production which is not really surprising since energy drives 

everything from businesses to transportation. The sun being a plentiful energy source on 

earth, solar energy has been widely recognized as an indispensable element to fulfill 

global energy needs. Otherwise known as a photovoltaic (PV) cell, a solar cell is a device 

which converts sunlight energy into electrical energy.  



 

15 

 

     Since the discovery of the photovoltaic effect in 1839,
47

 silicon-based photovoltaic 

cells have been predominantly utilized for the conversion of sunlight into electrical 

energy.  In 1954, the first crystalline silicon PV cell was developed by scientists at Bell 

Laboratories, and showed a 6% power conversion efficiency.
48

  The maximum efficiency 

predicted for crystalline Si (band gap = 1.1eV) based solar cell is 30%
49

 and 25% 

efficiency has already been achieved  from these conventional cells.
50

 Other inorganic-

based solar cells have produced even higher results.
51

 Spectrolab, a well known solar cell 

company, recently developed a solar cell that can harvest energy at up to 36% 

efficiency.
52

 However, installations of these traditional inorganic semiconductor based 

power plants are very expensive and an alternative to reduce the cost of energy 

production is a desperate objective. The process of refining silicon is highly resource and 

cost-intensive. (the cost of a silicon chip factory is more than $ 1 billion
53

) The thirst for 

developing inexpensive renewable energy sources encourages effective research on low-

cost solar cells. 

1.4.1 Important Parameters: 

The performance of a PV device is determined by the following four important 

parameters.  

(i) Power conversion efficiency (η) is the number relating the amount of power 

generated from a PV cell to the energy of incident photons. This value is decided by the 

absorption efficiency of the thin film (ηabs), exciton dissociation efficiency (ηdiss) into 

electrons and holes, and charge collection efficiency (ηcoll) at the electrodes.  The overall 

power conversion efficiency can be determined as 

ηoverall = ηabs x ηdiss x ηcoll 
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Figure 1.13 Current –Voltage plot of a photovoltaic (PV) cell 

 

 

 

(ii) Short circuit current (Isc) is the maximum current that one can generate through an 

external circuit that has no load or resistance upon illumination.  

(iii) Open circuit voltage (Voc) refers to the maximum possible voltage across a PV cell 

when no current is flowing. Usually, Voc is determined by the difference between the 

work functions of the two metal electrodes used. However, in many organic systems a 

deviation from this definition is also observed.
54

 

(iv) Fill Factor (FF) measures the squareness of fourth quadrant in the I-V curve, hence 

the performance of the PV cell. This can also be defined by the ratio of the maximum 

power point (Fig. 1.13) output to the maximum possible power that can be generated 

when the current and voltage are at their maximum (ie, Isc and Voc respectively). Hence, 

FF can be expressed as 
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FF = ImppVmpp /ISCVOC 

and, the power conversion efficiency can be rewritten as 

η = ISCVOCFF/ Pin 

 

   In traditional inorganic solar cells, the absorption of photons generates electron-hole 

pairs evenly distributed in the semiconductor layer and the photocurrent is controlled by 

the electrostatic field generated across the cell due to the drift of charge carriers 

(electrons and holes).  

1.4.2 Organic Photovoltaic Processes 

The process of converting light energy into electrical energy in an organic PV is executed 

by the following five consecutive steps (Fig. 1.14).  

Figure 1.14 light conversion steps in an organic PV cell 

 

 

 

(i) Absorption of photons in the solar spectrum results in the photogeneration of excitons 

(mobile electron-hole pairs). This is mainly affected by the absorption coefficient of the 

organic material and the thickness of the organic film. 

(ii) Diffusion of photoexcited excitons in the organic thin film to reach the dissociation 

sites. This is affected by the lifetime of the excitons and the exciton diffusion length.   
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 (iii) Charge separation of electron-hole pairs into individual charge carriers when 

excitons reach the dissociated sites (usually, the organic donor–acceptor interface or the 

organic- metal electrode interfaces).  

(iv) Charge transport of the electrons and holes in the organic semiconductor layer to the 

organic-electrode interface. 

(v) Charge collection at the conductive electrodes to supply a direct current (DC) for 

power generation. Holes will be collected at the high work function electrode and 

electrons will be collected at the low work function electrode. 

   The first organic photovoltaic was investigated in 1958 by Kallmann and Pope when an 

anthracene thin single crystal was examined by placing the crystal between two 0.01M 

NaCl solutions and Ag electrodes were used to make contact with the solutions.
55

 The PV 

cell exhibited a photovoltage of 200 mV with an exceedingly low efficiency of 2 X 10
-6

. 

Since then, various device architectures have been introduced by different research 

groups in order to improve the power conversion efficiency of an organic PV cell. Here, I 

describe three of the device structures and their advantages over one another. Fig. 1.15 

depicts the three different architectures of organic PV cells. One of the common criteria 

of all these device structures is one of the the two electrodes used in the solar cell should 

be at least semi-transparent in order for light to pass through the film, and two major 

differences between them lie in the exciton dissociation and charge transport processes.  
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Figure 1.15 Different architectures of an organic solar cell. a. single layer organic 

solar cell. b. Bilayer heterojunction PV cell and c. Bulk heterojunction PV. 

 

 

1.4.3 Different architectures of OSCs 

(a) Single layer PV cell 

   The first organic PV cells were investigated on a single thermally evaporated or spin-

coated organic semiconductor layer sandwiched between two different metal electrodes. 

One of the electrode interfaces in this is assumed to be an Ohmic-contact, and the other 

end is considered to be Schottky diode since exciton dissociation occurs at the rectifying 

metal-semiconductor junction. A recent study on MEH-PPV (27) based devices 

proclaimed that only 10% of excitons were dissociated into free charge carriers and that 

is attributed to the high exciton binding energy and recombination of free carriers after a 



 

20 

 

very short time.
56

 Although it is the simplest form of all PV cells, the typical single layer 

PV cell light conversion efficiency still remains below 0.05%.
57

 

(b) Bilayer heterojunction PV cell 

   A major discovery in the field of organic solar cells was the introduction of a novel 

single-heterojunction approach in 1986 by C. W. Tang of Eastman Kodak Company,
58

 

where electron acceptor material (A) and electron donor material (D) are deposited 

separately with a planar interface and the bilayer is sandwiched between two different 

electrodes. The organic layers can be deposited either through vacuum evaporation or 

from solution techniques such as spin-coating. Electrodes are chosen according to the 

work function of the metal electrodes and energy levels of the organic semiconductors for 

the best charge injection (low work function electrode is near the electron-acceptor layer 

and high work function electrode for the electron-donor organic material). Since the free 

charge carriers (electrons and holes) generated after the exciton dissociation at the donor-

acceptor interface move in the pure layers (either n-type or p-type) towards their 

corresponding electrodes, the recombination pathways in this type of PV cell are 

significantly reduced. 

   Since the organic semiconductor molecules are bound by weak van der Waals 

interactions, high charge carrier mobility is required in order to drive the free charge 

carriers generated at the D-A interface to their respective electrodes. During the 

photoexcitation process, an electron is promoted from the HOMO energy level to the 

LUMO of the donor molecule. If the potential difference between the ionization potential 

of the donor and the electron affinity of the acceptor is larger than the exciton binding 

energy, then the photoexcited electron in the LUMO of donor will transfer to LUMO of 
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the electron acceptor material provided the HOMO the donor is higher than HOMO of 

the acceptor molecule so that the hole will remain in the HOMO of the donor material. 

This is commonly known as photo-induced charge transfer.  On the other hand, if the 

HOMO of the electron acceptor material is higher than that of the donor, then the 

photogenerated exciton will be completely transferred through energy loss to the low 

band gap material. This process is called energy transfer. 

   The first bilayer organic PV cell consisted of 3, 4, 9, 10 - perylenetetracarboxyl-bis-

benzimidazole (25, electron acceptor layer) and copper phthalocyanine (electron-donor 

layer), and produced a power conversion efficiency of about 1%. Since then many 

different material combinations have been employed in bilayer devices.
59

 Solar cells 

made from sequential spin-coating of p-type poly(p-phenylene vinylene) (PPV, 7) and n-

type conjugated ladder polymer poly (benzimidazobenzophenanthroline ladder) (BBL, 

23) produced a power conversion efficiency of 2%.
60

 Forrest et al. demonstrated vacuum-

evaporated copper phthalocyanine (CuPc) / 3,4,9,10- perylenetetracarboxylic-bis-

benzimidazole (PTCBI, 25) thin film bilayer heterostructure organic PV cells 

incorporating an exciton blocking layer (EBL) with an external power conversion 

efficiency of 2.4%.
61

  

   By replacing the electron acceptor material PTCBI with C-60 (10), the solar cell 

efficiency increased to 3.6%.
62

 The same research group recently achieved power 

conversion efficiency of 4.2% under simulated Air Mass 1.5G solar spectrum (4 -12 suns 

intensity) with low series resistance and the FF of >0.6%.
63

 One of the drawbacks of 

these bilayer heterojunction PV devices is that only photogenerated excitons that are 10-

20 nm or closer to the D-A interface will dissociate into free carriers. In other words, if 
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the thickness of the individual layers is larger than the exciton diffusion length, then the 

free charge carriers (electrons and holes) generated tend to recombine. This leads to the 

low photon to power conversion efficiency of the solar cells. On the other hand, if the 

active layers are very thin, then, less amount of light is absorbed which leads to low 

currents. 

(c) Bulk heterojunction PV cell 

   The significance of the bulk heterojunction is to increase donor-acceptor (D-A) 

interfacial area in such a way that the distance between each D-A interface is less than the 

photogenerated exciton diffusion length of each photon absorbing site. This type of PV 

cell is made from an intimate blend of electron acceptor and electron donor molecules 

deposited between two different electrodes (see Fig. 1.15). The bulk heterojunction can 

be achieved by either co-vacuum-evaporation of small molecules or by depositing 

mixtures of polymers or small molecules from solution. Currently, this device structure 

becomes cynosure of organic PV scientific research due to low-cost solution processing 

techniques such as spin-coating, screen printing and ink-jet printing that can be used over 

large areas on flexible substrates. Since the discovery of two layer heterojunction PV 

cells in 1986, many material combinations have been extensively studied for improved 

power efficiency of organic solar cells.
64

 

   In 1995, Yu et al, demonstrated the first organic bulk heterojunction cell employing 

mixture of a soluble conjugated polymer (poly(2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-

phenylene vinylene, (MEH-PPV, 26)) as an electron donor and a soluble fullerene 

derivative (methanofullerene (6,6)-phenyl c61-butyric acid methyl ester, (PCBM, 22)) as 

an electron acceptor.
65

  A major breakthrough in BHJ solar cells happened when Shaheen 
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et al. obtained 2.5% power conversion efficiency by mixing a p-type conjugated polymer 

(poly(2-methoxy-5-(3’,7’-dimethyl-octyloxy)-p-phenylene vinylene), (MDMO-PPV, 24)) 

and the soluble n-type PCBM in 2001.
66

 The performance of the device is affected by 

nanoscale morphology of the thin film and observed threefold improvement when they 

changed the solvent from toluene to chlorobenzene. Atomic force microscopic (AFM) 

studies suggested that the tendency of PCBM molecules to form clusters due to phase 

segregation is reduced when chlorobenzene is used compared with toluene as the solvent. 

Recent results show that the pristine PCBM crystals exhibit high degree of intermolecular 

coupling when they were grown from chlorobenzene instead of toluene.
67 

    Research on conjugated block co-polymers has received attention very recently 

because of their ability to form self-organized nanostructures. Romero et al. found that 

the molecular morphology and the PV characteristics of the devices are strongly affected 

by the block copolymer concentration of the blend.
68 

 

   BHJ solar cells based on polythiophene derivatives as photon absorbing materials have 

shown very promising results with power conversion efficiency of > 4.4%.
69 

Previous 

results confirm that the thin film morphology can be controlled by post-fabrication 

annealing techniques or controlled solvent evaporation rate.
70

 Very recently, Bazan et al. 

discovered that by incorporating a few volume percent of alkanedithiols in the blend of 

low band gap polymer (poly(2,6-(4,4-bis-(2-ethylhexyl)-4H-cylcopenta(2,1-b;3,4-b’)-

dithiophene)-alt-4,7-(2,1,3-benzothiadiazole), (PCPDTBT, 27)), and PCBM before spin-

casting increased the cell efficiency from 2.8 % to 5.5 % without the use of any post-

annealing methods.
71

 They suggested that addition of dithiols to the solution induces the 
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physical interaction between the polymer chains and/or between the polymer and 

fullerene phases. 

Figure 1.16 Examples of Organic photovoltaic materials 

OCH3

O

N

N

O

N

O

N n

N

O

N

O

N

N

O

O

n

O

O n

10 22

23 24

2625  

 Figure 1.17 Structure of PCPDTBT 

S
S

N
S N

n

 

27 



 

25 

 

   One of the challenging problems of the bulk heterojunction devices is to generate phase 

separated domains in the bulk smaller than the exciton diffusion length in order to avoid 

recombination losses of free charge carriers. The second demanding problem is inducing 

a percolating pathway (interpenetrating network) in the bulk volume of the organic 

semiconductor layer so that the free charge carriers can easily travel towards their 

respective electrodes. In chapter 3, I will describe the success of our alkylated 

functionalized anthradithiophenes in the fully solution processed organic solar cell. 

 

1.5 Objectives of functionalized pentacene and anthradithiophene researchs 

    In the following four chapters, I will describe the synthesis and device characterization 

of functionalized pentacenes and anthradithiophenes. Chapter 2 will relate my attempts to 

functionalize pentacene in order to induce liquid crystallinity, and studies of the thermal 

properties of these compounds. Chapter 3 will describe the blocking of the active C – H 

bonds in the terminal thiophene rings of the anthradithiophene core using alkyl chains for 

the improvement of chemical and thermal stability, high solubility and their applications 

in organic thin film transistors and bulk heterojunction layer organic solar cells. Chapter 

4 will detail the synthesis of halogen substituted functionalized anthradithiophenes and 

the application of fluorinated anthradithiophenes in organic thin film transistors as well as 

organic single crystal transistors. In chapter 5, I will describe my attempts to increase the 

conjugation length of the heteroacene core and will outline the outcome of all of my 

investigation along with prospective ideas to improve the performance of OTFTs and 

OSCs. 

 

Copyright © Sankar Subramanian 2008 
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Chapter 2: Thermotropic Functionalized Pentacenes 

2.1 Liquid Crystalline Materials     

       Theoretically, liquid crystalline materials exhibit properties in-between perfect solid 

phase (with properly aligned positional and directional order) and isotropic liquid phase 

(disordered) materials, and possess some orientational order and partial positional order. 

Their physical properties can be easily affected by external influences such as pressure, 

temperature, applied electric and magnetic fields, and different composition of mixture. 

Depending on their behavior under external circumstances, liquid crystals (LCs) can be 

mainly classified into two categories. First, thermotropic liquid crystals, which undergo 

phase transition upon varying the temperature. Second, lyotropic liquid crystals, which 

show phase transition due to change in concentration of the mesogen (a fundamental unit 

which determines the orientational order in the liquid crystals) in a solvent as well as 

temperature.  When a polarized light is passed through the LCs, they exhibit different 

textures of characteristic liquid crystalline phases (such as birefringence). Each texture is 

related to the orientation of the molecules in one direction.  

 

2.2 Liquid Crystalline Materials for Organic Electronics 

     Due to low-cost manufacturing and the possibility to deposit them over large areas, 

organic π-conjugated materials have been identified as potential fundamental constituents 

in the development of carbon-based electronics. Very recently, the employment of liquid 

crystalline materials has become a promising novel approach in improving the 

performance of organic electronic devices
72-76

 since they can self-organize themselves to 

form uniform thin films. The breakthrough in the liquid crystalline materials approach in 
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thin film organic electronics came from the success of discotic (disc-like structure) liquid 

crystals developed by Adam and co-workers in the early 1990s.
77

 They found that the 

highly ordered columnar stacked molecule, 2, 3, 6, 7, 10, 11-hexahexylthiotriphenylene 

(28, Fig. 2.1) exhibits charge carrier mobility of 0.1 cm
2 

/ Vs, which is in the range of 

hole mobility shown by amorphous silicon. 

Figure 2.1 2, 3, 6, 7, 10, 11 - Hexahexylthiotriphenylene (28) 
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         Rod-like (calamitic) liquid crystal structures have the advantage of achieving two-

dimensional maximum π-stacking solid state arrangements required for high performance 

of OTFTs, in contrast to the one-dimensional columnar π-stacking of discotic materials. 

Garnier et al., demonstrated that the end-substitution of quarterthiophene with alkyl 
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groups improved the morphology of the thin films as compared to unsubstituted 

quarterthiophene (4T). Both spin-coated and vacuum deposited α, ω -

dihexylquarterthiophene (DH4T, 29) OTFTs produced extracted hole mobilities of 10
-2

 

cm
2
 / Vs, due to the highly ordered structure within the thin films.

78
  

Figure 2.2 (a) α, ω -dihexylquarterthiophene (29), (b) 5,5” -bis(5-hexyl-2-

thenylethynyl)-2,2’:5’,2’ -terthiophene (30) 
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 Recently, Van Breemen et. al developed calamitic liquid crystalline materials that 

formed thin films with large area coverage. Thermally annealed spin-coated thin films of 

30 resulted in the formation of monodomains up to 150 mm in diameter, showing 

saturation hole mobility as large as 0.02 cm
2
 / Vs. This high thin film hole mobility was 

attributed to the absence of domain boundaries of the thin film on the substrate.
79

 Most 

recently, Bao el. at at Stanford University used a photoalignment technique in solution 

deposited liquid crystalline polymer and small molecule semiconductor based OTFTs to 

improve the morphology of the thin films.
80

 This method has been remarkably helpful in 

avoiding sample contamination, static charge generation and reducing the high degree of 
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surface roughness at the dielectric interface that were caused by traditional techniques 

used for alignment of LC molecules. 

 

2.3 Alkynyl Pentacenes: 

     Though an extensive research on pentacene (18) based electronic devices has been 

done for many years due to its excellent thin film forming ability,
40

 its poor solubility, 

oxidative instability under ambient conditions, and herringbone crystal packing has 

restricted commercial applications. Earlier, the Anthony group overcame these problems 

by means of a peri-functionalization approach using trialkylsilylethynyl groups. 19 

adopts a two dimensional π-stacking with the closest interatomic carbon-carbon distance 

of 3.41 Ǻ as shown in Fig. 1.11. The extracted mobility of 19 from a solution-cast device 

is reported as 1.21 cm
2 

/ Vs.
43

 However, the thin film made from the solution processable 

techniques (such as spin-coating and drop-casting) were not uniform (see Fig. 2. 3).  

Figure 2.3 As-Spun Thin Film Image of 19 
81 

 

     There are many post-fabrication methods, such as solvent vapor annealing and thermal 

annealing that have been commonly used in the organic electronics field in order to 

improve the morphology of thin films.  Upon thermal annealing of spin-cast thin films, 
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19 exhibits thermal cracking (see Fig. 2.4) in the long-axis orientation, which was studied 

by our collaborators at University of Michigan using Hot-Stage Optical Microscopy 

(HSOM). 

Figure 2.4 Thermal cracking of thin films made of 19.  

 

Differential Scanning Calorimetry (DSC) experiments showed a reversible endothermic 

peak at 124 °C before 19 melts at 268 °C.
82 

These data confirm the presence of thermally 

induced solid-state phase transition in the as-deposited crystalline thin film of 19 that 

causes the cracking.  

     For this project, my goal was to design soluble, low-melting functionalized pentacenes 

with liquid crystalline properties in order to produce high quality thin films on the 

devices. The hypothesis of this project is: first, deposit the organic semiconductor layer 

on the substrate through a solution-based technique, second, thermal annealing the active 

layer followed by slow cooling will induce the alignment of the molecules in one 

direction due to liquid crystallinity, to form continuous high quality thin films. From the 

previous studies, it is well understood that liquid crystals are generally made with rigid π-

electronic chromophore as the central part of the molecule, which induces the directional 



 

31 

 

order in the system, and flexible alkyl chains on the terminal or peripheral positions, 

which induce the self assembly of the molecules on the substrate. My first approach was 

to introduce alkyl groups at the peri-positions of  

Figure 2.5 Pictorial representation of calamitic LC 

 

 

R = substituent 

 

the pentacene ring. To avoid difficulties in synthesis, ethynyl groups were utilized as a 

bridge between alkyl group and acene chromophore. Alkyl groups were chosen not only 

to induce liquid crystallinity but also to increase the solubility of the molecule. 

    Synthesis of 6,13-di(alkynyl) pentacenes were done in a straight forward two-step 

process (see Scheme 2.1). In the first step, quadruple aldol condensation of 

phthalaldehyde (31) and 1,4-cyclohexane dione (32) in THF / absolute ethanol (EtOH) 

solvent mixuture  was carried out to generate pentacene-6,13-quinone (33) in nearly 

quantitative yield which immediately came out of the reaction mixture as bright yellow 

precipitate with the addition of a few drops of 15 % potassium hydroxide (KOH) 

solution.
83 

And, in the second step, the lithium alkyl acetylide in THF was added to 33 at 

room temperature, and the mixture was allowed to stir overnight. It was followed by the 

deoxygenation of the resulting diol in-situ with stannous chloride dihydrate / 10 % 
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aqueous hydrochloric acid to yield the desired alkynyl pentacenes (34 - 38) in moderate 

to good yields. They were easily purified by chromatography  

 Scheme 2.1 Synthesis of 6,13-di(alkynyl) pentacene derivatives 
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 and recrystallization.  It should be noted that the higher alkyl chain pentacenes (37 and 

38) tend to decompose on exposure to air and light for more than 1h.  

     Functionalized pentacenes 34 - 36 formed dark blue crystals which were stable 

enough to analyze by single crystal X-ray diffraction. On the other hand, with higher 

alkyl chain lengths on the acene chromophore, both 37 and 38 tend to decompose 

yielding orange crystals. The thermal ellipsoid plots of 34 - 36 are shown in Fig. 2.6 
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Figure 2.6 Thermal ellipsoid plots of 34, 35 and 36. 

 

 

 

Single-crystal XRD studies reveal that 34 adopts a one-dimensional pi-stacking 

arrangement with the closest interatomic carbon-carbon distance of 3.41 Ǻ. On the other 

hand, 35 and 36 didn’t show any π-face interactions within the system. It is observed that 

as the length of the alkyl chain increases, the aryl-aryl π-face interaction becomes an aryl-

alkyl interaction with no π-interactions between the neighboring molecules. In other 

words, longer alkyl groups act as an insulating layer between the π-systems (see Fig. 2.7). 

35 is found to be the most unstable derivative in the solid state due to close interaction 

between the rigid aromatic core and the ethynyl spacer. 
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Figure 2.7 π-Stacking of Alkynyl Pentacenes: a. Hexynyl Pentacene (34), b. 

Heptynyl Pentacene (35), c. Octynyl Pentacene (36). 
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Figure 2.8 UV-vis absorption spectra of 34 and 53. 

 

 

 

Figure 2.9 Electrochemistry of 34 (Ferrocene was used as an internal standard. Cyclic 

Voltammetry experiment was carried out using 0.1 M solution of Bu4NPF6 in 

dichloromethane as an electrolyte with the scan rate of 150 mV / s.) 

 

 

 

    The UV-vis absorption spectra of 6,13-alkynyl pentacenes recorded in dichlormethane 

show a characteristic maximum long wavelength absorption (λmax) of 635 nm  (see Fig. 

2.8) and the electrochemical measurements demonstrate that these alkynyl pentacene 

derivatives exhibit a reversible oxidation centered at 0.72 V vs SCE (see Fig. 2.9).  
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    The possible explanation for the relatively low stability of 6,13-di(alkynyl) pentacene 

derivatives (34 - 38)  could be due to either endo-peroxide formation, the dimerization of 

π-electronic core, or intermolecular reaction between the alkyne and the aromatic core. 

From our group’s earlier empirical model for peri-functionalizing pentacene,
40

 it is 

understood that we need to have bulky groups at the peri-positions of pentacene in order 

to avoid the possible degradation pathways, hence, improving the stability of the acenes. 

Keeping this concept in mind, my next strategy  

Figure 2.10 Alternative Route to Induce Liquid Crystallinity to Pentacene. 

 

 

to synthesize stable functionalized pentacenes with liquid crystallinity was to introduce 

bulky silyl groups at the peri-positions of the acene chromophore. Having shown high 

stability, solubility in most organic solvents and strong π-stacking between the 

neighboring molecules, 19 has become an excellent benchmark molecule for the peri-

functionalization of the acene ring chromophores. In order to induce the liquid 
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crystallinity into the system, I replaced one of the isopropyl groups of the silyl ball in 19 

with a flexible alkyl group, varying the alkyl chain length as shown in Fig. 2.10.  

Scheme 2.2 Synthesis of Diisopropylalkyl Silyl Pentacenes. 
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2.4 Diisopropylalkylsilyl Pentacenes  

      Acene derivatives (50 - 54) are made in a four-step process starting from 

dichlorodiisopropyl silane (39) as shown in Scheme 2.2. Addition of equimolar quantities 

of alkyl lithium and lithium trimethylsilyl acetylide to 39 is the key to generate 

trimethylsilyl protected diisopropylalkyl silyl acetylenes (40 - 44) in good yields. 

Subsequent deprotection of trimethylsilyl groups from 40 - 44 using potassium carbonate 

in methanol yields silyl acetylenes 45 - 49 in very good yields. The desired functionalized 

pentacene derivatives (50 - 54) were made using a similar approach to that used for 
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synthesizing alkynyl pentacenes (34 - 38). For purification, elution of the reaction 

mixture through a silica gel pad was carried out using hexanes / dichloromethane. 

Figure 2.11 Thermal ellipsoid plots of 50, 51, 53 and 54. 
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solvent mixture. Evaporation of solvent followed by recrystallization in hexanes 

produced 50 - 54 as dark blue crystals, which were then analyzed by X-ray  

Figure 2.12 π-Stacking of Diisopropylalkyl Silyl Pentacenes. 

 

 

 

crystallography. They are observed to be highly stable both in solutions and in their 

crystalline forms. 

    Single-crystal XRD studies reveal that both 50 and 51 adopt one-dimensional π-

stacking arrangements with the closest carbon-carbon contact distance of 3.39 and 3.44 Ǻ 

respectively. However, as the alkyl chain length on the silyl group increases, alkyl-aryl 
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interactions again dominate, as seen in the functionalized pentacene derivatives 53 and 54 

(see Fig. 2.11 and 2.12). Unfortunately, crystal packing of 52 couldn’t be derived since it 

didn’t diffract well during the XRD study. UV-vis spectroscopy and cyclic voltammetry 

studies report that these 6,13-bis(diisopropylalkylsilylethynyl) pentacenes show a 

maximum absorption peak (λmax) of 645 nm and an oxidation potential of 0.84 V vs SCE 

respectively, similar to 19 (see Fig. 2.13).  

Figure 2.13 Electrochemistry of 53 (Ferrocene was used as an internal standard. Cyclic 

Voltammetry experiment was carried out using 0.1 M solution of Bu4NPF6 in 

dichloromethane as an electrolyte with the scan rate of 150 mV / s.) 

 

 

 

    The thermal and morphological studies on the pentacene derivatives I synthesized were 

done by the Martin group at the University of Michigan, Ann Arbor. Study on thermal 

stability of these functionalized pentacenes 34 - 38 and 50 - 54 were carried out by 

Differential Scanning Calorimetry (DSC). It was observed that all the alkynyl pentacenes 

(34 - 38) tend to decompose before melting, at temperatures below 150°C (Fig. 2.14). 

Also, as the length of the alkyl chain increases the decomposition point decreases. This  
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Figure 2.14 DSCs of 6,13-di(alkynyl) pentacenes (34 - 38). 

 

 

 

Figure 2.15 DSCs of 6,13-bis(diisopropylalkylsilylethnyl) pentacenes 50 - 54 and 19. 
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result correlates well with our earlier observation from the single-crystal XRD studies 

that alkyl-aryl interactions become predominant as the length of the alkyl chain increases. 

    The presence of silyl groups on the acenes helped to improve their thermal stability 

which was demonstrated by DSCs of 50, 19 and 52 with melting points of 226 °C, 263 °C 

and 220 °C respectively (Fig. 2.15).  As the alkyl chain length on the silyl group 

increases the melting point can decrease dramatically as shown by acenes 51, 53 and 54, 

which melt at 142°C, 99°C and 68°C respectively.  The decrease in melting point also 

correlates with a decrease in the amount of π-stacking observed in the crystals. It is also 

noticed that 19, 51 and 53 exhibit one or more sub-melting phase transitions. Especially, 

53 shows three sub-melting phase transition before its melting point which suggested the 

possibilities of thermotropic crystalline phases.  

Figure 2.16 Proposed pathway of decomposition. 

 

R = silyl group 
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    The DSCs on diisopropylalkylsilyl pentacenes (50 - 54) also reveal the fact that those 

molecules with low melting point, show a broad decomposition point centered at 180 °C. 

This could possibly be due to a Diels-Alder reaction between the ethynyl portion of one 

molecule and the pentacene chromophore of the other molecule in the melt as shown in 

Fig. 2.16. The acenes which have high melting point decompose immediately upon 

melting, which could be explained by the ability of molecules in the melt to arrange 

themselves in such a way to undergo Diels-Alder reaction. The reversibility of heating 

curve of all these pentacene derivatives (50 - 54) was noticed if they are heated only up to 

150°C. Thin film morphology of alkynyl (34 - 38) and diisopropylalkylsilylethynyl 

pentacenes (50 - 54) were studied by solution casting them in THF on a clean glass slide. 

From the bright-field transmission electron microscopy (TEM) and optical microscopy 

data, it was observed that 51, 52 and 53 form larger crystalline domains than 50 and 54, 

suggesting that the π-stacking solid state arrangement in the crystal is affected by too 

long (octyl) or too short (ethyl) alkyl groups.  

Figure 2.17 Optical micrographs of the functionalized pentacene thin films made of 

35 and 53. 
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The effect of evaporation rate on the thin film morphology was studied by two different 

sets of experiments. One is with a cover on the as-deposited film and the other is without 

the cover on. For both alkynyl and diisopropylalkylsilyl pentacenes, uncovered drying 

was found to be more advantageous since prolonged existence of molecules in solution 

(in air) led to decomposition. Hence, higher evaporation rate is required to form 

crystalline films.  Optical micrographs reveal that diisopropylalkylsilyl pentacenes form 

birefringent crystalline thin films. On the other hand, alkynyl pentacenes form non-

birefringent amorphous thin films (see Fig. 2.17).  

   This project demonstrated that 6,13-di(alkynyl) pentacene derivatives (34 - 38) are 

stable enough to do UV, NMR and electrochemical studies, and a number of derivatives 

could also be analyzed through single crystal XRD. We observed that their stability 

decreases as the alkyl chain lengths increase.  My approach to use the silyl groups 

dramatically improved the stability of the molecules. Even though the possibility of 

thermotropic liquid crystalline phases could be observed from the DSC of 53, due to the 

lack of any π-stacking interactions, it is not a suitable organic semiconductor for high 

performance electronic devices. 

 

2.5 Experimental Details 

General Procedure for 6,13-di(Alkynyl) Pentacene. 

          To an oven dried 100 mL single necked round bottom flask, n-BuLi (2.5 mmol) 

was added slowly to 1-alkyne (4.6 mmol) in dry THF (25 mL) under N2 atm and stirred 

for 40 minutes at RT. Then, 33 (0.25 g, 0.8 mmol) was added very quickly, to avoid 

quenching of the lithium acetylide by moisture in air, and the mixture was stirred 
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overnight at RT. The next day, stannous chloride dihydrate (2 mmol) followed by 10% 

HCl (2mL) was added and the reaction mixture was stirred for 7 hrs. It was then extracted 

into hexanes, washed with saturated brine solution, dried over anhydrous MgSO4 and 

concentrated. The crude products were purified by silica plug using hexanes / methylene 

chloride (9 / 1).  

6,13–di(hexynyl) Pentacene (34). Yield = 0.28 g (80 %), M. P. = 83 °C (dec). 
1
H NMR 

(200 MHz, CDCl3):  1.15 (t, J = 7.2 Hz, 6H), 1.74-1.99 (m, 8H), 2.95 (t, J = 6.8 Hz, 4H), 

7.39 (dd, J = 3.0 Hz, J = 6.6 Hz, 4H), 8.01 (dd, J = 3.0 Hz, J = 6.4 Hz, 4H), 9.18 (s, 4H) 

ppm. 
13

C NMR (50 MHz, CDCl3):  13.93, 20.46, 25.52, 31.43, 79.11, 105.69, 118.52, 

125.92, 126.34, 128.94, 130.73, 132.32 ppm. MS (EI 70 eV) m/z 438 (100 %, M
+
), 395 

(35 %, M
+
 - Propyl). 

6,13–di(heptynyl) Pentacene (35). Yield = 0.28 g (75 %), M. P. = 115 °C. 
1
H NMR (200 

MHz, CDCl3):  1.06 (t, J = 7.2 Hz, 6H), 1.50-1.61 (m, 4H), 1.7 (quintet, J = 7.0 Hz, 4H), 

1.97 (quintet, J = 7.0 Hz, 4H), 2.94 (t, J = 6.8 Hz, 4H), 7.39 (dd, J = 2.8 Hz, J = 6.8 Hz, 

4H), 8.01 (dd, J = 3.2 Hz, J = 6.4 Hz, 4H), 9.20 (s, 4H) ppm. 
13

C NMR (50 MHz, 

CDCl3):  14.31, 20.76, 22.57, 29.03, 31.66, 79.13, 105.78, 118.54, 125.94, 126.35, 

128.93, 130.76, 132.34 ppm. MS (EI 70 eV) m/z 466 (100 %, M
+
), 409 (20 %, M

+
 - 

Butyl).  

6,13–di(octynyl) Pentacene (36). Yield = 0.25 g (62 %), 
1
H NMR (200 MHz, CDCl3):  

0.99 (t, J = 6.7 Hz, 6H), 1.4–1.6 (m, 8H), 1.77 (quintet, J = 6.6 Hz, 4H), 1.96 (quintet, J = 

7.06 Hz, 4H), 2.95 (t, J = 6.8 Hz, 4H), 7.39 (dd, J = 3.0 Hz, J = 6.7 Hz, 4H), 8.01 (dd, J = 

3.1 Hz, J = 6.6 Hz, 4H), 9.21 (s, 4H) ppm. 
13

C NMR (50 MHz, CDCl3):  14.30, 20.81, 
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22.92, 29.17, 29.33, 31.74, 79.13, 105.81, 115.59, 126, 126.42, 128.99, 130.82, 132.4 

ppm. MS (EI 70 eV) m/z 494 (95 %, M
+
).           

6,13–di(decynyl) Pentacene (37). Yield = 0.25 g (56 %). 
1
H NMR (200 MHz, CDCl3):  

0.91 (t, J = 6.6 Hz, 6H), 1.25–1.6 (m, 16H), 1.77 (quintet, J = 6.7 Hz, 4H), 1.96 (quintet, J 

= 7.06 Hz, 4H), 2.94 (t, J = 7.0 Hz, 4H), 7.39 (dd, J = 3.2 Hz, J = 6.8 Hz, 4H), 8.02 (dd, J 

= 3.4 Hz, J = 6.6 Hz, 4H), 9.20 (s, 4H) ppm. 
13

C NMR (50 MHz, CDCl3):  14.23, 20.81, 

22.88, 29.37, 29.52, 29.59, 32.11, 79.15, 105.8, 118.55, 125.91, 126.35, 128.93, 130.76, 

132.33 ppm. MS (EI 70 eV) m/z 445 (25 %), 429 (45 %), 308 (100 %).  

6,13–di(dodecynyl) Pentacene (38). Yield = 0.3 g (61 %). 
1
H NMR (200 MHz, CDCl3): 

 0.87 (t, J = 6.6 Hz, 6H), 1.20–1.60 (m, 24H), 1.77 (quintet, J = 7.0 Hz, 4H), 1.96 

(quintet, J = 7.06 Hz, 4H), 2.94 (t, J = 6.8 Hz, 4H), 7.39 (dd, J = 3.0 Hz, J = 6.6 Hz, 4H), 

8.02 (dd, J = 3.0 Hz, J = 6.6 Hz, 4H), 9.20 (s, 4H) ppm. 
13

C NMR (50 MHz, CDCl3):  

14.23, 20.81, 22.85, 29.37, 29.55, 29.87, 29.93, 32.09, 79.14, 105.79, 118.54, 125.91, 

126.36, 128.94, 130.76, 132.33 ppm. MS (EI 70 eV) m/z 606 (20 %, M
+
), 479 (20 %, M

+
 

-Nonyl). 

General procedure for TMS protected diisopropylalkyl silyl acetylene. 

        In a flame dried 250 mL single necked round bottom flask, trimethylsilyl acetylene 

(32.4 mmol) was dissolved in dry THF under N2 atm. To that, n-BuLi (27 mmol) was 

added slowly at room temperature. The mixture was stirred for 5-6 hrs. In another flame 

dried 250 mL single necked round bottom flask, 39 (27 mmol) was dissolved in dry THF 

under N2 atm. To that, alkyl lithium (27 mmol) was added slowly and the mixture stirred 

at RT. After 5-6 hrs, lithium trimethylsilyl acetylide was added by cannula. After 

overnight stirring, the reaction mixture was quenched with DI water carefully and 
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extracted with hexanes, washed with saturated brine solution, dried over anhydrous 

MgSO4 and concentrated. The crude compounds were purified by silica plug using 

hexanes (75 mL).  

Trimethylsilylethynyl diisopropylethyl silane (40). Yield = 76%. 
1
H NMR (400 MHz, 

CDCl3): δ 0.19 (s, 9H), 0.55–0.69 (m, 2H), 0.5–1.00 (m, 17H) ppm. 
13

C NMR (100 MHz, 

CDCl3): δ 0.25, 2.07, 8.29, 11.64, 18.21, 18.44, 110.37, 116.23 ppm. MS (EI 70 eV) m/z 

218, 207 (M
+
 - isopropyl). 

Trimethylsilylethynyl diisopropyln-butyl silane (41). Yield = 76%. 
1
H NMR (200 

MHz, CDCl3): δ 0.22 (s, 9H), 0.58-0.72 (m, 2H), 0.90–1.02 (m, 3H), 1.02–1.18 (m, 12H), 

1.30–1.53 (m, 4H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 0.22, 9.91, 11.83, 13.93, 17.58, 

18.24, 18.45, 26.79, 26.88, 110.94, 116.35 ppm. MS (EI 70 eV) m/z 268 (M
+
), 225 (M

+
 - 

isopropyl). 

Trimethylsilylethynyl diisopropyl sec-butyl silane (42). Yield = 76%. 
1
H NMR (400 

MHz, CDCl3): δ 0.19 (s, 9H), 0.78–0.94 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H), 1.03–1.18 (m, 

15H), 1.20–1.34 (m, 2H), 1.66–1.78 (m, 1H) ppm. 
13

C NMR (100 MHz, CDCl3): δ 0.25, 

11.36, 11.38, 13.89, 14.40, 14.56, 18.72, 18.83, 19.06, 25.53, 110.66, 116.37 ppm. MS 

(EI 70 eV) m/z 268 (M
+
), 225 (M

+
 - isopropyl). 

Trimethylsilylethynyl diisopropylhexyl silane (43). Yield = 78%. 
1
H NMR (200 MHz, 

CDCl3): δ 0.18 (s, 9H), 0.53–0.70 (m, 2H), 0.91 (t, J = 6.6 Hz, 3H), 0.98–1.12 (m, 16H), 

1.20–1.50 (m, 6H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 0.11, 10.12, 11.76, 14.25, 18.04, 

18.15, 18.36, 22.79, 24.44, 31.71, 33.56, 110.76, 116.18 ppm. MS (EI 70 eV) m/z 296 

(M
+
), 253 (M

+
 - isopropyl). 
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Trimethylsilylethynyl diisopropyloctyl silane (44). 

           In a dried single necked 250 mL RBF, n-BuLi (10.14 mmol) was added to 

trimethylsilyl acetylene (10.14 mmol) in dry THF slowly. After stirring for 30 minutes at 

RT, chloro diisopropyloctyl silane (11.16 mmol, purchased from Gelest, Inc.) was added 

and the mixture stirred at RT overnight. The reaction mixture was extracted into hexanes 

and purified silica chromatography using hexanes. Yield = 80%. 
1
H NMR (200 MHz, 

CDCl3): δ 0.18 (s, 9H), 0.61 (t, J = 8.0 Hz, 2H), 0.9 (m, 6H), 1.05 (m, 15H), 1.29 (m, 

10H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 0.16, 10.14, 11.65, 11.77, 11.88, 14.28, 18.09, 

18.19, 18.28, 18.40, 22.40, 24.49, 29.49, 32.18, 33.94, 110.83, 116.23 ppm. MS (EI 70 

eV) m/z 324 (M
+
), 281 (M

+
 - isopropyl). 

General procedure for the deprotection of the trimethylsilyl group. 

       The TMS-protected alkyne (6.7 mmol) was dissolved in methanol (50 mL) in a 250 

mL RBF. To that, potassium carbonate (7.25 mmol) was added and the mixture stirred 

for 2 hours at RT. The reaction mixture was taken up in excess hexane and washed with 

DI water and brine solution, dried over anhydrous MgSO4 and concentrated. Finally, the 

compounds were purified by silica chromatography using hexanes (75 mL). 

Diisopropylethylsilyl acetylene (45). Yield = 85%. 
1
H NMR (200 MHz, CDCl3): δ 

0.55–0.75 (m, 2H), 0.90–1.15 (m, 17H), 0.04 (s, 1H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 

1.91, 8.05, 11.43, 17.98, 18.20, 18.55, 86.38, 94.83 ppm. MS (EI 70 eV) m/z 168 (M
+
), 

125 (M
+
 - isopropyl). 

Diisopropyl n-butylsilyl acetylene (46). Yield = 88%. 
1
H NMR (200 MHz, CDCl3): δ 

0.60–0.80 (m, 2H), 0.90–1.05 (m, 4H), 1.06-1.20 (m, 12H), 1.30 – 1.55 (m, 5H), 2.38 (s, 
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1H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 9.80, 11.65, 13.81, 17.77, 18.04, 18.23, 26.67, 

26.89, 86.72, 94.80 ppm. MS (EI 70 eV) m/z 196 (M
+
), 153 (M

+
 - isopropyl). 

Diisopropyl sec-butyl silylacetylene (47). Yield = 83%. 
1
H NMR (400 MHz, CDCl3): δ 

0.80–0.90 (m, 2H), 0.96–1.02 (m, 3H), 1.02–1.14 (m, 15H), 1.18–1.32 (m, 2H), 1.66–

1.78 (m, 1H), 2.35 (s, 1H) ppm. 
13

C NMR (100 MHz, CDCl3): δ 11.25, 13.83, 14.37, 

18.68, 18.70, 18.72, 18.94, 25.37 86.62, 95.00 ppm. MS (EI 70 eV) m/z 196 (M
+
), 153 

(M
+
 - isopropyl). 

Diisopropylhexylsilyl acetylene (48). Yield = 97%. 
1
H NMR (200 MHz, CDCl3): δ 

0.55–0.70 (m, 2H), 0.90 (t, J = 6.0 Hz, 3H), 0.97-1.15 (m, 16H), 1.20–1.50 (m, 6H), 2.34 

(s, 1H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 10.09, 11.63, 14.23, 18.03, 18.23, 22.80, 

24.40, 31.69, 33.66, 86.67, 94.78 ppm. MS (EI 70 eV) m/z 224 (M
+
), 181 (M

+
 - 

isopropyl). 

Diisopropyloctylsilyl acetylene (49). Yield = 95%. 
1
H NMR (200 MHz, CDCl3): δ 0.64 

(m, 2H), 0.9 (m, 3H), 1.00-1.12 (m, 14H), 1.24-1.50 (m, 12H), 2.35 (s, 1H) ppm. 
13

C 

NMR (50 MHz, CDCl3): δ 10.89, 11.63, 11.86, 14.25, 18.06, 18.18, 18.26, 18.41, 22.87, 

24.42, 29.41, 29.47, 32.14, 33.99, 88.81, 94.78 ppm. MS (EI 70 eV) m/z 252 (M
+
), 209 

(M
+
 - isopropyl). 

Synthesis of Diisopropylalkylsilyl Ethynyl Pentacene. 

         In a flame dried 500 mL single necked round bottom flask, diisopropylalkyl silyl 

acetylene (8 mmol) was dissolved in 50 mL of hexanes under N2 atm. To that, n-BuLi 

(4.87 mmol) was added slowly at RT and allowed to stir for 30-45 min. Then, 

pentacenequinone (1.6 mmol) followed by 150 ml of hexane was added to the reaction 

mixture which was heated to 65 
°
C overnight. The next day, 0.5 mL of DI water, 1.5 mL 
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of 10% HCl and tin(II)chloride dihydrate (4 mmol) was added to the reaction mixture and 

stirred at 65 
°
C for 6-7 h. The reaction mixture was cooled and dried with anhydrous 

MgSO4, purified through silica plug using hexane/ dichloromethane (9/1) solvent system 

and concentrated.  

6,13-Bis(diisopropylethylsilylethynyl) pentacene (50). Yield = 90 %. 
1
H NMR (200 

MHz, CDCl3):  0.90-1.10 (m, 4H), 1.26-1.44 (m, 34H), 7.43 (dd, J = 3.2 Hz, J = 6.8 Hz, 

4H), 8.00 (dd, J = 3.2 Hz, J = 6.6 Hz, 4H), 9.31 (s, 4H) ppm. 
13

C NMR (50 MHz, 

CDCl3):  2.55, 8.74, 12.18, 18.57, 18.86, 104.89, 107.51, 118.65, 126.32, 126.61, 

128.99, 130.94, 132.64 ppm. MS (EI 70 eV) m/z 611 (56 %, M
+
). 

 6,13-Bis(diisopropyl n-butylsilylethynyl) pentacene (51). Yield = 95 %. 
1
H NMR (200 

MHz, CDCl3):  0.96-1.04 (m, 8H), 1.29-1.46 (m, 30H), 1.50-1.60 (m, 4H), 1.70-1.80 

(m, 4H), 8.00 (m, 4H), 7.43 (m, 4H), 9.31 (s, 4H) ppm. 
13

C NMR (50 MHz, CDCl3):  

10.28, 12.29, 14.10, 18.57, 18.84, 27.05, 27.28 104.64, 107.62, 118.46, 126.18, 126.44, 

128.80, 130.75, 132.44 ppm. MS (EI 70 eV) m/z 667 (65 %, M
+
), 610 (20 %, M

+
 - Butyl).  

6,13-Bis(diisopropyl sec-butylsilylethynyl) pentacene (52). Yield = 90 %, 
1
H NMR 

(200 MHz, CDCl3):  1.2 (m, 8H), 1.4 (m, 32H), 1.58 (m, 4H), 2.03-2.09 (m, 2H), 7.44 

(m, 4H), 8.00 (m, 4H), 9.32 (s, 4H) ppm. 
13

C NMR (50 MHz, CDCl3):  11.89, 14.13, 

14.95, 19.22, 19.15, 19.30, 19.54, 25.93, 104.94, 107.70, 118.58, 126.23, 126.53, 128.88, 

130.85, 132.47 ppm. MS (EI 70 eV) m/z 667 (68 %, M
+
), 610 (20 %, M

+
 - sec-Butyl). 

6,13-Bis(diisopropylhexylsilylethynyl) pentacene (53). Yield = 91 %. 
1
H NMR (200 

MHz, CDCl3):   0.90 (m, 12H), 1.35 (m, 38H), 1.76 (m, 4H), 7.45 (m, 4H), 8.00 (m, 

4H), 9.30 (m, 4H) ppm. 
13

C NMR (50 MHz, CDCl3):  10.68, 12.38, 14.38, 18.65, 18.92, 
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22.92, 25.11, 31.92, 33.90, 104.74, 107.71, 118.55, 126.22, 126.53, 128.89, 130.82, 

132.50 ppm.  MS (EI 70 eV) m/z 723 (68 %, M
+
), 638 (10 %, M

+
 - Hexyl).  

6,13-Bis(diisopropyloctylsilylethynyl) pentacene (54). Yield = 85 %. 
1
H NMR (200 

MHz, CDCl3):  0.92(m, 10H), 1.38 (m, 48H), 1.77(m, 4H), 7.43 (dd, J = 3.0 Hz, J = 6.6 

Hz, 4H), 8.00 (dd, J = 3.2 Hz, J= 6.6 Hz, 4H), 9.30 (s, 4H) ppm. 
13

C NMR (50 MHz, 

CDCl3):  10.71, 12.42, 14.29, 18.67, 18.94, 22.88, 25.19, 29.60, 29.70, 32.22, 34.26, 

104.93, 107.85, 118.71, 126.36, 126.68, 129.05, 131.00, 132.69 ppm. MS (EI 70 eV) m/z 

779 (68 %, M
+
), 666 (15 %, M

+
 - Octyl). 
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Chapter 3: Alkyl Substituted Functionalized Anthradithiophenes 

3.1 Thienyl Electronic Materials. 

     Recent advances in organic semiconductor research have been driven by low-cost 

solution-based fabrication techniques such as spin coating
84

, and ink-jet printing
85

 and the 

potential for processing on large area flexible substrates.
86

  Pentacene (18), considered to 

be a benchmark molecule among organic electronic materials, has been subjected to 

extensive investigation due to its excellent thin film forming ability,
40

 and high thin film 

hole mobility.
41

 Very recently, extensive investigations have focused on oligothiophenes 

and polythiophenes, because of their formation of high charge transport TFTs. Attaching 

alkyl chains to the thiophene units not only improved the solubility, but also improved 

the thin film morphology. Halik et al. demonstrated that the longer side chains on 

oligothiophenes with thick alkyl intrinsic barrier (1.3 nm for decyl chain and 0.3 nm for 

ethyl chain) at the interface resulted in an increase in contact resistance for the top-

contact devices. However, oligothiophenes with longer alkyl chains outperformed the 

shorter ones in a bottom-contact configuration due to reduced gate current caused by the 

increase in effective thickness of the gate dielectric.
87

 Sirringhaus et al. showed that the 

thin film hole mobility of poly (3-hexylthiophene) (16, see Chapter 1) increases by two 

orders of magnitude when the substrate is subjected to surface treatment because of 

improved film morphology.
88

 Studies on the electrical properties of  fused thienyl π-

conjugated materials was pioneered by Katz and co-workers at Bell Laboratories in the 

late 1990s. Showing high oxidative stability, vacuum-deposited thin film of 

benzodithiophene dimer 4 exhibited thin film hole mobility of 0.04 cm
2
/Vs.

89
 However, 

alkyl substitution at the terminal thiophene rings didn’t improve the solubility of the 
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parent molecule (4). On the other hand, alkyl substitution on anthradithiophene (55, a 

pentacene analogue where the terminal benzene rings are replaced by thiophene rings) 

provided promising results. Vacuum-deposited syn- and anti- mixture of 2,8-

dihexylanthradithiphene (20) formed highly ordered poly-crystalline films on the devices, 

showed hole mobility as high as 0.15 cm
2
/Vs.

44
 Moreover, alkyl-substituted 

anthradithiophene was more soluble and exhibited thin film hole mobility of 0.01 - 0.02 

cm
2
/Vs from solution-cast films. 

Figure 3.1 Unsubtituted anthradithiophene (55). 
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       Recently, application of the Anthony group’s peri-functionalization approach to 

anthradithiophene yielded devices with excellent transistor characteristics. TES 

anthradithiophene (21) which adopts a two-dimensional π-stacking solid state 

arrangement with interatomic distances as close as 3.25 Ǻ exhibits thin film film hole 

mobility of 1.0 cm
2
/Vs.

45
 However, upon illumination, the thin film formed by 21 

photobleached completely within 1h. At this point, my goal for this project is to modify 

21 through systematically increasing the length of carbon chains at the 2, 8 positions in 

order to improve the photostability and increase the solubility in common organic 

solvents, thereby allowing low-cost solution-processing techniques. 
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3.2 Alkyl Substituted Functionalized Anthradithiophenes. 

        Alkyl substituted anthradithiophenes 66 - 69 are easily prepared as shown in Scheme 

3.1. Smaller alkyl groups (methyl, ethyl, propyl and butyl) were chosen for the systematic 

study of the effect of alkyl substitution on crystal packing and electrical properties of the 

acene derivatives. 5-alkyl thiophene-2,3-carboxaldehydes 58 - 61 were made in two steps 

starting from thiophene-2,3-dicarboxaldehyde (56) using previously reported methods.
44, 

45
 Condensation of these dialdehydes (58 - 61) with cyclohexane-1,4-dione yielded alkyl 

substituted anthradithiophene quinones (62 - 65) as the mixture of syn- and anti- isomers.  

Due to insolubility in common organic solvents, all the end-substituted anthradithiophene 

quinones mentioned in this dissertation were only characterized by mass spectrometry. 

My initial strategy was to use triethylsilyl (TES) as the peri-functionalizing group of 

anthradithiophene chromophore. Target semiconductors 66 - 69 were synthesized by the 

addition of lithium triethylsilyl acetylide to the quinone, followed by deoxygenation with 

stannous chloride / 10% sulfuric acid. All of the derivatives were purified by silica gel 

chromatography followed by multiple recrystallizations from hexanes.  
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Scheme 3.1 Synthesis of alkylated TES anthradithiophenes (66 - 69). 
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  High-quality single crystals of anthradithiophenes 66 - 69 were easily grown from 

hexanes, and their solid state arrangements were studied by single crystal X-ray 

diffraction. Thermal ellipsoid plots of 66 - 69 and pi-stacking solid state arrangements of 

66 - 68 are shown in Fig. 3.2 and Fig. 3.3, respectively.  Ethyl-substituted 

triethylsilylethynyl anthradithiophene (67) exhibits a one-dimensional slipped π-stacked 

arrangement with an inter-stack carbon-carbon (C-C) distance of 3.84 Ǻ and the closest 

contact distance of 3.49 Ǻ within the π-stack (intra-stack).  
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Figure 3.2 Thermal ellipsoid plots of 66 - 69. 

 

 

 

Propyl-substituted anthradithiophene (68) adopts a two-dimensional stacking motif, 

showing very weak π-interactions between the neighboring molecules with 3.62 Ǻ inter-

stack contacts and 3.95 Ǻ intra-stack contacts - well outside the van der Waals radius for 

carbon. Interestingly, methyl-substituted acene derivative (66) adopts π-stacking 

arrangement somewhere between a strict one-dimensional slipped π-stack (67) and two-

dimensional order (e.g. 21). Even though both 66 and 67 have similar crystal packing in 

the solid state, the major difference comes from the distance between the neighboring 

acene chromophores in the 1-D pi-stacks. The contact distance between two acene cores 
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Figure 3.3 Solid state pi-stacking arrangement for 66, 67 and 68. 

 

 

 

in 66 is as close as 3.50 Å, which is within the range of van der Waals radius of carbon 

atoms. Hence, stronger π-cloud interactions between the neighboring molecules should 

lead to improved electronic coupling. Even though the separation is 3.49 Å for 

intercolumn stacking in 67, the intra-stack distance is greater than 3.8 Å - well outside the 

limit for strong electronic coupling. From this rationalization, with strongly interacting 

adjacent 1-D π-stacks, 66 clearly represents a bridge between purely 1-D π-stacked 67 

and strongly 2-D π-stacked 21. 
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      From the Anthony group’s work on the peri-functionalization of fused acene ring 

systems using trialkylsilylethynyl groups,
42

 it is understood that the diameter of silyl 

group should be half the length of the acene chromophore. Also, knowing triethylsilyl 

(TES) as the best silyl substituent at the peri-positions of unsubstituted anthradithiophene 

for stronger π-interactions,
45

 my next strategy was to use bulky triisopropylsilyl (TIPS) at 

the peri-positions of the larger alkyl substituted anthradithiophene in order to improve π-

interactions of  

Scheme 3.2 Synthesis of Alkylated TIPS Anthradithiophenes (70 - 72) 
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the neighboring acene chromophores. The desired semiconductors 70 - 72 were made by 

the addition of lithium triisopropylsilyl acetylide to the quinone, followed by 

deoxygenation with stannous chloride / 10% sulfuric acid as shown in scheme 3.2.   
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Figure 3.4 Thermal ellipsoid plots of 71 and 72. 

 

 



 

60 

 

All of the derivatives were purified by silica gel chromatography followed by multiple 

recrystallizations from hexanes. These alkylated TIPS anthradithiophene derivatives 70 - 

72 diffracted poorly during the single crystal XRD study and exhibited 1-D slipped π-

stack arrangement with weak intermolecular electronic coupling. Crystals of 70 were 

difficult to solve by X-ray analysis and the thermal ellipsoid plots of 71 and 72 are shown 

in Fig. 3.4. 

     The UV-vis absorption spectra of alkyl substituted functionalized anthradithiophenes 

66 - 69 recorded in dichloromethane show the longest-wavelength absorption (λmax) at 

550 nm (Fig. 3.5), which matches very closely with that of 21. These functionalized 

anthradithiophenes are stable in their crystalline forms as well in  

Figure 3.5 UV-vis spectra of alkyl substituted anthradithiophenes (66 - 69). 

 

 

solution. From electrochemical studies, the oxidation potential of all of the derivatives 66 

- 72 was found to be 0.84 V vs SCE, a slight decrease from 0.90 V vs SCE reported for 
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21. Detailed reports of the electrochemical measurements on all the functionalized 

anthradithiophenes in my dissertation are covered in chapter 6.        

 

3.3 Organic Thin Film Transistor Studies: 

       OTFT studies on these alkylated anthradithiophenes were done by our collaborators 

in Prof. Tom Jackson’s research group at Penn State. Due to their better crystal packing 

and easy comparison of the effect of alkyl chain lengths on the functionalized 

anthradithiophenes in the homologous series, TES derivatives 66 - 68 were chosen for the 

OTFT study. Bottom contact thin film transistors were constructed on a heavily doped 

silicon wafer which also acted as gate electrode. The thermally grown oxide layer (2000 

Ǻ) was used as dielectric. Gold source and drain electrodes were deposited on the device 

by evaporation through a shadow mask. A common structure of bottom contact OTFT is 

depicted in Fig. 1.1. 

       Solutions (2 wt% in toluene) of functionalized anthradithiophenes 66 – 68 were drop 

cast on the device surface and the solvent was allowed to evaporate in air. The optical 

microscopic images of the thin films made of 66 - 68 are depicted in Fig. 3.6. 

Figure 3.6 Thin film morphological pictures of functionalized anthradithiophenes 

(66 - 68) (Optical images were taken by Dr. Tom Jackson’s research group).  

 

 

                 66                                                67                                              68 
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     Typical transfer curves for the TFT characteristics of the functionalized 

anthradithiophenes are shown in Fig. 3.7. From the linear region of the gate voltage vs 

square root of drain current (VG- ID ) curves, one can extract the thin film hole mobility 

and the threshold voltage. The bottom-contact OTFTs fabricated using drop-cast 66 

rendered devices with extracted hole mobility of 0.3 cm
2
/Vs, and on/off current ratio of 

10
5
.
 
On the other hand, extracted hole mobility for devices made up of 67 and 68 were 

reduced by more than three orders of magnitude, 2.7 x 10
-5 

cm
2
/Vs and 5.2 x 10

-4 
cm

2
/Vs 

respectively. The threshold voltages of devices made up of 66, 67 & 68 are 21 V, 11 V 

and 3 V respectively.  

Figure 3.7 Thin film transistor characteristics of functionalized anthradithiophenes 

(66 - 68) (Transistor data were taken by Dr. Tom Jackson’s research group). 
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       The difference in performance of the devices made up of 66 - 68 can be explained by 

a combination of film morphology and crystal packing effects. The morphology of the 

drop-cast films was studied by optical microscopy (Fig. 3.6), which revealed dramatic 

differences between the materials.  Combining figures 3.3 and 3.6, it is understood that 

67, which possesses strong 1-D crystal π-stacking solid state arrangement leading to 3-D 

thin film growth, formed as discontinuous needle like crystallites, resulting in low 

extracted hole mobilities. On the other hand, 66 with strong intermolecular electronic 

coupling in two dimensions, yielded the most uniform 2-D thin films on the devices, 

leading to high thin film hole mobility. 68, which adopts 2-D crystal packing motif in the 

solid state, also yielded 2-D thin film growth with smaller grains and slightly decreased 

uniformity compared to 66. However, due to poor intermolecular electronic coupling 

resulting from the large distance between the neighboring anthradithiophene 

chromophores, devices made up of 68 led to low hole mobility. From the above 

discussions, we could say that both thin film morphology and intermolecular electronic 

couplings are very critical factors in order to develop high-performance OTFT materials.  

 

3. 4 Organic Solar Cell Studies: 

     OPV studies on these alkyl substituted anthradithiophene derivatives were done by our 

collaborators in Prof. George Malliaras’s research group at Cornell University. Organic 

solar cells are regarded as a versatile alternative for inexpensive photovoltaics due to the 

ability of being fabricated on flexible substrates at low temperatures and at low-cost. The 

small molecule organic semiconductors are considered to be suitable candidates for OPV 

production because of their facile chemical tunability. Recently, vapor-deposited 
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pentacene based multilayer photovoltaics have produced high performance devices.
90 

Very recently, solution-processed 19 in a thermally evaporated C60 (10) based bilayer 

solar cell have demonstrated 0.5% power conversion efficiency.
91

  

       Researchers at Cornell studied our alkyl substituted functionalized 

anthradithiophenes along with 19 in a layered device consisting of ITO / PEDOT:PSS / 

alkyl substituted functionalized anthradithiophenes / C60 / BCP / Ag. Poly (3,4-

ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was deposited as hole 

injection layer on a indium-tin oxide (ITO) coated glass substrate. Bathocuprine (BCP) 

was used as exciton blocking layer. The layered heterojunction was created by thermally 

evaporating C60 on a spin-coated film of functionalized anthradithiophenes. The optical 

bandgaps for 19, 66, 68, 70 and 72 were found to be 1.59 eV, 1.97 eV, 2.05 eV, 2.09 eV 

and 2.09 eV respectively. For the photogenerated exciton dissociation via charge transfer 

to happen at the heterointerface, the difference between the LUMOs of donor and 

acceptor materials should be larger than the exciton binding energy. For 19/C60 

heterojunctions, the LUMO offset was estimated between 1.0 - 1.2 eV, sufficient for 

exciton dissociation through charge transfer since the exciton binding energy can be as 

high as 0.5 eV for a five membered acene rings.
92

  

        For long-range (Forster) resonant energy transfer, the photoexcited donor material 

and the adjacent acceptor material should be within the Forster resonant energy transfer 

radius of 2 - 5 nm.
93

 Forster radius for 19 and 68 were calculated as 1.6 nm and 2.2 nm 

respectively, and from the spectral response of these acene based devices, there was no 

evidence of energy transfer for a donor material Egap below 1.9 eV. However, charge 

transfer cannot be completely ruled out in these anthradithiophene based devices. Spin-
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coated anthradithiophene derivatives produced crystalline thin films. On the other hand, 

spin-coated amorphous thin films made of 19, were forced to crystallize by thermal 

annealing. Charge transfer in these acenes is expected to compete with energy transfer 

because of the increase in exciton diffusion length derived from crystalline organic 

semiconductors. From the above PV study, devices consisting of the donor 68 showed 

0.7% power conversion efficiency under 100 mW/cm
2
 simulated AM1.5 light. The 

extracted values for Voc and FF are found to be 700 mV and 0.44 respectively. The 

current-voltage characteristics of a 68 based device are shown in Fig. 3.8. Without the 

use of thermal annealing or the incorporation of mobile ions, 68 outperformed previously 

reported 19 based devices, even though they absorb less of the solar spectrum (see Fig. 

3.9).
91 

Figure 3.8 Current-Voltage characteristics of 68 based PV device (The I-V plot was 

taken by Dr. George Malliaras’s research group) 
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Figure 3.9 UV-vis spectra of 19 and 68. 

 

 

Upon thermal annealing the electron donor film at 70°C,  66, 70 and 72 based solar cells 

produced the power conversion efficiencies of 0.5%, < 0.1%, and 0.2%  respectively with 

the same device structure that used for 68. To study the effect of polymeric binder on the 

performance of these devices, our collaborators at Cornell University spin-coated the 

blend of 1:1 ratio of an atactic polystyrene (PαMS, 73 (see Fig. 3.10)) and the 

functionalized anthradithiophenes before depositing the electron acceptor layer (C60). It 

was found that the power conversion efficiencies of the bilayer solar cells based on 66 

and 70 were increased to 0.7% and 0.4%, respectively, in contrast to dismal performance 

(< 0.1%) shown by 72 based devices. This was explained using cross-polarized images of 

the thin film made of functionalized anthradithiophenes as shown in Fig. 3.11. With the 

use of polymeric binder, the surface roughness of the thin film made of 66 is moderately 

reduced to 10.4 nm from 45.4 nm that formed without using the polymeric blend. On the 

other hand, 72 formed very smooth surface (surface roughness of 0.9 nm) thin film upon 
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blending with PαMS. From the above studies, it is understood that the polymeric blend 

which restricts the activity of 72 by forming very smooth surface leading to poor 

performance of the device and optimal surface roughness is required to improve the 

efficiency of the solar cell. 

Figure 3.10 Structure of PαMS, 73. 

C CH2

CH3

n

73 

Figure 3.11 Cross polarized micrographs of thin films made of 66 and 72 with and 

without PαMS (Pictures were taken from Dr. George Malliaras’s research group). 

 

    Even though 19-based layered PV devices performed well, upon blending with soluble 

fullerene derivative PCBM (23), the pentacene underwent degradation. I studied this 

decomposition by recording UV-vis spectra (see Fig. 3.12) of a mixture of 19 and 23 in  
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Figure 3.12 Diels-Alder reaction study of TIPS pentacene (19) with PCBM (23). 

 

 

 

Figure 3.13 Photostability study of thin films made of 21. 
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dichloromethane at varying time intervals. It was found that the maximum absorption 

intensity of 19 completely quenched within 1h, confirming the Diels-Alder reaction 

between 19 and 23. We assumed that anthradithiophenes would be less likely to react 

with fullerenes, but our best performing functionalized anthradithiophene 21, shows poor 

thin film photostability. I carried out the photostability study on solution-deposited thin 

film of 21, found that it was photobleached completely within 1h under laboratory 

conditions (Fig. 3.13). 

    On the other hand, alkyl-functionalized anthradithiophenes possess both photostability 

and did not undergo Diels-Alder adduct formation with PCBM, making them suitable 

candidates for PV study where fullerene or fullerene derivatives are used as electron 

acceptor materials. The use of non-photolithographic solution-processable techniques is 

critical to reduce the cost of PV devices. While bulk heterojunction (BHJ) solar cells 

offering solution-processed fabrication, a record high power conversion efficiency > 5% 

was achieved from the polymer based BHJ solar cells.
68

  

Figure 3.14 X-shaped oligothiophene (74). 
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   For the solution-processed small molecule based BHJ cells, power conversion 

efficiency of 0.8% have been recently recorded from an X-shaped oligothiophene (74, 

Fig. 3.14).
94

 Post-fabrication solvent annealing is one way to form crystalline thin films 

and 21 has shown increases in thin film charge carrier mobility as much as 2 orders of 

magnitude upon solvent vapor annealing.
95

 Some amount of crystallization is also 

expected in the case of alkyl substituted functionalized anthradithiophene / 23 blends. 

Malliaras et al. performed morphological studies on spin-coated films made of 67 in 

toluene and 23 in ortho-dichlorobenzene at a 70:30 weight ratio. Optical fluorescence 

microscopy displayed complete photoluminescence quenching of the highly fluorescent 

67 in the as-spun blend film. The as-cast blend film was kept in a sealed vessel along 

with a vapor of solvent mixture, causing fine grain spherulites to nucleate (100-300 

nuclei/cm
2
) with a high fractional coverage on the substrate at increasing time (see Fig 

3.15) leading to phase segregation of 67.  

Figure 3.15 Optical microscopic images of spherulite growth (Pictures were taken 

by Dr. George Malliaras’s research group).  
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PEDOT: PSS (60 nm) was spin-coated on a pre-patterned ITO coated glass substrate. 

Blend solutions of 67 and 23 in toluene and ortho-dichlorobenzene, respectively at a 

70:30 weight ratio were then spin-coated on the device. The films were exposed to 

solvent mixture vapor at different time interval. Film crystallization of 67 was followed 

by the deposition of the cathode consisting of a 10 Ǻ layer of CsF and 400 Ǻ of themally 

evaporated Al as shown in Fig. 3.16. The current-voltage characteristics of the device 

with high spherulite coverage is shown in Fig. 3.17. 

Figure 3.16 General structure of 67 based OPV device. 

 

 

 

Under reverse bias, a positive slope and direct proportionality between current and 

voltage were observed in the dark, implying that the device exhibits low shunt resistance 

or a partial short-circuit. The device produced photocurrent in the low reverse bias and 

the difference between light and dark current gradually decreases upon illumination. The 

engineers attribute this behavior to an imperfectly interpenetrating network. However, the 

I-V curves are well behaved, with Isc of 2.97 mA/cm
2
, Voc of 840 mV, FF of 0.40 and the 
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overall power conversion efficiency is calculated to be 1%. In general, short circuit 

current (Isc) was proportional to the area of crystalline spherulite coverage on the device. 

Figure 3.17 Current-Voltage Characteristics of a device with high sperulite 

coverage. 

 

 

      The design and synthesis of alkyl substituted anthradithiophenes has yielded a 

tremendous amount of information. The optimal alkyl chain length is crucial for strong 

intermolecular electronic coupling and thin film morphology of anthradithiphene 

derivatives. 66, which possess 1-D π-stacks with strong intermolecular coupling and two-

dimensional thin film growth, produced OTFT devices with high thin film hole mobility 

of 0.3 cm
2
/Vs. This project shows that a very fine balance of thin film morphology and 

strong π-stacking is required for high charge transport thin film transistors. These 

photostable anthradithiophene derivatives also showed excellent performance in PV 

devices. Without the incorporation of mobile ions and thermal annealing technique, 68 

performed well with 0.7% power conversion efficiency from a bilayer heterojunction PV 
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device. The use of polymeric binder in 66, 70 and 72 based solar cells explains the 

importance of the optimal quality thin films for the better performance photovoltaics. 

Even though thin film morphology of 67 was poor on OTFT devices, it provided 

excellent performance in OPV studies with 1% power conversion efficiency from a 

completely solution processed BHJ solar cell.  

3.5 Experimental Details 

General.    

           Solvents (acetone, methylene chloride, hexanes) were purchased from Fisher. Dry 

THF was either purchased in anhydrous form from EMS Science or distilled over sodium 

/ benzophenone under N2 atmosphere. Trialkylsilyl acetylenes were purchased from GFS 

Chemicals.  Silica gel 230-400 mesh was bought from Sorbent Technologies. NMR 

spectra were measured on a Varian (Gemini 200 MHz / Unity 400 MHz) spectrometer. 

Chemical shifts were reported in ppm relative to CDCl3 as internal standard. The UV 

spectra were measured on a UV-2501PC Shimadzu instrument. Mass spectroscopy was 

analyzed in EI mode at 70 eV or MALDI with TCNQ matrix on a JEOL (JMS-700T) 

Mass Spectrometer. Cyclic Voltammetry was carried out on a BAS CV-50W, with 

ferrocene as an internal standard. 

Thiophene-2,3-diacetal (57). 

 This compound was synthesized using previously reported literature.
44 

General procedure for the synthesis of 5- alkyl thiophene-2,3-dialdehydes.
 

            To a flame dried flask, n-BuLi (27.4 mmol) was added slowly to thiophene-2,3-

diacetal 57 (21 mmol ) in THF (60 mL) at -78 
°
C  under dry N2 .  After stirring 1 h, alkyl 

iodide (29.5 mmol) was added and the reaction mixture was warmed to room 
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temperature, and stirred overnight. The next day, the reaction mixture was quenched by 

adding cold water very carefully, extracted with diethyl ether, and washed with water. 

The organic layer was dried with anhydrous MgSO4 and concentrated.  Without 

purification, the diacetal was hydrolyzed by 3M HCl / THF (1 / 1) for 1h. The resulting 

product was purified by column chromatography using hexanes / dichloromethane eluent 

(2 : 3).       

5 - Methyl thiophene-2,3-dialdehyde (58). 

         Yield = 62%. 
1
H NMR (200 MHz, CDCl3): δ 2.55 (s, 3H), 7.27 (s, 1H), 10.27 (s, 

1H), 10.34 (s, 1H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 16.16, 128.31, 144.29, 145.55, 

150.42, 182.38, 184.91 ppm. MS (EI 70 eV) m/z 154 (M
+
), 125 (M+ - CHO) 

5 – Ethyl thiophene-2,3-dialdehyde (59). 

       Yield = 79 %.  
1
H NMR (200 MHz, CDCl3): δ  1.37 (t, J = 7.5 Hz, 3H), 2.92 (q, J = 

7.6 Hz, 2H), 7.34 (s, 1H), 10.33 (s, 1H), 10.39 (s, 1H) ppm. 
13

C NMR (50 MHz, CDCl3): 

δ 14.99, 23.71, 126.24, 143.98, 144.80, 157.59, 182.20, 184.85 ppm. MS (EI 70 eV) m/z 

168 (M
+
), 140 (M

+ 
 - CHO). 

5- Propyl thiophene-2,3-dialdehyde (60). 

        Yield = 66%. 
1
H NMR (200 MHz, CDCl3): δ 0.94 (t, J = 7.3 Hz, 3H), 1.68 (m, 2H), 

2.80 (t, J = 7.6 Hz, 2H), 7.27 (s, 1H), 10.26 (s, 1H), 10.32 (s, 1H) ppm. 
13

C NMR (50 

MHz, CDCl3): δ  13.51, 24.41, 32.43, 127.07, 143.96, 145.04, 156.03, 182.31, 184.97 

ppm. MS (EI 70 eV) m/z 182 (M
+
), 154 (M

+
 - CHO). 

5 – Butyl thiophene-2,3-dialdehyde(61). 

         Yield = 66%. 
 1
H NMR (200 MHz, CDCl3): δ 0.95 (t, J = 7.4 Hz, 3H), 1.41 (m, 2H), 

1.71 (m, 2H), 2.88 (t, J = 7.7 Hz, 2H), 7.33 (s, 1H), 10.33 (s, 1H), 10.39 (s, 1H) ppm. 
 13

C 
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NMR (50 MHz, CDCl3): δ 13.48, 21.91, 30.04, 33.02, 126.93, 144.03, 145.01, 156.24, 

182.26, 184.95 ppm. MS (EI 70 eV) m/z 196 (M
+
), 168 (M

+
 - CHO). 

General procedure for the preparation of alkyl-substituted anthradithiophene 

quinones. 

   A few drops of 15 % aqueous KOH solution was added to a mixture of 1,4-

cyclohexanedione (0.6 g , 5.5 mmol) and 5-alkyl thiophene dialdehyde (11.0 mmol) 

dissolved in tetrahydrofuran / ethanol (5 mL / 15 mL) in a 100 mL round-bottom flask, 

and the rapidly-precipitating mixture was stirred at room temperature for 3 h. The 

insoluble yellow precipitate was filtered through a Büchner funnel, washed with ether 

and dried in air to yield the desired product.         

2,8-Dimethyl anthradithiophene-5,11-dione (62). Yield = 70%. MS (MALDI, TCNQ 

matrix) m/z 348 (100%, M
+
). 

2,8-Diethyl anthradithiophene-5,11-dione (63). Yield = 65%. MS (MALDI, TCNQ 

matrix) m/z 377 (100%, M
+ 

+ 1) 

2,8-Dipropyl anthradithiophene-5,11-dione (64). Yield = 65%. MS (MALDI, TCNQ 

matrix) m/z 404 (100%, M
+
). 

2,8-Dibutyl anthradithiophene-5,11-dione (65). Yield = 71%. MS (MALDI, TCNQ 

matrix) m/z 433 (100%, M
+ 

+ 1). 

General procedure for the synthesis of 5,12-bis(trialkylsilylethynyl) 

anthradithiophenes. 

           n-BuLi (1.86 mL, 4.66 mmol) was added to trialkylsilylacetylene (5.32 mmol) in 

hexanes (50 mL) under dry N2 at room temperature in a flame dried 500 mL round-

bottom flask, and the resulting solution stirred for 30 min. The alkyl substituted 
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anthradithiophenequinone (1.33 mmol) was then added, followed by dry hexanes (200 

mL), and the resulting suspension stirred at 66 °C until the quinone had completely 

dissolved - typically overnight. Stannous chloride (0.9 g, 3.99 mmol), 0.5 mL of water 

and 1.5 mL of 10% H2SO4 were then added to the reaction mixture, which was 

maintained at 66 °C for an additional 5 h.  The reaction mixture was cooled and dried 

over anhydrous MgSO4. It was then purified by silica plug, eluted with hexanes. The 

solvent was evaporated and the product purified further by multiple crystallization from 

hexanes. The resulting product was filtered and dried in air to obtain the pure product.            

2,8-Dimethyl-5,12-bis(triethylsilylethynyl)anthradithiophene (66). Yield = 48%. 
1
H 

NMR (200 MHz, CDCl3): δ 0.91 (q, J = 7.6Hz, 12H), 1.25 (t, J = 7.8Hz, 18H), 2.65 (s, 

6H), 7.09 (s, 2H), 8.89 (s, 2H), 9.00 (s, 2H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 4.94, 

8.04, 17.15, 103.71, 103.83, 103.95, 106.20, 106.41, 106.63, 116.23, 117.23, 118.23, 

119.35, 119.43, 119.61, 119.71, 121.35, 123.95, 129.56, 129.59, 129.84, 130.09, 130.12, 

140.44, 140.48, 141.28, 141.30, 144.55, 144.59. MS (EI 70 eV) m/z 594 (100%, M
+ 

- 1), 

595 (50%, M
+
). Anal. calcd. % C: 72.66, % H: 7.11, Found % C: 72.38, % H: 6.98. MP: 

276.5 °C. 

2,8-Diethyl-5,12-bis(triethylsilylethynyl)anthradithiophene (67).  Yield = 61%.
 1

H 

NMR (200 MHz, CDCl3): δ 0.92 (q, J = 7.8Hz, 12H), 1.26 (t, J = 7.7Hz, 18H), 1.46 (t, J 

= 7.5Hz, 6H), 3.00 (q, J = 7.46Hz, 4H), 7.12 (s, 2H), 8.92 (s, 2H), 9.03 (s, 2H) ppm. 
13

C 

NMR (50 MHz, CDCl3): δ 4.91, 7.91, 14.90, 24.94, 103.96, 106.18, 117.26, 119.39, 

119.53, 119.62, 119.86, 119.95, 129.70, 130.19, 140.05, 141.22, 151.84, 151.89 ppm. MS 

(EI 70 eV) m/z 622 (25%, M
+ 

- 1), 623 (15%, M
+
). Anal. calcd. % C: 73.25, % H: 7.44, 

Found % C: 73.21, % H: 7.51. MP: 215 °C. 
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2,8-Dipropyl-5,12-bis(triethylsilylethynyl)anthradithiophene (68). Yield = 56%. 
1
H 

NMR (400 MHz, CDCl3): δ 0.92 (q, J = 8.0Hz, 12H), 1.07 (t, J = 7.4Hz, 6H), 1.25 (m, 

18H), 1.86 (m, 4H), 2.94 (t, J = 7.2Hz, 4H), 7.12 (s, 2H), 8.91 (s, 2H), 9.02 (s, 2H) ppm. 

13
C NMR (100 MHz, CDCl3): δ 4.95, 8.04, 13.97, 23.98, 33.70, 103.86, 103.96, 106.35, 

117.18, 119.49, 119.57, 119.76, 119.85, 120.28, 129.59, 130.08, 130.10, 140.04, 140.08, 

141.11, 150.15, 150.19. MS (EI 70 eV) m/z 650 (100%, M
+ 

- 1), 651 (50%, M
+
). Anal. 

calcd. % C: 73.78, % H: 7.73, Found % C: 73.55, % H: 7.76. MP: 225.27 °C. 

2,8-Dibutyl-5,12-bis(triethylsilylethynyl)anthradithiophene (69). Yield = 71%.
 1

H 

NMR (200 MHz, CDCl3): δ 0.95 (q, J = 7.8 Hz, 12H), 1.01 (t, J = 6.8 Hz, 6H), 1.26 (m, 

18H), 1.49 (m, 4H), 1.82 (m, 4H), 2.97 (t, J = 7.3 Hz, 4H), 7.11 (s, 2H), 8.91 (s, 2H), 9.03 

(s, 2H) ppm. MS (EI 70 eV) m/z 678 (15%, M
+
-1), 679 (10%, M

+
). Anal. calcd. % C: 

77.27, % H: 8.01, Found % C: 74.14, % H: 7.98. 

2,8-Dimethyl-5,12-bis(triisopropylsilylethynyl)anthradithiophene (70). Yield = 51%. 

1
H NMR (200 MHz, CDCl3): δ 1.33 (m, 42H), 2.65 (s, 6H), 7.07 (s, 2H), 8.94 (s, 2H), 

9.04 (s, 2H) ppm. MS (EI 70 eV) m/z 678 (15%, M
+ 

- 1), 679 (10%, M
+
). Anal. calcd. % 

C: 74.27, % H: 8.01, Found % C: 73.50, % H: 7.62. 

2,8-Diethyl-5,12-bis(triisopropylsilylethynyl)anthradithiophene (71). Yield = 55%.
 1
H 

NMR (200 MHz, CDCl3): δ 1.34 (m, 42H), 1.46 (t, J = 7.5 Hz), 6H), 3.00 (q, J = 7.6 Hz, 

4H), 7.10 (s, 2H), 8.96 (s, 2H), 9.07 (s, 2H) ppm. MS (EI 70 eV) m/z 706 (100%, M
+ 

- 1), 

707 (55%, M
+
).  

2,8-Dipropyl-5,12-bis(triisopropylsilylethynyl)anthradithiophene (72). Yield = 55%. 

1
H NMR (200 MHz, CDCl3): δ 1.07 (t, J = 7.4 HZ, 8H), 1.33 (m, 40H), 1.86 (m, 4H), 

2.94 (t, J = 7.6 HZ, 4H), 7.09 (s, 2H), 8.95 (s, 2H), 9.06 (s, 2H) ppm. 
13

C NMR (50 MHz, 
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CDCl3): δ 11.87, 13.98, 19.17, 24.03, 29.94, 33.72, 104.63, 105.13, 105.35, 105.56, 

116.30, 117.33, 119.53, 119.63, 119.85, 119.94, 120.29, 129.76, 130.23, 140.04, 141.08, 

150.16, 150.26 ppm. MS (EI 70 eV) m/z 736 (35%, M
+
 + 1), 735 (65%, M

+
), 734 (100%, 

M
+
 - 1).  Anal. calcd. % C: 75.14, % H: 8.49, Found % C: 73.76, % H: 8.45. 
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Chapter 4: Halogen Substituted Functionalized Anthradithiophenes 

4.1. Halogen Effects in Conjugated Materials. 

      Earlier studies demonstrated that both intrinsic properties such as energy level 

matching,
96

 strong π-orbital overlap between neighboring molecules,
97

 molecular 

orientation,
98

 and extrinsic properties such as thin film morphology,
99

 film thickness,
100

 

better interfaces with the electrodes
101 

and the dielectric
102

 are essential for improved 

charge transport in OTFTs. Substitution on the π-conjugated system is expected to alter 

not only the electronic properties but also the crystal packing. In 1986, Desiraju et al, 

demonstrated the influence of non-bonded intermolecular Cl…Cl and C-H…Cl 

interactions for the β-structures (short axis is below 4 Ǻ) of chlorinated planar 

aromatics.
103 

Recently, Bao et al. demonstrated that 5,11-dichlorinated tetracene (DCT, 

76) exhibited single crystal mobility as high as 1.6 cm
2
/Vs which is greater than that 

showed by unsubstituted tetracene (75). This high charge transporting property of 76 was 

attributed to enhanced π-orbital overlap (Fig. 4.1) because of Cl...Cl spatial interactions 

(3.86 Ǻ).
104 

Due to high electronegativity of the fluorine atom, perfluorination is an 

efficient way to convert p-type to n-type organic semiconductors. Suzuki and coworkers 

effectively synthesized perfluoropentacene (11), which exhibited herringbone crystal 

packing similar to that of 18 (see Fig. 4.2), however, with close intermolecular contacts 

(3.25 Ǻ) and edge-to-face angle of 91.2° (compared to 3.65 Ǻ and 51.9° respectively for 

18).30 Even though fluorine substitution was not expected to change greatly the molecular 

packing because of the relatively smaller size of fluorine atom (the atomic radii for H and 

F are 25 pm and 50 pm, respectively), 11 based OTFTs exhibited electron mobilities as 

high as 0.22 cm
2
/Vs.

105
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Figure 4.1 Structures of tetracene (75), dichlorotetracene (76) and crystal packing of 

76. 

Cl

Cl
75 76  

 

76 

Figure 4.2 Structure and crystal packing of pentacene (18) and perfluoropentacene 

(11). 
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      My goals for this project are to increase the π-electron surface interaction through 

sulfur-halogen and halogen-halogen spatial interactions. We believe that varying the 

electronegativity and the size of the halogen atoms should not only change the molecule’s 

orbital energy levels, but should also allow us to vary the crystal packing of the 

functionalized anthradithiophenes.  

4.2 Halogen-Substituted Functionalized Anthradithiophenes 

Halogen-substituted functionalized anthradithiophenes (85 - 88) were synthesized using 

methods similar to those for the alkyl-substituted functionalized anthradithiophenes                                    

mentioned in the previous chapter, and the synthetic routes starting from 57 are shown in 

Scheme 4.1. 5-fluoro thiophene-2,3-dicarboxaldehyde (77) was made in low yields by the 

addition of electrophilic fluorine (from N-fluoro benzene sulfonimide) to the lithium salt 

of 57 at - 78°C under N2 atmosphere, followed by acid hydrolysis. Purification of this 

material is critical, since even a small amount of thiophene-2,3-dicarboxaldehyde present 

with 77, generates mono fluoro-substituted anthradithiophenes (85a and 89a) as the 

byproduct in the final step. Other 5-halogen substituted thiophene-2,3-dicarboxaldehydes 

(78 - 80) were prepared under same conditions that used for 77 by the addition of N-

chlorosuccinimide, N-bromo succinimide, and iodine, respectively, to the lithium salt of 

57. 
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Scheme 4.1 Synthesis of halogen-substituted functionalized anthradithiophenes (85 - 

88). 
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Condensation of these aldehydes (77 - 80) with cyclohexane-1,4-dione yielded 2, 8-

dihalo anthradithiophene quinones (81 - 84)  as a mixture of syn- and anti- isomer.
44, 45 

Due to insolubility in common organic solvents, all the end-substituted anthradithiophene 

quinones mentioned in this dissertation were only characterized by mass spectrometry. 
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Figure 4.3 Thermal ellipsoid plots of 87, and 88. 

 

 

       Having found the triethylsilyl ethynyl (TES) group to be the best peri-functionalizing 

group to induce strong π-interactions in 21 and 66, my first approach was to introduce 

TES into the peri-positions of these end-substituted anthradithiophene chromophores. 

The desired organic semiconductors (85 - 88) were synthesized using similar approach 

that used for other functionalized anthradithiophenes. All of the derivatives were purified 

by silica gel chromatography followed by multiple recrystallizations from hexanes. 

Single Crystal X-ray Diffraction Studies. 

      High-quality single crystals of anthradithiophenes 85 - 88 were grown from hexanes, 

and their solid state arrangements were studied by single crystal X-ray diffraction. 

Thermal ellipsoid plots of 87 and 88 were shown in Fig. 4.3. From the XRD studies, 
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Figure 4.4 π-stacking solid state arrangements of 85 - 88.  
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it is observed that molecules in 85 exhibit strong two-dimensional π-stacking interactions 

with the closest carbon-carbon interatomic distance of 3.36 Ǻ, and S…F contacts as close 

as 3.16 Ǻ. The other halogenated anthradithiophenes (86 - 88) possess one-dimensional 

slipped π-stacking solid state arrangements as shown in Fig. 4.4. 

       From our group’s empirical model for the peri-functionalization of acene 

chromorphores,
42

 it is clearly understood that the size of the silyl group determines the 

nature of the crystal packing of an acene derivative in the solid state. Having understood 

this theory, my second approach was to engineer halogen-substituted anthradithiophene 

chromophores using a bulkier triisopropylsilyl ethynyl (TIPS) group. Organic 

semiconductors 89 - 91 were prepared by the addition of lithium triisopropylsilyl 

acetylide to their corresponding quinones, followed by deoxygenation with stannous 

chloride / 10% sulfuric acid in moderate yields as shown in Scheme. 4.2. 

Scheme 4.2 Synthesis of halogen-substituted functionalized anthradithiophenes (89 - 

91) 

S
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         Iodo, 91, 70 %  

 

      All of these derivatives were recrystallized from various organic solvents such as 

acetone, hexanes, dichloromethane, toluene. From single crystal X-ray diffraction studies, 



 

86 

 

89 was found to have very strong two-dimensional π-stacking interactions between the 

neighboring molecules with the closest carbon-carbon interatomic distance of 3.29 Ǻ and 

F…F intermolecular  

Figure 4.5 Thermal ellipsoid plots of 89 and 94. 

 

interactions predominate the pi-stacking with the contacts as close as 2.53 Ǻ (see Fig. 

4.6). 90 and 91 diffract poorly and possess 1-D slipped π-stacking solid state 

arrangements.  The thermal ellipsoid plot of 89 can be seen in Fig. 4.5. It is noteworthy 

that among the halogen-substituted derivatives, only the fluoro derivatives 85 and 89 

show strong two-dimensional interactions in the crystal packing.  To determine how 

much the silyl group can be varied in this class of materials, my next plan was to use the  

tri-n-propylsilyl ethynyl group to engineer the packing of the acene chromophore. The 

synthetic routes for this functionalized heteroacene (94) are the same as that used for 

other functionalized anthradithiophenes. 
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Figure 4.6 π-stacking interactions in 89 and 94. 

 

 

 

      The single crystal X-ray diffraction study confirms that 94 exhibits one-dimensional 

slipped π-stacking in the solid state with the closest carbon-carbon interatomic distance of 

3.38 Ǻ. The thermal ellipsoid plots and π-stacking interactions in 94 are shown in Fig. 4.5 

and Fig. 4.6, respectively. The UV-vis absorption spectra of anthradithiophenes 85 - 88 

recorded in dichloromethane are shown Fig. 4.7. As the electronegativity of halogen atom 

increases, λmax decreases, and a particularly significant blue shift can be seen upon 

fluorination (525 nm), as compared to 21 (555 nm). One of the criteria for developing 

organic electronic devices is the use of environmentally stable organic semiconductors. 

All of these halogen-substituted functionalized anthradithiophenes have shown excellent 

stability when exposed to heat, air and light. 
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Figure 4.7 UV-vis absorption spectra of functionalized anthradithiophenes (21 and 

85 - 88). 

 

 

 

From electrochemical studies, the oxidation potential for all of the derivatives 85 - 88 

was found to be about 1.0 V vs SCE, significantly greater than 0.90 V vs SCE reported 

for 21. Detailed reports of the electrochemical measurements on all the functionalized 

anthradithiophenes in my dissertation are covered in chapter 6. Differential scanning 

calorimetry (DSC) experiments on fluorine-substituted anthradithiophenes (85 and 89) 

show thermal stability at higher temperature. Especially, 89 possesses very high thermal 

stability, which is supported by the reproducibility of the heating and cooling curves 

found in the DSC experiment (see Fig. 4.8) even after heating at 280°C. 
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Figure 4.8 DSC experiment on 89. 

 

 

 

Figure 4.9 Photostability study of thin films made of 85. 
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       I also studied the photostability of thin films made of halogen-substituted 

anthradithiophenes under laboratory conditions using UV-vis spectroscopy.  When 

exposed to light, 21 photobleached completely in 1h (see Chapter 3, Fig. 3.13). On the 

other hand, 85 showed exceptional photostability even after 2000 h (see Fig. 4.9). 

4. 3 Organic Single Crystal Transistor Study. 

The single crystal XRD analysis of the high quality crystals of halogen-substituted 

anthradithiophenes demonstrated the amount of π-stacking in these compounds. Most 

interestingly, monstrous crystals were obtained for 89 from solution. By changing the 

recrystallizing organic solvent from toluene to dichloroethane, the shape of the crystals 

were completely changed from long needle of 2 cm to cubes of 0.5 cm in dimensions (see 

Fig. 4.10). Organic single crystal 

Figure 4.10 Crystals of 89 from (a) Toluene. (b) Dichloroethane. 

 

 

transistor studies on 89 was done by our collaborator Dr. Vitaly Podzorov at Rutgers. 

Graphite paste was used to deposit source and drain electrodes on a relatively smooth 

surface of the free-standing crystal (see Fig. 4.11). Using parylene (95, Fig. 4.12) as 

insulator and silver as gate electrode, the device exhibited a gate-voltage independent 

single crystal hole mobility of 0.1 cm
2
/Vs. It is observed that the single crystal hole 

mobility and threshold voltage are affected by the surface roughness. 
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Figure 4.11 Organic single crystal transistor characteristics of 89 (Data taken by Dr. 

Vitaly Podzorov’s research group, Rutgers). 

 

 

Figure 4.12 Structure of parylene (95). 
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4.4 Organic Thin Film Transistor Study. 

    Due to strong two-dimensional pi-stacking, 85 and 89 were chosen for OTFT studies, 

which were performed in several different research groups. Our collaborator, Dr. Dave 

Gundlach and co-workers at NIST built bottom contact FETs on a heavily-doped silicon 

wafer with 200 nm thermally grown SiO2 as gate electrode and insulator, respectively. 
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The source and drain electrodes consist of 5 nm Ti / 40 nm Au deposited by e-beam 

evaporation. The contacts were treated with pentafluorobenzene thiol (10 mM solution in 

ethanol) for better organic-electrode interface. Spin coated thin films of 85 were formed 

from 2 wt% toluene solution of the fluoro-substituted anthradithiophenes. From the 

devices studied with various channel lengths, it was found that the extracted field effect 

charge carrier mobility increases with decreasing channel length. This change in hole 

mobility is strongly affected by the local microstructure of the organic material in the 

channel region (see Fig 4.13). Device mobilities vary from ~0.2 cm
2
/Vs to ~ 0.001 

cm
2
/Vs for channel length 5 µm to 100 µm, respectively (Fig. 4.14).  

Figure 4.13 Optical Micrographs of 85 based OTFT devices with channel length (a) 

5 µm, (b) 10µm, (c) 20 µm, (d) 50 µm (Pictures were taken by Dr. Dave Gundlach’s 

research  group, NIST) 
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Figure 4.14 (a) bottom left : The transfer characteristics of a 85-based transistor 

with Channel length L = 5 µm and Channel width = 1000 µm (b)  top left : The 

output characteristics of the same device. (c) Top right : Structure of 85 and 

pentafluorobenzene thiol (d) Bottom right :General structure of the OTFT device 

(Transistor data from Dr. Dave Gundlach’s research group, NIST). 
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    Although fluorination of 21 did not affect the crystal packing of 85, an improvement in 

thin film forming ability is observed for 85. In contrast to the unsubstituted functionalized 

anthradithiophene (21), where doctor-blading or solvent vapor annealing were required to 

form crystalline thin films, 85 formed high quality crystalline thin films upon spin-

coating from solution. OTFT studies on 85 by a group of researchers from NIST and 

Penn state demonstrated the influence of source and drain contacts in obtaining improved 

microstructure in the conducting channel, hence, high performance of the devices. The 

use of hexamethyldisilazane (HMDS) to decrease the surface energy of the silicon 

dioxide (as is done frequently for TIPS pentacene) was found to cause significant 

dewetting of 85 solutions resulting in low mobility. 

       Of the various thiol-based monolayer treatments  (octadecanethiol, benzenethiol, 

pentafluorobenzene thiol (PFBT)) explored to decrease the surface energy
106

 of the gold 

interface, the use of PFBT produced the best results in terms of microstructure of the thin 

film in the channel region and the charge carrier mobility.  

Figure 4.15 Output (left) and transfer (right) characteristics of a spin-coated 85 

based OTFT device (Data taken by Dr. Tom Jackson’s research group, Penn State). 

 

 



 

95 

 

     Another OTFT study on 85 by our collaborator Prof. Tom Jackson’s research group at 

Penn State, with similar device structures that used by Dr. Dave Gundlach et al. were able 

to produce devices with thin film hole mobility as high as 0.9 cm
2
 / Vs from spin-cast 

films (Fig. 4.15). On/off current ratio and threshold voltage were measured as 10
6
 and 

9.67 V, respectively. On the other hand, drop-cast films of 85 produced FET devices with 

even higher performance - the transfer characteristics of a drop-cast 85 based OTFT 

device is shown in Fig. 4.16. 

Figure 4.16 Output characteristics of a drop-cast 85 based OTFT device (Transistor 

data taken from Dr. Tom Jackson’s research group, Penn State). 

 

 

      X-ray crystallographic studies revealed that the monofluoro-substituted 

functionalized anthradithiophene (85a) diffracted poorly and the random occupancy of 

fluorine atoms can be clearly seen from its thermal ellipsoid plot (see Fig. 4.17). OTFT 

experiments demonstrated that on this material exhibits thin film hole mobility in the 

order of 10
-4 

cm
2
/Vs.  
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Figure 4.17 Thermal ellipsoid plot of 85a. 

 

 

      Dr. Dave Gundlach and co-workers also studied 87 and 89 with the same OTFT 

device structure that used for 85. Even though 89 showed single crystal hole mobility of 

0.1 cm
2
/Vs from the solution grown organic crystals, 89 based OTFTs yielded devices 

with hole mobilities of 10
-7

 cm
2
/Vs. On the other hand, 87 based OTFTs produced 

devices with the extracted hole mobility of 0.004 cm
2
/Vs. These low thin film hole 

mobilities exihibited by 87 and 89 are attributed to its poor thin film forming ability as 

shown in Fig. 4.18. 
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Figure 4.18 Optical Micrographs of thin films made of 87 and 89 (Pictures were 

taken by Dr. Dave Gundlach research’s group, NIST). 

 

      

87                                               89 

       Halogen substitution on functionalized anthradithiophenes has produced very 

promising solution-processable organic semiconductors with high thermal, oxidative and 

photostability. Of all the halogen-substituted anthradithiophene derivatives I have 

discussed in this chapter, strongly two-dimensionally π-stacking 85 and 89 have yielded 

devices with excellent electronic properties. 89, where nonbonded F…F interaction is 

predominant, crystallize with relatively smooth surface, exhibited single crystal hole 

mobility of 0.1 cm
2
/Vs. 85, on the other hand, where nonbonded S…F interaction is 

predominant, produced high quality crystalline thin films upon spin coating, and 

exhibited extracted thin film hole mobility of  0.9 cm
2
/Vs. The 85 based OTFT study 

demonstrated that the device performance is dependent on the channel length and the 

contact-organic interface. Finally, the drop-cast film of 85 have shown thin film hole 

mobility of 3.69 cm
2
/Vs from an unreported device data. The overall outcome of this 
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project is that halogen substitution on anthradithiophene chromophore produced highly 

stable organic semiconductors. Especially, fluorinated functionalized anthradithiophenes 

(85 and 89) are highly promising candidates for OTFT and organic single crystal 

transistors, respectively. 

4.5 Experimental Details 

General.    

           Solvents (acetone, methylene chloride, hexanes) were purchased from Fisher. Dry 

THF was either purchased from EMS Science or distilled over sodium / benzophenone 

under N2 atmosphere. Trialkylsilyl acetylenes and N-Fluoro benzene sulfonamide were 

purchased from GFS Chemicals and Matrix Scientific respectively. Silica gel 230-400 

mesh was bought from Sorbent Technologies. NMR spectra were measured on Varian 

instruments (Gemini 200 MHz / Unity 400 MHz) spectrometer. Chemical shifts were 

reported in ppm relative to CDCl3 as internal standard. The UV-vis spectra were 

measured on a UV-2501PC Shimadzu instrument. Mass spectroscopy was analyzed in EI 

mode at 70 eV on a JEOL (JMS-700T) Mass Spectrometer. Cyclic voltammetry was 

carried out on a BAS CV-50W potentiostat, with ferrocene as an internal standard. 

Thiophene-2,3-diacetal (57). 

This compound was synthesized using previously reported literature.
44 

5-Flouro thiophene-2,3-dialdehyde (77). 

     In a flame dried flask, n-BuLi (29.6 mL, 74 mmol) was added slowly to thiophene-

2,3-diacetal (13 g, 56.9 mmol) in THF (75 mL) at -78
 °
C  under  N2 atm.  After one hour 

of stirring, N-fluorobenzene sulfonamide (NFSi) (21.86 g, 69.1 mmol) was added, the 

reaction mixture was warmed to room temperature, and stirred overnight. The reaction 
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mixture was quenched by adding cold water very carefully, extracted with diethyl ether, 

and washed with water. The organic layer was dried with anhydrous MgSO4 and 

concentrated.  Without purification, this material was hydrolyzed by 3M HCl (100 mL) 

for 1 hr. The product was extracted in ether and purified by column chromatography 

using hexanes / dichloromethane (120 mL / 180 mL). Yield = 2.9 g (32%). 
1
H NMR (200 

MHz, CDCl3): δ 7.04 (s, 1H), 10.28 (s, 1H), 10.43 (s, 1H) ppm. 
13

C NMR (50 MHz, 

CDCl3): δ 110.58, 110.70, 128.05, 129.49, 134.01, 181.94, 181.96, 183.56 ppm. MS (EI 

70 eV) m/z 158 (M
+
), 129 (M

+
 - CHO). 

5-Chloro thiophene-2,3-dialdehyde (78).  

              In a flame dried flask, n-BuLi (74 mmol) was added slowly to thiophene-2,3-

diacetal (56.9 mmol) in THF (75 mL) at -78
 °
C  under  N2 atm.  After one hour of stirring, 

N-chloro succinimide (69.1 mmol) was added, the reaction mixture was warmed to room 

temperature and stirred overnight. The reaction mixture was quenched by adding cold 

water very carefully, extracted with diethyl ether, and washed with water. The organic 

layer was dried with anhydrous MgSO4 and concentrated.  Without purification, this was 

hydrolyzed by 3M HCl (100 mL) for 1 hr. This product was extracted in ether, and was 

purified by column chromatography by using hexanes / dichloromethane (120 mL / 180 

mL). Yield = 51%. 
1
H NMR (200 MHz, CDCl3): δ 7.45 (s, 1H), 10.26 (s, 1H), 10.39 (s, 

1H) ppm.
 13

C NMR (50 MHz, CDCl3): δ 128.85, 141.08, 143.34, 145.97, 181.70, 183.69 

ppm. MS (EI 70 eV) m/z 174 (M
+
), 145 (M

+
 - CHO). 

5-Bromo thiophene-2,3-dialdehyde (79).  

            In a flame dried flask, n-BuLi (74 mmol) was added slowly to thiophene-2,3-

diacetal (56.9 mmol) in THF (75 mL) at -78
 °
C  under  N2 atm.  After one hour of stirring, 
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N-bromo succinimide (69.1 mmol) was added and reaction mixture was warmed to room 

temperature, stirred for overnight. The reaction mixture was quenched by adding cold 

water very carefully, extracted with diethyl ether, and washed with water. Organic layer 

was dried in anhydrous MgSO4 and concentrated.  Without purification, this was 

hydrolyzed by 3M HCl (100 mL) for 1 hr. This product was extracted in ether, and was 

purified by column chromatography by using hexanes / dichloromethane (120 mL / 180 

mL). Yield = 60%. 
1
H NMR (200 MHz, CDCl3): δ 7.59 (s, 1H), 10.26 (s, 1H), 10.37 (s, 

1H) ppm.
 13

C NMR (50 MHz, CDCl3): δ 124.09, 132.64, 143.94, 148.74, 181.60, 183.53 

ppm. MS (EI 70 eV) m/z 220 (M
+
), 191 (M

+
 - CHO). 

5-Iodo thiophene-2,3-dialdehyde (80).  

        In a flame dried flask, n-BuLi (9.6 mL, 24 mmol) was added slowly to thiophene-

2,3-diacetal (4.2 g, 18.4 mmol) in THF (50 mL) at -78 °C  under  N2 atm.  After 1 hr 

stirring, iodine (7.5 g, 29.4 mmol) was added and reaction mixture was warmed to room 

temperature, and stirred overnight. The reaction mixture was quenched by adding cold 

water very carefully, extracted with ethyl acetate, washed with 10 % sodium thiosulfate 

(100 mL), and water. Organic layer was dried in anhydrous MgSO4 and concentrated.  

Without purification, this was hydrolyzed by 3M HCl (100 mL) for 1 hr. This product 

was extracted in ether, and was purified by column chromatography by using hexanes / 

dichloromethane (120 mL / 180 mL). Yield = 3.58 g (90%). 
1
H NMR (200 MHz, CDCl3): 

δ 7.79 (s, 1H), 10.24 (s, 1H), 10.34 (s, 1H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 86.54, 

139.61, 144.54, 152.87, 181.37, 183.34 ppm. MS (EI 70 eV) m/z 354 (M
+
), 325 (M

+
 - 

CHO). 
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General procedure for the preparation of 2,8-dihalo anthradithiophene-5,12-diones. 

          To the mixture 1.4-cyclohexanedione (5.5 mmol) and 2.0 equivalent of 5-

substituted thiophene dialdehyde (11.0 mmol) in tetrahydrofuran / ethanol (5 mL / 15 

mL) 15 % of KOH (a few drops) was added, and the mixture stirred at RT for 3 h. The 

quinone was filtered through buchner funnel and washed with methanol and dried in air.  

2,8-Difluoro anthradithiophene-5,12-dione (81). Yield = 78%. MS (MALDI, TCNQ 

matrix) m/z 356 (100%, M
+
). 

2,8-Dichloro anthradithiophene-5,12-dione (82). Yield = 65%. MS (MALDI, TCNQ 

matrix) m/z 389 (16%, M
+
). 

2,8-Dibromo anthradithiophene-5,12-dione (83). Yield = 50%. MS (MALDI, TCNQ 

matrix) m/z 478 (100%, M
+
). 

2,8-Diiodo anthradithiophene-5,12-dione (84). Yield = 91%. MS (MALDI, TCNQ 

matrix) m/z 572 (100%, M
+
). 

General procedure of halogen substituted trialkylsilylethynyl anthradithiophene. 

           n-BuLi (1.86 mL, 4.66 mmol) was added to the trialkylsilylacetylene (5.32 mmol) 

in hexanes (50 mL) under N2 atm at RT in a flame dried 500 mL RB flask, and the 

mixture stirred for 30 min. To that, halogen substituted anthradithiophenequinone (1.33 

mmol) was added along with additional hexanes (200 mL) and the mixture heated at 66 

°C overnight. The next day, stannous chloride (0.9 g, 3.99 mmol), 0.5 mL of water and 

1.5 mL of 10% H2SO4 were added and the heating was continued for 5 more hrs.  The 

reaction mixture was cooled and dried over anhydrous MgSO4. It was purified by silica 

plug, washed by using hexanes and concentrated to get pure product. 
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2,8-Difluoro-5,12-bis(triethylsilylethynyl)anthradithiophene (85). Yield = 51%. 
1
H 

NMR (400 MHz, CDCl3): δ 0.91 (q, J = 2.0Hz, 12H), 1.24 (t, J = 2.0Hz, 18H), 6.82 (s, 

2H), 8.86 (s, 2H), 8.93 (s, 2H) ppm. 
13

C NMR (100 MHz, CDCl3): δ  4.92, 8.01, 102.76, 

102.99, 103.16, 103.29, 107.10, 117.22, 120.56, 120.65, 120.76, 120.85, 120.94, 121.03, 

129.62, 129.76, 130.14, 130.35, 134.08, 136.69, 136.74, 136.83, 136.87, 163.09, 169.03. 

MS (EI 70 eV) m/z 602 (100%, M
+
 - 1), 603 (45%, M

+
), 517 (17%). Anal. calcd. % C: 

67.73, % H: 6.01, Found % C: 67.38, % H: 5.78. 

2-fluoro-5,12-bis(triethylsilylethynyl)anthradithiophene (85a).  This derivative was 

isolated as a byproduct from the synthesis of 90. 
1
H NMR (400 MHz, CDCl3): δ 0.92 (m, 

12H), 1.25 (m, 18H), 6.82 (d, J = 0.7Hz, 1H), 7.47 (d, J = 1.4Hz, 1H), 7.58 (d, J = 1.4Hz, 

1H), 8.88 (s, 1H), 8.95 (s, 1H), 9.11 (s, 1H), 9.16 (q, J = 0.27Hz, 1H) ppm. 
13

C NMR 

(100 MHz, CDCl3): δ 4.92, 8.03, 102.87, 103.42, 106.95, 107.22, 116.51, 117.15, 117.76, 

118.42, 120.22, 120.62, 120.87, 120.96, 121.46, 123.93, 129.73, 130.03, 130.38, 133.95, 

136.69, 139.88, 140.29, 164.49, 167.46 ppm. MS (EI 70 eV) m/z 584 (7%, M
+
 - 1), 585 

(4%, M
+
).  

2,8-Dichloro-5,12-bis(triethylsilylethynyl)anthradithiophene (86). Yield = 60%. 
1
H 

NMR (400 MHz, CDCl3): δ 0.92 (q, J = 2.0Hz, 12H), 1.24 (m, 18H), 7.30 (td, J = 0.2Hz, 

J = 0.8Hz, 2H), 8.89 (dd, J = 0.15Hz, J = 1.25Hz, 2H), 8.93 (td, J = 0.2Hz, J = 0.73Hz, 

2H) ppm. 
13

C NMR (100 MHz, CDCl3): δ 4.88, 8.03, 102.97, 103.09, 103.20, 107.16, 

107.45, 107.75, 116.69, 117.80, 118.92, 119.55, 119.61, 120.61, 120.68, 122.66, 129.75, 

129.82, 130.12, 130.18, 135.29, 135.33, 139.05, 139.12 ppm. MS (EI 70 eV) m/z 634 

(66%, M
+
 - 2), 636 (61%, M

+
). Anal. calcd. % C: 64.22, % H: 5.70, Found % C: 63.85, % 

H: 5.65. 
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2,8-Dibromo-5,12-bis(triethylsilylethynyl)anthradithiophene (87). Yield = 43%.  
1
H 

NMR (400 MHz, CDCl3): δ 0.92 (q, J = 2.0Hz, 12H), 1.24 (m, 18H), 7.46 (d, J = 1.1Hz, 

2H), 8.92 (dd, J = 0.2Hz, J = 2.1Hz, 2H), 8.94 (td, J = 0.2Hz, J = 1.2Hz, 2H) ppm. 
13

C 

NMR (100 MHz, CDCl3): δ 4.88, 8.01, 102.97, 103.11, 103.25, 107.20, 107.50, 107.82, 

116.75, 117.90, 119.24, 119.30, 119.77, 119.83, 120.40, 120.46, 126.57, 129.69, 129.78, 

130.10, 130.18, 139.91, 140.85 ppm. MS (EI 70 eV) m/z 724 (17%, M
+
). Anal. calcd. % 

C: 56.34, % H: 5.0, Found % C: 56.56, % H: 5.20. 

2,8-Diiodo-5,12-bis(triethylsilylethynyl)anthradithiophene (88). Yield = 65%. 
1
H 

NMR (200 MHz, CDCl3): δ 0.92 (q, J = 3.3Hz, 12H), 1.25 (t, J = 3.7Hz, 18H), 7.68 (s, 

2H), 8.94 (s, 2H), 8.97 (s, 2H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 4.88, 7.95, 84.20, 

84.30, 103.31, 107.65, 118.12, 118.78, 120.04, 129.80, 129.98, 130.12, 130.30, 134.08, 

141.16, 141.24, 143.78, 143.94. MS (EI 70 eV) m/z 818 (30%, M
+ 

- 1), 692 (12%, M
+
 - 

I). Anal. calcd. % C: 49.87, % H: 4.43, Found % C: 50.00, % H: 4.27. 

2,8-Difluoro-5,12-bis(triisopropylsilylethynyl)anthradithiophene (89). Yield = 52%. 

1
H NMR (200 MHz, CDCl3): δ 1.32 (s, 42H), 6.81 (d, J = 1.2Hz, 2H), 8.92 (s, 2H), 8.98 

(s, 2H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 11.74, 19.03, 102.77, 102.99, 103.89, 

103.94, 103.99, 106.12, 106.19, 120.63, 120.73, 120.89, 120.98, 121.07, 121.16, 129.85, 

130.03, 130.38, 130.58, 134.16, 136.77, 136.95 163.19, 169.13 ppm.  MS (EI 70 eV) m/z 

686 (6%, M
+
 - 1), 687 (5%, M

+
). Anal. calcd. % C: 69.92, % H: 7.04, Found % C: 70.19, 

% H: 7.19. 

2-fluoro-5,12-bis(triisopropylsilylethynyl)anthradithiophene (89a).     MS (EI 70 eV) 

m/z 668 (6%, M
+
 - 1), 669 (4%, M

+
). 
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2,8-Diiodo-5,12-bis(triisopropylsilylethynyl)anthradithiophene (91). Yield = 70%.  
1
H 

NMR (200 MHz, CDCl3): δ 1.32 (s, 42H), 7.67 (s, 2H), 9.03 (t, J = 1.0Hz, 4H) ppm. MS 

(EI 70 eV) m/z 902 (30%, M
+
 - 1), 903 (15%, M

+
). Anal. calcd. % C: 53.2, % H: 5.35, 

Found % C: 54.10, % H: 5.61. 

Tri-n-propylsilyl acetylene (93).  

Ethynyl magnesium bromide (0.5 M, 10 mmol) in THF was added to tri-n-

propylchlorosilane 92 (10 mmol, purchased from GFS chemicals) in a 250 mL round 

bottom flask. The reaction mixture was stirred at room temperature overnight. It was then 

quenched with cold ammonium chloride solution, was extracted with ether. The organic 

layer was washed with water, dried over anhydrous MgSO4 and concentrated. It was then 

purified on a short pad of silica gel using hexanes. The desired product was obtained after 

removal of solvent. Yield = 89 %. 
1
H NMR (200 MHz, CDCl3): δ 0.64 (m, 6H), 0.99 (t, J 

= 7.4 Hz, 9H), 1.42 (m, 6H), 2.36 (s, 1H). 
13

C NMR (50 MHz, CDCl3): δ 16.01, 17.61, 

18.37, 88.46, 94.25.  

2,8-Difluoro-5,12-bis(tri-n-propylsilylethynyl)anthradithiophene (94). 

This was synthesized using the same procedure that used for other halogen-substituted 

functionalized anthradithiophenes. Yield = 61 %. 
1
H NMR (200 MHz, CDCl3): δ 0.91 

(m, 12H), 1.15 (t, J = 6.8 Hz, 18H), 1.67 (m, 12H), 6.81 (d, J = 2.6 Hz, 2H), 8.84 (s, 2H), 

8.93 (s, 2H). MS (EI 70 eV) m/z 686 (100 %, M
+
 - 1), 687 (55 %, M

+
) 
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Chapter 5: Attempted functionalization on anthradithiophene chromophore 

5.1 Methoxy substituted functionalized anthradithiophenes 

       With the success of the peri-functionalization approach on oligoacenes, the next 

logical strategy would be to increase the conjugation length of anthradithiophene 

chromophores for improved crystal packing and enhanced electronic properties. Earlier 

studies demonstrated that pentacene (18) showed thin film hole mobility as high as 1.5 

cm
2
/Vs on chemically treated silicon dioxide substrates.

107
 That value is more than an 

order of magnitude higher than that observed for tetracene (75, 0.1 cm
2
/Vs).

108
 This high 

charge carrier mobility was attributed to the uniform thin film morphology and molecular 

ordering on devices exhibited by the more conjugated material 18.  

Scheme 5.1 Synthesis of 2,8-dimethoxy-5,12-bis(triethylsilylethynyl) 

anthradithiophene (100). 
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Figure 5.1 π-stacking interactions in 100. 

 

 

 

In order to improve the charge injection into the active layer from the metal electrode, my 

first approach was to reduce the oxidation potential of the organic semiconductor by 

means of introducing electron donating groups at the end positions of the acene 

chromophore. For this, methoxy-substituted functionalized anthradithiophene (100) was 
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synthesized in four-step process starting from the copper (II) oxide catalyzed 

methoxylation of 96
109

 (Scheme 5.1). The resultant organic semiconductor 100 was 

purified by recrystallization in hexanes. The crystals were analyzed by single crystal X-

ray diffraction, which reveals that 100 diffracted poorly and exhibits weak two-

dimensional π-stacking interactions with the closest interatomic carbon-carbon distance 

of 3.48 Ǻ (see Fig. 5.1). Hence, neither functioning transistors nor photovoltaics could be 

constructed from this material. 

5.2 3,4,5-Trimethoxyphenyl substituted functionalized anthradithiophene 

        My next rational approach for extending conjugation of the anthradithiophene 

chromophore was the introduction of phenyl rings. To induce more conjugation (as well 

as lower oxidation potential to improve charge injection), I used electron-rich 3,4,5-

trimethoxy phenyl groups at the α-positions of the terminal thiophene rings (Scheme 5.2). 

The necessary 5-substituted thiophene-2, 3-diacetal 107 was prepared by Suzuki coupling 

of 5-iodothiophene-2, 3-diacetal 85 with the boronic acid 106,
110

 and the general 

synthesis for all of our acenes was followed to yield 110. 
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Scheme 5.2 Synthesis of 3,4,5-trimethoxyphenyl-substituted functionalized 

anthradithiophene (107). 
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X - ray crystallographic analysis of crystals grown from toluene revealed that the 

molecule adopts two dimensional π-stacking with closest interatomic carbon-carbon 

distance of 3.56 Ǻ. The thermal ellipsoid plot and π-stacking interactions in 107 are 

shown in Fig. 5.2 and Fig. 5.3, respectively.  
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Figure 5.2 Thermal ellipsoid plot of 107. 
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Figure 5.3 π-stacking interactions in 107. 

 

 

5.3 Cyano substituted functionalized anthradithiophenes 

One of the advantages of the end substitution on anthradithiophene chromophore is to 

synthesize n-type organic semiconductors by attaching electron withdrawing groups. 

Here, I have tried to increase the conjugation length of the acene chromophore through 

electron withdrawing cyano groups. 108 and 109 were easily synthesized by a Pd (0) 



 

111 

 

catalyzed cyanation of 88 and 91 (Scheme 5.3), and crystals were grown from 

dichloromethane.  

Scheme 5.3 Synthesis of cyano-substituted functionalized anthradithiophenes (108 

and 109). 
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     Single crystal X-ray diffraction studies reveal that 109 possesses one-dimensional 

slipped π-stacking with a closest carbon-carbon interatomic distance of 3.49 Ǻ. The 

thermal ellipsoid plot and π-stacking interactions are shown in Fig. 5.4 and Fig. 5.5, 

respectively. Unfortunately, attempts to recrystallize 108 from various organic solvents 

such as hexanes, dichloromethane, dichloroethane, toluene, xylene, dichlorobenzene left 

108 in amorphous powders, hence, no XRD data could be derived from 108.  
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Figure 5.4 Thermal ellipsoid plot of 109. 
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Figure 5.5 π-stacking interactions in 109. 
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5.4 Trimethylsilylethynyl functionalized anthradithiophenes 

My next strategy was to end-functionalize the anthradithiophenes with 

trialkylsilylethynyl groups. 2,8-bis(trimethylsilylethynyl)-substituted functionalized 

anthradithiophene (110) was easily synthesized by a palladium-catalyzed coupling 

between an alkyne and 91. The product was finally purified by recrystallization from 

hexanes.  

Scheme 5.4 Synthesis of trimethylsilylethynyl-substituted functionalized 

anthradithiophenes (110). 
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Figure 5.6 Thermal ellipsoid plot of 110. 
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Figure 5.7 π-stacking interactions in 110. 

 

 

 

Single crystal X-ray diffraction studies revealed that 110 diffracted poorly and possesses 

1-D π-stacks with herringbone-type interactions (edge-to-face interactions) between two 

adjacent stacks, with the closest interatomic carbon-carbon distance of 3.45 Ǻ. The 

thermal ellipsoid plot and crystal packing of 110 are shown in Fig. 5.6 and Fig. 5.7, 

respectively. Solvent molecules (dichloroethane) were found between the pi-stacking of 
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neighboring molecules. Upon selective desilylation of trimethylsilyl group using 

potassium carbonate in methanol (with little THF for solubility), 110 (dark red) turned 

into black solution indicating decomposition. 

 

5.5 Experimental Details 

General.    

           Solvents (acetone, methylene chloride, hexanes) were purchased from Fisher. Dry 

THF was either purchased in anhydrous form from EMS Science or distilled over sodium 

/ benzophenone under N2 atmosphere. Trialkylsilyl acetylenes were purchased from GFS 

Chemicals.  Silica gel 230-400 mesh was bought from Sorbent Technologies. NMR 

spectra were measured on a Varian (Gemini 200 MHz / Unity 400 MHz) spectrometer. 

Chemical shifts were reported in ppm relative to CDCl3 as internal standard. The UV 

spectra were measured on a UV-2501PC Shimadzu instrument. Mass spectroscopy was 

analyzed in EI mode at 70 eV on a JEOL (JMS-700T) Mass Spectrometer. Cyclic 

Voltammetry was carried out on a BAS CV-50W potentiostat, with ferrocene as an 

internal standard. 

5-iodo thiophene-2,3-diacetal (96). 

See the experimental section, chapter 4. 

5- Methoxy thiophene 2,3-dialdehyde (98).  

      Copper (II) oxide (0.51g, 6.4 mmol) and 96 (4.5g, 12.7 mmol) were added to a 

solution of 25 wt % sodium methoxide (9 ml, 51 mmol) in methanol in a flame dried 

single necked 250 mL round bottom flask, and the reaction mixture was refluxed for 24 

h. It was then filtered and poured into cold water (250 mL), and extracted with ether. The 

organic layer was separated, dried over anhydrous MgSO4 and the solvent was 
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evaporated to yield 83 % of 5-methoxy thiophene-2,3-diacetal (97). MS (EI 70 eV) m/z 

258 (100 %, M
+
). Without purification, this material was hydrolyzed with 3M HCl (100 

mL) for 1 hr. This product was extracted in ether, and was purified by column 

chromatography using hexanes / dichloromethane (120 mL / 180 mL). Yield = 65%. 
1
H 

NMR (200 MHz, CDCl3): δ 4.02 (s, 3H), 6.63 (s, 1H), 10.33 (s, 1H), 10.35 (s, 1H) ppm. 

13
C NMR (50 MHz, CDCl3): δ 60.99, 106.10, 135.02, 144.07, 174.16, 181.43, 184.38 

ppm. MS (EI 70 eV) m/z 170 (M
+
), 142 (M

+
 - CHO). 

2,8-Dimethoxy anthradithiophene-5,12-dione (99).    

         To the mixture of 1.4-cyclohexanedione (5.5 mmol) and 5-methoxy thiophene -2,3-

dialdehyde (11.0 mmol) in tetrahydrofuran / ethanol (5 mL / 15 mL), 15 % of KOH (few 

drops) was added, stirred at RT for 3 hrs. The quinone was filtered through buchner 

funnel and washed with ethanol and dried in air. Yield = 85%. MS (MALDI, TCNQ 

matrix) m/z 380 (100%, M
+
). 

2,8-Dimethoxy-5,12-bis(triethylsilylethynyl)anthradithiophene (100). 

      n-BuLi (1.54 mL, 3.85 mmol) was added to triethylsilylacetylene (0.8 mL, 4.4 mmol) 

in tetrahydrafuran (50 mL) under N2 atm at RT in a flame dried 500 mL RB flask, stirred 

for 30 min. To that, methoxy substituted anthradithiophenequinone (0.42 g, 1.1 mmol) 

was added and stirred for overnight. The next day, stannous chloride (3.3 mmol), 0.5 mL 

of water and 1.5 mL of 10% HCl were added, and the reaction mixture allowed to stir for 

5 h.  The reaction mixture was dried over anhydrous MgSO4 and concentrated. It was 

purified by silica plug, washed by using hexanes and concentrated to get pure product. 

Yield = 65%. 
1
H NMR (400 MHz, CDCl3): δ 0.90 (m, 12H), 1.24 (m, 18H), 4.09 (s, 6H), 

6.39 (s, 2H), 8.68 (s, 2H), 8.84 (s, 2H) ppm. 
13

C NMR (100 MHz, CDCl3): δ 4.94, 8.04, 
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59.92, 96.70, 103.52, 103.79, 104.05, 105.78, 105.88, 116.30, 116.45, 117.84, 118.04, 

119.45, 119.66, 128.92, 129.41, 130.09, 130.59, 134.45, 134.74, 139.54, 139.77, 166.97, 

167.07 ppm. MS (EI 70 eV) m/z 628 (12%, M
+
), 627 (16%, M

+
 - 1), 626 (32%, M

+
 - 2). 

Anal. calcd. % C: 68.96, % H: 6.75, Found % C: 68.58, % H: 6.67. 

3, 4, 5-Trimethoxyphenyl iodide (102). 

In a two necked 500 mL round bottom flask, 3, 4, 5-trimethoxy aniline 101 (5 g, 27.3 

mmol) in 25% H2SO4 was added slowly to NaNO2 (5.66 g, 82 mmol) in water (40 mL) at 

0-4 °C. After stirring for 30 minutes, potassium iodide pellets (13.6 g, 82 mmol) were 

added, followed by vigorous evolution of N2. It was then heated at 80 °C for 90 minutes 

until the evolution of the gas ceased. The reaction mixture was cooled and extracted with 

ether, washed with 10% sodium thiosulphate (100 mL), water and saturated brine 

solution. The organic layer was dried over anhydrous MgSO4 and concentrated. It was 

purified by silica plug using hexanes / methylene chloride (200 mL / 300 mL). Yield = 6 

g (75%). 
1
H NMR (200 MHz, CDCl3): δ 3.84 (s, 9H), 6.89 (s, 2H) ppm.          

3, 4, 5-Trimethoxyphenyl boronic acid (103). 

In a single necked 250 mL RB Flask,  n- BuLi (3.5 mL, 8.7 mmol) was added to 102 (1.5 

g, 5.1 mmol) in dry THF at -78 °C under N2 atm. After stirring for 30 min. at -78 °C, the 

reaction mixture was was warmed to 0 °C and then cooled back to -78 °C immediately. 

To the mixture, trimethyl borate (1.4 g, 13.3 mmol) was then added and stirred at RT for 

14 hrs. It was then quenched by addition of 1M HCl (18 mL) and was extracted with 

ether, washed with water and brine solution. It was then dried and concentrated. Yield = 

0.7 g (65%). Without purification, it was taken to the next step.            
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5-(3, 4, 5-trimethoxyphenyl) thiophene-2,3-diacetal (104). 

In a single necked 250 mL RB Flask, a mixture of 103 (0.7 g, 3.3 mmol) and 5-iodo 

thiophene-2,3-diacetal 96 (0.98 g, 2.8 mmol), was taken in EtOH:H2O:C6H6 (1:1:2) (50 

mL) and sparged with N2 for 30 min. To that, potassium carbonate (1.4 g, 10.08 mmol) 

and tetrakis(triphenylphosphine) palladium(0) (0.5 g, 0.4 mmol) were added, the mixture 

sparged for a further 15 min. then heated at 90 °C for 30 hours. The solvents were 

evaporated, cooled to room temperature and extracted with ether, washed with water and 

the organic layer was dried over anhydrous MgSO4 and concentrated. It was then purified 

by silica plug using hexanes / ethyl acetate mixture (200 mL / 300 mL). Yield = 0.4 g 

(37%). MS (EI 70 eV) m/z 394 (100%, M+). 

5-(3, 4, 5-trimethoxyphenyl) thiophene-2,3-dialdehyde (105). 

The diacetal 104 was hydrolysed with 1 M HCl in 2 h and the reaction mixture was 

extracted with ether. The organic layer was separated, dried over anhydrous MgSO4 and 

concentrated. Without any purification, the dialdehyde 105 was taken to next step. Yield 

= 90%. MS (EI 70 eV) m/z 306 (100%, M+), 263 (70%, M+ – 43).  

2,8-Di(3, 4, 5-trimethoxyphenyl)anthradithiophene-5,12-dione (106). 

To the mixture of 1,4-cyclohexanedione (5.5 mmol) and 5-(3, 4, 5-trimethoxyphenyl) 

thiophene -2,3-dialdehyde (11.0 mmol) in tetrahydrofuran / ethanol (5 mL / 15 mL), 15 

% of KOH (few drops) was added, stirred at RT for 3 hrs. The quinone was filtered 

through a buchner funnel and the solid washed with ethanol and dried in air. Yield = 

46%. MS (MALDI, TCNQ matrix) 652 (100%, M+). 
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2,8-Di(3,4,5-trimethoxyphenyl)-5,12-bis(triisopropylsilylethynyl)anthradithiophene 

(107). 

n-BuLi (0.72 mL, 1.8 mmol) was added to triisopropylsilylacetylene (0.36 g, 2.0 mmol) 

in hexane (50 mL) under N2 atm at RT in a flame dried 500 mL round bottom flask, and 

stirred for 30 min. To that, 5-(3, 4, 5-trimethoxy phenyl) anthradithiophene quinone (0.5 

g, 0.5 mmol) and hexanes (200 mL) were added and the solution heated at 66 °C  

overnight. The next day, stannous chloride (1.5 mmol), 0.5 mL of water and 1.5 mL of 

1% sulphuric acid were added and the mixture heated for 5 hrs.  The reaction mixture 

was cooled and dried over anhydrous MgSO4. It was purified by filtration through a silica 

plug (hexanes) and concentrated to get pure product. Yield = 0.2 g (27 %). 
1
H NMR (200 

MHz, CDCl3): δ 1.31 – 1.37 (s, 42H), 3.94 (s, 6H), 4.02 (s, 12H), 7.07 (s, 4H), 7.56 (s, 

2H), 9.02 – 9.16 (d, J = 6.2 Hz, 4H). MS (EI 70 eV) m/z 984 (35%, M+ + 1), 983 (40%, 

M+), 982 (45%, M+ - 1). Anal. calcd. % C: 70.83, % H: 7.17, Found % C: 70.38, % H: 

6.88. 

General procedure for the preparation of cyano-substituted trialkylsilylethynyl 

anthradithiophenes: 

In a 250 mL round bottom flask, the iodo-substituted functionalized anthradithiophenes 

(88 or 91, 0.44 mmol) was added to the mixture of Pd (PPh3)4 (76.2 mg, 0.066 mmol), 

potassium cyanide (120 mg, 1.85 mmol), and copper (I) iodide (16.75 mg, 0.088 mmol) 

in degasified THF, and the reaction mixture was heated at 65 °C for overnight. The room 

temperature cold reaction mixture was then extracted with ether, and washed with water. 

The organic layer was separated, dried over anhydrous MgSO4, and concentrated. The 
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desired cyano-substituted anthradithiophenes were purified on a short pad of silica gel 

using hexanes / dichlormethane (2 : 5).  

2,8-Dicyano-5,12-bis(triethylsilylethynyl)anthradithiophene (108). Yield = 76%. 
1
H 

NMR (200 MHz, CDCl3): δ 0.96 (s, 12H), 1.26 (s, 18H) 8.02 (s, 2H), 9.09 (s, 2H), 9.18 

(s, 2H) ppm. MS (EI 70 eV) m/z 618 (25%, M+ + 1), 617 (50%, M+), 616 (100%, M+ - 

1). 

2,8-Dicyano-5,12-bis(triisopropylsilylethynyl)anthradithiophene (109).  Yield = 78%. 

This was recrystallized in dichloromethane. 
1
H NMR (200 MHz, CDCl3): δ 1.34 (s, 42H), 

8.04 (s, 2H), 9.18 (s, 2H), 9.30 (s, 2H) ppm. 
13

C NMR (50 MHz, CDCl3): δ 11.71, 19.05, 

97.29, 103.15, 108.09, 108.72, 109.34, 113.30, 113.50, 114.20, 117.33, 119.35, 120.74, 

120.81, 121.40, 125.17, 130.30, 130.82, 131.16, 131.68, 135.64, 137.91, 138.20, 139.14, 

139.58 ppm. MS (EI 70 eV) m/z 702 (30%, M+ + 1), 701 (65%, M+), 700 (100%, M+ - 

1). 

2,8-Di(trimethylsilylethynyl)-5,12-bis(triisopropylsilylethynyl)anthradithiophene 

(110). 

In a flame dried 100 mL single necked round bottom flask, the mixture of 91 (1g, 1.1 

mmol), trimethylsilyl acetylene (0.27g, 2.77 mmol), palladium (II) chloride (19.5 mg, 

0.11 mmol), triphenyl phosphine (57.6 mg, 0.22 mmol), and copper (I) iodide (21 mg, 

0.11 mmol) in a degasified solvent mixture of triethylamine (30 mL) and DMF (10 mL) 

was heated at 70 °C for overnight. The reaction mixture was extracted in ether, washed 

with water, the organic layer was dried over anhydrous MgSO4 and concentrated. It was 

then purified on a short pad of silica gel, followed by recrystallization in hexanes. Yield = 

83%. 
1
H NMR (400 MHz, CDCl3): δ 0.33 (s, 18H), 1.33 (s, 42H), 7.58 (t, J = 0.2Hz, 2H), 
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9.05 (q, J = 2.3Hz, 2H), 9.06 (s, 2H) ppm. 
13

C NMR (100 MHz, CDCl3): δ  -0.04, 11.80, 

19.13, 97.97, 103.96, 104.03, 106.11, 106.54, 106.99, 116.48, 118.01, 119.57, 119.59, 

122.09, 122.13, 126.05, 126.19, 129.48, 130.23, 130.48, 130.73, 139.74, 139.77, 139.91, 

140.02 ppm. MS (EI 70 eV) m/z 843 (5%, M+), 746 (10%, M+ - trimethylsilylethynyl). 
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Chapter 6: Conclusion 

6.1 Summary of New Functionalized Pentacenes and Anthradithiophenes. 

       Extensive investigation of organic semiconductors over the past two decades has 

helped to produce high performance electronic devices. However, more research is 

needed to allow the commercialization of organic electronic devices. Using our group’s 

peri-functionalization approach, I have synthesized a variety of stable and soluble 

functionalized pentacenes and anthradithiophenes (along with a few unstable derivatives). 

In the second chapter, I discussed my attempts to induce liquid crystallinity through 

functionalization of pentacene in order to form high quality, uniform thin films. I found 

that alkyl chain length is directly related to crystal packing as well as to the stability of 

the organic semiconductors. As the number of carbons in the alkyl substitutent increases, 

the aryl - aryl interactions shift to aryl - alkyl interactions, leading to poor electronic 

interactions in the solid state. Oxidative stability of these functionalized pentacenes was 

greatly enhanced by the introduction of silyl substitutents at the peri-positions of 

pentacene. The multiple thermal phase transitions observed for 53 by DSC experiment 

suggested the possibility of thermotropic liquid crystalline phases. However, due to lack 

of π-stacking between the neighboring molecules, 53 is a poor organic semiconductor. As 

found in the alkynyl pentacenes, optimal alkyl chain lengths on silyl substitutents are 

required for strong π-stacking interactions in peri-functionalized trialkylsilylethynyl 

pentacenes.  

      Substitution of the reactive thiophene positions of 21 produced materials with 

increased stability. In the third chapter, the effect of small increases in alkyl chain length 

on crystal packing and thin film morphology of functionalized anthradithiophenes had 
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been addressed. 66 showed the highest thin film hole mobility (0.3 cm
2
/Vs) among the 

alkylated anthradithiophene derivatives, which was attributed to its crystal packing and 

its uniform thin film forming ability. On the other hand, other alkylated 

anthradithiophenes (67 and 68) showed promising results in stacked organic photovoltaic 

devices. 68-based organic solar cells exhibited 0.33 % power conversion efficiency, 

where C60 and 68 were deposited through vacuum evaporation and from solution, 

respectively. Interestingly, 67-based bulk heterojunction solar cells, where both 67 and 

PCBM were deposition from solution, produced 1.003% power conversion efficiency.  

    Chapter 4 discussed halogen substitution on functionalized anthradithiophenes, which 

produced devices with excellent electronic properties in organic field effect transistors. 

The fluorine-substituted anthradithiophene derivatives possessed strong two-dimensional 

pi-stacking, and the single crystal XRD studies disclose that the other halogen-substituted 

anthradithiophenes adopt weak 1-D π-stacked solid state arrangements. In addition to the 

exceptional photostability, oxidative stability and thermal stability shown by 85 and 89, 

the type of spatial fluorine and sulfur-fluorine interactions determine the nature of thin 

films and solution grown crystals made from these anthradithiophenes. 89, in which the 

nonbonded F…F interactions are predominant, forms the moderately smooth surface 

solution grown big (~ 2 cm long or 1 cm
3
) crystals, which exhibited single crystal hole 

mobility of 0.1 cm
2
/Vs from the organic single crystal transistors. In contrast, 85, in 

which the nonbonded S…F interactions are predominant, forms uniform thin films on 

devices and exhibited thin film hole mobility of 1 cm
2
/Vs consistently from organic thin 

film transistors.  
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     In chapter 5, the use the methoxy and trimethoxyphenyl substitution on 

anthradithiophene chromophore didn’t help to achieve my goal of reducing the oxidation 

potential of the organic semiconductor in order for better charge injection from the metal 

electrode. Also, it is observed that the electron withdrawing cyano group substitution on 

acene chromophore was not sufficiently electron deficient to synthesize n-type organic 

semiconductor. Attempt to increase the conjugation length of the acene chromophore 

through dimerisation using ethynyl spacer was not successful since decomposition of 110 

upon the selective desilylation of 110. 

6.2 Future Targets 

      The presence of acidic hydrogens at the terminal thiophene rings of anthradithiophene 

chromophore allows us to engineer the acene crystal packing further. In continuation with 

this extended conjugation approach, the following type of materials (111 and 112) might 

be expected to improve the crystal packing because of larger pi-orbital overlap between 

neighboring molecules (Fig. 5.8). Due to time constraints, those compounds were not 

synthesized and studied for organic electronic devices. In addition to different 

functionalization that can be done on phenyl and thienyl groups of 111 and 112, 

respectively, much more non-bonded sulphur…halogen interactions could be explored by 

attaching halogens (especially fluorine atom from the outcome of this dissertation) on 

thienyl groups of 112. Another interesting and challenging material would be increasing 

the fluorine substituents on trialkylsilylethynyl anthradithiophenes. Synthesizing more 

fluorine substituted anthradithiophenes such as 113 are expected to enhance the 

nonbonded S…F and F…F interactions compared to 85 and 89, thereby, increasing the 
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amount of pi-overlapping of neighboring molecules, could eventually yield novel high 

performing organic semiconductors for electronic applications. 

Figure 5.8. Future Targets. 
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        Our approach to peri-functionalize acene oligomers has produced materials with 

increased oxidative stability, solubility in organic solvents, and remarkably improved pi-

stacking solid state arrangements. A slight change in solubilizing silyl groups as well as 

end-substitution on acene chromophore has enormous influence on the crystal packing, 

thin film morphology and charge transport properties. Taking advantage of chemical 

tunability and rationalizing the structure and property relationships of the functionalized 

oligoacenes, we can design and synthesize improved organic electronic materials. In 
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addition, it allows us to provide proper direction for the scientific community in the field 

of organic electronics to develop novel solution processable organic semiconductors. 

Table 5.1 UV-vis and electrochemical measurements on functionalized 

anthradithiophenes. 

 

No. Materials λmax
a 

(nm) 

Eox
b 

(mV) 

Optical 

Gap 

(eV) 

EHOMO 

(eV) 

ELUMO 

(eV) 

1. TES anthradithiophene, 21 555 904 2.17 5.22 3.05 

2. Methyl TES anthradithiophene, 66 549 839 2.19 5.16 2.97 

3. Ethyl TES anthradithiophene, 67 550 833 2.19 5.15 2.96 

4. Propyl TES anthradithiophene, 68 550 829 2.18 5.15 2.97 

5. Butyl TES anthradithiophene, 69 551 823 2.18 5.14 2.96 

6. Fluoro TES anthradithiophene, 85 527 1017 2.29 5.34 3.05 

7. Chloro TES anthradithiophene, 86 541 1021 2.23 5.34 3.11 

8. Bromo TES anthradithiophene, 87 545 1015 2.20 5.34 3.14 

9. Iodo TES anthradithiophene, 88 551 996 2.19 5.32 3.13 

10. Methoxy TES anthradithiophene, 

100 

537 800 2.22 5.12 2.90 

11. Trimethoxyphenyl TIPS 

anthradithiophene, 107 

571 870 2.11 5.19 3.08 

12. Cyano TES anthradithiophene, 108 583 1216 2.06 5.55 3.49 

13. Trimethylsilylethynyl TIPS 

anthradithiophene, 110 

570 971 2.13 5.29 3.16 

a
Recorded in dichloromethane. 

b
Performed in 0.1 M solution of Bu4NPF6 in 

dichloromethane, Pt electrode, scan rate 150 mV/s, Ferrocene as internal standard. 
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