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NEONATAL IMMUNE MODULATION TO IMPROVE PNEUMOCYSTIS 

CLEARANCE 
 

 

Pneumocystis carinii is an opportunistic fungal pathogen that causes life-

threatening pneumonia in immunocompromised individuals. Infants appear to be 

particularly susceptible to Pneumocystis (PC) pulmonary infections. The higher 

incidence of PC as well as other pulmonary infections among infants is likely due 

to an immature immune system. The neonatal lung environment is deficient 

immunologically in preterm as well as term infants (1, 2). Decreased phagocytic 

capacity of macrophages in newborns may increase the risk of infection from 

inhaled pathogens (1, 2).  We have previously demonstrated that there is 

approximately a 3-week delay in the clearance of PC organisms from pup mouse 

lungs compared to adults. Herein, we demonstrate that there is also a 1-week 

delay in the infiltration of AMs in pup compared to adult PC-infected mice. We go 

on to show that there is a delay in pup versus adult lung macrophage phenotypic 

expression and cytokine production in response to PC organisms. We 

demonstrated that pup AMs are competent to produce cytokine in response to 

LPS and that stimulation with zymosan generates cytokine production in pup 

AMs that is comparable to adult cytokine production. These data indicate that 

pup lung macrophages are specifically poorly responsive to PC organisms and 

likely require exogenous stimulation to mount a significant immune response and 

expedite clearance of the organism. We go on to show that heat-killed Escheriae 



coli improves cytokine response, cellular infiltration and reduces organism 

burden in PC-infected pup mice. The clinically relevant cytokine, GM-CSF, has 

been used to improve the clearance of several pulmonary infections, including 

PC in adult animal models. We show that monotherapy with GM-CSF is 

insufficient to improve PC clearance in pup mice; however, when combined with 

TMP/SMX it improves PC clearance and maintains a reduced PC burden 

following discontinuation of therapy. Furthermore, we have shown that GM-CSF 

improves the ability of human infant lung macrophages to phagocytose PC 

organsms without generating an increased inflammatory response. These data 

suggest that combination therapy with TMP/SMX and GM-CSF may be a viable 

treatment option for infants failing or intolerant to standard therapy.  
 
KEYWORDS: Pneumocystis, alveolar macrophage, granulocyte macrophage- 
                       colony stimulating factor, neonate/infant, immunomodulation 
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CHAPTER 1. Introduction 
 

A. Overview 

 

Pneumocystis carinii f. sp. hominis is an opportunistic fungal pathogen 

known to cause life-threatening pneumonia in immunocompromised individuals.  

Infants, predominantly those that are immunocompromised, appear to be 

particularly susceptible to primary PC infection.  Among HIV-infected children 

who develop pneumonia, Pneumocystis carinii f. sp. hominis is one of the most 

common causative pathogens (1). Furthermore, HIV-infected children less than 1 

year of age have a higher incidence and a more fulminate course of 

Pneumocystis pneumonia (PCP) than older children with AIDS (2). More recently 

Pneumocystis (PC) colonization and infections have been identified in 

immunocompetent individuals, particularly in young children (3-6).  

The higher incidence of PC as well as other pulmonary infections among 

infants is likely due to an immature immune system. The neonatal lung 

environment is deficient immunologically in preterm as well as term infants (7, 8). 

Decreased phagocytic capacity of polymorphonuclear (PMN) cells, monocytes, 

and macrophages, low immunoglobulin levels, decreased expression of 

complement receptors and possible defects in T lymphocyte immunoregulation in 

newborns may increase the risk of infection from inhaled pathogens (7, 8).   

It is well known that T lymphocytes are crucial in host defense against PC 

as made evident by the Human Immunodeficiency virus (HIV) epidemic; a 

disease which kills CD4 T cells. We have previously demonstrated that there is 

approximately a 3-week delay in the clearance of Pneumocystis organisms from 

pup mouse lungs compared to adults which corresponds with a delay in T cell 

infiltration into the neonatal versus adult lungs (9). However, when T lymphocytes 

from pup mice were adoptively transferred into adult mice, they were shown to 

clear PC as efficiently as adult T cells (10) suggesting that the delayed PC 

clearance in pups can not be attributed to T cells alone. We have further shown 

that there is approximately a 1-week delay in alveolar macrophage (AM) 
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activation in pup versus adult mice (11). Macrophages are resident in the lungs 

and thus make up the first line of defense against inhaled pathogens. They 

appear to be the primary effector cells responsible for killing and clearance of PC 

(12) and are therefore important cells to consider when studying the failure of 

pup lungs to clear the organism. It is therefore, the goal of this project to 

determine the possible delays or defects present in pup lung macrophages (LMs) 

compared to adult LMs and to further identify a clinically relevant treatment 

option that would help stimulate LMs and expedite the clearance of PC 

organisms from infant lungs. Throughout this dissertation, lung macrophages 

(LMs) will be used to refer to both alveolar and lung tissue macrophages; 

alveolar macrophages (AMs) will be used when specifically refering to 

macrophages residing in the alveolar spaces.  

According to the Center for Disease Control (CDC) guidelines, 

Trimethoprim/sulfamethoxazole (TMP/SMX) is currently the drug of choice in 

both adults and children for treatment and prophylaxis of PCP (13). Some of the 

adverse reactions that occur in children secondary to TMP/SMX include, but are 

not limited to, rash, hematological abnormalities, and interstitial nephritis (13-15). 

Furthermore, infants less than 4 weeks of age are at increased risk of jaundice 

when exposed to TMP/SMX due to its bilirubin displacing properties (1995 

MMWR Revised guidelines for prophylaxis against PCP), (Brito 2006, Science 

Direct). If intolerance to TMP/SMX occurs, adults have several other treatment 

options, including pentamidine, atovaquone, clindamycin/primaquine, 

dapsone/trimethoprim, or trimotrexate glucuronate/leucovorin (13).  Treatment 

options for the 15% of children who develop substantial adverse reactions to 

TMP/SMX (16), however, are severely limited with pentamidine being the only 

alternative agent with available data for use in children (13). Pentamidine is not a 

benign drug with 17% of children experiencing a substantial adverse drug 

reaction (17). Severely limited options, significant adverse reactions, and 

increasing resistance to TMP/SMX (18) (19) (20) (21), obviate and accentuate 

the need for further treatment options in infants suffering from PCP.   
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Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a 

glycoprotein produced by several pulmonary cells including macrophages, 

activated T cells, and epithelial cells (22). It is a hematopietic growth factor that 

regulates the proliferation and release of progenitor cells and modulates the 

function of mature monocytes and macrophages. Among the functions of GM-

CSF are its ability to influence the number of macrophages at a site of infection 

and activate macrophages for enhanced activity against invading pathogens (23) 

(24). GM-CSF is a commercially available agent indicated for use in leukemia 

following cancer chemotherapy, myeloid reconstitution following bone marrow 

transplants and mobilization for peripheral blood stem harvesting (Immunex Co.). 

Unlike G-CSF, GM-CSF is a potent inhibitor of neutrophil migration which may be 

beneficial during pulmonary infections known to mount a large, damaging 

inflammatory response, such as PC infection. GM-CSF has also been shown to 

enhance the clearance and improve outcomes of several different pulmonary 

infections, including but not limited to group B streptococcus infection (24), 

Pseudomonas aeruginosa (25), Histoplasma capsulatum (26, 27), 

Mycobacterium tuberculosis (28), and Pneumocystis carinii (29). However, there 

is little data on the effects of GM-CSF on pulmonary infections in infants and no 

data regarding the addition of GM-CSF for the treatment of PCP in the infant 

population. These aforementioned attributes and the ability of GM-CSF to 

improve outcomes in pulmonary infections in adult animal models suggest that 

this clinically relevant agent may be of therapeutic benefit for infants with 

pulmonary infections failing to respond to antimicrobial therapy alone. HIV-

infected infants with PCP are a particularly fragile population requiring more 

treatment options to improve outcomes. However, the potential role of GM-CSF 

in the lung for host defense against PC has not been investigated in the neonatal 

population and will therefore be addressed within the scope of this project.  
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B. Neonatal Lung Environment  
 

1. Immature neonatal immune function 
Neonates are highly susceptible to infectious diseases during the early 

postnatal period, particularly at the mucosal surface of the respiratory tract (30, 

31). Maturational deficiencies in both the innate (32) and adaptive (31) immune 

functions are thought to contribute to this increased vulnerability (33) (34).  

Studies in both humans and mice have demonstrated that neonatal immune cells 

are qualitatively distinct from adult cells. Among neonates and adults, subsets of 

cells exist in different proportions; furthermore cells of the same subtypes exhibit 

different phenotypes. Many studies throughout the literature have demonstrated 

deficiencies or alterations in neonatal T cells, B cells, and antigen-presenting 

cells (APCs) compared to adult cells. (30, 31, 33-35). These aforementioned 

immune deficiencies occur in the lung as well as throughout the neonatal 

immune system and likely contribute to the increased risk of respiratory infections 

observed in newborns. LMs, in particular, constitute an important first line of 

defense against inhaled pathogens (36) (30), therefore underdeveloped or 

functionally inefficient LMs must be considered when studying increased 

susceptibility to pulmonary infections in the neonatal population. 

 

2. Alveolar macrophages 
Phagocytosis 

 Tissue-fixed macrophages in the lung are instantly available to respond to 

inhaled pathogenic organisms. They do so through phagocytosis followed by 

death of the organisms intracellularly. Some organisms, such as Mycobacterium 

tuberculosis and Listeria monocytogenes, are able to escape death and live 

within a cell following phagocytosis by evading the killing capacity of the 

phagolysosome (37). Most organisms, such as Pneumocystis carinii, however, 

are extracellular and succumb readily to the acidic environment composed of 

oxygen radicals generated within the phagosome upon ingestion.  Some 

phagocytosis assays performed on neonatal and adult macrophages have 
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demonstrated that neonatal macrophages are as competent as adult 

macrophages at phagocytosing both bacterial (38) and fungal pathogens (39).  

However, other studies done specifically on alveolar macrophages have shown 

that there is a strong correlation between impaired phagocytosis and infancy 

(40). One possibility for this stark discrepancy is the difference in the local 

environment.  The phagocytosis assays performed by Karlsson et al. and Marodi 

et al. were done on cord blood derived monocytes, whereas those done by 

Martin et al. were performed on alveolar macrophages. The neonatal lung 

environment is thought to be immunosuppressant during its vulnerable post-natal 

development period which may, therefore, contribute to the lower phagocytic 

function demonstrated by Martin et al. Similar to phagocytic function; research 

done on the generation of oxygen radicals within activated macrophage 

phagosomes differs according to where the cells were derived. Neonatal and 

adult monocyte-derived macrophages from either cord or peripheral blood have 

been shown to produce similar levels of oxygen radicals in response to various 

stimuli (41, 42). Delacourt and colleagues, however, demonstrated that oxygen 

radical production is significantly reduced in neonatal rat LMs compared to adult 

LMs upon stimulation (43).  

In addition to phagocytosis, upon interaction with foreign particles normally 

functioning LMs perform several duties which have been shown to be less 

efficient in neonates compared to adults, including recognition and binding 

through pattern recognition receptors (PRRs) (44), secretion of cytokines and 

chemokines (45) (44, 46, 47), up-regulation of complement receptors or integrins 

(45), and up regulation of co-stimulatory molecules (48) and antigen presenting 

molecules (49). 

 

Pattern recognition receptors 

 Macrophages express several PRRs that recognize many different 

microbial components and which can discriminate between the surface 

molecules displayed by a pathogen versus one displayed by the host. Some 

important PRRs found on macrophages include the macrophage mannose 



 6

receptor (MMR), beta-glucan receptors (BGRs) (Dectin-1, CD11b, etc.), 

scavenger receptor (SR), LPS receptor (CD14), toll-like receptors (TLR), and 

CD11b/CD18 (complement receptor 3; CR3) (50). The up regulation of these 

receptors can often tell us if the macrophage has become activated or stimulated 

by a pathogenic organism. For example, CD14 recognizes and binds to the 

lipopolysaccharide component of the Escherichia coli (E. coli) cell wall. 

Additionally, macrophages are thought to identify PC through recognition of its 

cell wall components, MMRs (51) (52) and BGRs (53) (54) (55).  

Of particular importance in regards to identifying the presence of PC are 

MMR and the beta-glucan receptor, dectin-1. These 2 receptors are known as C-

type lectin receptors (CLR), which are defined as carbohydrate binding 

molecules that bind ligands in a calcium-dependent manner (56). The MMR 

binds both endogenous and exogenous ligands bearing mannose, fucose, N-

aceytlglucosamine, and sulphated sugars via its cysteine-rich domain (56). It is 

most commonly known for its ability to bind pathogen-associated mannose 

structures found on bacteria, yeast, and fungi (56). Many studies have suggested 

that the MMR is important in the recognition and clearance of PC (51, 52). 

Interestingly, however, other studies performed found that MR-/- mice were no 

more susceptible to fungal pathogens, including PC, than their wild-type 

counterparts as measured by mortality and dissemination of infection (57) (58).  

Like the MMR, dectin-1 is also a CLR involved in the clearance of 

glycosylated antigens present in fungal cell walls such as PC, particularly β-1,3- 

and β-1,6-linked glucans (56, 59).  Unlike MMR, however, dectin-1 elicits pro-

inflammatory mediators such as TNFα in response to fungal pathogens (60).  It 

does this in collaboration with TLR2 (60) (61) which interacts with dectin-1’s 

immunotyrosine activation motif (ITAM). Furthermore, dectin-1 has recently been 

shown to stimulate both CD4 and CD8 T lymphocytes, thereby inducing co-

stimulatory molecule expression and IFNγ production (62). The MMR (51, 63)and 

BGRs (64) (54, 65) are both thought to play important roles in the recognition of 

PC and the subsequent stimulation of alveolar macrophages in the adult lung. 

Currently, however, there is no available data demonstrating whether or not 
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differences exist in the expression levels of MMR or dectin-1 on lung 

macrophages following bacterial or fungal stimuli in neonates versus adults.  

The family of PRRs known as TLRs is unique from other PRRs in that they 

appear not to recognize and bind pathogens directly like MMR and dectin-1 (50).  

Instead, they associate with other receptors that directly recognize and bind 

pathogens. Once associated, the TLRs initiate an intracellular signaling cascade 

resulting in translocation of the transcription factor, NFkB, to the nucleus. This 

results in the subsequent production of several important mediators of innate 

immunity such as cytokines and chemokines. Additionally, TLR signaling is 

responsible for generating CD80 and CD86, two important molecules in adaptive 

immunity. The presence of these co-stimulatory molecules along with pathogenic 

antigens presented on the surface of antigen presenting cells (APC), including 

macrophages, is an important method by which CD4 T lymphoctyes are activated 

and thus tie TLRs to the initiation of the adaptive immune response (50). Specific 

agonists for nine of the ten human TLR members have been described thus far 

(66). Among these are the previously mentioned TLR2 which is known to 

associate with the BGR following recognition of the fungal pathogen PC. One of 

the first TLRs to be described was TLR4, which is known to associate with the 

LPS receptor CD14 following recognition of the E. coli cell wall component, LPS. 

Previous research has suggested that the deficiency of the innate immune 

response in neonates is due, in part, to impaired responses of neonatal 

macrophages to TLR ligands (67) (68).  

The final PRR that will be discussed in regards to lung macrophages is 

CR3. Like many mediators of the immune system, CR3 is a multifunctional 

receptor performing roles in pathogen recognition as well as leukocyte adhesion 

and extravasation. CR3 is one of 4 complement receptors found on phagocytes. 

It is responsible for binding pathogens opsonized with complement components 

and stimulating phagocytosis (50). CR3 also belongs to a family of cell-adhesion 

molecules called integrins which are responsible for binding to cell-adhesion 

molecules and promoting the extravasation, whereby phagocytic cells expressing 

CR3 or other integrins are transported through endothelial membranes to the site 
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of infections (50). The third function of CR3 is as a PRR which recognizes and 

ligates β-1,3-glucans leading to cell priming for ingestion of the fungal pathogen 

(69-71).  The ability of CR3 to recognize the β-1,3-glucan component of fungal 

cell walls as well as its constitutive expression on LMs makes it a useful tool in 

assessing LMs activation status following PC infection. There is no data in the 

literature describing whether or not differences exist in the expression level of 

CR3 in neonates versus adults. Thus information on the expression level of this 

receptor in the presence of PC infection in pup versus adult LMs is also lacking. 

Evidence from data collected in our lab demonstrates that clear differences exist 

between the expression level of the CD11b component of CR3 between pup and 

adult mice (11). Following intranasal PC inoculation of both pup (24-48hrs old) 

and adult mice (≥ 8 weeks old), CD11b expression was significantly lower on pup 

LMs compared to adult LMs by 6 days post-infection (11).   

While other PRR exist, such as the scavenger receptor, for the purposes 

of this introduction, I have chosen to focus on the ones that are pertinent for my 

work with PC infection in the neonatal lung. One final PRR that I will briefly 

mention is CD11c/CD18 (CR4). CR4 is another complement receptor in the 

same family as CR3 which also plays a dual role as an integrin. Unlike CR3, CR4 

has demonstrated no ability to recognize any pathogenic organisms outside the 

realm of the complement pathway. Throughout this research, however, we use 

antibodies specific for both the CD11b and CD11c components of CR3 and CR4, 

respectively, as a means of identifying LMs.  

 

 Cytokines and chemokines 

  Once a tissue macrophage recognizes and binds a pathogenic organism 

it is activated to release cytokines and chemokines, which in turn increase the 

state of inflammation by recruiting more immune cells and eventually initiating the 

cellular immune response (50).  Cytokines are small proteins released by many 

different immune cells, including macrophages. The release of cytokines from 

their respective cells is generally initiated through the ligation of specific 

receptors as described above. Once these soluble proteins are released they can 
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act in an autocrine, paracrine, or endocrine manner thereby affecting the 

behavior of the host cell, adjacent cells, or distant cells, respectively (50).  

Chemokines are a distinct subset of cytokines with chemoattractant properties. 

These proteins are responsible for recruiting mainly monocytes, neutrophils, and 

other blood-derived cells with the appropriate receptors to sites of infection where 

the chemokine was initially released (50).  The cytokines secreted by 

macrophages in response to pathogenic stimuli include interleukin-1 (IL-1), 

interleukin-6 (IL-6), interleukin-12 (IL-12), TNFα, and the chemokine interleukin-8 

(IL-8) (50).  IL-1 functions include activation of the vascular endothelium and 

local tissue destruction thereby mediating an increase in access of additional 

effector cells. Additionally, IL-1 is involved in lymphocyte activation and therefore 

is yet another link between the innate and adaptive immunity. IL-6 is also 

involved in B lymphocyte activation leading to increased antibody production. IL-

12 induces the differentiation of CD4 T lymphocytes into TH1 cells, thereby 

driving a more cellular response. IL-8, MIP-1, and MCP-1 are all chemokines 

responsible for recruiting other leukocytes to the site of infection; MCP-1 also 

acts to activate macrophages in an autocrine fashion. TNFα is an extremely 

potent cytokine involved in vascular endothelium activation and increased 

permeability, allowing an increased flux of immune cells and molecules to the site 

of infection and an increase in fluid drainage to regional lymph nodes (50).  IFNγ 

is a cytokine that is produced and secreted by T lymphocytes and natural killer 

(NK) cells. While it is not produced by macrophages in significant amounts, it is 

important in that it activates macrophages to further boost the immune response 

by increasing phagocytosis, increasing the expression of PRRs and co-

stimulatory molecules, and increasing the production of cytokines and 

chemokines.  

 The two cytokines TNFα and IFNγ have been shown to be very important 

in the clearance of PC (72) (73) (74, 75). Additionally, upon infection with PC, 

neonatal mice demonstrated a much weaker TNFα and IFNγ mRNA response 

compared to adult mice (10).  As previous research in our lab has demonstrated, 

the exogenous administration of TNFα  is capable of stimulating a T cell 
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response in neonatal mice and thus may expedite the clearance of PC in 

neonatal mice (73). In my research, I have demonstrated that the administration 

of inhaled IFNγ alone does not improve clearance in PC infected neonatal mice. 

However, the administration of heat-killed E. coli (HKEC), a known stimulator of 

TNFα production, demonstrated a significantly increased clearance in PC-

infected neonatal mice compared to their untreated counterparts. As will be made 

evident in the results section of my research, TNFα is an important cytokine in 

the pathogenesis of PC in a neonate. Furthermore, I will show that the production 

of TNFα in a neonate differs from that of an adult and may be due in part to the 

vulnerable state of the underdeveloped lung environment of a neonate.  

Table 1.1 Cytokines/Chemokines 

Cytokine Effect on Macrophages and 
other cells Affect on PC infection 

TNFα 

Activates Macrophages; 
Activates vascular 

endothelium and increases 
vascular permeability 

PC is not cleared from reconstituted SCID 
mice in the absence of TNFα; must be 

present early in disease (74)   

IL-1 
Activates vascular 
endothelium and 

lymphocytes 

In the absence of IL-1, clearance of PC is 
almost completely inhibited (76) 

IL-6 
Activates lymphocytes 

leading to increased antibody 
production 

PC clearance is not dependent on IL-6; 
during infection IL-6 regulates  

inflammation and antibody response (77)

IL-12p70 Promotes differentiation of 
CD4 T cells to TH1 cells 

Improves proliferation of immune cells 
during PC infection but does not improve 

clearance (78) 

IL-8 Recruits T cells and 
neutrophils 

IL-8 promotes lung pathogenesis 
secondary to PC leading to a poorer 

prognosis; PC-mediated IL-8 release from 
AMs requires MRs and TLR2 (79) 

MIP-1 Recruits monocytes, T cells, 
and DCs Not specifically studied in PCP infection 

MCP-1 Recruits monocytes, T cells, 
and DCs 

 Contributes to the pathologic T cell 
response leading to progression of PCP; 
may increase epithelial cell repair (80) 

IFNγ Activates macrophages IFNγ does not play a significant role in PC 
clearance when given exogenously (74) 

GM-CSF 
Increases differentiation and 
proliferation of granulocytes; 

activates macrophages 

Critical role in inflammatory response to 
PC through granulocyte proliferation and 

macrophage activation (81) 
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Co-stimulatory molecules 

 The co-stimulatory molecules and signals that are required for lymphocyte 

activation provide an extremely important function in maintaining a form of 

checks and balances in the initiation of the immune response. Activation of T 

lymphocytes by APCs are controlled by specialized ligands and receptors found 

on the APCs and the T lymphocytes. The co-stimulatory molecules I will focus on 

for the purposes of this research are the two structurally related glycoproteins 

CD80 and CD86 (also known as B7.1 and B7.2 respectively) found on APCs and 

CD40 ligand (CD40L) found on T lymphocytes. Once an APC, such as an LM, 

recognizes a pathogen (often by a PRR), it phagocytoses it, internally processes 

it and then presents an antigenic component of that pathogen on its surface in 

the context of a major histocompatibility class II (MHC II) molecule. This peptide: 

MHC II complex on the APC can now be recognized by naïve T lymphocytes. 

The peptide: MHC II complex on the APC binds to the T-cell receptor (TCR) and 

its co-receptor (ex. CD4) thereby delivering the first required signal in T 

lymphocyte activation. This one signal is not enough, however; a second 

stimulatory signal is required for full T lymphocyte activation. The second signal 

is delivered through binding of the co-stimulatory molecules CD80 and CD86 on 

the APC to the CD28 receptor found on the T lymphocyte. Only now will clonal 

expansion and the subsequent differentiation into a TH1 or TH2 T lymphocyte 

occur. The requirement of this second signal ensures that naïve T lymphocytes 

won’t react to self antigen that is sometimes presented in an MHC II molecule 

(50).  This description of the APC and T lymphocyte interaction is a basic one; 

there are several caveats that bear mentioning.  Before a macrophage 

phagocytoses a pathogenic organism, it expresses little to no MHC II, CD80, or 

CD86 on its surface. The PRR that initially recognizes the pathogen is what 

provides the necessary signals for the expression of MHC II and the co-

stimulatory molecules on its surface. At this point, macrophages are still in a 

relatively unstimulated state and may still function as APCs, but lack the capacity 

to be highly effective phagocytic cells which are often needed to clear many 

extracellular organisms such as PC. Like naïve T lymphocytes, macrophages 
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also require two signals in order to become activated. The first signal is provided 

by IFNγ, which can come from a number of sources, but the primary source is 

from armed effector T lymphocytes (CD4 or CD8 T lymphocytes). In the absence 

of T lymphocytes, IFNγ may also be provided by NK cells. The second signal, 

which can be provided by a variety of means, is required to sensitize the 

macrophage to respond to IFNγ (50). Perhaps the most common source of this 

second signal is the CD40L found on the surface of TH1 cells as previously 

described, thereby allowing TH1 cells to be the primary source of both signals 

required for macrophage activation. Without these two signals and the 

subsequent activation of macrophages, one can see how organism such as PC, 

which requires macrophage activation, can cause fulminate infections. This 

scenario is best exemplified by HIV, in which CD4 T lymphocytes are destroyed, 

subjecting the infected host to a wide range of opportunistic infections (OI) such 

as PC. Although TH1 cells provide the most convenient source of both 

macrophage activating signals, there are other sources. As already described, 

IFNγ can be provided by CD8 T lymphocytes or NK cells. In addition to CD40L, 

the secondary signal may also come from TNFα, LPS, or other bacterial or fungal 

antigenic components. Once activated, macrophages undergo several changes 

that greatly increase their antimicrobial effectiveness leading to an enhanced 

immune response. For example, activated macrophages increase their 

expression of CD40 receptor, MHC II, CD80 and CD86, as well as inducing the 

production of oxygen radicals (50). In my research, I will be discussing the 

differences of some of these markers of macrophage activation as it pertains to 

neonates versus adults that have been infected with PC organisms. Additionally, 

I will discuss my findings regarding the up regulation the PRRs (CR3, TLR2, 

MMR, and BGRs) and cytokines (IFNγ, TNFα, IL-6, and MCP-1) thought to be 

important in PC infection.  

 

The role of lung macrophagess in Pneumocystis clearance 

LMs are known to play a significant role in host defense against PC. Using 

a rat model depleted of LMs, Limper and colleagues demonstrated that PC 
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infection could not be controlled in adult rats in the absence of LMs (82).  There 

are many organisms that come into contact with LMs that are cleared without the 

need for LM activation. PC organisms however, have been shown to require T 

lymphocytes for adequate clearance, suggesting that LM activation, and 

therefore, T lymphocyte: LM interaction, is important for clearance (83).  While 

LMs are believed to be the effector cells that are directly involved with killing the 

PC organisms, LMs are not capable, on their own, to adequately control the 

infection. This has been clearly demonstrated in experiments in which T 

lymphocyte-deficient mice, with fully functional LMs, are susceptible to PC 

infection (83).  Using an adoptive transfer model, our lab has previously 

demonstrated that neonatal T lymphocytes are fully functional and work as 

efficiently as adult T lymphoctyes in clearing PC organisms (10). Thus, while it is 

understood that T lymphocytes continue to play a crucial role, the goal of my 

research is to define the differences between neonatal and adult LMs that lend to 

the inefficient clearance of PC from neonatal lungs. Furthermore, my research 

will focus on evaluating clinically relevant means by which to improve neonatal 

LM function to help fight PC infection as well as other pulmonary infections in the 

neonatal host.  

 

3. Neutrophils 
 Following macrophages, neutrophils (polymorphonuclear cells; PMNs) 

comprise the second major group of phagocytes. There are many similarities and 

differences between these two phagocytic families; Table 1. Unlike 

macrophages, neutrophils are not tissue-fixed. They have a short life cycle which 

is spent primarily in the blood until called upon to help fight off an invading 

pathogen. While macrophages are the first to respond to an infectious process in 

the tissues, they are soon reinforced with large numbers of neutrophils to help 

with phagocytosis. Like macrophages, neutrophils recognize foreign pathogens 

through their large repertoire of PRRs. Neutrophils, however, differ from 

macrophages in that once they phagocytose a foreign particle they die soon 

thereafter, whereas a macrophage proceeds to present antigenic material on its 
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surface and thus acts as an intermediary between innate and adaptive immunity. 

The most import difference between these two phagocytic cells, for the purposes 

of my research, is that neutrophils do not appear to play a major role in the 

clearance of PC organisms compared to macrophages which are a key effector 

cell in clearing this organism (84). There are many differences between these 

two phagocytic cells that may contribute to the apparent lack of neutrophil 

involvement in PC clearance; Table 1.1. While a specific reason for this 

difference has not been fully elucidated, one could speculate that because 

neutrophils do not reside in the tissues, unlike macrophages (LMs in this case) 

they are less involved in the response to PC.   

 
Table 1.2   Macrophages Versus Neutrophils 

Function Macrophages Neutrophils 

Life span Long-lived Short-lived 

Phagocytic capacity Continual Once 

MMR Present Absent 

BGR Present Present 

CD14 (LPS receptor) Predominant Little to no expression 

Location Tissues Blood 

CD4 T cell activation Yes No 

Complement receptors Yes Yes 

 

4. Dendritic cells 
 The function of a dendritic cell (DC) resembles that of a tissue 

macrophage, with some distinct exceptions. DCs are considered the primary 

professional APC. Like tissue-fixed macrophages, DCs take up antigenic material 

within infected tissue via PRRs, such as those previously described. Once this 

has occurred, intracellular signals trigger the DCs to lose their phagocytic abilities 

and become potent APCs. Like LMs, once a DC has become activated, they 

increase their expression of the co-stimulatory molecules, CD80 and CD86 as 

well as MHC II molecules on their surface. Unlike LMs, the activated DCs are no 



 15

longer phagocytic; instead they are signaled to migrate to the spleen or regional 

lymph nodes where they exhibit highly efficient T lymphocyte activation.  

 DCs exist as two major subsets in the human system. Myeloid DCs (MDC) 

are postulated to originate from circulating monocytes. Depending on the 

surrounding signals, monocytes can be stimulated to develop into either 

macrophages or MDCs (85). Monocytes, in the presence of granulocyte 

macrophage – colony stimulating factor (GM-CSF), develop into macrophages; 

however, in the presence of both GM-CSF and interleukin-4 (IL-4), monocytes 

differentiate into MDCs (86). The role of GM-CSF will be discussed in great detail 

later in the introduction. The other major subset of DCs are the plasmacytoid 

DCs (PDC), which look more like plasma cells, but retain some MDC 

characteristics (87). Structurally, when we think of DCs, we often picture follicular 

DCs (FDC) with their characteristic finger-like protrusions called dendrites. When 

we look at these cells under a standard light microscope, however, they are 

difficult if not impossible, to differentiate from macrophages. Additionally, both of 

these cells express the same surface markers, albeit at different expression 

levels, making these two cells even more difficult to discriminate; DCs and LMs 

are notoriously difficult to decipher from one another (88). For my in vitro 

experiments that I will discuss later in this dissertation, I rely on the fact that 

macrophages differ from DCs in their level of adherence. When cells are lavaged 

from an uninfected mouse lung, the majority of the cells are macrophages, with a 

small percentage of them being DCs. When incubated in a tissue culture plate, 

macrophages stick readily. DCs, on the other hand, are washed off, leaving a 

relatively pure population of macrophages to work with. Our in vivo work, which 

involves in vivo stimulation followed by flow cytometric analysis, discriminates 

between LMs and DCs based on the level of CD11c expression. Cells that 

express a high level of CD11c are considered LMs, whereas cells that express 

low levels of CD11c are considered DCs (89, 90). 
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5. T lymphocytes 
 T lymphocytes play a crucial role in the clearance of PC, as made evident 

by the HIV epidemic. HIV is a virus that targets CD4 T cells leaving its host 

vulnerable to opportunistic pathogens such as Cytomegalovirus (CMV), 

Toxoplasmosis, Candida albicans, and PC (13).  T cells can be distinguished 

based on their distinct functions and expression of cell-surface proteins. T cells 

that express the co-receptor CD4 recognize antigens presented within MHC 

class II molecules, while T cells that express CD8 recognize antigens presented 

within MHC class I molecules (50). As discussed in the macrophage portion of 

the introduction, APCs associate with T cells via a peptide:MHC complex and 

receive 2 signals in order to become activated. Once an APC has engulfed a 

pathogenic organism, processed it internally and presented an antigenic 

component of it on its surface via an MHC molecule, it is ready to interact with a 

naïve T cell. During antigen recognition, CD4 or CD8 co-receptors associate on 

the T cell surface along with the T-cell receptor (TCR) and bind to the 

peptide:MHC II or I complex respectively, on the APC. As previously described, a 

second signal is required in order for the T cells to become activated. This 

second signal is provided by the co-stimulatory molecules, CD80 and CD86, 

expressed on the surface of APCs, which in turn bind to the CD28 receptor found 

on the surface of T cells. Once activated, T cells proliferate and differentiate to 

perform their respective effector functions (50).  

 CD8 T cells are known for their direct interactions with APCs bearing 

recognizable antigens. Antigens derived from replicating virus or other pathogens 

are displayed, in the context of MHC class I molecules, on the surface of an 

infected cell, where they are recognized by cytotoxic T cells (CD8 T cells). The 

CD8 T cells kill the infected cell by releasing perforin (which punches holes in the 

target cell membrane) and granzymes (proteases that trigger apoptosis 

intracellularly). CD8 T cells, also termed cytotoxic T cells, are important in the 

clearance of viral pathogens (50). CD4 T cells, however, appear to be the most 

crucial component of cell-mediated immunity in terms of PC infection. As 

previously stated, CD4 cells are the primary target in HIV disease, which leave 
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the host vulnerable to opportunistic infections (OI) such as PC. Also as 

previously pointed out however, in the absence of CD4 T cells, CD8 T cells are 

capable of providing LMs with IFNγ, 1 of the 2 signals required for macrophage 

activation. Furthermore, it has been demonstrated that while CD8 T cells alone 

are insufficient to clear PC organisms, they are associated with increased 

pathology in the lungs of PC-infected mice (91). When mice are depleted of both 

CD4 and CD8 T cells, they developed a less fulminate infection compared to 

mice depleted of CD4 T cells alone (92).  

Upon activation, CD4 T cells can differentiate into either TH1 or TH2 cells, 

which differ in their cytokine production and thus in the functions they perform. 

Although the precise factors that determine whether a CD4 T cell will differentiate 

into a TH1 or TH2 cell are not fully understood, it is thought that the environment 

under which they differentiate may guide them, including the cytokines elicited by 

pathogenic organisms, the co-stimulatory molecules used to drive the activation, 

and the nature of the peptide: MHC molecule. Upon interacting with their specific 

peptide:MHC molecule complex, naïve CD4 T cells first respond by making IL-2 

and proliferating. Subsequently, these cells will then differentiate into a TH1 or 

TH2 cell. This differentiation is extremely important in the type of immune 

response that will be elicited as each type of cell performs distinctly different 

functions. TH1 cells function to activate macrophages, enabling them to destroy 

organisms, such as PC, more efficiently. Additionally TH1 cells can activate B 

cells to produce opsonizing antibodies which aid in the recognition and uptake of 

certain microorganism by phagocytic cells. TH2 cells, alternatively, drive a 

primarily humoral response characterized by the differentiation of B cells and 

their production of immunoglobulins. Additionally, TH2 cells are responsible for 

activating naïve B cells to proliferate and secrete IgM. In our lab we have 

demonstrated that opsonization of PC by PC-specific antibody results in 

increased clearance of the organism from neonatal lung (11). Thus, B cell 

activation, in addition to CD4 T cell activation also plays an important role in the 

clearance of PC from neonatal lungs.  
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6. B lymphocytes 
 It is widely accepted that both T lymphocytes and LMs play a critical role 

in the host defense against PC, however, the role of B lymphocytes has been 

somewhat overlooked. In fact, B lymphocytes appear to play a significant role in 

PC infection as demonstrated by B cell deficient mice which were shown to be 

susceptible to PC (93). Furthermore, it is known that over 90% of people have 

PC-specific antibody by two years of age, suggesting that B lymphocytes have 

responded to PC organisms by at least the age of two (94). B lymphocytes play 

several roles in host defense in general, including antibody production, antigen 

presentation, and regulating the expansion of antigen-specific CD4 T cells (95). 

In regards to PC, it has been previously reported that B lymphocytes are capable 

of enhancing clearance through the production of PC-specific antibodies by 

promoting macrophage phagocytosis (96-98). The importance of PC-specific 

antibody production by B lymphocytes is reiterated when we look at children 

afflicted with X-linked hyper-IgM syndrome that are susceptible to PC infection. 

This disease is characterized by a mutation in the CD40L gene, which results in 

deficient T lymphocyte – dependent antibody responses (99). Additionally, further 

research has demonstrated that B lymphocytes can aid in PC clearance through 

an antibody-independent mechanism (96, 98). Although, the precise role(s) that 

B lymphocytes play in PC clearance has not been fully elucidated, it appears to 

be multifactorial. Lund and colleagues looked at the role that B lymphocytes play 

in CD4 T cell-mediated immunity against PC. Using a chimeric mouse model in 

which MHC class II molecules were expressed on all APCs except B 

lymphocytes, these researches demonstrated the importance of antigen 

presentation by B lymphocytes as the mice lacking MHC class II molecules on 

their B cells failed to clear PC compared to wild-type mice. To further assess the 

role of B cells on CD4 T cell-mediated immunity, this same group used an 

adoptive transfer mouse model in which they transferred CD4 T cells from either 

B-cell-deficient or wild-type mice into severe combined immunodeficient mice 

(SCID) mice. The mice that received CD4 T cells primed in B-cell-deficient mice 

were unable to affect PC clearance due to their inability develop into effector T 
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cells and migrate into the lung (96). Based on this evidence it is obvious that B 

cells play multiple roles in the clearance of PC. Although my research does not 

directly look specifically at the role of B cells in PC clearance, it is necessary to 

consider the whole host immune response to PC organisms when studying a 

particular aspect of it such as LMs.   

 

C. Pneumocystis carinii 
 
1. History 
 The history of Pneumocystis began in the early 1900’s when it was 

erroneously characterized as stages in the life cycle of Trypanosoma cruzi (TC). 

In 1909 Carlos Chagas, a young Brazilian scientist studying at the Oswald Cruz 

Institute in Brazil published a 60-page article describing these newly identified 

cyst-like structures (100). This discovery was thought to be of such great 

importance that the article included color drawings of the 109 stages of TC’s life 

cycle, an extremely rare occurrence at that time. Stages 41 through 44 of 

Chagas’ proposed TC life cycle are believed to actually be the cyst forms of PC 

in which one can see eight spores (also called intracystic bodies), which Chagas 

described as “daughter cells” (100). Antonio Carini, an Italian scientist also 

studying in Brazil, became interested in Chagas’ findings and began to search for 

these new life cycle stages of TC. Like Chagas, he used a rat model which he 

infected with TC. Following removal of the lungs and mounting tissue slices onto 

glass slides, Carini also observed the same cystic forms described by Chagas. 

This brought about the second article, published 1910, which mistakenly 

characterized PC as belonging life cycle stages of TC (101).  Fortunately, Carini 

began to doubt whether the cysts he and Chargas were observing truly belonged 

to the life cycle of TC when he noticed the cysts were absent in some rats 

despite extensive infection with TC. Subsequently, he sent data and specimens 

to the Pasteur Institute in Paris where careful studies by Pierre and Mme 

Delanoe demonstrated that the cysts described by Chagas and Carinii could be 

found in TC-naïve rats, thereby proving it to be a separate species. They named 
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this new organism Pneumocystis carinii; Pneumocystis, because the organisms 

were lung-specific and carinii, in honor of the scientist who provided them with 

the specimens (102).  Thus, in 1912 the first accurate description of this newly 

identified organism was published in a French article by Pierre and Mme 

Delanoe, in which they described the morphology of PC as can be observed 

upon Giemsa staining to this day (103). The Delanoes proceeded to publish one 

more paper describing PC in guinea pigs, a rabbit, a frog, and eels in 1914, after 

which time neither the Delanoes, Carini, nor Chagas pursued further research of 

the organism assuming it to be a trivial parasite found in rodents (104).  Aside 

from the articles published by the three key players in the discovery of PC, only 

four other descriptions of PC in various species were published from 1913-1917 

after which time almost three full decades passed without a single scientific 

publication regarding the organism we now know as PC (105-108).  

 In 1942, around the time of World War II, PC made its second debut in the 

history books appearing as a mysterious new type of pneumonitis in human 

infants in Europe (109). The disease was primarily afflicting infants between the 

ages of 2 to 8 months, born prematurely or suffering from malnourishment in 

infant nursing wards. Clinically, the infants would present with a subtle decrease 

in feeding, increased restlessness, poor weight gain, and sometimes diarrhea. 

Subsequently, the infants developed labored breathing which became 

increasingly worse. Eventually their skin turned a characteristic grey-blue color 

along with blue lips and eyes. Over the course of 1-2 weeks the condition would 

worsen until they either died from exhaustion or eventually recovered after a 

couple more weeks. The caregivers of the time, while they suspected an 

infectious etiology, could only provide comfort measures as none of the 

antimicrobial agents they tried improved the infants’ outcomes (109) (102). The 

first article to report this mysterious infant-specific disease was published in 

Berlin in 1938 and described it as an interstitial plasma cell pneumonitis (110). 

Subsequently, over 700 cases of this illness were reported in Switzerland alone 

between 1941 and 1949 (111). It was also commonly reported throughout 

Europe, including Czechoslovakia, Italy, Hungary, Germany, Yugoslavia, Austria, 



 21

Denmark, Sweden, France, and Finland in the early 1950s (109). Two physicians 

from the Netherlands, van der Meer and Brug, had published an article in the 

very beginning of this pneumonitis epidemic in 1942 implicating PC as the 

etiological organism responsible for the much feared illness. Included in the 

article were photomicrographs showing the characteristic PC cysts and 

trophozoites retrieved from the autopsy of 3 infants that had succumbed to the 

disease (112).  Sadly, it was published in a Dutch medical journal during World 

War II and went unnoticed for many years.  It wasn’t until 1951 when a 

Czechoslovakian doctor by the name of Joseph Vanek discovered PC in the 

lungs of 16 infants who had died of the mysterious disease. Upon microscopic 

examination the alveoli of these infants were found to be full of PC organisms 

(113). Although van der Meer and Brug had made this same discovery a decade 

earlier, it was Vanek and his colleagues who, by publishing their work in Czech 

and German medical journals, disseminated this important information to the 

medical community (114).  Their hypothesis naming PC as the culprit of the 

interstitial plasma cell pneumonitis epidemic was soon well accepted by 

physicians throughout Europe (114).  

 The first case of PC was reported in the United States in Connecticut in 

1956 by Dauzier and colleagues (115). Four months later, two infants with 

pneumonitis in Oklahoma City were described (116). Following this, several 

cases of PC were reported in Canada (117, 118) and Chile (119). In 1959, some 

important contributions were made in our quest to learn more about PC by Dr. 

Walter Sheldon, a pathologist at Emory University in Atlanta, Georgia. Sheldon 

demonstrated PC to be the cause of two fatal cases of pneumonitis. The first was 

in an otherwise healthy 3-month-old infant found dead in her crib, the second 

was in a 10-year-old girl being treated with corticosteroid for glomerulonephritis. 

These were the first cases to which PC was associated with both sudden infant 

death syndrome (SIDS) and immunosuppressive therapy, respectively (102). 

Subsequently, Sheldon began to use experimental animals to try to reproduce 

the disease, which added to our understanding of PC and the eventual use of 

animal models in order to research PC organisms (120, 121).  Sheldon and a 
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German scientist named Weller were the first to generate cortisone-treated 

animal models to study PC organisms (120, 122, 123). Unfortunately, no culture 

system has ever been developed that has been able to sustain PC organisms, 

thus the work done by Sheldon and Weller, built the foundation by which PC is 

still studied today.  

 Eventually the PC pneumonitis epidemic in European infants subsided 

along with World War II. Perhaps it had something to do with the improved 

economics and living conditions leading to less malnourishment among infants. 

Once again, PC was forgotten until it emerged again in the 1960s with the 

introduction of cancer-related chemotherapy and radiation. This time the 

organism was not targeting infants in European nursing wards, but rather 

children and adults in major medical centers with cancer or congenitive 

immunodeficiencies. Although no epidemiological reporting system for PC was in 

place during this time in history, a resourceful researcher by the name of Peter 

Walzer took advantage of the fact that Pentamidine was the only drug available 

for the treatment of PC and it was only available upon special request from the 

Centers for Disease Control (CDC) (102). Walzer determined that 579 requests 

for pentamidine were made from 1967 to 1970; of these, the diagnosis of PC was 

confirmed histologically in 194 patients. The underlying diseases in these cases 

included leukemia, Hodgkin’s disease and lymphomas, solid tumors, congenitive 

immunodeficiency disorders, and organ transplant recipients (124). As the use of 

immunosuppressive cancer chemotherapy became more common, the incidence 

of PC pneumonitis increased leading to epidemic proportions at cancer centers 

throughout the United States. The problem had become so alarming that in 1973, 

the first international symposium on PC pneumonitis was held at the NIH leading 

to the publication of important events in the evolution of the disease (125). Two 

more important articles were published during this decade which demonstrated 

the association of PC with immunosuppressive therapy and immunodeficiency 

disorders. In both articles, severe combined immune deficiency disease (SCID) 

was the most common underlying illness associated with the presence of PC 

pneumonitis (126, 127). While PC pneumonitis was routinely discovered in 
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immune deficient syndromes and malnourished infants, reports of the organism 

in normal, healthy people were not reported until the late 1960s (128).  In 1977 

and 1978, important serological studies performed on normal populations in the 

Netherlands (129) and the United States (130) provided evidence to suggest that 

PC organisms were common in the human host. Results from these serologic 

studies indicated that most people become infected with PC organisms by 6 

months of age and that by the age of 2 years basically all children have 

detectable antibody titers (129). From the 1960s up to the 1980s many 

histological and morphological studies were undertaken in both animals and 

humans to help further elucidate the organism that was still thought to be a 

protozoan at that time (131-134). In 1972 the first article to demonstrate species-

specificity between PC organisms was published comparing PC isolated from 

rats versus those isolated from humans (135).  It was the following year, in 1973 

that the name P. jiroveci was suggested and came to be used to designate the 

human form of the organism (102).  

 The history of PC now becomes more familiar after 1980 and the global 

AIDS epidemic. It was in 1981 when young men in both New York and California 

were found to have PC pneumonitis without any known risk factors, which led 

some shrewd physicians to search for some kind of underlying immune 

deficiency to help explain the appearance of PC. Among the 11 men in New York 

(136) and the 4 men in California (137) reported to have PC pneumonitis; they 

had in common a homosexual lifestyle and/or intravenous drug abuse along with 

abnormally low T cell numbers. These reports aroused suspicion at the CDC and 

within the year, AIDS was defined and PC was to become known as an 

“opportunistic infection” and an “AIDS defining illness”. In 1983 a review by 

Jaffee and colleagues revealed that 50% of the first 1000 cases of AIDS also had 

PC pneumonitis (138). In addition to reports of PC in the context of AIDS, there 

have been some reports of PC occurring in immunocompetent individuals. 

Specifically, in 1999 Vargas and colleagues published an article demonstrating a 

correlation between SIDS and PC organisms. The study, performed in Santiago, 

Chile and Oxford, United Kingdom, looked at autopsies from SIDS cases and 
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identified PC in 35.1% and 14.8% of the cases respectively, suggesting a link 

between PC infection and SIDS (6).  

Within the United States, PC infection remains primarily a disease of the 

immunocompromised host, whether the immune deficiency is chemotherapy-

induced, AIDS-induced, or congenitally acquired, PC is common among all. In 

underdeveloped countries such as South Africa, where the HIV is poorly 

controlled, PC pneumonitis is still a major cause of morbidity and mortality, 

particularly in young children. Among HIV-infected children who develop 

pneumonia, PC is one of the most common causative pathogens (1). Infants 

appear to be particularly susceptible to primary PC infection, likely due to an 

immature immune system and a lung environment that protects against 

damaging inflammation early after birth (5). PC pneumonia (PCP) has been 

identified in 10-49% of children in Africa (139, 140). An autopsy study of Zambian 

children with HIV infection that died due to respiratory illness showed that PCP 

was present in 27% of cases. Furthermore, in the same study, PCP was found 

more commonly in infants aged 0-5 months (51%) than in those aged 6-11 

months (26%) (141). The history of PC began as a case of mistaken identity; it 

was thought of as a miniscule, harmless organisms found in rodents. Today we 

know it to be one of the deadliest and most prominent infections among the 

immune deficient population. Research which furthers our understanding of this 

organism and new drugs designed to target the infection this organism causes 

remains an extremely important task.  

 

2. Taxonomy 
The history of PC would not be complete without some discussion about 

PC’s taxonomy. Up through the 1960s, PC was considered to be a protozoon 

based on the fact that visually, they did not look like typical fungi (142), they 

failed to grow in culture, and antifungal therapy, while it reduced the organisms’ 

viability somewhat, did not eradicate PC infections (143). The three 

morphological forms that PC undergoes throughout its life-cycle also led people 

to believe that it was a protozoan: Cysts, which are round or crescent shaped; 
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sporozoites, which are found within the cysts, and trophozoites, which are the 

free-floating forms of the organisms. A mature cyst can contain up to 8 

sporozoites or intracystic bodies. The trophic form of PC tends to be pleomorphic 

and found in clusters. Furthermore, drugs that were used against protozoal 

infections, such as pentamidine and trimethoprim/sulfamethoxazole, were also 

effective against PC. The protozoan theory remained until the late 1980s when 

the sequence of the 18S ribosomal RNA (rRNA) gene of PC from rats was found 

to more closely resemble those of fungi, such as Saccharomyces cerevisiae and 

Candida albicans, than the 18S rRNA genes found in protozoa (144, 145). Since 

this time more than 1400 PC genes have been partially sequenced, with most of 

these genes closely resembling fungal gene orthologues (143).  Despite the 

genetic resemblance of PC to other fungal organisms, other characteristics of PC 

are known to be very different from typical fungal characteristics. For instance, 

we know that fungal organisms such as S. cerevisiae and C. albicans grow 

rampantly in growth media, whereas PC cannot be sustained in culture. 

Additionally, ergosterol, the characteristic fungal cell membrane component 

which is the target of many antifungal drugs, is lacking in PC; instead, PC 

contains cholesterol in its membrane (146).  

 

3. Pathogenesis 
 The damaging effects of PCP within the lung can be divided into two 

different categories; PC-mediated and immune-mediated lung injury. Direct PC-

mediated damage to the host lung is caused by virulence factors associated with 

PC organisms. The first detectable event in PCP disease progression is the 

attachment of the trophic forms of PC to type I pneumocytes (TIP) within the lung 

(147) (148). Following attachment, there is an increase in permeability of the 

alveolar-capillary membrane, degeneration and necrosis of the TIP, and finally 

erosion of the basement membrane (147). Two factors were noted during this 

process of TIP damage. The first was an increase in the proliferation of Type II 

pneumocytes (TIIP), seemingly in an effort to replace the TIPs and repair the 

damaged alveoli (149) (150). The second important factor noted in these studies 



 26

of early PC infection was the lack of an inflammatory response despite ongoing 

alveolar damage (147) (150). Animal studies suggest that the interaction of PC 

organisms with TIPs and the subsequent capillary leak may serve as a 

mechanism by which the organisms acquire nutrients needed for continued 

growth and survival (151, 152). Although less common, other studies have 

shown the adherence of PC organisms to TIIPs and their subsequent 

degradation, are likely due to the increased proliferation of TIIPs seen following 

TIP loss (149). Furthermore, experts in the area suspect, based on animals 

studies (149), that the interaction of PC with TIIPs may contribute to the 

pathology caused by PC organisms by preventing the proliferation and migration 

of TIIPs to repair the damaged alveoli (152). In addition to directly adhering to 

and destroying pneumocytes, PC organisms have other virulence factors that 

may contribute to PCP’s pathology, including the production of proteolytic and 

glycolytic enzymes. While the primary function of PC-derived enzymes likely 

involves the acquisition of nutrients or the evasion of host defense mechanisms, 

they may also be causing collateral lung damage (152). A number of different 

potentially PC-derived enzymes capable of causing alveolar damage have been 

reported in the literature, including chymase (153),  collagenase (151), protease 

(154), elastase (154),  cysteine protease (155) (156), and enolase (157). In 

addition to these enzymes, a fungal kexin-like molecule has been identified in 

mouse-, rat-, and human-derived PC (158) (159, 160). Although not thought to be 

a virulence factor in human-derived PC, mouse- and rat-derived PC kexin is 

localized to the surface of the organism and has been suggested to play a role in 

attachment to the host, nutrient acquisition, or host defense evasion and thus 

possibly also lung injury. Within mouse- and human-derived PC, the kexin protein 

is encoded by single-copy genes; this unique characteristic has enabled its use 

in quantifying PC organisms via real-time PCR (159) (3). Lastly, PC is known to 

disrupt surfactant homeostasis within the lung leading to respiratory impairment 

during PC infection (152). Specifically, PC is thought to inhibit the secretion of 

surfactant components from TIIPs or by binding to certain surfactant components 

and sequestering them in inactive forms (161, 162).   
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In the clinical setting, the presentation of PCP is highly dependent on the 

immune status of the patient, suggesting that the host immune response to PCP 

is contributing to its pathogenesis by initiating immune-mediated lung injury in 

addition to the direct effects of PCP on TIPs and TIIPs. The initial observation of 

PCP in cancer patients often occurs once immunosuppressive steroid therapy is 

being tapered (163) (164); in bone marrow transplant recipients it typically occurs 

after engraftment and immune function restoration (165) (166); and in AIDS 

patients it generally occurs following rapid recovery of CD4 T lymphocytes 

secondary to initiating highly active antiretroviral therapy (HAART) (167, 168). 

Additionally, it has been well documented that lung injury during moderate to 

severe PCP is minimized with the administration of adjunctive steroid therapy, 

reiterating the detrimental effects of the host immune response to PC in the 

infected lung (169) (170).  More specifically, it has been suggested that the 

adaptive immune response causes the majority of lung injury compared to the 

innate response following PC infection. This theory is generated from the fact 

that it is difficult to prove involvement of the innate immune response, whereas 

data obtained from studying PC-infected SCID mice point to a significant role of 

the adaptive immune response in causing lung injury (152). The accumulation of 

PMNs in the lungs of PC-infected patients has been associated with decreased 

oxygenation and a poor prognosis (171) (172). Additionally, in vitro experiments 

have suggested that PC organisms are capable of directly stimulating 

macrophages (173) (47). The dilemma with these experiments, however is that 

its impossible to determine if PMNs are directly causing lung injury or are 

recruited in response to lung injury. Likewise, it is indeterminate whether PC-

stimulated macrophages contribute to lung injury or are merely a conduit to the 

adaptive immune response, which has been undeniably shown to cause lung 

damage in PC-infected lungs (174, 175). Both CD4 and CD8 T lymphocytes have 

been implicated in immune-mediated lung damage, the best example of which 

can be observed among the AIDS patients infected with PC. The role of CD4 T 

cells is obviated following HAART and the rapid recovery of CD4 T cells. While 

an AIDS patient with low CD4 T cell counts will often have a high PC burden, 
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they also tend to have a subacute onset of PCP. Upon CD4 T cell restitution 

following HAART, however, these patients develop a rapid decline in pulmonary 

function, suggesting a significant role for CD4 T cells in PC pathogenesis (167, 

168). As I describe my research throughout the remainder of this document, I will 

discuss both the activation of neonatal versus adult LMs as well as the infiltration 

of CD4 and CD8 T lymphocytes following PC infection and the role that each 

plays in clearing the infection.  

   

4. Identifying and quantifying Pneumocystis organisms 
For the purpose of identifying and studying PC organisms, it is important 

to discuss the stages PC’s life-cycle and the different morphological methods 

available for studying each of these stages. What is known about the life-cycle of 

PC has been derived primarily through the use of transmission electron 

microscopy (TEM). Based on this data, the transition from a trophozoite to a 

mature, eight-spore-containing cyst is thought to occur through 3 consecutive 

stages of the sporocyte (176). The cycle begins with a pleomorphic, thin-walled 

mononuclear trophic form of the organism. This form is thought to attach to type I 

epithelial cells in the alveoli. These trophic forms are then thought to evolve into 

a thick-walled sporocytic and cystic stage. At this point, multiple nuclear divisions 

are thought to generate eight spores within the cyst (176). It is hypothesized that 

PC growth results primarily from cyst development rather than from trophic binary 

division based on the growth retardation imparted by antifungal echinocandins 

which function to inhibit beta-1,3 glucan synthesis (a component of the cyst wall). 

In a PC-infected rat model, treatment with therapeutic doses of an echinocandin 

(L0671,329) resulted in the selective elimination of PC cysts. Subsequently, the 

administration of lower, prophylactic doses of L-671,329 prevented the 

appearance of the trophic forms of the organism (177). Understanding the 

morphology and life-cycle stages of PC are important for both quantification and 

targeting drug therapy for this organism, both of which will be discussed herein.   

Human-derived PC organisms are retrieved from either BALF or induced 

sputum samples. Most commonly, they are then stained with methenamine silver 
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nitrate and can then be observed under a light microscope. While this method is 

sensitive for identifying the presence of PC, it only stains the cyst cell walls, 

leaving the PC trophozoites unstained (176) (178), and thus is not ideal for PC 

quantification. PC can also be stained with polychrome methylene blue; however 

this method stains only the intracystic bodies and not the cell well (178). For the 

purpose of PC quantification it is important to use a method that will identify PC 

throughout its different life-cycle stages. Diff-Quik® is one such stain (179).  This 

staining method is able to discriminate between nuclei (stains pinkish purple) and 

cytoplasm (stains blue). In this manner one can not only count PC nuclei for 

quantitative purposes, but can also quantify the number of cysts, intracystic 

bodies, and trophozoites. More recently, polymerase chain reaction (PCR) (180) 

and real-time PCR (181) (182) have been introduced as effective methods for the 

diagnosis and quantification of PC organisms. This method has been shown to 

be highly sensitive and will likely become more widely used in the study of PC 

organisms. In my research, I used real time PCR to identify and quantify PC 

organisms when detection by light microscopy was determined to be inefficient 

and minimally sensitive. The methods used for PC quantification during my 

research will be discussed further in the methods section of this document.  

 

D. Drug Therapy 
 
1.  History 

When PC first started killing infants in Europe in the early 1940s, little 

could be done in the way of treatment. At that time, it wasn’t even known that PC 

was the culprit of this mysterious pneumonitis, thus caregivers could only provide 

supportive care, while they watched infant after infant succumb to the disease. It 

wasn’t until the early 1950s that PC was identified as the source of the infectious 

pneumonitis, which by this time, was causing disease in chemotherapy-related 

and other immunodeficiency disorders. Because little was known about PC 

organisms, the identification of targeted drug therapy was difficult.  
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The first drug to show effectiveness against PC was pentamidine 

isethionate, manufactured in England by May and Baker, Ltd. Because PC was 

thought to be a protozoon, drugs that were effective against other protozoa, such 

as pentamidine, were studied for the treatment of PC. One of the first studies to 

look at changes in mortality with this drug was published in 1958 by Ivady and 

Paldy (183). Subsequent studies looking at outcomes in PC-infected children 

receiving pentamidine demonstrated a decrease in mortality from 50% to 

approximately 20% (184) (185). While pentamidine was the only drug known to 

decrease mortality from PC, it was certainly not an ideal drug. It required parental 

administration, it couldn’t be used for prophylaxis, and it had many adverse 

effects, including cardiovascular, hematologic, dermatologic, and endocrine 

reactions, most notably, severe hypoglycemia (186) (187) (188). Furthermore, in 

the 1960s through the early 1980s, pentamidine had not been approved by the 

U.S. Food and Drug Administration (FDA), and thus was not available for general 

use. If a case of PC was diagnosed, physicians had to contact the Parasitic 

Disease Drug Branch of the CDC, provide data confirming their diagnosis of PC 

pneumonitis, and wait for CDC approval. If approved, the drug was sent by 

commercial airline to the city where it had been requested. Physicians and 

patients could only hope that the drug made it there before it was too late (102). 

While other antimicrobial agents have shown effectiveness against PC 

organisms, it was the discovery of the combination of trimethoprim and 

sulfamethoxazole in 1974 that dramatically changed how we treat and prophylax 

against PC.  Hughes and colleagues demonstrated that this combination drug 

therapy was highly effective for both the prevention and treatment of PC 

pneumonitis in a corticosteroid-treated rat model (189). Subsequently, their 

research was extrapolated to clinical trials where they demonstrated therapeutic 

safety and efficacy in PC-infected cancer patients (190, 191). After this 

discovery, several studies followed suit which confirmed both the safety and 

efficacy of TMP/SMX for the treatment of PC pneumonitis in both adults and 

children (192) (193, 194).   
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2. Current Recommendations 
 Guidelines for both the treatment and prevention of opportunistic 

infections were devised for both adults and children following the increase in 

opportunistic infections (OIs) associated with HIV infections. Being that PCP is 

the most common OI associated with HIV, it is included within these 

recommendations. While the occurrence of PCP is not limited to HIV-infected 

individuals, the guidelines for treatment of PCP associated with HIV can be 

extrapolated to all cases of PC infection. Outlined below are the most recent 

therapeutic recommendations put forth by the CDC for both adults and children 

infected with PC.    

 

Trimethoprim/sulfamethoxazole 

As previously described, the CDC recommends TMP/SMX as the first line 

treatment and prophylaxis for PCP in both adults and children (13, 195).  

TMP/SMX is a combination of two antimicrobial agents, each of which act on two 

different enzymes to synergistically inhibit folate metabolism; TMP blocks 

dihydrofolate reductase (DHFR) and SMX blocks dihydropteroate synthase 

(DHPS) (196).  Ultimately, the inhibition of these enzymes leads to the inhibition 

of thymidine synthesis and subsequently DNA synthesis within the target 

organism.  Since the discovery of its effectiveness against PCP in the early 

1970s (190, 197), TMP/SMX has been shown to be as efficacious as IV 

pentamidine as well as other alternative agents (191) (189). Its ease of 

administration, relatively fewer side effects, and reasonable cost have kept it the 

drug of choice for PCP since it was first officially endorsed as first-line treatment 

by the CDC in 1989 (198).  

Two major factors obviate the need for newer alternative agents for the 

treatment of PCP; the first is the high rate of adverse reactions associate with 

TMP/SMX. Some of the adverse reactions that occur in children secondary to 

TMP/SMX include, but are not limited to, rash, hematological abnormalities, and 

interstitial nephritis (13-15). Furthermore, infants less than 4 weeks of age are at 

increased risk of jaundice when exposed to TMP/SMX due to its bilirubin 
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displacing properties (1995 MMWR Revised guidelines for prophylaxis against 

PCP), (Brito 2006, Science Direct) (199-201). If intolerance to TMP/SMX occurs, 

adults have several other treatment options, including pentamidine, atovaquone, 

clindamycin/primaquine, dapsone/trimethoprim, or trimotrexate 

glucuronate/leucovorin (13).  Treatment options for the 15% of children who 

develop substantial adverse reactions to TMP/SMX (16), however, are severely 

limited with pentamidine being the only alternative agent with available data for 

use in children (13). The rate of toxicity is higher among HIV-infected patients 

though the reason for this is not understood (202). Over 80% of HIV-infected 

individuals experience an adverse reaction to TMP/SMX; in more than 50% of 

these patients, the adverse reaction may be dose-limiting. The most common 

toxicities include gastrointestinal symptoms, rash, fever, cytopenia, hepatitis, 

nephritis, hyperkalemia, and pancreatitis (203) (204). 

The second major factor necessitating newer treatments for PCP is the 

increase in Pneumocystis jiroveci resistance to SMX (the primary agent in the 

combination product) (205), undoubtedly brought about by the wide exposure of 

PC organisms to SMX following the start of the AIDS epidemic. While sulfa 

resistance has been well documented among a variety of different organisms 

such as S. pneumoniae (206), N. meningitides (207), and E. coli (208), drug 

resistance to PC cannot be determined by typical methods because patient 

isolates cannot be cultured in order to determine drug sensitivities. Thus, 

resistance detection relies on the identification of mutations within the DHPS 

gene. The PC DHPS gene was sequenced in 1997 from six patient isolates in 

which specific genetic polymorphism were identified. Each of the polymorphisms 

resulted in changes in the respective encoded amino acids suggesting that an 

evolutionary selective pressure, perhaps imparted by exposure to SMX, occurred 

in PC isolated from these patients (209).  Additional studies have been done 

looking at the existence of DHPS mutations in patients receiving TMP/SMX 

prophylaxis compared to those not receiving prophylaxis. In every study except 

one, the groups receiving TMP/SMX prophylaxis had significantly more DHPS 

mutations compared to their respective controls (18, 210-215). The one study 
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that did not show a difference had a very small sample size which may have 

contributed to the results (216). In addition to these studies, 4 other studies have 

been published which take a closer look at the correlation between the DHPS 

mutation and clinical treatment failure. The first study, published in 1999 showed 

an increased 3-month mortality rate in patients with mutant DHPS compared to 

patients with wild-type PC infections. The other three studies looked at 

associations between mutant DHPS and treatment failure rates; of these, 2 of the 

studies found a correlation between the mutant DHPS and treatment failure (212) 

(217) while the third study found no correlation (218). While the conflicting results 

of these studies leave us questioning their clinical applications, it is clear that with 

continued selective pressure by the wide-spread use of TMP/SMX treatment and 

prophylaxis, we will begin to see clinically significant PC mutations leading to 

resistance.  

 

Alternative agents available for use in children  

 IV pentamidine is the only alternative agent recommended in children 

infected with PC. While aerosolized pentamidine has been assessed for AIDS-

related PC pneumonia, it was not as effective as IV pentamidine or TMP/SMX 

and is therefore not recommended for treatment (219, 220). It is generally only 

administered to children who cannot tolerate TMP/SMX or who demonstrate 

clinical failure after 5-7 days of TMP/SMX therapy. Approximately 17% of 

children who receive pentamidine experience a severe adverse reaction, 

including renal toxicity, severe hypotension, severe endocrine abnormalities, and 

pancreatitis (17) (195). No evidence exists for any synergistic or additive benefits 

with the use of pentamidine together with TMP/SMX; in fact, the use of these two 

agents together should be avoided due to the additive adverse effects (195).  

Pentamidine is considered only as an alternative treatment to TMP/SMX due to 

its greater number of severe adverse effects, IV administration and lack of 

availability (191).  

 While other alternative agents are available for the treatment of PCP in 

adults and may actually be used in children, their use in children is not endorsed 
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due to the limited data available for their use in children. Although pentamidine is 

known to cause many serious adverse reactions, it has long history for treating 

PCP in children since it was the first known treatment for the disease.  Due to the 

limited treatment options available for children intolerant to or failing TMP/SMX 

therapy, pentamidine remains one of the few available options left for children 

infected with PC.  

 

Alternative agents available for use in adults 

Dapsone plus TMP is a recommended alternative in adults for the 

treatment of mild-to-moderate PCP for those who are allergic or otherwise cannot 

tolerate TMP/SMX. Those who are allergic to TMP/SMX are generally allergic to 

the sulfa component (SMX) and thus are still able to take TMP. While dapsone 

contains a sulfa moiety, it is a sulfone drug compared to a sulfonamide drug; 

therefore patients allergic to sulfonamides such as SMX will generally tolerate 

dapsone (221).  This regimen may have similar efficacy and fewer side effects 

than TMP/SMX, but is less convenient due to the large number of pills required 

(13).  

Primaquine plus clindamycin is considered to be an effective alternative 

regimen for the treatment of mild-to-moderate PCP. Studies have shown this 

regimen to be as effective with equal or less side effects that TMP/SMX (222) 

(223).  While clindamycin is readily available in both IV and PO formulations, 

primaquin is only available orally and thus is inappropriate for severe cases of 

PCP in which the patient is unable to take oral medications.  

IV pentamidine is an alternative agent for treating severe disease in adults 

unable to take oral medications. As discussed previously in regards to treating 

PC-infected children, this drug has several serious adverse reactions associated 

with it, making it a second line treatment option to TMP/SMX (224) (191). 

Atovaquone suspension has been shown to be less effective than 

TMP/SMX for the treatment of PCP. However, it was also shown to have fewer 

side effects than TMP/SMX and is therefore recommended as an alternative 

agent for mild-to-moderate disease in adults (225) (226).  Trimetrexate and 
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leucovorin is an alternative regimen similar to atovaquone, except that it is 

available IV (227).   

 

Corticosteroids 

 Studies in adults have demonstrated a reduction in mortality and a faster 

recovery time in patients with moderate-to-severe PCP who receive 

corticosteroids within 72 hours of starting PCP treatment (228) (229) (230). 

Studies in children have shown similar results with those receiving corticosteroid 

treatment having a reduction in acute respiratory failure, decreased need for 

mechanical ventilation, and a decrease in overall mortality (231) (232) (233). 

Indications for the use of corticosteroids include room air pO2 <70 mm/Hg or 

arterial-alveolar O2 gradient >35 mm/Hg (195) (13).  The observation that steroid 

therapy improves the outcomes of PC infection further demonstrates the role that 

the host’s immune system plays in the pathogenesis of PCP and underscores the 

need for therapeutic agents involved in immunomodulation.  

 

Granulocyte macrophage colony-stimulating factor  

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a 

glycoprotein produced by several pulmonary cells including macrophages, 

activated T cells, and epithelial cells (22). Among the functions of GM-CSF are its 

ability to influence the number of macrophages at a site of infection and activate 

macrophages for enhanced activity against invading pathogens (23) (24). GM-

CSF is a commercially available hematopoietic agent indicated for use in 

leukemia following cancer chemotherapy, myeloid reconstitution following bone 

marrow transplants and mobilization for peripheral blood stem harvesting 

(Immunex Co.). GM-CSF has also been shown to enhance the clearance and 

improve outcomes of several different pulmonary infections, including but not 

limited to group B streptococcus infection (24), Pseudomonas aeruginosa (25), 

Histoplasma capsulatum (26, 27), Mycobacterium tuberculosis (28), and 

Pneumocysistis carinii (29). However, there is little data on the effects of GM-

CSF on pulmonary infections in infants and no data regarding the addition of GM-
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CSF for the treatment of PCP in the infant population. These aforementioned 

attributes and the ability of GM-CSF to improve outcomes in pulmonary infections 

in adult animal models suggest that this clinically relevant agent may be of 

therapeutic benefit for infants with pulmonary infections failing to respond to 

antimicrobial therapy alone. HIV-infected infants with PCP are a particularly 

fragile population requiring more treatment options to improve outcomes. 

However, the potential role of GM-CSF in the lung for host defense against PC 

has not been investigated in the neonatal population and will therefore be 

addressed within the scope of this project.  
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E. Project Overview 
 

 Our lab has previously demonstrated that there is approximately a 3-week 

delay in the clearance of Pneumocystis organisms from pup mouse lungs 

compared to adults which corresponds with a delay in T cell infiltration into the 

pup versus adult lungs (9, 234). However, when T lymphocytes from pup mice 

were adoptively transferred into adult mice, they were shown to clear PC as 

efficiently as adult T cells (10) suggesting that the delayed PC clearance in 

neonates can not be attributed to T cells alone. We have further shown that there 

is approximately a 1-week delay in LM activation in pup versus adult mice (11). 

Resident macrophages in the lungs make up the first line of defense against 

inhaled pathogens such as PC and appear to be the primary effector cells 

responsible for killing and clearance of PC (12). Furthermore, the role of 

activated T lymphocytes during PC infections has been shown to be crucial in the 

clearance of this organism (97, 234), thus the activation role of LMs toward T 

lymphocytes is likewise crucial to PC clearance. It was therefore, the goal of this 

project to elucidate the role that lung macrophages play in delayed T lymphocyte 

infiltration and delayed PC clearance, to determine any deficiencies in pup LMs 

compared to adult lung macrophages and to further identify a clinically relevant 

treatment option that would help stimulate lung macrophages and expedite the 

clearance of PC organisms from pup lungs.  
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Figure 1.1 Delayed PC clearance in pup mice. Mice were infected with PC as 
neonates (24-72 hours after birth) or as adults (>8 weeks). Whole lungs were 
collected and processed into obtain single-cell suspensions. Aliquots were spun 
onto glass slides, stained with Diff-Quick®, and PC nuclei were enumerated 
microscopically. Results represent the mean ± SD of 4-5 mice per group and 4 
separate experiments.  
 

I have developed three hypotheses designed to evaluate the role of lung 

macrophages in the delayed clearance of PC and potential mechanisms for 

improving outcomes in PC-infected pup mice and human infants through the 

immunomodulation of LMs. These hypotheses and their respective aims are 

outlined below.  

 

Hypothesis I: Lung macrophage activation is delayed in Pneumocystis–infected 

pup compared adult mice.  

Aim 1: Flow cytometry was used to compare the expression levels of activation 

markers on the surface of PC-infected pup and adult LMs. Additionally, the 

infiltration of T lymphocytes was assessed using flow cytometry. These markers 

of activation and T cell markers were evaluated over the time course of PC 

infection in both pup and adult lavage and lung tissue.  

Aim 2: CBA and ELISA kits were used to assess cytokine production in pup 

versus adult alveolar macrophages. The production of cytokines secondary to 

PC, were also determined and compared for both pups and adults over time.  
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Hypothesis II: Exogenous immunomodulation with IFNγ, Heat-killled E. coli 

(HKEC), GM-CSF alone, or GM-CSF plus TMP/SMX will stimulate the activation 

of LMs and reduce the intensity of PC infection by augmentation of host defense 

in pup mice. 

Aim 1: CBA and ELISA kits were used to assess cytokine production in pup 

versus adult alveolar macrophages in vitro and in vivo following stimulation with 

PC ± IFNγ, HKEC (LPS in vitro), or GM-CSF. To determine if differences in NFkB 

p65 nuclear translocation could be increased in pup mice following exogenous 

stimulation, a cheminluminescent plate-based assay was used.  

Aim 2: To determine if pup macrophage infiltration into PC-infected lungs could 

be increased and their activation expedited through exogenous stimulation, LM 

activation markers were evaluated and compared via flow cytometry following 

different immunomodulatory treatment regimens. These treatment regimens were 

also evaluated for their ability increase T lymphocyte infiltration and activation in 

PC-infected pup lungs via flow cytometry to determine if exogenous LM 

activation played a role.   

Aim 3: To determine if exogenous immunomodulatory treatment regimens could 

expedite the clearance of PC organisms from PC-infected pup lungs, lung tissue 

from both pup treatment and control groups were collected, digested, spun onto 

glass slides, stained, and analyzed microscopically. PC nuclei were manually 

counted and compared between groups. 

Aim 4:  To determine if T lymphocytes play a role in LM activation and PC 

clearance in HKEC-treated pups, HKEC-treated SCID and WT pups were 

compared in their ability to phagocytose DiO-labeled PC organisms. 

 

Hypothesis III: Human infant LMs have a delayed activation profile compared to 

adult LMs following exposure to antigenic particles and can be stimulated 

exogenously to expedite their activation.  

Aim 1: CBA and ELISA kits were used to assess cytokine production in infant 

versus adult AMs in vitro. The production of cytokines secondary to PC along 
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with immunomodulatory agents, were determined and compared for both infants 

and adults over time.  

Aim 2: Phagocytosis assays were performed on LMs isolated from uninfected 

infants and adults. An in vitro model was used in which cells were isolated from 

human subjects and stimulated with PC ± rhGM-CSF. This method enabled me 

to determine the utility of rhGM-CSF as a clinically relevant immunomodulator to 

improve infant LM phagocytosis of PC organisms. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Kerry McGarr Empey 2007 
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CHAPTER 2.  Materials and Methods 
 
A. Materials  
 
1. Equipment 
 FACSCalibur cytofluorimeter (BD Biosciences, San Jose, CA), Sorvall 

RT7 centrifuge, Sorvall Biofuge, Fresco (Kendro Labs, Newton, CT), Nikon 

Eclipse E400 with spot camera, E600 (Tokyo, Japan), µQuant Universal 

Microplate Spectrophotometer (Bio-Tek Instruments, Inc., Winooski, VT), 

Shandon Cytospin 3, cytocentrifuge, (IMEB, inc. San Marcos, CA), Nalgene® Mr. 

Frosty freezing container (Sigma-Aldrich, St. Louis, MO). 

 

2. Animals  
 Five-6 wk-old BALB/c mice (National Cancer Institute, NCI); 8-wk-old 

B6xDBA2FI mice (Jackson Laboratory, Bar Harbor, ME); BALB/c and 

B6xDBA2F1 (F1) were bred and maintained at the Veterinary Medical Unit 

(VMU) of the Veterans Administration Medical Center (VAMC) under specific 

pathogen-free conditions. For the purposes of this research, neonatal mice are 

considered to be ≤ 7 days old and pups are considered to be ≤ 1month old. C.B-

17 severe combined immune deficient (SCID) mice were used to maintain a 

source of PC and were also bred at the VAMC VMU in microisolator cages 

containing sterilized food and water. Protocols for the usage of mice were 

approved by the VMU Institutional Animal Care and Use Committee. 

 

3. Cell Line 
 Murine macrophage cell line, J744A.1 was generously provided by Dr. 

Susan Straley, Department of Microbiology, Immunology, and Molecular 

Genetics, University of Kentucky, Lexington, KY. 
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4. Chemicals 
Chemicals/kits 
 Hank’s Balanced Salt Solution (HBSS) and Roswell Park Memorial 

Institute (RPMI) 1640, Gentamicin, and Penicillin-Streptomycin were purchased 

from Gibco in Carlsbad, CA. Collagenase A, DNase, Ethylenediaminetetraacetic 

acid (EDTA), Phosphate Buffered Saline (PBS), Bovine Serum Albumin (BSA), 

Dimethyl sulfoxide (DMSO), glutathione and sodium azide were purchased from 

Sigma, in St. Louis, MO. Fetal Bovine Serum (FBS) was purchased from Atlanta 

Biologicals in Lawrenceville, GA. Diff-Quik Solution I/II was purchased from Dade 

Behring in Newark, DE. Ficoll-Paque Plus was purchased from GE Healthcare 

Bio-Sciences in Piscataway, NJ. RosetteSep Human Monocyte Enrichment 

Cocktail was purchased from StemCell Technologies, Inc. in Vancouver, B.C. 

Vybrant DiO Solution and Carboxyflouroscein succinimidyl ester (CFSE) were 

purchased from Molecular Probes in Carlsbad, CA. Murine GM-CSF, human GM-

CSF, and murine IFNγ were purchased from PeproTech in Rocky Hill, NJ. 

TMP/SMX was purchased from Alpharma in Fort Lee, NJ. Halothane was 

purchased from Halocarbon Labs in River Edge, NJ. Trypan Blue was purchased 

from Fisher Scientific, Houston, TX. Mouse and Human Inflammation and 

TH1/TH2 Cytometric Bead Arrays (CBA) were purchased from BD Biosciences, 

San Diego, CA. Mouse rmGM-CSF ELISA kit was purchased from eBiosciences, 

San Diego, CA. Nuclear Extraction Assay and NFkB p65 Transcription Factor 

Assay (Human/Mouse/Rat) kits were purchased from Chemicon, Inc., Temecula, 

CA. Nuclear Extraction and TransBinding NFkB Assay Kits (Human) were 

purchased from Panomics, Inc., Redwood City, CA. DC Protein Assay was 

purchased from Bio-Rad, Hercules, CA. PE-conjugated Human Mannose 

Receptor was purchased from Immunotech, Marseille, France. Anti-human 

Dectin-1/CLECSF12 was purchased from R&D, Minneapolis, MN.  

 

Prepared media and solutions 

Lavage fluid (HBSS + 0.02% EDTA), Lung/spleen collection media (RPMI 

1640 + 5% FBS), ACK (8.29 g NH4Cl + 1 g KHCO3
 + 37.2 mg Na2EDTA in 1 L 
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water, pH 7.2-7.4), PBA (PBS+ 0.1% BSA+ 0.002% sodium azide), Mouse AM 

culture media (MACM) [RPMI 1640 + 5% heat-inactivated FBS (HIFBS) + 1% 

penicillin and streptomycin (P/S) + 55mM of  2-mercaptoethanol (2-ME) at 1:2000 

+ 0.5% gentamicin)],  J744A.1 culture media (JCM) (DMEM + 1% p/s + 10% 

FBS), Dulbecco’s Modified Eagle’s Medium (DMEM) (ATCC), Human Culture 

Media (HCM) (RPMI + 10mcg/ml gentamicin + 12.5% human serum), J744A.1 

freezing media (JFM) (40% RPMI 1640 + 50% FBS + 10% DMSO).  

 

Antibodies 

 Hypothesis I:Aim1: Biotinylated CD11c, PE-Cy5-conjugated streptavidin 

(SA), FITC-conjugated Iad, PE-conjugated Iab, PE-conjugated CD40, and PE-

TLR-4 (BD Pharmingen, San Diego, CA); APC-conjugated CD11b, FITC-

conjugated F4/80, APC-TLR-2, FITC-conjuaged CD68, and PE-Cy5-CD4, APC-

CD8, PE-CD44, FITC-CD62, FITC-CD4, PE-Cy7-CD44 (eBiosciences, San 

Diego, CA), FITC-CD68, FITC-Dectin-1, PE-CD206 (Serotec, Oxford, UK).  

 Hypothesis II:Aim 1: Biotinylated CD11c, PE-Cy5-SA, FITC-Iad, PE-Iab, 

PE-CD40, APC-CD11b, FITC-F4/80, FITC-CD68, FITC-Dectin-1, PE-CD206 

(Serotec, Oxford, UK), APC-TLR-2 (eBiosciences), PE-TLR-4 (BD Pharmingen). 

 Hypothesis II:Aim 2: PE-Cy5-CD4, APC-CD8, PE-CD44, FITC-CD62, 

FITC-CD4, PE-Cy7-CD44 (eBiosciences). 

 

Biologicals 

 Pneumocystis murina (PC) was maintained in C.B-17 SCID mice that 

were bred and maintained at the VMU, HKEC was made from lyophilized cells of 

strain W(9637; ATCC) Escherichia coli (Sigma), LPS 100ng/ml (Sigma), 

Zymosan A 200µg/ml (Sigma).  
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B. Methods 
 
1. Preparation of Pneumocystis for inoculations 

PC-infected C.B-17 SCID mice were killed via CO2 narcosis, their lungs 

were excised, collected in sterile HBSS + P/S (1:100) + gentamicin (1:1000) 

(5ml/mouse), and pushed through stainless steel mesh using a glass plunger in a 

sterile hood. The tissue was spun at low speed (300RPM) for 3 minutes to 

remove heavy debris. The supernatant was collected, the volume noted, and the 

sample was placed on ice after taking a small aliquot. The aliquoted sample was 

spun onto a glass slide (a 1:20 or 1:50 dilution is usually required), fixed in 

methanol, and stained with Diff-Quick®. PC nuclei were enumerated by 

microscopy and the final concentration was adjusted to 1x107 PC nuclei/100µl by 

spinning down the original sample at 1300 x g for 15 minutes and resuspending 

in the appropriate volume of HBSS + P/S + gentamicin. BALB/c or C57BL/6 x 

DBA/2J (B6D2F1/J) mice were lightly anesthetized with halothane and inoculated 

intranasally at 8-wks-old with 1x107 PC organisms in 50µl and at 48- to 72-hrs-old 

with 1x106 PC organisms 10µl. In some experiments, mice were infected with 

DiO-labeled PC. Live purified PC was incubated with DiO at a ratio of 5x106 

PC:5µl DiO in 1ml PBS for 30 minutes at 37ºC prior to inoculating the mice.  

 
2. Collection and preparation of tissue/BALF for flow cytometry 
 All mice were killed immediately prior to tissue/BALF collection with either 

Halothane or Isofluorane by placing the animals in a bell jar with Halothane- or 

Isofluorane-soaked paper towels. Protocols for the usage of mice were approved 

by the VMU Institutional Animal Care and Use Committee. 

 

Serum 

 Whole blood was obtained by severing the abdominal aorta and collecting 

it using a disposable glass pipette. The whole blood was spun at 2000RPM for 

10 minutes to separate the serum, which was then decanted, placed in fresh 

Eppendorf tubes and stored at -80ºC.  
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BALF 

 A flexible syringe-tip needle was inserted into the trachea of both pups 

and adults. Two-5ml of �avaged fluid was instilled into the lungs in 3-5 divided 

aliquots. Each aliquot of �avaged fluid was massaged in the lung and pulled 

back out into a fresh syringe via a 3-way stop-cock mechanism. The first aliquot 

was collected separate from the rest of the BALF, spun at 1200RPM for 10 

minutes and the supernatant collected and frozen at -80ºC. The cell pellet was 

resuspended and combined with the remainder of the BALF. An aliquot of the 

BALF was reserved for cytospins and cell counts; the remainder was spun down 

at 1200RPM for 7 minutes, the supernatant was removed and approximately 1ml 

of ACK was added to lyse any remaining RBCs. Once the ACK was added, the 

cells were vortexed briefly; the ACK was left on the cells for 30-60 seconds 

before diluting it with twice the volume of HBSS. The cells were then spun at 

1200RPM for 7 minutes, washed one more time with HBSS and resuspended in 

0.5-1ml of HBSS for flow cytometric analysis. Ten micro liters of the reserved 

aliquot of BALF (dilutions were made based on concentration) was mounted on a 

hemocytometer and counted under a 40x objective. These cell counts were used 

to determine the volume required for each flow cytometry polystyrene tube (1x106 

cells/tube) and for later analysis. When enough cells were available, 100µl of the 

reserved aliquots were spun onto glass slides, fixed in methanol, and stained 

with Diff-Quik® for cell differential counts.  

 

Lung tissue/spleen 

 Right lung lobes were excised and collected in 2ml of lung collection 

media. The lungs were then prepared for flow cytometry by processing them to 

achieve a single-cell suspension. They were minced and enzyme treated at 37◦C 

for 1hr in lung collection media, 50U/ml Dnase, and 1 mg/ml collagenase A. 

Digested lung tissues were pushed through 70µm cell strainers with 3ml syringe 

plungers to obtain a single cell suspension. At this point, an aliquot was reserved 

to be spun onto glass slides and stained as previously described for BALF. For 

pup experiments in which the mice were ≤ 13 days post-infection, the lung digest 
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was diluted 1:10; for experiments in which the mice were > 13 days post-

infection, the dilution was 1:20.  The glass slides were then fixed in methanol and 

Diff-Quik® stained. For the remaining lung digest, RBCs were lysed with ACK, 

resuspended in 0.5-1ml HBSS and counted on a hemocytometer as previously 

described for BALF.  Once the appropriate volume per tube was determined, the 

cells were filtered into polypropylene tubes through 80µm mesh prior to 

processing for flow cytometry.  

 

Tracheobronchial lymph nodes 

 The TBLNs were collected in 1ml of HBSS. To obtain a single-cell 

suspension they were pushed through 70µm cell strainers with 3ml syringe 

plungers. As previously described for BALF, the cells were treated with ACK, 

resuspended in 0.5-1ml HBSS and aliquoted into polypropylene tubes for flow 

cytometry. The spleen, often used as a one-color control for T lymphocyte 

antibodies, was processed in the same manner as the TBLN. 

 

Staining 

 Once all the cells were aliquoted into the appropriate tubes, PBA was 

added to achieve approximately the same volume for all tubes. They were then 

spun down at 1200RPM for 10 minutes and the supernatants dumped. 

Fluorochrome-conjugated antibodies, previously titrated for optimal staining of 

1x106 cells, were diluted in PBA; added to the pelleted cells and incubated for 20 

minutes on ice (the antibodies used are outlined in the Materials section). At this 

time, 1 ml PBA was added to all the cells and spun at 1200RPM for 10 minutes. 

The supernatant was dumped and the cells were resuspended in 200µl of HBSS 

to be run on the FACSCalibur or CSRII cytofluorimeter. Cells being stained with a 

biotinylated Ab were incubated a second time with streptavidin before being 

resuspended in HBSS. 50,000 events were routinely required. 
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3.  Pneumocystis enumeration and differential cell counts 
 As previously described, BALF and lung digest were spun onto glass 

slides and stained for later microscopic evaluation. Both BALF and lung digest 

samples were spun onto the glass slides via cytospin at 900 RPM for 5 minutes. 

Each slide was allowed to air dry before fixing in methanol for 1 minute. Once 

again the slides were air dried and then Diff-Quik® stained by submerging them 

for 1 minute in Diff-Quik®  Solution I, followed immediately by 5 minutes in Diff-

Quik® Solution II. The slides were then washed 3 times by submerging them in 

water. They were air dried and cover slipped and allowed to dry overnight. The 

slides were analyzed microscopically under a 60x oil emersion lense. For each 

BALF sample slide, the number of macrophages, monocytes, neutrophils, and 

lymphocytes were determined. For each lung digest sample slide, PC nuclei 

were enumerated and reported as Log10 PC per lung.   

 
4. Cell culture 
Murine macrophage cell line, J744A.1 

 Cells were stored in vapor-phase liquid nitrogen until ready for use. To 

freeze, cells were pelleted at 1200RPM for 10 minutes and resuspended in JFM 

to a concentration of 1x106 cells/ml in cryotubes. The 1ml aliquots were then 

submerged in an isopropyl alcohol-filled freezing container (Mr. Frosty®) and 

placed in the -80ºC freezer for two days before transferring them to the liquid 

nitrogen tank. To thaw, cells were removed from liquid nitrogen and placed in a 

37ºC water bath just long enough for the media to begin to change back to a 

liquid phase. At this time 37ºC media was added directly onto the cells, they were 

transferred to a fresh Eppendorf® tube and then immediately spun at 1200RPM 

for 10 minutes. The pelleted cells were resuspended in 1ml of JCM and 

transferred to a 75cm2 tissue culture flask. An additional 19ml of JCM was added 

to bring the total volume to 20ml. The cells were then placed in a 37ºC, 5% CO2 

incubator and were allowed to grow to confluence. Once the cells became 

confluent they were either used for an experiment or they were scraped with a 
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rubber spatula and split at no more than 1:6 and replated for future experiments. 

All J744A.1 cell manipulations were performed under sterile conditions.  

 

Culture of murine alveolar macrophages  

 The BALF from uninfected pup and adult mice was collected as previously 

described in section 2.2 of Methods, except that the collection process was 

performed under sterile conditions. All BALF cells collected from pups were 

pooled together as was the BALF cells from adults. Aliquots of both pup and 

adult BALF cells were reserved to be spun onto glass slides, stained, and 

evaluated microscopically for AM purity. The remainder of the BALF was spun at 

1200RPM for 10 minutes. To lyse any contaminating RBCs, ACK was added at 

one tenth the original BALF volume, vortexed, and allowed to sit for 60 seconds. 

HBSS was added at 6 times the volume of ACK and the cells were spun again at 

1200RPM for 10 minutes. The cells were washed a second time and 

resuspended in 1/10 the original BALF volume with MACM warmed to 37ºC. Both 

pup and adult cells were counted using a hemacytometer, as previously 

described, and their volumes were adjusted to achieve concentrations of 1x106 

cells/ml. On average, the BALF yielded approximately 2 x105 Ams per pup and 6 

x105 Ams per adult. Cells were then plated in either 96-well tissue culture plates 

in aliquots of 200µl (2x105 cells/well), or in 6-well tissue culture plates in aliquots 

of 2ml (2x106cells/well) depending on the experiment being performed. The cells 

were rested overnight before being used experimentally. 

 

Human airway macrophages  

 Human neonatal suctioned sputum samples were obtained in accordance 

with the University of Kentucky, Institutional Review Board (IRB) approved 

research protocol entitled “Immunomodulation to Improve Neonatal Clearance of 

Pneumocystis” (Protocol # 04-0086-P1B); informed consent was waived. Human 

adult BALF samples were obtained in accordance with the IRB approved 

research protocol entitled “Control, Immunoregulation, and expression of Innate 

Host Defenses” (Protocol # 05-0796-P2G). Subjects were excluded if they had 
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HIV or tuberculosis. All other demographic information was excluded and 

informed consent was waived as no patient identifiers were used. Each human 

sample was collected in hospital issued specimen cups and maintained on ice till 

they could be picked up; no samples were left on ice for more than 1 hour before 

being retrieved and sample processing begun. All human samples were handled 

with biosafety level (BSL) 2 precautions under sterile conditions. Each sample 

was immediately washed with equal volumes of HBSS and spun at 1200RPM for 

10 minutes. The supernatants were dumped, resuspended in HCM (warmed to 

37ºC), and counted on a hemacytometer under a 40x objective. The samples 

were adjusted with HCM to a final concentration of 1x106 cells/ml and added in 

200µl (2x105 cells) aliquots to 96-well tissue culture plates. The cells were rested 

overnight before being used experimentally.  

 Throught this text the term “neonate” will be used to refer to infants less 

than or equal to 4 weeks of age and “adults” include persons who are 18 years or 

older.  

 

Human peripheral blood monocyte-derived macrophages 

 Human peripheral blood was obtained in accordance with the University of 

Kentucky, IRB approved research protocol entitled “Immunomodulation to 

Improve Neonatal Clearance of Pneumocystis” (Protocol # 04-0086-P1B). 

Peripheral blood was obtained from enrolled healthy volunteers with whom 

informed consent was obtained. Between 5 and 15ml of blood per session was 

collected into sterile Buffered Sodium Citrate Plus Blood Collection Vacutainer 

tubes (BD) using 23G3/4 x12” Vacutainer Brand Safety-Lok Blood Collection 

Sets (Becton Dickinson, Franklin Lakes, NJ). Monocytes were isolated using the 

RosetteSep Human Monocyte Enrichment Cocktail according to the 

manufacturer’s instructions. Per the manufacturer’s protocol, 10µl of room 

temperature (RT) 100mM EDTA per 1ml of whole blood was mixed gently with 

the blood sample in a 50ml conical vial. Next, 50µl of RosetteSep Cocktail per ml 

of whole blood was added, mixed, and incubated for 20 minutes at RT. The 

sample mixtures were then diluted with equal volumes of PBS + 2% FBS + 1mM 
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EDTA (wash buffer) and gently mixed. Separately, Ficoll-Paque (volume 

specified in protocol based on volume of whole blood retrieved) was placed in a 

new, sterile 50ml conical vial. Subsequently, the blood solution layered on top of 

the Ficoll-Paque very carefully so as not to disrupt the Ficoll-Paque layer. The 

layered 50ml conical vial was then spun at 1200xg at RT for 20 minutes with the 

brake turned off. The RosetteSep cocktail crosslinked all unwanted cells (leaving 

the monocytes free) to multiple RBCs, forming immunorosettes. This caused the 

density of the unwanted or rosetted cells to increase so that they were pelleted 

along with the RBCs when they were centrifuged through the Ficoll-Paque. 

Following the 20 minute spin, 4 layers were formed, including (starting from the 

bottom): RBCs/unwanted cells (red), Ficoll-Paque (clear), enriched monocytes 

(white), and the top plasma layer (yellow). The top plasma layer was removed 

and discarded to allow better access to the white monocyte layer.  A bulk pipette 

was used to remove the monocyte layer, which was then placed in a fresh 50ml 

conical vial. To this, 20ml of PBS + 2% FBS + 1mM EDTA was added and the 

cells spun at 1200RPM for 7 minutes. The supernatant was removed and the 

cells were resuspended in 2ml of wash buffer to be counted on the 

hemocytometer. On average, 3x105 monocytes per 1ml of whole blood are 

retrieved via this method. The wash step is repeated one more time before 

resuspending the cells in a volume of HCM to achieve a final concentration of 

1x106 cells/ml. The cells were then placed in sterile, autoclavable, 6-well Teflon 

liners at 0.5-1ml per well (5x105 – 1x106 cells/well, respectively) and cultured for 

5-7 days to allow them to differentiate into macrophages. Upon differentiation, 

the peripheral blood, monocyte-derived macrophages are ready for stimulation 

experiments to be described later in the Experimental Design section.  

 

Cell Viability 

 An equal volume of 0.4% Trypan Blue was added to a cell suspension of 

approximately 1x106 cells/ml in PBS or serum-free media. The suspension was 

incubated for 3 minutes at RT before being mounted on a hemocytometer and 

observed under a 40x objective. Non-viable, deep-blue cells and clear, viable 
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cells were both enumerated. The percent viability was calculated as follows: 

Percent viable = (number of viable cells/number of total cells) x 100.  

 

Cell Stimulation 

 If cytokine analysis was the goal of the experiment, once the Ams were 

isolated or thawed (as described above) they were plated in sterile 96-well tissue 

culture plates. If the Ams were to be used to compare NFkB levels or 

phagocytosis, the cells were cultured in sterile 6-well tissue culture plates. All 

cultured Ams were allowed to rest over night following initial plating before any 

experimental stimulation or manipulations were performed and fresh media 

added the following day. In all culture experiments, cells were suspended in a 

final concentration of 1x106 cells/ml and plated at 200µl (2x105 cells) per well; if 

6-well plates were being used, cells were plated at 1ml (1x106 cells) per well. 

Table 2.1 describes the agents used to stimulate or block AM activity in culture.  

 

Table 2.1 Cell Stimulation 
Stimulant/Block Dose  

PC 50 PC per 1 macrophage 

IFNγ 165ng/ml 

LPS 100ng/ml 

rmGM-CSF 100ng/ml 

rhGM-CSF 100ng/ml 

Opsonized Zymosan 250µg/ml 

Unopsonized Zymosan 250µg/ml 

Dectin-1 Receptor Antibody 25µg/ml 

Mannose Receptor Antibody 40µl/ml 

 

5. Pneumocystis purification 
 PC-infected C.B-17 SCID mice were killed via CO2, their lungs were 

excised, collected in sterile-filtered HBSS + 0.5% glutathione (pH 7.3) 

(5ml/mouse), and pushed through stainless steel mesh using a glass plunger in a 
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sterile hood. The Tissue was then aspirated through a 22G needle 2 times, a 

26G needle once and transferred to a 50ml conical vial. The lungs were then 

spun at 300RPM for 3 minutes to remove the heavy sediment and the 

supernatant was transferred to a fresh 50ml conical vial and spun at 2600RPM 

for 15 minutes. The supernatant was removed and discarded, the pellet 

dissociated and resuspended/washed in 2ml of sterile deionized water for 30 

seconds, followed by 2ml of 2x PBS, 6ml of HBSS + 0.5% glutathione (pH 7.3), 

and 200U Dnase (in 500µl HBSS). The lungs were incubated in this solution for 

30minutes at 37ºC and then aspirated once again through a 26G needle 2 times.  

The tissue was spun at 300RPM for 3 minutes and the supernatant was 

transferred to a new 50ml conical vial before being spun once again at 1300g for 

15 minutes. The supernatant was removed and the pellet was resuspended in 

1ml HBSS. A 1:100 dilution is usually made before spinning an aliquot of the 

purified PC onto a glass slide, fixed in methanol, stained with Diff Quik and 

enumerated microscopically. The resultant purified PC can then be adjusted to 

the desired concentration with HBSS.  

 
6. Phagocytosis Assay 
 Human and mouse macrophages were acquired as described in sections 

4.2 and 4.3 respectively. Each sample was washed by adding 2x the volume of 

HBSS and spinning at 1200RPM for 10 minutes. When necessary, a RBC lysing 

buffer was added to the pelleted cells and washed twice with HBSS. The final 

pellets were resuspended in HBSS to a final concentration of 1x106 cells/ml. One 

10 x 75-mm snap-top tube was prepared for each condition being studied. To 

each tube, 100µl of macrophage suspension (1 x105 cells), 100µl (1 x106) freshly 

thawed, purified, murine PC (as described above), and 2µl of freshly thawed ice-

cold human serum was added.  For each sample, tubes were prepared as 

describe above with and without the addition of GM-CSF (100ng/ml); duplicate or 

triplicate tubes were set up for each sample and condition.  The tubes were 

capped tightly, parafilmed, and rotated end over end in a 37ºC water bath for 25 

minutes.  
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 Following this incubation, the tubes were spun at 1200RPM for 10 

minutes, the supernatant was dumped, and 1ml of ice-cold HBSS was added and 

the pellet was resuspended by pipetting up and down with a Pastuer Pipette. 

This wash step was repeated 2 more times for a total of 3 washes. The pellet 

from the last wash was resuspended in 1ml of ice-cold HBSS to a final 

concentration of 1 x105 cells/ml. A 100µl aliquot (1 x104cells) of each sample was 

removed and cytocentrifuged onto a microscope slide by spinning 5 minutes at 

900 rpm in a Cytopsin 3. The slides were stained with Diff-Quik® as described in 

section 3. Phagocytosis was quantified using oil-immersion microscopy (1000x) 

by examining at least 200 cells and counting the number of internalized PC 

organisms in each one. The amount of phagocytosis was calculated according to 

the following formula: phagocytic index (PI) = (percent macrophages containing 

at least 1 organism) x (mean number of PC per positive cell)(235-237).  

 
7. In Vivo Treatment Protocols 

IFNγ 

 Recombinant murine IFNγ was purchased as a lyophilized protein and 

reconstituted in sterile deionized water to a stock concentration of 100µg/ml. This 

stock was further diluted into working aliquots with sterile PBS + 0.5% mouse 

serum and stored at -20ºC. Prior to administering IFNγ, the mice were lightly 

anaesthetized with a mixture of 5% halothane in O2. A frozen aliquot of IFNγ was 

brought to RT and then administered intranasally to the anaesthetized mice. 

Experiments using IFNγ treatment were designed in one of two ways. The first 

experimental design included 4 groups of mice in which 2 groups were infected 

with PC and two groups were uninfected. One subset from the infected and one 

subset from the uninfected group received 16ng/g of i.n. IFNγ daily every 72hrs 

starting on day 1 post-infection and through the completion of the experiment. 

The second experimental design involved a dose escalation study to determine if 

differences in outcomes could be altered by increasing dose. Doses included 

16ng/g, 80ng/g, and 160ng/g of body weight; control mice received vehicle only 

(sterile PBS + 0.5% mouse serum).  
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Heat-killed E. coli 

 In order to heat-kill the E. coli, 1 gm of the lyophilized cells were 

suspended in 100ml of sterile, deionized water and divided into two separate 

50ml conical vials. They were then boiled for 45 minutes in a double boiler (in a 

chemical hood) to remove the capsular antigens and expose the “O” antigens. 

The cells were allowed to cool, centrifuged at 3500g for 15 minutes, and the 

supernatant was removed and placed in a beaker of bleach. The pelleted cells 

were resuspended in 80ml (40ml per conical vial) of sterile deionized water and 

spun once again at 3500g for 15minutes. This wash step was repeated 2 more 

times for a total of 3 washes. The pelleted cells from the last wash were 

resuspended in 20ml (10ml per conical vial) of sterile, deionized water and the 

two vials were then combined for a total volume of 20ml (238). The resultant 

HKEC solution was then transferred into cryotubes in 1ml aliquots and stored at -

80ºC.  

 When dosing mice with HKEC, 1 vial would be thawed to RT and brought 

up to 5ml with sterile, deionized water. Mice were placed in a 20 x 20 x 40cm 

Plexiglas chamber attached to a T Updraft Nebulizer as depicted in Figure (2.1). 

The 5ml E. coli solution was placed in the nebulizer and aerosolized into the 

chamber till all of the solution had been aerosolized (~ 30-45min). The nebulizer 

and chamber were contained in a chemical hood during the aerosolization 

process. For all HKEC experiments, mice were dosed once daily beginning 48hrs 

post-PC-infection and continuing through day 20 post-infection. Control mice 

were aerosolized with sterile, deionized water on the same schedule as the 

treatment mice.  
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Figure 2.1 HKEC aerosolization chamber.  

 

Granulocyte Macrophage-Colony Stimulating Factor 

 Recombinant murine GM-CSF (rmGM-CSF) was purchased as a 

lyophilized powder; it was reconstituted with sterile, deionized water to a stock 

concentration of 1µg/µl and was stored at -20ºC. Further dilutions were made by 

adding sterile normal saline (NS) + 1% mouse albumin to the desired 

concentration. If the rmGM-CSF was to be used within 1 week’s time, it was 

stored at 4ºC in order to avoid frequent freeze-thaw cycles. If the route of 

administration was intraperitoneal (i.p.) injection into the abdomen, no 

anaesthetization was required. The dose used for i.p. experiments was 0.5mcg/g 

daily in two divided doses beginning day 7 post-PC-infection and continuing for a 

total of 5 days (239). If the rmGM-CSF was to be administered intranasally, the 

mice were first lightly anaesthetized in 5% halothane in O2. The i.n. dose of 

rmGM-CSF ranged between 5-50ng/g in 10µl of diluent daily (to minimize 

halothane exposure) beginning on day 7 post-PC-infection and continuing for a 

total of 5-7 days. All control mice received diluent only on the same schedule and 

by the same route of administration as the treatment mice in the same 

experiment.  

 

Trimethoprim/Sulfamethoxazole 

TMP/SMX was purchased as a cherry-flavored, oral suspension. Each 

milliliter contained 8mg of TMP and 40mg of SMX. For mice receiving TMP/SMX, 
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it was administered orally using a pipette at a dose of 40mg/kg TMP/200mg/kg 

SMX body weight twice daily (240); no anaesthetization was required. For all 

experiments involving treatment with TMP/SMX, dosing began 7 days post-PC 

infection and continued for 14 days (21 days post-infection).  

 

8. Cytokine analysis 
Cytokine production in pup versus adult mouse BALF and cultured AM 

supernatants was determined using a Mouse Inflammation CBA® kit as outlined 

in the manufacturer’s instructions. Briefly, CBA® kits are bead-based assays that 

utilize flow cytometry to measure soluble analytes. The standards, provided in 

each kit, are used to make a standard curve, which then allows the measured 

proteins to be quantified. Each bead in a CBA® kit provides a capture surface for 

a specific protein; the capture bead mixture provided in each CBA® kit is in a 

suspension to allow for the detection of multiple analytes in a small volume 

sample, which is crucial when working with the small volumes collected from 

pups. The Mouse Inflammation CBA® kit includes the following analytes: IL-

12p70, TNFα, IFNγ, MCP-1, IL-10, and IL-6. Data analysis was performed using 

the BD CBA® Software according to the manufacturer’s instructions. An ELISA kit 

was used to determine the level of GM-CSF in pup and adult BALF and cultured 

AM supernatants according to the manufacturer’s instructions. 

Cytokine production in human neonate versus adult LM supernatants was 

determined using either a Human Inflammation or TH1/TH2 CBA® kit as outlined 

in the manufacturer’s instructions and as described above. The Human 

Inflammation kit includes the following analytes: IL-8, IL-1β, IL-6, IL-10, TNFα, 

and IL12p70; the Human TH1/TH2 kit includes the following analytes: IL-2, IL-4, 

IL-5, IL-10, TNFα, and IFNγ. 

 In all cell culture experiments, supernatants were collected from treated or 

control cells and frozen at -80ºC until ready for cytokine analysis. Depending on 

the experiment, supernatants were collected at 6, 12, 18, 24, 48, or 72 hours 

post-stimulation.  
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9. NFkB analysis 
NFkB p65 transcription factor levels within the nucleus of Ams were 

compared between pups and adults using Chemicon’s Nuclear Extraction Assay 

and NFkB p65 Transcription Factor Colorimetric Assay according to the 

manufacturer’s instructions. Briefly, cells were lysed using a detergent-based 

lysis buffer and a 27 gauge needle. They were subsequently centrifuged at high 

speed to create a pellet which contained the nuclear portion of the lysed cells. 

The pellet was resuspended in Nuclear Extraction Buffer, 0.5mM dithiothreitol 

(DTT), and 1/1000 protease inhibitor (PI) provided with the kit. The DTT was 

added as a reducing agent to stabilize enzymes with free sulfhydril groups and 

the PI was added to inhibit protease enzyme activity. I used a 27 gauge needle to 

pull up each sample and a 30 gauge needle to expel them to further disrupt the 

nuclei. The samples were gently agitated in the Extraction Buffer on an orbital 

shaker and centrifuged at high speed once again; the supernatant contained the 

nuclear extracts. The protein from each nuclear extract sample was quantified 

using Bio-Rad’s DC Protein Assay kit according the manufacturer’s instructions. 

The samples were then snap-frozen in liquid nitrogen and stored at -80ºC.  

The samples were later thawed to be used in the NFkB Transcription 

Factor, plate-based, colorimetric assay. Briefly, a Streptavidin-coated 96-well 

strip plate was incubated with the following reagents and samples in the order 

listed: Blocking Reagent dissolved in Transcription Factor Assay (TFA) buffer 

containing sonicated salmon sperm DNA to block non-specific DNA binding 

activity was added first, followed by the NFkB Capture Probe (5’-GGGACTTTCC-

3’) or TFA Negative Control Probe (non-specific oligonucleotide), and lastly the 

nuclear extract samples or HeLa Whole Cell Extract provided with the kit as a 

positive control were added. Following a two-hour incubation at RT, the wells 

were washed 3 times, then incubated with the primary anti-NFkB p65 antibody 

(incubated for 1hr) and the secondary anti-HRP antibody (incubated for 30 

minutes. At this time, TMB substrate was added to each well and incubated for 5-

10 minutes while monitoring for color change. Once the color change was 
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adequate, the provided Stop Solution was added and the absorbances read on a 

spectrophotometer.  

 

10. Medical Institutional Review Board  
Two Expedited Review Applications were submitted to the IRB requesting 

approval to collect both adult and neonatal human samples. Both protocols were 

approved and samples were subsequently collected in accordance with each 

protocol as described in the methods section. The protocol entitled: 

Immunomodulation to Improve Neonatal Clearance of Pneumocystis (Protocol 

number 04-0086-P1B) was approved to collect neonatal BALF and adult 

peripheral blood. The second protocol, entitled “Control, Immunoregulation, and 

expression of Innate Host Defenses” (Protocol # 05-0796-P2G) was approved to 

collect adult BALF samples.   

 

11. Statistical analysis 
 Data are expressed as the means ± standard deviations (SD) for three to 

six mice per group. Differences between experimental groups with treatment as 

the only variable were determined using the Student’s t tests (comparing 2 

groups) or 1-way analysis of variance (1-way ANOVA) (comparing more than 2 

groups) followed by Student Neuman Kuels post-hoc test where appropriate. 

Differences between experimental groups with two variables (treatment and time) 

were analyzed using a 2-way ANOVA. If data was not normally distributed it was 

analyzed using the Holm-Sidak test. Differences were considered statistically 

significant when p was < 0.05. SigmaStat statistical software (SPSS, Inc., 

Chicago, Ill) was used for all statistical analysis.  

 
 
 
 
 

Copyright © Kerry McGarr Empey 2007 
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CHAPTER 3: Alveolar macrophage activation markers and T cell infiltration 
are delayed in PC-infected pups 

 
 It has been previously demonstrated that there is a 3 week delay in the 

clearance of PC from mice infected as neonates compared to mice infected as 

adults (Figure 1.1) (9), (234), (10). To determine whether AM infiltration and 

activation is also delayed in pups in response to PC we used flow cytometry to 

examine macrophage markers at various times post-infection.  Mice were 

infected with PC within 72 hrs of birth or as adults and their lungs lavaged at four 

different time points. Alveolar macrophage activation was examined using 

antibodies specific for CD11b, MHC class II, CD40, and CD80. There was a 

significant 2 week delay in the infiltration of macrophages into PC-infected pup 

lungs compared to adults (Figure 3.1). Adult mice infected with PC demonstrated 

an increase in the expression level (Figure 3.2) and the total number of cells 

expressing (Figure 3.3) CD11b, MHC class II, CD40 and CD80 compared to PC-

infected pups (Data not shown for CD40 and CD80). These data demonstrate 

that adult mice respond to PC infection more efficiently than pups.  
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Figure 3.1 Delayed macrophage infiltration into pup lungs.  Mice were infected 
with PC as neonates (24-72 hours after birth) or as adults (>8 weeks). Four to six 
mice per group were lavaged at each indicated time post-infection. The cells 
were stained with antibodies specific for CD11c and CD11b and then analyzed 
by flow cytometry.  Results represent the mean ± SD of 4-6 mice per group and 2 
separate experiments. **Total number of CD11c+/CD11b+ cells are significantly 
greater than their control groups and PC-infected pup groups (p<0.05). # Total 
number of CD11c+/CD11b+ cells are significantly greater than PC-infected pup 
group and uninfected adult group (p<0.05). *Total number of CD11c+/CD11b+ 
cells is significantly greater than pup and adult control groups (p<0.05).  
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Figure 3.2 Delayed expression of CD11b and MHC class II molecules on pup 
AMs.  Mice were infected with PC as neonates (24-72 hours after birth) or adults. 
Lungs were lavaged at day 10 post-infection to examine macrophage levels. 
Cells were stained with antibodies specific for CD11c and CD11b or MHC class 
II; phenotypes were examined by flow cytometry. Representative histograms of 
CD11b+ cells (gated on CD11c+ cells) and MHC class II+ cells (gated on large 
nonlymphocytes) are shown. Cells were gated for large nonlymphoid cells by 
using forward and side light scatter. Controls include BALF cells from uninfected 
neonates or adults. Data are representative of results for 3-5 mice per group.  
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Figure 3.3 Pup AM activation is delayed following PC infection.  Numbers of 
nonlymphoid cells expressing CD11b and MHC class II in the alveolar spaces of 
PC-infected neonates were significantly lower than those in adult lungs through 2 
weeks post-infection. Mice were infected with PC as neonates (24-72 h after 
birth) or adults. Control mice received HBSS vehicle. Lungs were lavaged at the 
indicated time points, cells were stained with antibodies specific for CD11b and 
MHC class II, and cells were examined by using flow cytometry. Cells were gated 
on large nonlymphocytes and the number of cells expressing (A) CD11b and (B) 
MHC class II were determined. Data represent the means ± SD for three to five 
mice per group. *p < 0.05 compared to all other groups at the same time point.  
 

To further demonstrate an age-specific difference, separate phenotypic 

studies were performed in which pup mice were infected with PC as neonates 

and followed through day 50 post-infection. Expression of the macrophage 

markers CD11c, CD11b, FcγR, MHC class II, and CD40 following infection were 

compared to those of PC-infected adult mice at similar time points. As expected, 

the expression of CD11c did not change based on infection status (Figure 3.4a-

b). The total number of cells expressing CD11b, MHC class II, CD40, and FcγR 

was increased among all infected animals compared to controls; however, this 

expression was delayed up to 2 weeks in pups compared to adults (Figure 3.4c-

j). This data describes the kinetics of AMs expressing activation markers 

following PC infection in pups versus adults and demonstrates the delayed 

expression in PC-infected pups compared to adults.   



 63

 



 64

Figure 3.4 Delayed activation markers on pup AMs. The number of cells 
expressing activation markers following PC infection was delayed on pup AMs 
compare to adults. Mice were infected with PC as neonates (24-72 h after birth) 
or adults. Control mice received HBSS vehicle. Lungs were lavaged at the 
indicated time points. Cells were stained with antibodies specific for CD11c, 
CD11b, MHC class II, CD40, and FcγR and were examined by flow cytometry. 
Cells were gated on large nonlymphocytes and CD11c and the number of cells 
expressing (A-B) CD11c, (C-D) CD11b, (E-F) MHC class II, (G-H) CD40, and (I-
J) FcγR were determined for mice infected with PC as neonates and as adults. 
Data represent the means ± SD for four to five mice per group. *p<0.05 
compared to the respective pup groups at the same time point.  
 

The expression of two important chemokine receptors, chemokine 

receptors 2 and 5 (CCR2 and CCR5) on LMs were compared over time between 

PC-infected and PC–uninfected pups and adults. CCR2 and CCR5 are receptors 

for the ligands macrophage chemoattractant protein-1 (MCP-1) and macrophage 

inflammatory protein-1 (MIP-1) respectively and function to increase the number 

of inflammatory cells, primarily macrophages, at the site of infection.  The 

number of adult macrophages that are CCR2 positive are greater than pup 

macrophages regardless of infection status up to day 28 post-infection (Figure 

3.5a).  At this time, the number of CCR2-expressing macrophages increases in 

the PC-infected pups. A similar trend occurs in the CCR5-expressing 

macrophages except that the rise in pup cells occurs about 1 week earlier than 

CCR2-expressing cells (Figure 3.5b). The dual expression of CCR2 and CCR5 

peaks by day 14 on macrophages from PC-infected adults but not till day 28 on 

pup macrophages infected with PC (Figure 3.5c). These data demonstrate a 

delay in the up-regulation of CCR2 and CCR5 on LMs from pups compared to 

adults infected with PC.  Overall, the delayed expression of these key activation 

markers on PC-infected pups compared to adults may contribute to their 

inefficient clearance of the organism.  
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Figure 3.5 PC-infected pup AMs expressing CCR2 and CCR5 are delayed. The 
number of cells expressing CCR2 and CCR5 following PC infection was delayed 
on pup AMs compare to adults. Mice were infected with PC as neonates (24-72 h 
after birth) or adults. Control mice received HBSS vehicle. Lungs were lavaged at 
the indicated time points. Cells were stained with antibodies specific for CD11c, 
CCR2, and CCR5 and examined by flow cytometry. Cells were gated on large 
nonlymphocytes and CD11c and the number of cells expressing (A) CCR2, (B) 
CCR5, and (C) CCR2/5 were determined for mice infected with PC as neonates 
and as adults. Data represent the means ± SD for four to five mice per group. 
*p<0.05 compared to the indicated groups. 
 

  The delay in PC clearance observed in pups compared to adults 

correlates with a delay in CD4 T cell infiltration into the alveolar spaces of pups 

versus adults (3.6).  It is well known that T cells are important for controlling PC 

infections (241), (242). As previously discussed in the introduction, it is known 

that T cells require activation in order to efficiently respond to PC organisms at 

the site of infection in the lung. This occurs through cell-to-cell signaling and 
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antigen presentation, both of which are important functions of LMs during PC 

infection. Likewise, LMs work more efficiently when they are in turn, stimulated 

by activated T cells. Thus, when discussing the role of LMs in the clearance of 

PC, it is important to assess part of the LM function based on T cell infiltration 

into the lungs. As shown in figures 3.6 a and b, the infiltration of both CD4 and 

CD8 T cells occurs much more rapidly in PC-infected adults versus PC-infected 

pups. At days 7 and 14 post-infection there are significantly more T cells in the 

infected adult group compared to the infected pup groups. The infiltration of T 

cells into infected pup lungs does not occur until day 21 post-infection. By looking 

at the time frame of T cell infiltration compared to PC clearance, one can see a 

correlation in which T cells enter the lungs of the infected mice approximately 1 

week prior to the initiation of PC clearance (Figure 3.6). This data further 

demonstrates the importance of T cells in the clearance of PC organisms.  
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Figure 3.6 T cell infiltration is delayed in PC-infected pup mice. An increase in T 
cell infiltration occurs approximately one week prior to a reduction in PC burden 
and is delayed in PC-infected pup compared to adult mice. Mice were infected 
with PC as neonates (24-72 h after birth) or adults. For A-B, lungs were lavaged 
at the indicated time points. Cells were stained with antibodies specific for (A) 
CD4 and (B) CD8 and examined by flow cytometry. Cells were gated on small, 
non-granular lymphocytic cells. For panel C, whole lungs were collected at the 
indicated time points and processed into single-cell suspensions. Cells were 
spun onto glass slides, stained with Diff-Quick®, and enumerated 
microscopically. Data represent the means ± SD of four to five mice per group. 
*p< 0.05 compared to the indicated groups. 
 
 
 
 
 
 

Copyright © Kerry McGarr Empey 2007 
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CHAPTER 4: In vitro cytokine production is delayed in PC-stimulated pup 
compared to adult alveolar macrophages.  
 

 The initial experiments done to assess cytokine production in pup versus 

adult LMs were performed on cultured cells. As previously described, uninfected 

pup and adult mice were lavaged under sterile conditions and AMs were isolated 

from the BALF. The cells were allowed to rest overnight and were then 

stimulated in culture for various lengths of time depending on the specific 

experiment. One of the first experiments performed using this method involved 

stimulating the cells with sonicated PC, whole PC, or media for 24 hours. 

Following this incubation, the culture supernatants were retrieved and analyzed 

for TNFα , IL-6, and MCP-1using a BD CBA kit®. These cytokines are important 

pro-inflammatory cytokines responsible for cell recruitment and lymphocyte 

activation (50) in PC infection (74, 77, 175). As illustrated in figure 4.1, PC was 

unable to stimulate pup AMs to produce TNFα, IL-6, or MCP-1 after 24 hours. 

While both PC formulations were able to stimulate some cytokine production 

among adult AMs, whole PC provided a much stronger stimulus than sonicated 

PC for IL-6 and MCP-1, but not TNFα (Figure 4.1a-c). This observation suggests 

that cytokine production may be linked to the simultaneous binding of multiple PC 

antigenic components which would be possible with whole PC and much less 

likely with sonicated PC. Overall, this data demonstrates that pup AMs do not 

respond as well as adult AMs to PC.  
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Figure 4.1 Pup AMs are specifically unresponsive to PC. The lavage fluid from 7-
10 day-old pup mice and adult mice were each pooled and the AMs were allowed 
to adhere to a 96-well tissue culture plate. Culture media was replaced after 24 
hours with fresh media containing media only (Controls), sonicated PC, or whole 
PC organisms. After 24 hours of stimulation, the levels of (A) TNFα, (B) MCP-1, 
and (C) IL-6 were determined by Cytometric Bead Array (BD Biosciences). Data 
represent the means ± SD for 3 wells per group and are representative of 3 
experiments. *p<0.05 compared to the respective pup groups. **p<0.05 
compared to respective pup group and the adult control group.  
 

To evaluate the effect of time, similar experiments were performed as 

described above. Supernatant aliquots were evaluated for cytokine production 

following 1, 6, 12, 24, and 48 hours of incubation with PC. No increase in TNFα 

or IL-6 occurred after 1 hour of PC stimulation within pup or adult AMs relative to 

unstimulated cells. After 24 hours, PC stimulation induced a significantly 

increased production of TNFα and IL-6 compared to PC stimulated pup cells and 

adult unstimulated cells (Figure 4.2a-b). Alternatively, PC appeared to produce 

an early stimulation of MCP-1 production in pup and adult cells which was lost by 

24 hours post-stimulation (Figure 4.2c). IL-10 production was relatively elevated 

in both pup and adult unstimulated cells suggesting that there is a constitutive 

production occurring in the absence of antigenic stimulation (Figure 4.2d). Within 

the first hour of PC-stimulation among pup AMs, IL-10 production was reduced to 

below detectable limits (Figure 4.2d). Overall, this data suggests that pup AMs 

have a poor pro-inflammatory response to PC compared to adult AMs, but they 

appropriately reduce production of the inhibitory cytokine IL-10.  
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Figure 4.2 Pup and adult AM cytokine production following PC stimulation. The 
lavage fluid from 7-10 day-old pup mice and adult mice were each pooled and 
the AMs were allowed to adhere to a 96-well tissue culture plate. Culture media 
was replaced after 24 hours with fresh media containing media only (PC-) or 
sonicated PC (PC+). After 1 or 24 hours of stimulation the levels of (A) TNFα, (B) 
IL-6, (C) MCP-1, and (D) IL-10 were determined by Cytometric Bead Array (BD 
Biosciences). Data represent the means ± SD for 3 wells per group and are 
representative of 3 experiments. *p < 0.05 compared to the indicated groups.  
 

The production of TNFα and IL-6 among PC-stimulated pup AMs did not 

increase above their untreated control cells until 48 hours post-stimulation, 

compared to 6 and 24 hours respectively in adult cells (Figure 4.3 a-b). MCP-1 

production in PC-stimulated pup cells was undetectable at 6 and 12 hours of 

incubation. After 24 hours, however, MCP-1 levels were equal to those of the 

adult AMs (Figure 4.3 c). No differences were observed in IL-10 production in 

pup or adult AMs regardless of PC stimulation (Figure 4.3 d), however overall 

levels were greater in these later time points compared to the levels after 1 hour 

(Figure 4.2 d). After 48 hours of incubation, there is a small increasing trend in IL-

10 production in pup and adult cells stimulated with PC. Taken together, these 

data suggest that pup AM pro-inflammatory cytokine production is delayed 

compared to adult AMs.  
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Figure 4.3 Cytokine production is delayed in PC stimulated pup AMs. The lavage 
fluid from 7-10 day-old pup mice and adult mice were each pooled and the AMs 
were allowed to adhere to a 96-well tissue culture plate. Culture media was 
replaced after 24 hours with fresh media containing media only (PC-) or 
sonicated PC (PC+). After the indicated times post-stimulation the levels of (A) 
TNFα, (B) IL-6, (C) MCP-1, and (D) IL-10 were determined by Cytometric Bead 
Array (BD Biosciences). Data represent the means ± SD for 3 wells per group 
and are representative of 3 experiments. *p<0.05 compared to the indicated 
groups. 
 

NFkB is a transcription factor involved in the synthesis of cytokines, 

including TNFα, IL-6, and MCP-1. To elucidate if NFkB could be involved in the 

differential cytokine production between PC-stimulated pup and adult AMs, a 

nuclear translocation assay was performed on pup and adult AMs stimulated for 

1 hour with PC. NFkB p65 nuclear translocation was significantly increased in 

adult AMs stimulated with PC compared to their unstimulated control cells 

(Figure 4.4). No differences were observed between pup PC-stimulated and 

unstimulated cells due to the high baseline level of NFkB p65 in the unstimulated 

pup control cells which were similar to the levels measured in adult PC-

stimulated cells. This data reflects the increased pro-inflammatory cytokine 
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production observed in adult LM stimulated with PC compared to unstimulated 

control cells. The lack of increased NFkB p65 translocation to the nucleus 

observed in pup PC-stimulated cells also reflects the lack of cytokine production 

previously demonstrated. The high baseline level of nuclear NFkB p65 without a 

concomitantly high baseline cytokine production may indicate that pup mice have 

inefficient binding of NFkB p65 to the DNA binding site. This data further reflects 

the absent cytokine response from pup LMs following PC stimulation. This data 

also suggests that the cytokine response demonstrated by pup LMs following 

stimulation with other stimuli, such as LPS and zymosan, that will be described in 

future sections may utilize alternative signaling intermediates and or 

transcriptions factors.  

 

Figure 4.4 NFkB nuclear translocation is unchanged in pup AMs stimulated with 
PC. The lavage fluid from 7-10 day-old pup mice and adult mice were each 
pooled, stimulated with 50 PC organisms for every 1 AM (50:1) for 1 hour. The 
cells were lysed and the nuclear extract was isolated. Chemicon’s NFkB p65 
Transcription Factor Colorimetric Assay was used to quantify NFkB p65 in the 
nuclear extract. Data represent the means ± SD for 3 samples per group and are 
representative of 2 experiments. *p<0.05 compared to adult PC- group. 
 
 
 
 
 

Copyright © Kerry McGarr Empey 2007 
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CHAPTER 5: Exogenous immunomodulation stimulates the activation of 
lung macrophages and reduces intensity of Pneumocystis infection in pup 
mice 
 

A. Interferon gamma 
We have previously shown that infant mice have a significant delay in 

mounting an immune response to PC compared to adult mice (9, 234). Delayed 

clearance is accompanied by a delay in the infiltration of T cells and activation of 

LMs as well as delayed cytokine up regulation, including IFNγ (9, 10, 234). It has 

been shown, moreover, that the delivery of IFNγ to the lungs of PC-infected adult 

SCID mice can stimulate clearance of the organism (243, 244). We therefore 

hypothesized that infected pup mice would clear their infection faster when 

treated with exogenous IFNγ. 
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Figure 5.1 Effects of exogenous IFNγ on pup lung defenses against PC. Mice 
were infected with PC as neonates (24-72 h after birth) and then treated with 
either IFNγ or PBS intranasally every 72 h beginning 24 h post-infection. Lungs 
were lavaged and cells collected at the indicated times. Cells from BALF were 
stained with antibodies specific for CD4 or CD8 and then analyzed using flow 
cytometry. Total CD4 T cell (A) and CD8 T cell (B) numbers were determined. 
(C) Whole lungs were digested and aliquots stained with Diff-Quik®; PC nuclei 
were enumerated microscopically. Results represent the mean ± SD of four to 
five mice per group and are representative of 3 separate experiments. No 
statistical differences were found between groups.  
 

Murine IFNγ (16ng/g) or vehicle (PBS) was administered intranasally to 

PC-infected pup mice every 48 hours beginning 24 hours post-infection and 

continuing throughout the course of the experiment. Mice from each group were 

killed at days 8, 19, and 28 post-infection. Whole lung and lung lavage were 

collected and flow cytometry was performed to examine the infiltration of 

lymphocytes in response to PC infection. Exogenous IFNγ had no effect on the 

infiltration of either CD4 T cells (Figure 5.1 a) or CD8 T cells (Figure 5.1 b) into 

the lungs of PC-infected neonates. Similarly, no statistically significant 
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differences were found in lung burden of PC organisms between the two groups 

by day 28 (Figure 5.1 c). However, there appeared to be a shift in the clearance 

kinetics between the two groups. The IFNγ-treated group actually had a greater 

PC burden than the control group at day 19 but by day 28 the burden among the 

two groups diverged in opposite directions with the IFNγ-treated group having 

less PC than the control group. Ultimately, no statistically significant difference in 

PC clearance was observed between the two groups; furthermore, no mice from 

either group were able to clear the PC completely by day 28 post-infection.   

To determine if the IFNγ dosing strategy had an impact on initiating the 

immune response and PC clearance, this experiment was repeated with a dose 

escalation. PC-infected pup mice were divided into 4 groups. Three groups 

received 16ng/g, 80ng/g, or 160ng/g of intranasal IFNγ. The fourth group served 

as a control and received PBS only. Mice from each group were killed at days 15 

and 29 post-infection. Despite increased doses of IFNγ, no differences in either 

T-cell or macrophage infiltration into pup PC-infected lungs were observed when 

compared to the control group (data not shown).  Additionally, cytokine 

production in the BALF of each group was determined by CBA® analysis, and no 

statistically significant differences were found between any of the groups 

receiving IFNγ compared to the control group, suggesting that the resident LMs 

were not stimulated by the presence of PC plus IFNγ (data not shown). Lastly, 

PC clearance was assessed microscopically by counting the number of PC 

nuclei in each group treated with IFNγ as well as the control group (Figure 5.2). 

While the group receiving 16ng/g had more mice clearing the organism than mice 

in the control group, the results were highly variable and, as with the previous 

IFNγ experiment, no significant differences were detected. Furthermore, 

increased doses of IFNγ did not improve PC clearance. These data indicate that 

none of the intranasally administered doses of IFNγ tested significantly improved 

the clearance of PC in pup mice. Furthermore, no dose of IFNγ tested was able 

to stimulate the infiltration or activation of immune cells in the infected lung, nor 

did it increase the production of cytokines in PC-infected pup lungs.  
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Figure 5.2 Low levels of exogenous IFNγ moderately reduced PC lung burden in 
pups. Mice were infected with PC as neonates (24-72 h after birth) and then 
treated with 16ng/g, 80ng/g, 160ng/g IFNγ or PBS intranasally every 72 h 
beginning 24 h post-infection. Whole lungs were collected and digested at days 
15 and 29 post-infection. PC nuclei were enumerated microscopically. Filled 
symbols represent the means ± SD for five to six mice per group.  
 
B. Heat-killed E. coli  

 
1. LPS increases cytokine production from pup alveolar macrophages in 

vitro  
We have shown that LM activation is delayed in pup compared to adult 

mice in response to PC infection. To elaborate upon this finding, an in vitro model 

was used to determine whether pup AMs are capable of responding to 

exogenous stimulation with LPS compared to PC. AMs from uninfected pup and 

adult mice were isolated and cultured with PC, LPS, or media. The activation of 

AMs was assessed by quantifying their cytokine responses at 6, 12, 24, and 48 

hours post-stimulation.  At all time points both adult and pup AMs treated with 

LPS produced significantly more TNFα, IL-6, and MCP-1 than their 

corresponding control groups (Figure 5.3a-c). Moreover, LPS-stimulated adult 

AMs produce significantly more TNFα at 6 hours post-stimulation, more IL-6 at all 

time points, and more MCP-1 at 6, 12, and 24 hours post-stimulation compared 

to pup LPS-treated cells (Figure 5.3a-c). PC stimulation did not induce the same 

level of TNFα or IL-6 production as LPS in pup or adult cells. Overall, adult AMs 
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still produced more TNFα and IL-6 than pup cells stimulated with PC. These data 

demonstrate that pup AMs are capable of pro-inflammatory cytokine production 

following exogenous stimulation with LPS but produce less than adults overall 

and are specifically unable to respond PC.  

 

Figure 5.3 Pup and adult alveolar macrophages produce significant amounts of 
TNFα upon stimulation with LPS. Macrophages from 2-week old and adult mice 
were isolated from the BALF, placed in 96-well tissue culture plates and allowed 
to rest for 24 h. Subsequently, the cells were treated with either 100ng/ml of LPS, 
4x105 PC organisms, or media alone for 6, 12, 24, or 48 h. Supernatant 
concentrations of LPS- and PC-stimulated cells were determined by Cytometric 
Bead Array.® P = pups, A = adults, con=unstimulated control. Data represent the 
means ± SD for three wells per group. * Concentration of cytokine was 
significantly greater than the respective control and PC-infected groups per time 
point, p<0.05. ** Concentration of cytokine was significantly greater than that 
produced by pup cells stimulated with LPS at the same time point, p<0.05. # 
Concentration of cytokine was significantly greater than adult control cells at the 
same time point, p<0.05. Comparisons are representative of 2 separate 
experiments. 
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 Two other macrophage-produced cytokines, IL-12p70 and IL-10, were 

evaluated in their response to LPS and PC stimulation due to the effects their 

functions may have on delayed neonatal responses to PC. IL-12p70 induces 

CD4 T cell differentiation into TH1 cells and IL-10 is a potent suppressor of 

macrophage function (50). Both PC and LPS failed to induce IL-12p70 production 

in pup and adult AMs at any time points tested (data not shown). Similarly, IL-10 

production was not increased secondary to either stimulus; however, there was a 

constitutive elevated production among all groups (data not shown). 

To determine whether the kinetics of cytokine production in pup AMs was 

delayed, this experiment was repeated looking at 72 hour post-stimulation. The 

cytokine response among both pup and adult AMs was similar to the responses 

observed at the earlier time points with the exception of IL-10. After 72 hours of 

stimulation, IL-10 production had increased among the LPS-treated pup 

compared to adult AMs (P<0.05; data not shown). This observation suggests that 

with continuous stimulation, pup AMs respond by producing the anti-inflammatory 

cytokine, IL-10. The in vitro data described above demonstrates two important 

findings; the first being that pup macrophages are less responsive to LPS 

compared to adults and the second being that PC appears to be a relatively 

weak stimulus to adult AMs and pup AMs are unresponsive. These findings 

begged the question of whether or not differences exist in the expression level of 

the following three important receptors: dectin-1, a beta-glucan receptor (44, 65), 

TLR4 a receptor for LPS (44, 245), and TLR2 a receptor for ligands such as 

zymosan, peptidoglycan, lipoprotein, and more recently thought to be a receptor 

for the major surface glycoprotein found on PC (44, 246-249). To answer this 

question, the expression levels of dectin-1, TLR2, and TLR4 on pup and adult 

LMs were determined. As illustrated in figure 5.4, the expression of dectin-1 and 

TLR2 was the same on pup and adult LMs isolated from uninfected mice (Figure 

5.4). These data suggest that the difference in production of TNFα between PC-

stimulated pup and adult macrophages is not due to differences in dectin-1 or 

TLR2 pattern recognition receptor expression. Conversely, differences were 

detected in TLR4 expression between pup and adult LMs (Figure 5.4). It is 
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possible then, that the delayed expression of TLR4 on pup LMs may be at least 

partially responsible for the significantly reduced cytokine production compared 

to adult LMs stimulated with LPS.  

Figure 5.4 Adult LMs expressed significantly higher baseline TLR4 than pup LMs 
(p< 0.05). LMs were isolated from uninfected 14-day old pup and adult (≥ 8weeks 
old) BALF. Cells were stained with antibodies specific for CD11c, dectin-1, TLR2, 
and TLR4 and analyzed by flow cytometry.  Representative histograms of dectin-
1, TLR2, and TLR4 positive cells (gated on CD11c+ cells) are shown. Cells were 
gated on large nonlymphoid cells by using forward and side light scatter. Data 
are representative of five mice per group and 2 separate experiments.  
 

The transcription factor NFkB p65 is responsible for the production of 

several cytokines, including TNFα. Considering the differences in TNFα 

production following stimulation in pup versus adult AMs, we examined the 

possibility that the nuclear translocation of NFkB p65 may be delayed in pups 

versus adults stimulated with LPS. AMs were isolated from pooled BALF 

collected from uninfected pup and adult mice. These cells were cultured for 1 

hour with LPS or media, the cells were collected, and the nuclear extracts were 

isolated. The amount of NFkB p65 was determined for both pup and adult AMs. 

The level of NFkB p65 was significantly greater in the adult cells compared to the 
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pup cells following 1 hour of LPS stimulation (Figure 5.5). This data suggests that 

the impaired TNFα production may be at least partially caused by poor NFkB p65 

nuclear translocation, which may be related to an upstream impairment such as 

low TLR4 expression or the use of a MyD88-independent pathway.   

 
Figure 5.5 NFkB nuclear translocation increases in adult but not pup AMs 
stimulated with LPS. The lavage fluid from 7-10 day-old pup mice and adult mice 
were each pooled, the cells were lysed, and the nuclear extract was isolated. 
Chemicon’s NFkB p65 Transcription Factor Colorimetric Assay was used to 
quantify NFkB p65 in the nuclear extract. Data represent the means ± SD for 3 
samples per group and are representative of 2 experiments. *p< 0.05 compared 
to adult control and pup LPS groups. 
 

We next asked the question of whether pup AMs have a global 

unresponsiveness to other fungal ligands. To investigate this question an in vitro 

experiment was performed comparing the response of pup versus adult AMs to 

the Saccharomyces cerevisiae cell wall polysaccharide, zymosan. This yeast cell 

wall preparation is known to express substrates, such as beta-1,3-glucans and 

mannan, for several pattern recognition receptors present on LMs, including 

Dectin-1 and mannose receptors as well as TLR2 and TLR6 ligands (61, 250).   

After 12 and 24 hours of stimulation with zymosan, both pup and adult 

AMs produced significantly more TNFα compared to their respective PC-

stimulated and control wells (Figure 5.6a), suggesting that both pup and adult 

LMs have functional beta-glucan receptors and TLR2. Interestingly, pup AMs 

stimulated with zymosan also produced significantly more TNFα than their adult 

counterparts after 12 hours of stimulation. Consistent with the results shown in 

figure 5.3, stimulation of the AMs with PC, an organism known to contain beta-
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1,3-glucan (47, 249), failed to induce the production of  TNFα in pup AMs after 

12 and 24 hours of stimulation. At 24 hours post-PC-stimulation, adult AMs 

produced slightly elevated levels of TNFα compared to unstimulated control cells 

as well as pup PC-stimulated AMs.  

 

Figure 5.6 Zymosan stimulated significantly more AM cytokine production 
compared to PC. AMs were isolated from the pooled BALF of adult (A=adult) (≥ 8 
wks) and 12-14 day old pup (P=pup) mice and cultured in a 96-well plate with 
PC, zymosan (zym), or media alone (con). Supernatants were removed at 12 
and 24 hours post-stimulation and (A) TNF, (B) MCP-1, (C) IL-6, (D) and IL-10 
were analyzed by Cytometric Bead Array analysis and flow cytometry.  Data 
represent 3-4 wells per group. * Cytokine concentrations are significantly greater 
than their respective control and PC-treated groups, p<0.05. + Cytokine 
concentrations are significantly greater than their respective control group only, 
p<0.05. ** Cytokine concentrations are significantly greater than their comparator 
zymosan-treated groups, p<0.05.  
 

Production of the other pro-inflammatory cytokines tested, IL-6 and MCP-

1, were significantly increased in both pup and adult AMs secondary to 

stimulation with zymosan (Figure 5.6b and c). Furthermore, MCP-1 production 

was significantly greater in adult AMs compared to pup AMs stimulated with 
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zymosan at both 12 and 24 hours post-stimulation. The levels of IL-6 and MCP-1 

following PC stimulation were minimal or undetectable, further suggesting that 

AMs are specifically less responsive to PC organisms.  Interestingly, IL-10, an 

inhibitory cytokine, was significantly increased in pup AMs following 12 and 24 

hours of stimulation with zymosan, but not PC (Figure 5.6d). These data indicate 

that pup AMs respond differently than adult AMs to fungal antigens. Pup AMs are 

capable of producing significant amounts of pro-inflammatory cytokines when 

stimulated appropriately. These data suggest that PC is a significantly weaker 

stimulus than either zymosan or LPS for both pup and adult LMs.  

 

2. Aerosolized heat-killed E. coli improves Pneumocystis clearance in pup 
mice 

The resolution of PC in immunocompetent adult mice is associated with 

the up-regulation of pro-inflammatory cytokines IFNγ and TNFα (10, 234). Since 

our in vitro studies demonstrated that LPS, but not PC, stimulates pup AMs to 

produce significant levels of TNFα, we wanted to evaluate whether the TNFα 

produced secondary to LPS administration in vivo would improve PC clearance 

in pup mice. Reports in the literature further support the hypothesis that 

exogenously increasing the level of TNFα can improve PC clearance (251). 

Harmsen and Chen have reported that treatment of adult thymectomized and 

CD4-depleted mice with aerosolized HKEC also expedites the clearance of PC 

(238). They further showed that pretreatment of the animals with anti-TNF IgG 

minimizes the benefit imparted by the aerosolized HKEC suggesting that 

stimulation of TNFα plays a significant role in the clearance of PC from 

immunocompromised mice (238). Based on this information, we proceeded with 

experiments to administered aerosolized HKEC to PC-infected pup mice. 

Treatment with HKEC began 48 hours post-infection and continued through day 

20 post-infection. Control mice received PC and aerosolized sterile water. By day 

12 post-infection a divergence in PC burden between HKEC-treated and control 

mice could already be identified (Figure 5.7a). By day 21 there was a sharp 

decline in the HKEC-treated group and by day 32 post-infection, there was a 
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significant difference in PC burden in the HKEC-treated group compared to the 

control group. These data suggest that pup mice, as was found with CD4-

depleted adult mice (238), can clear PC infection more efficiently when treated 

with aerosolized HKEC. 

 
Figure 5.7 Mice treated with HKEC demonstrated a faster rate of PC clearance 
than control mice. Mice were infected as neonates (24 to 72 h after birth) and 
treated with aerosolized HKEC or sterile water 3 times per week. Lungs were 
collected at (A) days 12, 21, 32, and 44 post-infection or (B) days 7, 14, 21, and 
32 post-infection, digested and spun onto glass slides. Slides were Diff-Quik® 
stained and enumerated microscopically. Data are representative of results of 
four to five mice per group and 3 separate experiments; *p<0.05. 
 
3. Aerosolized heat-killed E. coli influences the infiltration of immune cells 
in pup lungs  

We were able to induce a more efficient clearance of PC organisms from 

the lungs of infected pup mice with the administration of aerosolized HKEC.  In 

order to determine if this improved PC clearance was associated with an 

increase in cellular lung infiltration, BALFs were collected from mice treated with 

aerosolized HKEC and control mice treated with aerosolized sterile water. Cell 

differential counts were performed to determine macrophage, lymphocyte and 

neutrophil infiltration into the lungs of both the HKEC-treated mice and control 

mice. Overall minimal differences were noted, but most importantly, a divergence 

between the treated and untreated groups was observed among infiltrating 

macrophages into the lung by day 32 post-infection (data not shown). This 

correlates with the significant decrease in PC burden observed in the HKEC-
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treated mice by 32 post-infection (Figure 5.7b).  Neutrophil numbers appeared to 

follow HKEC treatment rather than PC infection as the neutrophil numbers rose 

early on and declined upon discontinuation of the HKEC treatment by day 21 

(data not shown).  

For both the HKEC-treated and untreated PC-infected mice, the infiltration 

of lymphocytes into the lung space, as determined by cell differential counts, 

sharply increased on day 21 post-infection and rapidly declined by day 32 post-

infection (data not shown).  The evaluation of lymphocytes, namely CD4+ T cells, 

by flow cytometry showed similar results with a rise in CD4+ T cells by day 21 

post-infection and a subsequent drop thereafter (Figure 5.8a). By comparing the 

timing of CD4+ T cell infiltration into the lungs and PC clearance, one can see 

that the increase in CD4+ T cells in the alveolar spaces as well as the lung tissue 

immediately precedes the subsequent decline in PC burden in the HKEC-treated 

mice (Figures 5.7 and 5.8a-b). The infiltration of CD8+ T cells followed the same 

pattern as CD4+ T cells (data not shown). The decline in T cell numbers in the 

lungs falls rapidly upon discontinuation of HKEC treatments at day 20 post-

infection suggesting that T cell infiltration was stimulated by HKEC.  

 
Figure 5.8 Treatment with HKEC induced CD4+ T cell infiltration into the lungs of 
PC-infected pups. Mice were infected with PC as neonates (24 to 72 h after birth) 
and then treated with either aerosolized HKEC or sterile water. BALF and whole 
lungs were collected on days 12, 21, 32, and 44 post-infection. No statistical 
difference in CD4+ T cells in the (A) BALF or (B) lung digest was observed 
between the groups treated with HKEC or the control group. Data represent the 
means ± SD for five mice per group and are representative of 3 separate 
experiments. 
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4. Aerosolized heat-killed E. coli influences the activation of pup lung 
macrophages  

We used flow cytometry to assess the activation status of PC-infected, 

pup LMs treated with aerosolized HKEC compared to those treated with 

aerosolized vehicle. Several different combinations of surface markers known to 

be signs of macrophage activation in adults were used. For all experiments 

involving flow cytometry, the cells were gated on non-lymphocytes using forward 

and side scatter.  
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Figure 5.9 Expression levels of CD11b, MHC class II, and F4/80 on 
macrophages from alveolar spaces of PC-infected. HKEC-treated neonatal mice 
were increased at days 14 and 21 post-infection. Mice were infected with PC as 
neonates (24 to 72 h after birth) and then treated with either aerosolized HKEC 
or sterile, deionized water. BALF was collected at days 7, 14, 21, and 32 post-
infection. Cells were stained with antibodies specific for CD11c and CD11b, MHC 
class II, or F4/80, and phenotypes were examined using flow cytometry. 
Representative histograms of CD11b, MHC class II, or F4/80 positive cells and 
the MFI for each (gated on CD11c+ cells) are shown. Cells were gated for large 
nonlymphoid cells by using forward and side light scatter. Data are 
representative of four to five mice per group and 2 separate experiments.  
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Figure 5.9 shows expression of the LM activation markers, CD11b, MHC 

II, and F4/80 at 4 time points after PC infection in representative pup mice from 

each group. The PC-infected group receiving HKEC showed an increase in 

activated LMs, as indicated by a right shift in the CD11b cell populations, 

compared to the infected group receiving aerosolized water only (Figure 5.9). 

This right shift could be seen in the HKEC group as early as day 7 post-infection 

and persisted through day 21 post-infection. These data correlated well with the 

decreased PC lung burden beginning at day 21 post-infection, suggesting that 

the activation of pup LMs by HKEC contributed to the expedited PC clearance 

(Figure 5.7b).  The group that was PC-infected, but received aerosolized water 

only did not start to increase in CD11b expression until day 21 post-infection and 

both groups showed a return to baseline expression levels by day 32 post-

infection. Similarly, the group receiving HKEC had increased expression of both 

MHC Class II and F4/80 molecules compared to untreated mice by day 7 post-

infection. The difference in expression was most notable at days 14 and 21 post-

infection and preceded PC clearance (Figure 5.7b). Overall, these data suggest 

that the treatment of PC-infected mice with HKEC increases the activation of LMs 

in pup lungs and contributing to the reduced PC lung burden.  

 

5. Cytokine production was increased secondary to aerosolized heat-killed 
E. coli 

We have previously reported that cytokines such as TNFα and IFNγ 

appear in the lungs of PC-infected pup mice much later than in the lungs of 

infected adult mice (234). We next examined cytokine production in vivo following 

treatment of PC-infected mice with aerosolized HKEC using Cytometric Bead 

Array® analysis. Similar to the results observed in vitro with LPS, neither IL-

12p70 nor IL-10 levels were elevated in the HKEC group compared to the control 

group at any time points following infection with PC (data not shown). While no 

statistically significant differences in TNFα, IFNγ, or MCP-1 were found between 

groups in the BALFs, the group treated with HKEC tended to have greater levels 

of cytokines compared to the untreated group (Figure 5.10 a-c). Additionally, LMs 
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from the HKEC-treated group did produce significantly more IL-6 compared to 

the uninfected group (Figure 5.10 d).  The production of IL-6 throughout this 

experiment was interesting in that it appeared to follow the HKEC treatment 

rather than the PC (Figure 5.10 d). At day 21 post-infection only those groups 

receiving HKEC had increased production of IL-6 regardless of PC infection.  

Furthermore, the production of IL-6 was minimal following the day 21 timepoint, 

which can likely be explained by the fact that the final HKEC treatment occurred 

on day 20 post-infection. Overall, this cytokine data reiterates the findings that 

LM-produced cytokines, particularly TNFα, are involved in the expedited 

clearance of PC observed in the HKEC-treated groups. Although IFNγ is not 

produced by LMs in significant quantities, LMs are known to stimulate IFNγ-

producing cells such as T lymphocytes, which would explain the increase seen 

herein (Figure 5.10 b).   
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Figure 5.10 PC-infected mice treated with HKEC had elevated cytokine levels by 
day 21 post-infection. Mice were infected as neonates (24 to 72 h after birth) and 
then treated with either aerosolized HKEC or sterile, deionized water. BALF was 
collected on days 12, 21, 32, and 44 post-infection. Production of (A) TNFα, (B) 
IFNγ, (C) MCP-1, and (D) IL-6 was determined by Cytometric Bead Array® BD 
Biosciences, San Diego, CA. There were no significant differences between the 
group receiving HKEC and the group receiving only sterile water. Data represent 
the means ± SD of five mice per group; *p<0.05. 
 
6. Lung macrophage phagocytosis is less efficient in the absence of T 
lymphocytes 
 To determine if T lymphocytes are playing a role in the increased LM 

activation and PC clearance observed in HKEC-treated pups, HKEC-treated 

SCID and WT pups were compared in their ability to phagocytose DiO-labeled 

PC organisms. Six-7 day-old Balb/c or SCID mice were treated with aerosolized 

HKEC (as previously described) on days 4 and 2 prior to and once more on the 

day of PC infection (DiO-labeled). On day 1 post-infection the mice were 

lavaged. Some cells were reserved for differential counts and the rest were 

processed for analysis via flow cytometry. The total number of LMs 
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phagocytosing PC organisms was the same between SCID and WT pups (data 

not shown). However, treatment with HKEC drove more efficient phagotyosis of 

PC in LMs from treated compared to untreated WT pups as shown by the 

increased mean fluorescence intensity of DiO (Figure 5.11b).  LMs from WT pups 

were significantly more efficient at phagocytosing PC compared to SCID pups, 

despite HKEC treatment in both groups (Figure 5.11a-b).  The overall MHC class 

II expression was similar between the WT and SCID pups suggesting that the 

difference in phagocytosis was not likely due to lower activation in the SCID pups 

(data not shown).  Although neutrophils are not thought to be important in PC 

clearance (84), we show that neutrophil infiltration in SCID pups was equal to WT 

pups but they were less capable of phagocytosing PC organisms compared to 

WT pups despite treatment with HKEC (Figure 5.11c-d). These data suggest that 

in the absence of T lymphocytes, HKEC-treated pup LMs are still capable of 

phagocytosing PC but are less efficient.  
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Figure 5.11 SCID pups treated with HKEC do not phagocytose DiO-labeled PC 
as efficiently as WT pups. SCID and WT pups were treated with aerosolized 
HKEC on days 4 and 2 previous to and on the day of DiO-labeled PC infection. 
BALF was collected on day 1 post-infection. Cells were stained with antibodies 
specific for CD11c, CD11b, and MHC class II and examined for co-expression 
with DiO-labeled PC. (A) Representative histogram showing DiO 
fluorescent/CD11c+ cells from HKEC-treated, WT pups (thick black line), HKEC-
treated, SCID pups (medium line), untreated, WT pups  (grey fill); (B) Mean 
fluorescence intensity of DiO in CD11c+ cells, *p<0.05 compared to untreated 
WT and HKEC-treated SCID pups; (C) Differential counts of BALF cells, *p<0.05 
compared to untreated WT pups; (D) Mean fluorescence intensity of DiO in 
CD11c-, CD11b+ cells, *p<0.05 compared to HKEC-treated SCID pups. Data 
represent the means ± SD of four mice per group.  
 
C. Granulocyte macrophage-colony stimulating factor  

GM-CSF has been shown to enhance clearance and improve outcomes of 

several different pulmonary infections, including but not limited to group B 

streptococcus infection (24), Pseudomonas aeruginosa (25), Histoplasma 

capsulatum (26, 27), Mycobacterium tuberculosis (28), and Pneumocystis carinii 

(29). However, there is little data on the effects of GM-CSF on pulmonary 

infections in infants and no data regarding the addition of GM-CSF for the 

treatment of PCP in the infant population. The ability of GM-CSF to improve 
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outcomes in pulmonary infections in adult animal models suggests that this 

clinically relevant agent may be of therapeutic benefit for infants with pulmonary 

infections failing to respond to antimicrobial therapy alone. Thus, we 

hypothesized that treatment of PC-infected pup mice with rmGM-CSF 

(recombinant mouse GM-CSF); either alone or in combination with TMP/SMX, 

would improve PC clearance secondary to increased LM numbers and activation. 

 
1. rmGM-CSF increases cytokine production in pup alveolar macrophages 

Initial rmGM-CSF experiments were done in vitro to minimize cost while 

testing the potential benefit of this agent and its ability to stimulate LMs to 

produce cytokines. The first of such experiments was done by collecting the 

BALF of both adult and pup mice, isolating the AMs and culturing them with 

rmGM-CSF for 6, 24, 30, and 48 hours. Stimulation of both adult and pup cells 

with rmGM-CSF alone increased the production of TNFα, MCP-1, and IL-6 at 24 

hours post-stimulation above that which was produced by the control cells; for 

MCP-1 this increase was significantly greater than that produced by the control 

cells for both pups and adults (Figure 5.12 a,b,d). For TNFα and IL-6, while the 

increased cytokine production stimulated by rmGM-CSF alone was not 

statistically significant, stimulation of both pup and adult cells with rmGM-CSF 

plus PC did generate a statistically significant increased cytokine production at 

24 hours post-stimulation (Figure 5.12 a and d). After 30 and 48 hours post-

stimulation, the production of TNFα in the pup cells secondary to rmGM-CSF 

alone was significantly greater than their control cells; while the adult cells also 

had an increase in TNFα after 30 and 48 hours, it did not reach statistical 

significance. However, for both pup and adult cells stimulated with rmGM-CSF 

plus PC, TNFα was still significantly greater than the control cells after 30 and 48 

hours post-stimulation (Figure 5.12a).  MCP-1 production was significantly 

greater in both pup and adult cells stimulated with rmGM-CSF alone at 48 hours 

post-stimulation, but only the adult cells stimulated with both rmGM-CSF and PC 

had significantly more MCP-1 production after 48 hours of stimulation; the pup 

cells had a large intra-group variability causing it to fail reaching statistical 
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significance (Figure 5.12b). IL-6 production was significantly increased in both 

pup and adult cells stimulated with both rmGM-CSF and PC together; IL-6 

production was not significantly increased in those cells stimulated with rmGM-

CSF alone (Figure 5.12d). The production of IL-10 was not affected by the 

addition of rmGM-CSF either alone or in combination with PC (Figure 5.12c). 

Overall these data suggest that the addition of rmGM-CSF to PC-infected pup 

cells increases the production of TNFα, MCP-1, and IL-6, but not IL-10.  
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Figure 5.12 rmGM-CSF increases cytokine production in pup AMs. AMs were 
isolated from the pooled BALF of adult (≥ 8 wks) and 7-10 day old pup (P) mice 
and cultured in a 96-well plate with media alone (Con), PC, rmGM-CSF (GM), or 
PC plus rmGM-CSF (GM/PC). Supernatants were removed at 6, 24, 30, and 48 
hours post-stimulation and (A) TNF, (B) MCP-1, (C) IL-10, (D) and IL-6 were 
analyzed by Cytometric Bead Array analysis and flow cytometry.  Data represent 
the mean ± SD of 3-4 wells per group. #p<0.05, compared to all other pup groups 
and A-GM/PC; +p<0.05, compared to the respective pup or adult control and PC 
groups; *p<0.05, compared to the respective pup or adult control groups.  
 
 
2. NFkB p65 nuclear translocation is stimulated by rmGM-CSF in adult but 
not pup alveolar macrophages 

Similar to the assay performed following LPS stimulation, an NFkB p65 

assay was performed to determine the level of translocation into the nucleus 

following 1 hour of stimulation with PC alone, rmGM-CSF alone, or PC and 

rmGM-CSF in combination.  After one hour there was significantly more NFkB 

p65 nuclear translocation in the adult AMs stimulate with rmGM-CSF compared 

to the pup AMs (Figure 5.13). Both adult and pup AMs stimulated with PC 

antigen and rmGM-CSF had less NFkB p65 translocation than that which 

occurred with rmGM-CSF alone, suggesting that this combination may play some 

what of an inhibitory role on NFkB p65 nuclear translocation in both adult and 

pup AMs early in the AM-PC encounter. Upon prolonged exposure to PC 

antigen, however, it would appear that this possible suppression is overcome 

based on the cytokine data shown in figure 5.12a in which TNFα is largely 

produced secondary to rmGM-CSF alone and in combination with PC infection 

by 24 hours post-stimulation.    
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Figure 5.13 rmGM-CSF increases adult, but not pup NFkB p65 nuclear 
translocation. The lavage fluid from 7-10 day-old pup mice and adult mice were 
each pooled and then cultured with media alone (con), rmGM-CSF (GM), PC 
(PC), or PC plus rmGM-CSF (PC/GM). The cells were lysed and the nuclear 
extract was isolated and NFkB p65 quantified using Chemicon’s NFkB p65 
Transcription Factor Colorimetric Assay. Data represent the means ± SD for 3 
samples per group and are representative of 2 experiments. +p<0.05 compared 
to adult control and pup rmGM-CSF groups. *p<0.05 compared to adult control 
group. 
 
3. rmGM-CSF delivered i.p. increases pup lung macrophage activation and 
T cell infiltration but not Pneumocystis clearance 

Based on the data generated from the in vitro experiments, an rmGM-CSF 

pilot experiment was performed using a small number of mice. Pups were 

infected with PC, as previously described, at 24-72 hours old. Half the pups were 

then dosed with 0.25µg of rmGM-CSF per gram body weight by i.p. injection 

twice daily beginning on day 7 post-infection and continuing for a total of 5 days 

(ending day 11 post-infection). The mice were lavaged and their lungs collected 

at days 10 and 20 post-infection for flow cytometry and PC enumeration. While 

no statistically significant differences between the two groups were found during 

our data analysis, some interesting trends were observed. First, those mice 

receiving the rmGM-CSF treatment had an increase in AM infiltration as indicated 

by a rise in CD11c+ cells in the lavage (Figure 5.14a) as well as a rise in their 

activation level as indicated by an increase in CD11c+/CD11b+ and 

CD11c+/MHC class II+ cells (Figure 5.14b-c). Interestingly, no differences were 

observed in macrophages in the lung digest (Figure 5.15a-c). Additionally 

activated CD4 and CD8 T cells were elevated in the rmGM-CSF-treatment 

groups in the lavage and activated CD8 T cells were elevated in the treatment 
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group in the lung digest (Figure 5.16 a,c, and d). No changes were noted in the 

lung digest for CD4 T cells (Figure 5.16b). Lastly, no differences were observed 

in PC burden between the treated and untreated mice at either timepoint tested 

(Figure 5.17). While this data showed no definitive results, some important trends 

were observed. Although not statistically significant, the increase in AM and T 

cell infiltration and activation in the BALF of mice receiving rmGM-CSF was 

promising and encouraged us to proceed with experiments using rmGM-CSF in 

larger experiments with more mice. A change in both the dose and route of 

administration were applied for subsequent experiments; administration of 

rmGM-CSF by i.n. rather than by i.p. administration was instituted based on 

published literature demonstrating safety and efficacy in initiating a specific 

pulmonary immune response with aerosolized GM-CSF (252, 253).  

 
Figure 5.14 rmGM-CSF administered i.p. did not affect the number of pup AMs 
expressing CD11c, CD11b, or MHC class II molecules in the lavage. Mice were 
infected with PC as neonates (24 to 72 h after birth) and then treated with 
0.25µg/g i.p. rmGM-CSF or sterile, deionized water twice daily for 5 days 
beginning day 7 post-infection. BALF was collected on days 10 and 20 post-
infection. Cells were stained with antibodies specific for CD11c and CD11b, or 
MHC class II and were examined using flow cytometry. Cells were gated for large 
nonlymphoid cells by using forward and side light scatter and CD11c+ cells. Data 
are representative of the mean ± SD of four to five mice per group and 2 
separate experiments. 
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Figure 5.15 rmGM-CSF administered i.p. did not affect the number of pup 
macrophages expressing CD11c, CD11b, or MHC class II molecules in the lung 
digest. Mice were infected with PC as neonates (24 to 72 h after birth) and then 
treated with 0.25µg/g i.p. rmGM-CSF or sterile, deionized water twice daily for 5 
days beginning day 7 post-infection. Whole lungs were collected on days 10 and 
20 post-infection and processed into single cell suspensions. Cells were stained 
with antibodies specific for CD11c and CD11b, or MHC class II and were 
examined using flow cytometry. Cells were gated for large nonlymphoid cells by 
using forward and side light scatter and CD11c+ cells. Data are representative of 
the mean ± SD of four to five mice per group and 2 separate experiments. 
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Figure 5.16 rmGM-CSF administered i.p. did not increase the infiltration of 
activated T cells in PC-infected pup lungs. Mice were infected with PC as 
neonates (24 to 72 h after birth) and then treated with 0.25µg/g i.p. rmGM-CSF or 
sterile, deionized water twice daily for 7 days beginning day 7 post-infection. 
Lavage fluid and whole lungs were collected on days 10 and 20 post-infection 
and processed into single cell suspensions. Cells were stained with antibodies 
specific for CD4, CD8, CD44, and CD62 and examined using flow cytometry. 
Cells were gated for small non-ganular lymphoid cells by using forward and side 
light scatter. Data are representative of the mean ± SD of four to five mice per 
group and 2 separate experiments. 
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Figure 5.17 rmGM-CSF administered i.p. did not reduce PC lung burden in pup 
mice. Mice were infected with PC as neonates (24 to 72 h after birth) and then 
treated with 0.25µg/g i.p. rmGM-CSF or sterile, deionized water twice daily for 7 
days beginning day 7 post-infection. Whole lungs were collected on days 10 and 
20 post-infection, processed into single cell suspensions. Aliquots were spun 
onto glass slides, stained with Diff-Quick® and enumerated microscopically. Data 
are representative of the mean ± SD of four to five mice per group and 2 
separate experiments. 
 
 
4. rmGM-CSF administered i.n. improves Pneumocystis clearance 

The next rmGM-CSF experiment included seven C57BL/6 x DBA/2J 

(B6D2F1/J) pup mice, which were infected with PC at 72 hours old. On day 7 

post-infection 3 of the 7 mice were treated with i.n. rmGM-CSF daily (5ng/g) for 5 

days (254-256); the 4 control mice received i.n. PBS on the same dosing 

schedule. On day 18 post-infection, BALF and lungs were collected and 

processed for flow cytometry and microscopic analysis as previously described. 

Mice treated with rmGM-CSF had a reduced PC burden without a concomitant 

increase in the number of LMs expressing activation markers (Figure 5.18a). All 

cells were first gated on large nonlymphocytes and CD11c. None of the markers 

tested were increased in the treatment group compared to the control group, 

including CD11b, MHC class II, dectin-1, and mannose receptor. Figure 5.18b 

depicts the PC burden in the lungs of both the rmGM-CSF-treated and the 

control mice. Although both groups of mice have a relatively large PC burden and 

no statistically significant differences were found, the rmGM-CSF-treated group 

had fewer overall PC organisms in their lungs compared to the control group 
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(Figure 5.18b). This data suggests that rmGM-CSF is capable of reducing PC 

burden without increasing the number of LMs expressing an activated 

phenotype.  Such a pattern would be desirable in an infant whose developing 

lungs are vulnerable to damage from excessive inflammatory responses. It is 

possible that the reduced PC lung burden observed in the rmGM-CSF-treated 

mice resulted in the decreased number of macrophages expressing activation 

markers compared to the untreated group.  

 

Figure 5.18 rmGM-CSF administered i.n. reduced PC burden in pup mice. Mice 
were infected with PC as neonates (24 to 72 h after birth) and then treated with 
5ng/g i.n. rmGM-CSF or PBS daily for 5 days beginning day 7 post-infection. 
Lavage fluid and whole lungs were collected on day 18 post-infection and 
processed into single cell suspensions. (A) Cells were stained with antibodies 
specific for CD11c, CD11b, dectin-1, MHC class II, and mannose receptor and 
examined using flow cytometry. Cells were gated for large non-lymphoid cells by 
using forward and side light scatter and were gated on CD11c+ cells. Data are 
representative of three to four mice per group. (B) Aliquots of lung digest were 
spun onto glass slides, stained with Diff-Quick® and enumerated microscopically. 
White symbols represent the mean log10PC/Lung.  
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Figure 5.19 rmGM-CSF administered i.n. increased the number of LMs 
expressing activation markers in PC-infected pup mice. Mice were infected with 
PC as neonates (24 to 72 h after birth) and then treated with 5ng/g i.n. rmGM-
CSF or PBS daily for 7days beginning day 7 post-infection. Lavage fluid and 
whole lungs were collected on days 14, 18, 22, and 28 post-infection and 
processed into single cell suspensions. Cells were stained with antibodies 
specific for CD11c, (A-B) CD11b, and (C-D) MHC class II and examined using 
flow cytometry. Cells were gated for large non-lymphoid cells by using forward 
and side light scatter and were gated on CD11c+ cells. Data are representative 
of the mean ± SD of three to four mice per group. *p<0.05 compared to 
respective PC+/GM- groups.  
 

Based on this data, a second rmGM-CSF experiment was designed to 

include multiple timepoints. As previously described, mice were infected with PC 

at 72 hours old, and treatment with 5ng/g rmGM-CSF i.n. was begun 7 days 

post-infection and continued for 7 days. In addition to looking at LMs, flow 

cytometry was used to compare differences in T cell infiltration and activation in 

both the lungs and lymph nodes in the treatment group compared to the control 

group. At day 14 post-infection there was a significant increase in LMs 

(CD11c+/CD11b+ non-lymphocytes) in both the BALF and the lung tissue in the 

rmGM-CSF-treated mice compared to the untreated mice (Figure 5.19a and b); 
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suggesting an increase in LM infiltration and/or activation of macrophages or 

granulocytes. In both tissues this difference was lost by day 18 post-infection. 

While these cells increased again in both tissues by day 22 post-infection in the 

treatment group compared to the untreated group, the difference was not found 

to be statistically significant. The number of nonlymphocytes expressing MHC 

class II was also assessed in both the BALF and the lung tissues. As can be 

seen in figures 5.19c and d, there was a lot of intra-group variability, thus the only 

significant difference noted in the number of cells expressing MHC class II was at 

day 28 post-infection in the lung tissue (Figure 5.19d). Taken together, this data 

suggests that rmGM-CSF may both increase the infiltration of AMs into the 

alveolar spaces as well as increase the number of infiltrated and tissue 

macrophages expressing activation markers in the lungs of PC-infected pups.  

   With an increase in the infiltration and activation of LMs in the BALF as 

well as the lung tissue, one would expect an increase in the infiltration and 

activation of T lymphocytes within the same time frame. Based on this premise, 

flow cytometry was used to evaluate the presence of both CD4+ and CD8+ T 

cells with a high expression of CD44 and a low expression of CD62L (an 

indication of T lymphocyte activation). As expected, the infiltration and activation 

of both CD4+ and CD8+ T cells followed a very similar patter to that of the AM 

and tissue macrophages (Figure 5.20). Pups treated with rmGM-CSF had an 

increase in activated CD4+ and CD8+ T cells in the BALF and the lung tissue. 

This increase occurred earlier at day 14 post-infection in the lung tissue 

compared to day 22 post-infection in the BALF, likely reflecting the time it takes 

for lymphocytes to extravasate across the lung tissues to reach the alveolar 

spaces. (Figure 5.20a-d). Overall, no statistically significant differences between 

the pups receiving rmGM-CSF and the pups receiving vehicle only were found. 

The TBLNs were analyzed for activated T lymphocytes to determine if rmGM-

CSF treatment improved the time to specific antigen response in the regional 

lymph node, presumably through expedited or improved TBLN homing and/or 

antigen presentation. Treatment with rmGM-CSF did not improve lymphocyte 

activation time in the TBLN compared to the untreated group (Figure 5.21a-b). 
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Lastly, figure 5.21c depicts the PC lung burden in each mouse from both the 

treatment and control groups at each timepoint tested. While the lung burden of 

PC organisms at day 14 post-infection was the same in both groups, a 

divergence is obvious at day 18 post-infection whereby the rmGM-CSF-treated 

group has a lower burden compared to the control group (NS). This divergence is 

lost, however by day 22 post-infection and overall, no statistically significant 

differences in PC burden were observed between the two groups (Figure 5.21c).  

 
Figure 5.20 rmGM-CSF administered i.n. did not significantly increase the 
number of activated T cells in PC-infected pup lungs. Mice were infected with PC 
as neonates (24 to 72 h after birth) and then treated with 5ng/g i.n. rmGM-CSF or 
PBS daily for 7days beginning day 7 post-infection. Lavage fluid and whole lungs 
were collected on days 14, 18, 22, and 28 post-infection and processed into 
single cell suspensions. Cells were stained with antibodies specific for CD4 (A-
B), CD8 (C-D), CD44, and CD62L and examined using flow cytometry. Cells 
were gated for small, non-granular cells by using forward and side light scatter. 
Data are representative of the mean ± SD of three to four mice per group.  
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Taken together, the data describing this rmGM-CSF in vivo experiment 

demonstrates that mice infected with PC as neonates have a more robust LM 

response to the organism following treatment with rmGM-CSF compared to 

untreated mice. The increase in activated LMs at day 14 post-infection in the 

rmGM-CSF group occurred approximately 7 days prior to the reduced PC burden 

seen at day 18 in comparison to the control group. Overall, rmGM-CSF increased 

the activation of LMs in PC-infected pups. While the reduction in PC burden did 

not reach statistical significance, it is clear that rmGM-CSF bolstered the overall 

immune response to PC infection in pup mice.   

 
Figure 5.21 rmGM-CSF administered i.n. did not significantly reduce PC burden 
in pup mice. Mice were infected with PC as neonates (24 to 72 h after birth) and 
then treated with 5ng/g i.n. rmGM-CSF or PBS daily for 7days beginning day 7 
post-infection. TBLNs and whole lungs were collected on days 14, 18, 22, and 28 
post-infection and processed into single cell suspensions. Cells were stained with 
antibodies specific for CD4 (A), CD8 (B), CD44, and CD62L and examined using 
flow cytometry. Cells were gated for small, non-granular cells by using forward 
and side light scatter. (C) Aliquots of lung digest were spun onto glass slides, 
stained with Diff-Quick® and enumerated microscopically. Data are 
representative of the mean ± SD of three to four mice per group. 
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This data differs from the first i.n rmGM-CSF experiment which 

demonstrated a reduction in PC burden without a concomitant increase in LM 

expressing activation markers (Figure 5.18). Two explanations can be offered 

when comparing the results of these two experiments.  First, is that the second 

experiment continued rmGM-CSF therapy for 7 days, unlike the first experiment 

in which treatment was extended for only 5 days. The extra 2 days of therapy 

may have contributed to the increased number of LMs expressing activation 

markers. Second, as previously stated, the reduced PC burden seen in the first 

i.n. rmGM-CSF experiment was likely driven by the reduced PC burden. The 

second experiment also had a reduction in PC burden at day 18 post-infection 

which correlated with a lower number of LMs expressing activation markers. This 

second experiment, however, looked at days further out from infection and as will 

be described in the next two figures, demonstrated somewhat of a rebound in PC 

burden with a concomitant increase in activation markers. Overall this data 

suggests that rmGM-CSF treatment alone is not sufficient to treat PC infection.  

 

D. Recombinent mouse granulocyte macrophage-colony stimulating factor 
plus Trimethoprim/sulfamethoxazole 
  Although the standard of care treatment for PC pneumonia is TMP/SMX, 

the use of combination therapy for infectious diseases is a common, well-

accepted practice depending on the severity of the infection, its location, and the 

virulence of the infecting organism (257). Considering the use of combination 

therapy together with the rationale of using immunomodulatory agents to fight 

infectious diseases, we hypothesized that the use of GM-CSF and TMP/SMX 

together could improve PC clearance in pup mice.  Experiments were designed 

to include four groups of pups; all were infected with PC between 24 and 72 

hours old. The infection was allowed to grow for 7 days and become established 

before beginning one of the following treatment regimens: 40mg/kg TMP/ 

200mg/kg SMX orally twice daily for 14 days, 5ng/g rmGM-CSF i.n daily for 7 

days, 40mg/kg TMP/ 200mg/kg SMX orally twice daily x 14 days + 5ng/g rmGM-

CSF i.n daily x 7 days, or vehicle only i.n. once daily x 7 days.  
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1. Pneumocystis burden 
As demonstrated in Figure 5.22, the groups treated with TMP/SMX alone 

and TMP/SMX plus rmGM-CSF had significantly lower PC burdens by day 22 

post-infection compared to control mice. By day 29 post-infection the PC burden 

in the combination group remained low. However, the burden in the TMP/SMX 

group seems to rebound slightly upon discontinuation of the drug. This 

observation suggests that in the combination group, the TMP/SMX was 

responsible for the brunt of the work in reducing PC, but the addition of rmGM-

CSF enabled the host’s immune system to maintain that reduction more 

efficiently after the TMP/SMX was removed.     

 
Figure 5.22 TMP/SMX and the combo groups significantly reduced PC burden in 
pup mice. Mice were infected with PC as neonates (24 to 72 h after birth). 
Beginning on day 7 post-infection, mice were treated with either 40 mg/kg 
TMP/SMX orally twice daily for 14 days + 10 µl normal saline (NS) daily for 7 
days (TMP/SMX), 5ng/g i.n. rmGM-CSF daily for 7days (GM-CSF), 40 mg/kg 
TMP/SMX orally twice daily for 14 days and 5ng/g i.n. rmGM-CSF daily for 7days 
(Combo), or 10 µl NS daily for 7 days (Control). Whole lungs were collected on 
days 12, 19, 22, and 29 post-infection, processed into single-cell suspensions. 
Aliquots were spun onto glass slides, stained with Diff-Quik®, and enumerated 
microscopically. Data represent four to five mice per group and are 
representative of 3 separate experiments. *p< 0.05 mean ± SD compared to the 
control group at the indicated time point.  
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2. rmGM-CSF levels in the lung 
To determine if the rmGM-CSF sufficiently made it to the lungs via the i.n. 

route of administration, an ELISA was performed on the BALF collected after 

each timepoint. Since the rmGM-CSF was exogenously administered for 7 days 

beginning 7 days after the pups were infected with PC, the last day of rmGM-

CSF dosing was day 14 post-infection. Thus, the results observed in the GM-

CSF ELISA were somewhat predictable in that there was a significantly elevated 

level of GM-CSF on day 12 post-infection in the rmGM-CSF-treatment group 

which was not observed at the later time points (Figure 5.23). Unexpectedly, 

however, there was less GM-CSF in the rmGM-CSF/TMP/SMX (combination) 

group than in the untreated controls. By day 19 post-infection, the exogenous 

administration of rmGM-CSF had ceased and no groups were producing 

significant levels of the cytokine endogenously. On days 22 and 29 post-infection 

the TMP/SMX and rmGM-CSF single-treatment groups were producing elevated 

levels of GM-CSF compared to the control group, but not enough to reach 

statistical significance (Figure 5.23).  

 
Figure 5.23  GM-CSF levels were significantly elevated in GM-CSF-treated pup 
lungs. Mice were infected with PC as neonates (24 to 72 h after birth). Beginning 
on day 7 post-infection, mice were treated with either 40 mg/kg TMP/SMX orally 
twice daily for 14 days + 10 µl NS daily for 7 days (TMP/SMX), 5ng/g i.n. rmGM-
CSF daily for 7days (GM-CSF), 40 mg/kg TMP/SMX orally twice daily for 14 days 
and 5ng/g i.n. rmGM-CSF daily for 7days (Combo), or 10 µl NS daily for 7 days 
(Control). Lungs were lavaged on days 12, 19, 22, and 29 post-infection and GM-
CSF levels were determined by ELISA. *p<0.05 compared to all other groups at 
day 12 post-infection. Data represent the mean ± SD of four to five mice per 
group and are representative of 3 separate experiments.  
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3. Lung macrophage activation markers reflect rmGM-CSF treatment and 
Pneumocystis burden 

Similar to previous experiments, flow cytometry was used to evaluate the 

level of LM and lymphocyte infiltration and activation within the lungs of mice 

from each of the groups outlined above. As depicted in figure 5.24, the infiltration 

and activation of pup LMs in the BALF were somewhat variable. A look at non-

lymphocytes expressing CD11c in figure 5.24a shows us that there is a slight 

surge of macrophage infiltration into the alveolar spaces on day 12 post-infection 

in the rmGM-CSF-treated group compared to all other groups, although the 

differences are not statistically significant. On day 19 post-infection, all groups 

demonstrated similar numbers of CD11c+ cells and then interestingly, on day 22 

post-infection, there was significantly lower numbers of CD11c-expressing cells 

in the TMP/SMX group compared to the untreated group. At day 29 post-infection 

the combination group had significantly fewer CD11c+ expressing cells 

compared to the untreated group, whereas numbers in the TMP/SMX group had 

rebounded back up to the level of the untreated group. It is important to consider 

the timeframe of rmGM-CSF and TMP/SMX treatments when analyzing this data. 

To relate fluctuations in the surface marker expression to the treatment period of 

each drug, a timeline is provided in figure 5.24b. One can see, by comparing the 

expression of CD11c+ cells to the timeline that the greatest numbers occurred in 

the rmGM-CSF-treated group 5 days into the treatment period; the subsequent 

drop in cells expressing CD11c occurring at day 19 post-infection may reflect the 

discontinuation of the drug at day 14 post-infection. Overall, this data suggests 

that rmGM-CSF may have been driving the infiltration of CD11c+ cells early on 

and upon discontinuation of the drug, the number of CD11c+ expressing cells 

returned to baseline. Furthermore, in the group receiving TMP/SMX alone, the 

number of CD11c+ cells appeared to be driven by PC burden (Figure 5.22), 

which was decreased by the activity of TMP/SMX. This decreased number of 

CD11c-expressing cells was not seen in the combination group most likely, due 

to the promotion of CD11c+ cell infiltration imparted by the rmGM-CSF.  Thus the 
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overall reduction in CD11c+ cells in the combination group by day 29 post-

infection likely represents a reduction in PC burden (compare to figure 5.22) 

 

Figure 5.24 GM-CSF drove an increase in infiltrating AMs in PC-infected pup 
mice. Mice were infected with PC as neonates (24 to 72 h after birth). Beginning 
on day 7 post-infection, mice were treated with either 40 mg/kg TMP/SMX orally 
twice daily for 14 days + 10 µl normal saline (NS) daily for 7 days (TMP/SMX), 
5ng/g i.n. rmGM-CSF daily for 7 days (GM-CSF), 40 mg/kg TMP/SMX orally 
twice daily for 14 days and 5ng/g i.n. rmGM-CSF daily for 7 days (Combo), or 10 
µl NS daily for 7 days (Control). Lungs were lavaged on days 12, 19, 22, and 29 
post-infection and cells were stained with antibodies specific for CD11c and 
analyzed by flow cytometry. Cells were gated for large non-lymphoid cells by 
using forward and side light scatter. (A) Data represent the mean ± SD of four to 
five mice per group and are representative of 3 separate experiments. *p<0.05 
compared to respective control groups at the indicated time points. (B) Timeline 
depicts the start and discontinuation of treatments.  
 

The other markers of macrophage activation tested showed very similar 

trends to the number of cells expressing CD11c. The number of cells dually 

expressing CD11c and CD11b appeared to correlate with PC burden (Figures 

5.25a and 5.22). This is most apparent when looking at day 12 compared to day 

22 at which time the number of CD11c/CD11b+ cells are significantly less in the 
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groups receiving TMP/SMX compared to the control group. Treatment with 

rmGM-CSF alone is not capable of significantly reducing PC burden. However, at 

day 12 post-infection the groups receiving rmGM-CSF had more cells expressing 

CD11c and CD11b (Figure 5.25a). Cells dually expressing CD11c and dectin-1 

or MHC class II had very similar patterns. While still driven by PC burden, at day 

22 post-infection the combination group had more dual positive cells compared to 

the TMP/SMX group despite the drop in PC burden (Figures 5.22 and 5.25b and 

d). Unlike the other markers described here, the cells co-expressing CD11c and 

mannose receptor did not appear to correlate with PC burden (Figure 5.25c). 

Furthermore, these cells did not reflect treatment with rmGM-CSF by increasing 

in number at day 12 post-infection.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 112

 
Figure 5.25 Groups receiving TMP/SMX had reduced numbers of LMs 
expressing activation markers. Mice were infected with PC as neonates (24 to 72 
h after birth). Beginning on day 7 post-infection, mice were treated with either 40 
mg/kg TMP/SMX orally twice daily for 14 days + 10 µl NS daily for 7 days 
(TMP/SMX), 5ng/g i.n. rmGM-CSF daily for 7days (GM-CSF), 40 mg/kg 
TMP/SMX orally twice daily for 14 days and 5ng/g i.n. rmGM-CSF daily for 7days 
(Combo), or 10 µl NS daily for 7 days (Control). Lungs were lavaged on days 12, 
19, 22, and 29 post-infection, and cells were stained with antibodies specific for 
CD11c, CD11b (A), Dectin-1 (B), Mannose receptor (C), and MHC class II 
molecules (D) and analyzed by flow cytometry. Cells were gated for large non-
lymphoid cells by using forward and side light scatter and were gated on CD11c+ 
cells. Data represent the mean ± SD of four to five mice per group and are 
representative of 3 separate experiments. *Total number of cells expressing the 
marker indicated is significantly greater than the control group at the indicated 
time point, p<0.05. +Total number of cells expressing the marker indicated is 
significantly greater than all other groups at the indicated time point, p<0.05.  
 

The same markers were analyzed in the lung digest in order to capture 

both resident macrophages as well as cells that were actively translocating into 

the alveolar spaces. In this case, a similar pattern was observed among all the 

receptors, including mannose receptor (Figures 5.26 and 5.27). Early on, cell 

activation markers were driven by treatment with rmGM-CSF. Upon 

discontinuation of rmGM-CSF, these markers began to more closely correlate 
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with PC burden with TMP/SMX groups having fewer cells expressing CD11c, 

CD11b, dectin-1, MHC class II, or mannose receptor. By day 29 post-infection, a 

significant rebound in cells expressing these markers occurs, likely due to the 

discontinuation of TMP/SMX on day 21 post-infection. Together, these data 

suggest that rmGM-CSF is capable of driving an increase in LM activation; 

however it did not demonstrate an improvement in PC burden beyond that 

produced by TMP/SMX alone. By looking at day 29 post-infection, one can see 

that the PC burden in the combo group remained relatively low compared to the 

TMP/SMX group; this is reflected in the lower number of cells expressing 

activation markers in both the BALF and the lung digest (Figures 5.22-5.27).  
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Figure 5.26 GM-CSF drove an increase and TMP/SMX drove a decrease in 
infiltrating AMs in PC-infected pup mice. Mice were infected with PC as neonates 
(24 to 72 h after birth). Beginning on day 7 post-infection, mice were treated with 
either 40 mg/kg TMP/SMX orally twice daily for 14 days + 10 µl NS daily for 7 
days (TMP/SMX), 5ng/g i.n. rmGM-CSF daily for 7days (GM-CSF), 40 mg/kg 
TMP/SMX orally twice daily for 14 days and 5ng/g i.n. rmGM-CSF daily for 7days 
(Combo), or 10 µl NS daily for 7 days (Control). Whole lungs were collected on 
days 12, 19, 22, and 29 post-infection and processed into a single-cell 
suspension. Cells were stained with antibodies specific for CD11c and analyzed 
by flow cytometry. Cells were gated for large non-lymphoid cells by using forward 
and side light scatter. (A) Data represent the mean ± SD of four to five mice per 
group and are representative of 3 separate experiments.  +p<0.05 compared to 
TMP/SMX and control groups; *p<0.05 compared to control group. (B) Timeline 
depicts the start and discontinuation of treatments. 
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Figure 5.27 GM-CSF drove an increase and TMP/SMX drove a decrease in 
infiltrating and activated AMs in PC-infected pup mice. Mice were infected with 
PC as neonates (24 to 72 h after birth). Beginning on day 7 post-infection, mice 
were treated with either 40 mg/kg TMP/SMX orally twice daily for 14 days + 10 µl 
NS daily for 7 days (TMP/SMX), 5ng/g i.n. rmGM-CSF daily for 7days (GM-CSF), 
40 mg/kg TMP/SMX orally twice daily for 14 days and 5ng/g i.n. rmGM-CSF daily 
for 7 days (Combo), or 10 µl NS daily for 7 days (Control). Whole lungs were 
collected on days 12, 19, 22, and 29 post-infection and processed into a single-
cell suspension. Cells were stained with antibodies specific for CD11c, CD11b 
(A), Dectin-1 (B), Mannose receptor (C), and MHC class II molecules (D) and 
analyzed by flow cytometry. Cells were gated for large non-lymphoid cells by 
using forward and side light scatter and were gated on CD11c+ cells. Data 
represent the mean ± SD of four to five mice per group and are representative of 
3 separate experiments. +p<0.05 compared to TMP/SMX and control groups; 
*p<0.05 compared to control group.  
 
4. rmGM-CSF increases cytokine production in mouse lungs 

Another method by which the activation level of LMs can be assessed is 

through their production of cytokines; therefore, levels within the BALF were 

analyzed for each of the four groups at each timepoint tested. Treatment with 

rmGM-CSF ± TMP/SMX appeared to stimulate the production of TNFα and IL-
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12p70 as well as MCP-1 early on but did not stimulate IL-6 production (Figure 

5.28a-d). rmGM-CSF alone was important early in the experiment (days 12 and 

19) for driving the production of TNFα and MCP-1. These two cytokines may 

have contributed to the increase in activated resident macrophages in the lung 

digest observed at day 22 post-infection and the subsequent decrease in PC 

burden during this same time (Figures 5.22, 5.26-27).   

 
Figure 5.28 GM-CSF drove early TNFα and MCP-1 production in PC-infected 
pup mice. Mice were infected with PC as neonates (24 to 72 h after birth). 
Beginning on day 7 post-infection, mice were treated with either 7µl/g TMP/SMX 
orally twice daily for 14 days + 10 µl NS daily for 7 days (TMP/SMX), 5ng/g i.n. 
rmGM-CSF daily for 7days (GM-CSF), 7 µl/g TMP/SMX orally twice daily for 14 
days and 5ng/g i.n. rmGM-CSF daily for 7days (Combo), or 10 µl NS daily for 7 
days (Control). Lungs were lavaged on days 12, 19, 22, and 29 post-infection 
and analyzed for cytokine production using a BD CBA® kit specific for (A) TNFα, 
(B) IL-12p70, (C) MCP-1, and IL-6 (D). Data represent the mean ± SD of four to 
five mice per group and are representative of 3 separate experiments. (A) 
*p<0.05 compared to TMP/SMX and control groups; (C-D) *p<0.05 compared to 
all other groups at the indicated time points.  
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5. Lymphocyte infiltration was driven by rmGM-CSF and Pneumocystis 
burden 

In addition to looking at the LM response secondary to rmGM-CSF ± 

TMP/SMX, the infiltration and activation of T lymphocytes into the lungs and 

lymph nodes was also analyzed. The influx of activated cells by day 12 post-

infection likely reflects rmGM-CSF treatment, whereas the decrease in these 

cells by day 19 most likely reflects the discontinuation of rmGM-CSF along with 

the decrease in PC burden in the mice receiving TMP/SMX (Figure 5.22 and 

5.29a and c).  Once again, at day 29 post-infection there is a considerable 

rebound in the number of activated lymphocytes infiltrating into the lungs in the 

TMP/SMX group alone compared to the combo group (Figure 5.29a and c). The 

presence of activated T cells in the lymph node reflect the ability of TMP/SMX to 

reduce PC burden as the groups receiving TMP/SMX required less overall T cell 

activation (Figure 5.29b and d). 
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Figure 5.29 GM-CSF drove an increase and TMP/SMX drove a decrease in 
infiltrating AMs in PC-infected pup mice. Mice were infected with PC as neonates 
(24 to 72 h after birth). Beginning on day 7 post-infection, mice were treated with 
either 40 mg/kg TMP/SMX orally twice daily for 14 days + 10 µl NS daily for 7 
days (TMP/SMX), 5ng/g i.n. rmGM-CSF daily for 7days (GM-CSF), 40 mg/kg 
TMP/SMX orally twice daily for 14 days and 5ng/g i.n. rmGM-CSF daily for 7 
days (Combo), or 10 µl NS daily for 7 days (Control). Whole lungs and TBLNs 
were collected on days 12, 19, 22, and 29 post-infection and processed into 
single-cell suspensions. Cells were stained with antibodies specific for CD4 (A-
B), CD8 (C-D), CD44, and CD62L and analyzed by flow cytometry. Cells were 
gated for small non-granular cells by using forward and side light scatter. Data 
represent of the mean ± SD of four to five mice per group and are representative 
of 3 separate experiments. +p<0.05 compared to TMP/SMX and control groups; 
*p<0.05 compared to control group. 
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6. High dose rmGM-CSF reduced Pneumocystis burden in the combination 
group 
 Based on the initial TMP/SMX + rmGM-CSF experiment, a final rmGM-

CSF experiment was designed to evaluate the role of rmGM-CSF at a higher 

dose.  The experimental design was the same as described above except that 

the rmGM-CSF dose was 50ng/g body weight instead of 5ng/g. Two time points 

were analyzed at days 17 and 22 post-infection. As in the previous experiment, 

PC burden was reduced in the TMP/SMX and rmGM-CSF plus TMP/SMX 

groups. The use of a higher dose of rmGM-CSF, however, reduced PC burden 

significantly compared to the TMP/SMX group alone at day 22 post-infection 

(Figure 5.30) 

 
Figure 5.30 PC burden was significantly reduced in the combination group 
compared to TMP/SMX alone. Mice were infected with PC as neonates (24 to 72 
h after birth). Beginning on day 7 post-infection, mice were treated with either 
7µl/g TMP/SMX orally twice daily for 14 days + 10 µl NS daily for 7 days 
(TMP/SMX), 50ng/g i.n. rmGM-CSF daily for 7days (GM-CSF), 7 µl/g TMP/SMX 
orally twice daily for 14 days and 50ng/g i.n. rmGM-CSF daily for 7days (Combo), 
or 10 µl NS daily for 7 days (Control). Whole lungs were collected on days 17 
and 22 post-infection and were processed into single-cell suspensions. Aliquots 
were spun onto glass slides, stained with Diff-Quick®, and enumerated 
microscopically. *p<0.05 compared to control groups at the indicated time points. 
+p<0.05 compared to TMP/SMX and control groups at the indicated time point. 
Data represent the mean ± SD of four to five mice per group. 
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7. Lung macrophage activation markers with high dose rmGM-CSF 
The same macrophage activation markers were evaluated as previously 

described, except that instead of looking at mannose receptor, TLR2 and TLR4 

were included instead. TLR2 has recently been shown to be a receptor for PC 

antigens and TLR4 stimulation, although not previously shown to interact with 

PC, is a known inducer of TNFα (Figure 5.31) (44, 246-249). The increased dose 

of rmGM-CSF did not alter the number of cells expressing CD11c, CD11b, 

dectin-1, or MHC class II compared to the lower treatment dose (data not 

shown). The number of cells expressing TLR2 in the lung digest at day 22 

resembles the pattern seen with LM activation markers during the initial rmGM-

CSF/TMP/SMX experiment in which the cells followed the burden of PC (Figure 

5.31d). No additional trends in cells expressing TLR2 or TLR4 appeared to 

correspond with mGM-CSF treatment or PC burden (Figure 5.31 a-c).   
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Figure 5.31 TMP/SMX drove a reduction in the number of cells expressing 
TLR2. Mice were infected with PC as neonates (24 to 72 h after birth). Beginning 
on day 7 post-infection, mice were treated with either 7µl/g TMP/SMX orally twice 
daily for 14 days + 10 µl NS daily for 7 days (TMP/SMX), 50ng/g i.n. rmGM-CSF 
daily for 7days (GM-CSF), 7 µl/g TMP/SMX orally twice daily for 14 days and 
50ng/g i.n. rmGM-CSF daily for 7days (Combo), or 10 µl NS daily for 7 days 
(Control). Whole lungs and lung lavaged was collected on days 17 and 22 post-
infection and were processed into single-cell suspensions. Cells were stained 
with antibodies specific for CD11c, TLR4 (A-B), and TLR2 (C-D). Cells were 
gated for large non-lymphocytes using forward and side scatter and were gated 
on CD11c+ cells. Data represent the mean ± SD of four to five mice per group. 
 

The infiltration of activated CD4+ and CD8+ T cells in the lung digest 

appeared to be primarily driven by rmGM-CSF treatment with cell numbers being 

greatest at day 17 post-infection in the groups receiving rmGM-CSF (Figure 5.32 

a-b). The levels of TNFα, IL-12p70, MCP-1, and IL-6 produced in the lung 

subsequent treatment with 50ng/g of rmGM-CSF were comparable to those 

produced following the lower dose of rmGM-CSF (data not shown). Taken 

together, these data suggest that the combination of TMP/SMX plus rmGM-CSF 

is more efficient at reducing PC burden and keeping the burden low compared to 
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TMP/SMX alone in pup PC-infected pup mice. The addition of rmGM-CSF to the 

treatment of this opportunistic infection appears to cooperate with TMP/SMX by 

recruiting and activating macrophages within the lung.  

 
Figure 5.32 GM-CSF drove an early increase and late reduction in T cell 
infiltration into PC-infected pup lungs. Mice were infected with PC as neonates 
(24 to 72 h after birth). Beginning on day 7 post-infection, mice were treated with 
either 7µl/g TMP/SMX orally twice daily for 14 days + 10 µl NS daily for 7 days 
(TMP/SMX), 50ng/g i.n. rmGM-CSF daily for 7days (GM-CSF), 7 µl/g TMP/SMX 
orally twice daily for 14 days and 50ng/g i.n. rmGM-CSF daily for 7days (Combo), 
or 10 µl NS daily for 7 days (Control). Whole lungs were collected on days 17 
and 22 post-infection and were processed into single-cell suspensions. Cells 
were stained with antibodies specific for CD44, CD4 (A), and CD8 (B). Cells were 
gated for small non-granulocytes using forward and side scatter. Data represent 
the mean ± SD of four to five mice per group. 
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CHAPTER 6: Human neonatal lung macrophages have a poor activation 
profile compared to adults 

 

Infants, predominantly those that are immunocompromised, appear to be 

particularly susceptible to primary PC infection. It is believed that the higher 

incidence of PC as well as other pulmonary infections among infants is likely due 

to an immature immune system as the neonatal lung environment is deficient 

immunologically in preterm as well as term infants (7, 8). Decreased phagocytic 

capacity of monocytes and macrophages in newborns may contribute to this 

increased risk of infection from inhaled pathogens (7, 8).  To evaluate the 

response of human neonatal versus adult macrophages against exogenous 

stimuli and extend the findings derived from our animal studies, a series of 

experiments were performed using human-derived macrophages.  

 

1. LPS stimulates less cytokine production in neonatal compared to adult 
lung macrophages   

Our studies in mouse models have taught us that pup LMs are less 

efficient than adult LMs in mounting a response against PC, as well as other 

stimuli such as LPS. To determine if human LMs respond similarly to exogenous 

stimuli, in vitro experiments were performed to evaluate the ability of neonatal 

LMs to produce cytokine compared to adult LMs.  Peripheral blood was collected 

from healthy adult volunteers. The monocytes were isolated, cultured, and 

allowed to differentiate into macrophages. At the same time, suctioned sputum 

samples from intubated neonates were collected and the macrophages were 

isolated. The adult peripheral blood monocyte-derived macrophages and the 

isolated neonatal LMs were aliquoted into 96-well tissue culture plates and 

stimulated with LPS for 24 hours to determine if neonatal and adult cells would 

produce similar levels of cytokine. Cytokine production among the adult 

macrophages was significantly greater than that produced by neonatal LMs 

(Figure 6.1). The production of TNFα, IL-10, IL-6, and IL-1 was significantly 

greater among adult macrophages compared to neonatal LMs following 24 hours 
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of LPS stimulation (Figure 6.1a-d). Interestingly, IL-8 production was equivalent 

between adult and neonatal cells (Figure 6.1e). This data suggests that neonatal 

cells do not produce cytokine as efficiently as adult cells despite exposure to a 

strong stimulus such as LPS. The discordance between IL-8 production and the 

other cytokines analyzed may indicate that alternate receptors are present which 

recognizing LPS on neonatal LMs resulting in adequate IL-8 production while 

other cytokines are reduced compared to adult cells. It is possible that the 

neonatal LPS receptors which ultimately lead to the production of TNFα, IL-10, 

IL-6, and IL-1 are deficient in either their expression or function, whereas the LPS 

receptor responsible for IL-8 production is fully expressed and functional 

compared to that of an adult.  
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Figure 6.1 Human adult macrophages produced more cytokine than 

neonatal LMs stimulated with LPS. Adult peripheral blood monocyte-derived 
macrophages and neonatal LMs were isolated and cultured in a 96-well tissue 
culture plate at 2 x105 cells per well in 200µl of human-specific culture media. 
After 24 hours, media was replaced with fresh media containing 100ng/ml of LPS 
(LPS) or media alone (Con). BD CBA® kit was used to determine cytokine 
concentrations after 24 hours of stimulation. *p<0.05 compared to respective 
neonate or adult control groups. +p<0.05 compared to neonatal LPS and adult 
control groups. Data represent the mean ± SD of three to four wells per group 
and are representative of 3 separate experiments. 
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Figure 6.2 Human adult LMs produced more cytokine than neonatal LMs 
stimulated with LPS. Adult and neonatal LMs were isolated and cultured in a 96-
well tissue culture plate at 2 x105 cells per well in 200µl of human-specific culture 
media. After 24 hours, media was replaced with fresh media containing 100ng/ml 
of LPS (LPS) or media alone (Con). BD CBA® kit was used to determine cytokine 
concentrations after 24 hours of stimulation. *p<0.05 compared to respective 
neonate or adult control groups. +p<0.05 compared to neonatal LPS and adult 
control groups. Data represent the mean ± SD of three to four wells per group 
and are representative of 3 separate experiments. 
 

The expression of surface molecules found on macrophages can vary 

depending on the tissues in which they reside. It is possible; therefore, that 

cytokine production may also vary among tissue-specific macrophages. Thus, 

this experiment was repeated using adult macrophages isolated from bronchiolar 

lavage samples and neonatal suctioned sputum samples. As in the previous 
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experiment, the production of TNFα and IL-6 were significantly greater among 

the adult cells stimulated with LPS compared to the neonatal samples (Figure 

6.2a and c). While IL-1 and IL-10 maintained similar patterns, there were no 

significant differences between the two groups (Figure 6.2b and d). The 

production of IL-8 was significantly greater in adult compared to the neonatal 

LMs in both the stimulated and unstimulated cells, demonstrating that adult LMs 

constitutively produce IL-8 in the absence of exogenous stimuli (Figure 6.2e). 

Furthermore, this data suggests that PRRs on human adult LMs vary compared 

to adult peripheral blood monocyte-derived macrophages. Overall, these data 

show that human neonatal lung macrophages are less responsive to LPS than 

adult lung macrophages. This finding may indicate a deficient expression of the 

LPS receptor, TLR4, or either of its two co-molecules, CD14 or MD-2. 

Alternatively, human neonatal LMs may be deficient in their intracellular signaling 

pathway downstream from TLR4.   

 

2. Neonatal lung macrophages respond similarly to adult lung 
macrophages when stimulated with Zymosan 
 To determine if human neonatal LMs were capable of responding to an 

antigenic stimuli that targeted PRRs different than those targeted by LPS, 

zymosan was used. Zymosan is known to bind to dectin-1, mannose receptor, 

and TLR2, receptors which are also thought to ligate PC antigenic components. 

These experiments were performed using macrophages from both human 

neonatal and adult sputum specimens. Culture supernatants were collected after 

12 and 24 hours of stimulation with zymosan or media alone. At both 12 and 24 

hours post-stimulation, TNFα, IL-6, and IL-10 production was significantly 

increased among neonatal and adult LMs compared to their control cells (Figure 

6.3a-f). The levels of cytokine produced by neonatal versus adult LMs varied 

depending on the cytokine. TNFα and IL-8 production was greater among adult 

LMs (Figure 6.3a-b, g-h), however IL-6 and IL-10 was greater among neonatal 

LMs (Figure 6.3c-f). No differences in IL-1 production were observed between 

groups (data not shown). The higher IL-10 levels seen in neonates compared to 
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adults following zymosan stimulation coincide with what we saw in mice and may 

be part of a protective mechanism specific for developing neonatal lung 

macrophages. This zymosan data is in contrast to stimulation with LPS in which 

adult LMs produced significantly greater levels of all cytokines tested (Figure 

6.2). The variable response to zymosan suggests that neonatal LMs are more 

responsive to stimuli that targets both dectin-1 and TLR2.   

 

 

 

 

 

 



 129

Figure 6.3 Zymosan stimulated comparable levels of cytokine production in 
neonatal LMs compared to adult LMs. Adult and neonatal LMs were isolated and 
cultured in a 96-well tissue culture plate at 2 x105 cells per well in 200µl of 
human-specific culture media. After 24 hours, media was replaced with fresh 
media containing 250 µg/ml of zymosan (zym) or media alone (Con). BD CBA® 
kit was used to determine cytokine concentrations after 12 and 24 hours of 
stimulation. The first column represents data collected after 12 hours of 
stimulation and the second column represents data collected after 24 hours of 
stimulation. *p<0.05 compared to respective neonate or adult control groups. 
+p<0.05 compared to neonatal LPS and adult control groups. Data represent the 
mean ± SD of three to four wells per group and one to two neonate or adult 
pooled samples per well and are representative of 3 separate experiments. 
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Figure 6.4 PC did not stimulate cytokine production in neonatal LMs. Adult and 
neonatal LMs were isolated and cultured in a 96-well tissue culture plate at 2 
x105 cells per well in 200µl of human-specific culture media. After 24 hours, 
media was replaced with fresh media containing PC at a concentration of 50 PC 
organisms to every 1 macrophage (1:50) or media alone (Con). BD CBA® kit was 
used to determine cytokine concentrations after 12 and 24 hours of stimulation. 
The first column represents data collected after 12 hours of stimulation and the 
second column represents data collected after 24 hours of stimulation. *p<0.05 
compared to respective PC-stimulated adult LMs. Data represent the mean ± SD 
of three to four wells per group and one to two neonate or adult pooled samples 
per well and are representative of 3 separate experiments. 
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3. Pneumocystis did not stimulate neonatal lung macrophage cytokine 
production above background levels 
 We have demonstrated that human neonatal LMs respond poorly to LPS 

compared to adult LMs, but respond similarly to zymosan. Since PC contains 

some of the same antigen motifs as zymosan, namely beta-glucan and mannose, 

we next stimulated with PC to determine if cytokine production was similar to that 

seen with zymosan. Overall, cytokine production from neonatal LMs surpassed 

that of adult LMs in both the PC-stimulated and control cells (Figure 6.4a-h). 

However, PC did not provide a strong enough stimulus for the neonatal LMs to 

overcome their own background levels of cytokine production. Adult cells 

stimulated with exogenous PC responded with increases in TNFα, IL-6, IL-10, 

and IL-8 (Figure 6.4a-h) production relative to their control cells; however these 

differences did not reach statistical significance. The high background level of 

cytokines produced by the neonatal LMs may be due to the mechanical 

ventilation that these neonates were receiving at the time the lavage samples 

were retrieved and make this data somewhat difficult to interpret. Overall, 

however, thse data demonstrate that human adult cells are capable of stimulation 

with PC, but neonatal cells are not.  

 

4. rhGM-CSF did not increase cytokine production in Pneumocystis-
stimulated neontal lung macrophages 
 GM-CSF has been shown to enhance the clearance and improve 

outcomes of many different pulmonary infections (24), (25), (26, 27), (28), 

including PC (29), presumably though its ability to activate macrophages for 

enhanced activity against invading pathogens (23) (24). Based on this premise, 

we hypothesized that the addition of rhGM-CSF to PC-stimulated neonatal LMs 

would enhance the cellular response and increase cytokine production. To test 

this hypothesis, we repeated the experiments described above comparing human 

neonatal and adult LMs with the addition of rhGM-CSF to PC-stimulated cells.  

Overall, the addition of rhGM-CSF did not increase the level of cytokine 

production among neonatal or adult LMs (Figure 6.5a-h). Interestingly, after 24 
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hours of stimulation rhGM-CSF alone, neonatal cells appeared to produce more 

TNFα  than PC alone or the combination of rhGM-CSF plus PC suggesting that 

PC may cause some cytokine inhibition in neonatal cells (Figure 6.5b). 

Conversely, the combination of rhGM-CSF plus PC in adult cells induced slightly 

more TNFα compared to PC alone. Overall, these data suggest that the addition 

of rhGM-CSF to PC does not stimulate an increase in cytokine production among 

human neonatal LMs compared to PC alone.  
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Figure 6.5 rhGM-CSF increase TNFα production in neonatal LMs after 24 hours. 
Adult and neonatal LMs were isolated and cultured in a 96-well tissue culture 
plate at 2 x105 cells per well in 200µl of human-specific culture media. After 24 
hours, media was replaced with fresh media containing 1:50 of PC (PC), 
100ng/ml or rhGM-CSF (GM),  1:50 of PC plus 100ng/ml of rhGM-CSF (PC/GM) 
or media alone (Con). BD CBA® kit was used to determine cytokine 
concentrations after 12 and 24 hours of stimulation. The first column represents 
data collected after 12 hours of stimulation and the second column represents 
data collected after 24 hours of stimulation. *p<0.05 compared to respective adult 
LM groups. + p<0.05 compared to neonatal PC and PC/GM and adult GM 
groups. Data represent the mean ± SD of three to four wells per group and one 
to two neonate or adult pooled samples per well and are representative of 3 
separate experiments. 
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5. rhGM-CSF improves neonatal lung macrophage phagocytosis of 
Pneumocystis 
 
 We have previously shown that rmGM-CSF reduces PC burden in pup 

lungs without an associated increase in LM cytokine production (Figure 5.18). 

We hypothesized then, that human neonatal LMs were capable of improved 

phagocytosis, despite the lack of cytokine production, through exogenous rhGM-

CSF stimulation. Adult and neonatal LMs were co-cultured with live PC 

organisms at a ratio of 10 PC to every 1 LM (1:10) with or without rhGM-CSF for 

25 minutes at 37ºC. Following several washes, an aliquot from each group was 

spun onto glass slides and stained with Diff-Quick®. Phagocytosis was quantified 

using oil-immersion microscopy (1000x) by examining at least 200 cells and 

counting the number of internalized PC organisms in each one. A representative 

slide can be seen in Figure 6.6. The amount of phagocytosis was calculated 

according to the following formula: phagocytic index (PI) = (percent macrophages 

containing at least 1 organism) x (mean number of PC per positive cell)(235-

237). Treatment of the neonatal LMs co-cultured with PC increased their PI to the 

level of adult LMs (Figure 6.7). Only a minimal increase in the PI was observed 

with the adult rhGM-CSF-treated LMs, likely due to the already high level of 

phagocytosis occurring within these cells. Overall, these data suggest that 

treatment of neonatal LMs with rhGM-CSF is capable of stimulating phagocytosis 

without a concurrent increase in cytokine production.  
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Figure 6.6 Human LMs are capable of phagocytosing murine-specific PC. 
Human LMs were co-cultured with Pneumocystis carinii f. sp. muris at a ratio of 1 
macrophages:10 PC organisms for 25 minutes. Aliquots were spun onto glass 
slides and PI was determined: PI = (percent macrophages containing at least 1 
organism) x (mean number of PC per positive cell); 200 cells per slide were 
counted. Figure is representative of one slide for each human neonate (A) and 
adult (B) lavage sample collected; 1000x objective. Arrows indicate 
phagocytosed PC organisms.    

 
Figure 6.7 rhGM-CSF improves human neonatal LM phagocytosis of PC 
organisms. Adult and neonatal LMs were co-cultured with live PC organisms 
(1:10) with or without rhGM-CSF for 25 minutes at 37ºC. Aliquots from each 
group were spun onto glass slides and stained with Diff-Quick®. Phagocytosis 
was quantified using oil-immersion microscopy (1000x) by examining at least 200 
cells and counting the number of internalized PC organisms in each one. The 
phagocytic index (PI) was calculated according to the following formula: PI = 
(percent macrophages containing at least 1 organism) x (mean number of PC per 
positive cell). *p<0.05 compared to the Neon PC+/GM- group. 
 

Copyright © Kerry McGarr Empey 2007 
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CHAPTER 7: Discussion 
 

A. Results Summary 
  

The goal of this research was to determine if stimulation of LMs from 

neonates with exogenous stimuli would improve activation of these cells and 

expedite the clearance of PC. We began our investigations using a mouse model 

and an in vitro culture system. The number of cells expressing many surface 

molecules known to be upregulated during infection, including CD11c, CD11b, 

MHC class II, CD40, CD80, CCR2, and CCR5 were all shown to be delayed in 

pup compared to adult LMs infected with PC. The infiltration of T lymphocytes 

into the lungs of PC-infected pups as well as cytokine production was also shown 

to be delayed compared to adults.  

We have demonstrated that IFNγ alone is not sufficient to expedite 

clearance of PC organisms in pup mice. We proceeded to show that pup LMs are 

capable of responding to the exogenous stimuli, LPS and are as efficient as adult 

LMs at responding to zymosan. Furthermore, we demonstrated that pup mice 

treated with aerosolized HKEC were able to clear PC infection faster than 

untreated mice. This increased clearance correlated with CD4 and CD8 T cell 

infiltration, LM activation and LM cytokine production. Using this HKEC model we 

also reiterated the importance of the macrophage-T-cell interactions, but 

demonstrated that in the absence of T cells, pup LMs can be stimulated 

exogenously to improve phagocytosis.  

We next explored the effect of GM-CSF on pup LMs and the clearance of 

PC. We employed the use of GM-CSF specifically in these experiments due to its 

commercial availability and because it has been proven safe and effective in the 

immunocompromised patient population at improving macrophage function (23, 

24) as well as improving outcomes in pulmonary infections (24-28), including PC 

(29). In vitro stimulation of PC-exposed pup LMs with rmGM-CSF resulted in 

increased cytokine production relative to their PC-exposed, untreated cells; for 

TNFα, this increase was even greater than PC-exposed, rmGM-CSF-treated 
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adult LMs. We transitioned our GM-CSF experiments in vivo first with i.p 

administration of rmGM-CSF followed by i.n. administration at medium and high 

doses. Overall, treatment with rmGM-CSF resulted in increased pup LM 

activation and T cell infiltration as well as a slight reduction in PC burden.  

Combining the increasing data supporting the use of combination therapy 

with the rationale of using immunomodulatory agents in infectious diseases we 

next explored the use of TMP/SMX together with GM-CSF for the treatment of 

neonatal PC infection in mice. We discovered that co-treatment with rmGM-CSF 

and TMP/SMX significantly reduced PC burden in pup lungs. We determined that 

rmGM-CSF acted early to increase LM activation, cytokine production, and T cell 

infiltration but that the subsequent reduction in PC burden led to a reduction in 

LM activation, cytokine production, and T cell infiltration. We further 

demonstrated that pup mice receiving combination therapy maintained a lower 

PC burden after therapy was stopped unlike the mice receiving TMP/SMX alone 

which had a rebound in PC burden following discontinuation of TMP/SMX.  

Lastly, we extended our investigations to the human population by 

collecting macrophages from human adult and neonatal lung aspirates. We 

discovered that neonatal LMs were capable of exogenous stimulation with LPS 

but their cytokine production was not to the extent that adult LMs achieved. 

Stimulation with zymosan, however, a fungal cell wall preparation that binds to 

different PRRs than LPS, resulted in cytokine production in neonatal LMs 

equivalent to those in adult LMs and in some instances, even greater. 

Alternatively, incubation with PC stimulated adult but not neonatal LM cytokine 

production; this data was complicated by a high baseline cytokine production 

among neonatal LMs. The addition of rhGM-CSF did nothing to improve the 

cytokine profile in PC-infected neonatal LMs, but once again was complicated by 

high baseline levels of cytokine production in the neonatal cells. Treatment of 

neonatal LMs co-cultured with PC organisms led to an increase in the phagocytic 

index reaching the level of adult LMs. Overall, we learned that treatment of 

human neonatal LMs with rhGM-CSF improves the phagocytic capacity against 

PC organisms without a concomitant increase in cytokine production.   



 138

B. Lung Macropahge Activation is Delayed in Pneumocystis-infected Pup 
Compared to Adult Mice  
 
1. Activation markers 
 The finding that adult LMs express activation markers such as CD11b, 

MHC class II, CD40, and CD80, approximately 2 weeks earlier than pup LMs 

suggests that there is also at least a 2 week delay in the function that these 

molecules provide. CD11b is the α-subunit of CD11b/CD18 (Mac-1) belonging to 

the β2 subfamily of integrins. Functionally, Mac-1 promotes endothelium 

adhesion, phagocytosis, and oxidative burst (258). Its expression on 

macrophages is increased during states of activation making it a useful 

monitoring tool for assessing activation status (258, 259). Throughout this 

research we define alveolar and lung macrophages as being CD11c+. We further 

describe the activated form of these cells in pups as being CD11c+/CD11b+. 

CD11b is a β-glucan receptor that is capable of recognizing the β-glucan 

component of fungal cell walls, including PC. Its upregulation during PC infection 

may thus, contribute to clearance of the organism.  We acknowledge that a small 

population of these cells is likely dendritic cells, however, we are confident that 

the vast majority are macrophages and the changes observed following 

immunomodulatory therapy represents a change in macrophage rather than 

dendritic cell phenotype. Tissue dendritic cells sample the alveolar spaces for 

antigen by protruding their dendrites into these spaces; they generally do not 

reside in the alveolar spaces. This is in contrast to AMs which reside in the 

alveolar spaces and act as a first line of defense against inhaled pathogens. 

Based on this information, we have assumed that CD11c+ cells derived from 

lung lavaged fluid are almost entirely AMs. Although dendritic cells do reside in 

the lung tissue, the concentration of lung macrophages far outways that of 

dendritic cells (260). Subsequently, it is assumed that the majority of CD11c+ 

cells derived from the lung tissue are macrophages. Thus, phenotypic differences 

observed in tissue-derived CD11c+ cells following immunomodulation represent 

changes in macrophages rather than dendritic cells.  
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FcγR is an important mediator of phagocytosis of IgG-coated antigens 

(261). Its role in PC infection has not been previously described. We have shown 

here that an increase in the number of LMs expressing FcγR is delayed 

approximately 2 weeks compared to adult LMs. MHC class II, CD40, and CD80 

are all involved with the macrophage:T cell interaction. The delay in the 

expression of these molecules likely contributed to the delayed T cell activation 

and may further lead to a delay in initiation of the adaptive immune response. 

Wright and colleagues have demonstrated the importance if MCP-1 and MIP-1 in 

the focal targeting of inflammatory cell recruitment to sites of PC infection (262). 

Here we have demonstrated that there is a delay in the number of cells 

expressing the receptors for these chemokines (CCR2 and CCR5). Taken 

together, the delayed expression of these functional activation markers on LMs 

likely all contribute to the delayed PC clearance observed in pup mice compared 

to adults.   

When comparing pup and adult markers of activation, it is important to 

consider the total number of cells as this number is used to determine the total 

number of cells expressing the marker of interest. In most experiments, percent 

change from control was used to account for large differences in total cell 

numbers; however, in some experiments total cell numbers were used. Figure 

7.1 demonstrates the differences observed in total cell numbers derived from 

lavaged fluid in pups versus adults over time.  
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Figure 7.1 Total cells in pup versus adult Lungs. The total number of cells 
enumerated in the lavaged fluid taken from pups and adults trends toward being 
greater in PC-infected adults compared to pups early post-infection. No 
statistically significant differences were observed overall. Pup and adult mice 
were lavaged at the indicated time points and cells were counted using a 
hemocytometer. Data represent the means ± SD for four to five mice per group.  
  

2. T lymphocyte infiltration 
 The infiltration of CD4 and CD8 T cells into PC-infected pup lungs is 

delayed at least 2 weeks compared to adults. This data supports what has 

previously been shown in our lab (9, 10, 234). For both pups and adults, the 

infiltration of T cells precedes the onset of PC clearance by about 1 week. One 

reason for this delayed T cell infiltration could be due to a failure of neonatal lung 

endothelial cells to up-regulate adhesion molecule pairs allowing for lymphocyte 

extravasation into the lung. It has previously been shown in neonatal lungs that 

ICAM-1 and VCAM-1 fail to up-regulate in response to PC infection (73). Without 

this up-regulation, their integrin counterparts (LFA-1 and VLA-4, respectively) 

expressed on lymphocytes fail to bind and no extravasation occurs. Alternatively, 

we have also shown that there is a delay in the upregulation of pup LMs 

expressing MHC class II molecules following PC infection (Figure 3.5). Without 

the presentation of antigen in the context of these MHC class II molecules, T 

cells fail to recognize antigen and thus their activation would be delayed. 

Although macrophages are considered to be professional antigen presenting 

cells, their primary function is phagocytic killing and cytokine production during 

pathogen invasion. Dendritic cells (DCs) are the primary antigen presenting cells 
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in the lungs therefore; we must consider that the delayed T cell infiltration may be 

related to deficient antigen presentation function in neonatal DCs. Our lab has 

previously demonstrated that there is a delay in DCs expressing MHC class II 

molecules in PC-infected pup mice compared to adults (239). Thus deficient 

antigen presentation in both LMs and DCs likely contributes to the delayed 

infiltration of activated T cells into PC-infected pup lungs.  

 

3. Cytokine production 
 The developing neonatal lung environment is a complex network of 

immune stimulating and inhibiting mechanisms. They work to protect the lung 

from pathogenic invasion while simultaneously trying to prevent damage caused 

by host inflammation. Whenever a single cell is removed from this regulatory 

environment, caution must be taken in interpreting the results, as they do not 

account for the effects of the immune environment from which they came. This is 

true for our in vitro culture stimulation experiments in which pup or adult LMs are 

stimulated ex vivo.  There are also benefits to this in vitro culture system. We 

were able to identify cytokine production specific to the pup or adult LM being 

stimulated and did not have to worry about possible unknown antigenic 

stimulation as would have been the case in an in vivo system.  

 In evaluating cytokine production from pup and adult LMs, we varied time 

and antigenic stimuli. We determined that in culture, pup LM TNFα and IL-6 

production following PC stimulation is both delayed and lower than that of adult 

LMs. The poor response seen in the pup cells may be multifactorial. It has been 

proposed that TLR2 mediates the LM response to PC in mice (44) and that TLR2 

co-localizes with dectin-1 to initiate macrophages’ pro-inflammatory response 

(263). We have shown that the expression of both TLR2 and dectin-1 are present 

in equal amounts on both pup and adult LMs, however it is possible that the co-

localization of these molecules are impaired on pup cells following stimulation 

with PC organisms. The timing and extent of release for individual cytokines is 

guided by factors other than TLR2 and dectin-1 expression. Tachado and 

colleagues demonstrated that co-expression of mannose receptor (MR) and 
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TLR2 are required for PC-mediated IL-8 release (79). Although we have also 

demonstrated that MR is equally expressed on both pup and adult LMs, it is 

possible that other TLR signaling intermediates are involved with this delayed 

cytokine response observed in pup compared to adult LMs stimulated with PC. 

TLR2 ligand recognition involves cooperation with TLR1 or TLR6, which confer 

discrimination among different microbial components, specifically, triacyl and 

diacyl lipopeptides respectively (248, 264, 265). It is possible that there is a 

delayed or impaired expression of either TLR1 or TLR6 on pup LMs. In addition 

to potential differences in PRRs, there may also be differences in signaling 

intermediates or transcriptions factors involved in TLR-mediated cytokine 

activation. We have shown that NFkB nuclear translocation was minmal, but 

similar in both pup and adult LMs stimulated with PC. It is possible however, that 

pup LMs may generate cytokine production through activation of an alternate 

transcription factor such as activation protein-1 (AP-1), NF-IL6, or a member of 

the IRF family of transcription factors (248). Further research to determine if pup 

LMs stimulated with PC initiate a MyD-88-independent pathway or transcription 

factors other than NFkB may help explain the differential cytokine production 

between pup and adult LMs.  

MCP-1 production was produced very early following PC stimulation in 

both pup and adult LMs with no difference in concentrations observed. Although 

TNFα, IL-6, and MCP-1 are all known gene productions of the transcription factor 

NFkB (266), it is unknown whether NFkB plays a significant role in the differential 

production of NFkB-dependent cytokines or in coordinating the production of 

these cytokines. Furthermore, it is thought that both the timing and the relative 

amounts of NFkB-dependent cytokines produced following stimulation are likely 

controlled by the interaction of NFkB with other transcription factors as well as 

NFkB-independent factors (266). Thus, it appears that MCP-1 production is 

controlled by factors other than those involved in TNFα and IL-6 production in 

PC-stimulated mice.  
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C. Exogenous Immunomodulation can Improve Lung Macrophage Function 
and Pneumocystis Clearance in Pup Mice 
 
1. Inteferon gamma 

 It has previously been demonstrated that IFNγ and TNFα are important for 

the clearance of PC and that the delayed clearance of PC in pup mice 

correspond with a delay in the up-regulation of these two cytokines (9, 10, 234). 

Furthermore, it has been shown that SCID mice made to specifically overexpress 

IFNγ in the lungs were able to stimulate clearance of the organism (243, 244). It 

is curious, then, why treatment of neonatal mice with i.n. IFNγ demonstrated no 

increased activation, cellular infiltration, or PC clearance. The most likely 

explanation is that the addition of just one of the cytokines, IFNγ or TNFα alone, 

does not increase susceptibility to PC infection, but rather both cytokines 

together are important and necessary for clearance of the organism (267). IFNγ 

acts on macrophages by sensitizing them to a second stimulatory signal. This 

second signal is often TNFα, thus without also increasing the amount of TNFα 

the microbicidal effect of IFNγ was likely lost. Other stimulatory signals, such as 

certain pathogenic organisms, are also able to provide this second signal. We 

have shown here that PC is unable to provide this second stimulatory signal and 

that the combination of IFNγ plus PC is insufficient for macrophage activation. 

This finding further demonstrates the inability of neonatal LMs to respond to PC 

organisms despite the added stimulus of IFNγ.  

 

2. LPS/Heat-killed E. coli 
 My initial in vitro cytokine data demonstrated that LPS significantly 

increases cytokine production in pup macrophages compared to either control or 

PC-stimulated cells, but overall, adult cells produced more cytokines than pup 

cells following stimulation with LPS and PC. In general, PC appears to be a 

relatively weak stimulus for both pup and adult LMs. There are many variables 

involved in the type and level of cytokines produced following antigenic 

stimulation in LMs, including the offending pathogen and the lung environment 
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itself. By isolating AMs from pups and adults and stimulating them in culture in a 

controlled environment we were able to eliminate the effects of the surrounding 

lung environment. Differences in cytokine production between pup and adult 

LMs, therefore, are most likely the result of differences in receptor expression or 

intracellular signaling. There is growing evidence suggesting that dectin-1 (β-

glucan receptor) is an important receptor for the clearance of PC (61, 65, 268). 

The β-glucans are important cell wall components of fungi and yeast cell walls 

(269), including PC (65). A recent study done in dectin-1 knock-out mice 

demonstrated that dectin-1 is critical for the production of reactive oxygen 

species (ROS) in macrophages but is not necessary for normal T cell responses 

(268). Furthermore, this study demonstrated that dectin-1 was required for PC 

clearance in immunocompromised mice. Since β-glucans are found on PC 

organisms (44, 65), we hypothesized that pup mice did not express dectin-1 as 

well as adults. We discovered, however that dectin-1 was highly expressed on 

both pup and adult mice, ruling out poor dectin-1 expression as the possible 

cause of poor PC clearance in pup mice. It is possible that although dectin-1 

expression is adequate, its function or downstream signaling may be deficient 

resulting in a poor cytokine response following the recognition of β-glucan 

particules.  

The toll-like family of receptors is known to be important in mediating the 

immune response to invading pathogens (248). Recently, TLR2 has been shown 

to contribute to the innate immune response to PC (44, 61). Furthermore, TLR2 

has been shown to collaborate with dectin-1 in mediating the macrophage 

response to β-glucan (44, 61, 263), which is a major component of the PC cell 

wall. This collaboration has been shown to stimulate macrophages to increase 

the production of pro-inflammatory cytokines (60, 61). We demonstrated that pup 

mice express TLR2 at the same level as adult mice, suggesting that the delayed 

PC clearance in pup mice may be due to a delayed expression of TLR1 or TLR6 

or a inefficient co-localization with TLR2. The decreased expression of TLR4 in 

pup versus adult mice, however, may contribute to the reduced cytokine 

production in pup mice stimulated with LPS. To initiate the intracellular signaling 
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cascade, TLR4 must first form a complex with LPS-bound CD14 and MD-2 (66, 

270, 271). Therefore, a deficiency in expression of CD14 or MD-2 or impaired co-

localization could also cause a reduction in cytokine production following LPS 

stimulation.   

Recently, Sadeghi and colleagues demonstrated similar findings in human 

newborns compared to adults (272). They showed that TLR4 expression and 

cytokine secretion following LPS stimulation increases with gestational age, but 

TLR2 levels did not differ between age groups. Alternatively, they found that 

MyD88 levels were lower and p38 and ERK1/2 was impaired in newborns 

compared to adults following stimulation with TLR-specific ligands. They also 

showed that IL-1β, IL-6, and IL-8 cytokine production was significantly reduced 

(P<0.001) compared to adults. MyD88 together with p38 and ERK represent 2 

parallel intracellular signaling cascades that are initiated upon TLR ligation and 

ultimately cytokine production (273, 274). Impairment in both of these signaling 

systems would significantly contribute to the impaired cytokine production 

observed in pups/neonates compared to adults.  

One transcription factor ultimately stimulated to generate many pro-

inflammatory cytokine genes is NFkB. In our mouse model we showed that NFkB 

translocation in PC-stimulated adult mice was significantly greater than 

unstimulated adult mice but that PC stimulation did not effect NFkB nuclear 

translocation in pup mice. Alternatively, LPS-stimulation significantly increased 

the nuclear translocation of NFkB in adult cells compared to both the adult 

control cells as well as LPS-stimulated pup cells. Data previously generated in 

our lab (unpublished; Brown and Qureshi) demonstrates that PC-stimulation 

induces significantly more NFkB nuclear translocation compared to pup cells in 

mice (Figure 7.1). Although my data demonstrated an increase in NFkB nuclear 

translocation in PC-stimulated adult LMs, my data did not demonstrate a 

significant increase over PC-stimulated pup LMs. The difference between these 

two pieces of data can best be interpreted by understanding the differences 

between how each of these studies was conducted. The experiment performed 

by Brown and Qureshi use whole lungs compared to my experiments which use 
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specifically LMs. It is possible then, that NFkB expression in the nucleus of PC-

stimulated adult LMs may be less pronounced than in other cells found in the 

lung tissue such as bronchial epithelial cells.  Additionally, the eariest time point 

analyzed by Brown and Qureshi was at 24 hours in contrast to my experiment 

which analyzed NFkB translocation after 1 hour of PC-stimulation. The longer 

exposure time coupled with the inclusion of other lung cell types, such as lung 

epithelial cells, may contribute to the discordant findings in my in vitro data 

compared to Brown and Qureshi’s in vivo NFkB data. It is also possible that cells 

removed from their lung environment respond to stimuli differently then they 

would otherwise. It is possible that LM cytokine production occurs via an 

alternative pathway (ex. MyD-88-independent) or via alternative transcription 

factors (ex AP-1) when removed from its natural lung environment and thus 

differences in NFkB were not detected in vitro.  

 
Figure 7.2 PC-infected adults express significantly more NFkB compared to PC-
infected pup mice. (Unpublished data; Brown and Qureshi) Pup mice were 
infected with 1x106 PC at 24-72 hours old and adult mice were infected with 
1x107 PC as adults. Whole lungs were collected at the indicated days post-
infection and nuclear extracts were isolated. Electic mobility shift assays (EMSA) 
were performed to identify NFkB in the nuclear extracts. Data represent the 
mean ± SD for 3-5 mice per group per time point. * P < 0.05 compared to the pup 
groups at the same time points.  
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In vitro stimulation with zymosan, a ligand for TLR2 and dectin-1 (65, 248), 

generated a high level of pro-inflammatory cytokine production in both pup and 

adult LMs. This suggests that given the appropriate stimulation, pup LMs are 

capable of producing cytokines at the level of adult cells and that PC specifically, 

does not stimulate pup cells adequately. The finding that TLR2 and dectin-1 

expression is similar on both pup and adult LMs supports this finding.  

To evaluate the effects of LPS in vivo, we aerosolized pup mice with 

HKEC, a method that has been shown to improve PC clearance in CD4 T cell-

depleted adult mice (238). We demonstrated that HKEC improves PC clearance 

in pup mice. Moreover, we demonstrated that HKEC also influenced the PC-

infected pup lung environment by increasing immune cell infiltration, LM 

activation, and cytokine production. While TNFα, IFNγ, and MCP-1 were most 

influenced by the combination of PC infection and HKEC treatment, IL-6 was 

primarily driven by HKEC. The differences in cytokine production between this 

HKEC in vivo data (Figure 5.10) and the cytokine data generated in vitro 

following stimulation with LPS (Figure 5.3) underscores the influence of factors 

other than NFkB in controlling the amount of cytokine produced, including the 

lung environment and antigenic stimulus itself. The importance of T cells in 

clearing PC infection has previously been established in the literature (241, 242). 

Taking this a step further, we demonstrated that T cells are required for efficient 

phagocytosis of PC organisms by LM. This interaction between T cells and LMs 

is likely driven by IFNγ, a cytokine produced by T cells and required for LM 

activation (50). Macrophages require two signals to become activated; the first is 

IFNγ. The second signal varies, but can be provided by invading pathogens (ex. 

LPS), TNFα (autocrine activity), but also by CD40L expressed on T cells (50). 

Thus, both signals required for macrophage activation can be provided entirely 

by T cells, reiterating the importance of the cognate interactions between LMs 

and T cells during infection.  

 Overall, it is clear that pup LMs can be stimulated through exogenous 

stimulation to expedite the clearance of PC organisms and that the best results 

occur in the presence of functional CD4 T cells. The mechanism behind this 
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appears to be primarily through LM activation, which is enhanced through the 

cognate interactions with infiltrating T cells.  

 

3. Granulocyte macrophage colony-stimulating factor 
The gamut of infectious diseases has shifted over the past several years 

to include those occurring predominantly in immunocompromised individuals. 

Limited efficacy within the current antimicrobial armament in the 

immunocompromised host combined with increasing resistance patterns has led 

to an urgent need for new therapies against these infectious diseases. It is has 

been well documented that this crisis in antimicrobial therapy stems 

predominantly from antibiotic overuse, misuse, and a limited number of 

antimicrobial agents in the pipeline (275). However, another important factor that 

limits the utility of antimicrobial-based therapy is the decreased efficacy of these 

agents in immunocompromised individuals versus to those with intact immune 

systems (257).  The era of HIV and chemotherapy has taught us a lot about the 

relationship between host immunity and microbial pathogenesis. Pathogens that 

are thought to be trivial in individuals with an intact immune system become life-

threatening in those that are immunocompromised. This underscores the crucial 

bond between host immunity and pathogenesis and provides a powerful rationale 

for fighting infectious diseases with immunomodulatory agents (257). 

In the absence of GM-CSF, mice are more susceptible to PC organisms 

(81), most likely due to impaired LM phagocytosis (81, 276) and reduced 

cytokine production (81, 277, 278). In adults, treatment with GM-CSF has been 

shown to enhance the clearance and improve outcomes in PC infection (29) as 

well as many other pulmonary infections (24-28). Based on the rationale for 

fighting infectious diseases with immunomodulatory agents and the 

aforementioned GM-CSF literature, we hypothesized that GM-CSF would 

improve PC clearance and LM function in pup mice. By isolating pup and adult 

AMs and culturing them in vitro with or without rmGM-CSF and PC we were able 

to elucidate that alterations in cytokine production were secondary to AM 

stimulation rather than other immune cells located within the lung environment. 



 149

The increased production of TNFα, MCP-1, and IL-6, but not IL-10 following 

treatment with rmGM-CSF suggests that it functions primarily to activate LMs 

regardless of the presence or absence of PC; although cytokine production is 

greater in the presence of the organism. We proceeded to administer rmGM-CSF 

to pup mice in vivo to evaluate the response while considering the effect of the 

lung environment. Varying doses using i.p. and i.n. administrations, we 

determined that treatment of PC-infected pup mice with rmGM-CSF increases 

LM activation and T cell infiltration. While PC burden was reduced in the groups 

receiving rmGM-CSF, there were no statistically significant differences compared 

to the control groups.  

Similar to the previously described studies in which treatment with GM-

CSF demonstrated an increase in cytokine production (24, 29), our studies 

demonstrated that rmGM-CSF is also able to stimulate cytokine production in 

pup LMs. Unlike these same studies which describe an improvement in the 

clearance of Group B streptococcus (24), Histoplasma capsulatum (26, 27), and 

Pneumocystis carinii (29) in adult mice, our research demonstrates that PC-

infected pup mice failed to achieve a significant reduction in PC burden. There 

are several factors which must be considered, however, when interpreting these 

findings. First, Mandujano et al. and Deepe and Gibbons demonstrated a 

reduced microbial burden in CD4-depleted adult mice treated with rmGM-CSF. 

Second, LeVine and colleagues demonstrated that rmGM-CSF did not improve 

LM phagocytic uptake but did improve the production of ROS. Taken together 

these previously published findings suggest that rmGM-CSF works primarily on 

LMs to increase the amount of ROS, but not phagocytosis. There is conflicting 

evidence in the literature regarding the phagocytic abilities of pup versus adult 

macrophages (279-281). Nakano et al. observed that thioglycollate-elicited 

macrophage from newborn mice phagocytose better than those from adult mice 

(279, 280). Starobinas et al. was unable to reproduce the findings published by 

Nakano and furthermore demonstrated that the phagocytic index of a 5 day-old 

mouse is significantly less than that of an adult mouse (281). Previous research 

performed in our lab demonstrated that pup mice are less efficient than adult 
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mice at phagocytosing fluorescent beads and migrating with them to the draining 

lymph nodes (234). If pup LMs are immature and innately deficient in their 

phagocytic capacity, then rmGM-CSF may be unable to improve phagocytic 

killing. The slight reduction in PC burden observed in rmGM-CSF-treated PC-

infected pup mice may be generated from the stimulation of cytokine production 

and the subsequent T cell infiltration, but without adequate phagocytic function, 

the increased ROS production imparted by rmGM-CSF in adult LMs would be 

rendered useless in pup LMs.  

The functional activation of pup LMs may vary depending on the offending 

organism. Using a rabbit model, Bellanti and colleagues demonstrated that the 

phagocytic ability of the LM is well developed in the early post-natal period with 

regard to Staphylococcus aureus and Escherichia coli but the microbicidal 

activity does not fully develop until after the first postnatal month of life (282). The 

postulated explanation for these conflicting observations is that while the 

microbicidal mechanisms of the LM may be fully developed at birth, it may be 

inhibited at this time by large quantities of phagocytosed surfactant-related 

material (SRM) present in these cells during the early postnatal period (283). 

This large phagocytic uptake has been found to correlate with a reduction in 

observable lysosomes (283) and depletion of cellular energy reserves (284), 

effects of which may interfere with normal microbicidal activity (282). Based on 

this literature, two theories could possibly explain our data demonstrating a 

failure of rmGM-CSF to significantly reduce PC burden but seemingly increase 

LM activation. The first is that rmGM-CSF could not overcome the effects of SRM 

present in the pup LMs and the subsequent reduction in lysosomes and depleted 

energy reserves. The second theory is that pup LMs do not recognize or 

efficiently bind PC organisms compared to other invading organisms resulting in 

decreased phagocytosis that can not be overcome by rmGM-CSF.  

The failure of rmGM-CSF to elicit a significant PC reduction could be 

related to other immature functions associated with the neonatal lung, such as 

poor T cell infiltration. This hypothesis is less likely, however, as we have shown 

that treatment with rmGM-CSF improves T cell infiltration into the lungs of PC-



 151

infected pup mice. Thus, our rmGM-CSF data supports the literature which 

demonstrates a phagocytic deficiency among infant mouse LMs to phagocytose 

PC organisms or that these LMs are overwhelmed by SRM rendering them much 

less responsive to rmGM-CSF. It is also possible that the use of a different 

dosing strategy may generate a more functional activated LM in pup mice. We 

used several different dosing strategies in our GM-CSF experiments. We began 

with i.p. administration of 0.25µg per gram of body weight twice daily for 5 days. 

This regimen was based on a work previously done in our lab in which rmGM-

CSF was used for the expansion of DCs (239). Other authors have shown 

improved microbial clearance from the lungs of mice using doses ranging from 

0.05µg – 0.25µg/g/day i.p. (26, 29). While these authors treated anywhere from 7 

to 21 days, they saw reduction in microbial burdens within a week of starting GM-

CSF therapy. Based on the short half-life (2 hours) of GM-CSF, we initially chose 

to administer the dose in 2 equally divided doses. While we demonstrated an 

increase in LM activation and T cell infiltration, we did not see a reduction in PC 

burden. In order to initiate a specific pulmonary immune response and potentially 

improve PC clearance, we used the inhaled route of administration in subsequent 

pup experiments (252-254, 256). Once again we demonstrated an increase in 

LM activation and macrophage and T cell infiltration, but no reduction in PC 

burden. For each experiment we waited 7 days following PC inoculation before 

beginning GM-CSF treatment to allow time for the organisms to establish an 

infection. Many of the other authors showing reductions in microbial burdens 

began treatment on day 1 post-infection or even prior to infection (24, 26, 29). To 

more closely mimic a clinical timeframe from infection to treatment, we chose to 

wait seven days before initiating GM-CSF treatment. However, this may be one 

reason why we were unable to demonstrate a reduction in PC burden. 

Alternatively, it is possible that our pup mice were metabolizing the drug at a 

much faster rate than adult mice. Thus despite using a higher dose/gram of body 

weight compared to that used in adult mice, we were unable to demonstrate a 

reduction in PC burden. It is possible that longer treatment duration or higher 
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dose could improve PC clearance; this may be an area to explore in future 

research.  

 

4. Granulocyte macrophage colony-stimulating factor/Trimethoprim-
Sulfamethoxazole 
 Based on our findings in PC-infected pup  mice treated with rmGM-CSF  

along with recent reports supporting the use of combination therapy for infections 

in immunocompromised individuals (257), we took our research forward by next 

looking at the use of rmGM-CSF together with the standard of care treatment for 

PC, TMP/SMX. While not always considered a part of the immunocompromised 

population, neonates have been shown to be highly susceptible to pulmonary 

infections due to the immaturity of the developing lungs (7, 8). Opportunistic 

pathogens, including PC, which are often thought of as markers of 

immunosuppresion, can cause infection in neonatal lungs (102, 115). While the 

standard of care treatment for PC pneumonia is TMP/SMX, the use of 

combination therapy for infectious diseases is a common, well-accepted practice 

depending on the severity of infection, its location, and the virulence of the 

infecting organism (257). Taking the use of combination therapy together with the 

rationale of using immunomodulatory agents to fight infectious diseases, we 

hypothesized that the use of GM-CSF and TMP/SMX together could improve PC 

clearance in pup mice.     
 The results generated from the use of combination therapy with GM-CSF 

and TMP/SMX appeared to volley between the stimulating effects of GM-CSF 

and the control of PC burden by TMP/SMX. LM activation markers, cytokine 

production and T cell infiltration all appeared to increase early on in the 

experiments during active treatment with rmGM-CSF, although the addition of 

TMP/SMX blunted these affects in the combination group. After rmGM-CSF was 

discontinued, the reduction in LM stimulation appeared to be influenced by the 

decrease in PC burden in the groups receiving TMP/SMX. Two important 

findings were generated from these data. The first is that combination therapy 

with TMP/SMX plus 50ng/g of i.n. rmGM-CSF reduces PC burden significantly 
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more than TMP/SMX alone in PC-infected pup mice. The second is that control 

of the PC infection is maintained better in the combination group compared to the 

TMP/SMX group upon discontinuation of TMP/SMX. This second finding 

suggests that the addition of rmGM-CSF boosts the immune system to help 

TMP/SMX fight the infection and continues this enhanced effect even after 

TMP/SMX is withdrawn.  

 Using an adult mouse model, Deepe and Gibbons demonstrated that i.p. 

administration of GM-CSF together with a suboptimal dose of amphotericin B 

reduced Histoplasma capsulatum CFU and improved survival compared to 

optimal doses of amphotericin B alone (26). It is possible that the dose of 

TMP/SMX could be reduced or the length of therapy shortened when given in 

combination with GM-CSF. It is also possible that GM-CSF may be able to 

improve the activity of alternative drugs for PC that are less effective than 

TMP/SMX when administered alone, such as dapsone (221).  

  The need for more treatment options for PC infection is undeniable. While 

the resistance patterns of PC organisms are difficult to define due to its inability 

to be cultured, many studies have linked mutations in the DHPS gene with 

chronic TMP/SMX prophylaxis (18, 210-215). A link between the DHPS 

polymorphism and TMP/SMX treatment failures have also been identified (212, 

217). This DHPS polymorphism is thought to be brought about by selective 

evolutionary pressure from SMX (209); further overuse and misuse of TMP/SMX 

will likely lead to increases in treatment failures against PC. Adverse reactions to 

TMP/SMX are common, particularly in the immunocompromised population, the 

population which most frequently uses this particular antibiotic. Fifteen percent of 

children develop substantial adverse reactions to TMP/SMX (16), ranging from 

rash to interstitial nephritis (13-15) and hyperbilirubinemia (199-201).     

This is the first study to demonstrate an improved treatment option for 

fighting PC infection in neonates since pentamidine was replaced with TMP/SMX 

in 1974 (190-192) and was proven safe for children in 1977 (193, 194). The use 

of GM-CSF has been proven safe in both immunocompetent as well as 

immunocompromised children (285), making it an attractive option for 
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combination therapy in order to reduce the dose or treatment duration of 

TMP/SMX or possibly even dapsone or caspofungin; further studies are needed 

to assess these options.  

 

D. Human Neonatal Lung Macrophage Activation is Delayed 
 

Within the United States, PC infection remains primarily a disease of the 

immunocompromised host, but in underdeveloped countries PC pneumonitis is 

still a major cause of morbidity and mortality, particularly in young children (1). 

Infants appear to be particularly susceptible to primary PC infection, likely due to 

an immature immune system and a lung environment that protects against 

damaging inflammation early after birth (5). Fortunately the United States has 

remained somewhat sheltered from this ever-present infection. Despite this, PCP 

is still one of the deadliest and most prominent infections among the immune 

deficient population throughout the world. Research which furthers our 

understanding of this organism and new drugs designed to target this organism 

remains an extremely important task. Through our research using a mouse 

model and murine cell lines, we have learned a lot about the neonatal immune 

response to PC infection. We have also demonstrated that by combining GM-

CSF with TMP/SMX we can clear PC infection from neonatal lungs and maintain 

this reduction after discontinuation of therapy. While some inferences can be 

made in human infants based on the research we have done in mice, it is 

important to determine if human LMs respond similarly to mouse LMs following 

stimulation with PC, LPS, zymosan and GM-CSF. Considering that our research 

has clinical implications the work we have done using human LMs will strengthen 

our overall findings and perhaps lead to clinical trials implementing the use of 

GM-CSF in populations vulnerable to PC infection as well as other opportunistic 

infections.  
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1. LPS 
 Our initial experiments were performed using adult peripheral blood 

monocyte-derived macrophages compared to neonatal LMs isolated from 

bronchiolar suctioned sputum. Subsequently we performed the same 

experiments using both adult and neonatal LMs isolated from bronchiolar 

suctioned sputum. The differences in cytokine production observed in 

macrophages derived from different areas, peripheral blood monocyte versus 

lung, emphasizes the distinctive roles that macrophages play based on their 

tissue specificity and the requirements for that particular organ. Adult 

macrophages, regardless of source, produced more cytokines than neonatal LMs 

following stimulation with LPS.  Lung derived adult macrophages produced 

significantly less TNFα than peripheral blood monocyte-derived macrophages 

(233 pg/ml vs. 3910 pg/ml; P< 0.05). This is likely because a large amount of 

TNFα produced locally in the lung would initiate a huge inflammatory response. 

Such a response would be detrimental in the lung environment where the 

delicate balance between defending against invading pathogens and preventing 

a damaging host response is crucial. Overall, the cytokine response of human 

neonatal and adult LMs to LPS resembles that of pup and adult LMs in mice. 

After 24 hours of LPS stimulation neonatal LMs produce significantly less TNFα 

and IL-6 compared to adult LMs. This similarity between human and mouse data 

would suggest that, as with mice, there may be a delayed or reduced expression 

of TLR4, CD14, MD-2, or an impaired co-localization of these molecules.  

 

2. Zymosan 
 As with LPS, stimulation of human LMs with zymosan produced similar 

trends in cytokine production as those observed in mice with the exception of 

TNFα. Pup mouse LMs produced more TNFα at both 12 and 24 hours post-

stimulation, although these differences were not statistically significant. 

Conversely, human adult cells produced significantly more TNFα than neonatal 

cells after 12 and 24 hours of zymosan stimulation and thus more closely 

resemble the stimulation response seen with LPS. The production of IL-6 and IL-
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10 more closely followed the patterns observed in mouse cells stimulated with 

zymosan; human neonatal cells produced significantly more of these cytokines 

compared to adults. In mice we demonstrated that TLR2 and dectin-1 expression 

levels were similar on both pup and adults, which was supported by the finding 

that TNFα and IL-6 production was also similar between pup and adults. The 

discordance in TNFα and IL-6 production observed in human neonatal and adult 

cells following zymosan stimulation is unlikely due to differences in TLR2 

expression. We have shown in mice that TLR2 expression is similar for pup and 

adult LMs. Furthermore, if TLR2 expression on neonatal LMs was low compared 

to adult cells, it is likely that TNFα and IL-6 production in neonatal LMs would 

also be low compared to adults. Since this is not the case, it is more likely that a 

downstream signaling component is responsible for the difference observed in 

these two cytokines between neonatal and adult LMs. As was observed in mouse 

LMs, zymosan-stimulated cells produced significantly more cytokine than LPS in 

both neonates and adults. This observation suggests that signaling through TLR2 

produces a more pronounced cytokine response than TLR4-dependent signaling.  

 

3. Pneumocystis 
 The failure of PC to stimulate cytokine production above baseline in 

neonatal macrophages coincides with our pup mouse data. It is possible that if 

we had incubated the neonatal cells with PC for 48 hours we may have detected 

a difference, as we did with TNFα in our pup mouse data. Adult human and adult 

mouse LMs both responded to PC with an increase in cytokine production above 

that of their respective control cells, although these differences were not 

statistically different in the human cells. The differential response of 

neonatal/pups compared to adults to PC may be due to immature intracellular 

signaling in the neonatal/pup cells. We have shown that there is no difference in 

the expression of TLR2 or dectin-1 on mouse LMs. Additionally there are no 

differences in the number of cells expressing these surface receptors. We have 

also shown that there is no difference in the expression of mannose receptor on 

pup versus adult mouse macrophages (data not shown). Mannose receptor is 
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another receptor thought to bind pathogen-associated mannose structures found 

on bacteria, yeast, and fungi (56). While some studies have suggested that MR is 

important in the recognition and clearance of PC (51, 52), other studies found 

that MR-/- mice were no more susceptible PC than their wild-type counterparts 

(57) (58).   

 Another factor which must be considered pertains to the PC organism 

itself. We have previously described that these organisms are species specific 

and cannot be grown in culture. In our lab, our PC source is kept in a SCID 

mouse colony and is therefore, mouse-specific (Pneumocystis carinii f. sp. 

muris). Ideally, we would have liked to use human-specific PC (Pneumocystis 

carinii f. sp. hominis); however, since this organism cannot be grown in culture, 

the hominis strain of the organism is very difficult to acquire. There has been a lot 

of debate over the classification and nomenclature of PC organisms since its 

discovery in 1909. It is now clear that many different species make up the genus 

Pneumocystis. Extensive research of this organism has taught us that almost 

every mammalian species harbors at least one species of PC, which can thrive 

only in its specific mammalian host and which are genetically distinct from one 

another (286, 287). Within the rat, for example, there are at least five known PC 

species (288). Comparisons of gene sequences among different PC species 

using gene trees and bootstrap statistics have provided us with some idea of the 

similarites between specific sequences responsible for proteins such as 

superoxide dismutase (SOD), DHPS, and DHFR (289, 290). Unfortunately, it is 

still unclear what makes a species specific to a mammalian host. Research 

published by Gigliotti and Hughes has demonstrated that a single monoclonal 

antibody (MAb) directed at the gp120 surface glycoprotein found on PC 

organisms (Mab 5E12) was able to recognize PC from rat, rabbit, ferret, and 

humans (291). This is an important finding considering that gp120 has been 

implicated in binding of PC to type I pneumocytes and macrophages (292, 293) 

as this would suggest that PC species specific to one mammalian host is capable 

of binding to the pneumocytes of another. Overall, this published data together 

with the increased cytokine production we observed within the human adult LMs 
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suggests that human cells are capable of recognizing mouse-specific PC. As 

such, this data demonstrates that human neonatal LMs, as with pup mouse LMs, 

fail to respond to PC organisms compared to their adult counterparts.  

 Interestingly, the baseline level of cytokine production in neonatal cells 

was much higher than the baseline production in adult cells. Since no 

demographic or disease state information was collected on individual human 

subjects it is difficult to provide an absolute explanation for this finding. It is 

possible, however, that this observation can be attributed to the fact that each of 

the neonatal subjects were receiving ventilation support, unlike the adult 

subjects. This type of pulmonary stress may have stimulated the LMs leading to 

an increase in cytokine production. 

Unlike what was observed in mouse cells treated with rmGM-CSF, human 

LMs co-cultured with PC did not demonstrate an increase in cytokine production 

when stimulated with rhGM-CSF. Despite this, rhGM-CSF significantly improved 

phagocytosis in neonatal LMs co-cultured with PC. There are a couple of 

possibilities which could explain this discordance between cytokine production 

and phagocytosis. The first is a possible timing issue. The phagocytosis index 

was determined after 25 minutes of incubation with PC and GM-CSF. 

Alternatively, aliquots for cytokine analysis were taken at 12 and 24 hours post-

stimulation. It is possible that GM-CSF produces an immediate early cytokine 

response that was missed by collecting aliquots after 12 hours. The second 

possible explanation for this discordance is that GM-CSF improved LM 

phagocytosis without stimulating cytokine release. Deepe and Gibbons 

demonstrated that there was no increase in cytokine production in mice infected 

with Histoplasma capsulatum following GM-CSF treatment (26). An improvement 

in phagocytosis without a concomitant increase in cytokine production may be 

favorable depending on the type of organism and the extent of infection. As 

described in the introduction, PC pathogenesis can be divided into two 

categories; PC-mediated and immune-mediated lung injury. Although PC can 

cause direct damage to the host lung by killing pneumocytes (147, 150) and 

producing lung-damaging enzymes (151-157), it is possible that the majority of 
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damage comes from immune-mediated lung injury. In the clinical setting, the 

presentation of PCP is highly dependent on the immune status of the patient, 

suggesting that the host immune response to PCP is contributing to its 

pathogenesis by initiating immune-mediated lung injury. The initial observation of 

PCP in cancer patients often occurs once immunosuppressive steroid therapy is 

being tapered (163) (164); in bone marrow transplant recipients it typically occurs 

after engraftment and immune function restoration (165) (166); and in AIDS 

patients it generally occurs following rapid recovery of CD4 T lymphocytes 

secondary to initiating highly active antiretroviral therapy (HAART) (167, 168). 

Additionally, it has been well documented that lung injury during moderate to 

severe PCP is minimized with the administration of adjunctive steroid therapy, 

reiterating the detrimental effects of the host immune response to PC in the 

infected lung (169) (170).  If the majority of lung damage is immune-mediated, it 

would be favorable for LMs to ingest and kill the organisms without mounting a 

more fulminate immune response.  

Overall, the significant improvement in neonatal LM phagocytosis initiated 

by GM-CSF is very promising. The failure of GM-CSF to increase adult LM 

phagocytosis above baseline is likely because the baseline level of phagocytosis 

among the adult LMs was already maximized. Based on these data, populations 

vulnerable to pulmonary infection from PC and other pulmonary-specific 

pathogens could benefit from the addition of GM-CSF to the standard 

antimicrobial therapy.  
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E. Conclusion 

 

Neonatal lung research is difficult due to the size and delicate nature of 

the still developing lung and homeostatic complexities. Balance between 

protecting the neonatal lung from invading pathogens and an overwhelming 

immune response is critical. When using immunomodulatory agents to treat 

pulmonary infections, one must consider this delicate balance and make sure not 

to tip the scale heavily in one direction over the other. The need for more 

treatment options to accommodate the growing population of immune-deficient 

adults and children is obviated by increasing antimicrobial resistance patterns 

coupled with fewer new antimicrobials in the pipeline (294). GM-CSF has been 

used clinically for many years in both immune-competent and incompetent 

individuals. Its safety in children and efficacy in stimulating LMs have been 

proven (23, 24, 285). Combination therapy has the benefit of often being able to 

reduce doses or durations of therapy to minimize toxicity (257). It is known that 

term and pre-term infants are more susceptible to pulmonary infection and often 

have a more fulminate course of the disease (7, 8, 282). Since LMs are often the 

first line of defense against inhaled pathogens we hypothesized that neonatal LM 

function was impaired or delayed. We have shown, in pup mice that LMs are at 

least partially responsible for this increased susceptibility due to a delay in 

activation and cytokine production. We demonstrated in both mouse and humans 

that functionally impaired neonatal LMs can be exogenously stimulated to 

expedite activation and cytokine production and improve PC clearance. We have 

demonstrated in human neonatal LMs that GM-CSF improves phagocytosis of 

PC organisms without increasing cytokine production. GM-CSF was shown to 

increase cytokine production in pup mouse LMs; however the failure to produce 

cytokines in human neonatal LMs may be favorable for an organism which 

imparts much of its lung damage through initiation of the innate and adaptive 

immune systems. Taking together these mouse and human data, we believe that 

combination therapy with GM-CSF and TMP/SMX is a viable treatment option for 
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PC infections among immunocompromised populations, including the neonatal 

population.  

 

F. Future Directions 
 

There are many avenues left to explore in this area of research; one such 

area involves looking at surfactant proteins. Surfactant proteins A and D (SP-A 

and SP-D) are large hydrophilic glycoproteins which participate in innate lung 

immunity through interactions with a variety of organisms, including PC (295, 

296). SP-A and SP-D have both been shown to bind PC (297-300) as well as 

interact with and modulate the function of macrophages (301-303). Specifically, 

SP-A has been shown to increase phagocytosis while SP-D increases the 

production of ROS during PC infection (295, 296, 303, 304). The importance of 

these surfactant proteins for clearance of PC infection has been demonstrated in 

both animal models and in humans. Linke and colleagues demonstrated delayed 

PC clearance in a SP-A-/- mouse model (298), while Hughes and colleagues 

showed the efficacy of exogenous surfactant replacement using a PC-infected rat 

model (305). In humans a limited number of publications have demonstrated that 

surfactant treatment in PC-infected infants improves gas exchange and overall 

oxygenation (306-309). However, none of these studies address the effect of 

surfactant on LM function and PC clearance. Combining the fact that surfactant 

treatment has already been used clinically to treat PC-infected infants with the 

published evidence that surfactant improves LM function against PC organisms, 

it would be reasonable to extend our research to determine if surfactant can 

expedite PC clearance and improve outcomes in PC-infected infants.  

Although there are several immunomodulatory agents commercially 

available, including GM-CSF, they are not all optimized for delivery directly to the 

lung. Historically, clinicians have used the available i.v. or s.c. formulations, 

however these are designed to be delivered to the lung. The lungs are distinctly 

different from the venous environment and thus a formulation and delivery 

system that are specifically designed for the lung environment may help improve 
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the overall affect of GM-CSF. Furthermore, a delivery system that is designed to 

instill the greatest amount of drug to the lung would also help optimized therapy 

and waste as little drug as possible. Thus, efforts to optimize dose, delivery, and 

formulation of GM-CSF as well as other immune modulating agents is an 

important future objective with the overall goal of improving outcomes and 

minimizing toxicity.  
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